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Universal Serial Bus Specification Revision 2.0

Scope of this Revision
The 2.0 revision of the specification is intended for product design. Every attempt has been made to ensure a
consistent and implementable specification. Implementations should ensure compliance with this revision.
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Chapter 1
Introduction

1.1 Motivation

The original motivation for the Universal Serial Bus (USB) came from three interrelated considerations:

e Connection of the PC to the telephone
It is well understood that the merge of computing and communication will be the basis for the next
generation of productivity applications. The movement of machine-oriented and human-oriented data
types from one location or environment to another depends on ubiquitous and cheap connectivity.
Unfortunately, the computing and communication industries have evolved independently. The USB
provides a ubiquitous link that can be used across a wide range of PC-to-telephone interconnects.

¢ Ease-of-use
The lack of flexibility in reconfiguring the PC has been acknowledged as the Achilles’ heel to its
further deployment. The combination of user-friendly graphical interfaces and the hardware and
software mechanisms associated with new-generation bus architectures have made computers less
confrontational and easier to reconfigure. However, from the end user’s point of view, the PC’s I/O
interfaces, such as serial/parallel ports, keyboard/mouse/joystick interfaces, etc., do not have the
attributes of plug-and-play.

e Port expansion
The addition of external peripherals continues to be constrained by port availability. The lack of a bi-
directional, low-cost, low-to-mid speed peripheral bus has held back the creative proliferation of
peripherals such as telephone/fax/modem adapters, answering machines, scanners, PDA’s, keyboards,
mice, etc. Existing interconnects are optimized for one or two point products. As each new function or
capability is added to the PC, a new interface has been defined to address this need.

The more recent motivation for USB 2.0 stems from the fact that PCs have increasingly higher performance
and are capable of processing vast amounts of data. At the same time, PC peripherals have added more
performance and functionality. User applications such as digital imaging demand a high performance
connection between the PC and these increasingly sophisticated peripherals. USB 2.0 addresses this need
by adding a third transfer rate of 480 Mb/s to the 12 Mb/s and 1.5 Mb/s originally defined for USB.

USB 2.0 is a natural evolution of USB, delivering the desired bandwidth increase while preserving the
original motivations for USB and maintaining full compatibility with existing peripherals.

Thus, USB continues to be the answer to connectivity for the PC architecture. It is a fast, bi-directional,
isochronous, low-cost, dynamically attachable serial interface that is consistent with the requirements of the
PC platform of today and tomorrow.

1.2 Objective of the Specification

This document defines an industry-standard USB. The specification describes the bus attributes, the
protocol definition, types of transactions, bus management, and the programming interface required to
design and build systems and peripherals that are compliant with this standard.

The goal is to enable such devices from different vendors to interoperate in an open architecture. The
specification is intended as an enhancement to the PC architecture, spanning portable, business desktop, and
home environments. It is intended that the specification allow system OEMs and peripheral developers
adequate room for product versatility and market differentiation without the burden of carrying obsolete
interfaces or losing compatibility.
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1.3 Scope of the Document

The specification is primarily targeted to peripheral developers and system OEMs, but provides valuable
information for platform operating system/ BIOS/ device driver, adapter IHVs/ISVs, and platform/adapter
controller vendors. This specification can be used for developing new products and associated software.

1.4 USB Product Compliance

Adopters of the USB 2.0 specification have signed the USB 2.0 Adopters Agreement, which provides them
access to a reciprocal royalty-free license from the Promoters and other Adopters to certain intellectual
property contained in products that are compliant with the USB 2.0 specification. Adopters can demonstrate
compliance with the specification through the testing program as defined by the USB Implementers Forum.
Products that demonstrate compliance with the specification will be granted certain rights to use the USB
Implementers Forum logo as defined in the logo license.

1.5 Document Organization

Chapters 1 through 5 provide an overview for all readers, while Chapters 6 through 11 contain detailed
technical information defining the USB.

e Peripheral implementers should particularly read Chapters 5 through 11.
e USB Host Controller implementers should particularly read Chapters 5 through 8, 10, and 11.
e  USB device driver implementers should particularly read Chapters 5, 9, and 10.

This document is complemented and referenced by the Universal Serial Bus Device Class Specifications.
Device class specifications exist for a wide variety of devices. Please contact the USB Implementers
Forum for further details.

Readers are also requested to contact operating system vendors for operating system bindings specific to the
USB.
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Chapter 2
Terms and Abbreviations

This chapter lists and defines terms and abbreviations used throughout this specification.

ACK Handshake packet indicating a positive acknowledgment.

Active Device A device that is powered and is not in the Suspend state.

Asynchronous Data Data transferred at irregular intervals with relaxed latency requirements.

Asynchronous RA The incoming data rate, Fs;, and the outgoing data rate, Fs,, of the RA process
are independent (i.e., there is no shared master clock). See also rate
adaptation.

Asynchronous SRC The incoming sample rate, Fs;, and outgoing sample rate, Fs,, of the SRC

process are independent (i.e., there is no shared master clock). See also sample
rate conversion.

Audio Device A device that sources or sinks sampled analog data.

AWGH The measurement of a wire’s cross section, as defined by the American Wire
Gauge standard.

Babble Unexpected bus activity that persists beyond a specified point in a
(micro)frame.
Bandwidth The amount of data transmitted per unit of time, typically bits per second (b/s)

or bytes per second (B/s).

Big Endian A method of storing data that places the most significant byte of multiple-byte
values at a lower storage address. For example, a 16-bit integer stored in big
endian format places the least significant byte at the higher address and the
most significant byte at the lower address. See also little endian.

Bit A unit of information used by digital computers. Represents the smallest piece
of addressable memory within a computer. A bit expresses the choice between
two possibilities and is typically represented by a logical one (1) or zero (0).

Bit Stuffing Insertion of a “0” bit into a data stream to cause an electrical transition on the
data wires, allowing a PLL to remain locked.

b/s Transmission rate expressed in bits per second.
B/s Transmission rate expressed in bytes per second.
Buffer Storage used to compensate for a difference in data rates or time of occurrence

of events, when transmitting data from one device to another.

Bulk Transfer One of the four USB transfer types. Bulk transfers are non-periodic, large
bursty communication typically used for a transfer that can use any available
bandwidth and can also be delayed until bandwidth is available. See also
transfer type.

Bus Enumeration Detecting and identifying USB devices.
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A data element that is eight bits in size.
Those attributes of a USB device that are administrated by the host.

Those qualities of a USB device that are unchangeable; for example, the device
class is a device characteristic.

Software resident on the host that interacts with the USB System Software to
arrange data transfer between a function and the host. The client is often the
data provider and consumer for transferred data.

Software resident on the host software that is responsible for configuring a
USB device. This may be a system configurator or software specific to the
device.

A pair of device endpoints with the same endpoint number that are used by a
control pipe. Control endpoints transfer data in both directions and, therefore,
use both endpoint directions of a device address and endpoint number
combination. Thus, each control endpoint consumes two endpoint addresses.

Same as a message pipe.

One of the four USB transfer types. Control transfers support
configuration/command/status type communications between client and
function. See also transfer type.

See Cyclic Redundancy Check.
Computer Telephony Integration.

A check performed on data to see if an error has occurred in transmitting,
reading, or writing the data. The result of a CRC is typically stored or
transmitted with the checked data. The stored or transmitted result is
compared to a CRC calculated for the data to determine if an error has
occurred.

An address defined by the USB Specification and used by a USB device when
it is first powered or reset. The default address is 00H.

The message pipe created by the USB System Software to pass control and
status information between the host and a USB device’s endpoint zero.

A logical or physical entity that performs a function. The actual entity
described depends on the context of the reference. At the lowest level, device
may refer to a single hardware component, as in a memory device. At a higher
level, it may refer to a collection of hardware components that perform a
particular function, such as a USB interface device. At an even higher level,
device may refer to the function performed by an entity attached to the USB;
for example, a data/FAX modem device. Devices may be physical, electrical,
addressable, and logical.

When used as a non-specific reference, a USB device is either a hub or a
function.

A seven-bit value representing the address of a device on the USB. The device
address is the default address (00H) when the USB device is first powered or
the device is reset. Devices are assigned a unique device address by the USB
System Software.
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A uniquely addressable portion of a USB device that is the source or sink of
information in a communication flow between the host and device. See also
endpoint address.

Resources provided by USB devices, such as buffer space and endpoints. See
also Host Resources and Universal Serial Bus Resources.

Software that is responsible for using a USB device. This software may or
may not also be responsible for configuring the device for use.

The direction of data flow from the host or away from the host. A downstream
port is the port on a hub electrically farthest from the host that generates
downstream data traffic from the hub. Downstream ports receive upstream
data traffic.

When referring to hardware, an I/O pad that drives an external load. When
referring to software, a program responsible for interfacing to a hardware
device, that is, a device driver.

Double word. A data element that is two words (i.e., four bytes or 32 bits) in
size.

The ability to attach and remove devices while the host is in operation.

See Electrically Erasable Programmable Read Only Memory.
See Electrically Erasable Programmable Read Only Memory.

Non-volatile rewritable memory storage technology.

The user of a host.
See device endpoint.

The combination of an endpoint number and an endpoint direction on a USB
device. Each endpoint address supports data transfer in one direction.

The direction of data transfer on the USB. The direction can be either IN or
OUT. IN refers to transfers to the host; OUT refers to transfers from the host.

A four-bit value between OH and FH, inclusive, associated with an endpoint on
a USB device.

An electronic circuit inside a USB device that monitors the USB data lines and
detects certain voltage related signal characteristics.

End-of-(micro)Frame.
End-of-Packet.
See port.

A representation of USB signaling that provides minimum and maximum
voltage levels as well as signal jitter.

A spurious, usually noise-induced event that is interpreted by a packet receiver
as an EOP.
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A 1 millisecond time base established on full-/low-speed buses.

A sequence of frames that exhibit a repeating pattern in the number of samples
transmitted per frame. For a 44.1 kHz audio transfer, the frame pattern could
be nine frames containing 44 samples followed by one frame containing

45 samples.

See sample rate.
Computer data transmission occurring in both directions simultaneously.
USB operation at 12 Mb/s. See also low-speed and high-speed.

A USB device that provides a capability to the host, such as an ISDN
connection, a digital microphone, or speakers.

A packet that acknowledges or rejects a specific condition. For examples, see
ACK and NAK.

A high-speed device endpoint that transfers more than 1024 bytes and less than
3073 bytes per microframe.

USB operation at 480 Mb/s. See also low-speed and full-speed.

The host computer system where the USB Host Controller is installed. This
includes the host hardware platform (CPU, bus, etc.) and the operating system
in use.

The host’s USB interface.

The USB software layer that abstracts the Host Controller hardware. The Host
Controller Driver provides an SPI for interaction with a Host Controller. The
Host Controller Driver hides the specifics of the Host Controller hardware
implementation.

Resources provided by the host, such as buffer space and interrupts. See also
Device Resources and Universal Serial Bus Resources.

A USB device that provides additional connections to the USB.

One plus the number of USB links in a communication path between the host
and a function. See Figure 4-1.

A hardware signal that allows a device to request attention from a host. The
host typically invokes an interrupt service routine to handle the condition that
caused the request.

One of the four USB transfer types. Interrupt transfer characteristics are small
data, non-periodic, low-frequency, and bounded-latency. Interrupt transfers
are typically used to handle service needs. See also transfer type.

An identifiable request by a software client to move data between itself (on the
host) and an endpoint of a device in an appropriate direction.

See I/0 Request Packet.
See Interrupt Request.
A stream of data whose timing is implied by its delivery rate.

An entity with isochronous endpoints, as defined in the USB Specification, that
sources or sinks sampled analog streams or synchronous data streams.
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An endpoint that is capable of consuming an isochronous data stream that is
sent by the host.

An endpoint that is capable of producing an isochronous data stream and
sending it to the host.

One of the four USB transfer types. Isochronous transfers are used when
working with isochronous data. Isochronous transfers provide periodic,
continuous communication between host and device. See also transfer type.

A tendency toward lack of synchronization caused by mechanical or electrical
changes. More specifically, the phase shift of digital pulses over a
transmission medium.

Transmission rate expressed in kilobits per second.
Transmission rate expressed in kilobytes per second.

Method of storing data that places the least significant byte of multiple-byte
values at lower storage addresses. For example, a 16-bit integer stored in little
endian format places the least significant byte at the lower address and the
most significant byte at the next address. See also big endian.

Loss of bus activity characterized by an SOP without a corresponding EOP.
USB operation at 1.5 Mb/s. See also full-speed and high-speed.

Least significant bit.

Least significant byte.

Transmission rate expressed in megabits per second.

Transmission rate expressed in megabytes per second.

A bi-directional pipe that transfers data using a request/data/status paradigm.
The data has an imposed structure that allows requests to be reliably identified
and communicated.

A 125 microsecond time base established on high-speed buses.
Most significant bit.

Most significant byte.

Handshake packet indicating a negative acknowledgment.

A method of encoding serial data in which ones and zeroes are represented by
opposite and alternating high and low voltages where there is no return to zero
(reference) voltage between encoded bits. Eliminates the need for clock
pulses.

See Non Return to Zero Invert.
Host software or data structure representing a USB entity.

A bundle of data organized in a group for transmission. Packets typically
contain three elements: control information (e.g., source, destination, and
length), the data to be transferred, and error detection and correction bits.

The logical buffer used by a USB device for sending or receiving a single
packet. This determines the maximum packet size the device can send or
receive.
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A field in a USB packet that indicates the type of packet, and by inference, the
format of the packet and the type of error detection applied to the packet.

A token, data, or handshake packet. A transaction has three phases.

A circuit that acts as a phase detector to keep an oscillator in phase with an
incoming frequency.

A device that has a physical implementation; e.g., speakers, microphones, and
CD players.
See Packet ID.

A logical abstraction representing the association between an endpoint on a
device and software on the host. A pipe has several attributes; for example, a
pipe may transfer data as streams (stream pipe) or messages (message pipe).
See also stream pipe and message pipe.

See Phase Locked Loop.
Asking multiple devices, one at a time, if they have any data to transmit.
See Power On Reset.

Point of access to or from a system or circuit. For the USB, the point where a
USB device is attached.

Restoring a storage device, register, or memory to a predetermined state when
power is applied.

Either a fixed data rate (single-frequency endpoints), a limited number of data
rates (32 kHz, 44.1 kHz, 48 kHz, ...), or a continuously programmable data
rate. The exact programming capabilities of an endpoint must be reported in
the appropriate class-specific endpoint descriptors.

A specific set of rules, procedures, or conventions relating to format and timing
of data transmission between two devices.

See rate adaptation.

The process by which an incoming data stream, sampled at Fs;, is converted to
an outgoing data stream, sampled at Fs ,with a certain loss of quality,
determined by the rate adaptation algorithm. Error control mechanisms are
required for the process. Fs; and Fs, can be different and asynchronous. Fs; is
the input data rate of the RA; Fs, is the output data rate of the RA.

A request made to a USB device contained within the data portion of a SETUP
packet.

The action of completing service for a transfer and notifying the appropriate
software client of the completion.

A USB hub directly attached to the Host Controller. This hub (tier 1) is
attached to the host.

The downstream port on a Root Hub.

The smallest unit of data on which an endpoint operates; a property of an
endpoint.

The number of samples per second, expressed in Hertz (Hz).
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A dedicated implementation of the RA process for use on sampled analog data
streams. The error control mechanism is replaced by interpolating techniques.

A procedure provided by a System Programming Interface (SPI).

The period between consecutive requests to a USB endpoint to send or receive
data.

The deviation of service delivery from its scheduled delivery time.
The number of services to a given endpoint per unit time.

See Start-of-Frame.

Start-of-Packet.

See System Programming Interface.

A transaction type supported by host controllers and hubs. This transaction
type allows full- and low-speed devices to be attached to hubs operating at
high-speed.

See Sample Rate Conversion.

One part of the sequence composing a control transfer; stages include the Setup
stage, the Data stage, and the Status stage.

The first transaction in each (micro)frame. An SOF allows endpoints to
identify the start of the (micro)frame and synchronize internal endpoint clocks
to the host.

A pipe that transfers data as a stream of samples with no defined USB
structure.

A classification that characterizes an isochronous endpoint’s capability to
connect to other isochronous endpoints.

The incoming data rate, Fs;, and the outgoing data rate, Fs,, of the RA process
are derived from the same master clock. There is a fixed relation between Fs;
and Fs,,.

The incoming sample rate, Fs;, and outgoing sample rate, Fs,, of the SRC
process are derived from the same master clock. There is a fixed relation
between Fs; and Fs,.

A defined interface to services provided by system software.

See Time Division Multiplexing.
See Time Domain Reflectometer.

Passive components attached at the end of cables to prevent signals from being
reflected or echoed.

A method of transmitting multiple signals (data, voice, and/or video)
simultaneously over one communications medium by interleaving a piece of
each signal one after another.

An instrument capable of measuring impedance characteristics of the USB
signal lines.
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The detection of a lack of bus activity for some predetermined interval.
A type of packet that identifies what transaction is to be performed on the bus.

The delivery of service to an endpoint; consists of a token packet, optional data
packet, and optional handshake packet. Specific packets are allowed/required
based on the transaction type.

A functional component of a USB hub. The Transaction Translator responds to
special high-speed transactions and translates them to full/low-speed
transactions with full/low-speed devices attached on downstream facing ports.

One or more bus transactions to move information between a software client
and its function.

Determines the characteristics of the data flow between a software client and
its function. Four standard transfer types are defined: control, interrupt, bulk,
and isochronous.

The time a device needs to wait to begin transmitting a packet after a packet
has been received to prevent collisions on the USB. This time is based on the
length and propagation delay characteristics of the cable and the location of the
transmitting device in relation to other devices on the USB.

The host resident software entity responsible for providing common services to
clients that are manipulating one or more functions on one or more Host
Controllers.

Resources provided by the USB, such as bandwidth and power. See also
Device Resources and Host Resources.

The direction of data flow towards the host. An upstream port is the port on a
device electrically closest to the host that generates upstream data traffic from
the hub. Upstream ports receive downstream data traffic.

See Universal Serial Bus Driver.

USB Implementers Forum, Inc. is a nonprofit corporation formed to facilitate
the development of USB compliant products and promote the technology.

A device that is represented by a software interface layer. An example of a
virtual device is a hard disk with its associated device driver and client
software that makes it able to reproduce an audio .WAYV file.

A data element that is two bytes (16 bits) in size.
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Chapter 3
Background

This chapter presents a brief description of the background of the Universal Serial Bus (USB), including
design goals, features of the bus, and existing technologies.

Goals for the Universal Serial Bus

The USB is specified to be an industry-standard extension to the PC architecture with a focus on PC
peripherals that enable consumer and business applications. The following criteria were applied in defining
the architecture for the USB:

Ease-of-use for PC peripheral expansion

Low-cost solution that supports transfer rates up to 480 Mb/s

Full support for real-time data for voice, audio, and video

Protocol flexibility for mixed-mode isochronous data transfers and asynchronous messaging
Integration in commodity device technology

Comprehension of various PC configurations and form factors

Provision of a standard interface capable of quick diffusion into product

Enabling new classes of devices that augment the PC’s capability

Full backward compatibility of USB 2.0 for devices built to previous versions of the specification

11
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PERFORMANCE

Taxonomy of Application Space

Figure 3-1 describes a taxonomy for the range of data traffic workloads that can be serviced over a USB.
As can be seen, a 480 Mb/s bus comprehends the high-speed, full-speed, and low-speed data ranges.
Typically, high-speed and full-speed data types may be isochronous, while low-speed data comes from
interactive devices. The USB is primarily a PC bus but can be readily applied to other host-centric
computing devices. The software architecture allows for future extension of the USB by providing support
for multiple USB Host Controllers.

APPLICATIONS ATTRIBUTES

LOW-SPEED

* Interactive Devices
* 10 — 100 kb/s

FULL-SPEED

¢ Phone, Audio,
Compressed Video

* 500 kb/s — 10 Mb/s

HIGH-SPEED

* Video, Storage
e 25 -400 Mb/s

Keyboard, Mouse

Stylus

Game Peripherals

Virtual Reality Peripherals

POTS
Broadband
Audio
Microphone

Video
Storage
Imaging
Broadband

Lowest Cost
Ease-of-Use

Dynamic Attach-Detach
Multiple Peripherals

Lower Cost
Ease-of-Use

Dynamic Attach-Detach
Multiple Peripherals
Guaranteed Bandwidth
Guaranteed Latency

Low Cost

Ease-of-Use

Dynamic Attach-Detach
Multiple Peripherals
Guaranteed Bandwidth
Guaranteed Latency
High Bandwidth

Figure 3-1. Application Space Taxonomy
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3.3 Feature List

The USB Specification provides a selection of attributes that can achieve multiple price/performance
integration points and can enable functions that allow differentiation at the system and component level.
Features are categorized by the following benefits:

Easy to use for end user

e Single model for cabling and connectors

e  Electrical details isolated from end user (e.g., bus terminations)

e  Self-identifying peripherals, automatic mapping of function to driver and configuration

e  Dynamically attachable and reconfigurable peripherals

Wide range of workloads and applications

e Suitable for device bandwidths ranging from a few kb/s to several hundred Mb/s

e Supports isochronous as well as asynchronous transfer types over the same set of wires
e  Supports concurrent operation of many devices (multiple connections)

e Supports up to 127 physical devices

e Supports transfer of multiple data and message streams between the host and devices

e Allows compound devices (i.e., peripherals composed of many functions)

e  Lower protocol overhead, resulting in high bus utilization

Isochronous bandwidth

e Guaranteed bandwidth and low latencies appropriate for telephony, audio, video, etc.

Flexibility
e Supports a wide range of packet sizes, which allows a range of device buffering options
e Allows a wide range of device data rates by accommodating packet buffer size and latencies

e Flow control for buffer handling is built into the protocol

Robustness
e  Error handling/fault recovery mechanism is built into the protocol
e Dynamic insertion and removal of devices is identified in user-perceived real-time

e  Supports identification of faulty devices

Synergy with PC industry
e  Protocol is simple to implement and integrate
e  Consistent with the PC plug-and-play architecture

e Leverages existing operating system interfaces

13
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Low-cost implementation

Low-cost subchannel at 1.5 Mb/s

Optimized for integration in peripheral and host hardware
Suitable for development of low-cost peripherals
Low-cost cables and connectors

Uses commodity technologies

Upgrade path

Architecture upgradeable to support multiple USB Host Controllers in a system
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Chapter 4
Architectural Overview

This chapter presents an overview of the Universal Serial Bus (USB) architecture and key concepts. The
USB is a cable bus that supports data exchange between a host computer and a wide range of
simultaneously accessible peripherals. The attached peripherals share USB bandwidth through a host-
scheduled, token-based protocol. The bus allows peripherals to be attached, configured, used, and detached
while the host and other peripherals are in operation.

Later chapters describe the various components of the USB in greater detail.

4.1 USB System Description
A USB system is described by three definitional areas:

e USB interconnect
e USB devices
e USB host

The USB interconnect is the manner in which USB devices are connected to and communicate with the
host. This includes the following:

e  Bus Topology: Connection model between USB devices and the host.

e Inter-layer Relationships: In terms of a capability stack, the USB tasks that are performed at each layer
in the system.

e Data Flow Models: The manner in which data moves in the system over the USB between producers
and consumers.

e  USB Schedule: The USB provides a shared interconnect. Access to the interconnect is scheduled in
order to support isochronous data transfers and to eliminate arbitration overhead.

USB devices and the USB host are described in detail in subsequent sections.

15

LGE-1010 / Page 43 of 650



Universal Serial Specification Revision 2.0

4.1.1 Bus Topology

The USB connects USB devices with the USB host. The USB physical interconnect is a tiered star
topology. A hub is at the center of each star. Each wire segment is a point-to-point connection between the
host and a hub or function, or a hub connected to another hub or function. Figure 4-1 illustrates the
topology of the USB.

Due to timing constraints allowed for hub and cable propagation times, the maximum number of tiers
allowed is seven (including the root tier). Note that in seven tiers, five non-root hubs maximum can be
supported in a communication path between the host and any device. A compound device (see Figure 4-1)
occupies two tiers; therefore, it cannot be enabled if attached at tier level seven. Only functions can be
enabled in tier seven.

Host (Tier 1)

Tier 2

Tier 4

Hub 4 Func Func

\ Tier 7

Figure 4-1. Bus Topology

41.1.1 USB Host

16

There is only one host in any USB system. The USB interface to the host computer system is referred to as
the Host Controller. The Host Controller may be implemented in a combination of hardware, firmware, or
software. A root hub is integrated within the host system to provide one or more attachment points.

Additional information concerning the host may be found in Section 4.9 and in Chapter 10.
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4.1.1.2 USB Devices

USB devices are one of the following:
e Hubs, which provide additional attachment points to the USB

e Functions, which provide capabilities to the system, such as an ISDN connection, a digital joystick, or
speakers

USB devices present a standard USB interface in terms of the following:

e Their comprehension of the USB protocol

e Their response to standard USB operations, such as configuration and reset
e Their standard capability descriptive information

Additional information concerning USB devices may be found in Section 4.8 and in Chapter 9.

4.2 Physical Interface

The physical interface of the USB is described in the electrical (Chapter 7) and mechanical (Chapter 6)
specifications for the bus.

4.2.1 Electrical

The USB transfers signal and power over a four-wire cable, shown in Figure 4-2. The signaling occurs over
two wires on each point-to-point segment.

There are three data rates:

e The USB high-speed signaling bit rate is 480 Mb/s.

e  The USB full-speed signaling bit rate is 12 Mb/s.

e A limited capability low-speed signaling mode is also defined at 1.5 Mb/s.

USB 2.0 host controllers and hubs provide capabilities so that full-speed and low-speed data can be
transmitted at high-speed between the host controller and the hub, but transmitted between the hub and the
device at full-speed or low-speed. This capability minimizes the impact that full-speed and low-speed
devices have upon the bandwidth available for high-speed devices.

The low-speed mode is defined to support a limited number of low-bandwidth devices, such as mice,
because more general use would degrade bus utilization.

The clock is transmitted, encoded along with the differential data. The clock encoding scheme is NRZI
with bit stuffing to ensure adequate transitions. A SYNC field precedes each packet to allow the receiver(s)
to synchronize their bit recovery clocks.

VBUS i VBUS
D+ D+
D- :( 0000 - 00C D-
GND GND

Figure 4-2. USB Cable

17
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The cable also carries VBUS and GND wires on each segment to deliver power to devices. VBUS is
nominally +5 V at the source. The USB allows cable segments of variable lengths, up to several meters, by
choosing the appropriate conductor gauge to match the specified IR drop and other attributes such as device
power budget and cable flexibility. In order to provide guaranteed input voltage levels and proper
termination impedance, biased terminations are used at each end of the cable. The terminations also permit
the detection of attach and detach at each port and differentiate between high/full-speed and low-speed
devices.

4.2.2 Mechanical

The mechanical specifications for cables and connectors are provided in Chapter 6. All devices have an
upstream connection. Upstream and downstream connectors are not mechanically interchangeable, thus
eliminating illegal loopback connections at hubs. The cable has four conductors: a twisted signal pair of
standard gauge and a power pair in a range of permitted gauges. The connector is four-position, with
shielded housing, specified robustness, and ease of attach-detach characteristics.

4.3 Power

The specification covers two aspects of power:

e Power distribution over the USB deals with the issues of how USB devices consume power provided by
the host over the USB.

e Power management deals with how the USB System Software and devices fit into the host-based power
management system.

4.3.1 Power Distribution

Each USB segment provides a limited amount of power over the cable. The host supplies power for use by
USB devices that are directly connected. In addition, any USB device may have its own power supply.
USB devices that rely totally on power from the cable are called bus-powered devices. In contrast, those
that have an alternate source of power are called self-powered devices. A hub also supplies power for its
connected USB devices. The architecture permits bus-powered hubs within certain constraints of topology
that are discussed later in Chapter 11.

4.3.2 Power Management

A USB host may have a power management system that is independent of the USB. The USB System
Software interacts with the host’s power management system to handle system power events such as
suspend or resume. Additionally, USB devices typically implement additional power management features
that allow them to be power managed by system software.

The power distribution and power management features of the USB allow it to be designed into power-
sensitive systems such as battery-based notebook computers.

4.4 Bus Protocol

18

The USB is a polled bus. The Host Controller initiates all data transfers.

Most bus transactions involve the transmission of up to three packets. Each transaction begins when the
Host Controller, on a scheduled basis, sends a USB packet describing the type and direction of transaction,
the USB device address, and endpoint number. This packet is referred to as the “token packet.” The USB
device that is addressed selects itself by decoding the appropriate address fields. In a given transaction, data
is transferred either from the host to a device or from a device to the host. The direction of data transfer is
specified in the token packet. The source of the transaction then sends a data packet or indicates it has no
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data to transfer. The destination, in general, responds with a handshake packet indicating whether the
transfer was successful.

Some bus transactions between host controllers and hubs involve the transmission of four packets. These
types of transactions are used to manage the data transfers between the host and full-/low- speed devices.

The USB data transfer model between a source or destination on the host and an endpoint on a device is
referred to as a pipe. There are two types of pipes: stream and message. Stream data has no USB-defined
structure, while message data does. Additionally, pipes have associations of data bandwidth, transfer
service type, and endpoint characteristics like directionality and buffer sizes. Most pipes come into
existence when a USB device is configured. One message pipe, the Default Control Pipe, always exists
once a device is powered, in order to provide access to the device’s configuration, status, and control
information.

The transaction schedule allows flow control for some stream pipes. At the hardware level, this prevents
buffers from underrun or overrun situations by using a NAK handshake to throttle the data rate. When
NAKed, a transaction is retried when bus time is available. The flow control mechanism permits the
construction of flexible schedules that accommodate concurrent servicing of a heterogeneous mix of stream
pipes. Thus, multiple stream pipes can be serviced at different intervals and with packets of different sizes.

4.5 Robustness

There are several attributes of the USB that contribute to its robustness:

e  Signal integrity using differential drivers, receivers, and shielding

e CRC protection over control and data fields

e Detection of attach and detach and system-level configuration of resources

e  Self-recovery in protocol, using timeouts for lost or corrupted packets

e  Flow control for streaming data to ensure isochrony and hardware buffer management

e Data and control pipe constructs for ensuring independence from adverse interactions between
functions

4.5.1 Error Detection

The core bit error rate of the USB medium is expected to be close to that of a backplane and any glitches
will very likely be transient in nature. To provide protection against such transients, each packet includes
error protection fields. When data integrity is required, such as with lossless data devices, an error recovery
procedure may be invoked in hardware or software.

The protocol includes separate CRCs for control and data fields of each packet. A failed CRC is considered
to indicate a corrupted packet. The CRC gives 100% coverage on single- and double-bit errors.

4.5.2 Error Handling

The protocol allows for error handling in hardware or software. Hardware error handling includes reporting
and retry of failed transfers. A USB Host Controller will try a transmission that encounters errors up to
three times before informing the client software of the failure. The client software can recover in an
implementation-specific way.

4.6 System Configuration

The USB supports USB devices attaching to and detaching from the USB at any time. Consequently,
system software must accommodate dynamic changes in the physical bus topology.

19
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4.6.1 Attachment of USB Devices

All USB devices attach to the USB through ports on specialized USB devices known as hubs. Hubs have
status bits that are used to report the attachment or removal of a USB device on one of its ports. The host
queries the hub to retrieve these bits. In the case of an attachment, the host enables the port and addresses
the USB device through the device’s control pipe at the default address.

The host assigns a unique USB address to the device and then determines if the newly attached USB device
is a hub or a function. The host establishes its end of the control pipe for the USB device using the assigned
USB address and endpoint number zero.

If the attached USB device is a hub and USB devices are attached to its ports, then the above procedure is
followed for each of the attached USB devices.

If the attached USB device is a function, then attachment notifications will be handled by host software that
is appropriate for the function.

4.6.2 Removal of USB Devices

When a USB device has been removed from one of a hub’s ports, the hub disables the port and provides an
indication of device removal to the host. The removal indication is then handled by appropriate USB
System Software. If the removed USB device is a hub, the USB System Software must handle the removal
of both the hub and of all of the USB devices that were previously attached to the system through the hub.

4.6.3 Bus Enumeration

Bus enumeration is the activity that identifies and assigns unique addresses to devices attached to a bus.
Because the USB allows USB devices to attach to or detach from the USB at any time, bus enumeration is
an on-going activity for the USB System Software. Additionally, bus enumeration for the USB also
includes the detection and processing of removals.

4.7 Data Flow Types

20

The USB supports functional data and control exchange between the USB host and a USB device as a set of
either uni-directional or bi-directional pipes. USB data transfers take place between host software and a
particular endpoint on a USB device. Such associations between the host software and a USB device
endpoint are called pipes. In general, data movement though one pipe is independent from the data flow in
any other pipe. A given USB device may have many pipes. As an example, a given USB device could have
an endpoint that supports a pipe for transporting data to the USB device and another endpoint that supports a
pipe for transporting data from the USB device.

The USB architecture comprehends four basic types of data transfers:

e Control Transfers: Used to configure a device at attach time and can be used for other device-specific
purposes, including control of other pipes on the device.

e Bulk Data Transfers: Generated or consumed in relatively large and bursty quantities and have wide
dynamic latitude in transmission constraints.

e Interrupt Data Transfers: Used for timely but reliable delivery of data, for example, characters or
coordinates with human-perceptible echo or feedback response characteristics.

e Isochronous Data Transfers: Occupy a prenegotiated amount of USB bandwidth with a prenegotiated
delivery latency. (Also called streaming real time transfers).

A pipe supports only one of the types of transfers described above for any given device configuration. The
USB data flow model is described in more detail in Chapter 5.
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4.7.1 Control Transfers

Control data is used by the USB System Software to configure devices when they are first attached. Other
driver software can choose to use control transfers in implementation-specific ways. Data delivery is
lossless.

4.7.2 Bulk Transfers

Bulk data typically consists of larger amounts of data, such as that used for printers or scanners. Bulk data
is sequential. Reliable exchange of data is ensured at the hardware level by using error detection in
hardware and invoking a limited number of retries in hardware. Also, the bandwidth taken up by bulk data
can vary, depending on other bus activities.

4.7.3 Interrupt Transfers

A limited-latency transfer to or from a device is referred to as interrupt data. Such data may be presented
for transfer by a device at any time and is delivered by the USB at a rate no slower than is specified by the
device.

Interrupt data typically consists of event notification, characters, or coordinates that are organized as one or
more bytes. An example of interrupt data is the coordinates from a pointing device. Although an explicit
timing rate is not required, interactive data may have response time bounds that the USB must support.

4.7.4 Isochronous Transfers

Isochronous data is continuous and real-time in creation, delivery, and consumption. Timing-related
information is implied by the steady rate at which isochronous data is received and transferred. Isochronous
data must be delivered at the rate received to maintain its timing. In addition to delivery rate, isochronous
data may also be sensitive to delivery delays. For isochronous pipes, the bandwidth required is typically
based upon the sampling characteristics of the associated function. The latency required is related to the
buffering available at each endpoint.

A typical example of isochronous data is voice. If the delivery rate of these data streams is not maintained,
drop-outs in the data stream will occur due to buffer or frame underruns or overruns. Even if data is
delivered at the appropriate rate by USB hardware, delivery delays introduced by software may degrade
applications requiring real-time turn-around, such as telephony-based audio conferencing.

The timely delivery of isochronous data is ensured at the expense of potential transient losses in the data
stream. In other words, any error in electrical transmission is not corrected by hardware mechanisms such
as retries. In practice, the core bit error rate of the USB is expected to be small enough not to be an issue.
USB isochronous data streams are allocated a dedicated portion of USB bandwidth to ensure that data can
be delivered at the desired rate. The USB is also designed for minimal delay of isochronous data transfers.

4.7.5 Allocating USB Bandwidth

USB bandwidth is allocated among pipes. The USB allocates bandwidth for some pipes when a pipe is
established. USB devices are required to provide some buffering of data. It is assumed that USB devices
requiring more bandwidth are capable of providing larger buffers. The goal for the USB architecture is to
ensure that buffering-induced hardware delay is bounded to within a few milliseconds.

The USB’s bandwidth capacity can be allocated among many different data streams. This allows a wide
range of devices to be attached to the USB. Further, different device bit rates, with a wide dynamic range,
can be concurrently supported.

The USB Specification defines the rules for how each transfer type is allowed access to the bus.

21
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4.8 USB Devices

USB devices are divided into device classes such as hub, human interface, printer, imaging, or mass storage
device. The hub device class indicates a specially designated USB device that provides additional USB
attachment points (refer to Chapter 11). USB devices are required to carry information for self-
identification and generic configuration. They are also required at all times to display behavior consistent
with defined USB device states.

4.8.1 Device Characterizations

All USB devices are accessed by a USB address that is assigned when the device is attached and
enumerated. Each USB device additionally supports one or more pipes through which the host may
communicate with the device. All USB devices must support a specially designated pipe at endpoint zero to
which the USB device’s USB control pipe will be attached. All USB devices support a common access
mechanism for accessing information through this control pipe.

Associated with the control pipe at endpoint zero is the information required to completely describe the
USB device. This information falls into the following categories:

e Standard: This is information whose definition is common to all USB devices and includes items such
as vendor identification, device class, and power management capability. Device, configuration,
interface, and endpoint descriptions carry configuration-related information about the device. Detailed
information about these descriptors can be found in Chapter 9.

e C(Class: The definition of this information varies, depending on the device class of the USB device.

e USB Vendor: The vendor of the USB device is free to put any information desired here. The format,
however, is not determined by this specification.

Additionally, each USB device carries USB control and status information.

4.8.2 Device Descriptions

Two major divisions of device classes exist: hubs and functions. Only hubs have the ability to provide
additional USB attachment points. Functions provide additional capabilities to the host.

4.8.2.1 Hubs

22

Hubs are a key element in the plug-and-play architecture of the USB. Figure 4-3 shows a typical hub. Hubs
serve to simplify USB connectivity from the user’s perspective and provide robustness at relatively low cost
and complexity.

Hubs are wiring concentrators and enable the multiple attachment characteristics of the USB. Attachment
points are referred to as ports. Each hub converts a single attachment point into multiple attachment points.
The architecture supports concatenation of multiple hubs.

The upstream port of a hub connects the hub towards the host. Each of the downstream ports of a hub
allows connection to another hub or function. Hubs can detect attach and detach at each downstream port
and enable the distribution of power to downstream devices. Each downstream port can be individually
enabled and attached to either high-, full- or low-speed devices.

A USB 2.0 hub consists of three portions: the Hub Controller, the Hub Repeater, and the Transaction
Translator. The Hub Repeater is a protocol-controlled switch between the upstream port and downstream
ports. It also has hardware support for reset and suspend/resume signaling. The Host Controller provides
the communication to/from the host. Hub-specific status and control commands permit the host to
configure a hub and to monitor and control its ports. The Transaction Translator provides the mechanisms
that support full-/low-speed devices behind the hub, while transmitting all device data between the host and
the hub at high-speed.
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Figure 4-3. A Typical Hub
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Figure 4-4 illustrates how hubs provide connectivity in a typical desktop computer environment.
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Figure 4-4. Hubs in a Desktop Computer Environment
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4.8.2.2 Functions

A function is a USB device that is able to transmit or receive data or control information over the bus. A
function is typically implemented as a separate peripheral device with a cable that plugs into a port on a
hub. However, a physical package may implement multiple functions and an embedded hub with a single
USB cable. This is known as a compound device. A compound device appears to the host as a hub with
one or more non-removable USB devices.

Each function contains configuration information that describes its capabilities and resource requirements.
Before a function can be used, it must be configured by the host. This configuration includes allocating
USB bandwidth and selecting function-specific configuration options.

Examples of functions include the following:
e A human interface device such as a mouse, keyboard, tablet, or game controller
e Animaging device such as a scanner, printer, or camera

e A mass storage device such as a CD-ROM drive, floppy drive, or DVD drive

4.9 USB Host: Hardware and Software

The USB host interacts with USB devices through the Host Controller. The host is responsible for the
following:

e Detecting the attachment and removal of USB devices

e  Managing control flow between the host and USB devices
e  Managing data flow between the host and USB devices

e Collecting status and activity statistics

e Providing power to attached USB devices

The USB System Software on the host manages interactions between USB devices and host-based device
software. There are five areas of interactions between the USB System Software and device software:

e Device enumeration and configuration
e Isochronous data transfers

e Asynchronous data transfers

e Power management

e Device and bus management information

4.10 Architectural Extensions

24

The USB architecture comprehends extensibility at the interface between the Host Controller Driver and
USB Driver. Implementations with multiple Host Controllers, and associated Host Controller Drivers, are
possible.
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Chapter 5
USB Data Flow Model

This chapter presents information about how data is moved across the USB. The information in this chapter
affects all implementers. The information presented is at a level above the signaling and protocol
definitions of the system. Consult Chapter 7 and Chapter 8 for more details about their respective parts of
the USB system. This chapter provides framework information that is further expanded in Chapters 9
through 11. All implementers should read this chapter so they understand the key concepts of the USB.

5.1 Implementer Viewpoints

The USB provides communication services between a host and attached USB devices. However, the simple
view an end user sees of attaching one or more USB devices to a host, as in Figure 5-1, is in fact a little
more complicated to implement than is indicated by the figure. Different views of the system are required
to explain specific USB requirements from the perspective of different implementers. Several important
concepts and features must be supported to provide the end user with the reliable operation demanded from
today’s personal computers. The USB is presented in a layered fashion to ease explanation and allow
implementers of particular USB products to focus on the details related to their product.

USB Host USB Device

Figure 5-1. Simple USB Host/Device View

Figure 5-2 shows a deeper overview of the USB, identifying the different layers of the system that will be
described in more detail in the remainder of the specification. In particular, there are four focus
implementation areas:

e USB Physical Device: A piece of hardware on the end of a USB cable that performs some useful end
user function.

e Client Software: Software that executes on the host, corresponding to a USB device. This client
software is typically supplied with the operating system or provided along with the USB device.

e USB System Software: Software that supports the USB in a particular operating system. The USB
System Software is typically supplied with the operating system, independently of particular USB
devices or client software.

e USB Host Controller (Host Side Bus Interface): The hardware and software that allows USB devices
to be attached to a host.

There are shared rights and responsibilities between the four USB system components. The remainder of
this specification describes the details required to support robust, reliable communication flows between a
function and its client.

25
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Figure 5-2. USB Implementation Areas

As shown in Figure 5-2, the simple connection of a host to a device requires interaction between a number
of layers and entities. The USB Bus Interface layer provides physical/signaling/packet connectivity
between the host and a device. The USB Device layer is the view the USB System Software has for
performing generic USB operations with a device. The Function layer provides additional capabilities to
the host via an appropriate matched client software layer. The USB Device and Function layers each have a
view of logical communication within their layer that actually uses the USB Bus Interface layer to
accomplish data transfer.

The physical view of USB communication as described in Chapters 6, 7, and 8 is related to the logical
communication view presented in Chapters 9 and 10. This chapter describes those key concepts that affect
USB implementers and should be read by all before proceeding to the remainder of the specification to find
those details most relevant to their product.

To describe and manage USB communication, the following concepts are important:

e Bus Topology: Section 5.2 presents the primary physical and logical components of the USB and how
they interrelate.

e Communication Flow Models: Sections 5.3 through 5.8 describe how communication flows between
the host and devices through the USB and defines the four USB transfer types.

e Bus Access Management: Section 5.11 describes how bus access is managed within the host to support
a broad range of communication flows by USB devices.

e Special Consideration for Isochronous Transfers: Section 5.12 presents features of the USB specific to
devices requiring isochronous data transfers. Device implementers for non-isochronous devices do not
need to read Section 5.12.
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5.2 Bus Topology
There are four main parts to USB topology:

e Host and Devices: The primary components of a USB system
e  Physical Topology: How USB elements are connected

e Logical Topology: The roles and responsibilities of the various USB elements and how the USB
appears from the perspective of the host and a device

e Client Software-to-function Relationships: How client software and its related function interfaces on a
USB device view each other

5.2.1 USB Host

The host’s logical composition is shown in Figure 5-3 and includes the following:
e USB Host Controller
e Aggregate USB System Software (USB Driver, Host Controller Driver, and host software)

e (Client

Host

|

Client SW

USB System SW

USB Host ' '
Controller

) \ctual communications flow

Logical communications flow
Figure 5-3. Host Composition

The USB host occupies a unique position as the coordinating entity for the USB. In addition to its special
physical position, the host has specific responsibilities with regard to the USB and its attached devices. The
host controls all access to the USB. A USB device gains access to the bus only by being granted access by
the host. The host is also responsible for monitoring the topology of the USB.

For a complete discussion of the host and its duties, refer to Chapter 10.

27
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5.2.2 USB Devices

28

A USB physical device’s logical composition is shown in Figure 5-4 and includes the following:
e USB bus interface

e  USB logical device

e  Function

USB physical devices provide additional functionality to the host. The types of functionality provided by
USB devices vary widely. However, all USB logical devices present the same basic interface to the host.
This allows the host to manage the USB-relevant aspects of different USB devices in the same manner.

To assist the host in identifying and configuring USB devices, each device carries and reports configuration-
related information. Some of the information reported is common among all logical devices. Other
information is specific to the functionality provided by the device. The detailed format of this information
varies, depending on the device class of the device.

For a complete discussion of USB devices, refer to Chapter 9.

Physical Device

l

Function

|

USB Logical
Device

|

S USB Bus

Interface

Qe A tyal communications flow

Logical communications flow

Figure 5-4. Physical Device Composition
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5.2.3 Physical Bus Topology

Devices on the USB are physically connected to the host via a tiered star topology, as illustrated in

Figure 5-5. USB attachment points are provided by a special class of USB device known as a hub. The
additional attachment points provided by a hub are called ports. A host includes an embedded hub called
the root hub. The host provides one or more attachment points via the root hub. USB devices that provide
additional functionality to the host are known as functions. To prevent circular attachments, a tiered
ordering is imposed on the star topology of the USB. This results in the tree-like configuration illustrated in

Figure 5-5.

- Root Hub

ECompound Devicg

Figure 5-5. USB Physical Bus Topology

Multiple functions may be packaged together in what appears to be a single physical device. For example, a
keyboard and a trackball might be combined in a single package. Inside the package, the individual
functions are permanently attached to a hub and it is the internal hub that is connected to the USB. When
multiple functions are combined with a hub in a single package, they are referred to as a compound device.
The hub and each function attached to the hub within the compound device is assigned its own device
address. A device that has multiple interfaces controlled independently of each other is referred to as a
composite device. A composite device has only a single device address. From the host’s perspective, a
compound device is the same as a separate hub with multiple functions attached. Figure 5-5 also illustrates
a compound device.

29
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Figure 5-6. Multiple Full-speed Buses in a High-speed System

The hub plays a special role in a high-speed system. The hub isolates the full-/low-speed signaling
environment from the high-speed signaling environment. Figure 5-6 shows a hub operating in high speed
supporting a high-speed attached device. The hub also allows USB1.1 hubs to attach and operate at full-
/low-speed along with other full-/low-speed only devices. The host controller also directly supports
attaching full-/low-speed only devices. Chapter 11 describes the details of how the hub accomplishes the
isolation of the two signaling environments.

Each high-speed operating hub essentially adds one (or more) additional full-/low-speed buses; i.e., each
hub supports additional (optionally multiple) 12 Mb/s of USB full-/low-speed bandwidth. This allows more
full-/low-speed buses to be attached without requiring additional host controllers in a system. Even though
there can be several 12 Mb/s full-/low-speed buses, there are only at most 127 USB devices attached to any
single host controller.

5.2.4 Logical Bus Topology

While devices physically attach to the USB in a tiered, star topology, the host communicates with each
logical device as if it were directly connected to the root port. This creates the logical view illustrated in
Figure 5-7 that corresponds to the physical topology shown in Figure 5-5. Hubs are logical devices also but
are not shown in Figure 5-7 to simplify the picture. Even though most host/logical device activities use this
logical perspective, the host maintains an awareness of the physical topology to support processing the
removal of hubs. When a hub is removed, all of the devices attached to the hub must be removed from the
host’s view of the logical topology. A more complete discussion of hubs can be found in Chapter 11.

Figure 5-7. USB Logical Bus Topology
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5.2.5 Client Software-to-function Relationship

Even though the physical and logical topology of the USB reflects the shared nature of the bus, client
software (CSw) manipulating a USB function interface is presented with the view that it deals only with its
interface(s) of interest. Client software for USB functions must use USB software programming interfaces
to manipulate their functions as opposed to directly manipulating their functions via memory or I/O accesses
as with other buses (e.g., PCI, EISA, PCMCIA, etc.). During operation, client software should be
independent of other devices that may be connected to the USB. This allows the designer of the device and
client software to focus on the hardware/software interaction design details. Figure 5-8 illustrates a device
designer’s perspective of the relationships of client software and USB functions with respect to the USB
logical topology of Figure 5-7.

Figure 5-8. Client Software-to-function Relationships

5.3 USB Communication Flow

The USB provides a communication service between software on the host and its USB function. Functions
can have different communication flow requirements for different client-to-function interactions. The USB
provides better overall bus utilization by allowing the separation of the different communication flows to a
USB function. Each communication flow makes use of some bus access to accomplish communication
between client and function. Each communication flow is terminated at an endpoint on a device. Device
endpoints are used to identify aspects of each communication flow.

Figure 5-9 shows a more detailed view of Figure 5-2. The complete definition of the actual communication
flows of Figure 5-2 supports the logical device and function layer communication flows. These actual
communication flows cross several interface boundaries. Chapters 6 through 8 describe the mechanical,
electrical, and protocol interface definitions of the USB “wire.” Chapter 9 describes the USB device
programming interface that allows a USB device to be manipulated from the host side of the wire.

Chapter 10 describes two host side software interfaces:

e Host Controller Driver (HCD): The software interface between the USB Host Controller and USB
System Software. This interface allows a range of Host Controller implementations without requiring
all host software to be dependent on any particular implementation. One USB Driver can support
different Host Controllers without requiring specific knowledge of a Host Controller implementation.
A Host Controller implementer provides an HCD implementation that supports the Host Controller.

e USB Driver (USBD): The interface between the USB System Software and the client software. This
interface provides clients with convenient functions for manipulating USB devices.
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Figure 5-9. USB Host/Device Detailed View

SB Device
(Chapter 9)

A USB logical device appears to the USB system as a collection of endpoints. Endpoints are grouped into
endpoint sets that implement an interface. Interfaces are views to the function. The USB System Software
manages the device using the Default Control Pipe. Client software manages an interface using pipe
bundles (associated with an endpoint set). Client software requests that data be moved across the USB
between a buffer on the host and an endpoint on the USB device. The Host Controller (or USB device,
depending on transfer direction) packetizes the data to move it over the USB. The Host Controller also
coordinates when bus access is used to move the packet of data over the USB.
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Figure 5-10 illustrates how communication flows are carried over pipes between endpoints and host side
memory buffers. The following sections describe endpoints, pipes, and communication flows in more

detail.
Client
Software

\ \\ \ < Communication
: <
<
Endpoints
‘ USB Logical Device ‘ P
Interface

Figure 5-10. USB Communication Flow

Software on the host communicates with a logical device via a set of communication flows. The set of
communication flows are selected by the device software/hardware designer(s) to efficiently match the
communication requirements of the device to the transfer characteristics provided by the USB.

5.3.1 Device Endpoints

An endpoint is a uniquely identifiable portion of a USB device that is the terminus of a communication flow
between the host and device. Each USB logical device is composed of a collection of independent
endpoints. Each logical device has a unique address assigned by the system at device attachment time.
Each endpoint on a device is given at design time a unique device-determined identifier called the endpoint
number. Each endpoint has a device-determined direction of data flow. The combination of the device
address, endpoint number, and direction allows each endpoint to be uniquely referenced. Each endpoint is a
simplex connection that supports data flow in one direction: either input (from device to host) or output
(from host to device).

An endpoint has characteristics that determine the type of transfer service required between the endpoint
and the client software. An endpoint describes itself by:

e Bus access frequency/latency requirement

e Bandwidth requirement

e  Endpoint number

e Error handling behavior requirements

e  Maximum packet size that the endpoint is capable of sending or receiving

e The transfer type for the endpoint (refer to Section 5.4 for details)

e The direction in which data is transferred between the endpoint and the host

Endpoints other than those with endpoint number zero are in an unknown state before being configured and
may not be accessed by the host before being configured.

33
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5.3.1.1 Endpoint Zero Requirements

All USB devices are required to implement a default control method that uses both the input and output
endpoints with endpoint number zero. The USB System Software uses this default control method to
initialize and generically manipulate the logical device (e.g., to configure the logical device) as the Default
Control Pipe (see Section 5.3.2). The Default Control Pipe provides access to the device’s configuration
information and allows generic USB status and control access. The Default Control Pipe supports control
transfers as defined in Section 5.5. The endpoints with endpoint number zero are always accessible once a
device is attached, powered, and has received a bus reset.

A USB device that is capable of operating at high-speed must have a minimum level of support for
operating at full-speed. When the device is attached to a hub operating in full-speed, the device must:

e Be able to reset successfully at full-speed

e Respond successfully to standard requests: set_address, set_configuration, get descriptor for device and
configuration descriptors, and return appropriate information

The high-speed device may or may not be able to support its intended functionality when operating at full-
speed.

5.3.1.2 Non-endpoint Zero Requirements

Functions can have additional endpoints as required for their implementation. Low-speed functions are
limited to two optional endpoints beyond the two required to implement the Default Control Pipe. Full-
speed devices can have additional endpoints only limited by the protocol definition (i.e., a maximum of 15
additional input endpoints and 15 additional output endpoints).

Endpoints other than those for the Default Control Pipe cannot be used until the device is configured as a
normal part of the device configuration process (refer to Chapter 9).

5.3.2 Pipes

34

A USB pipe is an association between an endpoint on a device and software on the host. Pipes represent the
ability to move data between software on the host via a memory buffer and an endpoint on a device. There
are two mutually exclusive pipe communication modes:

e Stream: Data moving through a pipe has no USB-defined structure
e  Message: Data moving through a pipe has some USB-defined structure

The USB does not interpret the content of data it delivers through a pipe. Even though a message pipe
requires that data be structured according to USB definitions, the content of the data is not interpreted by the
USB.

Additionally, pipes have the following associated with them:
e A claim on USB bus access and bandwidth usage.
e A transfer type.

e The associated endpoint’s characteristics, such as directionality and maximum data payload sizes. The
data payload is the data that is carried in the data field of a data packet within a bus transaction (as
defined in Chapter 8).

The pipe that consists of the two endpoints with endpoint number zero is called the Default Control Pipe.
This pipe is always available once a device is powered and has received a bus reset. Other pipes come into
existence when a USB device is configured. The Default Control Pipe is used by the USB System Software
to determine device identification and configuration requirements and to configure the device. The Default
Control Pipe can also be used by device-specific software after the device is configured. The USB System
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Software retains “ownership” of the Default Control Pipe and mediates use of the pipe by other client
software.

A software client normally requests data transfers via I/O Request Packets (IRPs) to a pipe and then either
waits or is notified when they are completed. Details about IRPs are defined in an operating system-
specific manner. This specification uses the term to simply refer to an identifiable request by a software
client to move data between itself (on the host) and an endpoint of a device in an appropriate direction. A
software client can cause a pipe to return all outstanding IRPs if it desires. The software client is notified
that an IRP has completed when the bus transactions associated with it have completed either successfully
or due to errors.

If there are no IRPs pending or in progress for a pipe, the pipe is idle and the Host Controller will take no
action with regard to the pipe; i.e., the endpoint for such a pipe will not see any bus transactions directed to
it. The only time bus activity is present for a pipe is when IRPs are pending for that pipe.

If a non-isochronous pipe encounters a condition that causes it to send a STALL to the host (refer to
Chapter 8) or three bus errors are encountered on any packet of an IRP, the IRP is aborted/retired, all
outstanding IRPs are also retired, and no further IRPs are accepted until the software client recovers from
the condition (in an implementation-dependent way) and acknowledges the halt or error condition via a
USBD call. An appropriate status informs the software client of the specific IRP result for error versus halt
(refer to Chapter 10). Isochronous pipe behavior is described in Section 5.6.

An IRP may require multiple data payloads to move the client data over the bus. The data payloads for such
a multiple data payload IRP are expected to be of the maximum packet size until the last data payload that
contains the remainder of the overall IRP. See the description of each transfer type for more details. For
such an IRP, short packets (i.e., less than maximum-sized data payloads) on input that do not completely fill
an IRP data buffer can have one of two possible meanings, depending upon the expectations of a client:

e A client can expect a variable-sized amount of data in an IRP. In this case, a short packet that does not
fill an IRP data buffer can be used simply as an in-band delimiter to indicate “end of unit of data.” The
IRP should be retired without error and the Host Controller should advance to the next IRP.

e A client can expect a specific-sized amount of data. In this case, a short packet that does not fill an IRP
data buffer is an indication of an error. The IRP should be retired, the pipe should be stalled, and any
pending IRPs associated with the pipe should also be retired.

Because the Host Controller must behave differently in the two cases and cannot know on its own which
way to behave for a given IRP; it is possible to indicate per IRP which behavior the client desires.

An endpoint can inform the host that it is busy by responding with NAK. NAKs are not used as a retire
condition for returning an IRP to a software client. Any number of NAKs can be encountered during the
processing of a given IRP. A NAK response to a transaction does not constitute an error and is not counted
as one of the three errors described above.

5.3.2.1 Stream Pipes

Stream pipes deliver data in the data packet portion of bus transactions with no USB-required structure on
the data content. Data flows in at one end of a stream pipe and out the other end in the same order. Stream
pipes are always uni-directional in their communication flow.

Data flowing through a stream pipe is expected to interact with what the USB believes is a single client.
The USB System Software is not required to provide synchronization between multiple clients that may be
using the same stream pipe. Data presented to a stream pipe is moved through the pipe in sequential order:
first-in, first-out.

A stream pipe to a device is bound to a single device endpoint number in the appropriate direction (i.e.,
corresponding to an IN or OUT token as defined by the protocol layer). The device endpoint number for the
opposite direction can be used for some other stream pipe to the device.

35
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Stream pipes support bulk, isochronous, and interrupt transfer types, which are explained in later sections.

5.3.2.2 Message Pipes

Message pipes interact with the endpoint in a different manner than stream pipes. First, a request is sent to
the USB device from the host. This request is followed by data transfer(s) in the appropriate direction.
Finally, a Status stage follows at some later time. In order to accommodate the request/data/status
paradigm, message pipes impose a structure on the communication flow that allows commands to be
reliably identified and communicated. Message pipes allow communication flow in both directions,
although the communication flow may be predominately one way. The Default Control Pipe is always a
message pipe.

The USB System Software ensures that multiple requests are not sent to a message pipe concurrently. A
device is required to service only a single message request at a time per message pipe. Multiple software
clients on the host can make requests via the Default Control Pipe, but they are sent to the device in a first-
in, first-out order. A device can control the flow of information during the Data and Status stages based on
its ability to respond to the host transactions (refer to Chapter 8 for more details).

A message pipe will not normally be sent the next message from the host until the current message’s
processing at the device has been completed. However, there are error conditions whereby a message
transfer can be aborted by the host and the message pipe can be sent a new message transfer prematurely
(from the device’s perspective). From the perspective of the software manipulating a message pipe, an error
on some part of an IRP retires the current IRP and all queued IRPs. The software client that requested the
IRP is notified of the IRP completion with an appropriate error indication.

A message pipe to a device requires a single device endpoint number in both directions (IN and OUT
tokens). The USB does not allow a message pipe to be associated with different endpoint numbers for each
direction.

Message pipes support the control transfer type, which is explained in Section 5.5.

5.3.3 Frames and Microframes

USB establishes a 1 millisecond time base called a frame on a full-/low-speed bus and a 125 us time base
called a microframe on a high-speed bus. A (micro)frame can contain several transactions. Each transfer
type defines what transactions are allowed within a (micro)frame for an endpoint. Isochronous and interrupt
endpoints are given opportunities to the bus every N (micro)frames. The values of N and other details about
isochronous and interrupt transfers are described in Sections 5.6 and 5.7.

5.4 Transfer Types

36

The USB transports data through a pipe between a memory buffer associated with a software client on the
host and an endpoint on the USB device. Data transported by message pipes is carried in a USB-defined
structure, but the USB allows device-specific structured data to be transported within the USB-defined
message data payload. The USB also defines that data moved over the bus is packetized for any pipe
(stream or message), but ultimately the formatting and interpretation of the data transported in the data
payload of a bus transaction is the responsibility of the client software and function using the pipe.
However, the USB provides different transfer types that are optimized to more closely match the service
requirements of the client software and function using the pipe. An IRP uses one or more bus transactions
to move information between a software client and its function.

Each transfer type determines various characteristics of the communication flow including the following:
e Data format imposed by the USB
e Direction of communication flow

e  Packet size constraints

LGE-1010 / Page 64 of 650



Universal Serial Bus Specification Revision 2.0

e Bus access constraints

e Latency constraints

e Required data sequences
e Error handling

The designers of a USB device choose the capabilities for the device’s endpoints. When a pipe is
established for an endpoint, most of the pipe’s transfer characteristics are determined and remain fixed for
the lifetime of the pipe. Transfer characteristics that can be modified are described for each transfer type.

The USB defines four transfer types:

e  Control Transfers: Bursty, non-periodic, host software-initiated request/response communication,
typically used for command/status operations.

e Isochronous Transfers: Periodic, continuous communication between host and device, typically used
for time-relevant information. This transfer type also preserves the concept of time encapsulated in the
data. This does not imply, however, that the delivery needs of such data is always time-critical.

e Interrupt Transfers: Low-frequency, bounded-latency communication.

e  Bulk Transfers: Non-periodic, large-packet bursty communication, typically used for data that can use
any available bandwidth and can also be delayed until bandwidth is available.

Each transfer type is described in detail in the following four major sections. The data for any IRP is
carried by the data field of the data packet as described in Section 8.3.4. Chapter 8 also describes details of
the protocol that are affected by use of each particular transfer type.

5.4.1 Table Calculation Examples

The following sections describe each of the USB transfer types. In these sections, there are tables that
illustrate the maximum number of transactions that can be expected to be contained in a (micro)frame.
These tables can be used to determine the maximum performance behavior possible for a specific transfer
type. Actual performance may vary with specific system implementation details.

Each table shows:

e The protocol overhead required for the specific transfer type (and speed)

e For some sample data payload sizes:
o The maximum sustained bandwidth possible for this case
o The percentage of a (micro)frame that each transaction requires
o The maximum number of transactions in a (micro)frame for the specific case
o The remaining bytes in a (micro)frame that would not be required for the specific case
o The total number of data bytes transported in a single (micro)frame for the specific case

A transaction of a particular transfer type typically requires multiple packets. The protocol overhead for
each transaction includes:

e A SYNC field for each packet: either 8 bits (full-/low-speed) or 32 bits (high-speed)
A PID byte for each packet: includes PID and PID invert (check) bits
An EOP for each packet: 3 bits (full-/low-speed) or 8 bits (high-speed)

In a token packet, the endpoint number, device address, and CRCS5 fields (16 bits total)

37
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e In a data packet, CRC16 fields (16 bits total)

e In a data packet, any data field (8 bits per byte)

e  For transaction with multiple packets, the inter packet gap or bus turnaround time required.
For these calculations, there is assumed to be no bit-stuffing required.
Using the low speed interrupt OUT as an example, there are 5 packets in the transaction:

e A PRE special packet

e A token packet

e A PRE special packet

e A data packet

e A handshake packet
There is one bus turnaround between the data and handshake packets. The protocol overhead is therefore:

5 SYNC, 5 PID, Endpoint + CRC5, CRC16, 5 EOPs and interpacket delay (one bus turnaround, 1 delay
between packets, and 2 hub setup times).

5.5 Control Transfers

Control transfers allow access to different parts of a device. Control transfers are intended to support
configuration/command/status type communication flows between client software and its function. A
control transfer is composed of a Setup bus transaction moving request information from host to function,
zero or more Data transactions sending data in the direction indicated by the Setup transaction, and a Status
transaction returning status information from function to host. The Status transaction returns “success”
when the endpoint has successfully completed processing the requested operation. Section 8.5.3 describes
the details of what packets, bus transactions, and transaction sequences are used to accomplish a control
transfer. Chapter 9 describes the details of the defined USB command codes.

Each USB device is required to implement the Default Control Pipe as a message pipe. This pipe is used by
the USB System Software. The Default Control Pipe provides access to the USB device’s configuration,
status, and control information. A function can, but is not required to, provide endpoints for additional
control pipes for its own implementation needs.

The USB device framework (refer to Chapter 9) defines standard, device class, or vendor-specific requests
that can be used to manipulate a device’s state. Descriptors are also defined that can be used to contain
different information on the device. Control transfers provide the transport mechanism to access device
descriptors and make requests of a device to manipulate its behavior.

Control transfers are carried only through message pipes. Consequently, data flows using control transfers
must adhere to USB data structure definitions as described in Section 5.5.1.

The USB system will make a “best effort” to support delivery of control transfers between the host and
devices. A function and its client software cannot request specific bus access frequency or bandwidth for
control transfers. The USB System Software may restrict the bus access and bandwidth that a device may
desire for control transfers. These restrictions are defined in Section 5.5.3 and Section 5.5.4.

5.5.1 Control Transfer Data Format

38

The Setup packet has a USB-defined structure that accommodates the minimum set of commands required
to enable communication between the host and a device. The structure definition allows vendor-specific
extensions for device specific commands. The Data transactions following Setup have a USB-defined
structure except when carrying vendor-specific information. The Status transaction also has a USB-defined
structure. Specific control transfer Setup/Data definitions are described in Section 8.5.3 and Chapter 9.
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5.5.2 Control Transfer Direction

Control transfers are supported via bi-directional communication flow over message pipes. As a
consequence, when a control pipe is configured, it uses both the input and output endpoint with the specified
endpoint number.

5.5.3 Control Transfer Packet Size Constraints

An endpoint for control transfers specifies the maximum data payload size that the endpoint can accept from
or transmit to the bus. The allowable maximum control transfer data payload sizes for full-speed devices is
8, 16, 32, or 64 bytes; for high-speed devices, it is 64 bytes and for low-speed devices, it is 8 bytes. This
maximum applies to the data payloads of the Data packets following a Setup; i.e., the size specified is for
the data field of the packet as defined in Chapter 8, not including other information that is required by the
protocol. A Setup packet is always eight bytes. A control pipe (including the Default Control Pipe) always
uses its wMaxPacketSize value for data payloads.

An endpoint reports in its configuration information the value for its maximum data payload size. The USB
does not require that data payloads transmitted be exactly the maximum size; i.e., if a data payload is less
than the maximum, it does not need to be padded to the maximum size.

All Host Controllers are required to have support for 8-, 16-, 32-, and 64-byte maximum data payload sizes
for full-speed control endpoints, only 8-byte maximum data payload sizes for low-speed control endpoints,
and only 64-byte maximum data payload size for high-speed control endpoints. No Host Controller is
required to support larger or smaller maximum data payload sizes.

In order to determine the maximum packet size for the Default Control Pipe, the USB System Software
reads the device descriptor. The host will read the first eight bytes of the device descriptor. The device
always responds with at least these initial bytes in a single packet. After the host reads the initial part of the
device descriptor, it is guaranteed to have read this default pipe’s wMaxPacketSize field (byte 7 of the
device descriptor). It will then allow the correct size for all subsequent transactions. For all other control
endpoints, the maximum data payload size is known after configuration so that the USB System Software
can ensure that no data payload will be sent to the endpoint that is larger than the supported size.

An endpoint must always transmit data payloads with a data field less than or equal to the endpoint’s
wMaxPacketSize (refer to Chapter 9). When a control transfer involves more data than can fit in one data
payload of the currently established maximum size, all data payloads are required to be maximum-sized
except for the last data payload, which will contain the remaining data.

The Data stage of a control transfer from an endpoint to the host is complete when the endpoint does one of
the following:

e Has transferred exactly the amount of data specified during the Setup stage
e Transfers a packet with a payload size less than wMaxPacketSize or transfers a zero-length packet

When a Data stage is complete, the Host Controller advances to the Status stage instead of continuing on
with another data transaction. If the Host Controller does not advance to the Status stage when the Data
stage is complete, the endpoint halts the pipe as was outlined in Section 5.3.2. If a larger-than-expected data
payload is received from the endpoint, the IRP for the control transfer will be aborted/retired.

The Data stage of a control transfer from the host to an endpoint is complete when all of the data has been
transferred. If the endpoint receives a larger-than-expected data payload from the host, it halts the pipe.

39
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5.5.4 Control Transfer Bus Access Constraints
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Control transfers can be used by high-speed, full-speed, and low-speed USB devices.

An endpoint has no way to indicate a desired bus access frequency for a control pipe. The USB balances
the bus access requirements of all control pipes and the specific IRPs that are pending to provide “best
effort” delivery of data between client software and functions.

The USB requires that part of each (micro)frame be reserved to be available for use by control transfers as
follows:

e Ifthe control transfers that are attempted (in an implementation-dependent fashion) consume less than
10% of the frame time for full-/low-speed endpoints or less than 20% of a microframe for high-speed
endpoints, the remaining time can be used to support bulk transfers (refer to Section 5.8).

e A control transfer that has been attempted and needs to be retried can be retried in the current or a
future (micro)frame; i.e., it is not required to be retried in the same (micro)frame.

e [fthere are more control transfers than reserved time, but there is additional (micro)frame time that is
not being used for isochronous or interrupt transfers, a Host Controller may move additional control
transfers as they are available.

e Ifthere are too many pending control transfers for the available (micro)frame time, control transfers are
selected to be moved over the bus as appropriate.

e Ifthere are control transfers pending for multiple endpoints, control transfers for the different endpoints
are selected according to a fair access policy that is Host Controller implementation-dependent.

e A transaction of a control transfer that is frequently being retried should not be expected to consume an
unfair share of the bus time.

High-speed control endpoints must support the PING flow control protocol for OUT transactions. The
details of this protocol are described in Section 8.5.1.

These requirements allow control transfers between host and devices to be regularly moved over the bus
with “best effort.”

The USB System Software can, at its discretion, vary the rate of control transfers to a particular endpoint.
An endpoint and its client software cannot assume a specific rate of service for control transfers. A control
endpoint may see zero or more transfers in a single (micro)frame. Bus time made available to a software
client and its endpoint can be changed as other devices are inserted into and removed from the system or
also as control transfers are requested for other device endpoints.

The bus frequency and (micro)frame timing limit the maximum number of successful control transfers
within a (micro)frame for any USB system. For full-/low-speed buses, the number of successful control
transfers per frame is limited to less than 29 full-speed eight-byte data payloads or less than four low-speed
eight-byte data payloads. For high-speed buses, the number of control transfers is limited to less than

32 high-speed 64-byte data payloads per microframe.

Table 5-1 lists information about different-sized low-speed packets and the maximum number of packets
possible in a frame. The table does not include the overhead associated with bit stuffing.
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Table 5-1. Low-speed Control Transfer Limits

Protocol Overhead (63 bytes) | (15 SYNC bytes, 15 PID bytes, 6 Endpoint + CRC bytes,
6 CRC bytes, 8 Setup data bytes, and a 13-byte interpacket
delay (EOP, etc.))
Data Max Bandwidth Frame Max Bytes Bytes/Frame
Payload (bytes/second) Bandwidth | Transfers | Remaining Useful Data
per
Transfer
1 3000 26% 3 40 3
2 6000 27% 3 37 6
4 12000 28% 3 31 12
8 24000 30% 3 19 24
Max 187500 187

For all speeds, because a control transfer is composed of several packets, the packets can be spread over
several (micro)frames to spread the bus time required across several (micro)frames.

The 10% frame reservation for full-/low-speed non-periodic transfers means that in a system with bus time
fully allocated, all full-speed control transfers in the system contend for a nominal three control transfers per
frame. Because the USB system uses control transfers for configuration purposes in addition to whatever
other control transfers other client software may be requesting, a given software client and its function
should not expect to be able to make use of this full bandwidth for its own control purposes. Host
Controllers are also free to determine how the individual bus transactions for specific control transfers are
moved over the bus within and across frames. An endpoint could see all bus transactions for a control
transfer within the same frame or spread across several noncontiguous frames. A Host Controller, for
various implementation reasons, may not be able to provide the theoretical maximum number of control
transfers per frame.

For high-speed endpoints, the 20% microframe reservation for non-periodic transfers means that all high
speed control transfers are contending for nominally six control transfers per microframe. High-speed
control transfers contend for microframe time along with split-transactions (see Sections 11.15-11.21 for
more information about split transactions) for full- and low-speed control transfers. Both full-speed and
low-speed control transfers contend for the same available frame time. However, high-speed control
transfers for some endpoints can occur simultaneously with full- and low-speed control transfers for other
endpoints. Low-speed control transfers simply take longer to transfer.

41
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Table 5-2 lists information about different-sized full-speed control transfers and the maximum number of
transfers possible in a frame. This table was generated assuming that there is one Data stage transaction and
that the Data stage has a zero-length status phase. The table illustrates the possible power of two data
payloads less than or equal to the allowable maximum data payload sizes. The table does not include the
overhead associated with bit stuffing.

Table 5-2. Full-speed Control Transfer Limits

Protocol Overhead (45 bytes) | (9 SYNC bytes, 9 PID bytes, 6 Endpoint + CRC bytes,
6 CRC bytes, 8 Setup data bytes, and a 7-byte interpacket
delay (EOP, etc.))
Data Max Bandwidth Frame Max Bytes Bytes/Frame
Payload (bytes/second) Bandwidth | Transfers | Remaining Useful Data
per
Transfer
1 32000 3% 32 23 32
2 62000 3% 31 43 62
4 120000 3% 30 30 120
8 224000 4% 28 16 224
16 384000 4% 24 36 384
32 608000 5% 19 37 608
64 832000 7% 13 83 832
Max 1500000 1500
42
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Table 5-3 lists information about different-sized high-speed control transfers and the maximum number of
transfers possible in a microframe. This table was generated assuming that there is one Data stage
transaction and that the Data stage has a zero-length status stage. The table illustrates the possible power of
two data payloads less than or equal to the allowable maximum data payload size. The table does not
include the overhead associated with bit stuffing.

Table 5-3. High-speed Control Transfer Limits

Protocol Overhead (Based on 480Mb/s and 8 bit interpacket gap, 88 bit min bus
(173 bytes) turnaround, 32 bit sync, 8 bit EOP: (9x4 SYNC bytes,
9 PID bytes, 6 EP/ADDR+CRC,6 CRC16, 8 Setup data,
9x(1+11) byte interpacket delay (EOP, etc.))
Data Max Bandwidth Microframe Max Bytes Bytes/
Payload | (bytes/second) Bandwidth Transfers | Remaining Microframe
per Transfer Useful Data
1 344000 2% 43 18 43
2 672000 2% 42 150 84
4 1344000 2% 42 66 168
8 2624000 2% 41 79 328
16 4992000 3% 39 129 624
32 9216000 3% 36 120 1152
64 15872000 3% 31 153 1984
Max 60000000 7500
5.5.5 Control Transfer Data Sequences

Control transfers require that a Setup bus transaction be sent from the host to a device to describe the type of
control access that the device should perform. The Setup transaction is followed by zero or more control
Data transactions that carry the specific information for the requested access. Finally, a Status transaction
completes the control transfer and allows the endpoint to return the status of the control transfer to the client
software. After the Status transaction for a control transfer is completed, the host can advance to the next
control transfer for the endpoint. As described in Section 5.5.4, each control transaction and the next

control transfer will be moved over the bus at some Host Controller implementation-defined time.

The endpoint can be busy for a device-specific time during the Data and Status transactions of the control
transfer. During these times when the endpoint indicates it is busy (refer to Chapter 8 and Chapter 9 for
details), the host will retry the transaction at a later time.

If a Setup transaction is received by an endpoint before a previously initiated control transfer is completed,
the device must abort the current transfer/operation and handle the new control Setup transaction. A Setup
transaction should not normally be sent before the completion of a previous control transfer. However, if a
transfer is aborted, for example, due to errors on the bus, the host can send the next Setup transaction
prematurely from the endpoint’s perspective.
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After a halt condition is encountered or an error is detected by the host, a control endpoint is allowed to
recover by accepting the next Setup PID; i.e., recovery actions via some other pipe are not required for
control endpoints. For the Default Control Pipe, a device reset will ultimately be required to clear the halt
or error condition if the next Setup PID is not accepted.

The USB provides robust error detection and recovery/retransmission for errors that occur during control
transfers. Transmitters and receivers can remain synchronized with regard to where they are in a control
transfer and recover with minimum effort. Retransmission of Data and Status packets can be detected by a
receiver via data retry indicators in the packet. A transmitter can reliably determine that its corresponding
receiver has successfully accepted a transmitted packet by information returned in a handshake to the
packet. The protocol allows for distinguishing a retransmitted packet from its original packet except for a
control Setup packet. Setup packets may be retransmitted due to a transmission error; however, Setup
packets cannot indicate that a packet is an original or a retried transmission.

5.6 Isochronous Transfers

In non-USB environments, isochronous transfers have the general implication of constant-rate, error-
tolerant transfers. In the USB environment, requesting an isochronous transfer type provides the requester
with the following:

e Guaranteed access to USB bandwidth with bounded latency
e Guaranteed constant data rate through the pipe as long as data is provided to the pipe
e In the case of a delivery failure due to error, no retrying of the attempt to deliver the data

While the USB isochronous transfer type is designed to support isochronous sources and destinations, it is
not required that software using this transfer type actually be isochronous in order to use the transfer type.
Section 5.12 presents more detail on special considerations for handling isochronous data on the USB.

5.6.1 Isochronous Transfer Data Format

The USB imposes no data content structure on communication flows for isochronous pipes.

5.6.2 Isochronous Transfer Direction

An isochronous pipe is a stream pipe and is, therefore, always uni-directional. An endpoint description
identifies whether a given isochronous pipe’s communication flow is into or out of the host. If a device
requires bi-directional isochronous communication flow, two isochronous pipes must be used, one in each
direction.

5.6.3 Isochronous Transfer Packet Size Constraints

44

An endpoint in a given configuration for an isochronous pipe specifies the maximum size data payload that
it can transmit or receive. The USB System Software uses this information during configuration to ensure
that there is sufficient bus time to accommodate this maximum data payload in each (micro)frame. If there
is sufficient bus time for the maximum data payload, the configuration is established; if not, the
configuration is not established.

The USB limits the maximum data payload size to 1,023 bytes for each full-speed isochronous endpoint.
High-speed endpoints are allowed up to 1024-byte data payloads. A high speed, high bandwidth endpoint
specifies whether it requires two or three transactions per microframe. Table 5-4 lists information about
different-sized full-speed isochronous transactions and the maximum number of transactions possible in a
frame. The table is shaded to indicate that a full-speed isochronous endpoint (with a non-zero wMaxpacket
size) must not be part of a default interface setting. The table does not include the overhead associated with
bit stuffing.
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Table 5-4. Full-speed Isochronous Transaction Limits

Protocol Overhead (9 bytes) | (2 SYNC bytes, 2 PID bytes, 2 Endpoint + CRC bytes,
2 CRC bytes, and a 1-byte interpacket delay)
Data Max Frame Max Bytes Bytes/Frame
Payload | Bandwidth(bytes/ Bandwidth Transfers | Remaining Useful Data
second) per Transfer

1 150000 1% 150 0 150
2 272000 1% 136 4 272
4 460000 1% 115 5 460
8 704000 1% 88 4 704
16 960000 2% 60 0 960
32 1152000 3% 36 24 1152
64 1280000 5% 20 40 1280
128 1280000 9% 10 130 1280
256 1280000 18% 5 175 1280
512 1024000 35% 2 458 1024
1023 1023000 69% 1 468 1023
Max 1500000 1500
45
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Table 5-5 lists information about different-sized high-speed isochronous transactions and the maximum
number of transactions possible in a microframe. The table is shaded to indicate that a high-speed
isochronous endpoint must not be part of a default interface setting. The table does not include the overhead
associated with bit stuffing.

Any given transaction for an isochronous pipe need not be exactly the maximum size specified for the
endpoint. The size of a data payload is determined by the transmitter (client software or function) and can
vary as required from transaction to transaction. The USB ensures that whatever size is presented to the
Host Controller is delivered on the bus. The actual size of a data payload is determined by the data
transmitter and may be less than the prenegotiated maximum size. Bus errors can change the actual packet
size seen by the receiver. However, these errors can be detected by either CRC on the data or by knowledge
the receiver has about the expected size for any transaction.

Table 5-5. High-speed Isochronous Transaction Limits

Protocol Overhead (Based on 480Mb/s and 8 bit interpacket gap, 88 bit min bus
turnaround, 32 bit sync, 8 bit EOP: (2x4 SYNC bytes, 2 PID
bytes, 2 EP/ADDR+addr+CRC5, 2 CRC16, and a 2x(1+11))
byte interpacket delay (EOP, etc.))

Data Max Microframe Max Bytes Bytes/

Payload Bandwidth Bandwidth Transfers | Remaining MicroFrame

(bytes/second) per Transfer Useful Data

1 1536000 1% 192 12 192

2 2992000 1% 187 20 374

4 5696000 1% 178 24 712

8 10432000 1% 163 2 1304

16 17664000 1% 138 48 2208

32 27392000 1% 107 10 3424

64 37376000 1% 73 54 4672

128 46080000 2% 45 30 5760

256 51200000 4% 25 150 6400

512 53248000 7% 13 350 6656

1024 57344000 14% 7 66 7168

2048 49152000 28% 3 1242 6144

3072 49152000 41% 2 1280 6144

Max 60000000 7500
46
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All device default interface settings must not include any isochronous endpoints with non-zero data payload
sizes (specified via wMaxPacketSize in the endpoint descriptor). Alternate interface settings may specify
non-zero data payload sizes for isochronous endpoints. If the isochronous endpoints have a large data
payload size, it is recommended that additional alternate configurations or interface settings be used to
specify a range of data payload sizes. This increases the chance that the device can be used successfully in
combination with other USB devices.

5.6.4 Isochronous Transfer Bus Access Constraints

Isochronous transfers can only be used by full-speed and high-speed devices.

The USB requires that no more than 90% of any frame be allocated for periodic (isochronous and interrupt)
transfers for full-speed endpoints. High-speed endpoints can allocate at most 80% of a microframe for
periodic transfers.

An isochronous endpoint must specify its required bus access period. Full-/high-speed endpoints must
specify a desired period as (2""""") x F, where bInterval is in the range one to (and including) 16 and F is
125 ps for high-speed and 1ms for full-speed. This allows full-/high-speed isochronous transfers to have
rates slower than one transaction per (micro)frame. However, an isochronous endpoint must be prepared to
handle poll rates faster than the one specified. A host must not issue more than 1 transaction in a
(micro)frame for an isochronous endpoint unless the endpoint is high-speed, high-bandwidth (see below).
An isochronous IN endpoint must return a zero-length packet whenever data is requested at a faster interval
than the specified interval and data is not available.

A high-speed endpoint can move up to 3072 bytes per microframe (or 192 Mb/s). A high-speed
isochronous endpoint that requires more than 1024 bytes per period is called a high-bandwidth endpoint. A
high-bandwidth endpoint uses multiple transactions per microframe. A high-bandwidth endpoint must
specify a period of 1x125 ps (i.e., a blnterval value of 1). See Section 5.9 for more information about the
details of multiple transactions per microframe for high-bandwidth high-speed endpoints.

Errors on the bus or delays in operating system scheduling of client software can result in no packet being
transferred for a (micro)frame. An error indication should be returned as status to the client software in
such a case. A device can also detect this situation by tracking SOF tokens and noticing a disturbance in the
specified bus access period pattern.

The bus frequency and (micro)frame timing limit the maximum number of successful isochronous
transactions within a (micro)frame for any USB system to less than 151 full-speed one-byte data payloads
and less than 193 high-speed one-byte data payloads. A Host Controller, for various implementation
reasons, may not be able to provide the theoretical maximum number of isochronous transactions per
(micro)frame.

5.6.5 Isochronous Transfer Data Sequences

Isochronous transfers do not support data retransmission in response to errors on the bus. A receiver can
determine that a transmission error occurred. The low-level USB protocol does not allow handshakes to be
returned to the transmitter of an isochronous pipe. Normally, handshakes would be returned to tell the
transmitter whether a packet was successfully received or not. For isochronous transfers, timeliness is more
important than correctness/retransmission, and, given the low error rates expected on the bus, the protocol is
optimized by assuming transfers normally succeed. Isochronous receivers can determine whether they
missed data during a (micro)frame. Also, a receiver can determine how much data was lost. Section 5.12
describes these USB mechanisms in more detail.

An endpoint for isochronous transfers never halts because there is no handshake to report a halt condition.
Errors are reported as status associated with the IRP for an isochronous transfer, but the isochronous pipe is
not halted in an error case. If an error is detected, the host continues to process the data associated with the
next (micro)frame of the transfer. Only limited error detection is possible because the protocol for
isochronous transactions does not allow per-transaction handshakes.
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5.7 Interrupt Transfers

The interrupt transfer type is designed to support those devices that need to send or receive data infrequently
but with bounded service periods. Requesting a pipe with an interrupt transfer type provides the requester
with the following:

e Guaranteed maximum service period for the pipe

e Retry of transfer attempts at the next period, in the case of occasional delivery failure due to error on
the bus

5.7.1 Interrupt Transfer Data Format

The USB imposes no data content structure on communication flows for interrupt pipes.

5.7.2 Interrupt Transfer Direction

An interrupt pipe is a stream pipe and is therefore always uni-directional. An endpoint description identifies
whether a given interrupt pipe’s communication flow is into or out of the host.

5.7.3 Interrupt Transfer Packet Size Constraints
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An endpoint for an interrupt pipe specifies the maximum size data payload that it will transmit or receive.
The maximum allowable interrupt data payload size is 64 bytes or less for full-speed. High-speed endpoints
are allowed maximum data payload sizes up to 1024 bytes. A high speed, high bandwidth endpoint
specifies whether it requires two or three transactions per microframe. Low-speed devices are limited to
eight bytes or less maximum data payload size. This maximum applies to the data payloads of the data
packets; i.e., the size specified is for the data field of the packet as defined in Chapter 8, not including other
protocol-required information. The USB does not require that data packets be exactly the maximum size;
i.e., if a data packet is less than the maximum, it does not need to be padded to the maximum size.

All Host Controllers are required to support maximum data payload sizes from 0 to 64 bytes for full-speed
interrupt endpoints, from 0 to 8 bytes for low-speed interrupt endpoints, and from 0 to 1024 bytes for high-
speed interrupt endpoints. See Section 5.9 for more information about the details of multiple transactions
per microframe for high bandwidth high-speed endpoints. No Host Controller is required to support larger
maximum data payload sizes.

The USB System Software determines the maximum data payload size that will be used for an interrupt
pipe during device configuration. This size remains constant for the lifetime of a device’s configuration.
The USB System Software uses the maximum data payload size determined during configuration to ensure
that there is sufficient bus time to accommodate this maximum data payload in its assigned period. If there
is sufficient bus time, the pipe is established; if not, the pipe is not established. However, the actual size of
a data payload is still determined by the data transmitter and may be less than the maximum size.

An endpoint must always transmit data payloads with a data field less than or equal to the endpoint’s
wMaxPacketSize value. A device can move data via an interrupt pipe that is larger than wMaxPacketSize.
A software client can accept this data via an IRP for the interrupt transfer that requires multiple bus
transactions without requiring an IRP-complete notification per transaction. This can be achieved by
specifying a buffer that can hold the desired data size. The size of the buffer is a multiple of
wMaxPacketSize with some remainder. The endpoint must transfer each transaction except the last as
wMaxPacketSize and the last transaction is the remainder. The multiple data transactions are moved over
the bus at the period established for the pipe.

When an interrupt transfer involves more data than can fit in one data payload of the currently established
maximum size, all data payloads are required to be maximum-sized except for the last data payload, which
will contain the remaining data. An interrupt transfer is complete when the endpoint does one of the
following:
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e  Has transferred exactly the amount of data expected
e  Transfers a packet with a payload size less than wMaxPacketSize or transfers a zero-length packet

When an interrupt transfer is complete, the Host Controller retires the current IRP and advances to the next
IRP. If a data payload is received that is larger than expected, the interrupt IRP will be aborted/retired and
the pipe will stall future IRPs until the condition is corrected and acknowledged.

All high-speed device default interface settings must not include any interrupt endpoints with a data payload
size (specified via wMaxPacketSize in the endpoint descriptor) greater than 64 bytes. Alternate interface
settings may specify larger data payload sizes for interrupt endpoints. If the interrupt endpoints have a large
data payload size, it is recommended that additional configurations or alternate interface settings be used to
specify a range of data payload sizes. This increases the chances that the device can be used successfully in
combination with other USB devices.

5.7.4 Interrupt Transfer Bus Access Constraints

Interrupt transfers can be used by low-speed, full-speed, and high-speed devices. High-speed endpoints can
be allocated at most 80% of a microframe for periodic transfers. The USB requires that no more than 90%
of any frame be allocated for periodic (isochronous and interrupt) full-/low-speed transfers.

The bus frequency and (micro)frame timing limit the maximum number of successful interrupt transactions
within a (micro)frame for any USB system to less than 108 full-speed one-byte data payloads, or less than
10 low-speed one-byte data payloads, or to less than 134 high-speed one-byte data payloads. A Host
Controller, for various implementation reasons, may not be able to provide the above maximum number of
interrupt transactions per (micro)frame.

Table 5-6 lists information about different low-speed interrupt transactions and the maximum number of
transactions possible in a frame. Table 5-7 lists similar information for full-speed interrupt transactions.
Table 5-8 lists similar information for high-speed interrupt transactions. The shaded portion of Table 5-8
indicates the data payload sizes of a high-speed interrupt endpoint that must not be part of a default interface
setting. The tables do not include the overhead associated with bit stuffing.

Table 5-6. Low-speed Interrupt Transaction Limits

Protocol Overhead (5 SYNC bytes, 5 PID bytes, 2 Endpoint + CRC bytes,
(19 bytes) 2 CRC bytes, and a 5-byte interpacket delay)
Data Max Bandwidth Frame Max Bytes Bytes/Frame
Payload | (bytes/second) Bandwidth Transfers | Remaining Useful Data
per Transfer
1 9000 11% 9 7 9
2 16000 11% 8 19 16
4 32000 12% 8 3 32
8 48000 14% 6 25 48
Max 187500 187
49
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Table 5-7. Full-speed Interrupt Transaction Limits

Protocol Overhead (13 bytes)

(3 SYNC bytes, 3 PID bytes, 2 Endpoint + CRC bytes,
2 CRC bytes, and a 3-byte interpacket delay)

Data Max Frame Max Bytes Bytes/Frame
Payload Bandwidth Bandwidth | Transfers | Remaining Useful Data
(bytes/second) per Transfer

1 107000 1% 107 2 107

2 200000 1% 100 0 200

4 352000 1% 88 4 352

8 568000 1% 71 9 568

16 816000 2% 51 21 816

32 1056000 3% 33 15 1056

64 1216000 5% 19 37 1216

Max 1500000 1500
50
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Table 5-8. High-speed Interrupt Transaction Limits

Protocol Overhead (Based on 480Mb/s and 8 bit interpacket gap, 88 bit min
bus turnaround, 32 bit sync, 8 bit EOP: (3x4 SYNC bytes,
3 PID bytes, 2 EP/ADDR+CRC bytes, 2 CRC16 and a
3x(1+11) byte interpacket delay(EOP, etc.))
Data Max Microframe Max Bytes Bytes/
Payload Bandwidth Bandwidth | Transfers | Remaining Microframe
(bytes/second) per Transfer Useful Data
1 1064000 1% 133 52 133
2 2096000 1% 131 33 262
4 4064000 1% 127 7 508
8 7616000 1% 119 3 952
16 13440000 1% 105 45 1680
32 22016000 1% 86 18 2752
64 32256000 2% 63 3 4032
128 40960000 2% 40 180 5120
256 49152000 4% 24 36 6144
512 53248000 8% 13 129 6656
1024 49152000 14% 6 1026 6144
2048 49152000 28% 3 1191 6144
3072 49152000 42% 2 1246 6144
Max 60000000 7500

An endpoint for an interrupt pipe specifies its desired bus access period. A full-speed endpoint can specify
a desired period from 1 ms to 255 ms. Low-speed endpoints are limited to specifying only 10 ms to 255 ms.
High-speed endpoints can specify a desired period (2"""*")x125 us, where blnterval is in the range 1 to
(including) 16. The USB System Software will use this information during configuration to determine a
period that can be sustained. The period provided by the system may be shorter than that desired by the
device up to the shortest period defined by the USB (125 us microframe or 1 ms frame). The client
software and device can depend only on the fact that the host will ensure that the time duration between two
transaction attempts with the endpoint will be no longer than the desired period. Note that errors on the bus
can prevent an interrupt transaction from being successfully delivered over the bus and consequently exceed
the desired period. Also, the endpoint is only polled when the software client has an IRP for an interrupt
transfer pending. If the bus time for performing an interrupt transfer arrives and there is no IRP pending,
the endpoint will not be given an opportunity to transfer data at that time. Once an IRP is available, its data
will be transferred at the next allocated period.
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A high-speed endpoint can move up to 3072 bytes per microframe (or 192 Mb/s). A high-speed interrupt
endpoint that requires more than 1024 bytes per period is called a high-bandwidth endpoint. A high-
bandwidth endpoint uses multiple transactions per microframe. A high-bandwidth endpoint must specify a
period of 1x125 us (i.e., a blnterval value of 1). See Section 5.9 for more information about the details of
multiple transactions per microframe for high-bandwidth high-speed endpoints.

Interrupt transfers are moved over the USB by accessing an interrupt endpoint every specified period. For
input interrupt endpoints, the host has no way to determine whether an endpoint will source an interrupt
without accessing the endpoint and requesting an interrupt transfer. If the endpoint has no interrupt data to
transmit when accessed by the host, it responds with NAK. An endpoint should only provide interrupt data
when it has an interrupt pending to avoid having a software client erroneously notified of IRP complete. A
zero-length data payload is a valid transfer and may be useful for some implementations.

5.7.5 Interrupt Transfer Data Sequences

Interrupt transactions may use either alternating data toggle bits, such that the bits are toggled only upon
successful transfer completion or a continuously toggling of data toggle bits. The host in any case must
assume that the device is obeying full handshake/retry rules as defined in Chapter 8. A device may choose
to always toggle DATAO/DATA1 PIDs so that it can ignore handshakes from the host. However, in this
case, the client software can miss some data packets when an error occurs, because the Host Controller
interprets the next packet as a retry of a missed packet.

If a halt condition is detected on an interrupt pipe due to transmission errors or a STALL handshake being
returned from the endpoint, all pending IRPs are retired. Removal of the halt condition is achieved via
software intervention through a separate control pipe. This recovery will reset the data toggle bit to DATAO
for the endpoint on both the host and the device. Interrupt transactions are retried due to errors detected on
the bus that affect a given transfer.

5.8 Bulk Transfers

The bulk transfer type is designed to support devices that need to communicate relatively large amounts of
data at highly variable times where the transfer can use any available bandwidth. Requesting a pipe with a
bulk transfer type provides the requester with the following:

e  Access to the USB on a bandwidth-available basis
e Retry of transfers, in the case of occasional delivery failure due to errors on the bus
e  Guaranteed delivery of data but no guarantee of bandwidth or latency

Bulk transfers occur only on a bandwidth-available basis. For a USB with large amounts of free bandwidth,
bulk transfers may happen relatively quickly; for a USB with little bandwidth available, bulk transfers may
trickle out over a relatively long period of time.

5.8.1 Bulk Transfer Data Format

The USB imposes no data content structure on communication flows for bulk pipes.

5.8.2 Bulk Transfer Direction
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A bulk pipe is a stream pipe and, therefore, always has communication flowing either into or out of the host
for a given pipe. If a device requires bi-directional bulk communication flow, two bulk pipes must be used,
one in each direction.
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5.8.3 Bulk Transfer Packet Size Constraints

An endpoint for bulk transfers specifies the maximum data payload size that the endpoint can accept from
or transmit to the bus. The USB defines the allowable maximum bulk data payload sizes to be only 8, 16,
32, or 64 bytes for full-speed endpoints and 512 bytes for high-speed endpoints. A low-speed device must
not have bulk endpoints. This maximum applies to the data payloads of the data packets; i.e., the size
specified is for the data field of the packet as defined in Chapter 8, not including other protocol-required
information.

A bulk endpoint is designed to support a maximum data payload size. A bulk endpoint reports in its
configuration information the value for its maximum data payload size. The USB does not require that data
payloads transmitted be exactly the maximum size; i.e., if a data payload is less than the maximum, it does
not need to be padded to the maximum size.

All Host Controllers are required to have support for 8-, 16-, 32-, and 64-byte maximum packet sizes for
full-speed bulk endpoints and 512 bytes for high-speed bulk endpoints. No Host Controller is required to
support larger or smaller maximum packet sizes.

During configuration, the USB System Software reads the endpoint’s maximum data payload size and
ensures that no data payload will be sent to the endpoint that is larger than the supported size.

An endpoint must always transmit data payloads with a data field less than or equal to the endpoint’s
reported wMaxPacketSize value. When a bulk IRP involves more data than can fit in one maximum-sized
data payload, all data payloads are required to be maximum size except for the last data payload, which will
contain the remaining data. A bulk transfer is complete when the endpoint does one of the following:

e  Has transferred exactly the amount of data expected
e  Transfers a packet with a payload size less than wMaxPacketSize or transfers a zero-length packet

When a bulk transfer is complete, the Host Controller retires the current IRP and advances to the next IRP.
If a data payload is received that is larger than expected, all pending bulk IRPs for that endpoint will be
aborted/retired.

5.8.4 Bulk Transfer Bus Access Constraints

Only full-speed and high-speed devices can use bulk transfers.

An endpoint has no way to indicate a desired bus access frequency for a bulk pipe. The USB balances the
bus access requirements of all bulk pipes and the specific IRPs that are pending to provide “good effort”
delivery of data between client software and functions. Moving control transfers over the bus has priority
over moving bulk transfers.

There is no time guaranteed to be available for bulk transfers as there is for control transfers. Bulk transfers
are moved over the bus only on a bandwidth-available basis. If there is bus time that is not being used for
other purposes, bulk transfers will be moved over the bus. If there are bulk transfers pending for multiple
endpoints, bulk transfers for the different endpoints are selected according to a fair access policy that is Host
Controller implementation-dependent.

All bulk transfers pending in a system contend for the same available bus time. Because of this, the USB
System Software at its discretion can vary the bus time made available for bulk transfers to a particular
endpoint. An endpoint and its client software cannot assume a specific rate of service for bulk transfers.
Bus time made available to a software client and its endpoint can be changed as other devices are inserted
into and removed from the system or also as bulk transfers are requested for other device endpoints. Client
software cannot assume ordering between bulk and control transfers; i.e., in some situations, bulk transfers
can be delivered ahead of control transfers.

High-speed bulk OUT endpoints must support the PING flow control protocol. The details of this protocol
are described in Section 8.5.1.
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The bus frequency and (micro)frame timing limit the maximum number of successful bulk transactions
within a (micro)frame for any USB system to less than 72 full-speed eight-byte data payloads or less than
14 high-speed 512-byte data payloads. Table 5-9 lists information about different-sized full-speed bulk
transactions and the maximum number of transactions possible in a frame. The table does not include the
overhead associated with bit stuffing. Table 5-10 lists similar information for high-speed bulk transactions.

Table 5-9. Full-speed Bulk Transaction Limits

Protocol Overhead (13 bytes) | (3 SYNC bytes, 3 PID bytes, 2 Endpoint + CRC bytes,
2 CRC bytes, and a 3-byte interpacket delay)
Data Max Bandwidth Frame Max Bytes Bytes/Frame
Payload (bytes/second) Bandwidth | Transfers | Remaining Useful Data
per Transfer
1 107000 1% 107 2 107
2 200000 1% 100 0 200
4 352000 1% 88 4 352
8 568000 1% 71 9 568
16 816000 2% 51 21 816
32 1056000 3% 33 15 1056
64 1216000 5% 19 37 1216
Max 1500000 1500
54
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Table 5-10. High-speed Bulk Transaction Limits

Protocol Overhead (55 bytes) | (3x4 SYNC bytes, 3 PID bytes, 2 EP/ADDR+CRC bytes,
2 CRC16, and a 3x(1+11) byte interpacket delay (EOP, etc.))
Data Max Bandwidth Microframe Max Bytes Bytes/
Payload (bytes/second) Bandwidth | Transfers | Remaining Microframe
per Transfer Useful Data
1 1064000 1% 133 52 133
2 2096000 1% 131 33 262
4 4064000 1% 127 7 508
8 7616000 1% 119 3 952
16 13440000 1% 105 45 1680
32 22016000 1% 86 18 2752
64 32256000 2% 63 3 4032
128 40960000 2% 40 180 5120
256 49152000 4% 24 36 6144
512 53248000 8% 13 129 6656
Max 60000000 7500

5.8

Host Controllers are free to determine how the individual bus transactions for specific bulk transfers are
moved over the bus within and across (micro)frames. An endpoint could see all bus transactions for a bulk
transfer within the same (micro)frame or spread across several (micro)frames. A Host Controller, for
various implementation reasons, may not be able to provide the above maximum number of transactions per
(micro)frame.

.5 Bulk Transfer Data Sequences

Bulk transactions use data toggle bits that are toggled only upon successful transaction completion to
preserve synchronization between transmitter and receiver when transactions are retried due to errors. Bulk
transactions are initialized to DATAO when the endpoint is configured by an appropriate control transfer.
The host will also start the first bulk transaction with DATAO. If a halt condition is detected on a bulk pipe
due to transmission errors or a STALL handshake being returned from the endpoint, all pending IRPs are
retired. Removal of the halt condition is achieved via software intervention through a separate control pipe.
This recovery will reset the data toggle bit to DATAO for the endpoint on both the host and the device.

Bulk transactions are retried due to errors detected on the bus that affect a given transaction.
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5.9 High-Speed, High Bandwidth Endpoints

USB supports individual high-speed interrupt or isochronous endpoints that require data rates up to
192 Mb/s (i.e., 3072 data bytes per microframe). One, two, or three high-speed transactions are allowed in
a single microframe to support high-bandwidth endpoints.

A high-speed interrupt or isochronous endpoint indicates that it requires more than 1024 bytes per
microframe when bits 12..11 of the wMaxPacketSize field of the endpoint descriptor (see Table 5-11) are
non-zero. The lower 11 bits of wMaxPacketSize indicate the size of the data payload for each individual
transaction while bits 12..11 indicate the maximum number of required transactions possible. See
Section 9.6.6 for restrictions on the allowed combinations of values for bits 12..11 and bits 10..0.

Table 5-11. wMaxPacketSize Field of Endpoint Descriptor

Bits 15..13 12.11 10..0
Field Reserved, | Number of transactions Maximum size of data
must be per microframe payload in bytes
set to zero

Note: This representation means that endpoints requesting two transactions per microframe will specify a
total data payload size in the microframe that is a multiple of two bytes. Also endpoints requesting three
transactions per microframe will specify a total data payload size that is a multiple of three bytes. In any
case, any number of bytes can actually be transferred in a microframe.

The host controller must issue an appropriate number of high-speed transactions per microframe. Errors in
the host or on the bus can result in the host controller issuing fewer transactions than requested for the
endpoint. The first transaction(s) must have a data payload(s) as specified by the lower 11 bits of
wMaxPacketSize if enough data is available, while the last transaction has any remaining data less than or
equal to the maximum size specified. The host controller may issue transactions for the same endpoint one
immediately after the other (as required for the actual data provided) or may issue transactions for other
endpoints in between the transactions for a high bandwidth endpoint.

5.9.1 High Bandwidth Interrupt Endpoints

56

For interrupt transactions, if the endpoint NAKs a transaction during a microframe, the host controller must
not issue further transactions for that endpoint until the next period.

If the endpoint times-out a transaction, the host controller must retry the transaction. The endpoint specifies
the maximum number of desired transactions per microframe. If the maximum number of transactions per
microframe has not been reached, the host controller may immediately retry the transaction during the
current microframe. Host controllers are recommended to do an immediate retry since this minimizes
impact on devices that are bandwidth sensitive. If the maximum number of transactions per microframe has
been reached, the host controller must retry the transaction at the next period for the endpoint.

A host controller is allowed to issue less than the maximum number of transactions to an endpoint per
microframe only if more than a single memory buffer is required for the transactions within the microframe.

Normal DATAO/DATAI1 data toggle sequencing is used for each interrupt transaction during a microframe.
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5.9.2 High Bandwidth Isochronous Endpoints

For isochronous transactions, if an IN endpoint provides less than a maximum data payload as specified by
its endpoint descriptor, the host must not issue further transactions for that endpoint for that microframe.

For an isochronous OUT endpoint, the host controller must issue the number of transactions as required for
the actual data provided, not exceeding the maximum number specified by the endpoint descriptor. The
transactions issued must adhere to the maximum payload sizes as specified in the endpoint descriptor.

No retries are ever done for isochronous endpoints.

High bandwidth isochronous endpoints (IN and OUT) must support data PID sequencing. Data PID
sequencing provides the required support for the data receiver to detect one or more lost/damaged packets
per microframe.

Data PID sequencing for a high-speed, high bandwidth isochronous IN endpoint uses a repeating sequence
of DATA2, DATAL, DATAO PIDs for the data packet of each transaction in a microframe. If there is only
a single transaction in the microframe, only a DATAO data packet PID is used. If there are two transactions
per microframe, DATAL is used for the first transaction data packet and DATAO is used for the second
transaction data packet. If there are three transactions per microframe, DATA?2 is used for the first
transaction data packet, DATAL is used for the second, and DATAO is used for the third. In all cases, the
data PID sequence starts over again the next microframe. Figure 5-11 shows the order of data packet PIDs
that are used in subsequent transactions within a microframe for high-bandwidth isochronous IN endpoints.

1 transaction, <1024 bytes: -

2 transactions, 513-1024 bytes ea.: ~ DATA1  |DATAO|
3 fransactions, 683-1024 bytes ea.: | DATA2  DATA1  [NDATAOY

Figure 5-11. Data Phase PID Sequence for Isochronous IN High Bandwidth Endpoints

An endpoint must respond to an IN token for the first transaction with a DATA2 when it requires three
transactions of data to be moved. It must respond with a DATAL for the first transaction when it requires
two transactions and with a DATAO when it requires only a single transaction. After the first transaction,
the endpoint follows the data PID sequence as described above.

The host knows the maximum number of allowed transactions per microframe for the IN endpoint. The
host expects the response to the first transaction to encode (via the data packet PID) how many transactions
are required by the endpoint for this microframe. If the host doesn’t receive an error-free, appropriate
response to any transaction, the host must not issue any further transactions to the endpoint for that
microframe. When the host receives a DATAO data packet from the endpoint, it must not issue any further
transactions to the endpoint for that microframe.

Data PID sequencing for a high-speed, high bandwidth isochronous OUT endpoint uses a different sequence
than that used for an IN endpoint. The host must issue a DATAO data packet when there is a single
transaction. The host must issue an MDATA for the first transaction and a DATA1 for the second
transaction when there are two transactions per microframe. The host must issue two MDATA transactions
and a DATAZ2 for the third transaction when there are three transactions per microframe. These sequences
allow the endpoint to detect if there was a lost/damaged transaction during a microframe. Figure 5-12
shows the order of data packet PIDs that are used in subsequent transactions within a microframe for high-
bandwidth isochronous OUT.
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1 transaction, <1024 bytes: -

2 transactions, 513-1024 bytes ea.: - DATA1

3 transactions, 683-1024 bytes ea.: - - DATA2

Figure 5-12. Data Phase PID Sequence for Isochronous OUT High Bandwidth Endpoints

If the wrong OUT transactions are detected by the endpoint, all of the data transferred during the
microframe must be treated as if it had encountered an error. Note that for the three transactions per
microframe case with a missing MDATA transaction, USB provides no way for the endpoint to determine
which of the two MDATA transactions was lost. There may be application specific methods to more
precisely determine which data was lost, but USB provides no method to do so at the bus level.

5.10 Split Transactions

Host controllers and hubs support one additional transaction type called split transactions. This transaction
type allows full- and low-speed devices to be attached to hubs operating at high-speed. These transactions
involve only host controllers and hubs and are not visible to devices. High-speed split transactions for
interrupt and isochronous transfers must be allocated by the host from the 80% periodic portion of a
microframe. More information on split transactions can be found in Chapter 8 and Chapter 11.

5.11 Bus Access for Transfers

Accomplishing any data transfer between the host and a USB device requires some use of the USB
bandwidth. Supporting a wide variety of isochronous and asynchronous devices requires that each device’s
transfer requirements are accommodated. The process of assigning bus bandwidth to devices is called
transfer management. There are several entities on the host that coordinate the information flowing over the
USB: client software, the USB Driver (USBD), and the Host Controller Driver (HCD). Implementers of
these entities need to know the key concepts related to bus access:

e Transfer Management: The entities and the objects that support communication flow over the USB

e Transaction Tracking: The USB mechanisms that are used to track transactions as they move through
the USB system

e Bus Time: The time it takes to move a packet of information over the bus
e Device/Software Buffer Size: The space required to support a bus transaction

e  Bus Bandwidth Reclamation: Conditions where bandwidth that was allocated to other transfers but was
not used and can now be possibly reused by control and bulk transfers

The previous sections focused on how client software relates to a function and what the logical flows are
over a pipe between the two entities. This section focuses on the different parts of the host and how they
must interact to support moving data over the USB. This information may also be of interest to device
implementers so they understand aspects of what the host is doing when a client requests a transfer and how
that transfer is presented to the device.
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Transfer management involves several entities that operate on different objects in order to move

transactions over the bus:

Universal Serial Bus Specification Revision 2.0

Client Software: Consumes/generates function-specific data to/from a function endpoint via calls and
callbacks requesting IRPs with the USBD interface.

USB Driver (USBD): Converts data in client IRPs to/from device endpoint via calls/callbacks with the
appropriate HCD. A single client IRP may involve one or more transfers.

Host Controller Driver (HCD): Converts IRPs to/from transactions (as required by a Host Controller
implementation) and organizes them for manipulation by the Host Controller. Interactions between the
HCD and its hardware is implementation-dependent and is outside the scope of the USB Specification.

Host Controller: Takes transactions and generates bus activity via packets to move function-specific
data across the bus for each transaction.

Figure 5-13 shows how the entities are organized as information flows between client software and the
USB. The objects of primary interest to each entity are shown at the interfaces between entities.

Client Software

Data

IRPs

USBD

Interface

HCD

Transfers \

Transaction List

Transaction

Transactions

Packets

Interface

HW/SW
Interface

Figure 5-13. USB Information Conversion From Client Software to Bus
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5.11.1.1 Client Software

Client software determines what transfers need to be made with a function. It uses appropriate operating
system-specific interfaces to request IRPs. Client software is aware only of the set of pipes (i.e., the
interface) it needs to manipulate its function. The client is aware of and adheres to all bus access and
bandwidth constraints as described previously for each transfer type. The requests made by the client
software are presented via the USBD interface.

Some clients may manipulate USB functions via other device class interfaces defined by the operating
system and may themselves not make direct USBD calls. However, there is always some lowest level client
that makes USBD calls to pass IRPs to the USBD. All IRPs presented are required to adhere to the
prenegotiated bandwidth constraints set when the pipe was established. If a function is moved from a non-
USB environment to the USB, the driver that would have directly manipulated the function hardware via
memory or I/O accesses is the lowest client software in the USB environment that now interacts with the
USBD to manipulate the driver’s USB function.

After client software has requested a transfer of its function and the request has been serviced, the client
software receives notification of the completion status of the IRP. If the transfer involved function-to-host
data transfer, the client software can access the data in the data buffer associated with the completed IRP.

The USBD interface is defined in Chapter 10.

5.11.1.2 USB Driver

The Universal Serial Bus Driver (USBD) is involved in mediating bus access at two general times:
e  While a device is attached to the bus during configuration
e During normal transfers

When a device is attached and configured, the USBD is involved to ensure that the desired device
configuration can be accommodated on the bus. The USBD receives configuration requests from the
configuring software that describe the desired device configuration: endpoint(s), transfer type(s), transfer
period(s), data size(s), etc. The USBD either accepts or rejects a configuration request based on bandwidth
availability and the ability to accommodate that request type on the bus. If it accepts the request, the USBD
creates a pipe for the requester of the desired type and with appropriate constraints as defined for the
transfer type. Bandwidth allocation for periodic endpoints does not have to be made when the device is
configured and, once made, a bandwidth allocation can be released without changing the device
configuration.

The configuration aspects of the USBD are typically operating system-specific and heavily leverage the
configuration features of the operating system to avoid defining additional (redundant) interfaces.

Once a device is configured, the software client can request IRPs to move data between it and its function
endpoints.

5.11.1.3 Host Controller Driver

The Host Controller Driver (HCD) is responsible for tracking the IRPs in progress and ensuring that USB
bandwidth and (micro)frame time maximums are never exceeded. When IRPs are made for a pipe, the
HCD adds them to the transaction list. When an IRP is complete, the HCD notifies the requesting software
client of the completion status for the IRP. If the IRP involved data transfer from the function to the
software client, the data was placed in the client-indicated data buffer.

IRPs are defined in an operating system-dependent manner.

60

LGE-1010 / Page 88 of 650



Universal Serial Bus Specification Revision 2.0

5.11.1.4 Transaction List

The transaction list is a Host Controller implementation-dependent description of the current outstanding set
of bus transactions that need to be run on the bus. Only the HCD and its Host Controller have access to the
specific representation. Each description contains transaction descriptions in which parameters, such as
data size in bytes, the device address and endpoint number, and the memory area to which data is to be sent
or received, are identified.

A transaction list and the interface between the HCD and its Host Controller is typically represented in an
implementation-dependent fashion and is not defined explicitly as part of the USB Specification.

5.11.1.5 Host Controller

The Host Controller has access to the transaction list and translates it into bus activity. In addition, the Host
Controller provides a reporting mechanism whereby the status of a transaction (done, pending, halted, etc.)
can be obtained. The Host Controller converts transactions into appropriate implementation-dependent
activities that result in USB packets moving over the bus topology rooted in the root hub.

The Host Controller ensures that the bus access rules defined by the protocol are obeyed, such as
inter-packet timings, timeouts, babble, etc. The HCD interface provides a way for the Host Controller to
participate in deciding whether a new pipe is allowed access to the bus. This is done because Host
Controller implementations can have restrictions/constraints on the minimum inter-transaction times they
may support for combinations of bus transactions.

The interface between the transaction list and the Host Controller is hidden within an HCD and Host
Controller implementation.

5.11.2 Transaction Tracking

A USB function sees data flowing across the bus in packets as described in Chapter 8. The Host Controller
uses some implementation-dependent representation to track what packets to transfer to/from what
endpoints at what time or in what order. Most client software does not want to deal with packetized
communication flows because this involves a degree of complexity and interconnect dependency that limits
the implementation. The USB System Software (USBD and HCD) provides support for matching data
movement requirements of a client to packets on the bus. The Host Controller hardware and software uses
IRPs to track information about one or more transactions that combine to deliver a transfer of information
between the client software and the function. Figure 5-14 summarizes how transactions are organized into
IRPs for the four transfer types. Detailed protocol information for each transfer type can be found in
Chapter 8. More information about client software views of IRPs can be found in Chapter 10 and in the
operating system specific-information for a particular operating system.
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Data Flow Types
All transfers are
composed of one or more
IRP ‘ transactions. An IRP
Transaction Transaction Transaction | corresponds {o one or
more transfers.
A control transfer is an OUT
Control Transfer Setup transaction followed
by multiple IN or OUT Data
RP transactions followed by one
“opposite of data direction”
Setup Data Status Additional Status transaction.
Transaction Transaction i | Transaction Control Transfers
Interrupt Transfer An interrupt transfer is one
or more IN / OUT Data
transactions.
IRP ;
Transaction . Transaction
Isochronous Transfer
An isochronous transfer
is one or more IN/ OUT
IRP ) Data transactions.
Transaction Transaction 3 Transaction
Bulk Transfer
A bulk transfer is one
or more IN / OUT Data
IRP ‘ ‘ transactions.
Transaction Transaction ; Transaction

Figure 5-14. Transfers for Communication Flows

Even though IRPs track the bus transactions that need to occur to move a specific data flow over the USB,
Host Controllers are free to choose how the particular bus transactions are moved over the bus subject to the
USB-defined constraints (e.g., exactly one transaction per (micro)frame for isochronous transfers). In any
case, an endpoint will see transactions in the order they appear within an IRP unless errors occur. For
example, Figure 5-15 shows two IRPs, one each for two pipes where each IRP contains three transactions.
For any transfer type, a Host Controller is free to move the first transaction of the first IRP followed by the
first transaction of the second IRP somewhere in (micro)Frame 1, while moving the second transaction of
each IRP in opposite order somewhere in (micro)Frame 2. If these are isochronous transfer types, that is the
only degree of freedom a Host Controller has. If these are control or bulk transfers, a Host Controller could
further move more or less transactions from either IRP within either (micro)frame. Functions cannot
depend on seeing transactions within an IRP back-to-back within a (micro)frame nor should they depend on
not seeing transactions back-to-back within a (micro)frame.
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IRP 1 IRP 2
Transaction Transaction Transaction Transaction Transaction Transaction
1-0 1-1 1-2 2-0 2-1 2-2
Frame 1 Frame 2
Token Data, Token, Data, Token, Data, Token, Data,
Handshake Handshake Handshake Handshake
(1-0) (2-0) (2-1) (1-1)

Figure 5-15. Arrangement of IRPs to Transactions/(Micro)frames

5.11.3 Calculating Bus Transaction Times

When the USB System Software allows a new pipe to be created for the bus, it must calculate how much
bus time is required for a given transaction. That bus time is based on the maximum packet size
information reported for an endpoint, the protocol overhead for the specific transaction type request, the
overhead due to signaling imposed bit stuffing, inter-packet timings required by the protocol,
inter-transaction timings, etc. These calculations are required to ensure that the time available in a
(micro)frame is not exceeded. The equations used to determine transaction bus time are:

KEY:

Data bc

Host Delay

Floor ()

Hub LS Setup

BitStuffTime

The byte count of data payload

The time required for the host or transaction
translator to prepare for or recover from the
transmission; Host Controller implementation-specific

The integer portion of argument

The time provided by the Host Controller for hubs to
enable low-speed ports; measured as the delay from the
end of the PRE PID to the start of the low-speed SYNC;
minimum of four full-speed bit times

Function that calculates theoretical additional time
required due to bit stuffing in signaling; worst case
is (1.1667*8*Data bc)
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High-speed (Input)

Non-Isochronous Transfer (Handshake Included)
= (55 * 8 * 2.083) + (2.083 * Floor(3.167 + BitStuffTime (Data bc))) +
Host Delay

Isochronous Transfer (No Handshake)
= (38 * 8 * 2.083) + (2.083 * Floor(3.167 + BitStuffTime(Data bc))) +
Host Delay

High-speed (Output)

Non-Isochronous Transfer (Handshake Included)
= (55 * 8 * 2.083) + (2.083 * Floor(3.167 + BitStuffTime(Data bc))) +
Host Delay

Isochronous Transfer (No Handshake)
= (38 * 8 * 2.083) + (2.083 * Floor(3.167 + BitStuffTime(Data bc))) +
Host Delay

Full-speed (Input)

Non-Isochronous Transfer (Handshake Included)
= 9107 + (83.54 * Floor(3.167 + BitStuffTime (Data bc))) + Host Delay

Isochronous Transfer (No Handshake)
= 7268 + (83.54 * Floor(3.167 + BitStuffTime (Data bc))) + Host Delay

Full-speed (Output)

Non-Isochronous Transfer (Handshake Included)
= 9107 + (83.54 * Floor(3.167 + BitStuffTime (Data bc))) + Host Delay

Isochronous Transfer (No Handshake)
= 6265 + (83.54 * Floor(3.167 + BitStuffTime (Data bc))) + Host Delay

Low-speed (Input)

= 64060 + (2 * Hub LS Setup) +
(676.67 * Floor(3.167 + BitStuffTime (Data bc))) + Host Delay

Low-speed (Output)

= 64107 + (2 * Hub LS Setup) +
(667.0 * Floor(3.167 + BitStuffTime (Data bc))) + Host Delay

The bus times in the above equations are in nanoseconds and take into account propagation delays due to the
distance the device is from the host. These are typical equations that can be used to calculate bus time;
however, different implementations may choose to use coarser approximations of these times.

The actual bus time taken for a given transaction will almost always be less than that calculated because bit
stuffing overhead is data-dependent. Worst case bit stuffing is calculated as 1.1667 (7/6) times the raw time
(i-e., the BitStuffTime function multiplies the Data_bc by 8*1.1667 in the equations). This means that there
will almost always be time unused on the bus (subject to data pattern specifics) after all regularly scheduled
transactions have completed. The bus time made available due to less bit stuffing can be reused as
discussed in Section 5.11.5.

The Host Delay term in the equations is Host Controller-, Transaction Translator(TT)-, and system-
dependent and allows for additional time a Host Controller (or TT) may require due to delays in gaining
access to memory or other implementation dependencies. This term is incorporated into an implementation
of these equations by using the transfer management functions provided by the HCD interface. These
equations are typically implemented by a combination of USBD and HCD software working in cooperation.
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The results of these calculations are used to determine whether a transfer or pipe creation can be supported
in a given USB configuration.

5.11.4 Calculating Buffer Sizes in Functions and Software

Client software and functions both need to provide buffer space for pending data transactions awaiting their
turn on the bus. For non-isochronous pipes, this buffer space needs to be just large enough to hold the next
data packet. If more than one transaction request is pending for a given endpoint, the buffering for each
transaction must be supplied. Methods to calculate the precise absolute minimum buffering a function may
require because of specific interactions defined between its client software and the function are outside the
scope of this specification.

The Host Controller is expected to be able to support an unlimited number of transactions pending for the
bus subject to available system memory for buffer and descriptor space, etc. Host Controllers are allowed
to limit how many (micro)frames into the future they allow a transaction to be requested.

For isochronous pipes, Section 5.12.4 describes details affecting host side and device side buffering
requirements. In general, buffers need to be provided to hold approximately twice the amount of data that
can be transferred in 1ms for full-speed endpoints or 125 us for high-speed endpoints.

5.11.5 Bus Bandwidth Reclamation

The USB bandwidth and bus access are granted based on a calculation of worst-case bus transmission time
and required latencies. However, due to the constraints placed on different transfer types and the fact that
the bit stuffing bus time contribution is calculated as a constant but is data-dependent, there will frequently
be bus time remaining in each (micro)frame time versus what the (micro)frame transmission time was
calculated to be. In order to support the most efficient use of the bus bandwidth, control and bulk transfers
are candidates to be moved over the bus as bus time becomes available. Exactly how a Host Controller
supports this is implementation-dependent. A Host Controller can take into account the transfer types of
pending IRPs and implementation-specific knowledge of remaining (micro)frame time to reuse reclaimed
bandwidth.

5.12 Special Considerations for Isochronous Transfers

Support for isochronous data movement between the host and a device is one of the system capabilities
supported by the USB. Delivering isochronous data reliably over the USB requires careful attention to
detail. The responsibility for reliable delivery is shared by several USB entities:

e The device/function

e The bus

e The Host Controller

e One or more software agents

Because time is a key part of an isochronous transfer, it is important for USB designers to understand how
time is dealt with within the USB by these different entities.

Note: The examples in this section describe USB for an example involving full-speed endpoints. The
general example details are also appropriate for high-speed endpoints when corresponding changes are
made; for example, frame replaced with microframe, 1 ms replaced with 125 s, rate adjustments made
between full-speed and high-speed, etc.

All isochronous devices must report their capabilities in the form of device-specific descriptors. The
capabilities should also be provided in a form that the potential customer can use to decide whether the
device offers a solution to his problem(s). The specific capabilities of a device can justify price differences.
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In any communication system, the transmitter and receiver must be synchronized enough to deliver data
robustly. In an asynchronous communication system, data can be delivered robustly by allowing the
transmitter to detect that the receiver has not received a data item correctly and simply retrying transmission
of the data.

In an isochronous communication system, the transmitter and receiver must remain time- and data-
synchronized to deliver data robustly. The USB does not support transmission retry of isochronous data so
that minimal bandwidth can be allocated to isochronous transfers and time synchronization is not lost due to
aretry delay. However, it is critical that a USB isochronous transmitter/receiver pair still remain
synchronized both in normal data transmission cases and in cases where errors occur on the bus.

In many systems that deal with isochronous data, a single global clock is used to which all entities in the
system synchronize. An example of such a system is the PSTN (Public Switched Telephone Network).
Given that a broad variety of devices with different natural frequencies may be attached to the USB, no
single clock can provide all the features required to satisfy the synchronization requirements of all devices
and software while still supporting the cost targets of mass-market PC products. The USB defines a clock
model that allows a broad range of devices to coexist on the bus and have reasonable cost implementations.

This section presents options or features that can be used by isochronous endpoints to minimize behavior
differences between a non-USB implemented function and a USB version of the function. An example is
included to illustrate the similarities and differences between the non-USB and USB versions of a function.

The remainder of the section presents the following key concepts:

e  USB Clock Model: What clocks are present in a USB system that have impact on isochronous data
transfers

e  USB (micro)frame Clock-to-function Clock Synchronization Options: How the USB (micro)frame
clock can relate to a function clock

e  SOF Tracking: Responsibilities and opportunities of isochronous endpoints with respect to the SOF
token and USB (micro)frames

e Data Prebuffering: Requirements for accumulating data before generation, transmission, and
consumption

e  Error Handling: Isochronous-specific details for error handling

e Buffering for Rate Matching: Equations that can be used to calculate buffer space required for
isochronous endpoints

5.12.1 Example Non-USB Isochronous Application

66

The example used is a reasonably generalized example. Other simpler or more complex cases are possible
and the relevant USB features identified can be used or not as appropriate.

The example consists of an 8 kHz mono microphone connected through a mixer driver that sends the input
data stream to 44 kHz stereo speakers. The mixer expects the data to be received and transmitted at some
sample rate and encoding. A rate matcher driver on input and output converts the sample rate and encoding
from the natural rate and encoding of the device to the rate and encoding expected by the mixer.

Figure 5-16 illustrates this example.
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Figure 5-16. Non-USB Isochronous Example
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A master clock (which can be provided by software driven from the real time clock) in the PC is used to
awaken the mixer to ask the input source for input data and to provide output data to the output sink. In this
example, assume it awakens every 20 ms. The microphone and speakers each have their own sample clocks
that are unsynchronized with respect to each other or the master mixer clock. The microphone produces
data at its natural rate (one-byte samples, 8,000 times a second) and the speakers consume data at their
natural rate (four-byte samples, 44,100 times a second). The three clocks in the system can drift and jitter
with respect to each other. Each rate matcher may also be running at a different natural rate than either the
mixer driver, the input source/driver, or output sink/driver.

The rate matchers also monitor the long-term data rate of their device compared to the master mixer clock
and interpolate an additional sample or merge two samples to adjust the data rate of their device to the data
rate of the mixer. This adjustment may be required every couple of seconds, but typically occurs
infrequently. The rate matchers provide some additional buffering to carry through a rate match.

Note: Some other application might not be able to tolerate sample adjustment and would need some other
means of accommodating master clock-to-device clock drift or else would require some means of
synchronizing the clocks to ensure that no drift could occur.

The mixer always expects to receive exactly a service period of data (20 ms service period) from its input
device and produce exactly a service period of data for its output device. The mixer can be delayed up to

less than a service period if data or space is not available from its input/output device. The mixer assumes
that such delays do not accumulate.

The input and output devices and their drivers expect to be able to put/get data in response to a hardware
interrupt from the DMA controller when their transducer has processed one service period of data. They
expect to get/put exactly one service period of data. The input device produces 160 bytes (ten samples)
every service period of 20 ms. The output device consumes 3,528 bytes (882 samples) every 20 ms service
period. The DMA controller can move a single sample between the device and the host buffer at a rate
much faster than the sample rate of either device.

The input and output device drivers provide two service periods of system buffering. One buffer is always
being processed by the DMA controller. The other buffer is guaranteed to be ready before the current
buffer is exhausted. When the current buffer is emptied, the hardware interrupt awakens the device driver
and it calls the rate matcher to give it the buffer. The device driver requests a new IRP with the buffer
before the current buffer is exhausted.

The devices can provide two samples of data buffering to ensure that they always have a sample to process
for the next sample period while the system is reacting to the previous/next sample.

The service periods of the drivers are chosen to survive interrupt latency variabilities that may be present in
the operating system environment. Different operating system environments will require different service
periods for reliable operation. The service periods are also selected to place a minimum interrupt load on
the system, because there may be other software in the system that requires processing time.

LGE-1010 / Page 96 of 650



Universal Serial Bus Specification Revision 2.0

5.12.2 USB Clock Model

Time is present in the USB system via clocks. In fact, there are multiple clocks in a USB system that must
be understood:

e Sample Clock: This clock determines the natural data rate of samples moving between client software
on the host and the function. This clock does not need to be different between non-USB and USB
implementations.

e  Bus Clock: This clock runs at a 1.000 ms period (1 kHz frequency) on full-speed segments and
125.000 ps (8 kHz frequency) on high-speed segments of the bus and is indicated by the rate of SOF
packets on the bus. This clock is somewhat equivalent to the 8§ MHz clock in the non-USB example.
In the USB case, the bus clock is often a lower-frequency clock than the sample clock, whereas the bus
clock is almost always a higher-frequency clock than the sample clock in a non-USB case.

e Service Clock: This clock is determined by the rate at which client software runs to service IRPs that
may have accumulated between executions. This clock also can be the same in the USB and non-USB
cases.

In most existing operating systems, it is not possible to support a broad range of isochronous communication
flows if each device driver must be interrupted for each sample for fast sample rates. Therefore, multiple
samples, if not multiple packets, will be processed by client software and then given to the Host Controller
to sequence over the bus according to the prenegotiated bus access requirements. Figure 5-17 presents an
example for a reasonable USB clock environment equivalent to the non-USB example in Figure 5-16.
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Figure 5-17. USB Full-speed Isochronous Application
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Figure 5-17 shows a typical round trip path of information from a microphone as an input device to a
speaker as an output device. The clocks, packets, and buffering involved are also shown. Figure 5-17 will
be explored in more detail in the following sections.

The focus of this example is to identify the differences introduced by the USB compared to the previous
non-USB example. The differences are in the areas of buffering, synchronization given the existence of a
USB bus clock, and delay. The client software above the device drivers can be unaffected in most cases.

5.12.3 Clock Synchronization

In order for isochronous data to be manipulated reliably, the three clocks identified above must be
synchronized in some fashion. If the clocks are not synchronized, several clock-to-clock attributes can be
present that can be undesirable:

e Clock Drift: Two clocks that are nominally running at the same rate can, in fact, have implementation
differences that result in one clock running faster or slower than the other over long periods of time. If
uncorrected, this variation of one clock compared to the other can lead to having too much or too little
data when data is expected to always be present at the time required.

e Clock Jitter: A clock may vary its frequency over time due to changes in temperature, etc. This may
also alter when data is actually delivered compared to when it is expected to be delivered.

e Clock-to-clock Phase Differences: If two clocks are not phase locked, different amounts of data may
be available at different points in time as the beat frequency of the clocks cycle out over time. This can
lead to quantization/sampling related artifacts.

The bus clock provides a central clock with which USB hardware devices and software can synchronize to
one degree or another. However, the software will, in general, not be able to phase- or frequency-lock
precisely to the bus clock given the current support for “real time-like” operating system scheduling support
in most PC operating systems. Software running in the host can, however, know that data moved over the
USB is packetized. For isochronous transfer types, a unit of data is moved exactly once per (micro)frame
and the (micro)frame clock is reasonably precise. Providing the software with this information allows it to
adjust the amount of data it processes to the actual (micro)frame time that has passed.

Note: For high-speed high-bandwidth endpoints, the data exchanged in the two or three transactions per
microframe is still considered to belong to the same “single packet.” The large amount of data per packet is
split into two or three transactions only for bus efficiency reasons.

5.12.4 Isochronous Devices

The USB includes a framework for isochronous devices that defines synchronization types, how
isochronous endpoints provide data rate feedback, and how they can be connected together. Isochronous
devices include sampled analog devices (for example, audio and telephony devices) and synchronous data
devices. Synchronization type classifies an endpoint according to its capability to synchronize its data rate
to the data rate of the endpoint to which it is connected. Feedback is provided by indicating accurately
what the required data rate is, relative to the SOF frequency. The ability to make connections depends on
the quality of connection that is required, the endpoint synchronization type, and the capabilities of the host
application that is making the connection. Additional device class-specific information may be required,
depending on the application.

Note: The term “data” is used very generally, and may refer to data that represents sampled analog
information (like audio), or it may be more abstract information. ‘“Data rate” refers to the rate at which
analog information is sampled, or the rate at which data is clocked.

71
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The following information is required in order to determine how to connect isochronous endpoints:
e Synchronization type:
— Asynchronous: Unsynchronized, although sinks provide data rate feedback
—  Synchronous: Synchronized to the USB’s SOF
— Adaptive: Synchronized using feedback or feedforward data rate information
e Available data rates
e Available data formats

Synchronization type and data rate information are needed to determine if an exact data rate match exists
between source and sink, or if an acceptable conversion process exists that would allow the source to be
connected to the sink. It is the responsibility of the application to determine whether the connection can be
supported within available processing resources and other constraints (like delay). Specific USB device
classes define how to describe synchronization type and data rate information.

Data format matching and conversion is also required for a connection, but it is not a unique requirement for
isochronous connections. Details about format conversion can be found in other documents related to
specific formats.

5.12.4.1 Synchronization Type

Three distinct synchronization types are defined. Table 5-12 presents an overview of endpoint
synchronization characteristics for both source and sink endpoints. The types are presented in order of
increasing capability.

Table 5-12. Synchronization Characteristics

Source Sink
Asynchronous | Free running Fs Free running Fs
Provides implicit feedforward (data Provides explicit feedback (isochronous
stream) pipe)
Synchronous Fs locked to SOF Fs locked to SOF
Uses implicit feedback (SOF) Uses implicit feedback (SOF)
Adaptive Fs locked to sink Fs locked to data flow
Uses explicit feedback (isochronous pipe) | Uses implicit feedforward (data stream)

5.12.4.1.1 Asynchronous

72

Asynchronous endpoints cannot synchronize to SOF or any other clock in the USB domain. They source or
sink an isochronous data stream at either a fixed data rate (single-frequency endpoints), a limited number of
data rates (32 kHz, 44.1 kHz, 48 kHz, ...), or a continuously programmable data rate. If the data rate is
programmable, it is set during initialization of the isochronous endpoint. Asynchronous devices must report
their programming capabilities in the class-specific endpoint descriptor as described in their device class
specification. The data rate is locked to a clock external to the USB or to a free-running internal clock.
These devices place the burden of data rate matching elsewhere in the USB environment. Asynchronous
source endpoints carry their data rate information implicitly in the number of samples they produce per
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(micro)frame. Asynchronous sink endpoints must provide explicit feedback information to an adaptive
driver (refer to Section 5.12.4.2).

An example of an asynchronous source is a CD-audio player that provides its data based on an internal
clock or resonator. Another example is a Digital Audio Broadcast (DAB) receiver or a Digital Satellite
Receiver (DSR). Here, too, the sample rate is fixed at the broadcasting side and is beyond USB control.

Asynchronous sink endpoints could be low-cost speakers running off of their internal sample clock.

5.12.4.1.2 Synchronous

Synchronous endpoints can have their clock system (their notion of time) controlled externally through SOF
synchronization. These endpoints must slave their sample clock to the 1 ms SOF tick (by means of a
programmable PLL). For high-speed endpoints, the presence of the microframe SOF can be used for tighter
frame clock tracking.

Synchronous endpoints may source or sink isochronous data streams at either a fixed data rate (single-
frequency endpoints), a limited number of data rates (32 kHz, 44.1 kHz, 48 kHz, ...), or a continuously
programmable data rate. If programmable, the operating data rate is set during initialization of the
isochronous endpoint. The number of samples or data units generated in a series of USB (micro)frames is
deterministic and periodic. Synchronous devices must report their programming capabilities in the class-
specific endpoint descriptor as described in their device class specification.

An example of a synchronous source is a digital microphone that synthesizes its sample clock from SOF and
produces a fixed number of audio samples every USB (micro)frame. Likewise, a synchronous sink derives
its sample clock from SOF and consumes a fixed number of samples every USB (micro)frame.

5.12.4.1.3 Adaptive

Adaptive endpoints are the most capable endpoints possible. They are able to source or sink data at any rate
within their operating range. Adaptive source endpoints produce data at a rate that is controlled by the data
sink. The sink provides feedback (refer to Section 5.12.4.2) to the source, which allows the source to know
the desired data rate of the sink. For adaptive sink endpoints, the data rate information is embedded in the
data stream. The average number of samples received during a certain averaging time determines the
instantaneous data rate. If this number changes during operation, the data rate is adjusted accordingly.

The data rate operating range may center around one rate (e.g., 8 kHz), select between several
programmable or auto-detecting data rates (32 kHz, 44.1 kHz, 48 kHz, ...), or may be within one or more
ranges (e.g., 5 kHz to 12 kHz or 44 kHz to 49 kHz). Adaptive devices must report their programming
capabilities in the class-specific endpoint descriptor as described in their device class specification.

An example of an adaptive source is a CD player that contains a fully adaptive sample rate converter (SRC)
so that the output sample frequency no longer needs to be 44.1 kHz but can be anything within the operating
range of the SRC. Adaptive sinks include such endpoints as high-end digital speakers, headsets, etc.

5.12.4.2 Feedback

An asynchronous sink must provide explicit feedback to the host by indicating accurately what its desired
data rate (¥ f) is, relative to the USB (micro)frame frequency. This allows the host to continuously adjust the
number of samples sent to the sink so that neither underflow or overflow of the data buffer occurs.
Likewise, an adaptive source must receive explicit feedback from the host so that it can accurately generate
the number of samples required by the host. Feedback endpoints can be specified as described in

Section 9.6.6 for the bmAttributes field of the endpoint descriptor.

To generate the desired data rate F° o the device must measure its actual sampling rate F, referenced to the

USB notion of time, i.e., the USB (micro)frame frequency. This specification requires the data rate to be
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resolved to better than one sample per second (1Hz) in order to allow a high-quality source rate to be
created and to tolerate delays and errors in the feedback loop. To achieve this accuracy, the measurement

time 7' ' oas TUSE be at least 1 second. Therefore:

T =2k

meas

where T is now expressed in USB (micro)frames and K=10 for full-speed devices (1 ms frames) and
K=13 for high-speed devices (125 us microframes). However, in most devices, the actual sampling rate F

is derived from a master clock F through a binary divider. Therefore:
F =F "

where P is a positive integer (including 0 if no higher-frequency master clock is available). The

measurement time 7, can now be decreased by measuring F, instead of F and:

_z =&=P)

meas 2P

In this way, a new estimate for F . becomes available every Z(K_P) (micro)frames. P is practically bound to
be in the range [0,K] because there is no point in using a clock slower than ' (P=0), and no point in trying
to update F  more than once per (micro)frame (P=K). A sink can determine F fby counting cycles of the
master clock F, for a period of Z(K-P)(micro)frames. The counter is read into F, and reset every

K-P
2( )(micro)frames. As long as no clock cycles are skipped, the count will be accurate over the long term.

Each (micro)frame, an adaptive source adds Ffto any remaining fractional sample count from the previous
(micro)frame, sources the number of samples in the integer part of the sum, and retains the fractional
sample count for the next (micro)frame. The source can look at the behavior of F over many
(micro)frames to determine an even more accurate rate, if it needs to.

F, is expressed in number of samples per (micro)frame. The F value consists of an integer part that
represents the (integer) number of samples per (micro)frame and a fractional part that represents the

“fraction” of a sample that would be needed to match the sampling frequency F_ to a resolution of 1 Hz or
better. The fractional part requires at least K bits to represent the “fraction” of a sample to a resolution of
1 Hz or better. The integer part must have enough bits to represent the maximum number of samples that
can ever occur in a single (micro)frame. Assuming that the minimum sample size is one byte, then this
number is limited to 1,023 for full-speed endpoints. Ten bits are therefore sufficient to encode this value.
For high-speed endpoints, this number is limited to 3*1,024=3,072 and twelve bits are needed.

In summary, for full-speed endpoints, the F, value shall be encoded in an unsigned 10.10 (K=10) format
which fits into three bytes. Because the maximum integer value is fixed to 1,023, the 10.10 number will be
left-justified in the 24 bits, so that it has a 10.14 format. Only the first ten bits behind the binary point are

required. The lower four bits may be optionally used to extend the precision of F otherwise, they shall be

reported as zero. For high-speed endpoints, the F, value shall be encoded in an unsigned 12.13 (K=13)

format which fits into four bytes. The value shall be aligned into these four bytes so that the binary point is
located between the second and the third byte so that it has a 16.16 format. The most significant four bits
shall be reported zero. Only the first 13 bits behind the binary point are required. The lower three bits may

be optionally used to extend the precision of » otherwise, they shall be reported as zero.

An endpoint needs to implement only the number of bits that it effectively requires for its maximum Fj
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The choice of P is endpoint-specific. Use the following guidelines when choosing P:

e P must be in the range [0,K].

e Larger values of P are preferred, because they reduce the size of the frame counter and increase the rate
at which F fis updated. More frequent updates result in a tighter control of the source data rate, which

reduces the buffer space required to handle F' ; changes.

e P should be less than X so that fis averaged across at least two frames in order to reduce SOF jitter
effects. '

e P should not be zero in order to keep the deviation in the number of samples sourced to less than 1 in

the event of a lost F f»value.

Isochronous transfers are used to read /7, from the feedback register. The desired reporting rate for the
feedback should be 2 frames. F will be reported at most once per update period. There is nothing to be
gained by reporting the same ¥ fvélue more than once per update period. The endpoint may choose to report
Fonly if the updated value has changed from the previous F,value. If the value has not changed, the
endpoint may report the current ¥, value or a zero length data payload. It is strongly recommended that an
endpoint always report the current £, value any time it is polled.

It is possible that the source will deliver one too many or one too few samples over a long period due to
errors or accumulated inaccuracies in measuring F P The sink must have sufficient buffer capability to

accommodate this. When the sink recognizes this condition, it should adjust the reported f»value to correct
it. This may also be necessary to compensate for relative clock drifts. The implementation of this
correction process is endpoint-specific and is not specified.

5.12.4.3 Implicit Feedback

In some cases, implementing a separate explicit feedback endpoint can be avoided. If a device implements
a group of isochronous data endpoints that are closely related and if:

e All the endpoints in the group are synchronized (i.e. use sample clocks that are derived from a common
master clock)

e The group contains one or more isochronous data endpoints in one direction that normally would need
explicit feedback

e The group contains at least one isochronous data endpoint in the opposite direction

Under these circumstances, the device may elect not to implement a separate isochronous explicit feedback
endpoint. Instead, feedback information can be derived from the data endpoint in the opposite direction by
observing its data rate.

Two cases can arise:

e One or more asynchronous sink endpoints are accompanied by an asynchronous source endpoint. The
data rate on the source endpoint can be used as implicit feedback information to adjust the data rate on
the sink endpoint(s).

e One or more adaptive source endpoints are accompanied by an adaptive sink endpoint. The source
endpoint can adjust its data rate based on the data rate received by the sink endpoint.
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This specification provides the necessary framework to implement synchronization as described above (see

Chapter 9). However, exactly how the desired data rate F’ fis derived from the data rate of the implied
feedback endpoint is implementation-dependent. '

5.12.4.4 Connectivity

In order to fully describe the source-to-sink connectivity process, an interconnect model is presented. The
model indicates the different components involved and how they interact to establish the connection.

The model provides for multi-source/multi-sink situations. Figure 5-18 illustrates a typical situation (highly
condensed and incomplete). A physical device is connected to the host application software through
different hardware and software layers as described in this specification. At the client interface level, a
virtual device is presented to the application. From the application standpoint, only virtual devices exist. It
is up to the device driver and client software to decide what the exact relation is between physical and
virtual device.
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Figure 5-18. Example Source/Sink Connectivity

Device manufacturers (or operating system vendors) must provide the necessary device driver software and
client interface software to convert their device from the physical implementation to a USB-compliant
software implementation (the virtual device). As stated before, depending on the capabilities built into this
software, the virtual device can exhibit different synchronization behavior from the physical device.
However, the synchronization classification applies equally to both physical and virtual devices. All
physical devices belong to one of the three possible synchronization types. Therefore, the capabilities that
have to be built into the device driver and/or client software are the same as the capabilities of a physical
device. The word “application” must be replaced by “device driver/client software.” In the case of a
physical source to virtual source connection, “virtual source device” must be replaced by “physical source
device” and “virtual sink device” must be replaced by “virtual source device.” In the case of a virtual sink
to physical sink connection, “virtual source device” must be replaced by “virtual sink device” and “virtual
sink device” must be replaced by “physical sink device.”
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Placing the rate adaptation (RA) functionality into the device driver/client software layer has the distinct
advantage of isolating all applications, relieving the device from the specifics and problems associated with
rate adaptation. Applications that would otherwise be multi-rate degenerate to simpler mono-rate systems.

Note: The model is not limited to only USB devices. For example, a CD-ROM drive containing 44.1 kHz
audio can appear as either an asynchronous, synchronous, or adaptive source. Asynchronous operation
means that the CD-ROM fills its buffer at the rate that it reads data from the disk, and the driver empties the
buffer according to its USB service interval. Synchronous operation means that the driver uses the USB
service interval (e.g., 10 ms) and nominal sample rate of the data (44.1 kHz) to determine to put out

441 samples every USB service interval. Adaptive operation would build in a sample rate converter to
match the CD-ROM output rate to different sink sampling rates.

Using this reference model, it is possible to define what operations are necessary to establish connections
between various sources and sinks. Furthermore, the model indicates at what level these operations must or
can take place. First, there is the stage where physical devices are mapped onto virtual devices and vice
versa. This is accomplished by the driver and/or client software. Depending on the capabilities included in
this software, a physical device can be transformed into a virtual device of an entirely different
synchronization type. The second stage is the application that uses the virtual devices. Placing rate
matching capabilities at the driver/client level of the software stack relieves applications communicating
with virtual devices from the burden of performing rate matching for every device that is attached to them.
Once the virtual device characteristics are decided, the actual device characteristics are not any more
interesting than the actual physical device characteristics of another driver.

As an example, consider a mixer application that connects at the source side to different sources, each
running at their own frequencies and clocks. Before mixing can take place, all streams must be converted to
a common frequency and locked to a common clock reference. This action can be performed in the
physical-to-virtual mapping layer or it can be handled by the application itself for each source device
independently. Similar actions must be performed at the sink side. If the application sends the mixed data
stream out to different sink devices, it can either do the rate matching for each device itself or it can rely on
the driver/client software to do that, if possible.

Table 5-13 indicates at the intersections what actions the application must perform to connect a source
endpoint to a sink endpoint.
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Table 5-13. Connection Requirements

Source Endpoint
Sink Endpoint Asynchronous Synchronous Adaptive
Asynchronous | Async Source/Sink RA Async SOF/Sink RA Data + Feedback
See Note 1. See Note 2. Feedthrough
See Note 3.
Synchronous Async Source/SOF RA Sync RA Data Feedthrough +
See Note 4. See Note 5. Application Feedback
See Note 6.
Adaptive Data Feedthrough Data Feedthrough Data Feedthrough
See Note 7. See Note 8. See Note 9.
Notes:

Asynchronous RA in the application. Fsjis determined by the source, using the feedforward information
embedded in the data stream. Fsq is determined by the sink, based on feedback information from the
sink. If nominally Fsj = Fsgq, the process degenerates to a feedthrough connection if slips/stuffs due to

lack of synchronization are tolerable. Such slips/stuffs will cause audible degradation in audio
applications.

Asynchronous RA in the application. Fsjis determined by the source but locked to SOF. Fsg is
determined by the sink, based on feedback information from the sink. If nominally Fsj = Fsg, the

process degenerates to a feedthrough connection if slips/stuffs due to lack of synchronization are
tolerable. Such slips/stuffs will cause audible degradation in audio applications.

If Fsg falls within the locking range of the adaptive source, a feedthrough connection can be established.
Fsj = Fsg and both are determined by the asynchronous sink, based on feedback information from the
sink. If Fsq falls outside the locking range of the adaptive source, the adaptive source is switched to
synchronous mode and Note 2 applies.

Asynchronous RA in the application. Fsjis determined by the source. Fsg is determined by the sink
and locked to SOF. If nominally Fsj = Fsq, the process degenerates to a feedthrough connection if
slips/stuffs due to lack of synchronization are tolerable. Such slips/stuffs will cause audible degradation
in audio applications.

Synchronous RA in the application. Fsjis determined by the source and locked to SOF. Fsg is
determined by the sink and locked to SOF. If Fsj = Fsq, the process degenerates to a loss-free
feedthrough connection.

The application will provide feedback to synchronize the source to SOF. The adaptive source appears
to be a synchronous endpoint and Note 5 applies.

If Fsj falls within the locking range of the adaptive sink, a feedthrough connection can be established.
Fsj = Fsp and both are determined by and locked to the source.

If Fsj falls outside the locking range of the adaptive sink, synchronous RA is done in the host to provide
an Fsg that is within the locking range of the adaptive sink.

If Fsj falls within the locking range of the adaptive sink, a feedthrough connection can be established.
Fso = Fsjand both are determined by the source and locked to SOF.

If Fsj falls outside the locking range of the adaptive sink, synchronous RA is done in the host to provide
an Fsq that is within the locking range of the adaptive sink.

The application will use feedback control to set Fsg of the adaptive source when the connection is set

up. The adaptive source operates as an asynchronous source in the absence of ongoing feedback
information and Note 7 applies.
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In cases where RA is needed but not available, the rate adaptation process could be mimicked by sample
dropping/stuffing. The connection could then still be made, possibly with a warning about poor quality,
otherwise, the connection cannot be made.

5.12.4.4.1 Audio Connectivity

When the above is applied to audio data streams, the RA process is replaced by sample rate conversion,
which is a specialized form of rate adaptation. Instead of error control, some form of sample interpolation
is used to match incoming and outgoing sample rates. Depending on the interpolation techniques used, the
audio quality (distortion, signal to noise ratio, etc.) of the conversion can vary significantly. In general,
higher quality requires more processing power.

5.12.4.4.2 Synchronous Data Connectivity

For the synchronous data case, RA is used. Occasional slips/stuffs may be acceptable to many applications
that implement some form of error control. Error control includes error detection and discard, error
detection and retransmit, or forward error correction. The rate of slips/stuffs will depend on the clock
mismatch between the source and sink and may be the dominant error source of the channel. If the error
control is sufficient, then the connection can still be made.

5.12.5 Data Prebuffering

80

The USB requires that devices prebuffer data before processing/transmission to allow the host more
flexibility in managing when each pipe’s transaction is moved over the bus from (micro)frame to
(micro)frame.

For transfers from function to host, the endpoint must accumulate samples during (micro)frame X until it
receives the SOF token for (micro)frame X+1. It “latches” the data from (micro)frame X into its packet
buffer and is now ready to send the packet containing those samples during (micro)frame X+1. When it
will send that data during the (micro)frame is determined solely by the Host Controller and can vary from
(micro)frame to (micro)frame.

For transfers from host to function, the endpoint will accept a packet from the host sometime during
(micro)frame Y. When it receives the SOF for (micro)frame Y+1, it can then start processing the data
received in (micro)frame Y.

This approach allows an endpoint to use the SOF token as a stable clock with very little jitter and/or drift
when the Host Controller moves the packet over the bus. This approach also allows the Host Controller to
vary within a (micro)frame precisely when the packet is actually moved over the bus. This prebuffering
introduces some additional delay between when a sample is available at an endpoint and when it moves over
the bus compared to an environment where the bus access is at exactly the same time offset from SOF from
(micro)frame to (micro)frame.
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Figure 5-19 shows the time sequence for a function-to-host transfer (IN process). Data D, is accumulated
during (micro)frame Fi at time Ti and transmitted to the host during (micro)frame Fi+1. Similarly, for a

host-to-function transfer (OUT process), data D, is received by the endpoint during (micro)frame Fi+1 and
processed during (micro)frame Fi+2.

Time: T T, 1T, 1T e e T, Ty —
(Micro)Frame: F. iF (Fy iMoo e F. iF. —
Dataon Bus: |- D, iD, D, {- D, iD, -
OUT Process: | woeeee | cooeee D, iD, |- e | e D, -—
IN Process: D, iD; |-mm oo | oo D0 ..................

Figure 5-19. Data Prebuffering

5.12.6 SOF Tracking

Functions supporting isochronous pipes must receive and comprehend the SOF token to support
prebuffering as previously described. Given that SOFs can be corrupted, a device must be prepared to
recover from a corrupted SOF. These requirements limit isochronous transfers to full-speed and high-speed
devices only, because low-speed devices do not see SOFs on the bus. Also, because SOF packets can be
damaged in transmission, devices that support isochronous transfers need to be able to synthesize the
existence of an SOF that they may not see due to a bus error.

Isochronous transfers require the appropriate data to be transmitted in the corresponding (micro)frame. The
USB requires that when an isochronous transfer is presented to the Host Controller, it identifies the
(micro)frame number for the first (micro)frame. The Host Controller must not transmit the first transaction
before the indicated (micro)frame number. Each subsequent transaction in the IRP must be transmitted in
succeeding (micro)frames (except for high-speed high-bandwidth transfers where up to three transactions
may occur in the same microframe). If there are no transactions pending for the current (micro)frame, then
the Host Controller must not transmit anything for an isochronous pipe. If the indicated (micro)frame
number has passed, the Host Controller must skip (i.e., not transmit) all transactions until the one
corresponding to the current (micro)frame is reached.

5.12.7 Error Handling

Isochronous transfers provide no data packet retries (i.e., no handshakes are returned to a transmitter by a
receiver) so that timeliness of data delivery is not perturbed. However, it is still important for the agents
responsible for data transport to know when an error occurs and how the error affects the communication
flow. In particular, for a sequence of data packets (A, B, C, D), the USB allows sufficient information such
that a missing packet (A, , C, D) can be detected and will not unknowingly be turned into an incorrect data
or time sequence (A, C, D or A, , B, C, D). The protocol provides four mechanisms that support this: a
strictly defined periodicity for the transmission of packets and data PID sequencing mechanisms for high-
speed high-bandwidth endpoints, SOF, CRC, and bus transaction timeout.

e Isochronous transfers require periodic occurrence of data transactions for normal operation. The period
must be an exact power of two (micro)frames. The USB does not dictate what data is transmitted in
each frame. The data transmitter/source determines specifically what data to provide. This regular
periodic data delivery provides a framework that is fundamental to detecting missing data errors. For
high-speed high-bandwidth endpoints, data PID sequencing allows the detection of missing or damaged
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transactions during a microframe. Any phase of a transaction can be damaged during transmission on
the bus. Chapter 8 describes how each error case affects the protocol.

e Because every (micro)frame is preceded by an SOF and a receiver can see SOFs on the bus, a receiver
can determine that its expected transaction for that (micro)frame did not occur between two SOFs.
Additionally, because even an SOF can be damaged, a device must be able to reconstruct the existence
of a missed SOF as described in Section 5.12.6.

e A data packet may be corrupted on the bus; therefore, CRC protection allows a receiver to determine
that the data packet it received was corrupted.

e The protocol defines the details that allow a receiver to determine via bus transaction timeout that it is
not going to receive its data packet after it has successfully seen its token packet.

Once a receiver has determined that a data packet was not received, it may need to know the size of the data
that was missed in order to recover from the error with regard to its functional behavior. If the
communication flow is always the same data size per (micro)frame, then the size is always a known
constant. However, in some cases, the data size can vary from (micro)frame to (micro)frame. In this case,
the receiver and transmitter have an implementation-dependent mechanism to determine the size of the lost
packet.

In summary, whether a transaction is actually moved successfully over the bus or not, the transmitter and
receiver always advance their data/buffer streams as indicated by the bus access period to keep data-per-
time synchronization. The detailed mechanisms described above allow detection, tracking, and reporting of
damaged transactions so that a function or its client software can react to the damage in a function-
appropriate fashion. The details of that function- or application-specific reaction are outside the scope of
the USB Specification.

5.12.8 Buffering for Rate Matching
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Given that there are multiple clocks that affect isochronous communication flows in the USB, buffering is
required to rate match the communication flow across the USB. There must be buffer space available both
in the device per endpoint and on the host side on behalf of the client software. These buffers provide space
for data to accumulate until it is time for a transfer to move over the USB. Given the natural data rates of
the device, the maximum size of the data packets that move over the bus can also be calculated.

Figure 5-20 shows the equations used to determine buffer size on the device and host and maximum packet
size that must be requested to support a desired data rate. These equations are a function of the service

clock rate (Fy), bus clock rate (F ), sample clock rate (F), bus access period (I), and sample size (S).
These equations should provide design information for selecting the appropriate packet size that an endpoint
will report in its characteristic information and the appropriate buffer requirements for the device/endpoint

and its client software. Figure 5-17 shows actual buffer, packet, and clock values for a typical full-speed
isochronous example.
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Figure 5-20. Packet and Buffer Size Formulas for Rate-matched Isochronous Transfers

The USB data model assumes that devices have some natural sample size and rate. The USB supports the
transmission of packets that are multiples of sample size to make error recovery handling easier when
isochronous transactions are damaged on the bus. If a device has no natural sample size or if its samples are
larger than a packet, it should describe its sample size as being one byte. If a sample is split across a data
packet, the error recovery can be harder when an arbitrary transaction is lost. In some cases, data
synchronization can be lost unless the receiver knows in what (micro)frame number each partial sample is
transmitted. Furthermore, if the number of samples can vary due to clock correction (e.g., for a non-derived
device clock), it may be difficult or inefficient to know when a partial sample is transmitted. Therefore, the
USB does not split samples across packets.
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Chapter 6
Mechanical

This chapter provides the mechanical and electrical specifications for the cables, connectors, and cable
assemblies used to interconnect USB devices. The specification includes the dimensions, materials,
electrical, and reliability requirements. This chapter documents minimum requirements for the external
USB interconnect. Substitute material may be used as long as it meets these minimums.

6.1 Architectural Overview

The USB physical topology consists of connecting the downstream hub port to the upstream port of another
hub or to a device. The USB can operate at three speeds. High-speed (480 Mb/s) and full-speed (12 Mb/s)
require the use of a shielded cable with two power conductors and twisted pair signal conductors. Low-
speed (1.5 Mb/s) recommends, but does not require the use of a cable with twisted pair signal conductors.

The connectors are designed to be hot plugged. The USB Icon on the plugs provides tactile feedback
making it easy to obtain proper orientation.

6.2 Keyed Connector Protocol

To minimize end user termination problems, USB uses a “keyed connector” protocol. The physical
difference in the Series “A” and “B” connectors insures proper end user connectivity. The “A” connector
is the principle means of connecting USB devices directly to a host or to the downstream port of a hub. All
USB devices must have the standard Series “A” connector specified in this chapter. The “B” connector
allows device vendors to provide a standard detachable cable. This facilitates end user cable replacement.
Figure 6-1 illustrates the keyed connector protocol.

Series "A" Connectors Series ""B'" Connectors
¢ Series "A" plugs are ¢ Series "B" plugs are
always oriented upstream always oriented
towards the Host System downstream towards the
USB Device
"A" Plugs
(From the "B" P|
. ugs
USB Device) (From the
Host System)

"A" Receptacles

(Downstream Output

from the USB Host or
Hub)

"B" Receptacles
(Upstream Input to the
USB Device or Hub)

Figure 6-1. Keyed Connector Protocol
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The following list explains how the plugs and receptacles can be mated:

e  Series “A” receptacle mates with a Series “A” plug. Electrically, Series “A” receptacles function as
outputs from host systems and/or hubs.

e  Series “A” plug mates with a Series “A” receptacle. The Series “A” plug always is oriented towards
the host system.

e  Series “B” receptacle mates with a Series “B” plug (male). Electrically, Series “B” receptacles
function as inputs to hubs or devices.

e Series “B” plug mates with a Series “B” receptacle. The Series “B” plug is always oriented towards
the USB hub or device.

6.3 Cable

USB cable consists of four conductors, two power conductors, and two signal conductors.

High-/full-speed cable consists of a signaling twisted pair, VBUS, GND, and an overall shield. High-/full-
speed cable must be marked to indicate suitability for USB usage (see Section 6.6.2). High-/full-speed
cable may be used with either low-speed, full-speed, or high-speed devices. When high-/full-speed cable is
used with low-speed devices, the cable must meet all low-speed requirements.

Low-speed recommends, but does not require the use of a cable with twisted signaling conductors.

6.4 Cable Assembly

This specification describes three USB cable assemblies: standard detachable cable, high-/full-speed
captive cable, and low-speed captive cable.

A standard detachable cable is a high-/full-speed cable that is terminated on one end with a Series “A” plug
and terminated on the opposite end with a series “B” plug. A high-/full-speed captive cable is terminated
on one end with a Series “A” plug and has a vendor-specific connect means (hardwired or custom
detachable) on the opposite end for the high-/full-speed peripheral. The low-speed captive cable is
terminated on one end with a Series “A” plug and has a vendor-specific connect means (hardwired or
custom detachable) on the opposite end for the low-speed peripheral. Any other cable assemblies are
prohibited.

The color used for the cable assembly is vendor specific; recommended colors are white, grey, or black.

6.4.1 Standard Detachable Cable Assemblies

High-speed and full-speed devices can utilize the “B” connector. This allows the device to have a standard
detachable USB cable. This eliminates the need to build the device with a hardwired cable and minimizes
end user problems if cable replacement is necessary.

Devices utilizing the “B” connector must be designed to work with worst case maximum length detachable
cable. Standard detachable cable assemblies may be used only on high-speed and full-speed devices.
Using a high-/full-speed standard detachable cable on a low-speed device may exceed the maximum low-
speed cable length.

Figure 6-2 illustrates a standard detachable cable assembly.
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Standard detachable cable assemblies must meet the following electrical requirements:

e The cable must be terminated on one end with an overmolded Series “A” plug and the opposite end is
terminated with an overmolded Series “B” plug.

e  The cable must be rated for high-speed and full-speed.

e The cable impedance must match the impedance of the high-speed and full-speed drivers. The drivers
are characterized to drive specific cable impedance. Refer to Section 7.1.1 for details.

e  The maximum allowable cable length is determined by signal pair attenuation and propagation delay.
Refer to Sections 7.1.14 and 7.1.17 for details.

e Differences in propagation delay between the two signal conductors must be minimized. Refer to
Section 7.1.3 for details.

e The GND lead provides a common ground reference between the upstream and downstream ports.
The maximum cable length is limited by the voltage drop across the GND lead. Refer to Section 7.2.2
for details. The minimum acceptable wire gauge is calculated assuming the attached device is high
power.

e The VBUS lead provides power to the connected device. For standard detachable cables, the VBUS
requirement is the same as the GND lead.

6.4.2 High-/full-speed Captive Cable Assemblies

88

Assemblies are considered captive if they are provided with a vendor-specific connect means (hardwired or
custom detachable) to the peripheral. High-/full-speed hardwired cable assemblies may be used with either
high-speed, full-speed, or low-speed devices. When using a high-/full-speed hardwired cable on a low-
speed device, the cable must meet all low-speed requirements.

Figure 6-3 illustrates a high-/full-speed hardwired cable assembly.
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Figure 6-3. USB High-/full-speed Hardwired Cable Assembly
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High-/full-speed captive cable assemblies must meet the following electrical requirements:

The cable must be terminated on one end with an overmolded Series “A” plug and the opposite end is
vendor specific. If the vendor specific interconnect is to be hot plugged, it must meet the same
performance requirements as the USB “B” connector.

The cable must be rated for high-speed and full-speed.

The cable impedance must match the impedance of the high-speed and full-speed drivers. The drivers
are characterized to drive specific cable impedance. Refer to Section 7.1.1 for details.

The maximum allowable cable length is determined by signal pair attenuation and propagation delay.
Refer to Sections 7.1.14 and 7.1.17 for details.

Differences in propagation delay between the two signal conductors must be minimized. Refer to
Section 7.1.3 for details.

The GND lead provides a common reference between the upstream and downstream ports. The
maximum cable length is determined by the voltage drop across the GND lead. Refer to Section 7.2.2
for details. The minimum wire gauge is calculated using the worst case current consumption.

The VBUS lead provides power to the connected device. The minimum wire gauge is vendor specific.

6.4.3 Low-speed Captive Cable Assemblies

Assemblies are considered captive if they are provided with a vendor-specific connect means (hardwired or
custom detachable) to the peripheral. Low-speed cables may only be used on low-speed devices.
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Figure 6-4 illustrates a low-speed hardwired cable assembly.
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Low-speed captive cable assemblies must meet the following electrical requirements:

The cable must be terminated on one end with an overmolded Series “A” plug and the opposite end is
vendor specific. If the vendor specific interconnect is to be hot plugged, it must meet the same
performance requirements as the USB “B” connector.

Low-speed drivers are characterized for operation over a range of capacitive loads. This value
includes all sources of capacitance on the D+ and D-lines, not just the cable. Cable selection must
insure that total load capacitance falls between specified minimum and maximum values. If the
desired implementation does not meet the minimum requirement, additional capacitance needs to be
added to the device. Refer to Section 7.1.1.2 for details.

The maximum low-speed cable length is determined by the rise and fall times of low-speed signaling.
This forces low-speed cable to be significantly shorter than high-/full-speed. Refer to Section 7.1.1.2
for details.

Differences in propagation delay between the two signal conductors must be minimized. Refer to
Section 7.1.3 for details.

The GND lead provides a common reference between the upstream and downstream ports. The
maximum cable length is determined by the voltage drop across the GND lead. Refer to Section 7.2.2
for details. The minimum wire gauge is calculated using the worst case current consumption.

The VBUS lead provides power to the connected device. The minimum wire gauge is vendor specific.

Prohibited Cable Assemblies

USB is optimized for ease of use. The expectation is that if the device can be plugged in, it will work.
By specification, the only conditions that prevent a USB device from being successfully utilized are
lack of power, lack of bandwidth, and excessive topology depth. These conditions are well understood
by the system software.

Prohibited cable assemblies may work in some situations, but they cannot be guaranteed to work in all
instances.

e Extension cable assembly
A cable assembly that provides a Series “A” plug with a series “A” receptacle or a Series “B” plug
with a Series “B” receptacle. This allows multiple cable segments to be connected together,
possibly exceeding the maximum permissible cable length.

e Cable assembly that violates USB topology rules
A cable assembly with both ends terminated in either Series “A” plugs or Series “B” receptacles.
This allows two downstream ports to be directly connected.

Note: This prohibition does not prevent using a USB device to provide a bridge between two USB
buses.

e Standard detachable cables for low-speed devices
Low-speed devices are prohibited from using standard detachable cables. A standard detachable
cable assembly must be high-/full-speed. Since a standard detachable cable assembly is high-/full-
speed rated, using a long high-/full-speed cable exceeds the capacitive load of low-speed.
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6.5 Connector Mechanical Configuration and Material Requirements
The USB Icon is used to identify USB plugs and the receptacles. Figure 6-5 illustrates the USB Icon.
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Figure 6-5. USB Icon

6.5.1 USB Icon Location

The USB Icon is embossed, in a recessed area, on the topside of the USB plug. This provides easy user
recognition and facilitates alignment during the mating process. The USB Icon and Manufacturer’s logo
should not project beyond the overmold surface. The USB Icon is required, while the Manufacturer’s logo
is recommended, for both Series “A” and “B” plug assemblies. The USB Icon is also located adjacent to
each receptacle. Receptacles should be oriented to allow the Icon on the plug to be visible during the
mating process. Figure 6-6 illustrates the typical plug orientation.

Top View
-
Optional Top A |
"Locator Detail" -
I
(o] | -,
°
)
Locator

Height F
Approximately

X

Manufacturer’s
Engraved Logo

Engraved USB
Icon \

LT —IOF—TJ T 1

Locator Width

5 Approximately
. 0.5mm
Overmolding — —_| L (0.020")

0.6mm (0.024") \—J 0.6mm (0.024") Max
Max Manufacturer’s
USB Icon 4’{ ‘¢ *‘ Logo Optional Top
Engraving Recess Engraving Recess "Locator Detail"

Section A-A

(Plug Cross-Section)

Figure 6-6. Typical USB Plug Orientation
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6.5.2 USB Connector Termination Data

Table 6-1 provides the standardized contact terminating assignments by number and electrical value for
Series “A” and Series “B” connectors.

Table 6-1. USB Connector Termination Assignment

Gt sgnaname  Tyne WS
1 VBUS Red
2 D- White
3 D+ Green
4 GND Black
Shell Shield Drain Wire

6.5.3 Series “A” and Series “B” Receptacles

Electrical and mechanical interface configuration data for Series "A" and Series "B" receptacles are shown
in Figure 6-7 and Figure 6-8. Also, refer to Figure 6-12, Figure 6-13, and Figure 6-14 at the end of this
chapter for typical PCB receptacle layouts.
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Figure 6-7. USB Series "A" Receptacle Interface and Mating Drawing
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6.5.3.1 Receptacle Injection Molded Thermoplastic Insulator Material

Minimum UL 94-V0 rated, thirty percent (30%) glass-filled polybutylene terephthalate (PBT) or
polyethylene terephthalate (PET) or better.

Typical Colors: Black, gray, and natural.
Flammability Characteristics: UL 94-VO rated.
Flame Retardant Package must meet or exceed the requirements for UL, CSA, VDE, etc.

Oxygen Index (LOI): Greater than 21%. ASTM D 2863.

6.5.3.2 Receptacle Shell Materials

Substrate Material: 0.30 + 0.05 mm phosphor bronze, nickel silver, or other copper based high strength
materials.

Plating:

1. Underplate: Optional. Minimum 1.00 micrometers (40 microinches) nickel. In addition,
manufacturer may use a copper underplate beneath the nickel.

2. Outside: Minimum 2.5 micrometers (100 microinches) bright tin or bright tin-lead.

6.5.3.3 Receptacle Contact Materials

Substrate Material: 0.30 + 0.05 mm minimum half-hard phosphor bronze or other high strength copper
based material.

Plating: Contacts are to be selectively plated.
A. Optionl

1. Underplate: Minimum 1.25 micrometers (50 microinches) nickel. Copper over base material
is optional.

2. Mating Area: Minimum 0.05 micrometers (2 microinches) gold over a minimum of
0.70 micrometers (28 microinches) palladium.

3. Solder Tails: Minimum 3.8 micrometers (150 microinches) bright tin-lead over the
underplate.

B. Option II

1. Underplate: Minimum 1.25 micrometers (50 microinches) nickel. Copper over base material
is optional.

2. Mating Area: Minimum 0.05 micrometers (2 microinches) gold over a minimum of
0.75 micrometers (30 microinches) palladium-nickel.

3. Solder Tails: Minimum 3.8 micrometers (150 microinches) bright tin-lead over the
underplate.

C. Option III

1. Underplate: Minimum 1.25 micrometers (50 microinches) nickel. Copper over base material
is optional.

2. Mating Area: Minimum 0.75 micrometers (30 microinches) gold.

3. Solder Tails: Minimum 3.8 micrometers (150 microinches) bright tin-lead over the
underplate.
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6.5.4 Series “A” and Series “B” Plugs

Electrical and mechanical interface configuration data for Series "A" and Series "B" plugs are shown in
Figure 6-9 and Figure 6-10.
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Figure 6-10. USB Series “B” Plug Interface Drawing
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6.5.4.1 Plug Injection Molded Thermoplastic Insulator Material

Minimum UL 94-V0 rated, thirty percent (30%) glass-filled polybutylene terephthalate (PBT) or
polyethylene terephthalate (PET) or better.

Typical Colors: Black, gray, and natural.

Flammability Characteristics: UL 94-VO rated.

Flame Retardant Package must meet or exceed the requirements for UL, CSA, and VDE.

Oxygen Index (LOI): 21%. ASTM D 2863.

6.5.4.2 Plug Shell Materials

Substrate Material: 0.30 + 0.05 mm phosphor bronze, nickel silver, or other suitable material.

Plating:

A. Underplate: Optional. Minimum 1.00 micrometers (40 microinches) nickel. In addition,
manufacturer may use a copper underplate beneath the nickel.

B. Outside: Minimum 2.5 micrometers (100 microinches) bright tin or bright tin-lead.

6.5.4.3 Plug (Male) Contact Materials
Substrate Material: 0.30 + 0.05 mm half-hard phosphor bronze.

Plating: Contacts are to be selectively plated.

A. Optionl

1.

Underplate: Minimum 1.25 micrometers (50 microinches) nickel. Copper over base material
is optional.

2. Mating Area: Minimum 0.05 micrometers (2 microinches) gold over a minimum of
0.70 micrometers (28 microinches) palladium.

3. Solder Tails: Minimum 3.8 micrometers (150 microinches) bright tin-lead over the
underplate.

B. OptionII

1. Underplate: Minimum 1.25 micrometers (50 microinches) nickel. Copper over base material
is optional.

2. Mating Area: Minimum 0.05 micrometers (2 microinches) gold over a minimum of
0.75 micrometers (30 microinches) palladium-nickel.

3. Wire Crimp/Solder Tails: Minimum 3.8 micrometers (150 microinches) bright tin-lead over

the underplate.

C. Option III

1.

Underplate: Minimum 1.25 micrometers (50 microinches) nickel. Copper over base material
is optional.

Mating Area: Minimum 0.75 micrometers (30 microinches) gold.

Solder Tails: Minimum 3.8 micrometers (150 microinches) bright tin-lead over the
underplate.
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6.6 Cable Mechanical Configuration and Material Requirements

High-/full-speed and low-speed cables differ in data conductor arrangement and shielding. Low-speed
recommends, but does not require, use of a cable with twisted data conductors. Low speed recommends,
but does not require, use of a cable with a braided outer shield. Figure 6-11 shows the typical high-/full-
speed cable construction.

on-Twisted Power Pair:
Red: Vsus
Black: Power Ground

Polyvinyl Chloride (PVC) Jacket

Outer Shield > 65% Interwoven
Tinned Copper Braid

Inner Shield Aluminum
Metallized Polyester

Twisted Signaling Pair:
White: D-
Green: D+

28 AWG Tinned
Copper Drain Wire

Figure 6-11. Typical High-/full-speed Cable Construction

6.6.1 Description

High-/full-speed cable consists of one 28 to 20 AWG non-twisted power pair and one 28 AWG twisted data
pair with an aluminum metallized polyester inner shield, 28 AWG stranded tinned copper drain wire,
> 65% tinned copper wire interwoven (braided) outer shield, and PVC outer jacket.

Low-speed cable consists of one 28 to 20 AWG non-twisted power pair and one 28 AWG data pair (a twist
is recommended) with an aluminum metallized polyester inner shield, 28 AWG stranded tinned copper
drain wire and PVC outer jacket. A > 65% tinned copper wire interwoven (braided) outer shield is
recommended.
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6.6.2 Construction

Raw materials used in the fabrication of this cable must be of such quality that the fabricated cable is
capable of meeting or exceeding the mechanical and electrical performance criteria of the most current
USB Specification revision and all applicable domestic and international safety/testing agency
requirements; e.g., UL, CSA, BSA, NEC, etc., for electronic signaling and power distribution cables in its
category.

Table 6-2. Power Pair

American Wire Nominal Conductor Stranded Tinned
Gauge (AWG) Outer Diameter Conductors
0.381 mm (0.015”) 7 x 36
28
0.406 mm (0.016”) 19 x 40
0.483 mm (0.019”) 7 x 34
26
0.508 mm (0.020”) 19 x 38
0.610 mm (0.024”) 7 x32
24
0.610 mm (0.024") 19 x 36
0.762 mm (0.030%) 7 x 30
22
0.787 mm (0.031”) 19 x 34
0.890 mm (0.035”) 7 x 28
20
0.931 mm (0.037”) 19 x 32

Note: Minimum conductor construction must be stranded tinned copper.

Non-Twisted Power Pair:

A. Wire Gauge: Minimum 28 AWG or as specified by the user contingent upon the specified cable
length. Refer to Table 6-2.

B. Wire Insulation: Semirigid polyvinyl chloride (PVC).
1. Nominal Insulation Wall Thickness: 0.25 mm (0.010)
2. Typical Power (Vgys) Conductor: Red Insulation

3. Typical Ground Conductor: Black Insulation

Signal Pair:
A. Wire Gauge: 28 AWG minimum. Refer to Table 6-3.
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Table 6-3. Signal Pair

American Wire Nominal Conductor Stranded Tinned
Gauge (AWG) Outer Diameter Conductors
0.381 mm (0.015”) 7 x 36
28
0.406 mm (0.016”) 19 x 40

Note: Minimum conductor construction must be stranded tinned copper.

B. Wire Insulation: High-density polyethylene (HDPE), alternately foamed polyethylene or foamed
polypropylene

1. Nominal Insulation Wall Thickness: 0.31 mm (0.012”)
2. Typical Data Plus (+) Conductor: Green Insulation
3. Typical Data Minus (-) Conductor: White Insulation

C. Nominal Twist Ratio (not required for low-speed): One full twist every 60 mm (2.36”) to 80 mm
(3.157)

Aluminum Metallized Polyester Inner Shield (required for low-speed):
A. Substrate Material: Polyethylene terephthalate (PET) or equivalent material
B. Metallizing: Vacuum deposited aluminum
C. Assembly:

1. The aluminum metallized side of the inner shield must be positioned facing out to ensure
direct contact with the drain wire.

2. The aluminum metallized inner shield must overlap by approximately one-quarter turn.

Drain Wire (required for low-speed):

A. Wire Gauge: Minimum 28 AWG stranded tinned copper (STC) non-insulated. Refer to

Table 6-4.
Table 6-4. Drain Wire Signal Pair
American Wire Nominal Conductor Stranded Tinned
Gauge (AWG) Outer Diameter Conductors
0.381 mm (0.015") 7 x 36
28
0.406 mm (0.016") 19 x 40

Interwoven (Braided) Tinned Copper Wire (ITCW) Outer Shield (recommended but not required for low-

speed):

A. Coverage Area: Minimum 65%.

B. Assembly: The interwoven (braided) tinned copper wire outer shield must encase the aluminum
metallized PET shielded power and signal pairs and must be in direct contact with the drain wire.

Outer Polyvinyl Chloride (PVC) Jacket:

A. Assembly: The outer PVC jacket must encase the fully shielded power and signal pairs and must

be in direct contact with
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B. Nominal Wall Thickness: 0.64 mm (0.025”).
Marking: The cable must be legibly marked using contrasting color permanent ink.
A. Minimum marking information for high-/full-speed cable must include:
USB SHIELDED <Gauge/2C + Gauge/2C> UL CM 75 °C — UL Vendor ID.
B. Minimum marking information for low-speed cable shall include:

USB specific marking is not required for low-speed cable.

Nominal Fabricated Cable Outer Diameter:

This is a nominal value and may vary slightly from manufacturer to manufacturer as a function of the
conductor insulating materials and conductor specified. Refer to Table 6-5.

Table 6-5. Nominal Cable Diameter

Shielded USB Nominal Outer
Cable Configuration Cable Diameter
28/28 4.06 mm (0.160”)
28/26 4.32 mm (0.170”)
28/24 4.57 mm (0.180”)
28/22 4.83 mm (0.190”)
28/20 5.21 mm (0.205")

6.6.3 Electrical Characteristics
All electrical characteristics must be measured at or referenced to +20 °C (68 °F).

Voltage Rating: 30 V rms maximum.

Conductor Resistance: Conductor resistance must be measured in accordance with ASTM-D-4566
Section 13. Refer to Table 6-6.

Conductor Resistance Unbalance (Pairs): Conductor resistance unbalance between two (2) conductors of
any pair must not exceed five percent (5%) when measured in accordance with ASTM-D-4566 Section 15.

The DC resistance from plug shell to plug shell (or end of integrated cable) must be less than 0.6 ohms.

Table 6-6. Conductor Resistance

American Ohms (2) / 100 Meters
Wire Gauge (AWG) Maximum
28 23.20
26 14.60
24 9.09
22 5.74
20 3.58
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6.6.4 Cable Environmental Characteristics
Temperature Range:

A. Operating Temperature Range: 0 °C to +50 °C
B. Storage Temperature Range: -20 °C to +60 °C
C. Nominal Temperature Rating: +20 °C

Flammability: All plastic materials used in the fabrication of this product shall meet or exceed the
requirements of NEC Article 800 for communications cables Type CM (Commercial).

6.6.5 Listing

The product shall be UL listed per UL Subject 444, Class 2, Type CM for Communications Cable
Requirements.

6.7 Electrical, Mechanical, and Environmental Compliance Standards
Table 6-7 lists the minimum test criteria for all USB cable, cable assemblies, and connectors.

Table 6-7. USB Electrical, Mechanical, and Environmental Compliance Standards

Test Description Test Procedure Performance Requirement

EIA 364-18 Must meet or exceed the
requirements specified by the
Visual, dimensional, and functional = most current version of Chapter 6
inspection in accordance with the of the USB Specification.

USB quality inspection plans.

Visual and Dimensional
Inspection

EIA 364-21 1,000 MQ minimum.

The object of this test procedure is
to detail a standard method to
assess the insulation resistance of
USB connectors. This test

Insulation Resistance procedure is used to determine the
resistance offered by the insulation
materials and the various seals of a
connector to a DC potential tending
to produce a leakage of current
through or on the surface of these
members.

EIA 364-20 The dielectric must withstand
500 V AC for one minute at sea

The object of this test procedure is | level.
to detail a test method to prove that

Dielectric a USB connector can operate

Withstanding Voltage safely at its rated voltage and
withstand momentary
over-potentials due to switching,
surges, and/or other similar
phenomena.
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Table 6-7. USB Electrical, Mechanical, and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Low Level
Contact Resistance

EIA 364-23

The object of this test is to detail a
standard method to measure the
electrical resistance across a pair
of mated contacts such that the
insulating films, if present, will not
be broken or asperity melting will
not occur.

30 mQ maximum when measured
at 20 mV maximum open circuit at
100 mA. Mated test contacts
must be in a connector housing.

Contact Current
Rating

EIA 364-70 — Method B

The object of this test procedure is
to detail a standard method to
assess the current carrying
capacity of mated USB connector
contacts.

1.5 A at 250 V AC minimum when
measured at an ambient
temperature of 25 C. With power
applied to the contacts, the AT
must not exceed +30 C at any
point in the USB connector under
test.

Contact Capacitance

Insertion Force

EIA 364-30

The object of this test is to detail a
standard method to determine the
capacitance between conductive
elements of a USB connector.

EIA 364-13

The object of this test is to detail a
standard method for determining
the mechanical forces required for
inserting a USB connector.

2 pF maximum unmated per
contact.

35 Newtons maximum at a
maximum rate of 12.5 mm
(0.492”) per minute.

Extraction Force

EIA 364-13

The object of this test is to detail a
standard method for determining
the mechanical forces required for
extracting a USB connector.

10 Newtons minimum at a
maximum rate of 12.5 mm
(0.492”) per minute.
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Table 6-7. USB Electrical, Mechanical, and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Durability

Cable Pull-Out

EIA 364-09

The object of this test procedure is
to detail a uniform test method for
determining the effects caused by
subjecting a USB connector to the
conditioning action of insertion and
extraction, simulating the expected
life of the connectors. Durability
cycling with a gauge is intended
only to produce mechanical stress.
Durability performed with mating
components is intended to produce
both mechanical and wear stress.

EIA 364-38
Test Condition A

The object of this test procedure is
to detail a standard method for
determining the holding effect of a
USB plug cable clamp without
causing any detrimental effects
upon the cable or connector
components when the cable is
subjected to inadvertent axial
tensile loads.

1,500 insertion/extraction cycles
at a maximum rate of 200 cycles
per hour.

After the application of a steady
state axial load of 40 Newtons for
one minute.

Physical Shock

EIA 364-27
Test Condition H

The object of this test procedure is
to detail a standard method to
assess the ability of a USB
connector to withstand specified
severity of mechanical shock.

No discontinuities of 1 us or
longer duration when mated USB
connectors are subjected to 11 ms
duration 30 Gs half-sine shock
pulses. Three shocks in each
direction applied along three
mutually perpendicular planes for
a total of 18 shocks.
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Table 6-7. USB Electrical, Mechanical, and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Random Vibration

EIA 364-28
Test Condition V Test Letter A

This test procedure is applicable to
USB connectors that may, in
service, be subjected to conditions
involving vibration. Whether a USB
connector has to function during
vibration or merely to survive
conditions of vibration should be
clearly stated by the detailed
product specification. In either
case, the relevant specification
should always prescribe the
acceptable performance

No discontinuities of 1 us or
longer duration when mated USB
connectors are subjected to

5.35 Gs RMS. 15 minutes in each
of three mutually perpendicular
planes.

Thermal Shock

tolerances.

EIA 364-32 10 cycles =55 °C and +85 "C. The
USB connectors under test must

Test Condition | be mated.

The object of this test is to
determine the resistance of a USB
connector to exposure at extremes
of high and low temperatures and
to the shock of alternate exposures
to these extremes, simulating the
worst case conditions for storage,
transportation, and application.

Humidity Life

EIA 364-31
Test Condition A Method Il

The object of this test procedure is
to detail a standard test method for
the evaluation of the properties of
materials used in USB connectors
as they are influenced by the
effects of high humidity and heat.

168 hours minimum (seven
complete cycles). The USB
connectors under test must be
tested in accordance with

EIA 364-31.

Solderability

EIA 364-52

The object of this test procedure is
to detail a uniform test method for
determining USB connector
solderability. The test procedure
contained herein utilizes the solder
dip technique. It is not intended to
test or evaluate solder cup, solder
eyelet, other hand-soldered type, or
SMT type terminations.

USB contact solder tails must
pass 95% coverage after one
hour steam aging as specified in
Category 2.

109

LGE-1010 / Page 137 of 650



Universal Serial Bus Specification Revision 2.0

Table 6-7. USB Electrical, Mechanical, and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

UL 94 V-0

This procedure is to ensure

The manufacturer will require its
thermoplastic resin vendor to
supply a detailed C of C with each

Flammability thermoplastic resin compliance to resin shipment. The C of C shall
UL flammability standards. clearly show the resin’s UL listing
number, lot number, date code,
etc.
UL 94 V-0 The manufacturer will require its
thermoplastic resin vendor to
This procedure is to ensure supply a detailed C of C with each
Flammability thermoplastic resin compliance to resin shipment. The C of C shall

UL flammability standards.

clearly show the resin’s UL listing
number, lot number, date code,
etc.

Cable Impedance
(Only required for high-/full-speed)

The object of this test is to insure
the signal conductors have the
proper impedance.

1. Connect the Time Domain
Reflectometer (TDR) outputs
to the impedance/delay/skew
test fixture (Note 1). Use
separate 50 Q cables for the
plus (or true) and minus (or
complement) outputs. Set the
TDR head to differential TDR
mode.

2. Connect the Series "A" plug of
the cable to be tested to the
text fixture, leaving the other
end open-circuited.

3. Define a waveform composed
of the difference between the
true and complement
waveforms, to allow
measurement of differential
impedance.

4. Measure the minimum and
maximum impedances found
between the connector and the
open circuited far end of the
cable.

Impedance must be in the range
specified in Table 7-9 (ZO).
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Table 6-7. USB Electrical, Mechanical, and Environmental Compliance Standards (Continued)

Test Description

Test Procedure

Performance Requirement

Signal Pair Attenuation
(Only required for high-/full-speed)

The object of this test is to insure
that adequate signal strength is
presented to the receiver to
maintain a low error rate.

1. Connect the Network Analyzer
output port (port 1) to the input
connector on the attenuation
test fixture (Note 2).

2. Connect the Series “A” plug of
the cable to be tested to the
test fixture, leaving the other
end open-circuited.

3. Calibrate the network analyzer
and fixture using the
appropriate calibration
standards over the desired
frequency range.

4. Follow the method listed in
Hewlett Packard Application
Note 380-2 to measure the
open-ended response of the
cable.

5. Short circuit the Series “B” end
(or bare leads end, if a captive
cable) and measure the short-
circuit response.

6. Using the software in H-P App.

Note 380-2 or equivalent,
calculate the cable attenuation
accounting for resonance
effects in the cable as needed.

Refer to Section 7.1.17 for
frequency range and allowable
attenuation.
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Table 6-7. USB Electrical, Mechanical, and Environmental Compliance Standards (Continued)

Test Description Test Procedure Performance Requirement

The purpose of the test is to verify High-/full-speed.
the end to end propagation of the

cable. See Section 7.1.1.1,
Section 7.1.4, Section 7.1.16, and
1. Connect one output of the Table 7-9 (TFSCBL).
TDR sampling head to the D+
and D- inputs of the Low-speed.

impedance/delay/skew test
fixture (Note 1). Use one 50 Q = gee Section 7.1.1.2,

cable for each signal and set | section 7.1.16, and Table 7-9
the TDR head to differential (TLSCBL).
TDR mode.

2. Connect the cable to be tested
to the test fixture. If
detachable, plug both
connectors in to the matching
fixture connectors. If captive,

Propagation Delay plug the series “A” plug into
the matching fixture connector
and solder the stripped leads
on the other end to the test
fixture.

3. Measure the propagation delay
of the test fixture by
connecting a short piece of
wire across the fixture from
input to output and recording
the delay.

4. Remove the short piece of wire
and remeasure the
propagation delay. Subtract
from it the delay of the test
fixture measured in the
previous step.
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Table 6-7. USB Electrical, Mechanical, and Environmental Compliance Standards (Continued)

Test Description Test Procedure Performance Requirement

Propagation Delay Skew 2. Measure the difference in

This test insures that the signal on Propagation skew must meet the
both the D+ and D- lines arrive at requirements as listed in
the receiver at the same time. Section 7.1.3.

1. Connect the TDR to the fixture
with test sample cable, as in
the previous section.

delay for the two conductors in
the test cable. Use the TDR
cursors to find the open-
circuited end of each
conductor (where the
impedance goes infinite) and
subtract the time difference
between the two values.

Capacitive Load

Only required for low-speed the D- pin.

The purpose of this test is to insure | See Section 7.1.1.2 and Table 7-7
the distributed inter-wire (CLINUA).

capacitance is less than the
lumped capacitance specified by
the low-speed transmit driver.

1. Connect the one lead of the
Impedance Analyzer to the D+
pin on the
impedance/delay/skew fixture
(Note 1) and the other lead to

2. Connect the series "A" plug to
the fixture, with the series “B”
end leads open-circuited.

3. Set the Impedance Analyzer to
a frequency of 100 kHz, to
measure the capacitance.

Note1:

Note 2:

Impedance, propagation delay, and skew test fixture

This fixture will be used with the TDR for measuring the time domain performance of the cable under test. The
fixture impedance should be matched to the equipment, typically 50 Q. Coaxial connectors should be provided
on the fixture for connection from the TDR.

Attenuation text fixture

This fixture provides a means of connection from the network analyzer to the Series "A" plug. Since USB
signals are differential in nature and operate over balanced cable, a transformer or balun (North Hills NH13734
or equivalent) is ideally used. The transformer converts the unbalanced (also known as single-ended) signal
from the signal generator which is typically a 50 Q output to the balanced (also known as differential) and likely
different impedance loaded presented by the cable. A second transformer or balun should be used on the other
end of the cable under test to convert the signal back to unbalanced form of the correct impedance to match the
network analyzer.
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6.7.1 Applicable Documents

American National Standard/Electronic Industries Association

ANSI/EIA-364-C (12/94)  Electrical Connector/Socket Test Procedures
Including Environmental Classifications

American Standard Test Materials

ASTM-D-4565 Physical and Environmental Performance Properties
of Insulation and Jacket for Telecommunication
Wire and Cable, Test Standard Method

ASTM-D-4566 Electrical Performance Properties of Insulation and
Jacket for Telecommunication Wire and Cable, Test
Standard Method

Underwriters’ Laboratory, Inc.

UL STD-%4 Test for Flammability of Plastic materials for Parts
in Devices and Appliances

UL Subject-444 Communication Cables

6.8 USB Grounding

The shield must be terminated to the connector plug for completed assemblies. The shield and chassis are
bonded together. The user selected grounding scheme for USB devices, and cables must be consistent with
accepted industry practices and regulatory agency standards for safety and EMI/ESD/RFI.

6.9 PCB Reference Drawings

The drawings in Figure 6-12, Figure 6-13, and Figure 6-14 describe typical receptacle PCB interfaces.
These drawings are included for informational purposes only.
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Chapter 7
Electrical

This chapter describes the electrical specification for the USB. It contains signaling, power distribution, and
physical layer specifications. This specification does not address regulatory compliance. It is the responsibility
of product designers to make sure that their designs comply with all applicable regulatory requirements.

The USB 2.0 specification requires hubs to support high-speed mode. USB 2.0 devices are not required to
support high-speed mode. A high-speed capable upstream facing transceiver must not support low-speed
signaling mode. A USB 2.0 downstream facing transceiver must support high-speed, full-speed, and low-speed
modes.

To assure reliable operation at high-speed data rates, this specification requires the use of cables that conform to
all current cable specifications.

In this chapter, there are numerous references to strings of J’s and K’s, or to strings of 1’s and 0’s. In each of
these instances, the leftmost symbol is transmitted/received first, and the rightmost is transmitted/received last.

7.1 Signaling

The signaling specification for the USB is described in the following subsections.
Overview of High-speed Signaling

A high-speed USB connection is made through a shielded, twisted pair cable that conforms to all current USB
cable specifications.
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Single Ended Receivers facing transceivers

Figure 7-1. Example High-speed Capable Transceiver Circuit

SE_Data-_Receiver_Output <

JANWAN

Figure 7-1 depicts an example implementation which largely utilizes USB 1.1 transceiver elements and adds the
new elements required for high-speed operation.

High-speed operation supports signaling at 480 Mb/s. To achieve reliable signaling at this rate, the cable is
terminated at each end with a resistance from each wire to ground. The value of this resistance (on each wire) is
nominally set to 1/2 the specified differential impedance of the cable, or 45 Q. This presents a differential
termination of 90 Q.

For a link operating in high-speed mode, the high-speed idle state occurs when the transceivers at both ends of
the cable present high-speed terminations to ground, and when neither transceiver drives signaling current into
the D+ or D- lines. This state is achieved by using the low-/full-speed driver to assert a single ended zero, and to
closely control the combined total of the intrinsic driver output impedance and the Rs resistance (to 45 €,
nominal). The recommended practice is to make the intrinsic driver impedance as low as possible, and to let Rs
contribute as much of the 45 Q as possible. This will generally lead to the best termination accuracy with the
least parasitic loading.

In order to transmit in high-speed mode, a transceiver activates an internal current source which is derived from
its positive supply voltage and directs this current into one of the two data lines via a high speed current steering
switch. In this way, the transceiver generates the high-speed J or K state on the cable.

The dynamic switching of this current into the D+ or D- line follows the same NRZI data encoding scheme used
in low-speed or full-speed operation and also in the bit stuffing behavior. To signal a J, the current is directed
into the D+ line, and to signal a K, the current is directed into the D- line. The SYNC field and the EOP
delimiters have been modified for high-speed mode.
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The magnitude of the current source and the value of the termination resistors are controlled to specified
tolerances, and together they determine the actual voltage drive levels. The DC resistance from D+ or D- to the
device ground is required to be 45 € £10% when measured without a load, and the differential output voltage
measured across the lines (in either the J or K state) must be 400 mV £10% when D+ and D- are terminated
with precision 45 € resistors to ground.

The differential voltage developed across the lines is used for three purposes:
e A differential receiver at the receiving end of the cable receives the differential data signal.

e A differential envelope detector at the receiving end of the cable determines when the link is in the Squelch
state. A receiver uses squelch detection as indication that the signal at its connector is not valid.

e In the case of a downstream facing hub transceiver, a differential envelope detector monitors whether the
signal at its connector is in the high-speed state. A downstream facing transceiver operating in high-speed
mode is required to test for this state at a particular point in time when it is transmitting a SOF packet, as
described in Section 7.1.7.3. This is used to detect device disconnection. In the absence of the far end
terminations, the differential voltage will nominally double (as compared to when a high-speed device is
present) when a high-speed J or K are continuously driven for a period exceeding the round-trip delay for
the cable and board-traces between the two transceivers.

USB 2.0 requires that a downstream facing transceiver must be able to operate in low-speed, full-speed, and
high-speed signaling modes. An upstream facing high-speed capable transceiver must not operate in low-speed
signaling mode, but must be able to operate in full-speed signaling mode. Therefore, a 1.5 kQ pull-up on the D-
line is not allowed for a high-speed capable device, since a high-speed capable transceiver must never signal
low-speed operation to the hub port to which it is attached.

Table 7-1 describes the required functional elements of a high-speed capable transceiver, using the diagram
shown in Figure 7-1 as an example.
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Table 7-1. Description of Functional Elements in the Example Shown in Figure 7-1

Element

Description

Low-/full-speed Driver

The low-/full-speed driver is used for low-speed and full-speed transmission. It
is required to meet all specifications called out in USB 1.1 for low-speed and full-
speed operation, with one exception. The exception is that in high-speed
capable transceivers, the impedance of each output, including the contribution of
Rs, must be 45 Q £10%.

The line terminations for high-speed operation are created by having this driver
drive D+ and D- to ground. (This is equivalent to driving SEO in the full-speed or
low-speed mode.) Because of the output impedance requirement described
above, this provides a well-controlled high-speed termination on each data line
to ground. This is equivalent to a 90 Q differential termination.

Receiver

Low-/full-speed Differential

The low-/full-speed differential receiver is used for receiving low-speed and full-
speed data.

Single Ended Receivers

The single ended receivers are used for low-speed and full-speed signaling.

High-speed Current Driver

The high-speed current driver is used for high-speed data transmission. A
current source derived from a positive supply is switched into either the D+ or D-
lines to signal a J or a K, respectively. The nominal value of the current source
is 17.78 mA. When this current is applied to a data line with a 45 Q termination
to ground at each end, the nominal high level voltage (VHsSOH) is +400 mV. The
nominal differential high-speed voltage (D+ - D-) is thus 400 mV for a J and
-400 mV for a K.

The current source must comply with the Transmit Eye Pattern Templates
specified in Section 7.1.2.2, starting with the first symbol of a packet. One
means of achieving this is to leave the current source on continuously when a
transceiver is operating in high-speed mode. If this approach is used, the
current can be directed to the port ground when the transceiver is not
transmitting (the example design in Figure 7-1 shows a control line called
HS_Current_Source_Enable to turn the current on, and another called
HS_Drive_Enable to direct the current into the data lines.) The penalty of this
approach is the 17.78 mA of standing current for every such enabled transceiver
in the system.

The preferred design is to fully turn the current source off when the transceiver
is not transmitting.

Receiver

High-speed Differential Data

The high-speed differential data receiver is used to receive high-speed data. It
is left to transceiver designers to choose between incorporating separate high-
speed and low-/full-speed receivers, as shown in Figure 7-1, or combining both
functions into a single receiver.
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Table 7-1. Description of Functional Elements in the Example Shown in Figure 7-1 (Continued)

Transmission Envelope This envelope detector is used to indicate that data is invalid when the
Detector amplitude of the differential signal at a receiver’s inputs falls below the squelch
threshold (VHssQ). It must indicate Squelch when the signal drops below

100 mV differential amplitude, and it must indicate that the line is not in the
Squelch state when the signal exceeds 150 mV differential amplitude. The
response time of the detector must be fast enough to allow a receiver to detect
data transmission, to achieve DLL lock, and to detect the end of the SYNC field
within 12 bit times, the minimum number of SYNC bits that a receiver is
guaranteed to see. This envelope detector must incorporate a filtering
mechanism that prevents indication of squelch during the longest differential
data transitions allowed by the receiver eye pattern specifications.

Disconnection Envelope This envelope detector is required in downstream facing ports to detect the high-
Detector speed Disconnect state on the line (VHsDsC). Disconnection must be indicated
when the amplitude of the differential signal at the downstream facing driver’s
connector 2625 mV, and it must not be indicated when the signal amplitude is
<525 mV. The output of this detector is sampled at a specific time during the
transmission of the high-speed SOF EOP, as described in Section 7.1.7.3.

Pull-up Resistor (Rpu) This resistor is required only in upstream facing transceivers and is used to
indicate signaling speed capability. A high-speed capable device is required to
initially attach as a full-speed device and must transition to high-speed as
described in this specification. Once operating in high-speed, the 1.5 kQ
resistor must be electrically removed from the circuit. In Figure 7-1, a control
line called Rpu_Enable is indicated for this purpose. The preferred embodiment
is to attach matched switching devices to both the D+ and D- lines so as to keep
the lines' parasitic loading balanced, even though a pull-up resistor must never
be used on the D- line of an upstream facing high-speed capable transceiver.
When connected, this pull-up must meet all the specifications called out for full-
speed operation.

Pull-down Resistors (RPD) These resistors are required only in downstream facing transceivers and must
conform to the same specifications called out for low-speed and full-speed
operation.

7.1.1 USB Driver Characteristics
The USB uses a differential output driver to drive the USB data signal onto the USB cable.

For low-speed and full-speed operation, the static output swing of the driver in its low state must be below VoL
(max) of 0.3 V with a 1.5 kQ load to 3.6 V, and in its high state must be above the Von (min) of 2.8 V with a
15 kQ load to ground as listed in Table 7-7. Full-speed drivers have more stringent requirements, as described
in Section 7.1.1.1. The output swings between the differential high and low state must be well-balanced to
minimize signal skew. Slew rate control on the driver is required to minimize the radiated noise and cross talk.
The driver’s outputs must support three-state operation to achieve bi-directional half-duplex operation.

Low-speed and full-speed USB drivers must never “intentionally” generate an SE1 on the bus. SEI is a state in
which both the D+ and D- lines are at a voltage above VosEtl (min), which is 0.8 V.

High-speed drivers use substantially different signaling levels, as described in Section 7.1.1.3.

USB ports must be capable of withstanding continuous exposure to the waveforms shown in Figure 7-2 while in
any drive state. These waveforms are applied directly into each USB data pin from a voltage source with an
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output impedance of 39 Q. The open-circuit voltage of the source shown in Figure 7-2 is based on the expected
worst-case overshoot and undershoot.

AC Stress Evaluation Setup

D+ or D- pin 60nS
on USB connector <« (min) p

nearest device 4.6V

R 4-20ns

usB = RE
Device _
w -1.0V
<> <>
166.7ns
Rsrc = 39Q 2% < (6MHz) —>

The signal produced by the voltage generator may be

distorted when observed at the data pin due to input

protection devices possibly incorporated in the USB
device.

Figure 7-2. Maximum Input Waveforms for USB Signaling

Short Circuit Withstand

A USB transceiver is required to withstand a continuous short circuit of D+ and/or D- to VBUS, GND, other data
line, or the cable shield at the connector, for a minimum of 24 hours without degradation. It is recommended
that transceivers be designed so as to withstand such short circuits indefinitely. The device must not be damaged
under this short circuit condition when transmitting 50% of the time and receiving 50% of the time (in all
supported speeds). The transmit phase consists of a symmetrical signal that toggles between drive high and
drive low. This requirement must be met for max value of VBUS (5.25 V).

It is recommended that these AC and short circuit stresses be used as qualification criteria against which the
long-term reliability of each device is evaluated.

7.1.1.1 Full-speed (12 Mb/s) Driver Characteristics

A full-speed USB connection is made through a shielded, twisted pair cable with a differential characteristic
impedance (Zo) of 90 Q +15%, a common mode impedance (Zcm) of 30 Q £30%, and a maximum one-way
delay (TrscBL) of 26 ns. When the full-speed driver is not part of a high-speed capable transceiver, the
impedance of each of the drivers (Zprv) must be between 28 Q and 44 Q, i.e., within the gray area in Figure 7-4.
When the full-speed driver is part of a high-speed capable transceiver, the impedance of each of the drivers
(Zusprv) must be between 40.5 Q and 49.5 Q, i.e., within the gray area in Figure 7-5.

For a CMOS implementation, the driver impedance will typically be realized by a CMOS driver with an
impedance significantly less than this resistance with a discrete series resistor making up the balance as shown in
Figure 7-3. The series resistor RS is included in the buffer impedance requirement shown in Figure 7-4 and
Figure 7-5. In the rest of the chapter, references to the buffer assume a buffer with the series impedance unless
stated otherwise.

124

LGE-1010 / Page 152 of 650



Universal Serial Bus Specification Revision 2.0

Buffer Output Imped. (ZBuF)

D+ (28Q to 44Q Equiv. Imped.)

D- (28Q to 44Q Equiv. Imped.)

Figure 7-3. Example Full-speed CMOS Driver Circuit (non High-speed capable)

Full-speed Buffers in Transceivers Which are Not High-speed Capable

The buffer impedance must be measured for driving high as well as driving low. Figure 7-4 shows the
composite V/I characteristics for the full-speed drivers with included series damping resistor (RS). The
characteristics are normalized to the steady-state, unloaded output swing of the driver. The normalized driver
characteristics are found by dividing the measured voltages and currents by the actual swing of the driver under
test. The normalized V/I curve for the driver must fall entirely inside the shaded region. The V/I region is
bounded by the minimum driver impedance above and the maximum driver impedance below. The minimum
drive region is intersected by a constant current region of |6.1VOH| mA when driving low and -|6.1VOH| mA
when driving high. In the special case of a full-speed driver which is driving low, and which is part of a high-
speed capable transceiver, the low drive region is intersected by a constant current region of 22.0 mA. This is
the minimum current drive level necessary to ensure that the waveform at the receiver crosses the opposite
single-ended switching level on the first reflection.

When testing, the current into or out of the device need not exceed £10.71*VOH mA and the voltage applied to
D+/D- need not exceed 0.3*VOH for the drive low case and need not drop below 0.7*VOH for the drive high
case.

Full-speed Buffers in High-speed Capable Transceivers

Figure 7-5 shows the V/I characteristics for a Full-speed buffer which is part of a high-speed capable
transceiver. The output impedance, Zusprv (including the contribution of RS), is required to be between 40.5 Q
and 49.5 Q. Additionally, the output voltage must be within 10mV of ground when no current is flowing in or
out of the pin (VHSTERM).

125

LGE-1010 / Page 153 of 650



Universal Serial Bus Specification Revision 2.0

drive low
lout
(mA) Slope = 1/28Q
- - \
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drive high S| 11440
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Figure 7-4. Full-speed Buffer V/I Characteristics
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drive low
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Figure 7-5. Full-speed Buffer V/I Characteristics for High-speed Capable Transceiver
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Figure 7-6 shows the full-speed driver signal waveforms.

Driver
Signal Pins

Vss

One Bit
— Time —P
(12Mb/s)

w

One-Way
Trip Cable
Delay

VIH (min) /‘

AN

\

Receiver /
Signal Pins

Signal pins pass
input spec levels
after one cable
delay

ViL (max) \

)\

L

\

Vss

Figure 7-6. Full-speed Signal Waveforms

7.1.1.2 Low-speed (1.5 Mb/s) Driver Characteristics

A low-speed device must have a captive cable with the Series A connector on the plug end. The combination of
the cable and the device must have a single-ended capacitance of no less than 200 pF and no more than 450 pF

on the D+ or D- lines.

The propagation delay (TLSCBL) of a low-speed cable must be less than 18 ns. This is to ensure that the
reflection occurs during the first half of the signal rise/fall, which allows the cable to be approximated by a

lumped capacitance.

Figure 7-7 shows the low-speed driver signal waveforms.

One Bit

l— Time
(1.5Mb/s)

AVAS

Signal pins

Driver
Signal Pins

N

AVER

pass output
spec levels
with minimal
reflections and
ringing

Vss

AN/ N /S V4

J N\
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Figure 7-7. Low-speed Driver Signal Waveforms
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7.1.1.3 High-speed (480 Mb/s) Driver Characteristics

A high-speed USB connection is made through a shielded, twisted pair cable with a differential characteristic
impedance (Zo) of 90 Q +15%, a common mode impedance (Zcm) of 30 Q £30%, and a maximum one-way
delay of 26 ns (TrscBL). The D+ and D- circuit board traces which run between a transceiver and its associated
connector should also have a nominal differential impedance of 90 €2, and together they may add an additional

4 ns of delay between the transceivers. (See Section 7.1.6 for details on impedance specifications of boards and
transceivers.) The differential output impedance of a high-speed capable driver is required to be 90 Q +10%.
When either the D+ or D- lines are driven high, VusoH (the high-speed mode high-level output voltage driven on
a data line with a precision 45 Q load to GND) must be 400 mV £10%. On a line which is not driven, either
because the transceiver is not transmitting or because the opposite line is being driven high, VusoL (the high-
speed mode low-level output voltage driven on a data line with a 45 Q load to GND) must be 0 V £ 10 mV.

Note: Unless indicated otherwise, all voltage measurements are to be made with respect to the local circuit
ground.

Note: This specification requires that a high-speed capable transceiver operating in full-speed or low-speed
mode must have a driver impedance (ZHsDRV) of 45 Q £10%. It is recommended that the driver impedances be
matched to within 5 Q within a transceiver. For upstream facing transceivers which do not support high-speed
mode, the driver output impedance (Zprv) must fall within the range of 28 Q to 44 Q.

On downstream facing ports, Rpp resistors (15 kQ +5%) must be connected from D+ and D- to ground.

When a high-speed capable transceiver transitions to high-speed mode, the high-speed idle state is achieved by
driving SEO with the low-/full-speed drivers at each end of the link (so as to provide the required terminations),
and by disconnecting the D+ pull-up resistor in the upstream facing transceiver.

In the preferred embodiment, a transceiver activates its high-speed current driver only when transmitting high-
speed signals. This is a potential design challenge, however, since the signal amplitude and timing specifications
must be met even on the first symbol within a packet. As a less efficient alternative, a transceiver may cause its
high-speed current source to be continually active while in high-speed mode. When the transceiver is not
transmitting, the current may be directed into the device ground rather than through the current steering switch
which is used for data signaling. In the example circuit, steering the current to ground is accomplished by
setting HS Drive Enable low.

In CMOS implementations, the driver impedance will typically be realized by the combination of the driver’s
intrinsic output impedance and Rs. To optimally control ZHsprv and to minimize parasitics, it is preferred the
driver impedance be minimized (under 5 Q) and the balance of the 45 € should be contributed by the Rs
component.

When a transceiver operating in high-speed mode transmits, the transmit current is directed into either the D+ or
D- data line. A J is asserted by directing the current to the D+ line, a K by directing it to the D- line.

When each of the data lines is terminated with a 45 Q resistor to the device ground, the effective load resistance
on each side is 22.5 Q. Therefore, the line into which the drive current is being directed rises to 17.78 ma *
22.5 Q or 400 mV (nominal). The other line remains at the device ground voltage. When the current is directed
to the opposite line, these voltages are reversed.

7.1.2 Data Signal Rise and Fall, Eye Patterns

The following sections specify the data signal rise and fall times for full-speed and low-speed signaling, and the
rise time and eye patterns for high-speed signaling.
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7.1.2.1 Low-speed and Full-speed Data Signal Rise and Fall

130

For low-speed and full-speed, the output rise time and fall times are measured between 10% and 90% of the
signal (Figure 7-8). Rise and fall time requirements apply to differential transitions as well as to transitions
between differential and single-ended signaling.

The rise and fall times for full-speed buffers are measured with the load shown in Figure 7-9. The rise and fall
times must be between 4 ns and 20 ns and matched to within +10% to minimize RFI emissions and signal skew.
The transitions must be monotonic.

The rise and fall times for low-speed buffers are measured with the load shown in Figure 7-10. The capacitive
load shown in Figure 7-10 is representative of the worst-case load allowed by the specification. A downstream
facing transceiver is allowed 150 pF of input/output capacitance (CIND). A low-speed device (including cable)
may have a capacitance of as little as 200 pF and as much as 450 pF. This gives a range of 200 pF to 600 pF as
the capacitive load that a downstream facing low-speed buffer might encounter. Upstream facing buffers on
low-speed devices must be designed to drive the capacitance of the attached cable plus an additional 150 pF. If
a low-speed buffer is designed for an application where the load capacitance is known to fall in a different range,
the test load can be adjusted to match the actual application. Low-speed buffers on hosts and hubs that are
attached to USB receptacles must be designed for the 200 pF to 600 pF range. The rise and fall time must be
between 75 ns and 300 ns for any balanced, capacitive test load. In all cases, the edges must be matched to
within £20% to minimize RFI emissions and signal skew. The transitions must be monotonic.

For both full-speed and low-speed signaling, the crossover voltage (VCRS) must be between 1.3 V and 2.0 V.

For low-speed and full-speed, this specification does not require matching signal swing matching to any greater
degree than described above. However, when signaling, it is preferred that the average voltage on the D+ and
D- lines should be constant. This means that the amplitude of the signal swing on both D+ and D- should be the
same; the low and high going transition should begin at the same time and change at the same rate; and the
crossover voltage should be the same when switching to a J or K. Deviations from signal matching will result in
common-mode noise that will radiate and affect the ability of devices and systems to pass tests that are
mandated by government agencies.

Fall Time

VCRS

Differential
Data Lines

Figure 7-8. Data Signal Rise and Fall Time

Full-speed
I Buffer__
| Rs 1
TxD+ | > AN L
1 1
1 1
1 N CL
i Rs ! 1
TxD- | LT
1 1
:’J; c.
C.= 50pF

Figure 7-9. Full-speed Load
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Low-speed Low-speed
Buffer Buffer

C_=200pF to 600pF C_= 50pF to 150pF
Low-speed downstream port load Low-speed upstream port load

Figure 7-10. Low-speed Port Loads

Note: The CL for low-speed port load only represents the range of loading that might be added when the low-
speed device is attached to a hub. The low-speed buffer must be designed to drive the load of its attached cable
plus CL. A low-speed buffer design that can drive the downstream test load would be capable of driving any
legitimate upstream load.

7.1.2.2 High-speed Signaling Eye Patterns and Rise and Fall Time

The following specifications apply to high-speed mode signaling. All bits, including the first and last bit of a
packet, must meet the following eye pattern requirements for timing and amplitude.

TP1 TP2 TP3 TP4
Traces USB Cable Traces
Transceiver A B Transceiver
Connector Connector
Hub Circuit Board Device Circuit Board

Figure 7-11. Measurement Planes

Figure 7-11 defines four test planes which will be referenced in this section. TP1 and TP4 are the points where
the transceiver IC pins are soldered to the hub and device circuit boards, respectively. TP2 is at the mated pins
of the A connector, and TP3 is at the mated pins of the B connector (or, in the case of a captive cable, where the
cable is attached to the circuit board). The following differential eye pattern templates specify transmit
waveform and receive sensitivity requirements at various points and under various conditions.

When testing high-speed transmitters and receivers, measurements are made with the Transmitter/Receiver Test
Fixture shown in Figure 7-12. In either case, the fixture is attached to the USB connector closest to the
transceiver being tested.
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Transmitter Test Attenuation: Voltage at Scope Inputs = 0.760 * Voltage at Transmitter Outputs
Receiver Test Attenuation: Voltage at Receiver Inputs = 0.684 * Voltage at Data Generator Outputs

Test Supply Voltage
+
UsE ] 15.8 Ohms 50 Ohm To 50 Ohm Inputs of a
Vbus I—< Coax High Speed Differential
C’iljnnect?r D+ I Oscilloscope, or 50 Ohm
eares i
[ D- | 15.8 Ohms Outputs of a High Speed
Device Gnd W\/ 50 Ohm Differential Data
Under Test Coax Generator

Figure 7-12. Transmitter/Receiver Test Fixture

Note: When testing the upstream facing port of a device, VBUS must be provided from the time the device is
placed in the appropriate test mode until the test is completed. This requirement will likely necessitate
additional switching functionality in the test fixture (for example, to switch the D+ and D- lines between the host

controller and the test instrument). Such additions must have minimal impact on the high frequency
measurement results.

Transmit eye patterns specify the minimum and maximum limits, as well as limits on timing jitter, within which
a driver must drive signals at each of the specified test planes. Receive eye patterns specify the minimum and
maximum limits, as well as limits on timing jitter, within which a receiver must recover data.

Conformance to Templates 1, 2, 3, and 4 is required for USB 2.0 hubs and devices:

Template 1: Transmit waveform requirements for hub measured at TP2, and for device (without a captive
cable) measured at TP3
Template 2: Transmit waveform requirements for device (with a captive cable) measured at TP2

Template 3: Receiver sensitivity requirements for device (with a captive cable) when signal is applied at TP2

Template 4: Receiver sensitivity requirements for device (without a captive cable) when signal is applied at

TP3, and for hub when signal is applied at TP2

Templates 5 and 6 are recommended guidelines for designers:

Template 5: Transmit waveform requirements for hub transceiver measured at TP1, and for device transceiver
measured at TP4

Template 6: Receiver sensitivity requirements for device transceiver when signal is applied at TP4, and for hub
transceiver at when signal is applied at TP1
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Figure 7-13 shows the transmit waveform requirements for a hub measured at TP2, and for a device (without a
captive cable) measured at TP3.

Level 1

E

oint 3

Point 4

o
Point

\/

O

N\ /

R

oint 5

Point §

Level 2

0%

Unit Interval

100%

+400mV
Differential

0 Volts
Differential

-400mV
Differential

Voltage Level (D+ - D-) Time (% of Unit Interval)

Level 1 525 mV in Ul following a transition, N/A

475 mV in all others
Level 2 -525 mV in Ul following a transition, N/A

-475 in all others
Point 1 ov 7.5% Ul
Point 2 ov 92.5% Ul
Point 3 300 mV 37.5% Ul
Point 4 300 mV 62.5% Ul
Point 5 -300 mV 37.5% Ul
Point 6 -300 mV 62.5% Ul

Figure 7-13. Template 1
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Template 2
Figure 7-14 shows transmit waveform requirements for a device (with a captive cable) measured at TP2.
Level 1
+400mV
Differential
yd N\
/ N
/D int 0’)\ 0 VOItS
N Differential
\\ //
N\ /
Point 5 Poirit 6
-400mV
Differential
Level 2
Unit Interval
0% 100%
Voltage Level (D+ - D-) Time (% of Unit Interval)
Level 1 525 mV in Ul following a transition, N/A
475 mV in all others
Level 2 -525 mV in Ul following a transition, N/A
-475 in all others
Point 1 oV 12.5% Ul
Point 2 ov 87.5% Ul
Point 3 175 mV 35% Ul
Point 4 175 mV 65% Ul
Point 5 -175 mV 35% Ul
Point 6 -175 mV 65% Ul

Figure 7-14. Template 2
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Figure 7-15 shows receiver sensitivity requirements for a device (with a captive cable) when a signal is applied

at TP2.

Level 1

+400mV

Point-3 Pointi

Differential

0 Volts

ot
oint

Differential

Point 5

Point 6

-400mV

Level 2

Differential

0% Unit Interval

100%

Voltage Level (D+ - D-) Time (% of Unit Interval)

Level 1 575 mV N/A

Level 2 -575 mV N/A

Point 1 ov 10% Ul
Point 2 oV 90% Ul
Point 3 275 mV 40% Ul
Point 4 275 mV 60% Ul
Point 5 -275 mV 40% Ul
Point 6 -275 mV 60% Ul

Figure 7-15. Template 3

Note: This eye is intended to specify differential data receiver sensitivity requirements. Levels 1 and 2 are
outside the Disconnect Threshold values, but disconnection is detected at the source (after a minimum of 32 bit
times without any transitions), not at the target receiver.
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Figure 7-16 shows receiver sensitivity requirements for a device (without a captive cable) when signal is applied
at TP3, and for a hub when a signal is applied at TP2.

Level 1

Point 3 Point4
pd N
N //
Paint 5 Point 6
Level 2
0% Unit Interval 100%

+400mV
Differential

0 Volts
Differential

-400mV
Differential

Voltage Level (D+ - D-) Time (% of Unit Interval)

Level 1 575 mV N/A

Level 2 -575 mV N/A

Point 1 oV 15% Ul
Point 2 oV 85% Ul
Point 3 150 mV 35% Ul
Point 4 150 mV 65% Ul
Point 5 -150 mV 35% Ul
Point 6 -150 mV 65% Ul

Figure 7-16. Template 4

Note: This eye is intended to specify differential data receiver sensitivity requirements. Levels 1 and 2 are
outside the Disconnect Threshold values, but disconnection is detected at the source (after a minimum of 32 bit
times without any transitions), not at the target receiver.
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Figure 7-17 shows transmit waveform requirements for a hub transceiver measured at TP1 and for a device
transceiver measured at TP4.

Level 1
Poift 3 Pbint 4
/ AN
// \\
an RN
\\ //
\\ //
N\ //
Unit Interval
0% 100%

+400mV
Differential

0 Volts
Differential

-400mV
Differential

Voltage Level (D+ - D-) Time (% of Unit Interval)
Level 1 525 mV in Ul following a transition, N/A
475 mV in all others
Level 2 -525 mV in Ul following a transition, N/A
-475 in all others
Point 1 ov 5% Ul
Point 2 oV 95% Ul
Point 3 300 mV 35% Ul
Point 4 300 mV 65% Ul
Point 5 -300 mV 35% Ul
Point 6 -300 mV 65% Ul

Figure 7-17. Template 5
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Figure 7-18 shows receiver sensitivity requirements for a device transceiver when a signal is applied at TP4 and
for a hub transceiver when a signal is applied at TP1.

Level 1
Point 3 Pointi4
7 N
$--1- At 2.
N\ /
Paint 5 Point 6
Level 2
0% Unit Interval 100%

+400mV
Differential

0 Volts
Differential

-400mV
Differential

Voltage Level (D+ - D-) Time (% of Unit Interval)

Level 1 575 mV N/A

Level 2 -575 mV N/A

Point 1 ov 20% Ul
Point 2 oV 80% Ul
Point 3 150 mV 40% Ul
Point 4 150 mV 60% Ul
Point 5 -150 mV 40% Ul
Point 6 -150 mV 60% Ul

Figure 7-18. Template 6

Note: This eye is intended to specify differential data receiver sensitivity requirements. Levels 1 and 2 are
outside the Disconnect Threshold values, but disconnection is detected at the source (after a minimum of 32 bit
times without any transitions), not at the target receiver.
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High-speed Signaling Rise and Fall Times

The transition time of a high-speed driver must not be less than the specified minimum allowable differential
rise and fall time (THsr and THsF). Transition times are measured when driving a reference load of 45 Q to
ground on D+ and D-. Figure 7-12 shows a recommended “Transmitter Test Fixture” for performing these
measurements.

For a hub, or for a device with detachable cable, the 10% to 90% high-speed differential rise and fall times must
be 500 ps or longer when measured at the A or B receptacles (respectively).

For a device with a captive cable assembly, it is a recommended design guideline that the 10% to 90% high-
speed differential rise and fall times must be 500 ps or longer when measured at the point where the cable is
attached to the device circuit board.

It is required that high-speed data transitions be monotonic over the minimum vertical openings specified in the
preceding eye pattern templates.

7.1.2.3 Driver Usage

The upstream facing ports of functions must use one and only one of the following three driver configurations:
1. Low-speed — Low-speed drivers only

2. Full-speed — Full-speed drivers only

3. Full-/high-speed — Combination full-speed and high-speed drivers

Upstream facing USB 2.0 hub ports must use full-/high-speed drivers. Such ports must be capable of
transmitting data at low-speed and full-speed rates with full-speed signaling, and at the high-speed rate using
high-speed signaling. Downstream facing ports (including the host) must support low-speed, full-speed, and
high-speed signaling, and must be able to transmit data at each of the three associated data rates.

In this section, there is reference to a situation in which high-speed operation is “disallowed.” This topic is
discussed in depth in Chapter 11 of this specification. In brief, a high-speed capable hub's downstream facing
ports are “high-speed disallowed” if the hub is unable to establish a high-speed connection on its upstream
facing port. For example, this would be the case for the downstream facing ports of a high-speed capable hub
when the hub is connected to a USB 1.1 host controller.

When a full-/high-speed device is attached to a pre-USB 2.0 hub, or to a hub port which is high-speed
disallowed, it is required to behave as a full-speed only device. When a full-/high-speed device is attached to a
USB 2.0 hub which is not high-speed disallowed, it must operate with high-speed signaling and data rate.

7.1.3 Cable Skew

The maximum skew introduced by the cable between the differential signaling pair (i.e., D+ and D- (TSKEW))
must be less than 100 ps and is measured as described in Section 6.7.

7.1.4 Receiver Characteristics

This section discusses the receiver characteristics for low-speed, full-speed, and full-/high-speed transceivers.

7.1.4.1 Low-speed and Full-speed Receiver Characteristics

A differential input receiver must be used to accept the USB data signal. The receiver must feature an input
sensitivity (Vpi) of at least 200 mV when both differential data inputs are in the differential common mode range
(Vcem) of 0.8 V to 2.5 V, as shown in Figure 7-19.
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In addition to the differential receiver, there must be a single-ended receiver for each of the two data lines. The
receivers must have a switching threshold between 0.8 V (ViL) and 2.0 V (V). It is recommended that the
single-ended receivers incorporate hysteresis to reduce their sensitivity to noise.

Both D+ and D- may temporarily be less than ViH (min) during differential signal transitions. This period can be
up to 14 ns (TFST) for full-speed transitions and up to 210 ns (TLST) for low-speed transitions. Logic in the
receiver must ensure that that this is not interpreted as an SEOQ.

Differential Input Voltage Range

A
A

Differential Output
Crossover
Voltage Range |

] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]
T U T U T U T U U U U

1
T T T T T T
1.0 e 00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 o 4.6

Input Voltage Range (volts)

Figure 7-19. Differential Input Sensitivity Range for Low-/full-speed

7.1.4.2 High-speed Receiver Characteristics

A high-speed capable transceiver receiver must conform to the receiver characteristics specifications called out
in Section 7.1.4.1 when receiving in low-speed or full-speed modes.

As shown in Figure 7-1, a high-speed capable transceiver which is operating in high-speed mode “listens” for an
incoming serial data stream with the high-speed differential data receiver and the transmission envelope
detector. Additionally, a downstream facing high-speed capable transceiver monitors the amplitude of the
differential voltage on the lines with the disconnection envelope detector.

When receiving in high-speed mode, the differential receiver must be able to reliably receive signals that
conform to the Receiver Eye Pattern templates shown in Section 7.1.2. Additionally, it is a strongly
recommended guideline that a high-speed receiver should be able to reliably receive such signals in the presence
of a common mode voltage component (VHscMm) over the range of —50 mV to 500 mV (the nominal common
mode component of high-speed signaling is 200 mV). Low frequency chirp J and K signaling, which occurs
during the Reset handshake, should be reliably received with a common mode voltage range of =50 mV to

600 mV.

Reception of data is qualified by the output of the transmission envelope detector. The receiver must disable data
recovery when the signal falls below the high-speed squelch level (VHssQ) defined in Table 7-3. (Detector must
indicate squelch when the magnitude of the differential voltage envelope is < 100 mV, and must not indicate
squelch if the amplitude of differential voltage envelope is = 150 mV.) Squelch detection must be done with a
differential envelope detector, such as the one shown in Figure 7-1. The envelope detector used to detect the
squelch state must incorporate a filtering mechanism that prevents indication of squelch during differential data
CrOSSOVers.

The definition of a high-speed packet’s SYNC pattern, together with the requirements for high-speed hub
repeaters, guarantee that a receiver will see at least 12 bits of SYNC (KJKJKJKJKJKK) followed by the data
portion of the packet. This means that the combination of squelch response time, DLL lock time, and end of
SYNC detection must occur within 12 bit times. This is required to assure that the first bit of the packet payload
will be received correctly.

In the case of a downstream facing port, a high-speed capable transceiver must include a differential envelope
detector that indicates when the signal on the data exceeds the high-speed Disconnect level (VHsDsc) as defined
in Table 7-3. (The detector must not indicate that the disconnection threshold has been exceeded if the
differential signal amplitude is <525 mV, and must indicate that the threshold has been exceeded if the
differential signal amplitude is 2625 mV.)
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When sampled at the appropriate time, this detector provides indication that the device has been disconnected.
The details of how the disconnection envelope detector is used are described in Section 7.1.7.3.

7.1.5 Device Speed Identification

The following sections specify the speed identification mechanisms for low-speed, full-speed, and high-speed.

7.1.5.1 Low-/Full-speed Device Speed Identification

The USB is terminated at the hub and function ends as shown in Figure 7-20 and Figure 7-21. Full-speed and
low-speed devices are differentiated by the position of the pull-up resistor on the downstream end of the cable:

e Full-speed devices are terminated as shown in Figure 7-20 with the pull-up resistor on the D+ line.
e Low-speed devices are terminated as shown in Figure 7-21 with the pull-up resistor on the D- line.
e The pull-down terminators on downstream facing ports are resistors of 15 k€2 £5% connected to ground.

The design of the pull-up resistor must ensure that the signal levels satisfy the requirements specified in

Table 7-2. In order to facilitate bus state evaluation that may be performed at the end of a reset, the design must
be able to pull-up D+ or D- from 0 V to VIH (min) within the minimum reset relaxation time of 2.5 us. A device

that has a detachable cable must use a 1.5 kQ +5% resistor tied to a voltage source between 3.0 V and 3.6 V
(VTERM) to satisfy these requirements. Devices with captive cables may use alternative termination means.
However, the Thevenin resistance of any termination must be no less than 900 Q.

Note: Thevenin resistance of termination does not include the 15 kQ +5% resistor on host/hub.

The voltage source on the pull-up resistor must be derived from or controlled by the power supplied on the USB

cable such that when VBUS is removed, the pull-up resistor does not supply current on the data line to which it is

attached.

Full-speed or ‘Flfrll-speed. usB
Low-speed USB Rpa :@ ): ransceiver

Transceiver |D- | ___D-|

Z,=90Q +15%

Rpe=15KQ 5% Hub Upstream Port
Host or or
Hub Port Rpu=1.5KQ +5% Full-speed Function

Figure 7-20. Full-speed Device Cable and Resistor Connections

D+ ;pun.,. Low-speed USB
Full-speed or | J Transceiver
Low-speed USB Rpa 'H ):
Transceiver | B D-
| Slow Slew Rate
R, Rpe=15KQ 5% Buffers
Host or Rpu=1.5KQ 5%
Hub Port Low-speed Function

Figure 7-21. Low-speed Device Cable and Resistor Connections
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7.1.5.2 High-speed Device Speed Identification

The high-speed Reset and Detection mechanisms follow the behavioral model for low-/full-speed. When reset is
complete, the link must be operating in its appropriate signaling mode (low-speed, full-speed, or high-speed as
governed by the preceding usage rules), and the speed indication bits in the port status register will correctly
report this mode. Software need only initiate the assertion of reset and read the port status register upon
notification of reset completion.

High-speed capable devices initially attach as full-speed devices. This means that for high-speed capable
upstream facing ports, Rpu (1.5 k€ £5%) must be connected from D+ to the 3.3 V supply (as shown in
Figure 7-1) through a switch which can be opened under SW control.

After the initial attachment, high-speed capable transceivers engage in a low level protocol during reset to
establish a high-speed link and to indicate high-speed operation in the appropriate port status register. This
protocol is described in Section 7.1.7.5.

7.1.6 Input Characteristics

The following sections describe the input characteristics for transceivers operating in low-speed, full-speed, and
high-speed modes.

7.1.6.1 Low-speed and Full-speed Input Characteristics

The input impedance of D+ or D- without termination should be > 300 kQ (ZINP). The input capacitance of a
port is measured at the connector pins. Upstream facing and downstream facing ports are allowed different
values of capacitance. The maximum capacitance (differential or single-ended) (Cinp) allowed on a
downstream facing port of a hub or host is 150 pF on D+ or D- when operating in low-speed or full-speed. This
is comprised of up to 75 pF of lumped capacitance to ground on each line at the transceiver and in the connector,
and an additional 75 pF capacitance on each conductor in the transmission line between the receptacle and the
transceiver. The transmission line between the receptacle and RS must be 90  £15%.

The maximum capacitance on an upstream facing port of a full-speed device with a detachable cable (CiNnUB) is
100 pF on D+ or D-. This is comprised of up to 75 pF of lumped capacitance to ground on each line at the
transceiver and in the connector and an additional 25 pF capacitance on each conductor in the transmission line
between the receptacle and the transceiver. The difference in capacitance between D+ and D- must be less than
10%.

For full-speed devices with captive cables, the device itself may have up to 75 pF of lumped capacitance to
ground on D+ and D-. The cable accounts for the remainder of the input capacitance.

A low-speed device is required to have a captive cable. The input capacitance of the low-speed device will
include the cable. The maximum single-ended or differential input capacitance of a low-speed device is 450 pF
(CLiNuA).

For devices with captive cables, the single-ended input capacitance must be consistent with the termination
scheme used. The termination must be able to charge the D+ or D- line from 0 V to Vi (min) within 2.5 ps.
The capacitance on D+/D- includes the single-ended input-capacitance of the device (measured from the pins on
the connector on the cable) and the 150 pF of input capacitance of the host/hub.

An implementation may use small capacitors at the transceiver for purposes of edge rate control. The sum of the
capacitance of the added capacitor (CEDGE), the transceiver, and the trace connecting capacitor and transceiver to
Rs must not exceed 75 pF (either single-ended or differential) and the capacitance must be balanced to within
10%. The added capacitor, if present, must be placed between the transceiver pins and Rs (see Figure 7-22).

Use of ferrite beads on the D+ or D- lines of full-speed devices is discouraged.
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Rs
TxD+|
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T R
TxD-|

CEDGE

.||_)

Figure 7-22. Placement of Optional Edge Rate Control Capacitors for Low-/full-speed

7.1.6.2 High-speed Input Characteristics

Figure 7-23 shows the simple equivalent loading circuit of a USB device operating in high-speed receive mode.

Transceiver Chip Boundary
Chip If Terminations

/ Integrated On-die Vbus

Vbus Data+
USB Cable Data-

UsSB
Connector
e (if cable is
detachable)

Device Circuit Board

Legacy Driver
(Output Impedance = Z,

DRV)

RS
AN
Receivers, R.
Ry pull-up, 1
and HS
Driver L
CHSLOAD/I\

|||—
I—=H

Figure 7-23. Diagram for High-speed Loading Equivalent Circuit

When operating in high-speed signaling mode, a transceiver must meet the following loading specifications:
1. DC output voltage and resistance specifications
2. TDR loading specification

Additionally, it is strongly recommended that a transceiver component operating in high-speed signaling mode
should meet the following lumped capacitance guideline.

The use of ferrites on high-speed data lines is strongly discouraged.

DC output voltage and resistance specifications — A transceiver that is in high-speed mode must

present a DC load on each of the data lines nominally equivalent to 45 Q to ground. The actual resistance,
Zusprv, must be 40.5 Q < Zusprv < 49.5 Q. The output voltage in the high-speed idle state (VHSTERM) is

specified in Table 7-3

TDR loading specification — The AC loading specifications of a transceiver in the high-speed idle state are
specified in terms of differential TDR (Time Domain Reflectometer) measurements.

These measurements govern the maximum allowable transmission line discontinuities for the port connector, the
interconnect leading from the connector to the transceiver, the transceiver package, and the transceiver IC itself.
In the special case of a high-speed capable device with a captive cable, the transmission line discontinuities of
the cable assembly are also governed.
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The following specifications must be met with the incident rise time of the differential TDR set to 400 ps. It is
important to note that all times are “as displayed” on the TDR and are hence “round trip times.”

Termination Impedance (ZusTERM) is measured on the TDR trace at a specific measurement time following the
connector reference time. The connector reference time is determined by disconnecting the TDR connection
from the port connector and noting the time of the open circuit step. For an A connector, the measurement time
is 8 ns after the connector reference location. For a B connector, the measurement time is 4 ns after the
connector reference location. The differential termination impedance must be:

80 Q < ZHSTERM < 100 Q

Through Impedance (ZusTHRU) is the impedance measured from 500 ps before the connector reference location
until the time governed by the Termination impedance specification.

70 Q < ZastHrRU < 110 Q

In the Exception Window (a sliding 1.4 ns window inside the Through Impedance time window), the differential
impedance may exceed the Through limits. No single excursion, however, may exceed the Through limits for
more than twice the TDR rise time (400 ps).

In the special case of a high-speed capable device with a captive cable, the same specifications must be met, but
the TDR measurements must be made through the captive cable assembly. Determination of the connector
reference time can be more difficult in this case, since the cable may not be readily removable from the port
being tested. It is left to the tester of a specific device to determine the connector reference location by whatever
means are available.

Lumped capacitance guideline for the transceiver component

When characterizing a transceiver chip as an isolated component, the measurement can be performed effectively
at the chip boundary shown in Figure 7-23 without USB connectors or cables. Parasitic capacitance of the test
fixture can be corrected by measuring the capacitance of the fixture itself and subtracting this reading from the
reading taken with the transceiver inserted. If the terminations are off-chip, discrete Rs resistors should be in
place during the measurements, and measurements should be taken on the “connector side” of the resistors. The
transceiver should be in Test SEO NAK mode during testing.

Capacitance measurements are taken from each of the data lines to ground while the other line is left open. The
instrument used to perform this measurement must be able to determine the effective capacitance to ground in
the presence of the parallel effective resistance to ground.

Capacitance to Ground on each line: CusLoap< 10 pF
Matching of Capacitances to Ground: < 1.0 pF

The guideline is to allow no more than 5.0 pF for the transceiver die itself and no more than an additional 5 pF
for the package. The differential capacitance across the transceiver inputs should be no more than 5.0 pF

7.1.7 Signaling Levels

The following sections specify signaling levels for low-speed, full-speed, and high-speed operation.

7.1.7.1 Low-/Full-speed Signaling Levels

Table 7-2 summarizes the USB signaling levels. The source is required to drive the levels specified in the
second column, and the target is required to identify the correct bus state when it sees the levels in the third
column. (Target receivers can be more sensitive as long as they are within limits specified in the fourth
column.)
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Table 7-2. Low-/full-speed Signaling Levels

Bus State

Signaling Levels

At originating source
connector (at end of bit time)

At final target connector

Required

Acceptable

Differential “1”

D+ > VoH (min) and D- < VoL (max)

(D+) - (D-) > 200 mV
and D+ > VIH (min)

(D+) - (D-) > 200 mV

Differential “0”

D- > VoH (min) and D+ < VoL (max)

(D-) - (D+) > 200 mV
and D- > VIH (min)

(D-) - (D+) > 200 mV

Single-ended 0 (SEO)

D+ and D- < VoL (max)

D+ and D- < VIL (max)

D+ and D- < VIH (min)

Single-ended 1 (SE1)

D+ and D- > VOse1(min)

D+ and D- > ViL (max)

Data J state:

Low-speed Differential “0” Differential “0”
Full-speed Differential “1” Differential “1”
Data K state:
Low-speed Differential “1” Differential “1”
Full-speed Differential “0” Differential “0”
Idle state: NA
Low-speed D- > ViHz (min) and D- > ViHz (min) and
D+ < VIL (max) D+ < VIH (min)
Full-speed D+ > VIHz (min) and D+ > VIHz (min) and
D- < VIL (max) D- < ViH (min)

Resume state

Data K state

Data K state

Start-of-Packet (SOP)

Data lines switch from Idle to K state

End-of-Packet (EOP)*

SEO for approximately 2 bit times'
followed by a J for 1 bit time®

SEOQ for > 1 bit time®
followed by a J state

SEQ for > 1 bit time?
followed by a J state

for 1 bit time
Disconnect NA SEOQ for >2.5 us
(at downstream port)
Connect NA Idle for >2 ms Idle for >2.5 us

(at downstream port)

Reset D+ and D- < VOL (max) for >10ms D+ and D- < VIL (max) | D+ and D- < VIL (max)
for>10 ms for >2.5 us
Note 1: The width of EOP is defined in bit times relative to the speed of transmission. (Specification EOP widths are given in

Table 7-7 and Table 7-8.)

Note 2:
Note 3:

The width of EOP is defined in bit times relative to the device type receiving the EOP. The bit time is approximate.

The width of the J state following the EOP is defined in bit times relative to the buffer edge rate. The J state from a

low-speed buffer must be a low-speed bit time wide and, from a full-speed buffer, a full-speed bit time wide.

Note 4:

The keep-alive is a low-speed EOP.
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The J and K data states are the two logical levels used to communicate differential data in the system.
Differential signaling is measured from the point where the data line signals cross over. Differential data
signaling is not concerned with the level at which the signals cross, as long as the crossover voltage meets the
requirements in Section 7.1.2. Note that, at the receiver, the Idle and Resume states are logically equivalent to
the J and K states respectively.

As shown in Table 7-2, the J and K states for full-speed signaling are inverted from those for low-speed
signaling. The sense of data, idle, and resume signaling is set by the type of device that is being attached to a
port. If a full-speed device is attached to a port, that segment of the USB uses full-speed signaling conventions
(and fast rise and fall times), even if the data being sent across the data lines is at the low-speed data rate. The
low-speed signaling conventions shown in Table 7-2 (plus slow rise and fall times) are used only between a low-
speed device and the port to which it is attached.

i
3. i
! :
1 1.5KQ +59 ‘
| or equivalent I

i

|

RxD

Y

@)

Differential Receiver

B RxD+

\V4

Single-gnded Receivers
>—> RxD-

[ | ——————————- TXD+

Output Buffers OE

\—‘< TxD-

Figure 7-24. Upstream Facing Full-speed Port Transceiver

Differential Receiver

L \ B RxD+
/

Single-ended Receivers

1 4 RxD-
————————————— TxD+
N
Output Buffers < OE
———————————————————-
o Speed
® \ ~d TxD-

Note: Additional logic is required
to invert signal polarity on
data in/out when low-speed
devices are attached.

15KQ +5%

Figure 7-25. Downstream Facing Low-/full-speed Port Transceiver
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The high-speed signaling voltage specifications in Table 7-3 must be met when measuring at the connector
closest to the transceiver, using precision 45 € load resistors to the device ground as reference loads. All

voltage measurements are taken with respect to the local device ground.
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Table 7-3. High-speed Signaling Levels

Bus State

Required Signaling Level at
Source Connector

Required Signaling Level at
Target Connector

High-speed Differential “1”

DC Levels:

VHSOH (min) < D+ < VHSOH (max)
VHsoL (min) < D- < VHsOL (max)
See Note 1.

AC Differential Levels:

A transmitter must conform to

the eye pattern templates called
out in Section 7.1.2.

See Note 2.

AC Differential Levels

The signal at the target connector
must be recoverable, as defined
by the eye pattern templates
called out in Section 7.1.2.

See Note 2.

High-speed Differential “0”

DC Levels:

VHSOH (min) < D- < VHSOH (max)
VHsoL (min) < D+ < VHSOL (max)
See Note 1.

AC Differential Levels:

A transmitter must conform to

the eye pattern templates called
out in Section 7.1.2.

See Note 2.

AC Differential Levels:

The signal at the target connector
must be recoverable, as defined
by the eye pattern templates
called out in Section 7.1.2.

See Note 2.

High-speed J State

High-speed Differential “1”

High-speed Differential “1”

High-speed K State

High-speed Differential “0”

High-speed Differential “0”
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Table 7-3. High-speed Signaling Levels (Continued)

Chirp J State

(differential voltage; applies only
during reset when both hub and
device are high-speed capable)

DC Levels:

VCHIRPJ (min) < (D+ - D-) <
VCHIRPJ (max)

AC Differential Levels

The differential signal at the target
connector must be > 300 mV

Chirp K State

(differential voltage; applies only
during reset when both hub and
device are high-speed capable)

DC Levels:

VCHIRPK (min) < (D+ - D-) <
VCHIRPK (max)

AC Differential Levels

The differential signal at the target
connector must be <-300 mV

High-speed Squelch State

NA

VHssa - Receiver must indicate
squelch when magnitude of
differential voltage is <100 mV;
receiver must not indicate squelch
if magnitude of differential voltage
is 2150 mV.

See Note 3.

High-speed Idle State

NA

DC Levels:

VHSOI min < (D+, D-) £ VHSOI max
See Note 1.

AC Differential Levels:

Magnitude of differential voltage is
<100 mV

See Note 3.

Start of High-speed Packet
(HSSOP)

Data lines switch from high-speed Idle to high-speed J or high-speed

K state.

End of High-speed Packet
(HSEOP)

Data lines switch from high-speed J or K to high-speed Idle state.

High-speed Disconnect State
(at downstream facing port)

NA

VHsDSC - Downstream facing port
must not indicate device
disconnection if differential voltage
is <525 mV, and must indicate
device disconnection when
magnitude of differential voltage is
> 625 mV, at the sample time
discussed in Section 7.1.7.3.

148

Note 1: Measured with a 45 Q resistor to ground at each data line, using test modes Test_J and Test_K

Note 2: Measured using test mode Test_Packet with fixture shown in Figure 7-12
Note 3: Measured with fixture shown in Figure 7-12, using test mode SEO_NACK

Note 4: A high-speed driver must never “intentionally” generate a signal in which both D+ and D- are driven to a level above

200 mV. The current-steering design of a high-speed driver should naturally preclude this possibility.
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7.1.7.3 Connect and Disconnect Signaling

When no function is attached to the downstream facing port of a host or hub in low-/full-speed, the pull-down
resistors present there will cause both D+ and D- to be pulled below the single-ended low threshold of the host
or hub transceiver when that port is not being driven by the hub. This creates an SEO state on the downstream
facing port. A disconnect condition is indicated if the host or hub is not driving the data lines and an SEO
persists on a downstream facing port for more than TDDIS (see Figure 7-26). The specifications for TDDIS and
TDCNN are defined in Table 7-13.

A connect condition will be detected when the hub detects that one of the data lines is pulled above its VIH
threshold for more than TDCNN (see Figure 7-27 and Figure 7-28).

Hubs must determine the speed of the attached device by sampling the state of the bus immediately before
driving SEO to indicate a reset condition to the device.

All signaling levels given in Table 7-2 are set for this bus segment (and this segment alone) once the speed of
the attached device is determined. The mechanics of speed detection are described in Section 11.8.2.

D+/D-
VIHZ (min) 1
A
ViL
D-/D+
Vss —
«—— Tpbbls —»
Device Disconnect
Disconnected Detected
Figure 7-26. Low-/full-speed Disconnect Detection
D+
VIH
D-
Vss
T 4—— TDCNN ———
Device Connect
Connected Detected

Figure 7-27. Full-/high-speed Device Connect Detection
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D-
VIH
D+
Vss
T +——— TDONN ————¥
Device Connect
Connected Detected

Figure 7-28. Low-speed Device Connect Detection

Because USB components may be hot plugged, and hubs may implement power switching, it is necessary to
comprehend the delays between power switching and/or device attach and when the device’s internal power has
stabilized. Figure 7-29 shows all the events associated with both turning on port power with a device connected
and hot-plugging a device. There are six delays and a sequence of events that are defined by this specification.

Hub port E i Attach Detected }—\ i i i % Reset Recovery
power OK | | | | | ! Time
Hub pon’\i | — 4 :
power-on i , e N e |
| i >4.01V LAt4 IOAS USB System Software
VBus ; | i | I | |reads device speed
VIH(MIN) ————— ;.----;. _____________________ WY s sp—
VIH o2 Ay Gy gy gl J WY O WY /JSOSpetIpH St NGO /G S
D+
or
D- — e 100ms j 10ms‘
At1 At2 At6

Figure 7-29. Power-on and Connection Events Timing

Atl  This is the amount of time required for the hub port power switch to operate. This delay is a function of
the type of hub port switch. Hubs report this time in the hub descriptor (see Section 11.15.2.1), which can
be read via a request to the Hub Controller (see Section 11.16.2.4). If a device were plugged into a non-
switched or already-switched on port, Atl is equal to zero.

At2 (TSIGATT) This is the maximum time from when VBUS is up to valid level (4.01 V) to when a device has
to signal attach. At2 represents the time required for the device’s internal power rail to stabilize and for
D+ or D- to reach VIH (min) at the hub. At2 must be less than 100 ms for all hub and device
implementations. (This requirement only applies if the device is drawing power from the bus.)

At3 (TATTDB) This is a debounce interval with a minimum duration of 100 ms that is provided by the USB
System Software. It ensures that the electrical and mechanical connection is stable before software
attempts to reset the attached device. The interval starts when the USB System Software is notified of a
connection detection. The interval restarts if there is a disconnect. The debounce interval ensures that
power is stable at the device for at least 100 ms before any requests will be sent to the device.

At4 (T2susp) Anytime a device observes no bus activity, it must obey the rules of going into suspend (see
Section 7.1.7.6).
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AtS (TDRST) This is the period of time hubs drive reset to a device. Refer to Section 7.1.7.5 and
Section 11.5.1.5 for details.

At6 (TRSTRCY) The USB System Software guarantees a minimum of 10 ms for reset recovery. Device
response to any bus transactions addressed to the default device address during the reset recovery time is
undefined.

High-speed capable devices must initially attach as full-speed devices and must comply with all full-speed
connection requirements. A high-speed capable downstream facing port must correctly detect the attachment of
low-speed and full-speed devices and must also comply with all low-speed and full-speed connection behaviors.

Transition to high-speed signaling is accomplished by means of a low level electrical protocol which occurs
during Reset. This protocol is specified in Section 7.1.7.5.

A downstream facing transceiver operating in high-speed mode detects disconnection of a high-speed device by
sensing the doubling in differential signal amplitude across the D+ and D- lines that can occur when the device
terminations are removed. The Disconnection Envelope Detector output goes high when the downstream facing
transceiver transmits and positive reflections from the open line return with a phase which is additive with the
transceiver driver signal. Signals with differential amplitudes > 625 mV must reliably activate the Disconnection
Envelope Detector. Signals with differential amplitudes < 525 mV must never activate the Disconnection
Envelope Detector.

To assure that this additive effect occurs and is of sufficient duration to be detected, the EOP at the end of a
high-speed SOF is lengthened to a continuous string of 40 bits without any transitions, as discussed in
Section 7.1.13.2. This length is sufficient to guarantee that the voltage at the downstream facing port’s
connector will double, since the maximum allowable round trip signal delay is 30 bit times.

When a downstream facing port is transmitting in high-speed mode and detects that it has sent 32 bits without a
transition, the disconnection envelope detector’s output must be sampled once during transmission of the next

8 bits at the transceiver output. (In the absence of bus errors, the next 8 bits will not include a transition.) If the
sample indicates that the disconnection detection threshold has been exceeded, the downstream facing port must
indicate that the high-speed device has been disconnected. See Section 11.12.4.

7.1.7.4 Data Signaling

Data transmission within a packet is done with differential signals.

7.1.7.4.1 Low-/Full-Speed Signaling

The start of a packet (SOP) is signaled by the originating port by driving the D+ and D- lines from the Idle state
to the opposite logic level (K state). This switch in levels represents the first bit of the SYNC field. Hubs must
limit the change in the width of the first bit of SOP when it is retransmitted to less than £ 5 ns. Distortion can be
minimized by matching the nominal data delay through the hub with the output enable delay of the hub.

The SEO state is used to signal an end-of-packet (EOP). EOP will be signaled by driving D+ and D- to the SE0O
state for two bit times followed by driving the lines to the J state for one bit time. The transition from the SEO to
the J state defines the end of the packet at the receiver. The J state is asserted for one bit time and then both the
D+ and D- output drivers are placed in their high-impedance state. The bus termination resistors hold the bus in
the Idle state. Figure 7-30 shows the signaling for start and end of a packet.
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Figure 7-30. Low-/full-speed Packet Voltage Levels

7.1.7.4.2 High-speed Signaling
The high-speed Idle state is when both lines are nominally at GND.

The source of the packet signals the Start of Packet (SOP) in high-speed mode by driving the D+ and D- lines
from the high-speed Idle state to the K state. This K is the first symbol of the SYNC pattern (NRZI sequence
KJKJKJKJ KIJKJKJKJ KJKJKJKJ KJKJKJKK) as described in Section 7.1.10.

The high-speed End of Packet (EOP) begins with a transition from the last symbol before the EOP to the
opposite symbol. This opposite symbol is the first symbol in the EOP pattern (NRZ 01111111 with bit stuffing
disabled) as described in Section 7.1.13.2. Upon completion of the EOP pattern, the driver ceases to inject
current into the D+ or D- lines, and the lines return to the high-speed Idle state. The high-speed SOF EOP is a
special case. This SOF EOP is 40 symbols without a transition (rather than 8 for a non-SOF packet).

The fact that the first symbol in the EOP pattern forces a transition simplifies the process of determining
precisely which is the last bit in the packet prior to the EOP delimiter.
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7.1.7.5 Reset Signaling

A hub signals reset to a downstream port by driving an extended SEO at the port. After the reset is removed, the
device will be in the Default state (refer to Section 9.1).

The reset signaling can be generated on any Hub or Host Controller port by request from the USB System
Software. The reset signaling must be driven for a minimum of 10ms (TDRST). After the reset, the hub port will
transition to the Enabled state (refer to Section 11.5).

As an additional requirement, Host Controllers and the USB System Software must ensure that resets issued to
the root ports drive reset long enough to overwhelm any concurrent resume attempts by downstream devices. It
is required that resets from root ports have a duration of at least 50 ms (TDRSTR). It is not required that this be
50 ms of continuous Reset signaling. However, if the reset is not continuous, the interval(s) between reset
signaling must be less than 3 ms (TRHRSI), and the duration of each SE0 assertion must be at least 10 ms
(TDRST).

A device operating in low-/full-speed mode that sees an SEO on its upstream facing port for more than 2.5 us
(TDETRST) may treat that signal as a reset. The reset must have taken effect before the reset signaling ends.

Hubs will propagate traffic to a newly reset port after the port is in the Enabled state. The device attached to this
port must recognize this bus activity and keep from going into the Suspend state.

Hubs must be able to accept all hub requests and devices must be able to accept a SetAddress() request (refer to
Section 11.24.2 and Section 9.4 respectively) after the reset recovery time 10 ms (TRSTRCY) after the reset is
removed. Failure to accept this request may cause the device not to be recognized by the USB system software.
Hubs and devices must complete commands within the times specified in Chapter 9 and Chapter 11.

Reset must wake a device from the Suspend state.

It is required that a high-speed capable device can be reset while in the Powered, Default, Address, Configured,
or Suspended states shown in Figure 9-1. The reset signaling is compatible with low-/full-speed reset. This
means that a hub must successfully reset any device (even USB 1.X devices), and a device must be successfully
reset by any hub (even USB1.X hubs).

If, and only if, a high-speed capable device is reset by a high-speed capable hub which is not high-speed
disallowed, both hub and device must be operating in the default state in high-speed signaling mode at the end of
reset. The hub port status register must indicate that the port is in high-speed signaling mode. This requirement
is met by having such a device and such a hub engage in a low level protocol during the reset signaling time.

The protocol is defined in such a way that USB 1.X devices will not be disrupted from their normal reset
behaviors.

Note: Because the downstream facing port will not be in Transmit state during the Reset Protocol, high-speed
Chirp signaling levels will not provoke disconnect detection. (Refer to Section 7.1.7.3 and Section 11.5.1.7.)

Reset Protocol for high-speed capable hubs and devices

1. The hub checks to make sure the attached device is not low-speed. (A low-speed device is not allowed to
support high-speed operation. If the hub determines that it is attached to a low-speed device, it does not
conduct the following high-speed detection protocol during reset.)

2. The hub drives SEO. In this description of the Reset Protocol and High-speed Detection Handshake, the
start of SEO is referred to as time TO.
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3. The device detects assertion of SEOQ.

a) If the device is being reset from suspend, then the device begins a high-speed detection handshake after
the detection of SEO for no less than 2.5 ps (TriLTsE0). Since a suspended device will generally have its
clock oscillator disabled, the detection of SEO will cause the oscillator to be restarted. The clock must
be useable (although not necessarily settled to 500 ppm accuracy) in time to detect the high-speed hub
chirp as described in Step 8.

b) If the device is being reset from a non-suspended full-speed state, then the device begins a high-speed
detection handshake after the detection of SEO for no less than 2.5 pus and no more than 3.0 ms
(TWTRSTEFS).

c) Ifthe device is being reset from a non-suspended high-speed state, then the device must wait no less
than 3.0 ms and no more than 3.125 ms (TWTREV) before reverting to full-speed. Reversion to full-
speed is accomplished by removing the high-speed termination and reconnecting the D+ pull-up
resistor. The device samples the bus state, and checks for SEO (reset as opposed to suspend), no less
than 100 us and no more than 875 pus (TwTrsTHS) after starting reversion to full-speed. If SEO (reset) is
detected, then the device begins a high-speed detection handshake.

High-speed Detection Handshake (not performed if low-speed device detected by hub):

Note: In the following handshake, both the hub and device are required to detect Chirp J’s and K’s of specified
minimum durations. It is strongly recommended that “gaps” in these Chirp signals as short as 16 high-speed bit
times should restart the duration timers.

4. The high-speed device leaves the D+ pull-up resistor connected, leaves the high-speed terminations
disabled, and drives the high-speed signaling current into the D- line. This creates a Chirp K on the bus.
The device chirp must last no less than 1.0 ms (Tuch) and must end no more than 7.0 ms (TucHEND) after
high-speed Reset time TO.

5. The hub must detect the device chirp after it has seen assertion of the Chirp K for no less than 2.5 ps (TFLT).
If the hub does not detect a device chirp, it must continue the assertion of SEQ until the end of reset.

6. No more than 100 ps (Twtpch) after the bus leaves the Chirp K state, the hub must begin to send an
alternating sequence of Chirp K’s and Chirp J’s. There must be no Idle states on the bus between the J’s
and K’s. This sequence must continue until a time (TpcHsEo) no more than 500 ps before and no less than
100 ps before the end of Reset. (This will guarantee that the bus remains active, preventing the device from
entering the high-speed Suspend state.) Each individual Chirp K and Chirp J must last no less than 40 us
and no more than 60 ps (TocHBIT).

7. After completing the hub chirp sequence, the hub asserts SEO until end of Reset. At the end of reset, the
hub must transition to the high-speed Enabled state without causing any transitions on the data lines.

8. After the device completes its chirp, it looks for the high-speed hub chirp. At a minimum, the device is
required to see the sequence Chirp K-J-K-J-K-J in order to detect a valid hub chirp. Each individual Chirp
K and Chirp J must be detected for no less than 2.5 ps (TFiLT).

a) If the device detects the sequence Chirp K-J-K-J-K-J, then no more than 500 ps (TwTHs) after detection,
the device is required to disconnect the D+ pull-up resistor, enable the high-speed terminations, and
enter the high-speed Default state.

b) If the device has not detected the sequence Chirp K-J-K-J-K-J by a time no less than 1.0 ms and no
more than 2.5 ms (Twrtrs) after completing its own chirp, then the device is required to revert to the
full-speed Default state and wait for the end of Reset.

7.1.7.6 Suspending

All devices must support the Suspend state. Devices can go into the Suspend state from any powered state.

They begin the transition to the Suspend state after they see a constant Idle state on their upstream facing bus
lines for more than 3.0 ms. The device must actually be suspended, drawing only suspend current from the bus
after no more than 10 ms of bus inactivity on all its ports. Any bus activity on the upstream facing port will keep

154

LGE-1010 / Page 182 of 650



Universal Serial Bus Specification Revision 2.0

a device out of the Suspend state. In the absence of any other bus traffic, the SOF token (refer to Section 8.4.3)
will occur once per (micro)frame to keep full-/high-speed devices from suspending. In the absence of any low-
speed traffic, low-speed devices will see at least one keep-alive (defined in Table 7-2) in every frame in which

an SOF occurs, which keeps them from suspending. Hubs generate this keep-alive as described in

Section 11.8.4.1.

While in the Suspend state, a device must continue to provide power to its D+ (full-/high-speed) or D- (low-
speed) pull-up resistor to maintain an idle so that the upstream hub can maintain the correct connectivity status
for the device.

Additional Requirements for High-speed Capable Devices

From the perspective of a device operating in high-speed mode, a Reset and a Suspend are initially
indistinguishable, so the first part of the device response is the same as for a Reset. When a device operating in
high-speed mode detects that the data lines have been in the high-speed Idle state for at least 3.0 ms, it must
revert to the full-speed configuration no later than 3.125 ms (TWTREV) after the start of the idle state. Reversion
to full-speed is accomplished by disconnecting its termination resistors and reconnecting its D+ pull-up resistor.
No earlier than 100 s and no later than 875 us (TwTrsTHS) after reverting to full-speed, the device must sample
the state of the line. If the state is a full-speed J, the device continues with the Suspend process. (SE0 would
have indicated that the downstream facing port was driving reset, and the device would have gone into the
“High-speed Detection Handshake” as described in Section 7.1.7.5.)

A device or downstream facing port which is suspended from high-speed operation actually transitions to full-
speed signaling during the suspend process, but is required to remember that it was operating in high-speed
mode when suspended. When the resume occurs, the device or downstream facing transceiver must revert to
high-speed as discussed in Section 7.1.7.7 without the need for a reset.

7.1.7.6.1 Global Suspend

Global suspend is used when no communication is desired anywhere on the bus and the entire bus is placed in
the Suspend state. The host signals the start of global suspend by ceasing all its transmissions (including the
SOF token). As each device on the bus recognizes that the bus is in the Idle state for the appropriate length of
time, it goes into the Suspend state.

After 3.0 ms of continuous idle state, a downstream facing transceiver operating in high-speed must revert to the
full-speed idle configuration (high-speed terminations disabled), but it does not enable full-speed disconnect
detection until 1.0 ms later. This is to make sure that the device has returned to the full-speed Idle state prior to
the enabling of full-speed disconnect detection, thereby preventing an unintended disconnect detection. After re-
enabling the full-speed disconnect detection mechanism, the hub continues with the suspend process.

7.1.7.6.2 Selective Suspend

Segments of the bus can be selectively suspended by sending the command SetPortFeature(PORT _SUSPEND)
to the hub port to which that segment is attached. The suspended port will block activity to the suspended bus
segment, and devices on that segment will go into the Suspend state after the appropriate delay as described
above.

When a downstream facing port operating in high-speed mode receives the SetPortFeature(PORT _SUSPEND)
command, the port immediately reverts to the full-speed Idle state and blocks any activity to the suspend
segment. Full-speed disconnect detection is disabled until the port has been in full-speed idle for 4.0 ms. This
prevents an unintended disconnect detection. After re-enabling the full-speed disconnect detection mechanism,
the hub continues with the suspend process.

Section 11.5 describes the port Suspend state and its interaction with the port state machine. Suspend is further
described in Section 11.9.
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7.1.7.7 Resume

If a device is in the Suspend state, its operation is resumed when any non-idle signaling is received on its
upstream facing port. Additionally, the device can signal the system to resume operation if its remote wakeup
capability has been enabled by the USB System Software. Resume signaling is used by the host or a device to
bring a suspended bus segment back to the active condition. Hubs play an important role in the propagation and
generation of resume signaling. The following description is an outline of a general global resume sequence. A
complete description of the resume sequence, the special cases caused by selective suspend, and the role of the
hub are given in Section 11.9.

The host may signal resume (TDRSMDN) at any time. It must send the resume signaling for at least 20 ms and
then end the resume signaling in one of two ways, depending on the speed at which its port was operating when
it was suspended. If the port was in low-/full-speed when suspended, the resume signaling must be ended with a
standard, low-speed EOP (two low-speed bit times of SEO followed by a J). If the port was operating in high-
speed when it was suspended, the resume signaling must be ended with a transition to the high-speed idle state.

The 20 ms of resume signaling ensures that all devices in the network that are enabled to see the resume are
awakened. The connectivity established by the resume signaling is torn down by the End of Resume, which
prepares the hubs for normal operation. After resuming the bus, the host must begin sending bus traffic (at least
the SOF token) within 3 ms of the start of the idle state to keep the system from going back into the Suspend
state.

A device with remote wakeup capability may not generate resume signaling unless the bus has been
continuously in the Idle state for 5 ms (TWTRSM). This allows the hubs to get into their Suspend state and
prepare for propagating resume signaling. The remote wakeup device must hold the resume signaling for at
least 1 ms but for no more than 15 ms (TDRSMUP). At the end of this period, the device stops driving the bus
(puts its drivers into the high-impedance state and does not drive the bus to the J state).

If the hub upstream of a remote wakeup device is suspended, it will propagate the resume signaling to its
upstream facing port and to all of its enabled downstream facing ports, including the port that originally signaled
the resume. When a hub is propagating resume signaling from a downstream device, it may transition from the
idle state to K with a risetime faster than is normally allowed. The hub must begin this rebroadcast (TURSM) of
the resume signaling within 1 ms of receiving the original resume. The resume signal will propagate in this
manner upstream until it reaches the host or a non-suspended hub (refer to Section 11.9), which will reflect the
resume downstream and take control of resume timing. This hub is termed the controlling hub. Intermediate
hubs (hubs between the resume initiator and the controlling hub) drive resume (TDRSMUP) on their upstream
facing port for at least 1 ms during which time they also continue to drive resume on enabled downstream facing
ports. An intermediate hub will stop driving resume on the upstream facing port and reverse the direction of
connectivity from upstream to downstream within 15 ms after first asserting resume on its upstream facing port.
When all intermediate hubs have reversed connectivity, resume is being driven from the controlling hub through
all intermediate hubs and to all enabled ports. The controlling hub must rebroadcast the resume signaling within
1 ms (TURSM) and ensures that resume is signaled for at least 20 ms (TDRSMDN). The hub may then begin
normal operation by terminating the resume process as described above.

The USB System Software must provide a 10 ms resume recovery time (TRSMRCY) during which it will not
attempt to access any device connected to the affected (just-activated) bus segment.

Port connects and disconnects can also cause a hub to send a resume signal and awaken the system. These
events will cause a hub to send a resume signal only if the hub has been enabled as a remote-wakeup source.
Refer to Section 11.4.4 for more details.

Refer to Section 7.2.3 for a description of power control during suspend and resume.

If the hub port and device were operating in high-speed prior to suspend, they are required to "remember" that
they were previously operating in high-speed, and they must transition back to high-speed operation, without
arbitration, within two low-speed bit times of the K to SEO transition. The inactivity timers must be started two
low-speed bit times after the K to SEO transition. Note that the transition from SEO to J which would normally
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occur at the end of full-speed resume signaling is omitted if the link was operating in high-speed at the time
when it was suspended.

It is required that the host begin sending SOF’ in time to prevent the high-speed tree from suspending.

7.1.8 Data Encoding/Decoding

The USB employs NRZI data encoding when transmitting packets. In NRZI encoding, a “1” is represented by
no change in level and a “0” is represented by a change in level. Figure 7-31 shows a data stream and the NRZI
equivalent. The high level represents the J state on the data lines in this and subsequent figures showing NRZI
encoding. A string of zeros causes the NRZI data to toggle each bit time. A string of ones causes long periods
with no transitions in the data.

11 01 01 0 00 1 00 1 10

0
Data Idle | [ I [ 1

J
NRZI « 1die | [ L] L] L

Figure 7-31. NRZI Data Encoding

7.1.9 Bit Stuffing

In order to ensure adequate signal transitions, bit stuffing is employed by the transmitting device when sending a
packet on USB (see Figure 7-32 and Figure 7-34). A zero is inserted after every six consecutive ones in the data
stream before the data is NRZI encoded, to force a transition in the NRZI data stream. This gives the receiver
logic a data transition at least once every seven bit times to guarantee the data and clock lock. Bit stuffing is
enabled beginning with the Sync Pattern. The data “one” that ends the Sync Pattern is counted as the first one in
a sequence. Bit stuffing by the transmitter is always enforced, except during high-speed EOP. If required by the
bit stuffing rules, a zero bit will be inserted even if it is the last bit before the end-of-packet (EOP) signal.

The receiver must decode the NRZI data, recognize the stuffed bits, and discard them.

7.1.9.1 Full-/low-speed

Full-/low-speed signaling uses bit stuffing throughout the packet without exception. If the receiver sees seven
consecutive ones anywhere in the packet, then a bit stuffing error has occurred and the packet should be ignored.
The time interval just before an EOP is a special case. The last data bit before the EOP can become stretched by
hub switching skews. This is known as dribble and can lead to the case illustrated in Figure 7-33, which shows
where dribble introduces a sixth bit that does not require a bit stuff. Therefore, the receiver must accept a packet
for which there are up to six full bit times at the port with no transitions prior to the EOP.

Data Encoding Sequence:

Raw Data

| L
}4— Sync Pattern >|< Packet Data 4*

/Stuffed Bit

I L] LI L
Sync Pattern | »’4 Packet Data 4>{
Lﬁ Six Ones —>{
NRZI e | [Tl L[] LT
Encoded Data }4— Sync Pattern »‘4 Packet Data 4>{

Figure 7-32. Bit Stuffing

Bit Stuffed Data
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Figure 7-33. Illustration of Extra Bit Preceding EOP (Full-/low-speed)
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Figure 7-34. Flow Diagram for Bit Stuffing
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7.1.9.2 High-Speed

High-speed signaling uses bit stuffing throughout the packet, with the exception of the intentional bit stuff errors
used in the high-speed EOP as described in Section 7.1.13.2.

7.1.10 Sync Pattern

The SYNC pattern used for low-/full-speed transmission is required to be 3 KJ pairs followed by 2 K’ for a total
of eight symbols. Figure 7-35 shows the NRZI bit pattern, which is prefixed to each low-/full-speed packet.

€4 SYNCPATTERN —— P
NRZI Data de \ /[ \ [\ [\ / P1DO ) PID1

Encoding

Figure 7-35. Sync Pattern (Low-/full-speed)

The SYNC pattern used for high-speed transmission is required to be 15 KJ pairs followed by 2 K’s, for a total
of 32 symbols. Hubs are allowed to drop up to 4 bits from the start of the SYNC pattern when repeating
packets. Hubs must not corrupt any repeated bits of the SYNC field, however. Thus, after being repeated by
5 hubs, a packet’s SYNC field may be as short as 12 bits.

7.1.11 Data Signaling Rate

The high-speed data rate (THSDRAT) is nominally 480.00 Mb/s, with a required bit rate accuracy of £500 ppm.
For hosts, hubs, and high-speed capable functions, the required data-rate accuracy when transmitting at any
speed is £0.05% (500 ppm). The full-speed rate for such hubs and functions is TrprATHS. The low-speed rate for
such hubs is TLDRATHS (a low-speed function must not support high-speed).

The full-speed data rate is nominally 12.000 Mb/s. For full-speed only functions, the required data-rate when
transmitting (TFDRATE) is 12.000 Mb/s £0.25% (2,500 ppm).

The low-speed data rate is nominally 1.50 Mb/s. For low-speed functions, the required data-rate when
transmitting (TLDRATE) is 1.50 Mb/s £1.5% (15,000 ppm). This allows the use of resonators in low cost, low-
speed devices.

Hosts and hubs must be able to receive data from any compliant low-speed, full-speed, or high-speed source.
High-speed capable functions must be able to receive data from any compliant full-speed or high-speed source.
Full-speed only functions must be able to receive data from any compliant full-speed source. Low-speed only
functions must be able to receive data from any compliant low-speed source.

The above accuracy numbers include contributions from all sources:
e Initial frequency accuracy

e Crystal capacitive loading

e Supply voltage on the oscillator

e  Temperature

e Aging

7.1.12 Frame Interval

The USB defines a frame interval (TFRAME) to be 1.000 ms £500 ns long. The USB defines a microframe
interval (THsFrRAM) to be 125.0 us +62.5 ns long. The (micro)frame interval is measured from any point in an
SOF token in one (micro)frame to the same point in the SOF token of the next (micro)frame.
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Since the Host Controller and hubs must meet clock accuracy specification of £0.05%, they will automatically
meet the frame interval requirements without the need for adjustment.

The frame interval repeatability, TRFI (difference in frame interval between two successive frames), must be less
than 0.5 full-speed bit times. The microframe interval repeatability, TusrF1 (difference in the microframe
interval between two successive microframes, measured at the host), must be less than 4 high-speed bit times.
Each hub may introduce at most 4 additional high-speed bits of microframe jitter.

Hubs and certain full-/high-speed functions need to track the (micro)frame interval. They also are required to
have sufficient frame timing adjustment to compensate for their own frequency inaccuracy.

7.1.13 Data Source Signaling

This section covers the timing characteristics of data produced and sent from a port (the data source).

Section 7.1.14 covers the timing characteristics of data that is transmitted through the Hub Repeater section of a
hub. In this section, TPERIOD is defined as the actual period of the data rate that can have a range as defined in
Section 7.1.11.

7.1.13.1 Data Source Jitter

This section describes the maximum allowable data source jitter for low-speed, full-speed, and high-speed
signaling.

7.1.13.1.1 Low-/full-speed Data Source Jitter

The source of data can have some variation (jitter) in the timing of edges of the data transmitted. The time
between any set of data transitions is (N * TPERIOD) = jitter time, where ‘N’ is the number of bits between the
transitions. The data jitter is measured with the same load used for maximum rise and fall times and is measured
at the crossover points of the data lines, as shown in Figure 7-36.

\
Differential / Crossover

Data Lines \ Points

Jitter» | - Consecutive 4:;'/ Integer multiples of Tperiop

Transitions Paired
Transitions

Figure 7-36. Data Jitter Taxonomy

e For full-speed transmissions, the jitter time for any consecutive differential data transitions must be within
12.0 ns and within 1.0 ns for any set of paired (JK-to-next JK transition or KJ-to-next KJ transition)
differential data transitions.

e For low-speed transmissions, the jitter time for any consecutive differential data transitions must be within
125 ns and within £10 ns for any set of paired differential data transitions.

These jitter numbers include timing variations due to differential buffer delay and rise and fall time mismatches,
internal clock source jitter, and noise and other random effects.

7.1.13.1.2 High-speed Data Source Jitter

High-speed data within a single packet must be transmitted with no more jitter than is allowed by the eye
patterns defined in Section 7.1.2 when measured over a sliding window of 480 high-speed bit times.
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7.1.13.2 EOP Width
This section describes low-speed, full-speed, and high-speed EOP width.

7.1.13.2.1 Low-/full-speed EOP

The width of the SEO in the EOP is approximately 2 * TPERIOD. The SEO width is measured with the same load
used for maximum rise and fall times and is measured at the same level as the differential signal crossover
points of the data lines (see Figure 7-37).

TrerioD <———P | | | \ \

/ Data
Differential | —— Crossover
Data Lines \ ( .......................... Level —— 7

Figure 7-37. SEQ for EOP Width Timing

e  For full-speed transmissions, the SEO for EOP width from the transmitter must be between 160 ns and
175 ns.

e For low-speed transmissions, the transmitter’s SEQ for EOP width must be between 1.25 ps and 1.50 us.

These ranges include timing variations due to differential buffer delay and rise and fall time mismatches and to
noise and other random effects.

A receiver must accept any valid EOP. Receiver design should note that the single-ended input threshold
voltage can be different from the differential crossover voltage and the SEQ transitions will in general be
asynchronous to the clock encoded in the NRZI stream.

o A full-speed EOP may have the SEO interval reduced to as little as 82 ns (Treopr) and a low-speed SEO
interval may be as short as 670 ns (TLEOPR).

A hub may tear down connectivity if it sees an SEQ of at least Trst or TrsT followed by a transition to the J state.
A hub must tear down connectivity on any valid EOP.

7.1.13.2.2 High-speed EOP

In high-speed signaling, a bit stuff error is intentionally generated to indicate EOP. A receiver is required to
interpret any bit stuff error as an EOP.

For high-speed packets other than SOF's, the transmitted EOP delimiter is required to be an NRZ byte of
01111111 without bit stuffing. For example, if the last symbol prior to the EOP field is a J, this would lead to an
EOP of KKKKKKKK.

For high-speed SOF's, the transmitted EOP delimiter is required to be 5 NRZ bytes without bit stuffing,
consisting of 01111111 11111111 11111111 11111111 11111111. Thus if the last bit prior to the EOP field is a
J, this would lead to 40 K's on the wire, at the end of which the lines must return to the high-speed Idle state.
This extra EOP length is of no significance to a receiver; it is used for disconnect detection as discussed in
Section 7.1.7.3.

A hub may add at most 4 random bits to the end of the EOP field when repeating a packet. Thus after
5 repeaters, a packet can have up to 20 random bits following the EOP field. A hub, however, must not corrupt
any of the 8 (or 40 in the case of a SOF) required bits of the EOP field.
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7.1.14 Hub Signaling Timings
This section describes low-speed, full-speed, and high-speed hub signaling timings.

7.1.14.1 Low-/full-speed Hub Signaling Timings

The propagation of a full-speed, differential data signal through a hub is shown in Figure 7-38. The downstream
signaling is measured without a cable connected to the port and with the load used for measuring rise and fall
times. The total delay through the upstream cable and hub electronics must be a maximum of 70 ns (THDD1). If
the hub has a detachable USB cable, then the delay (THDD2) through hub electronics and the associated
transmission line must be a maximum of 44 ns to allow for a maximum cable delay of 26 ns (TFSCBL). The
delay through this hub is measured in both the upstream and downstream directions, as shown in Figure 7-38B,
from data line crossover at the input port to data line crossover at the output port.

Data Line
Upstream End Downstrea Crossover
of Cable Port 44— Point
. 50% Point of
¥— Initial Swing
Vss
50% Point of
Initial Swing
Data Line
Downstream, DH“b D'elay Upstream End I:Jub‘DeIay Crossover
ownstream pstream ”
Port ——  70ns (max) of Cable € 70ns (max) 4 Point
Vss
A. Downstream Hub Delay B. Upstream Hub Delay

upstream end of cable ~ upstream port downstream port
Jﬁ; ﬁ_L plug receptacle
¥ ¥

Host or
Hub |: Hub |: z(

downstream signaling———
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[

Function

C. Measurement Points

Figure 7-38. Hub Propagation Delay of Full-speed Differential Signals

Low-speed propagation delay for differential signals is measured in the same fashion as for full-speed signaling.
The maximum low-speed hub delay is 300 ns (TLHDD). This allows for the slower low-speed buffer propagation
delay and rise and fall times. It also provides time for the hub to re-clock the low-speed data in the upstream
direction.

When the hub acts as a repeater, it must reproduce the received, full-speed signal accurately on its outputs. This
means that for differential signals, the propagation delays of a J-to-K state transition must match closely to the
delays of a K-to-J state transition. For full-speed propagation, the maximum difference allowed between these
two delays (THDJ1) (see Figure 7-38 and Figure 7-52) for a hub plus cable is 3.0 ns. Similarly, the difference
in delay between any two J-to-K or K-to-J transitions through a hub (THDJ2) must be less than £1.0 ns. For low-
speed propagation in the downstream direction, the corresponding allowable jitter (TLDHJ1) is 45 ns and
(TLDHJ2) £15 ns, respectively. For low-speed propagation in the upstream direction, the allowable jitter is

145 ns in both cases (TLUHJ1 and TLUHJ2).

An exception to this case is the skew that can be introduced in the Idle-to-K state transition at SOP (TFSOP and
TLSOP) (refer to Section 7.1.7.4). In this case, the delay to the opposite port includes the time to enable the
output buffer. However, the delays should be closely matched to the normal hub delay and the maximum

162

LGE-1010 / Page 190 of 650



Universal Serial Bus Specification Revision 2.0

additional delay difference over a normal J-to-K transition is 5.0 ns. This limits the maximum distortion of the
first bit in the packet.

Note: Because of this distortion of the SOP transition relative to the next K-to-J state transition, the first SYNC
field bit should not be used to synchronize the receiver to the data stream.

The EOP must be propagated through a hub in the same way as the differential signaling. The propagation delay
for sensing an SEQ must be no less than the greater of the J-to-K or K-to-J differential data delay (to avoid
truncating the last data bit in a packet), but not more than 15 ns greater than the larger of these differential delays
at full-speed and 200 ns at low-speed (to prevent creating a bit stuff error at the end of the packet). EOP delays
are shown in Figure 7-53.

Because the sense levels for the SEO state are not at the midpoint of the signal swing, the width of SEO state will
be changed as it passes through each hub. A hub may not change the width of the SEO state in a full-speed EOP
by more than =15 ns (TFHESK), as measured by the difference of the leading edge and trailing edge delays of the
SEO state (see Figure 7-53). An SEO from a low-speed device has long rise and fall times and is subject to
greater skew, but these conditions exist only on the cable from the low-speed device to the port to which it is
connected. Thereafter, the signaling uses full-speed buffers and their faster rise and fall times. The SEO from
the low-speed device cannot be changed by more than 300 ns (TLHESK) as it passes through the hub to which
the device is connected. This time allows for some signal conditioning in the low-speed transceiver to reduce its
sensitivity to noise.

7.1.14.2 High-speed Hub Signaling Timings

When a hub acts as a repeater for high-speed data, the delay of the hub (TusupD) must not exceed 36 high-speed
bit times plus 4 ns (the trace delays allowed for the hub circuit board). This delay is measured from the last bit
of the SYNC field at the input connector to the last bit of the SYNC field at the output connector.

A high-speed hub repeater must digitally resynchronize the buffered data, so there is no allowance for
cumulative jitter (within a single packet) as a high-speed packet passes through multiple repeater stages. Within
a single packet, the jitter must not exceed the eye pattern templates defined in Section 7.1.2 over a sliding
window of 480 high-speed bit times.

Due to the data synchronization process, the propagation delay of a hub repeater is allowed to vary at most

5 high-speed bit times (Tusupv). The delay including this allowed variation must not exceed 36 high-speed bit
times plus 4 ns. (This allows for some uncertainty as to when an incoming packet arrives at the hub with respect
to the phase of the synchronization clock.)
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7.1.15 Receiver Data Jitter

This section describes low-speed, full-speed, and high-speed receiver data jitter.

7.1.15.1 Low-/full-speed Receiver Data Jitter

164

The data receivers for all types of devices must be able to properly decode the differential data in the presence of
jitter. The more of the bit cell that any data edge can occupy and still be decoded, the more reliable the data
transfer will be. Data receivers are required to decode differential data transitions that occur in a window plus
and minus a nominal quarter bit cell from the nominal (centered) data edge position. (A simple 4X over-
sampling state machine DPLL can be built that satisfies these requirements.) This requirement is derived in
Table 7-4 and Table 7-5. The tables assume a worst-case topology of five hubs between the host and device and
the worst-case number of seven bits between transitions. The derived numbers are rounded up for ease of
specification.

Jitter will be caused by the delay mismatches discussed above and by mismatches in the source and destination
data rates (frequencies). The receive data jitter budgets for full- and low-speed are given in Table 7-4 and
Table 7-5. These tables give the value and totals for each source of jitter for both consecutive (next) and paired
transitions. Note that the jitter component related to the source or destination frequency tolerance has been
allocated to the appropriate device (i.e., the source jitter includes bit shifts due to source frequency inaccuracy
over the worst-case data transition interval). The output driver jitter can be traded off against the device clock
accuracy in a particular implementation as long as the jitter specification is met.

The low-speed jitter budget table has an additional line in it because the jitter introduced by the hub to which the
low-speed device is attached is different from all the other devices in the data path. The remaining devices
operate with full-speed signaling conventions (though at low-speed data rate).

Table 7-4. Full-speed Jitter Budget

Jitter Source Full-speed
Next Transition Paired Transition
Each (ns) | Total (ns) | Each (ns) | Total (ns)
Source Driver Jitter 20 20 1.0 1.0
Source Frequency Tolerance (worst-case)| 0.21/bit 15 0.21/bit 3.0
Source Jitter Total 3.5 4.0
Hub Jitter 3.0 15.0 1.0 5.0
Jitter Specification 18.5 9.0
Destination Frequency Tolerance 0.21/bit 15 0.21/bit 3.0
Receiver Jitter Budget 20.0 12.0
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Table 7-5. Low-speed Jitter Budget

Jitter Source Low-speed Upstream
Next Transition Paired Transition
Each (ns)| Total (ns) |Each (ns)| Total (ns)
Function Driver Jitter 25.0 25.0 10.0 10.0
Function Frequency Tolerance (worst-case) 10.0/bit 70.0 10.0/bit 140.0
Source (Function) Jitter Total 95.0 150.0
Hub with Low-speed Device Jitter 45.0 45.0 45.0 45.0
Remaining (full-speed) Hubs’ Jitter 3.0 12.0 1.0 4.0
Jitter Specification 152.0 199.0
Host Frequency Tolerance 1.7/bit 12.0 1.7/bit 24.0
Host Receiver Jitter Budget 164.0 223.0
Low-speed Downstream
Next Transition Paired Transition
Each (ns)| Total (ns) |Each (ns)| Total (ns)

Host Driver Jitter 20 2.0 1.0 1.0
Host Frequency Tolerance (worst-case) 1.7/bit 12.0 1.7/bit 24.0
Source (Host) Jitter Total 14.0 25.0
Hub with Low-speed Device Jitter 45.0 45.0 15.0 15.0
Remaining (full-speed) Hubs’ Jitter 3.0 12.0 1.0 4.0
Jitter Spec 71.0 44.0
Function Frequency Tolerance 10.0/bit 70.0 10.0/bit 140.0
Function Receiver Jitter Budget 141.0 184.0

Note: This table describes the host transmitting at low-speed data rate using full-speed signaling to
a low-speed device through the maximum number of hubs. When the host is directly connected to
the low-speed device, it uses low-speed data rate and low-speed signaling, and the host has to meet
the source jitter listed in the “Jitter Specification” row.

7.1.15.2 High-speed Receiver Data Jitter

A high-speed capable receiver must reliably recover high-speed data when the waveforms at its inputs conform
to the receiver sensitivity eye pattern templates. The templates, which are called out in Section 7.1.2.2, specify
the horizontal and vertical eye pattern opening over a 480 bit time sliding window over the duration of a packet.
Thus, for example, a high-speed receiver within a function must reliably recover data with a peak to peak jitter
of 30%, measured at its B receptacle (as described by Template 4).

Such conformance is tested using Test Mode Test Packet, as defined in Section 7.1.20.

It is a recommended design guideline that a receiver’s BER should be <= 10" when the receiver sensitivity
requirement is met.

7.1.16 Cable Delay

The maximum total one-way signal propagation delay allowed is 30 ns. The allocation for cable delay is 26 ns.
A maximum delay of 3 ns is allowed from a Host or Hub Controller downstream facing transceiver to its
exterior downstream facing connector, while a maximum delay of 1 ns is allowed from the upstream facing
connector to the upstream facing transceiver of any device. For a standard USB detachable cable, the cable
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delay is measured from the Series A connector pins to the Series B connector pins and is no more than 26 ns.
For other cables, the delay is measured from the series A connector to the point where the cable is connected to
the device. The cable delay must also be less than 5.2 ns per meter.

The maximum one-way data delay on a full-speed cable is measured as shown in Figure 7-39.

One-way cable delay for low-speed cables must be less than 18 ns. It is measured as shown in Figure 7-40.
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Figure 7-39. Full-speed Cable Delay
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7.1.17 Cable Attenuation

USB cables must not exceed the loss figures shown in Table 7-6. Between the frequencies called out in the
table, the cable loss should be no more than is shown in the accompanying graph.

Table 7-6. Maximum Allowable Cable Loss

Frequency (MHz) Attenuation (maximum) dB/cable
0.064 0.08
0.256 0.11
0.512 0.13
0.772 0.15
1.000 0.20
4.000 0.39
8.000 0.57
12.000 0.67
24.000 0.95
48.000 1.35
96.000 1.9
200.00 3.2
400.00 5.8

Maximum Allowable Attenuation (dB)

Maximum Allowable Cable Loss

o

e

1
-_—

2
-3 -
4

-5 4

Frequency (log scale) from 10KHz to 1GHz, 1 decade per division

167

LGE-1010 / Page 195 of 650



Universal Serial Bus Specification Revision 2.0

7.1.18 Bus Turn-around Time and Inter-packet Delay

This section describes low-speed, full-speed, and high-speed bus turn-around time and inter-packet delay.

7.1.18.1 Low-/Full-Speed Bus Turn-around Time and Inter-packet Delay

Inter-packet delays are measured from the SEO-to-J transition at the end of the EOP to the J-to-K transition that
starts the next packet.

A device must provide at least two bit times of inter-packet delay. The delay is measured at the responding
device with a bit time defined in terms of the response. This provides adequate time for the device sending the
EOP to drive J for one bit time and then turn off its output buffers.

The host must provide at least two bit times of J after the SEO of an EOP and the start of a new packet (TipD). If
a function is expected to provide a response to a host transmission, the maximum inter-packet delay for a
function or hub with a detachable (TRSPIPD1) cable is 6.5 bit times measured at the Series B receptacle. If the
device has a captive cable, the inter-packet delay (TRSPIPD2) must be less than 7.5 bit times as measured at the
Series A plug. These timings apply to both full-speed and low-speed devices and the bit times are referenced to
the data rate of the packet.

The maximum inter-packet delay for a host response is 7.5 bit times measured at the host’s port pins. There is
no maximum inter-packet delay between packets in unrelated transactions.

7.1.18.2 High-Speed Bus Turn-around Time and Inter-packet Delay

High-speed inter-packet delays are measured from time when the line returns to a high-speed Idle State at the
end of one packet to when the line leaves the high-speed Idle State at the start of the next packet.

When transmitting after receiving a packet, hosts and devices must provide an inter-packet delay of at least 8 bit
times (THsiPDOD) measured at their A or B connectors (receptacles or plugs).

Additionally, if a host is transmitting two packets in a row, the inter-packet delay must be a minimum of 88 bit
times (THsIPDSD), measured at the host’s A receptacle. This will guarantee an inter-packet delay of at least 32 bit
times at all devices (when receiving back to back packets). The maximum inter-packet delay provided by a host
is 192 bit times within a transaction (THsrsPIPD1) measured at the A receptacle. When a host responds to a
packet from a device, it will provide an inter-packet delay of at most 192 bit times measured at the A receptacle.
There is no maximum inter-packet delay between packets in unrelated transactions.

When a device with a detachable cable responds to a packet from a host, it will provide an inter-packet delay of
at most 192 bit times measured at the B receptacle. If the device has a captive cable, it will provide an inter-
packet delay of at most 192 bit times plus 52 ns (2 times the max cable length) measured at the cable's A plug
(THSRSPIPD2).

7.1.19 Maximum End-to-end Signal Delay
This section describes low-speed, full-speed, and high-speed end-to-end delay.

7.1.19.1 Low-/full-speed End-to-end Signal Delay

A device expecting a response to a transmission will invalidate the transaction if it does not see the start-of-
packet (SOP) transition within the timeout period after the end of the transmission (after the SE0O-to-J state
transition in the EOP). This can occur between an IN token and the following data packet or between a data
packet and the handshake packet (refer to Chapter 8). The device expecting the response will not time out
before 16 bit times but will timeout before 18 bit times (measured at the data pins of the device from the SE0-to-
J transition at the end of the EOP). The host will wait at least 18 bit times for a response to start before it will
start a new transaction.
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Figure 7-41 depicts the configuration of six signal hops (cables) that results in allowable worst-case signal delay.
The maximum propagation delay from the upstream end of a hub’s cable to any downstream facing connector on
that hub is 70 ns.

Host Hub 1 Hub 2 Hub 3 Hub 4 Hub 5 Function
Controller \/ \/ \/ \/
o —

Cable Delay + Hub Delay < 70ns (each) Propagation Delay < 30ns

Figure 7-41. Worst-case End-to-end Signal Delay Model for Low-/full-speed

7.1.19.2 High-Speed End-to-end Delay

A high-speed host or device expecting a response to a transmission must not timeout the transaction if the inter-
packet delay is less than 736 bit times, and it must timeout the transaction if no signaling is seen within 816 bit
times.

These timeout limits allow a response to be seen even for the worst-case round trip signal delay. In high-speed
mode, the worst-case round trip signal delay model is the sum of the following components:

12 max length cable delays (6 cables) =312 ns

10 max delay hubs (5 hubs) = 40 ns + 360 bit times
1 max device response time = 192 bit times
Worst-case round trip delay =352 ns +552 bit times = 721 bit times

7.1.20 Test Mode Support

To facilitate compliance testing, host controllers, hubs, and high-speed capable functions must support the
following test modes:

e Test mode Test SEO NAK: Upon command, a port’s transceiver must enter the high-speed receive mode
and remain in that mode until the exit action is taken. This enables the testing of output impedance, low
level output voltage, and loading characteristics. In addition, while in this mode, upstream facing ports (and
only upstream facing ports) must respond to any IN token packet with a NAK handshake (only if the packet
CRC is determined to be correct) within the normal allowed device response time. This enables testing of
the device squelch level circuitry and, additionally, provides a general purpose stimulus/response test for
basic functional testing.

e Test mode Test J: Upon command, a port’s transceiver must enter the high-speed J state and remain in that
state until the exit action is taken. This enables the testing of the high output drive level on the D+ line.

e Test mode Test K: Upon command, a port’s transceiver must enter the high-speed K state and remain in
that state until the exit action is taken. This enables the testing of the high output drive level on the D- line.

e Test mode Test Packet: Upon command, a port must repetitively transmit the following test packet until
the exit action is taken. This enables the testing of rise and fall times, eye patterns, jitter, and any other
dynamic waveform specifications.

The test packet is made up by concatenating the following strings. (Note: For J/K NRZI data, and for NRZ
data, the bit on the left is the first one transmitted. “S” indicates that a bit stuff occurs, which inserts an
“extra” NRZI data bit. “* N” is used to indicate N occurrences of a string of bits or symbols.)
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NRZI Symbols NRZ Bit Strings Number of NRZ Bits
(Fields)

{KJ* 15}, KK {00000000 * 3}, 00000001 32
(SYNC)

KKIJKJKKK 11000011 8
(DATAO PID)

JKJKJKIK * 9 00000000 * 9 72
JIKKJIJKK * 8 01010101 * 8 64
JIJJKKKK * 8 01110111 *8 64
JIJJJJJKKKKKKK * 8 0, {111111S *15}, 111111 97
JIJIIIIK * 8 S, 1111118, {0111111S * 7} 55
{JKKKKKKK * 10}, JK 00111111, {SO111111 *9}, SO 72
JIJKKKJJIKKKKIKKK 0110110101110011 16
(CRC16)

J111133) 01111111 8
(EOP)

A port in Test_Packet mode must send this packet repetitively. The inter-packet timing must be no less than
the minimum allowable inter-packet gap as defined in Section 7.1.18 and no greater than 125 ps.

e  Test mode Test Force Enable: Upon command, downstream facing hub ports (and only downstream
facing hub ports) must be enabled in high-speed mode, even if there is no device attached. Packets arriving
at the hub’s upstream facing port must be repeated on the port which is in this test mode. This enables
testing of the hub’s disconnect detection; the disconnect detect bit can be polled while varying the loading
on the port, allowing the disconnect detection threshold voltage to be measured.

Test Mode Entry and Exit

Test mode of a port is entered by using a device specific standard request (for an upstream facing port) or a port
specific hub class request (for a downstream facing port). The device standard request

SetFeature(TEST MODE) is defined in Section 9.4.9. The hub class request SetPortFeature(PORT TEST) is
defined in Section 11.24.2.13. All high-speed capable devices/hubs must support these requests. These requests
are not supported for non-high-speed devices.

The transition to test mode must be complete no later than 3 ms after the completion of the status stage of the
request.

For an upstream facing port, the exit action is to power cycle the device. For a downstream facing port, the exit
action is to reset the hub, as defined in Section 11.24.2.13.
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7.2 Power Distribution

This section describes the USB power distribution specification.

7.2.1 Classes of Devices

The power source and sink requirements of different device classes can be simplified with the introduction of the
concept of a unit load. A unit load is defined to be 100 mA. The number of unit loads a device can draw is an
absolute maximum, not an average over time. A device may be either low-power at one unit load or high-
power, consuming up to five unit loads. All devices default to low-power. The transition to high-power is under
software control. It is the responsibility of software to ensure adequate power is available before allowing
devices to consume high-power.

The USB supports a range of power sourcing and power consuming agents; these include the following:

e Root port hubs: Are directly attached to the USB Host Controller. Hub power is derived from the same
source as the Host Controller. Systems that obtain operating power externally, either AC or DC, must
supply at least five unit loads to each port. Such ports are called high-power ports. Battery-powered
systems may supply either one or five unit loads. Ports that can supply only one unit load are termed low-
power ports.

e Bus-powered hubs: Draw all of their power for any internal functions and downstream facing ports from
VBUS on the hub’s upstream facing port. Bus-powered hubs may only draw up to one unit load upon
power-up and five unit loads after configuration. The configuration power is split between allocations to the
hub, any non-removable functions and the external ports. External ports in a bus-powered hub can supply
only one unit load per port regardless of the current draw on the other ports of that hub. The hub must be
able to supply this port current when the hub is in the Active or Suspend state.

e Self-powered hubs: Power for the internal functions and downstream facing ports does not come from
VBUS. However, the USB interface of the hub may draw up to one unit load from VBUS on its upstream
facing port to allow the interface to function when the remainder of the hub is powered down. Hubs that
obtain operating power externally (from the USB) must supply five unit loads to each port. Battery-
powered hubs may supply either one or five unit loads per port.

e Low-power bus-powered functions: All power to these devices comes from VBUS. They may draw no
more than one unit load at any time.

e High-power bus-powered functions: All power to these devices comes from VBUS. They must draw no
more than one unit load upon power-up and may draw up to five unit loads after being configured.

e Self-powered functions: May draw up to one unit load from VBUS to allow the USB interface to function
when the remainder of the function is powered down. All other power comes from an external (to the USB)
source.

No device shall supply (source) current on VBUS at its upstream facing port at any time. From VBUS on its
upstream facing port, a device may only draw (sink) current. They may not provide power to the pull-up resistor
on D+/D- unless VBUS is present (see Section 7.1.5). When VBUS is removed, the device must remove power
from the D+/D- pull-up resistor within 10 seconds. On power-up, a device needs to ensure that its upstream
facing port is not driving the bus, so that the device is able to receive the reset signaling. Devices must also
ensure that the maximum operating current drawn by a device is one unit load, until configured. Any device that
draws power from the bus must be able to detect lack of activity on the bus, enter the Suspend state, and reduce
its current consumption from VBUS (refer to Section 7.2.3 and Section 9.2.5.1).
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7.2.1.1 Bus-powered Hubs

Bus-powered hub power requirements can be met with a power control circuit such as the one shown in

Figure 7-42. Bus-powered hubs often contain at least one non-removable function. Power is always available to
the hub’s controller, which permits host access to power management and other configuration registers during
the enumeration process. A non-removable function(s) may require that its power be switched, so that upon
power-up, the entire device (hub and non-removable functions) draws no more than one unit load. Power
switching on any non-removable function may be implemented either by removing its power or by shutting off
the clock. Switching on the non-removable function is not required if the aggregate power drawn by it and the
Hub Controller is less than one unit load. However, as long as the hub port associated with the function is in the
Power-off state, the function must be logically reset and the device must appear to be not connected. The total
current drawn by a bus-powered device is the sum of the current to the Hub Controller, any non-removable
function(s), and the downstream facing ports.

Figure 7-42 shows the partitioning of power based upon the maximum current draw (from upstream) of five unit
loads: one unit load for the Hub Controller and the non-removable function and one unit load for each of the
external downstream facing ports. If more than four external ports are required, then the hub will need to be
self-powered. If the non-removable function(s) and Hub Controller draw more than one unit load, then the
number of external ports must be appropriately reduced. Power control to a bus-powered hub may require a
regulator. If present, the regulator is always enabled to supply the Hub Controller. The regulator can also power
the non-removable functions(s). Inrush current limiting must also be incorporated into the regulator subsystem.

[t |

|-t - Downstream
Upstream < » Hub Controller P Data Ports
Data Port -t |

Iportetrl

R ——
1
1 .
On/Off
pstream VBUs g, ! Reculator ! Non-removable
5 unit loads | egulator .
. 1 Function
o= 1 1 unit load - Iportctrl
On/Off
> —
i 1 unit load/port L
Switch P p» Downstream VBUS

P

Figure 7-42. Compound Bus-powered Hub

Power to external downstream facing ports of a bus-powered hub must be switched. The Hub Controller
supplies a software controlled on/off signal from the host, which is in the “off” state when the device is powered
up or after reset signaling. When switched to the “on” state, the switch implements a soft turn-on function that
prevents excessive transient current from being drawn from upstream. The voltage drop across the upstream
cable, connectors, and switch in a bus-powered hub must not exceed 350 mV at maximum rated current.

7.2.1.2 Self-powered Hubs

Self-powered hubs have a local power supply that furnishes power to any non-removable functions and to all
downstream facing ports, as shown in Figure 7-43. Power for the Hub Controller, however, may be supplied
from the upstream VBUS (a “hybrid” powered hub) or the local power supply. The advantage of supplying the
Hub Controller from the upstream supply is that communication from the host is possible even if the device’s
power supply remains off. This makes it possible to differentiate between a disconnected and an unpowered

device. If the hub draws power for its upstream facing port from VBUS, it may not draw more than one unit
load.
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Figure 7-43. Compound Self-powered Hub

The number of ports that can be supported is limited only by the address capability of the hub and the local
supply.

Self-powered hubs may experience loss of power. This may be the result of disconnecting the power cord or
exhausting the battery. Under these conditions, the hub may force a re-enumeration of itself as a bus-powered
hub. This requires the hub to implement port power switching on all external ports. When power is lost, the hub
must ensure that upstream current does not exceed low-power. All the rules of a bus-powered hub then apply.

7.2.1.2.1 Over-current Protection

The host and all self-powered hubs must implement over-current protection for safety reasons, and the hub must
have a way to detect the over-current condition and report it to the USB software. Should the aggregate current
drawn by a gang of downstream facing ports exceed a preset value, the over-current protection circuit removes
or reduces power from all affected downstream facing ports. The over-current condition is reported through the
hub to Host Controller, as described in Section 11.12.5. The preset value cannot exceed 5.0 A and must be
sufficiently above the maximum allowable port current such that transient currents (e.g., during power up or
dynamic attach or reconfiguration) do not trip the over-current protector. If an over-current condition occurs on
any port, subsequent operation of the USB is not guaranteed, and once the condition is removed, it may be
necessary to reinitialize the bus as would be done upon power-up. The over-current limiting mechanism must be
resettable without user mechanical intervention. Polymeric PTCs and solid-state switches are examples of
methods, which can be used for over-current limiting.

7.2.1.3 Low-power Bus-powered Functions

A low-power function is one that draws up to one unit load from the USB cable when operational. Figure 7-44
shows a typical bus-powered, low-power function, such as a mouse. Low-power regulation can be integrated
into the function silicon. Low-power functions must be capable of operating with input VBUS voltages as low as
4.40 V, measured at the plug end of the cable.
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Figure 7-44. Low-power Bus-powered Function

7.2.1.4 High-power Bus-powered Functions

A function is defined as being high-power if, when fully powered, it draws over one but no more than five unit
loads from the USB cable. A high-power function requires staged switching of power. It must first come up in
a reduced power state of less than one unit load. At bus enumeration time, its total power requirements are
obtained and compared against the available power budget. If sufficient power exists, the remainder of the
function may be powered on. A typical high-power function is shown in Figure 7-45. The function’s electronics
have been partitioned into two sections. The function controller contains the minimum amount of circuitry
necessary to permit enumeration and power budgeting. The remainder of the function resides in the function
block. High-power functions must be capable of operating in their low-power (one unit load) mode with an
input voltage as low as 4.40 V, so that it may be detected and enumerated even when plugged into a bus-
powered hub. They must also be capable of operating at full power (up to five unit loads) with a VBUS voltage
of 4.75 V, measured at the upstream plug end of the cable.

Upstream - -
Data Port @ Function Controller Function
| I
On/Off
1 unit load,
(max)

Figure 7-45. High-power Bus-powered Function

7.2.1.5 Self-powered Functions
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Figure 7-46 shows a typical self-powered function. The function controller is powered either from the upstream
bus via a low-power regulator or from the local power supply. The advantage of the former scheme is that it
permits detection and enumeration of a self-powered function whose local power supply is turned off. The
maximum upstream power that the function controller can draw is one unit load, and the regulator block must
implement inrush current limiting. The amount of power that the function block may draw is limited only by the
local power supply. Because the local power supply is not required to power any downstream bus ports, it does
not need to implement current limiting, soft start, or power switching.
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Figure 7-46. Self-powered Function

7.2.2 Voltage Drop Budget
The voltage drop budget is determined from the following:

e The voltage supplied by high-powered hub ports is 4.75 V to 5.25 V.
e The voltage supplied by low-powered hub ports is 4.4 V to 5.25 V.

e Bus-powered hubs can have a maximum drop of 350 mV from their cable plug (where they attach to a
source of power) to their output port connectors (where they supply power).

e  The maximum voltage drop (for detachable cables) between the A-series plug and B-series plug on VBUS is
125 mV (VBUSD).

e  The maximum voltage drop for all cables between upstream and downstream on GND is 125 mV (VGNDD).

e All hubs and functions must be able to provide configuration information with as little as 4.40 V at the
connector end of their upstream cables. Only low-power functions need to be operational with this
minimum voltage.

e Functions drawing more than one unit load must operate with a 4.75 V minimum input voltage at the
connector end of their upstream cables.

Figure 7-47 shows the minimum allowable voltages in a worst-case topology consisting of a bus-powered hub
driving a bus-powered function.

Host or Bus-powered Low-power
Powered Hub Hub Function
4.735V 4.640V * 4.397V 4.378V
4750\/\ ;/ ‘4.625V 4.400V\_ K4‘375V
4.500V 4.350V

0.000v \0 0.000V

015V 0.110V 0.125v 0.003v  0.022v [ 0.025V

< Referenced Referenced >
to Source to Hub

*Under transient conditions, supply at hub can drop from 4.400V to 4.070V

Figure 7-47. Worst-case Voltage Drop Topology (Steady State)
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7.2.3 Power Control During Suspend/Resume
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Suspend current is a function of unit load allocation. All USB devices initially default to low-power. Low-
power devices or high-power devices operating at low-power are limited to 500 LA of suspend current. If the
device is configured for high-power and enabled as a remote wakeup source, it may draw up to 2.5 mA during
suspend. When computing suspend current, the current from VBUS through the bus pull-up and pull-down
resistors must be included. Configured bus-powered hubs may also consume a maximum of 2.5 mA, with

500 YA allocated to each available external port and the remainder available to the hub and its internal functions.
If a hub is not configured, it is operating as a low-power device and must limit its suspend current to 500 pA.

While in the Suspend state, a device may briefly draw more than the average current. The amplitude of the
current spike cannot exceed the device power allocation 100 mA (or 500 mA). A maximum of 1.0 second is
allowed for an averaging interval. The average current cannot exceed the average suspend current limit (ICCSH
or ICCSL, see Table 7-7) during any 1.0-second interval (TSUSAVG1). The profile of the current spike is
restricted so the transient response of the power supply (which may be an efficient, low-capacity, trickle power
supply) is not overwhelmed. The rising edge of the current spike must be no more than 100 mA/us.
Downstream facing ports must be able to absorb the 500 mA peak current spike and meet the voltage droop
requirements defined for inrush current during dynamic attach (see Section 7.2.4.1). Figure 7-48 illustrates a
typical example profile for an averaging interval. If the supply to the pull-up resistor on D+/D- is derived from
VBUS, then the suspend current will never go to zero because the pull-up and pull-down resistors will always
draw power.

ICONFIGURED(max)
Edge rate must Current Spike

not exceed

100mA/us [ ™
Iccs(HIL)

I 0 mA
< Averaging Interval P
time

Figure 7-48. Typical Suspend Current Averaging Profile

Devices are responsible for handling the bus voltage reduction due to the inductive and resistive effects of the
cable. When a hub is in the Suspend state, it must still be able to provide the maximum current per port (one
unit load of current per port for bus-powered hubs and five unit loads per port for self-powered hubs). This is
necessary to support remote wakeup-capable devices that will power-up while the remainder of the system is
still suspended. Such devices, when enabled to do remote wakeup, must drive resume signaling upstream within
10 ms of starting to draw the higher, non-suspend current. Devices not capable of remote wakeup must draw the
higher current only when not suspended.

When devices wakeup, either by themselves (remote wakeup) or by seeing resume signaling, they must limit the
inrush current on VBUS. The target maximum droop in the hub VBUS is 330 mV. The device must have
sufficient on-board bypass capacitance or a controlled power-on sequence such that the current drawn from the
hub does not exceed the maximum current capability of the port at any time while the device is waking up.
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7.2.4 Dynamic Attach and Detach

The act of plugging or unplugging a hub or function must not affect the functionality of another device on other
segments of the network. Unplugging a function will stop the transaction between that function and the host.
However, the hub to which this function was attached will recover from this condition and will alert the host that
the port has been disconnected.

7.2.4.1 Inrush Current Limiting

When a function or hub is plugged into the network, it has a certain amount of on-board capacitance between
VBUS and ground. In addition, the regulator on the device may supply current to its output bypass capacitance
and to the function as soon as power is applied. Consequently, if no measures are taken to prevent it, there could
be a surge of current into the device which might pull the VBUS on the hub below its minimum operating level.
Inrush currents can also occur when a high-power function is switched into its high-power mode. This problem
must be solved by limiting the inrush current and by providing sufficient capacitance in each hub to prevent the
power supplied to the other ports from going out of tolerance. An additional motivation for limiting inrush
current is to minimize contact arcing, thereby prolonging connector contact life.

The maximum droop in the hub VBUS is 330 mV, or about 10% of the nominal signal swing from the function.
In order to meet this requirement, the following conditions must be met:

e The maximum load (CRPB) that can be placed at the downstream end of a cable is 10 UF in parallel with
44 Q. The 10 UF capacitance represents any bypass capacitor directly connected across the VBUS lines in
the function plus any capacitive effects visible through the regulator in the device. The 44 € resistance
represents one unit load of current drawn by the device during connect.

e If more bypass capacitance is required in the device, then the device must incorporate some form of VBUS
surge current limiting, such that it matches the characteristics of the above load.

e The hub downstream facing port VBUS power lines must be bypassed (CHPB) with no less than 120 UF of
low-ESR capacitance per hub. Standard bypass methods should be used to minimize inductance and
resistance between the bypass capacitors and the connectors to reduce droop. The bypass capacitors
themselves should have a low dissipation factor to allow decoupling at higher frequencies.

The upstream facing port of a hub is also required to meet the above requirements. Furthermore, a bus-powered
hub must provide additional surge limiting in the form of a soft-start circuit when it enables power to its
downstream facing ports.

A high-power bus-powered device that is switching from a lower power configuration to a higher power
configuration must not cause droop > 330 mV on the VBUS at its upstream hub. The device can meet this by
ensuring that changes in the capacitive load it presents do not exceed 10 uF.

Signal pins are protected from excessive currents during dynamic attach by being recessed in the connector such
that the power pins make contact first. This guarantees that the power rails to the downstream device are
referenced before the signal pins make contact. In addition, the signal lines are in a high-impedance state during
connect, so that no current flows for standard signal levels.

7.2.4.2 Dynamic Detach

When a device is detached from the network with power flowing in the cable, the inductance of the cable will
cause a large flyback voltage to occur on the open end of the device cable. This flyback voltage is not
destructive. Proper bypass measures on the hub ports will suppress any coupled noise. The frequency range of
this noise is inversely dependent on the length of the cable, to a maximum of 60 MHz for a one-meter cable.
This will require some low capacitance, very low inductance bypass capacitors on each hub port connector. The
flyback voltage and the noise it creates is also moderated by the bypass capacitance on the device end of the
cable. Also, there must be some minimum capacitance on the device end of the cable to ensure that the
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inductive flyback on the open end of the cable does not cause the voltage on the device end to reverse polarity.
A minimum of 1.0 pF is recommended for bypass across VBUS.

7.3 Physical Layer

The physical layer specifications are described in the following subsections.

7.3.1 Regulatory Requirements
All USB devices should be designed to meet the applicable regulatory requirements.

7.3.2 Bus Timing/Electrical Characteristics

Table 7-7. DC Electrical Characteristics

Parameter Symbol Conditions Min. Max. Units
Supply Voltage:
High-power Port VBUS Note 2, Section 7.2.1 4.75 5.25
Low-power Port VBUS Note 2, Section 7.2.1 4.40 5.25
Supply Current:
High-power Hub Port (out) ICCPRT Section 7.2.1 500 mA
Low-power Hub Port (out) IccuPT Section 7.2.1 100 mA
High-power Function (in) ICCHPF Section 7.2.1 500 mA
Low-power Function (in) IccLpPF Section 7.2.1 100 mA
Unconfigured Function/Hub (in) | IccINIT Section 7.2.1.4 100 mA
Suspended High-power Device | IccsH Section 7.2.3; Note 15 25 mA
Suspended Low-power Device IccsL Section 7.2.3 500 LA
Input Levels for Low-/full-speed:
High (driven) VIH Note 4, Section 7.1.4 2.0 \Y,
High (floating) VIHZ Note 4, Section 7.1.4 2.7 3.6 \Y,
Low ViL Note 4, Section 7.1.4 0.8 \Y
Differential Input Sensitivity VDI |(D+)-(D-)|; 0.2 \Y,
Figure 7-19; Note 4
Differential Common Mode VcMm Includes VDI range; 0.8 25 \%
Range Figure 7-19; Note 4
Input Levels for High-speed:
High-speed squelch detection VHSSQ Section 7.1.7.2 100 150 mV
threshold (differential signal (specification refers to
amplitude) differential signal
amplitude)
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Table 7-7. DC Electrical Characteristics (Continued)

Parameter Symbol Conditions Min. Max. Units
High speed disconnect VHSDSC Sectigp 7..1 7.2 525 625 mV
detection threshold (differential (specification refers to
signal amplitude) differential signal
amplitude)
High-speed differential input Section 7.1.7.2
signaling levels Specified by eye pattern
templates

High-speed data signaling VHSCM Section 7.1.4.2 -50 500 mV
common mode voltage range
(guideline for receiver)

Output Levels for Low-/full-speed:
Low VoL Note 4, 5, Section 7.1.1 0.0 0.3 v
High (Driven) VOH Note 4, 6, Section 7.1.1 2.8 3.6 \%
SE1 VosE1 Section 7.1.1 0.8 v
Output Signal Crossover VCRs Measured as in 1.3 2.0 \%
Voltage Figure 7-8; Note 10

Output Levels for High-speed:
High-speed idle level VHsol Section 7.1.7.2 -10.0 10.0 mV
High-speed data signaling high | VHsoH Section 7.1.7.2 360 440 mV
High-speed data signaling low VHsoL Section 7.1.7.2 -10.0 10.0 mV
Chirp J level (differential VCHIRPY Section 7.1.7.2 700 1100 mV
voltage)
Chirp K level (differential VCHIRPK Section 7.1.7.2 -900 -500 mV
voltage)

Decoupling Capacitance:
Downstream Facing Port CHPB VBUS to GND, 120 uF
Bypass Capacitance (per hub) Section 7.2.4.1
Upstream Facing Port Bypass CrrB VBUS to GND: Note 9, 1.0 10.0 uF
Capacitance Section 7.2.4.1

Input Capacitance for Low-/full-speed:
Downstream Facing Port CIND Note 2; Section 7.1.6.1 150 pF
Upstream Facing Port (w/o CiNuB Note 3; Section 7.1.6.1 100 pF
cable)
Transceiver edge rate control CEDGE Section 7.1.6.1 75 pF
capacitance
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Table 7-7. DC Electrical Characteristics (Continued)

Parameter Symbol Conditions Max. Units

Input Impedance for High-speed:

TDR spec for high-speed Section 7.1.6.2

termination
Terminations:

Bus Pull-up Resistor on RpPuU 1.5 kQ t5% 1.425 1.575 kQ

Upstream Facing Port Section 7.1.5

Bus Pull-down Resistor on RPD 15 kQ £5% 14.25 15.75 kQ

Downstream Facing Port Section 7.1.5

Input impedance exclusive of ZINP Section 7.1.6 kQ

pullup/pulldown (for low-/full-

speed)

Termination voltage for VTERM Section 7.1.5 3.6 \%

upstream facing port pullup

(RpPu)
Terminations in High-speed:

Termination voltage in high- VHSTERM | Section 7.1.6.2 10 mV

speed

Table 7-8. High-speed Source Electrical Characteristics
Parameter Symbol Conditions Max. Units

Driver Characteristics:

Rise Time (10% - 90%) THSR Section 7.1.2 ps

Fall Time (10% - 90%) THsF Section 7.1.2 ps

Driver waveform requirements Specified by eye pattern

templates in Section 7.1.2

Driver Output Resistance ZHSDRV Section 7.1.1.1 40.5 49.5 Q

(which also serves as high-

speed termination)
Clock Timings:

High-speed Data Rate THSDRAT | Section 7.1.11 479.760 480.240 Mb/s

Microframe Interval THSFRAM | Section 7.1.12 124.9375 125.0625 us

Consecutive Microframe THSRFI Section 7.1.12 4 high-

Interval Difference speed bit

times

High-speed Data Timings:

Data source jitter Source and receiver jitter specified by the eye pattern

) - templates in Section 7.1.2.2
Receiver jitter tolerance
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Table 7-9. Full-speed Source Electrical Characteristics

Parameter Symbol Conditions Min. Max. Units
Driver Characteristics:
Rise Time TFR Figure 7-8; Figure 7-9 4 20 ns
Fall Time TFF Figure 7-8; Figure 7-9 4 20 ns
Differential Rise and Fall Time TFRFM (TFR/TFF) Note 10, 90 111.11 %
Matching Section 7.1.2
Driver Output Resistance for ZDRV Section 7.1.1.1 28 44 Q
driver which is not high-speed
capable
Clock Timings:
Full-speed Data Rate for hubs TFDRATHS | Average bit rate, 11.9940 12.0060 Mb/s
and devices which are high- Section 7.1.11
speed capable
Full-speed Data Rate for TFDRATE | Average bit rate, 11.9700 12.0300 | Mb/s
devices which are not high- Section 7.1.11
speed capable
Frame Interval TFRAME Section 7.1.12 0.9995 1.0005 ms
Consecutive Frame Interval TRFI No clock adjustment 42 ns
Jitter Section 7.1.12
Full-speed Data Timings:
Source Jitter Total (including Note 7, 8, 12, 10;
frequency tolerance): Measured as in
To Next Transition Tou1 Figure 7-49; -3.5 3.5 ns
For Paired Transitions TbJ2 -4 4 ns
Source Jitter for Differential TFDEOP Note 8; Figure 7-50; -2 5 ns
Transition to SEO Transition Note 11
Receiver Jitter: Note 8; Figure 7-51
To Next Transition TUrR1 -18.5 18.5 ns
For Paired Transitions TJR2 -9 9 ns
Source SEO interval of EOP TreoPT | Figure 7-50 160 175 ns
Receiver SEO interval of EOP TFEOPR Note 13; Section 7.1.13.2; 82 ns
Figure 7-50
Width of SEO interval during TFsT Section 7.1.4 14 ns
differential transition
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Table 7-10. Low-speed Source Electrical Characteristics

Parameter Symbol Conditions Min. Max. Units

Driver Characteristics:

Transition Time:

Rise Time TLR Measured as in Figure 7-8 75 300 ns
Fall Time TLF 75 300 ns
Rise and Fall Time Matching TLRFM (TLR/TLF) Note 10 80 125 %
Upstream Facing Port CLINUA Note 1; Section 7.1.6 200 450 pF
(w/cable, low-speed only)
Clock Timings:
Low-speed Data Rate for hubs TLDRATHS | Section 7.1.11 1.49925 1.50075| Mb/s

which are high-speed capable

Low-speed Data Rate for TLDRATE Section 7.1.11 1.4775 1.5225 | Mb/s
devices which are not high-
speed capable

Low-speed Data Timings:

Upstream facing port source Note 7, 8; Figure 7-49
Jitter Total (including frequency
tolerance):

To Next Transition TubJ1 -95 95 ns
For Paired Transitions TubJ2 -150 150 ns

Upstream facing port source TLpeor | Note 8; Figure 7-50; -40 100 ns
Jitter for Differential Transition Note 11
to SEO Transition

Upstream facing port differential Note 8; Figure 7-51
Receiver Jitter:
To Next Transition TDJR1 -75 75 ns
For Paired Transitions TDJUR2 -45 45 ns
Downstream facing port source Note 7, 8; Figure 7-49
Jitter Total (including frequency | Tppyq 25 25 ns
tolerance): TooJ2 -14 14 ns

To Next Transition
For Paired Transitions

Downstream facing port source Note 8; Figure 7-50; ns
Jitter for Differential Transition Note 11
to SEO Transition

Downstream facing port Note 8; Figure 7-50

Differential Receiver Jitter:
To Next Transition TUJR 152 152 ns
For Paired Transitions TUJR2 -200 200 ns
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Table 7-10. Low-speed Source Electrical Characteristics (Continued)

Parameter Symbol Conditions Min. Max. Units
Source SEO interval of EOP TLEOPT Figure 7-50 1.25 1.50 us
Receiver SEO interval of EOP TLEOPR Note 13; Section 7.1.13.2; 670 ns
Figure 7-50
Width of SEO interval during TLST Section 7.1.4 210 ns
differential transition
Table 7-11. Hub/Repeater Electrical Characteristics
Parameter Symbol Conditions Min. Max. Units
Full-speed Hub Characteristics (as measured at connectors):
Driver Characteristics: Upstream facing port and
(Refer to Table 7-9) downstream facing ports
configured as full-speed
Hub Differential Data Delay: Note 7, 8
(with cable) THDD1 Figure 7-52A 70 ns
(without cable) THDD2 Figure 7-52B 44 ns
Hub Differential Driver Jitter: Note 7, 8; Figure 7-52,
(including cable) Section 7.1.14
To Next Transition THDJ1 -3 3 ns
For Paired Transitions THDJ2 -1 1 ns
Data Bit Width Distortion after SOP | TFsopP Note 8; Figure 7-52 -5 5 ns
Hub EOP Delay Relative to THDD TreorD | Note 8; Figure 7-53 0 15 ns
Hub EOP Output Width Skew TFHESK | Note 8; Figure 7-53 -15 15 ns
Low-speed Hub Characteristics (as measured at connectors):
Driver Characteristics: Downstream facing ports
(Refer to Table 7-10) configured as low-speed
Hub Differential Data Delay TLHDD Note 7, 8; Figure 7-52 300 ns
Hub Differential Driver Jitter Note 7, 8; Figure 7-52
(including cable):
Downstream facing port :
To Next Transition TLDHJ1 -45 45 ns
For Paired Transitions TLDHJ2 -15 15 ns
Upstream facing port:
To Next Transition TLUHJ1 -45 45 ns
For Paired Transitions TLUHJ2 -45 45 ns
Data Bit Width Distortion after SOP | TLsop Note 8; Figure 7-52 -60 60 ns
Hub EOP Delay Relative to THDD TLEOPD | Note 8; Figure 7-53 0 200 ns
Hub EOP Output Width Skew TLHESK Note 8; Figure 7-53 -300 +300 ns
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Table 7-11. Hub/Repeater Electrical Characteristics (Continued)

Parameter Symbol Conditions Min. Max. Units

High-speed Hub Characteristics (as measured at connectors):

Driver Characteristics: Upstream facing port and
(Refer to Table 7-8) downstream facing ports
configured as high-speed
Hub Data Delay (without cable): THsSHDD | Section 7.1.14.2 36 high-
speed bit
times +
4ns
Hub Data Jitter: Specified by eye patterns
in Section 7.1.2.2
Hub Delay Variation Range: THsHDV | Section 7.1.14.2 5 high-
speed bit
times
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Table 7-12. Cable Characteristics (Note 14)

Parameter Symbol Conditions Min Max Units

VBuS Voltage drop for VBUSD Section 7.2.2 125 mV
detachable cables
GND Voltage drop (for all VGNDD Section 7.2.2 125 mV
cables)
Differential Cable Impedance Zo (90 Q £15%); 76.5 103.5 Q
(full-/high-speed)
Common mode cable Zcm (30 Q £30%); 21.0 39.0 Q
impedance (full-/high-speed)
Cable Delay (one way) Section 7.1.16

Full-/high-speed TFscBL 26 ns

Low-speed TLscBL 18 ns
Cable Skew TSKEW Section 7.1.3 100 ps
Unmated Contact Capacitance Cuc Section 6.7 2 pF
Cable loss Specified by table and

graph in Section 7.1.17

Note 1:  Measured at A plug.

Note 2: Measured at A receptacle.

Note 3: Measured at B receptacle.

Note 4: Measured at A or B connector.

Note 5: Measured with RL of 1.425 kQ2 to 3.6 V.

Note 6: Measured with RL of 14.25 kQ to GND.

Note 7:  Timing difference between the differential data signals.
Note 8: Measured at crossover point of differential data signals.

Note 9:  The maximum load specification is the maximum effective capacitive load allowed that meets the target
V/Bus drop of 330 mV.

Note 10: Excluding the first transition from the Idle state.

Note 11: The two transitions should be a (nominal) bit time apart.
Note 12: For both transitions of differential signaling.

Note 13: Must accept as valid EOP.

Note 14: Single-ended capacitance of D+ or D- is the capacitance of D+/D- to all other conductors and, if present,
shield in the cable. That is, to measure the single-ended capacitance of D+, short D-, VBUS, GND, and
the shield line together and measure the capacitance of D+ to the other conductors.

Note 15: For high power devices (non-hubs) when enabled for remote wakeup.
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Table 7-13. Hub Event Timings

Event Description Symbol Conditions Min Max Unit
Time to detect a downstream TDCNN Section 11.5 and
facing port connect event Section 7.1.7.3
Awake Hub 25 2000 us
Suspended Hub 25 12000 us
Time to detect a disconnect event TobIs Section 7.1.7.3 2 25 us

at a hub’s downstream facing port

Duration of driving resume to a TDRSMDN Nominal; Section 20 ms
downstream port; only from a 7.1.7.7 and

controlling hub Section 11.5

Time from detecting downstream TURSM Section 7.1.7.7 1.0 ms

resume to rebroadcast

Duration of driving reset to a TDRST Only for a 10 20 ms
downstream facing port SetPortFeature

(PORT_RESET)

request;

Section 7.1.7.5 and

Section 11.5
Overall duration of driving reset to TDRSTR Only for root hubs; 50 ms
downstream facing port, root hub Section 7.1.7.5
Maximum interval between reset TRHRSI Only for root hubs; 3 ms
segments used to create TDRSTR each reset pulse must

be of length TDRST;
Section 7.1.7.5

Time to detect a long K from TURLK Section 11.6 25 100 us
upstream

Time to detect a long SEO from TURLSEO Section 11.6 25 10000 us
upstream

Duration of repeating SEO TURPSEO Section 11.6 23 FS bit
upstream (for low-/full-speed times
repeater)

Duration of sending SEO upstream TUDEOP Optional 2 FS bit
after EOF1 (for low-/full-speed Section 11.6 times
repeater)

Inter-packet Delay (for high- THSIPDSD Section 7.1.18.2 88 bit
speed) for packets traveling in times

same direction

Inter-packet Delay (for high- THsIPDOD | Section 7.1.18.2 8 bit
speed) for packets traveling in times
opposite direction
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Table 7-13. Hub Event Timings (Continued)

Event Description

Symbol

Conditions

Min

Max

Unit

Inter-packet delay for device/root
hub response w/detachable cable
for high-speed

THSRSPIPD1

Section 7.1.18.2

192

bit
times

Reset Handshake Protocol:

Time for which a Chirp J or Chirp
K must be continuously detected
(filtered) by hub or device during
Reset handshake

TFILT

Section 7.1.7.5

25

us

Time after end of device Chirp K
by which hub must start driving
first Chirp K in the hub’s chirp
sequence

TWTDCH

Section 7.1.7.5

100

us

Time for which each individual
Chirp J or Chirp K in the chirp
sequence is driven downstream
by hub during reset

TDCHBIT

Section 7.1.7.5

40

60

us

Time before end of reset by which
a hub must end its downstream
chirp sequence

TDCHSEO

Section 7.1.7.5

100

500

us
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Table 7-14. Device Event Timings

Parameter Symbol Conditions Min Max Units

Time from internal power good to TSIGATT 100 ms
device pulling D+/D- beyond ViHz
(min) (signaling attach) Figure 7-29
Debounce interval provided by TATTDB 100 ms
USB system software after attach

Figure 7-29
Maximum time a device can draw Tasusp Section 7.1.7.6 10 ms
power >suspend power when bus
is continuously in idle state
Maximum duration of suspend TsusAval Section 7.2.3 1 S
averaging interval
Period of idle bus before device TWTRSM Device must be 5 ms
can initiate resume remote-wakeup

enabled

Section 7.1.7.5

Duration of driving resume TDRSMUP Section 7.1.7.7 1 15 ms
upstream
Resume Recovery Time TRSMRCY Provided by USB 10 ms

System Software;
Section 7.1.7.7

Time to detect a reset from TDETRST Section 7.1.7.5 2.5 10000 us
upstream for non high-speed
capable devices

Reset Recovery Time TRSTRCY Section 7.1.7.5 10 ms
Inter-packet Delay (for low-/full- TiPD Section 7.1.18 2 bit
speed) times
Inter-packet delay for device TRSPIPD1 Section 7.1.18 6.5 bit
response w/detachable cable for times

low-/full-speed

Inter-packet delay for device TRSPIPD2 Section 7.1.18 7.5 bit
response w/captive cable for low- times
[full-speed
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Table 7-14. Device Event Timings (Continued)

Parameter

Symbol

Conditions

Min

Max

Units

SetAddress() Completion Time

TDSETADDR

Section 9.2.6.3

50

ms

Time to complete standard
request with no data

TDRQCMPLTND

Section 9.2.6.4

50

ms

Time to deliver first and
subsequent (except last) data for
standard request

TDRETDATA1

Section 9.2.6.4

500

ms

Time to deliver last data for
standard request

TDRETDATAN

Section 9.2.6.4

50

ms

Inter-packet delay for device
response w/captive cable (high-
speed)

THSRSPIPD2

Section 7.1.18.2

192 bit times
+ 52 ns

SetAddress() Completion Time

TDSETADDR

Section 9.2.6.3

50

ms

Time to complete standard
request with no data

TDRQCMPLTND

Section 9.2.6.4

50

ms

Reset Handshake Protocol:

Time for which a suspended high-
speed capable device must see a
continuous SEO before beginning
the high-speed detection
handshake

TFILTSEO

Section 7.1.7.5

2.5

us

Time a high-speed capable device
operating in non-suspended full-
speed must wait after start of SEO
before beginning the high-speed
detection handshake

TWTRSTFS

Section 7.1.7.5

25

3000

us

Time a high-speed capable device
operating in high-speed must wait
after start of SEO before reverting

to full-speed

TWTREV

Section 7.1.7.5

3.0

3.125

ms

Time a device must wait after
reverting to full-speed before
sampling the bus state for SEO
and beginning the high-speed
detection handshake

TWTRSTHS

Section 7.1.7.5

100

875

us
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Table 7-14. Device Event Timings (Continued)

Parameter Symbol Conditions Min Max Units

Minimum duration of a Chirp K TucH Section 7.1.7.5 1.0 ms
from a high-speed capable device
within the reset protocol

Time after start of SEO by whicha | TUCHEND Section 7.1.7.5 7.0 ms
high-speed capable device is
required to have completed its
Chirp K within the reset protocol

Time between detection of TWTHS Section 7.1.7.5 500 us
downstream chirp and entering

high-speed state

Time after end of upstream chirp TwTFs Section 7.1.7.5 1.0 25 ms

at which device reverts to full-
speed default state if no
downstream chirp is detected
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7.3.3 Timing Waveforms

Teeriop P> | | \ \

Crossover
Differential/ A ponts A
Data Lines\

Consecutive
q— Transitions

*
N * Teeriop + Txout

Paired
- Transitions —P

*
N * Teeriop + Txouz

Figure 7-49. Differential Data Jitter for Low-/full-speed
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—
Receiver EOP Width: Teeopr,

TLEOPR

Figure 7-50. Differential-to-EOP Transition Skew and EOP Width for Low-/full-speed
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Figure 7-51. Receiver Jitter Tolerance for Low-/full-speed

TPERIOD is the data rate of the receiver that can have the range as defined in Section 7.1.11.

191

LGE-1010 / Page 219 of 650



Universal Serial Bus Specification Revision 2.0

UEst;eafm \ / Upstream Crossover
nd o Port of hub Point
Cable / 50% Point of
/ ¥~ Initial Swing
Vss Vss
50% Point of
Downstream Hub Delay Downstream Hub Delay Init;’al Swing
Port of hu ¢—— Downstream Port of hub «— Downstream
THDD1 THDD2
Vss Vss

A. Downstream Hub Delay with Cable

B. Downstream Hub Delay without Cable

Downstrea Crossover
Port of hub Point
Vss
Upstream Hub Delay Cross_over
Port or End Upstream '\~ Point
of Cable Thop1
THDDZ
Vss

C. Upstream Hub Delay with or without Cable

Hub Differential Jitter:
THDJ1 = THDDx(J) - THDDx(K) or THDDx(K) - THDDx(J) Consecutive Transitions
THDJz = THDDX(J) - THDDX(J) or THDDX(K) - THDDX(K) Paired Transitions

Bit after SOP Width Distortion (same as data jitter for SOP and next J transition):
Tesop = Tuppx(next J) - Tuppx(SOP)

Low-speed timings are determined in the same way for:

Tiuoos Tionsts Tiognzs Trunats Trugnz, and Tisop

Figure 7-52. Hub Differential Delay, Differential Jitter, and SOP Distortion for Low-/full-speed

Measurement locations referenced in Figure 7-52 and Figure 7-53 are specified in Figure 7-38.
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50% Point of
Upstream Initial Swing / c
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/ < > —>

Downstream Downstream TEOP

Port of hub — Port of hub
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A. Downstream EOP Delay with Cable
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Upstream Crossover
Port or Point
End of Cable A \ Extended
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C. Upstream EOP Delay with or Without Cable

EOP Delay:

Treopp = Teopy - THoox
(Teory means that this equation applies to Teop. and Teop+)

EOP Skew:
Trhesk = Teop+ = Teop-

Low-speed timings are determined in the same way for:

Tieoro and Tipesk

Figure 7-53. Hub EOP Delay and EOP Skew for Low-/full-speed

B. Downstream EOP Delay without Cable
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Chapter 8
Protocol Layer

This chapter presents a bottom-up view of the USB protocol, starting with field and packet definitions. This
is followed by a description of packet transaction formats for different transaction types. Link layer flow
control and transaction level fault recovery are then covered. The chapter finishes with a discussion of retry
synchronization, babble, loss of bus activity recovery, and high-speed PING protocol.

8.1 Byte/Bit Ordering

Bits are sent out onto the bus least-significant bit (LSb) first, followed by the next LSb, through to the most-
significant bit (MSb) last. In the following diagrams, packets are displayed such that both individual bits
and fields are represented (in a left to right reading order) as they would move across the bus.

Multiple byte fields in standard descriptors, requests, and responses are interpreted as and moved over the
bus in little-endian order, i.e., LSB to MSB.

8.2 SYNC Field

All packets begin with a synchronization (SYNC) field, which is a coded sequence that generates a
maximum edge transition density. It is used by the input circuitry to align incoming data with the local
clock. A SYNC from an initial transmitter is defined to be eight bits in length for full/low-speed and 32 bits
for high-speed. Received SYNC fields may be shorter as described in Chapter 7. SYNC serves only as a
synchronization mechanism and is not shown in the following packet diagrams (refer to Section 7.1.10).
The last two bits in the SYNC field are a marker that is used to identify the end of the SYNC field and, by
inference, the start of the PID.

8.3 Packet Field Formats

Field formats for the token, data, and handshake packets are described in the following section. Packet bit
definitions are displayed in unencoded data format. The effects of NRZI coding and bit stuffing have been
removed for the sake of clarity. All packets have distinct Start- and End-of-Packet delimiters. The Start-of-
Packet (SOP) delimiter is part of the SYNC field, and the End-of-Packet (EOP) delimiter is described in
Chapter 7.

8.3.1 Packet Identifier Field

A packet identifier (PID) immediately follows the SYNC field of every USB packet. A PID consists of a
four-bit packet type field followed by a four-bit check field as shown in Figure 8-1. The PID indicates the
type of packet and, by inference, the format of the packet and the type of error detection applied to the
packet. The four-bit check field of the PID ensures reliable decoding of the PID so that the remainder of the
packet is interpreted correctly. The PID check field is generated by performing a one’s complement of the
packet type field. A PID error exists if the four PID check bits are not complements of their respective
packet identifier bits.

(LSb) (MSb)

0 1 2 3

PID PID , | PID PID PID ;| PID, PID 2 PID ,

Figure 8-1. PID Format

The host and all functions must perform a complete decoding of all received PID fields. Any PID received
with a failed check field or which decodes to a non-defined value is assumed to be corrupted and it, as well
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as the remainder of the packet, is ignored by the packet receiver. If a function receives an otherwise valid
PID for a transaction type or direction that it does not support, the function must not respond. For example,
an IN-only endpoint must ignore an OUT token. PID types, codings, and descriptions are listed in

Table 8-1.

Table 8-1. PID Types

PID Type | PID Name | PID<3:0>* Description
Token ouT 0001B Address + endpoint number in host-to-function
transaction
IN 1001B Address + endpoint number in function-to-host
transaction
SOF 01018 Start-of-Frame marker and frame number
SETUP 11018 Address + endpoint number in host-to-function
transaction for SETUP to a control pipe
Data DATAO 0011B Data packet PID even
DATA1 1011B Data packet PID odd
DATA2 0111B Data packet PID high-speed, high bandwidth isochronous
transaction in a microframe (see Section 5.9.2 for more
information)
MDATA 1111B Data packet PID high-speed for split and high bandwidth
isochronous transactions (see Sections 5.9.2, 11.20, and
11.21 for more information)
Handshake | ACK 0010B Receiver accepts error-free data packet
NAK 1010B Receiving device cannot accept data or transmitting
device cannot send data
STALL 1110B Endpoint is halted or a control pipe request is not
supported
NYET 0110B No response yet from receiver (see Sections 8.5.1 and
11.17-11.21)
Special PRE 1100B (Token) Host-issued preamble. Enables downstream bus
traffic to low-speed devices.
ERR 1100B (Handshake) Split Transaction Error Handshake (reuses
PRE value)
SPLIT 1000B (Token) High-speed Split Transaction Token (see
Section 8.4.2)
PING 0100B (Token) High-speed flow control probe for a bulk/control
endpoint (see Section 8.5.1)
Reserved 0000B
Reserved PID

*Note: PID bits are shown in MSb order. When sent on the USB, the rightmost bit (bit 0) will be sent first.
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PIDs are divided into four coding groups: token, data, handshake, and special, with the first two transmitted
PID bits (PID<0:1>) indicating which group. This accounts for the distribution of PID codes.

8.3.2 Address Fields

Function endpoints are addressed using two fields: the function address field and the endpoint field. A
function needs to fully decode both address and endpoint fields. Address or endpoint aliasing is not
permitted, and a mismatch on either field must cause the token to be ignored. Accesses to non-initialized
endpoints will also cause the token to be ignored.

8.3.2.1 Address Field

The function address (ADDR) field specifies the function, via its address, that is either the source or
destination of a data packet, depending on the value of the token PID. As shown in Figure 8-2, a total of
128 addresses are specified as ADDR<6:0>. The ADDR field is specified for IN, SETUP, and OUT tokens
and the PING and SPLIT special token. By definition, each ADDR value defines a single function. Upon
reset and power-up, a function’s address defaults to a value of zero and must be programmed by the host
during the enumeration process. Function address zero is reserved as the default address and may not be
assigned to any other use.

(LSb) (MSb)

Addr | Addr, | Addr, | Addr, | Addr, | Addr, | Addr,

Figure 8-2. ADDR Field

8.3.2.2 Endpoint Field

An additional four-bit endpoint (ENDP) field, shown in Figure 8-3, permits more flexible addressing of
functions in which more than one endpoint is required. Except for endpoint address zero, endpoint numbers
are function-specific. The endpoint field is defined for IN, SETUP, and OUT tokens and the PING special
token. All functions must support a control pipe at endpoint number zero (the Default Control Pipe). Low-
speed devices support a maximum of three pipes per function: a control pipe at endpoint number zero plus
two additional pipes (either two control pipes, a control pipe and a interrupt endpoint, or two interrupt
endpoints). Full-speed and high-speed functions may support up to a maximum of 16 IN and OUT
endpoints.

(LSb) (MSb)

Endp0 Endp1 Endp2 Endp3

Figure 8-3. Endpoint Field

8.3.3 Frame Number Field

The frame number field is an 11-bit field that is incremented by the host on a per-frame basis. The frame
number field rolls over upon reaching its maximum value of 7FFH and is sent only in SOF tokens at the
start of each (micro)frame.

8.3.4 Data Field

The data field may range from zero to 1,024 bytes and must be an integral number of bytes. Figure 8-4
shows the format for multiple bytes. Data bits within each byte are shifted out LSb first.
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(MSb) (LSb) (MSb) (LSb)
D, D, D,| D, D,| D, D, D, D, D,

Byte N-1 Byte N Byte N+1

Figure 8-4. Data Field Format

Data packet size varies with the transfer type, as described in Chapter 5.

8.3.5 Cyclic Redundancy Checks

Cyclic redundancy checks (CRCs) are used to protect all non-PID fields in token and data packets. In this
context, these fields are considered to be protected fields. The PID is not included in the CRC check of a
packet containing a CRC. All CRCs are generated over their respective fields in the transmitter before bit
stuffing is performed. Similarly, CRCs are decoded in the receiver after stuffed bits have been removed.
Token and data packet CRCs provide 100% coverage for all single- and double-bit errors. A failed CRC is
considered to indicate that one or more of the protected fields is corrupted and causes the receiver to ignore
those fields and, in most cases, the entire packet.

For CRC generation and checking, the shift registers in the generator and checker are seeded with an all-
ones pattern. For each data bit sent or received, the high order bit of the current remainder is XORed with
the data bit and then the remainder is shifted left one bit and the low-order bit set to zero. If the result of
that XOR is one, then the remainder is XORed with the generator polynomial.

When the last bit of the checked field is sent, the CRC in the generator is inverted and sent to the checker
MSD first. When the last bit of the CRC is received by the checker and no errors have occurred, the
remainder will be equal to the polynomial residual.

A CRC error exists if the computed checksum remainder at the end of a packet reception does not match the
residual.

Bit stuffing requirements must be met for the CRC, and this includes the need to insert a zero at the end of a
CRC if the preceding six bits were all ones.

8.3.5.1 Token CRCs

A five-bit CRC field is provided for tokens and covers the ADDR and ENDP fields of IN, SETUP, and
OUT tokens or the time stamp field of an SOF token. The PING and SPLIT special tokens also include a
five-bit CRC field. The generator polynomial is:

GX)=X+X"+1

The binary bit pattern that represents this polynomial is 00101B. If all token bits are received without error,
the five-bit residual at the receiver will be 01100B.

8.3.5.2 Data CRCs

198

The data CRC is a 16-bit polynomial applied over the data field of a data packet. The generating
polynomial is:

GX)=X"+X"+ X’ +1

The binary bit pattern that represents this polynomial is 1000000000000101B. If all data and CRC bits are
received without error, the 16-bit residual will be 1000000000001101B.
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8.4 Packet Formats

This section shows packet formats for token, data, and handshake packets. Fields within a packet are
displayed in these figures in the order in which bits are shifted out onto the bus.

8.4.1 Token Packets

Figure 8-5 shows the field formats for a token packet. A token consists of a PID, specifying either IN,
OUT, or SETUP packet type and ADDR and ENDP fields. The PING special token packet also has the
same fields as a token packet. For OUT and SETUP transactions, the address and endpoint fields uniquely
identify the endpoint that will receive the subsequent Data packet. For IN transactions, these fields uniquely
identify which endpoint should transmit a Data packet. For PING transactions, these fields uniquely
identify which endpoint will respond with a handshake packet. Only the host can issue token packets. An
IN PID defines a Data transaction from a function to the host. OUT and SETUP PIDs define Data
transactions from the host to a function. A PING PID defines a handshake transaction from the function to
the host.

(Isb) (msb)

Field PID ADDR ENDP CRC5

Bits 8 7 4 5

Figure 8-5. Token Format

Token packets have a five-bit CRC that covers the address and endpoint fields as shown above. The CRC
does not cover the PID, which has its own check field. Token and SOF packets are delimited by an EOP
after three bytes of packet field data. If a packet decodes as an otherwise valid token or SOF but does not
terminate with an EOP after three bytes, it must be considered invalid and ignored by the receiver.

8.4.2 Split Transaction Special Token Packets

USB defines a special token for split transactions: SPLIT. This is a 4 byte token packet compared to other
normal 3 byte token packets. The split transaction token packet provides additional transaction types with
additional transaction specific information. The split transaction token is used to support split transactions
between the host controller communicating with a hub operating at high speed with full-/low-speed devices
to some of its downstream facing ports. There are two split transactions defined that use the SPLIT special
token: a start-split transaction (SSPLIT) and a complete-split transaction (CSPLIT). A field in the SPLIT
special token, described in the following sections, indicates the specific split transaction.

8.4.2.1 Split Transactions

A high-speed split transaction is used only between the host controller and a hub when the hub has full-
/low-speed devices attached to it. This high-speed split transaction is used to initiate a full-/low-speed
transaction via the hub and some full-/low-speed device endpoint. The high-speed split transaction also
allows the completion status of the full-/low-speed transaction to be retrieved from the hub. This approach
allows the host controller to start a full-/low-speed transaction via a high-speed transaction and then
continue with other high-speed transactions without having to wait for the full-/low-speed transaction to
proceed/complete at the slower speed. See Chapter 11 for more details about the state machines and
transaction definitions of split transactions.

A high-speed split transaction has two parts: a start-split and a complete-split. Split transactions are only
defined to be used between the host controller and a hub. No other high-speed or full-/low-speed devices
ever use split transactions.
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Figure 8-6 shows the packets composing a generic start-split transaction. There are two packets in the token
phase: the SPLIT special token and a full-/low-speed token. Depending on the direction of data transfer and
whether a handshake is defined for the transaction type, the token phase is optionally followed by a data
packet and a handshake packet. Start split transactions can consist of 2, 3, or 4 packets as determined by the
specific transfer type and data direction.

——

Token Phase

Figure 8-6. Packets in a Start-split Transaction

Figure 8-7 shows the packets composing a generic complete-split transaction. There are two packets in the
token phase: the SPLIT special token and a full-/low-speed token. A data or handshake packet follows the
token phase packets in the complete-split depending on the data transfer direction and specific transaction
type. Complete split transactions can consist of 2 or 3 packets as determined by the specific transfer type

and data direction.
Token Phase -

Figure 8-7. Packets in a Complete-split Transaction

The results of a split transaction are returned by a complete-split transaction. Figure 8-8 shows this
conceptual “conversion” for an example interrupt IN transfer type. The host issues a start-split (indicated
with 1) to the hub and then can proceed with other high-speed transactions. The start-split causes the hub to
issue a full-/low-speed IN token sometime later (indicated by 2). The device responds to the IN token (in
this example) with a data packet and the hub responds with a handshake to the device. Finally, the host
sometime later issues a complete-split (indicated by 3) to retrieve the data provided by the device. Note that
in the example, the hub provided the full-/low-speed handshake (ACK in this example) to the device
endpoint before the complete-split, and the complete-split did not provide a high-speed handshake to the
hub.
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Start
Split 2
Full/Low-Speed

IN Token

Data0

“

3 IN Token
Complete
Split Data0
. %(_J
High-Speed Full-/Low-Speed
Bus Bus

Figure 8-8. Relationship of Interrupt IN Transaction to High-speed Split Transaction

A normal full-/low-speed OUT transaction is similarly conceptually “converted” into start-split and
complete-split transactions. Figure 8-9 shows this “conversion” for an example interrupt OUT transfer
type. The host issues a start-split transaction consisting of a SSPLIT special token, an OUT token, and
a DATA packet. The hub sometime later issues the OUT token and DATA packet on the full-/low-
speed bus. The device responds with a handshake. Sometime later, the host issues the complete-split
transaction and the hub responds with the results (either full-/low-speed data or handshake) provided by
the device.
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Data0
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3 OUT Token
Complete
Split ACK
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Bus

OUT Token

Data0

ACK

2

Full/Low-speed

~
Full-/Low-Speed

Bus

Figure 8-9. Relationship of Interrupt OUT Transaction to High-speed Split OUT Transaction

The next two sections describe the fields composing the detailed start- and complete-split token packets.
Figure 8-10 and Figure 8-12 show the fields in the split-transaction token packet. The SPLIT special token
follows the general token format and starts with a PID field (after a SYNC) and ends with a CRCS5 field
(and EOP). Start-split and complete-split token packets are both 4 bytes long. SPLIT transactions must
only originate from the host. The start-split token is defined in Section 8.4.2.2 and the complete-split token

is defined in Section 8.4.2.3.

pS

(Isb) (msb)
Field | SPLIT | Hub | SC |Port| S | E|ET| CRCS5
PID |Addr
Bits 8 7 11 7]1]1]2 5
-

Figure 8-10. Start-split (SSPLIT) Token

The Hub addr field contains the USB device address of the hub supporting the specified full-/low-speed
device for this full-/low-speed transaction. This field has the same definition as the ADDR field definition

in Section 8.3.2.1.

A SPLIT special token packet with the SC (Start/Complete) field set to zero indicates that this is a start-split

transaction (SSPLIT).

The Port field contains the port number of the target hub for which this full-/low-speed transaction is
destined. As shown in Figure 8-11, a total of 128 ports are specified as PORT<6:0>. The host must
correctly set the port field for single and multiple TT hub implementations. A single TT hub

implementation may ignore the port field.
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(LSb) (MSb)

Port 0 Port1 Port 2 Port 3 Port 4 Port 5 Port 6

Figure 8-11. Port Field
The S (Speed) field specifies the speed for this interrupt or control transaction as follows:
e 0—Full speed
e 1 -—Low speed

For bulk IN/OUT and isochronous IN start-splits, the S field must be set to zero. For bulk/control IN/OUT,
interrupt IN/OUT, and isochronous IN start-splits, the E field must be set to zero.

For full-speed isochronous OUT start-splits, the S' (Start) and E (End) fields specify how the high-speed
data payload corresponds to data for a full-speed data packet as shown in Table 8-2.

Table 8-2. Isochronous OUT Payload Continuation Encoding

S E | High-speed to Full-speed Data Relation

0 0 | High-speed data is the middle of the full-
speed data payload

0 1 High-speed data is the end of the full-speed
data payload

1 0 | High-speed data is the beginning of the full-
speed data payload

1 1 High-speed data is all of the full-speed data
payload.

Isochronous OUT start-split transactions use these encodings to allow the hub to detect various error cases
due to lack of receiving start-split transactions for an endpoint with a data payload that requires multiple
start-splits. For example, a large full-speed data payload may require three start-split transactions: a start-
split/beginning, a start-split/middle and a start-split/end. If any of these transactions is not received by the
hub, it will either ignore the full-speed transaction (if the start-split/beginning is not received), or it will
force an error for the corresponding full-speed transaction (if one of the other two transactions are not
received). Other error conditions can be detected by not receiving a start-split during a microframe.

The ET (Endpoint Type) field specifies the endpoint type of the full-/low-speed transaction as shown in
Table 8-3.

' The S bit can be reused for these encodings since isochronous transactions must not be low speed.
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Table 8-3. Endpoint Type Values in Split Special Token

ET value Endpoint
(msb:Isb) Type

00 Control

01 Isochronous
10 Bulk

11 Interrupt

This field tells the hub which split transaction state machine to use for this full-/low-speed transaction.

The full-/low-speed device address and endpoint number information is contained in the normal token
packet that follows the SPLIT special token packet.

8.4.2.3 Complete-Split Transaction Token

(Isb) (msb)
Field |SPLIT| Hub | SC |Port|S |U|/ET| CRC5
PID | Addr
Bits 8 7 1 7 [1(1]2 5

Figure 8-12. Complete-split (CSPLIT) Transaction Token

A SPLIT special token packet with the SC field set to one indicates that this is a complete-split transaction
(CSPLIT).

The U bit is reserved/unused and must be reset to zero(0B).

The other fields of the complete-split token packet have the same definitions as for the start-split token
packet.

8.4.3 Start-of-Frame Packets

Start-of-Frame (SOF) packets are issued by the host at a nominal rate of once every 1.00 ms £0.0005 ms for
a full-speed bus and 125 ps £0.0625 ps for a high-speed bus. SOF packets consist of a PID indicating
packet type followed by an 11-bit frame number field as illustrated in Figure 8-13.

(Isb) (msb)

Field PID FrameNumber CRC5

Bits 8 11 5

Figure 8-13. SOF Packet

The SOF token comprises the token-only transaction that distributes an SOF marker and accompanying
frame number at precisely timed intervals corresponding to the start of each frame. All high-speed and full-
speed functions, including hubs, receive the SOF packet. The SOF token does not cause any receiving
function to generate a return packet; therefore, SOF delivery to any given function cannot be guaranteed.
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The SOF packet delivers two pieces of timing information. A function is informed that an SOF has
occurred when it detects the SOF PID. Frame timing sensitive functions, that do not need to keep track of
frame number (e.g., a full-speed operating hub), need only decode the SOF PID; they can ignore the frame
number and its CRC. If a function needs to track frame number, it must comprehend both the PID and the
time stamp. Full-speed devices that have no particular need for bus timing information may ignore the SOF
packet.

8.4.3.1 USB Frames and Microframes

USB defines a full-speed 1 ms frame time indicated by a Start Of Frame (SOF) packet each and every 1ms
period with defined jitter tolerances. USB also defines a high-speed microframe with a 125 ps frame time
with related jitter tolerances (See Chapter 7). SOF packets are generated (by the host controller or hub
transaction translator) every 1ms for full-speed links. SOF packets are also generated after the next seven
125 ps periods for high-speed links.

Figure 8-14 shows the relationship between microframes and frames.

1ms 1ms
< P > < P> oo

\—‘ Full-Speed USB Frame Ticks \—‘ Full-Speed Isochronous Data Payload

USB 2.0 Micro-Frame Ticks
(1/8* Full-Speed Frame)

High-Speed Isochronous Data Payload

Figure 8-14. Relationship between Frames and Microframes

High-speed devices see an SOF packet with the same frame number eight times (every 125 us) during each
1 ms period. If desired, a high-speed device can locally determine a particular microframe “number” by
detecting the SOF that had a different frame number than the previous SOF and treating that as the zeroth
microframe. The next seven SOFs with the same frame number can be treated as microframes 1 through 7.
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8.4.4 Data Packets

A data packet consists of a PID, a data field containing zero or more bytes of data, and a CRC as shown in
Figure 8-15. There are four types of data packets, identified by differing PIDs: DATAO, DATAL, DATA2
and MDATA. Two data packet PIDs (DATAO and DATAL) are defined to support data toggle
synchronization (refer to Section 8.6). All four data PIDs are used in data PID sequencing for high
bandwidth high-speed isochronous endpoints (refer to Section 5.9). Three data PIDs (MDATA, DATAO,
DATATL) are used in split transactions (refer to Sections 11.17-11.21).

(Isb) (msb)

Field PID DATA CRC16

Bits 8 0-8192 16

Figure 8-15. Data Packet Format

Data must always be sent in integral numbers of bytes. The data CRC is computed over only the data field
in the packet and does not include the PID, which has its own check field.

The maximum data payload size allowed for low-speed devices is 8 bytes. The maximum data payload size
for full-speed devices is 1023. The maximum data payload size for high-speed devices is 1024 bytes.

8.4.5 Handshake Packets

Handshake packets, as shown in Figure 8-16, consist of only a PID. Handshake packets are used to report
the status of a data transaction and can return values indicating successful reception of data, command
acceptance or rejection, flow control, and halt conditions. Only transaction types that support flow control
can return handshakes. Handshakes are always returned in the handshake phase of a transaction and may be
returned, instead of data, in the data phase. Handshake packets are delimited by an EOP after one byte of
packet field. If a packet decodes as an otherwise valid handshake but does not terminate with an EOP after
one byte, it must be considered invalid and ignored by the receiver.

(Isb) (msb)

Field | PID

Bits 8

Figure 8-16. Handshake Packet
There are four types of handshake packets and one special handshake packet:

e ACK indicates that the data packet was received without bit stuff or CRC errors over the data field and
that the data PID was received correctly. ACK may be issued either when sequence bits match and the
receiver can accept data or when sequence bits mismatch and the sender and receiver must
resynchronize to each other (refer to Section 8.6 for details). An ACK handshake is applicable only in
transactions in which data has been transmitted and where a handshake is expected. ACK can be
returned by the host for IN transactions and by a function for OUT, SETUP, or PING transactions.

e NAK indicates that a function was unable to accept data from the host (OUT) or that a function has no
data to transmit to the host (IN). NAK can only be returned by functions in the data phase of IN
transactions or the handshake phase of OUT or PING transactions. The host can never issue NAK.
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NAK is used for flow control purposes to indicate that a function is temporarily unable to transmit or
receive data, but will eventually be able to do so without need of host intervention.

e STALL is returned by a function in response to an IN token or after the data phase of an OUT or in
response to a PING transaction (see Figure 8-30 and Figure 8-38). STALL indicates that a function is
unable to transmit or receive data, or that a control pipe request is not supported. The state of a
function after returning a STALL (for any endpoint except the default endpoint) is undefined. The host
is not permitted to return a STALL under any condition.

The STALL handshake is used by a device in one of two distinct occasions. The first case, known as
“functional stall,” is when the Halt feature associated with the endpoint is set. (The Halt feature is
specified in Chapter 9 of this document.) A special case of the functional stall is the “commanded
stall.” Commanded stall occurs when the host explicitly sets the endpoint’s Half feature, as detailed in
Chapter 9. Once a function’s endpoint is halted, the function must continue returning STALL until the
condition causing the halt has been cleared through host intervention.

The second case, known as “protocol stall,” is detailed in Section 8.5.3. Protocol stall is unique to
control pipes. Protocol stall differs from functional stall in meaning and duration. A protocol STALL
is returned during the Data or Status stage of a control transfer, and the STALL condition terminates at
the beginning of the next control transfer (Setup). The remainder of this section refers to the general
case of a functional stall.

e NYET is a high-speed only handshake that is returned in two circumstances. It is returned by a high-
speed endpoint as part of the PING protocol described later in this chapter. NYET may also be
returned by a hub in response to a split-transaction when the full-/low-speed transaction has not yet
been completed or the hub is otherwise not able to handle the split-transaction. See Chapter 11 for
more details.

e ERR is a high-speed only handshake that is returned to allow a high-speed hub to report an error on a
full-/low-speed bus. It is only returned by a high-speed hub as part of the split transaction protocol.
See Chapter 11 for more details.

8.4.6 Handshake Responses

Transmitting and receiving functions must return handshakes based upon an order of precedence detailed in
Table 8-4 through Table 8-6. Not all handshakes are allowed, depending on the transaction type and
whether the handshake is being issued by a function or the host. Note that if an error occurs during the
transmission of the token to the function, the function will not respond with any packets until the next token
is received and successfully decoded.

8.4.6.1 Function Response to IN Transactions

Table 8-4 shows the possible responses a function may make in response to an IN token. If the function is
unable to send data, due to a halt or a flow control condition, it issues a STALL or NAK handshake,
respectively. If the function is able to issue data, it does so. If the received token is corrupted, the function
returns no response.
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Table 8-4. Function Responses to IN Transactions

Token Received Function Tx Function Can | Action Taken
Corrupted Endpoint Halt Transmit Data

Feature
Yes Don’t care Don’t care Return no response
No Set Don'’t care Issue STALL handshake
No Not set No Issue NAK handshake
No Not set Yes Issue data packet

8.4.6.2 Host Response to IN Transactions

Table 8-5 shows the host response to an IN transaction. The host is able to return only one type of
handshake: ACK. If the host receives a corrupted data packet, it discards the data and issues no response.
If the host cannot accept data from a function, (due to problems such as internal buffer overrun) this
condition is considered to be an error and the host returns no response. If the host is able to accept data and
the data packet is received error-free, the host accepts the data and issues an ACK handshake.

Table 8-5. Host Responses to IN Transactions

Data Packet Host Can Handshake Returned by Host
Corrupted Accept Data

Yes N/A Discard data, return no response
No No Discard data, return no response
No Yes Accept data, issue ACK

8.4.6.3 Function Response to an OUT Transaction

208

Handshake responses for an OUT transaction are shown in Table 8-6. Assuming successful token decode, a
function, upon receiving a data packet, may return any one of the three handshake types. If the data packet
was corrupted, the function returns no handshake. If the data packet was received error-free and the
function’s receiving endpoint is halted, the function returns STALL. If the transaction is maintaining
sequence bit synchronization and a mismatch is detected (refer to Section 8.6 for details), then the function
returns ACK and discards the data. If the function can accept the data and has received the data error-free,
it returns ACK. If the function cannot accept the data packet due to flow control reasons, it returns NAK.
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Table 8-6. Function Responses to OUT Transactions in Order of Precedence

Data Packet | Receiver Sequence Bits | Function Can | Handshake Returned
Corrupted Halt Match Accept Data by Function
Feature

Yes N/A N/A N/A None

No Set N/A N/A STALL

No Not set No N/A ACK

No Not set Yes Yes ACK

No Not set Yes No NAK

8.4.6.4 Function Response to a SETUP Transaction

SETUP defines a special type of host-to-function data transaction that permits the host to initialize an
endpoint’s synchronization bits to those of the host. Upon receiving a SETUP token, a function must accept
the data. A function may not respond to a SETUP token with either STALL or NAK, and the receiving
function must accept the data packet that follows the SETUP token. If a non-control endpoint receives a
SETUP token, it must ignore the transaction and return no response.

8.5 Transaction Packet Sequences

The packets that comprise a transaction varies depending on the endpoint type. There are four endpoint
types: bulk, control, interrupt, and isochronous.

A host controller and device each require different state machines to correctly sequence each type of
transaction. Figures in the following sections show state machines that define the correct sequencing of
packets within a transaction of each type. The diagrams should not be taken as a required implementation,
but to specify the required behavior.

Figure 8-17 shows the legend for the state machine diagrams. A circle with a three-line border indicates a
reference to another (hierarchical) state machine. A circle with a two-line border indicates an initial state.
A circle with a single-line border represents a simple state.
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- Contains other state machines

Initial - Initial state of a state machine
State
- State in a state machine
- — - Entry and exit of state machine
- Joint used to connect transitions
Condition .. ..
- Actions —» - Transition: taken when condition

is true and performs actions

Figure 8-17. Legend for State Machines

The “tab” shapes with arrows are the entry or exit (respectively in the legend) to/from the state machine.
The entry/exit relates to another state in a state machine at a higher level in the state machine hierarchy.

A diamond (joint) is used to join several transitions to a common point. A joint allows a single input
transition with multiple output transitions or multiple input transitions and a single output transition. All
conditions on the transitions of a path involving a joint must be true for the path to be taken. A path is
simply a sequence of transitions involving one or more joints.

A transition is labeled with a block with a line in the middle separating the (upper) condition and the (lower)
actions. The condition is required to be true to take the transition. The syntax for actions and conditions is
VHDL. The actions are performed if the transition is taken. A circle includes a name in bold and
optionally one or more actions that are performed upon entry to the state.

The host controller and device state machines are in a context as shown in Figure 8-18. The host controller
determines the next transaction to run for an endpoint and issues a command (HC cmd) to the host
controller state machines. This causes the host controller state machines to issue one or more packets to
move over the downstream bus (HSD1).

The device receives these packets from the bus (HSD2), reacts to the received packet, and interacts with its
function(s) via the state of the corresponding endpoint (in the EP_array). Then the device may respond with
a packet on the upstream bus (HSU1). The host controller state machines can receive a packet from the bus
(HSU2) and provide a result of the transaction back to the host controller (HC resp). The details of what
packets are sent on the bus is determined by the transfer type for the endpoint and what bus activity the state
machines observe.

The state machines are presented in a hierarchical form. Figure 8-19 shows the top level state machines for
the host controller. The non-split transactions are presented in the remainder of this chapter. The split
transaction state machines (HC Do_start and HC Do _complete) are described and shown in Chapter 11.
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Transaction  Transaction
commands Results Host

v

HC cmd| |HC resp

Controller

Downstream Upstream
Bus Bus

I Device

Functions

Figure 8-18. State Machine Context Overview

HC Process_command

HC Do _start

HC Do_complete

HC Do _nonsplit

Figure 8-19. Host Controller Top Level Transaction State Machine Hierarchy Overview

The host controller state machines are located in the host controller. The host controller causes packets to
be issued downstream (labeled as HSD1) and it receives upstream packets (labeled as HSU?2).

The device state machines are located in the device. The device causes packets to be issued upstream
(labeled as HSU1) and it receives downstream packets (labeled as HSD2).

The host controller has commands that tell it what transaction to issue next for an endpoint. The host
controller tracks transactions for several endpoints. The host controller state machines sequence to
determine what the host controller needs to do next for the current endpoint. The device has a state for each
of its endpoints. The device state machines sequence to determine what reaction the device has to a
transaction.

The appendix includes some declarations that were used in constructing the state machines and may be
useful in understanding additional details of the state machines. There are several pseudo-code procedures
and functions for conditions and actions. Simple descriptions of them are also included in the appendix.

Figure 8-20 shows an overview of the overall state machine hierarchy for the host controller for the non-
split transaction types. Figure 8-21 shows the hierarchy of the device state machines. The state machines
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common to endpoint types are presented first. The lowest level endpoint type specific state machines are
presented in each following endpoint type section.

HC Do _nonsplit
HC HS BCO

HC Do BCINTO
HC Do BCINTI
HC Do _IsochO
HC Do Isochl

Figure 8-20. Host Controller Non-split Transaction State Machine Hierarchy Overview

Device Process trans

Dev do OUT
’ Dev_Do_IsochO ‘

| Dev Do BCINTO |
| Dev HS BCO |

Dev do IN
’ Dev_Do_Isochl ‘
| Dev_Do_BCINTI |

Dev_HS ping

Figure 8-21. Device Transaction State Machine Hierarchy Overview
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Global Actions Concurrent Statements Architecture Declarations Signals Status State Register Statements
SIGNAL SCOPE DEFAULT

Package List hsu} ouT (BULK, NAK, 0, 0, ok, in_dir, TRUE, ALLDATA, FALSE, FA
device INT o P Declarati

) ) token 1nr sor Process Declarations

ieee std_logic_1164

ieee numeric_std

usb2statemachines behav_package

Packet_ready(HSD2)
Save(HSD2, token);

Figure 8-22. Device Top Level State Machine

token.PID /= tokenOUT and
token.PID /= tokenIN and
token.PID /= tokenSETUP and
token.PID /= ping and
(token.PID = ping and

not device.HS)

token.PID = tokenOUT or
token.PID = tokenSETUP

token.PID = tokenIN

device.HS and
token.PID = ping

Device_process_trans

Figure 8-23. Device process_Trans State Machine
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token.PID = tokenSETUP and
device.ep(token.endpt).ep_type /= control

-

(token.PID = tokenSETUP and
device.ep(token.endpt).ep_type = control) or
token.PID = tokenOUT

device.ep(token.endpt).ep_type = isochronous

o (not device.HS and
(device.ep(token.endpt).ep_type = bulk or

device.ep(token.endpt).ep_type = control)) or
device.ep(token.endpt).ep_type = interrupt

device.HS and
(device.ep(token.endpt).ep_type = bulk or
device.ep(token.endpt).ep_type = control)

Device_ Do _OUT

Figure 8-24. Dev_do_OUT State Machine
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device.ep(token.endpt).ep_type = isochronous

device.ep(token.endpt).ep_type = bulk or
device.ep(token.endpt).ep_type = control or
device.ep(token.endpt).ep_type = interrupt

Device_Do_IN

Figure 8-25. Dev_do_IN State Machine
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HC_cmd.ep_type = isochronous

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control or
HC_cmd.ep_type = interrupt

HC_cmd.direction = in_dir

HC_cmd.direction = out_dir

HC_cmd.ep_type = isochronous

@

(not HC_cmd.HS and

(HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control)) or
HC_cmd.ep_type = interrupt

HC_cmd.HS and
(HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control)

HC_Do_nonsplit

Figure 8-26. HC_Do_nonsplit State Machine
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8.5.1 NAK Limiting via Ping Flow Control

Full-/low-speed devices can have bulk/control endpoints that take time to process their data and, therefore,
respond to OUT transactions with a NAK handshake. This handshake response indicates that the endpoint
did not accept the data because it did not have space for the data. The host controller is expected to retry the
transaction at some future time when the endpoint has space available. Unfortunately, by the time the
endpoint NAKSs, most of the full-/low-speed bus time for the transaction had been used. This means that the
full-/low-speed bus has poor utilization when there is a high frequency of NAK’d OUT transactions.

High-speed devices must support an improved NAK mechanism for Bulk OUT and Control endpoints and
transactions. Control endpoints must support this protocol for an OUT transaction in the data and status
stages. The control Setup stage must not support the PING protocol.

This mechanism allows the device to tell the host controller whether it has sufficient endpoint space for the
next OUT transaction. If the device endpoint does not have space, the host controller can choose to delay a
transaction attempt for this endpoint and instead try some other transaction. This can lead to improved bus
utilization. The mechanism avoids using bus time to send data until the host controller knows that the
endpoint has space for the data.

The host controller queries the high-speed device endpoint with a PING special token. The PING special
token packet is a normal token packet as shown in Figure 8-5. The endpoint either responds to the PING
with a NAK or an ACK handshake.

A NAK handshake indicates that the endpoint does not have space for a wMaxPacketSize data payload. The
host controller will retry the PING at some future time to query the endpoint again. A device can respond to
a PING with a NAK for long periods of time. A NAK response is not a reason for the host controller to
retire a transfer request. If a device responds with a NAK in a (micro)frame, the host controller may choose
to issue the next transaction in the next blnterval specified for the endpoint. However, the device must be
prepared to receive PINGs as sequential transactions, e.g., one immediately after the other.

An ACK handshake indicates the endpoint has space for a wMaxPacketSize data payload. The host
controller must generate an OUT transaction with a DATA phase as the next transaction to the endpoint.
The host controller may generate other transactions to other devices or endpoints before the OUT/DATA
transaction for this endpoint.

If the endpoint responds to the OUT/DATA transaction with an ACK handshake, this means the endpoint
accepted the data successfully and has room for another wMaxPacketSize data payload. The host controller
continues with OUT/DATA transactions (which are not required to be the next transactions on the bus) as
long as it has transactions to generate.

If the endpoint instead responds to the OUT/DATA transaction with a NYET handshake, this means that the
endpoint accepted the data but does not have room for another wMaxPacketSize data payload. The host
controller must return to using a PING token until the endpoint indicates it has space.
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HSD2.x or
not device.ep(token.endpt).space_avail

(not HSD2.x) and
HSD2.CRC16 = ok and

: device.ep(token.endpt).space_avail

Dev_accept_data;

HSD2.x /=
device.ep(token.endpt).toggle and
HSD2.CRC16 = ok

token.PID = tokenSETUP and
HSD2.PID = datax

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
device.ep(token.endpt).space_avail

Dev_accept_data;

Issue_packet(HSU1, ACK);
token.PID = tokenOUT and
HSD2.PID = datax

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
not device.ep(token.endpt).space_avail

Issue_packet(HSU1, NAK);

device.ep(token.endpt).ep_trouble

Packet_ready(HSD2
_ready(HSD2) Issue_packet(HSU1, STALL);

(HSD2.PID = datax and
HSD2.CRC16 = bad) or
HSD2.PID /= datax or
HSD2.timeout

Dev_wait_Odata

Wait_for_packet(
HSD2, ITG);

| Dev_Do_BCINTO

Figure 8-27. Host High-speed Bulk OUT/Control Ping State Machine

8.5.1.1 NAK Responses to OUT/DATA During PING Protocol

The endpoint may also respond to the OUT/DATA transaction with a NAK handshake. This means that the
endpoint did not accept the data and does not have space for a wMaxPacketSize data payload at this time.
The host controller must return to using a PING token until the endpoint indicates it has space.

A NAK response is expected to be an unusual occurrence. A high-speed bulk/control endpoint must specify
its maximum NAK rate in its endpoint descriptor. The endpoint is allowed to NAK at most one time each
binterval period. A NAK suggests that the endpoint responded to a previous OUT or PING with an
inappropriate handshake, or that the endpoint transitioned into a state where it (temporarily) could not
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accept data. An endpoint can use a binterval of zero to indicate that it never NAKs. An endpoint must
always be able to accept a PING from the host, even if it never NAKSs.

If a timeout occurs after the data phase, the host must return to using a PING token. Note that a transition
back to the PING state does not affect the data toggle state of the transaction data phase.

Figure 8-27 shows the host controller state machine for the interactions and transitions between PING and
OUT/DATA tokens and the allowed ACK, NAK, and NYET handshakes for the PING mechanism.

Figure 8-29 shows the device endpoint state machine for PING based on the buffer space the endpoint has
available.

not device.ep(token.endpt).space_avail
o Issue_packet(HSU1, NAK);

device.ep(token.endpt).space_avail
Issue_packet(HSU1, ACK);

device.ep(token.endpt).ep_trouble
Issue_packet(HSU1, STALL);

Not allowed for control
setup transaction

Dev_HS ping

Figure 8-28. Dev_HS ping State Machine
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HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
not device.ep(token.endpt).space_avail

Issue_packet(HSU1, NAK);

HSD2.x /= device.ep(token.endpt).toggle and
HSD2.CRC16 = ok

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
device.ep(token.endpt).space_avail

Dev_accept_data;

device.ep(token.endpt).space_avalil

Issue_packet(HSU1, ACK);

not device.ep(token.endpt).space_avail
Issue_packet(HSU1, NYET);

HSD2.PID = datax

device.ep(token.endpt).ep_trouble
Issue_packet(HSU1, STALL);

Packet_ready(HSD2)

(HSD2.PID = datax and
HSD2.CRC16 = bad) or
HSD2.PID /= datax or
HSD2.timeout

Dev_wait_Odata1

Wait_for_packet(
HSD2, ITG);

| Dev_HS_BCO

Figure 8-29. Device High-speed Bulk OUT /Control State Machine

Full-/low-speed devices/endpoints must not support the PING protocol. Host controllers must not support
the PING protocol for full-/low-speed devices.

Note: The PING protocol is also not included as part of the split-transaction protocol definition. Some
split-transactions have equivalent flow control without using PING. Other split-transactions will not benefit
from PING as defined. In any case, split-transactions that can return a NAK handshake have small data
payloads which should have minor high-speed bus impact. Hubs must support PING on their control
endpoint, but PING is not defined for the split-transactions that are used to communicate with full-/low-
speed devices supported by a hub.

220

LGE-1010 / Page 248 of 650



Universal Serial Bus Specification Revision 2.0

8.5.2 Bulk Transactions

Bulk transaction types are characterized by the ability to guarantee error-free delivery of data between the
host and a function by means of error detection and retry. Bulk transactions use a three-phase transaction
consisting of token, data, and handshake packets as shown in Figure 8-30. Under certain flow control and
halt conditions, the data phase may be replaced with a handshake resulting in a two-phase transaction in
which no data is transmitted. The PING and NYET packets must only be used with devices operating at
high-speed.

Idle

High-speed OUT only

oken
N
Error
DATA0/ DATAO0/
|DATA1 | | NAK | |STA'-'-| DATA1 [ack | [wac | [srad]
ata
Error Idle
Idle
»
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >
High-speed only
andshake
ACK Data | NYET | | ACK | | NAK | Data
Error l Error

> Idle

[[] Host [ ] Function

Figure 8-30. Bulk Transaction Format

When the host is ready to receive bulk data, it issues an IN token. The function endpoint responds by
returning either a data packet or, should it be unable to return data, a NAK or STALL handshake. NAK
indicates that the function is temporarily unable to return data, while STALL indicates that the endpoint is
permanently halted and requires USB System Software intervention. If the host receives a valid data
packet, it responds with an ACK handshake. If the host detects an error while receiving data, it returns no
handshake packet to the function.

When the host is ready to transmit bulk data, it first issues an OUT token packet followed by a data packet
(or PING special token packet, see Section 8.5.1). If the data is received without error by the function, it
will return one of three (or four including NYET, for a device operating at high-speed) handshakes:

e ACK indicates that the data packet was received without errors and informs the host that it may send
the next packet in the sequence.

e NAK indicates that the data was received without error but that the host should resend the data because
the function was in a temporary condition preventing it from accepting the data (e.g., buffer full).

e If the endpoint was halted, STALL is returned to indicate that the host should not retry the transmission
because there is an error condition on the function.

If the data packet was received with a CRC or bit stuff error, no handshake is returned.

Figure 8-31 and Figure 8-32 show the host and device state machines respectively for bulk, control, and
interrupt OUT full/low-speed transactions. Figure 8-27, Figure 8-28, and Figure 8-29 show the state
machines for high-speed transactions. Figure 8-33 and Figure 8-34 show the host and device state machines
respectively for bulk, control, and interrupt IN transactions.
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(HSU2.PID /= STALL and
HSU2.PID /= NAK and
HSU2.PID /= ACK) or
HSU2.timeout

Wait_resp
Wait_for_packet(
HSU2, ITG);

BCI_error

IncError;

Packet_ready(HSU2)
ErrorCount < 3
RespondHC(Do_same_cmd);

Issue_packet(HSD1, datax);

ErrorCount >= 3
RespondHC(Do_halt);

Do_data

not HC_cmd.setup

Issue_packet(

HSU2.PID = STALL
HSD1, tokenOUT);

RespondHC(Do_halt);

HC_cmd.setup
Issue_packet(HSD1, tokensetup);

HSU2.PID = NAK
RespondHC(Do_same_cmd);

HSU2.PID = ACK
RespondHC(Do_next_cmd);

Do_token

Not allowed for control
setup transaction

HC_Do_BCINTO

Figure 8-31. Bulk/Control/Interrupt OUT Transaction Host State Machine
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HSD2.x or
not device.ep(token.endpt).space_avail

(not HSD2.x) and
HSD2.CRC16 = ok and

: device.ep(token.endpt).space_avail

Dev_accept_data;

HSD2.x /=
device.ep(token.endpt).toggle and
HSD2.CRC16 = ok

token.PID = tokenSETUP and
HSD2.PID = datax

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
device.ep(token.endpt).space_avail

Dev_accept_data;

Issue_packet(HSU1, ACK);
token.PID = tokenOUT and

HSD2.PID = datax

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
not device.ep(token.endpt).space_avail

Issue_packet(HSU1, NAK);

device.ep(token.endpt).ep_trouble

Packet_ready(HSD2
_ready(HSD2) Issue_packet(HSU1, STALL);

(HSD2.PID = datax and
HSD2.CRC16 = bad) or
HSD2.PID /= datax or
HSD2.timeout

Dev_wait_Odata

Wait_for_packet(
HSD2, ITG);

| Dev_Do_BCINTO

Figure 8-32. Bulk/Control/Interrupt OUT Transaction Device State Machine
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(HSU2.PID /= NAK and
HSU2.PID /= STALL and
HSU2.PID /= datax) or
(HSU2.PID = datax and
HSU2.CRC16 = bad) or
HSU2.timeout

BCII_error

IncError;

Packet_ready(HSU2)

ErrorCount < 3
RespondHC(Do_same_cmd);

ErrorCount >= 3
RespondHC(Do_halt);

Wait_data
Wait_for_packet(
HSU2, ITG);

HSU2.PID = STALL
RespondHC(Do_halt);

Issue_packet(HSD1, tokenIN);

=/

HSU2.PID = NAK
RespondHC(Do_same_cmd);

HSU2.PID = datax and

HSU2.CRC16 = ok and

HSU2.x /= HC_cmd.toggle
Issue_packet(HSD1, ACK);
RespondHC(Do_same_cmd);

HSU2.PID = datax and
HSU2.CRC16 = ok and
HSU2.x = HC_cmd.toggle

HC_Accept_data;

Issue_packet(HSD1, ACK);
RespondHC(Do_next_cmd);

HC_Do_BCINTI |

Figure 8-33. Bulk/Control/Interrupt IN Transaction Host State Machine
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device.ep(token.endpt).ep_trouble
Issue_packet(HSU1, STALL);

device.ep(token.endpt).data_avail

Issue_packet(HSU1, datax);

not device.ep(token.endpt).data_avail
Issue_packet(HSU1, NAK);

Dev_resp
Wait_for_packet(
HSD2, ITG);

HSD2.PID = ACK
RespondDev(Do_next_data);

Packet_ready(HSD2)

e HSD2.PID /= ACK or

HSD2.timeout

Dev_Do_BCINTI

Figure 8-34. Bulk/Control/Interrupt IN Transaction Device State Machine

Figure 8-35 shows the sequence bit and data PID usage for bulk reads and writes. Data packet
synchronization is achieved via use of the data sequence toggle bits and the DATAO/DATA1 PIDs. A bulk
endpoint’s toggle sequence is initialized to DATAO when the endpoint experiences any configuration event
(configuration events are explained in Sections 9.1.1.5 and 9.4.5). Data toggle on an endpoint is NOT
initialized as the direct result of a short packet transfer or the retirement of an IRP.

%‘:::‘e I OuT (o) I I ouT (1) I I OUT (o) I
DATAO DATA1 DATAO0/1

Rad | Wo | [ wWam .. [ wNem ]
DATAO DATA1 DATA0/1

Figure 8-35. Bulk Reads and Writes

The host always initializes the first transaction of a bus transfer to the DATAO PID with a configuration
event. The second transaction uses a DATA1 PID, and successive data transfers alternate for the remainder
of the bulk transfer. The data packet transmitter toggles upon receipt of ACK, and the receiver toggles upon
receipt and acceptance of a valid data packet (refer to Section 8.6).

8.5.3 Control Transfers

Control transfers minimally have two transaction stages: Setup and Status. A control transfer may
optionally contain a Data stage between the Setup and Status stages. During the Setup stage, a SETUP
transaction is used to transmit information to the control endpoint of a function. SETUP transactions are
similar in format to an OUT but use a SETUP rather than an OUT PID. Figure 8-36 shows the SETUP
transaction format. A SETUP always uses a DATAO PID for the data field of the SETUP transaction. The
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function receiving a SETUP must accept the SETUP data and respond with ACK; if the data is corrupted,
discard the data and return no handshake.

Idle
Token SETUP
Data DATAO
“““““““““““““““ N
Handshake ACK Error

Idle

|:| Host |:| Function

Figure 8-36. Control SETUP Transaction

The Data stage, if present, of a control transfer consists of one or more IN or OUT transactions and follows
the same protocol rules as bulk transfers. All the transactions in the Data stage must be in the same
direction (i.e., all INs or all OUTs). The amount of data to be sent during the data stage and its direction are
specified during the Setup stage. If the amount of data exceeds the prenegotiated data packet size, the data
is sent in multiple transactions (INs or OUTSs) that carry the maximum packet size. Any remaining data is
sent as a residual in the last transaction.

The Status stage of a control transfer is the last transaction in the sequence. The status stage transactions
follow the same protocol sequence as bulk transactions. Status stage for devices operating at high-speed
also includes the PING protocol. A Status stage is delineated by a change in direction of data flow from the
previous stage and always uses a DATA1 PID. If, for example, the Data stage consists of OUTs, the status
is a single IN transaction. If the control sequence has no Data stage, then it consists of a Setup stage
followed by a Status stage consisting of an IN transaction.

Figure 8-37 shows the transaction order, the data sequence bit value, and the data PID types for control read
and write sequences. The sequence bits are displayed in parentheses.

Setup Data Status
Stage Stage Stage
A A
\ I \
Control SETUP (0 OouUT (1 OuUT (0 OUT (o1 IN (1
Control | o | [ ovr |[owre |- [ ourem |[ wew |
DATAO DATA1 DATAO DATAO0/1 DATA1
Control SETUP (0 IN (1 IN (0 IN (01 OUT (1
Control | o || w || o |..| wmony || W |
DATAO DATA1 DATAO DATA0/1 DATA1
Setup Status
Stage Stage
A A
! \ I \
Nodata | setupio) | | N
Control
DATAO DATA1

Figure 8-37. Control Read and Write Sequences
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When a STALL handshake is sent by a control endpoint in either the Data or Status stages of a control
transfer, a STALL handshake must be returned on all succeeding accesses to that endpoint until a SETUP
PID is received. The endpoint is not required to return a STALL handshake after it receives a subsequent
SETUP PID. For the default endpoint, if an ACK handshake is returned for the SETUP transaction, the host
expects that the endpoint has automatically recovered from the condition that caused the STALL and the
endpoint must operate normally.

8.5.3.1 Reporting Status Results

The Status stage reports to the host the outcome of the previous Setup and Data stages of the transfer. Three
possible results may be returned:

e The command sequence completed successfully.
e The command sequence failed to complete.
e The function is still busy completing the command.

Status reporting is always in the function-to-host direction. Table 8-7 summarizes the type of responses
required for each. Control write transfers return status information in the data phase of the Status stage
transaction. Control read transfers return status information in the handshake phase of a Status stage
transaction, after the host has issued a zero-length data packet during the previous data phase.

Table 8-7. Status Stage Responses

Status Response | Control Write Transfer | Control Read Transfer
(sent during data phase) (sent during handshake phase)

Function completes Zero-length data packet ACK handshake

Function has an error | STALL handshake STALL handshake

Function is busy NAK handshake NAK handshake

For control reads, the host must send either an OUT token or PING special token (for a device operating at
high-speed) to the control pipe to initiate the Status stage. The host may only send a zero-length data packet
in this phase but the function may accept any length packet as a valid status inquiry. The pipe’s handshake
response to this data packet indicates the current status. NAK indicates that the function is still processing
the command and that the host should continue the Status stage. ACK indicates that the function has
completed the command and is ready to accept a new command. STALL indicates that the function has an
error that prevents it from completing the command.

For control writes, the host sends an IN token to the control pipe to initiate the Status stage. The function
responds with either a handshake or a zero-length data packet to indicate its current status. NAK indicates
that the function is still processing the command and that the host should continue the Status stage; return of
a zero-length packet indicates normal completion of the command; and STALL indicates that the function
cannot complete the command. The function expects the host to respond to the data packet in the Status
stage with ACK. If the function does not receive ACK, it remains in the Status stage of the command and
will continue to return the zero-length data packet for as long as the host continues to send IN tokens.

If during a Data stage a command pipe is sent more data or is requested to return more data than was
indicated in the Setup stage (see Section 8.5.3.2), it should return STALL. If a control pipe returns STALL
during the Data stage, there will be no Status stage for that control transfer.
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8.5.3.2 Variable-length Data Stage

A control pipe may have a variable-length data phase in which the host requests more data than is contained
in the specified data structure. When all of the data structure is returned to the host, the function should
indicate that the Data stage is ended by returning a packet that is shorter than the MaxPacketSize for the
pipe. If the data structure is an exact multiple of wMaxPacketSize for the pipe, the function will return a
zero-length packet to indicate the end of the Data stage.

8.5.3.3 Error Handling on the Last Data Transaction

If the ACK handshake on an IN transaction is corrupted, the function and the host will temporarily disagree
on whether the transaction was successful. If the transaction is followed by another IN, the toggle retry
mechanism will detect the mismatch and recover from the error. If the ACK was on the last IN of a Data
stage, the toggle retry mechanism cannot be used and an alternative scheme must be used.

The host that successfully received the data of the last IN will send ACK. Later, the host will issue an OUT
token to start the Status stage of the transfer. If the function did not receive the ACK that ended the Data
stage, the function will interpret the start of the Status stage as verification that the host successfully
received the data. Control writes do not have this ambiguity. If an ACK handshake on an OUT gets
corrupted, the host does not advance to the Status stage and retries the last data instead. A detailed analysis
of retry policy is presented in Section 8.6.4.

8.5.3.4 STALL Handshakes Returned by Control Pipes

Control pipes have the unique ability to return a STALL handshake due to function problems in control
transfers. If the device is unable to complete a command, it returns a STALL in the Data and/or Status
stages of the control transfer. Unlike the case of a functional stall, protocol stall does not indicate an error
with the device. The protocol STALL condition lasts until the receipt of the next SETUP transaction, and
the function will return STALL in response to any IN or OUT transaction on the pipe until the SETUP
transaction is received. In general, protocol stall indicates that the request or its parameters are not
understood by the device and thus provides a mechanism for extending USB requests.

A control pipe may also support functional stall as well, but this is not recommended. This is a
degenerative case, because a functional stall on a control pipe indicates that it has lost the ability to
communicate with the host. If the control pipe does support functional stall, then it must possess a Halt
feature, which can be set or cleared by the host. Chapter 9 details how to treat the special case of a Halt
feature on a control pipe. A well-designed device will associate all of its functions and Halt features with
non-control endpoints. The control pipes should be reserved for servicing USB requests.

8.5.4 Interrupt Transactions

228

Interrupt transactions may consist of IN or OUT transfers. Upon receipt of an IN token, a function may
return data, NAK, or STALL. If the endpoint has no new interrupt information to return (i.e., no interrupt is
pending), the function returns a NAK handshake during the data phase. If the Halt feature is set for the
interrupt endpoint, the function will return a STALL handshake. If an interrupt is pending, the function
returns the interrupt information as a data packet. The host, in response to receipt of the data packet, issues
either an ACK handshake if data was received error-free or returns no handshake if the data packet was
received corrupted. Figure 8-38 shows the interrupt transaction format.

Section 5.9.1 contains additional information about high-speed, high-bandwidth interrupt endpoints. Such
endpoints use multiple transactions in a microframe as defined in that section. Each transaction for a high-
bandwidth endpoint follows the transaction format shown in Figure 8-38.
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Idle

Token

DATAO0/
DATA1

Data

| ACK | | NAK | |STALL | Data

L ‘ 1 Error
> Idle

|:| Host |:| Function

Figure 8-38. Interrupt Transaction Format

When an endpoint is using the interrupt transfer mechanism for actual interrupt data, the data toggle
protocol must be followed. This allows the function to know that the data has been received by the host and
the event condition may be cleared. This “guaranteed” delivery of events allows the function to only send
the interrupt information until it has been received by the host rather than having to send the interrupt data
every time the function is polled and until the USB System Software clears the interrupt condition. When
used in the toggle mode, an interrupt endpoint is initialized to the DATAO PID by any configuration event
on the endpoint and behaves the same as the bulk transactions shown in Figure 8-35.

8.5.5 Isochronous Transactions

Isochronous transactions have a token and data phase, but no handshake phase, as shown in Figure 8-39.
The host issues either an IN or an OUT token followed by the data phase in which the endpoint (for INs) or
the host (for OUTs) transmits data. Isochronous transactions do not support a handshake phase or retry
capability.

Idle

|:| Host |:| Function

See Note Below

Figure 8-39. Isochronous Transaction Format
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Note: A full-speed device or Host Controller should be able to accept either DATAO or DATA1 PIDs in
data packets. A full-speed device or Host Controller should only send DATAO PIDs in data packets. A
high-speed Host Controller must be able to accept and send DATAO, DATA1, DATA2, or MDATA PIDs in
data packets. A high-speed device with at most 1 transaction per microframe must only send DATAO PIDs
in data packets. A high-speed device with high-bandwith endpoints (e.g., one that has more than 1
transaction per microframe) must be able to accept and/or send DATAO, DATAL, DATA2, or MDATA
PIDs in data packets.

Full-speed isochronous transactions do not support toggle sequencing. High-speed isochronous transactions
with a single transaction per microframe do not support toggle sequencing. High bandwidth, high-speed
isochronous transactions support data PID sequencing (see Section 5.9.1 for more details).

Figure 8-40 and Figure 8-41 show the host and device state machines respectively for isochronous OUT
transactions. Figure 8-42 and Figure 8-43 show the host and device state machines respectively for
isochronous IN transactions.

N

Issue_packet(HSD1, tokenOUT);

H_IDodata

Issue_packet(HSD1, datax);

RespondHC(Do_next_cmd);

A

HC Do _IsochO

Figure 8-40. Isochronous OUT Transaction Host State Machine
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HSD2.PID /= datax or
o (HSD2.PID = datax and
HSD2.CRC16 = bad) or
HSD2.timeout
Dev_Record_error;

Packet_ready(HSD2)

HSD2.PID = datax and
HSD2.CRC16 = ok

Dev_Accept_data;

DDo_lOdata

Dev_wait_data
Wait_for_packet(
HSD2, ITG);

RespondDev(Do_next_data);

-

‘ Dev_Do_IsochO

Figure 8-41. Isochronous OUT Transaction Device State Machine

o HSU2.PID = datax and
HSU2.CRC16 = ok

Packet_ready(HSU2) HC_Accept_data;

HSU2.PID /= datax or

(HSU2.PID = datax and
HSU2.CRC16 = bad) or
HSU2.timeout

Wait_Isochl_resp
Wait_for_packet(
HSU2, ITG);

H_lIDo_next
Record_error;

Issue_packet(HSD1, tokenlIN);

—

RespondHC(Do_next_cmd);

N

HC_Do_lsochl

Figure 8-42. Isochronous IN Transaction Host State Machine
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=

Issue_packet(HSU1, datax); -- data0

D_Do_lInext

RespondDev(Do_next_data);

i

‘ Dev_Do_Isochl ‘

Figure 8-43. Isochronous IN Transaction Device State Machine

8.6 Data Toggle Synchronization and Retry
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The USB provides a mechanism to guarantee data sequence synchronization between data transmitter and
receiver across multiple transactions. This mechanism provides a means of guaranteeing that the handshake
phase of a transaction was interpreted correctly by both the transmitter and receiver. Synchronization is
achieved via use of the DATAO and DATA1 PIDs and separate data toggle sequence bits for the data
transmitter and receiver. Receiver sequence bits toggle only when the receiver is able to accept data and
receives an error-free data packet with the correct data PID. Transmitter sequence bits toggle only when the
data transmitter receives a valid ACK handshake. The data transmitter and receiver must have their
sequence bits synchronized at the start of a transaction. The synchronization mechanism used varies with
the transaction type. Data toggle synchronization is not supported for isochronous transfers.

The state machines contained in this chapter and in Chapter 11 describe data toggle synchronization in a
more compact form. Instead of explicitly identifying DATAO and DATAL, it uses a value “DATAX” to
represent either/both DATAO/DATAL1 PIDs. In some cases where the specific data PID is important,
another variable labeled “x” is used that has the value 0 for DATAO and 1 for DATAI.

High-speed, high-bandwidth isochronous and interrupt endpoints support a similar but different data
synchronization technique called data PID sequencing. That technique is used instead of data toggle
synchronization. Section 5.9.1 defines data PID sequencing.
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8.6.1 Initialization via SETUP Token

Host Device
SETUP

DATAO0

Accept
data

>
(2]
P

Figure 8-44. SETUP Initialization

Control transfers use the SETUP token for initializing host and function sequence bits. Figure 8-44 shows
the host issuing a SETUP packet to a function followed by an OUT transaction. The numbers in the circles
represent the transmitter and receiver sequence bits. The function must accept the data and return ACK.
When the function accepts the transaction, it must set its sequence bit so that both the host’s and function’s
sequence bits are equal to one at the end of the SETUP transaction.

8.6.2 Successful Data Transactions

Figure 8-45 shows the case where two successful transactions have occurred. For the data transmitter, this
means that it toggles its sequence bit upon receipt of ACK. The receiver toggles its sequence bit only if it
receives a valid data packet and the packet’s data PID matches the current value of its sequence bit. The
transmitter only toggles its sequence bit after it receives an ACK to a data packet.

During each transaction, the receiver compares the transmitter sequence bit (encoded in the data packet PID
as either DATAO or DATAL1) with its receiver sequence bit. If data cannot be accepted, the receiver must
issue NAK and the sequence bits of both the transmitter and receiver remain unchanged. If data can be
accepted and the receiver’s sequence bit matches the PID sequence bit, then data is accepted and the
sequence bit is toggled. Two-phase transactions in which there is no data packet leave the transmitter and
receiver sequence bits unchanged.

DATAO DATA1
Accept Accept
data data
ACK ACK

Transfer i Transferi+1

Figure 8-45. Consecutive Transactions

8.6.3 Data Corrupted or Not Accepted

If data cannot be accepted or the received data packet is corrupted, the receiver will issue a NAK or STALL
handshake, or timeout, depending on the circumstances, and the receiver will not toggle its sequence bit.
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Figure 8-46 shows the case where a transaction is NAKed and then retried. Any non-ACK handshake or
timeout will generate similar retry behavior. The transmitter, having not received an ACK handshake, will
not toggle its sequence bit. As a result, a failed data packet transaction leaves the transmitter’s and
receiver’s sequence bits synchronized and untoggled. The transaction will then be retried and, if successful,
will cause both transmitter and receiver sequence bits to toggle.

DATAO DATAO0

Reject Accept

data

Q.
D
-
1Y

:
"

Transfer i Retry
Transfer i

Figure 8-46. NAKed Transaction with Retry

8.6.4 Corrupted ACK Handshake

The transmitter is the last and only agent to know for sure whether a transaction has been successful, due to
its receiving an ACK handshake. A lost or corrupted ACK handshake can lead to a temporary loss of
synchronization between transmitter and receiver as shown in Figure 8-47. Here the transmitter issues a
valid data packet, which is successfully acquired by the receiver; however, the ACK handshake is corrupted.

DATAO DATAO DATA1

Accept Ignore
data data

Failed ACK ACK ACK

© @
o
)
S
9
@

Transfer i Transfer i Transferi+ 1
(retried)

Figure 8-47. Corrupted ACK Handshake with Retry

At the end of transaction i, there is a temporary loss of coherency between transmitter and receiver, as
evidenced by the mismatch between their respective sequence bits. The receiver has received good data, but
the transmitter does not know whether it has successfully sent data. On the next transaction, the transmitter
will resend the previous data using the previous DATAO PID. The receiver’s sequence bit and the data PID
will not match, so the receiver knows that it has previously accepted this data. Consequently, it discards the
incoming data packet and does not toggle its sequence bit. The receiver then issues ACK, which causes the
transmitter to regard the retried transaction as successful. Receipt of ACK causes the transmitter to toggle
its sequence bit. At the beginning of transaction i+1, the sequence bits have toggled and are again
synchronized.

The data transmitter must guarantee that any retried data packet is identical (same length and content) as
that sent in the original transaction. If the data transmitter is unable, because of problems such as a buffer
underrun condition, to transmit the identical amount of data as was in the original data packet, it must abort
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the transaction by generating a bit stuffing violation for full-/low-speed. An error for high-speed must be
forced by taking the currently calculated CRC and complementing it before transmitting it. This causes a
detectable error at the receiver and guarantees that a partial packet will not be interpreted as a good packet.
The transmitter should not try to force an error at the receiver by sending a constant known bad CRC. A
combination of a bad packet with a “bad” CRC may be interpreted by the receiver as a good packet.

8.6.5 Low-speed Transactions

The USB supports signaling at three speeds: high-speed signaling at 480 Mb/s, full-speed signaling at
12.0 Mb/s, and low-speed signaling at 1.5 Mb/s. Hubs isolate high-speed signaling from full-/low-speed
signaling environments.

Within a full-/low-speed signaling environment, hubs disable downstream bus traffic to all ports to which
low-speed devices are attached during full-speed downstream signaling. This is required both for EMI
reasons and to prevent any possibility that a low-speed device might misinterpret downstream a full-speed
packet as being addressed to it.

Figure 8-48 shows an IN low-speed transaction in which the host (or TT) issues a token and handshake and
receives a data packet.

Hub enables low- Hub disables low-
speed port outputs speed port outputs
Preamble
sent at full-speed + Token sent at low-speed *
/__./\_j
SYNC PID Hub setup SYNC PID ENDP --- EOP
Data packet sent at low-speed
SYNC PID DATA CRC EOP
Hub disables low-
Hub enables low- speed port outputs
Preamble speed port outputs
sent at full-speed + Handshake sent at low-speed +
/—/\—\
SYNC PID Hub setup SYNC PID EOP

Figure 8-48. Low-speed Transaction

All downstream packets transmitted to low-speed devices within a full-/low-speed signaling environment
require a preamble. Preambles are never used in a high-speed signaling environment. The preamble
consists of a SYNC followed by a PRE PID, both sent at full-speed. Hubs must comprehend the PRE PID;
all other USB devices may ignore it and treat it as undefined. At the end of the preamble PID, the host (or
TT) drives the bus to the Idle state for at least one full-speed bit time. This Idle period on the bus is termed
the hub setup interval and lasts for at least four full-speed bit times. During this hub setup interval, hubs
must drive their full-speed and low-speed ports to their respective Idle states. Hubs must be ready to repeat
low-speed signaling on low-speed ports before the end of the hub setup interval. Low-speed connectivity
rules are summarized below:

1. Low-speed devices are identified during the connection process, and the hub ports to which they are
connected are identified as low-speed.

2. All downstream low-speed packets must be prefaced with a preamble (sent at full-speed), which turns
on the output buffers on low-speed hub ports.
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3. Low-speed hub port output buffers are turned off upon receipt of EOP and are not turned on again until
a preamble PID is detected.

4. Upstream connectivity is not affected by whether a hub port is full- or low-speed.

Low-speed signaling begins with the host (or TT) issuing SYNC at low-speed, followed by the remainder of
the packet. The end of the packet is identified by an End-of-Packet (EOP), at which time all hubs tear down
connectivity and disable any ports to which low-speed devices are connected. Hubs do not switch ports for
upstream signaling; low-speed ports remain enabled in the upstream direction for both low-speed and full-
speed signaling.

Low-speed and full-speed transactions maintain a high degree of protocol commonality. However, low-
speed signaling does have certain limitations which include:

e Data payload is limited to eight bytes, maximum.
e Only interrupt and control types of transfers are supported.

e The SOF packet is not received by low-speed devices.

8.7 Error Detection and Recovery

The USB permits reliable end-to-end communication in the presence of errors on the physical signaling
layer. This includes the ability to reliably detect the vast majority of possible errors and to recover from
errors on a transaction-type basis. Control transactions, for example, require a high degree of data
reliability; they support end-to-end data integrity using error detection and retry. Isochronous transactions,
by virtue of their bandwidth and latency requirements, do not permit retries and must tolerate a higher
incidence of uncorrected errors.

8.7.1 Packet Error Categories

236

The USB employs three error detection mechanisms: bit stuff violations, PID check bits, and CRCs. Bit
stuff violations are defined in Section 7.1.9. PID errors are defined in Section 8.3.1. CRC errors are
defined in Section 8.3.5.

With the exception of the SOF token, any packet that is received corrupted causes the receiver to ignore it
and discard any data or other field information that came with the packet. Table 8-8 lists error detection
mechanisms, the types of packets to which they apply, and the appropriate packet receiver response.

Table 8-8. Packet Error Types

Field Error Action
PID PID Check, Bit Stuff Ignore packet
Address Bit Stuff, Address CRC Ignore token
Frame Number Bit Stuff, Frame Number CRC Ignore Frame Number field
Data Bit Stuff, Data CRC Discard data
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8.7.2 Bus Turn-around Timing

Neither the device nor the host will send an indication that a received packet had an error. This absence of
positive acknowledgement is considered to be the indication that there was an error. As a consequence of
this method of error reporting, the host and USB function need to keep track of how much time has elapsed
from when the transmitter completes sending a packet until it begins to receive a response packet. This time
is referred to as the bus turn-around time. Devices and hosts require turn-around timers to measure this
time.

For full-/low-speed transactions, the timer starts counting on the SEO-to-‘J’ transition of the EOP strobe and
stops counting when the Idle-to-‘K’ SOP transition is detected. For high-speed transactions, the timer starts
counting when the data lines return to the squelch level and stops counting when the data lines leave the
squelch level.

The device bus turn-around time is defined by the worst case round trip delay plus the maximum device
response delay (refer to Sections 7.1.18 and 7.1.19 for specific bus turn-around times). If a response is not
received within this worst case timeout, then the transmitter considers that the packet transmission has
failed.

Timeout is used and interpreted as a transaction error condition for many transfer types. If the host wishes
to indicate an error condition for a transaction via a timeout, it must wait the full bus turn-around time
before issuing the next token to ensure that all downstream devices have timed out.

As shown in Figure 8-49, the device uses its bus turn-around timer between token and data or data and
handshake phases. The host uses its timer between data and handshake or token and data phases.

If the host receives a corrupted data packet, it may require additional wait time before sending out the next
token. This additional wait interval guarantees that the host properly handles false EOPs.

OUT/SETUP Handshake
A A

device waits host waits

[~ ] Handshake
— —A

host waits device waits

Figure 8-49. Bus Turn-around Timer Usage

8.7.3 False EOPs

False EOPs must be handled in a manner which guarantees that the packet currently in progress completes
before the host or any other device attempts to transmit a new packet. If such an event were to occur, it
would constitute a bus collision and have the ability to corrupt up to two consecutive transactions.
Detection of false EOP relies upon the fact that a packet into which a false EOP has been inserted will
appear as a truncated packet with a CRC failure. (The last 16 bits of the data packet will have a very low
probability of appearing to be a correct CRC.)

The host and devices handle false EOP situations differently. When a device receives a corrupted data
packet, it issues no response and waits for the host to send the next token. This scheme guarantees that the
device will not attempt to return a handshake while the host may still be transmitting a data packet. Ifa
false EOP has occurred, the host data packet will eventually end, and the device will be able to detect the
next token. If a device issues a data packet that gets corrupted with a false EOP, the host will ignore the
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packet and not issue the handshake. The device, expecting to see a handshake from the host, will timeout
the transaction.

If the host receives a corrupted full-/low-speed data packet, it assumes that a false EOP may have occurred
and waits for 16 bit times to see if there is any subsequent upstream traffic. If no bus transitions are
detected within the 16 bit interval and the bus remains in the Idle state, the host may issue the next token.

Otherwise, the host waits for the device to finish sending the remainder of its full-/low-speed packet.
Waiting 16 bit times guarantees two conditions:

e The first condition is to make sure that the device has finished sending its packet. This is guaranteed by
a timeout interval (with no bus transitions) greater than the worst case six-bit time bit stuff interval.

e The second condition is that the transmitting device’s bus turn-around timer must be guaranteed to
expire.

Note that the timeout interval is transaction speed sensitive. For full-speed transactions, the host must wait
full-speed bit times; for low-speed transactions, it must wait low-speed bit times.

If the host receives a corrupted high-speed data packet, it ignores any data until the data lines return to the
squelch level before issuing the next token. For high-speed transactions, the host does not need to wait
additional time (beyond the normal inter-transaction gap time) after the data lines return to the squelch
level.

If the host receives a data packet with a valid CRC, it assumes that the packet is complete and requires no
additional delay (beyond normal inter-transaction gap time) in issuing the next token.

8.7.4 Babble and Loss of Activity Recovery

The USB must be able to detect and recover from conditions which leave it waiting indefinitely for a
full-/low-speed EOP or which leave the bus in something other than the Idle state at the end of a
(micro)frame.

e Full-/low-speed loss of activity (LOA) is characterized by an SOP followed by lack of bus activity (bus
remains driven to a ‘J” or ‘K’) and no EOP at the end of a frame.

e  Full-/low-speed babble is characterized by an SOP followed by the presence of bus activity past the end
of a frame.

e High-speed babble/LOA is characterized by the data lines being at an unsquelched level at the end of a
microframe.

LOA and babble have the potential to either deadlock the bus or delay the beginning of the next
(micro)frame. Neither condition is acceptable, and both must be prevented from occurring. As the USB
component responsible for controlling connectivity, hubs are responsible for babble/LOA detection and
recovery. All USB devices that fail to complete their transmission at the end of a (micro)frame are
prevented from transmitting past a (micro)frame’s end by having the nearest hub disable the port to which
the offending device is attached. Details of the hub babble/LOA recovery mechanism appear in

Section 11.2.5.
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Chapter 9
USB Device Framework

A USB device may be divided into three layers:
e The bottom layer is a bus interface that transmits and receives packets.

e The middle layer handles routing data between the bus interface and various endpoints on the device.
An endpoint is the ultimate consumer or provider of data. It may be thought of as a source or sink for
data.

e The top layer is the functionality provided by the serial bus device, for instance, a mouse or ISDN
interface.

This chapter describes the common attributes and operations of the middle layer of a USB device. These
attributes and operations are used by the function-specific portions of the device to communicate through
the bus interface and ultimately with the host.

9.1 USB Device States

A USB device has several possible states. Some of these states are visible to the USB and the host, while
others are internal to the USB device. This section describes those states.

9.1.1 Visible Device States

This section describes USB device states that are externally visible (see Figure 9-1). Table 9-1 summarizes
the visible device states.

Note: USB devices perform a reset operation in response to reset signaling on the upstream facing port.
When reset signaling has completed, the USB device is reset.
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Figure 9-1. Device State Diagram
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Table 9-1. Visible Device States

Attached | Powered | Default | Address | Configured | Suspended State

No - -- - - - Device is not attached to
the USB. Other attributes
are not significant.

Yes No -- - -- - Device is attached to the
USB, but is not powered.
Other attributes are not
significant.

Yes Yes No - -- - Device is attached to the
USB and powered, but
has not been reset.

Yes Yes Yes No - -- Device is attached to the
USB and powered and
has been reset, but has
not been assigned a
unique address. Device
responds at the default
address.

Yes Yes Yes Yes No - Device is attached to the
USB, powered, has been
reset, and a unique
device address has been
assigned. Device is not
configured.

Yes Yes Yes Yes Yes No Device is attached to the
USB, powered, has been
reset, has a unique
address, is configured,
and is not suspended.
The host may now use
the function provided by
the device.

Yes Yes - - - Yes Device is, at minimum,
attached to the USB and
is powered and has not
seen bus activity for 3 ms.
It may also have a unique
address and be
configured for use.
However, because the
device is suspended, the
host may not use the
device’s function.
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9.1.1.1 Attached

A USB device may be attached or detached from the USB. The state of a USB device when it is detached
from the USB is not defined by this specification. This specification only addresses required operations and
attributes once the device is attached.

9.1.1.2 Powered

USB devices may obtain power from an external source and/or from the USB through the hub to which they
are attached. Externally powered USB devices are termed self-powered. Although self-powered devices
may already be powered before they are attached to the USB, they are not considered to be in the Powered
state until they are attached to the USB and VBUS is applied to the device.

A device may support both self-powered and bus-powered configurations. Some device configurations
support either power source. Other device configurations may be available only if the device is self-
powered. Devices report their power source capability through the configuration descriptor. The current
power source is reported as part of a device’s status. Devices may change their power source at any time,
e.g., from self- to bus-powered. If a configuration is capable of supporting both power modes, the power
maximum reported for that configuration is the maximum the device will draw from VBUS in either mode.
The device must observe this maximum, regardless of its mode. If a configuration supports only one power
mode and the power source of the device changes, the device will lose its current configuration and address
and return to the Powered state. If a device is self-powered and its current configuration requires more than
100 mA, then if the device switches to being bus-powered, it must return to the Address state. Self-powered
hubs that use VBUS to power the Hub Controller are allowed to remain in the Configured state if local
power is lost. Refer to Section 11.13 for details.

A hub port must be powered in order to detect port status changes, including attach and detach. Bus-
powered hubs do not provide any downstream power until they are configured, at which point they will
provide power as allowed by their configuration and power source. A USB device must be able to be
addressed within a specified time period from when power is initially applied (refer to Chapter 7). After an
attachment to a port has been detected, the host may enable the port, which will also reset the device
attached to the port.

9.1.1.3 Default

After the device has been powered, it must not respond to any bus transactions until it has received a reset
from the bus. After receiving a reset, the device is then addressable at the default address.

When the reset process is complete, the USB device is operating at the correct speed (i.e., low-/full-/high-
speed). The speed selection for low- and full-speed is determined by the device termination resistors. A
device that is capable of high-speed operation determines whether it will operate at high-speed as a part of
the reset process (see Chapter 7 for more details).

A device capable of high-speed operation must reset successfully at full-speed when in an electrical
environment that is operating at full-speed. After the device is successfully reset, the device must also
respond successfully to device and configuration descriptor requests and return appropriate information.
The device may or may not be able to support its intended functionality when operating at full-speed.

9.1.1.4 Address

All USB devices use the default address when initially powered or after the device has been reset. Each
USB device is assigned a unique address by the host after attachment or after reset. A USB device
maintains its assigned address while suspended.

A USB device responds to requests on its default pipe whether the device is currently assigned a unique
address or is using the default address.
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9.1.1.5 Configured

Before a USB device’s function may be used, the device must be configured. From the device’s
perspective, configuration involves correctly processing a SetConfiguration() request with a non-zero
configuration value. Configuring a device or changing an alternate setting causes all of the status and
configuration values associated with endpoints in the affected interfaces to be set to their default values.
This includes setting the data toggle of any endpoint using data toggles to the value DATAO.

9.1.1.6 Suspended

In order to conserve power, USB devices automatically enter the Suspended state when the device has
observed no bus traffic for a specified period (refer to Chapter 7). When suspended, the USB device
maintains any internal status, including its address and configuration.

All devices must suspend if bus activity has not been observed for the length of time specified in

Chapter 7. Attached devices must be prepared to suspend at any time they are powered, whether they have
been assigned a non-default address or are configured. Bus activity may cease due to the host entering a
suspend mode of its own. In addition, a USB device shall also enter the Suspended state when the hub port
it is attached to is disabled. This is referred to as selective suspend.

A USB device exits suspend mode when there is bus activity. A USB device may also request the host to
exit suspend mode or selective suspend by using electrical signaling to indicate remote wakeup. The ability
of a device to signal remote wakeup is optional. If a USB device is capable of remote wakeup signaling, the
device must support the ability of the host to enable and disable this capability. When the device is reset,
remote wakeup signaling must be disabled.

9.1.2 Bus Enumeration

When a USB device is attached to or removed from the USB, the host uses a process known as bus
enumeration to identify and manage the device state changes necessary. When a USB device is attached to
a powered port, the following actions are taken:

1. The hub to which the USB device is now attached informs the host of the event via a reply on its status
change pipe (refer to Section 11.12.3 for more information). At this point, the USB device is in the
Powered state and the port to which it is attached is disabled.

2. The host determines the exact nature of the change by querying the hub.

3. Now that the host knows the port to which the new device has been attached, the host then waits for at
least 100 ms to allow completion of an insertion process and for power at the device to become stable.
The host then issues a port enable and reset command to that port. Refer to Section 7.1.7.5 for
sequence of events and timings of connection through device reset.

4. The hub performs the required reset processing for that port (see Section 11.5.1.5). When the reset
signal is released, the port has been enabled. The USB device is now in the Default state and can draw
no more than 100 mA from VBUS. All of its registers and state have been reset and it answers to the
default address.

5. The host assigns a unique address to the USB device, moving the device to the Address state.

6. Before the USB device receives a unique address, its Default Control Pipe is still accessible via the
default address. The host reads the device descriptor to determine what actual maximum data payload
size this USB device’s default pipe can use.

7. The host reads the configuration information from the device by reading each configuration zero to
n-1, where n is the number of configurations. This process may take several milliseconds to complete.
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8. Based on the configuration information and how the USB device will be used, the host assigns a
configuration value to the device. The device is now in the Configured state and all of the endpoints in
this configuration have taken on their described characteristics. The USB device may now draw the
amount of VBUS power described in its descriptor for the selected configuration. From the device’s
point of view, it is now ready for use.

When the USB device is removed, the hub again sends a notification to the host. Detaching a device
disables the port to which it had been attached. Upon receiving the detach notification, the host will update
its local topological information.

9.2 Generic USB Device Operations

All USB devices support a common set of operations. This section describes those operations.

9.2.1 Dynamic Attachment and Removal

USB devices may be attached and removed at any time. The hub that provides the attachment point or port
is responsible for reporting any change in the state of the port.

The host enables the hub port where the device is attached upon detection of an attachment, which also has
the effect of resetting the device. A reset USB device has the following characteristics:

e Responds to the default USB address
e Is not configured
e Isnot initially suspended

When a device is removed from a hub port, the hub disables the port where the device was attached and
notifies the host of the removal.

9.2.2 Address Assignment

When a USB device is attached, the host is responsible for assigning a unique address to the device. This is
done after the device has been reset by the host, and the hub port where the device is attached has been
enabled.

9.2.3 Configuration

A USB device must be configured before its function(s) may be used. The host is responsible for
configuring a USB device. The host typically requests configuration information from the USB device to
determine the device’s capabilities.

As part of the configuration process, the host sets the device configuration and, where necessary, selects the
appropriate alternate settings for the interfaces.

Within a single configuration, a device may support multiple interfaces. An interface is a related set of
endpoints that present a single feature or function of the device to the host. The protocol used to
communicate with this related set of endpoints and the purpose of each endpoint within the interface may be
specified as part of a device class or vendor-specific definition.

In addition, an interface within a configuration may have alternate settings that redefine the number or
characteristics of the associated endpoints. If this is the case, the device must support the GetInterface()
request to report the current alternate setting for the specified interface and SetInterface() request to select
the alternate setting for the specified interface.

Within each configuration, each interface descriptor contains fields that identify the interface number and
the alternate setting. Interfaces are numbered from zero to one less than the number of concurrent interfaces
supported by the configuration. Alternate settings range from zero to one less than the number of alternate
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settings for a specific interface. The default setting when a device is initially configured is alternate setting
Zero.

In support of adaptive device drivers that are capable of managing a related group of USB devices, the
device and interface descriptors contain Class, SubClass, and Protocol fields. These fields are used to
identify the function(s) provided by a USB device and the protocols used to communicate with the
function(s) on the device. A class code is assigned to a group of related devices that has been characterized
as a part of a USB Class Specification. A class of devices may be further subdivided into subclasses, and,
within a class or subclass, a protocol code may define how the Host Software communicates with the
device.

Note: The assignment of class, subclass, and protocol codes must be coordinated but is beyond the scope of
this specification.

9.2.4 Data Transfer

Data may be transferred between a USB device endpoint and the host in one of four ways. Refer to
Chapter 5 for the definition of the four types of transfers. An endpoint number may be used for different
types of data transfers in different alternate settings. However, once an alternate setting is selected
(including the default setting of an interface), a USB device endpoint uses only one data transfer method
until a different alternate setting is selected.

9.2.5 Power Management

Power management on USB devices involves the issues described in the following sections.

9.2.5.1 Power Budgeting

USB bus power is a limited resource. During device enumeration, a host evaluates a device’s power
requirements. If the power requirements of a particular configuration exceed the power available to the
device, Host Software shall not select that configuration.

USB devices shall limit the power they consume from VBUS to one unit load or less until configured.
Suspended devices, whether configured or not, shall limit their bus power consumption as defined in
Chapter 7. Depending on the power capabilities of the port to which the device is attached, a USB device
may be able to draw up to five unit loads from VBUS after configuration.

9.2.5.2 Remote Wakeup

Remote wakeup allows a suspended USB device to signal a host that may also be suspended. This notifies
the host that it should resume from its suspended mode, if necessary, and service the external event that
triggered the suspended USB device to signal the host. A USB device reports its ability to support remote
wakeup in a configuration descriptor. If a device supports remote wakeup, it must also allow the capability
to be enabled and disabled using the standard USB requests.

Remote wakeup is accomplished using electrical signaling described in Section 7.1.7.7.

9.2.6 Request Processing

With the exception of SetAddress() requests (see Section 9.4.6), a device may begin processing of a request
as soon as the device returns the ACK following the Setup. The device is expected to “complete”
processing of the request before it allows the Status stage to complete successfully. Some requests initiate
operations that take many milliseconds to complete. For requests such as this, the device class is required to
define a method other than Status stage completion to indicate that the operation has completed. For
example, a reset on a hub port takes at least 10 ms to complete. The SetPortFeature(PORT RESET) (see
Chapter 11) request “completes” when the reset on the port is initiated. Completion of the reset operation is
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signaled when the port’s status change is set to indicate that the port is now enabled. This technique
prevents the host from having to constantly poll for a completion when it is known that the request will take
a relatively long period of time.

9.2.6.1 Request Processing Timing

All devices are expected to handle requests in a timely manner. USB sets an upper limit of 5 seconds as the
upper limit for any command to be processed. This limit is not applicable in all instances. The limitations
are described in the following sections. It should be noted that the limitations given below are intended to
encompass a wide range of implementations. If all devices in a USB system used the maximum allotted
time for request processing, the user experience would suffer. For this reason, implementations should
strive to complete requests in times that are as short as possible.

9.2.6.2 Reset/Resume Recovery Time

After a port is reset or resumed, the USB System Software is expected to provide a “recovery” interval of
10 ms before the device attached to the port is expected to respond to data transfers. The device may ignore
any data transfers during the recovery interval.

After the end of the recovery interval (measured from the end of the reset or the end of the EOP at the end
of the resume signaling), the device must accept data transfers at any time.

9.2.6.3 Set Address Processing

After the reset/resume recovery interval, if a device receives a SetAddress() request, the device must be able
to complete processing of the request and be able to successfully complete the Status stage of the request
within 50 ms. In the case of the SetAddress() request, the Status stage successfully completes when the
device sends the zero-length Status packet or when the device sees the ACK in response to the Status stage
data packet.

After successful completion of the Status stage, the device is allowed a SetAddress() recovery interval of
2 ms. At the end of this interval, the device must be able to accept Setup packets addressed to the new
address. Also, at the end of the recovery interval, the device must not respond to tokens sent to the old
address (unless, of course, the old and new address is the same).

9.2.6.4 Standard Device Requests

For standard device requests that require no Data stage, a device must be able to complete the request and
be able to successfully complete the Status stage of the request within 50 ms of receipt of the request. This
limitation applies to requests to the device, interface, or endpoint.

For standard device requests that require data stage transfer to the host, the device must be able to return the
first data packet to the host within 500 ms of receipt of the request. For subsequent data packets, if any, the
device must be able to return them within 500 ms of successful completion of the transmission of the
previous packet. The device must then be able to successfully complete the status stage within 50 ms after
returning the last data packet.

For standard device requests that require a data stage transfer to the device, the 5-second limit applies. This
means that the device must be capable of accepting all data packets from the host and successfully
completing the Status stage if the host provides the data at the maximum rate at which the device can accept
it. Delays between packets introduced by the host add to the time allowed for the device to complete the
request.
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9.2.6.5 Class-specific Requests

Unless specifically exempted in the class document, all class-specific requests must meet the timing
limitations for standard device requests. If a class document provides an exemption, the exemption may
only be specified on a request-by-request basis.

A class document may require that a device respond more quickly than is specified in this section. Faster
response may be required for standard and class-specific requests.

9.2.6.6 Speed Dependent Descriptors

A device capable of operation at high-speed can operate in either full- or high-speed. The device always
knows its operational speed due to having to manage its transceivers correctly as part of reset processing
(See Chapter 7 for more details on reset). A device also operates at a single speed after completing the reset
sequence. In particular, there is no speed switch during normal operation. However, a high-speed capable
device may have configurations that are speed dependent. That is, it may have some configurations that are
only possible when operating at high-speed or some that are only possible when operating at full-speed.
High-speed capable devices must support reporting their speed dependent configurations.

A high-speed capable device responds with descriptor information that is valid for the current operating
speed. For example, when a device is asked for configuration descriptors, it only returns those for the
current operating speed (e.g., full speed). However, there must be a way to determine the capabilities for
both high- and full-speed operation.

Two descriptors allow a high-speed capable device to report configuration information about the other
operating speed. The two descriptors are: the (other speed) device qualifier descriptor and the

other speed_configuration descriptor. These two descriptors are retrieved by the host by using the
GetDescriptor request with the corresponding descriptor type values.

Note: These descriptors are not retrieved unless the host explicitly issues the corresponding GetDescriptor
requests. If these two requests are not issued, the device would simply appear to be a single speed device.

Devices that are high-speed capable must set the version number in the bcdUSB field of their descriptors to
0200H. This indicates that such devices support the other speed requests defined by USB 2.0. A device
with descriptor version numbers less than 0200H should cause a Request Error response (see next section) if
it receives these other speed requests. A USB 1.x device (i.e., one with a device descriptor version less
than 0200H) should not be issued the other speed requests.

9.2.7 Request Error

When a request is received by a device that is not defined for the device, is inappropriate for the current
setting of the device, or has values that are not compatible with the request, then a Request Error exists.
The device deals with the Request Error by returning a STALL PID in response to the next Data stage
transaction or in the Status stage of the message. It is preferred that the STALL PID be returned at the next
Data stage transaction, as this avoids unnecessary bus activity.

247

LGE-1010 / Page 275 of 650



Universal Serial Bus Specification Revision 2.0

9.3 USB Device Requests

All USB devices respond to requests from the host on the device’s Default Control Pipe. These requests are
made using control transfers. The request and the request’s parameters are sent to the device in the Setup
packet. The host is responsible for establishing the values passed in the fields listed in Table 9-2. Every
Setup packet has eight bytes.

Table 9-2. Format of Setup Data

Offset Field Size Value Description
0 bmRequestType 1 Bitmap Characteristics of request:
D7: Data transfer direction

0 = Host-to-device
1 = Device-to-host

D6...5: Type
0 = Standard
1 =Class
2 = Vendor

3 = Reserved

D4...0: Recipient

0 = Device

1 = Interface
2 = Endpoint
3 = Other

4...31 = Reserved

1 bRequest 1 Value Specific request (refer to Table 9-3)

2 wValue 2 Value Word-sized field that varies according to
request

4 windex 2 Index or Word-sized field that varies according to

Offset request; typically used to pass an index or

offset

6 wLength 2 Count Number of bytes to transfer if there is a
Data stage

9.3.1 bmRequestType

This bitmapped field identifies the characteristics of the specific request. In particular, this field identifies
the direction of data transfer in the second phase of the control transfer. The state of the Direction bit is
ignored if the wLength field is zero, signifying there is no Data stage.

The USB Specification defines a series of standard requests that all devices must support. These are
enumerated in Table 9-3. In addition, a device class may define additional requests. A device vendor may
also define requests supported by the device.

Requests may be directed to the device, an interface on the device, or a specific endpoint on a device. This
field also specifies the intended recipient of the request. When an interface or endpoint is specified, the
windex field identifies the interface or endpoint.
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9.3.2 bRequest

This field specifies the particular request. The Type bits in the bmRequestType field modify the meaning of
this field. This specification defines values for the bRequest field only when the bits are reset to zero,
indicating a standard request (refer to Table 9-3).

9.3.3 wValue

The contents of this field vary according to the request. It is used to pass a parameter to the device, specific
to the request.

9.3.4 windex

The contents of this field vary according to the request. It is used to pass a parameter to the device, specific
to the request.

The windex field is often used in requests to specify an endpoint or an interface. Figure 9-2 shows the
format of windex when it is used to specify an endpoint.

D7 D6 D5 D4 D3 D2 D1 DO
Direction Reserved (Reset to zero) Endpoint Number
D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-2. windex Format when Specifying an Endpoint

The Direction bit is set to zero to indicate the OUT endpoint with the specified Endpoint Number and to one
to indicate the IN endpoint. In the case of a control pipe, the request should have the Direction bit set to
zero but the device may accept either value of the Direction bit.

Figure 9-3 shows the format of wlndex when it is used to specify an interface.

D7 D6 D5 D4 D3 D2 D1 DO

Interface Number

D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-3. windex Format when Specifying an Interface

9.3.5 wLength

This field specifies the length of the data transferred during the second phase of the control transfer. The
direction of data transfer (host-to-device or device-to-host) is indicated by the Direction bit of the
bmRequestType field. If this field is zero, there is no data transfer phase.

On an input request, a device must never return more data than is indicated by the wLength value; it may
return less. On an output request, wLength will always indicate the exact amount of data to be sent by the
host. Device behavior is undefined if the host should send more data than is specified in wLength.
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9.4 Standard Device Requests

This section describes the standard device requests defined for all USB devices. Table 9-3 outlines the
standard device requests, while Table 9-4 and Table 9-5 give the standard request codes and descriptor

types, respectively.

USB devices must respond to standard device requests, even if the device has not yet been assigned an
address or has not been configured.

Table 9-3. Standard Device Requests

bmRequestType bRequest wValue windex | wLength Data
00000000B CLEAR_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint
10000000B GET_CONFIGURATION Zero Zero One Configuration
Value
10000000B GET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language Length
Descriptor ID
Index
10000001B GET_INTERFACE Zero Interface One Alternate
Interface
10000000B GET_STATUS Zero Zero Two Device,
10000001B Interface Interface, or
10000010B Endpoint Endpoint
Status
00000000B SET_ADDRESS Device Zero Zero None
Address
00000000B SET_CONFIGURATION | Configuration Zero Zero None
Value
00000000B SET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language Length
Descriptor ID
Index
00000000B SET_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint
00000001B SET_INTERFACE Alternate Interface Zero None
Setting
10000010B SYNCH_FRAME Zero Endpoint Two Frame Number
250
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Table 9-4. Standard Request Codes

bRequest Value

GET_STATUS 0

CLEAR_FEATURE 1

Reserved for future use 2

SET_FEATURE 3
Reserved for future use 4
SET_ADDRESS 5
GET_DESCRIPTOR 6
SET_DESCRIPTOR 7
GET_CONFIGURATION 8
SET_CONFIGURATION 9
GET_INTERFACE 10
SET_INTERFACE 11
SYNCH_FRAME 12

Table 9-5. Descriptor Types

Descriptor Types Value
DEVICE 1
CONFIGURATION 2
STRING 3
INTERFACE 4
ENDPOINT 5
DEVICE_QUALIFIER 6
OTHER_SPEED_CONFIGURATION 7
INTERFACE_POWER1 8

' The INTERFACE_POWER descriptor is defined in the current revision of the USB Interface Power

Management Specification.
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Feature selectors are used when enabling or setting features, such as remote wakeup, specific to a device,
interface, or endpoint. The values for the feature selectors are given in Table 9-6.

Table 9-6. Standard Feature Selectors

Feature Selector Recipient Value
DEVICE_REMOTE_WAKEUP Device 1
ENDPOINT_HALT Endpoint 0
TEST_MODE Device 2

If an unsupported or invalid request is made to a USB device, the device responds by returning STALL in
the Data or Status stage of the request. If the device detects the error in the Setup stage, it is preferred that
the device returns STALL at the earlier of the Data or Status stage. Receipt of an unsupported or invalid
request does NOT cause the optional Halt feature on the control pipe to be set. If for any reason, the device
becomes unable to communicate via its Default Control Pipe due to an error condition, the device must be
reset to clear the condition and restart the Default Control Pipe.

9.4.1 Clear Feature

This request is used to clear or disable a specific feature.

bmRequestType bRequest wValue windex wLength Data
00000000B CLEAR_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint

252

Feature selector values in wValue must be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device, only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients.

A ClearFeature() request that references a feature that cannot be cleared, that does not exist, or that
references an interface or endpoint that does not exist, will cause the device to respond with a Request
Error.

If wLength is non-zero, then the device behavior is not specified.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: This request is valid when the device is in the Address state; references to interfaces
or to endpoints other than endpoint zero shall cause the device to respond with a
Request Error.

Configured state:  This request is valid when the device is in the Configured state.

Note: The Test Mode feature cannot be cleared by the ClearFeature() request.
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9.4.2 Get Configuration

This request returns the current device configuration value.

bmRequestType bRequest wValue windex wLength Data
10000000B GET_CONFIGURATION Zero Zero One Configuration
Value

If the returned value is zero, the device is not configured.

If wValue, windex, or wLength are not as specified above, then the device behavior is not specified.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: The value zero must be returned.

Configured state: ~ The non-zero bConfigurationValue of the current configuration must be returned.

9.4.3 Get Descriptor

This request returns the specified descriptor if the descriptor exists.

bmRequestType bRequest wValue windex wLength Data
10000000B GET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language ID Length
Descriptor (refer to
Index Section 9.6.7)

The wValue field specifies the descriptor type in the high byte (refer to Table 9-5) and the descriptor index
in the low byte. The descriptor index is used to select a specific descriptor (only for configuration and
string descriptors) when several descriptors of the same type are implemented in a device. For example, a
device can implement several configuration descriptors. For other standard descriptors that can be retrieved
via a GetDescriptor() request, a descriptor index of zero must be used. The range of values used for a
descriptor index is from 0 to one less than the number of descriptors of that type implemented by the device.

The windex field specifies the Language ID for string descriptors or is reset to zero for other descriptors.
The wLength field specifies the number of bytes to return. If the descriptor is longer than the wLength field,
only the initial bytes of the descriptor are returned. If the descriptor is shorter than the wLength field, the
device indicates the end of the control transfer by sending a short packet when further data is requested. A
short packet is defined as a packet shorter than the maximum payload size or a zero length data packet (refer
to Chapter 5).

The standard request to a device supports three types of descriptors: device (also device qualifier),
configuration (also other speed configuration), and string. A high-speed capable device supports the
device qualifier descriptor to return information about the device for the speed at which it is not operating
(including wMaxPacketSize for the default endpoint and the number of configurations for the other speed).
The other_speed_configuration returns information in the same structure as a configuration descriptor, but
for a configuration if the device were operating at the other speed. A request for a configuration descriptor
returns the configuration descriptor, all interface descriptors, and endpoint descriptors for all of the
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interfaces in a single request. The first interface descriptor follows the configuration descriptor. The
endpoint descriptors for the first interface follow the first interface descriptor. If there are additional
interfaces, their interface descriptor and endpoint descriptors follow the first interface’s endpoint
descriptors. Class-specific and/or vendor-specific descriptors follow the standard descriptors they extend or
modify.

All devices must provide a device descriptor and at least one configuration descriptor. If a device does not
support a requested descriptor, it responds with a Request Error.

Default state: This is a valid request when the device is in the Default state.
Address state: This is a valid request when the device is in the Address state.

Configured state:  This is a valid request when the device is in the Configured state.

9.4.4 Get Interface

This request returns the selected alternate setting for the specified interface.

bmRequestType bRequest wValue windex wLength Data
10000001B GET_INTERFACE Zero Interface One Alternate
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to determine the currently selected alternate setting.

If wValue or wLength are not as specified above, then the device behavior is not specified.
If the interface specified does not exist, then the device responds with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: A Request Error response is given by the device.
Configured state:  This is a valid request when the device is in the Configured state.

9.4.5 Get Status

This request returns status for the specified recipient.

bmRequestType bRequest wValue windex wLength Data
10000000B GET_STATUS Zero Zero Two Device,
10000001B Interface Interface, or
10000010B Endpoint Endpoint
Status

The Recipient bits of the bmRequestType field specify the desired recipient. The data returned is the current
status of the specified recipient.
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If wValue or wLength are not as specified above, or if windex is non-zero for a device status request, then
the behavior of the device is not specified.

If an interface or an endpoint is specified that does not exist, then the device responds with a Request Error.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

If an interface or endpoint that does not exist is specified, then the device responds
with a Request Error.

A GetStatus() request to a device returns the information shown in Figure 9-4.

D7 D6 D5 D4 D3 D2 D1 DO
Reserved (Reset to zero) Remote Self
Wakeup Powered
D15 D14 D13 D12 D11 D10 D9 D8
Reserved (Reset to zero)

Figure 9-4. Information Returned by a GetStatus() Request to a Device

The Self Powered field indicates whether the device is currently self-powered. If DO is reset to zero, the
device is bus-powered. If DO is set to one, the device is self-powered. The Self Powered field may not be
changed by the SetFeature() or ClearFeature() requests.

The Remote Wakeup field indicates whether the device is currently enabled to request remote wakeup. The
default mode for devices that support remote wakeup is disabled. If D1 is reset to zero, the ability of the
device to signal remote wakeup is disabled. If D1 is set to one, the ability of the device to signal remote
wakeup is enabled. The Remote Wakeup field can be modified by the SetFeature() and ClearFeature()
requests using the DEVICE_ REMOTE_WAKEUP feature selector. This field is reset to zero when the
device is reset.

A GetStatus() request to an interface returns the information shown in Figure 9-5.

D7 D6 D5 D4 D3 D2 D1 DO
Reserved (Reset to zero)
D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-5. Information Returned by a GetStatus() Request to an Interface
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A GetStatus() request to an endpoint returns the information shown in Figure 9-6.

D7 D6 D5 D4 D3 D2 D1 DO
Reserved (Reset to zero) Halt
D15 D14 D13 D12 D11 D10 D9 D8

Reserved (Reset to zero)

Figure 9-6. Information Returned by a GetStatus() Request to an Endpoint

The Halt feature is required to be implemented for all interrupt and bulk endpoint types. If the endpoint is
currently halted, then the Halt feature is set to one. Otherwise, the Halt feature is reset to zero. The Halt
feature may optionally be set with the SetFeature(ENDPOINT HALT) request. When set by the
SetFeature() request, the endpoint exhibits the same stall behavior as if the field had been set by a hardware
condition. If the condition causing a halt has been removed, clearing the Halt feature via a
ClearFeature(ENDPOINT HALT) request results in the endpoint no longer returning a STALL. For
endpoints using data toggle, regardless of whether an endpoint has the Halt feature set, a
ClearFeature(ENDPOINT HALT) request always results in the data toggle being reinitialized to DATAO.
The Halt feature is reset to zero after either a SetConfiguration() or Setlnterface() request even if the
requested configuration or interface is the same as the current configuration or interface.

It is neither required nor recommended that the Halt feature be implemented for the Default Control Pipe.
However, devices may set the Halt feature of the Default Control Pipe in order to reflect a functional error
condition. If the feature is set to one, the device will return STALL in the Data and Status stages of each
standard request to the pipe except GetStatus(), SetFeature(), and ClearFeature() requests. The device need
not return STALL for class-specific and vendor-specific requests.

9.4.6 Set Address

This request sets the device address for all future device accesses.

bmRequestType bRequest wValue windex wLength Data
00000000B SET_ADDRESS Device Zero Zero None
Address
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The wValue field specifies the device address to use for all subsequent accesses.

As noted elsewhere, requests actually may result in up to three stages. In the first stage, the Setup packet is
sent to the device. In the optional second stage, data is transferred between the host and the device. In the
final stage, status is transferred between the host and the device. The direction of data and status transfer
depends on whether the host is sending data to the device or the device is sending data to the host. The
Status stage transfer is always in the opposite direction of the Data stage. If there is no Data stage, the
Status stage is from the device to the host.

Stages after the initial Setup packet assume the same device address as the Setup packet. The USB device
does not change its device address until after the Status stage of this request is completed successfully. Note
that this is a difference between this request and all other requests. For all other requests, the operation
indicated must be completed before the Status stage.

If the specified device address is greater than 127, or if windex or wLength are non-zero, then the behavior
of the device is not specified.
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Device response to SetAddress() with a value of 0 is undefined.

Default state: If the address specified is non-zero, then the device shall enter the Address state;
otherwise, the device remains in the Default state (this is not an error condition).
Address state: If the address specified is zero, then the device shall enter the Default state;
otherwise, the device remains in the Address state but uses the newly-specified
address.

Configured state:  Device behavior when this request is received while the device is in the Configured

state is not specified.

9.4.7 Set Configuration

This request sets the device configuration.

bmRequestType bRequest wValue windex | wLength Data

00000000B SET_CONFIGURATION | Configuration Value Zero Zero None

The lower byte of the wValue field specifies the desired configuration. This configuration value must be
zero or match a configuration value from a configuration descriptor. If the configuration value is zero, the
device is placed in its Address state. The upper byte of the wValue field is reserved.

If windex, wLength, or the upper byte of wValue is non-zero, then the behavior of this request is not
specified.
Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: If the specified configuration value is zero, then the device remains in the Address
state. If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device enters the
Configured state. Otherwise, the device responds with a Request Error.
Configured state:  If the specified configuration value is zero, then the device enters the Address state.
If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device remains in
the Configured state. Otherwise, the device responds with a Request Error.

9.4.8 Set Descriptor

This request is optional and may be used to update existing descriptors or new descriptors may be added.

bmRequestType bRequest wValue windex wLength Data
00000000B SET_DESCRIPTOR Descriptor Language ID Descriptor Descriptor
Type and (refer to Length
Descriptor | Section 9.6.7)
Index or zero
257
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The wValue field specifies the descriptor type in the high byte (refer to Table 9-5) and the descriptor index
in the low byte. The descriptor index is used to select a specific descriptor (only for configuration and string
descriptors) when several descriptors of the same type are implemented in a device. For example, a device
can implement several configuration descriptors. For other standard descriptors that can be set via a
SetDescriptor() request, a descriptor index of zero must be used. The range of values used for a descriptor
index is from 0 to one less than the number of descriptors of that type implemented by the device.

The windex field specifies the Language ID for string descriptors or is reset to zero for other descriptors.
The wLength field specifies the number of bytes to transfer from the host to the device.

The only allowed values for descriptor type are device, configuration, and string descriptor types.
If this request is not supported, the device will respond with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: If supported, this is a valid request when the device is in the Address state.

Configured state:  If supported, this is a valid request when the device is in the Configured state.

9.4.9 Set Feature

This request is used to set or enable a specific feature.

bmRequestType bRequest wValue windex wLength Data
00000000B SET_FEATURE Feature Test Selector Zero Zero None
00000001B Selector Interface
00000010B Endpoint
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Feature selector values in wValue must be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device; only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients.

The TEST _MODE feature is only defined for a device recipient (i.e., bmRequestType = 0) and the lower
byte of windex must be zero. Setting the TEST MODE feature puts the device upstream facing port into
test mode. The device will respond with a request error if the request contains an invalid test selector. The
transition to test mode must be complete no later than 3 ms after the completion of the status stage of the
request. The transition to test mode of an upstream facing port must not happen until after the status stage
of the request. The power to the device must be cycled to exit test mode of an upstream facing port of a
device. See Section 7.1.20 for definitions of each test mode. A device must support the TEST MODE
feature when in the Default, Address or Configured high-speed device states.

A SetFeature() request that references a feature that cannot be set or that does not exist causes a STALL to
be returned in the Status stage of the request.
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Table 9-7. Test Mode Selectors

Value Description
OOH Reserved
01H Test J
02H Test_K
03H Test_SE0_NAK
04H Test_Packet
05H Test_Force_Enable
06H-3FH Reserved for standard test selectors
3FH-BFH Reserved
COH-FFH Reserved for vendor-specific test modes.

If the feature selector is TEST MODE, then the most significant byte of windex is used to specify the
specific test mode. The recipient of a SetFeature(TEST _MODE...) must be the device; i.e., the lower byte
of windex must be zero and the bmRequestType must be set to zero. The device must have its power cycled
to exit test mode. The valid test mode selectors are listed in Table 9-7. See Section 7.1.20 for more
information about the specific test modes.

If wLength is non-zero, then the behavior of the device is not specified.

If an endpoint or interface is specified that does not exist, then the device responds with a Request Error.

Default state: A device must be able to accept a SetFeature(TEST _MODE, TEST SELECTOR)
request when in the Default State. Device behavior for other SetFeature requests
while the device is in the Default state is not specified.

Address state: If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

Configured state:  This is a valid request when the device is in the Configured state.

9.4.10 Set Interface

This request allows the host to select an alternate setting for the specified interface.

bmRequestType bRequest wValue windex wLength Data
00000001B SET_INTERFACE Alternate Interface Zero None
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to select the desired alternate setting. If a device only supports a default setting for the
specified interface, then a STALL may be returned in the Status stage of the request. This request cannot be
used to change the set of configured interfaces (the SetConfiguration() request must be used instead).

If the interface or the alternate setting does not exist, then the device responds with a Request Error. If
wLength is non-zero, then the behavior of the device is not specified.
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Default state: Device behavior when this request is received while the device is in the Default state
is not specified.
Address state: The device must respond with a Request Error.

Configured state:  This is a valid request when the device is in the Configured state.

9.4.11 Synch Frame

This request is used to set and then report an endpoint’s synchronization frame.

bmRequestType bRequest wValue windex wLength Data
10000010B SYNCH_FRAME Zero Endpoint Two Frame
Number

When an endpoint supports isochronous transfers, the endpoint may also require per-frame transfers to vary
in size according to a specific pattern. The host and the endpoint must agree on which frame the repeating
pattern begins. The number of the frame in which the pattern began is returned to the host.

If a high-speed device supports the Synch Frame request, it must internally synchronize itself to the zeroth
microframe and have a time notion of classic frame. Only the frame number is used to synchronize and
reported by the device endpoint (i.e., no microframe number). The endpoint must synchronize to the zeroth
microframe.

This value is only used for isochronous data transfers using implicit pattern synchronization. If wValue is
non-zero or wlength is not two, then the behavior of the device is not specified.

If the specified endpoint does not support this request, then the device will respond with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: The device shall respond with a Request Error.

Configured state:  This is a valid request when the device is in the Configured state.

9.5 Descriptors

260

USB devices report their attributes using descriptors. A descriptor is a data structure with a defined format.
Each descriptor begins with a byte-wide field that contains the total number of bytes in the descriptor
followed by a byte-wide field that identifies the descriptor type.

Using descriptors allows concise storage of the attributes of individual configurations because each
configuration may reuse descriptors or portions of descriptors from other configurations that have the same
characteristics. In this manner, the descriptors resemble individual data records in a relational database.

Where appropriate, descriptors contain references to string descriptors that provide displayable information
describing a descriptor in human-readable form. The inclusion of string descriptors is optional. However,
the reference fields within descriptors are mandatory. If a device does not support string descriptors, string
reference fields must be reset to zero to indicate no string descriptor is available.

If a descriptor returns with a value in its length field that is less than defined by this specification, the
descriptor is invalid and should be rejected by the host. If the descriptor returns with a value in its length
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field that is greater than defined by this specification, the extra bytes are ignored by the host, but the next
descriptor is located using the length returned rather than the length expected.

A device may return class- or vendor-specific descriptors in two ways:

1. If the class or vendor specific descriptors use the same format as standard descriptors (e.g., start with a
length byte and followed by a type byte), they must be returned interleaved with standard descriptors in
the configuration information returned by a GetDescriptor(Configuration) request. In this case, the
class or vendor-specific descriptors must follow a related standard descriptor they modify or extend.

2. Ifthe class or vendor specific descriptors are independent of configuration information or use a non-
standard format, a GetDescriptor() request specifying the class or vendor specific descriptor type and
index may be used to retrieve the descriptor from the device. A class or vendor specification will
define the appropriate way to retrieve these descriptors.

9.6 Standard USB Descriptor Definitions

The standard descriptors defined in this specification may only be modified or extended by revision of the
Universal Serial Bus Specification.

Note: An extension to the USB 1.0 standard endpoint descriptor has been published in Device Class
Specification for Audio Devices Revision 1.0. This is the only extension defined outside USB Specification
that is allowed. Future revisions of the USB Specification that extend the standard endpoint descriptor will
do so as to not conflict with the extension defined in the Audio Device Class Specification Revision 1.0.

9.6.1 Device

A device descriptor describes general information about a USB device. It includes information that applies
globally to the device and all of the device’s configurations. A USB device has only one device descriptor.

A high-speed capable device that has different device information for full-speed and high-speed must also
have a device qualifier descriptor (see Section 9.6.2).

The DEVICE descriptor of a high-speed capable device has a version number of 2.0 (0200H). If the device
is full-speed only or low-speed only, this version number indicates that it will respond correctly to a request
for the device_qualifier desciptor (i.e., it will respond with a request error).

The bcdUSB field contains a BCD version number. The value of the bcdUSB field is OxJIMN for version
JI.M.N (JJ — major version number, M — minor version number, N — sub-minor version number), e.g.,
version 2.1.3 is represented with value 0x0213 and version 2.0 is represented with a value of 0x0200.

The bNumConfigurations field indicates the number of configurations at the current operating speed.
Configurations for the other operating speed are not included in the count. If there are specific
configurations of the device for specific speeds, the bNumConfigurations field only reflects the number of
configurations for a single speed, not the total number of configurations for both speeds.

If the device is operating at high-speed, the bMaxPacketSize0 field must be 64 indicating a 64 byte
maximum packet. High-speed operation does not allow other maximum packet sizes for the control
endpoint (endpoint 0).

All USB devices have a Default Control Pipe. The maximum packet size of a device’s Default Control Pipe
is described in the device descriptor. Endpoints specific to a configuration and its interface(s) are described
in the configuration descriptor. A configuration and its interface(s) do not include an endpoint descriptor
for the Default Control Pipe. Other than the maximum packet size, the characteristics of the Default
Control Pipe are defined by this specification and are the same for all USB devices.

The bNumConfigurations field identifies the number of configurations the device supports. Table 9-8 shows
the standard device descriptor.
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Table 9-8. Standard Device Descriptor

Offset

Field

Size

Value

Description

bLength

Number

Size of this descriptor in bytes

bDescriptorType

Constant

DEVICE Descriptor Type

bcdUSB

BCD

USB Specification Release Number in
Binary-Coded Decimal (i.e., 2.10 is 210H).
This field identifies the release of the USB
Specification with which the device and its
descriptors are compliant.

bDeviceClass

Class

Class code (assigned by the USB-IF).

If this field is reset to zero, each interface
within a configuration specifies its own
class information and the various
interfaces operate independently.

If this field is set to a value between 1 and
FEH, the device supports different class
specifications on different interfaces and
the interfaces may not operate
independently. This value identifies the
class definition used for the aggregate
interfaces.

If this field is set to FFH, the device class
is vendor-specific.

bDeviceSubClass

SubClass

Subclass code (assigned by the USB-IF).

These codes are qualified by the value of
the bDeviceClass field.

If the bDeviceClass field is reset to zero,
this field must also be reset to zero.

If the bDeviceClass field is not set to FFH,
all values are reserved for assignment by
the USB-IF.
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Table 9-8. Standard Device Descriptor (Continued)

Offset Field Size Value Description

6 bDeviceProtocol 1 Protocol Protocol code (assigned by the USB-IF).
These codes are qualified by the value of
the bDeviceClass and the
bDeviceSubClass fields. If a device
supports class-specific protocols on a
device basis as opposed to an interface
basis, this code identifies the protocols
that the device uses as defined by the
specification of the device class.

If this field is reset to zero, the device
does not use class-specific protocols on a
device basis. However, it may use class-
specific protocols on an interface basis.

If this field is set to FFH, the device uses a
vendor-specific protocol on a device basis.

7 bMaxPacketSize0 1 Number Maximum packet size for endpoint zero
(only 8, 16, 32, or 64 are valid)

8 idVendor 2 ID Vendor ID (assigned by the USB-IF)

10 idProduct 2 ID Product ID (assigned by the manufacturer)

12 bcdDevice 2 BCD Device release number in binary-coded
decimal

14 iManufacturer 1 Index Index of string descriptor describing
manufacturer

15 iProduct 1 Index Index of string descriptor describing
product

16 iSerialNumber 1 Index Index of string descriptor describing the

device’s serial number

17 bNumConfigurations 1 Number Number of possible configurations
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9.6.2 Device_Qualifier

The device qualifier descriptor describes information about a high-speed capable device that would
change if the device were operating at the other speed. For example, if the device is currently operating
at full-speed, the device qualifier returns information about how it would operate at high-speed and
vice-versa. Table 9-9 shows the fields of the device qualifier descriptor.

Table 9-9. Device_Qualifier Descriptor

Offset Field Size | Value Description

0 bLength 1 Number Size of descriptor

1 bDescriptorType 1 Constant | Device Qualifier Type

2 bcdUSB 2 BCD USB specification version number (e.g.,

0200H for V2.00 )

4 bDeviceClass 1 Class Class Code

5 bDeviceSubClass 1 SubClass | SubClass Code

6 bDeviceProtocol 1 Protocol Protocol Code

7 bMaxPacketSize0 1 Number Maximum packet size for other speed
8 bNumConfigurations 1 Number Number of Other-speed Configurations
9 bReserved 1 Zero Reserved for future use, must be zero

The vendor, product, device, manufacturer, product, and serialnumber fields of the standard device
descriptor are not included in this descriptor since that information is constant for a device for all supported
speeds. The version number for this descriptor must be at least 2.0 (0200H).

The host accesses this descriptor using the GetDescriptor() request. The descriptor type in the
GetDescriptor() request is set to device qualifier (see Table 9-5).

If a full-speed only device (with a device descriptor version number equal to 0200H) receives a
GetDescriptor() request for a device qualifier, it must respond with a request error. The host must not make
a request for an other speed configuration descriptor unless it first successfully retrieves the

device qualifier descriptor.

9.6.3 Configuration

The configuration descriptor describes information about a specific device configuration. The descriptor
contains a bConfigurationValue field with a value that, when used as a parameter to the SetConfiguration()
request, causes the device to assume the described configuration.

The descriptor describes the number of interfaces provided by the configuration. Each interface may
operate independently. For example, an ISDN device might be configured with two interfaces, each
providing 64 Kb/s bi-directional channels that have separate data sources or sinks on the host. Another
configuration might present the ISDN device as a single interface, bonding the two channels into one
128 Kb/s bi-directional channel.

When the host requests the configuration descriptor, all related interface and endpoint descriptors are
returned (refer to Section 9.4.3).
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A USB device has one or more configuration descriptors. Each configuration has one or more interfaces
and each interface has zero or more endpoints. An endpoint is not shared among interfaces within a single
configuration unless the endpoint is used by alternate settings of the same interface. Endpoints may be
shared among interfaces that are part of different configurations without this restriction.

Once configured, devices may support limited adjustments to the configuration. If a particular interface has
alternate settings, an alternate may be selected after configuration. Table 9-10 shows the standard
configuration descriptor.

Table 9-10. Standard Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant | CONFIGURATION Descriptor Type

2 wTotalLength 2 Number Total length of data returned for this
configuration. Includes the combined length
of all descriptors (configuration, interface,
endpoint, and class- or vendor-specific)
returned for this configuration.

4 bNuminterfaces 1 Number Number of interfaces supported by this
configuration

5 bConfigurationValue 1 Number Value to use as an argument to the
SetConfiguration() request to select this
configuration

6 iConfiguration 1 Index Index of string descriptor describing this
configuration
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Table 9-10. Standard Configuration Descriptor (Continued)

Offset

Field

Size

Value

Description

7

bmAttributes

Bitmap

Configuration characteristics

D7: Reserved (set to one)
D6: Self-powered

D5: Remote Wakeup

D4...0: Reserved (reset to zero)

D7 is reserved and must be set to one for
historical reasons.

A device configuration that uses power from
the bus and a local source reports a non-zero
value in bMaxPower to indicate the amount of
bus power required and sets D6. The actual
power source at runtime may be determined
using the GetStatus(DEVICE) request (see
Section 9.4.5).

If a device configuration supports remote
wakeup, D5 is set to one.

bMaxPower

mA

Maximum power consumption of the USB
device from the bus in this specific
configuration when the device is fully
operational. Expressed in 2 mA units
(i.e., 50 = 100 mA).

Note: A device configuration reports whether
the configuration is bus-powered or self-
powered. Device status reports whether the
device is currently self-powered. If a device is
disconnected from its external power source, it
updates device status to indicate that it is no
longer self-powered.

A device may not increase its power draw
from the bus, when it loses its external power
source, beyond the amount reported by its
configuration.

If a device can continue to operate when
disconnected from its external power source, it
continues to do so. If the device cannot
continue to operate, it fails operations it can
no longer support. The USB System Software
may determine the cause of the failure by
checking the status and noting the loss of the
device’s power source.

9.6.4 Other_Speed_Configuration

The other_speed configuration descriptor shown in Table 9-11 describes a configuration of a high-
speed capable device if it were operating at its other possible speed. The structure of the
other speed_configuration is identical to a configuration descriptor.
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Table 9-11. Other_Speed_Configuration Descriptor

Offset Field Size | Value Description

0 bLength 1 Number Size of descriptor

1 bDescriptorType 1 Constant | Other_speed_Configuration Type

2 wTotalLength 2 Number Total length of data returned

4 bNuminterfaces 1 Number Number of interfaces supported by this speed
configuration

5 bConfigurationValue | 1 Number | Value to use to select configuration

6 iConfiguration 1 Index Index of string descriptor

7 bmAttributes 1 Bitmap Same as Configuration descriptor

8 bMaxPower 1 mA Same as Configuration descriptor

The host accesses this descriptor using the GetDescriptor() request. The descriptor type in the
GetDescriptor() request is set to other _speed configuration (see Table 9-5).

9.6.5 Interface

The interface descriptor describes a specific interface within a configuration. A configuration provides one
or more interfaces, each with zero or more endpoint descriptors describing a unique set of endpoints within
the configuration. When a configuration supports more than one interface, the endpoint descriptors for a
particular interface follow the interface descriptor in the data returned by the GetConfiguration() request.
An interface descriptor is always returned as part of a configuration descriptor. Interface descriptors cannot
be directly accessed with a GetDescriptor() or SetDescriptor() request.

An interface may include alternate settings that allow the endpoints and/or their characteristics to be varied
after the device has been configured. The default setting for an interface is always alternate setting zero.
The Setlnterface() request is used to select an alternate setting or to return to the default setting. The
Getlnterface() request returns the selected alternate setting.

Alternate settings allow a portion of the device configuration to be varied while other interfaces remain in
operation. If a configuration has alternate settings for one or more of its interfaces, a separate interface
descriptor and its associated endpoints are included for each setting.

If a device configuration supported a single interface with two alternate settings, the configuration
descriptor would be followed by an interface descriptor with the binterfaceNumber and bAlternateSetting
fields set to zero and then the endpoint descriptors for that setting, followed by another interface descriptor
and its associated endpoint descriptors. The second interface descriptor’s blnterfaceNumber tield would
also be set to zero, but the bAlternateSetting field of the second interface descriptor would be set to one.

If an interface uses only endpoint zero, no endpoint descriptors follow the interface descriptor. In this case,
the bNumEndpoints field must be set to zero.

An interface descriptor never includes endpoint zero in the number of endpoints. Table 9-12 shows the
standard interface descriptor.
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Table 9-12. Standard Interface Descriptor

Offset

Field

Size

Value

Description

bLength

Number

Size of this descriptor in bytes

bDescriptorType

Constant

INTERFACE Descriptor Type

binterfaceNumber

Number

Number of this interface. Zero-based
value identifying the index in the array of
concurrent interfaces supported by this
configuration.

bAlternateSetting

Number

Value used to select this alternate setting
for the interface identified in the prior field

bNumEndpoints

Number

Number of endpoints used by this
interface (excluding endpoint zero). If this
value is zero, this interface only uses the
Default Control Pipe.

binterfaceClass

Class

Class code (assigned by the USB-IF).

A value of zero is reserved for future
standardization.

If this field is set to FFH, the interface
class is vendor-specific.

All other values are reserved for
assignment by the USB-IF.

binterfaceSubClass

SubClass

Subclass code (assigned by the USB-IF).
These codes are qualified by the value of
the binterfaceClass field.

If the binterfaceClass field is reset to zero,
this field must also be reset to zero.

If the binterfaceClass field is not set to
FFH, all values are reserved for
assignment by the USB-IF.
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Table 9-12. Standard Interface Descriptor (Continued)

Offset Field Size Value Description

7 binterfaceProtocol 1 Protocol Protocol code (assigned by the USB).
These codes are qualified by the value of
the binterfaceClass and the
binterfaceSubClass fields. If an interface
supports class-specific requests, this code
identifies the protocols that the device
uses as defined by the specification of the
device class.

If this field is reset to zero, the device
does not use a class-specific protocol on
this interface.

If this field is set to FFH, the device uses
a vendor-specific protocol for this
interface.

8 ilnterface 1 Index Index of string descriptor describing this
interface

9.6.6 Endpoint

Each endpoint used for an interface has its own descriptor. This descriptor contains the information
required by the host to determine the bandwidth requirements of each endpoint. An endpoint descriptor is
always returned as part of the configuration information returned by a GetDescriptor(Configuration)
request. An endpoint descriptor cannot be directly accessed with a GetDescriptor() or SetDescriptor()
request. There is never an endpoint descriptor for endpoint zero. Table 9-13 shows the standard endpoint

descriptor.
Table 9-13. Standard Endpoint Descriptor
Offset Field Size | Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 Constant | ENDPOINT Descriptor Type

2 bEndpointAddress 1 Endpoint | The address of the endpoint on the USB device
described by this descriptor. The address is
encoded as follows:

Bit 3...0: The endpoint number
Bit 6...4: Reserved, reset to zero
Bit 7: Direction, ignored for
control endpoints
0 = OUT endpoint
1 = IN endpoint
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Table 9-13. Standard Endpoint Descriptor (Continued)

Offset

Field

Size

Value

Description

3

bmAttributes

1

Bitmap

This field describes the endpoint’s attributes when it is
configured using the bConfigurationValue.

Bits 1..0: Transfer Type

00 = Control
01 = Isochronous
10 = Bulk

11 = Interrupt

If not an isochronous endpoint, bits 5..2 are reserved
and must be set to zero. If isochronous, they are
defined as follows:

Bits 3..2: Synchronization Type

00 = No Synchronization
01 = Asynchronous

10 = Adaptive

11 = Synchronous

Bits 5..4: Usage Type

00 = Data endpoint

01 = Feedback endpoint

10 = Implicit feedback Data endpoint
11 = Reserved

Refer to Chapter 5 for more information.

All other bits are reserved and must be reset to zero.
Reserved bits must be ignored by the host.
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Table 9-13. Standard Endpoint Descriptor (Continued)

Offset Field Size | Value Description
4 wMaxPacketSize 2 Number | Maximum packet size this endpoint is capable of
sending or receiving when this configuration is
selected.

For isochronous endpoints, this value is used to
reserve the bus time in the schedule, required for the
per-(micro)frame data payloads. The pipe may, on an
ongoing basis, actually use less bandwidth than that
reserved. The device reports, if necessary, the actual
bandwidth used via its normal, non-USB defined
mechanisms.

For all endpoints, bits 10..0 specify the maximum
packet size (in bytes).

For high-speed isochronous and interrupt endpoints:

Bits 12..11 specify the number of additional transaction
opportunities per microframe:

00 = None (1 transaction per microframe)
01 = 1 additional (2 per microframe)

10 = 2 additional (3 per microframe)

11 = Reserved

Bits 15..13 are reserved and must be set to zero.

Refer to Chapter 5 for more information.

6 binterval 1 Number | Interval for polling endpoint for data transfers.
Expressed in frames or microframes depending on the
device operating speed (i.e., either 1 millisecond or
125 ps units).

For full-/high-speed isochronous endpoints, this value
must be in the range from 1 to 16. The binterval value
is used as the exponent for a 2"""*" value; e.g., a
binterval of 4 means a period of 8 (2").

For full-/low-speed interrupt endpoints, the value of
this field may be from 1 to 255.

For high-speed interrupt endpoints, the binterval value
is used as the exponent for a 2°™"*"" value; e.g., a
binterval of 4 means a period of 8 (2*"). This value
must be from 1 to 16.

For high-speed bulk/control OUT endpoints, the
binterval must specify the maximum NAK rate of the
endpoint. A value of 0 indicates the endpoint never
NAKs. Other values indicate at most 1 NAK each
binterval number of microframes. This value must be
in the range from 0 to 255.

See Chapter 5 description of periods for more detail.

The bmAttributes field provides information about the endpoint’s Transfer Type (bits 1..0) and
Synchronization Type (bits 3..2). In addition, the Usage Type bit (bits 5..4) indicate whether this is an
endpoint used for normal data transfers (bits 5..4=00B), whether it is used to convey explicit feedback
information for one or more data endpoints (bits 5..4=01B) or whether it is a data endpoint that also serves
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as an implicit feedback endpoint for one or more data endpoints (bits 5..4=10B). Bits 5..2 are only
meaningful for isochronous endpoints and must be reset to zero for all other transfer types.

If the endpoint is used as an explicit feedback endpoint (bits 5..4=01B), then the Transfer Type must be set
to isochronous (bits1..0 = 01B) and the Synchronization Type must be set to No Synchronization
(bits 3..2=00B).

A feedback endpoint (explicit or implicit) needs to be associated with one (or more) isochronous data
endpoints to which it provides feedback service. The association is based on endpoint number matching. A
feedback endpoint always has the opposite direction from the data endpoint(s) it services. If multiple data
endpoints are to be serviced by the same feedback endpoint, the data endpoints must have ascending
ordered—but not necessarily consecutive—endpoint numbers. The first data endpoint and the feedback
endpoint must have the same endpoint number (and opposite direction). This ensures that a data endpoint
can uniquely identify its feedback endpoint by searching for the first feedback endpoint that has an endpoint
number equal or less than its own endpoint number.

Example: Consider the extreme case where there is a need for five groups of OUT asynchronous
isochronous endpoints and at the same time four groups of IN adaptive isochronous endpoints. Each group
needs a separate feedback endpoint and the groups are composed as shown in Figure 9-7.

ouT Nr of OUT IN Nr of IN
Group Endpoints Group Endpoints
1 1 6 1
2 2 7 2
3 2 8 3
4 3 9 4
5 3

Figure 9-7. Example of Feedback Endpoint Numbers

The endpoint numbers can be intertwined as illustrated in Figure 9-8.

1 2 3 4 5 ouT

o |-
.
.
!
.
-—

1 3 6 8 9 10 12 13 14 15
2 4 5 7 8 10 11 12 14 15
1 2 3 4 IN

Data Endpoint O Feedback Endpoint

Figure 9-8. Example of Feedback Endpoint Relationships
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High-speed isochronous and interrupt endpoints use bits 12..11 of wMaxPacketSize to specify multiple
transactions for each microframe specified by binterval. If bits 12..11 of wMaxPacketSize are zero, the
maximum packet size for the endpoint can be any allowed value (as defined in Chapter 5). If bits 12..11 of
wMaxPacketSize are not zero (0), the allowed values for wMaxPacketSize bits 10..0 are limited as shown in
Table 9-14.

Table 9-14. Allowed wMaxPacketSize Values for Different Numbers of Transactions per Microframe

wMaxPacketSize wMaxPacketSize
bits 12..11 bits 10..0 Values
Allowed
00 1-1024
01 513 -1024
10 683 — 1024
11 N/A; reserved

For high-speed bulk and control OUT endpoints, the binterval field is only used for compliance purposes;
the host controller is not required to change its behavior based on the value in this field.

9.6.7 String

String descriptors are optional. As noted previously, if a device does not support string descriptors, all
references to string descriptors within device, configuration, and interface descriptors must be reset to zero.

String descriptors use UNICODE encodings as defined by The Unicode Standard, Worldwide Character
Encoding, Version 3.0, The Unicode Consortium, Addison-Wesley Publishing Company, Reading,
Massachusetts (URL: http://www.unicode.com). The strings in a USB device may support multiple
languages. When requesting a string descriptor, the requester specifies the desired language using a sixteen-
bit language ID (LANGID) defined by the USB-IF. The list of currently defined USB LANGIDs can be
found at http://www.usb.org/developers/docs.html. String index zero for all languages returns a string
descriptor that contains an array of two-byte LANGID codes supported by the device. Table 9-15 shows the
LANGID code array. A USB device may omit all string descriptors. USB devices that omit all string
descriptors must not return an array of LANGID codes.

The array of LANGID codes is not NULL-terminated. The size of the array (in bytes) is computed by
subtracting two from the value of the first byte of the descriptor.

Table 9-15. String Descriptor Zero, Specifying Languages Supported by the Device

Offset Field Size Value Description
0 bLength 1 N+2 Size of this descriptor in bytes
1 bDescriptorType |1 Constant | STRING Descriptor Type
2 wLANGID[0] 2 Number LANGID code zero
N wWLANGID[x] 2 Number LANGID code x
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The UNICODE string descriptor (shown in Table 9-16) is not NULL-terminated. The string length is
computed by subtracting two from the value of the first byte of the descriptor.

Table 9-16. UNICODE String Descriptor

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes
1 bDescriptorType 1 Constant STRING Descriptor Type
2 bString N Number UNICODE encoded string

9.7 Device Class Definitions

All devices must support the requests and descriptor definitions described in this chapter. Most devices
provide additional requests and, possibly, descriptors for device-specific extensions. In addition, devices
may provide extended services that are common to a group of devices. In order to define a class of devices,
the following information must be provided to completely define the appearance and behavior of the device

class.

9.7.1 Descriptors

If the class requires any specific definition of the standard descriptors, the class definition must include
those requirements as part of the class definition. In addition, if the class defines a standard extended set of
descriptors, they must also be fully defined in the class definition. Any extended descriptor definitions must
follow the approach used for standard descriptors; for example, all descriptors must begin with a length

field.

9.7.2 Interface(s) and Endpoint Usage

When a class of devices is standardized, the interfaces used by the devices, including how endpoints are
used, must be included in the device class definition. Devices may further extend a class definition with
proprictary features as long as they meet the base definition of the class.

9.7.3 Requests

All of the requests specific to the class must be defined.
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Chapter 10
USB Host: Hardware and Software

The USB interconnect supports data traffic between a host and a USB device. This chapter describes the
host interfaces necessary to facilitate USB communication between a software client, resident on the host,
and a function implemented on a device. The implementation described in this chapter is not required.
This implementation is provided as an example to illustrate the host system behavior expected by a USB
device. A host system may provide a different host software implementation as long as a USB device
experiences the same host behavior.

10.1 Overview of the USB Host

10.1.1 Overview
The basic flow and interrelationships of the USB communications model are shown in Figure 10-1.

Host Interconnect Device
Client Function
USB System USB Device

!

USB Bus M USB Bus

Interface Interface

Gl \ctyal communications flow

Logical communications flow

Figure 10-1. Interlayer Communications Model

The host and the device are divided into the distinct layers depicted in Figure 10-1. Vertical arrows
indicate the actual communication on the host. The corresponding interfaces on the device are
implementation-specific. All communications between the host and device ultimately occur on the
physical USB wire. However, there are logical host-device interfaces between each horizontal layer.
These communications, between client software resident on the host and the function provided by the
device, are typified by a contract based on the needs of the application currently using the device and the
capabilities provided by the device.

This client-function interaction creates the requirements for all of the underlying layers and their interfaces.
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This chapter describes this model from the point of view of the host and its layers. Figure 10-2 illustrates,
based on the overall view introduced in Chapter 5, the host’s view of its communication with the device.

Host Interconnect
painN
b [ ’I X ]
Client L I . |
I .
manages interfaces I ° ‘\ ’ I
_ N/
Pipe Bundle
| to an interface
1
IRPs Configuration
USB Driver Host
Software
|
Default Pipe
HC Driver P
to Endpoint Zero
USB System
manages pipes

HW-Defined
Host
Controller HC- SIE |: >
Defined
USB Wire
USB Bus
Interface
| Pipe: Represents connection
abstraction between two horizontal
layers
Optional
Component Interprocess Communication

Figure 10-2. Host Communications
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There is only one host for each USB. The major layers of a host consist of the following:
e  USB bus interface

e USB System

e C(Client

The USB bus interface handles interactions for the electrical and protocol layers (refer to Chapter 7 and
Chapter 8). From the interconnect point of view, a similar USB bus interface is provided by both the USB
device and the host, as exemplified by the Serial Interface Engine (SIE). On the host, however, the USB
bus interface has additional responsibilities due to the unique role of the host on the USB and is
implemented as the Host Controller. The Host Controller has an integrated root hub providing attachment
points to the USB wire.

The USB System uses the Host Controller to manage data transfers between the host and USB devices.
The interface between the USB System and the Host Controller is dependent on the hardware definition of
the Host Controller. The USB System, in concert with the Host Controller, performs the translation
between the client’s view of data transfers and the USB transactions appearing on the interconnect. This
includes the addition of any USB feature support such as protocol wrappers. The USB System is also
responsible for managing USB resources, such as bandwidth and bus power, so that client access to the
USB is possible.

The USB System has three basic components:
e Host Controller Driver

e  USB Driver

e  Host Software

The Host Controller Driver (HCD) exists to more easily map the various Host Controller implementations
into the USB System, such that a client can interact with its device without knowing to which Host
Controller the device is connected. The USB Driver (USBD) provides the basic host interface (USBDI) for
clients to USB devices. The interface between the HCD and the USBD is known as the Host Controller
Driver Interface (HCDI). This interface is never available directly to clients and thus is not defined by the
USB Specification. A particular HCDI is, however, defined by each operating system that supports various
Host Controller implementations.

The USBD provides data transfer mechanisms in the form of I/O Request Packets (IRPs), which consist of
a request to transport data across a specific pipe. In addition to providing data transfer mechanisms, the
USBD is responsible for presenting to its clients an abstraction of a USB device that can be manipulated for
configuration and state management. As part of this abstraction, the USBD owns the default pipe (see
Chapter 5 and Chapter 9) through which all USB devices are accessed for the purposes of standard USB
control. This default pipe represents a logical communication between the USBD and the abstraction of a
USB device as shown in Figure 10-2.

In some operating systems, additional non-USB System Software is available that provides configuration
and loading mechanisms to device drivers. In such operating systems, the device driver shall use the
provided interfaces instead of directly accessing the USBDI mechanisms.

The client layer describes all the software entities that are responsible for directly interacting with USB
devices. When each device is attached to the system, these clients might interact directly with the
peripheral hardware. The shared characteristics of the USB place USB System Software between the client
and its device; that is, a client cannot directly access the device’s hardware.
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Overall, the host layers provide the following capabilities:

e Detecting the attachment and removal of USB devices

e Managing USB standard control flow between the host and USB devices
e  Managing data flow between the host and USB devices

e Collecting status and activity statistics

e  Controlling the electrical interface between the Host Controller and USB devices, including the
provision of a limited amount of power

The following sections describe these responsibilities and the requirements placed on the USBDI in greater
detail. The actual interfaces used for a specific combination of host platform and operating system are
described in the appropriate operating system environment guide.

All hubs (see Chapter 11) report internal status changes and their port change status via the status change
pipe. This includes a notification of when a USB device is attached to or removed from one of their ports.
A USBBD client generically known as the hub driver receives these notifications as owner of the hub’s
Status Change pipe. For device attachments, the hub driver then initiates the device configuration process.
In some systems, this hub driver is a part of the host software provided by the operating system for
managing devices.

10.1.2 Control Mechanisms

Control information may be passed between the host and a USB device using in-band or out-of-band
signaling. In-band signaling mixes control information with data in a pipe outside the awareness of the
host. Out-of-band signaling places control information in a separate pipe.

There is a message pipe called the default pipe for each attached USB device. This logical association
between a host and a USB device is used for USB standard control flow such as device enumeration and
configuration. The default pipe provides a standard interface to all USB devices. The default pipe may
also be used for device-specific communications, as mediated by the USBD, which owns the default pipes
of all of the USB devices.

A particular USB device may allow the use of additional message pipes to transfer device-specific control
information. These pipes use the same communications protocol as the default pipe, but the information
transferred is specific to the USB device and is not standardized by the USB Specification.

The USBD supports the sharing of the default pipe, which it owns and uses, with its clients. It also
provides access to any other control pipes associated with the device.

10.1.3 Data Flow

The Host Controller is responsible for transferring streams of data between the host and USB devices.
These data transfers are treated as a continuous stream of bytes. The USB supports four basic types of data
transfers:

e Control transfers

e Isochronous transfers

e Interrupt transfers

e  Bulk transfers

For additional information on transfer types, refer to Chapter 5.

Each device presents one or more interfaces that a client may use to communicate with the device. Each
interface is composed of zero or more pipes that individually transfer data between the client and a
particular endpoint on the device. The USBD establishes interfaces and pipes at the explicit request of the
Host Software. The Host Controller provides service based on parameters provided by the Host Software
when the configuration request is made.
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A pipe has several characteristics based on the delivery requirements of the data to be transferred.
Examples of these characteristics include the following:

e The rate at which data needs to be transferred

e Whether data is provided at a steady rate or sporadically
e How long data may be delayed before delivery

e Whether the loss of data being transferred is catastrophic

A USB device endpoint describes the characteristics required for a specific pipe. Endpoints are described
as part of a USB device’s characterization information. For additional details, refer to Chapter 9.

10.1.4 Collecting Status and Activity Statistics

As a common communicant for all control and data transfers between the host and USB devices, the USB
System and the Host Controller are well-positioned to track status and activity information. Such
information is provided upon request to the Host Software, allowing that software to manage status and
activity information. This specification does not identify any specific information that should be tracked or
require any particular format for reporting activity and status information.

10.1.5 Electrical Interface Considerations

The host provides power to USB devices attached to the root hub. The amount of power provided by a port
is specified in Chapter 7.

10.2 Host Controller Requirements

In all implementations, Host Controllers perform the same basic duties with regard to the USB and its
attached devices. These basic duties are described below.

The Host Controller has requirements from both the host and the USB. The following is a brief overview
of the functionality provided. Each capability is discussed in detail in subsequent sections.

State Handling As a component of the host, the Host Controller reports and manages
its states.
Serializer/Deserializer For data transmitted from the host, the Host Controller converts

protocol and data information from its native format to a bit stream
transmitted on the USB. For data being received into the host, the
reverse operation is performed.

(micro)frame Generation The Host Controller produces SOF tokens at a period of 1 ms when
operating with full-speed devices, and at a period of 125 ps when
operating with high-speed devices.

Data Processing The Host Controller processes requests for data transmission to and
from the host.

Protocol Engine The Host Controller supports the protocol specified by the USB.
Transmission Error All Host Controllers exhibit the same behavior when detecting and
Handling reacting to the defined error categories.

Remote Wakeup All Host Controllers must have the ability to place the bus into the

Suspended state and to respond to bus wakeup events.
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Root Hub The root hub provides standard hub function to link the Host
Controller to one or more USB ports.

Host System Interface Provides a high-speed data path between the Host Controller and host
system.

The following sections present a more detailed discussion of the required capabilities of the Host
Controller.

10.2.1 State Handling

The Host Controller has a series of states that the USB System manages. Additionally, the Host Controller
provides the interface to the following two areas of USB-relevant state:

e  State change propagation
e Root hub

The root hub presents to the hub driver the same standard states as other USB devices. The Host Controller
supports these states and their transitions for the hub. For detailed discussions of USB states, including
their interrelations and transitions, refer to Chapter 9.

The overall state of the Host Controller is inextricably linked with that of the root hub and of the overall
USB. Any Host Controller state changes that are visible to attached devices must be reflected in the
corresponding device state change information such that the resulting Host Controller and device states are
consistent.

USB devices request a wakeup through the use of resume signaling (refer to Chapter 7). The Host
Controller must notify the rest of the host of a resume event through a mechanism or mechanisms specific
to that system’s implementation. The Host Controller itself may cause a resume event through the same
signaling method.

10.2.2 Serializer/Deserializer

The actual transmission of data across the physical USB takes places as a serial bit stream. A Serial
Interface Engine (SIE), whether implemented as part of the host or a USB device, handles the serialization
and deserialization of USB transmissions. On the host, this SIE is part of the Host Controller.

10.2.3 Frame and Microframe Generation

It is the Host Controller’s responsibility to partition USB time into quantities called “frames” when
operating with full-speed devices, and "microframes" when operating with high-speed devices. Frames and
microframes are created by the Host Controller through issuing Start-of-Frame (SOF) tokens as shown in
Figure 10-3. The SOF token is the first transmission in the (micro)frame period. Host controllers operating
with high-speed devices generate SOF tokens at 125 ps intervals. Host controllers operating with full-
speed devices generate SOF tokens at 1.00 ms intervals. After issuing an SOF token, the Host Controller is
free to transmit other transactions for the remainder of the (micro)frame period. When the Host Controller
is in its normal operating state, SOF tokens must be continuously generated at appropriate periodic rate,
regardless of other bus activity or lack thereof. If the Host Controller enters a state where it is not
providing power on the bus, it must not generate SOFs. When the Host Controller is not generating SOFs,
it may enter a power-reduced state.
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EOF Interval (micro)frame N-1) —T EOF Interval (micro)frame N) —T EOF Interval (micro)frame N+1) —T

Figure 10-3. Frame and Microframe Creation

The SOF token holds the highest priority access to the bus. Babble circuitry in hubs electrically isolates
any active transmitters during the End-of-microframe or End-of-Frame (EOF) interval, providing an idle
bus for the SOF transmission.

The Host Controller maintains the current (micro)frame number that may be read by the USB System.
The following apply to the current (micro)frame number maintained by the host:

e Used to uniquely identify one (micro)frame from another

e Incremented at the end of every (micro)frame period

e  Valid through the subsequent (micro)frame

Host controllers operating with full-speed devices maintain a current frame number (at least 11 bits) that
increments at a 1 ms period. The host transmits the lower 11 bits of the current frame number in each SOF
token transmission.

Host controllers operating with high-speed devices maintain a current microframe number (at least 14 bits)
that increments at a 125 pus period. The host transmits bits 3 through 13 of the current microframe number
in each SOF token transmission. This results in the same SOF packet value being transmitted for eight
consecutive microframes before the SOF packet value increments.

When requested from the Host Controller, the current (micro)frame number is the (micro)frame number in
existence at the time the request was fulfilled. The current (micro)frame number as returned by the host
(Host Controller or HCD) is at least 32 bits, although the Host Controller itself is not required to maintain
more than 11 bits when operating with full-speed devices or 14 bits when operating with high-speed
devices.

The Host Controller shall cease transmission during the EOF interval. When the EOF interval begins, any
transactions scheduled specifically for the (micro)frame that has just passed are retired. If the Host
Controller is executing a transaction at the time the EOF interval is encountered, the Host Controller
terminates the transaction.

10.2.4 Data Processing

The Host Controller is responsible for receiving data from the USB System and sending it to the USB and
for receiving data from the USB and sending it to the USB System. The particular format used for the data
communications between the USB System and the Host Controller is implementation specific, within the
rules for transfer behavior described in Chapter 5.

10.2.5 Protocol Engine

The Host Controller manages the USB protocol level interface. It inserts the appropriate protocol
information for outgoing transmissions. It also strips and interprets, as appropriate, the incoming protocol
information.
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10.2.6 Transmission Error Handling

The Host Controller must be capable of detecting the following transmission error conditions, which are
defined from the host’s point of view:

e Timeout conditions after a host-transmitted token or packet. These errors occur when the addressed
endpoint is unresponsive or when the structure of the transmission is so badly damaged that the
targeted endpoint does not recognize it.

e Data errors resulting in missing or invalid transmissions:

—  The Host Controller is unable to completely send or receive a packet for host specific reasons, for
example, a transmission extending beyond EOF or a lack of resources available to the Host
Controller.

— Aninvalid CRC field on a received data packet.
e Protocol errors:
— An invalid handshake PID, such as a malformed or inappropriate handshake
— A false EOP
— A bit stuffing error

For each bulk, control, and interrupt transaction, the host must maintain an error count tally. Errors result
from the conditions described above, not as a result of an endpoint NAKing a request. This value reflects
the number of times the transaction has encountered a transmission error. It is recommended that the error
count not be incremented when there was an error due to host specific reasons (buffer underrun or overrun),
and that whenever a transaction does not encounter a transmission error, the error count is reset to zero.

If the error count for a given transaction reaches three, the host retires the transfer. When a transfer is
retired due to excessive errors, the last error type must be indicated. Isochronous transactions are attempted
only once, regardless of outcome, and, therefore, no error count is maintained for this type.

10.2.7 Remote Wakeup

If USB System wishes to place the bus in the Suspended state, it commands the Host Controller to stop all
bus traffic, including SOFs. This causes all USB devices to enter the Suspended state. In this state, the
USB System may enable the Host Controller to respond to bus wakeup events. This allows the Host
Controller to respond to bus wakeup signaling to restart the host system.

10.2.8 Root Hub

The root hub provides the connection between the Host Controller and one or more USB ports. The root
hub provides the same functionality for dealing with USB topology as other hubs (see Chapter 11), except
that the hardware and software interface between the root hub and the Host Controller is defined by the
specific hardware implementation.

10.2.8.1 Port Resets

Section 7.1.7.5 describes the requirements of a hub to ensure all upstream resume attempts are
overpowered with a long reset downstream. Root hubs must provide an aggregate reset period of at least
50 ms. If the reset duration is controlled in hardware and the hardware timer is <50 ms, the USB System
can issue several consecutive resets to accumulate the specified reset duration as described in

Section 7.1.7.5.
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10.2.9 Host System Interface

The Host Controller provides a high-speed bus-mastering interface to and from main system memory. The
physical transfer between memory and the USB wire is performed automatically by the Host Controller.
When data buffers need to be filled or emptied, the Host Controller informs the USB System.

10.3 Overview of Software Mechanisms

The HCD and the USBD present software interfaces based on different levels of abstraction. They are,
however, expected to operate together in a specified manner to satisfy the overall requirements of the USB
System (see Figure 10-2). The requirements for the USB System are expressed primarily as requirements
for the USBDI. The division of duties between the USBD and the HCD is not defined. However, the one
requirement of the HCDI that must be met is that it supports, in the specified operating system context,
multiple Host Controller implementations.

The HCD provides an abstraction of the Host Controller and an abstraction of the Host Controller’s view of
data transfer across the USB. The USBD provides an abstraction of the USB device and of the data
transfers between the client of the USBD and the function on the USB device. Overall, the USB System
acts as a facilitator for transmitting data between the client and the function and as a control point for the
USB-specific interfaces of the USB device. As part of facilitating data transfer, the USB System provides
buffer management capabilities and allows the synchronization of the data transmittal to the needs of the
client and the function.

The specific requirements for the USBDI are described later in this chapter. The exact functions that fulfill
these requirements are described in the relevant operating system environment guide for the HCDI and the
USBDI. The procedures involved in accomplishing data transfers via the USBDI are described in the
following sections.

10.3.1 Device Configuration

Different operating system environments perform device configuration using different software
components and different sequences of events. The USB System does not assume a specific operating
system method. However, there are some basic requirements that must be fulfilled by any USB System
implementation. In some operating systems, existing host software provides these requirements. In others,
the USB System provides the capabilities.

The USB System assumes a specialized client of the USBD, called a hub driver, that acts as a
clearinghouse for the addition and removal of devices from a particular hub. Once the hub driver receives
such notifications, it will employ additional host software and other USBD clients, in an operating system
specific manner, to recognize and configure the device. This model, shown in Figure 10-4, is the basis of
the following discussion.
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Figure 10-4. Configuration Interactions

When a device is attached, the hub driver receives a notification from the hub detecting the change. The
hub driver, using the information provided by the hub, requests a device identifier from the USBD. The
USBD in turn sets up the default pipe for that device and returns a device identifier to the hub driver.

The device is now ready to be configured for use. For each device, there are three configurations that must
be complete before that device is ready for use:

1.

Device Configuration: This includes setting up all of the device’s USB parameters and allocating all
USB host resources that are visible to the device. This is accomplished by setting the configuration
value on the device. A limited set of configuration changes, such as alternate settings, is allowed
without totally reconfiguring the device. Once the device is configured, it is, from its point of view,
ready for use.

USB Configuration: In order to actually create a USBD pipe ready for use by a client, additional USB
information, not visible to the device, must be specified by the client. This information, known as the
Policy for the pipe, describes how the client will use the pipe. This includes such items as the
maximum amount of data the client will transfer with one IRP, the maximum service interval the client
will use, the client’s notification identification, and so on.

Function Configuration: Once configuration types 1 and 2 have been accomplished, the pipe is
completely ready for use from the USB’s point of view. However, additional vendor- or class-specific
setup may be required before the client can actually use the pipe. This configuration is a private matter
between the device and the client and is not standardized by the USBD.
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The following paragraphs describe the device and USB configuration requirements.

The responsible configuring software performs the actual device configuration. Depending on the
particular operating system implementation, the software responsible for configuration can include the
following:

e  The hub driver
e  Other host software
e A device driver

The configuring software first reads the device descriptor, then requests the description for each possible
configuration. It may use the information provided to load a particular client, such as a device driver,
which initially interacts with the device. The configuring software, perhaps with input from that device
driver, chooses a configuration for the device. Setting the device configuration sets up all of the endpoints
on the device and returns a collection of interfaces to be used for data transfer by USBD clients. Each
interface is a collection of pipes owned by a single client.

This initial configuration uses the default settings for interfaces and the default bandwidth for each
endpoint. A USBD implementation may additionally allow the client to specify alternate interfaces when
selecting the initial configuration. The USB System will verify that the resources required for the support
of the endpoint are available and, if so, will allocate the bandwidth required. Refer to Section 10.3.2 for a
discussion of resource management.

The device is now configured, but the created pipes are not yet ready for use. The USB configuration is
accomplished when the client initializes each pipe by setting a Policy to specify how it will interact with
the pipe. Among the information specified is the client’s maximum service interval and notification
information. Among the actions taken by the USB System, as a result of setting the Policy, is determining
the amount of buffer working space required beyond the data buffer space provided by the client. The size
of the buffers required is based upon the usage chosen by the client and upon the per-transfer needs of the
USB System.

The client receives notifications when IRPs complete, successfully or due to errors. The client may also
wake up independently of USB notification to check the status of pending IRPs.

The client may also choose to make configuration modifications, such as enabling an alternate setting for
an interface or changing the bandwidth allocated to a particular pipe. In order to perform these changes,
the interface or pipe, respectively, must be idle.

10.3.2 Resource Management

Whenever a pipe is setup by the USBD for a given endpoint, the USB System must determine if it can
support the pipe. The USB System makes this determination based on the requirements stated in the
endpoint descriptor. One of the endpoint requirements, which must be supported in order to create a pipe
for an endpoint, is the bandwidth necessary for that endpoint’s transfers. There are two stages to check for
available bandwidth. First the maximum execution time for a transaction is calculated. Then the
(micro)frame schedule is consulted to determine if the indicated transaction will fit.

The allocation of the guaranteed bandwidth for isochronous and interrupt pipes, and the determination of
whether a particular control or bulk transaction will fit into a given (micro)frame, can be determined by a
software heuristic in the USB System. If the actual transaction execution time in the Host Controller
exceeds the heuristically determined value, the Host Controller is responsible for ensuring that
(micro)frame integrity is maintained (refer to Section 10.2.3). The following discussion describes the
requirements for the USB System heuristic.
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In order to determine if bandwidth can be allocated, or if a transaction can be fit into a particular
(micro)frame, the maximum transaction execution time must be calculated. The calculation of the
maximum transaction execution time requires that the following information be provided: (Note that an
agent other than the client may provide some of this information.)

e Number of data bytes (wMaxPacketSize) to be transmitted.
e  Transfer type.
e Depth in the topology. If less precision is allowed, the maximum topology depth may be assumed.

This calculation must include the bit transmission time, the signal propagation delay through the topology,
and any implementation-specific delays, such as preparation or recovery time required by the Host
Controller itself. Refer to Chapter 5 for examples of formulas that can be used for such calculations.

10.3.3 Data Transfers

The basis for all client-function communication is the interface: a bundle of related pipes associated with a
particular USB device.

Exactly one client on the host manages a given interface. The client initializes each pipe of an interface by
setting the Policy for that pipe. This includes the maximum amount of data to be transmitted per IRP and
the maximum service interval for the pipe. A service interval is stated in milliseconds and describes the
interval over which an IRP’s data will be transmitted for an isochronous pipe. It describes the polling
interval for an interrupt pipe. The client is notified when a specified request is completed. The client
manages the size of each IRP such that its duty cycle and latency constraints are maintained. Additional
Policy information includes the notification information for the client.

The client provides the buffer space required to hold the transmitted data. The USB System uses the Policy
to determine the additional working space it will require.

The client views its data as a contiguous serial stream, which it manages in a similar manner to those
streams provided over other types of bus technologies. Internally, the USB System may, depending on its
own Policy and any Host Controller constraints, break the client request down into smaller requests to be
sent across the USB. However, two requirements must be met whenever the USB System chooses to
undertake such division:

e  The division of the data stream into smaller chunks is not visible to the client.
e  USB samples are not split across bus transactions.

When a client wishes to transfer data, it will send an IRP to the USBD. Depending on the direction of data
transfer, a full or empty data buffer will be provided. When the request is complete (successfully or due to
an error condition), the IRP and its status is returned to the client. Where relevant, this status is also
provided on a per-transaction basis.

10.3.4 Common Data Definitions

In order to allow the client to receive request results as directly as possible from its device, it is desirable to
minimize the amount of processing and copying required between the device and the client. To facilitate
this, some control aspects of the IRP are standardized such that different layers in the stack may directly
use the information provided by the client. The particular format for this data is dependent on the
actualization of the USBDI in the operating system. Some data elements may in fact not be directly visible
to the client at all but are generated as a result of the client request.
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The following data elements define the relevant information for a request:

e Identification of the pipe associated with the request. Identifying this pipe also describes information
such as transfer type for this request.

e Notification identification for the particular client.
e Location and length of data buffer that is to be transmitted or received.

e Completion status for the request. Both the summary status and, as required, detailed per-transaction
status must be provided.

e Location and length of working space. This is implementation-dependent.

The actual mechanisms used to communicate requests to the USBD are operating system-specific.
However, beyond the requirements stated above for what request-related information must be available,
there are also requirements on how requests will be processed. The basic requirements are described in
Chapter 5. Additionally, the USBD provides a mechanism to designate a group of isochronous IRPs for
which the transmission of the first transaction of each IRP will occur in the same (micro)frame. The USBD
also provides a mechanism for designating an uninterruptable set of vendor- or class-specific requests to a
default pipe. No other requests to that default pipe, including standard, class, or vendor request may be
inserted in the execution flow for such an uninterruptable set. If any request in this set fails, the entire set is
retired.

10.4 Host Controller Driver

The Host Controller Driver (HCD) is an abstraction of Host Controller hardware and the Host Controller’s
view of data transmission over the USB. The HCDI meets the following requirements:

e Provides an abstraction of the Host Controller hardware.
e Provides an abstraction for data transfers by the Host Controller across the USB interconnect.

e Provides an abstraction for the allocation (and de-allocation) of Host Controller resources to support
guaranteed service to USB devices.

e Presents the root hub and its behavior according to the hub class definition. This includes supporting
the root hub such that the hub driver interacts with the root hub exactly as it would for any hub. In
particular, even though a root hub can be implemented in a combination of hardware and software, the
root hub responds initially to the default device address (from a client perspective), returns descriptor
information, supports having its device address set, and supports the other hub class requests.
However, bus transactions may or may not need to be generated to accomplish this behavior given the
close integration possible between the Host Controller and the root hub.

The HCD provides a software interface (HCDI) that implements the required abstractions. The function of
the HCD is to provide an abstraction, which hides the details of the Host Controller hardware. Below the
Host Controller hardware is the physical USB and all the attached USB devices.

The HCD is the lowest tier in the USB software stack. The HCD has only one client: the Universal Serial
Bus Driver (USBD). The USBD maps requests from many clients to the appropriate HCD. A given HCD
may manage many Host Controllers.

The HCDI is not directly accessible from a client. Therefore, the specific interface requirements for the
HCDI are not discussed here.

10.5 Universal Serial Bus Driver

The USBD provides a collection of mechanisms that operating system components, typically device
drivers, use to access USB devices. The only access to a USB device is that provided by the USBD. The
USBD implementations are operating system-specific. The mechanisms provided by the USBD are
implemented, using as appropriate and augmenting as necessary, the mechanisms provided by the operating
system environment in which the USB runs. The following discussion centers on the basic capabilities
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required for all USBD implementations. For specifics of the USBD operation within a specific
environment, see the relevant operating system environment guide for the USBD. A single instance of the
USBD directs accesses to one or more HCDs that in turn connect to one or more Host Controllers. If
allowed, how USBD instancing is managed is dependent upon the operating system environment.
However, from the client’s point of view, the USBD with which the client communicates manages all of
the attached USB devices.

10.5.1 USBD Overview

Clients of USBD direct commands to devices or move streams of data to or from pipes. The USBD
presents two groups of software mechanisms to clients: command mechanisms and pipe mechanisms.

Command mechanisms allow clients to configure and control USBD operation as well as to configure and
generically control a USB device. In particular, command mechanisms provide all access to the device’s
default pipe.

Pipe mechanisms allow a USBD client to manage device specific data and control transfers. Pipe
mechanisms do not allow a client to directly address the device’s default pipe.

Figure 10-5 presents an overview of the USBD structure.
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Figure 10-5. Universal Serial Bus Driver Structure

10.5.1.1 USBD Initialization

Specific USBD initialization is operating system-dependent. When a particular USB managed by USBD is
initialized, the management information for that USB is also created. Part of this management information
is the default address device and its default pipe used to communicate to a newly reset device.

When a device is attached to a USB, it responds to a special address known as the default address (refer to
Chapter 9) until its unique address is assigned by the bus enumerator. In order for the USB System to
interact with the new device, the default device address and the device’s default pipe must be available to
the hub driver when a device is attached. During device initialization, the default address is changed to a
unique address.
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10.5.1.2 USBD Pipe Usage

Pipes are the method by which a device endpoint is associated with a Host Software entity. Pipes are
owned by exactly one such entity on the host. Although the basic concept of a pipe is the same no matter
who the owner, some distinction of capabilities provided to the USBD client occurs between two groups of

pipes:
e Default pipes, which are owned and managed by the USBD
e All other pipes, which are owned and managed by clients of the USBD

Default pipes are never directly accessed by clients, although they are often used to fulfill some part of
client requests relayed via command mechanisms.

10.5.1.2.1 Default Pipes

The USBD is responsible for allocating and managing appropriate buffering to support transfers on the
default pipe that are not directly visible to the client such as setting a device address. For those transfers
that are directly visible to the client, such as sending vendor and class commands or reading a device
descriptor, the client must provide the required buffering.

10.5.1.2.2 Client Pipes

Any pipe not owned and managed by the USBD can be owned and managed by a USBD client. From the
USBD viewpoint, a single client owns the pipe. In fact, a cooperative group of clients can manage the pipe,
provided they behave as a single coordinated entity when using the pipe.

The client is responsible for providing the amount of buffering it needs to service the data transfer rate of
the pipe within a service interval attainable by the client. Additional buffering requirements for working
space are specified by the USB System.

10.5.1.3 USBD Service Capabilities

The USBD provides services in the following categories:

e Configuration via command mechanisms

e Transfer services via both command and pipe mechanisms
e  Event notification

e  Status reporting and error recovery

10.5.2 USBD Command Mechanism Requirements

USBD command mechanisms allow a client generic access to a USB device. Generally, these commands
allow the client to make read or write accesses to one of potentially several device data and control spaces.
The client provides as little as a device identifier and the relevant data or empty buffer pointer.

USBD command transfers do not require that the USB device be configured. Many of the device
configuration facilities provided by the USBD are command transfers.

Following are the specific requirements on the command mechanisms provided.

10.5.2.1 Interface State Control

USBD clients must be able to set a specified interface to any settable pipe state. Setting an interface state
results in all of the pipes in that interface moving to that state. Additionally, all of the pipes in an interface
may be reset or aborted.
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5.2.2 Pipe State Control
USBD pipe state has two components:

e Host status
e Reflected endpoint status

Whenever the pipe status is reported, the value for both components will be identified. The pipe status
reflected from the endpoint is the result of the endpoint being in a particular state. The USBD client
manages the pipe state as reported by the USBD. For any pipe state reflected from the endpoint, the client
must also interact with the endpoint to change the state.

A USBD pipe is in exactly one of the following states:

e Active: The pipe’s Policy has been set and the pipe is able to transmit data. The client can query as to
whether any IRPs are outstanding for a particular pipe. Pipes for which there are no outstanding IRPs
are still considered to be in the Active state as long as they are able to accept new IRPs.

e Halted: An error has occurred on the pipe. This state may also be a reflection of the corresponding
Halted endpoint on the device.

A pipe and endpoint are considered active when the device is configured and the pipe and/or endpoint is
not stalled. Clients may manipulate pipe state in the following ways:

e Aborting a Pipe: All of the IRPs scheduled for a pipe are retired immediately and returned to the client
with a status indicating they have been aborted. Neither the host state nor the reflected endpoint state
of the pipe is affected.

e Resetting a Pipe: The pipe’s IRPs are aborted. The host state is moved to Active. If the reflected
endpoint state needs to be changed, that must be commanded explicitly by the USBD client.

e C(Clearing a Halted pipe: The pipe's state is cleared from Halted to Active.

e Halting a Pipe: The pipe's state is set to Halted.

10.5.2.3 Getting Descriptors

The USBDI must provide a mechanism to retrieve standard device, configuration, and string descriptors, as
well as any class- or vendor-specific descriptors.

10.5.2.4 Getting Current Configuration Settings

290

The USBDI must provide a facility to return, for any specified device, the current configuration descriptor.
If the device is not configured, no configuration descriptor is returned. This action is equivalent to
returning the configuration descriptor for the current configuration by requesting the specific configuration
descriptor. It does not, however, require the client to know the identifier for the current configuration.
This will return all of the configuration information, including the following:

e All of the configuration descriptor information as stored on the device, including all of the alternate
settings for all of the interfaces

e Indicators for which of the alternate settings for interfaces are active
e Pipe handles for endpoints in the active alternate settings for interfaces
e Actual wMaxPacketSize values for endpoints in the active alternate settings for interfaces

Additionally, for any specified pipe, the USBDI must provide a facility to return the wMaxPacketSize that
is currently being used by the pipe.

LGE-1010 / Page 318 of 650



Universal Serial Bus Specification Revision 2.0

10.5.2.5 Adding Devices

The USBDI must provide a mechanism for the hub driver to inform USBD of the addition of a new device
to a specified USB and to retrieve the USBD ID of the new USB device. The USBD tasks include
assigning the device address and preparing the device’s default pipe for use.

10.5.2.6 Removing Devices

The USBDI must provide a facility for the hub driver to inform the USBD that a specific device has been
removed.

10.5.2.7 Managing Status

The USBDI must provide a mechanism for obtaining and clearing device-based status on a device,
interface, or pipe basis.

10.5.2.8 Sending Class Commands

This USBDI mechanism is used by a client, typically a class-specific or adaptive driver, to send one or
more class-specific commands to a device.

10.5.2.9 Sending Vendor Commands

This USBDI mechanism is used by a client to send one or more vendor-specific commands to a device.

10.5.2.10 Establishing Alternate Settings

The USBDI must provide a mechanism to change the alternate setting for a specified interface. As a result,
the pipe handles for the previous setting are released and new pipe handles for the interface are returned.
For this request to succeed, the interface must be idle; i.e., no data buffers may be queued for any pipes in
the interface.

10.5.2.11 Establishing a Configuration

Configuring software requests a configuration by passing a buffer containing the configuration information
to the USBD. The USBD requests resources for the endpoints in the configuration, and if all resource
requests succeed, the USBD sets the device configuration and returns interface handles with corresponding
pipe handles for all of the active endpoints. The default values are used for all alternate settings for
interfaces.

Note: The interface implementing the configuration may require specific alternate settings to be identified.

10.5.2.12 Setting Descriptors

For devices supporting this behavior, the USBDI allows existing descriptors to be updated or new
descriptors to be added.

10.5.3 USBD Pipe Mechanisms

This part of the USBDI offers clients the highest-speed, lowest overhead data transfer services possible.
Higher performance is achieved by shifting some pipe management responsibilities from the USBD to the
client. As a result, the pipe mechanisms are implemented at a more primitive level than the data transfer
services provided by the USBD command mechanisms. Pipe mechanisms do not allow access to a device’s
default pipe.

USBD pipe transfers are available only after both the device and USB configuration have completed
successfully. At the time the device is configured, the USBD requests the resources required to support all
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device pipes in the configuration. Clients are allowed to modify the configuration, constrained by whether
the specified interface or pipe is idle.

Clients provide full buffers to outgoing pipes and retrieve transfer status information following the
completion of a request. The transfer status returned for an outgoing pipe allows the client to determine the
success or failure of the transfer.

Clients provide empty buffers to incoming pipes and retrieve the filled buffers and transfer status
information from incoming pipes following the completion of a request. The transfer status returned for an
incoming pipe allows a client to determine the amount and the quality of the data received.

10.5.3.1 Supported Pipe Types

The four types of pipes supported, based on the four transfer types, are described in the following sections.

10.5.3.1.1 Isochronous Data Transfers

Each buffer queued for an isochronous pipe is required to be viewable as a stream of samples. As with all
pipe transfers, the client establishes a Policy for using this isochronous pipe, including the relevant service
interval for this client. Lost or missing bytes, which are detected on input, and transmission problems,
which are noted on output, are indicated to the client.

The client queues a first buffer, starting the pipe streaming service. To maintain the continuous streaming
transfer model used in all isochronous transfers, the client queues an additional buffer before the current
buffer is retired.

The USBD is required to be able to provide a sample stream view of the client’s data stream. In other
words, using the client’s specified method of synchronization, the precise packetization of the data is
hidden from the client. Additionally, a given transaction is always contained completely within some client
data buffer.

For an output pipe, the client provides a buffer of data. The USBD allocates the data across the
(micro)frames for the service period using the client’s chosen method of synchronization.

For an input pipe, the client must provide an empty buffer large enough to hold the maximum number of
bytes the client’s device will deliver in the service period. Where missing or invalid bytes are indicated,
the USBD may leave the space that the bytes would have occupied in place in the buffer and identify the
error. One of the consequences of using no synchronization method is that this reserved space is assumed
to be the maximum packet size. The buffer-retired notification occurs when the IRP completes. Note that
the input buffer need not be full when returned to the client.

The USBD may optionally provide additional views of isochronous data streams. The USBD is also
required to be able to provide a packet stream view of the client’s data stream.

10.5.3.1.2 Interrupt Transfers

The Interrupt out transfer originates in the client of the USBD and is delivered to the USB device. The
Interrupt in transfer originates in a USB device and is delivered to a client of the USBD. The USB System
guarantees that the transfers meet the maximum latency specified by the USB endpoint descriptor.

The client queues a buffer large enough to hold the interrupt transfer data (typically a single USB
transaction). When all of the data is transferred, or if the error threshold is exceeded, the IRP is returned to
the client.

10.5.3.1.3 Bulk Transfers

Bulk transfers may originate either from the device or the client. No periodicity or guaranteed latency is
assumed. When all of the data is transferred, or if the error threshold is exceeded, the IRP is returned to the
client.
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10.5.3.1.4 Control Transfers

All message pipes transfer data in both directions. In all cases, the client outputs a setup stage to the device
endpoint. The optional data stage may be either input or output and the final status is always logically
presented to the host. For details of the defined message protocol, refer to Chapter 8.

The client prepares a buffer specifying the command phase and any optional data or empty buffer space.
The client receives a buffer-retired notification when all phases of the control transfer are complete, or an
error notification, if the transfer is aborted due to transmission error.

10.5.3.2 USBD Pipe Mechanism Requirements

The following pipe mechanisms are provided.

10.5.3.2.1 Aborting IRPs
The USBDI must allow IRPs for a particular pipe to be aborted.

10.5.3.2.2 Managing Pipe Policy

The USBDI must allow a client to set and clear the Policy for an individual pipe or for an entire interface.
Any IRPs made by the client prior to successfully setting a Policy are rejected by the USBD.

10.5.3.2.3 Queuing IRPs

The USBDI must allow clients to queue IRPs for a given pipe. When IRPs are returned to the client, the
request status is also returned. A mechanism is provided by the USBD to identify a group of isochronous
IRPs whose first transactions will all occur in the same (micro)frame.

10.5.4 Managing the USB via the USBD Mechanisms

Using the provided USBD mechanisms, the following general capabilities are supported by any USB
System.

10.5.4.1 Configuration Services

Configuration services operate on a per-device basis. The configuring software tells the USBD when to
perform device configuration. A hub driver has a special role in device management and provides at least
the following capabilities:

e Device attach/detach recognition, driven by an interrupt pipe owned by the hub driver

e Device reset, accomplished by the hub driver by resetting the hub port upstream of the device
e  Tells the USBD to perform device address assignment

e Power control

The USBDI additionally provides the following configuration facilities, which may be used by the hub
driver or other configuring software available on the host:

e Device identification and access to configuration information (via access to descriptors on the device)

e Device configuration via command mechanisms

When the hub driver informs the USBD of a device attachment, the USBD establishes the default pipe for
the new device.
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10.5.4.1.1 Configuration Management

Configuration management services are provided primarily as a set of specific interface commands that
generate USB transactions on the default pipe. The notable exception is the use of an additional interrupt
pipe that delivers hub status directly to the hub driver.

Every hub initiates an interrupt transfer when there is a change in the state of one of the hub ports.
Generally, the port state change will be the connection or removal of a downstream USB device. (Refer to
Chapter 11 for more information.)

10.5.4.1.2 Initial Device Configuration

The device configuration process begins when a hub reports, via its status change pipe, the connection of a
new USB device.

Configuration management services allow configuring software to select a USB device configuration from
the set of configurations listed in the device. The USBD verifies that adequate power is available and the
data transfer rates given for all endpoints in the configuration do not exceed the capabilities of the USB
with the current schedule before setting the device configuration.

10.5.4.1.3 Modifying a Device Configuration

Configuration management services allow configuring software to replace a USB device configuration with
another configuration from the set of configurations listed in the device. The operation succeeds if
adequate power is available and the data transfer rates given for all endpoints in the new configuration fit
within the capabilities of the USB with the current schedule. If the new configuration is rejected, the
previous configuration remains.

Configuration management services allow configuring software to return a USB device to a Not
Configured state.

10.5.4.1.4 Device Removal

Error recovery and/or device removal processing begins when a hub reports via its status change pipe that
the USB device has been removed.

10.5.4.2 Power Control

There are two cooperating levels of power management for the USB: bus and device level management.
This specification provides mechanisms for managing power on the USB bus. Device classes may define
class-specific power control capabilities.

All USB devices must support the Suspended state (refer to Chapter 9). The device is placed into the
Suspended state via control of the hub port to which the device is attached. Normal device operation ceases
in the Suspend State; however, if the device is capable of wakeup signaling and the device is enabled for
remote wakeup, it may generate resume signaling in response to external events.

The power management system may transition a device to the Suspended state or power-off the device in
order to control and conserve power. The USB provides neither requirements nor commands for the device
state to be saved and restored across these transitions. Device classes may define class-specific device state
save-and-restore capabilities.

The USB System coordinates the interaction between device power states and the Suspended state.

It is recommended that while a device is not being used by the system (i.e., no transactions are being
transmitted to or from the device besides SOF tokens), the device be suspended as soon as possible by
selectively suspending the port to which the device is attached. Suspending inactive devices reduces
reliability issues due to high currents passing through a transceiver operating in high-speed mode in the
presence of short circuit conditions described in Section 7.1.1. Some of these short circuit conditions are
not detectable in the absence of transactions to the device. Suspending the unused device will place the
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transceiver interface into full-speed mode which has a greater reliability in the presence of short circuit
conditions.

10.5.4.3 Event Notifications

USBD clients receive several kinds of event notifications through a number of sources:
e Completion of an action initiated by a client.

e Interrupt transfers over stream pipes can deliver notice of device events directly to USBD clients. For
example, hubs use an interrupt pipe to deliver events corresponding to changes in hub status.

e Event data can be embedded by devices in streams.

e Standard device interface commands, device class commands, vendor-specific commands, and even
general control transfers over message pipes can all be used to poll devices for event conditions.

10.5.4.4 Status Reporting and Error Recovery Services

The command and pipe mechanisms both provide status reporting on individual requests as they are
invoked and completed.

Additionally, USB device status is available to USBD clients using the command mechanisms.

The USBD provides clients with pipe error recovery mechanisms by allowing pipes to be reset or aborted.

10.5.4.5 Managing Remote Wakeup Devices

The USB System can minimize the resume power consumption of a suspended USB tree. This is
accomplished by explicitly enabling devices capable of resume signaling and controlling propagation of
resume signaling via selectively suspending and/or disabling hub ports between the device and the nearest
self-powered, awake hub.

In some error-recovery scenarios, the USB System will need to re-enumerate sub-trees. The sub-tree may
be partially or completely suspended. During error-recovery, the USB System must avoid contention
between a device issuing resume signaling and simultaneously driving reset down the port. Avoidance is
accomplished via management of the devices’ remote wakeup feature and the hubs’ port features. The
rules are as follows:

e Issue a SetDeviceFeature(DEVICE_ REMOTE_WAKEUP) request to the leaf device, only just prior to
selectively suspending any port between where the device is connected and the root port (via a
SetPortFeature(PORT _SUSPEND) request).

e Do not reset a suspended port that has had a device enabled for remote wakeup without first enabling
that port.

e  Verify that after a remote wakeup, the devices in the subtree affected by the remote wakeup are still
present. This will typically be done as part of determining which potential remote wakeup device was
the source of the wakeup. This should be done to ensure that a suspended device is not disconnected
(and possibly reconnected) or reset (e.g., by noise) during a suspend/resume process.

10.5.5 Passing USB Preboot Control to the Operating System

A single software driver owns the Host Controller. If the host system implements USB services before the
operating system loads, the Host Controller must provide a mechanism that disables access by the preboot
software and allows the operating system to gain control. Preboot USB configuration is not passed to the
operating system. Once the operating system gains control, it is responsible to fully configure the bus. If
the operating system provides a mechanism to pass control back to the preboot environment, the bus will be
in an unknown state. The preboot software should treat this event as a powerup.
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10.6 Operating System Environment Guides

As noted previously, the actual interfaces between the USB System and host software are specific to the host
platform and operating system. A companion specification is required for each combination of platform and
operating system with USB support. These specifications describe the specific interfaces used to integrate the
USB into the host. Each operating system provider for the USB System identifies a compatible Universal USB

Specification revision.
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Chapter 11
Hub Specification

This chapter describes the architectural requirements for the USB hub. It contains a description of the three
principal sub-blocks: the Hub Repeater, the Hub Controller, and the Transaction Translator. The chapter
also describes the hub’s operation for error recovery, reset, and suspend/resume. The second half of the
chapter defines hub request behavior and hub descriptors.

The hub specification supplies sufficient additional information to permit an implementer to design a hub
that conforms to the USB specification.

11.1 Overview

Hubs provide the electrical interface between USB devices and the host. Hubs are directly responsible for
supporting many of the attributes that make USB user friendly and hide its complexity from the user. Listed
below are the major aspects of USB functionality that hubs must support:

e Connectivity behavior

e  Power management

e Device connect/disconnect detection

e Bus fault detection and recovery

e High-, full-, and low-speed device support

A hub consists of three components: the Hub Repeater, the Hub Controller, and the Transaction Translator.
The Hub Repeater is responsible for connectivity setup and tear-down. It also supports exception handling,
such as bus fault detection and recovery and connect/disconnect detect. The Hub Controller provides the
mechanism for host-to-hub communication. Hub-specific status and control commands permit the host to
configure a hub and to monitor and control its individual downstream facing ports. The Transaction
Translator responds to high-speed split transactions and translates them to full-/low-speed transactions with
full-/low-speed devices attached on downstream facing ports.

11.1.1 Hub Architecture

Figure 11-1 shows a hub and the locations of its upstream and downstream facing ports. A hub consists of a
Hub Repeater section, a Hub Controller section, and a Transaction Translator section. The hub must
operate at high-speed when its upstream facing port is connected at high-speed. The hub must operate at
full-speed when its upstream facing port is connected at full-speed.

The Hub Repeater is responsible for managing connectivity between upstream and downstream facing ports
which are operating at the same speed. The Hub Repeater supports full-/low-speed connectivity and high-
speed connectivity. The Hub Controller provides status and control and permits host access to the hub. The
Transaction Translator takes high-speed split transactions and translates them to full-/low-speed transactions
when the hub is operating at high-speed and has full-/low-speed devices attached. The operating speed of a
device attached on a downstream facing port determines whether the Routing Logic connects a port to the
Transaction Translator or hub repeater sections.
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