11

11

298

Universal Serial Bus Specification Revision 2.0

Port 0
Upstream Facing Port ,—' Upstream Facing Port State Machines
/
-
. Hub State
Transaction | R HUbt . Machines ™= COI:I:,-Zuer
Translator epeater :
Downstream
== Facing Port
: , State Machine(s)

Port 1 Port 2 Port N
Downstream Facing Ports

Figure 11-1. Hub Architecture

When a hub’s upstream facing port is attached to an electrical environment that is operating at full-/low-
speed, the hub’s high-speed functionality is disallowed. This means that the hub will only operate at full-
/low-speed and the transaction translator and high-speed repeater will not operate. In this electrical
environment, the hub repeater must operate as a full-/low-speed repeater and the routing logic connects
ports to the hub repeater.

When the hub upstream facing port is attached to an electrical environment that is operating at high-speed,
the full-/low-speed hub repeater is not operational. In this electrical environment when a high-speed device
is attached on downstream facing port, the routing logic will connect the port to the hub repeater and the
hub repeater must operate as a high-speed repeater. In this case, when a full-/low-speed device is attached
on a downstream facing port, the routing logic must connect the port to the transaction translator.

1.2 Hub Connectivity

Hubs exhibit different connectivity behavior depending on whether they are propagating packet traffic, or
resume signaling, or are in the Idle state.

.1.2.1 Packet Signaling Connectivity

The Hub Repeater contains one port that must always connect in the upstream direction (referred to as the
upstream facing port) and one or more downstream facing ports. Upstream connectivity is defined as being
towards the host, and downstream connectivity is defined as being towards a device. Figure 11-2 shows the
packet signaling connectivity behavior for hubs in the upstream and downstream directions. A hub also has
an Idle state, during which the hub makes no connectivity. When in the Idle state, all of the hub’s ports are
in the receive mode waiting for the start of the next packet.

LGE-1010 / Page 326 of 650

Universal Serial Bus Specification Revision 2.0

Upstream
Port

/]
b AN

N
ownstream ul_lmlTl L‘JL‘JML‘J

Downstream Upstream Idle
Connectivity Connectivity (No Connectivity)

I:I Enabled Port

Zl Port not Enabled

Figure 11-2. Hub Signaling Connectivity

If a downstream facing port is enabled (i.e., in a state where it can propagate signaling through the hub), and
the hub detects the start of a packet on that port, connectivity is established in an upstream direction to the
upstream facing port of that hub, but not to any other downstream facing ports. This means that when a
device or a hub transmits a packet upstream, only those hubs in line between the transmitting device and the
host will see the packet. Refer to Section 11.8.3 for optional behavior when a hub detects simultaneous
upstream signaling on more than one port.

In the downstream direction, hubs operate in a broadcast mode. When a hub detects the start of a packet on
its upstream facing port, it establishes connectivity to all enabled downstream facing ports. If a port is not
enabled, it does not propagate packet signaling downstream.

11.1.2.2 Resume Connectivity

Hubs exhibit different connectivity behaviors for upstream- and downstream-directed resume signaling. A
hub that is suspended reflects resume signaling from its upstream facing port to all of its enabled
downstream facing ports. Figure 11-3 illustrates hub upstream and downstream resume connectivity.

Upstream Upstream
Port Port
|:| Enabled Port
IXI Disabled or
Suspended
Port

/] AN coice
/ i \L / BEI Suspended

Downstream X< i M\ "~
"I 0 T

Downstream Connectivity Sourgggﬁr:me
Upstream Connectivity

Figure 11-3. Resume Connectivity

299

LGE-1010 / Page 327 of 650

Universal Serial Bus Specification Revision 2.0

If a hub is suspended and detects resume signaling from a selectively suspended or an enabled downstream
facing port, the hub reflects that signaling upstream and to all of its enabled downstream facing ports,
including the port that initiated the resume sequence. Resume signaling is not reflected to disabled or
suspended ports. A detailed discussion of resume connectivity appears in Section 11.9.

11.1.2.3 Hub Fault Recovery Mechanisms

Hubs are the essential USB component for establishing connectivity between the host and other devices. It
is vital that any connectivity faults, especially those that might result in a deadlock, be detected and
prevented from occurring. Hubs need to handle connectivity faults only when they are in the repeater mode.

Hubs must also be able to detect and recover from lost or corrupted packets that are addressed to the Hub
Controller. Because the Hub Controller is, in fact, another USB device, it must adhere to the same timeout
rules as other USB devices, as described in Chapter 8.

11.2 Hub Frame/Microframe Timer

Each hub has a (micro)frame timer whose timing is derived from the hub’s local clock and is synchronized
to the host (micro)frame period by the host-generated Start-of-(micro)frame (SOF). The (micro)frame
timer provides timing references that are used to allow the hub to detect a babbling device and prevent the
hub from being disabled by the upstream hub. The hub (micro)frame timer must track the host
(micro)frame period and be capable of remaining synchronized with the host even if two consecutive SOF
tokens are missed by the hub.

The (micro)frame timer must lock to the host’s (micro)frame timing for worst case clock accuracies and
timing offsets between the host and hub. There are specific requirements for hubs when their upstream
facing port is operating at high-speed and full-speed.

11.2.1 High-speed Microframe Timer Range
The range for a microframe timer must be from 59904 to 60096 high-speed bits.

The nominal microframe interval is 60000 high-speed bit times. The hub microframe timer range specified
above is 60000 +/- 96 high-speed bit times in order to accommodate host accuracy, hub accuracy, repeater
jittter, and hub quantization. The +/-96 full-speed bit time variation is calculated in Table 11-2.

Table 11-1. High-speed Microframe Timer Range Contributions

Source of Variation Variation (ppm) Variation (bits) Over Comment
One Microframe Interval

Host accuracy +/- 500 +/- 30

Hub accuracy +/- 500 +/- 30

Host jitter +/-2

Hub chain jitter +/- 20 Four hubs in series
upstream of hub; 0 to 5
bits of jitter per hub

Quantization +/-14 Bits need to round total
variation to multiple of 16

300

LGE-1010 / Page 328 of 650

Universal Serial Bus Specification Revision 2.0

11.2.2 Full-speed Frame Timer Range
The range of the frame timer must be from 11958 to 12042 full-speed bits.

The nominal frame interval is 12000 full-speed bit times. The hub frame timer range specified above is
12000 +/- 42 full-speed bit times in order to accommodate host accuracy and hub accuracy. The +/-42 full-
speed bit time variation is calculated in Table 11-2.

Table 11-2. Full-speed Frame Timer Range Contributions

Source of Variation | Variation (ppm) Variation (bits) Over Comment
One Frame Interval

Host accuracy +/- 500 +/- 6

Hub accuracy +/- 3000 +/- 36 +/-6 bits due to hub
accuracy (500 ppm)

+/-30 bits due to 1.x
parent hub accuracy
(2500 ppm)

11.2.3 Frame/Microframe Timer Synchronization

A hub’s (micro)frame timer is clocked by the hub’s clock source and is synchronized to SOF packets that
are derived from the host’s (micro)frame timer. After a reset or resume, the hub’s (micro)frame timer is not
synchronized. Whenever the hub receives two consecutive SOF packets, its (micro)frame timer must be
synchronized. Synchronized is synonymous with lock(ed). An example for a method of constructing a
timer that properly synchronizes is as follows.

11.2.3.1 Example (Micro)frame Timer Synchronization Method

The hub maintains three timer values: (micro)frame timer (down counter), current (micro)frame (up
counter), and next (micro)frame (register). After a reset or resume, a flag is set to indicate that the
(micro)frame timer is not synchronized.

When the first SOF token is detected, the current (micro)frame timer resets and starts counting once per hub
bit time. On the next SOF, if the timer has not rolled over, the value in the current (micro)frame timer is
loaded into the next (micro)frame register and into the (micro)frame timer. The current (micro)frame timer
is reset to zero and continues to count and the flag is set to indicate that the (micro)frame timer is locked.
The (micro)frame timer rolls over when the count exceeds 60096 for high-speed or 12042 for full-speed (a
test at 65535 for high-speed or 16383 for full-speed is adequate). If the current (micro)frame timer has
rolled over, then an SOF was missed and the (micro)frame timer and next (micro)frame values are not
loaded. When an SOF is missed, the flag indicating that the timer is not synchronized remains set.

Whenever the (micro)frame timer counts down to zero, the current value of the next (micro)frame register is
loaded into the (micro)frame timer. When an SOF is detected, and the current (micro)frame timer has not
rolled over, the value of the current (micro)frame timer is loaded into the (micro)frame timer and the next
(micro)frame registers. The current (micro)frame timer is then reset to zero and continues to count. If the
current (micro)frame timer has rolled over, then the value in the next (micro)frame register is loaded into
the (micro)frame timer. This process can cause the (micro)frame timer to be updated twice in a single
(micro)frame: once when the (micro)frame timer reaches zero and once when the SOF is detected.

301

LGE-1010 / Page 329 of 650

Universal Serial Bus Specification Revision 2.0

11.2.3.2 EOF Advancement

302

The hub must advance its EOF points based on its SOF decode time in order to ensure that in the tiered
topology, hubs farther away from the host will always have later EOF points than hubs nearer to the host.
The magnitude of advance is implementation-dependent; the possible range of advance is derived below.

The synchronization circuit described above depends on successfully decoding an SOF packet identifier
(PID). This means that the (micro)frame timer will be synchronized to a time that is later than the
synchronization point in the SOF packet: later by at least 40 bit times for high-speed or 16 bit times for full-
speed. Each implementation also takes some time to react to the SOF decode and set the appropriate
timer/counter values. This reaction time is implementation-dependent but is assumed to be less than 192 bit
times for high-speed and four bit times for full-speed. Subsequent sections describe the actions that are
controlled by the (micro)frame timer. These actions are defined at the EOF1, EOF2, and EOF. EOF1 and
EOF2 are defined in later sections. These sections assume that the hub’s (micro)frame timer will count to
zero at the end of the (micro)frame (EOF). The circuitry described above will have the (micro)frame timer
counting to zero after 40 to 192 for high-speed bit times or 16-20 full-speed bit times after the start of a
(micro)frame (or end of previous (micro)frame). The timings and bit offsets in the later sections must be
advanced to account for this delay (i.e., add 40-192 for high-speed or 16-20 bit times for full-speed to the
EOF1 and EOF?2 points).

Advancing the EOF points by the processing delay ensures that the spread between the EOFs is only due to
the propagation delay. For example, for high-speed, the maximum spread between 2 EOF points anywhere
on the USB is less than 216 bits (144 + 72). 144 bit times are due to 36 bit times of max latency through

4 repeaters. 72 bit times are due to five maximum cable and interconnect delays of 30 ns each. As can be
seen in Figure 11-4 without EOF advancement, a hub with a larger tier number could have an EOF occuring
earlier than a hub with a smaller tier number. In Figure 11-5 with EOF advancement ensures that in the
tiered topology, hubs with larger tier numbers always have later EOF points than hubs with smaller tier
numbers. Note: 13 bit times in the figures is an example maximum cable delay (approximately 30 ns).

Time
r ‘..H.‘.‘.‘.‘,.‘,.‘,._‘._‘.‘,.”.H.‘._‘.‘b
l | .
1 Tier 1
3+192 bits delay
: | I Tier N
v
Tier 13+13+36+40 bits delay
Depth | I Tier N+1
Figure 11-4. Example High-speed EOF Offsets Due to Propagation Delay Without EOF
Advancement
| I Tier 1
13 bits delay
I I Tier N
Tier \‘3+13+36 bits delay
Depth I Tier N+1

|
Figure 11-5. Example High-speed EOF Offsets Due to Propagation Delay With EOF Advancement

LGE-1010 / Page 330 of 650

Universal Serial Bus Specification Revision 2.0

11.2.3.3 Effect of Synchronization on Repeater Behavior

The (micro)frame timer provides an indication to the hub Repeater state machine that the (micro)frame
timer has synchronized to SOF and that the (micro)frame timer is capable of generating the EOF1 and
EOF2 timing points. This signal is important after a global resume because of the possibility that a full-
/low-speed device may have been detached, and a low-/full-speed device attached while the host was
generating a long resume (several seconds) and the disconnect cannot be detected. The new device will bias
D+ and D- to appear like a K on the hub which would then be treated as an SOP and, unless inhibited, this
SOP would propagate though the resumed hubs. Since the hubs would not have seen any SOFs at this point,
the hubs would not be synchronized and, thus, unable to generate the EOF1 and EOF2 timing points. The
only recovery from this would be for the host to reset and re-enumerate the section of the bus containing the
changed device. This scenario is prevented by inhibiting any downstream facing port from establishing
connectivity until the hub is locked after a resume.

11.2.4 Microframe Jitter Related to Frame Jitter

The period between the SOFs from the Transaction Translator must not vary by more than +/- 42 ns. The
microframe timer count must be used by the Transaction Translator to generate SOFs to full-speed devices
(and keepalives to low-speed devices) connected to it.

The SOF received at the upstream facing port of the hub is repeated with a local clock. The frequency of
this clock may be a divided version of the bit rate. This could result in a quantization error and microframe-
to-microframe jitter. The microframe-to-microframe jitter of a hub repeater must be between 0 and 5 bit
times. This means that the latency through the repeater of consecutive SOFs must differ by less than 5 bits.
A hub may register the SOF for internal use, e.g., microframe synchronization. This requires SOF PID
detection. The circuitry used for internal registering of the SOF must have a jitter which is less than or
equal to 16 bits. This means that the microframe timer count values between consecutive equally spaced
SOFs must differ by less than or equal to 16 bits. The host controller frequency may drift over the period of
a microframe resulting in microframe period jitter. The host controller source jitter for SOFs must be less
than 4 bits. This means that the consecutive periods between SOFs must differ by less than 4 bits. These
requirements ensure that the microframe period at the end of five hub tiers will have a jitter of less than

40 bits (4 from host controller + 4*5 from hub repeaters + 16 from the internal SOF registering). This
means that the consecutive periods between SOFs as measured at any microframe timer will differ by less
than 40 bits (83.3 ns at 480 Mbs). This is less than the +/- 42 ns variation allowed.

11.2.5 EOF1 and EOF2 Timing Points

The EOF1 and EOF2 are timing points that are derived from the hub’s (micro)frame timer. Table 11-3
specifies the required host and hub EOF timing points for high-speed and full-speed operation.

Table 11-3. Hub and Host EOF1/EOF2 Timing Points

Bit Times Before EOF Bit Times Before EOF

for High-speed for Full-speed
Label Notes
EOF1 560 32 End-of-(micro)frame point #1
EOF2 64 10 End-of-(micro)frame point #2

These timing points are used to ensure that devices and hubs do not interfere with the proper transmission of
the SOF packet from the host. These timing points have meaning only when the (micro)frame timer has
been synchronized to the SOF.

The host and hub (micro)frame markers, while all synchronized to the host’s SOF, are subject to certain
skews that dictate the placement of the EOF points. Figure 11-6 illustrates EOF2 timing point for high-

303

LGE-1010 / Page 331 of 650

Universal Serial Bus Specification Revision 2.0

speed operation. Figure 11-7 illustrates the EOF1 high-speed timing point. The numbers in the figures are
in high-speed bit times.

EOF1 - EQF=0
| |
v . tier m ‘ .
tier depth EOF2=64 quantization=16
| L=
tier n é
skew=38
Figure 11-6. High-speed EOF2 Timing Point
; EQOF2 _
> time " EQF=0 fer 0
| . | o
OF propagation=216
EOF1=560 skew=2
v EOP propagation=216 +

quiescent time = 8

tier depth
[| !

k=

skew=38

Figure 11-7. High-speed EOF1 Timing Point

At the EOF2 point, any port that has upstream connectivity will be disabled as a babbler. Hubs operating as
a full-/low-speed repeater prevent becoming disabled by sending an end of packet to the upstream hub
before that hub reaches its EOF2 point (i.e., at EOF1).

Figure 11-8 illustrates EOF timing points for full-/low-speed repeater operation.

EOF1 EOF2

Bit times
SR | | | | | | | | |
I I | I | I I [I I
50 40 30 20 10
’47 EOF1 range "7 EOF2 range 4"

Figure 11-8. Full-speed EOF Timing Points

The hub operating as a full-/low-speed repeater is permitted to send the EOP if upstream connectivity is not
established at EOF1 time. A full-speed repeater must send the EOP if connectivity is established from any
downstream facing port at the EOF1 point.

A high-speed repeater must tear down upstream connectivity at the EOF1 point.

A high-speed repeater must tear down connectivity after the bus returns to the Idle state and the Elasticity
buffer is emptied (as described in Section 11.7.2) rather than on decoding an EOP pattern as in full-/low-
speed. Therefore, abrupt end of signaling (i.e, without a high-speed EOP) may cause malformed packets,
and this must not affect repeater operation. The host controller design must be capable of processing such
packets correctly.

304

LGE-1010 / Page 332 of 650

Universal Serial Bus Specification Revision 2.0

11.2.5.1 High-speed EOF1 and EOF2 Timing Points

The EOF2 point is 64 bit times before EOF as shown in Figure 11-6, and the EOF1 point is 560 bit times
before EOF as shown in Figure 11-7.

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or
between hubs. This timing skew represents the difference between different microframe timers on different
hubs and the host. The total accumulated skew can be as much as 38 bit times. This is composed of +2 bit
times of (micro)frame host source jitter and 0 to 36 bit times of repeater jitter as derived earlier. This skew
timing affects the placement of the EOF1 and EOF2 points.

Note: The hub skew timing assumes that the microframe interval will not be changed by the host after the
microframe timers have synchronized.

EOF skew can be from -2 to + 38 bits, so all EOFs are within 256 bits (216 bits of EOF propagation delay +
40 bits of EOF skew) of each other.

Note: The EOF2 point is based on 16 bit times for quantization + 38 bit times of skew; therefore, the EOF2
point needs to located at least 54 bit times before EOF. The EOF2 point is set at 64 bit times to allow
babble detection to be done with a divided (by 16) version of the bit clock. An upstream-directed packet
ending before EOF1 must reach every upstream hub/host before it gets to its EOF2 point. This is achieved
if the EOF1 point is located at least 544 bits before any upstream EOF (64 bits of EOF2 offset + 216 bits of
EOP propagation delay + 8 bits of idle time + 216 bits of SOF propagation delay + 38 bits of EOF1 skew +
2 bits of EOF2 skew). The EOFI1 point is set at 560 bit times to allow using a divided (by 16) version of the
bit clock.

11.2.5.2 Full-speed EOF1 and EOF2 Timing Points

When the hub operates as a full-/low-speed repeater, the EOF1 point is 10 bit times before EOF and EOF1
is 32 bit times before EOF as shown in Figure 11-8.

The EOF2 point is defined to occur at least one bit time before the first bit of the SYNC for an SOP. The
period allowed for an EOP is four full-speed bit times (the upstream facing port on a hub is always full-
speed).

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or
between hubs. This timing skew represents the difference between different frame timers on different hubs
and the host. The total accumulated skew can be as large as 9 bit times. This is composed of +1 bit times
per frame of quantization error and *1 bit per frame of wander. The quantization error occurs when the hub
times the interval between SOFs and arrives at a value that is off by a fraction of a bit time but, due to
quantization, is rounded to a full bit. Frame wander occurs when the host's frame timer is adjusted by the
USB System Software so that the value sampled by the hub in a previous frame differs from the frame
interval being used by the host. (Note: Such adjustment was permitted in the USB 1.0 and 1.1 specification
but is no longer permitted.) These values accumulate over multiple frames because SOF packets can be lost
and the hub cannot resynchronize its frame timer. This specification allows for the loss of two consecutive
SOFs. During this interval, the quantization error accumulates to 3 bit times, and the wander accumulates
to+1 + 2 + 3 =46 for a total of £9 bit times of accumulated skew in three frames. This skew timing affects
the placement of the EOF1 and EOF2 points as follows.

A hub must reach its EOF2 point one bit time before the end of the frame. In order to ensure this, a 9-bit
time guard-band must be added so that the EOF2 point is set to occur when the hub's local frame timer
reaches 10. A hub must complete its EOP before the hub to which it is attached reaches its EOF2 point. A
hub may reach its EOF2 point nine bit times before bit time 10 (at bit time 19 before the SOF). To ensure
that the EOP is completed by bit time 19, it must start before bit time 23. To ensure that the hub starts at bit
time 23 with respect to another hub, a hub must set its EOF1 point nine bit times ahead of bit time 23 (at bit
time 32). If a hub sets its timer to generate an EOP at bit time 32, that EOP may start as much as 9 bit times
early (at bit time 41).

305

LGE-1010 / Page 333 of 650

Universal Serial Bus Specification Revision 2.0

11.3 Host Behavior at End-of-Frame

It is the responsibility of the USB host controller (the host) to not provoke a response from a device if the
response would cause the device to be sending a packet at the EOF2 point. Furthermore, because a hub will
terminate an upstream directed packet when the hub reaches its EOF1 point, the host should not start a
transaction if a response from the device (data or handshake) would be pending or in process when a hub
reaches its EOF1 point. The implications of these limitations are described in the following sections.

Note: The above requirements can be met if the host controller ensures that the last transaction will
complete by its EOF1. The time consumed by a transaction (and consequently the latest start time of the
transaction) can be evaluated by accumulating the various delay components in the transaction. The packet
lengths should include all fields and account for bit-stuffing overhead as described in Chapter 7 and
Chapter 8. Formulae for calculating transaction times are located in Section 5.11.3.

In defining the timing points below, the last bit interval in a (micro)frame is designated as bit time zero. Bit
times in a (micro)frame that occur before the last have values that increase the further they are from bit time
zero (earlier bit times have higher numbers). These bit time designations are used for convenience only and
are not intended to imply a particular implementation. The only requirement of an implementation is that
the relative time relationships be preserved.

Host controllers issuing high-speed transactions on a high-speed bus must meet the above requirements.
Host controllers issuing full-/low-speed transactions on a full-/low-speed bus may also use the following
three behaviors near EOF.

11.3.1 Full-/low-speed Latest Host Packet

Hubs are allowed to send an EOP on their upstream facing ports at the EOF1 point if there is no
downstream-directed traffic in progress at that time. To prevent potential contention, the host is not allowed
to start a packet if connectivity will not be established on all connections before a hub reaches its EOF1
point. This means that the host must not start a packet after bit time 42.

Note: Although there is as much as a six-bit time delay between the time the host starts a packet and all
connections are established, this time need not be added to the packet start time as this phase delay exists for
the SOF packet as well, causing all hub frame timers to be phase delayed with respect to the host by the
propagation delay. There is only one bit time of phase delay between any two adjacent hubs and this has
been accounted for in the skew calculations.

11.3.2 Full-/low-speed Packet Nullification

If a device is sending a packet (data or handshake) when a hub in the device’s upstream path reaches its
EOF1 point, the hub will send a full-speed EOP. Any packet that is truncated by a hub must be discarded.

A host implementation may discard any packet that is being received at bit time 41. Alternatively, a host
implementation may attempt to maximize bus utilization by accepting a packet if the packet is predicted to
start at or before bit time 41.

11.3.3 Full-/low-speed Transaction Completion Prediction

A device can send two types of packets: data and handshake. A handshake packet is always exactly 16 bit
times long (sync byte plus PID byte.) The time from the end of a packet from the host until the first bit of
the handshake must be seen at the host is 17 bit times. This gives a total allocation of 35 bit times from the
end of data packet from the root (start of EOP) until it is predicted that the handshake will be completed
(start of EOP) from the device. Therefore, if the host is sending a data packet for which the device can
return a handshake (anything other than an isochronous packet), then if the host completes the data packet
and starts sending EOP before bit time 76, then the host can predict that the device will complete the
handshake and start the EOP for the handshake on or before bit time 41. For a low-speed device, the 36 bit
times from start of EOP from root to start of EOP from the device are low-speed bit times, which convert 1

306

LGE-1010 / Page 334 of 650

Universal Serial Bus Specification Revision 2.0

to 8 into full-speed bit times. Therefore, if the host completes the low-speed data packet by bit time 329,
then the low-speed device can be predicted to complete the handshake before bit time 41.

Note: If the host cannot accept a full-speed EOP as a valid end of a low-speed packet, then the low-speed
EOP will need to complete before bit time 41, which will add 13 full-speed bit times to the low-speed
handshake time.

As the host approaches the end of the frame, it must ensure that it does not require a device to send a
handshake if that handshake cannot be completed before bit time 41. The host expects to receive a
handshake after any valid, non-isochronous data packet. Therefore, if the host is sending a non-isochronous
data packet when it reaches bit time 76 (329 for low-speed), then the host should start an abnormal
termination sequence to ensure that the device will not try to respond. This abnormal termination sequence
consists of 7 consecutive (non-bitstuffed) bits of 1 followed by an EOP. The abnormal termination
sequence is sent at the speed of the current packet. Note: The intent of this sequence is to force a
bitstuffing violation (and possibly other errors) at the receiver.

If the host is preparing to send an IN token, it may not send the token if the predicted packet from the device
would not complete by bit time 41. The maximum valid length of the response from the device is known by
the host and should be used in the prediction calculation. For a full-speed packet, the maximum interval
between the start of the IN token and the end of a data packet is:

token_length + (packet length + header + CRC) * 7/6 + 18

Where foken_length is 34 bit times, packet length is the maximum number of data bits in the packet,
header is eight bits of sync and eight bits of PID, and CRC is 16 bits. The 7/6 multiplier accounts for the
absolute worst case bit-stuff on the packet, and the 18 extra bits allow for worst case turn-around delay. For
a low-speed device, the same calculation applies, but the result must be multiplied by 8 to convert to full-
speed bit times, and an additional 20 full-speed bit times must be added to account for the low-speed prefix.
This gives the maximum number of bit times between the start of the IN token and the end of the data
packet, so the token cannot be sent if this number of bit times does not exist before the earliest EOF1 point
(bit time 41). (For example, take the results of the above calculation and add 41. If the number of bits left
in the frame is less than this value, the token may not be sent.)

The host is allowed to use a more conservative algorithm than the one given above for deciding whether or
not to start a transaction. The calculation might also include the time required for the host to send the
handshake when one is required, as there is no benefit in starting a transfer if the handshake cannot be
completed.

11.4 Internal Port

The internal port is the connection between the Hub Controller and the Hub Repeater. Besides conveying
the serial data to/from the Hub Controller, the internal port is the source of certain resume signals.

Figure 11-9 illustrates the internal port state machine; Table 11-4 defines the internal port signals and
events.

307

LGE-1010 / Page 335 of 650

Universal Serial Bus Specification Revision 2.0

—Rx _Suspendy} | - tive

! = Logical NOT
Rx_Suspend

< Suspend Delay

A EOI

Fsus

Resume_Event

< GResume

Figure 11-9. Internal Port State Machine

Table 11-4. Internal Port Signal/Event Definitions

Signal/Event Name | Event/Signal Description
Source

EOQI Internal End of timed interval

Rx_Suspend Receiver Receiver is in the Suspend state

Resume_Event Hub Controller A resume condition exists in the Hub Controller

11.4.1 Inactive

This state is entered whenever the Receiver is not in the Suspend state.

11.4.2 Suspend Delay

This state is entered from the Inactive state when the Receiver transitions to the Suspend state.

This is a timed state with a 2 ms interval.

11.4.3 Full Suspend (Fsus)

This state is entered when the Suspend Delay interval expires.

11.4.4 Generate Resume (GResume)

This state is entered from the Fsus state when a resume condition exists in the Hub Controller. A resume
condition exists if the C PORT SUSPEND bit is set in any port, or if the hub is enabled as a wakeup source
and any bit is set in a Port Change field or the Hub Change field (as described in Figures 11-22 and 11-20,
respectively).

In this state, the internal port generates signaling to emulate an SOP_FD to the Hub Repeater.

308

LGE-1010 / Page 336 of 650

Universal Serial Bus Specification Revision 2.0

11.5 Downstream Facing Ports

The following sections provide a functional description of a state machine that exhibits the correct behavior
for a downstream facing port.

Figure 11-10 is an illustration of the downstream facing port state machine. The events and signals are
defined in Table 11-5. Each of the states is described in Section 11.5.1. In the diagram below, some of the
entry conditions into states are shown without origin. These conditions have multiple origin states and the
individual transitions lines are not shown so that the diagram can be simplified. The description of the
entered state indicates from which states the transition is applicable.

Note: For the root hub, the signals from the upstream facing port state machines are implementation
dependent.

309

LGE-1010 / Page 337 of 650

Universal Serial Bus Specification Revision 2.0

Configuration = 0

ClearPortFeature(PORT_POWER) #
SetConfiguration(non-zero) #
Power_Source_Off #
Over-current

Disconnect_Detect

ClearPortFeature(PORT_ENABLE) ﬁ LEO

v

*H
|

Not
Configured

Powered-off

— 4

Disconnected

= Logical OR

Logical AND
Logical NOT

ﬁ LSetConfiguration(non—zero)

SetPortFeature(PORT_POWER)

<

Port Outputs in States

The hub is not configured.

————

Powered_off: Port requires explicit
request to transition.

R

Disconnected: Port does not propagate
any traffic in either direction. All ports
are HiZ. Port is timing length of J/K
(2.5uS to 2mS).

AR

Disabled: Port cannot propagate any
traffic. All ports are HiZ.
\—/_

Resetting: Drive SEO through the port for
10mS.
R ————

Enabled: Port can propagate both
upstream and downstream traffic.
.

Transmit: Port propagates downstream
directed traffic.

e

Suspended: No traffic is propagated
downstream or upstream.

I

Resuming: Drive 'K’ for 20mS.
R

TransmitR: Port propagates downstream
directed resume signaling.

-

RestartS and Restart_E: Port enters one of
these states to wait through timing
iintervals or for clocks to restart. Delay
iinterval is implementation dependent.

R

State machine exports:

TrueRWU signal

(“/TrueRWU” indicates signal is
generated on transition from state)

Disabled —
SetPortFeature(PORT_RESET)
SetTest }
Resetting
Testing
EOI
Rx_Suspend & (SEO # K) + Port Error
Enabled LS & SOF
Rptr_Enter WFEOPFU i N:Resume
Transmit TransmitR ¢
SetPortFeature(PORT_SUSPEND)
* Rptr_Exit WFEOPFU
Rx_Suspend & (SEO # K) Rptr_Exit WFEOPF:
Suspended | ———
('Rx_Suspend & PK) #
ClearPortFeature(PORT_SUSPEND
Resuming
EOIi
EOI

SendEOR >
* |(PK#PS)&EOI

Restart_S PK /TrueRWU

>
| PS

v |(PK#PS)&EO

Restart_E PK /TrueRWU

| PS
Figure 11-10. Downstream Facing Hub Port State Machine
310

LGE-1010 / Page 338 of 650

Universal Serial Bus Specification Revision 2.0

Table 11-5. Downstream Facing Port Signal/Event Definitions

Signal/Event Name

Event/Signal
Source

Description

Power_source_off

Implementation-
dependent

Power to the port not available due to over-current or
termination of source power (e.g., external power
removed)

Over-current

Hub Controller

Over-current condition exists on the hub or the port

EOI Internal End of a timed interval or sequence
SEO Internal SEO received on port
Disconnect_Detect Internal Disconnect seen at port

LS Hub Controller Low-speed device attached to this port

SOF Hub Controller SOF token received

TrueRWU Internal K lasting for at least TDDIS (see Table 7-13)
PK Internal K lasting for at least TDDIS

PS Internal SEQ lasting for at least TDDIS

K Internal ‘K’ received on port

Rx_Resume Receiver Upstream Receiver in Resume state
Rx_Suspend Receiver Upstream Receiver in Suspend state

Rptr_Exit_ WFEOPFU

Hub Repeater

Hub Repeater exits the WFEOPFU state

Rptr_Enter WFEOPFU

Hub Repeater

Hub Repeater enters the WFEOPFU state

Port_Error

Internal

Error condition detected (see Section 11.8.1)

SetTest

Hub Controller

Logical OR of SetPortFeature(Test_SEO0_NAK),
SetPortFeature(Test_J), SetPortFeature(Test_K),
SetPortFeature(Test_PRBS),
SetPortFeature(Test_Force_Enable)

Configuration = 0

Hub Controller

Hub controller's configuration value is zero

LGE-1010 / Page 339 of 650

311

Universal Serial Bus Specification Revision 2.0

11.5.1 Downstream Facing Port State Descriptions

11.5.1.1 Not Configured

A port transitions to and remains in this state whenever the value of the hub configuration is zero. While the
port is in this state, the hub will drive an SEO on the port (this behavior is optional on root hubs). No other
active signaling takes place on the port when it is in this state.

11.5.1.2 Powered-off
This state is supported for all hubs.

A port transitions to this state in any of the following situations:

e From any state except Not Configured when the hub receives a ClearPortFeature(PORT POWER)
request for this port

e From any state when the hub receives a SetConfiguration() request with a configuration value other
than zero

e From any state except Not Configured when power is lost to the port or an over-current condition exists

A port will enter this state due to an over-current condition on another port if that over-current condition
may have caused the power supplied to this port to drop below specified limits for port power (see
Section 7.2.1.2.1 and Section 7.2.4.1).

If a hub was configured while the hub was self-powered, and then if external power is lost, the hub must
place all ports in the Powered-off state. If the hub is configured while bus powered, then the hub need not
change port status if the hub switched to externally applied power. However, if external power is
subsequently lost, the hub must place ports in the Powered-off state.

In this state, the port’s differential and single-ended transmitters and receivers are disabled.

Control of power to the port is covered in Section 11.11.

11.5.1.3 Disconnected
A port transitions to this state in any of the following situations:
e From the Powered-off state when the hub receives a SetPortFeature(PORT _POWER) request

e From any state except the Not Configured and Powered-off states when the port’s disconnect timer times
out

e From the Restart S or Restart E state at the end of the restart interval

In the Disconnected state, the port’s differential transmitter and receiver are disabled and only connection
detection is possible.

This is a timed state. While in this state, the timer is reset as long as the port’s signal lines are in the SEO or
SE1 state. If another signaling state is detected, the timer starts. Unless the hub is suspended with clocks
stopped, this timer's duration is 2.5 s to 2 ms.

If the hub is suspended with its remote wakeup feature enabled, then on a transition to any state other than
the SEO state or SE1 state on a Disconnected port, the hub will start its clocks and time this event. The hub
must be able to start its clocks and time this event within 12 ms of the transition. If a hub does not have its
remote wakeup feature enabled, then transitions on a port that is in the Disconnected state are ignored until
the hub is resumed.

312

LGE-1010 / Page 340 of 650

Universal Serial Bus Specification Revision 2.0

11.5.1.4 Disabled

A port transitions to this state in any of the following situations:
e From the Disconnected state when the timer expires indicating a connection is detected on the port

e From any but the Powered-off, Disconnected, or Not Configured states on receipt of a
ClearPortFeature(PORT_ENABLE) request

e From the Enabled state when an error condition is detected on the port

A port in the Disabled state will not propagate signaling in either the upstream or the downstream direction.
While in this state, the duration of any SEO received on the port is timed. If the port is using high-speed
terminations when it enters this state, it switches to full-speed terminations. The port must not perform
normal disconnect detection until at least 4 ms after entering this state.

11.5.1.5 Resetting

Unless it is in the Powered-off or Disconnected states, a port transitions to the Resetting state upon receipt
of a SetPortFeature(PORT RESET) request. The hub drives SEO on the port during this timed interval.
The duration of the Resetting state is nominally 10 ms to 20 ms (10 ms is preferred).

A hub in high-speed operation will use the high-speed terminations of the port when in this state.

11.5.1.6 Enabled

A port transitions to this state in any of the following situations:
e At the end of the Resetting state
e From the Transmit state or the TransmitR state when the Hub Repeater exits the WFEOPFU state

e From the Suspended state if the upstream Receiver is in the Suspend state when a K’ is detected on the
port

o At the end of the SendEOR state

e From the Restart E state when a persistent K or persistent SEO has not been seen within 900 us of
entering that state

While in this state, the output of the port’s differential receiver is available to the Hub Repeater so that
appropriate signaling transitions can establish upstream connectivity.

A port which is using high-speed terminations in this state switches to full-speed terminations on
Rx_Suspend (i.e., when the hub is suspended). The port must not perform normal disconnect detection until
at least 1 ms after Rx_Suspend becomes active.

11.5.1.7 Transmit

This state is entered from the Enabled state on the transition of the Hub Repeater to the WFEOPFU state.
While in this state, the port will transmit the data that is received on the upstream facing port.

For a low-speed port, this state is entered from the Enabled state if a full-speed PRE PID is received on the
upstream facing port. While in this state, the port will retransmit the data that is received on the upstream
facing port (after proper inversion).

In high-speed, this state is used for testing for disconnect at the port. The disconnect detection circuit is
enabled after 32 bits of the same signaling level (‘J” or ‘K’) have been transmitted down the port.

Note: Because of the timing skew in the repeater path to the downstream facing ports, all downstream
facing ports may not be enabled for disconnect detection at the same instant in time.

313

LGE-1010 / Page 341 of 650

Universal Serial Bus Specification Revision 2.0

11.5.1.8 TransmitR

This state is entered in either of the following situations:
e From the Enabled state if the upstream Receiver is in the Resume state
e From the Restart S or Restart E state if a PK is detected on the port

When in this state, the port repeats the resume ‘K’ at the upstream facing port to the downstream facing
port. Depending on the speed of the port, two behaviors are possible on the K->SEQ transition at the
upstream facing port at the end of the resume.

e Upstream facing port high-speed and downstream facing port full-/low-speed: After the K->SEO
transition, the port drives SEO for 16 to 18 full-speed bit times followed by driving J for at least one
full-speed bit time. Note: The timer in the Resume state of the upstream port receiver state machine
which generates EOITR can be used to time this requirement at the downstream facing port(s). The
pullup resistor and the latency of the Transaction Translator(TT) results in this Idle state being
maintained for at least one low-speed bit time ensuring that a device sees the same end of resume
behavior below the TT as it would below a USB 1.x hub.

e Upstream facing port and downstream facing port are the same speed: port continues to repeat the
signaling which follows the K->SEQ transition.

A port operating in high-speed reverts to its high-speed terminations within 18 full-speed bit times after the
K->SEO transition as described in Section 7.1.7.7.

11.5.1.9 Suspended
A port enters the Suspended state:

e From the Enabled state when it receives a SetPortFeature(PORT SUSPEND) request

e From the Restart_S state when a persistent K or persistent SEO has not been seen within 900 us of
entering that state

While a port is in the Suspended state, the port's differential transmitter is disabled. A high-speed port
reverts from high-speed to full-speed terminations but its speed status continues to be high-speed. The port
must not perform normal disconnect detection until at least 4 ms after entering this state.

An implementation must have a K/SEOQ ‘noise’ filter for a port that is in the suspended state. This filter can
time the length of K/SEO and, if the length of the K/SEO is shorter than TDDIS, the port must remain in this
state. If the hub is suspended with its clocks stopped, a transition to K/SEO on a suspended port must cause
the port to immediately transition to the Restart S state.

11.5.1.10 Resuming

A port enters this state from the Suspended state in either of the following situations:

e Ifa'K'is detected on the port and persists for at least 2.5 us and the Receiver is not in the Suspended
state. The transition from the Suspended state must happen within 900 us of the J->K transition.

e When a ClearPortFeature(PORT _SUSPEND) request is received.

This is a timed state with a nominal duration of 20 ms (the interval may be longer under the conditions
described in the note below). While in this state, the hub drives a 'K' on the port.

Note: A single timer is allowed to be used to time both the Resetting interval and the Resuming interval and
that timer may be shared among multiple ports. When shared, the timer is reset when a port enters the
Resuming state or the Resetting state. If shared, it may not be shared among more than ten ports as the
cumulative delay could exceed the amount of time required to replace a device and a disconnect could be
missed.

314

LGE-1010 / Page 342 of 650

Universal Serial Bus Specification Revision 2.0

11.5.1.11 SendEOR

This state is entered from the Resuming state if the 20 ms timer expires. It is also entered from the Enabled
state when an SOF (or other FS token) is received and a low-speed device is attached to this port.

This is a timed state which lasts for three low-speed bit times.

In this state, if the port is high-speed it will drive the bus to the Idle state for three low-speed bit times and
then exit from this state to the Enabled state. It must also revert to its high-speed terminations within
18 full-speed bit times after the K->SEOQ transition as described in Section 7.1.7.7.

If the port is full-speed or low-speed, the port must drive two low-speed bit times of SE0 followed by one
low-speed bit time of Idle state and then exit from this state to the Enabled state.

Since the driven SEO period should be of fixed length, the SendEOR timer, if shared, should not be reset. If
the hub implementation shares the SendEOR timing circuits between ports, then for a port with a low-speed
device attached, the Resuming state should not end until an SOF (or other FS token) has been received (see
Section 11.8.4.1 for Keep-alive generation rules).

11.5.1.12 Restart_ S
A port enters the Restart S state from the Suspended state when an SEQ or ‘K’ is seen at the port and the
Receiver is in the Suspended state.

In this state, the port continuously monitors the bus state. If the bus is in the ‘K’ state for at least TDDIS, the
port sets the C PORT_SUSPEND bit, exits to the TransmitR, and generates a signal to the repeater called
‘TrueRWU’. If the bus is in the ‘SEQ’ state for at least TDDIS, the port exits to the Disconnected state.
Either of these transitions must happen within 900 us after entering the Restart S state; otherwise, the port
must transition back to the Suspended state.

11.5.1.13 Restart_E

A port enters the Restart E state from the Enabled state when an ‘SE0Q’ or ‘K’ is seen at the port and the
Receiver is in the Suspended state.

In this state, the port continuously monitors the bus state. If the bus is in the ‘K’ state for at least TDDIS, the
port exits to the TransmitR state and generates a signal to the repeater called ‘TrueRWU’. If the bus is in the
‘SEOQ’ state for at least TDDIS, the port exits to the Disconnected state. Either of these transitions must
happen within 900 us after entering the Restart E state; otherwise the port must transition back to the
Enabled state.

11.5.1.14 Testing

A port transitions to this state from any state when the port sees SetTest.

While in this state, the port executes the host command as decoded by the hub controller. If the command
was a SetPortFeature(PORT TEST, Test Force Enable), the port supports packet connectivity in the
downstream direction in a manner identical to that when the port is in the Enabled state.

11.5.2 Disconnect Detect Timer

11.5.2.1 High-speed Disconnect Detection

High-speed disconnect detection is described in Section 7.1.7.3.

315

LGE-1010 / Page 343 of 650

11

Universal Serial Bus Specification Revision 2.0

.5.2.2 Full-/low-speed Disconnect Detection

Each port is required to have a timer used for detecting disconnect when a full-/low-speed device is attached
to the port. This timer is used to constantly monitor the port’s single-ended receivers to detect a disconnect
event. The reason for constant monitoring is that a noise event on the bus can cause the attached device to
detect a reset condition on the bus after 2.5 us of SEO or SE1 on the bus. If the hub does not place the port in
the disconnect state before the device resets, then the device can be at the Default Address state with the port
enabled. This can cause systems errors that are very difficult to isolate and correct.

This timer must be reset whenever the D+ and D- lines on the port are not in the SE0O or SE1 state or when
the port is not in the Enabled, Suspended, Disabled, Restart-E, or Restart S states. This timer must be reset
for 4ms upon entry to the Suspended and Disabled states. This timer times an interval TDDIS. The range of
TDDIS is 2.0 us to 2.5 as defined in Table 7-13. When this timer expires, it generates the

Disconnect Detect signal to the port state machine.

This timer can also be used for filtering the K/SEO signal in the Suspended, Restart_E, or Restart S states as
described in Section 11.5.1.

11.5.3 Port Indicator

316

Each downstream facing port of a hub can support an optional status indicator. The presence of indicators
for downstream facing ports is specified by bit 7 of the wHubCharacteristics field of the hub class
descriptor. Each port’s indicator must be located in a position that obviously associates the indicator with
the port. The indicator provides two colors: green and amber. This can be implemented as physically one
LED with two color capability or two separate LEDs. A combination of hardware and software control is
used to inform the user of the current status of the port or the device attached to the port and to guide the
user through problem resolution. Colors and blinking are used to provide information to the user.

An external hub must automatically control the color of the indicator as specified in Figure 11-11.
Automatic port indicator setting support for root hubs may be implemented with either hardware or
software. The port indicator color selector value is zero (indicating automatic control) when the hub
transitions to the configured device state. When the hub is suspended or not configured, port indicators
must be off.

Table 11-6 identifies the mapping of color to port state when the port indicators are automatically
controlled.

Table 11-6. Automatic Port State to Port Indicator Color Mapping

Power Downstream Facing Hub Port State
Switching
Powered-off Disconnected, Disabled, Not | Enabled, Suspended,
Configured, Resetting, Transmit, or Resuming,
Testing TransmitR SendEOR,
Restart_E, or
Restart_S
With Off or amber if due | Off Green Off
to an over-current
condition
Without Off Off or amber if due to an over- | Green Off
current condition

LGE-1010 / Page 344 of 650

Universal Serial Bus Specification Revision 2.0

Automatic
Mode

SetPortFeature
(PORT_INDICATOR,
indicator selector !=0)

Enabled or Transmit or TransmitR

anual Mode
! (Enabled or Transmit or TransmitR)
and PORT _OVER _CURRENT !=1
PORT OVER CURRENT =1 SetPortFeature

(PORT _INDICATOR,
indicator_selector = 0)

\ PORT OVER CURRENT =1
SetPortFeatur /

(PORT POWER)

Figure 11-11. Port Indicator State Diagram

In Manual Mode the color of a port indicator (Amber, Green, or OfY) is set by a system software USB Hub
class request. In Automatic Mode the color of a port indicator is set by the port state information.

Table 11-7 defines port state as understood by the user.
Table 11-7. Port Indicator Color Definitions

Color Definition

Off Not operational
Amber Error condition
Green Fully operational
Blinking Software attention
Off/Green

Blinking Hardware attention
Off/Amber

Blinking Reserved
Green/Amber

Note that the indicators reflect the status of the port, not necessarily the device attached to it. Blinking of
the indicator is used to draw the user’s attention to the port, irrespective of its color.

317

LGE-1010 / Page 345 of 650

Universal Serial Bus Specification Revision 2.0

Port indicators allow control by software. Host software forces the state of the indicator to draw attention to
the port or to indicate the current state of the port.

See Section 11.24.2.7.1.10 for the specification of indicator requests.

11.5.3.1 Labeling

USB system software uses port numbers to reference an individual port with a ClearPortFeature or
SetPortFeature request. If a vendor provides a labeling to identify individual downstream facing ports, then
each port connector must be labeled with their respective port number.

11.6 Upstream Facing Port

The upstream facing port has four components: transmitter, transmitter state machine, receiver, and receiver
state machine. The transmitter and its state machine are the Transmitter, while the receiver and its state
machine are the Receiver. The Transmitter and Receiver operate in high-speed and full-speed depending on
the current hub configuration.

11.6.1 Full-speed

Both the transmitter and receiver have differential and single-ended components. The differential
transmitter and receiver can send/receive J’ or K’ to/from the bus while the single-ended components are
used to send/receive SEQ, suspend, and resume signaling. The single-ended components are also used to
receive SE1. In this section, when it is necessary to differentiate the signals sent/received by the differential
component of the transmitter/receiver from those of the single-ended components, DJ and DK will be used
to denote the differential signal, while SJ, SK, SE0, and SE1 will be used for the single-ended signals.

When the Hub Repeater has connectivity in the upstream direction, the transmitter must not send or
propagate SE1 signaling. Instead, the SE1 must be propagated as a DJ.

11.6.2 High-speed

Both the transmitter and receiver have differential components only. These signals are called HJ and HK.
The HS Idle state is the idle state of the bus in high-speed.

It is assumed that the differential transmitter and receiver are turned off during suspend to minimize power
consumption. The single-ended components are left on at all times, as they will take minimal power.

11.6.3 Receiver

The receiver state machine is responsible for monitoring the signaling state of the upstream connection to
detect long-term signaling events such as bus reset, resume, and suspend. This state machine details the
operation of the device state diagram shown in Figure 9-1 in the Default, Address, Configured, and
Suspended state. The Suspend, Resume, and ReceivingSEOQ states are only used when the upstream facing
port is operating in full-speed mode with full-speed terminations. The ReceivinglS, ReceivingHJ, and
ReceivingHK states are only used when the upstream facing port is operating in high-speed mode with high-
speed terminations; so these states are categorized as the HS (high-speed) states, and all other states are
categorized as nonHS in the description below.

318

LGE-1010 / Page 346 of 650

Universal Serial Bus Specification Revision 2.0

Figure 11-12 illustrates the state transition diagram.

HJ

v

| ReceivingHJ

Tx_active

State Machine Exports:

Rx_Bus_Reset(Bus_Reset)

ReceivingJ

HK

¢
> <__ReceivinéHK

HS_Idle

Tx_resume # K

Rx_Suspend(Suspend)
Rx_Resume(Resume)
EOITR

Suspend

ReceivingK

P # = Logical OR
& = Logical AND
__p I'= Logical NOT

SEO

ReceivingSEOQ

Bus_Reset

HS &EOR

EOI & IHS_Idle

EOI & HS_lIdle

Figure 11-12. Upstream Facing Port Receiver State Machine

Table 11-8 defines the signals and events referenced in the figures.

319

LGE-1010 / Page 347 of 650

Universal Serial Bus Specification Revision 2.0

Table 11-8. Upstream Facing Port Receiver Signal/Event Definitions

Signal/Event Event/Signal Description
Name Source

HS Internal Port is operating in high-speed
Tx_active Transmitter Transmitter in the Active state
J Internal Receiving a 'J' (IDLE) or an ‘SE1’ on the upstream facing port
HJ Internal Receiving an HJ on the upstream facing port
EOQI Internal End of timed interval
EOITR Internal Generated 24 full-speed bit times after the K->SEO transition

at the end of resume

HK, K Internal Receiving an HK, 'K' on the upstream facing port
Tx_resume Transmitter Transmitter is in the Sresume state
HS_Idle Internal Receiving an Idle state on the high-speed upstream facing
port

SEO Internal Receiving an SEO on the full-speed upstream facing port
EOR Internal End of Reset signaling from upstream
POR Implementation- | Power_On_Reset

dependent

11.6.3.1 ReceivingIS

This state is entered

e From the ReceivingHJ or ReceivingHK state when a SEO is seen at the port and the port is in high-
speed operation

e From the Resume state when a EOITR is seen and the port is in high-speed operation

e From the Bus Reset state at the End of Reset signaling from upstream when the port is in high-speed
operation

This is a timed state with an interval of 3 ms. The timer is reset each time this state is entered.

11.6.3.2 ReceivingHJ

This state is entered from an HS state when a HJ is seen on the bus.

11.6.3.3 ReceivingJ

This state is entered from a nonHS state except the Suspend state if the receiver detects an SJ (or Idle) or
SE1 condition on the bus or while the Transmitter is in the Active state.

This is a timed state with an interval of 3 ms. The timer is reset each time this state is entered.

The timer only advances if the Transmitter is in the Inactive state.
320

LGE-1010 / Page 348 of 650

Universal Serial Bus Specification Revision 2.0

11.6.3.4 Suspend

This state is entered when:
e The 3 ms timer expires in the Receiving]J

e The 3 ms timer expires in the ReceivinglIS state and the port has removed its high-speed
terminations and connected its D+ pull-up resistor and the resulting bus state is not SEO.

When the Receiver enters this state, the Hub Controller starts a 2 ms timer. If that timer expires while the
Receiver is still in this state, then the Hub Controller is suspended. When the Hub Controller is suspended,
it may generate resume signaling.

11.6.3.5 ReceivingHK

This state is entered from an HS state when a HK is seen on the bus.

11.6.3.6 ReceivingK

This state is entered from any nonHS state except the Resume state when the receiver detects an SK
condition on the bus and the Hub Repeater is in the WFSOP or WFSOPFU state.

This is a timed state with a duration of 2.5 us to 100 us. The timer is reset each time this state starts.

11.6.3.7 Resume

This state is entered:
e From the ReceivingK state when the timer expires

e From the Suspend state while the Transmitter is in the Sresume state or if there is a transition to the
K state on the upstream facing port

If the hub enters this state when its timing reference is not available, the hub may remain in this state until
the hub’s timing reference becomes stable (timing references must stabilize in less than 10 ms). If this state
is being held pending stabilization of the hub’s clock, the Receiver must provide a K to the repeater for
propagation to the downstream facing ports. When clocks are stable, the Receiver must repeat the incoming
signals.

Note: Hub timing references will be stable in less than 10 ms since reset requirements already specify that
they be stable in less than 10 ms and a hub must support reset from suspend.

11.6.3.8 ReceivingSEO

This state is entered from any nonHS state except Bus_Reset when the receiver detects an SE0O condition
and the Hub Repeater is in the WFSOP or WFSOPFU state.

This is a timed state. The minimum interval for this state is 2.5 pus. The maximum depends on the hub but
this interval must timeout early enough such that if the width of the SEO on the upstream facing port is only
10 ms, the Receiver will enter the Bus_Reset state with sufficient time remaining in the 10 ms interval for
the hub to complete its reset processing. Furthermore, if the hub is suspended when the Receiver enters this
state, the hub must be able to start its clocks, time this interval, and complete its reset (chirp) protocol and
processing in the Bus_Reset state within 10 ms. It is preferred that this interval be as long as possible given
the constraints listed here. This will provide for the maximum immunity to noise on the upstream facing
port and reduce the probability that the device will reset in the presence of noise before the upstream hub
disables the port.

The timer is reset each time this state starts.

321

LGE-1010 / Page 349 of 650

Universal Serial Bus Specification Revision 2.0

11.6.3.9 Bus_Reset

This state is entered:

From the ReceivingSEO state when the timer expires. As long as the port continues to receive SEO, the
Receiver will remain in this state.

This state is also entered while power-on-reset (POR) is being generated by the hub’s local circuitry.
The state machine cannot exit this state while POR is active.

The 3 ms timer expires in the ReceivinglS state and the port has removed its high-speed terminations
and connected its D+ pull-up resistor and the resulting bus state is still SEO.

In this state, a high-speed capable port will implement the chirp signaling, handshake, and timing protocol
as described in Section 7.1.7.5.

11.6.4 Transmitter

This state machine is used to monitor the upstream facing port while the Hub Repeater has connectivity in
the upstream direction. The purpose of this monitoring activity is to prevent propagation of erroneous
indications in the upstream direction. In particular, this machine prevents babble and disconnect events on
the downstream facing ports of this hub from propagating and causing this hub to be disabled or
disconnected by the hub to which it is attached. Figure 11-13 is the transmitter state transition diagram.
Table 11-9 defines the signals and events referenced in Figure 11-13.

322

Rx_BuI_Reset

| . <
HS&(EOF 14— nactive

HEOP) T LWFEOP & IRx_Suspend
EOF1&!IHS
< Active |<7
SEOsent

|
EOF1&IHS [inaSED R S

EOI#J

| SendJ l—F—Q‘I—>

EQI

——» GEOPTU |

Rx_Suspend &
Rptr WFEOP

EQI

>| Sresume

State Machine Exports:

Tx_Active(Active)
Tx_Resume(Sresume)

= Logical OR
& = Logical AND
! = Logical NOT

Figure 11-13. Upstream Facing Port Transmitter State Machine

LGE-1010 / Page 350 of 650

Universal Serial Bus Specification Revision 2.0

Table 11-9. Upstream Facing Port Transmit Signal/Event Definitions

Signal/Event Event/Signal Description
Name Source
Rx_Bus_Reset Receiver Receiver is in the Bus_Reset state
EOF1 (micro)frame Hub (micro)frame time has reached the EOF1 point or is
Timer between EOF1 and the end of the (micro)frame
J Internal Transmitter transitions to sending a ’J’ and transmits a 'J’
Rptr WFEOP Hub Repeater | Hub Repeater is in the WFOEP state
K Internal Transmitter transmits a 'K’
SEOsent Internal At least one bit time of SEQ has been sent through the
transmitter
Rx_Suspend Receiver Receiver is in Suspend state
HEOP Repeater Completion of packet transmission in upstream direction
HS Internal Upstream facing port is operating as high-speed port
EOI Internal End of timed interval

11.6.4.1 Inactive

This state is entered at the end of the SendJ state or while the Receiver is in the Bus_Reset state. This state
is also entered at the end of the Sresume state. While the transmitter is in this state, both the differential and
single-ended transmit circuits are disabled and placed in their high-impedance state.

When port is operating as a high-speed port, this state is entered from the Active state at EOF1 or after an
HEOP from downstream.

11.6.4.2 Active

This state is entered from the Inactive state when the Hub Repeater transitions to the WFEOP state. This
state is entered from the RepeatingSEO state if the first transition after the SEO is not to the J state. In this
state, the data from a downstream facing port is repeated and transmitted on the upstream facing port.

11.6.4.3 RepeatingSEOD

The port enters this state from the Active state when one bit time of SE0Q has been sent on the upstream
facing port. While in this state, the transmitter is still active and downstream signaling is repeated on the
port. This is a timed state with a duration of 23 full-speed bit times.

11.6.4.4 SendJ

The port enters this state from the RepeatingSEO state if either the bit timer reaches 23 or the repeated
signaling changes from SEO to 'J' or ‘SE1’. This state is also entered at the end of the GEOPTU state. This
state lasts for one full-speed bit time. During this state, the hub drives an SJ on the port.

323

LGE-1010 / Page 351 of 650

Universal Serial Bus Specification Revision 2.0

11.6.4.5 Generate End of Packet Towards Upstream Port (GEOPTU)
The port enters this state from the Active or RepeatingSEO state if the frame timer reaches the EOF1 point.

In this state, the port transmits SEO for two full-speed bit times.

11.6.4.6 Send Resume (Sresume)

The port enters this state from the Inactive state if the Receiver is in the Suspend state and the Hub Repeater
transitions to the WFEOP state. This indicates that a downstream device (or the port to the Hub Controller)
has generated resume signaling causing upstream connectivity to be established.

On entering this state, the hub will restart clocks if they had been turned off during the Suspend state.
While in this state, the Transmitter will drive a 'K’ on the upstream facing port. While the Transmitter is in
this state, the Receiver is held in the Resume state. While the Receiver is in the Resume state, all
downstream facing ports that are in the Enabled state are placed in the TransmitR state and the resume on
this port is transmitted to those downstream facing ports.

The port stays in this state for at least 1 ms but for no more than 15 ms.

11.7 Hub Repeater

The Hub Repeater provides the following functions:
e Sets up and tears down connectivity on packet boundaries

e Ensures orderly entry into and out of the Suspend state, including proper handling of remote wakeups

11.7.1 High-speed Packet Connectivity

High-speed packet repeaters must reclock the packets in both directions. Reclocking means that the
repeater extracts the data from the received stream and retransmits the stream using its own local clock.
This is necessary in order to keep the jitter seen at a receiver within acceptable limits (see Chapter 7 for
definition and limits on jitter).

Reclocking creates several requirements which can be best understood with the example repeater signal path
shown in Figure 11-14.

Port Selector state
machine
Xmt_stream
Data = Ly Elasticity
» Recovery Buff: ‘
Rev_stream L utter

Rev_Clk T
Xmt_Clk

Figure 11-14. Example Hub Repeater Organization

324

LGE-1010 / Page 352 of 650

Universal Serial Bus Specification Revision 2.0

11.7.1.1 Squelch Circuit

Because of squelch detection, the initial bits of the SYNC field may not be seen in the rest of the repeater.
At most, 4 bits of the SYNC field may be sacrificed in the entire repeater path.

The squelch circuit may take at most 4 bit times to disable the repeater after the bus returns to the Idle state.
This results in bits being added after the end of the packet. This is also known as EOP dribble and up to
4 random bits may get added after the packet by the entire repeater path.

11.7.1.2 Data Recovery Unit

The data recovery unit extracts the receive clock and receive data from this stream. Note that this is a
conceptual model only; actual implementations (e.g., DLL) may achieve the reclocking by the local clock
without separation of the receive clock and data.

11.7.1.3 Elasticity Buffer
The half-depth of the elasticity buffer in the repeater must be at least 12 bits.

The total latency of a packet through a repeater must be less than 36 bit times. This includes the latency
through the elasticity buffer.

The elasticity buffer is used to handle the difference in frequency between the receive clock and the local
clock and works as follows. The elasticity buffer is primed (filled with at least 12 bits) by the receive clock
before the data is clocked out of it by the transmit clock. If the transmit clock is faster than the receive
clock, the buffer will get emptied more quickly than it gets filled. If the transmit clock is slower, the buffer
will get emptied slower than it gets filled. If the half-depth of the buffer is chosen to be equal to the
maximum difference in clock rate over the length of a packet, bits will not be lost or added to the packet.
The half-depth is calculated as follows.

The clock tolerance allowed is 500 ppm. This takes into account the effect of voltage, temperature, aging,
etc. So the received clock and the local clock could be different by 1000 ppm. The longest packet has a
data payload of 1 Kbytes. The maximum length of a packet is computed by adding the length of all the
fields and assuming maximum bit-stuffing. This maximum length is 9644 bits (9624 bits of packet + 20 bits
of EOP dribble). This means that when the repeater is clocking out a packet with its local clock, it could get
ahead of or fall behind the receive clock by 9.644 bits (1000 ppm*9644). This calculation yields 10 bits.
The half-depth of the elasticity buffer in the repeater must be at least 12 bits to provide system timing
margin.

11.7.1.4 High-Speed Port Selector State Machine

This state machine is used to establish connectivity on a valid packet and to keep the repeater from
establishing connectivity from a port which is seeing noise. This state machine must implement the
behavior shown in Figure 11-15. (Note: This state machine may be implemented on a per-port or per-hub
basis.)

325

LGE-1010 / Page 353 of 650

Universal Serial Bus Specification Revision 2.0

Rx_Bus_Reset i

EBEmptie
’{ Inactive < | Enable Transmit
ISquelch
Squelch&EOI&!SORP
< Priming
; EOI&SORP
ISquelch&EOI&!SORP
Squelch | = Logical NOT
&=Logical AND
< Not Packet _
#=Logical OR

Figure 11-15. High-speed Port Selector State Machine

Table 11-10. High-speed Port Selector Signal/Event Definitions

Signal/Event Name | Event/Signal Description
Source
Rx_Bus_Reset Internal Receiver is in the Bus_reset state.
EBEmptied Internal All bits accumulated in the elasticity buffer have been

transmitted.

EOI Internal End of interval of time needed for priming elasticity buffer
Squelch Internal Bus is in squelch state
SORP Internal Start Of Repeating Pattern; a ‘JKJK’ or ‘KJKJ’ pattern has

been seen in data in elasticity buffer.

11.7.1.4.1 Inactive

This state is entered

e From the Enable Transmit state when all the bits accumulated in the elasticity buffer have been
transmitted

e From the Priming state if squelch is seen and the elasticity buffer is primed without a SORP being seen
e From the Not Packet state when the squelch circuit indicates a squelch state on the port

e From on any state on Rx Bus_Reset

11.7.1.4.2 Priming

This state is entered from the Inactive state when the squelch circuit indicates that valid signal levels have
been observed at the port. This is a timed state and the priming interval is the time needed for the
implementation to fill the elasticity buffer with at least 12 bits.

326

LGE-1010 / Page 354 of 650

Universal Serial Bus Specification Revision 2.0

11.7.1.4.3 Enable Transmit

This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed and the
bits in the elasticity buffer include the SORP pattern.

In this state, the state machine generates a signal “start of high-speed packet” (SOHP) to the repeater state
machine which allows the repeater to establish connectivity from this port to the upstream facing port (or
downstream facing ports).

11.7.1.4.4 Not Packet

This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed, and the
bits in the elasticity buffer do not include the SORP pattern, and the squelch signal is not active.

11.7.2 Hub Repeater State Machine

The Hub repeater state machine in Figure 11-16 shows the states and transitions needed to implement the
Hub Repeater. Table 11-11 defines the Hub Repeater signals and events. The following sections describe
the states and the transitions.

11.7.2.1 High-speed Repeater Operation

Connectivity is setup on SOHP and torn down on HEOP. (HEOP is either the EBemptied signal from the
port selector state machine ‘OR’ the EOI signal which causes the transition out of the SendEOR state in
downstream facing port state machine.) Several of the state transitions below will occur when the HEOP is
seen. When such a transition is indicated, the transition does not occur until after the hub has repeated the
last bit in the elasticity buffer. Some of the transitions are triggered by an SOHP. Transitions of this type
occur as soon as the hub detects the SOHP from the port selector state machine ensuring that a valid packet
start has been seen.

11.7.2.2 Full-/low-speed Repeater Operation

Connectivity is setup on SOP and torn down on EOP. Several of the state transitions below will occur when
the EOP is seen. When such a transition is indicated, the transition does not occur until after the hub has
repeated the SEO-to-'J' transition and has driven 'J' for at least one bit time (bit time is determined by the
speed of the port.) Some of the transitions are triggered by an SOP. Transitions of this type occur as soon
as the hub detects the 'J'-to-'K' transition, ensuring that the initial edge of the SYNC field is preserved.

327

LGE-1010 / Page 355 of 650

Universal Serial Bus Specification Revision 2.0

11.7.2.3 Repeater State Machine

328

Rx_Bus_Reset
—> <«
WFSOPFU
«—— —>
A
SOP FU UEOP & !Lock
Rx_Resume
WFEOPFU [P
SOP_FU UEOP & Lock
A
v Rx_Suspend
47
< WFSOP EOF1
DEOP SOP_FD
EOF2
] WFEOP O—P

State Machine Exports:

Rptr WFEOP(WFEOP)
Rptr_ WFSOPFU(WFSOPFU)
Rptr_Enter WFEOPFU
Rptr_Exit WFEOPFU

= Logical OR
& = Logical AND
! = Logical NOT

Figure 11-16. Hub Repeater State Machine

LGE-1010 / Page 356 of 650

Universal Serial Bus Specification Revision 2.0

Table 11-11. Hub Repeater Signal/Event Definitions

Signal/Event Event/Signal Description
Name Source

Rx_Bus_Reset Receiver Receiver is in the Bus_Reset state

HEOP Three sources of HEOP:

Internal (Port selector, | EBEmptied signal from port selector state machine OR

Downstream port, transition at EOI from SendEOR state in downstream facing
port state machine OR
Upstream port

receiver) EOITR from upstream facing port receiver state machine
UEOP Internal (HEOP)EOP received from the upstream facing port
DEOP Internal Generated when the Transmitter enters the (Inactive) SendJ
state
EOF1 (Micro)frame Timer (micro)frame timer is at the EOF1 point or between EOF1

and End-of-(micro)frame

EOF2 (Micro)frame Timer (micro)frame timer is at the EOF2 point or between EOF2
and End-of-(micro)frame

Lock (Micro)frame Timer (micro)frame timer is locked

Rx_Suspend Receiver Receiver is in the Suspend state

Rx_Resume Receiver Receiver is in the Resume state

SOP_FD Internal (SOHP)SOP received from downstream facing port or Hub

Controller. Generated (after SOHP identified) on the
transition from the Idle to K state on a port.

SOP_FU Internal (SOHP)SOP received from upstream facing port.
Generated (after SOHP identified) on the transition from the
Idle to K state on the upstream facing port.

11.7.3 Wait for Start of Packet from Upstream Port (WFSOPFU)

This state is entered in either of the following situations:

e From any other state when the upstream Receiver is in the Bus_Reset state

e From the WFSOP state if the (micro)frame timer is at or has passed the EOF1 point
e From the WFEOP state at the EOF2 point

e From the WFEOPFU if the (micro)frame timer is not synchronized (locked) when an (HEOP)EOP is
received on the upstream facing port

In this state, the hub is waiting for an (SOHP)SOP on the upstream facing port, and transitions on
downstream facing ports are ignored by the Hub Repeater. While the Hub Repeater is in this state,
connectivity is not established.

329

LGE-1010 / Page 357 of 650

Universal Serial Bus Specification Revision 2.0

This state is used during the End-of-(micro)frame (past the EOF1 point) to ensure that the hub will be able
to receive the SOF when it is sent by the host.

11.7.4 Wait for End of Packet from Upstream Port (WFEOPFU)

The hub enters this state if the hub is in the WFSOP or WFSOPFU state and an (SOHP)SOP is detected on
the upstream facing port. The hub also enters this state from the WFSOP, WFSOPFU, or WFEOP states
when the Receiver enters the Resume state.

While in this state, connectivity is established from the upstream facing port to all enabled downstream
facing ports. Downstream facing ports that are in the Enabled state are placed in the Transmit state on the
transition to this state.

11.7.5 Wait for Start of Packet (WFSOP)

This state is entered in any of the following situations:
e From the WFEOP state when an (HEOP)EOP is detected from the downstream facing port

e From the WFEOPFU state if the (micro)frame timer is synchronized (locked) when an (HEOP)EOP is
received from upstream

e From the WFSOPFU or WFEOPFU states when the upstream Receiver transitions to the Suspend state

A hub in this state is waiting for an (SOHP)SOP on the upstream facing port or any downstream facing port
that is in the Enabled state. While the Hub Repeater is in this state, connectivity is not established.

11.7.6 Wait for End of Packet (WFEOP)

This state is entered from the WFSOP state when an (SOHP)SOP is received from a downstream facing
port in the Enabled state.

In this state, the hub has connectivity established in the upstream direction and the signaling received on an
enabled downstream facing port is repeated and driven on the upstream facing port. The upstream
Transmitter is placed in the Active state on the transition to this state.

If the Hub Repeater is in this state when the EOF2 point is reached, the downstream facing port for which
connectivity is established is disabled as a babble port.

Note: The full-speed Transmitter will send an EOP at EOF1, but the Repeater stays in this state until the
device sends an (HEOP)EOP or the EOF2 point is reached.

11.8 Bus State Evaluation

A hub is required to evaluate the state of the connection on a port in order to make appropriate port state
transitions. This section describes the appropriate times and means for several of these evaluations.

11.8.1 Port Error

330

A Port Error can occur on a downstream facing port that is in the Enabled state. A Port Error condition
exists when:

e The hub is in the WFEOP state with connectivity established upstream from the port when the
(micro)frame timer reaches the EOF2 point.

e At the EOF2 point, the Hub Repeater is in the WFSOPFU state, and there is other than Idle state on the
port.

LGE-1010 / Page 358 of 650

Universal Serial Bus Specification Revision 2.0

If upstream-directed connectivity is established when the (micro)frame timer reaches the EOF1 point, the
upstream Transmitter will (return to Inactive state) generate a full-speed EOP to prevent the hub from being
disabled by the upstream hub. The connected port is then disabled if it has not ended the packet and
returned to the Idle state before the (micro)frame timer reaches the EOF2 point.

11.8.2 Speed Detection

At the end of reset, the bus is in the Idle state for the speed recorded in the port status register. Speed
detection is described in Section 7.1.7.5.

If the device connected at the downstream facing port is high-speed, the repeater (rather than the
Transaction Translator) is used to signal between this port and the upstream facing port.

Due to connect and start-up transients, the hub may not be able to reliably determine the speed of the device
until the transients have ended. The USB System Software is required to "debounce" the connection and
provide a delay between the time a connection is detected and the device is used (see Section 7.1.7.3). At
the end of the debounce interval, the device is expected to have placed its upstream facing port in the Idle
state and be able to react to reset signaling. The USB System Software must send a
SetPortFeature(PORT_RESET) request to the port to enable the port and make the attached device ready for
use.

The downstream facing port monitors the state of the D+ and D- lines to determine if the connected device
is low-speed. If so, the PORT LOW_SPEED status bit is set to one to indicate a low-speed device. If not,
the PORT _LOW_SPEED status bit is set to zero to indicate a full-/high-speed device. Upon exit from the
reset process, the hub must set the PORT HIGH_SPEED status bit according to the detected speed. The
downstream facing port performs the required reset processing as defined in Section 7.1.7.5. At the end of
the Resetting state, the hub will return the bus to the Idle state that is appropriate for the speed of the
attached device and transition to the Enabled state.

11.8.3 Collision

If the Hub Repeater is in the WFEOP state and an (SOHP)SOP is detected on another enabled port, a
Collision condition exists. There are two allowed behaviors for the hub in this instance. In either case,
connectivity teardown at EOF1 and babble detection at EOF?2 is required.

The first, and preferred, behavior is to ‘garble’ the message so that the host can detect the problem. The hub
garbles the message by transmitting a (‘J” or) 'K' on the upstream facing port. This (‘J* or) 'K' should persist
until packet traffic from all downstream facing ports ends. The hub should use the last (‘J” or ‘K*) EOP to
terminate the garbled packet. Babble detection is enabled during this garbled message.

A second behavior is to block the second packet and, when the first message ends, return the hub to the
WEFSOPFU or WFSOP state as appropriate. If the second stream is still active, the hub may reestablish
connectivity upstream. This method is not preferred, as it does not convey the problem to the host.
Additionally, if the second stream causes the hub to reestablish upstream connectivity as the host is trying to
establish downstream connectivity, additional packets can be lost and the host cannot properly associate the
problem.

Note: In high-speed repeaters, use of the SOHP to detect collisions would need replication of the datapath
shown in Figure 11-14 at every port. The unsquelch signal at a port can be used instead of the SOHP to
detect collisions; in this case, the second behavior (blocking) described above must be used.

11.8.4 Low-speed Port Behavior

When a hub is configured for full-/low-speed operation, low-speed data is sent or received through the hub’s
upstream facing port at full-speed signaling even though the bit times are low-speed.

Full-speed signaling must not be transmitted to low-speed ports.

331

LGE-1010 / Page 359 of 650

Universal Serial Bus Specification Revision 2.0

If a port is detected to be attached to a low-speed device, the hub port’s output buffers are configured to
operate at the slow slew rate (75-300 ns), and the port will not propagate downstream-directed packets
unless they are prefaced with a PRE PID. When a PRE PID is received, the ‘J’ state must be driven on
enabled low-speed ports within four bit times of receiving the last bit of the PRE PID.

Low-speed data follows the PID and is propagated to both low- and full-speed devices. Hubs continue to
propagate downstream signaling to all enabled ports until a downstream EOP is detected, at which time all
output drivers are turned off.

Full-speed devices will not misinterpret low-speed traffic because no low-speed data pattern can generate a
valid full-speed PID.

When a low-speed device transmits, it does not preface its data packet with a PRE PID. Hubs will
propagate upstream-directed packets of full-/low-speed using full-speed signaling polarity and edge rates.

For both upstream and downstream low-speed data, the hub is responsible for inverting the polarity of the
data before transmitting to/from a low-speed port.

Although a low-speed device will send a low-speed EOP to properly terminate a packet, a hub may truncate
a low-speed packet at the EOF1 point with a full-speed EOP. Thus, hubs must always be able to tear down
connectivity in response to a full-speed EOP regardless of the data rate of the packet.

Because of the slow transitions on low-speed ports, when the D+ and D- signal lines are switching between
the 'J' and 'K, they may both be below 2.0 V for a period of time that is longer than a full-speed bit time. A
hub must ensure that these slow transitions do not result in termination of connectivity and must not result in
an SEO being sent upstream.

11.8.4.1 Low-speed Keep-alive

All hub ports to which low-speed devices are connected must generate a low-speed keep-alive strobe,
generated at the beginning of the frame, which consists of a valid low-speed EOP (described in

Section 7.1.13.2). The strobe must be generated at least once in each frame in which an SOF is received.
This strobe is used to prevent low-speed devices from suspending if there is no other low-speed traffic on the
bus. The hub can generate the keep-alive on any valid full-speed token packet. The following rules for
generation of a low-speed keep-alive must be adhered to:

e A keep-alive must minimally be derived from each SOF. It is recommended that a keep-alive be
generated on any valid full-speed token.

e The keep-alive must start by the eighth bit after the PID of the full-speed token.

11.9 Suspend and Resume

Hubs must support suspend and resume both as a USB device and in terms of propagating suspend and
resume signaling. Hubs support both global and selective suspend and resume. Global and selective
suspend are defined in Section 7.1.7.6. Global suspend/resume refers to the entire bus being suspended or
resumed without affecting any hub’s downstream facing port states; selective suspend/resume refers to a
downstream facing port of a hub being suspended or resumed without affecting the hub state. Global
suspend/resume is implemented through the root port(s) at the host. Selective suspend/resume is
implemented via requests to a hub. Device-initiated resume is called remote-wakeup (see Section 7.1.7.7).

If the hub upstream facing port is in (high-speed) full-speed, the required behavior is the same as that for a
function with upstream facing port in (high-speed) full-speed and is described in Chapter 7.

When a downstream facing port operating at high-speed goes into the Suspended state, it switches to full-
speed terminations but continues to have high-speed port status. In response to a remote wakeup or
selective resume, this port will drive full-speed ‘K’ throughout its Resuming state. The requirements and
timings are the same as for full-speed ports and described below. At the end of this signaling, the bus will

332

LGE-1010 / Page 360 of 650

Universal Serial Bus Specification Revision 2.0

be returned to the high-speed Idle state (using the SendEOR state). After this, the port will return to the
Enabled state. The high-speed status of the port is maintained throughout the suspend-resume cycle.

Figure 11-17 and Figure 11-18 show the timing relationships for an example remote-wakeup sequence.
This example illustrates a device initiating resume signaling through a suspended hub (‘B’) to an awake hub
(‘A’). Hub ‘A’ in this example times and completes the resume sequence and is the "Controlling Hub".
The timings and events are defined in Section 7.1.7.7.

—
Hub ‘A’
(Controlling Hub)
X XX
Controlling Hub
suspended DS
Port
Hub
V Upstream
Port
Hub ‘B’
X Enabled DS
~ Hub Ports
|
I | Device
: } Hub Port
‘/4—‘ Device
Device
Device
Remote
Wakeup

Full/low speed Bus driving
Full/low speed Bus driving —
repeat

Full/low speed Bus Idle or

Everything driven at other end
:Jnelsol‘:;[';l:nbd‘A’ _____ High speed idle state

state :

Controlling Hub Drives Resume (DS) Controlling Hub
—» 20ms (nominal) <4 sends EOR ending
_______ [P S, resume
Idle (‘J’) Resumei(‘K’) idle
> < Controlling Hub Reflects Resume
(DS) 900us
Hub ‘B’ generates
EOP ending resume
Idle (‘J’) Resume (‘K’) j Idle (‘J’)
— — Hub ‘B’ Drives Resume (US and DS)
[e.g., 10ms]
—> «—Hub ‘B’ Reflects Resume (US and DS)
900us
Idle (‘) Resume (‘K}) A Jidle (J°)
______ P OV N AP,
evice Drives Resume
—» € Device Drives R
[e.g., 10ms]
tﬂ t1 tZ tJ td 5

Figure 11-17. Example Remote-wakeup Resume Signaling With Full-/low-speed Device

333

LGE-1010 / Page 361 of 650

Universal Serial Bus Specification Revision 2.0

Full/low speed Bus driving
Full/low speed Bus driving —
repeat

Full/low speed Bus Idle or

11

334

Everything dri
1 riven at other end
below Hub ‘A’ : :
Hub ‘A in Suspend . High speed idle state
Controlling Hub state i
(9) Controlling Hub Drives Resume (DS) Controlling Hub
X XX —» 20ms (nominal) <4 sends EOR ending
‘\ Controlling Hub ~ ------4 —————— resume
suspended DS Idle (‘J) Resume(‘K’) idle
Port _——)
> < Controlling Hub Reflects Resume
Hub (DS) 900us
A Upstream
Port
Hub ‘B’
X Enabled DS Idle (‘J’) Resumme (‘K’) idle
\ Hub Ports ~ —-——————+ e e S e e Rl b
—Pp ‘44— Hub ‘B’ Drives Resume (US and DS)
[e.g., 10ms]
[
I | Device
1 | Hub Port —p «@—Hub ‘B’ Reflects Resume (US and DS)
! ! 900us
Device @ ~TTT=7 STTITTT T
p Idle (') | Resuine (‘K) \ idle
P FE O, P SRR X
Device Devi
Reer!r‘\,::: —p — Device Drives Resume
e.g., 10ms’
Wakeup t t, t t t, [e.g 1 i

Figure 11-18. Example Remote-wakeup Resume Signaling With High-speed Device

Here is an explanation of what happens at each t :

Suspended device initiates remote-wakeup by driving a K’ on the data lines.

Suspended hub ‘B’ detects the ‘K’ on its downstream facing port and wakes up enough within 900 pus

to filter and then reflect the resume upstream and down through all enabled ports.

Hub ‘A’ is not suspended (implication is that the port at which ‘B’ is attached is selectively

suspended), detects the ‘K’ on the selectively suspended port where ‘B’ is attached, and filters and

then reflects the resume signal back to ‘B’ within 900 ps.

Device ceases driving ‘K’ upstream.

signaling to all enabled downstream facing ports.

Hub ‘B’ ceases driving ‘K’ upstream and down all enabled ports and begins repeating upstream

Hub ‘A’ completes resume sequence, after appropriate timing interval, by driving a speed-appropriate

end of resume downstream. (End of resume will be an Idle state for a high-speed device or a low-

speed EOP for a full-/low-speed device.)

The hub reflection time is much smaller than the minimum duration a USB device will drive resume
upstream. This relationship guarantees that resume will be propagated upstream and downstream without

any gaps.

.10 Hub Reset Behavior

Reset signaling to a hub is defined only in the downstream direction, which is at the hub's upstream facing

port. Reset signaling required of the hub is described in Section 7.1.7.5.

A suspended hub must interpret the start of reset as a wakeup event; it must be awake and have completed

its reset sequence by the end of reset signaling.

LGE-1010 / Page 362 of 650

11

11

Universal Serial Bus Specification Revision 2.0

After completion of the reset sequence, a hub is in the following state:
e Hub Controller default address is 0.

e Hub status change bits are set to zero.

e Hub Repeater is in the WFSOPFU state.

e Transmitter is in the Inactive state.

e Downstream facing ports are in the Not Configured state and SEO driven on all downstream facing
ports.

.11 Hub Port Power Control

Self-powered hubs may have power switches that control delivery of power downstream facing ports but it
is not required. Bus-powered hubs are required to have power switches. A hub with power switches can
switch power to all ports as a group/gang, to each port individually, or have an arbitrary number of gangs of
one or more ports.

A hub indicates whether or not it supports power switching by the setting of the Logical Power Switching
Mode field in wHubCharacteristics. If a hub supports per-port power switching, then the power to a port is
turned on when a SetPortFeature(PORT_POWER) request is received for the port. Port power is turned off
when the port is in the Powered-off or Not Configured states. If a hub supports ganged power switching,
then the power to all ports in a gang is turned on when any port in a gang receives a

SetPortFeature(PORT _POWER) request. The power to a gang is not turned off unless all ports in a gang
are in the Powered-off or Not Configured states. Note, the power to a port is not turned on by a
SetPortFeature(PORT _POWER) if both C HUB_ LOCAL POWER and Local Power Status (in
wHubStatus) are set to 1B at the time when the request is executed and the PORT POWER feature would
be turned on.

Although a self-powered hub is not required to implement power switching, the hub must support the
Powered-off state for all ports. Additionally, the hub must implement the PortPwrCtriMask (all bits set to
1B) even though the hub has no power switches that can be controlled by the USB System Software.

Note: To ensure compatibility with previous versions of USB Software, hubs must implement the Logical
Power Switching Mode field in wHubCharacteristics. This is because some versions of SW will not use the
SetPortFeature() request if the hub indicates in wHubCharacteristics that the port does not support port
power switching. Otherwise, the Logical Power Switching Mode field in wHubCharacteristics would have
become redundant as of this version of the specification.

The setting of the Logical Power Switching Mode for hubs with no power switches should reflect the
manner in which over-current is reported. For example, if the hub reports over-current conditions on a per-
port basis, then the Logical Power Switching Mode should be set to indicate that power switching is
controlled on a per-port basis.

For a hub with no power switches, bPwrOn2PwrGood must be set to zero.

.11.1 Multiple Gangs

A hub may implement any number of power and/or over-current gangs. A hub that implements more than
one over-current and/or power switching gang must set both the Logical Power Switching Mode and the
Over-current Reporting Mode to indicate that power switching and over-current reporting are on a per port
basis (these fields are in wHubCharacteristics). Also, all bits in PortPwrCtriMask must be set to 1B.

When an over-current condition occurs on an over-current protection device, the over-current is signaled on
all ports that are protected by that device. When the over-current is signaled, all the ports in the group are
placed in the Powered-off state, and the C PORT OVER-CURRENT field is set to 1B on all the ports.
When port status is read from any port in the group, the PORT OVER-CURRENT field will be set to 1B as

335

LGE-1010 / Page 363 of 650

11

1.

336

Universal Serial Bus Specification Revision 2.0

long as the over-current condition exists. The C PORT OVER-CURRENT field must be cleared in each
port individually.

When multiple ports share a power switch, setting PORT POWER on any port in the group will cause the
power to all ports in the group to turn on. It will not, however, cause the other ports in that group to leave
the Powered-off state. When all the ports in a group are in the Powered-off state or the hub is not
configured, the power to the ports is turned off.

If a hub implements both power switching and over-current, it is not necessary for the over-current groups
to be the same as the power switching groups.

If an over-current condition occurs and power switches are present, then all power switches associated with
an over-current protection circuit must be turned off. If multiple over-current protection devices are
associated with a single power switch then that switch will be turned off when any of the over-current
protection circuits indicates an over-current condition.

.12 Hub Controller

The Hub Controller is logically organized as shown in Figure 11-19.

UPSTREAM CONNECTION

ENDPOINT 0:
Configuration
Information

Status Change
Endpoint

Port 1 Port N

Port 2 Port 3
Figure 11-19. Example Hub Controller Organization

12.1 Endpoint Organization

The Hub Class defines one additional endpoint beyond Default Control Pipe, which is required for all hubs:
the Status Change endpoint. The host system receives port and hub status change notifications through the
Status Change endpoint. The Status Change endpoint is an interrupt endpoint. If no hub or port status
change bits are set, then the hub returns an NAK when the Status Change endpoint is polled. When a status
change bit is set, the hub responds with data, as shown in Section 11.12.4, indicating the entity (hub or port)
with a change bit set. The USB System Software can use this data to determine which status registers to
access in order to determine the exact cause of the status change interrupt.

LGE-1010 / Page 364 of 650

Universal Serial Bus Specification Revision 2.0

11.12.2 Hub Information Architecture and Operation

Figure 11-20 shows how status, status change, and control information relate to device states. Hub
descriptors and Hub/Port Status and Control are accessible through the Default Control Pipe. The Hub
descriptors may be read at any time. When a hub detects a change on a port or when the hub changes its
own state, the Status Change endpoint transfers data to the host in the form specified in Section 11.12.4.

Hub or port status change bits can be set because of hardware or Software events. When set, these bits
remain set until cleared directly by the USB System Software through a ClearPortFeature() request or by a
hub reset. While a change bit is set, the hub continues to report a status change when polled until all change
bits have been cleared by the USB System Software.

% Status Information

- (static) H

; ardware Events —
(o]
8=

z0
kS Q Change Information
g (due to hardware

o events)
I

Change Device

State

Device Control

]

Control Information Software Device
(change device state) Control

Figure 11-20. Relationship of Status, Status Change, and Control Information to Device States

The USB System Software uses the interrupt pipe associated with the Status Change endpoint to detect
changes in hub and port status.

11.12.3 Port Change Information Processing

Hubs report a port’s status through port commands on a per-port basis. The USB System Software
acknowledges a port change by clearing the change state corresponding to the status change reported by the
hub. The acknowledgment clears the change state for that port so future data transfers to the Status Change
endpoint do not report the previous event. This allows the process to repeat for further changes (see

Figure 11-21).

337

LGE-1010 / Page 365 of 650

11.

338

Universal Serial Bus Specification Revision 2.0

[System Software requests Interrupt Pipe notification for Status Change Information]

Hub NAKs
status change
IN token

Change Data
Available ?

[Interrupt Pipe returns Hub and Port Status Change Bitmap]

[Interrupt Pipe notification retired]
v <

[System Software reads Hub or Port status (for affected ports)]

e Accumulate change information
e System Software clears
corresponding change state

Any Changed
State?

[System Software processes accumulated change information]
[Re-initialize Interrupt Pipe for Status Change endpoint]

Return to
beginning

Figure 11-21. Port Status Handling Method

12.4 Hub and Port Status Change Bitmap

The Hub and Port Status Change Bitmap, shown in Figure 11-22, indicates whether the hub or a port has
experienced a status change. This bitmap also indicates which port(s) has had a change in status. The hub
returns this value on the Status Change endpoint. Hubs report this value in byte-increments. That is, if a
hub has six ports, it returns a byte quantity, and reports a zero in the invalid port number field locations.
The USB System Software is aware of the number of ports on a hub (this is reported in the hub descriptor)
and decodes the Hub and Port Status Change Bitmap accordingly. The hub reports any changes in hub

status in bit zero of the Hub and Port Status Change Bitmap.

The Hub and Port Status Change Bitmap size varies from a minimum size of one byte. Hubs report only as
many bits as there are ports on the hub, subject to the byte-granularity requirement (i.e., round up to the

nearest byte).

LGE-1010 / Page 366 of 650

Universal Serial Bus Specification Revision 2.0

//
77
N 2 1 0
//
7
Port N change detected 4—————
<+—
<+—
«—
<+—
«—
<+—
«—
<+—
«—
<+—
«—
Port 2 change detected <+—
Port 1 change detected —

Hub change detected 4—

Figure 11-22. Hub and Port Status Change Bitmap

Any time the Status Change endpoint is polled by the host controller and any of the Status Changed bits are
non-zero, the Hub and Port Status Change Bitmap is returned. Figure 11-23 shows an example creation
mechanism for hub and port change bits.

Per-Port Logic

Port N +Q

Logical OR

Change P| Change
Detect Logic:E Information

Hub and Port Status Change Bitmap

N
Figure 11-23. Example Hub and Port Change Bit Sampling

11.12.5 Over-current Reporting and Recovery

USB devices must be designed to meet applicable safety standards. Usually, this will mean that a self-
powered hub implement current limiting on its downstream facing ports. If an over-current condition
occurs, it causes a status and state change in one or more ports. This change is reported to the USB System
Software so that it can take corrective action.

A hub may be designed to report over-current as either a port or a hub event. The hub descriptor field
wHubCharacteristics is used to indicate the reporting capabilities of a particular hub (see Section 11.23.2).
The over-current status bit in the hub or port status field indicates the state of the over-current detection
when the status is returned. The over-current status change bit in the Hub or Port Change field indicates if
the over-current status has changed.

When a hub experiences an over-current condition, it must place all affected ports in the Powered-off state.
If a hub has per-port power switching and per-port current limiting, an over-current on one port may still

339

LGE-1010 / Page 367 of 650

11

11

340

Universal Serial Bus Specification Revision 2.0

cause the power on another port to fall below specified minimums. In this case, the affected port is placed
in the Powered-off state and C PORT OVER CURRENT is set for the port, but

PORT OVER _CURRENT is not set. If the hub has over-current detection on a hub basis, then an over-
current condition on the hub will cause all ports to enter the Powered-off state. However, in this case,
neither C PORT _OVER CURRENT nor PORT _OVER CURRENT is set for the affected ports.

Host recovery actions for an over-current event should include the following:
1. Host gets change notification from hub with over-current event.

2. Host extracts appropriate hub or port change information (depending on the information in the
change bitmap).

3. Host waits for over-current status bit to be cleared to 0.

4. Host cycles power on to all of the necessary ports (e.g., issues a SetPortFeature(PORT POWER)
request for each port).

5. Host re-enumerates all affected ports.

.12.6 Enumeration Handling

The hub device class commands are used to manipulate its downstream facing port state. When a device is
attached, the device attach event is detected by the hub and reported on the status change interrupt. The host
will accept the status change report and request a SetPortFeature(PORT _RESET) on the port. As part of the
bus reset sequence, a speed detect is performed by the hub’s port hardware.

The Get_Status(PORT) request invoked by the host will return a “not PORT LOW_SPEED and

PORT HIGH_SPEED” indication for a downstream facing port operating at high-speed. The
Get_Status(PORT) will report “PORT_LOW_SPEED” for a downstream facing port operating at low-
speed. The Get Status(PORT) will report “not PORT _LOW_SPEED and not PORT HIGH_SPEED” for a
downstream facing port operating at full-speed.

When the device is detached from the port, the port reports the status change through the status change
endpoint and the port will be reconnected to the high-speed repeater. Then the process is ready to be
repeated on the next device attach detect.

.13 Hub Configuration

Hubs are configured through the standard USB device configuration commands. A hub that is not
configured behaves like any other device that is not configured with respect to power requirements and
addressing. If a hub implements power switching, no power is provided to the downstream facing ports
while the hub is not configured. Configuring a hub enables the Status Change endpoint. The USB System
Software may then issue commands to the hub to switch port power on and off at appropriate times.

The USB System Software examines hub descriptor information to determine the hub’s characteristics. By
examining the hub’s characteristics, the USB System Software ensures that illegal power topologies are not
allowed by not powering on the hub’s ports if doing so would violate the USB power topology. The device
status and configuration information can be used to determine whether the hub should be used as a bus or
self-powered device. Table 11-12 summarizes the information and how it can be used to determine the
current power requirements of the hub.

LGE-1010 / Page 368 of 650

Universal Serial Bus Specification Revision 2.0

Table 11-12. Hub Power Operating Mode Summary

Configuration Descriptor Hub

bmAttributes | Device Status Explanation
MaxPower | (Self Powered) | (Self Power)

0 0 N/A N/A
This is an illegal set of information.

0 1 0 N/A

A device which is only self-powered, but does
not have local power cannot connect to the bus
and communicate.

0 1 1 Self-powered only hub and local power supply is
good. Hub status also indicates local power
good, see Section 11.16.2.5. Hub functionality is
valid anywhere depth restriction is not violated.

>0 0 N/A Bus-powered only hub. Downstream facing
ports may not be powered unless allowed in
current topology. Hub device status reporting
Self Powered is meaningless in combination of a
zeroed bmAttributes.Self-Powered.

>0 1 0 This hub is capable of both self- and bus-
powered operating modes. It is currently only
available as a bus-powered hub.

>0 1 1 This hub is capable of both self- and bus-
powered operating modes. It is currently
available as a self-powered hub.

A self-powered hub has a local power supply, but may optionally draw one unit load from its upstream
connection. This allows the interface to function when local power is not available (see Section 7.2.1.2).
When local power is removed (either a hub-wide over-current condition or local supply is off), a hub of this
type remains in the Configured state but transitions all ports (whether removable or non-removable) to the
Powered-off state. While local power is off, all port status and change information read as zero and all
SetPortFeature() requests are ignored (request is treated as a no-operation). The hub will use the Status
Change endpoint to notify the USB System Software of the hub event (see Section 11.24.2.6 for details on
hub status).

The MaxPower field in the configuration descriptor is used to report to the system the maximum power the
hub will draw from VBUS when the configuration is selected. For bus-powered hubs, the reported value
must not include the power for any of external downstream facing ports. The external devices attaching to
the hub will report their individual power requirements.

A compound device may power both the hub electronics and the permanently attached devices from VBUS.
The entire load may be reported in the hubs’ configuration descriptor with the permanently attached devices
each reporting self-powered, with zero MaxPower in their respective configuration descriptors.

341

LGE-1010 / Page 369 of 650

Universal Serial Bus Specification Revision 2.0

11.14 Transaction Translator

A hub has a special responsibility when it is operating in high-speed and has full-/low-speed devices
connected on downstream facing ports. In this case, the hub must isolate the high-speed signaling
environment from the full-/low-speed signaling environment. This function is performed by the Transaction
Translator (TT) portion of the hub.

This section defines the required behavior of the transaction translator.

11.14.1 Overview

Figure 11-24 shows an overview of the Transaction Translator. The TT is responsible for participating in
high-speed split transactions on the high-speed bus via its upstream facing port and issuing corresponding
full-/low-speed transactions on its downstream facing ports that are operating at full-/low-speed. The TT
acts as a high-speed function on the high-speed bus and performs the role of a host controller for its
downstream facing ports that are operating at full-/low-speed. The TT includes a high-speed handler to deal
with high-speed transactions. The TT also includes a full-/low-speed handler that performs the role of a
host controller on the downstream facing ports that are operating at full-/low-speed.

ﬂHigh Speed Bus

v

High-Speed Handler

//\

Isoch/Int || Isoch/Int B/C
Start-split|| Comp.-split In/OutIn/Out
A 4 A

A 4 A 4 A 4

Full/Low-Speed Handler

$

Full/Low Speed Bus ¥

Figure 11-24. Transaction Translator Overview

The TT has buffers (shown in gray in the figure) to hold transactions that are in progress and tracks the state
of each buffered transaction as it is processed by the TT. The buffers provide the connection between the
high-speed and full-/low-speed handlers. The state tracking the TT does for each transaction depends on the
specific USB transfer type of the transaction (i.e., bulk, control, interrupt, isochronous). The high-speed
handler accepts high-speed start-split transactions or responds to high-speed complete-split transactions.
The high-speed handler places the start-split transactions in local buffers for the full-/low-speed handler’s
use.

The buffered start-split transactions provide the full-/low-speed handler with the information that allows it
to issue corresponding full-/low-speed transactions to full-/low-speed devices attached on downstream
facing ports. The full-/low-speed handler buffers the results of these full-/low-speed transactions so that
they can be returned with a corresponding complete-split transaction on the high-speed bus.

The general conversion between full-/low-speed transactions and the corresponding high-speed split
transaction protocol is described in Section 8.4.2. More details about the specific transfer types for split
transactions are described later in this chapter.

342

LGE-1010 / Page 370 of 650

Universal Serial Bus Specification Revision 2.0

The high-speed handler of the TT operates independently of the full-/low-speed handler. Both handlers use
the local transaction buffers to exchange information where required.

Transaction Translator

Bulk & Interrupt &
Control Isochronous|

Figure 11-25. Periodic and Non-periodic Buffer Sections of TT

The TT has two buffer and state tracking sections (shown in gray in Figure 11-24 and Figure 11-25):
periodic (for isochronous/interrupt full-/low-speed transactions) and non-periodic (for bulk/control full-
/low-speed transactions). The requirements on the TT for these two buffer and state tracking sections are
different. Each will be described in turn later in this chapter.

11.14.1.1 Data Handling Between High-speed and Full-/low-speed

The host converts transfer requests involving a full-/low-speed device into corresponding high-speed split
transactions to the TT to which the device is attached.

Low-speed Preamble(PRE) packets are never used on the high-speed bus to indicate a low-speed
transaction. Instead, a low-speed transaction is encoded in the split transaction token.

The host can have a single schedule of the transactions that need to be issued to devices. This single
schedule can be used to hold both high-speed transactions and high-speed split transactions used for
communicating with full-/low-speed devices.

11.14.1.2 Host Controller and TT Split Transactions

The host controller uses the split transaction protocol for initiating full-/low-speed transactions via the TT
and then determining the completion status of the full-/low-speed transaction. This approach allows the
host controller to start a full-/low-speed transaction and then continue with other high-speed transactions
while avoiding having to wait for the slower transaction to proceed/complete at its speed. A high-speed
split transaction has two parts: a start-split and a complete-split. Split transactions are only used between
the host controller and a hub. No other high-/full-/low-speed devices ever participate in split transactions.

When the host controller sends a start-split transaction at high-speed, the split transaction is addressed to the
TT for that device. That TT will accept the transaction and buffer it locally. The high-speed handler
responds with an appropriate handshake to inform the host controller that the transaction has been accepted.
Not all split transactions have a handshake phase to the start-split. The start-split transactions are kept
temporarily in a TT transaction buffer.

The full-/low-speed handler processes start-split periodic transactions stored in the periodic transaction
buffer (in order) as the downstream full-/low-speed bus is ready for the “next” transaction. The full-/low-
speed handler accepts any result information from the downstream bus (in response to the full-/low-speed
transaction) and accumulates it in a local buffer for later transmission to the host controller.

At an appropriate future time, the host controller sends a high-speed complete-split transaction to retrieve
the status/data/result for appropriate full-/low-speed transactions. The high-speed handler checks this high-
speed complete-split transaction with the response at the head of the appropriate local transaction buffer and
responds accordingly. The specific split transaction sequences are defined for each USB transfer type in
later sections.

343

LGE-1010 / Page 371 of 650

Universal Serial Bus Specification Revision 2.0

11.14.1.3 Multiple Transaction Translators

A hub has two choices for organizing transaction translators (TTs). A hub can have one TT for all
downstream facing ports that have full-/low-speed devices attached or the hub can have one TT for each
downstream facing port. The hub must report its organization in the hub class descriptor.

11.14.2 Transaction Translator Scheduling

As the high-speed handler accepts start-splits, the full-/low-speed transaction information and data for
OUTs or the transaction information for INs accumulate in buffers awaiting their service on the downstream
bus. The host manages the periodic TT transaction buffers differently than the non-periodic transaction
buffers.

11.14.2.1 TT Isochronous/interrupt (Periodic) Transaction Buffering

Periodic transactions have strict timing requirements to meet on a full-/low-speed bus (as defined by the
specific endpoint and transfer type). Therefore, transactions must move across the high-speed bus, through
the TT, across the full-/low-speed bus, back through the TT, and onto the high-speed bus in a timely
fashion. An overview of the microframe pipeline of buffering in the TT is shown in Figure 11-26. A
transaction begins as a start-split on the high-speed bus, is accepted by the high-speed handler, and is stored
in the start-split transaction buffer. The full-/low-speed handler uses the next start-split transaction at the
head of the start-split transaction buffer when it is time to issue the next periodic full-/low-speed transaction
on the downstream bus. The results of the transaction are accumulated in the complete-split transaction
buffer. The TT responds to a complete-split from the host and extracts the appropriate response from the
complete-split transaction buffer. This completes the flow for a periodic transaction through the TT. This
is called the periodic transaction pipeline.

High Speed Start-Split High Speed Complete-Split
I 4

Start Complete
Handler Handler

Start-split| | Complete-split
FIFO FIFO

Full/Low
Handler
v

Figure 11-26. TT Microframe Pipeline for Periodic Split Transactions

TT

The TT implements a traditional pipeline of transactions with its periodic transaction buffers. There is
separate buffer space for start-splits and complete-splits. The host is responsible for filling the start-split
transaction buffer and draining the complete-split transaction buffer. The host software manages the host
controller to cause high-speed split transactions at the correct times to avoid over/under runs in the TT
periodic transaction buffers. The host controller sends data “just in time” for full-/low-speed OUTs and
retrieves response data from full-/low-speed INs to ensure that the periodic transaction buffer space required
in the TT is the minimum possible. See Section 11.18 for more detailed information.

USB strictly defines the timing requirements of periodic transactions and the isochronous transport
capabilities of the high-speed and full-/low-speed buses. This allows the host to accurately predict when

344

LGE-1010 / Page 372 of 650

Universal Serial Bus Specification Revision 2.0

data for periodic transactions must be moved on both the full-/low-speed and high-speed buses, whenever a
client requests a data transfer with a full-/low-speed periodic endpoint. Therefore, the host can “pipeline”
data to/from the TT so that it moves in a timely manner with its target endpoint. Once the configuration of
a full-/low-speed device with periodic endpoints is set, the host streams data to/from the TT to keep the
device’s endpoints operating normally.

11.14.2.2 TT Bulk/Control (Non-Periodic) Transaction Buffering

Non-periodic transactions have no timing requirements, but the TT supports the maximum full-/low-speed
throughput allowed. A TT provides a few transaction buffers for bulk/control full-/low-speed transactions.
The host and TT use simple flow control (NAK) mechanisms to manage the bulk/control non-periodic
transaction buffers. The host issues a start-split transaction, and if there is available buffer space, the TT
accepts the transaction. The full-/low-speed handler uses the buffered information to issue the downstream
full-/low-speed transaction and then uses the same buffer to hold any results (e.g., handshake or data or
timeout). The buffer is then emptied with a corresponding high-speed complete-split and the process
continues. Figure 11-27 shows an example overview of a TT that has two bulk/control buffers.

High Speed Start-/Complete-Split

'
TT /\

Bulk/Ctrl #1 | Bulk/Ctrl #2

Full/Low Speed Transaction

Figure 11-27. TT Nonperiodic Buffering

11.14.2.3 Full-/low-speed Handler Transaction Scheduling

The full-/low-speed handler uses a simple, scheduled priority scheme to service pending transactions on the
downstream bus. Whenever the full-/low-speed handler finishes a transaction on the downstream bus, it
takes the next start-split transaction from the start-split periodic transaction buffer (if any). If there are no
available start-split periodic transactions in the buffer, the full-/low-speed handler may attempt a
bulk/control transaction. If there are start-split transactions pending in the bulk/control buffer(s) and there is
sufficient time left in the full-/low-speed 1 ms frame to complete the transaction, the full-/low-speed handler
issues one of the bulk/control transactions (in round robin order). Figure 11-28 shows pseudo code for the
full-/low-speed handler start-split transaction scheduling algorithm.

The TT also sequences the transaction pipeline based on the high-speed microframe timer to ensure that it
does not start full-/low-speed periodic transactions too early or too late. The “Advance pipeline” procedure
in the pseudo code is used to keep the TT advancing the microframe “pipeline”. This procedure is described
in more detail later in Figure 11-67.

345

LGE-1010 / Page 373 of 650

Universal Serial Bus Specification Revision 2.0

While (1) loop
While (not end of microframe) loop
-- process next start-split transaction
If available periodic start-split transaction then
Process next full-/low-speed periodic transaction
Else if (available bulk/control transaction) and
(fits in full-/low-speed 1 ms frame) then
Process one transaction
End if
End loop

Advance Pipeline(); -- see description in Figure 11-67 (below)
End loop
Figure 11-28. Example Full-/low-speed Handler Scheduling for Start-splits

As described earlier in this chapter, the TT derives the downstream bus’s 1 ms SOF timer from the high-
speed 125 us microframe. This means that the host and the TT have the same 1 ms frame time for all TTs.
Given the strict relationship between frames and the zeroth microframe, there is no need to have any
explicit timing information carried in the periodic split transactions sent to the TT. See Section 11.18 for
more information.

11.15 Split Transaction Notation Information

The following sections describe the details of the transaction phases and flow sequences of split transactions
for the different USB transfer types: bulk/control, interrupt, and isochronous. Each description also shows
detailed example host and TT state machines to achieve the required transaction definitions. The diagrams
should not be taken as a required implementation, but to specify the required behavior. Appendix A
includes example high-speed and full-speed transaction sequences with different results to clarify the
relationships between the host controller, the TT, and a full-speed endpoint.

Low-speed is not discussed in detail since beyond the handling of the PRE packet (which is defined in
Chapter 8), there are no packet sequencing differences between low- and full-speed.

For each data transfer direction, reference figures also show the possible flow sequences for the start-split
and the complete-split portion of each split transaction transfer type.

The transitions on the flow sequence figures have labels that correspond to the transitions in the host and TT
state machines. These labels are also included in the examples in Appendix A. The three character labels
are of the form: <S|C><T|D |H|E ><number>. S indicates that this is a start-split label. C indicates
that this is a complete-split label. T indicates token phase; D indicates data phase; H indicates handshake
phase; E indicates an error case. The number simply distinguishes different labels of the same case/phase in
the same split transaction part.

The flow sequence figures further identify the visibility of transitions according to the legend in
Figure 11-29. The flow sequences also include some indication of states required in the host or TT or
actions taken. The legend shown in Figure 11-29 indicates how these are identified.

Bold indicates host action
Italics indicate <hub status> or <hub action>

Both visible
Hub visible
Host visible —-————————

Figure 11-29. Flow Sequence Legend

Figure 11-30 shows the legend for the state machine diagrams. A circle with a three line border indicates a
reference to another (hierarchical) state machine. A circle with a two line border indicates an initial state.
A circle with a single line border is a simple state.

346

LGE-1010 / Page 374 of 650

Universal Serial Bus Specification Revision 2.0

A diamond (joint) is used to join several transitions to a common point. A joint allows a single input
transition with multiple output transitions or multiple input transitions and a single output transition. All
conditions on the transitions of a path involving a joint must be true for the path to be taken. A path is
simply a sequence of transitions involving one or more joints.

A transition is labeled with a block with a line in the middle separating the (upper) condition and the (lower)
actions. The condition is required to be true to take the transition. The actions are performed if the
transition is taken. The syntax for actions and conditions is VHDL. A circle includes a name in bold and
optionally one or more actions that are performed upon entry to the state.

- Contains other state machines

Initial - Initial state of a state machine
State

- State 1n a state machine

S —[> - Entry and exit of state machine
- Joint used to connect transitions
Condition . N
Actions — - Transition: taken when condition

1s true and performs actions

Figure 11-30. Legend for State Machines

The descriptions of the split transactions for the four transfer types refer to the status of the full-/low-speed
transaction on the bus downstream of the TT. This status is used by the high-speed handler to determine its
response to a complete-split transaction. The status is only visible within a TT implementation and is used
in the specification purely for ease of explanation. The defined status values are:

e Ready — The transaction has completed on the downstream facing full-/low-speed bus with the result
as follows:

e Ready/NAK — A NAK handshake was received.

e Ready /trans_err — The full-/low-speed transaction experienced a error in the transaction.
Possible errors are: PID to PID _invert bits check failure, CRCS5 check failure, incorrect PID,
timeout, CRC16 check failure, incorrect packet length, bitstuffing error, false EOP.

e Ready /ACK — An ACK handshake was received.
e Ready /Stall - A STALL handshake was received.
e Ready /Data — A data packet was received and the CRC check passed. (bulk/control IN).

347

LGE-1010 / Page 375 of 650

348

Universal Serial Bus Specification Revision 2.0

e Ready /lastdata — A data packet was finished being received. (isochronous/interrupt IN).

e Ready /moredata — A data packet was being received when the microframe timer occurred
(isochronous/interrupt IN).

e Old - A complete-split has been received by the high-speed handler for a transaction that previously
had a “ready” status. The possible status results are the same as for the Ready status. This is the
initial state for a buffer before it has been used for a transaction.

e Pending — The transaction is waiting to be completed on the downstream facing full-/low-speed bus.
The figures use “old/x” and “ready/x” to indicate any of the old or ready status respectively.

The split transaction state machines in the remainder of this chapter are presented in the context of
Figure 11-31. The host controller state machines are located in the host controller. The host controller
causes packets to be issued downstream (labeled as HSD1) and it receives upstream packets (labeled as
HSU2).

The transaction translator state machines are located in the TT. The TT causes packets to be issued
upstream (labeled as HSU1) and it receives downstream packets (labeled as HSD2).

The host controller has commands that tell it what split transaction to issue next for an endpoint. The host
controller tracks transactions for several endpoints. The TT has state in buffers that track transactions for
several endpoints.

Appendix B includes some declarations that were used in constructing the state machines and may be useful
in understanding additional details of the state machines. There are several pseudo-code procedures and
functions for conditions and actions. Simple descriptions of them are also included in Appendix B.

Transaction Transaction
Commands Results
Host

v t

HC cmd| [HC resp

Controller

Downstream Upstream
High speed Bus High speed Bus

H
BC || ss || cs ub
Transaction

I l T Translator
Bulk/Ctrl Buffers Periodic Pipeline Buffers

Figure 11-31. State Machine Context Overview

LGE-1010/ Page 376 of 650

Universal Serial Bus Specification Revision 2.0

11.16 Common Split Transaction State Machines

There are several state machines common to all the specific split transaction types. These state machines
are used in the host controller and transaction translator to determine the specific split transaction type (e.g.,
interrupt OUT start-split vs. bulk IN complete-split). An overview of the host controller state machine
hierarchy is shown in Figure 11-32. The overview of the transaction translator state machine hierarchy is
shown in Figure 11-33. Each of the labeled boxes in the figures show an individual state machine. Boxes
contained in another box indicate a state machine contained within another state machine. All the state
machines except the lowest level ones are shown in the remaining figures in this section. The lowest level
state machines are shown in later sections describing the specific split transaction type.

HC Do_start HC Do complete
HC Do IsochISS HC Do IsochICS

HC_Do_IntISS HC Do IntICS
HC Do BISS HC Data or timeout

HC Do IsochOSS HC_Do_BICS
HC Do IntOSS HC Do IntOCS
HC Do BOSS HC Do BOCS

Figure 11-32. Host Controller Split Transaction State Machine Hierarchy Overview

349

LGE-1010 / Page 377 of 650

Universal Serial Bus Specification Revision 2.0

TT Process packet

TT Do start TT Do complete

TT IsochSS TT IsochICS
| TT _Do_IsochOSS |
| TT Do IsochISS |

TT IntSS TT IntCS

| TT Do IntOSS | | TT Do IntOCS |
| TT Do IntISS | | TT Do IntICS |
TT BulkSS TT BulkCS

| TT Do BOSS | | TT Do BOCS |
| TT Do BISS | | TT Do BICS |

Figure 11-33. Transaction Translator State Machine Hierarchy Overview

11.16.1 Host Controller State Machine

Architecture Declarations

Package List

ieee std_logic_1164
ieee numeric_std

usb2statemachines behav_package
ieee std_logic_arith

HC_Command_ready

Concurrent Statements

Figure 11-34. Host Controller

350

LGE-1010/ Page 378 of 650

Universal Serial Bus Specification Revision 2.0

11.16.1.1 HC_Process_command State Machine

HC_cmd.cmd = SOF

Issue_packet(HSD1, SOF);

/r-

Update_Command(HC_done);

HC_cmd.cmd = start_split

HC_cmd.cmd = complete_split

HC_cmd.cmd = nonsplit

HC_Process_command

Figure 11-35. HC_Process_Command

351

LGE-1010/ Page 379 of 650

Universal Serial Bus Specification Revision 2.0

11.16.1.1.1 HC_Do_start State Machine

HC_cmd.direction = in_dir

HC_cmd.direction = out_dir ‘

352

HC_cmd.ep_type = isochronous

HC_cmd.ep_type = interrupt ‘

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control

‘ HC_cmd.ep_type = isochronous

HC_cmd.ep_type = interrupt ‘

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control

HC_Do_Start

Figure 11-36. HC _Do_Start

LGE-1010 / Page 380 of 650

Universal Serial Bus Specification Revision 2.0

11.16.1.1.2 HC_Do_complete State Machine

‘ HC_cmd.ep_type = isochronous

HC_cmd.ep_type = interrupt ‘

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control

HC_cmd.direction = in_dir ‘

HC_cmd.direction = out_dir ‘

‘ HC_cmd.ep_type = isochronous ‘

HC_cmd.ep_type = interrupt ‘

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control

HC_Do_complete

Figure 11-37. HC_Do_Complete

353

LGE-1010/ Page 381 of 650

Universal Serial Bus Specification Revision 2.0

11.16.2 Transaction Translator State Machine

Package List

ieee std_logic_1164
ieee numeric_std
usb2statemachines behav_package

st1/ct1

Architecture Declarations

Packet_ready(HSD2)

Save (HSD2, split);

Figure 11-38. Transaction Translator

354

LGE-1010 / Page 382 of 650

Universal Serial Bus Specification Revision 2.0

11.16.2.1 TT_Process_packet State Machine

split.PID /= SSPLIT and split.PID /= CSPLIT

sel/cel

Packet_ready(HSD2)

Save (HSD2, token);

split.PID = SSPLIT

st2/ct2

HSD2.PID = SSPLIT or
HSD2.PID = CSPLIT

Save(HSD2, split);

split.PID = CSPLIT

HSD2.PID = SOF

SS_Buff.saw_split <= false;

not SS_Buff.isochO or
(SS_Buff.isochO and
SS_Buff.saw_split)

SS_Buff.isochO and
not SS_Buff.saw_split

Down_error;
SS_Buff.isochO <= false;

HSD2.PID /= SSPLIT and
HSD2.PID /= CSPLIT and
HSD2.PID /= SOF

TT_Process_Packet

Figure 11-39. TT Process_Packet

355

LGE-1010 / Page 383 of 650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.1 TT_Do_Start State Machine

‘ split.ep_type = isochronous

(S } split.ep_type = interrupt

split.ep_type = bulk or
split.ep_type = control

TT_Do_Start

Figure 11-40. TT_Do_Start

356

LGE-1010 / Page 384 of 650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.2 TT_Do_Complete State Machine

split.ep_type = isochronous ‘

[‘ split.ep_type = interrupt

split.ep_type = bulk or
split.ep_type = control

TT_Do_complete

Figure 11-41. TT _Do_Complete

11.16.2.1.3 TT_BulkSS State Machine

(token.PID /= tokenOUT and
token.PID /= tokenSETUP and
token.PID /= tokenIN) or
token.timeout

token.PID = tokenIN

token.PID = tokenOUT or
token.PID = tokenSETUP

TT_BulkSS

Figure 11-42. TT_BulkSS

357

LGE-1010 / Page 385 of 650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.4 TT_BulkCS State Machine

(token.PID /= tokenOUT and
token.PID /= tokenSETUP and
token.PID /= tokenIN) or
token.timeout

token.PID = tokenOUT or
token.PID = tokenSETUP

‘ token.PID = tokenIN

\ TT_BulkCS |

Figure 11-43. TT_BulkCS

11.16.2.1.5 TT_IntSS State Machine

(token.PID /= tokenOUT and
token.PID /= tokenIN) or
token.timeout

\
‘ token.PID = tokenIN ‘

‘ token.PID = tokenOUT ‘

TT_IntSS

Figure 11-44. TT_IntSS

358

LGE-1010 / Page 386 of 650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.6 TT_IntCS State Machine

(token.PID /= tokenIN and
token.PID /= tokenOUT) or
token.timeout

token.PID = tokenIN ‘

‘ token.PID = tokenOUT ‘

TT_IntCS

Figure 11-45. TT IntCS

11.16.2.1.7 TT_lsochSS State Machine

(token.PID /= tokenIN and
token.PID /= tokenOUT) or
token.timeout

token.PID = tokenIN

‘ token.PID = tokenOUT ‘

TT_lsochSS

Figure 11-46. TT IsochSS

359

LGE-1010 / Page 387 of 650

Universal Serial Bus Specification Revision 2.0

11.17 Bulk/Control Transaction Translation Overview

Each TT must have at least two bulk/control transaction buffers. Each buffer holds the information for a
start- or complete-split transaction and represents a single full-/low-speed transaction that is awaiting (or has
completed) transfer on the downstream bus. The buffer is used to hold the transaction information from the
start-split (and data for an OUT) and then the handshake/result of the full-/low-speed transaction (and data
for an IN). This buffer is filled and emptied by split transactions from the high-speed bus via the high-speed
handler. The buffer is also updated by the full-/low-speed handler while the transaction is in progress on the
downstream bus.

The high-speed handler must accept a start-split transaction from the host controller for a bulk/control
endpoint whenever the high-speed handler has appropriate space in a bulk/control buffer.

The host controller attempts a start-split transaction according to its bulk/control high-speed transaction
schedule. As soon as the high-speed handler responds to a complete-split transaction with the results from
the corresponding buffer, the next start-split for some (possibly other) full-/low-speed endpoint can be saved
in the buffer.

There is no method to control the start-split transaction accepted next by the high-speed handler.
Sequencing of start-split transactions is simply determined by available TT buffer space and the current
state of the host controller schedule (e.g., which start-split transaction is next that the host controller tries as
a normal part of processing high-speed transactions).

The host controller does not need to segregate split transaction bulk (or control) transactions from high-
speed bulk (control) transactions when building its schedule. The host controller is required to track
whether a transaction is a normal high-speed transaction or a high-speed split transaction.

The following sections describe the details of the transaction phases, flow sequences, and state machines for
split transactions used to support full-/low-speed bulk and control OUT and IN transactions. There are only
minor differences between bulk and control split transactions. In the figures, some areas are shaded to
indicate that they do not apply for control transactions.

11.17.1 Bulk/Control Split Transaction Sequences

The state machine figures show the transitions required for high-speed split transactions for full-/low-speed
bulk/control transfer types for a single endpoint. These figures must not be interpreted as showing any
particular specific timing. They define the required sequencing behavior of different packets of a
bulk/control split transaction. In particular, other high-speed or split transactions for other endpoints occur
before or after these split transaction sequences.

Figure 11-47 shows a sample code algorithm that describes the behavior of the transitions labeled with

Is new SS, Is_old SS and Is_no_space shown in the figures for both bulk/control IN and OUT start-split
transactions buffered in the TT for any endpoint. This algorithm ensures that the TT only buffers a single
bulk/control split transaction for any endpoint. The complete-split protocol definition requires an endpoint
has only a single result buffered in the TT at any time. Note that the “buffer match” test is different for bulk
and control endpoints. A buffer match test for a bulk transaction must include the direction of the
transaction in the test since bulk endpoints are unidirectional. A control transaction must not use direction
as part of the match test.

360

LGE-1010 / Page 388 of 650

Universal Serial Bus Specification Revision 2.0

procedure Compare buffs IS
variable match:boolean:=FALSE;

begin

-- Is new SS is true when BC buff.status == NEW_SS

-- Is_old _SS is true when BC_buff.status == OLD_SS

-- Is no space is true when BC buff.status == NO_SPACE
-- Assume nospace and intialize index to 0.
BC buff.status := NO SPACE;
BC buff.index := 0;

FOR i IN O to num buffs-1 LOOP
IF NOT match THEN

-- Re-use buffer with same Device Address/End point.

IF (token.endpt = cam(i).store.endpt AND

token.dev_addr = cam(i).store.dev_addr AND
((token.direction = cam(i) .store.direction AND

split.ep type /= CONTROL) OR
split.ep type = CONTROL)) THEN

-- If The buffer is already pending/ready this must be a retry.
IF (cam(i).match.state = READY OR cam(i) .match.state = PENDING) THEN

BC_buff.status := OLD_SS;
ELSE

BC_buff.status := NEW_SS;
END IF;
BC_buff.index := i;
match := TRUE;

—-- Otherwise use the buffer if it’s old.
ELSIF (cam(i).match.state = OLD) THEN
BC buff.status := NEW SS;
BC:buff.index = i;
END IF;
END IF;
END LOOP;

end Compare buffs;

Figure 11-47. Sample Algorithm for Compare_buffs

Figure 11-48 shows the sequence of packets for a start-split transaction for the full-/low-speed bulk OUT
transfer type. The block labeled SSPLIT represents a split transaction token packet as described in

Chapter 8. It is followed by an OUT token packet (or SETUP token packet for a control setup transaction).
If the high-speed handler times out after the SSPLIT or OUT token packets, and does not receive the
following OUT/SETUP or DATAO0/1 packets, it will not respond with a handshake as indicated by the
dotted line transitions labeled “sel1” or “se2”. This causes the host to subsequently see a transaction error
(timeout) (labeled “se2” and indicated with a dashed line). If the high-speed handler receives the DATAO0/1
packet and it fails the CRC check, it takes the transition “se2” which causes the host to timeout and follow

the “se2” transition.

361

LGE-1010 / Page 389 of 650

Universal Serial Bus Specification Revision 2.0

Start split

st ll

SSPLIT

V> Trans err

OUT/SETUP

Trans err

sdl y
DATAO/1 sel

Compare_buffs
: Y
Is new SS Is old SS Is_no_space Thans err
Accept: data i
shl sh2 sh3 se2!
v v :
[ACK } NAK Inc grr
I count
i i B — |
! ! se4! ses!
v v v
Go to Retry iferr count<3 iferr count>=3
comp. split start split retry start split endpoint halt
Host [1T]

Figure 11-48. Bulk/Control OUT Start-split Transaction Sequence

The host must keep retrying the start-split for this endpoint until the err_count reaches three for this
endpoint before continuing on to some other start-split for this endpoint. However, the host can issue other
start-splits for other endpoints before it retries the start-split for this endpoint. The err_count is used to
count how many errors have been experienced during attempts to issue a particular transaction for a
particular endpoint.

If there is no space in the transaction buffers to hold the start-split, the high-speed handler responds with a
NAK via transition “sh3”. This will cause the host to retry this start-split at some future time based on its
normal schedule. The host does not increase its err_count for a NAK handshake response. Once the host
has received a NAK response to a start-split, it can skip other start-splits for this TT for bulk/control
endpoints until it finishes a bulk/control complete-split.

If there is buffer space for the start-split, the high-speed handler takes transition “sh1” and responds with an
ACK. This tells the host it must try a complete-split the next time it attempts to process a transaction for
this full-/low-speed endpoint. After receiving an ACK handshake, the host must not issue a further start-
split for this endpoint until the corresponding complete-split has been completed.

If the high-speed handler already has a start-split for this full-/low-speed endpoint pending or ready, it
follows transition “sh2” and also responds with an ACK, but ignores the data. This handles the case where

362

LGE-1010 / Page 390 of 650

Universal Serial Bus Specification Revision 2.0

an ACK handshake was smashed and missed by the host controller and now the host controller is retrying
the start-split; e.g., a high-speed handler transition of “sh1” but a host transition of “se2”.

In the host controller error cases, the host controller implements the “three strikes and you’re out”
mechanism. That is, it increments an error count (err_count) and, if the count is less than three (transition
“sed”), it will retry the transaction. If the err _count is greater or equal to three (transition “se5”), the host
controller does endpoint halt processing and does not retry the transaction. If for some reason, a host
memory or non-USB bus delay (e.g.,a system memory “hold off””) occurs that causes the transaction to not
be completed normally, the err_count must not be incremented. Whenever a transaction completes
normally, the err_count is reset to zero.

The high-speed handler in the TT has no immediate knowledge of what the host sees, so the “se2”, “se4”,
and “se5” transitions show only host visibility.

This packet flow sequence showing the interactions between the host and hub is also represented by host
and high-speed handler state machine diagrams in the next section. Those state machine diagrams use the
same labels to correlate transitions between the two representations of the split transaction rules.

Figure 11-49 shows the corresponding flow sequence for the complete-split transaction for the full-/low-
speed bulk/control OUT transfer type. The notation “ready/x” or “old/x” indicates that the transaction status
of the split transaction is any of the ready or old states. After a full-/low-speed transaction is run on the
downstream bus, the transaction status is updated to reflect the result of the transaction. The possible result
status is: nak, stall, ack. The “x” means any of the NAK, ACK, STALL full-/low-speed transaction status
results. Each status result reflects the handshake response from the full-/low-speed transaction.

Complete split

ct li

CSPLIT

VK Trans err

. Not applicable
OUT/SETUP cel for control-setup

Match_split state i
|

ready/x or old/x _ :
No If stati,ts = ready{x ;> status = old/x Tii'ans_err
match i
pemnging . oldistall oldiack oldinak i
chl ced: ch2 ch3 ch4 ce2j
A AN 4 A 4 A 4 :
Inc err
[NYET] [STALL] [ACK] [NAK] dount
T T T T S |
i i i i ce3 |
i i i i Y i
v v v iferr_count<3 |
Retry .. Endpoint Go to next Retry retry imn.led. ced
comp. SpUit 1. ¢ cmd start split €omp- split

if err_count >=3
Host [T] endpoint halt

Figure 11-49. Bulk/Control OUT Complete-split Transaction Sequence

363

LGE-1010 / Page 391 of 650

Universal Serial Bus Specification Revision 2.0

There is no timeout response status for a transaction because the full-/low-speed handler must perform a
local retry of a full-/low-speed bulk or control transaction that experiences a transaction error. It locally
implements a “three strikes and you’re out” retry mechanism. This means that the full-/low-speed
transaction will resolve to one of a NAK, STALL or ACK handshake results. If the transaction experiences
a transaction error three times, the full-/low-speed handler will reflect this as a stall status result. The full-
/low-speed handler must not do a local retry of the transaction in response to an ACK, NAK, or STALL
handshake.

Start split

st li

SSPLIT
RV Trans err

IN

selé
Compare_buffs
: : |
Is new. SS Is old SS Is no_space '
5 : Trans err
Accept: data : =
shl sh2 sh3 |
v v !
Inderr
T .
i i se4!
i i M
v v sez* !
Go to Retry if err_count <3 :
comp. split start split retry start split |
i
i
Host [1T] se3l

if err_count >=3
endpoint halt

Figure 11-50. Bulk/Control IN Start-split Transaction Sequence

If the high-speed handler receives the complete-split token packet (and the token packet) while the full-
/low-speed transaction has not been completed (e.g., the transaction status is “pending”), the high-speed
handler responds with a NYET handshake. This causes the host to retry the complete-split for this endpoint
some time in the future.

If the high-speed handler receives a complete-split token packet (and the token packet) and finds no local
buffer with a corresponding transaction, the TT responds with a STALL to indicate a protocol violation.

Once the full-/low-speed handler has finished a full-/low-speed transaction, it changes the transaction status
from pending to ready and saves the transaction result. This allows the high-speed handler to respond to the
complete-split transaction with something besides NYET. Once the high-speed handler has seen a

364

LGE-1010 / Page 392 of 650

Universal Serial Bus Specification Revision 2.0

complete-split, it changes the transaction status from ready/x to old/x. This allows the high-speed handler to
reuse its local buffer for some other bulk/control transaction after this complete-split is finished.

If the host times out the transaction or does not receive a valid handshake, it immediately retries the
complete-split before going on to any other bulk/control transactions for this TT. The normal “three strikes”
mechanism applies here also for the host; i.e., the err_count is incremented. If for some reason, a host
memory or non-USB bus delay (e.g., a system memory “hold off”) occurs that causes the transaction to not
be completed normally, the err_count must not be incremented.

Complete split

ct li

CSPLIT

Match_split state
No match

cel
readyix or old/x or pending
Trans; err If status = ready/x => status = old/x

old/ack 1

old/data old/l?ak oldistall pendgzng
cdl ch2 ch3 ced chl
h 4 h 4 h 4 h 4 h 4

[DATAO/]] [NflK] [STIIAILL] [N}I’ET]

|
Trans jerr | *
: : Retry Endpoint Retry
cebi ' start split halt comp. split
[T T I
L_c_e_2__’_I‘_r afs_err nogtrans_err ndt trans_err and
Ind err and Datax = toggle
coqnt Da#ax /= Tl &8
v toggle HC_Ac?ept_data
"1
ce3¢ ce@ ch@! Chi Host [T]
iferr_count>=3 iferr_count<3 Retry Go to next
endpoint halt retry immed. start split cmd

comp. split

Figure 11-51. Bulk/Control IN Complete-split Transaction Sequence

If the host receives a STALL handshake, it performs endpoint halt processing and will not issue any more
split transactions for this full-/low-speed endpoint until the halt condition is removed.

If the host receives an ACK, it records the results of the full-/low-speed transaction and advances to the next
split transaction for this endpoint. The next transaction will be issued at some time in the future according
to normal scheduling rules.

365

LGE-1010 / Page 393 of 650

Universal Serial Bus Specification Revision 2.0

If the host receives a NAK, it will retry the start-split transaction for this endpoint at some time in the future
according to normal scheduling rules. The host must not increment the err_count in this case.

The host must keep retrying the current start-split until the err_count reaches three for this endpoint before
proceeding to the next split transaction for this endpoint. However, the host can issue other start-splits for
other endpoints before it retries the start-split for this endpoint.

After the host receives a NAK, ACK, or STALL handshake in response to a complete-split transaction, it
may subsequently issue a start-split transaction for the same endpoint. The host may choose to instead issue
a start-split transaction for a different endpoint that is not awaiting a complete-split response.

The shaded case shown in the figure indicates that a control setup transaction should never encounter a
NAK response since that is not allowed for full-/low-speed transactions.

Figure 11-50 and Figure 11-51 show the corresponding flow sequences for bulk/control IN split
transactions.

11.17.2 Bulk/Control Split Transaction State Machines

The host and TT state machines for bulk/control IN and OUT split transactions are shown in the following
figures. The transitions for these state machines are labeled the same as in the flow sequence figures.

HC_cmd.ep_type = control and
HC_cmd.setup

Issue_packet(HSD1, SSPLIT);

st1

HSU2.PID = ACK
RespondHC(Do_complete);

HC_cmd.ep_type = bulk or
(HC_cmd.ep_type = control and

not HC_cmd.setup) DoSetup
Issue_packet(
HSD1, SSPLIT); st2 HSU2.PID = NAK

RespondHC(Do_start);

Issue_packet(

HSD1, tokenSETUP); sel/se2

st2
ErrorCount < 3

RespondHC(Do_start);

Issue_packet(
HSD1, tokenOUT);

Dodata (HSU2.PID /= ACK and

HSU2.PID /= NAK) or

sd1 HSU2.timeout

Issue_packet(HSD1, DATAX); ErrorCount >= 3

RespondHC(Do_halt);

packet_ready(HSU2)

BSSO_error

BSSO_Wait_hndshk IncError;

Wait_for_packet(
HSU2, ITG);

| HC_Do_BOSS

Figure 11-52. Bulk/Control OUT Start-split Transaction Host State Machine

366

LGE-1010 / Page 394 of 650

Universal Serial Bus Specification Revision 2.0

HSU2.PID = NYET
RespondHC(Do_complete);

ct1
HC_cmd.ep_type = control and
HC_cmd.setup

Issue_packet(HSD1, CSPLIT);

HSU2.PID = STALL
RespondHC(Do_halt);

HC_cmd.ep_type = bulk or
(HC_cmd.ep_type= control and
NOT HC_cmd.setup) DoSetupCS

Issue_packet(HSD1, CSPLIT);

HSU2.PID = ACK
RespondHC(Do_next_cmd);

ct2 ch4

HSU2.PID = NAK
RespondHC(Do_start);

Issue_packet(HSD1, tokenSETUP);

ErrorCount < 3
RespondHC(Do_complete_immediate);

Issue_packet(HSD1, tokenOUT); Packet_ready(HSU2)

(HSU2.PID /= NYET and
HSU2.PID /= STALL and
HSU2.PID /= ACK and

HSU2.PID /= NAK) or
HSU2.timeout

ErrorCount >=3
RespondHC(Do_halt);

BCSO_Wait_for_resp

Wait_for_packet(

HSU2, ITG); BCSO_error

IncError;

Not allowed for control
setup transaction

HC_DO_BOCS

Figure 11-53. Bulk/Control OUT Complete-split Transaction Host State Machine

367

LGE-1010 / Page 395 of 650

Universal Serial Bus Specification Revision 2.0

sel

HSD2.PID /= DATAX or
HSD2.timeout or

HSD2.PID = DATAx
HSD2.CRC16 = bad

Packet_ready (HSD2)

Is_new_SS(BC_buff)

Accept_data;
Issue_packet(HSU1, ACK);

TT_BSSO_Check_Buffs
Compare_BC_buff;
sh2

Is_old_SS(BC_buff)
Issue_packet(HSU1, ACK);

TT_SS_wait_pkt3
Wait_for_packet(HSD2, ITG);

Is_no_space(BC_buff)
Issue_packet(HSU1, NAK);

TT_Do_BOSS

Figure 11-54. Bulk/Control OUT Start-split Transaction TT State Machine

BC_Buff.match.state = no_match

TT_BOCS_Match
Match_split_state;

Issue_packet(HSU1, STALL);

BC_Buff.match.down_result = r_stall

BC_Buff.match.down_result = r_ack
Issue_packet(HSU1, ACK);

BC_Buff.match state /= ready BC_Buff.match.down_result = r_nak

< Issue_packet(HSU1, NAK);

BC_Buff.match.state = ready BC Buff.n;atch.state =old

BC_Buff.match.state := old;

BC_buff.match.state = pending
Issue_packet(HSU1, NYET);

DidOId

TT_Do_BOCS

Figure 11-55. Bulk/Control OUT Complete-split Transaction TT State Machine

368

LGE-1010 / Page 396 of 650

Universal Serial Bus Specification Revision 2.0

| st1

Issue_packet(HSD1, SSPLIT);

HSU2.PID = NAK
RespondHC(Do_start);

st2

sh1/sh2

HSU2.PID = ACK
RespondHC(Do_complete);

Issue_packet(HSD1, tokenIN);

ErrorCount < 3
RespondHC(Do_start);

Packet_ready(HSU2)

(HSU2.PID /= ACK and
HSU2.PID /= NAK) or
HSU2.timeout ErrorCount >= 3

RespondHC(Do_halt);

BSSI_Wait_hndshk

Wait_for_packet(
HSU2, ITG);

BSSI_error

IncError;

HC_Do_BISS

Figure 11-56. Bulk/Control IN Start-split Transaction Host State Machine

369

LGE-1010 / Page 397 of 650

Universal Serial Bus Specification Revision 2.0

o ch4
HSU2.x /= HC_cmd.toggle

ch5
RespondHC(Do_start);

HSU2.CRC16 = ok
HSU2.x = HC_cmd.toggle

6 HC_Accept_data;

HSU2.CRC16 = bad Dotoggled

RespondHC(Do_next_cmd);

ce3

ﬁcﬁ

Issue_packet(HSD1, CSPLIT);

HC_BSSI_error
ErrorCount >= 3

RespondHC(Do_halt);

IncError;

ErrorCount < 3
RespondHC(Do_complete_immediate);

DoINBSS HSU2.PID = DATAX

o (HSU2.PID /= DATAX and

HSU2.PID /= NAK and
HSU2.PID /= NYET and
HSU2.PID /= STALL) or
HSU2.timeout

Issue_packet(HSD1, tokenIN);

HSU2.PID = STALL
RespondHC(Do_halt);

BICS_wait_response

Wait_for_packet(
HSU2, ITG);

HSU2.PID = NAK
RespondHC(Do_start);

%
6 h1 HSU2.PID = NYET

Packet_ready(HSU2)

Cl

RespondHC(Do_complete);

HC_Do_BICS

Figure 11-57. Bulk/Control IN Complete-split Transaction Host State Machine

370

LGE-1010 / Page 398 of 650

Universal Serial Bus Specification Revision 2.0

Is_no_space(BC_buff)
Issue_packet(HSU1, NAK);

Is_new_SS(BC_buff)

Accept_data;
Issue_packet(HSU1, ACK);

TT_BISS_check
ompare_BC_buff;

Is_old_SS(BC_buff)
Issue_packet(HSU1, ACK);

TT_Do_BISS

Figure 11-58. Bulk/Control IN Start-split Transaction TT State Machine

BC_buff.match.state = no_match

1 BC_buff.match.down_result = r_stall or
Match_split_state; BC_buff.match.down_result = r_ack

Issue_packet(HSU1, STALL);

BC_buff.match.down_result = r_data
Issue_packet(HSU1, DATAX);

TT_BICS_match
BC_buff.match.down_result = r_nak

Issue_packet(HSU1, NAK);

ce5

BC_buff.match.state /= ready BC buff.match.state = old

BC_buff.match.state = ready
BC_buff.match.state := old;

BC_buff.match.state = pending
Issue_packet(HSU1, NYET);

| TT Do_BICS |

Figure 11-59. Bulk/Control IN Complete-split Transaction TT State Machine

11.17.3 Bulk/Control Sequencing

Once the high-speed handler has received a start-split for an endpoint and saved it in a local buffer, it
responds with an ACK split transaction handshake. This tells the host controller to do a complete-split
transaction next time this endpoint is polled.

371

LGE-1010 / Page 399 of 650

Universal Serial Bus Specification Revision 2.0

As soon as possible (subject to scheduling rules described previously), the full-/low-speed handler issues the
full-/low-speed transaction and saves the handshake status (for OUT) or data/handshake status (for IN) in
the same buffer.

Some time later (according to the host controller schedule), this endpoint will be polled for the complete-
split transaction. The high-speed handler responds to the complete-split to return the full-/low-speed
endpoint status for this transaction (as recorded in the buffer). If the host controller polls for the complete-
split transaction for this endpoint before the full-/low-speed handler has finished processing this transaction
on the downstream bus, the high-speed handler responds with a NYET handshake. This tells the host
controller that the transaction is not yet complete. In this case, the host controller will retry the complete-
split again at some later time.

When the full-/low-speed handler finally finishes the full-/low-speed transaction, it saves the data/status in
the buffer to be ready for the next host controller complete-split transaction for this endpoint. When the
host sends the complete-split, the high-speed handler responds with the indicated data/status as recorded in
the buffer. The buffer transaction status is updated from ready to old so the high-speed handler is ready for
either a retry or a new start-split transaction for this (or some other) full-/low-speed endpoint.

If there is an error on the complete-split transaction, the host controller will retry the complete-split
transaction for this bulk/control endpoint “immediately” before proceeding to some other bulk/control split
transaction. The host controller may issue other periodic split transactions or other non-split transactions
before doing this complete-split transaction retry.

If there is a bulk/control transaction in progress on the downstream facing bus when the EOF time occurs,
the TT must adhere to the definition in Section 11.3 for its behavior on the downstream facing bus. This
will cause an increase in the error count for this transaction. The normal retry rules will determine if the
transaction will be retried or not on the downstream facing bus.

11.17.4 Bulk/Control Buffering Requirements

The TT must provide at least two transactions of non-periodic buffering to allow the TT to deliver
maximum full-/low-speed throughput on a downstream bus when the high-speed bus is idle.

As the high-speed bus becomes busier, the throughput possible on downstream full-/low-speed buses will
decrease.

A TT may provide more than two transactions of non-periodic buffering and this can improve throughput
for downstream buses for specific combinations of device configurations.

11.17.5 Other Bulk/Control Details

When a bulk/control split transaction fails, it can leave the associated TT transaction buffer in a busy
(ready/x) state. This buffer state will not allow the buffer to be reused for other bulk/control split
transactions. Therefore, as part of endpoint halt processing for full-/low-speed endpoints connected via a
TT, the host software must use the Clear TT Buffer request to the TT to ensure that the buffer is not in the
busy state.

Appendix A shows examples of packet sequences for full-/low-speed bulk/control transactions and their
relationship with start-splits and complete-splits in various normal and error conditions.

11.18 Periodic Split Transaction Pipelining and Buffer Management

There are requirements on the behavior of the host and the TT to ensure that the microframe pipeline
correctly sequences full-/low-speed isochronous/interrupt transactions on downstream facing full-/low-
speed buses. The host must determine the microframes in which a start-split and complete-split transaction
must be issued on high-speed to correctly sequence a corresponding full-/low-speed transaction on the
downstream facing bus. This is called “scheduling” the split transactions.

372

LGE-1010 / Page 400 of 650

11

11

Universal Serial Bus Specification Revision 2.0

In the following descriptions, the 8 microframes within each full-speed (1 ms.) frame are referred to as
microframe Y, Y,, Y,, ..., Y,. This notation means that the first microframe of each full-speed frame is
labeled Y,. The second microframe is labeled Y,, etc. The last microframe of each full-speed frame is
labeled Y.. The labels repeat for each full-speed frame.

This section describes details of the microframe pipeline that affect both full-speed isochronous and full-
/low-speed interrupt transactions. Then the split transaction rules for interrupt and isochronous are
described.

Bulk/control transactions are not scheduled with this mechanism. They are handled as described in the
previous section.

.18.1 Best Case Full-Speed Budget

A microframe of time allows at most 187.5 raw bytes of signaling on a full-speed bus. In order to estimate
when full-/low-speed transactions appear on a downstream bus, the host must calculate a best case full-
speed budget. This budget tracks in which microframes a full-/low-speed transaction appears. The best case
full-speed budget assumes that 188 full-speed bytes occur in each microframe. Figure 11-60 shows how a

1 ms frame subdivided into microframes of budget time. This estimate assumes that no bit stuffing occurs
to lengthen the time required to move transactions over the bus.

The maximum number of bytes in a 1 ms frame is calculated as:
1157 maximum_periodic_bytes per frame = 12 Mb/s * 1 ms/ 8 bits_per_byte *

6 data_bits / 7 bit-stuffed data bits * 90% maximum_periodic_data per frame

Microfrgmes

Yo

Ys

Y,

Max wire time

Best case wire budget,
1157 bytes w/ no
bitstuffing

Figure 11-60. Best Case Budgeted Full-speed Wire Time With No Bit Stuffing

.18.2 TT Microframe Pipeline

The TT implements a microframe pipeline of split transactions in support of a full-/low-speed bus. Start-
split transactions are scheduled a microframe before the earliest time that their corresponding full-/low-
speed transaction is expected to start. Complete-split transactions are scheduled in microframes that the
full-/low-speed transaction can finish.

When a full-/low-speed device is attached to the bus and configured, the host assigns some time on the
full-/low-speed bus at some budgeted time, based on the endpoint requirements of the configured device.

The effects of bit stuffing can delay when the full-/low-speed transaction actually runs. The results of other
previous full-/low-speed transactions can cause the transaction to run earlier or later on the full-/low-speed
bus.

The host always uses the maximum data payload size for a full-/low-speed endpoint in doing its budgeting.
It does not attempt to schedule the actual data payloads that may be used in specific transactions to full-
/low-speed endpoints. The host must include the maximum duration interpacket gap, bus turnaround times,
and “TT think time”. The TT requires some time to proceed to the next full-/low-speed transaction. This
time is called the “TT think time” and is specified in the hub descriptor field wHubCharacteristics bit 5 and
6.

373

LGE-1010 / Page 401 of 650

Universal Serial Bus Specification Revision 2.0

#1: A full/low-speed transaction
budgeted to run here on the classic bus,...

(Y'1)7 Yo Y| Yz Y3 Y4 Ys ny Y7
Best case budget _.i.'_:-::_- e,
A.....-' " """"" A »
HS HS Complete-splits
Start-split
#2: ...has a HS start-split scheduled #3: ...has 3 HS complete-split transactions
in this microframe and ... scheduled in the possible microframes

for this full/low-speed transaction

Figure 11-61. Scheduling of TT Microframe Pipeline

Figure 11-61 shows an example of a new endpoint that is assigned some portion of a full-/low-speed frame
and where its start- and complete-splits are generally scheduled. The act of assigning some portion of the
full-/low-speed frame to a particular transaction is called determining the budget for the transaction. More
precise rules for scheduling and budgeting are presented later. The start-split for this example transaction is
scheduled in microframe Y-1., the transaction is budgeted to run in microframe Y, and complete-splits are
scheduled for microframes Y, Y,, and Y,. Section 11.18.4 describes the scheduling rules more completely.

The host must determine precisely when start- and complete- splits are scheduled to avoid overruns or
underruns in the periodic transaction buffers provided by the TT.

11.18.3 Generation of Full-speed Frames

The TT must generate SOFs on the full-speed bus to establish the 1 ms frame clock within the defined jitter
tolerances for full-speed devices. The TT has its own frame clock that is synchronized to the microframe
SOFs on the high-speed bus. The SOF that reflects a change in the frame number it carries is identified as
the zeroth microframe SOF. The zeroth high-speed microframe SOF corresponds to the full-speed SOF on
the TT’s downstream facing bus. The TT must adhere to all timing/jitter requirements of a host controller
related to frames as defined in other parts of this specification.

The TT must stop issuing full-speed SOFs after it detects 250 us of high-speed idle. This is required to
ensure that the full-/low-speed downstream facing bus enters suspend no more than 250 ps after the high-
speed bus enters suspend.

The TT must generate a full-speed SOF on the downstream facing bus based on its frame timer. The
generation of the full-speed SOF must occur within +/-3 full-speed bit time from the occurrence of the
zeroth high-speed SOF. See Section 11.22.1 for more information about TT SOF generation.

11.18.4 Host Split Transaction Scheduling Requirements

Scheduling of split transactions is done by the host (typically in software) based on a best-case estimate of
how the full-/low-speed transactions can be run on the downstream facing bus. This best-case estimate is
called the best case budget. The host is free to issue the split transactions anytime within the scheduled
microframe, but each split transaction must be issued sometime within the scheduled microframe. This
description of the scheduling requirements applies to the split transactions for a single full-/low-speed
transaction at a time.

1. The host must never schedule a start-split in microframe Y,. Some error conditions may result in the
host controller erroneously issuing a start-split in this microframe. The TT response to this start-split is
undefined.

374

LGE-1010 / Page 402 of 650

Universal Serial Bus Specification Revision 2.0

2. The host must compute the start-split schedule by determining the best case budget for the transaction

and:

a.

For isochronous OUT full-speed transactions, for each microframe in which the transaction is
budgeted, the host must schedule a 188 (or the remaining data size) data byte start-split transaction.
The start-split transaction must be scheduled in the microframe before the data is budgeted to begin
on the full-speed bus. The start-split transactions must use the beginning/middle/end/all split
transaction token encodings corresponding to the piece of the full-speed data that is being sent on
the high-speed bus. For example, if only a single start-split is required, an “all” encoding is used.
If multiple start-splits are required, a “beginning” encoding is used for the first start-split and an
“end” encoding is used for the final start-split. If there are more than two start-splits required, the
additional start-splits that are not the first or last use a “middle” encoding. A zero length full-speed
data payload must only be scheduled with an “all” start-split. A start-split transaction for a
beginning, middle, or end start-split must always have a non-zero length data payload.

Figure 11-62 shows an example of an isochronous OUT that would appear to have budgeted a zero
length data payload in a start-split (end). This example instead must be scheduled with a start-
split(all) transaction.

Isoch OUT transaction with 187 data
bytes has 196 byte budget.
Transaction budgeted for Y1 and Y2.

(Y'1)7 Yo Y1 Yz Y3 Y4 Ys Y6 Y7
Best case budget ﬁ
A
HS SS-all
Start-split

b.

Schedule SS-all with 187 data bytes, not SS-begin(187 data) and SS-end (0 data).

Anlsoch OUT only ever has zero length data in SS-all.

Figure 11-62. Isochronous OUT Example That Avoids a Start-split-end With Zero Data

For isochronous IN and interrupt IN/OUT full-/low-speed transactions, a single start-split must be
scheduled in the microframe before the transaction is budgeted to start on the full-/low-speed bus.

3. The host never schedules more than one complete-split in any microframe for the same full-/low-speed
transaction.

a.

For isochronous OUT full-speed transactions, the host must never schedule a complete-split. The
TT response to a complete-split for an isochronous OUT is undefined.

For interrupt IN/OUT full-/low-speed transactions, the host must schedule a complete-split
transaction in each of the two microframes following the first microframe in which the full-/low-
speed transaction is budgeted. An additional complete-split must also be scheduled in the third
following microframe unless the full-/low-speed transaction was budgeted to start in microframe
Y,. Figure 11-63 shows an example with only two complete-splits.

375

LGE-1010 / Page 403 of 650

Universal Serial Bus Specification Revision 2.0

#1: A full/low-speed transaction
budgeted to run here on the classic bus,...

Yo Y, Y, Y, Y, Ys I_A1§ Y, (Y+1),
Previously budgeted transactions -
Best case budget Tep TTtteee,
A A | 3
HS HS Complete-splits
Start-split

#2: ...has a HS start-split scheduled
in this microframe and ...

#3: ...has 2 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-63. End of Frame TT Pipeline Scheduling Example

c. For isochronous IN full-speed transactions, for each microframe in which the full-speed transaction
is budgeted, a complete-split must be scheduled for each following microframe. Also, determine
the last microframe in which a complete-split is scheduled, call it L. If L is less than Y,, schedule
additional complete-splits in microframe L+1 and L+2.

If L is equal to Y, schedule one complete-split in microframe Y.. Also, schedule one complete-
split in microframe Y, of the next frame, unless the full-speed transaction was budgeted to start in
microframe Y.

If L is equal to Y., schedule one complete-split in microframe Y, of the next frame, unless the full-
speed transaction was budgeted to start in microframe Y. Figure 11-64 and Figure 11-65 show
examples of the cases for L= Y, and L=Y..

376

LGE-1010 / Page 404 of 650

Universal Serial Bus Specification Revision 2.0

Microframe with
#1: A fulllow-speed transaction

budgeted to run here on the classic bus,... last complete-split
\ from budget (L)
o)
Yo Y, Y, Y, Y, Y; \f Y; (Y+1),

Previously budgeted transactions
Best case budget

.) 'A
HS HS Complete-splits “Extra” complete-splits
Start-split

o
o
o

#2: ...has a HS start-split scheduled
in this microframe and ...

#3: ...has 4 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-64. Isochronous IN Complete-split Schedule Example at L=Y,

_ Microframe with
#1: A full/low-speed transaction

budgeted to run here on the classic bus,... last complete-split
\ fromfudget L
Y Y, Y, Y, Y, Y; \f Y; (Y+1),
Previously budgeted transactions _
Bestcasebudget T
) A "4 ‘A A “Extra”

HS HS Complete-splits xira]
Start-split complete-split

#2: ...has a HS start-split scheduled
in this microframe and ...

#3: ...has 4 HS complete-split transactions
scheduled in the possible microframes
for this fulllow-speed transaction

Figure 11-65. Isochronous IN Complete-split Schedule Example at L=Y,
4. The host must never issue more than 16 start-splits in any high-speed microframe for any TT.
5. The host must only issue a split transaction in the microframe in which it was scheduled.

6. As precisely identified in the flow sequence and state machine figures, the host controller must
immediately retry a complete-split after a high-speed transaction error (“trans_err”).

377

LGE-1010 / Page 405 of 650

Universal Serial Bus Specification Revision 2.0

The “pattern” of split transactions scheduled for a full-/low-speed transaction can be computed once when
each endpoint is configured. Then the pattern does not change unless some change occurs to the collection
of currently configured full-/low-speed endpoints attached via a TT.

Finally, for all periodic endpoints that have split transactions scheduled within a particular microframe, the
host must issue complete-split transactions in the same relative order as the corresponding start-split
transactions were issued.

11.18.5 TT Response Generation

The approach used for full-speed isochronous INs and interrupt INs/OUTs ensures that there is always an
opportunity for the TT to return data/results whenever it has something to return from the full-/low-speed
transaction. Then whenever the full-/low-speed handler starts the full-/low-speed transaction, it simply
accumulates the results in each microframe and then returns it in response to a complete-split from the host.
The TT acts similar to an isochronous device in that it uses the microframe boundary to "carve up" the full-
/low-speed data to be returned to the host. The TT does not do any computation on how much data to return
at what time. In response to the "next" high-speed complete-split, the TT simply returns the endpoint data it
has received from the full-/low-speed bus in a microframe.

Whenever the TT has data to return in response to a complete-split for an interrupt full-/low-speed or
isochronous full-speed transaction, it uses either a DATAO/1 or MDATA for the data packet PID.

If the full-/low-speed handler completes the full-/low-speed isochronous/interrupt IN transaction during a
microframe with a valid CRC16, it uses the DATAO/1 PID for the data packet of the complete-split
transaction. This indicates that this is the last data of the full-/low-speed transaction. A DATAO PID is
always used for isochronous transactions. For interrupt transactions, a DATAO/1 PID is used corresponding
to the full-/low-speed data packet PID received.

If the full-/low-speed handler completes the full-/low-speed isochronous/interrupt IN transaction during a
microframe with a bad CRCI16, it uses the ERR response to the complete-split transaction and does not
return the data received from the full-/low-speed device.

If the TT is still receiving data on the downstream facing bus at the microframe boundary, the TT will
respond with either an MDATA PID or a NYET for the corresponding complete-split. If the TT has
received more than two bytes of the data field of the full-/low-speed data packet, it will respond with an
MDATA PID. Further, the data packet that will be returned in the complete-split must contain the data
received from the full-/low-speed device minus the last two bytes. The last two bytes must not be included
since they could be the CRC16 field, but the TT will not know this until the next microframe. The CRC16
field received from the full-/low-speed device is never returned in a complete-split data packet for
isochronous/interrupt transactions. If less than three data bytes of the full-/low-speed data packet have been
received at the end of a microframe, the TT must respond with a NYET to the corresponding high-speed
complete-split. Both of these responses indicate to the host that more data is being received and another
complete-split transaction is required.

When the host controller receives a DATAO/1 PID for interrupt or isochronous IN complete-splits (and
ACK, NAK, STALL, ERR for interrupt IN/OUT complete-splits), it stops issuing any remaining complete-
splits that might be scheduled for that endpoint for this full-/low-speed transaction.

If the TT has not started the full-/low-speed transaction when it receives a complete-split, the TT will not
find an entry in the complete-split pipeline stage. When this happens, the protocol state machines show that
the TT responds with a NYET (e.g., the “no match” case). This NYET response tells the host that there are
no results available currently, but the host should continue with other scheduled split transactions for this
endpoint in subsequent microframes.

In general, there will be two (or more) complete-split transactions scheduled for a periodic endpoint.
However, for interrupt endpoints, the maximum size of the full-/low-speed transaction guarantees that it can
never require more than two complete-split transactions. Two complete-split transactions are only required
when the transaction spans a microframe boundary. In cases where the full-/low-speed transaction actually

378

LGE-1010 / Page 406 of 650

11

11

11

Universal Serial Bus Specification Revision 2.0

starts and completes in the same microframe, only a single complete-split will return data; any other earlier
complete-splits will have a NYET response.

For isochronous IN transactions, more complete-split transactions may be scheduled based on the length of
the full-speed transaction. A full-speed isochronous IN transaction can be up to 1023 data bytes, which can
require portions of up to 8 microframes of time on the downstream facing bus (with the worst alignment in
the frame and worst case bit stuffing). Such a maximum sized full-speed transaction can require

8 complete-split transactions. If the device generates less data, the host will stop issuing complete-splits
after the one that returns the final data from the device for a frame.

.18.6 TT Periodic Transaction Handling Requirements

The TT has two methods it must use to react to timing related events that affect the microframe pipeline:
current transaction abort and freeing pending start-splits. These methods must be used to manage the
microframe pipeline.

The TT must also react (as described in Section 11.22.1) when its microframe or frame timer loses
synchronization with the high-speed bus.

The TT must not issue too many full-/low-speed transactions in any microframe.

Each of these requirements are described below.

.18.6.1 Abort of Current Transaction

When a current transaction is in progress on the downstream facing bus and it is no longer appropriate for
the TT to continue the transaction, the transaction is “aborted.”

The TT full-/low-speed handler must abort the current full-/low-speed transaction:
1. For all periodic transaction types, if the full-speed frame EOF time occurs

2. If the transaction is an interrupt transaction and the start-split for the transaction was received in some
microframe (call it X) and the TT microframe timer indicates the X+4 microframe

Note that no additional abort handling is required for isochronous transactions besides the generic IN/OUT
handling described below. Abort has different processing requirements with regards to the downstream
facing bus for IN and OUT transactions. For any type of transaction, the TT must not generate a complete-
split response for an aborted transaction; e.g., no entry is made in the complete-split pipeline stage for an
aborted transaction.

1. At the time the TT decides to abort an IN transaction, the TT must not issue the handshake packet for
the transaction if the handshake has not already been started on the downstream facing bus. The TT
may choose to not issue the IN token packet, if possible. If the transaction is in the data phase (e.g., in
the middle of the target device generated DATA packet), the TT simply awaits the completion of that
packet and ignores any data received and must not respond with a full-/low-speed handshake. The TT
must not make an entry in the complete-split pipeline stage. This processing will cause a NYET
response to the corresponding complete-split on the high-speed bus.

2. At the time the TT decides to abort an OUT transaction, the TT may choose to not issue the TOKEN or
DATA packets, if possible. If the TT is in the middle of the DATA packet, it must stop issuing data
bytes as soon as possible and force a bit-stuffing error on the downstream facing bus. In any case, the
TT must not make an entry in the complete-split pipeline stage. This processing will cause a NYET
response to the corresponding complete-split on the high-speed bus.

.18.6.2 Free of Pending Start-splits

A start-split can be buffered in the start-split pipeline stage that is no longer appropriate to cause a full-/low-
speed transaction on the downstream facing bus. Such a start-split transaction must be “freed” from the

379

LGE-1010 / Page 407 of 650

11

11

Universal Serial Bus Specification Revision 2.0

start-split pipeline stage. This means the start-split is simply ignored by the TT and the TT must respond to
a corresponding complete-split with a NYET. For example, no entry is made in the complete-split pipeline
stage for the freed start-split.

A start-split in the start-split pipeline must be freed:
1. If the full-speed frame EOF time occurs, except for start-splits received in (Y-1),

2. If the start-split transaction was received in some microframe (call it X) and the TT microframe
timer indicates the X+4 microframe

If the TT receives a periodic start-split transaction in microframe Y, its behavior is undefined. This is a
host scheduling error.

.18.6.3 Maximum Full-/low-speed Transactions per Microframe

The TT must not start a full-/low-speed transaction unless it has space available in the complete-split
pipeline stage to hold the results of the transaction. If there is not enough space, the TT must wait to issue
the transaction until there is enough space. The maximum number of normally operating full-speed
transactions that can ever be completed in a microframe is 16.

.18.7 TT Transaction Tracking

Figure 11-66 shows the TT microframe pipeline of transactions. The 8 high-speed microframes that
compose a full-/low-speed frame are labeled with Y, through Y, assuming the microframe timer has
occurred at the point in time shown by the arrow (e.g., time “NOW?”).

As shown in the figure, a start-split high-speed transaction that the high-speed handler receives in
microframe Y, (e.g., a start-split “B”’) can run on the full-/low-speed bus during microframe times Y, or Y,
or Y,. This variation in starting on the full-/low-speed bus is due to bit stuffing and bulk/control
reclamation that can occur on the full-/low-speed bus. Once the full-/low-speed transaction finishes, its
complete-split transactions (if they are required) will run on the high-speed bus during microframes Y,, Y,
orY,.

1 1 1 1 1 1 1
i i | 1 i i i
Y, Py, LY, LY, P, LY LY LY,
i i i i i i i
i i i i i i i
Start-splits B i C i D i E i F i G i None, i A”
FS/LS transaction| A : AB 1 AB,C 1 B,C.D 1! C,D,E | D,EF | E.F,G ! F,G
Complete-splits F,G ! A ! A B ! AB,C ! B,C,D ! C,D,E ! D,EF ! E.F,G
1 1 1 1 1 1 1
NOW-4 NOW-3 NOW-2 NOW-1 NOW

380

Figure 11-66. Microframe Pipeline

When the microframe timer indicates a new microframe, the high-speed handler must mark any start-splits
in the start-split pipeline stage it received in the previous microframe as “pending” so that they can be
processed on the full-/low-speed bus as appropriate. This prevents the full-/low-speed transactions from
running on the downstream bus too early.

At the beginning of each microframe (call it “NOW?”), the high-speed handler must free (as defined in
Section 11.18.6.2) any start-split transactions from the start-split pipeline stage that are still pending from
microframe NOW-4 (or earlier) and ignore them. If the transaction is in progress on the downstream facing
bus, the transaction must be aborted (with full-/low-speed methods as defined in Chapter 8). This is
described in more detail in the previous sections. This ensures that even if the full-/low-speed bus has
encountered a babble condition on the bus (or other delay condition), the TT keeps its periodic transaction
pipeline running on time (e.g., transactions do not run too late). This also ensures that when the last
scheduled complete-split transaction is received by the TT, the full-/low-speed transaction has been
completed (either successfully or by being aborted).

LGE-1010 / Page 408 of 650

11

Universal Serial Bus Specification Revision 2.0

Finally, at the beginning of each microframe, the high-speed handler must change any complete-split
transaction responses in the complete-split pipeline stage from microframe NOW-2 to the free state so that
their space can be reused for responses in this microframe.

This algorithm is shown in pseudo code in Figure 11-67. This pseudo-code corresponds to the
Advance_pipeline procedure identified previously.

-- Clean up start-split state in case full-/low-speed bus fell behind

while start-splits in pending state received by TT before microframe-4 loop
Free start-split entry

End loop

-- Clean up complete-split pipeline in case no complete-splits were received
While complete-split transaction states from (microframe-2) loop

Free complete-split response transaction entry
End loop

-- Enable full-/low-speed transactions received in previous microframe
While start-split transactions from (previous microframe) loop

Set start-split entry to pending status
End loop

Figure 11-67. Advance_Pipeline Pseudocode

.18.8 TT Complete-split Transaction State Searching

A host must issue complete-split transactions in a microframe for a set of full-/low-speed endpoints in the
same relative order as the start-splits were issued in a microframe for this TT. However, errors on start- or
complete-splits can cause the high-speed handler to receive a complete-split transaction that does not
“match” the expected next transaction according to the TT’s transaction pipeline.

The TT has a pipeline of complete-split transaction state that it is expecting to use to respond to complete-
split transactions. Normally the host will issue the complete-split that the high-speed handler is expecting
next and the complete-split will correspond to the entry at the front of the complete-split pipeline.

However, when errors occur, the complete-split transaction that the high-speed handler receives might not
match the entry at the front of the complete-split pipeline. This can happen for example, when a start-split
is damaged on the high-speed bus and the high-speed handler does not receive it successfully. Or the high-
speed handler might have a match, but the matching entry is located after the state for other expected
complete-splits that the high-speed handler did not receive (due to complete-split errors on the high-speed
bus).

The high-speed handler must respond to a complete-split transaction with the results of a full-/low-speed
transaction that it has completed. This means that the high-speed handler must search to find the correct
state tracking entry among several possible complete-split response entries. This searching takes time. The
high-speed handler only needs to search the complete-split responses accumulated during the previous
microframe. There only needs to be at most 1 microframe of complete-split response entries; the
microframe of responses that have already been accumulated and are awaiting to be returned via high-speed
complete-splits.

The split transaction protocol is defined to allow the high-speed handler to timeout the first high-speed
complete-split transaction while it is searching for the correct response. This allows the high-speed handler
time to complete its search and respond correctly to the next (retried) complete-split.

The following interrupt and isochronous flow sequence figures show these cases with the transitions labeled
“Search not complete in time” and “No split response found”.

The high-speed handler matches the complete-split transaction with the correct entry in the complete-split
pipeline stage and advances the pipeline appropriately. There are five cases the TT must handle correctly:

1. If the high-speed complete-split token and first entry of the complete-split pipeline match, the high-speed
handler responds with the indicated data/status. This case occurs the first time the TT receives a
complete-split.

381

LGE-1010 / Page 409 of 650

Universal Serial Bus Specification Revision 2.0

2. Same as above, but this is a retry of a complete-split that the TT has already received due to the host
controller not receiving the (previous) response information.

3.If the complete-split transaction matches some other entry in the complete-split pipeline besides the first,
the high-speed handler advances the complete-split pipeline (e.g., frees response information for previous
complete-split entries) and responds with the information for the matching entry. This case can happen
due to normal or missed previous complete-split transactions. An example abnormal case could be that
the host controller was unsuccessful in issuing a complete-split transaction to the high-speed handler and
has done endpoint halt processing for that endpoint. This means the next complete-split will not match
the first entry of the complete-split pipeline stage.

4. The high-speed handler can also receive a complete-split before it has started a full-/low-speed
transaction. If there is not an entry in the complete-split pipeline, the high-speed handler responds with a
NYET handshake to inform the host that it has no status information. When the host issues the last
scheduled complete-split for this endpoint for this frame, it must interpret the NYET as an error
condition. This stimulates the normal “three strikes” error handling. If there have been more than three
errors, the host halts this endpoint. If there have been less than three errors, the host continues processing
the scheduled transactions of this endpoint (e.g., a start-split will be issued as the next transaction for this
endpoint at the next scheduled time for this endpoint). Note that a NYET response is possible in this case
due to a transaction error on the start-split or a host (or TT) scheduling error.

5. The high-speed handler can timeout its first high-speed complete-split transaction while it is searching the
complete-split pipeline stage for a matching entry. However, the high-speed handler must respond
correctly to the subsequent complete-split transaction. If the high-speed handler did not respond correctly
for an interrupt IN after it had acknowledged the full-/low-speed transaction, the endpoint software and
the device would lose data synchronization and more catastrophic errors could occur.

The host controller must issue the complete-split transactions in the same relative order as the original
corresponding start-split transactions.

11.19 Approximate TT Buffer Space Required

A transaction translator requires buffer and state tracking space for its periodic and non-periodic portions.
The TT microframe pipeline requires less than:

e 752 data bytes for the start-split stage

e 2x 188 data bytes for the complete-split stage

e 16x 4x transaction status (<4 bytes for each transaction) for start-split stage

e 16x 2x transaction status (<4 bytes for each transaction) for complete-split stage

There are, at most, 4 microframes of buffering required for the start-split stage of the pipeline and, at most,
2 microframes of buffering for the complete-split stage of the pipeline. There are, at most, 16 full-speed
(minimum sized) transactions possible in any microframe.

The non-periodic portion of the TT requires at least:
e 2x (64 data + 4 transaction status) bytes

Different implementations may require more or less buffering and state tracking space.

11.20 Interrupt Transaction Translation Overview

382

The flow sequence and state machine figures show the transitions required for high-speed split transactions
for full-/low-speed interrupt transfer types for a single endpoint. These figures must not be interpreted as
showing any particular specific timing. In particular, high-speed or full-/low-speed transactions for other
endpoints may occur before or after these split transactions. Specific details are described as appropriate.

LGE-1010 / Page 410 of 650

Universal Serial Bus Specification Revision 2.0

In contrast to bulk/control processing, the full-/low-speed handler must not do local retry processing on the
full-/low-speed bus in response to a transaction error for full-/low-speed interrupt transactions.

11.20.1 Interrupt Split Transaction Sequences

The interrupt IN and OUT flow sequence figures use the same notation and have descriptions similar to the
bulk/control figures.

In contrast to bulk/control processing, the full-speed handler must not do local retry processing on the full-
speed bus in response to a transaction errors (including timeout) of an interrupt transaction.

Start split

st li

SSPLIT
st2 y

OUT

sdl Trans err

sel

DATAO/1

not trans_err, Trans err
Data_into_SS pipe
se2
v
shl
v
Go to Host [1T]

comp. split

Figure 11-68. Interrupt OUT Start-split Transaction Sequence

383

LGE-1010 / Page 411 of 650

Universal Serial Bus Specification Revision 2.0

Complete split

ct ll

CSPLIT 7
2 v rans_err
OouT
Fast. match
Search not complete in time
|
No split response found :
i
oldistall oldi/ack oldi/nak old/tirans_err Translf_err
chl ch2 ch3 _ ch4 _ ch5 cel |
v v v v v !

[STALL] [ACK] [NAK] [ERR] [NYET] i

i
: : : : !—-—-!-—-—] | 'c err
* v v Cezi Last 1CVhO6t llast cq'unt
. v _cely y !
Endpoint Go to next Retry F ----- — Next i
halt cmd start split Ingjerr comp. split |
count |
| |
L. _ ="
Host [1T] i | 3 el
ced cedf ced . v
| i iferr_count <3
if err_count <3 | | retry immed.

retry start split ! i comp. split
vV Vv P

if err_count >=3
endpoint halt

Figure 11-69. Interrupt OUT Complete-split Transaction Sequence

384

LGE-1010 / Page 412 of 650

Universal Serial Bus Specification Revision 2.0

Start split

st ll

SSPLIT
IN sel%
v

Data_in;‘o_SS ' pipe
v
Go to
comp. split

Host [TT]

Figure 11-70. Interrupt IN Start-split Transaction Sequence

Complete split

ctl
; CSPLIT
rans_err
v ct2
IN
Fast_match Host [1T]
Search not
complete in time
< No split response found
|
|
: old/moredata old/lastdata old/nak oldistall old/trans_err
Trans_grr cdl chl ch2 ch3 ch4
‘ A 4 A A A

:[MDATA] [DATAO/J] | NAK] [STALL] [ERR] | NYET]

— oy v | F-L—m
Not Jast

|
|
|
: Trans not frans_err i Retry Endpoint ce3 |
i errl ch§ ' start split halt i._.r vy choy
1I ' HC Acc(-lfpt data 1~ ¢ _-_-_-_._t"! Inc err Next)
P Trans_ "' ! not | caunt comp. split
| Next comp | trans_err, trans_err, i
i ced . e | Datdx = dx /= ce2
Split : atax Datax / e |
Pl p cesi . !
- Y i toggﬁe togghe cefl |
{ i i v |
Inc err_co_lil_li _________ ch7 : ch8¢ iferr_count<3 |
ce’ ce8! v Retry retry start split |
) v) v Go tonextcmd gtart split ce9¢
iferr_count>=3 iferr_count<3 HC_Accept_data HC_reject_data)
endpoint halt retry immed. if err_count >=3
comp. split endpoint halt

Figure 11-71. Interrupt IN Complete-split Transaction Sequence

385

LGE-1010 / Page 413 of 650

Universal Serial Bus Specification Revision 2.0

11.20.2 Interrupt Split Transaction State Machines
-\sﬁ

Issue_packet(HSD1, SSPLIT);

st2

Issue_packet(HSD1, tokenOUT);

DodataS$S

sd1

Issue_packet(HSD1, DATAX);

Doupdate

sh1

RespondHC(Do_complete);

HC_Do_IntOSS |

1

Figure 11-72. Interrupt OUT Start-split Transaction Host State Machine

386

LGE-1010 / Page 414 of 650

ct1

Universal Serial Bus Specification Revision 2.0

Issue_packet(HSD1, CSPLIT);

ct2

‘ HSU2.PID = NYET ‘

Issue_packet(HSD1, tokenOUT);

Packet_ready(HSU2) ‘

‘ HSU2.PID = ERR ‘

(HSU2.PID /= STALL and
HSU2.PID /= NAK and
HSU2.PID /= ACK and
HSU2.PID /= ERR and
HSU2.PID /= NYET) or
HSU2.timeout

HC_Do_IntOCS

HSU2.PID = NAK
RespondHC(Do_start);

HSU2.PID = STALL
RespondHC(Do_halt);

HSU2.PID = ACK
RespondHC(Do_next_cmd);

HC_cmd.last

not HC_cmd.last
RespondHC(Do_next_complete);

ErrorCount < 3
RespondHC(Do_start);

RespondHC(Do_halt);

ErrorCount >= 3

ErrorCount >= 3

ErrorCount < 3
RespondHC(Do_comp_immed_now);

Figure 11-73. Interrupt OUT Complete-split Transaction Host State Machine

387

LGE-1010/ Page 415 of 650

Universal Serial Bus Specification Revision 2.0

HSD2.PID /= DATAX or
HSD2.timeout

HSD2.PID = DATAX
Packet_ready(HSD2)

HSD2.CRC16 = ok

sh1 | Data_into_SS_pipe;
o se2

HSD2.CRC16 = bad

TT_IntOSS_wait

Wait_for_packet(
HSD2, ITG);

TT_Do_IntOSS

Figure 11-74. Interrupt OUT Start-split Transaction TT State Machine

388

LGE-1010 / Page 416 of 650

Universal Serial Bus Specification Revision 2.0

CS_Buff.match.down_result = r_trans_err
Issue_packet(HSU1, ERR);

CS_Buff.match.down_result = r_nak
Issue_packet(HSU1, NAK);

CS_Buff.match.down_result = r_ack
Issue_packet(HSU1, ACK);

CS_Buff.match.state = old

CS_Buff.match.down_result = r_stall
Issue_packet(HSU1, STALL);

ch5
CS_Buff.match.state = no_match

Issue_packet(HSU1, NYET);

TT_IntOCS_match

Fast_match;

CS_Buff.match.state = match_busy

TT_Do_IntOCS

Figure 11-75. Interrupt OUT Complete-split Transaction TT State Machine

-,

Issue_packet(HSD1, SSPLIT);

st2

Issue_packet(HSD1, tokenIN);

DoinupdateSS

RespondHC(Do_complete);

Figure 11-76. Interrupt IN Start-split Transaction Host State Machine

HC_Do_IntISS

389

LGE-1010 / Page 417 of 650

Universal Serial Bus Specification Revision 2.0

HSU2.PID = ERR ‘
ErrorCount < 3

RespondHC(Do_start);

ce9

HC_cmd.last
ErrorCount >= 3

RespondHC(Do_halt);

not HC_cmd.last
RespondHC(Do_next_complete);

\ ct1

Issue_packet(HSD1, CSPLIT);

HSU2.PID = NYET

HSU2.PID = NAK
RespondHC(Do_start);

ch2

HSU2.PID = STALL
RespondHC(Do_halt);

ct2

Issue_packet(HSD1, tokenIN);

(HSU2.PID /= NAK and
HSU2.PID /= STALL and
HSU2.PID /= NYET and
HSU2.PID /= ERR) or
HSU2.timeout

Packet_ready(HSU2)

HC_Do_IntICS

Figure 11-77. Interrupt IN Complete-split Transaction Host State Machine

390

LGE-1010/ Page 418 of 650

Universal Serial Bus Specification Revision 2.0

HSU2.x = HC_cmd.toggle
RespondHC(Do_next_cmd);

RespondHC(Do_start);

HSU2.x /= HC_cmd.toggle
HC_Reject_data;

ErrorCount >= 3
RespondHC(Do_halt);

Acceptdata

RespondHC(Do_next_complete);

ErrorCount < 3
RespondHC(Do_comp_immed_now);

HSU2.PID = DATAx and
HSU2.CRC16 = ok

HC_Accept_data;

HSU2.PID = MDATA and
HSU2.CRC16 = ok
HC_Accept_data;

HC_IntiICS_err3

IncError;

(HSU2.PID = MDATA or
HSU2.PID = DATAX) and
HSU2.CRC16 = bad

(HSU2.PID /= MDATA and
HSU2.PID /= DATAX) or
HSU2.timeout

HC_Data_or_error ‘

Figure 11-78. HC_Data_or_Error State Machine

> Data_into_SS_pipe; — > >

TT_Do_IntISS

Figure 11-79. Interrupt IN Start-split Transaction TT State Machine

391

LGE-1010 / Page 419 of 650

Universal Serial Bus Specification Revision 2.0

CS_Buff.match.down_result = r_moredata
Issue_packet(HSU1, MDATA);

CS_Buff.match.down_result = r_lastdata

d2
© cd1 Issue_packet(HSU1, DATAX);
“
cht CS_Buff.match.down_result = r_trans_err

Issue_packet(HSU1,ERR);

CS_Buff.match.down_result = r_nak
Issue_packet(HSU1, NAK);

CS_Buff.match.state = old ch2

CS_Buff.match.down_result = r_stall
Issue_packet(HSU1, STALL);

CS_Buff.match.state = no_match
Issue_packet(HSU1, NYET);

ch4

TT_IntiCS_match

Fast_match;
CS_Buff.match.state = match_busy

TT_Do_IntICS

Figure 11-80. Interrupt IN Complete-split Transaction TT State Machine

11.20.3 Interrupt OUT Sequencing

Interrupt OUT split transactions are scheduled by the host controller as normal high-speed transactions with
the start- and complete-splits scheduled as described previously.

When there are several full-/low-speed transactions allocated for a given microframe, they are saved by the
high-speed handler in the TT in the start-split pipeline stage. The start-splits are saved in the order they are
received until the end of the microframe. At the end of the microframe, these transactions are available to
be issued by the full-/low-speed handler on the full-/low-speed bus in the order they were received.

In a following microframe (as described previously), the full-/low-speed handler issues the transactions that
had been saved in the start-split pipeline stage on the downstream facing full-/low-speed bus. Some
transactions could be leftover from a previous microframe since the high-speed schedule was built assuming
best case bit stuffing and the full-/low-speed transactions could be taking longer on the full-/low-speed bus.
As the full-/low-speed handler issues transactions on the downstream facing full-/low-speed bus, it saves the
results in the periodic complete-split pipeline stage and then advances to the next transaction in the start-
split pipeline.

In a following microframe (as described previously), the host controller issues a high-speed complete-split
transaction and the TT responds appropriately.

392

LGE-1010 / Page 420 of 650

Universal Serial Bus Specification Revision 2.0

High

Speed

Bus
64 bytes w/
HS CRCI16 !
%]25us microframe ,

Full/Low-
Speed
Bus

NN oN--Ne)

——;
64 bytes

Figure 11-81. Example of CRC16 Handling for Interrupt OUT

The start-split transaction for an interrupt OUT transaction includes a normal CRC16 field for the high-
speed data packet of the data phase of the start-split transaction. However, the data payload of the data
packet contains only the data payload of the corresponding full-/low-speed data packet; i.e., there is only a
single CRC16 in the data packet of the start-split transaction. The TT high-speed handler must check the
CRC on the start-split and ignore the start-split if there is a failure in the CRC check of the data packet. If
the start-split has a CRC check failure, the full-speed transaction must not be started on the downstream bus.
Figure 11-81 shows an example of the CRC16 handling for an interrupt OUT transaction and its start-split.

11.20.4 Interrupt IN Sequencing

When the high-speed handler receives an interrupt start-split transaction, it saves the packet in the start-split
pipeline stage. In this fashion, it accumulates some number of start-split transactions for a following
microframe.

At the beginning of the next microframe (as described previously), these transactions are available to be
issued by the full-/low-speed handler on the downstream full-/low-speed bus in the order they were saved in
the start-split pipeline stage. The full-/low-speed handler issues each transaction on the downstream facing
bus. The full-/low-speed handler responds to the full-/low-speed transaction with an appropriate handshake
as described in Chapter 8. The full-/low-speed handler saves the results of the transaction (data, NAK,
STALL, trans_err) in the complete-split pipeline stage.

During following microframes, the host controller issues high-speed complete-split transactions to retrieve
the data/handshake from the high-speed handler. When the high-speed handler receives s complete-split
transaction, the TT returns whatever data it has received during a microframe. If the full-/low-speed
transaction was started and completed in a single microframe, the TT returns all the data for the transaction
in the complete-split response occurring in the following microframe. If the full-/low-speed CRC check
passes, the appropriate DATAO/1 PID for the data packet is used. If the full-/low-speed CRC check fails, an
ERR handshake is used and there is no data packet as part of the complete-split transaction.

If the full-/low-speed transaction spanned a microframe, the TT requires two complete-splits (in two
subsequent microframes) to return all the data for the full-/low-speed transaction. The data packet PID for
the first complete-split must be an MDATA to tell the host controller that another complete-split is required
for this endpoint. This MDATA response is made without performing a CRC check (since the CRC16 field
has not yet been received on the full-/low-speed bus). The complete-split in the next microframe must use a
DATAUO/1 PID if the CRC check passes. If the CRC check fails, an ERR handshake response is made
instead and there is no data packet as part of the complete-split transaction. Since full-speed interrupt
transactions are limited to 64 data bytes or less (and low-speed interrupt transactions are limited to 8 data

393

LGE-1010 / Page 421 of 650

Universal Serial Bus Specification Revision 2.0

bytes or less), no full-/low-speed interrupt transaction can span more than a single microframe boundary;
i.e., no more than two microframes are ever required to complete the transaction.

The complete-split transaction for an interrupt IN transaction must not include the CRC16 field received
from the full-/low-speed data packet (i.e., only a high-speed CRC16 field is used in split transactions). The
TT must use a high-speed CRC16 on each complete-split data packet. If the full-speed handler detects a
failed CRC check, it must use an ERR handshake response in the complete-split transaction to reflect that
error to the high-speed host controller. The host controller must check the CRC16 on each returned
complete-split data packet. A CRC failure (or ERR handshake) on any (partial) complete-split is reflected
as a CRC failure on the total full-/low-speed transaction. This means that for a case where a full-/low-speed
interrupt spans a microframe boundary, the host controller can accept the first complete-split without
errors, then the second complete-split can indicate that the data from the first complete-split must be
rejected as if it were never received by the host controller. Figure 11-82 shows an example of an interrupt
IN and its CRC16 handling with corresponding complete-split responses.

High

Speed -

Bus

<
<

64 bytes w/

t125us microframe HS CRC16

Fuil/Low-
Speed
Bus

SN A,

Y} _\(_/
2 bytes 62 bytes

Figure 11-82. Example of CRC16 Handling for Interrupt IN

11.21 Isochronous Transaction Translation Overview

Isochronous split transactions are handled by the host by scheduling start- and complete-split transactions as
described previously. Isochronous IN split transactions have more than two schedule entries:

e One entry for the start-split transaction in the microframe before the earliest the full-speed transaction
can occur

e Other entries for the complete-splits in microframes after the data can occur on the full-speed bus
(similar to interrupt IN scheduling)

Furthermore, isochronous transactions are split into microframe sized pieces; e.g., a 300 byte full-speed
transaction is budgeted multiple high-speed split transactions to move data to/from the TT. This allows any
alignment of the data for each microframe.

Full-speed isochronous OUT transactions issued by a TT do not have corresponding complete-split
transactions. They must only have start-split transaction(s).

The host controller must preserve the same order for the complete-split transactions (as for the start-split
transactions) for IN handling.

394

LGE-1010 / Page 422 of 650

Universal Serial Bus Specification Revision 2.0

Isochronous INs have start- and complete- split transactions. The “first” high-speed split transaction for a
full-speed endpoint is always a start-split transaction and the second (and others as required) is always a
complete-split no matter what the high-speed handler of the TT responds.

The full-/low-speed handler recombines OUT data in its local buffers to recreate the single full-speed data
transaction and handle the microframe error cases. The full-/low-speed handler splits IN response data on
microframe boundaries.

Microframe buffers always advance no matter what the interactions with the host controller or the full-speed
handler.

11.21.1 Isochronous Split Transaction Sequences

The flow sequence and state machine figures show the transitions required for high-speed split transactions
for a full-speed isochronous transfer type for a single endpoint. These figures must not be interpreted as
showing any particular specific timing. In particular, high-speed or full-speed transactions for other
endpoints may occur before or after these split transactions. Specific details are described as appropriate.

In contrast to bulk/control processing, the full-speed handler must not do local retry processing on the full-
speed bus in response to transaction errors (including timeout) of an isochronous transaction.

Start split

r I e 1
| | | |
If all of If beginning If middle If last

pa)i'load of payload of paj'fload of li)ayload
| | | |

| | | |
st li st2i st3i st4i

SSPLIT-all | |SSPLIT -begin||SSPLIT -mid| |[SSPLIT -end

' ' ' v

st5
h 4
ouT
sdl Host [1T]
Trans err
DATAO sel
not trans_err, Trans: err
Data_into SS pipe Down:_error
shl se2
v v
Go to next
cmd

Figure 11-83. Isochronous OUT Start-split Transaction Sequence

395

LGE-1010 / Page 423 of 650

Universal Serial Bus Specification Revision 2.0

Start split

st ll

SSPLIT
0¥ Trans frr
1
III\] sev
Data_in;io_SS ' pipe

i

* Host [T]
Go to

complete split

Figure 11-84. Isochronous IN Start-split Transaction Sequence

In Figure 11-85, the high-speed handler returns an ERR handshake for a “transaction error” of the full-speed
transaction.

The high-speed handler returns an NYET handshake when it cannot find a matching entry in the complete-
split pipeline stage. This handles the case where the host controller issued the first high-speed complete-
split transaction, but the full-/low-speed handler has not started the transaction yet or has not yet received
data back from the full-speed device. This can be due to a delay from starting previous full-speed
transactions.

The transition labeled "TAdvance" indicates that the host advances to the next transaction for this full-speed
endpoint.

The transition labeled "DAdvance" indicates that the host advances to the next data area of the current
transaction for the current full-speed endpoint.

396

LGE-1010 / Page 424 of 650

Universal Serial Bus Specification Revision 2.0

Complete split

ctli

CSPLIT
Trans_err v o2
IN
Host [T]
Fast: ;match
cel N
Search not complete
i time No split response found
@ Trans_err _ _ _
; ! old/T iéans_err oldi/lastdata oldé/moredata 5
T Y ce2 cdl cd2 ch4
ce’] v \ 4 L 4
Inc grr [ERR] [DaTA0] [MDATA| [NYET]
cour)
| |
T ¥ | 1 = \ AU
ce% cedj i | vy _v Not frans_err :_ -:
| | | H : :
iferr_count<3 iferr_count>=3 | not ; Traps_err ?hz;d!vance ! !
retry immed. ! | trans_err ___Y L+st Not Fast
comp. split ! l ! lat 3 i i
p- sp ; ; | toce7 ced : ceg i
I T T —\‘_L_/r— '''''''' !\‘\ LT i
Record error hil ! !
Not last ch3 |
T chdy Py
TAdvance !
+ v
Go to next Go to next
cmd comp. split

Figure 11-85. Isochronous IN Complete-split Transaction Sequence

397

LGE-1010 / Page 425 of 650

Universal Serial Bus Specification Revision 2.0

11.21.2 Isochronous Split Transaction State Machines

HC_cmd.datapart = alldata
Issue_packet(HSD1, SSPLIT); -- all

HC_cmd.datapart = enddata
Issue_packet(HSD1, SSPLIT); -- end

HC_cmd.datapart = begindata
Issue_packet(HSD1, SSPLIT); -- begin

st3

st

HC_cmd.datapart = middata
Issue_packet(HSD1, SSPLIT); -- middata

Issue_packet(HSD1, tokenOUT);

DoDATAIisSS

Issue_packet(HSD1, DATAX);

sh1

RespondHC(Do_next_cmd);

‘=

HC_Do_lsochOSS

Figure 11-86. Isochronous OUT Start-split Transaction Host State Machine

398

LGE-1010 / Page 426 of 650

Universal Serial Bus Specification Revision 2.0

HSD2.PID = DATAx and HSD2.CRC16 = ok and
split.datapart = enddata and SS_Buff.isochO and
(SS_Buff.lastdata = middata or Doend | 55 Byt isochO <= false:
SS_Buff.lastdata = begindata) SS_Buff.saw_split <=false;
Data_into_SS_pipe;

HSD2.PID = DATAx and HSD2.CRC16 = ok and
split.datapart = middata and SS_Buff.isochO and
(SS_Buff.lastdata = begindata or
SS_Buff.lastdata = middata)

SS_Buff.lastdata <= middata;
SS_Buff.saw_split <= true;
Data_into_SS_pipe;

HSD2.PID = DATAx and
HSD2.CRC16 = ok and
split.datapart = begindata and
(not SS_Buff.isochO)

Didbegin

st4
SS_Buff.isochO <= true;

SS_Buff.lastdata <= begindata;
SS_Buff.saw_split <= true;
Data_into_SS_pipe;

HSD2.PID = DATAx and HSD2.CRC16 = ok and
split.datapart = alldata and (not SS_Buff.isochO)

sel/se2

HSD2.PID /= DATAX or
HSD2.timeout or

Packet_ready(HSD2) ' 15p> cRC16 = bad o
Bad_lsochOut(SS_Buff, split) Data_into_SS_pipe;

not SS_Buff.isochO

SS_Buff.isochO

SS_Buff.isochO <= false;
Down_error;

Didbad

TT_lsochOSS_wait

Wait_for_packet(
HSD2, ITG);

TT_Do_lIsochOSS

Figure 11-87. Isochronous OUT Start-split Transaction TT State Machine

There is a condition in Figure 11-87 on transition sel/se2 labeled “Bad_IsochOut”. This condition is true
when none of the conditions on transitions stl through st4 are true. The action labeled “Down_error”
records an error to be indicated on the downstream facing full-speed bus for the transaction corresponding

to this start-split.

399

LGE-1010 / Page 427 of 650

Universal Serial Bus Specification Revision 2.0

._\St‘]

Issue_packet(HSD1, SSPLIT);

st2

Issue_packet(HSD1, tokenIN);

RespondHC(Do_complete);

-

HC_Do_lsochISS |

Figure 11-88. Isochronous IN Start-split Transaction Host State Machine

400

LGE-1010 / Page 428 of 650

Universal Serial Bus Specification Revision 2.0

HSU2.PID = DATAx and
HSU2.CRC16 = ok

HC_Accept_data;

RespondHC(Do_next_cmd);

HSU2.PID = MDATA and

HSU2.CRC16 = ok ch3 not HC_cmd.last
. RespondHC(Do_next_complete);
HC_Accept_data;

cd1

RespondHC(Do_next_cmd);

HSU2.PID = ERR

HC_lsochICS_error
Record_error;

(HSU2.PID = MDATA or
HSU2.PID = DATAXx) and
HSU2.CRC16 = bad

Packet_ready(HSU2)

ErrorCount < 3

RespondHC(Do_comp_immed_now);

HC_lsochICS_wait

Wait_for_packet(
HSU2, ITG);

ErrorCount >= 3

Issue_packet(HSD1, tokenIN); §-|HSSUUZZI-3PII§) /izDN;ri-l)—(z%?j
o2 HSU2.PID /= MDATA and

HSU2.PID /= ERR) or

HSU2.timeout

HC_IsochICS_err2

IncError;

ctl | Issue_packet(HSD1, CSPLIT);
B

| HC_Do_lsochiCS

Figure 11-89. Isochronous IN Complete-split Transaction Host State Machine

In Figure 11-89, the transition “ce8” occurs when the high-speed handler responds with an MDATA to
indicate there is more data for the full-speed transaction, but the host controller knows that this is the last
scheduled complete-split for this endpoint for this frame. If a DATAO response from the high-speed
handler is not received before the last scheduled complete-split, the host controller records an error and
proceeds to the next transaction for this endpoint (in the next frame).

401

LGE-1010 / Page 429 of 650

Universal Serial Bus Specification Revision 2.0

D Data_into_SS_pipe; — > I»

TT_Do_lsochlSS

Figure 11-90. Isochronous IN Start-split Transaction TT State Machine

token.PID /= tokenIN or
token.timeout

cd2

CS_Buff.match.down_result = r_moredata
Issue_packet(HSU1, MDATA);

CS_Buff.match.state = old ce2 | CS_Buff.match.down_result = r_lastdata

Issue_packet(HSU1, DATAX); -- Data0

TT_IsochICS_1
Fast_match;

CS_Buff.match.down_result = r_trans_err
Issue_packet(HSU1, ERR);

token.PID = tokenIN

CS_Buff.match.state = no_match
Issue_packet(HSU1, NYET);

CS_Buff.match.state = match_busy

TT _IsochICS

Figure 11-91. Isochronous IN Complete-split Transaction TT State Machine

402

LGE-1010 / Page 430 of 650

Universal Serial Bus Specification Revision 2.0

11.21.3 Isochronous OUT Sequencing

The host controller and TT must ensure that errors that can occur in split transactions of an isochronous full-
speed transaction translate into a detectable error. For isochronous OUT split transactions, once the high-
speed handler has received an “SSPLIT-begin” start-split transaction token packet, the high-speed handler
must track start-split transactions that are received for this endpoint. The high-speed handler must track that
a start-split transaction is received each and every microframe until an “SSPLIT-end” split transaction token
packet is received for this endpoint. If a microframe passes without the high-speed handler receiving a
start-split for this full-speed endpoint, it must ensure that the full-speed handler forces a bitstuff error on the
full-speed transaction. Any subsequent “SPLIT-middle” or “SPLIT-end” start-splits for the same endpoint
must be ignored until the next non “SPLIT-middle” and non “SPLIT-end” is received (for any endpoint
supported by this TT).

The start-split transaction for an isochronous OUT transaction must not include the CRC16 field for the full-
speed data packet. For a full-speed transaction, the host would compute the CRC16 of the data packet for
the full data packet (e.g., a 1023 byte data packet uses a single CRC16 field that is computed once by the
host controller). For a split transaction, any isochronous OUT full-speed transaction is subdivided into
multiple start-splits, each with a data payload of 188 bytes or less. For each of these start-splits, the host
computes a high-speed CRC16 field for each start-split data packet. The TT high-speed handler must check
each high-speed CRC16 value on each start-split. The TT full-speed handler must locally generate the
CRC16 value for the complete full-speed data packet. Figure 11-92 shows an example of a full-speed
isochronous OUT packet and the high-speed start-splits with their CRC16 fields.

If there is a CRC check failure on the high-speed start-split, the high-speed handler must indicate to the full-
speed handler that there was an error in the start-split for the full-speed transaction. If the transaction has
been indicated as having a CRC failure (or if there is a missed start-split), the full-speed handler uses the
defined mechanism for forcing a downstream corrupted packet. If the first start-split has a CRC check
failure, the full-speed transaction must not be started on the downstream bus.

Additional high-speed start-split transactions for the same endpoint must be ignored after a CRC check fails,
until the high-speed handler receives either an “SSPLIT-end” start-split transaction token packet for that
endpoint or a start-split for a different endpoint.

2 bytes w/
HS CRC16

Full
Speed
Bus

iy
~
188 bytes 2 bytes

Figure 11-92. Example of CRC16 Isochronous OUT Data Packet Handling

403

LGE-1010 / Page 431 of 650

Universal Serial Bus Specification Revision 2.0

11.21.4 Isochronous IN Sequencing

The complete-split transaction for an isochronous IN transaction must not include the CRC16 field for the
full-speed data packet (e.g., only a high-speed CRC16 field is used in split transactions). The TT must not
pass the full-speed value received from the device and instead only use high-speed CRC16 values for
complete-split transactions. If the full-speed handler detects a failed CRC check at the end of the data
packet (e.g., after potentially several complete-split transactions on high-speed), the handler must use an
ERR handshake response to reflect that error to the high-speed host controller. The host controller must
check the CRC16 on each returned high-speed complete-split. A CRC failure (or ERR handshake) on any
(partial) complete-split is reflected by the host controller as a CRC failure on the total full-speed transaction.
Figure 11-93 shows an example of the relationships of the full-speed data packet and the high-speed
complete-splits and their CRC16 fields.

ngh C C C
Speed ¢ ¢ ¢
Bus 6 6 6

i i 124186 bytes w/ _~
D G t | 1 byte w/ | | HS CRC16 i 1byte w/
125us microframe | /' yg'crei6 | | HS CRCI6
Full < |
C
Speed :
Bus —L

S—— -
3 bytes 188 bytes
Figure 11-93. Example of CRC16 Isochronous IN Data Packet Handling

11.22 TT Error Handling

The TT has the same requirements for handling errors as a host controller or hub. In particular:

e Ifthe TT is receiving a packet at EOF2 of the downstream facing bus, it must disable the downstream
facing port that is currently transmitting.

e Ifthe TT is transmitting a packet near EOF1 of the downstream facing bus, it must force an abnormal
termination sequence as defined in Section 11.3.3 and stop transmitting.

e Ifthe TT is going to transmit a non-periodic full-/low-speed transaction, it must determine that there is
sufficient time remaining before EOF1 to complete the transaction. This determination is based on
normal sequencing of the packets in the transaction. Since the TT has no information about data
payload size for INs, it must use the maximum allowed size allowed for the transfer type in its
determination. Periodic transactions do not need to be included in this test since the microframe
pipeline is maintained separately.

11.22.1 Loss of TT Synchronization With HS SOFs

The hub has a timer it uses for (micro)frame maintenance. It has a 1 ms frame timer when operating at full-
/low-speed for enforcing EOF with downstream connected devices. It has a 125 us microframe timer when
operating at high-speed for enforcing EOF with high-speed devices. It also uses the 125 us microframe
timer to create a 1 ms frame timer for enforcing EOF with downstream full-/low-speed devices when
operating at high-speed. The hub (micro)frame timer must always stay synchronized with host generated
SOFs to keep the bus operating correctly

404

LGE-1010 / Page 432 of 650

Universal Serial Bus Specification Revision 2.0

In normal hub repeater (full- or high-speed) operation (e.g., not involving a TT), the (micro)frame timer
loses synchronization whenever it has missed SOFs for three consecutive microframes. While timer
synchronization is lost, the hub does not establish upstream connectivity. Downstream connectivity is
established normally, even when timer synchronization is lost. When the timer is synchronized, the hub
allows upstream connectivity to be established when required. The hub is responsible for ensuring that
there is no signaling being repeated/transmitted upstream from a device after the EOF2 point in any
(micro)frame. The hub must not establish upstream connectivity if it has lost (micro)frame timer
synchronization since it no longer knows accurately where the EOF2 point is.

11.22.2 TT Frame and Microframe Timer Synchronization Requirements

When the hub is operating at high-speed and has full-/low-speed devices connected on its downstream
facing ports (e.g., a TT is active), the hub has additional responsibilities beyond enforcement of the (high-
speed) EOF2 point on its upstream facing port in every microframe. The TT must also generate full-speed
SOFs downstream and ensure that the TT operates correctly (in bridging high-speed and full-/low-speed
operation).

A high-speed operating hub synchronizes its microframe timer to 125 us SOFs. However, in order to
generate full-speed downstream SOFs, it must also have a 1 ms frame timer. It generates this 1 ms frame
timer by recognizing zeroth microframe SOFs, e.g., a high-speed SOF when the frame number value
changes compared to SOF of the immediately previous microframe.

In order to create the 1 ms frame timer, the hub must successfully receive a zeroth microframe SOF after its
microframe timer is synchronized. In order to recognize a zeroth microframe SOF, the hub must
successfully receive SOFs for two consecutive microframes where the frame number increments by 1 (mod
2711). When the hub has done this, it knows that the second SOF is a zeroth microframe SOF and thereby
establishes a 1 ms frame timer starting time. Note that a hub can synchronize both timers with as few as
two SOFs if the SOFs are for microframe 7 and microframe 0, i.e., if the second SOF is a zeroth
microframe SOF.

Once the hub has synchronized its 1 ms frame timer, it can keep that timer synchronized as long as it keeps
its 125 us microframe timer synchronized (since it knows that every 8 microframes from the zeroth
microframe SOF is a 1 ms frame). In particular, the hub can keep its frame timer synchronized even if it
misses zeroth microframe SOFs (as long as the microframe timer stays synchronized).

So in summary, the hub can synchronize its 125 ps microframe timer after receiving SOFs of two
consecutive microframes. It synchronizes its 1 ms frame timer when it receives a zeroth microframe SOF
(and the microframe timer is synchronized). The 125 us microframe timer loses synchronization after three
SOFs for consecutive microframes have been missed. This also causes the 1 ms frame timer to lose
synchronization at the same time.

The TT must only generate full-speed SOFs downstream when its 1 ms frame timer is synchronized.

Correct internal operation of the TT is dependent on both timers. The TT must accurately know when
microframes occur to enforce its microframe pipeline abort/free rules. It knows this based on a
synchronized microframe timer (for generally incrementing the microframe number) and a synchronized
frame timer (to know when the zeroth microframe occurs).

Since loss of microframe timer synchronization immediately causes loss of frame timer synchronization, the
TT stops normal operation once the microframe timer loses synchronization. In an error free environment,
microframe timer synchronization can be restored after receiving the two SOFs for the next two consecutive
microframes (e.g., synchronization is restored at least 250 pus after synchronization loss). As long as SOFs
are not missed, frame timer synchronization will be restored in less than 1 ms after microframe
synchronization. Note that frame timer synchronization can be restored in a high-speed operating case in
much less time (0.250-1.250 ms) than the 2-3 ms required in full-speed operation. Once the frame timer is
synchronized, SOFs can be issued on downstream facing full-speed ports for the beginning of the next
frame.

405

LGE-1010 / Page 433 of 650

Universal Serial Bus Specification Revision 2.0

Once the hub detects loss of microframe timer synchronization, its TT(s):

1. Must respond to periodic complete-splits with any responses buffered in the periodic pipeline (only
good for at most 1 microframe of complete-splits).

2. Must abort any buffered periodic start-split transactions in the periodic pipeline.
3. Must ignore any high-speed periodic start-splits.

4. Must stop issuing full-speed SOFs on downstream facing full-speed ports (and low-speed keep-alives
on low-speed ports).

5. Must not start issuing subsequent periodic full-/low-speed transactions on downstream facing full-/low-
speed ports.

6. Must respond to high-speed start-split bulk/control transactions.
7. Buffered bulk/control results must respond to high-speed complete-split transactions.

8. Pending bulk/control transactions must not be issued to full-/low-speed downstream facing ports. The
TT buffers used to hold bulk/control transactions must be preserved until the microframe timer is re-
synchronized. (Or until a Clear TT Buffer request is received for the transaction).

Note that in any case a TT must not issue transactions of any speed on downstream facing ports when its
upstream facing port is suspended.

A TT only restores normal operation on downstream facing full-/low-speed ports after both microframe and
frame timers are synchronized. Figure Figure 11-94 summarizes the relationship between high-speed SOFs
and the TT frame and microframe timer synchronization requirements on start-splits.

For suspend sequencing of a hub, a hub will first lose microframe/frame timer synchronization at the same
time. This will cause its TT(s) to stop issuing SOFs (which should be the only transactions keeping the
downstream facing full-/low-speed ports out of suspend). Then the hub (along with any downstream
devices) will enter suspend.

Upon a resume, the hub will first restore its microframe timer synchronization (after high-speed transactions
continue). Then in less than 1 ms (assuming no errors), the frame timer will be synchronized and the TT
can start normal operation (including SOFs/keep-alives on downstream facing full-/low-speed ports).

Microframes

Y Y, Y, Y Y, Ys Ys Y; (Y+1),
SOF No No No SOF SOF SOF SOF SOF SOF
SOF SOF SOF
v v v
Lose Microframe & Frame Microframe Timer Microframe & Frame
Timer Synchronization, Re-synchronized; Timer Synchronized,
Ignore start-splits Frame timer unsynchronized, Accept start-splits

Ignore start-splits

Figure 11-94. Example Frame/Microframe Synchronization Events

406

LGE-1010 / Page 434 of 650

Universal Serial Bus Specification Revision 2.0

11.23 Descriptors

Hub descriptors are derived from the general USB device framework. Hub descriptors define a hub device
and the ports on that hub. The host accesses hub descriptors through the hub’s default pipe.

The USB specification (refer to Chapter 9) defines the following descriptors:
e Device

e Configuration

e Interface

e Endpoint

e String (optional)

The hub class defines additional descriptors (refer to Section 11.23.2). In addition, vendor-specific
descriptors are allowed in the USB device framework. Hubs support standard USB device commands as
defined in Chapter 9.

11.23.1 Standard Descriptors for Hub Class

The hub class pre-defines certain fields in standard USB descriptors. Other fields are either
implementation-dependent or not applicable to this class.

A hub returns different descriptors based on whether it is operating at high-speed or full-/low-speed. A hub
can report three different sets of the descriptors: one descriptor set for full-/low-speed operation and two
sets for high-speed operation.

A hub operating at full-/low-speed has a device descriptor with a bDeviceProtocol field set to zero(0) and an
interface descriptor with a bInterfaceProtocol field set to zero(0). The rest of the descriptors are the same
for all speeds.

A hub operating at high-speed can have one of two TT organizations: single TT or multiple TT. All hubs
must support the single TT organization. A multiple TT hub has an additional interface descriptor (with a
corresponding endpoint descriptor). The first set of descriptors shown below must be provided by all hubs.
A hub that has a single TT must set the bDeviceProtocol field of the device descriptor to one(1) and the
interface descriptor blnterfaceProtocol field set to 0.

A multiple TT hub must set the bDeviceProtocol field of the device descriptor to two (2). The first interface
descriptor has the bInterfaceProtocol field set to one(1). Such a hub also has a second interface descriptor
where the bInterfaceProtocol is set to two(2). When the hub is configured with an interface protocol of
one(1), it will operate as a single TT organized hub. When the hub is configured with an interface protocol
of two(2), it will operate as a multiple TT organized hub. The TT organization must not be changed while
the hub has full-/low-speed transactions in progress.

407

LGE-1010 / Page 435 of 650

408

Universal Serial Bus Specification Revision 2.0

Note: For the descriptors and fields shown below, the bits in a field are organized in a little-endian fashion;
that is, bit location 0 is the least significant bit and bit location 7 is the most significant bit of a byte value.

Full-/Low-speed Operating Hub

Device Descriptor (full-speed information):

bLength 12H

bDescriptorType 1

bcdUSB 0200H

bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0

bDeviceProtocol 0

bMaxPacketSize0 64

bNumConfigurations 1

Device Qualifier Descriptor (high-speed information):

bLength 0AH

bDescriptorType 6

bcdUSB 200H

bDeviceClass HUB_CLASSCODE (09H)

bDeviceSubClass 0

bDeviceProtocol 1 (for single TT) or 2 (for
multiple TT)

bMaxPacketSize0 64

bNumConfigurations 1

Configuration Descriptor (full-speed information):

bLength 09H

bDescriptorType 2

wTotalLength N

bNumlInterfaces 1

bConfigurationValue X

iConfiguration Y

bmAttributes Z

bMaxPower The maximum amount of bus

power the hub will consume in
full-/low-speed configuration

LGE-1010 / Page 436 of 650

Universal Serial Bus Specification Revision 2.0

Interface Descriptor:

bLength 09H

bDescriptorType 4

binterfaceNumber 0

bAlternateSetting 0

bNumEndpoints 1

binterfaceClass HUB_CLASSCODE (09H)
binterfaceSubClass 0

bInterfaceProtocol 0

ilnterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)

bmAttributes

Transfer Type = Interrupt

(00000011B)
wMaxPacketSize Implementation-dependent
bInterval FFH (Maximum allowable

interval)

Other_Speed_Configuration Descriptor (High-speed information):

bLength 09H

bDescriptorType 7

wTotalLength N

bNumlInterfaces 1 (for single TT) or 2 (for

multiple TT)

bConfigurationValue X

iConfiguration Y

bmAttributes Z

bMaxPower

The maximum amount of bus
power the hub will consume in
high-speed configuration

409

LGE-1010 / Page 437 of 650

Universal Serial Bus Specification Revision 2.0

Interface Descriptor:

bLength 09H
bDescriptorType 4
binterfaceNumber 0
bAlternateSetting 0
bNumEndpoints 1
binterfaceClass HUB_CLASSCODE (09H)
binterfaceSubClass 0
bInterfaceProtocol 0 (for single TT)
1 (for multiple TT)
ilnterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)

bmAttributes

Transfer Type = Interrupt

(00000011B)
wMaxPacketSize Implementation-dependent
bInterval FFH (Maximum allowable

interval)

Interface Descriptor (present if multiple TT hub):

bLength 09H

bDescriptorType 4

binterfaceNumber 0

bAlternateSetting 0

bNumEndpoints 1

binterfaceClass HUB_CLASSCODE (09H)
binterfaceSubClass 0

bInterfaceProtocol 2

ilnterface i

LGE-1010 / Page 438 of 650

Universal Serial Bus Specification Revision 2.0

Endpoint Descriptor (present if multiple TT hub):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)

bmAttributes

Transfer Type = Interrupt

(00000011B)
wMaxPacketSize Implementation-dependent
bInterval FFH (Maximum allowable

interval)

High-speed Operating Hub with Single TT

Device Descriptor (High-speed information):

bLength 12H

bDescriptorType 1

bcdUSB 200H

bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0

bDeviceProtocol 1

bMaxPacketSize0 64

bNumConfigurations 1

Device Qualifier Descriptor (full-speed information):

bLength 0AH

bDescriptorType 6

bcdUSB 200H

bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0

bDeviceProtocol 0

bMaxPacketSize0 64

bNumConfigurations 1

411

LGE-1010 / Page 439 of 650

412

Universal Serial Bus Specification Revision 2.0

Configuration Descriptor (high-speed information):

bLength 09H
bDescriptorType 2
wTotalLength N
bNumlnterfaces 1
bConfigurationValue X
iConfiguration Y
bmAttributes Z

bMaxPower

The maximum amount of bus
power the hub will consume in
this configuration

Interface Descriptor:

bLength 09H

bDescriptorType 4

binterfaceNumber 0

bAlternateSetting 0

bNumEndpoints 1

binterfaceClass HUB_CLASSCODE (09H)
binterfaceSubClass 0

bInterfaceProtocol 0 (single TT)

ilnterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)

bmAttributes

Transfer Type = Interrupt

(00000011B)
wMaxPacketSize Implementation-dependent
bInterval FFH (Maximum allowable

interval)

LGE-1010 / Page 440 of 650

Universal Serial Bus Specification Revision 2.0

Other_Speed_Configuration Descriptor (full-speed information):

bLength 09H
bDescriptorType 7
wTotalLength N
bNumlnterfaces 1
bConfigurationValue X
iConfiguration Y
bmAttributes Z

bMaxPower

The maximum amount of bus
power the hub will consume in
high-speed configuration

Interface Descriptor:

bLength 09H

bDescriptorType 4

binterfaceNumber 0

bAlternateSetting 0

bNumEndpoints 1

binterfaceClass HUB_CLASSCODE (09H)
binterfaceSubClass 0

bInterfaceProtocol 0

ilnterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)

bmAttributes

Transfer Type = Interrupt

(00000011B)
wMaxPacketSize Implementation-dependent
bInterval FFH (Maximum allowable

interval)

413

LGE-1010 / Page 441 of 650

414

Universal Serial Bus Specification Revision 2.0

High-speed Operating Hub with Multiple TTs

Device Descriptor (High-speed information):

bLength 12H

bDescriptorType 1

bcdUSB 200H

bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0

bDeviceProtocol 2 (multiple TTs)
bMaxPacketSize0 64

bNumConfigurations 1

Device Qualifier Descriptor (full-speed information):

bLength 0AH

bDescriptorType 6

bcdUSB 200H

bDeviceClass HUB_CLASSCODE (09H)
bDeviceSubClass 0

bDeviceProtocol 0

bMaxPacketSize0 64

bNumConfigurations 1

Configuration Descriptor (high-speed information):

bLength 09H

bDescriptorType 2

wTotalLength N

bNumlinterfaces 1

bConfigurationValue X

iConfiguration Y

bmAttributes Z

bMaxPower The maximum amount of bus

power the hub will consume in
this configuration

LGE-1010 / Page 442 of 650

Universal Serial Bus Specification Revision 2.0

Interface Descriptor:

bLength 09H

bDescriptorType 4

binterfaceNumber 0

bAlternateSetting 0

bNumEndpoints 1

binterfaceClass HUB_CLASSCODE (09H)
binterfaceSubClass 0

bInterfaceProtocol 1 (single TT)

ilnterface i

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)

bmAttributes

Transfer Type = Interrupt

(00000011B)
wMaxPacketSize Implementation-dependent
binterval FFH (Maximum allowable

interval)

Interface Descriptor:
bLength 09H
bDescriptorType 4
binterfaceNumber 0
bAlternateSetting 1
bNumEndpoints 1
binterfaceClass HUB_CLASSCODE (09H)
binterfaceSubClass 0
bInterfaceProtocol 2 (multiple TTs)
ilnterface i

415

LGE-1010 / Page 443 of 650

Universal Serial Bus Specification Revision 2.0

Endpoint Descriptor:
bLength 07H
bDescriptorType 5
bEndpointAddress Implementation-dependent;

Bit 7: Direction = In(1)

bmAttributes

Transfer Type = Interrupt

(00000011B)
wMaxPacketSize Implementation-dependent
bInterval FFH (Maximum allowable

interval)

Other_Speed_Configuration Descriptor (full-speed information):

bLength 09H
bDescriptorType 7
wTotalLength N
bNumlnterfaces 1
bConfigurationValue X
iConfiguration Y
bmAttributes Z

bMaxPower

The maximum amount of bus
power the hub will consume in
high-speed configuration

Interface Descriptor:

bLength 09H

bDescriptorType 4

binterfaceNumber 0

bAlternateSetting 0

bNumEndpoints 1

binterfaceClass HUB_CLASSCODE (09H)
binterfaceSubClass 0

bInterfaceProtocol 0

ilnterface i

LGE-1010 / Page 444 of 650

Universal Serial Bus Specification Revision 2.0

Endpoint Descriptor (for Status Change Endpoint):

bLength 07H

bDescriptorType 5

bEndpointAddress Implementation-dependent;
Bit 7: Direction = In(1)

bmAttributes Transfer Type = Interrupt
(00000011B)

wMaxPacketSize Implementation-dependent

bInterval FFH (Maximum allowable
interval)

11.23.2.1 Hub Descriptor
Table 11-13 outlines the various fields contained by the hub descriptor.

11.23.2 Class-specific Descriptors

Table 11-13. Hub Descriptor

The hub class driver retrieves a device configuration from the USB System Software using the
GetDescriptor() device request. The only endpoint descriptor that is returned by the GetDescriptor() request
is the Status Change endpoint descriptor.

Offset | Field Size Description
0 bDesclLength 1 Number of bytes in this descriptor, including this byte
1 bDescriptorType 1 Descriptor Type, value: 29H for hub descriptor
2 bNbrPorts 1 Number of downstream facing ports that this hub
supports
3 wHubCharacteristics 2 D1...D0: Logical Power Switching Mode

once)

00: Ganged power switching (all ports’ power at

01: Individual port power switching
1X: Reserved. Used only on 1.0 compliant hubs
that implement no power switching

D2: Identifies a Compound Device
0: Hub is not part of a compound device.
1: Hub is part of a compound device.

D4...D3: Over-current Protection Mode

00: Global Over-current Protection. The hub
reports over-current as a summation of all
ports’ current draw, without a breakdown of
individual port over-current status.

01: Individual Port Over-current Protection. The
hub reports over-current on a per-port basis.
Each port has an over-current status.

1X: No Over-current Protection. This option is
allowed only for bus-powered hubs that do not
implement over-current protection.

417

LGE-1010 / Page 445 of 650

418

Universal Serial Bus Specification Revision 2.0

Offset

Field

Size Description

D6...D5: TT Think Time

downstream bus.

D15...D8: Reserved

00: TT requires at most 8 FS bit times of inter
transaction gap on a full-/low-speed

01: TT requires at most 16 FS bit times.
10: TT requires at most 24 FS bit times.
11: TT requires at most 32 FS bit times.

D7: Port Indicators Supported

0: Port Indicators are not supported on its
downstream facing ports and the
PORT_INDICATOR request has no effect.

1: Port Indicators are supported on its
downstream facing ports and the
PORT_INDICATOR request controls the
indicators. See Section 11.5.3.

bPwrOn2PwrGood 1 Time (in 2 ms intervals) from the time the power-on
sequence begins on a port until power is good on that
port. The USB System Software uses this value to
determine how long to wait before accessing a

powered-on port.

bHubContrCurrent 1 Maximum current requirements of the Hub Controller

electronics in mA.

DeviceRemovable Variable, Indicates if a port has a removable device attached.

depending | This field is reported on byte-granularity. Within a
on byte, if no port exists for a given location, the field

number of | representing the port characteristics returns 0.

ports on

hub Bit value definition:

0B - Device is removable.

on the hub:

Bit 1: Port 1
Bit 2: Port 2

1B - Device is non-removable

This is a bitmap corresponding to the individual ports

Bit 0: Reserved for future use.

Bit n: Port n (implementation-dependent, up to a
maximum of 255 ports).

Variable

PortPwrCtriMask Variable, | This field exists for reasons of compatibility with
depending | software written for 1.0 compliant devices. All bits in
on this field should be set to 1B. This field has one bit for
number of | €ach port on the hub with additional pad bits, if
ports on necessary, to make the number of bits in the field an

hub integer multiple of 8.

LGE-1010 / Page 446 of 650

Universal Serial Bus Specification Revision 2.0

11.24 Requests

11.24.1 Standard Requests

Hubs have tighter constraints on request processing timing than specified in Section 9.2.6 for standard
devices because they are crucial to the "time to availability" of all devices attached to USB. The worst case
request timing requirements are listed below (apply to both Standard and Hub Class requests):

L.
2.

Completion time for requests with no data stage: 50 ms

Completion times for standard requests with data stage(s)

Time from setup packet to first data stage: 50 ms
Time between each subsequent data stage: 50 ms
Time between last data stage and status stage: 50 ms

As hubs play such a crucial role in bus enumeration, it is recommended that hubs average response times be
less than 5 ms for all requests.

Table 11-14 outlines the various standard device requests.

Table 11-14. Hub Responses to Standard Device Requests

bRequest Hub Response
CLEAR_FEATURE Standard
GET_CONFIGURATION Standard
GET_DESCRIPTOR Standard

GET_INTERFACE

Undefined. Hubs are allowed to support only one

interface.
GET_STATUS Standard
SET_ADDRESS Standard
SET_CONFIGURATION Standard
SET_DESCRIPTOR Optional
SET_FEATURE Standard

SET_INTERFACE

Undefined. Hubs are allowed to support only one
interface.

SYNCH_FRAME

Undefined. Hubs are not allowed to have isochronous
endpoints.

Optional requests that are not implemented shall return a STALL in the Data stage or Status stage of the
request.

419

LGE-1010 / Page 447 of 650

Universal Serial Bus Specification Revision 2.0

11.24.2 Class-specific Requests
The hub class defines requests to which hubs respond, as outlined in Table 11-15. Table 11-16 defines the

hub class request codes. All requests in the table below except SetHubDescriptor() are mandatory.

Table 11-15. Hub Class Requests

Request bmRequestType bRequest wValue windex wLength Data
ClearHubFeature 00100000B CLEAR_FEATURE Feature Zero Zero None
Selector
ClearPortFeature 00100011B CLEAR_FEATURE Feature Selector, Zero None
Selector Port
ClearTTBuffer 00100011B CLEAR_TT_BUFFER Dev_Addr, TT_port Zero None
EP_Num
GetHubDescriptor 10100000B GET_DESCRIPTOR Descriptor Zero or Descriptor | Descriptor
Type and Language Length
Descriptor ID
Index
GetHubStatus 10100000B GET_ STATUS Zero Zero Four Hub
Status and
Change
Status
GetPortStatus 10100011B GET_ STATUS Zero Port Four Port
Status and
Change
Status
ResetTT 00100011B RESET_TT Zero Port Zero None
SetHubDescriptor 00100000B SET_DESCRIPTOR Descriptor Zero or Descriptor | Descriptor
Type and Language Length
Descriptor ID
Index
SetHubFeature 00100000B SET_FEATURE Feature Zero Zero None
Selector
SetPortFeature 00100011B SET_ FEATURE Feature Selector, Zero None
Selector Port
GetTTState 10100011B GET_TT_STATE TT_Flags Port TT State TT State
Length
StopTT 00100011B STOP_TT Zero Port Zero None
420

LGE-1010 / Page 448 of 650

Universal Serial Bus Specification Revision 2.0

Table 11-16. Hub Class Request Codes

bRequest Value
GET_ STATUS 0
CLEAR_ FEATURE 1
RESERVED (used in previous 2
specifications for
GET_STATE)
SET_FEATURE 3
Reserved for future use 4-5
GET_DESCRIPTOR 6
SET_DESCRIPTOR 7
CLEAR_TT_BUFFER 8
RESET_TT 9
GET_TT_STATE 10

STOP_TT

11

Table 11-17 gives the valid feature selectors for the hub class. See Section 11.24.2.6 and Section 11.24.2.7 for a

description of the features.

Table 11-17. Hub Class Feature Selectors

Recipient Value
C_HUB_LOCAL_POWER Hub 0
C_HUB_OVER_CURRENT Hub 1
PORT_CONNECTION Port 0
PORT_ENABLE Port 1
PORT_SUSPEND Port 2
PORT_OVER_CURRENT Port 3
PORT_RESET Port 4

421

LGE-1010 / Page 449 of 650

Universal Serial Bus Specification Revision 2.0

Table 11-17. Hub Class Feature Selectors (continued)

Recipient Value
PORT_POWER Port 8
PORT_LOW_SPEED Port 9
C_PORT_CONNECTION Port 16
C_PORT_ENABLE Port 17
C_PORT_SUSPEND Port 18
C_PORT_OVER_CURRENT Port 19
C_PORT_RESET Port 20
PORT_TEST Port 21
PORT_INDICATOR Port 22
11.24.2.1 Clear Hub Feature
This request resets a value reported in the hub status.
bmRequestType bRequest wValue windex wLength Data
00100000B CLEAR_FEATURE Feature Zero Zero None
Selector

Clearing a feature disables that feature; refer to Table 11-17 for the feature selector definitions that apply to
the hub as a recipient. If the feature selector is associated with a status change, clearing that status change
acknowledges the change. This request format is used to clear either the C HUB. LOCAL POWER or

C HUB_OVER CURRENT features.

It is a Request Error if wValue is not a feature selector listed in Table 11-17 or if windex or wLength are not
as specified above.

If the hub is not configured, the hub’s response to this request is undefined.

11.24.2.2 Clear Port Feature

This request resets a value reported in the port status.

bmRequestType bRequest wValue windex wLength Data
00100011B CLEAR_ FEATURE Feature Selector | Port Zero None
Selector

The port number must be a valid port number for that hub, greater than zero. The port field is located in bits
7..0 of the windex field.

422

LGE-1010 / Page 450 of 650

Universal Serial Bus Specification Revision 2.0

Clearing a feature disables that feature or starts a process associated with the feature; refer to Table 11-17
for the feature selector definitions. If the feature selector is associated with a status change, clearing that
status change acknowledges the change. This request format is used to clear the following features:

e PORT ENABLE

e PORT_SUSPEND

e PORT POWER

e PORT_INDICATOR

e C_PORT CONNECTION

e C_PORT RESET

e C_PORT ENABLE

e C_PORT _SUSPEND

e C_PORT OVER_CURRENT

Clearing the PORT_ SUSPEND feature causes a host-initiated resume on the specified port. If the port is
not in the Suspended state, the hub should treat this request as a functional no-operation.

Clearing the PORT_ENABLE feature causes the port to be placed in the Disabled state. If the port is in the
Powered-off state, the hub should treat this request as a functional no-operation.

Clearing the PORT POWER feature causes the port to be placed in the Powered-off state and may, subject
to the constraints due to the hub’s method of power switching, result in power being removed from the port.
Refer to Section 11.11 on rules for how this request is used with ports that are gang-powered.

The selector field identifies the port indicator selector when clearing a port indicator. The selector field is in
bits 15..8 of the windex field.

It is a Request Error if wValue is not a feature selector listed in Table 11-17, if windex specifies a port that
does not exist, or if wLength is not as specified above. It is not an error for this request to try to clear a
feature that is already cleared (hub should treat as a functional no-operation).

If the hub is not configured, the hub's response to this request is undefined.

11.24.2.3 Clear TT Buffer

This request clears the state of a Transaction Translator(TT) bulk/control buffer after it has been left in a
busy state due to high-speed errors. This request is only defined for non-periodic endpoints; e.g., if it is
issued for a periodic endpoint, the response is undefined. After successful completion of this request, the
buffer can again be used by the TT with high-speed split transactions for full-/low-speed transactions to
attached full-/low-speed devices.

bmRequestType bRequest wValue windex | wLength Data

00100011B CLEAR_TT_BUFFER Device_Address, TT_port Zero None
Endpoint_Number

If the hub supports a TT per port, then windex must specify the port number of the TT that encountered the
high-speed errors (e.g., with the busy TT buffer). If the hub provides only a single TT, then windex must be
set to one.

423

LGE-1010 / Page 451 of 650

1.

1.

Universal Serial Bus Specification Revision 2.0

The device address, endpoint_number, and endpoint_type of the full-/low-speed endpoint (as specified in
the corresponding split transaction) that may have a busy TT buffer must be specified in the wValue field.
The specific bit fields used are shown in Table 11-18.

It is a Request Error if windex specifies a port that does not exist, or if wLength is not as specified above. It
is not an error for this request to try to clear a buffer for a transaction that is not buffered by the TT (should
treat as a functional no-operation).

If the hub is not configured, the hub’s response to this request is undefined.

Table 11-18. wValue Field for Clear_TT_Buffer

Bits Field

3.0 Endpoint Number

10..4 Device Address

12..11 Endpoint Type

14..13 Reserved, must be zero

15 Direction, 1 =IN, 0=OUT

24.2.4 Get Bus State

Previous versions of USB defined a GetBusState request. This request is no longer defined.

24.2.5 Get Hub Descriptor

This request returns the hub descriptor.

bmRequestType bRequest wValue windex wLength Data
10100000B GET_DESCRIPTOR Descriptor Zero Descriptor Descriptor
Type and Length
Descriptor
Index

424

The GetDescriptor() request for the hub class descriptor follows the same usage model as that of the
standard GetDescriptor() request (refer to Chapter 9). The standard hub descriptor is denoted by using the
value bDescriptorType defined in Section 11.23.2.1. All hubs are required to implement one hub descriptor,
with descriptor index zero.

If wLength is larger than the actual length of the descriptor, then only the actual length is returned. If
wLength is less than the actual length of the descriptor, then only the first wLength bytes of the descriptor
are returned; this is not considered an error even if wlLength is zero.

It is a Request Error if wValue or windex are other than as specified above.

If the hub is not configured, the hub’s response to this request is undefined.

LGE-1010 / Page 452 of 650

Universal Serial Bus Specification Revision 2.0

11.24.2.6 Get Hub Status

This request returns the current hub status and the states that have changed since the previous

acknowledgment.
bmRequestType bRequest wValue windex wLength Data
10100000B GET_ STATUS Zero Zero Four Hub Status
and Change
Status

The first word of data contains wHubStatus (refer to Table 11-19). The second word of data contains
wHubChange (refer to Table 11-20).

It is a Request Error if wValue, windex, or wLength are other than as specified above.

If the hub is not configured, the hub’s response to this request is undefined.

Table 11-19. Hub Status Field, wHubStatus

Bit Description

0 Local Power Source: This is the source of the local power supply.

This field indicates whether hub power (for other than the SIE) is being provided by an external source or
from the USB. This field allows the USB System Software to determine the amount of power available from
a hub to downstream devices.

0 = Local power supply good

1 = Local power supply lost (inactive)

1 Over-current:

If the hub supports over-current reporting on a hub basis, this field indicates that the sum of all the ports’
current has exceeded the specified maximum and all ports have been placed in the Powered-off state. If the
hub reports over-current on a per-port basis or has no over-current detection capabilities, this field is always
zero. For more details on over-current protection, see Section 7.2.1.2.1.

0 = No over-current condition currently exists.

1 = A hub over-current condition exists.

2-15 Reserved
These bits return 0 when read.

There are no defined feature selector values for these status bits and they can neither be set nor cleared by
the USB System Software.

425

LGE-1010 / Page 453 of 650

Universal Serial Bus Specification Revision 2.0

Table 11-20. Hub Change Field, wHubChange

Bit Description

0 Local Power Status Change: (C_HUB_LOCAL_POWER) This field indicates that a change has
occurred in the hub’s Local Power Source field in wHubStatus.

This field is initialized to zero when the hub receives a bus reset.
0 = No change has occurred to Local Power Status.
1 = Local Power Status has changed.

1 Over-Current Change: (C_HUB_OVER_CURRENT) This field indicates if a change has occurred in the
Over-Current field in wHubStatus.

This field is initialized to zero when the hub receives a bus reset.

0 = No change has occurred to the Over-Current Status.
1 = Over-Current Status has changed.

2-15 Reserved
These bits return 0 when read.

Hubs may allow setting of these change bits with SetHubFeature() requests in order to support diagnostics.
If the hub does not support setting of these bits, it should either treat the SetHubFeature() request as a
Request Error or as a functional no-operation. When set, these bits may be cleared by a ClearHubFeature()
request. A request to set a feature that is already set or to clear a feature that is already clear has no effect
and the hub will not fail the request.

11.24.2.7 Get Port Status

This request returns the current port status and the current value of the port status change bits.

bmRequestType bRequest wValue windex wLength Data
10100011B GET_STATUS Zero Port Four Port Status
and Change

Status

The port number must be a valid port number for that hub, greater than zero.

The first word of data contains wPortStatus (refer to Table 11-21). The second word of data contains
wPortChange (refer to Table 11-20).

The bit locations in the wPortStatus and wPortChange fields correspond in a one-to-one fashion where
applicable.

It is a Request Error if wValue or wLength are other than as specified above or if windex specifies a port that
does not exist.

If the hub is not configured, the behavior of the hub in response to this request is undefined.

426

LGE-1010 / Page 454 of 650

Universal Serial Bus Specification Revision 2.0

11.24.2.7.1 Port Status Bits

Table 11-21. Port Status Field, wPortStatus

Bit Description

0 Current Connect Status: (PORT_CONNECTION) This field reflects whether or not a device is currently
connected to this port.

0 = No device is present.
1 = A device is present on this port.

1 Port Enabled/Disabled: (PORT_ENABLE) Ports can be enabled by the USB System Software only. Ports
can be disabled by either a fault condition (disconnect event or other fault condition) or by the USB System
Software.

0 = Port is disabled.

1 = Port is enabled.

2 Suspend: (PORT_SUSPEND) This field indicates whether or not the device on this port is suspended.
Setting this field causes the device to suspend by not propagating bus traffic downstream. This field may be
reset by a request or by resume signaling from the device attached to the port.

0 = Not suspended.
1 = Suspended or resuming.

3 Over-current: (PORT_OVER_CURRENT)

If the hub reports over-current conditions on a per-port basis, this field will indicate that the current drain on the
port exceeds the specified maximum. For more details, see Section 7.2.1.2.1.

0 = All no over-current condition exists on this port.
1 = An over-current condition exists on this port.

4 Reset: (PORT_RESET) This field is set when the host wishes to reset the attached device. It remains set
until the reset signaling is turned off by the hub.

0 = Reset signaling not asserted.
1 = Reset signaling asserted.

5-7 Reserved
These bits return 0 when read.

8 Port Power: (PORT_POWER) This field reflects a port’s logical, power control state. Because hubs can
implement different methods of port power switching, this field may or may not represent whether power is
applied to the port. The device descriptor reports the type of power switching implemented by the hub.

0 = This port is in the Powered-off state.
1 = This port is not in the Powered-off state.

9 Low- Speed Device Attached: (PORT_LOW_SPEED) This is relevant only if a device is attached.

0 = Full-speed or High-speed device attached to this port (determined by bit 10).
1 = Low-speed device attached to this port.

10 High-speed Device Attached: (PORT_HIGH_SPEED) This is relevant only if a device is attached.

0 = Full-speed device attached to this port.

1 = High-speed device attached to this port.

11 Port Test Mode : (PORT_TEST) This field reflects the status of the port's test mode. Software uses the
SetPortFeature() and ClearPortFeature() requests to manipulate the port test mode.

0 = This port is not in the Port Test Mode.
1 = This port is in Port Test Mode.

12 Port Indicator Control: (PORT_INDICATOR) This field is set to reflect software control of the port indicator.
For more details see Sections 11.5.3, 11.24.2.7.1.10, and 11.24.2.13.

0 = Port indicator displays default colors.
1 = Port indicator displays software controlled color.

13-15 Reserved
These bits return 0 when read.

427

LGE-1010 / Page 455 of 650

Universal Serial Bus Specification Revision 2.0

11.24.2.7.1.1 PORT_CONNECTION

When the Port Power bit is one, this bit indicates whether or not a device is attached. This field reads as one
when a device is attached; it reads as zero when no device is attached. This bit is reset to zero when the port
is in the Powered-off state or the Disconnected states. It is set to one when the port is in the Powered state,
a device attach is detected (see Section 7.1.7.3), and the port transitions from the Disconnected state to the
Disabled state.

SetPortFeature(PORT_CONNECTION) and ClearPortFeature(PORT CONNECTION) requests shall not
be used by the USB System Software and must be treated as no-operation requests by hubs.

11.24.2.7.1.2 PORT_ENABLE

This bit is set when the port is allowed to send or receive packet data or resume signaling.

This bit may be set only as a result of a SetPortFeature(PORT RESET) request. When the hub exits the
Resetting state or, if present, the Speed_eval state, this bit is set and bus traffic may be transmitted to the
port. This bit may be cleared as the result of any of the following:

e The port being in the Powered-off state

e Receipt of a ClearPortFeature(PORT ENABLE) request
e Port_Error detection

e Disconnect detection

e When the port enters the Resetting state as a result of receiving the SetPortFeature(PORT RESET)
request

The hub response to a SetPortFeature(PORT ENABLE) request is not specified. The preferred behavior is
that the hub respond with a Request Error. This may not be used by the USB System Software. The
ClearPortFeature(PORT ENABLE) request is supported as specified in Section 11.5.1.4.

11.24.2.7.1.3 PORT_SUSPEND

This bit is set to one when the port is selectively suspended by the USB System Software. While this bit is
set, the hub does not propagate downstream-directed traffic to this port, but the hub will respond to resume
signaling from the port. This bit can be set only if the port’s PORT_ENABLE bit is set and the hub receives
a SetPortFeature(PORT_SUSPEND) request. This bit is cleared to zero on the transition from the SendEOP
state to the Enabled state, or on the transition from the Restart S state to the Transmit state, or on any event
that causes the PORT ENABLE bit to be cleared while the PORT SUSPEND bit is set.

The SetPortFeature(PORT SUSPEND) request may be issued by the USB System Software at any time but
will have an effect only as specified in Section 11.5.

11.24.2.7.1.4 PORT_OVER-CURRENT

This bit is set to one while an over-current condition exists on the port. This bit is cleared when an over-
current condition does not exist on the port.

If the voltage on this port is affected by an over-current condition on another port, this bit is set and remains
set until the over-current condition on the affecting port is removed. When the over-current condition on
the affecting port is removed, this bit is reset to zero if an over-current condition does not exist on this port.

Over-current protection is required on self-powered hubs (it is optional on bus-powered hubs) as outlined in
Section 7.2.1.2.1.

The SetPortFeature(PORT _OVER CURRENT) and ClearPortFeature(PORT OVER_CURRENT) requests
shall not be used by the USB System Software and may be treated as no-operation requests by hubs.

428

LGE-1010 / Page 456 of 650

Universal Serial Bus Specification Revision 2.0

11.24.2.7.1.5 PORT_RESET

This bit is set while the port is in the Resetting state. A SetPortFeature(PORT RESET) request will initiate
the Resetting state if the conditions in Section 11.5.1.5 are met. This bit is set to zero while the port is in the
Powered-off state.

The ClearPortFeature(PORT_RESET) request shall not be used by the USB System Software and may be
treated as a no-operation request by hubs.

11.24.2.7.1.6 PORT_POWER
This bit reflects the current power state of a port. This bit is implemented on all ports whether or not actual

port power switching devices are present.

While this bit is zero, the port is in the Powered-off state. Similarly, anything that causes this port to go to
the Power-off state will cause this bit to be set to zero.

A SetPortFeature(PORT _POWER) will set this bit to one unless both C HUB. LOCAL POWER and Local
Power Status (in wHubStatus) are set to one in which case the request is treated as a functional no-
operation.

This bit may be cleared under the following curcumstances:

e Hub receives a ClearPortFeature(PORT _POWER).

e An over-current condition exists on the port.

e An over-current condition on another port causes the power on this port to be shut off.

The SetPortFeature(PORT POWER) and ClearPortFeature(PORT POWER) requests may be issued by the
USB System Software whenever the port is not in the Not Configured state, but will have an effect only as
specified in Section 11.11.

11.24.2.7.1.7 PORT_LOW_SPEED

This bit has meaning only when the PORT _ENABLE bit is set. This bit is set to one if the attached device
is low-speed. If this bit is set to zero, the attached device is either full- or high-speed as determined by bit
10 (PORT _HIGH SPEED, see below).

The SetPortFeature(PORT _LOW_SPEED) and ClearPortFeature(PORT _LOW_SPEED) requests shall not
be used by the USB System Software and may be treated as no-operation requests by hubs.

11.24.2.7.1.8 PORT_HIGH_SPEED

This bit has meaning only when the PORT _ENABLE bit is set and the PORT LOW_SPEED bit is set to
zero. This bit is set to one if the attached device is high-speed. The bit is set to zero if the attached device
is full-speed.

The SetPortFeature(PORT HIGH_SPEED) and ClearPortFeature(PORT HIGH_SPEED) requests shall not
be used by the USB System Software and may be treated as no-operation requests by hubs.

11.24.2.7.1.9 PORT_TEST

When the Port Test Mode bit is set to a one (1B), the port is in test mode. The specific test mode is
specified in the SetPortFeature(PORT_TEST) request by the test selector. The hub provides no standard
mechanism to report the specific test mode; therefore, system software must track which test selector was
used. Refer to Section 7.1.20 for details on each test mode. See Section 11.24.2.13 for more information
about using SetPortFeature to control test mode.

429

LGE-1010 / Page 457 of 650

Universal Serial Bus Specification Revision 2.0

This field may only be set as a result of a SetPortFeature(PORT_TEST) request. A port PORT TEST
request is only valid to a port that is in the Disabled, Disconnected, or Suspended states. If the port is not in
one of these states, the hub must respond with a request error.

This field may be cleared as a result of resetting the hub.

11.24.2.7.1.10 PORT_INDICATOR

When the Port Indicator port status is set to a (1B), the port indicator selector is non-zero. The specific
indicator mode is specified in the SetPortFeature(PORT INDICATOR) request by the indicator selector.
The GetPortStatus(PORT _INDICATOR) provides no standard mechanism to report a specific indicator
mode; therefore, system software must track which indicator mode was used. Refer to Sections 11.5.3 and
11.24.2.13 for details on each indicator mode.

This field may only be set as a result of a SetPortFeature(PORT INDICATOR) request.

This field may be cleared as a result of a SetPortFeature(PORT INDICATOR) request with Indicator
Selector = Default or a ClearPortFeature(PORT INDICATOR) request.

This feature must be set when host software detects an error on a port that requires user intervention. This
feature must be utilized by system software if it determines that any of the following conditions are true:

e A high power device is plugged into a low power port.
e A defective device is plugged into a port (Babble conditions, excessive errors, etc.).
e An overcurrent condition occurs which causes software or hardware to set the indicator.

The PORT _OVER CURRENT status bit will set the default port indicator color to amber. Setting the
PORT POWER feature, sets the indicator to off.

This feature is also used when host software determines that a port requires user attention. Many error
conditions can be resolved if the user moves a device from one port to another that has the proper
capabilities.

A typical scenario is when a user plugs a high power device in to a bus-powered hub. If there is an
available high power port, then the user can be directed to move the device from the low-power port to the
high power port.

1. Host software would cycle the PORT INDICATOR feature of the low-power port to blink the indicator
and display a message to the user to unplug the device from the port with the blinking indicator.

2. Using the C PORT _CONNECTION status change feature, host software can determine when the user
physically removed the device from the low-power port.

3. Host software would next issue a ClearPortFeature(PORT_INDICATOR) to the low-power port
(restoring the default color), begin cycling the PORT INDICATOR of the high-power port, and display
a message telling the user to plug the device into the port with the blinking indicator.

4. Using the C PORT _CONNECTION status change feature host software can determine when the user
physically inserted the device onto the high power port.

Host software must cycle the PORT INDICATOR feature to blink the current color at approximately
0.5 Hz rate with a 30-50% duty cycle.

430

LGE-1010 / Page 458 of 650

Universal Serial Bus Specification Revision 2.0

11.24.2.7.2 Port Status Change Bits

Port status change bits are used to indicate changes in port status bits that are not the direct result of
requests. Port status change bits can be cleared with a ClearPortFeature() request or by a hub reset. Hubs
may allow setting of the status change bits with a SetPortFeature() request for diagnostic purposes. If a hub
does not support setting of the status change bits, it may either treat the request as a Request Error or as a
functional no-operation. Table 11-22 describes the various bits in the wPortChange field.

Table 11-22. Port Change Field, wPortChange

Bit Description
0 Connect Status Change: (C_PORT_CONNECTION) Indicates a change has occurred in the port's Current
Connect Status. The hub device sets this field as described in Section 11.24.2.7.2.1.

0 = No change has occurred to Current Connect status.
1 = Current Connect status has changed.

1 Port Enable/Disable Change: (C_PORT_ENABLE) This field is set to one when a port is disabled because
of a Port_Error condition (see Section 11.8.1).

2 Suspend Change: (C_PORT_SUSPEND) This field indicates a change in the host-visible suspend state of
the attached device. It indicates the device has transitioned out of the Suspend state. This field is set only
when the entire resume process has completed. That is, the hub has ceased signaling resume on this port.

0 = No change.

1 = Resume complete.
3 Over-Current Indicator Change: (C_PORT_OVER_CURRENT) This field applies only to hubs that report
over-current conditions on a per-port basis (as reported in the hub descriptor).

0 = No change has occurred to Over-Current Indicator.

1 = Over-Current Indicator has changed.

If the hub does not report over-current on a per-port basis, then this field is always zero.

4 Reset Change: (C_PORT_RESET) This field is set when reset processing on this port is complete.

0 = No change.
1 = Reset complete.

5-15 Reserved
These bits return 0 when read.

11.24.2.7.21 C_PORT_CONNECTION

This bit is set when the PORT _CONNECTION bit changes because of an attach or detach detect event (see
Section 7.1.7.3). This bit will be cleared to zero by a ClearPortFeature(C_PORT CONNECTION) request
or while the port is in the Powered-off state.

11.24.2.7.2.2 C_PORT_ENABLE

This bit is set when the PORT_ENABLE bit changes from one to zero as a result of a Port Error condition
(see Section 11.8.1). This bit is not set on any other changes to PORT ENABLE.

This bit may be set if, on a SetPortFeature(PORT RESET), the port stays in the Disabled state because an
invalid idle state exists on the bus (see Section 11.8.2).

This bit will be cleared by a ClearPortFeature(C_PORT_ENABLE) request or while the port is in the
Powered-off state.

431

LGE-1010 / Page 459 of 650

Universal Serial Bus Specification Revision 2.0

11.24.2.7.2.3 C_PORT_SUSPEND
This bit is set on the following transitions:
e On transition from the Resuming state to the SendEOP state
e On transition from the Restart_S state to the Transmit state

This bit will be cleared by a ClearPortFeature(C_PORT_SUSPEND) request, or while the port is in the
Powered-off state.

11.24.2.7.2.4 C_PORT_OVER-CURRENT
This bit is set when the PORT _OVER_CURRENT bit changes from zero to one or from one to zero. This
bit is also set if the port is placed in the Powered-off state due to an over-current condition on another port.

This bit will be cleared when the port is in the Not Configured state or by a
ClearPortFeature(C_PORT _OVER_CURRENT) request.

11.24.2.7.2.5 C_PORT_RESET
This bit is set when the port transitions from the Resetting state (or, if present, the Speed eval state) to the
Enabled state.

This bit will be cleared by a ClearPortFeature(C_PORT RESET) request, or while the port is in the
Powered-off state.

11.24.2.8 Get_TT State

This request returns the internal state of the transaction translator in a vendor specific format. A TT
receiving this request must have first been stopped via the Stop TT request. This request is provided for
debugging purposes.

bmRequestType bRequest wValue windex wLength Data
10100011B GET_TT_STATE TT_Flags TT_Port TT State TT State
Length

The TT Flags bits 7..0 are reserved for future USB definition and must be set to zero. The TT Flags
bits 15..8 are for vendor specific usage.

The TT state returned in the data stage of the control transfer for this request is shown in Table 11-23.

Table 11-23. Format of Returned TT State

Offset Field Size (bytes) Comments

0 TT_Return_Flags 4 Bits 15..0 are reserved for future
USB definition and must be set
to zero. Bits 31..16 are for
vendor specific usage.

4 TT_specific_state Implementation dependent

432

LGE-1010 / Page 460 of 650

Universal Serial Bus Specification Revision 2.0

If the hub supports multiple TTs, then windex must specify the port number of the TT that will return
TT state. If the hub provides only a single TT, then Port must be set to one.

The state of the TT after processing this request is undefined.

It is a Request Error, if windex specifies a port that does not exist. If wLength is larger than the actual
length of this request, then only the actual length is returned. If wLength is less than the actual length of this
request, then only the first wLength bytes of this request are returned; this is not considered an error even if
wLength is zero.

If the hub is not configured, the hub’ response to this request is undefined.

11.24.2.9 Reset TT

This request returns the transaction translator in a hub to a known state.

bmRequestType

bRequest

wValue

windex

wLength

Data

00100011B

RESET_TT

Zero

TT_Port

Zero

None

Under some circumstances, a Transaction Translator (TT) in a hub may be in an unknown state such that it
is no longer functioning correctly. The Reset TT request allows the TT to be returned to the state it is in
immediately after the hub is configured. Reset TT only resets the TT internal data structures (buffers) and
pipeline and its related state machines. After the reset is completed, the TT can resume its normal
operation. Reset of the TT is de-coupled from the other parts of the hub (including downstream facing ports
of the hub, the hub repeater, the hub controller, etc). Other parts of the hub are not reset and can continue
their normal operation. The downstream facing ports are not reset, so that when the TT resumes its normal
operation, the corresponding attached devices continue to work; i.e., a new enumeration process is not
required. The working of downstream FS/LS devices are disrupted only during the reset time of the TT to
which they belong.

If the hub supports multiple TTs, then windex must specify the port number of the TT that is to be reset. If
the hub provides only a single TT, then Port must be set to one. For a single TT Hub, the Hub can ignore
the Port number.

It is a Request Error, if windex specifies a port that does not exist, or if wLength is not as specified above.

If the hub is not configured, the hub’ response to this request is undefined.

11.24.2.10 Set Hub Descriptor

This request overwrites the hub descriptor.

bmRequestType bRequest wValue windex wLength Data
00100000B SET_DESCRIPTOR Descriptor Zero Descriptor Descriptor
Type and Length
Descriptor
Index

The SetDescriptor request for the hub class descriptor follows the same usage model as that of the standard
SetDescriptor request (refer to Chapter 9). The standard hub descriptor is denoted by using the value
bDescriptorType defined in Section 11.23.2.1. All hubs are required to implement one hub descriptor with
descriptor index zero.

433

LGE-1010 / Page 461 of 650

11

Universal Serial Bus Specification Revision 2.0

This request is optional. This request writes data to a class-specific descriptor. The host provides the data
that is to be transferred to the hub during the data transfer phase of the control transaction. This request
writes the entire hub descriptor at once.

Hubs must buffer all the bytes received from this request to ensure that the entire descriptor has been
successfully transmitted from the host. Upon successful completion of the bus transfer, the hub updates the
contents of the specified descriptor.

It is a Request Error if windex is not zero or if wLength does not match the amount of data sent by the host.
Hubs that do not support this request respond with a STALL during the Data stage of the request.

If the hub is not configured, the hub’ response to this request is undefined.

.24.2.11 Stop_TT

This request stops the normal execution of the transaction translator so that the internal TT state can be
retrieved via Get TT State. This request is provided for debugging purposes.

bmRequestType bRequest wValue windex wLength Data

00100011B STOP_TT Zero TT_Port Zero None

The only standardized method to restart a TT after a Stop_ TT request is via the Reset TT request.

If the hub supports multiple TTs, then windex must specify the port number of the TT that is being stopped.
If the hub provides only a single TT, then Port must be set to one. For a single TT Hub, the Hub can ignore
the Port number.

It is a Request Error, if windex specifies a port that does not exist, or if wLength is not as specified above.

If the hub is not configured, the hub’ response to this request is undefined.

11.24.2.12 Set Hub Feature

This request sets a value reported in the hub status.

bmRequestType bRequest wValue windex wLength Data
00100000B SET_FEATURE Feature Zero Zero None
Selector

434

Setting a feature enables that feature; refer to Table 11-17 for the feature selector definitions that apply to
the hub as recipient. Status changes may not be acknowledged using this request.

It is a Request Error if wValue is not a feature selector listed in Table 11-17 or if windex or wLength are not
as specified above.

If the hub is not configured, the hub’s response to this request is undefined.

LGE-1010 / Page 462 of 650

Universal Serial Bus Specification Revision 2.0

11.24.2.13 Set Port Feature

This request sets a value reported in the port status.

bmRequestType bRequest wValue windex wLength Data
00100011B SET_ FEATURE Feature Port Zero None
Selector Selector

The port number must be a valid port number for that hub, greater than zero. The port number is in the least
significant byte (bits 7..0) of the windex field. The most significant byte of windex is zero, except when the
feature selector is PORT TEST.

Setting a feature enables that feature or starts a process associated with that feature; see Table 11-17 for the
feature selector definitions that apply to a port as a recipient. Status change may not be acknowledged using
this request. Features that can be set with this request are:

e PORT RESET

e PORT_SUSPEND

e PORT POWER

e PORT_TEST

e PORT_INDICATOR

e C _PORT _CONNECTION*

e C_PORT RESET*

e C_PORT_ENABLE*

e C_PORT SUSPEND*

e C_PORT OVER CURRENT*
* Denotes features that are not required to be set by this request

Setting the PORT _SUSPEND feature causes bus traffic to cease on that port and, consequently, the device
to suspend. Setting the reset feature PORT RESET causes the hub to signal reset on that port. When the
reset signaling is complete, the hub sets the C PORT RESET status change and immediately enables the
port. Also see Section 11.24.2.7.1 for further details.

When the feature selector is PORT TEST, the most significant byte (bits 15..8) of the windex field is the
selector identifying the specific test mode. Table 11-24 lists the test selector definitions. Refer to

Section 7.1.20 for definitions of each test mode. Test mode of a downstream facing port can only be used in
a well defined sequence of hub states. This sequence is defined as follows:

1) All enabled downstream facing ports of the hub containing the port to be tested must be
(selectively) suspended via the SetPortFeature(PORT SUSPEND) request. Each downstream
facing port of the hub must be in the disabled, disconnected, or suspended state (see Figure 11-9).

2) A SetPortFeature(PORT TEST) request must be issued to the downstream facing port to be tested.
Only a single downstream facing port can be in test mode at a time. The transition to test mode
must be complete no later than 3 ms after the completion of the status stage of the request.

3) The downstream facing port under test can now be tested.

4) During test mode, a port disconnect or resume status change on one of the suspended ports (not
including the port under test) must cause a status change (C_ PORT _CONNECTION or
C PORT SUSPEND) report (See Section 11.12.3 and 11.24.2.7.2) from the hub. Note: Other

435

LGE-1010 / Page 463 of 650

436

5)

6)

7)

Universal Serial Bus Specification Revision 2.0

status changes may or may not be supported in a hub with a downstream facing port in test mode.
The reporting of these status changes can allow a test application to restore normal operation of a
root hub without requiring a non-USB keyboard or mouse for user input. For example. a USB
device attached to the root hub can be disconnected to notify the test application to restore normal
root hub operation.

During test_mode, the state of the hub downstream facing ports must not be changed by the host
(i-e., hub class requests other than the Get Port Status() request must not be issued by the host).
Note: The hub must also be reset before a SetPortFeature(PORT _TEST) can be used to place the
port into another test mode.

After the test is completed, the hub (with the port under test) must be reset by the host or user.
This must be accomplished by manipulating the port of the parent hub to which the hub under test
is attached. This manipulation can consist of one of the following:

a) Issuing a SetPortFeature(PORT_RESET) to port of the parent hub to which the hub under test
is attached.

b) Issuing a ClearPortFeature(PORT_POWER) and SetPortFeature(PORT POWER) to cycle
power of a parent hub that supports per port power control.

¢) Disconnecting and re-connecting the hub under test from its parent hub port.

d) For a root hub under test, a reset of the Host Controller may be required as there is no parent
hub of the root hub.

Behavior of the hub under test and its downstream facing ports is undefined if these requirements
are not met.

Table 11-24. Test Mode Selector Codes

Value Test Mode Description

OH Reserved

1H Test J

2H Test_ K

3H Test_SEO_NAK

4H Test_Packet

5H Test_Force_Enable
06H-3FH Reserved for Standard Test selections
40H-BFH Reserved
COH-FFH | Reserved for Vendor-Unique test selections

LGE-1010 / Page 464 of 650

Universal Serial Bus Specification Revision 2.0

When the feature selector is PORT INDICATOR, the most significant byte of the windex field is the

selector identifying the specific indicator mode. Table 11-25 lists the indicator selector definitions. Refer
to Sections 11.5.3 and 11.24.2.7.1.10 for indicator details. The hub will respond with a request error if the
request contains an invalid indicator selector.

Table 11-25. Port Indicator Selector Codes

Value Port Indicator Color Port Indicator
Mode
0 Color set automatically, as Automatic
defined in Table 11-6
1 Amber
2 Green Manual
3 Off
4-FFH Reserved Reserved

The hub must meet the following requirements:

e Ifthe port is in the Powered-off state, the hub must treat a SetPortFeature(PORT_RESET) request as a

functional no-operation.

e Ifthe port is not in the Enabled or Transmitting state, the hub must treat a
SetPortFeature(PORT_SUSPEND) request as a functional no-operation.

e Ifthe port is not in the Powered-off state, the hub must treat a SetPortFeature(PORT POWER) request
as a functional no-operation.

It is a Request Error if wValue is not a feature selector listed in Table 11-17, if windex specifies a port that
does not exist, or if wLength is not as specified above.

If the hub is not configured, the hub’s response to this request is undefined.

437

LGE-1010 / Page 465 of 650

Universal Serial Bus Specification Revision 2.0

438

LGE-1010 / Page 466 of 650

Universal Serial Bus Specification Revision 2.0

Appendix A
Transaction Examples

This appendix contains transaction examples for different split transaction cases. The cases are for
bulk/control OUT and SETUP, bulk/control IN, interrupt OUT, interrupt IN, isochronous OUT, and
isochronous IN.

A.1 Bulk/Control OUT and SETUP Transaction Examples
Legend:

(S): Start Split
(C): Complete Split

Summary of cases for bulk/control OUT and SETUP transaction

e Normal cases

Case Reference | Similar Figure
Figure

No smash Figure A-1
HS SSPLIT smash Figure A-2
HS SSPLIT 3 strikes smash Figure A-3
HS OUT/SETUP(S) smash Figure A-2
HS OUT/SETUP(S) 3 strikes smash Figure A-3
HS DATAO0/1 smash Figure A-2
HS DATAO0/1 3 strikes smash Figure A-3
HS ACK(S) smash Figure A-4

Figure A-5
HS ACK(S) 3 strikes smash Figure A-6
HS CSPLIT smash Figure A-7
HS CSPLIT 3 strikes smash Figure A-8
HS OUT/SETUP(C) smash Figure A-7
HS OUT/SETUP(C) 3 strikes smash Figure A-8

LGE-1010 / Page 467 of 650

440

Universal Serial Bus Specification Revision 2.0

HS ACK(C) smash Figure A-9
HS ACK(C) 3 strikes smash Figure A-10
FS/LS OUT/SETUP smash Figure A-11
FS/LS OUT/SETUP 3 strikes smash Figure A-12
FS/LS DATAO/1 smash Figure A-11
FS/LS DATAO/1 3 strikes smash Figure A-12
FS/LS ACK smash Figure A-13
FS/LS ACK 3 strikes smash Figure A-14
No buffer(on hub) avallable cases
Case Reference | Similar Figure
Figure
No smash(HS NAK(S)) Figure A-15
HS NAK(S) smash Figure A-16
HS NAK(S) 3 strikes smash Figure A-17
CS(Complete-split transaction) earlier cases
Case Reference | Similar Figure
Figure
No smash(HS NYET) Figure A-18
HS NYET smash Figure A-19
Figure A-20
HS NYET 3 strikes smash Figure A-21
Device busy cases
Case Reference | Similar Figure
Figure
No smash(HS NAK(C)) Figure A-22

HS NAK(C) smash

Figure A-9

LGE-1010 / Page 468 of 650

Universal Serial Bus Specification Revision 2.0

HS NAK(C) 3 strikes smash Figure A-10
FS/LS NAK smash Figure A-13
FS/LS NAK 3 strikes smash Figure A-14

e Device stall cases

Case Reference | Similar Figure
Figure

No smash Figure A-23

HS STALL(C) smash Figure A-9

HS STALL(C) 3 strikes smash Figure A-10

FS/LS STALL smash Figure A-13

FS/LS STALL 3 strikes smash Figure A-14

Host Hub FS/LS
(data toggle) (status) device
| | | |(data toggle)
01 i Oldix | 0
| | | |
ST i |
| st2 OUT/SETUP,, | | |
I \ I I I
| mmsdl DATAO | | |
! N> : | !
| | | |
i . ACK shl i Pending/x i i
| | ——ourseme
| | | |
' ' ' DATAO '
| | ! M |
| | | | 1
| | |
i i Ready/ack i i
___ctl _ CSPLIT		
T T : :		
OQUISETUR,		
: ACK ch3 : Old/ack : :
P : : :
1 | | |
! ! ! !
Figure A-1. Normal No Smash
441

LGE-1010 / Page 469 of 650

Universal Serial Bus Specification Revision 2.0

Hub

Host

FS/LS
device

(data toggle)

[a W)
=)
5
2=
ElER M
2| <§ ©
ol A <
|72} on < i
= ~
§ x 8 Z 8
z 2 5 3} =
o [=4 o
4
&
=8 =N T o ~3 9| 30 = 3| 3] 3
ol m Z > e =9
2| 1 E e =
(2ot F = (2] = =
S| <n - |24 5 |2
7 E|En = ||l =B
al 2] <m S | o] <f O wn | 2] O
SODI ~ v | O A < O | O <
23
|] E\v
n
n =
CNP -
an
an
2
<
5
T

Figure A-2. Normal HS DATAO0/1 Smash

442

LGE-1010 / Page 470 of 650

Universal Serial Bus Specification Revision 2.0

o
Swﬂo
[R
= » 2
N s
TS o
o %
=2«
o2 3
o
~ ~ ~
A: A: A:
m mm » Sm)m mm = Sm)m mm = Sm
2 " Z S " Z S "z
) =) =)
= u M = u M = u M
n[on = = | m o = = | m o =
Elwn E |=x E |=x
—~ | Q2 <<m — LNl an — LNl 4m =
S B En = | B En 7 |E|EnR
= = = —
[75) UAI [75) UAI [75) WAI <
SOD. ~ w2 OD. ~ w2 D. o~ jany
[[& 'g =
n o o2 n o o2 n M2z
— —n | & —_ —n | & — —n vl d O
273 mm M. Z| 2 @ mm M. Z| 2 @ mm M. Nmm
. s n s n >
n = »n = »n = I
(e

Host
(data toggle)

Figure A-3. Normal HS DATAO0/1 3 Strikes Smash

443

LGE-1010 / Page 471 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

o
8=
.wn%
o=
s o —_
[a W)
=)
5
%2
S~
ElER M
2o < @)
ol A <
....................................... i
v.m <=
— % 5 g %
g g S 23 s E
s X =} < ® 3 k=l g
5 3 £ oE2T g i
= 2 2 B< 2.2 7 o
= EaLE
\
|
[1 2 [[
> 1 = =
—lzlof = (2] = |&
Jlel=f 2 el =f = [B| &
= U A \ = A
[75) C_ wn 2 < @]) =) Q
wn| O A < ~ %) ol A < Q @) <
\ i
VAR
1
1
vV £
w.-w.---.1.-
an
2
<
5
T

Figure A-4. Normal HS ACK(S) Smash(case 1)

444

LGE-1010 / Page 472 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

(data toggle)

o)
8=
.W%
o=
R -
[aT}
=)
0
@2
ElER M
2 < Q
ol A <
....................................... R
v.m =]
>
k v
2 % g e 5. 9
= g = 2t S
s X 3 5 mE s 5 =
& 3 5 5 sE=27 3
o ~ ~ 5 < .4 o
T AT E
\
|
[1 2 [[
D | = |D D
5 | |5 5
=22 1 E xS E |a
=~ . A | A . A — .
i=IE>1 B = ||l E e ™
Gl 2 < O\ S | o] <f O wn | 2] O
wn| O A < ~ %) ol A < Q @) <
T
VAR
1
1
v &
[e)

Figure A-5. Normal HS ACK(S) Smash(case 2)

445

LGE-1010 / Page 473 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub SIS

evice

(data toggle) (status) |(data toggle)
0 Old/x 0

stl SSPLIT ”

N
sl DATA0

o MCURTNG

ACK . shl___ Pending/x
4 ' —ovmseme
se2->sed 1
PR
stl

U_}
sl DATA0

|

|

|

|

|

|

|

|

|
SSPLIT(retry) i Ready/ack

|

|

i Hub ignores this

|

|

|

DATAO.

ACK sh2”___ | (Hub already has
T this data.)
TRANS ERR

se2->sed
stl SSPLIT(retry)

U_}
sl DATA0

Hub ignores this

l

DATAO.
A_C_Ig_ R sh2___ ! (Hub already has

&---""""" ! this data.)
[}
TRANS_ERR i
se2->se5 :
[}
ENDPOINT HALT i

Figure A-6. Normal HS ACK(S) 3 Strikes Smash

446

LGE-1010 / Page 474 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub
(status)

Host
(data toggle)

(data toggle)

device

OUT/SETUP
DATAO
ACK

OUT/SETUP.
(no match the
address field.)

sdl
shl
ch3

ctl

OUT/SETUP
ct2

stl

SSPLIT
OUT/SETUP

st2
DATAO
ACK
CSPLIT
OUT/SETUP
CSPLIT(retry imm.)
ACK

ce2->ce3

stl
st2
sdl
shl
ctl
ctl
ct2
ch3

ct2
TRANS_ERR

Figure A-7. Normal HS CSPLIT Smash

447

LGE-1010 / Page 475 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub SIS

evIiCe

(data toggle), (status) |(data toggle)
0 Old/x 10

stl SSPLIT st

N
sl DATA0

N
shl ACK shl Pending/x

OUT/SETUP

T T
M

ACK

PR S

Ready/ack
CSPLIT

« OUT/SETUP ~»

S

Hub ignores this

|

i

' OUT/SETUP.
' (no match the
' address field.)
|

| TRANS_ERR

' ce2->ce3

|

i

: otl CSPLIT(retry imm.)

«® OUT/SETUP ~»

S

Hub ignores this

|

|

i

' OUT/SETUP.
! (no match the
: address field.)
i TRANS ERR

' ce2->ce3

|

|

i

i otl CSPLIT(retry imm.)

« OUT/SETUP ~»

S

Hub ignores this

[}

i

! OUT/SETUP.

: (no match the

: address field.)
[}

: TRANS ERR

' ce2->ce4

[}

i ENDPOINT HALT

Figure A-8. Normal HS CSPLIT 3 Strikes Smash

448

LGE-1010 / Page 476 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

(data toggle)

T
8=
=
% =
CERS -
[a W)
)
5
@2
ElER M
o < O
ol A <
|72} on < i
= ~
§ x g Z 8
©n O (=] < o
- = 5 5 —
o [=4 o
|||||||||||||||||||||||||||||||||| __ ~
| :
e =P o d -V
) o 5 D
5 = £ g
Slal2 5 el A S |e
=1 B E B M4 = e ™
nl 2| < < v | 2] O, v | 2] ©
wn| O Af < COA__R O | O <
R3
=
— = = - 7 —)
Zl ¢ = = 3l % _,mw 3l 8] 5
1
1
A A=
[e) —

Figure A-9. Normal HS ACK(C) Smash

449

LGE-1010 / Page 477 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

)
an
2w
% =
TE o —
[aT}
=)
0
%2
ElER M
2 < Q
ol A <
©n an RS v
g = =) E
77} o =1 5] o
- = |5 5 —
o [=4 o
A A Al A Ay S A Ay s A Ay
| m | m |
= Q| <f = = af 2 .mﬂam__ .mﬂam__
17} 7] @ 7] o o O\ o o O o o O\
oy oy \ 2 A~ \ 2 A~ \
)) 1 D) 1 D) 1
= = \ = \ = \
Sla|Z S (a2) S (a2) S (a2)
N B = | B &) = B &) = B &) =
nl 2 < Q wn = Q) %) = Q) %) = Q) =
wn| O A < Q o < ~ Q o < ~ Q o < ~ an
\ & 3 \ & 3 \ ~ I
L5 L -
— = — — |72 — 721 — 721 (@]
z| S = = 3| % __mm 3l B __wm 3l % __wmm
1 1 1
1 1 1
v E v E v E &
Do e
an
2
<
5
=

Figure A-10. Normal S ACK(C) 3 Strikes Smash

450

LGE-1010 / Page 478 of 650

Universal Serial Bus Specification Revision 2.0

Host

(data toggle)

o)
Swﬂo
[R
~ » 2
N os
el A
" L
A ¢ 3
. S
e | m oz &
U-M =
= =
ONlc® = 0o
2 @<
E|En = Y
D <g o <f ©
S| A o o| of <
n ~
|] m
[| |72]
n Z
. =
n =
e -~
= 2 £ 3
me g 5 &
©n O =1 < o
N 5 9} —
o [=4 o
=9 =9 2|
D D S D
5 5 g5
Sla| 2 52| & 5|2
=1 B ElEl m E e ™
nl 2| < < wn| 2 > v | 2] ©
wn| O A < | O Z O | O <«
[e) —

Figure A-11. Normal FS/LS DATAO0/1 Smash

451

LGE-1010 / Page 479 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub device
(data toggle), (status) |(data toggle)
0 Old/x 1 0

stl SSPLIT st

N
sl DATA0

o MCURTNG

[} [}
[} [} [}
[} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
i i i i
i @l ACK shl i Pending/x i i
i i i OUT/SETUP :
| | | \ |
! ! ! DATAO !
i i i...."Il..-.. i
| | | |
: : : TRANS_ERR |
[} [} [} [}
: : ! TRANS_ERR :
| ctl CSPLIT i i |
i U_, i i i
| t2 | | |
: W ! ! OUT/SETUP(local refry)
I I I \ I
[} [} [} [}
I NYET chl | | DATAO |
| | e LT T !
i i i i
[} [} [} [}
: ! ! TRANS_ERR |
[} [} [} [}
i i | TRANS_ERR i
i i i i
[} [} [} [}
i i i i
: : : OUT/SETUP(local refry)
| | | \ |
| | | DATAO |
[} [} [} [}
i ! :Il.lllll..... :
| | | |
! ! ! TRANS_ERR !
[} [} [} [}
' ' i TRANS ERR '
[} [} [} [}
i ctl CSPLIT(retry)tl i Ready/stall i 3 TIMES TRANS ERR i
I U_» I I I
| — 2 OUT/SETUP_, © | i :
T =, | |
i Ch2 i Old/stall : :
| : |
[} [} [} [}
[} [} [} [}
i ENDPOINT HALT i i i

Figure A-12. Normal FS/LS DATAO0/1 3 Strikes Smash

452

LGE-1010 / Page 480 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub SIS

evice

(data toggle) (status) |(data toggle)
0 Old/x 0

stl SSPLIT st

N
sl DATA0

o MCURTNG

ch3 ACK ch3

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} [}

[} [} 1 [}

: shi ACK shl : Pending/x :

i i —— oumsere

[} [} [}

: ! ! DATAO

[} [} [}

| | | ACK

i i i &7 i

: l | TRANS_ERR :

| el CSPLIT : ! !

i U_, i i i

e | |

[} | | |

| et NYET chl___ i OUT/SETUP(local refry)

' 4// [| \ ,

: l ! DATAO :

i i i M |

[} [} [} [} .

| | | Device does
i i i 4/ACK// inot receive
i ! Ready/ack : :this data.
| | | 1Data toggle
| o1 CSPLIT(retry) i i s still *1°.
i U_, i i

| 2 QUT/SETUP ! :

| U_» | |

: ! Old/ack !

i i i

[} [} [}

[} [} [}

[} [} [}

[} [} [}

I I I

Figure A-13. Normal FS/LS ACK Smash

453

LGE-1010 / Page 481 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

)
2%
% =
S o — ~~ ~~
et A B B
\ m \ m \
_ = \ = \
"_ g __ g __
o \ & \ & \
=) | =) | =) |
= ' = ' = ' o
alzf | alzf | e |\ £
/A | /A | /A | m
El=g &) Ele=g &) El=g &)
o <f§ T o <f§ T o < T 2
ol af <\ o ol af <\ . ol af <\ «
- - __RM
_E _E _ET
[[[N B %)
2 | 2 | 28
\ \ [
V¥V & V¥V & 4TH
— % 3
[2)) 7] =
= = <
g x e e Z
©n O =1] o
- = 15 O —_
o [=4 o
z 9 =8 = z Q| = = 2 g
n| wvn| wvwNE wn Q] o] o ol o o
5 5 S
o
= = 2 | =
=2 . =& 2
LWTK LWE LWL —~
=1 B S5 > S 150 &1 2
2 4 n = <
wn| O Af < Ol O Z O | O wn T
=
Z
2
8]
Do e
2
=
3
=

Figure A-14. Normal FS/LS ACK 3 Strikes Smash

454

LGE-1010 / Page 482 of 650

Universal Serial Bus Specification Revision 2.0

Host

(data toggle)

n oL
- 2 5
~ » 2
N os
(S, RS -
b5y [a W
2 -
ol . rﬂ
5] (e}
k= @ | Z
23 El=f M
0| O
= o <K O
g 3 ol af <
wn| —
Q
78
o &
gl &
£l g
\
......................... N
\
__
a > B
b\w,%WM ‘ & /m e
= £ 2= v £ > g
S o= z = =] =
2 oF =z 5 S 3
Z & o ~ & o
— — Wl — =] = —_ o
1IN K ~%| 3 =0 = 3| %] 5
~ - ~
) £ |5)
Trﬂo mrﬂo Trﬂ
— Q< —~ @< @
SN B = |E|Ef & = e
&l <l < & o<l © Sl o ©
wn| O A Z v | O A < | O <
— —f o — =] T —_ o
Zl 2 = = Z S 2 = 3l 8] 5
[e) —

Figure A-15. No buffer Available No Smash (HS NAK(S))

455

LGE-1010 / Page 483 of 650

Universal Serial Bus Specification Revision 2.0

o
Swﬂo
o S0
~ » 2
N s
== o -
o)
< [a W
o . w
(]
mﬁc b o
23 @<
B E|l=f ™
g 3 2| <§ ©
w| E ol A <
2 g
85
ol 8
El g
el &
\
... R
\
__
4] v % o
~—~ 0 QO ~ Q
2t £3 & < x
s &= K 3 5 8
m 2 oF p = g =
Z & o ~ & o
\
|
IR El IRIE] E IR E 3| 3] 3
2 | e e 2
\ = =
= | L[5 L[5 =
EIES B S 2|2 S 2|2 =
~i=IE>1 A = [l X = (Bl & e ™
wn| O A N__RSODN v | O A < Ol O <«
RA.
1
1
A A=
e
- T -
v o
S 8
o=
<
T

Figure A-16. No Buffer Available HS NAK(S) Smash

456

LGE-1010 / Page 484 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

(data toggle)

device

(data toggle)

2
el
S
=
>
<
\
|
T B
[aT}
=) \
= __
slefgf
= | = 1
=l E|E M
Al 2 < <\
vl O A N__
|
\
—] = __
2 &7 2 \
1
1
v

TRANS ERR

se2->sed

~% ¢ 3 5
> 7
5|3 __
= 5 |
E 2|2 '
— = \
i | & M
n |2 <K <)
17%5) ol A N__
|
\
— N = __
2 &7 2 \
1
1
v

TRANS ERR

se2->sed

~% 9| 3 5
> 7
5|3 __
= \
E a2 '
— = \
= | E|Ef X%
n | 2 < <)
1%5) ol A N__
|
\
— o - __
a2 &7 2 \
1
1
v

TRANS ERR

se2->se5

ENDPOINT HALT

Figure A-17. No Buffer Available HS NAK(S) 3 Strikes Smash

457

LGE-1010 / Page 485 of 650

Universal Serial Bus Specification Revision 2.0

Hub

Host

FS/LS
device

(data toggle)

[aT}
-]
3
% |2
ElER M
2| <f§ O
o Af <
|72] en < i
2 3
g =z g 2 E
©n O =1 < o
- = 5 o] —
o ~ ~ o
= Q| S = = Q| = = 9| 2
n| wvn| wvwNE wn o] o] o ol o] o
o 9 9
= = =
= H o [S [S
=2 < S|4 = | &
PWATnK ElEl m ElE| M~
N Q wn| 2 » wn| =2 O
wn| O A < ol O Z o] O <
2 —
on
en
8
<
=
N

Figure A-18. CS Earlier No Smash (HS NYET)

458

LGE-1010 / Page 486 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

e
an
2w
% =
s o —_
[aT}
-]
0
%2
ElER M
2 < Q
ol A <
-~
z £ E .
5 x £ = &
=] = < <
- = 5] o) =
o ~ ~ o
! -~
i g
= 9 =l = = o = E-| a2
17} 17} 7 @ o o 3 3} 3} o
o o) o
> > _ £ |3
5 =] g
Elwn M Elan ! E |=»
Se| = ¢ = el m = |5 v
Al 2| < O G2 = % | =2 2
wn wn \ wn
wn| O A < Ol O N__ ~ Q o <
~ D
voogR
— e - — | — ©@
zZ| S| = = 3| % \ wm 3| % 5
1
1
A A=
wm.-w.--.1.---
an
2
<
=
T

Figure A-19. CS Earlier HS NYET Smash(case 1)

459

LGE-1010 / Page 487 of 650

Universal Serial Bus Specification Revision 2.0

m
Swﬂo
o S0
= » 2
N s
[C T SRS —_
[aT}
-]
0
%2
ElER M
o <§ O
o| A <
e -~
=2 5 £ o
52 x g Aw 8
HS o =1 < o
—~ — 15 5% —
o ~ ~ o
...................................... __ -------------.M.,:---------------------------------
] g
| Q <l = = af = .mﬂam = 9 2
@ @ @ 7] o o X o o o 3] o o
e =9 i 2 | ol -9
=) =) | g D 2 D
5 = e e
=92 Ela| S 2| = S |2
L -~ L -~ \ L -~ L -~
Sl E|IEf X ElE] =) el = = | =] M
nl 2 < Q ZI =) >\ %) = > wn = Q
wn| O A < Ol O N__ ~ Q o Z Q o <
R3
— = — — wn| — — — I3e)
7l S = = 3l % \ Wm 3l B 5 3l B 5
1
1
A A=
- ° -
wn o
S 8
un il
<
=

Figure A-20. CS Earlier HS NYET Smash(case 2)

460

LGE-1010 / Page 488 of 650

FS/LS

Hub

Universal Serial Bus Specification Revision 2.0

Host

(data toggle)

0
8=
o=
=
T8 o —
[aT}
-]
A
%2
ElER M
2| <§ ©
o A <«
.. &
2 5
= v g _ 5
z 50 8 EE e
= b= = L S
5§ x g g s 2
8 = 5
z 3 s o EWJ%
o ~ ~ S 5o
Bbc
|||||||||||||||||||||||||||||||||| ! ~ ! ~ !
\ g] g]
= ol == = ol = E-| of = E-| of =
@ @ @ =3 k3] b3 Sy k3] 23] Sy k3] k31 S
oy oy \ [A | [A \
]] ! 5] ! 5] !
= =] =] =]
[T O = [K |) = |) = |
=L < S8 = 5 | L] e = [2] = .
=1 B E|l B m = (B[@m =B @m 9
nl 2 < Q ZI =) >\ %) = >\ %) = >\ =
wn| O A < Ol O Z ~ Q o Z ~ Q o Z o an
\ & 3 \ & 3 \ 3 E
LA L =
— = — — 721 — 721 — | a O
7| 9 ® e 3| B \ wm 3| B \ wm 3| B \ wmm
\ \ \
| | | Z.
v E v E v B &
(e

461

LGE-1010 / Page 489 of 650

request
Figure A-21. CS Earlier HS NYET 3 Strikes Smash

Universal Serial Bus Specification Revision 2.0

Hub

Host

FS/LS
device

(data toggle)

= =
== B EEf X
2o <f < 2| <§ ©
o| A Z ol A <
_ X = x 5
2 2 £ % E < %
s X b= 52 £ b= g 8
=] = < < = < =}
L = o O = 5 Q =
o ~ ~ o ~ ~ o
>
£
[}
=
= S = = = =
2=l & 2| S~ B =
nl 2 < < n| 2 < nl 2| < < wn| 2| Q
wn| O Af < | O =Z wn| O Af < | O <
CNP -
an
an
2
<
5
T

Figure A-22. Device Busy No Smash(FS/LS NAK)

462

LGE-1010 / Page 490 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub SIS

evice

(data toggle) (status) |(data toggle)
0 Old/x 0

stl SSPLIT st

N
sl DATA0

o MCURTNG

[} [} [}

[} [} [}

[} [} [}

[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
[} [} [} [}
| | | |
[} [} 1 [} [}
i . ACK shl i Pending/x i i
: : —ourseTe |
[} [} [} [}
! ! ! DATAO !
| | |
i | Ready/stall | i
el CSPLIT		
U_,		
2 QUUSETUR, ’ ’		
[} [} [} [}		
[} [} [} [}		
: STALL ch2 : Old/stall : :		
[} [} [} [}
! ENDPOINT HALT ! ! !

Figure A-23. Device Stall No Smash(FS/LS STALL)

463

LGE-1010 / Page 491 of 650

Universal Serial Bus Specification Revision 2.0

A.2 Bulk/Control IN Transaction Examples

Legend:
(S): Start Split
(C): Complete Split

Summary of cases for bulk/control IN transaction

e Normal cases

Case Reference Similar figure
figure
No smash Figure A-24
HS SSPLIT smash Figure A-25
HS SSPLIT 3 strikes smash Figure A-26
HS IN(S) smash Figure A-25
HS IN(S) 3 strikes smash Figure A-26
HS ACK(S) smash Figure A-27
Figure A-28
HS ACK(S) 3 strikes smash Figure A-29
HS CSPLIT smash Figure A-30
HS CSPLIT 3 strikes smash Figure A-31
HS IN(C) smash Figure A-30
HS IN(C) 3 strikes smash Figure A-31
HS DATAO/1 smash Figure A-32
HS DATAO/1 3 strikes smash Figure A-33
FS/LS IN smash Figure A-34
FS/LS IN 3 strikes smash Figure A-35
FS/LS DATAO/1 smash Figure A-36
FS/LS DATAO/1 3 strikes smash Figure A-37

464

LGE-1010 / Page 492 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS ACK smash Figure A-38
FS/LS ACK 3 strikes smash No figure
No buffer(on hub) avallable cases
Case Reference Similar figure
figure
No smash(HS NAK(S)) Figure A-39
HS NAK(S) smash Figure A-40
HS NAK(S) 3 strikes smash Figure A-41
CS(Complete-split transaction) earlier cases
Case Reference Similar figure
figure
No smash(HS NYET) Figure A-42
HS NYET smash Figure A-43
Figure A-44
HS NYET 3 strikes smash No figure
Device busy cases
Case Reference Similar figure
figure
No smash(HS NAK(C)) Figure A-45

HS NAK(C) smash

Figure A-32

HS NAK(C) 3 strikes smash

Figure A-33

FS/LS NAK smash

Figure A-36

FS/LS NAK 3 strikes smash

Figure A-37

465

LGE-1010 / Page 493 of 650

466

Universal Serial Bus Specification Revision 2.0

e Device stall cases

Case Reference Similar figure
figure
No smash Figure A-46
HS STALL(C) smash Figure A-32
HS STALL(C) 3 strikes smash Figure A-33
FS/LS STALL smash Figure A-36
FS/LS STALL 3 strikes smash Figure A-37
Host Hub FS/LS
(data toggle) (status) device
' ' ' I(data toggle)
04 I Oldx | 0
[} [} [} [}
st a a
| —= I o | |
[} [} [} [}
i shi ACK shl i Pending/x i i
| | | |
[} [} [} [}
[} [} [} [}
| | | IN |
1 1 1 \ 1
[} [} [} [}
[} [} [} [}
’ ’ s
[} [} [} [}
[} [} [} [}
i | Ready/data | * i
| | | B
| ol CSPLIT | | |
T | |
| —<2 N w | : :
: : : :
| DATAQ __cd i Old/data | |
| ch5 | | |
L H | | :
[} [} [} [}
[} [} [} [}
' ' ' '

Figure A-24. Normal No Smash

LGE-1010 / Page 494 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub
(status)

Host
(data toggle)

(data toggle)

device

IN
DATAQ
ACK

(no match the
address field.)

IN.

stl
st2
shl
ctl
ct2
cd

IN
SSPLIT(retry)
IN

ACK

CSPLIT

IN

DATAQ

sed->se2
stl

st2

shl

ctl

ct2

ch5

——ostl
st2
TRANS_ERR

Figure A-25. Normal HS SSPLIT Smash

467

LGE-1010 / Page 495 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub (FI‘S/LS
1
(data toggle): (status) :(datea‘tlog%?e)
0! Old/x 10
[}
| ___stl___ SSPLIT
T T T T e
|2 IN >
| \ Hub ignores this
| IN.
i (no match the
! address field.)
| TRANS_ERR
: sed4->se2
[}
[}
[}
[}
[}

Hub ignores this

IN.
(no match the
address field.)
TRANS ERR
se4->se2

Hub ignores this

[}

[}

|

: IN.

: (no match the
' address field.)
[}

[}

| TRANS_ERR

' sed4->se3

[}

| ENDPOINT HALT

Figure A-26. Normal SSPLIT 3 Strikes Smash

468

LGE-1010 / Page 496 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

(data toggle)

i
8=
.Ww@
D =
=3 o —_
2
=R X~
= <R 9
<
w 8
2 e < 8
2 = > S
z zZ g g =
o ~ ~ o
\
|
— — — N — | &
72 9 5 Wmﬂhs 5| 5| B
i g
\ R} . -
= \ = = <
e M o > >
a9 C_ Ay @] & A
|z \ 0 |z Nl =
] mm
! A
\ 1
— | <t — — —| he]
CI \ Wm 7 S e 5 5 5
1
1
v =
[e) —

Figure A-27. Normal HS ACK(S) Smash(case 1)

469

LGE-1010 / Page 497 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

m
8=
o 2D
o
> =
ea
s Eo -
=
2
=R X~
<
—_ & =
%) on) M 8
2 x £ z S
z 03 = S 3
- = 5] 5% -
o ~ ~ o
\
|
]
1
—] o] = —]] — | N
2| 9| 5 27| 7| & 5| 5| 3
! &
\ 0]
1 =
= ! = &= S
— \ — — <
2| % = | |3 = | £
SNC__ s [z © | <
| & <) ~ v | & < O & A
\ =
) =) R
—| | <t —_] = —] Y
7 @ \ z 3 1 1 !
L2
1
vy &
O
.a%oo —
an
2
<
s
<
o
=2

Figure A-28. Normal HS ACK(S) Smash(case 2)

470

LGE-1010 / Page 498 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS
device

Hub
(data toggle)

(status)

Host

(data toggle)

IN

DATAQ

ACK

stl
st2

SSPLIT
IN

stl
st2

TRANS ERR

sed->se2

SSPLIT(retry)

stl

stl
st2

IN

st2

TRANS ERR

stl
st2

SSPLIT(retry)
IN

sed->se2

stl
st2

TRANS ERR

sed->se3

ENDPOINT HALT

Figure A-29. Normal HS ACK(S) 3 Strikes Smash

471

LGE-1010 / Page 499 of 650

Universal Serial Bus Specification Revision 2.0

Hub

Host

FS/LS
device

(data toggle)

(=) —
=
>1 B
2
= ~
s n £3
2 2D) W. = " s
2 K= >,] 2w <
s X k=] k<) % T 2 !
2= = < o g g k=]
Z = 5] 0 o =3 =
o ~ ~ 57 23 o
TS &8
A =
] g
- ! g
2 9 = 1 =z g
172} 172] [72] H WJC (9] Ol
| =
| o
$—
] —'
)
= =3 = =
— A 1 — =
[~ Al A
|l z O Nl) Z <
1 RM
/ o4 .
— N — —l N — N
2] = 4 T Z| 8 5[© Gl
/ s
! =
o
L o —
on
en
=}
8
<
8
<
i
=

Figure A-30. Normal HS CSPLIT Smash

472

LGE-1010 / Page 500 of 650

Universal Serial Bus Specification Revision 2.0

Host

(data toggle)

o
Swﬂo
o 20
= » 8
N s
Eos o ~
=
) M
Z < Q
= ~ g ~ g -~
v g 5 £% 5 £% g 2%
=2 v "8 = 5 =& 5 =& 5 <S%
=2 §= > g 2w g S g ©.,
s X o b= o =8 o =8]
HS e} (=} paw o mr o mr o mr
3 2 g £, 2% 2,53 2,53
TZES TZES TZES
~ ~
4 2 4 : 4
—_]] = 1 .m~ .m~
% B @ ! ! '
] ol ol
] - | = |
1 O O
I o] o]
= =¥ = =
— v 1 — 1 — 1 I
e @ @i @i @i 2
N
al & = Or & o Or & o Or & -
! 2% 2% 5%E
! ol ol o35
—| — —l N —l N —l N
% % G T Zl 8 sl 5 Zl 8 sl 5 Nmm
]]]
A L
I I I
(e

Figure A-31. Normal HS CSPLIT 3 Strikes Smash

473

LGE-1010 / Page 501 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

m
8=
.W%
D =
=3 o —_
2
) M
— % g
2 & ° 8
= m > <
s X =] 5 <]
z = 5 54 =
o ~ ~ o
L ~
n g
= Qf = = o M .mﬂad
172] 172] [72] Q o C- WJC (9] Ol
- ~—
o
L Na¥
= = S & <
- M i Em = =
wnlz|l © Al z| <= Z A
a I~
=R
- 1
—| — —| | © — N v
7 =@ 2 5 5 L] Wm 5[© S
- =
e
.alu.,voO —
an
2
8
<
=

Figure A-32. Normal HS DATA0/1 Smash

474

LGE-1010 / Page 502 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

i
8=
o= 80
% =
s o —_
2
) M
— ® £ 3}
E 2 2 5
s X k=] g 2
z 3z 5 3 =
o ~ ~ o
" - u -~ u
n g] g]
= Qf = = o M .mﬂQHui .mﬂQHui
172] 172] [72] Q Q C- WJC (9] C- WJC (9] C-
» 5 » 5 »
. . . th . th .
5 = <= S <= 3 g =
o M = =n = =n = =n X
AR, Al | <= A [z Zm A [z Zm <
a I~ a I~ a ~ 3B E
n 1A n 1A » 11 &
— — — n| © — 0| © — n ¢ O
7| ¢ e 3l % » zl 8 3l % » z s B % » 2R
V¥V ¢ V¥V ¢ V¥V £ 2
= = = M
e
—_ O
an
an
o
<
=
=

Figure A-33. Normal HS DATAO0/1 3 Strikes Smash

475

LGE-1010 / Page 503 of 650

Universal Serial Bus Specification Revision 2.0

Hub

Host

FS/LS
device

(data toggle)

S —
[]
]
1
] —~
]
! z
| g
I = ©
I mA
! 2| =R X
i S| <§ ©
£ Zl o} <
1 ~
1 o~
] o
i ©n
| Z
]
_ =
]
| =
8
~_~ Wc ..% <
2] ~—
5z E B s
5 S = s 3
e = 54 3
o ~ ~ o
—_] = - 8] = — | &
B #| & 8| 5| 8 \wnmmm
154
$—
S
= = = 2
5 3 & 3
2 3 2 > B >
753 n 72
al & < O | &l = o | &l a
= 9 = = 9 = =] @ £
w| vl wn o] o)y O o] o)y O
e S
L o —
an
an
o
IS)
<
s
<
o
=

Figure A-34. Normal FS/LS IN Smash

476

LGE-1010 / Page 504 of 650

Universal Serial Bus Specification Revision 2.0

Hub

Host

(data toggle)

FS/LS
device

_
<
on
en
2
8
@0
A A A
| | |
)))
] ~ 1 ~ 1
__ 5| 5|
I
! = = o
! = = &
]]
| 8 8 m
! = = M
Z Zi Zi
— ~ — ~ = ~
{ > i > i g =
! o ! 23) ! 23y ==
| 2] | %] | v A
m
]]]
| 2 2 2 s
i i i E
| = | = | [N
— % E _
: £ £ 3
s X k=] 52 2
2 3 g 5 =
o ~ ~ o
— — — — — | o] @
7| 9| = 3| B 5 \wnaam
&
2
= & = =
— Y ~ —
. A i [= = 3
wn| = < Q = Z Q = wn an)
)
Z
Z 9 = e = z/ 2 2| S
@ @ @ 5] © S of © Cm
Z
23)
(e

Figure A-35. Normal FS/LS IN 3 Strikes Smash

477

LGE-1010 / Page 505 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

o
8=
.Ww@
o=
=E —_
n [
|] o~
- "
- ~~
. z E
o
n -
=) = = =)
< o <
L] 2| =R M
s
L 2]
v
sl
<
z 5 3 s
= k=l > S
s X b=} B =t
z = 5 3 =}
o ~ ~ o
= Qf = z| Qf = = QT
7] 1Z] @ o o 3] o o o o
g
=
[= = S
DL1 4 DL1 23 DL1 [
|l z O n Z > %) Z <
— — — — — e}
7 @ e 3 % 5 3| % 5
o
.a%oo —
en
8
<
=
Z

Figure A-36. Normal FS/LS DATAO0/1 Smash

478

LGE-1010 / Page 506 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

(data toggle)

i
8=
o= 80
% =
=3 o
u ~ u ~ u -
| | o~ u a4 - o~
n H n H n =
v~ v~ 5]
B Z. | | Z. B b4
s 2 B+ Z F|: 3
n g = _m g = = ~ =
=r 5| < 5| e E
it o| & S
Z n Z n Z n Z
ID- WM. ID- WM. ID- WM.M
u o Ly 23) u 25| =
1 I =, | I)
-W -W -wm
4T 4T 4TH
— % 3 _
2 en 1Z] —
= = s
] X 8 z z
z 2 5 3} =
o ~ ~ o
— — — — — n
7| 9 5 5| 8 5 \wnmmlm
3
= & =] =
[— e T Ll
— =l =
= | ¥ 2 S > =\ =
al & <= O | & Z O & »| =
Z
— — — — |l B
)
Z
8]
[e)

Figure A-37. Normal FS/LS DATAO0/1 3 Strikes Smash

479

LGE-1010 / Page 507 of 650

Universal Serial Bus Specification Revision 2.0

Hub

Host

FS/LS
device

)
[}
2
on
on
Q
iS)
<
= o —
T e
A 3
| =
I |
] wn
| Z
I
P2
= Z
I
=R =1 Y
= a < = A <
}
}
]
]
1
[}
]
]
I
x £ x £
<
z 2 3 g E 3 g
< <
s X = g 3 g g 3
= =) s < = IS <
- = |5 Q — 5 Q -
] ~ ~ o ~ ~]
— o = — o] — ~ — — o] =l
2] B & 5] 5| B 2| 7| & 5| 5| B
[=) ~ =)
g = = g = =
= > = E = ¥ = >
a2l z| L % |z = al z| 9 |z <
IS = —| el N = = o =
% @ G = 5 % @ G 5| B 5
)ll||J |||||
g o ~ 5
g ISR
= Sz
8 85 %
S .w o o -
~ > =
o= g Y
353
T 2Q %

Figure A-38. Normal FS/LS ACK Smash

480

LGE-1010 / Page 508 of 650

Universal Serial Bus Specification Revision 2.0

o
Swﬂo
[R
=58
=3 o —
D e
ot
(]
<
=]
ol 5
mﬁu o
23 <
3| @» = M
g 3 <§ ©
3| o Z
wn| — — D A
9l =
2 @
RS
ol 8
=
=l B
\
||||||||||||||||||||||||| A m
\
\
\
7 <
2322 v 2 g g
= £ 2= v A= > 3
S o= x S k) =
anli S 3 = 3 3
L o¢g = 5 31 =
Z = o ~ ~ o
—] o] 2 —_]] = — | &N
2| B| & \W,mmhs 5| 5| 3
S
&
)
= = =]
— — <
= M | A = —
A < a @) & <
v |z v |z Nl z
(e —

Host
(data toggle)

Figure A-39. No Buffer Available No Smash(HS NAK(S))

481

LGE-1010 / Page 509 of 650

Universal Serial Bus Specification Revision 2.0

m
Swﬂo
o S0
=58
=3 o —
D e
ot
(]
<
=]
ol 5
mﬁu o
23 <
3| @» = M
g 3 <§ ©
3| o Z
wn| < — D A
9 =
wn| ©
2.2
al ©
ol
i=-
=B
\
||| e o o
\
\
\
7 <
27ég v 5 s
=& 2 . £ > 3
S o= X ke k] =
2 oE S £ 5 3
— S = 5 O =
Z & o A 4 o
\
|
]
1
—] o] @ —] | 2 —_]] = — | &N
2| 9|) 2% 7| & 2% 7| & 5] 5| 3
| 9 9
\ = =
' 2 2
e e
= __ = = = | 2
— M — M — v) =
B <\ B < B @ 7 <
vz ! v |z v |z Nz
wn| & N__ o 1%5) = Z 1%5) = < O & a
o
\ ~ Q9
1 Mz
1 |
IS 2] I N Dl IS = = o a
Z @ A] % @ = % 9 = 5 B 5
L2
1
v &
[e) —

Host
(data toggle)

Figure A-40. No Buffer Available HS NAK(S) Smash

482

LGE-1010 / Page 510 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

(data toggle)

i
8=
.lWo
> 8
D =
=3

<

w
)mu
2 =
=2 2
Mb
- O

Z

Z| 9 =
©n 7] ZR}
|
\
|
]
= 1
3 i
@ <\
Al & N__
]
|
|
=/ 9 '
172] © \
\
\
v

TRANS ERR

sed->se2

— N ©@
B8 \
e 1
= 1
= 1
- A
@ <\
n & N__

1
1
1
= 9 !

17] 7] \

\
f

TRANS ERR

sed->se2

— N ©@
8 \
o 1
= 1
= 1
- A
@ <\
%) & N__

1
1
1
= 9 !

17] ©n \

\
f

TRANS ERR

sed->se3

ENDPOINT HALT

Figure A-41. No Buffer Available HS NAK(S) 3 Strikes Smash

483

LGE-1010 / Page 511 of 650

Universal Serial Bus Specification Revision 2.0

Hub

Host

FS/LS
device

(data toggle)

=
>1 B
<
—_ H =
n &h o 8
2 = >, <
s X ks h<) 3
%03 b= s 3
2 3z g =
o ~ ~ o
—_]] = — |
B B @ = of = —~35| 5 B
ol o] o LWJ
o
$—
S 0
= = = <
|
o M = = = =
CIN
—_] = —] @ v
B @ @ = o = 5 85 5
o] o)y O
S e . 0
L o —
on
en
=}
8
<
s
<
o
3

Figure A-42. CS Earlier No Smash(HS NYET)

484

LGE-1010 / Page 512 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

(data toggle)

i
8=
.Ww@
o=
s o —_
2
= N
z < Q
— % £
2 gD ° 8
= m > <
s X b=} 3 =t
z = 5 3 =}
o ~ ~ o
! -~
__ g
7| 9| 3 | ¢ 3 HEIE
\ ol ©f o
) 2
_ ~—
\ L
= \ = =
[1
5 v . o 5 S
A~ = \ Ay
=
Voo g
\ /\
— — —| | © —| v
Z @ e 5 B \ oz 8 5 B 5
LS
V¥V &
0 —

Figure A-43. CS Earlier HS NYET Smash(case 1)

485

LGE-1010 / Page 513 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS

Hub

Host

m
8=
.Ww@
D =
s =R=S] —_
2
=R X~
% g
@2) =] s
2 g > S
s X b=} B =t
z 2 5 3} =
o ~ ~ o
! ~
] g
=l of = =| of = E-lql = = of 9
Bl & @ S|l ©f O, S|l o © ~~9%| o] o
i [2
! D b5
[} — —
= \ [t [t =
T
Y Y \ — —
= Y . = = = - =
29 e > & > 7 <
gl zl S alz oy, Az Iz =
_E%
I "
— — —| o - & 0= —|
E I 3| % __M 3| 5| 8 3 B 5
=
v
O
.a%oo —
an
2
8
<
°

Figure A-44. CS Earlier HS NYET Smash(case 2)

486

LGE-1010 / Page 514 of 650

Universal Serial Bus Specification Revision 2.0

i
Swﬂo
[R
= » 2
N s
denmo —
2
e = s
Zl Z Zl 4 <
<
] -4 < -
° 7 & g o & 3 s
= 2 = = < g > 3
s X b= g £ b= 5 =
== g g 3 g g =
o ~ ~ o ~ ~ o
— — — o N — — — N
Z| 9| © 5| 5| 5 ~%| 2 = 5| 5| 3
>
£
[}
= = o
> M = M > M = >
& 5 A < Py O % <
nl z iz v |z “lz
— — — I N — — —_ N el
7 2 = 3| 5 5 7| @ = 3| 5 5
- -

Host
(data toggle)

Figure A-45. Device Busy No Smash(FS/LS NAK)

487

LGE-1010 / Page 515 of 650

488

Host

(data toggle)I

0

ENDPOINT HALT

Universal Serial Bus Specification Revision 2.0

M

Hub FS/LS
(status) device
i | |(data toggle)
I Old/x ! i 0
[} [}
W | | i
[} [} [}
st2 IN 0 : : i
i i :
shl ACK shl i Pending/x i i
| | |
[} [} [}
| | IN |
[} [} [}
| | \ |
i i STALL :
| | 4_// |
[} [} [}
| Ready/stall | i
| | |
[}] :
W | i |
[} [} [}
e N w a a
[} [} [}
STALL ch3 i Old/stall i i
| | |
[} [} [}
[} [} [}
! ! !

Figure A-46. Device Stall No Smash(FS/LS STALL)

LGE-1010 / Page 516 of 650

Universal Serial Bus Specification Revision 2.0

A.3 Interrupt OUT Transaction Examples
Legend:

(S): Start Split
(C): Complete Split

Summary of cases for Interrupt OUT transaction

e Normal cases

Case Reference
Figure

Similar Figure

No smash Figure A-47

(FS/LS handshake packet is done by M+1)

HS SSPLIT smash Figure A-48
HS SSPLIT 3 strikes smash No figure

HS OUT(S) smash Figure A-48
HS OUT(S) 3 strikes smash No figure

HS DATAO0/1 smash Figure A-48

HS DATAO/1 3 strikes smash No figure

HS CSPLIT smash Figure A-49

HS CSPLIT 3 strikes smash Figure A-50

HS OUT(C) smash Figure A-49
HS OUT(C) 3 strikes smash Figure A-50
HS ACK(C) smash Figure A-51

HS ACK(C) 3 strikes smash Figure A-52

FS/LS OUT smash Figure A-53
FS/LS OUT 3 strikes smash No figure

FS/LS DATAO0/1 smash Figure A-53

FS/LS DATAO/1 3 strikes smash No figure

FS/LS ACK smash Figure A-54

489

LGE-1010 / Page 517 of 650

490

Universal Serial Bus Specification Revision 2.0

FS/LS ACK 3 strikes smash ‘ No figure
Searcing
Case Reference | Similar Figure
Figure
No smash Figure A-55
CS(Complete-split transaction) earlier cases
Case Reference | Similar Figure
Figure
No smash (HS NYETand FS/LS handshake | Figure A-56
packet is done by M+2)
No smash(HS NYET and FS/LS handshake | Figure A-57
packet is done by M+3)
HS NYET smash Figure A-58
HS NYET 3 strikes smash Figure A-59
Abort and Free cases
Case Reference | Similar Figure
Figure
No smash and abort (HS NYETand FS/LS Figure A-60
transaction is continued at end of M+3)
No smash and free(HS NYETand FS/LS Figure A-61
transaction is not started at end of M+3)
FS/LS transaction error cases
Case Reference | Similar Figure
Figure
HS ERR smash Figure A-51
HS ERR 3 strikes smash Figure A-52

Device busy cases

LGE-1010 / Page 518 of 650

Universal Serial Bus Specification Revision 2.0

Case Reference | Similar Figure
Figure
No smash(HS NAK(C)) Figure A-62
HS NAK(C) smash Figure A-51
HS NAK(C) 3 strikes smash Figure A-52
FS/LS NAK smash Figure A-53
FS/LS NAK 3 strikes smash No figure
e Device stall cases
Case Reference | Similar Figure
Figure
No smash Figure A-63
HS STALL(C) smash Figure A-51
HS STALL(C) 3 strikes smash Figure A-52
FS/LS STALL smash Figure A-53
FS/LS STALL 3 strikes smash No figure

491

LGE-1010 / Page 519 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), 1 CS: comp. sp. status) |(data toggle)
0 SS:Free/x 0
uFrame M stl SSPLIT st

1

st2
il DATAO

 TRITNNG

SS:Pending/x

[} I
[} I I I
[} [} [} [}
[} I I I
[} [} [} [}
[} I [} [}
| I [} [}
[} [} [} [}
[} I I I
[} [} [} [}
[} I I I
[} [} [} [}
[} I [} [}
| I [} [}
[} [} [} [}
[} I [} [}
[} [} [} [}
————————— et et L e it e it
uFrame M+1 i i i ouT i
1 1 |——__————_—__““————___’_|
' ' ' DATAO '
| | | M '
[} I [} [} 1
! ! ! ACK !
1 1 |“___--~“—~—__—---
! I CS:Ready/ack | |
......... S O S
uFrame M+2 | ¢l CSPLIT I | i
T T—— : |
i 2 OuT 2 i i i
[} [} [} [}
| | . | I
! ACK ch2 ! CS:Old/ack ! !
P : : :
3 : : |
| I [} [}
————————— D e e e ettt e e T B e
uFrame M+3 | Host does not issue 2nd CSPLIT, | CS:Free/x | |
i because host already receives ACK i i i
1 on previous microframe. ! ! !
| : : |
[} I I I
[} I I I
[} [} [} [}
[} I I I
[} [} [} [}
[} I [} [}
[} [} [} [}
“““““ 2
uFrame M+4 ! Host does not issue 3rd CSPLIT, : SS:Free/x : :
! because host already receives ACK ! ! !
! on previous microframe. : : !
i i i |
[} I I I
[} [} [} [}
[} I [} [}
[} [} [} [}
[} I I I
[} I I I
""""" 1
uFrame M+5 ! ! ! !
Figure A-47. Normal No Smash(FS/LS Handshake Packet is Done by M+1)
492

LGE-1010 / Page 520 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS
device

Hub

(SS: start sp. status

(data toggle)

s)

U

CS: comp. sp. stat

Host
(data toggle)

- Q| =
SS.
n
n
S
g In
2 E|En
z| 2| <nm
SODI
n
— o —n
% % Tm
n
]
=
o
2
(=
=

TRANS ERR

sel

————————L

uFrame M+1

ﬂ||||||||||||||
|

]

]

]

|

]

]

|

]

]

]

]

]

]

|

]

]

]

]

]

]

|

|

]

b e
i

|

]

]

]

]

]

]

|

“

I
[—
i

|

b= o] 2
I o] o o
]

“

|
1.
PR e wm
_SU Y
1O O] Z
]

]

IS Y =
I o] © [}
]

i

]
g
S

| x

"=

"e

i §

I =

|

=

ctl

uFrame M+3

ch5

CSPLIT
ouT
NYET

ct2
ch6

ctl

uFrame M+4

ch5

CSPLIT
ouT
NYET

ce’

e S o -3 gt
T A T

ct2

e e e et It

>
X
on
=
o
[=}
()
&~
wn
wn
—_] N =
\W}Jﬁﬁ..m
&
[}
—
S 0
= Z
2 |ElE
n | 2] <
»n | O A
= Q] -
w| wn| v
[e'e)
+
b
g
<
-
(=
=

ouT

uFrame M+9

DATAO

ACK

ﬂ||||||||||||||

_

I

|

I

I

I

I

I

I

|

I

I

I

I

I

I

|

I

I

I

I

I

I

|

I

e

]

I

I

H i
Q

| <

] ~

I =

_ Q

' n

1 C

I

i

o

i

I

N RSN

I o] o o

I

|

I

I

1=

=

I — A

[

L7l 2 Q

Lo Of <

I

I

Pzl o =

o o [}

I

I

I

I

e o o o o o o -

=]

[—

s

1=

_e

=

I =

)

E)

Figure A-48. Normal HS DATA0/1 Smash

493

LGE-1010 / Page 521 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
(datn toggle) (SS:. start sp. status device
| CS: comp. sp. statlus) |(data toggle)
0 SS:Free/x 0
uFrame M stl SSPLIT st

1
e o ——

st2
sd1 DATAO s

----.......______“_12.'>

SS:Pending/x

e e e

on previous microframe.

[}
[} } [}
] I 1
] }]
]]]
]] [}
} } 1
} } [}
] } [}
[} } [}
[} } [}
[} }]
]]]
]] [}
]] [}
} I [}
] } [}
————————— et e s R et
uFrame M+1 i i ouT i
I 1 \ 1
! ! DATAO !
| | M i |
i i AcK |
| | 4_// I
! CS:Ready/ack | !
_________ R SR
uFrame M+2 i _~__C_tl_~_ CSPLIT i i
T T T T e | |
! W: ! |
} } 1
' {Hub ignores this | '
i {OUT because no | i
i TRANS ERR i match the address i i
! cel->ce6 ! ! !
] [} } [}
i i i i
! ol CSPLIT(retry imm.) ! ! !
T —— | :
} 2 1 } 1
o . a |
! I CS:Old/ack ! I
e AR | |
1 i i i
————————— e e
uFrame M+3 ! Host does not issue 2nd CSPLIT, ! CS:Free/x ! !
I because host already receives ACK ! ! !
| on previous microframe. ! ! !
| i i i
[} L} |)
““““““ e sy sttt ettt
uFrame M+4 | Host does not issue 3rd CSPLIT, SS:Free/x '
i i
} }
] }
I I

[}
[}
because host already receives ACK |
[}
[}
1

Figure A-49. Normal HS CSPLIT Smash

494

LGE-1010 / Page 522 of 650

Host

(data toggle),

0
uFrame M

uFrame M+1

uFrame M+2

uFrame M+4

e e

Universal Serial Bus Specification Revision 2.0

sl SSPLIT

1

Host does not issue 3rd CSPLIT,
because this endpoint is already

I

|

|

I

|

|

I

st2 '

sdl_ DATAO i
“ :
|

|
__________________________ 4
i

I

|

|

I

|

|

|

I

|

|

|
__________________________ A
--_ctl___ CSPLIT !
|

|

I

|

TRANS ERR '
cel->ce6 '

|

—___cl___ CSPLIT(retry imm.) |
______________ !
W: |
|

|

I

i

TRANS ERR i
cel->ce6 i

i

—-_ctl __ CSPLIT(retry imm.) |
_______________ |

ct2 OUT > i
\ !
|

TRANS_ERR |
cel->ce5 i
ENDPOINT HALT '
__________________________ 4
Host does not issue 2nd CSPLIT, i
because this endpoint is already !
ENDPOINTHALT. __________ i
|

|

I

|

ENDPOINT HALT.

Hub

(SS: start sp. status

CS: comp. sp. statlus)

SS:Free/x

SS:Pending/x

CS:Ready/ack

g g

Hub ignores this |
OUT.(no match |
the Address field)]

|

Hub ignores this |

OUT.(no match |
the Address ﬁeld)i

Hub ignores this
OUT.(no match |
the Address ﬁeld):

|

Figure A-50. Normal HS CSPLIT 3 Strikes Smash

FS/LS
device
|(data toggle)
10
|
:
|
|
|
|
|
|
|
i
|
__________________________ SRR
—or
DATAO i
|
M '
ACK :
«—
|
__________________________ S
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
__________________________ R
|
|
i
|
__________________________ A —
|
:
|
|
|
495

LGE-1010 / Page 523 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), 1 CS: comp. sp. status) |(data toggle)
0 SS:Free/x 0
uFrame M stl SSPLIT st

1

st2
—ll DATAO

SS:Pending/x

uFrame M+4 i Host does not issue 3rd CSPLIT,
1 because host already receives ACK
on previous microframe.

SS:Free/x

[} I
[} I I I
[} [} [} [}
[} I I I
[} [} [} [}
[} I [} [}
[} [} [} [}
[} I I I
[} I I I
[} [} [} [}
[} I I I
[} [} [} [}
[} I [} [}
[} [} [} [}
[} I I I
[} I I I
[} [} [} [}
————————— e i i Sttt e
uFrame M+1 i i i ouT i
1 I I \ I
! ' ' DATAO '
| | | M '
[} I [} [} 1
: ! ! ACK !
1 1 1 N 1
i i CS:Ready/ack i i
————————— e e et ettt
uFrame M+2 | CSPLIT | | |
| ctl | | 1
: ! : :
| 2 | | |
T i i
i ACK _E*P___- i CS:Old/ack i i
e | | |
i TRANS_ERR | i i
[} I [} [}
| cel->ce6 I I 1
[} [} [} [}
[} I [} [}
[} [} [} [}
i «1 CSPLIT(retry imm.) | i i
[} [} [} [}
i @ OuUT 2 i i |
i i i i
: ch2 ACK ch2 : : :
[} I I I
11 1 I 1
| | | [}
_________ L e e
uFrame M+3 | Host does not issue 2nd CSPLIT, | CS:Free/x ' '
| because host already receives ACK ' ' '
i on previous microframe. | i |
i i i |
[} [} [} [}
————————— D et ittt B ettt et T LR PP PP
I I I
[} [} [}
I I I
[} [} [}

Figure A-51. Normal HS ACK(C) Smash

496

LGE-1010 / Page 524 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), 1 CS: comp. sp. status) |(data toggle)
0 SS:Free/x 0
uFrame M stl SSPLIT st

1

st2
il DATAO

NG

SS:Pending/x

CS:Ready/ack

otl CSPLIT(retry imm.)

__-_-—‘____‘-“-——32__’>
ct2 ouT

ct2

CS:Old/ack

TRANS ERR
cel->ce6

ctl CSPLIT(retry imm.)

__-_-—‘____‘-“-——32__.>
ct2 ouT

ct2

TRANS ERR
cel->ce6

ctl CSPLIT(retry imm.)

__-_-—‘____‘-“-——fg__’>
ct2 OouT

ct2

TRANS ERR
cel->ce5

ENDPOINT HALT

Host does not issue 2nd CSPLIT,
because this endpoint is already
ENDPOINT HALT.

Host does not issue 3rd CSPLIT,
because this endpoint is already
ENDPOINT HALT.

SS:Free/x

g gy g g gy UGS UP I SY RPNy RSy

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
+
|
|
|
|
|
|

e e

Figure A-52. Normal HS ACK(C) 3 Strikes Smash

497

LGE-1010 / Page 525 of 650

498

Universal Serial Bus Specification Revision 2.0

Host

(data toggle), \

S

e e el sl e

uFrame M stl SSPLIT “

1

st2

uFrame M+1

uFrame M+2

@l CSPLIT

TRANS ERR on FS/LS
ce2->ce3

Host does not issue 2nd CSPLIT,
because host already receives ERR

uFrame M+3

uFrame M+4

Host does not issue 3rd CSPLIT,
because host already receives ERR

uFrame M+8

. SSPLIT(retry)
U}
2 OUT

st2

sdl DATAO shl

uFrame M+9

uFrame M+10

@l CSPLIT

1

ct2

ch2 ACK ch2

—

g gy N g g gl Ay

Hub FS/LS
(SS: start sp. status device
CS: comp. sp. statlus) I(data toggle)
SS:Free/x 0

SS:Pending/x

T

CS:Old/ack

|
|
I
|
|
|
I
|
|
|
|
|
i
|
_______________________________________ Ao
—our
I
DATAO '
lllllll......' i
|
TRANS ERR :
CS:Ready/trans | err |
_____________ o S
| |
I I
| |
| |
| |
I I
| |
CS:Old/trans_err '
| |
| |
I I
| |
| |
I I
| |
| |
_____________ L T SYPREPREIPRI ST
CS:Free/x ' '
| |
| |
_____________ +__________________________ﬂ_________
SS:Free/x : :
: :
| |
_____________ e e
I I
_____________ L
| |
| |
| |
| |
| |
I I
| |
| |
| |
| |
| |
| |
I I
SS:Pending/x | |
_____________ L T SIPREPREPRI SRS
| |
—or
| |
i DATAO i
| -’ i
ST < S
| |
CS:Ready/ack i i
i
|
|
I
|
|
I
|
|
|
I
|
|

Figure A-53. Normal FS/LS DATAO0/1 Smash

LGE-1010 / Page 526 of 650

Universal Serial Bus Specification Revision 2.0

uFrame M+10 ctl CSPLIT ot

1

ct2

ch2 ACK ch2

Host

(data toggle)I \
[} I
0 | i
uFrame M | sl SSPLIT i
! \ !
1 2) 1
—3 OUT s |
i il DATAO |
| shl 1
| M :
[} [}
[} [}
""""" VTt
uFrame M+1 | |
: :
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
[} I
[} [}
[} [}
[} [}
[} [}
“““““ T Tt et
uFrame M+2 ! ctl CSPLIT ctl :
! \ !
| 2 |
: ct OouT " :
[} [}
[} I

RR h4
: ot E - :
i i
i TRANS_ERR on FS/LS '
: ce2->ce3 :
————————— pmoomommcemocoo o omooae]
uFrame M+3 | Host does not issue 2nd CSPLIT, '
| because host already receives ERR |
_________ L _on previous microframe. ________ |
uFrame M+4 i Host does not issue 3rd CSPLIT, i
: because host already receives ERR :
_________ L _on previous microframe. ________ |
————————— bommmmmmmmm oo
urame M+ | SSPLIT(retr :
! stl y) !
:_____-—_——_—‘__—22—_b’:
[} [}
i 2 OuT s©2 i
] dl [}
! S DATAO shi :
[} [}
[} [}
--------- t----
uFrame M+9 | '
| :
[} [}
[} [}
[} I
[} I
[} [}
[} I
[} [}
[} [}
[} [}
[} I
_________ L]
[} I
| I
[} [}
[} [}
[} [}
[} I
[} I
[} [}
[} I
[} [}
[} [}
[} [}
[} I
[} I
[} I

Hub FS/LS
(SS: start sp. status device
CS: comp. sp. statlus) I(data toggle)
SS:Free/x 0

|
|
|
|
|
|
|
|
|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
g

I
CS:Ready/trans | eTRANS_ERR
_____________ o U SURUE

A ———————

CS:Old/trans_er

SS:Pending/x

:Device does

M ! not receive
:this data.

4// iData toggle

1is still “1°.

CS:Ready/ack

CS:Old/ack

T e e et R

Figure A-54. Normal FS/LS ACK Smash

499

LGE-1010 / Page 527 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), CS: comp. sp. status) |(data toggle)
0 SS:Free/x 0
uFrame M stl SSPLIT st

[}
|
|
[}
=0
st2 ouT © :

i

I

[}

|

[}

[}

il DATA0

[}
[} I I
[} [} [}
[} I I
[} [} [}
[} [} [}
[} [} [}
[} I I
[} I I
[} [} [}
[} I I
[} [} [}
[} [} [}
[} [} [}
[} I I
[} I I
[} [} [}
————————— e i i Sttt e
uFrame M+1 i i i ouT i
| | | \ |
! ' ' DATAO '
: i ' M i
[} I [} [} 1
i | | N |
i ! CS:Ready/ack ! i
_________ S HOUOII
uFrame M+2 | . CSPLIT i i i
i~ tl_ ! : :
[} ct2 OUT [} [} [}
: ct2 ' : |
: {Does not match this |
i ECSPLIT on first ! i
! lentry of CS.Then : :
| TRANS_ERR \HUB doesnot | I
! cel>ce6 :respond any packet{ :
i i i |
[} [} [} [}
i . CSPLIT(retry imm.) i i i
T e e
ot . a a
[} [} [} [}
i ACK ch2 | CS:Oldack | !
| | | |
1 i i i
_________ L e e
uFrame M+3 | Host does not issue 2nd CSPLIT, | CS:Free/x ' '
| because host already receives ACK ' ' '
i on previous microframe. | i |
: : : :
[} [} [} [}
————————— D et ittt B ettt et T LR PP PP
uFrame M+4 | Host does not issue 3rd CSPLIT, i SS:Free/x i i
[} [} [}

[} .
1 because host already receives ACK
on previous microframe.

Figure A-55. Searching No Smash

500

LGE-1010 / Page 528 of 650

Host
(data toggle),

0
uFrame M

uFrame M+1

uFrame M+2

uFrame M+3

uFrame M+4

[}
[}
[}
[}
[}
[}
|
[}
[}
[}
[}
[}
[}
|
[}
[}
[}
-
[}
[}
|
[}
[}
[}
[}
[}
[}
|
[}
[}
[}
[}
[}
e
|
[}
[}
[}
[}
[}
[}
|
[}
[}
[}
[}
[}
[}
|
H
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
s
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
.
[}
uFrame M+5 :

Figure A-56

Universal Serial Bus Specification Revision 2.0

Hub FS/LS
(SS: start sp. status device
1 CS: comp. sp. statlus) I(data toggle)
SS:Free/x i 0

sl SSPLIT

1

st2
il DATAO

 TIINNG

SS:Pending/x

on previous microframe.

|
I I
[} [}
| |
[} [}
[} [}
[} [}
[} [}
I I
[} [}
| |
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
—————————————————————————— B i it
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
| |
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
| |
[} [}
-------------------------- Hmmmmm et
[} [}
ctl | |
W : CS:Ready/ack :
) I I
c OouT 2 : :
[} [}
[} [}
ch5 1
e e |
| |
I I
[} [}
[} [}
—————————————————————————— Hmmmm e ——— %
[} [}
CSPLIT I |
ctl | 1
ctl : :
t2 I I
< ouT 2 :
[} [}
1 CS:Old/ack |
ch2 l |
ch2 ACK : :
[} [}
[} [}
[} [}
—————————————————————————— A== 4
. |]
Host does not issue 3rd CSPLIT, : SS:Free/x :
because host already receives ACK I CS:Free/x !
[} [}
| |
I I
[} [}
| |
[} [}
[} [}
[} [}
| |
I I
- +
| |
[} [}
I I

. CS Earlier No Smash(HS NYET and FS/LS Handshake Packet is Done by M+2)

501

LGE-1010 / Page 529 of 650

Universal Serial Bus Specification Revision 2.0

o
Smwﬂb
Hw.l o0
Vt
N o=
TS o
=~ e __
—
v
g Bm—mmmm -
£l
< >
% 4 "8
=2 482 =% £
= 2 d 9 =t
O [=}
v 8 2 |5}
oSS & e
n n
wn O
<
IR
(e
= Z
SIE=IE>
S 2 <
wn
wn| O A
z 9 =
w| wvn|
e
-
wn o)
e 8 =
M [
anlits =
o =~
= 23
=

R et et s e ittt kbt e e

uFrame M+1

et s ittt B ettt ittt BT

= Q9 2
ol o o
= =
2le| =
n|l =2 >
0| O =z
= g £
o] o 9
o
+
=

[}

g

S
=

=

Hm—————_—— —

[}
]
1
[}
[}
]
[}
i
1
|2
[}
=l
2| <N O
_ODA
“
1
[}
[}
]
i
[}
R
i x
| E
! =
[

1 [0}
[2
! %)
1 O
[}
|
_
[}
“
Y Y
“CCC
“
]
e
_HTH
7 Rl B
_CON
i
ST Y b
[RSN RS S]
[}
“
[}
e —————— - —————
1
L7
[}
=
I o
-
I =
=)

=

———————e b e e

3
x &
] =
&) Q
175} n
|75} @]
= 9 £
o 5] [}
=
3
ol M
n| =2 @)
Ol O <
=l 9 =
153 o [}
<t —
+
p
[}
g
[
-
o
=]

B e e e e L et

CS:Free/x

uFrame M+5

Figure A-57. CS Earlier No Smash(HS NYET and FS/LS Handshake Packet is Done by M+3)

502

LGE-1010 / Page 530 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
’ 1 (SS: start sp. status device
(data toggle), t CS: comp. sp. status) |(data toggle)
0 SS:Free/x i 0
uFrame M stl SSPLIT st

1

st2
il DATAO

NG

SS:Pending/x

[} I
[} I I
[} [} [}
[} I I
[} [} [}
[} [} [}
[} [} [}
[} I I
[} I I
[} [} [}
| [} [}
[} [} [}
[} [} [}
[} [} [}
[} I I
[} I I
[} [} [}
————————— P ¢
uFrame M+1 1 : :
: | |
[} [} [}
[} [} [}
| [} [}
[} [} [}
[} [} [}
[} [} [}
[} I I
[} [} [}
[} [} [}
| [} [}
[} [} [}
“““““ e
+ tl
uFrame M+2 i W i CS:Ready/ack i
[} [}
i ct2 ouT 2 : :
[} [} [}
i NYET ____chs___1 i
R e | |
i i |
i TRANS_ERR i i
i cel->ce6 i i
' ctl CSPLIT(retry imm.) | '
Tl :
[} [} [}
i ct2 ouT " i i
[} [} [}
[h5 1 1
| W]]
[} [} [}
“““““ T
uFrame M+3 : otl CSPLIT : :
: a :
[} [} [}
! ct2 OouUT " : :
[} [}
i ACK o ¥ | CSOldack !
e | |
3 | i
--------- -1
uFrame M+4 | Host does not issue 3rd CSPLIT, | SS:Free/x '
| because host already receives ACK | CS:Free/x '
| on previous microframe. ' '
“““““

Figure A-58. CS Earlier HS NYET Smash

503

LGE-1010 / Page 531 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonal (SS: start sp. status device
(data toggle), 1 CS: comp. sp. status) |(data toggle)
0 SS:Free/x i 0
uFrame M stl SSPLIT st

1

st2
il DATAO

NG

SS:Pending/x

because this endpoint is already
ENDPOINT HALT.

] |
[} I I
[} [} [}
1 | |
[} [} [}
[} I [}
[} [} [}
] | |
[} I I
[} [} [}
| I [}
[} [} [}
[} I [}
[} [} [}
] | |
[} I I
[} [} [}
————————— P ¢
uFrame M+1 1 : :
: : :
[} [} [}
[} I [}
| I [}
[} [} [}
[} I [}
[} [} [}
] | |
[} [} [}
[} I [}
| I [}
[} [} [}
“““““ e
uFrame M+2 ctl CSPLIT l) 1
i tz ctl i CS:Ready/ack i
: c OouT " : :
[} [} [}
i NYET ____chs___1 i
| 4T : :
[} I I
| TRANS_ERR ' '
: cel->ce6 : :
: : :
[t1 1 |
: W | |
[} [} [}
: ct2 OouT 2 : :
] | |
[} I I
: NYET ___c<h5___ | |
e i i
| TRANS_ERR i i
: cel->ce6 : :
[} I [}
i el CSPLIT | |
[} [} [}
: ct2 ouT o2 : :
[} I [}
[} [} [}
i NYET ___chs ___ i i
I e i i
[} I [}
! TRANS_ERR ! !
: cel->ce5 : :
| ENDPOINT HALT i i
--------- e Ik
uFrame M+3 | Host does not issue 2nd CSPLIT, | CS:Free/x i
| because this endpoint is already ' '
_________ UENDPOINTHALT. ' !
[} I I
uFrame M+4 ! Host does not issue 3rd CSPLIT, ' SS:Free/x !
[} [} [}
: i i
] | |
} [} [}

Figure A-59. CS Earlier HS NYET 3 Strikes Smash

504

LGE-1010 / Page 532 of 650

FS/LS
device

Hub

(SS: start sp. status

Universal Serial Bus Specification Revision 2.0

Host

(data toggle)

I~ | | 1 | o 1 l
% Lo _ i Lo i i
= | | 1 | [1 |
8]] I] [| |
5 . | | N _ i
S o]] I] [I — |
Z |] i] __l 1]
|||||||||||||||||| 5
| | I | [I I
1 1 1 1 1o 1 I
]] 1 }0 [1 I
Lo i | P i i
o “ o ! “ "
<
| | I - - [I I
Lo i ﬂ - Lo i i
]] | S 2 5 o | < |
]] | A1 s 5 o | < |
Lo i ElCg 2 P el ER %
| | I 2| < E = [(2] < O I
]] | ol A 2 B [1 O A < |
| | | o @ [| |
. _ 2 N _ “
2 5
| | 1 = [I I
Lo i L 23 Lo i i
| | 1 I o 3 o 1 |
]] 1 2= [1 I
— | | 1 1 T8 [1 I
2]] I] o 1 |
- B T T T L B T Tt
5
> x| | [| [w | 41
. !] I] 1o 5! Q1 v
o D] 1] [D = ! S
T X = | | X [= = | <
a D =N | | [[=l s | 5
g 9 51] I] [51 Q| =
x =1 _ E N < | ¢ | >
) A] | | @A [7 w2, N
n N n |] | | A o n | O ®)
@)]] 1] [1 I
| | 1 | [l |
|||||||||||||||||| T T T T T T T T T T T T T T T T T T T e e e e e T T T T T e e T - - - - -
]] 1] [1 I
| | I | [I I
1 1 1 1 1o 1 I
M | | “ 1 “ | “ [K 1 I ~
2 @ = ! [l e ! = S = ! = S = vt = @ = ! g @ =
7] 7] ©]] o o [5) [} o o [3)] o o [5) [}] ~ wm 7] Z] [} I o o o
| | 1 | [> 1 I
]] |] B | |
| | | | [o | |
ol | e . | e L <[! N=
H < | [—~ [= = —~ [H < | 1=
=l 1V oiglgl 2l L Elgl 2l gl 2l t 2 elef 25| ¥
wn =) A | (B2 U Y | w2 =) > | wn U Y | | wn - A | [B72! =) O
vl O] A ! 1o o Z) o Z) o Z Lo’ ol A ! Lo o <
| | 1 | [1 I
- i i Lo i i
- af 5] =] « 2 I = e 1 =] S | = o T I = Q Q
z 7 2 i 18] B S| 1+ 8] B S i 8] ®© | B! z F 2 | 1 8] © S
| | I | [I I
1 1 1 1 1o 1 I
| | 1 | [1 I
| | I | [I I
|||||||||||||||||| e e e
o [[[[T [1< —
P L& s | L& s |
= = = .S oS = =
) ") ") _) " [_ ") _) “)
g - - - .- - -
— I =1 = I = I = | I = I = [
=2 P (== (== [(== (==
= S5 B E = = = E)

505

LGE-1010 / Page 533 of 650

Figure A-60. Abort and Free Abort(FS/LS Transaction is Continued at End of M+3)

Universal Serial Bus Specification Revision 2.0

Hub

(SS: start sp. status

Host

(data toggle)

FS/LS
device

(data toggle)

s)

U

CS: comp. sp. stat

stl

SSPLIT
ouT

stl

st2

st2

DATAO

sd1

uFrame M

i s ittt B ittt ittt LR T

uFrame M+1

e

CSPLIT ctl

ctl

uFrame M+2

ct2
ch5

ouT
NYET

ct2
ch6

CSPLIT
ouT
NYET

ctl

uFrame M+3

ctl
ct2
ch5

ct2
ch6

||||||||||||||| |_
. 1

7] i

A 1
g |
S 1

=} |
: |
9]

-2 H
131 1
< |
] 1
=S|
< 1
B |

2 '

£ i
S
n 1
9] 1
o |

<« |

=) 1
= 1

T |

1
||||||||||||||| 4
1

1

1

1

> |

~

5] 1
5] 1
) 1

o i

n |

n 1

1
1
||||||||||||||| 1
1
1
1
1
= 9 2 !
(5] (5] 5 [}
1
1
1
1
1
= |
= = - |
wn U Y |
O O Z _
1
1
|

— ~ o~
3| S 5| B
1
1
1
1
-

- i
s |

= |
> |
£ !
= [}

= l
=

uFrame M+8

SSPLIT(retry)

stl

stl

st2

ouT

st2

DATAO

sdl

R
I i
I |
I |
| |
I i
I |
I |
I i
I |
i 2 i
I |
I = = M |
ol <f S|
_O a < !
| |
I |
I |
I |
I i
I |
I |
| |
I |
Fm————————— -
] |
1 |
1 Q1
I g
1]
| =l
I S |
| [~
_ o |
| O
I |
i i
[ittt -1
| |
I |
I |
I |
I |
I |
I |
| |
I |
I |
I |
I i
I |
I |
| |
I |
I |
I |
I i
I |
I |
| |
I |
I |
I |
I i
. -
I |
_ww |
I |
= |
g |
| “
(== |
El

CSPLIT
ctl

ouT

ctl

uFrame M+10

ct2

ct2

ACK

ch2

Figure A-61. Abort and Free Free(FS/LS Transaction is not Started at End of M+3)

506

LGE-1010 / Page 534 of 650

Host
(data toggle),

S

T

uFrame M

uFrame M+1

uFrame M+2

|
|
|
|
|
|
|
|
|
+

uFrame M+3 |
[}
[}

uFrame M+4 |
[}
[}

uFrame M+8

uFrame M+9

uFrame M+10

—

e i dhf e St it

Universal Serial Bus Specification Revision 2.0

sl SSPLIT

1

st2

@l CSPLIT

NAK ch3

Host does not issue 2nd CSPLIT,
because host already receives NAK

Host does not issue 3rd CSPLIT,
because host already receives NAK

o SSPLIT(retry)
U,’
st2 ouT

st2

sl DATA0

ctl CSPLIT ot

1
v o ——

ct2

ch2 ACK ch

g g (g S (Pt JEpUNpUp RO PRNpUIUEpUIpUIP [P IpN RSN PN R,

Figure A-62. Device Busy No Smash(FS/LS NAK)

Hub FS/LS
(SS: start sp. status device
CS: comp. sp. statlus) (data toggle)
SS:Free/x : 10
: :
[} [}
[} [}
I I
I I
[} [}
[} [}
[} [}
[} [}
| |
SS:Pending/x | '
_____________ o
—or
I I
' DATAO '
| M |
[} [}
i NAK i
M !
I [}
CS:Ready/nak | '
_____________ R S
[} [}
I I
[} [}
[} [}
[} [}
I I
I I
CS:Old/nak | :
i i
[} [}
I I
I I
_____________ RO SOOI
CS:Free/x ' '
i i
I I
| |
_____________ e
SS:Free/x | |
: :
I I
| [}
_____________ L
[} [}
_____________ S SR
[} [}
[} [}
I I
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
I I
[} [}
i i
SS:Pending/x | '
_____________ T s
i —or i
I I
' DATAO '
I I
| M '
e
CS:Ready/ack i i
_____________ S SR
[} [}
[} [}
I I
I I
[} [}
i i
CS:Old/ack ' '
| |
[} [}
[} [}
[} [}
! !
507

LGE-1010 / Page 535 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
(data toggle) (SS:. start sp. status device
| 1 CS: comp. sp. statlus) I(data toggle)
0 SS:Free/x 0
uFrame M stl SSPLIT st

1

st2
sl DATA0

NG

SS:Pending/x

because this endpoint is already
ENDPOINT HALT.

[} [}
| | | |
[} | | |
[} | | |
| | | |
[} | | |
[} | | |
[} [} [} [}
| | | |
[} | | |
[} | | |
| | | |
| | | |
[} | | |
[} [} [} [}
| | | |
[} | | |
————————— e e e et et ettt
uFrame M+1 i i i ouT i
I | | \ |
' ' ' DATAO '
| i i m—
! ! ! STALL !
| I I N I
! I CS:Ready/stall | '
--------- e
uFrame M+2 i i i i
L i i
| 2 | | |
| —— OUT o : :
i | | |
! chl STALL chl : : :
| | |
[} | | |
i i i i
! ENDPOINT HALT : : :
———————— 0 el st Ity
uFrame M+3 | Host does not issue 2nd CSPLIT, | CS:Free/x ' '
| because this endpoint is already i i i
_________ ENDPOINTHALT. % b a
uFrame M+4 | Host does not issue 3rd CSPLIT, | SS:Free/x '
i i i
[} | |
| | |

Figure A-63. Device Stall No Smash(FS/LS STALL)

508

LGE-1010 / Page 536 of 650

Universal Serial Bus Specification Revision 2.0

A.4 Interrupt IN Transaction Examples
Legend:

(S): Start Split
(C): Complete Split

Summary of cases for Interrupt OUT transaction

e Normal cases

Case Reference
Figure

Similar Figure

No smash Figure A-64
(FS/LS data packet is on M+1)

HS SSPLIT smash Figure A-65

HS SSPLIT 3 strikes smash No figure

HS IN(S) smash Figure A-65
HS IN(S) 3 strikes smash No figure

HS CSPLIT smash Figure A-66

HS CSPLIT 3 strikes smash Figure A-67

HS IN(C) smash Figure A-66
HS IN(C) 3 strikes smash Figure A-67
HS DATAO0/1 smash Figure A-68

HS DATAO/1 3 strikes smash Figure A-69

FS/LS IN smash Figure A-70

FS/LS IN 3 strikes smash No figure

FS/LS DATAO0/1 smash Figure A-71

FS/LS DATAO/1 3 strikes smash No figure

FS/LS ACK smash Figure A-72

FS/LS ACK 3 strikes smash No figure

509

LGE-1010 / Page 537 of 650

510

Universal Serial Bus Specification Revision 2.0

Searcing
Case Reference | Similar Figure
Figure
No smash Figure A-73
CS(Complete-split transaction) earlier cases
Case Reference | Similar Figure
Figure
No smash (HS MDATA and FS/LS Figure A-74
transaction is on M+1 and M+2)
No smash (HS NYET and FS/LS Figure A-75
transaction is on M+2)
No smash (HS NYET and MDATA and Figure A-76
FS/LS transaction is on M+2 and M+3)
No smash (HS NYET and FS/LS Figure A-77
transaction is on M+3)
HS NYET smash Figure A-78
HS NYET 3 strikes smash Figure A-79
Abort and Free cases
Case Reference | Similar Figure
Figure
No smash and abort (HS NYETand FS/LS Figure A-80
transaction is continued at end of M+3)
No smash and free(HS NYETand FS/LS Figure A-81
transaction is not started at end of M+3)
FS/LS transaction error cases
Case Reference | Similar Figure
Figure
HS ERR smash Figure A-68
HS ERR 3 strikes smash Figure A-69

LGE-1010 / Page 538 of 650

Universal Serial Bus Specification Revision 2.0

e Device busy cases

Case Reference | Similar Figure
Figure
No smash(HS NAK(C)) Figure A-82
HS NAK(C) smash Figure A-68
HS NAK(C) 3 strikes smash Figure A-69
FS/LS NAK smash Figure A-71
FS/LS NAK 3 strikes smash No figure
e Device stall cases
Case Reference | Similar Figure
Figure
No smash Figure A-83
HS STALL(C) smash Figure A-68
HS STALL(C) 3 strikes smash Figure A-69
FS/LS STALL smash Figure A-71
FS/LS STALL 3 strikes smash No figure

511

LGE-1010 / Page 539 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), 1 CS: comp. sp. status) |(data toggle)
0 SS:Free/x 0
uFrame M stl SSPLIT st

1
W—»

st2

[} I
[} I I
[} [} [}
[} I I
[} [} [}
[} I [}
| I [}
[} [} [}
[} I I
[} [} [}
[} I I
[} [} [}
[} I [}
[}] I
————————— s e
uFrame M+1 | ' '
[} I I
| | IN |
| I [}
1 1 \ 1
[} [} [}
' ' DATAO '
[} [} [}
[} I [}
i i CS:Ready/lastd: |m+* i
[} [} [} [}
! ! ! 1
————————— D ettt ittt o bttt (et E e
uFrame M+2 | ¢l CSPLIT I | i
T ———— | |
i 2 IN 2 i i i
i i i |
| DATA0 ___cdl | CS:Old/lastdata i
Py L : : :
L i i |
| I [} [}
————————— D e e e ettt e e T B e
uFrame M+3 | Host does not issue 2nd CSPLIT, | CS:Free/x | |
i because host already receives i i i
! DATADO on previous microframe. ! ! !
i i i |
[} I I I
[} I I I
[} [} [} [}
[} I I I
[} [} [} [}
[} I [} [}
[} [} [} [}
“““““ 2
uFrame M+4 ! Host does not issue 3rd CSPLIT, : SS:Free/x : :
! because host already receives ! ! !
! DATAQO on previous microframe. | : :
| : : |
[} I I I
[} [} [} [}
[} I [} [}
[} [} [} [}
[} I I I
[} I I I
""""" 1
uFrame M+5 ! ! ! !
Figure A-64. Normal No Smash(FS/LS Data Packet is on M+1)
512

LGE-1010 / Page 540 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS
device

Hub

(SS: start sp. status

Host
(data toggle)

)
2
on
)
9)
8
<
k5]
S o
e
—
£
STTT T T T T T T T T T T —
E P
. S <
w n 2 u
x O «
. X o 2
g 3 2 E 5
3 I & e
4 55 %
%)
O T &€
]
I
1
]
]
1
i
1
[
=
=l
ol
!
S__m
|
1
|
— N
=) 9
S— wv
]
|
]
o

uFrame M

e e e i Rt b

uFrame M+1

———————— 1

uFrame M+2

ctl
ct2
ch4

CSPLIT
IN
NYET

ctl
ct2
ch6

B e e e e L et

= 9| X
(5] (5] (5}
= =
o o
Ol & Z
= 9]
5] 5] [}
on
+
=
Q
5
&S
j=]

—_—,—,—————_——-—_—_——_——_——_—,—_—,—,—,—,—_,—,—,—E—E—E—,E—E—E—,e_—_—,—_—_—_——_—_—,—_—,—_—,—_—,—_—,—_——_—_he—_—,—_—_——_—,—_—,_—,—_—,—,—,—,E—,—,E—E—E—E—E—,E—eee e e e

=] o] 2
ol o] O
g
= &
(=9
O| & Z
O
(53
(5]
/\
= 9 PR
ol o Q| o
<t
LT
p
o
g
<
-
&
=

B e e e e L et

||||||||||||||| 4

|

53]

=

ey

g

=

s

|

&

72|

“

|

|

||||||||||||||| -

|

|

|

|

=] 9 !
~

V,S 17} “

= |

o |
—

S~ }

| |

— |

— |

Z “

iz = "

|

|

|

- ¢ !

7] 7]]

|

|

|

|

||||||||||||||| -l

]

wm]

|

= i

g |

£ !

— |

=] |
=

DATAQ
ACK

CS:Ready/lastddt

uFrame M+9

8
<
el
2
172]
S
3
Q
wn
O
= ¥
ol o o
= =
= =
(=9
wn MH An
ol & A
= Q| 5
o] o O
.
— —
+
b
Q
g
-
&S
=

Figure A-65. Normal HS SSPLIT Smash

513

LGE-1010 / Page 541 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), CS: comp. sp. status) |(data toggle)
0 SS:Free/x i 0
uFrame M stl SSPLIT st

st2

!
|

i

I

— =00
st2 IN i

;

I

I

[}
|
[}
[}
|
[}
[}
[}
|
[}
[}
i
[}
_________ ' o
uFrame M+1 | ' '
[} I I
i | IN |
1 1 \ 1
[} I I
| | |
: ! DATAO |
i i | M i
! : CS:Ready/l:;1stda}ta+_> :
[} [} [} |
i | | i1
————————— e e et ettt
uFrame M+2 1 ____etl __ CSPLIT i i i
T e | | |
| N > | |
: \ i Hub ignores this | |
i i IN.(no match | i
! i the Address field), |
! TRANS_ERR ! ! !
! cel->ce8 ' ' '
: : : :
! otl CSPLIT(retry imm.) ! : :
T —— : :
[} 2 I I I
 ——— I @ | |
i | | |
! DATAO cd I CS:Old/lastdata! i
i chy | | |
L | | |
[} [} [} |
————————— e B
uFrame M+3 ! Host does not issue 2nd CSPLIT, : CS:Free/x : :
! because host already receives : : :
| DATAQO on previous microframe. ! ! !
————————— e Y T
uFrame M+4 : Host does not issue 3rd CSPLIT, : SS:Free/x : :
! because host already receives : : :
| DATAQO on previous microframe. | | |
--------- e
uFrame M+5 ! ! ! !

Figure A-66. Normal HS CSPLIT Smash

514

LGE-1010 / Page 542 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
oS .
(SS: start sp. status device
(data toggle)l 1 CS: comp. sp. status) |
! S - Sp. statl |(data toggle)
0 | | SS:Free/x | 10
uFrame M i stl SSPLIT | | |

T | |

| 2 | | |

s N e | |

i i i i

! : SS:Pending/x : :
--------- e it sttty Il
uFrame M+1 | : ! !

[} | | |

i | | IN |

1 1 1 \ 1

[} [} [} [}

| | | |

| : : DATAQ |

! : CS:Ready/l:;lstda}taW_> |

[} | | |

i | | i1
————————— D e e T T e T T
uFrame M+2 1 ____etl __ CSPLIT i i i

v T T T e | | |

|2 N > | |

| \ | | |

[} | | |

[} | | |

| | | |

| | | :

| TRANS_ERR : : :

! cel->ce8 ' ' '

i -—__tl___ CSPLIT(retry imm.) i i i

v T T T ——— 1 1 1

| —2 N > : :

[} | | |

| \ | | |

[} | | |

[} | | |

i i i i

| TRANS_ERR ! ! !

! cel->ce8 ' : !

i -—-_ctl___ CSPLIT(retry imm.) i i i

T | | |

|2 N > | |

| \ | | |

[} | | |

[} [} [} [}

| | | |

[} | | |

i | | |

! TRANS_ERR ! ! !

' cel->ce7 i | :

| ENDPOINT HALT i i i
‘‘‘‘‘‘‘‘‘ ettty Ittt sttt ittt
uFrame M+3 | Host does not issue 2nd CSPLIT, | CS:Free/x ' '

| because this endpoint is already ' ' '

! ENDPOINT HALT. ! ! !
--------- SRS S S
uFrame M+4 | Host does not issue 3rd CSPLIT, | SS:Free/x | |

| because this endpoint is already ' ' '

! ENDPOINT HALT. ! ! !
--------- SR S S —

| |
' '

uFrame M+5 |

Figure A-67. Normal HS CSPLIT 3 Strikes Smash

515

LGE-1010 / Page 543 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), 1 CS: comp. sp. status) |(data toggle)
0 SS:Free/x i 0
uFrame M stl SSPLIT st

1
W—»

st2

uFrame M+1

CS:Ready/lastd: 't%
|
I
|

uFrame M+2

ctl CSPLIT ot

H
ct2 IN

ct2

DATA cd
4-llllll0--- e

TRANS ERR
cel->ce8

otl CSPLIT(retry imm.)

___———_——_—_—__———EE__'>
ct2 IN

ct2

w7 DATA0

Host does not issue 2nd CSPLIT,
because host already receives
DATADO on previous microframe.

Host does not issue 3rd CSPLIT,
because host already receives
DATAO on previous microframe.

CS:Free/x

B 2 2 e b

uFrame M+5 |

e g K gy Ol AUy Sy U S,

e]

Figure A-68. Normal HS DATA0/1 Smash

516

LGE-1010 / Page 544 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), 1 CS: comp. sp. status) |(data toggle)
0 SS:Free/x i 0
uFrame M stl SSPLIT st

1
W—»

st2

uFrame M+1

CS:Ready/lastd: 't%
|
I
|

uFrame M+2

ctl CSPLIT ot

H
ct2 IN

ct2

DATA cd
4-llllll0--- e

TRANS ERR
cel->c

8
ctl ¢ CSPLIT(retry imm.)

U}
ct2 IN

ct2

DATAO cd
guumunauns® e

TRANS ERR
cel->ce8

otl CSPLIT(retry imm.)

___———_——_—_—__———ﬁﬂ__’>
ct2 IN

ct2

DATA cd
<-llllll0ll- e

TRANS ERR
cel->ce7

ENDPOINT HALT

Host does not issue 2nd CSPLIT,
because this endpoint is already
ENDPOINT HALT.

Host does not issue 3rd CSPLIT,
because this endpoint is already
ENDPOINT HALT.

B e e s e s b

uFrame M+5 |

e e e

e]

Figure A-69. Normal HS DATAO0/1 3 Strikes Smash

517

LGE-1010 / Page 545 of 650

518

Universal Serial Bus Specification Revision 2.0

ce2

TRANS_ERR on FS/LS

ce2->ce6

Host
(data toggle)I \
] |
0| :
uFrame M 1 SSPLIT :
[stl 1
: stl :
[} I
: st2 IN 0 :
[} [}
[} [}
[} [}
] |
[} I
————————— fom e mm e mmmm
uFrame M+1 | '
i i
] |
[} I
[} [}
] |
[} [}
[} [}
[} [}
] |
[} I
[} [}
] |
[} [}
————————— e ettt
uFrameM+2 1 el CSPLIT
| \
— N
]
i ERR ch3
]
]
[}
]
i
]
L

|

I

|

|

I

|

|

|

I

|

|

I

|

|

|

:

|

| 1
uFrame M+3 | Host does not issue 2nd CSPLIT, '
| because host already receives '

i ERR on previous microframe. '

_________ L __1]

| |

uFrame M+4 | Host does not issue 3rd CSPLIT, |
| because host already receives '

! ERR on previous microframe. i
a3

|

4

|

|

|

|

I

|

|

I

|

|

uFrame M+10 ctl CSPLIT ot

1
W’

ct2

ay DATA0___cdl

—

[}

_________ L
[}
|

_________ L
[}

uFrame M+8

| 4 SSPLIT(retry)
' U,’
[}
[st2
! IN st2
[}
[}

_________ g |
[} I

uFrame M+9 ! :

[} I
[} [}
[} [}
[} [}
[} I
[} I
[} [}
[} I
[} [}
[} [}
[} [}
[} I

_________ g |
[}
I
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}

Hub FS/LS
(SS: start sp. status device
CS: comp. sp. statlus) I(data toggle)
SS:Free/x i 0

SS:Pending/x

A

CS:Old/lastdata

|

I

|

|

|

I

|

|

I

|

|

|

|
_______________________________________ dmmm =

__________ IN i

___________ > |

|

|

|

TRANS ERR

CS:Ready/transTerr 5. i

| |

| |
_____________ U S

| |

I I

| |

| |

I I

| |

| |

CS:Old/trans_erk :

| |

I I

| |

| |

| |

I I

| |

| |
_____________ T e B

CS:Free/x ' !

| |

| |

I I
_____________ T

SS:Free/x | |

: :

I I

| |
_____________ S S

| |

| [}
_____________ OO MO

| |

I I

| |

| |

| |

I I

| |

| |

I I

SS:Pending/x | |
_____________ +__________________________ﬂ_________

—~

I I

| |

i DATAQ i

| |

| |

CS:Ready/lastdzﬁa*_> '

| |

| Pl

_____________ g g g g | S

|

|

|

|

I

|

|

I

|

|

|

I

|

Figure A-70. Normal FS/LS IN Smash

LGE-1010 / Page 546 of 650

Universal Serial Bus Specification Revision 2.0

uFrame M+10 ctl CSPLIT ot

1
W’

ct2

ay DATA0___cdl

—

Host
(data toggle)I \
[} I
0| i
uFrame M 1 w1 SSPLIT i
: stl :
[} t2 I
{— IN s !
[} [}
[} [}
[} [}
[} I
[} I
————————— fom e mm e mmmm
uFrame M+1 | '
: :
[} I
[} I
[} [}
[} I
[} [}
[} [}
[} [}
[} I
[} I
[} [}
[} I
[} [}
————————— e ettt
uFrame M+2 i ctl CSPLIT wl i
! \ !
| 2 |
! < IN ct2 '
[} [}
i ERR ch3 i
| ce2 l
i i
| TRANS_ERR on FS/LS '
: ce2->ceb :
————————— oo
uFrame M+3 | Host does not issue 2nd CSPLIT, '
| because host already receives '
i ERR on previous microframe. '
_________ L]
[} I
uFrame M+4 | Host does not issue 3rd CSPLIT, |
| because host already receives '
i ERR on previous microframe. i
_________ L]
[} I
| |
_________ |
uFrame M+8
i w1 SSPLIT(retry) i
T ———
| 2 l
: > IN s©2 :
[} [}
[} [}
--------- bomrmmommmmssemoonooneeoond
uFrame M+9 ! :
i i
[} [}
[} [}
[} I
[} I
[} [}
[} I
[} [}
[} [}
[} [}
[} I
_________ g |
[} [}
| I
[} [}
[} [}
[} [}
[} I
[} I
[} [}
[} I
[} [}
[} [}
[} [}
[} I
| |

Hub FS/LS
(SS: start sp. status device
CS: comp. sp. statlus) I(data toggle)
SS:Free/x 0

o)
4
=
(¢}
o
o
<
=
=}
w
(¢}
B
=
>
Z
lm
Z

e e

]
I
I
|
|
|
I
|
|
I
|
|
|

B T S et T S
|
|
I
|
|
I
I
|
|
I
|
|
I
I
|
|
I
|
|
I
I
|
|
I
|
|
_

CS:Old/lastdata

A

Figure A-71. Normal FS/LS DATAO0/1 Smash

519

LGE-1010 / Page 547 of 650

520

Universal Serial Bus Specification Revision 2.0

W—»

ct2

ch7 DATAO cd

—

Host
(data toggle)I
]
0
uFrameM | __ s SSPLIT
! \
i st2 IN 0
]
i
1
_________ e
uFrame M+1 |
i
]
]
[}
]
]
]
[}
|
]
_________ LS
uFrame M+2 | ctl CSPLIT otl
i
]
]
]
[}
]
]
[}
[}
]
)

_________ L
uFrame M+3 | Host does not issue 2nd CSPLIT,

| because host already receives

| DATAO on previous microframe.

|
_________ L
uFrame M+4 | Host does not issue 3rd CSPLIT,

! because host already receives

| DATAO on previous microframe.
_________ L
_________ b
uFrame M+8 i stl SSPLIT stl

[\

! 12

i > IN st2

[}

|

[}
_________ S
uFrame M+9 |

[}

[}

[}

[}

[}

[}

[}

[}

[}

[}

[}

:
_________]'___________________________
uFrame M+10| ctl CSPLIT el

o

[}

: 2 IN ct2
Host does !
not receive | DATAO cdl
this data. ! M
Data toggle |

is still “1°.

Hub FS/LS
(SS: start sp. status device
CS: comp. sp. statlus) (data toggle)
SS:Free/x | 1o
: :
[} [}
[} [}
I I
[} [}
[} [}
i i
SS:Pending/x : :
_____________ e
[} [}
| IN |
I I
: \ :
' DATAO '
[} [}
[} [}
CS:Ready/lastddta _____ ACK |
LT T T |
L T > |
_____________ O
I I
[} [}
[} [}
[} [}
[} [}
[} [}
| |
CS:0ld/lastdata| '
: :
I I
[} [}
| [}
_____________ OO MO
CS:Free/x ' |
: :
[} [}
I I
[} [}
_____________ O MO
SS:Free/x ' '
i i
[} [}
[} [}
| }
_____________ O
I I
_____________ R S
[} [}
[} [}
[} [}
[} [}
[} [}
I I
[} [}
[} [}
SS:Pending/x | |
_____________ T T
I
' IN
i S
: DATAOQ
[}
[}
CS:Ready/lastdzi,ta*_>
I
| 1
|
_____________ !

CS:0Old/lastdata

Figure A-72. Normal FS/LS ACK Smash

LGE-1010 / Page 548 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), CS: comp. sp. status) |(data toggle)
0 SS:Free/x i 0
uFrame M stl SSPLIT st

st2

!
|

i

I

— =00
st2 IN i

i

I

I

[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
i
[}
_________ ' o
uFrame M+1 | ' '
[} I I
i | IN |
1 1 \ 1
[} I I
[} I I
: ! DATAO |
i i | M i
! : CS:Ready/ lastdqta** :
[} [} [} |
i | | i1
————————— e i Bl ittt e
uFrame M+2 i ctl CSPLIT ul i i i
I \ | | i
N i |
: iDoes not match thig :
i {CSPLIT on first | |
: :entry of CS.Then | i
i TRANS_ERR {HUB does not | i
i cel->ce8 irespond any packeti i
[. I I I
! ctl CSPLIT(retry imm.) | ' '
T — ! !
[} 2 I I I
! ot IN ct2 : i |
: : : :
' DATAO cd I CS:Old/lastdata! I
i ch? | | |
1 i | |
[} [} [} [}
————————— Ty v e R
uFrame M+3 | Host does not issue 2nd CSPLIT, I CS:Free/x ' '
| because host already receives | | |
| DATADO on previous microframe. | ' '
————————— T e S s
uFrame M+4 | Host does not issue 3rd CSPLIT, | SS:Free/x ' '
| because host already receives ' ' '
i DATADO on previous microframe. | ' '
————————— T e A
uFrame M+5 ! ! ! !

Figure A-73. Searching No Smash

521

LGE-1010 / Page 549 of 650

522

Host
(data toggle),

0
uFrame M

uFrame M+1

uFrame M+2

uFrame M+3

uFrame M+4

[}
[}
[}
[}
[}
[}
|
[}
[}
[}
[}
[}
[}
[}
'
[}
[}
[}
[}
[}
|
[}
[}
[}
[}
[}
[}
|
[}
[}
[}
[}
[}
e
|
[}
[}
[}
[}
[}
[}
|
[}
[}
[}
[}
[}
[}
|
H
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
s
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
.
[}
uFrame M+5 :

Figure A-74

Universal Serial Bus Specification Revision 2.0

Hub FS/LS
(SS: start sp. status device
1 CS: comp. sp. statlus) I(data toggle)
SS:Free/x 0

sl SSPLIT

1
W—»

st2

|
|
[}
|
|
|
|
|
i
SS:Pending/x :
_____________ e

|

:

|

|

|

|

|

|

[}

|

|

|

|

DATAO on previous microframe.

|

I I

[} [}

| |

[} [}

[} [}

[} [}

[} [}

I I

[} [}

| |

[} [}

[} [}
__________________________ [} ' ___

a -

[} [}

[} [}

| |

[} [}

[} [}

[} [}

[} [}

[} [}

[} [}

| |

[} [}

[} [}

1 IN 1

[} [}

[} [} [}

[} [} [}

i CSl:Ready/morpdata DATAO i
-------------------------- Hmmmmm e - _ S s e

[} [} [}

ctl CSPLIT I I I

ctl 1 1 ACK 1

[} . [}

W—} | CSZ,Ready/last(}a_‘> |

ct2 : : : 1

[} [} [}

MDATA __cd | CSI1:0ld/moredata i

ch5 1 1 1

| | |

I I I

[} [} [}

[} [} [}
—————————————————————————— Hmmmm e -

[} [} [}

1 CSl:Free/x | |

ctl CSPLIT | | 1

T : :

ct2 ! ! !

IN 2 : :

[} [} [}

DATAO cdl I CS2:0ld/lastdath |

ch7 : :

[} [}

[} [}

[} [}
__________________________ P P IS PP [

. |]

Host does not issue 3rd CSPLIT, : SS:Free/x :

because host already receives I CS2:Free/x !

[} [}

| |

I I

[} [}

| |

[} [}

[} [}

[} [}

| |

I I

- -l

| |

[} [}

I I

|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|

. CS Earlier No Smash(HS MDATA and FS/LS Data Packet is on M+1 and M+2)

LGE-1010 / Page 550 of 650

Host
(data toggle),

uFrame M

Universal Serial Bus Specification Revision 2.0

sl SSPLIT

1
W—»

st2

ctl CSPLIT
U_}
ct2 IN 2
6 NYET ch4

«—

@l CSPLIT

W

ct2

Host does not issue 3rd CSPLIT,
because host already receives
DATAO on previous microframe.

e e

Hub FS/LS
(SS: start sp. status device
CS: comp. sp. statlus) I(data toggle)
SS:Free/x i i 0

SS:Pending/x

B e B

==

CS:Ready/lastd:

ta*«»

4=

CS:0Old/lastdata

SS:Free/x
CS:Free/x

S g I

Figure A-75. CS Earlier No Smash(HS NYET and FS/LS Data Packet is on M+2)

523

LGE-1010 / Page 551 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
(SS: start sp. status device

(data toggle)l 1 CS: comp. sp. status) |
! ' : - Sp. statl |(data toggle)

0| | SS:Free/x : 10

uFrame M i stl SSPLIT | | |

T | |

[} [} [} [}

| —= N o ! | |

: : : :

! : SS:Pending/x : :
————————— ottty Bttty ettty Bttty

uFrame M+1 | ' ' '

: : : :

[} I I [}

| I I [}

[} [} [} [}

[} [} [} [}

[} [} [} [}

] | | |

[} [} [} [}

[} I I [}

| I I [}

[} [} [} [}

[} I I [}

[} [} [} [}

] | | |

[} [} [} [}
————————— et e et ettt

uFrame M+2 | ¢l CSPLIT I | i

T : :

—— I w i i

| | | |

s T —

[} I I I

! | CSl:Ready/morpdata DATAOQ '
————————— :———-——————-——————-——————-——-:———-——————-——T—M—:-———-——-—

uFrame M+3 i @ CSPLIT i CSZ:Ready/last(?W—» i

| \ | I I

1 | | |

| —=IN o ! | =

| | | |

! MDATA cd i CS1:0ld/moredata |

L | | |

[} [} [} [}

[} I I [}

[} [} [} [}
“““““ 15

uFrame M+4 1 1 SS:Free/x | |

tl

| W | CSlFreex | i

[} [} [} [}

 —— N @ : :

: | i |

i ch7 DATAO cdl i CSZ:Old/lastdaql i

1| : :
————————— L e e T B e e e e S e T

] | |

[} [} [}

I I

_———f———

CS2:Free/x

Figure A-76. CS Earlier No Smash(HS NYET and MDATA and FS/LS Data Packet is on M+2 and M+3)

524

LGE-1010 / Page 552 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS
device

Hub

(SS: start sp. status

Host
(data toggle)

(data toggle)

s)

U

CS: comp. sp. stat

stl

st2

SSPLIT
IN

stl
st2

uFrame M

uFrame M+1

et s ittt B ettt ittt BT

=] ol X
ol o o
= =
= y
ol & =z
= g £
o] o 9
o
+
=
[}
g
S
=
=

it B it it

2
= s
Zl af <
R =S
=
3
>
o
[
(]
~
wn
O
=] of 2
ol o] o
= =
= y
ol & =z
= g £
o] o 9
“mommmmeeeeoe-
+
=
[}
g
]
S
=]

———————e b e e

e
s
<
o
=
2
X =
3] =
&3 Q
175} n
175} @]
= ¥
o 5] ()
= | g
= =
(=9
Q| & a
=l 9 =
153 o [}
<t —
<
[}
g
[
-
=
=

B e e e e L et

CS:Free/x

uFrame M+5

Figure A-77. CS Earlier No Smash(HS NYET and FS/LS Data Packet is on M+3)

525

LGE-1010 / Page 553 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
data tonel (SS: start sp. status device
(data toggle), 1 CS: comp. sp. status) |(data toggle)
0 SS:Free/x 0
uFrame M stl SSPLIT st

1
W—»

st2

SS:Pending/x

@l _ CSPLIT

W—»

__________________ CS:Ready/ lastdzi,tHW«>
TRANS_ERR
cel->ce8

ctl CSPLIT(retry imm.)

I
I
I
I
I
|
I
I
I
I
I
!
1
'
I
i
I
L
!
I
I
I
I
|
I
I
|
I
I
I
|
I
I
|
I
I
!
: U}
: o2 IN
|
I
I
|
i
1
!
i
|
I
I
I
I
I
I
|
I
I
I
!
1
(X
i
I
I
I
I
|
i
I
IS
i
I

I
[}
I
[}
[}
[}
[}
I
[}
I
|
[}
1
|
I
[}
1
[}
|
' IN
|
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
I
I
[}
[}
|
[}
ct2 :
|
[}
[}
[}
I
]

_____________ L
ctl CSPLIT ot

H
ct2 IN

1
1
1
i
1
ct2 :
|
1

CS:Old/lastdata

ch7 DATAO cd

SS:Free/x
CS:Free/x

Host does not issue 3rd CSPLIT,
because host already receives
DATADO on previous microframe.

_— e e e e

e e e e e

1
|
|
1
|
T
|
1
|
|
1
|
|
|
1
|
+
1
|
|

Figure A-78. CS Earlier HS NYET Smash

526

LGE-1010 / Page 554 of 650

Universal Serial Bus Specification Revision 2.0

IN.CSPLIT earlier.HS NYET 3 strikes smash

Host Hub FS/LS
4 : (SS: start sp. status device
(data toggle), 1 CS: comp. sp. status) I(data toggle)
0 SS:Free/x | 0
uFrame M stl SSPLIT s

N}
st2 IN

SS:Pending/x

| |

[} [} |

[} [} [} [}

| | | |

[} [} | |

[} [} | |

| | | |

[} [} | |

[} [} | |

[} [} [} [}

| | | |

[} [} | |

[} [} | |

| | | |
--------- ittt sttty ittt sttt it Ittt
uFrame M+1 | | ' '

uFrame M+2 i W i i IN i

1 5 | | \ |

 —— IN w | :

I I | DATAOQ I

| | | |

: NYET ___ch4___ | : M :

| g7 : CS:Ready/lastdd{tW—’ i

| |

| TRANS_ERR l i L1

: cel->ce8 . | | i

! otl CSPLIT(retry imm.) | ' '

| : :

| | | |

 —=2 N | | |

: : : :

! NYET ___chd___| | |

| 4T | | |

: : : :

! TRANS ERR ! ! !

! cel->ce8 | | |

: ctl CSPLIT(retry imm.) | | |

i ctl i i i

| w2 N i i |

i o2 | | |

[} | | :

a NYET o | i :

4 | i i

! TRANS_ERR ! ! !

! cel->ce7 ' | |

| ENDPOINT HALT i i i
--------- ettty ittt sttty
uFrame M+3 | Host does not issue 2nd CSPLIT, | ' '

| because this endpoint is already ' ' '

! ENDPOINT HALT. ! ! !

uFrame M+4 | Host does not issue 3rd CSPLIT, | SS:Free/x ' '

| because this endpoint is already | CS:Free/x ' i

| ENDPOINT HALT. ' ' '
————————— SO S S S B S
uFrame M+5 ! ! ! !

Figure A-79. CS Earlier HS NYET 3 Strikes Smash

527

LGE-1010 / Page 555 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
(data toggle) (SS:. start sp. status device
\ 1 CS: comp. sp. statlus) I(data toggle)
0 SS:Free/x i i 0
uFrame M stl SSPLIT st

1
W—»

st2

SS:Pending/x

uFrame M+10 ctl CSPLIT ot

H
ct2 IN

ct2

CS:Old/lastdata

ch7 DATAO cd

Figure A-80. Abort and Free Abort(HS NYET and FS/LS Transaction is Continued at End of M+3)

1

] |

[} [}

] [} [}

] | |

[} [} [}

] I I

] [} [}

] | |

[} [} [}

] [} [}

] | |

[} [} [}

] I I

1] [}

--------- e R B
uFrame M+1 | ' ' '

uFrame M+2 1 ctl CSPLIT ! ! |

Tl | |

[} [} [} [}

| —2 IN o | i i

| | | |

o ET | |

| | | |

[} [} [} [}

[} I I [}
""""" e i S
uFrame M+3 | otl CSPLIT ! ! !

T @ | |

[} I I [}

| —— N w | : :

| | | |

e N e — o~

]

[} [} [} [}

| | | DATAQ s |
e Ty T T —— TR
uFrame | | ! :Free/x ! !

: W | ! Hub removes this data packetona |

! ct2 IN ' | buffer and hub does not send ACK. |

! © ! ! !

[} [} [} [}

|, NYET chd I ! i

| ——— i .
_________ Lo _ee2>ce6 A
.........
uFrame M+8 | sl SSPLIT(retry) | | |

— | |

[} [} [} [}

| —— I 2! i i

! | SS:Pending/x | '
_________ e
uFrame M+9 : ! ! IN !

: | e

[} [} [} [}

i i i DATAO i

: : CS:Ready/lastda}ta*} :

] | | |

: | | Pl
————————— L e e T e e e e S T b P

} [} [}

/| I I

[} [} [}

] | |

[} [} [}

[} [} [}

] | |

[} [} [}

[} I I

[} [} [}

] | |

[} [} [}

[} [} [}

! ' '

528

LGE-1010 / Page 556 of 650

Universal Serial Bus Specification Revision 2.0

FS/LS
device

Hub

(SS: start sp. status

Host
(data toggle)

—
2
on
&0
Q
i}
<
s
8o
e
_
w
[S
2
<
3
@ >
3 "8
& .8
s 5 5
g £ 5]
S = o)
° wn)
) 17
Q
— (o}
= Q
w | w
T
.
]
&
G| &
—] o
%l @
o
g
]
-
=
=

uFrame M+1

—_—,—,—————_——-—_—_——_——_——_—,—_—,—,—,—,—_,—,—,—E—E—E—,E—E—E—,e_—_—,—_—_—_——_—_—,—_—,—_—,—_—,—_—,—_——_—_he—_—,—_—_——_—,—_—,_—,—_—,—,—,—,E—,—,E—E—E—E—E—,E—eee e e e

= 9|
ol o] o
= =
o o
Ol S| Z
= 9| £
ol o QO
o
LT
p
(o]
g
]
&
=)

B e e e e L et

|||||||||||||||| ..
“
]
]
]
]
]
]
]
]
]
]
|
|||||||||||||||| 4
i
i
= 9 X
ol o] o]
]
]
]
]
= o
—
= =
SNY_
CIN“
]
]
= «of 2|
ol o ol
]
]
]
]
|||||||||||||||| -
]
@ |
s]
= i
2 |
£ !
=]
23]
=

||||||||||||||| |_
. I
175) I
@ i
g 1
IS} 1
=} |
£ i
)
2 1
131 1
S 1
172]
& 1
< 1
B |
2 '
S |
=]
©n 1
O 1
o |
<« |
=) 1
E] 1
T |
1
||||||||||||||| 4
1
I
I
1
> 1
~
5} 1
151 1
) 1
o i
2] |
n 1
1
1
||||||||||||||| 1
1
I
I
1
=z of 2 _
(5] (5] 5 [}
1
1
I
I
I
= |
gzl | .
I
=
<l
3
A
b
— o N o
3| 3| 9
I
I
1
I
||||||||||||||| -
< i
s |
= |
g i
=1 1
= [}
= 1
E)

|
1
1
|
|
1
1
|
1
1
|
|
1
1
|
1
1
|
|
1
|
|
1
1
|
|
e
|
! »
1 ~
| &n
] .8
| o
| =]
5]
| =
| n
| n
|
|
Fo—————————
|
|
1
1
-1
~
“ N 7} |7}
=
1 O
[N
I =
| —
[
5
|
“S m
1
|
1
(=4 N
I ©w ®w
|
1
1
|
e
oo
s
=
I o
|
| g
I =
(ISt
=

R et ekt S ittt e

Z
> W
Zl o} =
[8-

=

8

5

el

g

~

wn

@]

o

LT
p=
[}
£
8
&)
=

———————e b e e

s
5
el
=
172
=
=
Q
%]
O
= @ o
ol o] o

= (=]

.

- &

(a9

Ol = A

= 9 =

ol o [}

g

LT

=

o

g

s

<2

El

Figure A-81. Abort and Free Free(HS NYET and FS/LS Transaction is not Started at End of M+3)

529

LGE-1010 / Page 557 of 650

530

Universal Serial Bus Specification Revision 2.0

uFrame M+10 ctl CSPLIT otl

W’

ct2

ay DATA0___cdl

—

Host
(data toggle)I \
[} I
0 i
uFrame M ! stl SSPLIT !
: stl :
| t2 |
y—== N 2!
[} [}
[} [}
[} [}
[} I
......... b e
uFrame M+1 | |
| |
[} I
[} I
[} [}
[} I
[} [}
[} [}
[} [}
[} I
1]
--------- |
uFrame M+2 | ctl CSPLIT ol '
i \ |
[} [}

t2

i < IN ct2 i
[} I
[} hl [}
! on NAK c !
[} I
[} I
[} [}
1]
‘‘‘‘‘‘‘‘‘ e
uFrame M+3 | Host does not issue 2nd CSPLIT, |
| because host already receives i
| NAK on previous microframe. '
1]
--------- e it
uFrame M+4 | Host does not issue 3rd CSPLIT, '
| because host already receives '
| NAK on previous microframe. |
--------- R
[} I
_________ Tttt

+
urrmeMIS L SSPLIT(retry) i
| t2 |
P — IN s
[} [}
[} [}
--------- Rttty
uFrame M+9 | '
| :
[} [}
[} [}
[} I
[} I
[} [}
[} [}
[} [}
[} [}
[} [}
[} I
_________ |
[} I
| [}
[} [}
[} [}
[} [}
[} I
[} I
[} [}
[} [}
[} [}
[} [}
[} [}
[} I
[} I
[} I

Hub FS/LS
(SS: start sp. status device
CS: comp. sp. statlus) (data toggle)
SS:Free/x : 10

i i

[} [}

[} [}

I I

I I

[} [}

: :

SS:Pending/x : :
e I

"""""""" s a0

| IN |

[} [}

' \ '

' NAK '

I I

| N |

CS:Ready/nak i i
_____________ L O

I I

[} [}

[} [}

[} [}

I I

I I

i i

CS:Old/nak | '

: :

I I

[} [}
| e e e e |

————————————— e -

CS:Free/x ' '

| |

[} [}

I I
| e e |,

————————————— T-—mmT-mmmmo -

SS:Free/x ' '

i i

[} [}

[} [}

[} I
_____________ e

I I
_____________ S SO

[} [}

[} [}

[} [}

[} [}

[} [}

I I

I I

[} [}

' :

SS:Pending/x : |
_____________ L T SYPREPREIPRI ST

i IN i

[} [}

| \ !

i DATAO :

I I

[} [}

CS:Re:;ldy/lastdzi,ta*_> |

[} [}

| 1
L |

CS:Old/lastdata

Figure A-82. Device Busy No Smash(FS/LS NAK)

LGE-1010 / Page 558 of 650

Universal Serial Bus Specification Revision 2.0

Host Hub FS/LS
(SS: start sp. status device
(data toggle)I i CS: comp. sp. status) !
: - Sp. statt |(data toggle)
0 SS:Free/x 0
uFrame M ¢l SSPLIT

stl
st2 IN 2

SS:Pending/x

uFrame M+1

CS:Ready/stall

uFrame M+2

@l CSPLIT

W

ct2

, STALL __ch3 CS:Old/stall

&
ENDPOINT HALT

Host does not issue 2nd CSPLIT,
because this endpoint is already
ENDPOINT HALT.

Host does not issue 3rd CSPLIT,
because this endpoint is already
ENDPOINT HALT.

uFrame M+4

SS:Free/x

B e et e et e S et
S R P
e S T e

e e e ___

Figure A-83. Device Stall No Smash(FS/LS STALL)

531

LGE-1010 / Page 559 of 650

Universal Serial Bus Specification Revision 2.0

A5 Isochronous OUT Split-transaction Examples
Case Reference
Figure
Normal: small payload (<=188) 1
Normal: large payload (> 188) 2
HS SSPLIT-all corrupted, HS OUT corrupted 3
HS DATAQO corrupted (small payload) 4
HS SSPLIT-begin corrupted 5
HS OUT after the HS SSPLIT-begin is corrupted 6
HS DATAO corrupted (large payload) 7
HS SSPLIT-mid or OUT or DATAO corrupted 8
532

LGE-1010 / Page 560 of 650

Universal Serial Bus Specification Revision 2.0

1) Normal. Payload <= 188 bytes:

Full-speed
device

(toggle)

HUB

SS: start-split buffer status

Host

ffer status: not needed

S: complete-split b

C

(toggle)

SSPLIT-all

stl

st5

uFrame M

sdl

shil

DATAO

0

ouT

e ",

uFrame M + 1

uFrame M + 2

uFrame M + 8

uFrame M + 8 +1

533

LGE-1010 / Page 561 of 650

Universal Serial Bus Specification Revision 2.0

2) Normal. Payload > 188 Bytes

Full-speed
device

(toggle)

HUB

SS: start-split buffer status

Host

(=)
=]
D
=]
[<3]
(<%}
=i
-
[=]
=
P
=
=
«©
3
%]
[=
uw =
= I =___
e
= g
= S 5
& S
<5} (=)
., 2% .
(=9 %)
g £ -4
s M ©, ‘c
=] .. o =
R Yol
& I J R
—
=
7]
o
-]
20
(5]
<
= =
] <
o =
n <
n A
B - 5
1] wn wn
(=)
=
\n.ul 5]
=0 £
W s
S [
~ =

i
! i
! |
! |
! |
' |
|
|
o Uit b ety Fo————————————— - t-mm
| ! |
| ! |
| ! |
| ! |
| ! |
| ' |
| ' |
| ' |
| ' |
| ' |
! |
! |
! |
! |
! |
I !
2 _
e _
“ !
| ' | .
“ Lot ¥
S H P S Y [
1 ! 1 o
P A 52 1. g £5 !
| 22T | 2 _ 2 = \
. — £ ! — £ | —~
“\ =) “.\e g, g Sa ,
!) /o %) o ol
| Ao s Ao \ 1= A o \
' 2 3 _.. 2 3 e o 3
= =2 | == =2, = 2,
| sE01E 55 o 5 &
- (7)) - 7]
e S8 S/ IS < i N
i ! H
I ' I
I ' I
I ' I
I ' I
\ — | — | —
! = [= | =
| 7] “ 7] \ 7]
| ' |
- - P2
;£ E |9
L5 = v B = LB o
rogd = Lo = P =
b = R = o =
7)) < 7)) < 7)) <
1on A R A Lo A
I ' I
|
B B = [B = Y B =
| wn 7] 1] “ 1] 7] 1] 1 1] 7] 1]
| | |
I ' I
I ' I
I ' !
e e e e e e e e
- i !
I “ p ! i
3 | = s
I m !) | o
s g ! =
3 £ g
5 5 5

|
|
|
|
|
|
|
-
|
|
|
|

—

.

ree 17T

SS©): F

|

534

LGE-1010 / Page 562 of 650

Universal Serial Bus Specification Revision 2.0

=
9]
2
@ &
lolm
ek
< T, — IR
)
=
(<D}
g 0
E
o o
@) &
[3
O
5
«©
o =X
= = g
[7)]
7]
o puy
E
=
[<D]
)
oL
=
=
S o
o
= &
5 E
= 3
=
A,
wn =
yn O -
N wn 2
anlian =
)

ffer status: not needed

S: complete-split b

C

SS: Free

Trans_err

SSPLIT-all

stl

st5

DATAO

sd1

(toggle)

uFrame M

uFrame M + 1

0

gy g gy gy gy gy

uFrame M + 2

stl

SSPLIT-all

stl

uFrame N + 8

|l
7]
SE
o0
-
g =
n <
oA
>

1]

2

T

<

)

uFrame N + 8 + 1

535

LGE-1010 / Page 563 of 650

Universal Serial Bus Specification Revision 2.0

4) HS DATAQO corrupted

Full-speed
device

HUB

o
o0 o
o0
=
K=
=
D
<
[<3]
(<%}
<)
-
[=]
g
12
5
]
5
v =
=]
=~
S8
v S~
=
o =
€ =
25
- P
=8
%)
ﬁm. o 20
+ (3]
S E &= =2
88 = =8
7 O - % &
TS 7
4545 =
‘
<5}
St
e
H.
2
= e
& =1
[A.
| =
o <e
0 A
n [J
1.
=] 2] =
17} 7] S.
[]
[]
=
=
%2 2
a0
Q ™ ®
=S =
2
= =i

uFrame M + 1

L

gy g gy gy gy gy

uFrame M + 2

536

LGE-1010 / Page 564 of 650

Universal Serial Bus Specification Revision 2.0

5) HS SSPLIT-begin corrupted (missing or CRC error etc.)

Host
(toggle)

uFrame M

uFrame M + 1

HUB

SS: start-split buffer status

st3 SSPLIT-mid

sdl DATAO

12}
:
‘d

L

______________________________ .
[}

st4 SSPLIT-end i

[}
Wﬂ

[}
T-Q-U-T*:

DATAO

12}
:
‘d

e

4————

packet ignored
No SS entry create

o —

|
|
|
|
|
______________ -
|
|
|
|
|
|

SSPLIT-mid, OUT,
packet ignored
No SS entry create

SSPLIT-end, OU
packet ignored I
No SS entry createtil

CS: complete-split buffer status: not needed

[}

[}

[}

| st2 ~ i SS: Free |
o, S SPL IT begin Trans_prr '
T ! !
! sts > !
e ;
| sd1 1OUT token and |
! DATAO ! DATAO packet ignofed
: MlNo SS entry created
| | |
[} |

T TSt TT T T T T T T T T T T T T T T T T T i D T
| | |
; st3 SSPLIT-mid ; !
T :
| st5 | |
I \‘QJ‘LT_»I SSPLIT-mid, OUT, and DATAO
' sdl | '
[} [}

[} [}

|

[}

[}

[}

and DATAO

and DATAO

Full-speed

device
(toggle)

537

LGE-1010 / Page 565 of 650

Universal Serial Bus Specification Revision 2.0

6) HS OUT after the HS SSPLIT-begin is corrupted

Full-speed
HUB device
SS: start-split buffer status (toggle)

Host lit buff gg
(toggle) \ CS: complete-split buffer status: not needed \
| | | |

0 i stz SSPLIT-begin i SS: Free i i 0
| | | |
| st | | |
uFrame M : OUT.. Trans_err slsel : :
i »i i i
! sdl DATAO ! ! !
| sel | | |
| | |
: | DATAO packet ighored :

_______ 1:________________________________i__NQSS_enIt)Lcnea!Ired_________________________i_________

| | | |
| st3 “mi I I I
uFrame M + 1 | w-}: ' '
| | | |
i st i | i

: \‘QJ‘LT_»: SSPLIT-mid, OUT, and DATAO 1o
I 1 packet ignored I I
i sdl__DATAO shi iNo SS entry created |
| | | |
: M; ; ;
| | | |
| | | |

______ e e A

| | | |
! st3 SSPLIT-mid ! ; !
| | | |
i W‘H SSPLIT-mid, OUT, and DATAO i

: \-Q-U.T*: packet ignored | o
: : No SS entry createt}l :
! sdl DATAO ! ! !
| shl ' ! I
ukrame M+2 | M’ | !

________ e O MY SRR

| | | |
| st4 SSPLIT-end | | |
T | |
| st i | |
uFrame M +3 | ! SSPLIT-end, OUT, and DATAO0 !

! \-Q.U-T_»: packet ignored 1 ! 0
! sdl DATAO ! No SS entry createall !
ml		
! | |

________ SOOI ISR
0

538

LGE-1010 / Page 566 of 650

7) HS

Host
(toggle)

uFrame M

uFrame M + 1

Universal Serial Bus Specification Revision 2.0

DATAQO corrupted

———

st3 SSPLIT-mid

std

sdl DATAO

st4 SSPLIT-end

std

sdl DATAO

HUB

SS: start-split buffer status

CS: complete-split buffer status: not needed

|

o9 I
®eecee %Rcoerzoros ‘ |

|

|

[}
SS: Free

SSPLIT-begin and QUT token ignored

No SS entry creategl
|

J P,

T I,

SSPLIT-mid, OU
acket ignored
0 SS entry create

g

=}

Z
o -

|
|
|
|
|
-
|
|
|
|
|
|

%))

SPLIT-mid, OUT,
acket ignored
No SS entry create

=}

%))

SPLIT-end, OU
acket ignored I
No SS entry createa:l

=}

and DATAO

and DATAO

and DATAO

Full-speed

device
(toggle)

539

LGE-1010 / Page 567 of 650

Universal Serial Bus Specification Revision 2.0

8) HS SSPLIT-mid or OUT token or DATAO packet after it is

corrupted
Host
(toggle) \
[}
0 i st2
[}
| st5
uFrame M |
[}
[}
| sdl
|
i
[}
_______ [
i
! st3
uFrame M + 1 | "o,
| st5
i
[}
[}
| sdl
|
[}
[}
[}

540

|ignored '
\: No SS[1] entry credted
|

st3

st5

sdl

st4

st5

sdl

[}
[}

SSPLIT-mid ; i
[} [}
| SSPLIT-mid, OUT,
! packet ignored !
: No SS entry createt}l

DATAO i i

shl ' '

[} [}

[} [}

[} [}

[} [}

[} [}

_____________________ S
: :

SSPLIT-end | |
[} [}
: :
[}
| SSPLIT-mid, OUT,
: packet ignored |

DATAOQ 1 No SS entry created

shi | |
[} [}
[} [}
[} [}
[} [}
[} [}
] [}
_____________________ 4
[}
:
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}

and DATAO

and DATAO

Full-speed
HUB device
SS: start-split buffer status (toggle)
CS: complete-split bl:lffer status: not needed \
| [} |
SSPLIT-begin | SS: Free i 10
| | |
| [} |
| [} |
| [} |
| [} |
| [} |
DATAO | i i
shl I\ ' '
i Cre;atQ SS[0] entry :With status = Pending i
_____________________ I S S I
| N]
SSPLIT-mid ! o | OuT !
.............................. mid w
......................... »: : DATAO :
| |
| |
DATAO | OUT, and DATAO placket

FS handlen generates a Dbit-
stuffing erroy on full-speed bus
|

LGE-1010 / Page 568 of 650

Universal Serial Bus Specification Revision 2.0

Isochronous IN Split-transaction Examples

Case Reference
Figure
Normal: full-speed bus transaction does not cross microframe boundary | 1
Normal: full-speed bus transaction crosses microframe boundary 2
HS SSPLIT corrupted 3
IN after HS SSPLIT corrupted 4
HS CSPLIT corrupted 5
Consecutive HS CSPLIT corrupted 6
HS IN corrupted 7
Consecutive HS IN corrupted 8
HS data corrupted (case 1) 9
HS data corrupted (case 2) 10
TT has more data than HS expects 11
HS CS too early (full-speed data not available yet) 12
Full-speed timeout or CRC error 13

541

LGE-1010 / Page 569 of 650

Universal Serial Bus Specification Revision 2.0

1) Normal: full-speed bus transaction does not cross microframe
boundary

=
@
@
2y _
_om) “
D
— - !
0% o |
[T — IS !
|||||||||||||||||| “
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o |
£
=~ I
& |
3 |
A |
©» |
B o= !
0 3 2 i
) = |
= o |
gL @ _
2= |
= 2 = |
o=} = |
Sz z
2 = 2 |
- 2 = |
= 9 =}
ae @ '
o' %) '
o B 3 75 '
ﬂm = <]
Bto = < H
= R I $ i
8% 1) !
mA0_ G C ___.
|
|
|
|
|
|
= |
= 1
— |
ol |
n |
n i
|
> |
- +
2| @ !
i
|
|
IIIIIIIIIIIIIIIIII I
o i
= |
- —~ < 1
n 2 g |
E: g |
=) e
=~J e

DATAQ

Ready/last data

SS
CS =

_——————e e e =

uFrame M + 1

Old/last data

CS =

uFrame M + 2

uFrame M + 3

542

LGE-1010 / Page 570 of 650

Universal Serial Bus Specification Revision 2.0

2) Normal: full-speed bus transaction crosses microframe boundary

Host
(toggle)

uFrame M

uFrame M + 1

uFrame M + 2

uFrame M + 3

uFrame M + 4

Full-speed
HUB dovies
SS: start-split buffer status evice
| ICS: complete-split buffer statyis | (toggle)
| | | |
| | | |
! I I 0
| stl SSPLIT SS = Free : :
: | : :
R . | |
' \U\]\A Create SS entry with status + Pending '
| | | |
| | | |
R, e SR, .
| | | :
i : ! IN !
: | T
I | Create CS entry I I
' SS = Free		
b e S I . Lo		
! -E Create CS[1] ent ! CS[O]:: Ready/more-data		
reate en		
_otl CSPLIT ! v - !		
H	.	
! 1 1 -~ 1		
_ct2 IN . - :		
e .= :		
i i Send data)n 'C§[O] withi i		
d2 MDATA -		
MDATA 2 oA		
M CS[0] = Old/more data	!	
[
ﬂh4		
U __ L	___ S[1] = Ready/more-data ____	
r I Create CS[2] entry T :		
	P	
i _ct1 CSPLIT	“ I	
T e		
2 / [}		
< IN ! . ! !		
! \ Send data T CS[1] with! !		
! ' MDAT. L S[2] = Ready/last-data !		
I 7~	I	
2		
i MDATA _2] S[1] = Old/more data '/i i		
h4 I ‘		
b beommmee S bonee		
	‘ :	
	/	
1	. 1 1	
—onr L	i	
’		
Loc2 N ! / '		
' \ Sepd data in CS[2] with] '		
! DATAO ! :		
an		
! d1 i I		
: DATAQ __g” CS[2] = Old/last data ! :		
i		
[}		

543

LGE-1010 / Page 571 of 650

Full-speed
device

(toggle)

SS: start-split buffer status

HUB

Universal Serial Bus Specification Revision 2.0

3) HS SSPLIT corrupted
Host

S: complete-split buffer statiis

IC

(toggle)

| |
I I '
i i |
i i |
=] i i
i i |
|] |
|||||||||||||||||| 5
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
||||||||||||||||| e o M
! ! g |
| | . E |
! ! 2 5 “
I I =) £ '
T ! £ 2 |
T | S g !
=& ! = & !
[=] |
| |
5 o | i : |
s W z= - i
L | | = —
£ % B! “ & “
8 8w i g E o '
0 & 5o ! ! R=! Z |
||||| N__ = _ e
-4 | | |
| i i <
9 i [[=
=B [[© H
£ | | !
B i i !
= | | 3 . |
- I I o A '
& | = = af @ |
A © !
2 | - P E R >~ N~ “
; _ Lo oz —92 0l >z Z n © |
- o« | O = D S B oA !
i@ ' ' © s £
i I [N = u.m — N 2 O '
| =T 525 %) S < |
' ' g S 9 < 3 I
|||||||||||||||||| bmmm—mmo oo B o m e A~ . e v LR
— Y o=t | (<]
i s “ + “ + =] H n..ll.. “ +
| |
%) | M | M ! M
£ I @ I @ ' @
8 I g I g I g
i < < I <
S S S
= = = =
E E E

LGE-1010 / Page 572 of 650

544

Full-speed
device

SS: start-split buffer status

HUB

Universal Serial Bus Specification Revision 2.0

4) IN after HS SSPLIT corrupted

Host

S: complete-split buffer statiis

ic

(toggle)

i i
3 “ ! i
% | | |
& i i |
=)] I I
i i |
|||||||||||||||||| e e
] | |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
i i |
||||||||||||||||| e
_ _ Z |
| | |
! ! 8 E i
o | i = 2 '
5] = S
s “ “ g Q “
o | ' S a I
St] I 5 1
g ' =% I
Ww “ “ ..m % |
5 | ! i z “
L N = 1
) | = =
& 2 _ £ o & !
| | « m |
Il S 1 I o = S |
0 4 ! ! [h=! Z |
||||| L |||N||||“|||||||||||||||.“.|||||| R W e S Iy
3. | i
500 _ x |
i i i © !
i i
= | .
H 1
ol N = 2u & = W |
$ Z: | I © 0O m m Ne '
ER % O z s
H | S _ O n _
b G ' | - >~ £ ~ oM !
172} © !) I
j | R 88 [« 28 _
| B ° = = ° -~ !
| | 3] = = = 3] - |
| | =27T = 0 !
|||||||||||||||||| R SU N - S N A m s
=] “ — “ N m St m [T | 2]
s I + I + i B = — - ' +
@ | = | = = “ =
2 | g : g
I
2 g g P
s €3 €3 €3
=i =i =i

545

LGE-1010 / Page 573 of 650

Universal Serial Bus Specification Revision 2.0

5) HS CSPLIT corrupted

Full-speed
device

(toggle)

HUB

Host

SS: start-split buffer status

Pending

+

S: complete-split buffer statiis
Free

Create SS entry with status

ic
SS

SSPLIT

stl
st2

(toggle)
uFrame M

DATAQ

Ready/last data

SS
CS =

_——————e e e =

uFrame M + 1

IN is ignored

IN

ct2

uFrame M + 2

Timeout ce7

Immediate retry CS

Err_count =1 -> ce3

Old/last data

CS=

IN
DATAOQ

ct2

e e e e e

uFrame M + 3

546

LGE-1010 / Page 574 of 650

Universal Serial Bus Specification Revision 2.0

6) Consecutive HS CSPLIT corrupted

HUB Full-speed
Host SS: start-split buffer status device
(toggle) | ICS: complete-split buffer statyis ! (toggle)
| |
| i a o
! stl QSPLIT :SS = Free ' |
uFrameM | \h: | |
| [} |
| —St2 ! : :
' \U\]\N Create SS entry with status + Pending '
| | | |
| | | |
————— A .
] |]]
| | | |
: ! i — IN :
! I Create CS entry : * !
! i SS = Free ! !
uFrame M + 1 | : ' DATAQ '
: | CS = Ready/last data ! :
|
| | | |
| | | |
_______ e
| | | |
| . CSPLIT | ; ;
...................... |
T ! 1 |
i c2 IN >i i i
uFrame M + 2 | \ . | |
! ! IN is ignored ! !
[} | [}
Timeout ce7 | No response is given i i
Err_count = 1 -> ce3 i ! :
Immediate retry CS : ! !
| | | |
i ! ' :
.1 CSPLIT | | :
U ! ! !
i ct2 IN » i i
|
| | | |
! \le IN is ignored i i
Timeout ce7 N o : :
i No response is given I I
Err_count = 2 -> ce3 ! ' '
Immediate retry CS ! i i
|
[} | [}
: ’ | |
|
| .l CSPLIT : i i
.................... I
Do ! | I
i ct2 IN— H i i
|
| | | |
i \ IN is ignored i i
! ' I !
Timeout ce7 i No response is given i i
Err_count = 3 -> ce4 i : :
Record error ! | |
Go to next cmd | i i
|
! | | i
547

LGE-1010 / Page 575 of 650

Universal Serial Bus Specification Revision 2.0

7) HS IN corrupted

Full-speed
device

(toggle)

HUB

Host

SS: start-split buffer status

S: complete-split buffer statiis

ic

(toggle)

SS = Free

SSPLIT

stl

uFrame M

Pending

+

Create SS entry with status

1
1
1
1
1
1
1
1
e e a1
| |
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
“ A |
1 < 1
| = |
“ 1 |
Lzl @ |
—
1 1
1 1
1 1
1 1
1 1
Jm———mm e mm +
I « 1
1 = 1
| < |
1 . M 1
1 1
9 17}
| h=] < 1
1 w ﬂV.J 1
1 1
1 n o ,M 1
P92 g 2 i
| S H ~ |
i g i
[=7 n

' On O '
1 1
1 1
1 1
1 1
I I
A= m—— e —— +
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
e m e 4
“ =
| + |
1 1
1 = 1
I o I
1 £ 1

<

S

=

=

uFrame M + 2

timeout

Timeout ce7

Err_count =1 -> ce3

Immediate retry CS

I
I
i
I
|
[}
“
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
4
5 |
: |
I
s |
T m i
< g !
7
g &
—_ = “
s B |
MM ['
< wn 1
nAa o !
|||||||||||||||||||||||||||||||| 4
i
I
I
I
I
i
=} |
E < i
= = !
ol < |
0|z A “
O = |
m
= N
5] S m
|
i
I
I
I
I
I
I
I
[}

uFrame M + 3

548

LGE-1010 / Page 576 of 650

Universal Serial Bus Specification Revision 2.0

8) Consecutive HS IN corrupted

HUB Full-speed
Host SS: start-split buffer status device
(toggle) | ICS: complete-split buffer statys ! (toggle)

[} 1 [}

o | | o

! stl QSPLIT :SS = Free ' |

uFrame M i | i i

! t2 ! | :

' \S\U\I\N Create SS entry with status + Pending '

| | | |

| | | |

S e SR, .
| ' | |

! l i IN :

! i Create CS entry : * !

! ! SS = Free ! :

uFrame M + 1 | : ' DATAQ '

: | CS = Ready/last data ! :

|
| | | |
| | | |
_______ e
| | | |
| ! CSPLIT ! i i
|
| | | |
Ioct2 | |
i IN cel | i i
................................... !

uFrame M + 2 i N timeout i i
|

[} | [}

Timeout ce7 i No response is given | |

| p | |

Err_count =1 -> ce3 : ! !

Immediate retry CS : ! !

[} | [}

i | | |

: ctl CSPLIT i ! :

| | | |

|

i ct2 IN ! i '

T cel | | :

T 1

[’I}' timeout ' |
Timeout ce7 | L | :

i No response is given I I
Err_count = 2 -> ce3 ! ' '
Immediate retry CS ! i i
|

: | | |

| | | |

| ! CSPLIT : i i

|

| | | |

i .z IN i i i

b cel | I I

......................... I

i »i timeout i !

! ' I !
Timeout ce7 i No response is given i i
Err_count = 3 -> ce4 i : :
Record error ! | |
Go to next cmd | i i

|
| i | |
549

LGE-1010 / Page 577 of 650

Universal Serial Bus Specification Revision 2.0

9) HS data corrupted (case 1)

Full-speed
device

(toggle)

HUB

Host

SS: start-split buffer status

|
S

S: complete-split buffer stat

SSPLIT

stl

(toggle)

uFrame M

1
1
1
1
1
1
1
1
R, 4
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 o 1
1 1
1 < 1
| = |
1 < 1
1 1
o0 1 Z A 1
£ 1= 1
= I I
& 1 1
[5) 1 1
[a¥} 1 1
1 1
H=——=—- -————————————— =+
%) 1 © 1
= 1 = 1
= 1 = 1
1 1
17 I o 2 I
= 1 = < 1
= | w ﬂy 1
b~ 1 1
2 | v o 2=l |
> 1 [SRES] g 1
1) I PR I
<] | SR |
5] | % 1] 1] |
199} “ =W 0n “
%2 | O wn &) |
8 1 1
< | |
) 1 1
= 1 1
®] [|
q-————————— - +
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
g 4
1 1
| — |
| + |
1 1
1 = 1
1) 1
[g [

«©

St

=

=

uFrame M + 2

=
=
2
«©
T 3
g}
-
2 3
£ 05
2 0
2g
< w0
wn A @)
[]
= @
(5
[]
[]
=
<@
Ee
Re
[]

——————————

1

ceeee——_\CRCerrorced _________
HC rejects data
And advances

uFrame M + 3

———

———

et e e e e

550

LGE-1010 / Page 578 of 650

Universal Serial Bus Specification Revision 2.0

10) HS data corrupted (case 2)

HUB Full-speed
Host SS: start-split buffer status device
(toggle) ICS: complete-split buffer statyis 1(toggle)
[} [}
0 : |
st SSPLIT SS = Free
uFrame M

st2

|
|
|
|
\ !
|
i
\LN\>< Create SS entry with status + Pending
|
|
|
!

|
|
_______________________________ g g g g g g SN
] |
| |
| |
| |
i | Create CS entry
|
uFrame M + 1 | ! SS = Free
| |
! 1
| |
mTmmes P 1-~Create €Sttjentry ——~~
| |
i ¢l CSPLIT |
|
| \
| _ct2z IN | -
-
uFrameM+2i\>i _/—
| 1
| cd2 | -
: MDATA. °® .:‘ Send begin-data in CS|0]
',1 eo0o00 | with MDATA
| |
'CRC error ce5 !

[, g 1___CS[0] =Old/begindata -} ——__
HC rejects data ! ol bogi 1="
! 1 -
iTAdvance : —

|
' !Implementor can decide
' lwhat to do on the
' I continuing full-speed bus
! !Any way the data here /is'
: :useless R
| 1
| | 7

__________ N S A

: x

i

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

551

LGE-1010 / Page 579 of 650

Universal Serial Bus Specification Revision 2.0

11) TT has more data than HC expects

HUB Full-speed
Host SS: start-split buffer status device
(toggle) ICS: complete-split buffer statyis 1(toggle)
|
: |
stl SSPLIT ISS = Free

[}
[}
[}
[}
[}
i
uFrame M i st2
[}
' Pending
[}
[}
[}
[}

Q
=
@
V)
(g
@
)
n
@
=
=
<
z
=+
=
2]
-+
oY)
-+
c
1]
_____H___________

Create CS entry

[}

[}

4
]] []
[} 1 [}
[} 1 [}
[} 1 [}
[} 1 [}
[} 1 [}
| : |

uFrame M + 1 | ! SS = Free '
| | |
| | |
[} 1 [}
------- T-----------------------T--1h%aurCSfﬂ15nqr----T------------------- Tyt
i _ctl CSPLIT ' | .
| ! | .~
Ioct2 L~
: IN : . /I
uFrameM+2:\ .~ !
' ! Send begin_da#a in CS[O]:
d2 ith MBDXTA
i MDATA _** AW‘/M |
w b oo datn |
| ch | cslll -
__ [e\ ____

Nooee

Send mid-data in/CS[l]

with MDATA- -

[}
-
[}
i
i
uFrame M + 3 i ct2 IN
[}
i
! -
! &S[‘f]’— Old/more data
[}
[}
[}

———— e N

|
|
|
__________ F_ch4___________________%_____________________ —y
| |
| | A
| 1 CSPLIT | 7
! |
uFrame M + 4 | \N ,/
| az IN ! Send m#fl-data in CS|
! \N witb«M’DATA |
|
|
|
|

MDATA ¢l __i ACS[2] = Old/more datgt

|

|

w /

HC has jsen®the last CS, but it ! |
|

|

|

|

i
receives | MDATA, so something ' /
[}
[}
I

[3] = Old/last-data

552

LGE-1010 / Page 580 of 650

Universal Serial Bus Specification Revision 2.0

12) HS CS too early (full-speed data not available yet)

Full-speed
H HUB devi
ost SS: start-split buffer status evice
(toggle) | ICS: complete-split buffer statiis | (toggle)
| [} |
U i | : 0
| st SSPLIT S = Free i i
uFrame M i \ i i
— | | |
' \U\I\bi Create SS entry with status + Pending '
| 1 | |
| ! | |
——————— RN KL
1	
1	
1	
1	
1	
1	
1	
uFrame M + 1	! ! :
!	
1	
1	
1	
_______ ot SRS E	
i ctl CSPLIT	i i
I \ I I	
e	
uFrame M + 2	\l
! i Search not complete in : :	
: l time : :	
Timeoyt ce7 ! ' '	
Err_copnt =1->ce3 : : :	
Immedjate retry CS : ' '	
!	
1	
!	
! ctl CSPLIT i : !	
I \.	I
I	
L	a a
i \)	i
i ! No split response found i i	
h4	
i NYET ¢ i Respond with NYET i i	
I	
I	
This isjnot the last CS -> ch3 '	
________ O S S D	
__ctl CSPLIT ! l IN l	
l\ ! Create CS entry ' \»l	
oct2 ! SS = Free ! !	
uFrame M + 3 : ! ! DATAOQ :	
:\LN\>	CS = Readylast data] w :
1	
cdl !Send last data with	
! “	DATAO ! !
1	
[}	
! ch	CS = Old/last data ! ;
!	
\	:
!	!
553

LGE-1010 / Page 581 of 650

Universal Serial Bus Specification Revision 2.0

13) Full-speed timeout or CRC error

Full-speed
device

(toggle)

HUB

Host

SS: start-split buffer status

S: complete-split buffer statiis

ic

(toggle)

SS = Free

SSPLIT

stl

uFrame M

Pending

+

Create SS entry with status

uFrame M + 1

Ready/

CS =

_——————e e e =

I
I
i
I
||||||||||||||| L
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
IIIIIIIIIIIIIII [
i
I
I
I
I
I
I
I
“
‘|
24 =
2 3 i
H O 1
= '
%) |
»w O !
||||||||||||||||| 4
i
I
I
o [}
[} I
© |
i
I
I
&= i
2 i
Z K |
— wl
(=2}
=l
2 S|
213
S\S
................. =g
N e
R
= |
PN 1
E i
s i
St
3 1
=

uFrame M + 3

554

LGE-1010 / Page 582 of 650

Universal Serial Bus Specification Revision 2.0

Appendix B
Example Declarations for State Machines

This appendix contains example declarations used in the construction of the state machines in
Chapters 8 and 11. These declarations may help in understanding some aspects of the state machines.
There are three sets of declarations: global declarations, host controller specific declarations, and
transaction translator declarations.

B.1 Global Declarations

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

PACKAGE behav package IS

CONSTANT FIFO_ DEPTH INTEGER := 3; -—- Size of bulk buffer.

-- Determines how many outstanding

-- Split transactions are allowed.
CONSTANT ERROR INJECT DEPTH INTEGER := 16; -- Size of Error Inject FIFO.

TYPE ep types IS (bulk, control, isochronous, interrupt); -- endpoint types

TYPE directions IS (in dir, out dir); -- data transfer directions

TYPE pids IS (NAK, ACK, STALL, -- possible packet PIDs

tokenIN, tokenOUT, tokenSETUP,

SOF, ping,

MDATA,

DATAX, -- represents both DATAO and DATAL

CSPLIT, SSPLIT,

NYET, ERR,

TRANS_ ERR) ; —-- pseudo PIDs for error cases
TYPE cmds IS (start split, complete split, nonsplit, SOF); -- HC commands
TYPE data choices IS (alldata, begindata, enddata, middata);

isochronous data part for an HC command
TYPE HCresponses IS
do_start,
do complete,
do complete immediate,
-- do complete-split immediately before doing a different transaction
do_halt,
-- do endpoint halt processing for the endpoint of this command

(—--— what HC should do next for this command
-- do start-split transaction
-- do complete-split transaction

do_next cmd, -- do next

-- advance

do_same_cmd, -—- do same
do comp_ immed now,

-- do complete-split imediately

do_next_complete,

-- do next complete-split in next microframe

do_next ping,
do_ping,
do_out,
do_idle

)i

TYPE Devresponses IS (
do_next data,
do_nothing

)i

command for this endpoint
data pointer appropriately
command over again

within same microframe

(periodic)

-- Response not active - Used for Simulation

555

LGE-1010 / Page 583 of 650

556

TYPE waits IS (
ITG,

none) ;

TYPE CRCs IS

TYPE states IS

(bad,

(old, pending,

Universal Serial Bus Specification Revision 2.0

-- wait up to an inter packet
-- for the next packet.
-- wait forever for next packet

ok) ;

ready, no_match, match busy);

-- states of a buffer

TYPE results IS
r_ack,
r_nak,

(intra transaction) gap

(-- full/low speed transaction result in a buffer

r_ trans_err,

r stall,

r_badcrc,
r lastdata,
r _moredata,

r_data);

TYPE epinfo_rec IS RECORD

space avail
data avail

ep_type

ep_trouble

toggle

boolean;
boolean;
ep_types;
boolean;
boolean;

END RECORD;

TYPE epinfo_array IS ARRAY (1 DOWNTO 0) OF epinfo_rec;

TYPE device_rec IS RECORD

ep
HS

epinfo array;
BOOLEAN;

END RECORD;

TYPE match rec IS RECORD

state

down result

states;
results;

END RECORD;

TYPE HS bus rec IS RECORD

-- partial high speed transaction state from a high speed bus

-- result of matching a high-speed complete-split

ep_type ep_types;
PID pids;
dev_addr INTEGER RANGE 0 TO 127;
endpt INTEGER RANGE 0 TO 15;
CRC16 CRCs;
direction directions;
X boolean;
datapart data choices;
ready boolean;
timeout boolean;
END RECORD;
TYPE command rec IS RECORD -- command state that the HC must act upon
ep_ type ep_ types;
cmd cmds;
setup boolean; -- true is control setup
ping boolean;
HS boolean;
dev_addr INTEGER RANGE 0 TO 127;
endpt INTEGER RANGE 0 TO 15;
CRC16 CRCs;
direction directions;
datapart data choices;
toggle boolean;
last boolean;

END RECORD;

LGE-1010 / Page 584 of 650

Universal Serial Bus Specification Revision 2.0

TYPE bc buf status IS (OLD,NU,NOSPACE); -- Responses from Compare BC buff.
TYPE BC buff rec IS RECORD -- (partial) state of a bulk/control buffer
match match rec;
index INTEGER RANGE 0 TO (FIFO DEPTH-1);
status bc buf status;
END RECORD;
TYPE CS _buff rec IS RECORD
-- (partial) state of a periodic complete-split buffer
match match rec;
store hs bus_rec;
END RECORD;
TYPE SS buff rec IS RECORD
saw_split: boolean;
isochO: boolean; -- was the last transaction an isochronous OUT SS
lastdata: data choices;
-- if isochO is true, then what was the last data portion
END RECORD;
TYPE cam_rec IS RECORD -- Information stored in the bulk/control Buffer.
store hs bus_rec;
match match rec;
END RECORD;
TYPE phases IS (SPLIT, TOKEN, DATA); -- Error Inject phases.
TYPE err inject rec IS RECORD -- Error Injection FIFO record.
phase phases;
timeout boolean;
crc CRCs;
pid boolean;
END RECORD;
TYPE err inject type IS ARRAY ((ERROR INJECT DEPTH - 1) DOWNTO 0)
of err inject rec;
TYPE cam type IS ARRAY ((FIFO DEPTH - 1) DOWNTO 0) OF cam rec;

--returns true when there is a packet ready

FUNCTION Packet ready(HS bus in: HS bus rec)

to receive from a bus

RETURN boolean;

-- wait until there is a packet ready on a bus

PROCEDURE Wait for packet (HS bus in: HS bus_

PROCEDURE RespondDev (dr: devresponses) ;

PROCEDURE HC_Accept data;
PROCEDURE HC Reject data;
PROCEDURE Dev_Accept data;

PROCEDURE Dev_Record_error;
END behav package;

rec; walt type: waits);

557

LGE-1010 / Page 585 of 650

Universal Serial Bus Specification Revision 2.0

B.2 Host Controller Declarations

shared VARIABLE ErrorCount : integer :=0;

shared VARIABLE HC_response v : HCresponses;

shared VARIABLE rd ptr : integer RANGE 0 TO (ERROR INJECT DEPTH-1) := 0;
SIGNAL HSUZ2_ ready : boolean;

SIGNAL HC_command ready : boolean := FALSE;

SIGNAL HC_ cmd : command_rec;

SIGNAL HCresponse : HCresponses;

SIGNAL err_ inject fifo : err_inject type;

SIGNAL wr_ptr : integer RANGE 0 TO (ERROR_INJECT_DEPTH-1) := 0;

PROCEDURE Issue packet (SIGNAL HS bus out : OUT HS bus rec;
pid : pids) IS
BEGIN

HS bus out.ep type <= HC cmd.ep type;

HS bus_out.endpt <= HC_cmd.endpt;

HS bus_out.dev_addr <= HC_cmd.dev_addr;
HS bus out.direction <= HC cmd.direction;
HS bus_out.datapart <= HC_cmd.datapart;

HS bus out.x <= HC cmd.toggle; - 2222

-- Check for Error injection when FIFO is not empty.
IF (wr_ptr /= rd ptr) THEN

-- Insert an error during SPLIT phase ?
IF ((err_inject fifo(rd ptr).phase = SPLIT AND (pid = SSPLIT OR pid =
CSPLIT)) OR

-- Insert an error during Token phase ?

(err_inject fifo(rd ptr).phase = TOKEN AND

(pid = tokenIN OR pid = tokenOUT OR pid = tokenSETUP)) OR

-- Insert an error during Data phase ?

(err inject fifo(rd ptr).phase = DATA AND (pid = MDATA OR pid = DATAX)))

THEN
HS bus out.crcl6 <= err inject fifo(rd ptr).crc;
HS bus out.timeout <= err inject fifo(rd ptr).timeout;
IF (err_inject fifo(rd ptr).pid) THEN
HS bus_out.pid <= TRANS_ERR;
ELSE
HS bus out.pid <= pid;
END IF;
-- Update read pointer.
IF (rd ptr = (ERROR_INJECT DEPTH-1)) THEN
rd ptr := 0;
ELSE
rd ptr := rd ptr + 1;
END IF;
ELSE
-- Otherwise issue packet with no errors.
HS bus_out.crcl6 <= ok;
HS bus out.timeout <= FALSE;
HS bus out.pid <= pid;
END IF;
-- Otherwise issue packet with no errors.
ELSE
HS bus out.crcl6 <= ok;
HS bus out.timeout <= FALSE;
HS bus out.pid <= pid;
END IF;
HS bus out.ready <= TRUE;
HS bus_out.ready <= FALSE after 500 ps;
558

LGE-1010 / Page 586 of 650

Universal Serial Bus Specification Revision 2.0

END Issue packet;

-- Get next command for HC to execute.
-- NOT USED FOR THIS IMPLEMENTATION !!!
PROCEDURE HC_Get next command IS

BEGIN

END;

PROCEDURE RespondHC (HCresponse : HCresponses) IS
BEGIN

HC_response_v := HCresponse;
END;

-- Update command status for the next time the command will be executed by HC.
-- NOT USED FOR THIS IMPLEMENTATION !!!
PROCEDURE Update command (SIGNAL HCdone : OUT boolean) IS
BEGIN
HCdone <= TRUE;
END;

PROCEDURE IncError IS
BEGIN

ErrorCount := ErrorCount + 1;
END;

-- Record Error for current command.
-- NOT USED FOR THIS IMPLEMENTATION !!!

PROCEDURE Record error IS
BEGIN
ErrorCount := 0;

END;

559

LGE-1010 / Page 587 of 650

B.3

560

Universal Serial Bus Specification Revision 2.0

Transaction Translator Declarations

shared
shared
shared
shared
shared
shared
shared
shared
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
split
token
SS_Buff
Cs_Buff sig
mem

memwrite
err_inject_fifo
wr_ptr

derror

ss_avail

cam
BC buff
CS_Buff

rd ptr
derror_ v
ss_avail v
periodic
error time

: cam_type;
BC_buff rec;
CS buff rec;
integer RANGE 0 TO

boolean;

boolean;

boolean := FALSE;
1000000000

rtime :=
: HS bus_rec;
HS bus_ rec;
SS _buff rec;
CS_buff rec;
cam_rec;
boolean;
err inject type;
integer RANGE 0 TO
boolean;
boolean;

-— TT buffer.

(ERROR_INJECT DEPTH-1) :=

ns;
-- Stored Shared Split Token
-- Stored Token

(ERROR_INJECT DEPTH-1) :=

-- Is_no_space - Returns true when there is no space in the Bulk/Control buffers
for the current start-split.

function Is no space (BC buff: BC buff rec)

return

variable result:boolean:=FALSE;

begin
IF

(BC_buff.status =
result :=

TRUE;

END IF;
return result;
end Is_no space;

NOSPACE)

THEN

boolean is

function Is new SS(BC buff: BC buff rec)

variable result:boolean:=FALSE;

begin
IF (BC_buff.status = NU)
result := TRUE;
END IF;

return result;
end Is new_ SS;

THEN

return boolean is

function Is old SS(BC buff: BC buff rec)

variable result:boolean:=FALSE;

begin
IF (BC buff.status = OLD)
result := TRUE;
END IF;

return result;
end Is old SS;

THEN

return boolean is

procedure Issue packet (signal HS bus_out

begin

pid pids)

out HS bus_rec;

IS

-- Setup HS packet based on whether its periodic or bulk.

IF

(periodic = TRUE)
HS bus_out.
HS bus_out.

HS bus out.

endpt

dev_addr

THEN
ep_type

<= CS _Buff.store.
<= CS _Buff.store.
<= CS Buff.store.

ep type;
endpt;
dev_addr;

LGE-1010 / Page 588 of 650

Universal Serial Bus Specification Revision 2.0

HS bus_out.direction <= CS_Buff.store.direction;
HS bus out.datapart <= CS Buff.store.datapart;
HS bus out.x <= CS Buff.store.x; -— 22722
ELSE
HS bus_out.ep_ type <= cam(BC_buff.index) .store.ep_type;
HS bus_out.endpt <= cam(BC_buff.index) .store.endpt;
HS bus out.dev addr <= cam(BC buff.index) .store.dev addr;
HS bus_out.direction <= cam(BC_buff.index) .store.direction;
HS bus_out.datapart <= cam(BC_buff.index) .store.datapart;
HS bus out.x <= cam(BC buff.index).store.x; -= 22?2

-- Update bulk/control with state information which may have been updated
-- by the complete-split state machines.
cam (BC_buff.index) .match.state := BC_buff.match.state;

END IF;

—- Check for Error injection when FIFO is not empty.
IF (wr_ptr /= rd ptr) THEN

HS bus_out.crclé6 <= err _inject fifo(rd ptr).crc;
HS bus_out.timeout <= err inject fifo(rd ptr).timeout;
IF (err inject fifo(rd ptr).pid) THEN

HS bus_out.pid <= TRANS ERR;
ELSE
HS bus_out.pid <= pid;
END IF;
--IF (now > error_time) THEN
-- Update read pointer.
IF (rdﬁptr = (ERRORﬁINJECTiDEPTH—l)) THEN
rd ptr := 0;
ELSE
rd ptr := (rd ptr + 1);
END IF;
--END IF;
error time := now;

-- Otherwise issue packet with no errors.

ELSE
HS bus_out.crclé6 <= ok;
HS bus_out.timeout <= FALSE;
HS bus_out.pid <= pid;
END IF;
HS bus_out.ready <= TRUE;
HS bus_out.ready <= FALSE after 500 ps;

end Issue_ packet;

-- returns true when wrong combination of split start and last isoch out transaction
FUNCTION Bad_IsochOut (SS_Buff : SS Buff rec;
split : HS bus rec) RETURN boolean IS
VARIABLE result:boolean:=FALSE;
BEGIN

result := ((split.datapart = enddata OR split.datapart = middata) AND
NOT (SS_Buff.lastdata = begindata OR SS Buff.lastdata = middata)) OR
((split.datapart = begindata OR split.datapart = alldata) AND
SS Buff.isochO) OR
((split.datapart = middata OR split.datapart = enddata) AND NOT
SS Buff.isochO);

RETURN result;
END Bad IsochOut;

561

LGE-1010 / Page 589 of 650

Universal Serial Bus Specification Revision 2.0

procedure Save (hs_bus in : IN HS bus_rec;
SIGNAL hs bus out: OUT HS bus rec) IS
begin
hs bus_out <= hs bus_in;
end Save;

-- Compare BC buff - This procedure is used to look at the BC buffer to determine
- whether the packet should be stored. Compare BC buff will
- initialize BC_buff with the buffer location information.
procedure Compare BC buff IS

variable match:boolean:=FALSE;
begin

-- Assume nospace and intialize index to 0.
BC_buff.status := NOSPACE;
BC_buff.index := 0;

FOR i IN O to FIFO DEPTH-1 LOOP
IF NOT match THEN

-- Re-use buffer with same Device Address/End point.

IF (token.endpt = cam(i).store.endpt AND
token.dev_addr = cam(i).store.dev_addr AND
((token.direction = cam(i).store.direction AND

split.ep type /= CONTROL) OR

split.ep type = CONTROL)) THEN

-- If The buffer is already pending/ready this must be a retry.
IF (cam(i) .match.state = READY OR cam(i) .match.state = PENDING) THEN

BC_buff.status := OLD;
ELSE

BC_buff.status := NU;
END IF;
BC buff.index := i;
match := TRUE;

-- Otherwise use the buffer if it’s old.
ELSIF (cam(i) .match.state = OLD) THEN

BC buff.status := NU;
BC_buff.index := i;
END IF;
END IF;
END LOOP;
BC_buff.match.state := cam(BC_buff.index).match.state;

end Compare BC buff;

-- Accept _data - Store start-split into bulk/control buffer. Index is setup
-- in a previous call to Compare BC buff.

procedure Accept data IS

begin
cam(BC_buff.index) .store := token;
cam(BC_buff.index) .match.state := PENDING;
BC buff.match.state := PENDING;

end Accept data;

-- Match split state - This procedure finds the BC buffer location which matches
- the current complete-split.
procedure Match split state IS

variable match:boolean:=FALSE;

begin
BC buff.match.state := NO_MATCH;
BC buff.index := 0;

FOR i IN O to FIFO DEPTH-1 LOOP

562

LGE-1010 / Page 590 of 650

Universal Serial Bus Specification Revision 2.0

IF NOT match THEN

-- Is this the buffer used for the start-split
-- corresponding to this complete-split?

-- If it is...
-- indicate mat

IF (token.endpt

store information into BC_buff and
ch was found.

= cam (i) .store.endpt AND

token.dev_addr = cam(i).store.dev_addr AND

token.direc

BC_buff.match
BC buff.match
BC buff.index
match := TRUE
END IF;
END IF;
END LOOP;

periodic := FALSE;

end Match split state;

tion = cam(i) .store.direction) THEN

.state = cam(i) .match.state;
.down_result := cam(i).match.down result;
= iy

’

-- Setup Issue Packet.

PROCEDURE Down_error IS
BEGIN

derror v := TRUE;
END Down_error;

procedure Data into SS pipe IS

begin
CS Buff.match.state :=
ss_avail v := TRUE;

end Data_into SS pipe;

MATCH BUSY;

procedure Fast match IS
begin

periodic := TRUE;
end Fast match;

-- Setup Issue Packet.

563

LGE-1010 / Page 591 of 650

Universal Serial Bus Specification Revision 2.0

564

LGE-1010 / Page 592 of 650

Universal Serial Bus Specification Revision 2.0

Appendix C
Reset Protocol State Diagrams

This appendix presents state diagrams that provide implementation examples for the reset protocol as described
in Section 7.1.7.5. These state diagrams should be considered as an example to guide implementers; the
description of the reset protocol and the high-speed reset handshake in Section 7.1.7.5 is the complete required
behavior. By necessity, state diagrams incorporate some implementation dependent parts that, although
describing the reset protocol correctly, can also be implemented in a different way yielding similar behavior.

Any timer used in these state diagrams should have a resolution that allows it to always keep to the allowed time
frame. For instance, if a timer times out between a time Trpypr(min) and Tpypr(max), the timer should have a
minimal resolution of at least 1 clocktick in the range of Trpygr. In a number of places, a time Trpygr iS
mentioned in a state diagram; while in the tables in Section 7.3, a range is given for this time. In that case, the
time represents a chosen value in the range such that it is at least 1 clocktick of the associated timer away from
the upper boundary of that range. Under these conditions, a state in the state diagrams will never miss a branch
because the associated timer overstepped the time-out condition.

In the state diagrams in this appendix, a timer can be either Run, Started, or Cleared. Ifa timer is Run, it will
update itself every clocktick. If a timer is Cleared, it is stopped and its contents are reset to zero. A timer that is
Started is first cleared and then immediately run. Stopping of a timer is never done explicitly in the state
diagrams.

C.1 Downstream Facing Port State Diagram
This section describes the reset protocol state diagram for the downstream facing port.

The state diagram shown in Figure C-1 shows all the necessary and required behavior of a downstream facing
port in case of a reset. As this is the initiating party in the reset protocol, the hub enters the Resetting state
through a request from the host (the SetPortFeature(PORT RESET) command). The downstream facing port
then drives an SEO to initiate the reset and at the same time starts a timer TO to time the whole reset procedure.

If the attached device is low-speed, then the only way that reset ends is when the timer TO times out (Tprst) and
the bus returns to idle. Whether a device is low-speed is determined prior to entering the Resetting state in the
status bit PORT_LOW_SPEED. This is described in more detail in Section 11.8.2. When reset has completed,
the hub enters the low-speed Enabled state.

If the attached device is full-speed and not high-speed capable, it will end reset when timer TO expires (Tprst)
and the hub has not detected a valid upstream chirp (continuous Chirp K). It will then enter the full-speed
enabled state.

Last, if the attached device is high-speed capable, it will send back an upstream chirp some time after the SEO
has been asserted on the bus. The actual time before the upstream chirp starts depends on whether the attached
device was suspended or awake at the time the reset started. The loop between the blocks with “Clear timer T1”
and “Run timer T1” represents the 2.5 us (Tgt) filtering the reset protocol asks for.

Note: The timer T1 is required to be reset after an interruption of 16 high-speed bit-times of the continuous
Chirp K that makes up the upstream chirp. It may be reset by any shorter interruption.

If the filtering of the upstream chirp takes too much time, the downstream facing port may not be able to finish
its downstream chirp in time to be able to end the reset procedure in time. Therefore, when timer TO reaches
beyond the time Tycyenp (time to detect an upstream chirp), the hub is put in a wait state, which it leaves after
the timer has timed out the complete reset protocol (Tprst). It will then enter the full-speed enabled state.

565

LGE-1010 / Page 593 of 650

Universal Serial Bus Specification Revision 2.0

IResetting

SetPortFeature(PORT RESET)

Resetting

|

Drive SEO
Start timer TO

!

Clear timer T1

TO > TDRST & A TO > TDRST &

PORT_LOW_SPEED =0 PORT _LOW_SPEED =1
FS Default !High-speed K & LS Default
TO <Tuycuenp & High-speed K &
TO > Tppsr T1 <Trur PORT_LOW_SPEED =0
TO 2 Tycueno & v
WAIT T =Tt | Run timer T1
'High-speed K &
T2 2 TDCHBIT & Tl = TFILT
TO < Tprst - Tocrsko
Drive ChirpJ [% Drive Chirp K
Start timer T2 > Start timer T2
TO < Tpgrsr - Tocnseo &

T2 2 TDCHBIT

T0 2 TDRST - TDCHSEO & T0 =2 TDRST - TDCHSEO &
T2 2 TDCHBIT Drive SEO T2 2 TDCHBIT

TO > TDRST

HS-Default

Figure C-1. Downstream Facing Port Reset Protocol State Diagram

When the downstream-facing port has successfully detected an upstream chirp, it will start transmitting the
downstream chirp as soon as it has seen the bus leave the Chirp K state. This end of the upstream chirp will
return the bus to the SEO state. So immediately (actually within 100 us (Twrpcy) after the end of the upstream
chirp according to Section 7.1.7.5), the hub drives a Chirp K for 40 to 60 us (Tpcugir), then a Chirp J for 40 to
60 us, then a Chirp K, etc. It continues with this alternating sequence until timer TO has come within 100 to
500 us (Tpcusko) of the end of reset (Tprst). When this time is reached, the downstream-facing port finishes the

566

LGE-1010 / Page 594 of 650

Universal Serial Bus Specification Revision 2.0

40 to 60 ps of continuous signaling it was busy with when the timer TO exceeds the value of Tprst — Tpchsko
before driving SEO until the end of reset.

C.2 Upstream Facing Port State Diagram

This section describes the reset protocol state diagrams for the upstream facing port. The state diagram for the
upstream facing port is more complicated than the diagram for the downstream facing port as the device can be
in any possible state when it receives a reset signal. Therefore, the state diagram has been split into two parts:

e The reset detection state diagram which describes the way a device reacts to reset signaling on its upstream
facing port (see Figure C-2)

e The reset handshake state diagram that explains how a high-speed capable device performs a handshake
procedure with the hub upstream to communicate each others high-speed capabilities and have both enter a
high-speed state at the end of reset (see Figure C-3)

Therefore, all of these states must be covered in the diagram. Also, the fact that for a high-speed capable device
a suspend is initially indistinguishable from a reset requires that the state diagram for the upstream facing port
addresses the suspend procedure as well.

At the start of the reset, we can be any possible state, but we can collect them into three groups, where each
group is handled differently, but all states in the same group handle reset in the same way. The states are as
follows:

e Suspended
e Powered, FS Default, FS Address, and FS Configured
e HS Default, HS Address, and HS Configured

These groups of states correspond to an identical list of possibilities as described in Section 7.1.7.5 under item 3
of the reset protocol.

C.2.1 Reset From Suspended State

As can be seen from Figure C-2, the device wakes up from the Suspended state as soon as it sees a K or an SEQ
on the bus. A J would be indistinguishable from idle on the bus that a suspended device sees normally. On
seeing a K, the device will initiate a resume process. For the details of this process, see Section 7.1.7.7. On
seeing an SEO, the device could enter the reset handshake procedure, so it starts timer TO.

The actual reset handshake is only started after seeing a continuous assertion of SEO for at least 2.5 us (Tgy1sgo)-
The loop between the blocks with “Clear timer T1” and “Run timer T1” represents this filtering. If the device
has not detected a continuous SEO before timer TO exceeds the value of Tycuenp - Tucn, the device goes back
into the Suspended state.

A device coming from suspend most probably had its high-speed clock stopped to meet the power requirements
for a suspended device (see Section 7.2.3). Therefore, it may take some time to let the clock settle to a level of
operation where it is able to perform the reset detection and handshake with enough precision. In the state
diagram, a time symbol Tyrcik is used to have the device wait for a stable clock. This symbol is not part of the
USB 2.0 specification and does not appear in Chapter 7. It is an implementation specific detail of the reset
detection state diagram for the upstream facing port, where it is marked with a asterisk (*). TwrcLk should have
a value somewhere between 0 and 5.0 ms. This allows at least 1.0 ms time to detect the continuous SEO.

If the device has seen an SEQ signal on the bus for at least Tgy 1sgo, then it can safely assume to have detected a
reset and can start the reset handshake.

567

LGE-1010 / Page 595 of 650

HS Default
HS Address
HS Configured

idle lidle

Start timer TO

T0 2 TWTREV

Remove HS
terminations
Connect D+ pull-up
resistor
Start timer T1

ISE0 &
T1 2 Twrrsras

Universal Serial Bus Specification Revision 2.0

Line state change

Powered
ES Default
ES Address
FS Configured
A
SEO | idle
\ 4
Start timer TO
idle & SE0 &
TO >3.0 ms

TO 2 TWTRSTFS

SEO0 &
T1 2 Twrrsras

Suspended

A A

Start timer TO

TO = Twrek™®

TO = Tycuenp

- TUCH

Clear timer T1

/

ISE0 &

SEO

Run timer T1

T1<W

Tl 2 TFILTSEO

~

Initiate:Resume
process

TO = Tycueno - Tucu &
T1 < Terrsro

Start-reset*handshake process

(*) Note: TwrcLk is a symbol that is only used in this state diagram. It is not part of the USB 2.0
specification and does not appear in Chapter 7. It is an implementation specific detail of this
state diagram. See Section C.2.1 for a detailed description.

568

Figure C-2. Upstream Facing Port Reset Detection State Diagram

LGE-1010 / Page 596 of 650

Universal Serial Bus Specification Revision 2.0

Start of reset handshake process

T4 <Tpr
Run timer T4
C0<3&
T3 <Twrrs T42 Trux
Clear timer T4

!

Drive Chirp K
Start timer T2

T2 > Tyen

Stop Chirp K
Clear counter CO
Start timer T3

!

Clear timer T4

/'

High-speed K

High-speed J

h 4

Run timer T4

N

T4 > TFILT

'High-speed K &

'High-speed] &
T4 <Terr

/17

C0=3

Increase CO

Enable HS
terminations
Disconnect
D+ pull-up resistor

'

HS-Default

\ 4

T3 2 Twres

ES-Default

Figure C-3. Upstream Facing Port Reset Handshake State Diagram

569

LGE-1010 / Page 597 of 650

Universal Serial Bus Specification Revision 2.0

C.2.2 Reset From Full-speed Non-suspended State

Timer TO is started when seeing an SEO or idle state from a full-speed Non-suspended state.

If a J (idle) is detected and the timer TO exceeds the value of 3.0 ms while no change has been detected in the
state of the bus, the device is suspended.

If an SEO is detected and the timer TO times out the value of Tytrstrs (between 2.5 us minimum and 3.0 ms
maximum) while no change has been detected in the SEO state, the device can start the reset handshake. On any
line state change, the device aborts the detection of reset or suspend from upstream and returns to its previous
state.

C.2.3 Reset From High-speed Non-suspended State

Timer TO is started when seeing a high-speed idle on the bus from a high-speed Non-suspended state. If
anything else than idle is detected on the bus, the device aborts detection of a reset and returns to its previous
state. When timer T0 exceeds the value of Twrrey (between 3.0 ms minimally and 3.125 ms maximally), the
device reverts to full-speed by switching off its high-speed terminations and connecting the D+ pull-up resistor
to the D+ line.

The reset protocol allows some time for debouncing and settling of the lines in the new state (Twrrstns). After
this time, the line should be sampled to see whether the device should be suspended (on detecting a full-speed
idle) or reset (on detecting SEO).

If an idle was detected, the device should suspend; if an SEQ was detected, the device can start the reset
handshake.

If something other than an idle or an SEO, in other words, a K, was detected, the device will also enter the
suspended state. However, on seeing the K, the device will immediately resume, effectively returning to the
high-speed state.

C.2.4 Reset Handshake

At this point, the behavior of devices has become independent of the initial state they were in when the reset
started. The reset handshake is started by the device, when it sends an upstream chirp that is at least 1.0 ms long
and stops before the timer TO hits the 7.0 ms mark. Note: This is the same timer TO that was started in the reset
detection state diagram in Figure C-2.

A choice of implementation is available here. The one presented in the state diagram in Figure C-3 is where a
timer T2 is started when the Chirp K is asserted to time the minimum required duration of the upstream chirp.
The Chirp K is stopped when timer T2 exceeds the value of Tycy. Another approach would be to wait until the
timer TO exceeds the value of Tycygnp, before ending the upstream chirp. Both conform to the requirements of
the reset protocol in Section 7.1.7.5, and the choice may depend on the particular application.

As soon as the upstream chirp has ended, the device starts listening for the downstream chirp. In order to detect
at least a K-J-K-J-K-J pattern, it first starts looking for a continuously asserted Chirp K. The method employed
in this state diagram is counting the number of K-J transitions. Here K and J are actually Chirp K and Chirp J,
respectively, asserted continuously for at least 2.5 us (Tgyr).

Continuous assertion is determined by the loop between the “Clear timer T4 and “Run timer T4”. This is
similar to the method used in the downstream facing port state diagram in Figure C-1 to detect the upstream
chirp. After this, a continuous Chirp J is detected in the same manner, most likely, even using the same
hardware. Now we have detected one K-J transition. Until we have detected three K-J transitions in the same
way, we will not revert to high-speed.

The whole procedure of detecting the downstream chirp is timed by timer T3 which requires the device to
perform the detection of the K-J-K-J-K-J for at least 1.0 ms, but at most 2.5 ms. If the device is unable to detect
a sufficient number of K-J transitions before the timer T3 times out at Tyrgs, the device enters the full-speed
default state. Reset ends when the bus state changes from SEO to idle. The time Tyrgs is given a wide range to

570

LGE-1010 / Page 598 of 650

Universal Serial Bus Specification Revision 2.0

allow sufficient leverage for a device which has awoke from suspend to use its (possible not yet stable) clock to
time this duration reliably.

Reversion to high-speed when the device has detected the K-J-K-J-K-J pattern is accomplished by enabling the
high-speed terminations and disconnecting the pull-up resistor from the D+-line. According to Section 7.1.7.5,
you may wait up to 500 us before actually reverting to high-speed, but in this state diagram, this reversion is
done immediately after detection of three K-J transitions. After this switching of terminations and pull-up, the
device enters the high-speed Default state. The end of reset is signified by the first packet that is received, most
likely an SOF packet.

571

LGE-1010 / Page 599 of 650

Universal Serial Bus Specification Revision 2.0

572

LGE-1010 / Page 600 of 650

Universal Serial Bus Specification Revision 2.0

Index

Oth microframe, 9.4.11, 11.14.2.3, 11.18.3,
11.22.2

"3 strikes and you’re out" mechanism, 11.17.1

4X over-sampling state machine DPLLs,
7.1.15.1

A

abnormal termination sequences, 11.3.3
aborting/retiring transfers
aborting control transfers, 5.5.5
after loss of synchronization, 11.22.2
clientrole in, 10.5.2.2
conditions for, 5.3.2
message pipes and, 5.3.2.2
packet size and, 5.5.3
Transaction Translator’s role, 11.18.6,
11.18.6.1
USBDI role, 10.5.3.2.1
access frequency of control pipes, 5.5.4
Acknowledge packet. See ACKs
ACKs, 8.3.1 Table 8-1
in bulk transfers, 8.5.2, 11.17.1
in control transfers, 8.5.3, 8.5.3.1, 11.17.1
corrupted ACK handshake, 8.5.3.3, 8.6.4
in data toggle, 8.6, 8.6.1, 8.6.2
defined, 2.0 glossary
function response to OUT transactions,
8.4.6.3
host response to IN transactions, 8.4.6.2
overview, 8.4.5
PING flow control and OUT transactions,
8.5.1,8.5.1.1
Ready/ACK status, 11.15
in request processing, 9.2.6
AC loading specifications, 7.1.6.2
A connectors. See Series "A" and "B" connectors
AC stress evaluative setup, 7.1.1
actions in state machines, 8.5, 11.15
active devices, defined, 2.0 glossary
active pipes, 10.5.2.2
adaptive endpoints
connection requirements, 5.12.4.4
feedback for isochronous transfers, 5.12.4.2
overview, 5.12.4.1.3
adding devices. See dynamic insertion and
removal
Address device state
bus enumeration process, 9.1.2
overview, 9.1.1.4
standard device requests, 9.4.1 to 9.4.11
visible device state table, 9.1.1 Table 9-1

addresses
Address device state, 9.1.1.4, 9.1.1 Table 9-1,
9.1.2,9.4.1109.4.11
aliasing, 8.3.2
assignment
after dynamic insertion or removal, 4.6.3
bus enumeration, 2.0 glossary, 4.6.3, 9.1.2
device initialization, 10.5.1.1
operations overview, 9.2.2
re-enumerating sub-trees, 10.5.4.5
staged power switching in functions and,
7214
time limits for completing, 9.2.6.3
USB System Software role, 4.9
endpoint addresses, 5.3.1, 9.6.6
SetAddress() request, 9.4.6
address fields
address field (ADDR), 8.3.2.1, 8.3.5.1, 8.4.1,
8.4.2.2
endpoint field (ENDP), 8.3.2.2, 8.3.5.1, 8.4.1
Hub address field, 8.4.2.2
packet address fields, 8.3.2 to 8.3.2.2
ADDR field
overview, 8.3.2.1
token CRCs, 8.3.5.1
in token packets, 8.4.1
Adopters Agreement, 1.4
advancing pipeline pseudocode, 11.18.7
aging, data-rate inaccuracies and, 7.1.11
aliasing addresses, 8.3.2
"all" encoding, 11.18.4
allocating bit times in handshake packets, 11.3.3
allocating buffers. See buffers
allocating USB bandwidth
transfer management, 5.11.1 10 5.11.1.5
USB System role, 10.3.2
alternate settings for interfaces
configuration requirements, 10.3.1
Getlinterface() request, 9.4.4
in interface descriptors, 9.6.5
Setinterface() request, 9.4.10
USBDI mechanisms, 10.5.2.10
USB support for, 9.2.3
American National Standard/Electronic
Industries Association, 6.7.1
American Standard Test Materials, 6.7.1
ANSI/EIA-364-C (12/94), 6.7.1
applications
in source-to-sink connectivity, 5.12.4.4
USB suitability for, 3.3

573

LGE-1010 / Page 601 of 650

Universal Serial Bus Specification Revision 2.0

architectural overview of USB
architectural extensions, 4.10
bus protocol, 4.4
bus topology, 4.1.1
data flow types, 4.7 t0 4.7.5
hub architecture, 4.8.2.1, 11.1.1, 11.12.2
mechanical and electrical specifications, 4.2 to
42.2,6.1
physical interface, 4.2 t0 4.2.2
power, 4.3 t0 4.3.2
robustness and error handling, 4.5 t0 4.5.2
system configuration, 4.6 to0 4.6.3
USB devices, 4.1.1.2,4.8104.8.2.2
USB host, 4.1.1.1, 4.9
USB system description, 4.1 t0 4.1.1.2
assigning addresses. See addresses; bus
enumeration
ASTM-D-4565, 6.6.3, 6.7.1
ASTM-D-4566, 6.6.3, 6.7.1
asynchronous data transfers, 2.0 glossary, 4.9
asynchronous endpoints
connection requirements, 5.12.4.4
feedback for isochronous transfers, 5.12.4.2
overview, 5.12.4.1.1
asynchronous RA, 2.0 glossary, 5.12.4.4. See
also RA (rate adaptation)
asynchronous SRC, 2.0 glossary. See also SRC
Attached device state
in bus enumeration process, 9.1.2
overview, 9.1.1.1
visible device state table, 9.1.1 Table 9-1
attaching devices. See dynamic insertion and
removal
attenuation, 7.1.17
attributes of devices in configuration descriptors,
9.6.3
attributes of endpoints in endpoint descriptors,
9.6.6
audio connectivity, 5.12.4.4.1
Audio Device Class Specification Revision 1.0,
9.6
audio devices, defined, 2.0 glossary
automatic port color indicators, 11.5.3
available time in frames and microframes
bulk transfers and, 5.8.4
bus bandwidth reclamation, 5.11.5
control transfers and, 5.5.4
interrupt transfer bus access constraints, 5.7.4
isochronous transfers and, 5.6, 5.6.4
AWG, 2.0 glossary, 6.6.2

B

babble
Collision conditions and detection, 11.8.3
defined, 2.0 glossary
EOF2 timing points and, 11.2.5

574

babble (continued)
EOF and babble detection, 11.2.5.1
error detection and recovery, 8.7.4
transaction tracking and, 11.18.7
background of USB development, 3.1 to 3.3
backwards compatibility of USB 2.0, 3.1
bAlternateSetting field (interface descriptors),
9.6.5, 11.23.1
bandwidth
allocating for pipes, 4.4, 4.7.5
bandwidth reclamation, 5.11.5
defined, 2.0 glossary
transfer management, 4.7.5, 5.11.1 to
5.11.1.5,10.3.2
USB system role in, 10.3.2
battery-powered hubs, 7.2.1
bedDevice field (device descriptors), 9.6.1
bcdUSB field (device descriptors), 9.2.6.6, 9.6.1,
11.23.1
bcdUSB field (device qualifier descriptors), 9.6.2,
11.23.1
bConfigurationValue field
configuration descriptors, 9.6.3, 11.23.1
other speed configuration descriptors, 9.6.4,
11.23.1
B connectors. See Series "A" and "B" connectors
bDescLength field (hub descriptors), 11.23.2.1
bDescriptorType field
configuration descriptors, 9.6.3, 11.23.1
device descriptors, 9.6.1, 11.23.1
device qualifier descriptors, 9.6.2, 11.23.1
endpoint descriptors, 9.6.6, 11.23.1
hub descriptors, 11.23.2.1, 11.24.2.5,
11.24.2.10
interface descriptors, 9.6.5, 11.23.1
other speed configuration descriptors, 9.6.4,
11.23.1
string descriptors, 9.6.7
bDeviceClass field
device descriptors, 9.6.1, 11.23.1
device qualifier descriptors, 9.6.2, 11.23.1
bDeviceProtocol field
device descriptors, 9.6.1, 11.23.1
device qualifier descriptors, 9.6.2, 11.23.1
bDeviceSubClass field
device descriptors, 9.6.1, 11.23.1
device qualifier descriptors, 9.6.2, 11.23.1
"beginning" encoding, 11.18.4
bEndpointAddress field (endpoint descriptors),
9.6.6, 11.23.1
best case full-speed budgets, 11.18.1, 11.18.4
bHubContrCurrent field (hub descriptors),
11.23.2.1
bi-directional communication flow, 5.6.2, 5.8.2
big endian, defined, 2.0 glossary

LGE-1010 / Page 602 of 650

Universal Serial Bus Specification Revision 2.0

binterfaceClass field (interface descriptors),
9.6.5, 11.23.1
binterfaceNumber field (interface descriptors),
9.6.5, 11.23.1
binterfaceProtocol field (interface descriptors),
9.6.5, 11.23.1
binterfaceSubClass field (interface descriptors),
9.6.5, 11.23.1
binterval field (endpoint descriptors), 9.6.6,
11.23.1
bit cells, decoding, 7.1.15.1
bitmaps of hub and port status changes, 11.12.4
bit ordering, 8.1
bits, defined, 2.0 glossary
bit stuffing
bit stuffing errors, 11.3.3, 11.15, 11.22
bit stuff violations, 8.7.1
calculating transaction times, 5.11.3
defined, 2.0 glossary
high-speed signaling and, 7.1
microframe pipeline and, 11.18.2
overview, 7.1.9
bit times
bit time designations, 11.3
bit time zero, 11.3
before EOF, 11.2.5
in transaction completion prediction, 11.3.3
bLength field
configuration descriptors, 9.6.3, 11.23.1
device descriptors, 9.6.1, 11.23.1
device qualifier descriptors, 9.6.2, 11.23.1
endpoint descriptors, 9.6.6, 11.23.1
interface descriptors, 9.6.5, 11.23.1
other speed configuration descriptors, 9.6.4,
11.23.1
string descriptors, 9.6.7
blinking indicators. See indicators
blocking packets in Collision conditions, 11.8.3
blunt cut termination, 6.4.2, 6.4.3
bmAttributes field
configuration descriptors, 9.6.3, 11.23.1
endpoint descriptors, 9.6.6, 11.23.1
hub descriptors, 11.13
other speed configuration descriptors, 9.6.4,
11.23.1
bMaxPacketSizeO field
device descriptors, 9.6.1, 11.23.1
device qualifier descriptors, 9.6.2, 11.23.1
bMaxPower field, 9.6.3
configuration descriptors, 11.23.1
other speed configuration descriptors, 9.6.4,
11.23.1
bmRequestType field
hub class requests, 11.24.2
overview, 9.3.1
Setup data format, 9.3

bmRequestType field (continued)
standard device requests, 9.4
bNbrPorts field (hub descriptors), 11.23.2.1
bNumConfigurations field
device descriptors, 9.6.1, 11.23.1
device qualifier descriptors, 9.6.2, 11.23.1
bNumEndpoints field (interface descriptors),
9.6.5, 11.23.1
bNuminterfaces field
configuration descriptors, 9.6.3, 11.23.1
other speed configuration descriptors, 9.6.4,
11.23.1
bPwrOn2PwrGood field, 11.11, 11.23.2.1
bRequest field
hub class requests, 11.24.2
overview, 9.3.2
Setup data format, 9.3
standard device requests, 9.4
standard hub requests, 11.24.1
bReserved field (device qualifier descriptor),
9.6.2
broadcast mode of hub operation, 11.1.2.1
B/S or b/S, defined, 2.0 glossary
bString field (string descriptors), 9.6.7
budgets, best case full-speed budget, 11.18.1,
11.18.4
buffers
buffer impedance, 7.1.1.1
buffer match tests, 11.17.1
bulk/control transfer buffering requirements,
11.17.4
calculating sizes in functions and software,
5.11.4
clearing, 11.17.5,11.24.2.3
client pipes and, 10.5.1.2.2
client role in, 10.3.3, 10.5.3
defined, 2.0 glossary
elasticity buffer, 11.7.1.3
endpoint buffer size, 4.4
identifying location and length, 10.3.4
interrupt transfers and, 5.7.3
isochronous transfers and, 5.12.4.2
non-periodic transaction buffers, 11.14.1,
11.14.2.2,11.17,11.17 .4
non-USB isochronous application, 5.12.1
packet buffers, 2.0 glossary
periodic transaction buffers, 11.14.2.1
prebuffering data, 5.12.5
rate matching and, 5.12.8
rise and fall times for full-speed buffers,
7.1.21

575

LGE-1010 / Page 603 of 650

Universal Serial Bus Specification Revision 2.0

buffers (continued)
Transaction Translator buffers
overview, 11.14.1
resetting, 11.24.2.9
space required, 11.19
underrun or overrun states and error
counts, 10.2.6
USBD role in allocating, 10.5.1.2.1
bulk transfers. See also non-periodic
transactions
buffering requirements, 11.14.2.2, 11.17.4
bus access constraints, 5.8.4
data format, 5.8.1
data sequences, 5.8.5
defined, 2.0 glossary, 5.4
direction, 5.8.2
failures, 11.17.5
NAK rates for endpoints, 9.6.6
non-periodic transactions, 11.17 to 11.17.5
overview, 4.7.2, 5.8
packet size, 5.8.3, 9.6.6
scheduling, 11.14.2.2
split transaction examples, A.1, A.2
split transaction notation for, 11.15
state machines, 8.5.1,8.5.1.1,8.5.2, 11.17.2
transaction format, 8.5.2
transaction organization within IRPs, 5.11.2
USBD pipe mechanism responsibilities,
10.5.3.1.3
bus access for transfers
bulk transfer constraints, 5.8.4
bus access periods, 5.12.8
bus bandwidth reclamation, 5.11.5
calculating buffer sizes, 5.11.4
calculating bus transaction times, 5.11.3
client software role in, 5.11.1.1
control transfer constraints, 5.5.4
HCD role in, 5.11.1.3
Host Controller role in, 5.11.1.5
interrupt transfer constraints, 5.7.4
isochronous transfer constraints, 5.6.4
transaction list, 5.11.1.4
transaction tracking, 5.11.2
transfer management, 5.1.1 t0 5.11.1.5
transfer type overview, 5.4
USBD role in, 5.11.1.2
bus clock, 5.12.2,5.12.3,5.12.8
bus enumeration
defined, 2.0 glossary
device initialization, 10.5.1.1
enumeration handling, 11.12.6
overview, 4.6.3, 9.1.2
re-enumerating sub-trees, 10.5.4.5
staged power switching in functions, 7.2.1.4
USB System Software role, 4.9

576

bus-powered devices and functions
configuration descriptors, 9.6.3
defined, 4.3.1
device states, 9.1.1.2
high-power bus-powered functions, 7.2.1.4
low-power bus-powered functions, 7.2.1.3
power budgeting, 9.2.5.1
bus-powered hubs
configuration, 11.13
defined, 4.3.1, 7.2.1
device states, 9.1.1.2
overview, 7.2.1.1
power switching, 11.11
voltage drop budget, 7.2.2
bus protocol overview, 4.4
Bus_Reset receiver state, 11.6.3, 11.6.3.9
bus states
evaluating after reset, 7.1.7.3
global suspend, 7.1.7.6.1
Host Controller role in state handling, 10.2.1
signaling levels and, 7.1.7.1, 7.1.7.2
Transaction Translator tracking, 11.14.1
bus timing/electrical characteristics, 7.3.2
bus topology, 5.2 t0 5.2.5
client-software-to-function relationship, 5.2.5
defined, 4.1
devices, 5.2.2
hosts, 5.2.1
illustrated, 4.1.1
logical bus topology, 5.2.4
physical bus topology, 5.2.3
bus transaction timeout in isochronous transfers,
5.12.7
bus turn-around time, 2.0 glossary, 7.1.18 to
7.1.18.2,8.7.2,11.18.2
busy (ready/x) state, 11.17.5
bypass capacitors, 7.2.4.1,7.2.4.2
bytes, defined, 2.0 glossary

C

cable assemblies, 6.4 to 6.4.4
cable attenuation, 7.1.17
cable delay
electrical characteristics, 7.3.2 Table 7-12
high-/full-speed cables, 6.4.2
hub differential delay, differential jitter, and
SOP distortion, 7.3.3 Figure 7-52
hub EOP delay and EOP skew, 7.3.3 Figure
7-53
hub signaling timings, 7.1.14.1
inter-packet delay and, 7.1.18.1
low-speed cables, 6.4.3,7.1.1.2
overview, 7.1.16
propagation delay, 6.4.1, 6.7 Table 6-7,
7.1.1.2

LGE-1010 / Page 604 of 650

Universal Serial Bus Specification Revision 2.0

cable delay (continued)
skew delay, 6.7 Table 6-7, 7.1.3, 7.3.3 Figure
7-53
cables
attenuation, 7.1.17
cable assemblies, 6.4 10 6.4.4
cable delay (See cable delay)
captive cables
high-/full-speed captive cable assemblies,
6.4.2
inter-packet delay and, 7.1.18.1
low-speed captive cable assemblies, 6.4.3
maximum capacitance, 7.1.6.1
termination, 7.1.5.1
color choices, 6.4
construction, 6.6.2
description, 6.6.1
detachable cables
cable delay, 7.1.16
connectors and, 6.2
detachable cable assemblies, 6.4.1
inter-packet delay and, 7.1.18.1
low-speed detachable cables, 6.4.4
maximum capacitance, 7.1.6.1
termination, 7.1.5.1
voltage drop budget, 7.2.2
electrical characteristics and standards, 4.2.1,
6.6.3,6.7,7.3.2 Table 7-12
end-to-end signal delay, 7.1.19.1
environmental characteristics, 6.6.4, 6.7
flyback voltage, 7.2.4.2
high-/full-speed cables, 6.4.2
impedance, 6.4.1,6.4.2, 6.7 Table 6-7
input capacitance, 7.1.6.1
length, 6.4.1,6.4.2,6.4.3
listing, 6.6.5
low-speed cables, 6.4.3,6.4.4,7.1.1.2
mechanical configuration and material
requirements, 6.6 to 6.6.5, 6.7
overview, 6.3
prohibited cable assemblies, 6.4.4
pull-out standards, 6.7 Table 6-7
shielding, 6.6, 6.6.1
termination, 7.1.5.1
voltage drop budget, 7.2.2
calculations
buffering for rate matching, 5.12.8
buffer sizes in functions and software, 5.11.4
bus transaction times, 5.11.3
capabilities, defined, 2.0 glossary
capacitance
after dynamic attach, 7.2.4.1
decoupling capacitance, 7.3.2 Table 7-7
input capacitance, 7.1.6.1, 7.3.2 Table 7-7
low-speed buffers, 7.1.1.2, 7.1.2.1
low-speed cable capacitive loads, 6.4.3

capacitance (continued)
lumped capacitance guidelines for
transceivers, 7.1.6.2
optional edge rate control capacitors, 7.1.6.1
pull-up resistors and, 7.1.5.1
single-ended capacitance, 7.1.1.2
small capacitors, 7.1.6.1
target maximum droop and, 7.2.4.1
unmated contact capacitance, 7.3.2 Table 7-
12
capacitive load, 6.7 Table 6-7
captive cables
high-/full-speed captive cable assemblies,
6.4.2
inter-packet delay and, 7.1.18.1
low-speed captive cable assembilies, 6.4.3
maximum capacitance, 7.1.6.1
rise and fall times, 7.1.2.1, 7.1.2.2
TDR measurements and, 7.1.6.2
termination, 7.1.5.1
change bits
device states, 11.12.2
hub and port status change bitmap, 11.12.4
hub status, 11.24.2.6
over-current status change bits, 11.12.5
port status change bits, 11.24.2.7.2 to
11.24.2.7.2.5
Status Change endpoint defined, 11.12.1
change propagation, host state handling of,
10.2.1
characteristics of devices, 2.0 glossary, 9.6.3,
9.6.4
Chirp J and K bus states, 7.1.4.2, 7.1.7.2,
7.1.75,C1,C.24
C_HUB LOCAL_POWER, 11.11, 11.24.2,
11.24.2.1,11.24.2.6,11.24.2.7.1.6
C_HUB_OVER CURRENT, 11.24.2, 11.24.2.1
C_HUB_OVER_POWER, 11.24.2.6
classes of devices. See device classes
Class field, 9.2.3, 9.6.5
class-specific descriptors, 9.5, 11.23.2.1
class-specific requests
hub class-specific requests, 11.24.2 to
11.24.2.13
time limits for completing, 9.2.6.5
USBDI mechanisms, 10.5.2.8
Cleared timer status, C.0
ClearFeature() request, CLEAR_FEATURE
ClearHubFeature() request, 11.24.2.1
ClearPortFeature() request, 11.24.2.2
endpoint status and, 9.4.5
hub class requests, 11.24.2
hub requests, 11.24.1
overview, 9.4.1
standard device request codes, 9.4

577

LGE-1010 / Page 605 of 650

Universal Serial Bus Specification Revision 2.0

ClearHubFeature() request
clearing hub features, 11.24.2.6
hub class requests, 11.24.2
hub class-specific requests, 11.24.2.1
clearing pipes, 10.5.2.2
ClearPortFeature() request
clearing status change bits, 11.12.2,
11.24.2.7.2
C_PORT_CONNECTION, 11.24.2.7.2.1
C_PORT_ENABLE, 11.24.2.7.2.2
C_PORT_OVER-CURRENT, 11.24.2.7.2.4
C_PORT_RESET, 11.24.2.7.2.5
C_PORT_SUSPEND, 11.24.2.7.2.3
hub class requests, 11.24.2, 11.24.2.2
PORT_CONNECTION, 11.24.2.7.1.1
PORT_ENABLE, 11.5.1.4,11.24.2.7.1.2
PORT_HIGH_SPEED, 11.24.2.7.1.8
PORT_INDICATOR, 11.24.2.2, 11.24.2.7.1.10
PORT_LOW_SPEED, 11.24.2.7.1.7
PORT_OVER_CURRENT, 11.24.2.7.1.4
PORT_POWER, 11.24.2.13
PORT_POWER, 11.5.1.2,11.24.2.7.1.6
PORT_RESET, 11.24.2.7.1.5
PORT_SUSPEND, 11.5.1.10
ClearTTBuffer() request, CLEAR_TT_BUFFER
checking for busy state, 11.17.5
hub class-specific requests, 11.24.2,
11.24.2.3
client pipes, 10.5.1.2.2
client software
in bus topology, 5.2, 5.2.1,5.2.5
client software-to-function relationships, 5.2,
5.2.5
in communication flow, 5.3
control transfers and, 5.5
defined, 2.0 glossary
as implementation focus area, 5.1
notification identification, 10.3.4
role in configuration, 10.3.1
role in data transfers, 10.3.3
service clock and, 5.12.2
in source-to-sink connectivity, 5.12.4.4
in transfer management, 5.11.1, 5.11.1.1
clock model
buffering for rate matching, 5.12.8
bus clock, 5.12.2
clock encoding scheme in electrical
specifications overview, 4.2.1
clock synchronization, 5.12.3
clock-to-clock phase differences, 5.12.3
clock tolerance, 11.7.1.3
defined, 5.12
frame clocks, 11.18.3
hub clock source, 11.2.3
in non-USB isochronous application, 5.12.1
overview, 5.12.2

578

clock model (continued)
receive clock, 11.7.1.2, 11.7.1.3
sample clock, 5.12.2
service clock, 5.12.2
transmit clock, 11.7.1.3
using SOF tokens as clocks, 5.12.5
clock timings, 7.3.2 Table 7-8, 7.3.2 Table 7-9,
7.3.2 Table 7-10
CMOS driver circuit, 7.1.1.1
CMOS implementations, 7.1.1.3
codes. See specific types of codes
Collision conditions, 11.8.3
color choices
cables, 6.4
indicator lights on devices, 11.5.3 to 11.5.3.1
plugs, 6.5.4.1
receptacles, 6.5.3.1
commanded stalls, 8.4.5
commands. See requests
common mode range for differential input
sensitivity, 7.1.4.1
Communication Cables (UL Subject-444), 6.6.5,
6.7.1
communication flow, 5.3 to 5.3.3
Compare_BC_buff algorithm, 11.17.1
completed operations, 9.2.6
completed transactions, 11.3.3
complete-split transactions
buffering, 11.14.2.1, 11.17
bulk/control transactions, 11.17, 11.17.1
CSPLIT transaction tokens, 8.4.2.3
defined, 11.14.1.2
isochronous transactions, 11.21
notation for, 11.15
overview, 11.14.1
scheduling, 11.14.2.1, 11.18.4
space for, 11.18.6.3
split transaction overview, 8.4.2, 8.4.2.1
TT state searching, 11.18.8
completion times for hub requests, 11.24.1
composite devices, 5.2.3
compound devices
bus-powered hubs, 7.2.1.1
in bus topology, 5.2.3
defined, 4.8.2.2
hub descriptors for, 11.23.2.1
power configuration, 11.13
self-powered hubs, 7.2.1.2
conditions in state machine transitions, 8.5,
11.15
conductor resistance unbalance, 6.6.3
conductors
mechanical specifications, 4.2.2
power and signal conductors in cables, 6.3,
6.6.2
resistance, 6.6.3

LGE-1010 / Page 606 of 650

Universal Serial Bus Specification Revision 2.0

configuration
bus enumeration, 4.6.3, 9.1.2
configuration management, 10.5.4.1.1
Configured device state, 9.1.1.5
control transfers and, 5.5.4
descriptors, 5.3.1.1,9.4.3, 9.5, 9.6.1 t0 9.6 .4,
11.23.1 (See also descriptors)
device attachment, 4.6.1
device configuration, 10.3.1
device removal, 4.6.2, 10.5.4.1.4
function configuration, 10.3.1
hubs, 11.13
information in device characteristics, 4.8.1
initial device configuration, 10.5.4.1.2
interrupt transfers and, 5.7.4
modifying device configuration, 10.5.4.1.3
multiple configurations, 9.6.1
multiple interfaces, 9.2.3
operations overview, 9.2.3
other-speed configurations, 9.6.2
power distribution and, 7.2.1
remote wakeup capabilities, 9.2.5.2
requests
configuration requests, 5.11.1.2
GetConfiguration() request, 9.4.2
SetConfiguration() request, 9.4.7
required configurations before usage, 10.3.1
USB configuration, 10.3.1
USBDI mechanisms for getting current
settings, 10.5.2.4
USBD role in, 5.11.1.2, 10.5.4.1t0 10.54.1.4
Configuration = 0 signal/event, 11.5 Table 11-5
CONFIGURATION descriptor, 9.4 Table 9-5
configuration descriptors, 9.4.3, 9.6.4, 11.23.1
Configured device state
in bus enumeration process, 9.1.2
overview, 9.1.1.5
standard device requests and, 9.4.1 to 9.4.11
visible device state table, 9.1.1 Table 9-1
configuring software, defined, 2.0 glossary
Connect bus state, 7.1.7.1, 7.1.7.3
connecting devices. See dynamic insertion and
removal
connection status, 11.24.2.7.2, 11.24.2.7.2 1
connectivity
audio connectivity, 5.12.4.4.1
hub fault recovery mechanisms, 11.1.2.3
Hub Repeater responsibilities, 11.1
hubs, 11.1, 11.1.210 11.1.2.3
packet signaling connectivity, 11.1.2.1
resume connectivity, 11.1.2.2
source/sink connectivity, 5.12.4.4
synchronous data connectivity, 5.12.4.4.2
tearing down, 11.2.5

connectors
input capacitance, 7.1.6.1
inrush current and, 7.2.4.1
interface and mating drawings, 6.5.3, 6.5.4
keyed connector protocol, 6.2
mechanical configuration and material
requirements, 4.2.2, 6.5t06.5.4.3
orientation, 6.5.1
reference times, 7.1.6.2
Series "A" and Series "B" plugs, 6.5.4
Series "A" and Series "B" receptacles, 6.5.3
standards for, 6.7
termination data, 6.5.2
USB Icon, 6.5
construction, cable, 6.6.2
contact arcing, minimizing, 7.2.4.1
contact capacitance standards, 6.7 Table 6-7
contact current rating standards, 6.7 Table 6-7
contact materials, 6.5.3.3, 6.5.4.3
control endpoints, 2.0 glossary. See also control
transfers
controlling hubs, defined, 7.1.7.7
control mechanisms
device states and control information, 11.12.2
Host Controller control flow management, 4.9
of USB host, 10.1.2
control pipes, 2.0 glossary. See also control
transfers; message pipes; pipes
control transfers. See also non-periodic
transactions
buffering, 11.14.2.2, 11.17.4
bus access constraints, 5.5.4
control pipes in device characteristics, 4.8.1
data format, 5.5.1
data sequences, 5.5.5
defined, 2.0 glossary, 5.4
device requests, 9.3
direction, 5.5.2
error handling on last data transaction, 8.5.3.3
failures, 11.17.5
full-speed limits, 5.5.4 Table 5-2
high-speed limits, 5.5.4 Table 5-3
low-speed limits, 5.5.4 Table 5-1
NAK rates for endpoints, 9.6.6
non-periodic transactions, 11.17 to 11.17.5
overview, 4.7.1, 5.5
packet size, 5.5.3, 9.6.6
protocol stalls, 8.4.5
reporting status results, 8.5.3.1
scheduling, 11.14.2.2
simultaneous transfers, 5.5.4
split transaction examples, A.1, A.2
split transaction notation for, 11.15
stages, 2.0 glossary, 5.5
STALL handshakes returned by control pipes,
8.5.34

579

LGE-1010 / Page 607 of 650

Universal Serial Bus Specification Revision 2.0

control transfers (continued)

state machines, 8.5.1, 8.5.1.1, 8.5.2, 11.17.2

transaction format, 8.5.3

transaction organization within IRPs, 5.11.2

USBD pipe mechanism responsibilities,
10.5.3.1.4

variable-length data stage, 8.5.3.2

converting split transactions, 11.14.1
corrupted transfers and requests

in control transfers, 8.5.3

corrupted ACK handshake, 8.5.3.3, 8.6.4

corrupted CRCs, 10.2.6

corrupted IN tokens, 8.4.6.1

corrupted PIDs, 8.3.1

corrupted SOF packets in isochronous
transfers, 5.12.6

in data toggle, 8.6.3

error detection and recovery, 8.7 to 8.7.4

function response to OUT transactions,
8.4.6.3

host response to IN transactions, 8.4.6.2

NAK or STALL handshake, 8.6.3

costs of implementation, 3.3
C_PORT_CONNECTION

clearing, 11.24.2.2

defined, 11.24.2.7.2.1

hub class feature selectors, 11.24.2
Port Change field, 11.24.2.7.2

port status changes, 11.24.2.7.1.10
SetPortFeature() request, 11.24.2.13

C_PORT_ENABLE

ClearPortFeature() request, 11.24.2.2
defined, 11.24.2.7.2.2

hub class feature selectors, 11.24.2
Port Change field, 11.24.2.7.2
SetPortFeature() request, 11.24.2.13

C_PORT_OVER_CURRENT

clearing, 11.24.2.2

defined, 11.24.2.7.2.4

hub class feature selectors, 11.24.2
over-current conditions, 11.11.1, 11.12.5
Port Change field, 11.24.2.7.2
SetPortFeature() request, 11.24.2.13

C_PORT_RESET

clearing, 11.24.2.2

defined, 11.24.2.7.2.5

hub class feature selectors, 11.24.2
Port Change field, 11.24.2.7.2
SetPortFeature() request, 11.24.2.13

C_PORT_SUSPEND

clearing, 11.24.2.2

defined, 11.24.2.7.2.3

hub class feature selectors, 11.24.2
Port Change field, 11.24.2.7.2
resume conditions and, 11.4.4
SetPortFeature() request, 11.24.2.13

580

CRCs
in bulk transfers, 8.5.2
corrupted CRCs, 10.2.6
CRC16 handling, 11.15, 11.18.5, 11.20.3,
11.20.4,11.21.3,11.21.4
CRC check failures, 11.15, 11.20.3, 11.20.4,
11.21.3,11.21.4
in data packets, 8.3.5.2, 8.4.4
defined, 2.0 glossary
in error detection, 8.7.1
overview, 8.3.5
protection in isochronous transfers, 5.12.7
resending, 8.6.4
in token packets, 8.3.5.1, 8.4.1
USB robustness and, 4.5, 4.5.1
cross-over points of data lines, 7.1.13.2.1
cross-over voltage in signaling, 7.1.2.1
crystal capacitive loading, 7.1.11
CSPLIT (complete-split transactions). See
complete-split transactions
CTl, 2.0 glossary, 3.1
current
current averaging profile, 7.2.3
current spikes during suspend/resume, 7.2.3
high-speed current driver, 7.1 Table 7-1
high-speed signaling and, 7.1.1.3
supply current, 7.3.2 Table 7-7
current frame in hub timing, 11.2.3.1
current limiting
bus-powered hubs, 7.2.1.1
dynamic attach and detach, 7.2.4.1
in over-current conditions, 11.12.5
power control during suspend/resume, 7.2.3
remote wakeup and, 7.2.3
self-powered functions, 7.2.1.5
cyclic redundancy check. See CRCs

D

D+ or D- lines
average voltage, 7.1.2.1
high-speed signaling and, 7.1, 7.1.1.3
impedance, 7.1.6.1
pull-up resistors and, 7.1
signaling levels and, 7.1.7.1
signal termination, 7.1.5.1
during signal transitions, 7.1.4.1
single-ended capacitance, 7.1.1.2
standardized contact terminating
assignments, 6.5.2
test mode, 7.1.20
data
data defined, 5.12.4
data encoding/decoding, 7.1.8
data prebuffering, 5.12.5
data processing role of Host Controller, 10.2.4

LGE-1010 / Page 608 of 650

Universal Serial Bus Specification Revision 2.0

DATAO/DATA1/DATAZ2 PIDs
in bulk transfers, 5.8.5, 8.5.2
comparing sequence bits, 8.6.2
in control transfers, 8.5.3
in data packets, 8.4.4
high-bandwidth transactions and, 5.9.1, 5.9.2
high-speed DATAZ2 PIDs, 8.3.1 Table 8-1
in interrupt transactions, 5.7.5, 8.5.4, 11.20.4
synchronization and, 8.6
Transaction Translator response generation,
11.18.5
data field in packets, 8.3.4, 8.4.4
data flow model. See transfers
data flow types. See transfer types
data formats. See also specific types of transfers
bulk transfers, 5.8.1
control transfers, 5.5.1
interrupt transfers, 5.7.1
isochronous transfers, 5.6.1, 5.12.4
overview, 5.4
Data J state. See J bus state
Data K bus state. See K bus state
data packets
bus protocol overview, 4.4
data CRCs, 8.3.5.2
in isochronous transfers, 8.5.5
packet field formats, 8.3 to 8.3.5.2
packet overview, 8.4.4
spreading over several frames, 5.5.4
data payload
bulk transfers, 5.8.3
calculating transaction times, 5.11.3
defined, 5.3.2
interrupt transfers, 5.7.3
isochronous transfers, 5.6.3
maximum sizes, 8.4.4
non-zero data payload, 5.6.3
packet size constraints, 5.5.3, 5.6.3
data phases
aborting, 11.18.6.1
transaction notation for, 11.15
data PIDs. See DATAO/DATA1/DATA2 PIDs;
DATAO/DATA1 PIDs; MDATA PIDs
data rates
adaptive endpoints, 5.12.4.1.3
asynchronous endpoints, 5.12.4.1.1
in buffering calculations, 5.12.8
data-rate tolerance, 7.1.11
defined, 5.12.4
in electrical specifications overview, 4.2.1
feedback for isochronous transfers, 5.12.4.2
full-speed source electrical characteristics,
7.3.2 Table 7-9
high-speed source electrical characteristics,
7.3.2 Table 7-8

data rates (continued)
low-speed source electrical characteristics,
7.3.2 Table 7-10
overview, 7.1.11
sample clock and, 5.12.2
synchronous endpoints, 5.12.4.1.2
data recovery unit, 11.7.1.2
data retry indicators in control transfers, 5.5.5
data sequences
bulk transfers, 5.8.5
control transfers, 5.5.5
interrupt transfers, 5.7.5
isochronous transfers, 5.6.5
data signaling, 7.1.7.4 t0 7.1.7.4.2
data signal rise and fall time. See rise and fall
times
data source jitter, 7.1.13.1 t0 7.1.13.1.2,
7.1.14.2,7.1.15.1
data source signaling, 7.1.13 t0 7.1.13.2.2
Data stage
in control transfers, 5.5, 5.5.5, 8.5.3
error handling on last data transaction, 8.5.3.3
length of data, 9.3.5
packet size constraints, 5.5.3
variable-length data stages, 8.5.3.2
data toggle
bulk transfers, 5.8.5
in bulk transfers, 8.5.2
corrupted ACK handshake, 8.6.4
data corrupted or not accepted, 8.6.3
in data packets, 8.4.4
data toggle sequencing, 8.5.5
high bandwidth transactions and, 5.9.1
initialization via SETUP token, 8.6.1
in interrupt transactions, 8.5.4
interrupt transfers and, 5.7.5
low-speed transactions, 8.6.5
overview, 8.6
successful data transactions, 8.6.2
data transfers. See data packets; Data stage;
transfers
DC electrical characteristics, 7.3.2 Table 7-7
DC output voltage specifications, 7.1.6.2
DC resistance of plugs, 6.6.3
debounce intervals in connection events, 7.1.7.3
debouncing connections, 11.8.2
declarations in state machines
global declarations, B.1
Host Controller declarations, B.2
Transaction Translator declarations, B.3
decoupling capacitance, 7.3.2 Table 7-7
default addresses of devices, 2.0 glossary,
9.1.1.4,10.5.1.1
Default bus state, 7.1.7.5

581

LGE-1010 / Page 609 of 650

Universal Serial Bus Specification Revision 2.0

Default Control Pipe
in bus enumeration process, 9.1.2
in communication flow, 5.3
control transfer packet size constraints, 5.5.3
defined, 4.4, 5.3.2
endpoint zero requirements, 5.3.1.1
as message pipe, 5.3.2.2
size description in descriptors, 9.6.1
Default device state
overview, 9.1.1.3
standard device requests and, 9.4.1 to 9.4.11
visible device state table, 9.1.1 Table 9-1
default pipes, 2.0 glossary, 10.5.1.2.1
delays. See cable delay; differential delay;
propagation delay
delivery rates in isochronous transfers, 4.7.4
DEORP signal/event, 11.7.2.3 Table 11-11
descriptor index, 9.4.3, 9.4.8
descriptors
accessing, 11.23.1
in bus enumeration process, 9.1.2
class-specific descriptors, 9.5, 11.23.2.1
configuration descriptors, 9.6.3, 9.6.4, 10.3.1,
10.5.2.4
control transfers and, 5.5, 5.5.3
defined, 9.5
descriptor index, 9.4.3, 9.4.8
device class definitions, 9.7, 9.7.1
device descriptors, 9.4 Table 9-5, 9.6.1 to
9.6.5
endpoint descriptors, 9.6.6
getting descriptors, 9.4.3, 10.5.2.3
hub descriptors, 11.23 to 11.23.2.1, 11.24.2.5,
11.24.2.10
interface descriptors, 9.2.3, 9.6.5
isochronous transfer capabilities, 5.12
listing remote wakeup capabilities, 9.2.5.2
other speed configuration descriptor, 9.6.4
overview, 9.510 9.7.3
setting descriptors, 5.3.1.1, 9.4.8, 10.5.2.12
speed dependent descriptors, 9.2.6.6, 9.6.4
string descriptors, 9.6.7
USBDI mechanisms for getting descriptors,
10.5.2.3
vendor-specific descriptors, 9.5
deserialization of transmissions, 10.2.2
detachable cables
cable delay, 7.1.16
connectors and, 6.2
detachable cable assembilies, 6.4.1
inter-packet delay and, 7.1.18.1
low-speed detachable cables, 6.4.4
maximum capacitance, 7.1.6.1
termination, 7.1.5.1
voltage drop budget, 7.2.2
detached devices, 9.1.1.1, 9.1.2

582

detaching devices. See dynamic insertion and
removal
detecting connect and disconnect conditions,
7.1.7.3,7.1.20
detecting errors. See error detection and
handling
detecting hub and port status changes, 7.1.7.5,
11.12.2,11.12.3,11.12.4
detecting over-current conditions, 7.2.1.2.1
detecting speed of devices. See speed detection
Detection mechanism, 7.1.5.2
Dev_Do_BCINTI state machine, 8.5.2 Figure 8-
34
Dev_Do_ BCINTO state machine, 8.5.2 Figure 8-
32
Dev_Do_IN state machine, 8.5 Figure 8-25
Dev_Do_lIsochl state machine, 8.5.5 Figure 8-43
Dev_Do_IsochO state machine, 8.5.5 Figure 8-
41
Dev_Do_OUT state machine, 8.5 Figure 8-24
Dev_HS BCO state machine, 8.5.1.1 Figure 8-
29
Dev_HS ping state machine, 8.5.1.1 Figure 8-28
device addresses, 2.0 glossary. See also
addresses; devices
device classes. See also USB device framework
class codes, 9.2.3
defined, 4.8
descriptors, 9.2.3,9.6.1, 9.7
device characteristics, 4.8.1
device class definitions, 9.7
device qualifier descriptors, 9.6.2
getting class-specific descriptors, 9.5
hub class-specific requests, 11.24.2 to
11.24.2.13
interfaces and endpoint usage, 9.7.2
requests, 9.7.3
standard, class, and vendor information, 4.8.1
Device Class Specification for Audio Devices
Revision 1.0, 9.6
DEVICE descriptor, 9.4 Table 9-5
device descriptors
descriptor types, 9.4 Table 9-5
device class descriptors, 9.2.3, 9.7
device qualifier descriptors, 9.6.2
GetDescriptor() request, 9.4.3
getting class-specific descriptors, 9.5
hubs, 11.23.1
overview, 9.6.1
speed dependent descriptors, 9.2.6.6
standard definitions, 9.6.1 t0 9.6.5
device drivers, 5.12.4.4, 10.3.1
device endpoints, 2.0 glossary, 5.3.1.1. See also
endpoints
device-initiated resume. See remote wakeup

LGE-1010 / Page 610 of 650

Universal Serial Bus Specification Revision 2.0

Device layer
descriptors, 9.5t09.7.3
device states, 9.1t09.1.2
generic USB device operations, 9.2 t0 9.2.7
standard device requests, 9.4 to0 9.4.11
in USB device framework, 9
USB device requests, 9.3 t0 9.3.5
Device Process_trans state machine, 8.5 Figure
8-23
device qualifier descriptors, 9.2.6.6, 9.4.3, 9.4
Table 9-5,9.6.1, 9.6.2
Device release numbers, 9.6.1
DEVICE_REMOTE_WAKEUP, 9.4 Table 9-6
DeviceRemovable field (hub descriptors),
11.23.2.1
device resources, 2.0 glossary. See also buffers;
endpoints
devices. See also USB device framework
address assignment, 9.1.2, 9.2.2
characteristics and configuration (See also
device descriptors)
configuration, 4.8.2.2,9.2.3
data-rate tolerance, 7.1.11
descriptors, 9.5t0 9.7.3, 9.6.1
device characteristics, 4.8.1
device classes, 4.8, 9.7
device descriptions, 4.8.2 t0 4.8.2.1
device speed, 7.1.5t07.1.5.2, 7.1.7.3,
11.8.2
host role in configuration, 10.3.1
optional endpoints, 5.3.1.2
USBBD role in configuration, 10.5.4.1 to
10.5.4.1.4
data transfer, 9.2.4
communication flow requirements, 5.3
control transfers and, 5.5
detailed communication flow illustrated, 5.3
differing bus access for transfers, 5.11
jitter budget table, 7.1.15.1
PING flow control, 8.5.1, 8.5.1.1
response to IN transactions, 8.4.6.1
response to OUT transactions, 8.4.6.3
response to SETUP transactions, 8.4.6.4
role in bulk transfers, 8.5.2
device event timings, 7.3.2 Table 7-14
devices defined, 2.0 glossary
device state machines, 8.5
dynamic attach and detach, 9.2.1
power distribution, 7.2.4 t0 7.2.4.2
removing, 10.5.2.6, 10.5.4.1.4
USBDI mechanisms, 10.5.2.5, 10.5.2.6
generic USB device operations, 9.2 t0 9.2.7
port indicators, 11.5.3 to 11.5.3.1

devices (continued)
power distribution, 7.2.1, 9.2.5
bus-powered devices, 4.3.1, 7.2.1.1
dynamic attach and detach, 7.2.4t07.2.4.2
high-power bus-powered functions, 7.2.1.4
low-power bus-powered functions, 7.2.1.3
power supply and, 4.3.1
self-powered devices, 4.3.1,7.2.1.2,7.2.1.5
suspend/resume conditions, 7.2.3
voltage drop budget, 7.2.2
requests
host communication, 10.1.1
request errors, 9.2.7
request processing, 9.2.6 t0 9.2.6.6
standard device requests, 9.4 t0 9.4.11
USB device requests, 9.3 t0 9.3.5
state machines, 8.5, 8.5.2, 8.5.5
status
device states, 9.1109.1.2, 11.12.2
getting device status, 9.4.5
getting port status, 11.24.2.7.1.1
subtree devices after wakeup, 10.5.4.5
turn-around timers, 8.7.2
types of devices
composite devices, 5.2.3
compound devices, 4.8.2.2,5.2.3
functions, 4.8.2.2
hubs, 4.8.2.1
mapping physical and virtual devices,
5.12.4.4
virtual devices, 2.0 glossary
in USB topology, 4.1.1.2, 5.2, 5.2.2, 9.0
device software, defined, 2.0 glossary
device state machines, 8.5. See also specific
state machines under Dev_
diameter of cables, 6.6.2
diamond symbols in state machines, 8.5, 11.15
dielectric withstanding voltage standards, 6.7
Table 6-7
Differential O bus state, 7.1.7.2
Differential 1 bus state, 7.1.7.1, 7.1.7.2
Differential 2 bus state, 7.1.7.1
differential data jitter, 7.3.3 Figure 7-49, 7.3.3
Figure 7-52
differential delay, 7.3.2 Table 7-11, 7.3.3 Figure
7-52
differential-ended components in upstream
ports, 11.6.1, 11.6.2
differential envelope detectors, 7.1
differential input receivers, 1,7.1,7.1.4.1, 7.1.6,
7.1 Table 7-1
differential output drivers, USBD as, 7.1.1
differential signaling, 7.1.7.1,7.1.7.2, 7.1.7.4 1
differential termination impedance, 7.1.6.2
differential-to-EOP transition skew, 7.3.3 Figure
7-50

583

LGE-1010 / Page 611 of 650

Universal Serial Bus Specification Revision 2.0

dimensional inspection standards, 6.7 Table 6-7
Direction bit, 9.3.1,9.3.4
direction of communication flow, 5.4
bmRequestType field, 9.3.1
bulk transfers, 5.8.2
bus protocol overview, 4.4
control transfers, 5.5.2
interrupt transfers, 5.7.2
isochronous transfers, 5.6.2
disabled ports, 11.5, 11.5.1.4, 11.24.2.7 .1,
11.24.2.7.2
Disabled state, 11.5, 11.5.1.4
disabling features, 9.4.1
discarding packets, 11.3.2
Disconnect_Detect signal/event, 11.5.2, 11.5
Table 11-5
Disconnected state
connect and disconnect signaling, 7.1.7.3
detecting, 7.1, 7.1.4.2,7.1.20
downstream ports, 11.5, 11.5.1.3
signaling levels and, 7.1.7.1, 7.1.7.2
disconnecting devices. See dynamic insertion
and removal
disconnection envelope detectors, 7.1.7.3, 7.1
Table 7-1
disconnect timer, 11.5.2
distortion, minimizing in SOP, 7.1.7.4.1
DLL lock, 7.1
documents, applicable standards, 6.7.1
down counters in hub timing, 11.2.3.1
downstream facing ports and hubs
Disconnect state detection, 7.1
downstream connectivity defined, 11.1.2.1
downstream defined, 2.0 glossary
downstream facing port state machine, 11.5
downstream plugs, 6.2
downstream ports defined, 4.8.2.1
driver speed and, 7.1.2.3
enumeration handling, 11.12.6
high-speed driver characteristics and, 7.1.1.3
high-speed signaling and, 7.1.7.6.1, 7.1.7.6.2,
11.1.1
in hub architecture, 11.1.1
hub delay, 7.3.3 Figure 7-52
hub descriptors, 11.23.2.1
hub EOP delay and EOP skew, 7.3.3 Figure
7-53
input capacitance, 7.1.6.1
jitter, 7.3.2 Table 7-10
multiple Transaction Translators, 11.14.1.3
port state descriptions, 11.5.1 to 11.5.1.14
reset state machines, C.1
signaling delays, 7.1.14.1
signaling speeds, 7.1
status changes, 11.12.6
test mode support, 7.1.20

584

downstream facing ports and hubs (continued)
transceivers, 7.1, 7.1.7.1, 7.1.7.2
downstream facing transceivers, high-speed
signaling and, 7, 7.1
downstream packets (HSD1), 8.5, 11.15
drain wires, 6.5.2, 6.6.1, 6.6.2
dribble, defined, 7.1.9.1
drift, 5.12.1, 5.12.3
driver characteristics
full-speed driver characteristics, 7.1.1.1
full-speed source electrical characteristics,
7.3.2 Table 7-9
high-speed driver characteristics, 7.1.1.3
high-speed source electrical characteristics,
7.3.2 Table 7-8
low-speed driver characteristics, 7.1.1.2, 7.1
Table 7-1
low-speed source electrical characteristics,
7.3.2 Table 7-10
overview, 7.1.1
drivers
defined, 2.0 glossary
role in configuration, 10.3.1
in source-to-sink connectivity, 5.12.4.4
droop, 7.2.3,7.2.41
dual pin-type receptacles, 6.9
durability standards, 6.7 Table 6-7
DWORD, defined, 2.0 glossary
dynamic insertion and removal, 9.2.1
attaching devices, 4.6.1
defined, 2.0 glossary
detecting insertion and removal, 4.9, 9.2.1
Hub Repeater responsibilities, 11.1
hub support for, 11.1
power control, 7.2.3, 7.2.4 t0 7.2.4.2
power-on and connection events timing,
7.1.7.3
removing devices, 4.6.2
USB robustness and, 4.5

E
E field (End), 8.4.2.2
E2PROM defined, 2.0 glossary
ease-of-use considerations, 1.1
EBEmptied signal/event, 11.7.1.4 Table 11-10
edges of signals
cable delay, 7.1.16
data source jitter, 7.1.13.1.1
edge transition density, 8.2
optional edge rate control capacitors, 7.1.6.1
EEPROM, defined, 2.0 glossary
elasticity buffer, 11.7.1.3
Electrical Connector/Socket Test Procedures,
6.7.1
Electrically Erasable Programmable Read Only
Memory (EEPROM), 2.0 glossary

LGE-1010 / Page 612 of 650

Universal Serial Bus Specification Revision 2.0

Electrical Performance Properties of Insulation
and Jacket for Telecommunication Wire
and Cable, 6.7.1
electrical specifications, 6.1, 7
applicable documents, 6.7.1
bus timing/electrical characteristics, 7.3.2
cables, 6.3,6.4106.4.4,6.6t06.6.5
connectors, 6.2, 6.5 10 6.5.4.3
overview, 4.2.1, 6
PCB reference drawings, 6.9
physical layer specifications, 7.3 to 7.3.3
power distribution, 7.2t0 7.2.1.5,7.2.3,7.2.4
to7.24.2
signaling, 7.1 t0 7.1.20
standards for, 6.7, 7.3.1
timing waveforms, 7.3.3
USB grounding, 6.8
embedded hubs, 4.8.2.2, 5.2.3
EMI, USB grounding and, 6.8
enabled ports
connectivity and, 11.1.2.1
downstream ports, 11.5, 11.5.1.6
getting port status, 11.24.2.7.1
PORT_ENABLE bit, 11.24.2.7.1.2
port status change bits, 11.24.2.7.2
Enabled state, 11.5, 11.5.1.6
Enable Transmit state, 11.7.1.4.3
encoding data, 7.1.8, 11.18.4
"end" encoding, 11.18.4
End field (E), 8.4.2.2
End-of-Frame (EOF). See EOFs
End of High-speed Packet (HSEOP), 7.1.7.2,
71.7.4.2
End-of-Packet (EOP). See EOPs
End-of-Packet bus state, 7.1.7.1, 7.1.7.2,
71.741,71.74.2
end-of-packet delimiter. See EOPs
ENDRP field, 8.3.2.2, 8.3.5.1, 8.4.1
endpoint addresses, 2.0 glossary, 5.3.1, 9.6.6
ENDPOINT descriptor, 9.4 Table 9-5
endpoint descriptors, 9.4.3, 9.6.1, 9.6.5, 9.6.6
endpoint direction, defined, 2.0 glossary
endpoint field (ENDP), 8.3.2.2, 8.3.5.1, 8.4.1
ENDPOINT_HALT, 9.4 Table 9-6
endpoint numbers, 2.0 glossary, 5.3.1
endpoints
addresses, 9.6.6
characteristics, 5.3.1
description in descriptors, 9.4.3, 9.6.1, 9.6.5,
9.6.6
in device class definitions, 9.7.2
direction of flow, 5.3.1
endpoint address field, 8.3.2.2
endpoint aliasing, 8.3.2
endpoint zero requirements, 4.8.1, 5.3.1.1,
5.3.1.2,5.3.2

endpoints (continued)

explicit feedback endpoints, 9.6.5, 9.6.6
getting endpoint status, 9.4.5
high-bandwidth endpoints, 2.0 glossary, 5.7.4
high-speed signaling attributes, 9.6.6
Hub Controller endpoint organization, 11.12.1
in interfaces, 9.2.3, 9.6.3, 9.6.5
logical devices as collections of endpoints, 5.3
message pipes and, 5.3.2.2
non-endpoint zero requirements, 5.3.1.2
number matching, 9.6.6
overview, 5.3.1
pipes and, 4.4, 5.3.2
programmable data rates, 2.0 glossary
reflected endpoint status, 10.5.2.2
role in data transfers, 4.7
samples, 2.0 glossary
specifying in windex field, 9.3.4
state machines, 8.5
stream pipes and, 5.3.2.1
synchronization frame, 9.4.11
Transfer Types, Synchronization Types, and
Usage Types, 9.6.6
endpoint synchronization type, 5.12.4, 5.12.4 1
Endpoint Type field (ET), 8.4.2.2
endpoint type field (ET), 8.4.2.2
endpoint zero
Default Control Pipe and, 5.3.2
in device characteristics, 4.8.1
non-endpoint zero requirements, 5.3.1.2
requirements, 5.3.1.1
end-to-end signal delay, 7.1.19t0 7.1.19.2
end users, 2.0 glossary, 3.3
entering test mode, 7.1.20
entry points into state machines, 8.5
enumeration. See bus enumeration
envelope detectors, 2.0 glossary, 7.1, 7.1.4.2,
7.1.7.3, 7.1 Table 7-1
environmental characteristics for cables, 6.6.4
environmental compliance standards, 6.7
EOF1 or EOF2 signal/event
frame and microframe timers, 11.2.3.2, 11.2.5
to 11.2.5.2
host behavior at end-of-frame, 11.3
in Hub Repeater state machine, 11.7.2.3
Table 11-11
in transmitter state machine, 11.6.4 Table 1