Case 137-cv-00077-R33-PJG ECF No. 5 med On/25/17 Paged. 377 Page 1 of 2

In the above-memtled case, the following patemb/ trademakk (s) have been included:

In the abovementited wase the following decision has been tewdend or judgemen iswed:

DECISTOM/UbOEMENT		
CLERK	(BY) DEPUTY CLERK	DA ${ }^{\text {E }}$
Thomas L. Dorwin, Clerk of	court /s/P. Woods	1/25/2017

Patem No.	Date of Patent	Molder
U.S. Paten 7,934843	May 3.2011	Magra Mirrors of America lne.
U.S Patext $8,128.243$	March 6, 2012	Magna Mirross of America, Inc.
U.S. Fatent 8, 128.244	March 6, 2012	Magna Mirrors of America, lne.
U.S. Paten 8,147,077	April 3,2012	Magna Mirrors of Amenca, Inc.
U.S. Patent 8,267,534	September 18,2012	Magna Mirrors of America, Inc.
U.S. Patent 8,550,642	October 8,2013	Magna Mirrors of America, Ine.
U.S. Patent 8,591,047	November 26,2013	Magna Mirors of America, Inc.
U.S. Patent 8,783,882	July 22, 2014	Magna Mirros of America, Inc.
U.S. Patent 8,899,762	December 2, 2014	Magna Mirror of America, Inc.

In the above-entitled case, the following patent(s)/ trademark(s) have been included:

In the above---entitied case, the following decision has been rendered or judgement issued:

DECISION/JDGEMENTVoluntarily Dismissed on 3/23/2016		
ClerkClerk of Court	(BY) DEPUTY CLERK	DATE
	/s/Paula J. Woods	3/24/2016

Copy 2 Upon filing document adding patent(s), mail this copy to Birector Copy 4 - Case fise copy

Patent No.	Date of Patent	Holder
U.S. Patent 7,934,843	May 3, 2011	Magna Mirrors of America, Inc.
U.S. Patent 8,128,243	March 6,2012	Magna Mirrors of America, Inc.
U.S. Patent 8,128,244	Mareh 6,2012	Magna Mirrors of America, Inc.
U.S. Patent 8,147,077	April 3,2012	Magna Mirrors of America, Inc.
U.S. Patent 8,267,534	September 18, 2012	Magna Mirrors of America, Inc.
U.S. Patent 8,550,642	October 8,2013	Magna Mirrors of America, Inc.
U.S. Patent 8,591,047	November 26,2013	Magna Mirrors of America, Inc.
U.S. Patent 8,783,882	July 22, 2014	Magna Mirrors of America, Inc.
U.S. Patent 8,899,762	December 2, 2014	Magna Mirrors of America, Inc.

TO:	Mail Stop 8 Director of the U.S. Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450	REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. $\S 290$ and/or 15 U.S.C. $\S 1116$ you are hereby advised that a court action has been filed in the U.S. District Court Western District of Michigan on the following \square Trademarks or $\quad \square$ Patents. (\square the patent action involves 35 U.S.C. § 292.):

$\begin{array}{\|l} \hline \text { DOCKET NO. } \\ \text { 1:15-cv-183 } \end{array}$	DATE FILED $2 / 19 / 2015$	U.S. DISTRICT COURT Western District of Michigan
PLAINTIFF Magna Mirrors of Am	a, Inc.	DEFENDANT Ficosa International S.A.; Ficosa North America Corporation; Ficosa North America S.A. de C.V.; and Fico Mirrors, S.A.
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK
1		SEE ATTCHED LIST
2		
3		
4		
5		

In the above-entitled case, the following patent(s)/ trademark(s) have been included:

DATE INCLUDED	INCLUDED BY		
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	\square Amendment	
1		\square Answer $\quad \square$ Cross Bill $\quad \square$ Other Pleading	
2			
3			
4			
5			

In the above-entitled case, the following decision has been rendered or judgement issued:

DECISION/JUDGEMENT

CLERK TRACEY CORDES, CLERK OF COURT	(BY) DEPUTY CLERK /s/Paula J. Woods	DATE $2 / 20 / 1015$

Copy 1-Upon initiation of action, mail this copy to Director Copy 3-Upon termination of action, mail this copy to Director Copy 2-Upon filing document adding patent(s), mail this copy to Director Copy 4-Case file copy

Case 1:15-cv-00183-JTN Doc \#4 Filed 02/20/15 Page 2 of 2 Page ID\#374

Patent No.	Date of Patent	Holder
U.S. Patent 7,934,843	May 3, 2011	Magna Mirrors of America, Inc.
U.S. Patent 8,128,243	March 6, 2012	Magna Mirrors of America, Inc.
U.S. Patent 8,128,244	March 6,2012	Magna Mirrors of America, Inc.
U.S. Patent 8,147,077	April 3, 2012	Magna Mirrors of America, Inc.
U.S. Patent 8,267,534	September 18, 2012	Magna Mirrors of America, Inc.
U.S. Patent 8,550,642	October 8, 2013	Magna Mirrors of America, Inc.
U.S. Patent 8,591,047	November 26, 2013	Magna Mirrors of America, Inc.
U.S. Patent 8,783,882	July 22, 2014	Magna Mirrors of America, Inc.
U.S. Patent 8,899,762	December 2, 2014	Magna Mirrors of America, Inc.

UNITED STATES PATENT AND TRADEMARK OFFICE
 CERTIFICATE OF CORRECTION

PATENT NO. : 7,934,843 B2
APPLICATION NO. : 12/851045
DATED : May 3, 2011
INVENTOR(S) : Niall R. Lynam
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
Column 1
Line 24, "minor" should be --mirror--
Column 14
Line 61, "Cavity" should be --cavity--
Column 17
Line 7, "minor" should be --mirror--
Line 12, "application" should be --applications--
Column 20
Lines 15-16, "spottermirrors" should be --spotter mirrors--
Column 24
Line 37, "material," should be --material.--
Column 25
Line 54, "application" should be --applications--
Line 67, "application" should be --applications--
Column 26
Line 48, "application" should be --applications--
Column 29
Line 59, Claim 11, "minor" should be --mirror--

Signed and Sealed this

Twenty-second Day of November, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.	$:$	$7,934,843$
APPLICATION NO.:	$12 / 851,045$	
ISSUE DATE	$:$	May 3, 2011
INVENTOR(S)	$:$	Niall R. Lynam

Page _1_ of \qquad
\qquad

It is certified that an error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 1
Line 24, "minor" should be --mirror--
Column 14
Line 61, "Cavity" should be --cavity--
Column 17
Line 7, "minor" should be --mirror--
Line 12, "application" should be --applications--
Column 20
Lines 15-16, "spottermirrors" should be --spotter mirrors--
Column 24
Line 37, "material," should be --material.--
Column 25
Line 54, "application" should be --applications--
Line 67, "application" should be --applications--
Column 26
Line 48, "application" should be --applications--
Column 29
Line 59, Claim 11, "minor" should be --mirror--

MAILING ADDRESS OF SENDER (Please do not use customer number below):
GARDNER, LINN, BURKHART \& FLORY, LLP
2851 Charlevoix Dr., S.E., Suite 207
Grand Rapids, MI 49546
This collection of information is required by 37 CFR $1.322,1.323$, and 1.324 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Electronic Acknowledgement Receipt	
EFS ID:	11201877
Application Number:	12851045
International Application Number:	
Confirmation Number:	1992
Title of Invention:	EXTERIOR SIDEVIEW MIRROR SYSTEM
First Named Inventor/Applicant Name:	Niall R. Lynam
Customer Number:	28101
Filer:	Timothy A. Flory/Amanda Sytsma
Filer Authorized By:	Timothy A. Flory
Attorney Docket Number:	DON09 P-1624
Receipt Date:	17-OCT-2011
Filing Date:	05-AUG-2010
Time Stamp:	16:22:01
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Transmittal Letter	TransmittalForm.pdf	80980	no	1
Warnings:					
Information:					

2	Request for Certificate of Correction	RequestforCertificateofCorrecti on.pdf		no	1
Warnings:					
Information:					
Total Files Size (in bytes):			194812		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

This collection of information Is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and1.14. This collection is estimated to 2 hours to complete, including gathering, preparing, and submiting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the gathering, preparing, and submiting the completed appication form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIO
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov
www.uspto.gov

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

 (application filed on or after May 29, 2000)The Patent Term Adjustment is 0 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Application Assistance Unit (AAU) of the Office of Data Management (ODM) at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):
Niall R. Lynam, Holland, MI;

				Com	ete if Known
				Application Number	12/851,045
				Filing Date	August 5, 2010
				First Named Inventor	Niall R. Lynam
				Art Unit	2872
				Examiner Name	
Sheet	3	of	12	Attorney Docket Number	DON09 P-1624

U. S. PATENT DOCUMENTS					
Examiner Initials*	Cite No. ${ }^{1}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{2(1)}$ known)			Relevant Passages or Relevant Figures Appear

		6,315,419	2001-11-13	Platzer, Jr.	
		6,310,611	2001-10-30	Caldwell	
		6,294,989	2001-09-25	Schofield et al.	
		6,286,965	2001-09-11	Caskey et al.	
		6,276,821	2001-08-21	Pastrick et al.	
		6,270,225	2001-08-07	Goolsby	
		6,260,608	2001-07-17	Kim	
		6,257,746	2001-07-10	Todd et al.	
		6,250,148	2001-06-26	Lynam	
		6,245,262	2001-06-12	Varaprasad et al.	
		6,227,689	2001-05-08	Miller	
		6,207,083	2001-03-27	Varaprasad et al.	
		6,201,642	2001-03-13	Bos	
		6,199,993	2001-03-13	Mou	
Change	(s) applied	6,198,409	2001-03-06	Schofield et al.	
		6,196,688	2001-03-06	Caskey et al.	
to docur	TETt,	6,178,034	2001-01-23	Allemand et al.	
$\triangle D \cdot A \cdot B_{B}$	3.7	6,176,602	2001-01-23	Pastrick et al.	
$3 / 29 / 20$	011	6,172,613	2001-01-09	DeLine et al.	
		6,164,564	2000-12-26	Franco et al.	
		6,154,306	2000-11-28	Varaprasad et al.	
		$6,135,4996315,419$	2001-11-13	Platzer, Jr.	
		6,128,860	2000-10-10	Valaprasaùverat. Kepp et al.	
		6,124,647	2000-09-26	Marcus et al.	
		6,116,743	2000-09-12	Hoek	
to docume	ent,	6,111,684	2000-08-29	Forgette et al.	
ID.A.G.K		6,109,586	2000-08-29	Hock	
		6,097,023	2000-08-01	Schofield et al.	
$3 / 29 / 20$	1	6,074,068	2000-06-13	Palathingal	
		6,065,840	2000-05-23	Caskey et al.	
		6,033,078	2000-03-07	Su et al.	
		6,032,323	2000-03-07	Smith et al.	
		6,030,084	2002-02-29	Schmidt	
		$6,022,5116,002,511$	1999-12-14	Varaprasad et al.	
		6,011,486 6,001,486	1999-12-14	Varaprasad et al.	
		6,007,207	1999-12-28	Liu	

Examiner Signature	AAlessandro Amari/	Date Considered	$01 / 11 / 2011$

[^0]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 10 | of | 12 | Attorney Docket Number | DON09 P-1624 |

Examiner Signature	Alessandro Amari/	Date Considered	$01 / 1 / 12011$

[^1]| Applicant | $:$ | Niall R. Lynam |
| :--- | :--- | :--- |
| Serial No. | $:$ | $12 / 851,045$ |
| Page | $:$ | 2 |

Amendments to the Specification:

Change(s) applied

to document,
L.M.C.

Please amend paragraph [0001] on page 1 as follows:
$3 / 28 / 2011$
0001
 filed Aug. 25, 2008 now U.S. Pat. No. 7,842,154 (Attemey Decket DONO9 P 1462), which is a division of U.S. patent application Ser. No. 10/709,434, filed May 5, 2004, now U.S. Pat. No. $7,420,756$, which claims the benefit of U.S. provisional application, Ser. No. 60/471,872, filed May 20, 2003, which are hereby incorporated herein by reference in their entireties.

NOTICE OF ALLOWANCE AND FEE(S) DUE

$28101 \quad{ }^{7590} \quad$ 03/22/2011
VAN DYKE, GARDNER, LINN \& BURKHART, LLP
SUITE 207
2851 CHARLEVOIX DRIVE, S.E.
GRAND RAPIDS, MI 49546

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/851,045	08/05/2010	Niall R. Lynam	DON09 P-1624	1992

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	$\$ 1510$	$\$ 300$	$\$ 0$	$\$ 1810$	$06 / 22 / 2011$

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFEICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
B. If the status above is to be removed, check box 5 b on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:
A. Pay TOTAL FEE(S) DUE shown above, or
B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and $1 / 2$ the ISSUE FEE shown above.
II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section " 4 b " of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.
IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

$$
\text { Page } 1 \text { of } 3
$$

PTOL-85 (Rev. 02/11)

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE Commissioner for Patents P.O. Box 1450
 Alexandria, Virginia 22313-1450
 or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)
$28101 \quad 7590$ 03/22/2011
VAN DYKE, GARDNER, LINN \& BURKHART, LLP
SUITE 207
2851 CHARLEVOIX DRIVE, S.E.
GRAND RAPIDS, MI 49546

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

Certificate of Mailing or Transmission

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope States Postal Service with sufficient postage for first class mail in an envelope
addressed to the Mail Stop ISSUE FEE address above, or being facsimile addressed to the Mail Stop ISSUE FEE address above, or being fact
transmitted to the USPTO (571) 273-2885, on the date indicated below.

(Depositor's name)

	(Signature)
(Date)	

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/851,045	08/05/2010	Niall R. Lynam	DON09 P-1624	1992

TITLE OF INVENTION: EXTERIOR SIDEVIEW MIRROR SYSTEM

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1510	\$300	\$0	\$1810	06/22/2011
		ART UNIT	CLASS-SUBCLASS			
AMARI, A	ANDRO V	2872	359-872000			
1. Change of correspondence address or indication of "Fee Address" (37 CFR 1.363). \square Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached. \square "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Customer Number is required.			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attorneys or agents OR, alternatively,		$\begin{array}{ll} \hline \text { ys } & 1 \\ \text { ra } & 2 \\ \text { to } \\ \text { is } & 3 \end{array}$	

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
(B) RESIDENCE: (CITY and STATE OR COUNTRY)

Please check the appropriate assignee category or categories (will not be printed on the patent) : \quad Individual \square Corporation or other private group entity \square Government

Authorized Signature	Date
Typed or printed name	Registration No.

[^2]

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)
The Patent Term Adjustment to date is 0 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 0 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. $552 \mathrm{a}(\mathrm{m})$.
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122 (b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

Notice of Allowability	Application No.		Applicant(s)
	$12 / 851,045$	LYNAM, NIALL R.	
	Examiner	Art Unit	
	ALESSANDRO AMARI	2872	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address-All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance (PTOL-85) or other appropriate communication will be mailed in due course. THIS NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIGHTS. This application is subject to withdrawal from issue at the initiative of the Office or upon petition by the applicant. See 37 CFR 1.313 and MPEP 1308.

1. \boxtimes This communication is responsive to amendment of 1/19/2011.
2. \boxtimes The allowed claim(s) is/are 1-39.
3.

\square Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f)
a) \square \square All b) Some*None of the:
1.Certified copies of the priority documents have been received.
2.Certified copies of the priority documents have been received in Application No. \qquad .
3.Copies of the certified copies of the priority documents have been received in this national stage application from the International Bureau (PCT Rule 17.2(a)).

* Certified copies not received: \qquad _.

Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application.
THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.
4.A SUBSTITUTE OATH OR DECLARATION must be submitted. Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL PATENT APPLICATION (PTO-152) which gives reason(s) why the oath or declaration is deficient.
5.CORRECTED DRAWINGS (as "replacement sheets") must be submitted.
(a)\square including changes required by the Notice of Draftsperson's Patent Drawing Review (PTO-948) attached 1) \square hereto or 2) \square to Paper No./Mail Date \qquad _.
(b)including changes required by the attached Examiner's Amendment / Comment or in the Office action of Paper No./Mail Date \qquad .

Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the drawings in the front (not the back) of each sheet. Replacement sheet(s) should be labeled as such in the header according to $\mathbf{3 7}$ CFR 1.121(d).
6.DEPOSIT OF and/or INFORMATION about the deposit of BIOLOGICAL MATERIAL must be submitted. Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.

Attachment(s)

1. \square Notice of References Cited (PTO-892)
2. \square Notice of Draftperson's Patent Drawing Review (PTO-948)
3. \square Information Disclosure Statements (PTO/SB/08),
Paper No./Mail Date $\overline{\text { Examiner's Comment }}$ Regarding Requirement for Deposit
4. \square of Biological Material
5.Notice of Informal Patent Application
6.Interview Summary (PTO-413), Paper No./Mail Date \qquad .
5. \square Examiner's Amendment/Comment
6. \boxtimes Examiner's Statement of Reasons for Allowance
7. \square Other \qquad -.

U.S. Patent and Trademark Office

DETAILED ACTION

Terminal Disclaimer

The terminal disclaimer filed on 19 January 2011 disclaiming the terminal portion of any patent granted on this application which would extend beyond the expiration date of US Patent 6522451 has been reviewed and is accepted. The terminal disclaimer has been recorded.

Affidavit

The Declaration filed on 19 January 2011 under 37 CFR 1.131 is sufficient to overcome the Lynam et al US 2002/0072026 reference.

REASONS FOR ALLOWANCE

Claims 1-39 are allowed.
The following is an examiner's statement of reasons for allowance:
Claim 1 is allowable for at least the reason, "wherein said backing plate element comprises a polymeric substrate that is formed as a single element by injection molding of a polymeric resin; wherein said backing plate element is capable of supporting said plano reflective element and said auxiliary reflective element; wherein said first support portion of said backing plate element comprises a flat portion and wherein said plano reflective element is disposed at said flat portion; wherein said second support portion of said backing plate element comprises a curved portion and wherein said auxiliary reflective element is disposed at said curved portion; wherein the rearward field of view of said auxiliary reflective element is different from and angled to the rearward field of
view of said plano reflective element when both are attached to said backing plate element of said piano-auxiliary reflective element assembly when said piano-auxiliary reflective element assembly is included in said exterior sideview mirror assembly and when said exterior sideview mirror assembly is attached to the side of the automobile; wherein angling of the rearward field of view of said auxiliary reflective element relative to the rearward field of view of said plano reflective clement is achieved, at least in part, by an angling of said second support portion of said backing plate element supporting said auxiliary reflective element relative to said first support portion of said backing plate element supporting said plano reflective element; wherein, when said exterior sideview mirror assembly is attached to the side of the automobile, the field of view of said plano reflective element generally views rearwardly of the equipped automobile and the field of view of said auxiliary reflective element generally views towards a blind spot in the side lane adjacent the side of the automobile to which said exterior sideview mirror assembly is attached, said blind spot being generally outside the rearward field of view of said plano reflective element when said plano reflective element is viewed by a driver of the equipped automobile when said exterior sideview mirror assembly is attached to the side of the automobile; and wherein at least one of said plano reflective element and said auxiliary reflective element comprises one of(a) a glass substrate having a surface coated with a metallic reflector coating and (b) a polymeric substrate having a thin glass element applied to a surface thereof and with an opposing surface thereof having a reflecting layer applied thereto" as set forth in the claimed combination. Claims 2-39 are allowable due to their dependence on claim 1.

Applicant has overcome the prior art rejection and questions regarding priority by filing a 37 CFR 1.131 affidavit which proved sufficient to overcome the Lynam et al reference. The 37 CFR 1.131 affidavit proves that Niall Lynam conceived or invented the subject matter disclosed in the patent application publication.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Any inquiry concerning this communication or earlier communications from the examiner should be directed to ALESSANDRO AMARI whose telephone number is (571)272-2306. The examiner can normally be reached on Monday-Friday 8:00 AM to 5:30 PM

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Stephone B. Allen can be reached on (571) 272-2434. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

16 March 2011
/Alessandro Amari/
Primary Examiner, Art Unit 2872

Issue Classification	Application/Control No. 12851045	Applicant(s)/Patent Under Reexamination LYNAM, NIALL R.
	Examiner ALESSANDRO AMARI	Art Unit 2872

区	Claims renumbered in the same order as presented by applicant								CPA		T.D.	$\square \quad \mathrm{R}$		R.1.47	
Final	Original														
	1		17		33										
	2		18		34										
	3		19		35										
	4		20		36										
	5		21		37										
	6		22		38										
	7		23		39										
	8		24												
	9		25												
	10		26												
	11		27												
	12		28												
	13		29												
	14		30												
	15		31												
	16		32												

NONE		Total Claims Allowed:	
(Assistant Examiner)	(Date)	39	
lALESSANDRO AMARI/ Primary Examiner.Art Unit 2872 (Primary Examiner)	$03 / 16 / 2011$	O.G. Print Claim(s)	O.G. Print Figure

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	3846	(359/866,872,877,883).CCLS.	$\begin{aligned} & \text { US-PGPUB; } \\ & \text { USPAT; USOCR; } \\ & \text { EPO; JPO; } \\ & \text { DERWENT } \end{aligned}$	OR	OFF	$\begin{aligned} & 2011 / 03 / 16 \\ & \sqrt{15: 41} \end{aligned}$

EAST Search History (I nterference)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L2	1	plano-auxiliary.dm.	US-PGPUB; USPAT; UPAD	ADJ	ON	2011/03/16 15:42
L3	68	sideview mirror.clm.	US-PGPUB; USPAT; UPAD	ADJ	ON	2011/03/16 15:42
L4	5	plano reflective element.clm.	US-PGPUB; USPAT; UPAD	ADJ	ON	2011/03/16 15:42
L5	395	(side view or sideview or sideview) mirror.clm.	US-PGPUB; USPAT; UPAD	ADJ	ON	2011/03/16 15:43
L6	4719	backing plate.clm.	US-PGPUB; USPAT; UPAD	ADJ	ON	2011/03/16 15:43
L7	16742	field near1 view.clm.	US-PGPUB; USPAT; UPAD	ADJ	ON	2011/03/16 15:44
L8	5	4 and 5 and 6 and 7	US-PGPUB; USPAT; UPAD	ADJ	ON	2011/03/16 15:44
L10	7	auxiliary reflective element.clm.	US-PGPUB; USPAT; UPAD	ADJ	ON	2011/03/16 15:48
L11	1	8 and 10	US-PGPUB; USPAT; UPAD	ADJ	ON	2011/03/16 15:48

3/ 16/2011 3:49:23 PM
C: \backslash Documents and Settings \backslash aamari My Documents \backslash EAST \backslash Workspaces $\backslash 12851045 . w s p$

Search Notes	Application/Control No.	Applicant(s)/Patent Under Reexamination LYNAM, NIALL R.																											
$\\|$	Examiner ALESSANDRO AMARI	Art Unit 2872																											

SEARCHED				
Class	Subclass	Date	Examiner	
359	$866,872,877,883$	$1 / 11 / 2011$	AA	
Update	above	$3 / 16 / 2011$	AA	

SEARCH NOTES		
Search Notes	Date	Examiner
EAST search	$1 / 11 / 2011$	AA
Consulted with C. Spyrou on affidavit	$3 / 15 / 2011$	AA

INTERFERENCE SEARCH			
Class	Subclass	Date	Examiner
	PG-Pub/USPAT/UPAD text search	$3 / 16 / 2011$	AA

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FIEE
 Commissioner for Patents P.O. Box 1450
 Alcxandria, Virginia 22313-1450
 or Eax (571)-273-2885

INSTRUCTIONS: This form should be used for transmilling the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be conple ed where appropriate. All further correspondence inchinding the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.
CURRENT CORRESPONDENCE ADDRESS (Note: Use Block I for any change of addess) Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transnission.

Certificate of Mailing or Transmission
$\quad 28101$
VAN DYKE, GARDNER, LINN \& BURKHART, LLIP
SUTTE 207
2851 CHARLEVOIX DRIVE, S.E.
GRAND RAPIDS, MI 49546

I hereby certify that this Fee(s) Transmittal is being depositect with the United States Postal Service with sulficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

| Amanda R. Sytsma | (Deposiors name) |
| :--- | :--- | :--- |
| March 22,2011 | (Slgnature) |

APRLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONEIRMATION NO,
$12 / 851,045$	$08 / 05 / 2010$	Niall R. Lynam	DONO9 P-1624	1992

TITLE OF INVENTION: EXTERIOR SIDEVIEW MIRROR SYSTEM

APPLN. TYPE	SMALL ENTTTY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PADI ISSUE FEE	TOTAL EEE(S) DUE	PATEDUE
nonprovisional NO		\$1510	\$300	\$0	\$1810	-06/22/2011
EXAMINER		ART UNIT	CTASs-Stmactass			
AMARI, ALESSANDRO V		2872	359-872000			
1. Change of correspondence address or indication of "Fee Address". (37 CrR 1.363).			2. For printing on the patent front page, list (1) the names of up to 3 registered patent attorney or agents OR, alteriatively,		VAN DYKE GARDNER, LINN $1 \&$ BURKHART LLP	
Change of correspondence address (or Change of Correspondence Address form PTO/SB/122) attached.						
\square "Fee Address" indication (or "Fee Address" Indication form PTO/SB/47; Rev 03-02 or more recent) attached. Use of a Castomer Number is required.			registered attorney or agent) and the names of up to 2 registered patent attioneys or agents. If no name is listed, no name will be printed.		$\begin{array}{ll} \text { ra } & 2 \\ \text { to } & \\ \text { is } & 3 \end{array}$	

3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type)

PLEASE NOTE: Unless an assignee is identified below, no assignee data will appear on the patent. If an assignee is identified below, the document has been filed for recordation as set forth in 37 CFR 3.11. Completion of this form is NOT' a substitute for filing an assignment.
(A) NAME OF ASSIGNEE
DONNELLY CORPORATION
(B) RESIDENCE: (CITY and STATE OR COUNTRY)
HOLLAND, MI

Please check the appropriate assignee calegory or categories (will nol be printed on the patent): \square Indjvidual $[\boxed{\square}$ Corporation or other private group entity \square Government

4b. Payment of Fee(s): (Please first reapply any previously paid issue fee sthown aboye)		
${ }^{[8]}$ Issue	\square A cheek is enclosed.	
X Publication Fee (No small entity discount permitted)	Payment by credit card, Form PTO-2038 is attached. overpayment, to Deposit Account Number 22-0190 (enclose an extra copy of this form).	
Adrance Ordor		
5. Change in Entity Status (from status indicated above) a. Applicant claims SMALL ENTITY status. See 37 CFR 1.27	D. Applicant is no longer claiming SMALL ENTITY status, See 37 CFR 1.27	
NOTE: The Issue Fee and Publication Fee (if required) will not be accepted from anyone other than the applicant; a registered attorney or agent; or the assignee or other party in interest as shown by the records of the United States Patent and Trademark Office.		
Authorized Signature Typed or printed name	Date \quad March 22, 2011 Registration No. $\quad 42540$	
This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a bencfit by the public which is to file (and by the USPTO to process) an application. Confidentlality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and subnitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you reguire to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Conmerce, P.O. Bux 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450 , Alexandria, Virginia 22313-1450. Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.		

Electronic Patent Application Fee Transmittal				
Application Number:	12851045			
Filing Date:	05-Aug-2010			
Title of Invention:	EXTERIOR SIDEVIEW MIRROR SYSTEM			
First Named Inventor/Applicant Name:	Niall R. Lynam			
Filer:	Timothy A. Flory/Amanda Sytsma			
Attorney Docket Number:	DON09 P-1624			
Filed as Large Entity				
Utility under 35 USC 111 (a) Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Utility Appl issue fee	1501	1	1510	1510
Publ. Fee- early, voluntary, or normal	1504	1	300	300

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Extension-of-Time:				
Miscellaneous:	Total in USD (\$)	1810		

Electronic Acknowledgement Receipt	
EFS ID:	9707973
Application Number:	12851045
International Application Number:	
Confirmation Number:	1992
Title of Invention:	EXTERIOR SIDEVIEW MIRROR SYSTEM
First Named Inventor/Applicant Name:	Niall R. Lynam
Customer Number:	28101
Filer:	Timothy A. Flory/Amanda Sytsma
Filer Authorized By:	Timothy A. Flory
Attorney Docket Number:	DON09 P-1624
Receipt Date:	22-MAR-2011
Filing Date:	05-AUG-2010
Time Stamp:	13:02:36
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Credit Card
Payment was successfully received in RAM	$\$ 1810$
RAM confirmation Number	10901
Deposit Account	220190
Authorized User	FLORY,TIMOTHY A
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \quadCharge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)	

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)					
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Issue Fee Payment (PTO-85B)	IssueFeeTransmittal.pdf	134310	no	1
Warnings:					
Information:					
2	Fee Worksheet (PTO-875)	fee-info.pdf	31896	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			166206		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

Application Number	Application/Control No. $12 / 851,045$	Applicant(s)/Patent under Reexamination LYNAM, NIALL R.
Document Code - DISQ	Internal Document - DO NOT MAIL	

TERMINAL DISCLAIMER	APPROVED	\square DISAPPROVED
Date Filed : 01JAN 2011	This patent is subject to a Terminal Disclaimer	

Approved/Disapproved by:
JAB

[^3]
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group Art : 2872
Examiner : Alessandro V. Amari
Applicant : Niall R. Lynam
Serial No. : 12/851,045
Filing Date : August 5, 2010
For : EXTERIOR SIDEVIEW MIRROR SYSTEM

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Sir:

REQUEST FOR RECONSIDERATION

Responsive to the Office Action mailed January 13, 2011, Applicants wish to submit the following:

Amendments to the Specification are on page 2 of this paper.

Amendments to the Claims begin on page 3 of this paper.

Remarks begin on page 13 of this paper.

A Terminal Disclaimer is attached.

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	2

Amendments to the Specification:

Please amend paragraph [0001] on page 1 as follows:

The present application is a continuation of U.S. patent application Ser. No. 12/197,666, filed Aug. 25, 2008, now U.S. Pat. No. 7,842,154 (Atterney Docket DON09 P 1462), which is a division of U.S. patent application Ser. No. 10/709,434, filed May 5, 2004, now U.S. Pat. No. $7,420,756$, which claims the benefit of U.S. provisional application, Ser. No. 60/471,872, filed May 20, 2003, which are hereby incorporated herein by reference in their entireties.

Applicant	$:$	Niall R, Lynam
Serial No,	$:$	$12 / 851,045$
Page	$:$	3

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the present application;

1 (original): An exterior sideview mirror system suitable for use on an automobile, said exterior sideview mirror system comprising;
an exterior sideview mirror assembly adapted for attachment to a side of an automobile; said exterior sideview mirror assembly including a reflective element having a rearward field of view when attached to the side of the automobile;
said reflective element attached to an electrically-operated actuator of said exterior sideview mirror assembly and movable by said actuator in order to position said rearward field of view to a driver-desired position when said exterior sideview mirror assembly is attached to the side of the automobile;
wherein said reflective element comprises a plano-auxiliary reflective element assembly, said plano-auxiliary reflective element assembly comprising a plano reflective element having unit magnification and a separate auxiliary reflective element having a curvature;
said plano reflective element and said auxiliary reflective element of said plano-auxiliary reflective element assembly mounted adjacently at said plano-auxiliary reflective element assembly in a side-by-side relationship and not superimposed with one reflective element on top of the other reflective element;
said plano reflective element and said auxiliary reflective element supported at a backing plate element, said backing plate element mounting to said actuator such that movement of said backing plate element of said plano-auxiliary reflective element assembly by said actuator simultaneously and similarly moves said plano reflective element and said auxiliary reflective element;
said auxiliary reflective element having a wide-angle field of view encompassing a blind spot in the side lane adjacent the side of the automobile to which said exterior sideview mirror assembly is attached;

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	4

said backing plate element having a first support portion supporting said plano reflective element and a second support portion supporting said auxiliary reflective element;
wherein said auxiliary reflective element is positioned at an outboard portion of said plano-auxiliary reflective element assembly when said exterior sideview mirror assembly is mounted to the side of the automobile;
wherein said backing plate element comprises a polymeric substrate that is formed as a single element by injection molding of a polymeric resin;
wherein said backing plate element is capable of supporting said plano reflective element and said auxiliary reflective element;
wherein said first support portion of said backing plate element comprises a flat portion and wherein said plano reflective element is disposed at said flat portion;
wherein said second support portion of said backing plate element comprises a curved portion and wherein said auxiliary reflective element is disposed at said curved portion;
wherein the rearward field of view of said auxiliary reflective element is different from and angled to the rearward field of view of said plano reflective element when both are attached to said backing plate element of said plano-auxiliary reflective element assembly when said plano-auxiliary reflective element assembly is included in said exterior sideview mirror assembly and when said exterior sideview mirror assembly is attached to the side of the automobile;
wherein angling of the rearward field of view of said auxiliary reflective element relative to the rearward field of view of said plano reflective element is achieved, at least in part, by an angling of said second support portion of said backing plate element supporting said auxiliary reflective element relative to said first support portion of said backing plate element supporting said plano reflective element;
wherein, when said exterior sideview mirror assembly is attached to the side of the automobile, the field of view of said plano reflective element generally views rearwardly of the equipped automobile and the field of view of said auxiliary reflective element generally views towards a blind spot in the side lane adjacent the side of the automobile to which said exterior sideview mirror assembly is attached, said blind spot being generally outside the rearward field of view of said plano reflective element when said plano reflective element is viewed by a driver

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	5

of the equipped automobile when said exterior sideview mirror assembly is attached to the side of the automobile; and
wherein at least one of said plano reflective element and said auxiliary reflective element comprises one of (a) a glass substrate having a surface coated with a metallic reflector coating and (b) a polymeric substrate having a thin glass element applied to a surface thereof and with an opposing surface thereof having a reflecting layer applied thereto.

2 (original): The exterior sideview mirror system of claim 1, wherein at least a portion of said auxiliary reflective element adjacent said plano reflective element has its front surface generally coplanar with the front surface of said plano reflective element.

3 (original): The exterior sideview mirror system of claim 2, wherein an element of said backing plate element at least partially partitions said backing plate element into a first region where said plano reflective element is disposed and a separate and adjacent second region where said auxiliary reflective element is disposed, and wherein said first region is adapted to receive said plano reflective element and said second region is adapted to receive said auxiliary reflective element.

4 (original): The exterior sideview mirror system of claim 1, wherein said plano reflective element and said auxiliary reflective element are adjacently supported at said backing plate element at a joint, and wherein said plano-auxiliary reflective element assembly includes a demarcation element, said demarcation element disposed at said joint to form a demarcation between said plano reflective element and said auxiliary reflective element, said demarcation element having a portion visible to a driver of the automobile when said exterior sideview mirror assembly is attached to the side of the automobile.

5 (original): The exterior sideview mirror system of claim 4, wherein said demarcation element is dark colored.

Applicant $:$	Niall R. Lynam
Serial No.	$:$
Page	$12 / 851,045$

6 (original): The exterior sideview mirror system of claim 5 , wherein said demarcation element is dark colored with a color selected from the group consisting of black, grey, blue and brown.

7 (original): The exterior sideview mirror system of claim 5 , wherein said demarcation element comprises at least one of a polymer material, a tape, a plastic film, a paint, a lacquer and a caulk.

8 (original): The exterior sideview mirror system of claim 7, wherein said demarcation element comprises a polymer material.

9 (original): The exterior sideview mirror system of claim 5, wherein the rearward field of view of said auxiliary reflective element is at an angle of at least about 3 degrees relative to the rearward field of view of said plano reflective element.

10 (original): The exterior sideview mirror system of claim 4, wherein said joint comprises a space between said plano reflective element and said auxiliary reflective element.

11 (original): The exterior sideview mirror system of claim 10, wherein said demarcation element is at least partially disposed at said space between said plano reflective element and said auxiliary reflective element.

12 (original): The exterior sideview mirror system of claim 4, wherein said demarcation element comprises a wall on said backing plate element, said wall located on said backing plate element at said joint, said wall disposed between said plano reflective element and said auxiliary reflective element.

13 (original): The exterior sideview mirror system of claim 1, wherein an element of said backing plate element at least partially partitions said backing plate element into a first region where said plano reflective element is disposed and a separate and adjacent second region where said auxiliary reflective element is disposed, and wherein said first region is adapted to receive

```
Applicant : Niall R. Lynam
Serial No. : 12/851,045
Page : 7
```

said plano reflective element and said second region is adapted to receive said auxiliary reflective element.

14 (original): The exterior sideview mirror system of claim 1 , wherein the rearward field of view of said auxiliary reflective element is generally directed at least one of outwardly and downwardly with respect to the longitudinal axis of the equipped automobile when said exterior sideview mirror assembly is attached to the side of the automobile.

15 (original): The exterior sideview mirror system of claim 1 , wherein the rearward field of view of said auxiliary reflective element is generally directed outwardly and downwardly with respect to the longitudinal axis of the equipped automobile when said exterior sideview mirror assembly is attached to the side of the automobile.

16 (original): The exterior sideview mirror system of claim 1, wherein said plano reflective element is supported at said backing plate element by at least one of an adhesive attachment and a mechanical attachment, and wherein said auxiliary reflective element is supported at said backing plate element by at least one of an adhesive attachment and a mechanical attachment.

17 (original): The exterior sideview mirror system of claim 1, wherein said plano reflective element comprises a flat glass substrate having a surface coated with a metallic reflector coating and wherein said auxiliary reflective element comprises a bent glass substrate having a surface coated with a metallic reflector coating, and wherein said bent glass substrate has a spherical curvature.

18 (original): The exterior sideview mirror system of claim 1, wherein said plano reflective element comprises a flat glass substrate having a surface coated with a metallic reflector coating and wherein said auxiliary reflective element comprises a bent glass substrate having a surface coated with a metallic reflector coating, and wherein said bent glass substrate has a multiradius curvature.

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	8

19 (original): The exterior sideview mirror system of claim 1, wherein said plano reflective element comprises a flat glass substrate having a surface coated with a metallic reflector coating and wherein said auxiliary reflective element comprises a bent glass substrate having a surface coated with a metallic reflector coating, and wherein said bent glass substrate has an aspherical curvature.

20 (original): The exterior sideview mirror system of claim 1, wherein said plano reflective element comprises a substrate having a surface coated with a metallic reflector coating and wherein said auxiliary reflective element comprises a substrate having a surface coated with a metallic reflector coating.

21 (original): The exterior sideview mirror system of claim 20, wherein said curved portion of said backing plate element comprises a curvature corresponding to a curvature of said auxiliary reflective element.

22 (original): The exterior sideview mirror system of claim 21, wherein said curved portion of said backing plate element has at least one of (a) a spherical curvature, (b) an aspherical curvature and (c) a multiradius curvature.

23 (original): The exterior sideview mirror system of claim 22, wherein a demarcation element is disposed between said plano reflective element and said auxiliary reflective element and wherein said demarcation element comprises a part of said backing plate element, and wherein said demarcation element comprises a wall structure that at least partially partitions said backing plate element into a first region where said plano reflective element is disposed and a separate and adjacent second region where said auxiliary reflective element is disposed, and wherein at least one of (a) said first region is adapted to receive said plano reflective element and (b) said second region is adapted to receive said auxiliary reflective element.

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	9

24 (original): The exterior sideview mirror system of claim 1, wherein said plano reflective element comprises a substrate formed from elongated sheet of substrate material comprising a polymeric resin material, and wherein said elongated sheet has a substantially transparent functional film applied at a surface thereof, and wherein said substantially transparent functional film provides at least one of (a) an anti-abrasion function, (b) a hydrophobic function and (c) a hydrophilic function, and wherein said functional film comprises an ultrathin glass material which is sufficiently flexible to be provided in a reel or roll, and wherein said functional film is sufficiently flexible to conform to said substrate of said plano reflective element, and wherein said plano reflective element comprises a reflective film disposed at a surface of said substrate opposite said substantially transparent functional film.

25 (original): The exterior sideview mirror system of claim 1, wherein said plano reflective element comprises a thin flexible glass sheet and a polymeric substrate, said thin flexible glass sheet existing as a pre-formed glass sheet that is separate from said polymeric substrate, said thin glass sheet having an attaching surface, said attaching surface being opposed to and adhered to said surface of said polymeric substrate when said thin flexible sheet is adhered to said exterior surface of said polymeric substrate, said thin flexible sheet providing an anti-abrasion function at said surface of said polymeric substrate when adhered thereto, said thin flexible glass sheet substantially conforming to said exterior surface of said polymeric substrate when adhered thereto, said thin glass sheet having a thickness of less than approximately 0.8 mm and greater than approximately 0.3 mm .

26 (original): The exterior sideview mirror system of claim 25 , wherein said substrate is cut from a molded or extruded or cast strip or sheet, said glass sheet being laminated to said strip or sheet and wherein said plano reflective element comprises a reflective film applied to an inner surface of said substrate opposite said exterior surface, and wherein said reflective film comprises a polymeric reflective film at least one of laminated, adhered and applied to said inner surface of said substrate.

Applicant	:	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	10

27 (original): The exterior sideview mirror system of claim 1, wherein said auxiliary reflective element comprises a heater element operable to demist/deice the outmost surface of said auxiliary reflective element when said auxiliary reflective element is disposed at said backing plate element and when said exterior sideview mirror assembly is attached and operated on the side of the automobile.

28 (original): The exterior sideview mirror system of claim 1, wherein said exterior sideview mirror assembly including said plano-auxiliary reflective element having a rearward field of view when attached to the side of the automobile comprises a driver-side exterior sideview mirror assembly, and wherein, when attached to the side of the automobile, said driver-side exterior sideview mirror assembly provides to the driver of the equipped automobile a total field of view that generally subtends an angle of at least about 25 degrees with respect to the side of the equipped automobile.

29 (original): The exterior sideview mirror system of claim 1, wherein said exterior sideview mirror assembly including said plano-auxiliary reflective element having a rearward field of view when attached to the side of the automobile comprises a driver-side exterior sideview mirror assembly, and wherein, when attached to the side of the automobile, said driver-side exterior sideview mirror assembly provides to the driver of the equipped automobile a total field of view that generally subtends an angle of at least about 30 degrees with respect to the side of the equipped automobile.

30 (original): The exterior sideview mirror system of claim 1, wherein said auxiliary reflective element has an aspherical curvature.

31 (original): The exterior sideview mirror system of claim 1, wherein said auxiliary reflective element has a spherical curvature.

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	11

32 (original): The exterior sideview mirror system of claim 1, wherein the ratio of the width of said plano reflective element to the width of said auxiliary reflective element is greater than 1.5.

33 (original): The exterior sideview mirror system of claim 1, wherein the ratio of the width of said plano reflective element to the width of said auxiliary reflective element is greater than 2.5 .

34 (original): The exterior sideview mirror system of claim 1, wherein said exterior sideview mirror assembly comprises a door-mounted exterior sideview mirror assembly adapted for attachment to a side of the automobile adjacent a driver seating location of a driver of the automobile and wherein the rearward field of view of said auxiliary reflective element generally views downwardly towards the road surface adjacent to the driver seating location at least at a distance in the range of about 1 foot to about 24 feet to the rear of the driver seating location.

35 (original): The exterior sideview mirror system of claim 1, wherein at least one of said plano reflective element and said auxiliary reflective element comprises a glass substrate having a surface coated with a metallic reflector coating, and wherein said metallic reflector coating is selected from the group consisting of (i) a chromium coating, (ii) a titanium coating, (iii) a rhodium coating, (iv) a metal-alloy coating, (v) a nickel alloy coating, (vi) an aluminum coating and (vii) a silver coating.

36 (original): The exterior sideview mirror system of claim 1, wherein at least one of said plano reflective element and said auxiliary reflective element comprises an electro-optic reflective element.

37 (original): The exterior sideview mirror system of claim 1, wherein said plano reflective element comprises an electro-optical reflective element, and wherein said electro-optical reflective element comprises an electrochromic reflective element.

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	12

38 (original): The exterior sideview mirror system of claim 37 , wherein said auxiliary reflective element comprises a fixed reflectance mirror reflector.

39 (original): The exterior sideview mirror system of claim 38, wherein said fixed reflectance mirror reflector comprises a spherically bent glass substrate coated with a metallic reflector coating.

40-92 (canceled).

Applicant : Niall R. Lynam
Serial No. : 12/851,045
Page : 13

Remarks:

The amendments and remarks presented herein are believed to be fully responsive to the Office Action dated January 13, 2011. Claims 1-39 are pending in the application and claims 40-92 (drawn to non-elected inventions) have been canceled herein without prejudice so that the subject matter of these claims can be pursued in a divisional application in the future. The specification has been amended to update an incorporated parent patent application that has now issued as a United States patent. No new matter has been added.

Priority Claim:

The Office Action alleged that the disclosure of the prior-filed applications fail to provide adequate support or enablement in the manner provided by the first paragraph of 35 U.S.C. $\S 112$ for one or more claims of this application. Applicant respectfully traverses.

The present application is a continuation of U.S. patent application Serial No. $12 / 197,666$, filed August 25,2008 , now U.S. Patent No. $7,842,154$, which is a division of U.S. patent application Serial No. 10/709,434, filed May 5, 2004, now U.S. Patent No. 7,420,756, which claims the benefit of U.S. provisional application, Serial No. 60/471,872, filed May 20, 2003.

The present application and each of the parent patent applications Serial Nos. 12/197,666 and 10/709,434 have identical disclosures. For example, the present application and each of the parent patent applications Serial Nos. 12/197,666 and 10/709,434 incorporate by reference U.S. Patent Nos. 6,522,451 and 6,717,712. See, for example, paragraph [0045] on page 6 of the present application (reproduced below) and the corresponding paragraph in each of the parent patent applications Serial Nos. 12/197,666 and 10/709,434.
[0045] Reflective element 12 may comprise an aspheric or multi-radius or wide angle single element reflective element substrate. The reflective element 12 may provide a field of view similar to the plano-auxiliary reflective element assembly disclosed in U.S. Pat. Nos. 6,522,451 and $6,717,712$, which are hereby incorporated herein by reference.

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	14

With respect to the priority provisional application Serial No. 60/471,872, this application similarly incorporates by reference U.S. Patent No. 6,522,451 and U.S. patent application Serial No. 09/745,172, filed December 20, 2000. U.S, patent application Serial No, $09 / 745,172$ issued as U.S. Patent No. $6,717,712$. Thus, the present application and each of the priority applications incorporate by reference the same disclosures.

As stated at page 2 of the Request for Continuation Application filed with the present application, " $[t]$ he copy of the application includes Figures 9-22 and discussion thereof, which are from U.S. Patent No. $6,717,712$, which is incorporated by reference in the present application and its priority applications." Thus, although the present application as filed included Figures 9-22 and the text of paragraphs that were identical to Figures 1-14 and the respective paragraphs from U.S. Patent No. 6,717,712, the addition of these Figures and paragraphs does not add new matter to the application since the present application and each of its priority applications incorporated by reference U.S. Patent No. 6,717,712.

Thus, each of the priority applications of the present application incorporates by reference the disclosures of U.S. Patent Nos. 6,522,451 and 6,717,712, and the additional Figures and text included in the present application were previously included in the priority applications via the incorporation by reference of U.S. Patent Nos. $6,522,451$ and $6,717,712$. No new matter was thus added to the present application. Thus, the present application should be accorded its priority date of May 20, 2003 (the filing date of U.S. provisional application Serial No. 60/471,872).

Further, Applicant submits that the incorporated patents, U.S. Patent Nos. $6,522,451$ and $6,717,712$, provide support for at least each of the claim limitations alleged in the Office Action to be absent in the present application (such as set forth at pages 3 and 4 of the Office Action). For example, U.S. Patent No. 6,522,451 discloses:

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	15

(a) an electrically-operated actuator (see, for example, column 6, lines 30 42 of U.S. Patent No. 6,522,451, reproduced below);

30 . Alternately, when actuator 36 comm prises an electrically actuated actuator that is electrically operable incorporating at least onc motor, control 37 can comprise a switch (which, preferably, is operabic under control of the driver seated in cabin 25) or control. 37 can
35 comprise a memory controller, as koown in the automotive mirror art, that controls actuator 36 to move the position of plano-multiradius reflective element assembly 30 to a preset orientation that suits the rearward field of view preference of an individual triver. Actuator 36 is movnted to
40 bracket 38 which attaches to vechicle body side 11. Manomultiradius rellective element assenably 30 is positionable by actuator 36 within exterior mirror housing 40 .
(b) a plano-auxiliary reflective element assembly comprising a plano reflective element having unit magnification and a separate auxiliary reflective element having a curvature (see, for example, column 4, lines 24-28 of U.S. Patent No. 6,522,451, reproduced below);

The reflective element comprises a plano-
25 multiradius reflective element assembly which comprises a plano reflective element having unit magnification and a separate multiradius reflective element having a multiradius curvature.
and (c) a backing plate element having a first support portion supporting said plano reflective element and a second support portion supporting said auxiliary reflective element and the angling of the rearward field of view of the auxiliary reflective element relative to the rearward field of view (see, for example, column 15, lines 7-17 of U.S. Patent No. 6,522,451, reproduced below).

In order to conveniently achieve an angling of the multifadius portion with respect to the plano portion (and preferably a downward angling), the portion of the backing plate element that the mulliradius reflective 10 element is attached to can be angled relative to the adjucent portion of the backing plate element that the plano reflective portion is attached to. Thus, and referring to FIG. 6, planom multiradius reflective element assembly 130 includes a molded polymeric backing plate element 160 comprising a 15 generally flat portion 162 (between BB and CC in lilG. 6) and an adjacent curved portion 161 (between AA and BB).

Thus, Applicant submits that the present application fully supports the presently claimed invention, and such support for the claimed invention is also found in each of the priority applications of the present application, including U.S. provisional application Serial No.

```
Applicant : Niall R. Lynam
Serial No. : 12/851,045
Page : 16
```

60/471,872 that was filed on May 20, 2003. Thus, the present application is entitled to an effective filing date of at least May 20, 2003. Reconsideration and withdrawal of the refusal of the priority date of May 20, 2003 for the present application is respectfully requested.

Claim Rejections:

Claims 1-23 and 27-39 were rejected under 35 U.S.C. §102(b) as being anticipated by Lynam, U.S. Publication No. US 2002/0072026 ("Lynam '026"), while claims 24-26 were rejected under 35 U.S.C. §103(a) as being unpatentable over Lynam, in view of Lynam, U.S. Publication No. US 2004/0264011 ("Lynam '011").

With respect to the $\S 103$ (a) rejection, Lynam '011 is the publication of U.S. patent application 10/709,434, and the present application is a continuation of U.S. patent application Serial No. 12/197,666, which is a division of U.S. patent application Serial No. 10/709,434 (which published as Lynam '011). Because, as discussed above, each of the parent patent applications (including application Serial No. 10/709,434, which published as Lynam '011) fully supports the present claims and the present application is thus entitled to claim the filing benefit of each priority application, Lynam '011 (being one of the parent patent applications to which the present application claims priority) clearly is not prior art to the presently claimed invention.

Also, with respect to the $\S 102(\mathrm{~b})$ and $\S 103(\mathrm{a})$ rejections, Applicant submits that Lynam '026 is not prior art under 35 U.S.C. §102(b). Lynam '026 published June 13, 2002, and, as discussed above, the present application has an effective filing date of May 20, 2003 (the filing date of U.S. provisional application 60/471,872). Thus, Lynam '026 published less than one year prior to the priority date of the presently claimed invention and Lynam ' 026 cannot be cited as prior art under 35 U.S.C. §102(b).

Also, because the present application has a priority date of May 20, 2003 that is less than one year after the publication date of Lynam '026 (June 13, 2002), and because (as discussed below) Applicant conceived and reduced to practice the invention claimed in at least

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	17

the independent claims prior to the effective date of Lynam '026, Applicant respectfully submits that Lynam '026 is also not prior art under 35 U.S.C. §102(a) or §102(e).

In accordance with 37 CFR 1.131, Applicant submits herewith a Declaration which declares that the invention claimed in at least independent claims $1,40,62,78,85,89$ and 91 was invented by Applicant prior to the publication date of Lynam '026, namely, June 13, 2002. The specification and drawings (Exhibit A) of U.S. patent application Serial No. 09/478,315, which was filed on January 6, 2000 by Niall R. Lynam (the sole named inventor of the present application), along with U.S. Patent No. 6,522,451 (Exhibit B), which issued to Lynam from U.S. patent application Serial No. $09 / 478,315$, are submitted with the Declaration as cvidence that the present invention was reduced to practice at least as of January 6,2000 , which is well prior to the Lynam '026 publication date of June 13, 2002 (and prior to the December 20, 2000 filing date of the application that published as Lynam '026). The Declaration is signed by the named inventor (Niall R. Lynam) for the present application. The attached specification and drawings of Exhibits A and B clearly indicate that the inventions claimed in at least independent claims $1,40,62,78,85,89$ and 91 were reduced to practice well prior to June 13,2002 , the publication date of Lynam '026, and well prior to December 20, 2000, the filing date of the application that published as Lynam '026.

Accordingly, the rejections of claims 1-39 under §102(b) and §103(a) in view of Lynam '026 are obviated, and reconsideration and withdrawal of these rejections is respectfully requested.

Terminal Disclaimer:

Applicant submits herewith a terminal disclaimer that disclaims the term of any patent that will issue from the present application beyond the term of U.S. Patent No. 6,522,451. Please charge Account No. 22-0190 for the $\$ 140$ terminal disclaimer fee due and for any additional fees which may be due.

Applicant	$:$	Niall R. Lynam
Serial No.	$: 12 / 851,045$	
Page	$:$	18

Claims 1-39 are pending in the application. Applicant respectfully submits that claims 1-39 are in condition for allowance and a notice to that effect is earnestly and respectfully requested.

Respectfully submitted,
NIALL R. LYNAM
By: Van Dyke, Gardner, Linn \& Burkhart, LLP

Date: January 19, 2011.
Timothy-A.-Fory
Registration No. 42540
2851 Charlevoix Drive, S.E., Suite 207
P.O. Box 888695
Grand Rapids, Michigan 49588-8695
(616) 975-5500

TERMINAL DISCLAIMER TO OBVIATE A DOUBLE PATENTING \quad Docket Number (Optional)
 REJECTION OVER A "PRIOR" PATENT

In re Application of: Niall R. Lynam

Application No.: 12/851,045
Filed: August 5, 2010
For: EXTERIOR SIDEVIEW MIRROR SYSTEM

The owner*, Donnelly Corporation \qquad , of \qquad 100 _ percent interest in the instant application hereby disclaims, except as provided below, the terminal part of the statutory term of any patent granted on the instant application which would extend beyond the expiration date of the full statutory term prior patent No, $6,522,451$ \qquad as the term of said prior patent is defined in 35 U,S,C. 154 and 173, and as the term of sald prior patent is presently shortened by any terminal disclaimer. The owner hereby agrees that any patent so granted on the instant application shall be enforceable only for and during such period that it and the prior patent are commonly owned. This agreement runs with any patent granted on the instant application and is binding upon the grantee, its successors or assigns.

In making the above disclaimer, the owner does not disclaim the terminal part of the term of any patent granted on the inslant application that would extend to the expiration date of the full statutory term as defined in 35 U.S.C. 154 and 173 of the prior patent, "as the term of said prior patent is presently shortened by any terminal disclaimer," in the event that said prior patent later:
expires for failure to pay a maintenance fee;
is held unenforceable;
is found invalid by a court of competent jurisciction;
is statutorily disclaimed in whole or terminally disclaimed under 37 CFR 1.321;
has all claims canceled by a reexamination certificate;
is reissued; or
is in any manner terminated prior to the expiration of its full statutory term as presently shortened by any terminal disclaimer.

Check either box 1 or 2 below, if appropriate.

1. \square

For submissions on behalf of a business/organization (e.g., corporation, partnership, university, government agency, etc.), the undersigned is empowered to act on behalf of the business/organization.

I hereby declare that all statements ma de herein of my own knowledge are true and that all statements made on in formation and belief are belie ved to be true; a nd further that th ese statements were made with the knowledge that willful false statements and the like so made are punis hable by fine or imprisonment, or both, under Se ction 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.
2. $\quad \checkmark$ The undersigned is an attorney or agent of record. Reg. No. 42540
Terminal disclaimer fee under 37 CFR 1.20 (d) included.
WARNING: Information on this form may become public. Credit card Information should not be included on thls form. Provide credit card Information and authorization on PTO-2038.
*Statement under 37 CFR $3.73(\mathrm{~b})$ is required if terminal disclaimer is signed by the assignee (owner).
Form PTO/SB/96 may be used for making this certification. See MPEP $\S 324$.
This collection of information is required by 37 CFR 1.321. The Information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, Including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete th is form andlor suggestions for reducing this bu rden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO; Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group Art : 2872
Examiner : Alessandro V. Amari
Applicant : Niall R. Lynam
Serial No. : 12/851,045
Filing Date : August 5, 2010
For : EXTERIOR SIDEVIEW MIRROR SYSTEM

Mail Stop Amendment
Commissioner for Patents
Washington, D.C. 20231

DECLARATION UNDER RULE 131(a)

Niall R. Lynam, the inventor and Applicant in the above referenced patent application, declares as follows:

1. Prior to June 13, 2002, the inventor and Applicant conceived of the claimed invention of at least the independent claims as filed in the present application. For example, and with reference to claim 1 of the present application, the inventor and Applicant conceived of an exterior sideview mirror system comprising:
a. an exterior sideview mirror assembly adapted for attachment to a side of an automobile;
b. said exterior sideview mirror assembly including a reflective element having a rearward field of view when attached to the side of the automobile;
c. said reflective element attached to an electrically-operated actuator of said exterior sideview mirror assembly and movable by said actuator in order to position said rearward field of view to a driver-desired position when said exterior sideview mirror assembly is attached to the side of the automobile;
d. wherein said reflective element comprises a plano-auxiliary reflective element assembly, said plano-auxiliary reflective element assembly comprising a plano reflective element having unit magnification and a separate auxiliary reflective element having a curvature;

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	2

e. said plano reflective element and said auxiliary reflective element of said plano-auxiliary reflective element assembly mounted adjacently at said planoauxiliary reflective element assembly in a side-by-side relationship and not superimposed with one reflective element on top of the other reflective element;
f. said plano reflective element and said auxiliary reflective element supported at a backing plate element, said backing plate element mounting to said actuator such that movement of said backing plate element of said plano-auxiliary reflective element assembly by said actuator simultaneously and similarly moves said plano reflective element and said auxiliary reflective element;
g. said auxiliary reflective element having a wide-angle field of view encompassing a blind spot in the side lane adjacent the side of the automobile to which said exterior sideview mirror assembly is attached;
h. said backing plate element having a first support portion supporting said plano reflective element and a second support portion supporting said auxiliary reflective element;
i. wherein said auxiliary reflective element is positioned at an outboard portion of said plano-auxiliary reflective element assembly when said exterior sideview mirror assembly is mounted to the side of the automobile;
j. wherein said backing plate element comprises a polymeric substrate that is formed as a single element by injection molding of a polymeric resin;
k. wherein said backing plate element is capable of supporting said plano reflective element and said auxiliary reflective element;

1. wherein said first support portion of said backing plate element comprises a flat portion and wherein said plano reflective element is disposed at said flat portion;
m. wherein said second support portion of said backing plate element comprises a curved portion and wherein said auxiliary reflective element is disposed at said curved portion;
n. wherein the rearward field of view of said auxiliary reflective element is different from and angled to the rearward field of view of said plano reflective element when both are attached to said backing plate element of said planoauxiliary reflective element assembly when said plano-auxiliary reflective element assembly is included in said exterior sideview mirror assembly and when said exterior sideview mirror assembly is attached to the side of the automobile;

Applicant	$:$	Niall R. Lynam
Serial No.	$:$	$12 / 851,045$
Page	$:$	3

o. wherein angling of the rearward field of view of said auxiliary reflective element relative to the rearward field of view of said plano reflective element is achieved, at least in part, by an angling of said second support portion of said backing plate element supporting said auxiliary reflective element relative to said first support portion of said backing plate element supporting said plano reflective element;
p. wherein, when said exterior sideview mirror assembly is attached to the side of the automobile, the field of view of said plano reflective element generally views rearwardly of the equipped automobile and the field of view of said auxiliary reflective element generally views towards a blind spot in the side lane adjacent the side of the automobile to which said exterior sideview mirror assembly is attached, said blind spot being generally outside the rearward field of view of said plano reflective element when said plano reflective element is viewed by a driver of the equipped automobile when said exterior sideview mirror assembly is attached to the side of the automobile; and
q. wherein at least one of said plano reflective element and said auxiliary reflective element comprises a glass substrate having a surface coated with a metallic reflector coating.
2. The invention of at least the independent claims of the present application was reduced to practice sometime prior to June 13, 2002, as evidenced by the attached specification and drawings (Exhibit A), which were filed with the United States Patent and Trademark Office on January 6, 2000 by Niall R. Lynam, and assigned Serial No. 09/478,315, as evidenced by the attached U.S. Patent No. 6,522,451 (Exhibit B), which issued February 18, 2003 from the 09/478,315 application.
3. I am the sole named inventor of U.S. patent application Serial No. 12/851,045 (the present application) and I am the sole named inventor of U.S. patent application Serial No. 09/478,315 (Exhibit A), which issued as U.S. Patent No. 6,522,451 (Exhibit B).

I hereby declare that all activities relating to the conception and reduction to practice of the above invention occurred in the United States.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that the statements

```
Applicant : Niall R.Lynam
Serial No. : 12/851,045
Page : 4
```

are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both, as set forth under section 1001, title 18, of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Inventor:

Date:

$$
\text { January } 172011
$$

Neal R. Lynam

N THE UNUTES STATES PATENT AND TRADEMAREOEGXE

Applicant	$:$	Niall R. Lynam
For	$:$	EXTERIOR MERROR PLANO-AUXILIARY
	REFELECTYE ELEMENT ASSEMBLY	

Box Patemt Applicaion
Assistant Commissioner for Matents
Washington, D.C. 20231

Dear Sir:

CERTIEKATE OF EXPRESS MAM

I certify that the attached return postcard, Transmiftal Letter (in duphicate),
Form PTO- 1619 Recordation Fomm Cover Sheet, Assignment, a check in the amount of $\$ 40.00$ for the recordal fee, 23 pages of Specifation, 12 pages of clams (83 clams), 1 page of Abstact, 7 sheets of drawings (in duplicate), Declaration and Power of Attomey, and a check in the amonnt of $\$ 1,824,00$ for the filing fee are being deposited with the Unted States Posta Service as Express Mail in an envelope having Express Mail Labe Number EL US addressed to:

Box Patent Application
Assistant Commissioner for Patents
Washington, D.C. 20231
on \qquad .2000.

Lynette M. S. Clark
Van Dyke, Gardner, Lim \& Bamhar, TL.
P.O. Box 888695

Grand Rapids, MI 49588-8695
(616)975-5500

CSClmase
Enclosures
EXHIBIT A

Applicant : Niall R. Lynam
For : EXTERIOR MIRROR PLANO-AUXILIARY REFLECTIVE ELEMENT ASSEMBLY

BOX PATENT APPLICATION
Assistant Commissioner for Patents
Washington, D.C. 2023I
Dear Sir:
Enclosed herewith is the above identified patent application comprising the following parts:

1) Postcard
2) Assignment, Form PTO-1619 Recordation Form Cover Sheet, and Assignment Recording Fee of $\$ 40.00$
3) 23 Pages of Specification
4) 12 Pages of Claims (83 claims)
5) 1 Page of Abstract
6) 7 Sheets of Drawings (in duplicate)
7) Declaration and Power of Attorney

Filing Fee:

Basic Fee $\$ 690.00$	$\$ 690.00$
Additional Fees	
Each independent claim in excess of three, times $\$ 78.00$	$\$$
Number of claims in excess of twenty, times $\$ 18.00$	$\$ 1,134.00$

Filing multiple dependent claims per application $\$ 260.00$
\$
Total Filing Fee
$\$ 1.824 .00$

Checks in the amount of $\$ 1,824.00$ and $\$ 40.00$ are endosed to cover the fees noted above.

The Commissioner is hereby autbozzed to charge payment of the following fees associated with this communication, and daxing the pendency of thas application, or to credit any overpayment, to Deposit Accoun No. 22 -0190. A cuplicate copy of twis sheet is enclosed.

1) Any additional fing fees required under 37 CFR
1.6 for which full payment has not been tendered.
2) Any patent application processing fees under 37

CFR 1.17 for which full paymem has not been
tendered.
Respectully submited,
NAILR.EYNAM
By: Van Dyke, Gardner, Lim \& Burkhat, LLP

Catherine S. Collins
Regstration No. 37599
P.O. Box 888695

2851 Charlevoix Drive, S.E.
Grand Rapids, M1 49588-8695
(616) 975-5500

CSC.mse
U.S. Department of Commerce Patent and Trademark office

FORM PTO-1619A
Expocest-027

RECORDATION FORM COVER SHEET PATENTS ONLY
TO: The Commissioner of Patents and Trademarks: Please record the attached original document(S) or copy(ies).
Submission Type

U.S. Government
(For Use ONLY by U.S. Govemment Agencies) \square Departmental File \square Secret File

Domestic Representative Name and Address

Enter for the first Receiving Party only.
Name
Address (line 1$)$
Address (line 2)
Address (line 3)
Address (line 4)
 gathering the data needed to complete the Cover Sheet. Send comments regarding this burden ostimate to the U.S. Patert ant Trademark Office, Chief information Officer, Was hingtont O.C. 20231 and to the Offico of Information and Regulatory Affairs, Office of Martagernent and Budget, Paperwork Reduction Project (O651-a02ग, Wastington, D.C. 20503. See OMB infomation Colfection Budget Package 0651-0027, Patert and Tiademark Assignment Practicr. DO NOT SEND REQUESTS TO RECORD ASSIGNAENT AOCUMEMTS TO TH\{S ADORESS. Mail documents to be recorded with required cover sheet(s) information to: Commissioner of Patents and Trademarks, Box Assignments, Washington, D.C. 20231

ASSIGNMENT

WHEREAS, Niall R. Lynam residing at 248 Foxdown, Holland, Michigan 49424, (hereinafter referred to as Assignor), have invented certain new and useful improvements in EXTERIOR MIRROR PLANO-AUXILIARY REFLECTIVE ELEMENT ASSEMBLY for which an application for United States Letters Patent was executed on even date herewith.

WHEREAS, Donnelly Corporation, a corporation of the State of Michigan, having a place of business at 414 East Fortieth Street, Holland, Michigan 49423 (hereinafter referred to as Assignee), is desirous of acquiring the entire right, title and interest in and to said invention and in and to any Letters Patent that may be granted therefor in the United States and in any and all forciga countries.

NOW, THEREFORE, in consideration of the sum of one dollar (\$1.00), the receipt of which is hereby acknowledged, and for other good and valuable considerations, Assignor hereby sells, assigus and transfers unto said Assignee the full and exclusive right, title and interest to the said invention in the United States and in all foreign countries and the entire right, title and interest in and to any and all Letters Patent which may be granted therefor in the United States and in any and all foreign countries and in and to any and all divisions, reissues, continuations, continuation-in-part, and extensions thereof including the full right to claim for any such applications the benefits of the International Convention.

Assignor hereby authorizes and requests the Patent Office Officials in the United States and in any and all foreign countries to issue any and all of said Letters Patent, when granted, to said Assignee as the owner of the entire right, title and interest in and to the same, for the sole use and behoof of said Assignee, its successors and assigns.

FURTHER, Assignor agrees to communicate to said Assignee or its representatives any facts known to Assignor respecting said invention, and testify in any legal proceeding, sign all lawful papers, execute all divisional, continuation, continuation-in-part, substitution, renewal, and reissue applications, execute all necessary assignment papers to cause any and all of said Letters Patent to be issued to said Assignee, make all rightful oaths and generally do everything possible to aid said Assignee, its successors and assigns, to obtain and enforce proper protection for said invention in the United States and in any and all foreign countries.

IN TESTIMONY WHEREOF, I bave hereunto set my hand on the date appearing next to my signature.

Witness:
Suction vandier

Date: San 62000

EXTERIOR MIRROR PLANO-AUXILIARY REFLECTIVE ELEMENT ASSEMBLY

 TECHNICAL FIELD AND BACKGROUND OF THE INVENTIONThe present invention relates to exterior sideview mirror assemblies suitable for use on an automobile, and more specifically, to plano-auxiliary reflective element assemblies for use in automobile exterior sideview mirror assemblies.

Automobiles are typically equipped with an interior rearview mirror assembly (adapted for providing a rearward field of view immediately rearward of the vehicle, typically principally in the road lane the vehicle is traveling in) and at least one exterior sideview mirror assembly attached to the side of the vehicle (typically adjacent a front side window portion). The exterior side view mirror assembly typically comprises a reflective element adapted to provide a rearward field of view of the side lane adjacent the vehicle so as to allow the driver see whether a side approaching vehicle is present when the driver is contemplating a lane change. Conventionally, automobiles are equipped with a driver-side exterior mirror assembly and, very often, with a passenger-side exterior sideview mirror assembly mounted to the side of the automobile body opposite to that of the driver-side assembly. While the combination of an interior rearview mirror with a driver-side exterior mirror (and especially in a three-mirror system comprising an interior rearview mirror with a driver-side exterior mirror and a passenger-side exterior mirror) works well in many driving situations, rear vision blind spots present a potential safety hazard while driving. A rear vision blind spot is an area adjacent the side of an automobile where a view of another vehicle (overtaking on that side) is not captured in the rearward field of view of the exterior mirror reflector on that side. This presents a potential safety hazard as the driver, upon checking the view in the exterior sideview mirror and seeing no overtaking vehicle therein, may deem it safe to initiate a lane change, unaware that there is a vehicle immediately adjacent in a blind-spot of the exterior mirror reflector.

Various attempts have been made conventionally to minimize and/or eliminate exterior mirror blind-spots on vehicles. One approach is to make the exterior mirror reflector larger, and particularly wider with respect to the vehicle body. By increasing the width of the exterior mirror reflector, it has a wider field of view rearwards, and hence the reflector blind-
spot is reduced. While use of a wide exterior mirror reflector is an option for trucks, buses and commercial vehicles, increasing the width of the reflector used in an exterior sideview mirror assembly mounted on automobiles (such as sedans, station wagons, sports cars, convertibles, minivans, sports utility vehicles, pick-up trucks and similar passenger carrying automobiles) is often not an option. In such domestic automobiles, increasing the width of the exterior mirror reflector increases the size of the exterior sideview mirror assembly with a concomitant increase in aerodynamic drag, increase in fuel consumption, increased difficulty in parking in tight parking spaces, and increased reflector vibration. Use of a non-flat, curved exterior mirror reflector is commonly used to increase rearward field of view without increasing reflector size.

While working well to increase field of view, use of a curved reflector (such as a convex, spherically-curved reflector) has disadvantages. The field of view rearward increases as the degree of curvature of the bent substrate increases (i.e., the field of view rearward increases as the radius of curvature of the bent substrate decreases). However, such wide-angle mirrors have non-unit magnification and distance perception rearward is distorted. For this reason, convex (spherically-bent) exterior mirror reflectors are required in some countries (such as the United States) to carry a safety warning "OBJECTS IN MIRROR ARE CLOSER THAN THEY APPEAR". Distance perception is particularly important for a driver-side exterior mirror. Indeed, Federal Vehicle Safety Standard No: 111 in the United States (the entire disclosure of which is hereby incorporated by reference herein) requires that the driver-side exterior mirror reflector exhibit unit magnification, and places restrictions on the radius of curvature allowed for any bent passenger-side mirror as well as requiring a safety warning be placed thereon. As an improvement over spherically bent/convex mirror reflectors, aspherical or multiradius mirror reflectors (such as are disclosed in U.S. Patents $4,449,786$ and $5,724,187$, the entire disclosures of which are hereby incorporated by reference herein) have been developed. Such mirrors are widely used in Europe and Asia for both driver-side exterior mirror reflectors and for passenger-side exterior mirror reflectors. The aspherical or multiradius mirror reflectors typically have a less curved (larger radius of curvature) reflective region that is inboard or closest to the driver when mounted on a vehicle and, usually separated by a demarcation line or the like, have a more curved (smaller radius of curvature) region that is outboard or farthest from the driver when mounted on a vehicle. However, such aspherical or multiradius reflectors do not have unit
magnification and so cannot be used when unit magnification is mandated (such as by FMVSS 111, referenced above).

To supplement a flat driver-side exterior mirror reflector, an auxiliary and separate bent reflector is sometimes incorporated into the driver-side exterior sideview mirror assembly. However, this is often not suitable for passenger automobiles because of the extra space required in the sideview mirror assembly to accommodate an auxiliary reflector element. Also, in most passenger automobiles, the position of the side view mirror reflector is adjustable by the driver (such as by a hand-adjust, or by a manually adjustable cable such as a Bowden cable or by an electrically operable actuator, as known in the art) in order to provide to that driver his or her desired rearward field of view, which ill-suits use of a separate, auxiliary reflector. Likewise, addition of stick-on blind-spot mirror reflectors (such as are commonly sold in automotive parts stores and the like) onto an automobile exterior sideview mirror reflector has disadvantages, including obscuring field of view of the automobile mirror reflector and adding to mirror element vibration.

There is thus a need to provide an automobile exterior sideview reflective element, and particularly a driver-side automobile exterior sideview reflective element, that overcomes the disadvantages above and that provides the driver of the automobile with a distortion-free field of view with unit magnification that is supplemented with a wide-angle view of a side lane blind spot, and there is a need that this be provided in a unitary reflective element assembly module suitable to mount onto, and be adjusted by, the mirror reflector adjustment mechanism (such as an electrically operated, motorized actuator) provided in the exterior sideview mirror assembly.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a perspective view of an automobile equipped with exterior sideview mirror assemblies according to this present invention;

Fig. 2 is a top plan partial fragmentary view of the driver's side exterior rearview mirror assembly of Fig. 1;

Fig. 3 is an enlarged sectional view of a plano-multiradius reflective element assembly of the mirror assembly in Fig. 2;

Fig. 4 is an enlarged sectional view of a demarcation element of the planomultiradius reflective element assembly of Fig. 3;

Fig. 5A-5H illustrate views of various locations for a plano reflective element and an auxiliary reflective element according to this present invention;

Fig. 6 is a sectional view of a second embodiment of a plano reflective element assembly according to the present invention including a demarcation element formed as a dividing wall in a backing plate element;

Fig. 6A is a cross-section taken along line XX of Fig.6;
Fig. 6B is a cross-sectional view taken along line YY of Fig.6; and
Fig. 7 is a schematic of a third embodiment of a plano-auxiliary reflective element assembly according to this present invention.

SUMMARY OF THE INVENTION

This invention provides a plano reflective element with unit magnification and an auxiliary reflector element for use in an exterior sideview mirror assembly on an automobile. More specifically, this invention provides a plano-multiradius reflective element assembly suitable for use in an exterior sideview mirror assembly mounted to the side body of an automobile. The plano-multiradius reflective element assembly of this invention is especially suitable for mounting in a driver-side exterior sideview mirror assembly that is mounted to the side of the automobile body adjacent to the seating position of the driver in the front of the interior vehicular cabin. The plano-multiradius reflective element assembly of this invention comprises a plano portion which has a rearward field of view, when mounted in an exterior sideview mirror assembly mounted to the side body of an automobile, with unit magnification. This plano portion comprises a flat substrate, typically a flat glass substrate, provided with a reflective surface. The plano-multiradius reflective element assembly of this invention also includes a multiradius portion with a rearward field of view, when mounted in an exterior sideview mirror assembly mounted to the side body of an automobile, that has non-unit magnification. The plano portion provides a distortion-free rearward field of view and serves as the principal rearward-viewing portion of the planomultiradius reflective element. The multiradius portion provides a wide angle rearward field of view, and typically supplements the rearward field of view of the plano portion. This multiradius portion comprises a curved substrate, typically a bent glass substrate, provided with a reflective surface. The plano portion and the multiradius portion are demarcated apart by a demarcation element. The demarcation element enables the driver of a vehicle equipped with the plano-multiradius reflective element of this invention to readily delineate a rearward
view in the plano portion from a rearward view in the multiradius portion. The plano portion comprises a flat reflective element and the multiradius portion comprises a bent reflective element. The flat, plano reflective element and the curved, multiradius reflective element are individually and separately manufactured, and are adjacently attached to a single backing plate (which typically comprises a polymeric substrate, most typically a molded polymeric substrate), and with the demarcation element disposed at the joint of the plano, flat reflective element and the multiradius, bent reflective element. The backing plate is fabricated (typically by polymeric molding) to have a flat portion that corresponds to the plano, flat reflective element, and a curved surface that corresponds to the multiradius, curved reflective element. The attachment of the plano reflective element and an auxiliary reflective element to a single backing plate produces a unitary plano-auxiliary reflective element assembly module suitable for mounting in an exterior sideview mirror assembly. By adjusting the position of the backing plate within the exterior sideview mirror assembly, the rearward fields of view of both the plano reflective element and the auxiliary reflective element are simultaneously and similarly aligned.

One embodiment of the invention includes an exterior sideview mirror system suitable for use in an automobile comprising an exterior sideview mirror assembly adapted for attachment to a side of the automobile. The exterior sideview mirror assembly includes a reflective element having a rearward field of view when attached to said side of the automobile. The reflective element is attached to an actuator and is movable by the actuator in order to position the reflective element's rearward field of view in response to a control. The reflective element comprises a plano-multiradius reflective element assembly which comprises a plano reflective element having unit magnification and a separate multiradius reflective element having a multiradius curvature. The plano element and the separate multiradius element of the plano-multiradius reflective element assembly are attached to a backing plate element. The backing plate element is mounted to the actuator such that movement of the backing plate element (and hence the plano-multiradius reflective element assembly) by the actuator simultaneously and similarly moves the plano element and the multiradius element. The plano element and the multiradius element are separately and, preferably, adjacently attached to the backing plate element at a joint.

In a further embodiment, a demarcation element is disposed at this joint to form a demarcation between the plano element and the multiradius element; this demarcation
element having a portion visible to a driver of the automobile. Preferably, the demarcation element is dark colored, such as with a color selected from the group consisting of black, grey, blue and brown. Optionally, there is a space at the joint of the plano element and the multiradius element and the demarcation element is at least partially disposed in said space between said plano element and said multiradius element. The demarcation element can comprise at least one of a polymer material, a tape, a plastic film, a paint, a lacquer and a caulk.

In a further embodiment, the demarcation element comprises a wall on the backing plate element; this wall being located on the backing plate element at the joint of the plano element and the multiradius element, this wall separating the respective elements apart.

In preferred embodiments, the portion of the demarcation element visible to a driver of an automobile equipped with the plano-multiradius reflective element assembly of this invention has a width from about 0.5 mm to about 4 mm .

In preferred embodiments, the plano element is attached to the backing plate element by at least one of an adhesive attachment and a mechanical attachment.

In preferred embodiments, the multiradius element is attached to the backing plate element at a location such that, when the exterior mirror assembly is attached to a side of an automobile, at least portion, and preferably at least a substantial portion, of the plano element is disposed closer to the side of the vehicle than any portion of the multiradius element element.

In preferred embodiments, the multiradius element comprises a bent glass substrate with radii of curvature in the range of from about 4000 mm to about 50 mm , and the ratio of the width of the plano element to the width of the multiradius element is greater than 1.

In preferred embodiments, the principal axis of the rearward field of view of the auxiliary, multiradius element is different from and angled to the principal axis of the rearward field of view of the plano element when both are attached to the backing plate element of the plano-multiradius reflective element assembly and when the planomultiradius reflective element assembly is mounted in an exterior sideview mirror assembly on an automobile. The principal axis of the rearward field of view of the plano element is directed generally parallel to the longitudinal axis of an automobile equipped with the planomultiradius reflective element assembly and the principal axis of the rearward field of view
of the multiradius element is directed generally at an angle downwards to the longitudinal axis of the vehicle.

In a preferred embodiment, the exterior sideview mirror assembly equipped with the plano-multiradius reflective element assembly comprises a fixedly attached exterior sideview mirror assembly. In another preferred embodiment, the exterior sideview mirror assembly equipped with the plano-multiradius reflective element assembly comprises a break-away exterior sideview mirror assembly. In another preferred embodiment, the exterior sideview mirror assembly equipped with the plano-multiradius reflective element assembly comprises a powerfold exterior sideview mirror assembly. In another preferred embodiment, the actuator of the exterior sideview mirror assembly to which the planomultiradius reflective element assembly is mounted comprises an electrically operable actuator. In another preferred embodiment, the actuator of the exterior sideview mirror assembly to which the plano-multiradius reflective element assembly is mounted is controlled by a switch or by a memory controller. In another preferred embodiment, the plano element and/or the multiradius element of the plano-multiradius reflective element assembly comprises an electro-optic reflective element, preferably an electrochromic reflective element. In another preferred embodiment, the plano element of the plano-multiradius reflective element assembly comprises an electro-optic reflective element, preferably an electrochromic reflective element, and the multiradius element comprises a fixed reflectance mirror reflector, such as a fixed reflectance mirror reflector comprises a bent glass substrate coated with a metallic reflector coating.

In a preferred embodiment, the plano-auxiliary reflective element assembly is assembly is formed in an integral molding operation.

These and other advantages, features, and modifications will become more apparent when reviewed in conjunction with the drawings and the detailed description which follows.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As illustrated in Fig. 1, passenger automobile 10 (which may be a sedan, a station-wagon, a sports car, a convertible, a minivan, a sports utility vehicle, a pick-up truck or a similar passenger carrying non-commercial, personal transportation automobile) includes an interior rearview mirror assembly 18 positioned within interior vehicle cabin 25. Interior vehicle cabin 25 further includes a steering wheel 16 , a driver seat 20 positioned at
steering wheel 16, a front passenger seat 21 adjacent to driver seat 20 in the front portion of cabin 25 , and a rear passenger seat 23 in the rear portion of cabin 25 . Automobile 10 further includes a driver-side exterior sideview mirror assembly 12 and a passenger-side exterior sideview mirror assembly 14 , each adapted for attachment to opposing sides of automobile body 11 , most preferably adjacent to the seating position of the driver seated in driver seat 20 for driver-side assembly 12 and adjacent to the front passenger seat 21 for passenger-side assembly 14. Exterior sideview mirrors, mounted as shown in Fig. 1 close to the driver seating location, are commonly referred to as door-mounted exterior sideview mirror assemblies. Driver-side exterior sideview mirror assembly 12 includes, as illustrated in Fig. 2, a plano-multiradius exterior sideview reflective element assembly 30 . Plano-multiradius reflective element assembly 30 is mounted to a reflective element positioning actuator 36 . The orientation of plano-multiradius reflective element assembly 30 , and hence its rearward field of view, is adjustable by actuator 36 in response to control 37 . Control 37 can comprise a handset control that allows the driver manually move the orientation of plano-multiradius reflective element assembly 30 within exterior mirror housing 40 (such as by a lever control or by a cable control) and hence reposition the rearward field of view of plano-multiradius reflective element assembly 30. Alternately, when actuator 36 comprises an electrically actuated actuator that is electrically operable incorporating at least one motor, control 37 can comprise a switch (which, preferably, is operable under control of the driver seated in cabin 25) or control 37 can comprise a memory controller, as known in the automotive mirror art, that controls actuator 36 to move the position of plano-multiradius reflective element assembly 30 to a pre-set orientation that suits the rearward field of view preference of an individual driver. Actuator 36 is mounted to bracket 38 which attaches to vehicle body side 11. Plano-multiradius reflective element assembly 30 is positionable by actuator 36 within exterior mirror housing 40 .

Plano-multiradius reflective element assembly 30, as shown in Fig. 3, comprises a plano element 50 and a separate multiradius element 55. Preferably, plano element 50 is adjacent to multiradius element at a joint. At their joint, plano element 50 and separate multiradius element 55 can touch leaving substantially no gap or space therebetween, or plano element 50 and separate multiradius element 55 can be spaced apart at their joint by a space or gap, as in Fig. 3. Plano element 50 and multiradius element 55 are both mounted to surface 59 of, and are both supported by, a single backing plate element 60 .

Plano element 50 and multiradius element 55 are demarcated apart by demarcation element 65. Surface 61 of backing plate element 60 is preferably adapted to attach, such as by attachment member 64, to actuator 36 when plano-multiradius reflective element assembly 30 is mounted in driver-side exterior sideview mirror assembly 12 (and/or in passenger-side exterior side view mirror assembly 14) such that plano element 50 and multiradius element 55 are adjusted and positioned in tandem and simultaneously when the driver (or alternatively, when a mirror memory system, as is conventional in the rearview mirror arts) activates actuator 36 to reposition the rearward field of view of plano-multiradius reflective element assembly 30 . Thus, since elements 50,55 are part of plano-multiradius reflective element assembly 30 , movement of plano-multiradius reflective element assembly 30 by actuator 36 simultaneously and similarly moves plano element 50 and multiradius element 55.

Plano element 50 preferably comprises a flat reflector-coated glass substrate having unit magnification, and comprises a reflective surface through which the angular height and width of the image of an object is equal to the angular height and width of the object when viewed at the same distance (except for flaws that do not exceed normal manufacturing tolerances). Plano element 50 may comprise a conventional fixed reflectance mirror reflector or it may comprise a variable reflectance mirror reflector whose reflectivity is electrically adjustable. For example, plano element 50 may comprise a flat glass substrate coated with a metallic reflector coating such as a chromium coating, a titanium coating, a rhodium coating, a metal alloy coating, a nickel-alloy coating, a silver coating, an aluminum coating (or any alloy or combination of these metal reflectors). The metal reflector coating of plano element 50 may be a first surface coating (such as on surface 66) or a second surface coating (such as on surface 67), as such terms are known in the mirror art. The reflector coating on plano element 50 may also comprise a dielectric coating, or a multilayer of dielectric coatings, or a combination of a metal layer and a dielectric layer to form automotive mirror reflectors as known in the automotive mirror art. If a variable reflectance reflector element, plano element 50 preferably comprises an electro-optic reflector element and, most preferably, an electrochromic reflector element.

When mounted into exterior side view mirror assembly 12 and/or 14, planomultiradius reflective element assembly 30 is preferably orientated so that at least a portion of (more preferably a substantial portion of) the reflector surface of plano element 50 is
positioned closer to the vehicle body (and hence to the driver) than any portion of the reflector surface of multiradius element 55 . Thus, and referring to Figure 3, side A of plano element 50 of plano-multiradius reflective element assembly 30 is positioned closer to the driver than side D of multiradius element 55 when plano-multiradius reflective element assembly 30 is mounted on an automobile. Also, when mounted into exterior side view mirror assembly 12 and/or 14, surfaces 66,68 of plano-multiradius reflective element assembly 30 face rearwardly in terms of the direction of vehicle travel.

Multiradius element 55 of plano-multiradius reflective element assembly 30 preferably comprises a curved/bent mirrored glass substrate. The degree of curvature preferably increases (and hence the local radius of curvature decreases) across the surface of multiradius element 55 with the least curvature (largest radius of curvature) occurring at the side of multiradius element 55 (side C in Fig. 3) positioned adjacent its joint to plano element 50 when both are mounted on backing plate element 60 . Thus, and referring to Figure 3, the local radius of curvature at side C of multiradius element 55 , when mounted on backing plate element 60 , is larger than at side D . Also, the local radius of curvature preferably progressively decreases across multiradius element 55 from side C to side D. Preferably, the local radius of curvature at side C of multiradius element 55 is at least about 1000 mm ; more preferably is at least about 2000 mm and most preferably is at least about 3000 mm whereas the local radius of curvature at side D of multiradius element 55 is, preferably, less than about 750 mm , more preferably less than about 350 mm ; most preferably less than about 150 mm . Preferably, multiradius element 55 comprises a bent glass substrate with radii of curvature in the range of from about 4000 mm to about 50 mm . The multiradius prescription for the multiradius element to be used in a particular exterior mirror assembly can vary according to the specific field of view needs on a specific automobile model.

The total field of view rearwardly of the automobile of the plano-auxiliary reflective element assembly (which is a combination of the field of view of the plano reflective element and of the auxiliary reflective element) preferably generally subtends an angle of at least about 20 degrees (and more preferably, generally subtends an angle of at least about 25 degrees and most preferably, generally subtends an angle of at least about 30 degrees) with respect to the side of an automobile to which is attached an exterior sideview mirror assembly equipped with the plano-auxiliary reflective element assembly.

Multiradius element 55 may comprise a conventional fixed reflectance mirror reflector or it may comprise a variable reflectance mirror reflector whose reflectivity is electrically adjustable. For example, multiradius element 55 may comprise a flat glass substrate coated with a metallic reflector coating such as a chromium coating, a titanium coating, a rhodium coating, a metal alloy coating, a nickel-alloy coating, a silver coating, an aluminum coating (or any alloy or combination of these metal reflectors). The metal reflector coating of multiradius element 55 may be a first surface coating (such as on surface 68) or a second surface coating (such as on surface 69), as such terms are known in the mirror art. The reflector coating on multiradius element 55 may also comprise a dielectric coating, or a multilayer of dielectric coatings, or a combination of a metal layer and a dielectric layer to form automotive mirror reflectors as known in the automotive mirror art. If a variable reflectance reflector element, multiradius element 55 preferably comprises an electro-optic reflector element and, most preferably, an electrochromic reflector element.

Also, it is preferable that the thickness of plano element 50 and multiradius element 55 be substantially the same in dimension so that their respective outer surfaces, 66 and 68 , are substantially coplanar so that a driver can readily view images in either or both elements. The thickness dimension of elements 50,55 is determined by the thickness of the substrate (or in the case of laminate-type electrochromic reflective elements, the thickness of the two substrates between which the electrochromic medium is disposed). For example, plano element 50 and/or multiradius element 55 can comprise a reflector coated glass substrate or panel of thickness preferably equal to or less than about 2.3 mm , more preferably equal to or less than about 1.6 mm , most preferably equal to or less than about 1.1 mm . Use of a thinner substrate is beneficial in terms of improving the overall stability/vibration performance of the image seen in plano-multiradius reflective element assembly 30 when mounted to an automobile.

The reflector area of plano element 50 is preferably larger than that of multiradius element 55. Preferably, the width dimension of plano element 50 is larger than the width dimension of multiradius element 55 (both width dimensions measured at their respective widest dimension and with the width of the respective element being gauged with the respective element oriented as it would be orientated when mounted on the automobile). Thus, and referring to Figure 3 , the distance from side A to side B of plano element 50 is larger than the distance from side C to side D of multiradius element 55 . Thus, the ratio of
the width of plano element 50 to the width of multiradius element 55 is preferably greater than 1 ; more preferably greater than 1.5; most preferably greater than 2.5 in order to provide a large, unit magnification plano element 50 as the principal rear viewing portion of planomultiradius reflective element assembly 30 and providing multiradius element 55 as a smaller, auxiliary, separate, wide-angle viewing portion of plano-multiradius reflective element assembly 30. For plano-multiradius reflective element assemblies to be mounted to the exterior sideview assemblies of passenger automobiles used non-commercially and for non-towing purpose, the width of plano element 50 (at its widest dimension) is preferably in the range of from about 50 mm to about 225 mm ; more preferably in the range of from about 75 mm to about 175 mm ; most preferably in the range of from about 100 mm to about 150 mm.

Backing plate element 60 is preferably a rigid polymeric substrate capable of supporting plano element 50 and multiradius element 55. Backing plate element 60 comprises a flat portion (generally between E and F as shown in Fig. 3) that corresponds to and is aligned with plano element 50 . Backing plate element 60 also comprises a curved portion (generally between G and H as shown in Fig. 3) that corresponds to and is aligned with multiradius element 55. Preferably, curved portion G-H of multiradius element 55 is fabricated with a multiradius prescription that is substantially the same as the multiradius prescription of multiradius element 55 . Backing plate element 60 is formed as a single element to which elements 50 and 55 are separately attached. Preferably, backing plate element 60 is formed by injection molding of a thermoplastic or a thermosetting polymer resin. Materials suitable to use for backing plate element 60 include unfilled or filled polymeric materials such as glass and/or mineral filled nylon or glass and/or mineral filled polypropylene, $A B S$, polyurethane and similar polymeric materials. For example, backing plate element 60 can be formed of ABS in an injection molding operation. Plano element 50 can be cut from a stock lite of flat chromium mirror-coated 1.6 mm thick glass. Multiradius element 55 can be cut from a stock lite of multiradiusly-bent chromium mirror-coated 1.6 mm thick glass. Plano element 50 and multiradius element 55 can then be attached (such as by an adhesive attachment such as an adhesive pad or by mechanical attachment such by clips, fasteners or the like) to the already molded backing plate element 60. Alternatively, plano element 50 and multiradius element 55 can each by individually loaded into an injection molding tool. Once loaded, a polymeric resin (or the monomers to form a
polymeric resin) can be injected into the mold in order to integrally form backing plate element 60 with elements 50 , 55 integrally molded thereto. Integral molding of the backing plate element to plano element 50 and multiradius element 55 (along with any other elements such as the demarcation element 65) in a single integral molding operation, is a preferred fabrication process for plano-multiradius reflective element assembly 30 .

Plano-multiradius reflective element assembly 30 further preferably includes demarcation element 65 that functions to delineate and demarcate the plano region of the assembly from the wide-angle, multiradius region and also preferably functions to prevent ingress of debris, dirt, water and similar contaminants (such as road splash, car wash spray, rain, snow, ice, leaves, bugs and similar items that plano-multiradius reflective element assembly 30 would be subject to when mounted and used on an automobile) into any gap between plano element 50 and multiradius element 55 when both are attached to backing plate element 60 . Optionally, at least a portion of demarcation element 65 can be disposed in any gap between plano element 50 and multiradius element 55 at their joint on backing plate element 60. Preferably, demarcation element 65 is formed of a polymeric material that is dark colored (such as black or dark blue or dark brown or dark grey or a similar dark color) such as a dark colored polypropylene resin or a dark colored nylon resin or a dark colored polyurethane resin or a dark colored polyvinyl chloride resin or a dark colored silicone material. Most preferably demarcation element 65 is formed of an at least partially elastomeric material (such as silicone, or EPDM, or plasticized PVC or the like) in order to provide a degree of vibration dampening for elements 50, 55. As shown in Fig. 4, demarcation element 65 optionally includes a crown portion 70 that includes wing portions $73,73^{\prime}$ and a stem portion 71 . Stem portion 71 preferably has a cross-sectional width CCC of less than about 4 mm , more preferably less than about 3 mm and, most preferably less than about 2 mm . Crown portion 70 preferably is dimensioned to not protrude substantially beyond surfaces 66,68 of elements 50,55 when demarcation element 65 is installed between elements 50 and 55. Also, wings 73,73 ' are preferably dimensioned to protrude (most preferably slightly) onto surfaces 66,68 of elements 50,55 when demarcation element 65 is installed between elements 50 and 55 in order to provide a weather barrier seal and/or to at least partially accommodate any dimensional tolerances of elements 50,55 that could lead to variation in the inter-element gap between sides C and B . While the demarcation element shown in Fig. 4 is one embodiment, other constructions are possible including a demarcation
element that has minimal or no crown portion. Likewise, a demarcation element can have little or no stem portion, especially when the joint between plano element 50 and multiradius element 55 includes no gap to receive a stem. Also, where a gap at the plano to multiradius joint exists, any stem of the demarcation element can at least partially be disposed in such gap so as to at least partially fill the gap (or it can optionally substantially fill the gap). Optionally, demarcation element 65 is fabricated by injection molding of a polymeric resin. After plano element 50 and multiradius element 55 have been attached to backing plate element 60 , a separately formed demarcation element 65 can then be inserted (and secured such as by an adhesive or by a mechanical attachment such as by a fastener) into a space between elements 50 and 55 . Note that, optionally, side B of plano element 50 and side C of multiradius element 55 can touch (leaving substantially no gap or space therebetween). In such a situation, demarcation element 65 can comprise a dark colored strip such as of a tape or of a plastic film that covers the joint between elements 50 and 55. Alternatively, demarcation element 65 can comprise a preferably dark-colored paint, lacquer, caulk or similar material that can be applied to, and that can preferably fill into, the joint between elements 50 and 55 . The width of the portion of demarcation element 65 that is visible to the driver is preferably less than about 4 mm , more preferably less than about 3 mm and most preferably less than about 2 mm , but is equal to or greater than about 0.5 mm , more preferably is equal to or greater than about 0.75 mm , most preferably is equal to or greater than about 1 mm in order to provide adequate demarcation of the plano region from the multiradius radius region without unduly obscuring the rearward field of view of the respective elements. Optionally, demarcation element 65 can be formed as part of backing plate element 60 such as by forming demarcation element 65 as a wall structure of the backing plate element that partitions backing plate element 60 into two regions: A first region adapted to receive plano reflective element 50 and a separate and adjacent second region adapted to receive multiradius reflective element 55 .

Thus, and referring to Fig. 6, a second embodiment of plano-multiradius reflective element assembly 130 may include a backing plate element 160 which comprises a plate molded from a polymer resin (such as a polyolefin such as polypropylene or such as ABS or nylon) with a demarcation element 165 that is molded as a wall structure that partitions backing plate element 165 into a first region (from CC to BB) adapted to receive and accommodate plano reflective element 150 and into a second region (from BB to AA)
adapted to receive and accommodate wide-angle optic multiradius reflective element 155 . Note that section AA to BB of backing plate element 160 is angled to section BB to CC . Such angling of the auxiliary reflective element relative to the plano element can be advantageous in allowing the auxiliary reflective element view a portion of the road adjacent the automobile that is in a blind spot of the plano reflective element. In this regard, it is preferable that the multiradius element be angled away from the plane of the plano element, as shown in Fig. 6 by the angling of section AA to BB to section BB to CC .

Preferably, demarcation element 65 is formed in an integral molding operation, along with formation of backing plate element 60 , and attachment of elements 50 , 55 thereto. For example, plano element 50 and multiradius element 55 can each by individually loaded into an injection molding tool. Once loaded, a polymeric resin (or the monomers to form a polymeric resin) can be injected into the mold in order to integrally form backing plate element 60 with elements 50,55 integrally molded thereto and, in the same molding operation and in the same tool, also form by molding the demarcation element. Integral molding of the backing plate element to plano element 50 and multiradius element 55 along with creation in the single molding operation of demarcation element 65 (along with any other elements such as attachment member 64) in a single integral molding operation, is a preferred fabrication process for plano-multiradius reflective element assembly 30 . By loading all the sub components of plano-multiradius reflective element assembly 30 into a molding tool, and then injecting polymeric resin to form the backing plate, demarcation member and any attachment member, a substantially complete or fully complete planomultiradius reflective element assembly can be unloaded from the tool at the completion of the integral molding operation (as known in the molding art), thus enabling economy in manufacturing and accommodation of any dimensional tolerances in the sub components. Where integral molding is so used, it is preferable to use a reactive molding operation such as reactive injection molding of a urethane as such reactive injection molding operations occur at relatively modest temperatures.

Plano element 50 and/or multiradius element 55 can comprise a heater element, as known in the automotive mirror art, that is operable to deice/demist surfaces 66 , 68. Such heater elements are conventional and can comprise a positive temperature coefficient heater pad, a resistive heater element and/or a conductive coating. Plano element 50 and/or multiradius element 55 can also optionally comprise a scatterproofing member, as
known in the automotive mirror art, such as an adhesive tape, to enhance safety in an accident.

Also, plano element 50 and/or multiradius element 55 can comprise a variable reflectance electro-optic element such as an electrochromic mirror reflector. Thus, both element 50 and element 55 can comprise an electrochromic mirror element or either of element 50 and element 55 can comprise an electrochromic mirror element and the other can comprise a fixed reflectance non-variable reflectance mirror element such as a metal reflector coated glass panel such as a chromium coated glass substrate. Also, if both plano element 50 and multiradius element 55 comprise an electro-optic element such as an electrochromic mirror element capable of electrically dimmable reflectivity, both elements 50,55 can dim together and in tandem under control of a common dimming control signal (typically provided by an electro-optic automatic dimming interior mirror assembly mounted in the cabin of the automobile and equipped with photosensors to detect incident glare and ambient light). Alternately, if both plano element 50 and multiradius element 55 comprise an electrooptic element such as an electrochromic mirror element capable of electrically dimmable reflectivity, element 50 can dim independently of element 55 (such as is disclosed in U.S. Patent No. 5,550,677, the entire disclosure of which is hereby incorporated by reference herein). If either or both of elements 50,55 comprise an electrochromic element, preferably, the electrochromic reflective element comprises a front substrate and a rear substrate with an electrochromic medium disposed between, such as a solid polymer matrix electrochromic medium such as is disclosed in U.S. patent application Serial No. 09/350,930, filed July 12, 1999, en titled "ELECTROCHROMIC POLYMERIC SOLID FILMS, MANUFACTURING ELECTROCHROMIC DEVICES USING SUCH FILMS, AND PROCESSES FOR MAKING SUCH SOLID FILMS AND DEVICES" to Desaraju V. Varaprasad et al., or such as is disclosed in U.S. Patent Nos. 5,668,663; 5,724,187; 5,910,854; and 5,239,405, the entire disclosures of which are hereby incorporated by reference herein. Most preferably, in such laminate-type electrochromic mirror reflective elements, the front substrate comprises a glass plate of thickness less than about 1.6 mm , most preferably about 1.1 mm thickness or lower, and the rear substrate comprises a glass plate of thickness equal to or greater than about 1.6 mm , more preferably greater than about 1.8 mm thickness, most preferably equal to or greater than about 2.0 mm thickness. The rearmost surface of the rear substrate (the fourth surface as known in the mirror art) is reflector coated with a high reflecting metal film such
as of aluminum or silver, or an alloy of aluminum or silver. Most preferably, the front-most surface of the rear substrate (the third surface as known in the mirror art) is reflector coated with a high reflecting metal film such as of aluminum or silver, or an alloy of aluminum or silver.

Backing plate element 65 of plano-multiradius reflective element assembly 30 is optionally equipped on its rearmost surface with attachment member 64 to facilitate attachment to the reflector-positioning actuator of the exterior sideview mirror assembly that plano-multiradius reflective element assembly 30 is mounted to. Attachment of planomultiradius reflective element assembly 30 to the actuator can be by mechanical attachment such as by a tab, clip or fastener, or may be by adhesive attachment such as by a silicone adhesive, a urethane adhesive or a similar adhesive material such as a tape coated on both surfaces with a pressure sensitive adhesive to form a "double-sticky" tape. The exterior sideview mirror assembly, on whose mirror reflector-positioning actuator the planomultiradius reflective element assembly is mounted, can be a fixedly attached exterior sideview mirror assembly, a break-away exterior sideview mirror assembly and a powerfold exterior sideview mirror assembly, as known in the automotive mirror art.

Figs. 5A-5H shows various arrangements of multiradius reflective element 55 relative to its adjacent plano reflective element 50 (with demarcation element 65 disposed at their joint). In Figs. 5A, 5B, 5C, 5E and 5F, plano element 50 is mounted wholly inboard of multiradius element 55. Thus, in Figs. 5A, 5B, 5C, 5E and 5F, plano element 50 would be disposed closer to the vehicle body (and hence to the driver) than multiradius element 55 when plano-multiradius reflective element assembly 30 was mounted in an exterior sideview mirror attached to a side of an automobile. Therefore, in Figs. 5A, 5B, 5C, 5E and 5F, plano element 50 would be mounted inboard relative to the side of the automobile and multiradius element 55 would be mounted outboard relative to the side of the automobile. In general, the location of the multiradius reflective element in the outboard, upper portion of the planomultiradius reflective element assembly, as in Figs. 5B and 5E, is preferred as this allows the plano portion provide a desired rearward field of view along the side of the vehicle. The configuration as shown in Fig. 5G (where the multiradius reflective element is along the inboard side of the assembly) is also desirable as this allows the driver view the side of the vehicle (something many drivers desire in order to have a frame of reference for their rearward field of view) while facilitating having a wide field of view for the plano portion.

Unlike trucks, busses and commercial vehicles the size of an exterior sideview mirror assembly suitable for use on an automobile (and especially when the automobile is not towing a trailer or the like) is restricted. Automobiles generally are non-commercial vehicles intended for personal transportation. Automobiles typically carry 5 passengers or less, although minivans and large sports utility vehicles (which are classified herein as automobiles) can have seat accommodation for up to 10 passengers (although accommodation for 7 passengers or less is more common). The tandem mounting of a plano element of unit magnification and a separate auxiliary element onto a common, single backing plate element, and the mounting of this backing plate element onto an actuator of an exterior sideview mirror assembly so that a driver can simultaneously and similarly move the auxiliary element and the plano element so as to position their respective rearward fields of view, and to achieve this within the relatively restricted space available in a standard automobile-sized exterior sideview mirror assembly is an important element of this present invention. By utilizing a plano element of unit magnification in the plano-multiradius reflective element assembly, and by sizing the reflector area of the plano element larger than the reflector area of the multiradius element and, preferably, by sizing the reflector area of the plano element at a sufficiently large size that the rearward field of view provided by the plano element alone meets and satisfies the minimum field of view requirement mandated by an automaker specification and/or a government regulation, the need to provide a safety warning indicia such as "OBJECTS IN MIRROR ARE CLOSER THAN THEY APPEAR" in the plano element and/or in the multiradius element can be obviated. Preferably, the plano element comprises a reflector surface area of a size sufficient, when mounted as part of a plano-multiradius reflective element assembly in a driver-side exterior sideview mirror assembly on an automobile, to provide the driver of the automobile a view of a level road surface extending to the horizon from a line, perpendicular to a longitudinal plane tangent to the driver's side of the automobile at the widest point, extending 8 feet out from the tangent plane 35 feet behind the driver's eyes (at a nominal location appropriate for any 95th percentile male driver or at the driver's eye reference points established in Federal Motor Vehicle Standard No. 104), with the driver seated in the driver's seat and with the driver's seat in the rearmost position. Also, preferably, the aspect ratio of the plano-multiradius reflective element assembly (defined as the ratio of its largest vertical dimension to its largest horizontal dimension, measured with the plano-multiradius reflective element assembly
oriented as it would be oriented when mounted in an exterior sideview mirror assembly on an automobile, and with "horizontal" being generally parallel with the road surface the automobile travels on and "vertical" being generally perpendicular to the road surface the automobile travels on) is preferably less than 1 , more preferably less than 0.8 , most preferably less than 0.6 . Further, it is preferable that the multiradius element be disposed outboard (relative to the side of the vehicle and with the plano-multiradius reflective element assembly oriented as it would be when mounted in an exterior sideview mirror assembly on an automobile) on the plano-multiradius reflective element assembly so that the multiradius element is positioned to provide an auxiliary, wide-angle view of a "blind-spot" region in an adjacent sidelane while the more inboard-disposed plano element with unit magnification provides the principal sideview image to the driver.

Also, it is preferable that the principal axis of the rearward field of view of the multiradius element be different from and angled to the principal axis of the rearward field of view of the plano element when both are attached to the backing plate element of the planomultiradius reflective element assembly and when the plano-multiradius reflective element assembly is mounted and operated in an exterior sideview mirror assembly on an automobile. Preferably, the principal axis of the rearward field of view of the plano element is directed generally parallel to the road that the automobile equipped with the plano-multiradius reflective element assembly is travelling on (i.e. generally parallel to the longitudinal axis of the automobile) so as to provide the driver with a long-distance view of approaching vehicles in the side lane that the plano element views). However, preferably the principal axis of the rearward field of view of the multiradius element of, for example, a door-mounted driver-side (or passenger-side) exterior sideview mirror assembly in which the plano-multiradius reflective element assembly is mounted is directed generally downwardly towards the road surface adjacent to the driver seating location and/or several feet (such as about 1 foot to about 24 feet; more preferably, about 1 foot to about 12 feet; most preferably about 1 foot to about 8 feet in distance) to its rear (in order to capture a field of view of a rear approaching vehicle that is approaching to overtake, or is about to overtake, or is overtaking the automobile equipped with the plano-multiradius reflective element assembly). Thus, preferably, the principal axis of the rearward field of view of the multiradius element is angled and directed generally downwardly with respect to the longitudinal axis of the automobile and thus is at an angle to the principal axis of the rearward field of view of the
plano element. For example, multiradius element 155 when attached to surface 173 of backing plate 160 (see Fig. 6B) would have its principal axis of rearward view as indicated by 180 as in Fig. 6B, and as such would be canted towards the road surface when mounted in an exterior sideview mirror assembly attached to the side of an automobile. By contrast, plano element 150 when attached to surface 174 of backing plate 160 (see Fig. 6A) would have a principal axis as indicated by 185 as in Fig. 6A and, as such, would be generally parallel to the road surface when mounted in an exterior sideview mirror assembly attached to the side of an automobile. Having the multiradius element canted somewhat downwards towards the road surface assists visual detection by the driver of overtaking vehicles in the traditional "blind-spot" in the adjacent side lane. The angle that the multiradius element is angled on the backing plate element of the plano-multiradius reflective element assembly relative to the plane of the plano reflective element will vary from automobile model to model, but generally is preferred to be in the about 1 degree to about 10 degree range; about 2 degree to about 8 degree range more preferred; and about 3 degree to about 6 degree range most preferred. In order to conveniently achieve an angling of the multiradius portion with respect to the plano portion (and preferably a downward angling), the portion of the backing plate element that the multiradius reflective element is attached to can be angled relative to the adjacent portion of the backing plate element that the plano reflective portion is attached to. Thus, and referring to Fig. 6, plano-multiradius reflective element assembly 130 includes a molded polymeric backing plate element 160 comprising a generally flat portion 162 (between BB and CC in Fig. 6) and an adjacent curved portion 161 (between AA and BB). As indicated by 190 and 195 , portion AA to $B B$ of backing plate element 160 is generally angled to portion BB to CC of backing plate 160. Preferably, the portion of backing plate element 160 to which the auxiliary reflective element attaches is angled towards the front (compared to the angling of plano reflective element) of an automobile equipped with the plano-auxiliary reflective element assembly of the present invention. Fig. 6 is a view of plano-multiradius reflective element assembly 130 as it would appear from above the vehicle as it would be orientated in use (with portion 162 closer to the driver than portion 161). The wall section, section XX in Fig. 6, taken through section 162 of backing plate element 160 is of substantially constant dimension (as illustrated in Fig. 6A) whereas the wall section, section YY in Fig. 6B, taken through section 161 of backing plate element 160 is of varying dimension and is angled. Plano reflective element 150 and multiradius reflective element

155 (for example, plano element 150 can comprise an electrochromic mirror element and multiradius element 155 can comprise a chrome coated glass reflector) are attached to portions 162 and 161 , respectively. By being supported on the angled face 173 (see Fig. 6B) of portion 161, the principal viewing axis of multiradius reflector element 155 is angled downwards towards the road surface, as compared to the more horizontal-viewing principal viewing axis of plano element 150 , when plano-multiradius reflective element 130 is mounted in an exterior sideview mirror assembly on an automobile. Demarcation element 165 is preferably molded in the same molding tool as is used to mold backing plate element 160 , and so demarcation element 165 is formed as an integral part of backing plate element 160 , forming a wall thereof that partitions the surface of backing plate element 160 into a region for receiving the plano reflective element 150 and a region for receiving the auxiliary reflective element 155. Also, end-caps 170 and 171 are optionally provided. Plano reflective element 150 can attach into the cavity formed between demarcation element 165 and end-cap 171; multiradius reflective element 155 can attach into the cavity formed between demarcation element 165 and end-cap 170 . Note that the portion of the backing plate element where the wide-angle optic multiradius element attaches can have a thicker wall thickness than that of the portion of the backing plate element where the unit magnification optic element attaches in order to allow for the angling of the multiradius element downwardly relative to the angle of the plano element, as illustrated in Figs. 6A-B. As illustrated in Figs. 6A-B, the angle downwards to the longitudinal axis of the vehicle of the multiradius element can generally be set by an angling of a surface of the backing plate element in order to ensure that the principal axis of the rearward field of view of the plano element is directed generally parallel to the longitudinal axis of an automobile equipped with the plano-multiradius reflective element assembly and that the principal axis of the rearward field of view of the multiradius element is directed generally at an angle downwards to the longitudinal axis of the automobile.

Note that the provision of the plano-multiradius reflective element assembly of this invention as a unitary module has manufacturing advantages, particularly for exterior sideview mirror assembly manufacturers who can procure a plano-multiradius reflective element assembly module from a mirror reflector supplier and then mount the planomultiradius reflective element assembly module onto an actuator.

Referring to Fig. 7, a third embodiment 230 of a plano-multiradius reflective element assembly is illustrated. Plano-multiradius reflective element assembly 230 includes a plano reflective element 250 and a separate multiradius reflective element assembly 255 , both individually attached to a backing plate element, and with demarcation element 265 disposed at their joint. Plano-multiradius reflective element assembly 230 is about 8.5 inches wide and about 4.25 inches tall (aspect ratio of 0.5), at their largest dimension. Shown as the shaded triangle 240 in plano reflective element 250 is the image of a triangular target object set about 35 feet rearward and of width about 8 feet and of height of about 4.1 feet as would be seen were plano-multiradius reflective element assembly 230 mounted in a driver-side exterior sideview mirror assembly in an automobile such as a sports utility vehicle. In general, it is desirable that the plano reflective element be dimensioned and configured so as to have its rearward field of view capture an image (that is visible, by reflection in the plano reflective element, to a driver seated in the driver's seat in an automobile to which is attached an exterior sideview mirror assembly equipped with the plano-auxiliary reflective element assembly according to this present invention) of a triangular shaped target located about 35 feet rearward of the driver seating location, extending about 8 feet out from the plane defined by the side of the automobile and reaching a height of between about 4 feet and about 5 feet from the road surface at that location 35 feet rearward of the automobile. The total field of view rearwardly of the vehicle of plano-multiradius reflective element assembly 230 (which is a combination of the field of view of plano reflective element 250 and of the auxiliary multiradius reflective element 255) preferably generally subtends an angle of at least about 30 degrees (and more preferably, generally subtends an angle of at least about 35 degrees and most preferably, generally subtends an angle of at least about 40 degrees) with respect to the side of an automobile to which is attached an exterior sideview mirror assembly equipped with plano-multiradius reflective element assembly 230.

Also, although it is preferable to utilize a multiradius or compound curvature reflective element such as an aspherical element or a compound curvature element for the auxiliary mirror element adjacent the plano reflective element (as this enables least discontinuity in image at the joint between the adjacent elements of the assembly), a spherical reflective element (that has substantially only one radius of curvature and, as such, is a section from a sphere) can optionally be used adjacent the plano reflective element instead of, or in addition to, the multiradius reflective element. Also, a plano auxiliary mirror
such as a flat mirrored substrate can be used, less preferably, as a substitute for a multiradius reflective element in those embodiments where the auxiliary reflective element is angled relative to the plane of the principal, plano reflective element so as to view a blind spot region of the principal plano element. Also, the plano-multiradius reflective element assembly can optionally be fixedly attached to an exterior sideview mirror assembly housing that is not movable, or, alternately, the exterior sideview mirror assembly housing to which the plano-multiradius reflective element assembly is fixedly attached can itself be actuated to move, such as by motor action, so that by moving the exterior sideview mirror assembly housing, the field of rearward view of the plano-multiradius reflective element assembly fixedly attached thereto can correspondingly move and be repositioned to suit the field of view need of a particular driver seated in the automobile cabin.

The above description is considered that of the preferred embodiments only. Modification of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and are not intended to limit the scope of the invention, which is defined in the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.

I claim:

1. An exterior sideview mirror system suitable for use in an automobile, said exterior sideview mirror system comprising:
an exterior sideview mirror assembly adapted for attachment to a side of an automobile;
said exterior sideview mirror assembly including a reflective element having a rearward field of view when attached to said side of the automobile;
said reflective element attached to an actuator and movable by said actuator in order to position said rearward field of view in response to a control;
wherein said reflective element comprises a plano-multiradius reflective element assembly, said plano-multiradius reflective element assembly comprising a plano reflective element having unit magnification and a separate multiradius reflective element having a multiradius curvature; and
said plano reflective element and said multiradius reflective element of said plano-multiradius reflective element assembly attached to a backing plate element, said backing plate element mounting to said actuator such that movement of said backing plate element of said plano-multiradius reflective element assembly by said actuator simultaneously and similarly moves said plano reflective element and said multiradius reflective element.
2. The exterior sideview mirror system of Claim 1, wherein said plano reflective element and said multiradius reflective element are adjacently attached to said backing plate element at a joint, and wherein said plano-multiradius reflective element assembly includes a demarcation element, said demarcation element disposed at said joint to form a demarcation
between said plano reflective element and said multiradius reflective element, said demarcation element having a portion visible to a driver of the automobile.
3. The exterior sideview mirror system of Claim 2, wherein said demarcation element is dark colored.
4. The exterior sideview mirror system of Claim 3, wherein said demarcation element is dark colored with a color selected from the group consisting of black, grey, blue and brown.
5. The exterior sideview mirror system of Claim 2, wherein said joint comprises a space between said plano reflective element and said multiradius reflective element.
6. The exterior sideview mirror system of Claim 5, wherein said demarcation element is at least partially disposed in said space between said plano reflective element and said multiradius reflective element.
7. The exterior sideview mirror system of Claim 3, wherein said demarcation element comprises at least one of a polymer material, a tape, a plastic film, a paint, a lacquer and a caulk.
8. The exterior sideview mirror system of Claim 7, wherein said demarcation element comprises a polymer material.
9. The exterior sideview mirror system of Claim 2, wherein said demarcation element comprises a wall on said backing plate element, said wall located on said backing plate element at said joint, said wall separating said plano reflective element from said multiradius reflective element.
10. The exterior sideview mirror system of Claim 2, wherein said portion visible to a driver of the automobile has a width less than about 4 mm .
11. The exterior sideview mirror system of Claim 2, wherein said portion visible to a driver of the automobile has a width less than about 3 mm .
12. The exterior sideview mirror system of Claim 2, wherein said portion visible to a driver of the automobile has a width less than about 2 mm .
13. The exterior sideview mirror system of Claim 2, wherein said portion visible to a driver of the automobile has a width greater than about 0.5 mm .
14. The exterior sideview mirror system of Claim 2 , wherein said portion visible to a driver of the automobile has a width greater than about 0.75 mm .
15. The exterior sideview mirror system of Claim 2, wherein said portion visible to a driver of the automobile has a width greater than about 1 mm .
16. The exterior sideview mirror system of Claim 1, wherein said plano reflective element is attached to said backing plate element by at least one of an adhesive attachment and a mechanical attachment.
17. The exterior sideview mirror system of Claim 1, wherein said multiradius reflective element is attached to said backing plate element by at least one of an adhesive attachment and a mechanical attachment.
18. The exterior sideview mirror system of Claim 1, wherein said multiradius reflective element is attached to said backing plate element at a location such that, when said exterior mirror assembly is attached to a side of an automobile, at least a portion of said plano reflective element is disposed closer to said side of the automobile than any portion of said multiradius reflective element.
19. The exterior sideview mirror system of Claim 1, wherein said multiradius reflective element comprises a bent glass substrate with radii of curvature in the range of from about 4000 mm to about 50 mm .
20. The exterior sideview mirror system of Claim 1, wherein the ratio of the width of said plano reflective element to the width of said multiradius reflective element is greater than 1.
21. The exterior sideview mirror system of Claim 1, wherein the ratio of the width of said plano reflective element to the width of said multiradius reflective element is greater than 1.5 .
22. The exterior sideview mirror system of Claim 1, wherein the ratio of the width of said plano reflective element to the width of said multiradius reflective element is greater than 2.5 .
23. The exterior sideview mirror system of Claim 1, wherein the principal axis of the rearward field of view of said multiradius reflective element is different from and angled to the principal axis of the rearward field of view of said plano reflective element when both are attached to said backing plate element of said plano-multiradius reflective element assembly and when said plano-multiradius reflective element assembly is mounted in said exterior sideview mirror assembly on an automobile.
24. The exterior sideview mirror system of Claim 23, wherein the principal axis of the rearward field of view of said plano reflective element is directed generally parallel to the longitudinal axis of an automobile equipped with the plano-multiradius reflective element assembly and wherein the principal axis of the rearward field of view of said multiradius reflective element is directed generally at an angle downwards to the longitudinal axis of the automobile.
25. The exterior sideview mirror system of Claim 24, wherein said angle downwards to the longitudinal axis of the automobile is in the range from about 1 degree to about 10 degrees.
26. The exterior sideview mirror system of Claim 24, wherein said angle downwards to the longitudinal axis of the automobile is in the range from about 2 degrees to about 8 degrees.
downwards to the longitudinal axis of the automobile is in the range from about 3 degrees to about 6 degrees.
27. The exterior sideview mirror system of Claim 24, wherein said angle downwards to the longitudinal axis of the automobile is generally set by an angling of a surface of said backing plate element.
28. The exterior sideview mirror system of Claim 24, wherein said exterior sideview mirror assembly comprises a door-mounted exterior sideview mirror assembly adapted for attachment to a side of the automobile adjacent a driver seating location of a driver of the automobile and wherein the principal axis of the rearward field of view of said multiradius reflective element is directed generally downwardly towards the road surface adjacent to the driver seating location at a distance in the range of about 1 foot to about 8 feet to the rear of the driver seating location.
29. The exterior sideview mirror system of Claim 1, wherein said exterior sideview mirror assembly comprises a fixedly attached exterior sideview mirror assembly.
30. The exterior sideview mirror system of Claim 1, wherein said exterior sideview mirror assembly comprises a break-away exterior sideview mirror assembly.
31. The exterior sideview mirror system of Claim 1, wherein said exterior sideview mirror assembly comprises a powerfold exterior sideview mirror assembly.
32. The exterior sideview mirror system of Claim 1, wherein said actuator comprises an electrically operable actuator.
33. The exterior sideview mirror system of Claim 1 , wherein said control comprises a memory controller.
34. The exterior sideview mirror system of Claim 1, wherein at least one of said plano reflective element and said multiradius reflective element comprises an electro-optic reflective element.
35. The exterior sideview mirror system of Claim 1, wherein both said plano reflective element and said multiradius reflective element comprise an electro-optic reflective element.
36. The exterior sideview mirror system of Claim 1, wherein said plano reflective element comprises an electro-optical reflective element.
37. The exterior sideview mirror system of Claim 39, wherein said electro-optical reflective element comprises an electrochromic reflective element.
38. The exterior sideview mirror system of Claim 40, wherein said multiradius reflective element comprises a fixed reflectance mirror reflector.
39. The exterior sideview mirror system of Claim 41, wherein said fixed reflectance mirror reflector comprises a bent glass substrate coated with a metallic reflector coating.
40. The exterior sideview mirror system of Claim 1, wherein said planomultiradius reflective element assembly is formed in an integral molding operation.
41. An exterior sideview mirror system suitable for use in an automobile, said exterior sideview mirror system comprising:
an exterior sideview mirror assembly adapted for attachment to a side of an automobile;
said exterior sideview mirror assembly including a reflective element having a rearward field of view when attached to said side of the automobile;
said reflective element attached to an electrically operable actuator and movable by said actuator in order to position said rearward field of view in response to a control;
wherein said reflective element comprises a plano reflective element having unit magnification and a separate auxiliary reflective element;
said plano reflective element and said auxiliary reflective element attached to a backing plate element, said backing plate element mounting to said actuator such that movement of said backing plate element by said actuator simultaneously and similarly moves said plano reflective element and said auxiliary reflective element; and
wherein said plano reflective element and said auxiliary reflective element are adjacently attached to said backing plate element at a joint, and wherein a demarcation element is disposed at said joint to form a demarcation between said plano reflective element and said auxiliary reflective element, said demarcation element having a portion visible to a driver of the automobile.
42. The exterior sideview mirror system of Claim 44, wherein demarcation element is dark colored.
43. The exterior sideview mirror system of Claim 44, wherein said demarcation element is dark colored with a color selected from the group consisting of black, grey, blue and brown.
44. The exterior sideview mirror system of Claim 44, wherein said joint comprises a space between said plano reflective element and said auxiliary reflective element.
45. The exterior sideview mirror system of Claim 47, wherein said demarcation element is at least partially disposed in said space between said plano reflective element and said auxiliary reflective element.
46. The exterior sideview mirror system of Claim 44, wherein said demarcation element comprises at least one of a polymer material, a tape, a plastic film, a paint, a lacquer and a caulk.
47. The exterior sideview mirror system of Claim 44, wherein said demarcation element comprises a polymer material.
48. The exterior sideview mirror system of Claim 44, wherein said demarcation element comprises a wall on said backing plate element, said wall located on said backing plate element at said joint, said wall separating said plano reflective element from said auxiliary reflective element.
49. The exterior sideview mirror system of Claim 44, wherein said portion visible to a driver of the automobile has a width less than about 4 mm .
50. The exterior sideview mirror system of Claim 44, wherein said portion visible to a driver of the automobile has a width less than about 3 mm .
51. The exterior sideview mirror system of Claim 44, wherein said portion visible to a driver of the automobile has a width less than about 2 mm .
52. The exterior sideview mirror system of Claim 44, wherein said portion visible to a driver of the automobile has a width greater than about 0.5 mm .
53. The exterior sideview mirror system of Claim 44, wherein said portion visible to a driver of the automobile has a width greater than about 0.75 mm .
54. The exterior sideview mirror system of Claim 44, wherein said portion visible to a driver of the automobile has a width greater than about 1 mom.
55. The exterior sideview mirror system of Claim 44, wherein said plano reflective element is attached to said backing plate element by at least one of an adhesive attachment and a mechanical attachment.
56. The exterior sideview mirror system of Claim 44, wherein said auxiliary reflective element is attached to said backing plate element by at least one of an adhesive attachment and a mechanical attachment.
57. The exterior sideview mirror system of Claim 44, wherein said auxiliary reflective element is attached to said backing plate element at a location such that, when said exterior mirror assembly is attached to a side of an automobile, at least a portion of said plano reflective element is disposed closer to said side of the automobile than any portion of said auxiliary reflective element.
58. The exterior sideview mirror system of Claim 44, wherein said auxiliary reflective element comprises one of a flat glass substrate and a bent glass substrate
59. The exterior sideview mirror system of Claim 44, wherein the ratio of the width of said plano reflective element to the width of said auxiliary reflective element is greater than 1 .
60. The exterior sideview mirror system of Claim 44, wherein the ratio of the width of said plano reflective element to the width of said auxiliary reflective element is greater than 1.5 .
61. The exterior sideview mirror system of Claim 44, wherein the ratio of the width of said plano reflective element to the width of said auxiliary reflective element is greater than 2.5 .
62. The exterior sideview mirror system of Claim 44, wherein the principal axis of the rearward field of view of said auxiliary reflective element is different from and angled to the principal axis of the rearward field of view of said plano reflective element when both are attached to said backing plate element and are mounted in said exterior sideview mirror assembly on an automobile.
63. The exterior sideview mirror system of Claim 65 , wherein the principal axis of the rearward field of view of said plano reflective element is directed generally parallel to the longitudinal axis of an automobile equipped with said reflective element and wherein the principal axis of the rearward field of view of said auxiliary reflective element is directed generally at an angle downwards to the longitudinal axis of an automobile equipped with said reflective element.
64. The exterior sideview mirror system of Claim 66, wherein said angle downwards to the longitudinal axis of the automobile is in the range from about 1 degree to about 10 degrees.
65. The exterior sideview mirror system of Claim 66, wherein said angle downwards to the longitudinal axis of the automobile is in the range from about 2 degrees to about 8 degrees.
66. The exterior sideview mirror system of Claim 66, wherein said angle downwards to the longitudinal axis of the automobile is in the range from about 3 degrees to about 6 degrees.
67. The exterior sideview mirror system of Claim 66, wherein said angle downwards to the longitudinal axis of the automobile is generally set by an angling of a surface of said backing plate element.
68. The exterior sideview mirror system of Claim 66, wherein said exterior sideview mirror assembly comprises a door-mounted exterior sideview mirror assembly adapted for attachment to a side of the automobile adjacent a driver seating location of a driver of the automobile and wherein the principal axis of the rearward field of view of said
69. The exterior sideview mirror system of Claim 66, wherein said exterior sideview mirror assembly comprises a door-mounted exterior sideview mirror assembly adapted for attachment to a side of the automobile adjacent a driver seating location of a driver of the automobile and wherein the principal axis of the rearward field of view of said auxiliary reflective element is directed generally downwardly towards the road surface adjacent to the driver seating location at a distance in the range of about 1 foot to about 12 feet to the rear of the driver seating location.
70. The exterior sideview mirror system of Claim 66, wherein said exterior sideview mirror assembly comprises a door-mounted exterior sideview mirror assembly adapted for attachment to a side of the automobile adjacent a driver seating location of a driver of the automobile and wherein the principal axis of the rearward field of view of said auxiliary reflective element is directed generally downwardly towards the road surface adjacent to the driver seating location at a distance in the range of about 1 foot to about 24 feet to the rear of the driver seating location. auxiliary reflective element is directed generally downwardly towards the road surface adjacent to the driver seating location at a distance in the range of about 1 foot to about 8 feet to the rear of the driver seating location.
71. The exterior sideview mirror system of Claim 44, wherein said exterior sideview mirror assembly comprises a fixedly attached exterior sideview mirror assembly.
72. The exterior sideview mirror system of Claim 44, wherein said exterior sideview mirror assembly comprises a break-away exterior sideview mirror assembly.
73. The exterior sideview mirror system of Claim 44, wherein said exterior sideview mirror assembly comprises a powerfold exterior sideview mirror assembly.
74. The exterior sideview mirror system of Claim 44, wherein said control comprises a memory controller.
75. The exterior sideview mirror system of Claim 44, wherein at least one of said plano reflective element and said auxiliary reflective element comprises an electro-optic reflective element.
76. The exterior sideview mirror system of Claim 44, wherein both said plano reflective element and said auxiliary reflective element comprise an electro-optic reflective element.
77. The exterior sideview mirror system of Claim 44, wherein said plano reflective element comprises an electro-optical reflective element.
78. The exterior sideview mirror system of Claim 80, wherein said electro-optical reflective element comprises and electrochromic reflective element.
79. The exterior sideview mirror system of Claim 81, wherein said auxiliary reflective element comprises a fixed reflectance mirror reflector.
80. The exterior sideview mirror system of Claim 82, wherein said fixed reflectance mirror reflector comprises a bent glass substrate coated with a metallic reflector coating.

PATENT

EXTERIOR MIRROR PLANO-AUXILIARY REFLECTIVE ELEMENT ASSEMBLY

Abstract

This invention provides a plano-multiradius reflective element assembly suitable for use in an exterior sideview mirror assembly mounted to the side body of an automobile. The plano-multiradius reflective element assembly includes a plano reflective element which has a rearward field of view, when mounted in an exterior sideview mirror assembly mounted to the side body of an automobile, with unit magnification. The planomultiradius reflective element assembly also includes an auxiliary reflective element including a multiradius portion with a rearward field of view. The plano reflective element provides a distortion-free rearward field of view and serves as the principal rearward-viewing portion of the plano-multiradius reflective element assembly. The multiradius portion provides a wide angle rearward field of view, and typically supplements the rearward field of view of the plano portion. The plano reflective element and the multiradius portion are separated by a demarcation element which enables the driver to readily delineate a rearward view in the plano portion from a rearward view in the multiradius portion. The plano reflective element and the multiradius reflective element are individually, separately, and adjacently attached to a single backing plate which is mounted to an actuator of the exterior sideview mirror assembly. By adjusting the position of the backing plate within the housing of the exterior sideview mirror assembly via the actuator, the rearward field of view of both the plano reflective element and the multiradius reflective element are simultaneously and similarly aligned.

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare:
My residence, post office address and citizenship are as stated below next to my name.
I believe I am the original, first and sole inventor, if only one name is listed below, or an original, first and joint inventor, if plural names are listed below, of the subject matter which is claimed and for which a patent is sought on the invention entitled EXTERIOR MIRROR PLANO-AUXILLARY REFLECTIVE ELEMENT ASSEMBLY, the specification of which is attached hereto.

I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the United States Patent and Trademark Office (the Office), all infornation which is known by met to be material to patentability as defined in Title 37, Code of Federal Regulations (C.F.R.), Section 1.56.

CLALM OF PRIORITY

I hereby clairn foreign benefits under Titte 35, United States Code (U.S.C.), Section 119, of any foreign application(s) for patent or inventor's cerrificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed.

Application Ser. No. None, filed in (country) \qquad on \qquad .

I hereby claim the bencfit under 35 U.S.C. 3 120, of any United States application(s) listed below and, insofar as the above-identified specification, including claims, discloses and claims subject matter in addition to that disclosed in the prior copending application(s), listed below, I acknowledge tie duty to disclose to the Office, all information which is known by me to be material to patentability as defined in 37 C.F.R. 31.56 , which became available between the filing date of the prior application and the national or PCT international filing date of this application.
U.S. Scrial No. None, filed on \qquad , and now (status) \qquad .

I hereby claim the benefit under Title 35, United States Code, $3119(e)$ of any United States provisional application(s) listed below:
U.S. Serial No. \qquad , filed on \qquad .

POWER OF ATTORNEY

I hereby appoint the patent law firm of Van Dyke, Gardner, Lirtn \& Burkhart, LLP, 2851 Charlevoix Drive, S.E., Suite 207, Grand Rapids, Michigan 49546, telephone nuraber 616/975-5500, facsimile number 616/975-5505, and the individual patent attomeys and patent agents at such patent law firm, namely, Daniel Van Dyke, Reg. No. 25 046; Donald S. Gardner, Reg. No. 25 975; Terence J. Lina, Reg. No. 30 283; Fredarick S. Burkhart, Reg. No. 29 288; Catherine S. Collins, Reg. No. 37 599; Matthew L. Goska, Reg. No. 42 594; Authony A. Bisulca, Reg. No. 40 913; and Timothy A. Flory, Reg. No. 42 540, my attorney(s) or agent(s) with full power of substitution and revocation, to prosecute this application and to transact all business in and to receive all correspondence from the Patent and Trademark Office connected therewith.

All statements made herein of my own knowledge are true and all statements made on information and belief are believed to be true, and further, these statements are made with the knowledge that willful false statements and the like are pumishable by fine or imprisorument, or both, under 18 U.S.C. 3 1001, and that such willful false statements may jeopardize the validity of this application or any patent issued thereon.

Sole inventor:

Figure 1

Figure 2

Figure 3

Figure 4

FIG.5D

FIG. 5 H

Figure 6

Figure 6A

Figure 6B

Figure 7

${ }_{(12)}$ United States Patent Lynam

(10) Patent No.: US 6,522,451 B1
(45) Date of Patent:

(54) EXTERIOR MIRROR PLANO-AUXILIARY REFLECTIVE ELEMENT ASSEMBLY

(75) Inventor: Niall R. Lynam, Holland, MI (US)
(73)

Assignee: Donnelly Corporation, Holland, MI (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
(21) Appl. No.: 09/478,315
(22) Filed: Jan. 6, 2000

Int. Cl. ${ }^{7}$ \qquad G02F 1/15; G02B 5/08;
G02B 5/10; G02B 7/182; B60R 1/06
U.S. Cl. 359/265; 359/267; 359/841;
$359 / 850 ; 359 / 864 ; 359 / 866 ; 359 / 868 ; 359 / 872$; 359/877; 248/549; 248/900
Field of Search \qquad 877, 265, 267; 248/549, 900

References Cited

U.S. PATENT DOCUMENTS

2,911,177	11/1959	West
3,104,274 A	* 9/1963	King 359/864
3,170,985 A	* 2/1965	Katulich
3,375,053 A	5/1968	Ward 350/293
3,389,952 A	* 6/1968	Tobin, Jr. 359/864
3,764,201 A	* 10/1973	Haile

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

DE	2409748		$9 / 1975$	
DE	3302735	$*$	$8 / 1984$	$\ldots \ldots \ldots \ldots \ldots 3$
DE	4026578	$*$	$4 / 1992$	$\ldots \ldots \ldots \ldots \ldots .3599 / 850$
EP	0210757	$*$	$2 / 1987$	$\ldots \ldots \ldots \ldots .359 / 864$
EP	0310261	A1		$4 / 1989$
EP	0551802	$*$	$1 / 1992$	$\ldots \ldots \ldots \ldots \ldots .359 / 864$

(List continucd on next page.)

OTHER PUBLICATIONS

U.S. Pat. Ser. No. 09/350,930, filed Jul. 12, 1999, entitled Electrochromic Polymer Solid Films, Manufacturing Electrochromic Devices Using Such Films, and Processes for Making Such Solid Films an Devices, by Applicants Desaraju V. Varaprasad et al.

Primary Examiner-Ricky D. Shafer
(74) Attorney, Agent, or Firm—Van Dyke, Gardner, Linn \& Burkhart, LLP

ABSTRACT

This invention provides a plano-multiradius reflective element assembly suitable for use in an exterior sideview mirror assembly mounted to the side body of an automobile. The plano-multiradius reflective element assembly includes a plano reflective element which has a rearward field of view, when mounted in an exterior sideview mirror assembly mounted to the side body of an automobile, with unit magnification. The plano-multiradius reflective element assembly also includes an auxiliary reflective clement including a multiradius portion with a rearward field of view. The plano reflective element provides a distortion-free rearward field of view and serves as the principal rearwardviewing portion of the plano-multiradius reflective element assembly. The multiradius portion provides a wide angle rearward field of view, and typically supplements the rearward field of view of the plano portion. The plano reflective element and the multiradius portion are separated by a demarcation element which enables the driver to readily delineate a rearward view in the plano portion from a rearward view in the multiradius portion. The plano reflective element and the multiradius reflective element are individually, separately, and adjacently attached to a single backing plate which is mounted to an actuator of the exterior sideview mirror assembly. By adjusting the position of the backing plate within the housing of the exterior sideview mirror assembly via the actuator, the rearward field of view of both the plano reflective element and the multiradius reflective element are simultaneously and similarly aligned.

US 6,522,451 B1

Page 2

U.S. PATENT DOCUMENTS

4,258,979 A	3/1981	Mahin	68
4,268,120	5/1981	Jitsumori	350/302
4,281,899 A	8/1981	Oskam	
4,306,770 A	12/1981	Marhaue	359186
4,311,362 A	1/1982	LaPorte	359/864
4,331,382 A	5/1982	Graff	359/868
4,449,786 A	5/1984	McCord	350/293
4,555,166 A	11/1985	Enomoto	359/877
4,678,294 A	7/1987	Van Nostrand	359/864
4,727,302 A	2/1988	Mizuta et al.	359/877
4,770,522 A	9/1988	Alten	359/877
4,859,046 A	8/1989	Traynor et al.	359/866
4,917,485 A	4/1990	Baldwin, Sr.	
5,005,962 A	4/1991	Edelman	359/864
5,052,792 A	10/1991	McDonough	359/866
5,107,374 A	4/1992	Lupo et	359/841
5,115,352 A	5/1992	Do Espirito Santo	359/864
5,166,833 A	11/1992	Shyu	
5,225,943 A	7/1993	Lupo	359/841
5,239,405 A	8/1993	Varaprasad et al.	359/272
5,432,643 A	7/1995	Huang	359/864
5,550,677 A	8/1996	Schofield et	359/604

FR	2628042		$9 / 1929$	
GB	1279158	$*$	$6 / 1972$	$\ldots \ldots \ldots \ldots .359 / 868$
GB	2048189	$*$	$12 / 1980$	$\ldots \ldots \ldots \ldots .359 / 868$
GB	2092534	$*$	$8 / 1982$	$\ldots \ldots \ldots \ldots \ldots 359 / 868$
JP	0051637	$*$	$4 / 1980$	$\ldots \ldots \ldots \ldots \ldots 359 / 866$
JP	$62-105103$	$*$	$5 / 1987$	
JP	1186443		$7 / 1989$	
JP	$1-208245$	$*$	$8 / 1989$	$\ldots \ldots \ldots \ldots \ldots 359 / 871$
NL	7908257	$*$	$6 / 1981$	$\ldots \ldots \ldots \ldots .359 / 864$

* cited by examiner

Figure 1

Figure 2

Figure 3

Figure 4

55

Figure $5 E$

Figure 5 H

Figure 6

Figure 7

EXTERIOR MIRROR PLANO-AUXILIARY REFLECTIVE ELEMENT ASSEMBLY

TECHNICAL FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to exterior sideview mirror assemblics suitable for usc on an automobile, and more specifically, to plano-auxiliary reflective element assemblies for use in automobile exterior sideview mirror assemblies.

Automobiles are typically equipped with an interior rearview mirror assembly (adapted for providing a rearward field of view immediately rearward of the vehicle, typically principally in the road lane the vehicle is traveling in) and at least one exterior sideview mirror assembly attached to the side of the vehicle (typically adjacent a front side window portion). The exterior side view mirror assembly typically comprises a reflective element adapted to provide a rearward field of view of the side lane adjacent the vehicle so as to allow the driver see whether a side approaching vehicle is present when the driver is contemplating a lane change. Conventionally, automobiles are equipped with a driver-side exterior mirror assembly and, very often, with a passengerside exterior sideview mirror assembly mounted to the side of the automobile body opposite to that of the driver-side assembly. While the combination of an interior rearview mirror with a driver-side exterior mirror (and especially in a three-mirror system comprising an interior rearview mirror with a driver-side exterior mirror and a passenger-side exterior mirror) works well in many driving situations, rear vision blind spots present a potential safety hazard while driving. Λ rear vision blind spot is an area adjacent the side of an automobile where a view of another vehicle (overtaking on that side) is not captured in the rearward field of view of the exterior mirror reflector on that side. This presents a potential salety hazard as the driver, upon checking the view in the exterior sideview mirror and seeing no overtaking vehicle therein, may deem it safe to initiate a lane change, unaware that there is a vehicle immediately adjacent in a blind-spot of the exterior mirror reflector.

Various attempts have been made conventionally to minimize and/or eliminate exterior mirror blind-spots on vehicles. One approach is to make the exterior mirror reflector larger, and particularly wider with respect to the vehicle body. By increasing the width of the exterior mirror reflector, it has a wider field of view rearwards, and hence the reflector blind-spot is reduced. While use of a wide exterior mirror reflector is an option for trucks, buses and commercial vehicles, increasing the width of the reflector used in an exterior sideview mirror assembly mounted on automobiles (such as sedans, station wagons, sports cars, convertibles, minivans, sports utility vehicles, pick-up trucks and similar passenger carrying automobiles) is often not an option. In such domestic automobiles, increasing the width of the exterior mirror reflector increases the size of the exterior sideview mirror assembly with a concomitant increase in acrodynamic drag, increasc in fucl consumption, increased difficulty in parking in tight parking spaces, and increased reflector vibration. Use of a non-flat, curved exterior mirror reflector is commonly used to increase rearward field of view without increasing reflector size.

While working well to increase field of view, use of a curved reflector (such as a convex, spherically-curved reflector) has disadvantages. The field of view rearward increases as the degree of curvature of the bent substrate increases (i.e., the field of view rearward increases as the
radius of curvature of the bent substrate decreases). However, such wide-angle mirrors have non-unit magnification and distance perception rearward is distorted. For this reason, convex (spherically-bent) exterior mirror reflectors
5 are required in some countries (such as the United States) to carry a safety warning "OBJECTS IN MIRROR ARE CLOSER TIIAN TIIEY APPEAR". Distance perception is particularly important for a driver-side exterior mirror. Indeed, Federal Vehicle Safety Standard No: 111 in the
10 United States (the entire disclosure of which is hereby incorporated by reference herein) requires that the driverside exterior mirror reflector exhibit unit magnification, and places restrictions on the radius of curvature allowed for any bent passenger-side mirror as well as requiring a safety 15 warning be placed thereon. As an improvement over spherically bent/convex mirror reflectors, aspherical or multiradius mirror reflectors (such as are disclosed in U.S. Pat. Nos. $4,449,786$ and $5,724,187$, the entire disclosures of which are hereby incorporated by reference herein) have been developed. Such mirrors are widely used in Europe and Asia for both driver-side exterior mirror reflectors and for passengerside exterior mirror reflectors. The aspherical or multiradius mirror reflectors typically have a less curved (larger radius of curvature) reflective region that is inboard or closest to the 25 driver when mounted on a vehicle and, usually separated by a demarcation line or the like, have a more curved (smaller radius of curvature) region that is outboard or farthest from the driver when mounted on a vehicle. However, such asphcrical or multiradius reflcctors do not have unit magni30 fication and so cannot be used when unit magnification is mandated (such as by FMVSS 111, referenced above).

To supplement a flat driver-side exterior mirror reflector, an auxiliary and separate bent reflector is sometimes incorporated into the driver-side exterior sideview mirror assem5 bly. However, this is often not suitable for passenger automobiles because of the extra space required in the sideview mirror assembly to accommodate an auxiliary reflector element. Also, in most passenger automobiles, the position of the side view mirror reflector is adjustable by the driver (such as by a hand-adjust, or by a manually adjustable cable such as a Bowden cable or by an electrically operable actuator, as known in the art) in order to provide to that driver his or her desired rearward field of view, which ill-suits use of a separate, auxiliary reflector. Likewise, addition of stick-on blind-spot mirror reflectors (such as are commonly sold in automotive parts stores and the like) onto an automobile exterior sideview mirror reflector has disadvantages, including obscuring field of view of the automobile mirror reflector and adding to mirror element vibration.

There is thus a need to provide an automobile exterior sideview reflective element, and particularly a driver-side automobile exterior sideview reflective element, that overcomes the disadvantages above and that provides the driver of the automobile with a distortion-free field of view with unit magnification that is supplemented with a wide-angle view of a side lane blind spot, and there is a need that this be provided in a unitary reflective element assembly module suitable to mount onto, and be adjusted by, the mirror reflector adjusiment mechanism (such as an electrically operated, motorized actuator) provided in the exterior sideview mirror assembly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an automobile equipped with exterior sideview mirror assemblies according to this present invention;

FIG. 2 is a top plan partial fragmentary view of the driver's side exterior rearview mirror assembly of FIG. 1;

FIG. 3 is an enlarged sectional view of a planomultiradius reflective element assembly of the mirror assembly in FIG. 2;

FIG. 4 is an enlarged sectional view of a demarcation element of the plano-multiradius reflective element assembly of FIG. 3;

FIGS. 5A-5H illustrate views of various locations for a plano reflective element and an auxiliary reflective element according to this present invention;

FIG. 6 is a sectional view of a second embodiment of a plano reflective element assembly according to the present invention including a demarcation element formed as a dividing wall in a backing plate element;
FIG. 6A is a cross-section taken along line XX of FIG. 6;
FIG. 6B is a cross-sectional view taken along line YY of FIG. 6; and
FIG. 7 is a schematic of a third embodiment of a planoauxiliary reflective element assembly according to this present invention.

SUMMARY OF THE INVENTION

This invention provides a plano reflective element with unit magnification and an auxiliary reflector element for use in an exterior sideview mirror assembly on an automobile. More specifically, this invention provides a planomultiradius reflective clement assembly suitable for use in an exterior sideview mirror assembly mounted to the side body of an automobile. The plano-multiradius reflective element assembly of this invention is especially suitable for mounting in a driver-side exterior sideview mirror assembly that is mounted to the side of the automobile body adjacent to the seating position of the driver in the front of the interior vehicular cabin. The plano-multiradius reflective element assembly of this invention comprises a plano portion which has a rearward field of view, when mounted in an exterior sideview mirror assembly mounted to the side body of an automobile, with unit magnification. This plano portion comprises a flat substrate, typically a flat glass substrate, provided with a reflective surface. The plano-multiradius reflective element assembly of this invention also includes a multiradius portion with a rearward field of view, when mounted in an exterior sideview mirror assembly mounted to the side body of an automobile, that has non-unit magnification. The plano portion provides a distortion-free rearward field of view and serves as the principal rearwardviewing portion of the plano-multiradius reflective element. The multiradius portion provides a wide angle rearward field of view, and typically supplements the rearward ficld of view of the plano portion. This multiradius portion comprises a curved substrate, typically a bent glass substrate, provided with a reflective surface. The plano portion and the multiradius portion are demarcated apart by a demarcation element. The demarcation element enables the driver of a vehicle equipped with the plano-multiradius reflective element of this invention to readily delineate a rearward view in the plano portion from a rearward view in the multiradius portion. The plano portion comprises a flat reflective element and the multiradius portion comprises a bent reflective element. The flat, plano reflective element and the curved, multiradius reflective element are individually and separately manufactured, and are adjacently attached to a single backing plate (which typically comprises a polymeric substrate, most typically a molded polymeric substrate), and with the demarcation element disposed at the joint of the
plano, flat reflective element and the multiradius, bent reflective element. The backing plate is fabricated (typically by polymeric molding) to have a flat portion that corresponds to the plano, flat reflective element, and a curved
5 surface that corresponds to the multiradius, curved reflective element. The attachment of the plano reflective element and an auxiliary reflective element to a single backing plate produces a unitary plano-auxiliary reflective element assembly module suitable for mounting in an exterior sideview mirror assembly. By adjusting the position of the backing plate within the exterior sideview mirror assembly, the rearward fields of view of both the plano reflective element and the auxiliary reflective element are simultaneously and similarly aligned.
side embodiment of the invention includes an exterior sideview mirror system suitable for use in an automobile comprising an exterior sideview mirror assembly adapted for attachment to a side of the automobile. The exterior sideview mirror assembly includes a reflective element having a rearward field of view when attached to said side of the automobile. The reflective element is attached to an actuator and is movable by the actuator in order to position the reflective element's rearward field of view in response to a control. The reflective element comprises a planomultiradius reflective clement asscmbly which comprises a plano reflective element having unit magnification and a separate multiradius reflective element having a multiradius curvature. The plano element and the separate multiradius element of the plano-multiradius reflective element assembly are attached to a backing plate element. The backing plate element is mounted to the actuator such that movement of the backing plate element (and hence the planomultiradius reflective element assembly) by the actuator simultaneously and similarly moves the plano element and the multiradius element. The plano element and the multiradius element are separately and, preferably, adjacently attached to the backing plate element at a joint.
In a further embodiment, a demarcation element is disposed at this joint to form a demarcation between the plano element and the multiradius element; this demarcation element having a portion visible to a driver of the automobile. Preferably, the demarcation element is dark colored, such as with a color sclectcd from the group consisting of black, grey, blue and brown. Optionally, there is a space at the joint of the plano element and the multiradius element and the demarcation element is at least partially disposed in said space between said plano element and said multiradius element. The demarcation element can comprise at least one of a polymer material, a tape, a plastic film, a paint, a lacquer and a caulk.

In a further embodiment, the demarcation element comprises a wall on the backing plate element; this wall being located on the backing plate element at the joint of the plano element and the multiradius element, this wall separating the respective elements apart.

In preferred embodiments, the portion of the demarcation element visible to a driver of an automobile equipped with the plano-multiradius reflective element assembly of this invention has a width from about 0.5 mm to about 4 mm .

In preferred embodiments, the plano element is attached to the backing plate element by at least one of an adhesive attachment and a mechanical attachment.

In preferred embodiments, the multiradius element is attached to the backing plate element at a location such that, when the exterior mirror assembly is attached to a side of an automobile, at least portion, and preferably at least a sub-
stantial portion, of the plano element is disposed closer to the side of the vehicle than any portion of the multiradius element element.
In preferred embodiments, the multiradius element comprises a bent glass substrate with radii of curvature in the range of from about 4000 mm to about 50 mm , and the ratio of the width of the plano element to the width of the multiradius element is greater than 1.

In preferred embodiments, the principal axis of the rearward field of view of the auxiliary, multiradius element is different from and angled to the principal axis of the rearward field of view of the plano element when both are attached to the backing plate element of the planomultiradius reflective element assembly and when the planomultiradius reflective element assembly is mounted in an exterior sideview mirror assembly on an automobile. The principal axis of the rearward field of view of the plano element is directed generally parallel to the longitudinal axis of an automobile equipped with the plano-multiradius reflective element assembly and the principal axis of the rearward ficld of view of the multiradius clement is dirceted generally at an angle downwards to the longitudinal axis of the vehicle.
In a preferred embodiment, the exterior sideview mirror assembly equipped with the plano-multiradius reflective element assembly comprises a fixedly attached exterior sideview mirror assembly. In another preferred embodiment, the exterior sideview mirror assembly equipped with the plano-multiradius reflective element assembly comprises a break-away exterior sideview mirror assembly. In another preferred embodiment, the exterior sideview mirror assembly equipped with the plano-multiradius reflective element assembly comprises a powerfold exterior sideview mirror assembly. In another preferred embodiment, the actuator of the exterior sideview mirror assembly to which the planomultiradius reflective element assembly is mounted comprises an electrically operable actuator. In another preferred embodiment, the actuator of the exterior sideview mirror assembly to which the plano-multiradius reflective element assembly is mounted is controlled by a switch or by a memory controller. In another preferred embodiment, the plano element and/or the multiradius element of the planomultiradius reflective element assembly comprises an electro-optic reflective element, preferably an electrochromic reflective element. In another preferred embodiment, the plano element of the plano-multiradius reflective element assembly comprises an electro-optic reflective element, preferably an electrochromic reflective element, and the multiradius element comprises a fixed reflectance mirror reflector, such as a fixed reflectance mirror reflector comprises a bent glass substrate coated with a metallic reflector coating.

In a preferred embodiment, the plano-auxiliary reflective element assembly is assembly is formed in an integral molding operation.
These and other advantages, features, and modifications will become more apparent when reviewed in conjunction with the drawings and the detailed description which follows.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As illustrated in FIG. 1, passenger automobile 10 (which may be a sedan, a station-wagon, a sports car, a convertible, a minivan, a sports utility vehicle, a pick-up truck or a similar passenger carrying non-commercial, personal trans- maltiradius reflective element assembly $\mathbf{3 0}$. Thus, element assembly 30, movement of plano-multiradius
reflective element assembly 30 by actuator $\mathbf{3 6}$ simultaneously and similarly moves plano element $\mathbf{5 0}$ and multiradius element 55.

Plano clement 50 preferably comprises a flat reflectorcoated glass substrate having unit magnification, and comprises a reflective surface through which the angular height and width of the image of an object is equal to the angular height and width of the object when viewed at the same distance (except for flaws that do not exceed normal manufacturing tolerances). Plano element 50 may comprise a conventional fixed reflectance mirror reflector or it may comprise a variable reflectance mirror reflector whose reflectivity is electrically adjustable. For example, plano clement 50 may comprise a flat glass substratc coatcd with a metallic reflector coating such as a chromium coating, a titanium coating, a rhodium coating, a metal alloy coating, a nickel-alloy coating, a silver coating, an aluminum coating (or any alloy or combination of these metal reflectors). The metal reflector coating of plano element $\mathbf{5 0}$ may be a first surface coating (such as on surface 66) or a second surface coating (such as on surface 67), as such terms are known in the mirror art. The reflector coating on plano element 50 may also comprise a dielectric coating, or a multilayer of dielectric coatings, or a combination of a metal layer and a dielectric layer to form automotive mirror reflectors as known in the automotive mirror art. If a variable reflectance reflector element, plano element 50 preferably comprises an electro-optic reflector element and, most preferably, an electrochromic reflector element.
When mounted into exterior side view mirror assembly 12 and/or 14 , plano-multiradius reflective element assembly $\mathbf{3 0}$ is preferably orientated so that at least a portion of (more preferably a substantial portion of) the reflector surface of plano element 50 is positioned closer to the vehicle body (and hence to the driver) than any portion of the reflector surface of multiradius element 55. Thus, and referring to FIG. 3, side A of plano element 50 of plano-multiradius reflective element assembly $\mathbf{3 0}$ is positioned closer to the driver than side D of multiradius element $\mathbf{5 5}$ when planomultiradius reflective element assembly $\mathbf{3 0}$ is mounted on an automobile. Also, when mounted into exterior side view mirror assembly 12 and/or 14 , surfaces 66,68 of planomultiradius reflective element assembly $\mathbf{3 0}$ face rearwardly in terms of the direction of vehicle travel.

Multiradius element 55 of plano-multiradius reflective element assembly $\mathbf{3 0}$ preferably comprises a curved/bent mirrored glass substrate. The degree of curvature preferably increases (and hence the local radius of curvature decreases) across the surface of multiradius element 55 with the least curvature (largest radius of curvature) occurring at the side of multiradius clement 55 (side C in FIG. 3) positioned adjacent its joint to plano element 50 when both are mounted on backing plate element 60. Thus, and referring to FIG. 3, the local radius of curvature at side C of multiradius element $\mathbf{5 5}$, when mounted on backing plate element $\mathbf{6 0}$, is larger than at side D. Also, the local radius of curvature preferably progressively decreases across multiradius element 55 from side C to side D. Preferably, the local radius of curvature at side C of multiradius element 55 is at least about 1000 mm ; more preferably is at least about 2000 mm and most preferably is at least about 3000 mm whereas the local radius of curvature at side D of multiradius element $\mathbf{5 5}$ is, preferably, less than about 750 mm , more preferably less than about 350 mm ; most preferably less than about 150 mm . Preferably, multiradius element $\mathbf{5 5}$ comprises a bent glass substrate with radii of curvature in the range of from about 4000 mm to about 50 mm . The multiradius prescription for the multira-
dius element to be used in a particular exterior mirror assembly can vary according to the specific field of view needs on a specific automobile model.

The total ficld of vicw rearwardly of the automobile of the plano-auxiliary reflective element assembly (which is a combination of the field of view of the plano reflective element and of the auxiliary reflective element) preferably gencrally subtends an angle of at least about 20 degrecs (and more preferably, generally subtends an angle of at least about 25 degrees and most preferably, generally subtends an angle of at least about 30 degrees) with respect to the side of an automobile to which is attached an exterior sideview mirror assembly equipped with the plano-auxiliary reflective element assembly.

Multiradius element 55 may comprise a conventional fixed reflectance mirror reflector or it may comprise a variable reflectance mirror reflector whose reflectivity is electrically adjustable. For example, multiradius element $\mathbf{5 5}$ may comprise a flat glass substrate coated with a metallic reflector coating such as a chromium coating, a titanium coating, a rhodium coating, a metal alloy coating, a nickelalloy coating, a silver coating, an aluminum coating (or any alloy or combination of these metal reflectors). The metal reflector coating of multiradius element $\mathbf{5 5}$ may be a first surface coating (such as on surface $\mathbf{6 8}$) or a second surface coating (such as on surface 69), as such terms are known in the mirror art. The reflector coating on multiradius element 55 may also comprise a dielectric coating, or a multilayer of dielectric coatings, or a combination of a metal layer and a dielectric layer to form automotive mirror reflectors as known in the automotive mirror art. If a variable reflectance reflector element, multiradius element 55 preferably comprises an electro-optic reflector element and, most preferably, an electrochromic reflector element.

Also, it is preferable that the thickness of plano element 50 and multiradius element 55 be substantially the same in dimension so that their respective outer surfaces, 66 and 68 , are substantially coplanar so that a driver can readily view images in either or both elements. The thickness dimension of elements $\mathbf{5 0 , 5 5}$ is determined by the thickness of the substrate (or in the case of laminate-type electrochromic reflective clements, the thickness of the two substrates between which the electrochromic medium is disposed). For example, plano element 50 and/or multiradius element 55 can comprise a reflector coated glass substrate or panel of thickness preferably equal to or less than about 2.3 mm , more preferably equal to or less than about 1.6 mm , most preferably equal to or less than about 1.1 mm . Use of a thinner substrate is beneficial in terms of improving the overall stability/vibration performance of the image seen in plano-multiradius reflective element assembly $\mathbf{3 0}$ when mounted to an automobile.

The reflector area of plano element $\mathbf{5 0}$ is preferably larger than that of multiradius element 55. Preferably, the width dimension of plano element $\mathbf{5 0}$ is larger than the width dimension of multiradius element 55 (both width dimensions measured at their respective widest dimension and with the width of the respective element being gauged with the respective element oriented as it would be orientated when mounted on the automobile). Thus, and referring to FIG. 3, the distance from side A to side B of plano element 50 is larger than the distance from side C to side D of multiradius element 55. Thus, the ratio of the width of plano element $\mathbf{5 0}$ to the width of multiradius element $\mathbf{5 5}$ is preferably greater than 1 ; more preferably greater than 1.5 ; most preferably greater than 2.5 in order to provide a large, unit magnification plano element $\mathbf{5 0}$ as the principal rear
viewing portion of plano-multiradius reflective element assembly 30 and providing multiradius element 55 as a smaller, auxiliary, separate, wide-angle viewing portion of plano-multiradius reflective element assembly 30. For plano-multiradius reflective element assemblies to be mounted to the exterior sideview assemblies of passenger automobiles used non-commercially and for non-towing purpose, the width of plano element $\mathbf{5 0}$ (at its widest dimension) is preferably in the range of from about 50 mm to about 225 mm ; more preferably in the range of from about 75 mm to about 175 mm ; most preferably in the range of from about 100 mm to about 150 mm .
Backing plate element 60 is preferably a rigid polymeric substrate capable of supporting plano element 50 and multiradius element 55. Backing plate element 60 comprises a flat portion (generally between E and F as shown in FIG. 3) that corresponds to and is aligned with plano element $\mathbf{5 0}$. Backing plate element 60 also comprises a curved portion (generally between G and H as shown in FIG. 3) that corresponds to and is aligned with multiradius element 55. Preferably, curved portion G-H of multiradius element $\mathbf{5 5}$ is fabricated with a multiradius prescription that is substantially the same as the multiradius prescription of multiradius element $\mathbf{5 5}$. Backing plate element $\mathbf{6 0}$ is formed as a single element to which elements 50 and 55 are separately attached. Preferably, backing plate element $\mathbf{6 0}$ is formed by injection molding of a thermoplastic or a thermosetting polymer resin. Materials suitable to use for backing plate element 60 include unfilled or filled polymeric materials such as glass and/or mineral filled nylon or glass and/or mineral filled polypropylene, ABS, polyurethane and similar polymeric materials. For example, backing plate element 60 can be formed of ABS in an injection molding operation. Plano element 50 can be cut from a stock lite of flat chromium mirror-coated 1.6 mm thick glass. Multiradius element 55 can be cut from a stock lite of multiradiusly-bent chromium mirror-coated 1.6 mm thick glass. Plano element 50 and multiradius element 55 can then be attached (such as by an adhesive attachment such as an adhesive pad or by mechanical attachment such by clips, fasteners or the like) to the already molded backing plate element 60. Alternatively, plano clement 50 and multiradius clement 55 can each by individually loaded into an injection molding tool. Once loaded, a polymeric resin (or the monomers to form a polymeric resin) can be injected into the mold in order to integrally form backing plate element 60 with elements 50, 55 integrally molded thereto. Integral molding of the backing plate element to plano element 50 and multiradius element 55 (along with any other elements such as the demarcation element 65) in a single integral molding operation, is a preferred fabrication process for planomultiradius reflective element assembly $\mathbf{3 0}$.

Plano-multiradius reflective element assembly $\mathbf{3 0}$ further preferably includes demarcation element 65 that functions to delineate and demarcate the plano region of the assembly from the wide-angle, multiradius region and also preferably functions to prevent ingress of debris, dirt, water and similar contaminants (such as road splash, car wash spray, rain, snow, ice, leaves, bugs and similar items that planomultiradius reflective element assembly $\mathbf{3 0}$ would be subject to when mounted and used on an automobile) into any gap between plano element 50 and multiradius element 55 when both are attached to backing plate element $\mathbf{6 0}$. Optionally, at least a portion of demarcation element 65 can be disposed in any gap between plano element 50 and multiradius element 55 at their joint on backing plate element 60. Preferably, demarcation element 65 is formed of a polymeric material
include a backing plate element 160 which comprises a plate molded from a polymer resin (such as a polyolefin such as polypropylene or such as ABS or nylon) with a demarcation element 165 that is molded as a wall structure that partitions backing plate element 165 into a first region (from CC to BB) adapted to receive and accommodate plano reflective element 150 and into a second region (from $B B$ to $A A$) adapted to receive and accommodate wide-angle optic multiradius reflective element 155. Note that section AA to BB of backing plate element $\mathbf{1 6 0}$ is angled to section BB to CC . Such angling of the auxiliary reflective element relative to the plano element can be advantageous in allowing the auxiliary reflective element view a portion of the road adjacent the automobile that is in a blind spot of the plano reflective element. In this regard, it is preferable that the multiradius element be angled away from the plane of the plano element, as shown in FIG. 6 by the angling of section $A A$ to $B B$ to section $B B$ to $C C$.

Preferably, demarcation element 65 is formed in an integral molding operation, along with formation of backing plate element 60 , and attachment of elements 50,55 thereto. For example, plano element 50 and multiradius element 55 can each by individually loaded into an injection molding tool. Once loaded, a polymeric resin (or the monomers to form a polymeric resin) can be injected into the mold in order to integrally form backing plate element 60 with elements 50,55 integrally molded thereto and, in the same molding operation and in the same tool, also form by molding the demarcation element. Integral molding of the backing plate element to plano element 50 and multiradius element 55 along with creation in the single molding operation of demarcation element 65 (along with any other elements such as attachment member 64) in a single integral molding operation, is a preferred fabrication process for plano-multiradius reflective element assembly $\mathbf{3 0}$. By loading all the sub components of plano-multiradius reflective element assembly $\mathbf{3 0}$ into a molding tool, and then injecting polymeric resin to form the backing plate, demarcation member and any attachment member, a substantially complete or fully complete plano-multiradius reflective element assembly can be unloaded from the tool at the completion of the integral molding operation (as known in the molding art), thus enabling economy in manufacturing and accommodation of any dimensional tolerances in the sub components. Where integral molding is so used, it is preferable to use a reactive molding operation such as reactive injection molding of a urethane as such reactive injection molding operations occur at relatively modest temperatures.

Plano element 50 and/or multiradius element 55 can comprise a heater element, as known in the automotive mirror art, that is operable to deice/demist surfaces 66, 68. Such heater elements are conventional and can comprise a positive temperature coefficient heater pad, a resistive heater element and/or a conductive coating. Piano element 50 and/or multiradius element 55 can also optionally comprise a scatterproofing member, as known in the automotive mirror art, such as an adhesive tape, to enhance safety in an accident.
Also, plano element 50 and/or multiradius element 55 can comprise a variable reflectance electro-optic element such as an electrochromic mirror reflector. Thus, both element 50 and element 55 can comprise an electrochromic mirror element or either of element 50 and element 55 can comprise an electrochromic mirror element and the other can comprise a fixed reflectance non-variable reflectance mirror element such as a metal reflector coated glass panel such as a chromium coated glass substrate. Also, if both plano

FIGS. 5A, 5B, 5C, 5E and 5F, plano element 50 would be disposed closer to the vehicle body (and hence to the driver) than multiradius element 55 when plano-multiradius reflective element assembly $\mathbf{3 0}$ was mounted in an exterior sideview mirror attached to a side of an automobile. Therefore, in FIGS. 5A, 5B, 5C, 5E and 5F, plano element 50 would be mounted inboard relative to the side of the automobile and multiradius element 55 would be mounted outboard relative to the side of the automobile. In general, the location of the multiradius reflective element in the outboard, upper portion of the plano-multiradius reflective element assembly, as in FIGS. 5B and 5E, is preferred as this allows the plano portion provide a desired rearward field of view along the side of the vehicle. The configuration as shown in FIG. 5G (where the multiradius reflective element is along the inboard side of the assembly) is also desirable as this allows the driver view the side of the vehicle (something many drivers desire in order to have a frame of reference for their rearward field of view) while facilitating having a wide field of view for the plano portion.

Unlike trucks, busses and commercial vehicles the size of an exterior sideview mirror assembly suitable for use on an automobile (and especially when the automobile is not towing a trailer or the like) is restricted. Automobiles generally are non-commercial vehicles intended for personal transportation. Automobiles typically carry 5 passengers or less, although minivans and large sports utility vehicles (which are classified herein as automobiles) can have seat accommodation for up to 10 passengers (although accommodation for 7 passengers or less is more common). The tandem mounting of a plano element of unit magnification and a separate auxiliary element onto a common, single backing plate element, and the mounting of this backing plate element onto an actuator of an exterior sideview mirror assembly so that a driver can simultaneously and similarly move the auxiliary element and the plano element so as to position their respective rearward fields of view, and to achieve this within the relatively restricted space available in a standard automobile-sized exterior sideview mirror assembly is an important element of this present invention. By utilizing a plano element of unit magnification in the planomultiradius reflective element assembly, and by sizing the reflector area of the plano element larger than the reflector area of the multiradius element and, preferably, by sizing the reflector area of the plano element at a sufficiently large size that the rearward field of view provided by the plano element alone meets and satisfies the minimum field of view requirement mandated by an automaker specification and/or a government regulation, the need to provide a safety warning indicia such as "OBJECTS IN MIRROR ARE CLOSER THAN THEY APPEAR" in the plano element and/or in the multiradius element can be obviated. Preferably, the plano element comprises a reflector surface area of a size sufficient, when mounted as part of a plano-multiradius reflective element assembly in a driver-side exterior sideview mirror assembly on an automobile, to provide the driver of the automobile a view of a level road surface extending to the horizon from a line, perpendicular to a longitudinal plane tangent to the driver's side of the automobile at the widest point, extending 8 feet out from the tangent plane 35 feet behind the driver's eyes (at a nominal location appropriate for any 95 th percentile male driver or at the driver's eye reference points established in Federal Motor Vehicle Standard No. 104), with the driver seated in the driver's seat and with the driver's seat in the rearmost position. Also, preferably, the aspect ratio of the planomultiradius reflective element assembly (defined as the ratio
of its largest vertical dimension to its largest horizontal dimension, measured with the plano-multiradius reflective element assembly oriented as it would be oriented when mounted in an exterior sideview mirror assembly on an automobile, and with "horizontal" being generally parallel with the road surface the automobile travels on and "vertical" being generally perpendicular to the road surface the automobile travels on) is preferably less than 1 , more preferably less than 0.8 , most preferably less than 0.6 . Further, it is preferable that the multiradius element be disposed outboard (relative to the side of the vehicle and with the plano-multiradius reflective element assembly oriented as it would be when mounted in an exterior sideview mirror assembly on an automobile) on the plano-multiradius reflective element assembly so that the multiradius element is positioned to provide an auxiliary, wide-angle view of a "blind-spot" region in an adjacent sidelane while the more inboard-disposed plano element with unit magnification provides the principal sideview image to the driver.
Also, it is preferable that the principal axis of the rearward field of view of the multiradius element be different from and angled to the principal axis of the rearward field of view of the plano element when both are attached to the backing plate element of the plano-multiradius reflective element assembly and when the plano-multiradius reflective element assembly is mounted and operated in an exterior sideview mirror assembly on an automobile. Preferably, the principal axis of the rearward field of view of the plano element is dircetcd gencrally parallel to the road that the automobile equipped with the plano-multiradius reflective element assembly is travelling on (i.e. generally parallel to the longitudinal axis of the automobile) so as to provide the driver with a long-distance view of approaching vehicles in the side lane that the plano element views). However, preferably the principal axis of the rearward field of view of the multiradius element of, for example, a door-mounted driver-side (or passenger-side) exterior sideview mirror assembly in which the plano-multiradius reflective element assembly is mounted is directed generally downwardly towards the road surface adjacent to the driver seating location and/or several feet (such as about 1 foot to about 24 feet; more preferably, about 1 foot to about 12 feet; most preferably about 1 foot to about 8 feet in distance) to its rear (in order to capture a field of view of a rear approaching vehicle that is approaching to overtake, or is about to overtake, or is overtaking the automobile equipped with the plano-multiradius reflective element assembly). Thus, preferably, the principal axis of the rearward field of view of the multiradius element is angled and directed generally downwardly with respect to the longitudinal axis of the automobile and thus is at an angle to the principal axis of the rearward field of view of the plano element. For example, multiradius element 155 when attached to surface 173 of backing plate 160 (see FIG. 6B) would have its principal axis of rearward view as indicated by $\mathbf{1 8 0}$ as in FIG. 6 B, and as such would be canted towards the road surface when mounted in an exterior sideview mirror assembly attached to the side of an automobile. By contrast, plano element 150 when attached to surface 174 of backing plate 160 (see FIG. 6A) would have a principal axis as indicated by 185 as in FIG. 6A and, as such, would be generally parallel to the road surface when mounted in an exterior sideview mirror assembly attached to the side of an automobile. Having the multiradius element canted somewhat downwards towards the road surface assists visual detection by the driver of overtaking vehicles in the traditional "blind-spot" in the adjacent side lane. The angle that the multiradius element is
angled on the backing plate element of the plano-multiradius reflective element assembly relative to the plane of the plano reflective element will vary from automobile model to model, but generally is preferred to be in the about 1 degree to about 10 degree range; about 2 degree to about 8 degree range more preferred; and about 3 degree to about 6 degree range most preferred. In order to conveniently achieve an angling of the multiradius portion with respect to the plano portion (and preferably a downward angling), the portion of the backing plate element that the multiradius reflective element is attached to can be angled relative to the adjacent portion of the backing plate element that the plano reflective portion is attached to. Thus, and referring to FIG. 6, planomultiradius reflective element assembly $\mathbf{1 3 0}$ includes a molded polymeric backing plate element 160 comprising a generally flat portion 162 (between BB and CC in FIG. 6) and an adjacent curved portion 161 (between AA and BB). As indicated by 190 and 195 , portion AA to BB of backing plate element $\mathbf{1 6 0}$ is generally angled to portion BB to CC of backing plate 160. Preferably, the portion of backing plate element 160 to which the auxiliary reflective element attaches is angled towards the front (compared to the angling of plano reflective element) of an automobile equipped with the plano-auxiliary reflective element assembly of the present invention. FIG. 6 is a view of plano-multiradius reflective element assembly $\mathbf{1 3 0}$ as it would appear from above the vehicle as it would be orientated in use (with portion 162 closer to the driver than portion 161). The wall scetion, scetion XX in FIG. 6, taken through section 162 of backing plate element 160 is of substantially constant dimension (as illustrated in FIG. 6A) whereas the wall section, section YY in FIG. 6B, taken through section 161 of backing plate element $\mathbf{1 6 0}$ is of varying dimension and is angled. Plano reflective element 150 and multiradius reflective element 155 (for example, plano element 150 can comprise an electrochromic mirror element and multiradius element 155 can comprise a chrome coated glass reflector) are attached to portions 162 and 161 , respectively. By being supported on the angled face 173 (see FIG. 6B) of portion 161, the principal viewing axis of multiradius reflector element $\mathbf{1 5 5}$ is angled downwards towards the road surface, as compared to the more horizontal-viewing principal viewing axis of plano element $\mathbf{1 5 0}$, when plano-multiradius reflective element 130 is mounted in an exterior sideview mirror assembly on an automobile. Demarcation element 165 is preferably molded in the same molding tool as is used to mold backing plate element 160, and so demarcation element $\mathbf{1 6 5}$ is formed as an integral part of backing plate element $\mathbf{1 6 0}$, forming a wall thereof that partitions the surface of backing plate element $\mathbf{1 6 0}$ into a region for receiving the plano reflective clement 150 and a region for receiving the auxiliary reflective element 155. Also, endcaps 170 and 171 are optionally provided. Piano reflective element 150 can attach into the cavity formed between demarcation element 165 and end-cap 171; multiradius reflective element 155 can attach into the cavity formed between demarcation element 165 and end-cap 170. Note that the portion of the backing plate element where the wide-angle optic multiradius element attaches can have a thicker wall thickness than that of the portion of the backing plate element where the unit magnification optic element attaches in order to allow for the angling of the multiradius element downwardly relative to the angle of the plano element, as illustrated in FIGS. 6A-B. As illustrated in FIGS. 6A-B, the angle downwards to the longitudinal axis of the vehicle of the multiradius element can generally be set by an angling of a surface of the backing plate element in
element is angled relative to the plane of the principal, plano reflective element so as to view a blind spot region of the principal plano element. Also, the plano-multiradius reflective element assembly can optionally be fixedly attached to an exterior sideview mirror assembly housing that is not movable, or, alternately, the exterior sideview mirror assembly housing to which the plano-multiradius reflective element assembly is fixedly attached can itself be actuated to move, such as by motor action, so that by moving the exterior sideview mirror assembly housing, the field of 10 rearward view of the plano-multiradius reflective element assembly fixedly attached thereto can correspondingly move and be repositioned to suit the field of view need of a particular driver seated in the automobile cabin.

The above description is considered that of the preferred embodiments only. Modification of the invention will oceur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and are not intended to limit the scope of the invention, which is defined in the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
I claim:

1. An extcrior sidevicew mirror system suitable for use on an automobile, said exterior sideview mirror system comprising:
an exterior sideview mirror assembly adapted for attachment to a side of an automobile;
said exterior sideview mirror assembly including a reflective element having a rearward field of view when attached to the side of the automobile;
said reflective element attached to an electrically-operated actuator and movable by said actuator in order to position said rearward field of view in response to a control;
wherein said reflective element comprises a planomultiradius reflective element assembly, said planomultiradius reflective element assembly comprising a plano reflective element having unit magnification and a separate multiradius reflective element having a multiradius curvature, said plano reflective element having a rearward field of view with a principal axis;
said plano reflective element and said multiradius reflective element of said plano-multiradius reflective element assembly mounted adjacently in said planomultiradius reflective element assembly in a side-byside relationship and not superimposed with one reflective element on top of the other reflective clement, and supported by a backing plate element, said backing plate element mounting to said actuator such that movement of said backing plate element of said plano-multiradius reflective element assembly by said actuator simultaneously and similarly moves said plano reflective element and said multiradius reflective element, said multiradius reflective element having a rearward field of view with a principal axis, said backing plate element have a first support portion supporting said plano-reflective element and a second support portion supporting said multiradius reflective element, said second support portion tilted forward with respect to said first support portion whereby said principal axis of said rearward field of view of said multiradius reflective element is angled downwardly and outwardly with respect to said principal axis of said rearward field of view of said plano reflective element
2. The exterior sideview mirror system of claim 2 , wherein said portion visible to a driver of the automobile has a width less than about 3 mm .
3. The exterior sideview mirror system of claim 2 , 60 wherein said portion visible to a driver of the automobile has a width less than about 2 mm .
4. The exterior sideview mirror system of claim 2 , wherein said portion visible to a driver of the automobile has a width greater than about 0.5 mm .
5. The exterior sideview mirror system of claim 2 , wherein said portion visible to a driver of the automobile has a width greater than about 0.75 mm .
6. The exterior sideview mirror system of claim 2 , wherein said portion visible to a driver of the automobile has a width greater than about 1 mm .
7. The exterior sideview mirror system of claim 1 , wherein said plano reflective element is supported by said backing plate element by at least one of an adhesive attachment and a mechanical attachment.
8. The exterior sideview mirror system of claim 1 , wherein said multiradius reflective element is supported by said backing plate element by at least one of an adhesive attachment and a mechanical attachment.
9. The exterior sideview mirror system of claim 1, wherein said multiradius reflective element is supported by said backing plate element at a location such that, when said exterior mirror assembly is attached to a side of an automobile, at least a portion of said plano reflective element is disposed closer to said side of the automobile than any portion of said multiradius reflective element.
10. The exterior sideview mirror system of claim 1, wherein said multiradius reflective element comprises a bent 20 glass substrate with radii of curvature in the range of from about 4.000 mm to about 50 mm .
11. The exterior sideview mirror system of claim 1, wherein the ratio of the width of said plano reflective element to the width of said multiradius reflective element is greater than 1.
12. The exterior sideview mirror system of claim 1, wherein the ratio of the width of said plano reflective clement to the width of said multiradius reflective clement is greater than 1.5 .
13. The exterior sideview mirror system of claim 1, wherein the ratio of the width of said plano reflective element to the width of said multiradius reflective element is greater than 2.5 .
14. The exterior sideview mirror system of claim 1, wherein said angle downwards to the longitudinal axis of the automobile is in the range from about 1 degree to about 10 degrees.
15. The exterior sideview mirror system of claim 1, wherein said angle downwards to the longitudinal axis of the automobile is in the range from about 2 degrees to about 8 degrees.
16. The exterior sideview mirror system of claim 1, wherein said angle downwards to the longitudinal axis of the automobile is in the range from about 3 degrees to about 6 degrees.
17. The exterior sideview mirror system of claim 1, wherein said angle downwards to the longitudinal axis of the automobile is generally set by an angling of a surface of said backing plate element.
18. The exterior sideview mirror system of claim 1, wherein said exterior sideview mirror assembly comprises a door-mounted exterior sideview mirror assembly adapted for attachment to a side of the automobile adjacent a driver seating location of a driver of the automobile and wherein the principal axis of the rearward field of view of said multiradius reflective element is directed generally downwardly towards the road surface adjacent to the driver
seating location at a distance in the range of about 1 foot to about 24 feet to the rear of the driver seating location.
19. The exterior sideview mirror system of claim 1 , wherein said exterior sideview mirror assembly comprises a door-mounted exterior sideview mirror assembly adapted for attachment to a side of the automobile adjacent a driver seating location of a driver of the automobile and wherein the principal axis of the rearward field of view of said multiradius reflective element is directed generally down10 wardly towards the road surface adjacent to the driver seating location at a distance in the range of about 1 foot to about 12 feet to the rear of the driver seating location.
20. The exterior sideview mirror system of claim 1 , wherein said exterior sideview mirror assembly comprises a 15 door-mounted exterior sideview mirror assembly adapted for attachment to a side of the automobile adjacent a driver seating location of a driver of the automobile and wherein the principal axis of the rearward field of view of said multiradius reflective element is directed generally downwardly towards the road surface adjacent to the driver seating location at a distance in the range of about 1 foot to about 8 feet to the rear of the driver seating location.
21. The exterior sideview mirror system of claim 1 , wherein said exterior sideview mirror assembly comprises a 25 fixedly attached exterior sideview mirror assembly.
22. The exterior sideview mirror system of claim 1, wherein said exterior sideview mirror assembly comprises a break-away exterior sideview mirror assembly
23. The extcrior sideview mirror system of claim 1, 30 wherein said exterior sideview mirror assembly comprises a powerfold exterior sideview mirror assembly.
24. The exterior sideview mirror system of claim 1, wherein said control comprises a memory controller.
25. The exterior sideview mirror system of claim 1 , wherein at least one of said plano reflective element and said multiradius reflective element comprises an electro-optic reflective element.
26. The exterior sideview mirror system of claim 1 , wherein both said plano reflective element and said multiradius reflective element comprise an electro-optic reflective element.
27. The exterior sideview mirror system of claim 1, wherein said plano reflective element comprises an electrooptical reflective element.
28. The exterior sideview mirror system of claim 36, wherein said electro-optical reflective element comprises an electrochromic reflective element.
29. The exterior sideview mirror system of claim 37, wherein said multiradius reflective element comprises a 50 fixed reflectance mirror reflector.
30. The exterior sideview mirror system of claim 38, wherein said fixed reflectance mirror reflector comprises a bent glass substrate coated with a metallic reflector coating.
31. The exterior sideview mirror system of claim 1, wherein said plano-multiradius reflective element assembly is formed in an integral molding operation.

Electronic Patent Application Fee Transmittal				
Application Number:	12851045			
Filing Date:	05-Aug-2010			
Title of Invention:	EXTERIOR SIDEVIEW MIRROR SYSTEM			
First Named Inventor/Applicant Name:	Niall R. Lynam			
Filer:	Timothy A. Flory/Amanda Sytsma			
Attorney Docket Number:	DON09 P-1624			
Filed as Large Entity				
Utility under 35 USC 111 (a) Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Extension-of-Time:				

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				
Statutory or terminal disclaimer	1814	1	140	140
	Total in USD (\$)			140

Electronic Acknowledgement Receipt	
EFS ID:	9258662
Application Number:	12851045
International Application Number:	
Confirmation Number:	1992
Title of Invention:	EXTERIOR SIDEVIEW MIRROR SYSTEM
First Named Inventor/Applicant Name:	Niall R. Lynam
Customer Number:	28101
Filer:	Timothy A. Flory/Amanda Sytsma
Filer Authorized By:	Timothy A. Flory
Attorney Docket Number:	DON09 P-1624
Receipt Date:	19-JAN-2011
Filing Date:	05-AUG-2010
Time Stamp:	13:39:24
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 140$
RAM confirmation Number	13317
Deposit Account	220190
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \quadCharge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)	

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)					
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Transmittal Letter	TransmittalForm.pdf	81044	no	1
			9ee3ef860c3f1a215aad1c1523f007c86810 ac89		
Warnings:					
Information:					
2	Amendment/Req. Reconsideration-After Non-Final Reject	ResponseA.pdf	1048279	no	18
			$\begin{gathered} \text { Ofcc22be8bb2516b2e7336f5283de7b437b } \\ \text { b3ae3 } \end{gathered}$		
Warnings:					
Information:					
3	Terminal Disclaimer Filed	TerminalDisclaimer.pdf	95156	no	1
			06e37f8353913d1471a531c65e0f68da2d8 66f/f		
Warnings:					
Information:					
4		DeclarationandExhibits.pdf	4808687	yes	74
	Multipart Description/PDF files in .zip description				
	Document Description		Start	End	
	Rule 130, 131 or 132 Affidavits		1	4	
	Rule 130, 131 or 132 Affidavits		5	54	
	Rule 130,131 or 132 Affidavits		55	74	
Warnings:					
Information:					
5	Fee Worksheet (PTO-875)	fee-info.pdf	29910	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			6063076		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Electronic Acknowledgement Receipt	
EFS ID:	9258662
Application Number:	12851045
International Application Number:	
Confirmation Number:	1992
Title of Invention:	EXTERIOR SIDEVIEW MIRROR SYSTEM
First Named Inventor/Applicant Name:	Niall R. Lynam
Customer Number:	28101
Filer:	Timothy A. Flory/Amanda Sytsma
Filer Authorized By:	Timothy A. Flory
Attorney Docket Number:	DON09 P-1624
Receipt Date:	19-JAN-2011
Filing Date:	05-AUG-2010
Time Stamp:	13:39:24
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	$\$ 140$
RAM confirmation Number	13317
Deposit Account	220190
Authorized User	
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \quadCharge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)	

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)					
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Transmittal Letter	TransmittalForm.pdf	81044	no	1
			9ee3ef860c3f1a215aad1c1523f007c86810 ac89		
Warnings:					
Information:					
2	Amendment/Req. Reconsideration-After Non-Final Reject	ResponseA.pdf	1048279	no	18
			$\begin{gathered} \text { Ofcc22be8bb2516b2e7336f5283de7b437b } \\ \text { b3ae3 } \end{gathered}$		
Warnings:					
Information:					
3	Terminal Disclaimer Filed	TerminalDisclaimer.pdf	95156	no	1
			06e37f8353913d1471a531c65e0f68da2d8 66f/f		
Warnings:					
Information:					
4		DeclarationandExhibits.pdf	4808687	yes	74
	Multipart Description/PDF files in .zip description				
	Document Description		Start	End	
	Rule 130, 131 or 132 Affidavits		1	4	
	Rule 130, 131 or 132 Affidavits		5	54	
	Rule 130,131 or 132 Affidavits		55	74	
Warnings:					
Information:					
5	Fee Worksheet (PTO-875)	fee-info.pdf	29910	no	2
Warnings:					
Information:					
Total Files Size (in bytes):			6063076		

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Doc Code: TRAN.LET

Document Description: Transmittal Letter

PTO/SB/21 (07-09)
Approved for use through 07/31/2012. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO toprocess) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and1.14. This collection is estimated to 2 hours to complete, including gathering, preparing, and submilting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestlons for reducing thls burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O, Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
www. uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/851,045	08/05/2010 Niall R. Lynam		DON09 P-1624 1992	
			EXAMINER	
SUITE 207			AMARI, ALESSANDRO V	
2851 CHARLEVOIX DRIVE, S.E. GRAND RAPIDS, MI 49546			ART UNIT	PAPER NUMBER
			2872	
			MAIL DATE	DELIVERY MODE
			01/13/2011	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. $12 / 851,045$	Applicant(s) LYNAM, NIALL R.	
	Examiner ALESSANDRO AMARI	Art Unit 2872	

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704 (b).

Status

1) \boxtimes Responsive to communication(s) filed on 10 November 2010.
$2 a) \square$ This action is FINAL. 2b) \boxtimes This action is non-final.
2) \square Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) \boxtimes Claim(s) $1-92$ is/are pending in the application.

4a) Of the above claim(s) 40-92 is/are withdrawn from consideration.
5)Claim(s) \qquad is/are allowed.
6) \boxtimes Claim(s) 1 -39 is/are rejected.
7) \squareClaim(s) \qquad is/are objected to.
8) \square Claim(s) \qquad are subject to restriction and/or election requirement.

Application Papers

9) \square The specification is objected to by the Examiner.
10) \boxtimes The drawing(s) filed on $\underline{05 \text { August } 2010}$ is/are: a) \boxtimes accepted or b) \square objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) \square Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119 (a)-(d) or (f).
a)
\square All
b) \square Some * c)None of:
1. \square Certified copies of the priority documents have been received.
2. \square Certified copies of the priority documents have been received in Application No. \qquad .
3. \square Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

[^4]4)Interview Summary (PTO-413) Paper No(s)/Mail Date
5)
6)Other: \qquad

DETAILED ACTION

Election/Restrictions

Applicant's election of Invention I in the reply filed on 10 November 2010 is acknowledged. Because applicant did not distinctly and specifically point out the supposed errors in the restriction requirement, the election has been treated as an election without traverse (MPEP § 818.03(a)). Claims 40-92 are withdrawn from further consideration pursuant to 37 CFR 1.142(b), as being drawn to nonelected Inventions, there being no allowable generic or linking claim.

Priority

Applicant's claim for the benefit of a prior-filed application under 35 U.S.C. 119(e) or under 35 U.S.C. 120, 121, or 365(c) is acknowledged. Applicant has not complied with one or more conditions for receiving the benefit of an earlier filing date under 35 U.S.C. 120 as follows:

The later-filed application must be an application for a patent for an invention which is also disclosed in the prior application (the parent or original nonprovisional application or provisional application). The disclosure of the invention in the parent application and in the later-filed application must be sufficient to comply with the requirements of the first paragraph of 35 U.S.C. 112. See Transco Products, Inc. v. Performance Contracting, Inc., 38 F.3d 551, 32 USPQ2d 1077 (Fed. Cir. 1994).

The disclosure of the prior-filed applications, Application No. 60/471,872 fails to provide adequate support or enablement in the manner provided by the first paragraph of 35 U.S.C. 112 for one or more claims of this application.

The later-filed application must be an application for a patent for an invention which is also disclosed in the prior application (the parent or original nonprovisional application or provisional application). The disclosure of the invention in the parent application and in the later-filed application must be sufficient to comply with the requirements of the first paragraph of 35 U.S.C. 112. See Transco Products, Inc. v. Performance Contracting, Inc., 38 F.3d 551, 32 USPQ2d 1077 (Fed. Cir. 1994).

In regard to claim 1 and claims dependent thereon, the prior Application fails to provide adequate support in the manner provided by the first paragraph of 35 U.S.C. 112 for at least the following features: electrically-operated actuator, plano-auxiliary reflective element assembly comprising a plano reflective element having unit magnification and a separate auxiliary reflective element having a curvature, a backing plate element having a first support portion supporting said plano reflective element and a second support portion supporting said auxiliary reflective element and the angling of the rearward field of view of the auxiliary reflective element relative to the rearward field of view.

Applicant states that this application is a continuation or divisional application of the prior-filed application. A continuation or divisional application cannot include new matter. Applicant is required to change the relationship (continuation or divisional
application) to continuation-in-part because this application contains the following matter not disclosed in the prior-filed application:

In regard to claim 1 and claims dependent thereon, the prior Application fails to provide adequate support in the manner provided by the first paragraph of 35 U.S.C. 112 for at least the following features: electrically-operated actuator, plano-auxiliary reflective element assembly comprising a plano reflective element having unit magnification and a separate auxiliary reflective element having a curvature, a backing plate element having a first support portion supporting said plano reflective element and a second support portion supporting said auxiliary reflective element and the angling of the rearward field of view of the auxiliary reflective element relative to the rearward field of view.

Therefore, in view of the disclosure, the effective filing date for the instant application is 5 August 2010.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

Claims 1-23 and 27-39 are rejected under 35 U.S.C. 102(b) as being anticipated by Lynam et al (hereafter "Lynam") US 2002/0072026.

In regard to claim 1, Lynam discloses (see for example, Figs. 1, 2, 3, 5, 6, 8) an exterior sideview mirror system suitable for use on an automobile, said exterior sideview mirror system comprising: an exterior sideview mirror assembly (12) adapted for attachment to a side of an automobile; said exterior sideview mirror assembly including a reflective element (30) having a rearward field of view when attached to the side of the automobile; said reflective element attached to an electrically-operated actuator of said exterior sideview mirror assembly and movable by said actuator in order to position said rearward field of view to a driver-desired position when said exterior sideview mirror assembly is attached to the side of the automobile as described in para. [0015] and [0019]; wherein said reflective element comprises a plano-auxiliary reflective element assembly as shown in Figure 5 and as described in para. [0083], said plano-auxiliary reflective element assembly comprising a plano reflective element having unit magnification and a separate auxiliary reflective element having a curvature as described in para. [0015]; said plano reflective element and said auxiliary reflective element of said piano-auxiliary reflective element assembly mounted adjacently at said piano-auxiliary reflective element assembly in a side-by-side relationship and not superimposed with one reflective element on top of the other reflective element as shown in Figure 5; said plano reflective element and said auxiliary reflective element supported at a backing plate element (60), said backing plate element mounting to said actuator such that movement of said backing plate element of said piano-auxiliary reflective element assembly by said actuator simultaneously and similarly moves said plano reflective element and said auxiliary reflective element as described in para.
[0042], [0056] and [0058]; said auxiliary reflective element having a wide-angle field of view encompassing a blind spot in the side lane adjacent the side of the automobile to which said exterior sideview mirror assembly is attached as described in para. [0058]; said backing plate element having a first support portion supporting said plano reflective element and a second support portion supporting said auxiliary reflective element as described in para. [0066] and [0073] and Figures 9-11; wherein said auxiliary reflective element is positioned at an outboard portion of said plano-auxiliary reflective element assembly when said exterior sideview mirror assembly is mounted to the side of the automobile as shown in Figures 5 and 9-11; wherein said backing plate element comprises a polymeric substrate that is formed as a single element by injection molding of a polymeric resin as described in para. [0050]; wherein said backing plate element is capable of supporting said plano reflective element and said auxiliary reflective element; wherein said first support portion of said backing plate element comprises a flat portion and wherein said plano reflective element is disposed at said flat portion; wherein said second support portion of said backing plate element comprises a curved portion and wherein said auxiliary reflective element is disposed at said curved portion as shown in Figure 6 and as described in para. [0059]; wherein the rearward field of view of said auxiliary reflective element is different from and angled to the rearward field of view of said plano reflective element when both are attached to said backing plate element of said piano-auxiliary reflective element assembly when said piano-auxiliary reflective element assembly is included in said exterior sideview mirror assembly and when said exterior sideview mirror assembly is attached to the side of the automobile as described
in para. [0013], [0014] and [0059]; wherein angling of the rearward field of view of said auxiliary reflective element relative to the rearward field of view of said plano reflective element is achieved, at least in part, by an angling of said second support portion of said backing plate element supporting said auxiliary reflective element relative to said first support portion of said backing plate element supporting said plano reflective element as described in para. [0059]; wherein, when said exterior sideview mirror assembly is attached to the side of the automobile, the field of view of said plano reflective element generally views rearwardly of the equipped automobile and the field of view of said auxiliary reflective element generally views towards a blind spot in the side lane adjacent the side of the automobile to which said exterior sideview mirror assembly is attached, said blind spot being generally outside the rearward field of view of said plano reflective element when said plano reflective element is viewed by a driver of the equipped automobile when said exterior sideview mirror assembly is attached to the side of the automobile as described in para. [0058] and [0059]; and wherein at least one of said plano reflective element and said auxiliary reflective element comprises one of (a) a glass substrate having a surface coated with a metallic reflector coating and (b) a polymeric substrate having a thin glass element applied to a surface thereof and with an opposing surface thereof having a reflecting layer applied thereto as described in para. [0043].

Regarding claim 2, Lynam discloses that at least a portion of said auxiliary reflective element adjacent said plano reflective element has its front surface generally
coplanar with the front surface of said plano reflective element as described in para. [0048] and as shown in Figure 10.

Regarding claim 3, Lynam discloses that an element of said backing plate element at least partially partitions said backing plate element into a first region where said plano reflective element is disposed and a separate and adjacent second region where said auxiliary reflective element is disposed, and wherein said first region is adapted to receive said plano reflective element and said second region is adapted to receive said auxiliary reflective element as shown in Figure 6.

Regarding claim 4, Lynam discloses (see Fig. 5, 6) that said plano reflective element and said auxiliary reflective element are adjacently supported at said backing plate element at a joint, and wherein said piano-auxiliary reflective element assembly includes a demarcation element $(65,165)$, said demarcation element disposed at said joint to form a demarcation between said plano reflective element and said auxiliary reflective element, said demarcation element having a portion visible to a driver of the automobile when said exterior sideview mirror assembly is attached to the side of the automobile as described in para. [0051] and as shown in Figure 5.

Regarding claim 5, Lynam discloses that said demarcation element is dark colored as described in para. [0051] and as shown in Figure 5.

Regarding claim 6, Lynam discloses that said demarcation element is dark colored with a color selected from the group consisting of black, grey, blue and brown as described in para. [0051] and as shown in Figure 5.

Regarding claim 7, Lynam discloses that said demarcation element comprises at least one of a polymer material, a tape, a plastic film, a paint, a lacquer and a caulk as described in para. [0051].

Regarding claim 8, Lynam discloses that said demarcation element comprises a polymer material as described in para. [0051].

Regarding claim 9, Lynam discloses that the rearward field of view of said auxiliary reflective element is at an angle of at least about 3 degrees relative to the rearward field of view of said plano reflective element as described in para [0013].

Regarding claim 10, Lynam discloses that said joint comprises a space between said plano reflective element and said auxiliary reflective element as described in para. [0042].

Regarding claim 11, Lynam discloses that said demarcation element is at least partially disposed at said space between said plano reflective element and said auxiliary reflective element as described in para. [0051].

Regarding claim 12, Lynam discloses that said demarcation element comprises a wall on said backing plate element, said wall located on said backing plate element at said joint, said wall disposed between said plano reflective element and said auxiliary reflective element as shown in Figure 6 and as described in para. [0051] and [0052].

Regarding claim 13, Lynam discloses that an element of said backing plate element at least partially partitions said backing plate element into a first region where said plano reflective element is disposed and a separate and adjacent second region where said auxiliary reflective element is disposed, and wherein said first region is
adapted to receive said plano reflective element and said second region is adapted to receive said auxiliary reflective element as shown in Figure 6 and as described in para. [0051] and [0052].

Regarding claim 14, Lynam discloses that the rearward field of view of said auxiliary reflective element is generally directed at least one of outwardly and downwardly with respect to the longitudinal axis of the equipped automobile when said exterior sideview mirror assembly is attached to the side of the automobile as described in para. [0009], [0013], and [0074].

Regarding claim 15, Lynam discloses that the rearward field of view of said auxiliary reflective element is generally directed outwardly and downwardly with respect to the longitudinal axis of the equipped automobile when said exterior sideview mirror assembly is attached to the side of the automobile as described in para. [0009], [0013], and [0073].

Regarding claim 16, Lynam discloses that said plano reflective element is supported at said backing plate element by at least one of an adhesive attachment and a mechanical attachment, and wherein said auxiliary reflective element is supported at said backing plate element by at least one of an adhesive attachment and a mechanical attachment as described in para. [0050] and [0051].

Regarding claim 17, Lynam discloses that said plano reflective element comprises a flat glass substrate having a surface coated with a metallic reflector coating and wherein said auxiliary reflective element comprises a bent glass substrate having a
surface coated with a metallic reflector coating, and wherein said bent glass substrate has a spherical curvature as described in para. [0045].

Regarding claim 18, Lynam discloses that said plano reflective dement comprises a flat glass substrate having a surface coated with a metallic reflector coating and wherein said auxiliary reflective element comprises a bent glass substrate having a surface coated with a metallic reflector coating, and wherein said bent glass substrate has a multiradius curvature as described in para. [0045].

Regarding claim 19, Lynam discloses that said plano reflective element comprises a flat glass substrate having a surface coated with a metallic reflector coating and wherein said auxiliary reflective element comprises a bent glass substrate having a surface coated with a metallic reflector coating, and wherein said bent glass substrate has an aspherical curvature as described in para. [0005] and [0083].

Regarding claim 20, Lynam discloses that said plano reflective element comprises a substrate having a surface coated with a metallic reflector coating and wherein said auxiliary reflective element comprises a substrate having a surface coated with a metallic reflector coating as described in para. [0043].

Regarding claim 21, Lynam discloses that said curved portion of said backing plate element comprises a curvature corresponding to a curvature of said auxiliary reflective element as described in para. [0083].

Regarding claim 22, Lynam discloses that said curved portion of said backing plate element has at least one of (a) a spherical curvature, (b) an aspherical curvature and (c) a multiradius curvature as described in para. [0045].

Regarding claim 23, Lynam discloses (see Fig. 5, 6) that a demarcation element $(65,165)$ is disposed between said plano reflective element and said auxiliary reflective element and wherein said demarcation element comprises a part of said backing plate element, and wherein said demarcation element comprises a wall structure that at least partially partitions said backing plate element into a first region where said plano reflective element is disposed and a separate and adjacent second region where said auxiliary reflective element is disposed, and wherein at least one of (a) said first region is adapted to receive said plano reflective element and (b) said second region is adapted to receive said auxiliary reflective element as described in para. [0051].

Regarding claim 27, Lynam discloses that said auxiliary reflective element comprises a heater element operable to demist/deice the outmost surface of said auxiliary reflective element when said auxiliary reflective element is disposed at said backing plate element and when said exterior sideview mirror assembly is attached and operated on the side of the automobile as described in para. [0054] and [0065] and as shown in Figure 9.

Regarding claim 28, Lynam discloses that said exterior sideview mirror assembly including said piano-auxiliary reflective element having a rearward field of view when attached to the side of the automobile comprises a driver-side exterior sideview mirror assembly, and wherein, when attached to the side of the automobile, said driver-side exterior sideview mirror assembly provides to the driver of the equipped automobile a total field of view that generally subtends an angle of at least about 25 degrees with respect to the side of the equipped automobile as described in para. [0046] and [0061].

Regarding claim 29, Lynam discloses that said exterior sideview mirror assembly including said piano-auxiliary reflective element having a rearward field of view when attached to the side of the automobile comprises a driver-side exterior sideview mirror assembly, and wherein, when attached to the side of the automobile, said driver-side exterior sideview mirror assembly provides to the driver of the equipped automobile a total field of view that generally subtends an angle of at least about 30 degrees with respect to the side of the equipped automobile as described in para. [0046] and [0061].

Regarding claim 30, Lynam discloses that said auxiliary reflective element has an aspherical curvature as described in para. [0005] and [0083].

Regarding claim 31, Lynam discloses that said auxiliary reflective element has a spherical curvature as described in para. [0083].

Regarding claim 32, Lynam discloses that the ratio of the width of said piano reflective element to the width of said auxiliary reflective element is greater than 1.5 as described in para. [0049].

Regarding claim 33, Lynam discloses that the ratio of the width of said plano reflective element to the width of said auxiliary reflective element is greater than 2.5 as described in para. [0049].

Regarding claim 34, Lynam discloses that said exterior sideview mirror assembly comprises a door-mounted exterior sideview mirror assembly adapted for attachment to a side of the automobile adjacent a driver seating location of a driver of the automobile and wherein the rearward field of view of said auxiliary reflective element generally views downwardly towards the road surface adjacent to the driver seating location at
least at a distance in the range of about 1 foot to about 24 feet to the rear of the driver seating location as described in para. [0059].

Regarding claim 35, Lynam discloses that at least one of said plano reflective element and said auxiliary reflective element comprises a glass substrate having a surface coated with a metallic reflector coating, and wherein said metallic reflector coating is selected from the group consisting of (i) a chromium coating, (ii) a titanium coating, (iii) a rhodium coating, (iv) a metal-alloy coating, (v) a nickel alloy coating, (vi) an aluminum coating and (vii) a silver coating as described in para. [0047].

Regarding claim 36, Lynam discloses that at least one of said plano reflective element and said auxiliary reflective element comprises an electro-optic reflective element as described in para. [0043] and [0047].

Regarding claim 37, Lynam discloses that said plano reflective element comprises an electro-optical reflective element, and wherein said electro-optical reflective element comprises an electrochromic reflective element as described in para. [0048] and [0055].

Regarding claim 38, Lynam discloses that said auxiliary reflective element comprises a fixed reflectance mirror reflector as described in para. [0043] and [0047].

Regarding claim 39, Lynam discloses that said fixed reflectance mirror reflector comprises a spherically bent glass substrate coated with a metallic reflector coating as described in para. [0047], [0055], [0064] and [0069].

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Claims 24-26 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lynam US 2002/0072026 in view of Lynam US 2004/0264011.

Regarding claims 24-26, Lynam '026 teaches the invention as set forth above but does not teach regarding claim 24, a plano reflective element comprises a substrate formed from elongated sheet of substrate material comprising a polymeric resin material, and wherein said elongated sheet has a substantially transparent functional film applied at a surface thereof, and wherein said substantially transparent functional film provides at least one of (a) an anti-abrasion function, (b) a hydrophobic function and (c) a hydrophilic function, and wherein said functional film comprises an ultrathin glass material which is sufficiently flexible to be provided in a reel or roll, and wherein said functional film is sufficiently flexible to conform to said substrate of said plano reflective element, and wherein said plano reflective element comprises a reflective film disposed at a surface of said substrate opposite said substantially transparent functional film or regarding claim 25 , that said plano reflective element comprises a thin flexible glass sheet and a polymeric substrate, said thin flexible glass sheet existing as a pre-formed glass sheet that is separate from said polymeric substrate, said thin glass sheet having an attaching surface, said attaching surface being opposed to and adhered to said
surface of said polymeric substrate when said thin flexible sheet is adhered to said exterior surface of said polymeric substrate, said thin flexible sheet providing an antiabrasion function at said surface of said polymeric substrate when adhered thereto, said thin flexible glass sheet substantially conforming to said exterior surface of said polymeric substrate when adhered thereto, said thin glass sheet having a thickness of less than approximately 0.8 mm and greater than approximately 0.3 mm or regarding claim 26, that said substrate is cut from a molded or extruded or cast strip or sheet, said glass sheet being laminated to said strip or sheet and wherein said plano reflective element comprises a reflective film applied to an inner surface of said substrate opposite said exterior surface, and wherein said reflective film comprises a polymeric reflective film at least one of laminated, adhered and applied to said inner surface of said substrate.

Regarding claim 24, Lynam '011 teaches a plano reflective element comprises a substrate formed from elongated sheet of substrate material comprising a polymeric resin material, and wherein said elongated sheet has a substantially transparent functional film applied at a surface thereof, and wherein said substantially transparent functional film provides at least one of (a) an anti-abrasion function, (b) a hydrophobic function and (c) a hydrophilic function, and wherein said functional film comprises an ultrathin glass material which is sufficiently flexible to be provided in a reel or roll, and wherein said functional film is sufficiently flexible to conform to said substrate of said plano reflective element, and wherein said plano reflective element comprises a reflective film disposed at a surface of said substrate opposite said substantially
transparent functional film as described in para. [0040]-[0043] and [0047]. Regarding claim 25, Lynam '011 teaches that said plano reflective element comprises a thin flexible glass sheet and a polymeric substrate, said thin flexible glass sheet existing as a pre-formed glass sheet that is separate from said polymeric substrate, said thin glass sheet having an attaching surface, said attaching surface being opposed to and adhered to said surface of said polymeric substrate when said thin flexible sheet is adhered to said exterior surface of said polymeric substrate, said thin flexible sheet providing an anti-abrasion function at said surface of said polymeric substrate when adhered thereto, said thin flexible glass sheet substantially conforming to said exterior surface of said polymeric substrate when adhered thereto, said thin glass sheet having a thickness of less than approximately 0.8 mm and greater than approximately 0.3 mm as described in para. [0032], [0040]-[0043] and [0047]. Regarding claim 26, Lynam '011 teaches that said substrate is cut from a molded or extruded or cast strip or sheet, said glass sheet being laminated to said strip or sheet and wherein said plano reflective element comprises a reflective film applied to an inner surface of said substrate opposite said exterior surface, and wherein said reflective film comprises a polymeric reflective film at least one of laminated, adhered and applied to said inner surface of said substrate as described in para. [0032], [0040]-[0043] and [0047]. The preceding claims are product-by-process claims and even though product-by-process claims are limited by and defined by the process, determination of patentability is based on the product itself. The patentability of a product does not depend on its method of production. If the product in the product-by-process claim is the same as or obvious
from a product of the prior art, the claim is unpatentable even though the prior product was made by a different process. In re Thorpe, 777 F.2d 695, 698, 227 USPQ 964, 966 (Fed. Cir. 1985)

It would have been obvious to one having ordinary skill in the art at the time the invention was made to utilize film characteristics of Lynam '011 in the sideview mirror assembly of Lynam '026 in order to provide for a hard coat or surface for the mirror so as to provide for enhanced scratch resistance.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to ALESSANDRO AMARI whose telephone number is (571)272-2306. The examiner can normally be reached on Monday-Friday 8:00 AM to 5:30 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Stephone B. Allen can be reached on (571) 272-2434. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

11 January 2011
/Alessandro Amari/
Primary Examiner, Art Unit 2872

Notice of References Cited	Application/Control No. $12 / 851,045$		Applicant(s)/Patent Under Reexamination LYNAM, NIALL R.
	Examiner ALESSANDRO AMARI	Art Unit 2872	Page 1 of 1

U.S. PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY		Name
$*$	A	US-2002/0072026	$06-2002$	Lynam et al.	
	B	US-			$432 / 77$
	C	US-			
	D	US-			
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		
	U	

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

EAST Search History

EAST Search History (Prior Art)

Ref \#	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
S1	3829	(359/866,872,877,883).CCLS.	US PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	OR	OFF	$\begin{aligned} & 2011 / 01 / 06 \\ & 21: 08 \end{aligned}$
S2	42	plano-auxiliary	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 21: 09 \end{aligned}$
S3	17	S1 and S2	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & \text { 2011/01/06 } \\ & 21: 09 \end{aligned}$
S4	814039	actuator	US PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 21: 13 \end{aligned}$
S5	15	S3 and S4	USPGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 21: 13 \end{aligned}$
S6	22	backing plate and polymeric and angling and blind spot	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 21: 58 \end{aligned}$
S7	3	S5 and S6	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 21: 59 \end{aligned}$
S8	211758	glass substrate	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 21: 59 \end{aligned}$
S9	3	S7 and S8	US PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 21: 59 \end{aligned}$
S10	21770	demarcation	US PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & \text { 2011/01/06 } \\ & 22: 01 \end{aligned}$
S11	3	S9 and S10	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 22: 01 \end{aligned}$

S12	137	demarcation with polymer	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 22: 01 \end{aligned}$
S13	3	S11 and S12	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 22: 01 \end{aligned}$
S14	3	S13 and heater	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT	ADJ	ON	$\begin{aligned} & 2011 / 01 / 06 \\ & 22: 06 \end{aligned}$

EAST Search History (Interference)
< This search history is empty>

1/ 11/2011 2:06:29 PM
$\mathrm{C} \backslash \backslash$ Documents and Settings aamari\My Documents \backslash EAST \backslash Workspaces $\backslash 12851045$. wsp

Receipt date; $08 / 10 / 2010 \quad$ U.s. Patent and Trademark office, U.S. DEPARTMENT OF COMMERCE

Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Complete if Known$12851045-G A U \cdot 2872$	
				Application Number	12/851,045
				Filing Date	August 5, 2010
				First Named Inventor	Niall R. Lynam
				Art Unit	2872
				Examiner Name	
Sheet	1	of	12	Attorney Docket Number	DON09 P-1624

U. S. PATENT DOCUMENTS					
Examiner initials*	$\begin{aligned} & \hline \text { Cite } \\ & \text { No. } \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{\text {2(IV Known })}$			Relevant Passages or Relevant Figures Appear

	7,636,188	2009-12-22	Baur et al.	
	7,626,749	2009-12-01	Baur et al.	
	7,581,859	2009-09-01	Lynam	
	7,526,103	2009-04-28	Schofield et al.	
	7,492,281	2009-02-17	Lynam et al.	
	7,423,522	2008-09-09	O'Brien et al.	
	7,420,756	2008-09-02	Lynam	
	7,400,435	2008-07-15	Byers et al.	
	7,391,563	2008-06-24	McCabe et al.	
	7,377,675	2008-05-27	Pastrick et al.	
	7,370,983	2008-05-13	DeWind et al.	
	7,345,680	2008-03-18	David	
	7,339,149	2008-03-04	Schofield et al.	
	7,338,177	2008-03-04	Lynam	
	7,289,037	2007-10-30	Uken et al.	
	7,274,501	2007-09-25	McCabe et al.	
	7,267,448	2007-09-11	Schmidt et al.	
	7,255,451	2007-08-14	McCabe et al.	
	7,249,860	2007-07-31	Kulas et al.	
	7,195,381	2007-03-27	Lynam et al.	
	7,184,190	2007-02-27	McCabe et al.	
	7,168,830	2007-01-30	Pastrick et al.	
	7,167,294	2007-01-23	Lynam et al.	
	7,126,456	2006-10-24	Boddy et al.	
	7,106,392	2006-09-12	You	
	7,097,312	2006-08-29	Platzer, Jr.	
	7,038,577	2006-05-02	Pawlicki et al.	
	7,005,974	2006-02-28	McMahon et al.	
	6,979,090	2005-12-27	Wnuk	
	6,932,483	2005-08-23	Strumolo et al.	
	6,919,796	2005-07-19	Boddy et al.	
	6,882,287	2005-04-19	Schofield	
	6,831,268	2004-12-14	Bechtel et al.	
	6,824,281	2004-11-30	Schofield et al.	
	6,757,109	2004-06-29	Bos	
	6,742,904	2004-06-01	Bechtel et al.	

Examiner Signature

/Alessandro Amari/

| Date |
| :--- | :--- |
| Considered |$\quad 01 / 11 / 2011$

[^5]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 2 | of | 12 | Attorney Docket Number | DON09 P-1624 |

U. S. PATENT DOCUMENTS Examiner Initials*Cite No.								Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear

	6,737,629	2004-05-18	Nixon et al.	
	6,731,205	2004-05-04	Schofield et al.	
	6,719,215	2004-04-13	Drouillard	
	6,717,712	2004-04-06	Lynam et al.	
	6,717,610	2004-04-06	Bos et al.	
	6,709,119	2004-03-23	Gillich et al.	
	6,690,268	2004-02-10	Schofield et al,	
	6,669,109	2003-12-30	Ivanov et al.	
	6,648,477	2003-11-18	Hutzel et al.	
	6,642,851	2003-11-04	DeLine et al.	
	6,627,918	2003-09-30	Getz et al.	
	6,615,438	2003-09-09	Franco	
	6,595,649	2003-07-22	Hoekstra et al.	
	6,582,109	2003-06-24	Miller	
	6,537,138	2003-03-25	Ohmori et al.	
	6,522,451	2003-02-18	Lynam	
	6,512,624	2003-01-28	Tonar et al.	
	6,511,192	2003-01-28	Henion et al.	
	6,501,387	2002-12-31	Skiver et al.	
	6,498,620	2002-12-24	Schofield et al.	
	6,472,979	2002-10-29	Schofield et al.	
	6,449,082	2002-09-10	Agrawal et al.	
	6,445,287	2002-09-03	Schofield et al.	
	6,441,964	2002-08-27	Chu et al.	
	6,428,172	2002-08-06	Hutzel et al.	
	6,420,036	2002-07-16	Varaprasad et al.	
	6,409,354	2002-06-25	Richard	
	6,398,377	2002-06-04	Chou	
	6,396,397	2002-05-28	Bos et al.	
	6,390,632	2002-05-21	Palathingal	
	6,356,376	2002-03-12	Tonar et al.	
	6,343,402	2002-02-05	Smith et al.	
	6,341,523	2002-01-29	Lynam	
	6,329,925	2001-12-11	Skiver et al.	
	6,320,282	2001-11-20	Caldwell	
	6,318,870	2001-11-20	Spooner et al.	

Examiner Signature
/Alessandro Amari/

Date Considered	$01 / 11 / 2011$

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. wspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letler code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent documen Kind of document by the appropriate symbols as indicated on the document under WTPO Standard ST, 16 if possible, ${ }^{6}$ Applicant is to place a check mark here if English language 'Translation is attached

This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is cstimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to

Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Complete if Known	
				Application Number	12/851,045
				Filing Date	August 5, 2010
				First Named Inventor	Niall R. Lynam
				Art Unit	2872
				Examiner Name	
Sheet	3	of	12	Attorney Docket Number	DONO9 P-1624

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \hline \text { Cite } \\ & \text { No. }{ }^{1} \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{\text {2(1) Known) }}$			Relevant Passages or Relevant Figures Appear

	6,315,419	2001-11-13	Platzer, Jr.	
	6,310,611	2001-10-30	Caldwell	
	6,294,989	2001-09-25	Schofield et al.	
	6,286,965	2001-09-11	Caskey et al.	
	6,276,821	2001-08-21	Pastrick et al.	
	6,270,225	2001-08-07	Goolsby	
	6,260,608	2001-07-17	Kim	
	6,257,746	2001-07-10	Todd et al.	
	6,250,148	2001-06-26	Lynam	
	6,245,262	2001-06-12	Varaprasad et al.	
	6,227,689	2001-05-08	Miller	
	6,207,083	2001-03-27	Varaprasad et al.	
	6,201,642	2001-03-13	Bos	
	6,199,993	2001-03-13	Mou	
	6,198,409	2001-03-06	Schofield et al.	
	6,196,688	2001-03-06	Caskey et al.	
	6,178,034	2001-01-23	Allemand et al.	
	6,176,602	2001-01-23	Pastrick et al.	
	6,172,613	2001-01-09	DeLine et al.	
	6,164,564	2000-12-26	Franco et al.	
	6,154,306	2000-11-28	Varaprasad et al.	
	6,135,419	2001-11-13	Platzer, Jr.	
	6,128,860	2000-10-10	Varaprasad et al.	
	6,124,647	2000-09-26	Marcus et al.	
	6,116,743	2000-09-12	Hoek	
	6,111,684	2000-08-29	Forgette et al.	
	6,109,586	2000-08-29	Hock	
	6,097,023	2000-08-01	Schofield et al.	
	6,074,068	2000-06-13	Palathingal	
	6,065,840	2000-05-23	Caskey et al.	
	6,033,078	2000-03-07	Su et al.	
	6,032,323	2000-03-07	Smith et al.	
	6,030,084	2002-02-29	Schmidt	
	6,022,511	1999-12-14	Varaprasad et al.	
	6,011,486	1999-12-14	Varaprasad et al.	
	6,007,207	1999-12-28	Liu	

Examiner Signature	/Alessandro Amari/	Date Considered	$01 / 11 / 2011$

[^6]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 4 | of | 12 | Attorney Docket Number | DON09 P-1624 |

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. }{ }^{1} \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
		Number-Kind Code ${ }^{2(f \text { Known })}$			

	6,005,724	1999-12-21	Todd	
	6,002,544	1999-12-14	Yatsu	
	5,980,050	1999-11-09	McCord	
	5,938,320	1999-08-17	Crandall	
	5,929,786	1999-07-27	Schofield et al.	
	5,922,176	1999-07-13	Caskey	
	5,910,854	1999-06-08	Varaprasad et al.	
	5,877,897	1999-03-02	Schofield et al.	
	5,864,434	1999-01-26	Taylor	
	5,863,116	1999-01-26	Pastrick et al.	
	5,847,889	1998-12-08	Komiyama et al.	
	5,838,505	1998-11-17	Palathingal	
	5,835,294	1998-11-10	Minegishi	
	5,825,527	1998-10-20	Forgette et al.	
	5,823,654	1998-10-20	Pastrick et al.	
	5,808,777	1998-09-15	Lynam et al.	
	5,805,367	1998-09-08	Kanazawa	
	5,796,532	1998-08-18	Kanazawa	
	5,796,094	1998-08-18	Schofield et al.	
	5,793,542	1998-08-11	Kondo et al.	
	5,790,327	1998-08-04	Lee et al.	
	5,790,298	1998-08-04	Tonar	
	5,788,357	1998-08-04	Muth et al.	
	5,786,772	1998-07-28	Schofield et al.	
	5,784,211	1998-07-21	Mingledorff	
	5,760,962	1998-06-02	Schofield et al.	
	5,751,489	1998-05-12	Caskey et al.	
	5,724,187	1998-03-03	Varaprasad et al.	
	5,722,836	1998-03-03	Younker	
	5,715,093	1998-02-03	Schierbeek et al.	
	5,691,855	1997-11-25	Lupkas	
	5,689,370	1997-11-18	Tonar et al.	
	5,670,935	1997-09-23	Schofield et al.	
	5,669,705	1997-09-23	Pastrick et al.	
	5,669,704	1997-09-23	Pastrick	
	5,669,699	1997-09-23	Pastrick et al.	

Examiner Signature	Alessandro Amari/	Date Considered	$01 / 1 / / 2011$

[^7]

U. S. PATENT DOCUMENTS Examiner Initials*Cite No.							Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear

	5,669,698	1997-09-23	Veldman et al.	
	5,668,663	1997-09-16	Varaprasad et al.	
	5,649,756	1997-07-22	Adams et al.	
	5,644,442	1997-07-01	Lemere	
	5,621,577	1997-04-15	Lang et al.	
	5,621,569	1997-04-15	Schlenke	
	5,610,756	1997-03-11	Lynam et al.	
	5,594,593	1997-01-14	Milner	
	5,594,222	1997-01-14	Caldwell	
	5,587,699	1996-12-24	Faloon et al.	
	5,587,236	1996-12-24	Agrawal et al.	
	5,579,133	1996-11-26	Black et al.	
	5,575,552	1996-11-19	Faloon et al.	
	5,567,360	1996-10-22	Varaprasad et al.	
	5,563,744	1996-10-08	Matsumiya	
	5,559,640	1996-09-24	Vachss et al.	
	5,557,467	1996-09-17	McColgan et al.	
	5,550,677	1996-08-27	Schofield et al.	
	5,535,056	1996-07-09	Caskey et al.	
	5,530,588	1996-06-25	Vivier	
	5,526,195	1996-06-11	Thomas	
	5,525,264	1996-06-11	Cronin et al.	
	5,523,877	1996-06-04	Lynam	
	5,517,367	1996-05-14	Kim et al.	
	5,509,606	1996-04-23	Breithaupt et al.	
	5,497,306	1996-03-05	Pastrick	
	5,497,305	1996-03-05	Pastrick et al.	
	5,483,386	1996-01-09	Carson	
	5,481,409	1996-01-02	Roberts	
	5,446,576	1995-08-29	Lynam et al.	
	5,437,931	2003-08-01	Tsai et al.	
	5,432,643	1995-07-11	Huang	
	5,424,875	1995-06-13	Davis, II	
	5,412,512	1995-05-02	Zebold et al.	
	5,406,414	1995-04-11	O'Farrell et al.	
	5,371,659	1994-12-06	Pastrick et al.	

| Examiner | /Alessandro Amari/ | Date | Considered |
| :--- | :--- | :--- | :--- | $001 / 11 / 2011$

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this forin with next commuicication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www.uspto gov or MPEP $901.04 .{ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST. 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent documen. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{\circ}$ Applicant is to place a check mark here if English language Translation is attached

This collection of information is required by 37 CFR 1.97 and L.98. The information is required to obtain or retain a henefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including yathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upan the individual case. Any comments on the amount of time you recuire to complete this form and/ar suggestions for reducing this burden, should be sent to

				Com	lete if Known
			OSURE	Application Number	12/851,045
				Filing Date	August 5, 2010
			necessary	First Named Inventor	Niall R. Lynam
				Art Unit	2872
				Examiner Name	
Sheet	6	of	12	Attorney Docket Number	DON09 P-1624

			U. S. PATENT	CUMENTS	
Examiner	${ }_{\text {cite }}$	Document Number	Publication Date	Name	Pages, Columns, Lines, Where
	No.	Number-Kind Code ${ }^{2}$	MM-DD-	Applicant of Ciled Doct	Relevant Passages or Relevant Figures Appear

	5,361,172	1994-11-01	Schissel et al.	
	5,355,245	1994-10-11	Lynam	
	5,354,965	1994-10-11	Lee	
	5,327,288	1994-07-05	Wellington et al.	
	5,313,335	1994-05-17	Gray et al.	
	5,296,973	1994-03-22	Burke	
	5,295,021	1994-03-15	Swanson	
	5,285,060	1994-02-08	Larson et al.	
	5,262,894	1993-11-16	Wheatley et al.	
	5,253,109	1993-10-12	O'Farrell et al.	
	5,247,395	1993-09-21	Martinez	
	5,239,405	1993-08-24	Varaprasad et al.	
	5,237,459	1993-08-17	Strauss	
	5,237,458	1993-08-17	Polanyi et al.	
	5,233,461	1993-08-03	Dornan et al.	
	5,225,943	1993-07-06	Lupo	
	5,207,492	1993-05-04	Roberts	
	5,193,029	1993-03-09	Schofield et al.	
	5,189,537	1993-02-23	O'Farrell	
	5,183,099	1993-02-02	Bechu	
	5,179,471	1993-01-12	Caskey et al.	
	5,178,448	1993-01-12	Adams et al.	
	5,166,833	1992-11-24	Shyu	
	5,151,824	1992-09-29	O'Farrell	
	5,151,816	1992-09-29	Varaprasad et al.	
	5,142,407	1992-08-25	Varaprasad et al.	
	5,140,455	1992-08-18	Varaprasad et al.	
	5,118,540	1992-06-02	Hutchison	
	5,117,346	1992-05-26	Gard	
	5,115,352	1992-05-19	do Espirito Santo	
	5,115,346	1992-05-19	Lynam	
	5,107,374	1992-04-21	Lupo et al.	
	5,085,907	1992-02-04	Smith	
	5,080,492	1992-01-14	Platzer, Jr.	
	5,078,480	1992-01-07	Warszawski	
	15,076,673	1991-12-31	Lynam et al.	

Examiner Signature	Alessandro Amari/	Date Considered	$01 / 11 / 2011$

[^8]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 7 | of | 12 | Attorney Docket Number | DON09 P-1624 |

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. }{ }^{1} \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{\text {2(IIRNownt }}$			Relevant Passages or Relevant Figures Appear

	5,073,012	1991-12-17	Lynam	
	5,066,112	1991-11-19	Lynam et al.	
	5,052,792	1991-10-01	McDonough	
	5,050,977	1991-09-24	Platzer, Jr.	
	5,044,739	1991-09-03	do Espirito Santo	
	5,033,835	1991-07-23	Platzer, Jr.	
	5,022,747	1991-06-11	Polanyi et al.	
	5,014,167	1991-05-07	Roberts	
	5,005,962	1991-04-09	Edelman	
	4,989,964	1991-02-05	Meise	
	4,948,242	1990-08-14	Desmond et al.	
	4,944,581	1990-07-31	Ichikawa	
	4,932,770	1990-06-12	Caravaty	
	4,932,769	1990-06-12	Goosen	
	4,929,074	1990-05-29	Urban	
	4,917,485	1990-04-17	Baldwin, Sr.	
	4,913,542	1990-04-03	Adolfsson	
	4,906,085	1990-03-06	Sugihara et al.	
	4,906,075	1990-03-06	Majsumiya	
	4,882,565	1989-11-21	Gallmeyer	
	4,882,466	1989-11-21	Friel	
	4,859,046	1989-08-22	Traynor et al.	
	4,853,283	1989-08-01	Skolnick	
	4,828,379	1989-05-09	Parsons et al.	
	4,826,289	1989-05-02	Vandenbrink et al.	
	4,824,231	1989-04-25	Quintana	
	4,799,768	1989-01-24	Gahan	
	4,793,690	1988-12-27	Gahan et al.	
	4,773,740	1988-09-27	Kawakami et al.	
	4,770,522	1988-09-13	Alten	
	4,737,188	1988-04-12	Bahls	
	4,733,336	1988-03-22	Skogler et al.	
	4,727,302	1988-02-23	Mizuta et al.	
	4,721,364	1988-01-26	Itoh et al.	
	4,715,701	1987-12-29	Urban	
	4,712,879	1987-12-15	Lynam et al.	

Examiner
Signature
*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP $901.04 .{ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3.) ${ }^{4}$ For Japanese patent documents, the indication of the yenr of the reign of the Emperor must precede the serial number of the patent document Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST.I6 if possible. ${ }^{\text {' }}$ Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by tho public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the annount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to

Receipt date: 08/10/2010

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Complete if Known	
				Application Number	12/851,045
				Filing Date	August 5, 2010
				First Named Inventor	Niall R. Lynam
				Art Unit	2872
				Examiner Name	
Sheet	8	of	12	Attorney Docket Number	DON09 P-1624

								U. S. PATENT DOCUMENTS
Examiner Initials	Cite No.	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear			

	4,679,906	1987-07-14	Brandenburg	
	4,678,294	1987-07-01	Van Nostrand	
	4,674,850	1987-06-23	Blom	
	4,674,849	1987-06-23	Stewart	
	4,666,264	1987-05-19	Yamabe	
	4,630,904	1986-12-23	Pastore	
	4,629,296	1986-12-16	White	
	4,623,222	1986-11-18	Itoh et al.	
	4,609,266	1986-09-02	Blom	
	4,588,267	1986-05-13	Pastore	
	4,575,202	1986-03-11	McGuire	
	4,555,166	1985-11-26	Enomoto	
	4,549,786	1985-10-29	Albers et al.	
	4,526,446	1985-07-02	Adams	
	4,499,451	1985-02-12	Suzuki et al.	
	4,470,665	1984-09-11	Blom	
	4,449,786	1984-05-22	McCord	
	4,439,013	1984-03-27	Hagn et al.	
	4,436,372	1984-03-13	Schmidt et al.	
	4,436,371	1984-03-13	Wood et al.	
	4,435,042	1984-06-03	Wood et al.	
	4,385,804	1983-05-31	Tamura et al.	
	4,350,412	1982-09-21	Steenblik et al.	
	4,331,382	1982-05-25	Graff	
	4,325,609	1982-04-20	Alford	
	4,311,363	1982-01-19	Marsalka et al.	
	4,311,362	1982-01-19	LaPorte	
	4,306,770	1981-12-22	Marhauer	
	4,303,308	1981-12-01	Kobrin	
	4,293,191	1981-10-06	Kim	
	4,281,899	1981-08-04	Oskam	
	4,268,120	1981-05-19	Jitsumori	
	4,264,144	1981-04-28	McCord	
	4,258,979	1981-03-31	Mahin	
	4,223,983	1980-09-23	Bloom	
	4,200,359	1980-04-29	Lawson	

Examiner Signature	Alessandro Amari/	Date Considered	$01 / 1 / 2011$

[^9]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R, Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 9 | of | 12 | Attorney Docket Number | DON09 P-1624 |

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \hline \text { Cite } \\ & \text { No. }{ }^{1} \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee orApplicant of Cited Document	$\begin{gathered} \text { Pages, Columns, Lines, Where } \\ \text { Relevant Passages or } \\ \text { Relevant Figures Appear } \\ \hline \end{gathered}$
		Number-Kind Code ${ }^{\text {2(T) Known) }}$			

	4,193,668	1980-03-18	Skinner	
	3,909,117	1975-09-30	Takahashi et al.	
	3,884,606	1975-05-20	Schrenk	
	3,881,811	1975-05-06	French	
	3,826,563	1974-07-30	Davis	
	3,806,232	1974-04-23	Gray	
	3,773,882	1973-11-20	Schrenk	
	3,764,201	1973-10-09	Haile	
	3,759,647	1973-09-18	Schrenk et al.	
	3,708,222	1973-01-02	Stern	
	3,667,833	1972-06-06	Baldwin, Sr.	
	3,610,739	1971-10-05	Seashore	
	3,601,614	1971-08-24	Platzer, Jr.	
	3,563,638	1971-02-16	Panozzo	
	3,424,517	1969-01-28	Budreck	
	3,408,136	1968-10-29	Travis	
	3,404,935	1968-10-08	Creager	
	3,389,952	1968-06-25	Tobin, Jr.	
	3,375,053	1968-03-26	Ward	
	3,338,655	1967-08-29	Young	
	3,337,285	1967-08-22	Travis	
	3,280,701	1966-10-25	Donnelly et al.	
	3,267,806	1966-08-23	Azegami	
	3,266,016	1966-08-09	Maruyama et al.	
	3,175,463	1965-03-30	Seashore	.
	3,170,985	1965-02-23	Katulich	
	3,146,296	1964-08-25	Fischer	
	3,131,250	1964-04-28	Ely	
	3,104,274	1963-09-17	King	
	2,911,177	1959-11-03	West	
	2,890,539	1959-06-16	Holt	
	2,778,273	1957-01-22	Fellmeth	
	2,636,419	1953-04-28	Kerr	
	2,580,014	1951-12-25	Gazda	
	2,514,989	1950-07-11	Buren	
	2,263,382	1941-11-18	Gotzinger	

Examiner
Signature

/Alessandro Amari/ \square
*EXAMINER; Initial if reference considered, whether or not citation is in conformance with MPEP 609 . Draw line through citation it not in conformance and not considered. Inciude copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP $901.04 .{ }^{3}$ Enter Office that issued
the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ${ }^{3}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application application. Confidentiality is governed by form to the USP'TO. T'me will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to form to the USP'IO. 'I'me will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or sugestions for reducing this burden, should be sent
the Chief Information Officer, U.S. Patentand Trademark Office, P. 0 , Box 1450, Alexandriß, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO:

Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Complete if Known	
				Application Number	12/851,045
				Filing Date	August 5, 2010
				First Named Inventor	Niall R. Lynam
				Art Unit	2872
				Examiner Name	
Sheet	10	of	12	Attorney Docket Number	DON09 P-1624

U. S. PATENT DOCUMENTS					
Examiner Initials*	Cite No. ${ }^{1}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{2(17 \text { Known }}$			Relevant Passages or Relevant Figures Appear

	2,135,262	1938-11-01	Schumacher	
	1,672,559	1928-06-05	Doble	
	1,114,559	1914-10-20	Weed	
	D297,926	1988-10-04	Kesler	
	D493,394	2004-07-27	Lawlor et al.	
	D493,131	2004-07-20	Lawlor et al.	
	2007/0032638	2004-02-19	Tonar et al.	
	2004/0032675	2004-02-19	Weller et al.	
	2004/0032676	2004-02-19	Drummond et al.	
	2002/0036828	2002-03-28	Wong	
	2003/0043589	2003-03-06	Blank	
	2006/0050018	2006-03-09	Hutzel et al.	
	2005/0078389	2005-04-14	Kulas et al.	
	2005/0083577	2005-04-21	Varaprasad et al.	
	2005/0099693	2005-05-12	Schofield et al.	
	2006/0126150	2006-06-15	Tonar et al.	
	2005/0134983	2005-06-23	Lynam	
	2002/0159169	2002-10-31	McCord	
	2002/0159270	2002-10-31	Lynam et al.	
	2008/0308219	2008-12-18	Lynam	
	2009/0237820	2009-09-24	McCabe et al.	
	2004/0264011	2004-12-30	Lynam	
	20020105741	08-08-2002	Platzer, Jr.	
	20030117731	06-26-2003	Platzer, Jr.	
	20040165291	08-26-2004	Platzer, Jr.	
	20050232469	10-20-2005	Schofield et al.	
	20050248859	11-10-2005	Platzer, Jr.	
	20060061008	03-23-2006	Karner et al.	
	20060125919	06-15-2006	Camilleri et al.	
	20060171704	08-03-2006	Bingle et al.	
	20060184297	08-17-2006	Higgins-Luthman	
	20060268440	11-30-2006	Platzer, Jr.	
	20070058257	03-15-2007	Lynam	
	20070285789	12-13-2007	Lindahl et al.	
	20080212189	09-04-2008	Baur et al.	
	20080225421	09-18-2008	Platzer	

Examiner Signature	Alessandro Amari/	Date Considered	$01 / 1 / 12011$

[^10]substitue for fom 1449pTo
INFORMATION DISCLOSURE
STATEMENT BY APPLICANT
(Use as many sheets as necessary)

Complete if Known

Application Number	$12 / 851,045$
Filing Date	August 5, 2010
First Named Inventor	Niall R. Lynam
Art Unit	2872
Examiner Name	
Attorney Docket Number	DON09 P-1624

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \hline \text { Cite } \\ & \text { No. } \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear

	20080304170	12-11-2008	Zhao	
	20090040306	02-12-2009	Foote et al.	
	20090115631	05-07-2009	Foote et al.	
	RE17274	1929-04-16	Porter	
				.

Examiner	Alessandro Amari/	Date Considered	$01 / 11 / 2011$

[^11]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 12 | of | 12 | Attorney Docket Number | DON09 P-1624 |

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	$\begin{array}{\|l\|} \hline \text { Cite } \\ \text { No. }{ }^{1} \end{array}$	Foreign Patent Document Country Code ${ }^{3}$ Number ${ }^{4}$-Kind Code ${ }^{6}$ (if known)		Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages Or Relevant Figures Appear	T ${ }_{6}$
		DE 2409748	1975-09-04	Leitz		
		DE 2550095	1976-05-20	Schiff et al.		
		DE 2647592	1978-04-27	Uta		
		DE 2915521	1980-10-30	Docie		
		DE 3302735	1984-08-02	Schulze		X
		DE 3329998	1985-03-07	Horn		X
		DE 3620228	1987-12-17	Thomen		X
		DE 4026578	1992-04-30	Kramer		X
		EP 0210757	1987-02-04	Von Seidel		X
		EP 0310261	1989-04-05	Britax Wingard Limited		X
		EP 0551802	1992-01-15	Jonsson		X
		EP 0791503	1997-08-27	Gentex Corporation		X
		EP 0917987	1999-05-26	Magneti Marelli France		X
		EP 0356099	1990-02-28	Yamada et al.		X
		EP 0728618	08-28-1996	Gentex Corporation		X
		EP 0729864	09-04-1996	Gentex Corporation		X
		FR 2628042	1988-03-01	Racel		X
		GB 1279158	1972-06-28	Hacker		X
		GB 2048189	1980-12-10	Mirrocraft Inc.		X
		GB 2092534	1982-08-18	Hagiri		X
		JP 0051637	1980-04-15	Katsumata Giken KK		X
		JP 55076721	1980-10-06	Nikken Kogyo KK		X
		JP 1186443	1989-07-25	Kitsumoto Norihiko		X
		JP 1208245	1989-08-22	Moriwake		X
		JP 362075619	1987-04-07	Tomita		X
		JP 62105103	1987-05-15	Miyake Shinya		X
		KR 2002092059	2002-12-11	Jung		X
		NL 7908257	1981-06-01	Bartholomeus		
		WO 2001081956	11-01-2001	Platzer, Jr.		X
		WO 2004026633	04-01-2004	Donnelly Corporation		X
		WO 2004047421	06-03-2004	Donnelly Corporation		X
		WO 2004103772	12-02-2004	Donnelly Corporation		X
		WO 2006124682	11-23-2006	Donnelly Corporation		X
		WO 2007005942	01-11-2007	Donnelly Corporation		X
		WO 2008051910	05-02-2008	Donnelly Corporation		X

| Examiner | /Alessandro Amari/ | Date
 Cignature | Considered |
| :--- | :--- | :--- | :--- |$\quad 01 / 11 / 2011$

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to appicant. Appicant's unique citation designation number (optional). See Kinds Codes of UsP FO Patent Documenis at www. uspto.gov or MFEP $901.04 .{ }^{3}$ Enter Office that issued the document, by the two-letter code (WiPO standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST 16 if possible. Applicant is to place a check mark here if English language Translation is atlached.

United States Patent and Trademark Office

APPLICATION NTMBER	FILING OR 371(C) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TTTLE
12/851,045	08/05/2010	Niall R. Lynam	DON09 P-1624
			CONFIRMATION NO. 1992
28101		PUBLICATION NOTICE	
VAN DYKE, GARDNER, LINN \& BURKHART, LLP			
SUITE 207			
2851 CHARLEVOIX DRIVE, S.E.			

2851 CHARLEVOIX DRIVE, S.E.
GRAND RAPIDS, Ml 49546

Title:EXTERIOR SIDEVIEW MIRROR SYSTEM

Publication No.US-2010-0296187-A1
Publication Date:11/25/2010

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application publication pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases via the Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the publication to applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382, by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of Public Records, Alexandria, VA 22313-1450 or via the Internet.
In addition, information on the status of the application, including the mailing date of Office actions and the dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.uspto.gov/. Prior to publication, such status information is confidential and may only be obtained by applicant using the private side of PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent Electronic Business Center at 1-866-217-9197.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group Art $:$	2872	
Examiner	$:$	Alessandro V. Amari
Applicant	$:$	Niall R. Lynam
Serial No,	$:$	$12 / 851,045$
Filing Date	$:$	August 5, 2010
For	$:$	EXTERIOR SIDEVIEW MIRROR SYSTEM

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Sir:

INVENTION ELECTION

This is in response to the Office Action mailed October 27, 2010. The Office Action requires that Applicants elect a single disclosed invention for prosecution on the merits. Applicants provisionally elect Invention I, which corresponds to claims 2-39 of the application. The Office Action indicated that claim 1 links Inventions I and II, and that the restriction requirement among the linked inventions is subject to the nonallowance of linking claim 1 . An early and favorable action on the merits is respectfully requested.

Respectfully submitted,
NIALL R. LYNAM
By: Van Dyke, Gardner, Linn \& Burkhart, LLP

Dated: November 10, 2010,

Electronic Acknowledgement Receipt	
EFS ID:	8807503
Application Number:	12851045
International Application Number:	
Confirmation Number:	1992
Title of Invention:	EXTERIOR SIDEVIEW MIRROR SYSTEM
First Named Inventor/Applicant Name:	Niall R. Lynam
Customer Number:	28101
Filer:	Timothy A. Flory/Amanda Sytsma
Filer Authorized By:	Timothy A. Flory
Attorney Docket Number:	DON09 P-1624
Receipt Date:	10-NOV-2010
Filing Date:	05-AUG-2010
Time Stamp:	14:10:49
Application Type:	Utility under 35 USC 111(a)

Payment information:

Submitted with Payment		no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Transmittal Letter	TransmittalForm.pdf	79476	no	1
			058a021e5e0a24b55bc258386d96ac8bae $73 f 0 b$		
Warnings:					
Information:					

2	Response to Election / Restriction Filed	InventionElection.pdf	44117	no	1				
Warnings:									
Information:									
Total Files Size (in bytes)			123593						
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.									
New Applications Under 35 U.S.C. 111									
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.									
National Stage of an International Application under 35 U.S.C. 371									
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.									
New International Application Filed with the USPTO as a Receiving Office									
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.									

CERTIFICATE OF TRANSMISSION/MAILING

I hereby certify that this correspondence is being facsimile transmitted to the USPTO or deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below:

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U,S.C. 122 and 37 CFR 1,11 and 1,14 . This collection is estimated to 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete thls form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO; Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
www. uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
12/851,045	08/05/2010 Niall R. Lynam		DON09 P-1624 1992	
			EXAMINER	
SUITE 207			AMARI, ALESSANDRO V	
2851 CHARLEVOIX DRIVE, S.E. GRAND RAPIDS, MI 49546			ART UNIT	PAPER NUMBER
			2872	
			MAIL DATE	DELIVERY MODE
			10/27/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

 Period for ReplyA SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 1 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133) Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1)Responsive to communication(s) filed on \qquad .
2a) This action is FINAL.

2b) \square This action is non-final.
3)

Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) \boxtimes Claim(s) $1-92$ is/are pending in the application.

4a) Of the above claim(s) \qquad is/are withdrawn from consideration.
5)

Claim(s) \qquad is/are allowed.
6)

Claim(s) \qquad is/are rejected.
7) \square Claim(s) \qquad is/are objected to.
8) \boxtimes Claim(s) $1-92$ are subject to restriction and/or election requirement.

Application Papers

9) \square

The specification is objected to by the Examiner.
10)The drawing(s) filed on \qquad is/are: a) \squareaccepted or b) \square objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR $1.85(\mathrm{a})$. Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121 (d).
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119
12) \square Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) \square All b) \square Some * c) \square None of:

1. \square Certified copies of the priority documents have been received.
2. \square Certified copies of the priority documents have been received in Application No. \qquad .
3. \square Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

Notice of References Cited (PTO-892)2) \square Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) \square Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date \qquad
4)Interview Summary (PTO-413) Paper No(s)/Mail Date.Notice of Informal Patent Application
6)Other: \qquad

DETAILED ACTION

Election/Restrictions

Restriction to one of the following inventions is required under 35 U.S.C. 121:
I. Claims 2-39, drawn to exterior sideview mirror system with rearward field of view and backing plate specifics, classified in class 359, subclass 866 .
II. Claims 40-61, drawn to exterior sideview mirror system with demarcation element, joint and heater specifics, classified in class 359, subclass 872.
III. Claims 62-77, drawn to exterior sideview mirror system with adhesive element, mechanical attachment and electro-optic reflective element specifics, classified in class 359, subclass 265 .
IV. Claims 78-84, drawn to exterior sideview mirror system with metallic reflector coating specifics, classified in class 359, subclass 883 .
V. Claims 85-88, drawn to exterior sideview mirror system with fixed reflectance mirror and spherically bent glass specifics, classified in class 359, subclass 850 .
VI. Claims 89, 90, drawn to exterior sideview mirror system with curved substrate and metallic reflector coating specifics, classified in class 359, subclass 872 .
VII. Claims 91, 92, drawn to exterior sideview mirror system with spherically bent glass substrate, rearward field of view and total field of view specifics, classified in class 359, subclass 866 .

The inventions are distinct, each from the other because of the following reasons: Inventions I-VII are directed to related products. The related inventions are distinct if: (1) the inventions as claimed are either not capable of use together or can have a materially different design, mode of operation, function, or effect; (2) the inventions do not overlap in scope, i.e., are mutually exclusive; and (3) the inventions as claimed are not obvious variants. See MPEP § 806.05(j). In the instant case, claims 1-39 evidence that the combination does not rely on the details of Inventions II-VII; claims 40-61 evidence that the combination does not rely on the details of Inventions I and III-VII; claims 62-77 evidence that the combination does not rely on the details of Inventions I, II and IV-VII; claims 78-84 evidence that the combination does not rely on the details of Inventions I-III and V-VII; claims 85-88 evidence that the combination does not rely on the details of Inventions I-IV, VI and VII; claims 89 and 90 evidence that the combination does not rely on the details of Inventions I-V and VII and claims 91 and 92 evidence that the combination does not rely on the details of Inventions I-VI. Furthermore, the inventions as claimed do not encompass overlapping subject matter and there is nothing of record to show them to be obvious variants.

Claim 1 link(s) inventions I and II. The restriction requirement among the linked inventions is subject to the nonallowance of the linking claim(s), claim 1. Upon the indication of allowability of the linking claim(s), the restriction requirement as to the linked inventions shall be withdrawn and any claim(s) depending from or otherwise requiring all the limitations of the allowable linking claim(s) will be rejoined and fully examined for patentability in accordance with 37 CFR 1.104. Claims that require all
the limitations of an allowable linking claim will be entered as a matter of right if the amendment is presented prior to final rejection or allowance, whichever is earlier. Amendments submitted after final rejection are governed by 37 CFR 1.116;
amendments submitted after allowance are governed by 37 CFR 1.312.
Restriction for examination purposes as indicated is proper because all these inventions listed in this action are independent or distinct for the reasons given above and there would be a serious search and/or examination burden if restriction were not required because at least the following reason(s) apply:
--the inventions have acquired a separate status in the art due to their recognized divergent subject matter
--the inventions require a different field of search (e,g., searching different classes /subclasses or electronic resources, or employing different search strategies or search queries).

Applicant is advised that the reply to this requirement to be complete must

 include (i) an election of a invention to be examined even though the requirement may be traversed (37 CFR 1.143) and (ii) identification of the claims encompassing the elected invention.The election of an invention may be made with or without traverse. To reserve a right to petition, the election must be made with traverse. If the reply does not distinctly and specifically point out supposed errors in the restriction requirement, the election shall be treated as an election without traverse. Traversal must be presented at the time of election in order to be considered timely. Failure to timely traverse the requirement will result in the loss of right to petition under 37 CFR 1.144. If claims are added after
the election, applicant must indicate which of these claims are readable upon the elected invention.

Should applicant traverse on the ground that the inventions are not patentably distinct, applicant should submit evidence or identify such evidence now of record showing the inventions to be obvious variants or clearly admit on the record that this is the case. In either instance, if the examiner finds one of the inventions unpatentable over the prior art, the evidence or admission may be used in a rejection under 35 U.S.C. 103(a) of the other invention.

Applicant(s) are advised that if any claim presented in a continuation or divisional application is anticipated by, or includes all the limitations of, the allowable linking claim, such claim may be subject to provisional statutory and/or nonstatutory double patenting rejections over the claims of the instant application. Where a restriction requirement is withdrawn, the provisions of 35 U.S.C. 121 are no longer applicable. In re Ziegler, 443 F.2d 1211, 1215, 170 USPQ 129, 131-32 (CCPA 1971). See also MPEP § 804.01.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to ALESSANDRO AMARI whose telephone number is (571)272-2306. The examiner can normally be reached on Monday-Friday 8:00 AM to 5:30 PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Stephone B. Allen can be reached on (571) 272-2434. The fax phone
number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Index of Claims	Application/Control No. 12851045	Applicant(s)/Patent Under Reexamination LYNAM, NIALL R.
	Examiner ALESSANDRO AMARI	Art Unit 2872

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

N	Non-Elected
I	Interference

A	Appeal
O	Objected

Index of Claims	Application/Control No. 12851045	Applicant(s)/Patent Under Reexamination LYNAM, NIALL R.
	Examiner ALESSANDRO AMARI	Art Unit 2872

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

N	Non-Elected
I	Interference

A	Appeal
O	Objected

Index of Claims	Application/Control No. 12851045	Applicant(s)/Patent Under Reexamination LYNAM, NIALL R.
	Examiner ALESSANDRO AMARI	Art Unit 2872

\checkmark	Rejected
$=$	Allowed

-	Cancelled
\div	Restricted

\mathbf{N}	Non-Elected
\mathbf{I}	Interference

A	Appeal
O	Objected

Unted States Patent and Trademark Office
United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS

Alexandria, Virginia 22313-1450
Alexandria, Virg
wwwuspto gov

APPLICATION NUMBER	FLLING or 371 (c) DATE	GRP ART UNTT	FIL FEE RECD	ATTY.DOCKET.NO	TOT CLAIMS	IND CLAIMS
$12 / 851,045$	$08 / 05 / 2010$	2872	5714	DON09 P-1624	92	7

CONFIRMATION NO. 1992
28101
VAN DYKE, GARDNER, LINN \& BURKHART, LLP
SUITE 207
2851 CHARLEVOIX DRIVE, S.E.
GRAND RAPIDS, MI 49546
Date Mailed: 08/18/2010

Receipt is acknowledged of this non-provisional patent application. The application will be taken up for examination in due course. Applicant will be notified as to the results of the examination. Any correspondence concerning the application must include the following identification information: the U.S. APPLICATION NUMBER, FILING DATE, NAME OF APPLICANT, and TITLE OF INVENTION. Fees transmitted by check or draft are subject to collection. Please verify the accuracy of the data presented on this receipt. If an error is noted on this Filing Receipt, please submit a written request for a Filing Receipt Correction. Please provide a copy of this Filing Receipt with the changes noted thereon. If you received a "Notice to File Missing Parts" for this application, please submit any corrections to this Filing Receipt with your reply to the Notice. When the USPTO processes the reply to the Notice, the USPTO will generate another Filing Receipt incorporating the requested corrections

Applicant(s)

Niall R. Lynam, Holland, MI;
Assignment For Published Patent Application
DONNELLY CORPORATION, Holland, MI
Power of Attorney:
Daniel Van Dyke--25046 Timothy Flory--42540
Donald Gardner--25975 Karl Ondersma--55894
Frederick Burkhart--29288
Terence Linn--30283
Catherine Collins--37599
Domestic Priority data as claimed by applicant
This application is a CON of $12 / 197,66608 / 25 / 2008$
which is a DIV of $10 / 709,43405 / 05 / 2004$ PAT $7,420,756$
which claims benefit of 60/471,872 05/20/2003
Foreign Applications

If Required, Foreign Filing License Granted: 08/16/2010
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is US 12/851,045
Projected Publication Date: 11/25/2010
Non-Publication Request: No
Early Publication Request: No

Title
EXTERIOR SIDEVIEW MIRROR SYSTEM
Preliminary Class
359

PROTECTING YOUR INVENTION OUTSIDE THE UNITED STATES

Since the rights granted by a U.S. patent extend only throughout the territory of the United States and have no effect in a foreign country, an inventor who wishes patent protection in another country must apply for a patent in a specific country or in regional patent offices. Applicants may wish to consider the filing of an international application under the Patent Cooperation Treaty (PCT). An international (PCT) application generally has the same effect as a regular national patent application in each PCT-member country. The PCT process simplifies the filing of patent applications on the same invention in member countries, but does not result in a grant of "an international patent" and does not eliminate the need of applicants to file additional documents and fees in countries where patent protection is desired.

Almost every country has its own patent law, and a person desiring a patent in a particular country must make an application for patent in that country in accordance with its particular laws. Since the laws of many countries differ in various respects from the patent law of the United States, applicants are advised to seek guidance from specific foreign countries to ensure that patent rights are not lost prematurely.

Applicants also are advised that in the case of inventions made in the United States, the Director of the USPTO must issue a license before applicants can apply for a patent in a foreign country. The filing of a U.S. patent application serves as a request for a foreign filing license. The application's filing receipt contains further information and guidance as to the status of applicant's license for foreign filing.

Applicants may wish to consult the USPTO booklet, "General Information Concerning Patents" (specifically, the section entitled "Treaties and Foreign Patents") for more information on timeframes and deadlines for filing foreign patent applications. The guide is available either by contacting the USPTO Contact Center at 800-786-9199, or it can be viewed on the USPTO website at http://www.uspto.gov/web/offices/pac/doc/general/index.html.

For information on preventing theft of your intellectual property (patents, trademarks and copyrights), you may wish to consult the U.S. Government website, http://www.stopfakes.gov. Part of a Department of Commerce initiative, this website includes self-help "toolkits" giving innovators guidance on how to protect intellectual property in specific countries such as China, Korea and Mexico. For questions regarding patent enforcement issues, applicants may call the U.S. Government hotline at 1-866-999-HALT (1-866-999-4158).

LICENSE FOR FOREIGN FILING UNDER

Title 35, United States Code, Section 184

Title 37, Code of Federal Regulations, 5.11 \& 5.15

GRANTED

The applicant has been granted a license under 35 U.S.C. 184, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" followed by a date appears on this form. Such licenses are issued in all applications where the conditions for issuance of a license have been met, regardless of whether or not a license may be required as
set forth in 37 CFR 5.15. The scope and limitations of this license are set forth in 37 CFR 5.15(a) unless an earlier license has been issued under 37 CFR 5.15(b). The license is subject to revocation upon written notification. The date indicated is the effective date of the license, unless an earlier license of similar scope has been granted under 37 CFR 5.13 or 5.14.

This license is to be retained by the licensee and may be used at any time on or after the effective date thereof unless it is revoked. This license is automatically transferred to any related applications(s) filed under 37 CFR 1.53(d). This license is not retroactive.

The grant of a license does not in any way lessen the responsibility of a licensee for the security of the subject matter as imposed by any Government contract or the provisions of existing laws relating to espionage and the national security or the export of technical data. Licensees should apprise themselves of current regulations especially with respect to certain countries, of other agencies, particularly the Office of Defense Trade Controls, Department of State (with respect to Arms, Munitions and Implements of War (22 CFR 121-128)); the Bureau of Industry and Security, Department of Commerce (15 CFR parts 730-774); the Office of Foreign AssetsControl, Department of Treasury (31 CFR Parts 500+) and the Department of Energy.

NOT GRANTED

No license under 35 U.S.C. 184 has been granted at this time, if the phrase "IF REQUIRED, FOREIGN FILING LICENSE GRANTED" DOES NOT appear on this form. Applicant may still petition for a license under 37 CFR 5.12 , if a license is desired before the expiration of 6 months from the filing date of the application. If 6 months has lapsed from the filing date of this application and the licensee has not received any indication of a secrecy order under 35 U.S.C. 181, the licensee may foreign file the application pursuant to 37 CFR 5.15(b).

U. S. PATENT DOCUMENTS					
Examiner initials*	$\begin{aligned} & \hline \text { Cite } \\ & \text { No. } \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{2(1 / \text { Rnown }}$			Relevant Passages or Relevant Figures Appear

	7,636,188	2009-12-22	Baur et al.	
	7,626,749	2009-12-01	Baur et al.	
	7,581,859	2009-09-01	Lynam	
	7,526,103	2009-04-28	Schofield et al.	
	7,492,281	2009-02-17	Lynam et al.	
	7,423,522	2008-09-09	O'Brien et al.	
	7,420,756	2008-09-02	Lynam	
	7,400,435	2008-07-15	Byers et al.	
	7,391,563	2008-06-24	McCabe et al.	
	7,377,675	2008-05-27	Pastrick et al.	
	7,370,983	2008-05-13	DeWind et al.	
	7,345,680	2008-03-18	David	
	7,339,149	2008-03-04	Schofield et al.	
	7,338,177	2008-03-04	Lynam	
	7,289,037	2007-10-30	Uken et al.	
	7,274,501	2007-09-25	McCabe et al.	
	7,267,448	2007-09-11	Schmidt et al.	
	7,255,451	2007-08-14	McCabe et al.	
	7,249,860	2007-07-31	Kulas et al.	
	7,195,381	2007-03-27	Lynam et al.	
	7,184,190	2007-02-27	McCabe et al.	
	7,168,830	2007-01-30	Pastrick et al.	
	7,167,294	2007-01-23	Lynam et al.	
	7,126,456	2006-10-24	Boddy et al.	
	7,106,392	2006-09-12	You	
	7,097,312	2006-08-29	Platzer, Jr.	
	7,038,577	2006-05-02	Pawlicki et al.	
	7,005,974	2006-02-28	McMahon et al.	
	6,979,090	2005-12-27	Wnuk	
	6,932,483	2005-08-23	Strumolo et al.	
	6,919,796	2005-07-19	Boddy et al.	
	6,882,287	2005-04-19	Schofield	
	6,831,268	2004-12-14	Bechtel et al.	
	6,824,281	2004-11-30	Schofield et al.	
	6,757,109	2004-06-29	Bos	
	6,742,904	2004-06-01	Bechtel et al.	

Examiner
 Signature

Date
Considered

*EXAMINER: Inilial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ' Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. usptogov or MPEP 901.04 . ${ }^{3}$ Enter Office that issued the document, by the two-letler code (WIPO Standard ST, 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the anount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.0, Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO Commissioner for Patents, P,O. Box 1450, Alexandria, VA 22313-1450.

Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Complete if Known	
				Application Number	12/851,045
				Filing Date	August 5, 2010
				First Named Inventor	Niall R, Lynam
				Art Unit	2872
				Examiner Name	
Sheet	2	of	12	Attorney Docket Number	DON09 P-1624

U. S. PATENT DOCUMENTS Examiner Initials*Cite No.								Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear

	6,737,629	2004-05-18	Nixon et al.	
	6,731,205	2004-05-04	Schofield et al.	
	6,719,215	2004-04-13	Drouillard	
	6,717,712	2004-04-06	Lynam et al.	
	6,717,610	2004-04-06	Bos et al.	
	6,709,119	2004-03-23	Gillich et al.	
	6,690,268	2004-02-10	Schofield et al,	
	6,669,109	2003-12-30	Ivanov et al.	
	6,648,477	2003-11-18	Hutzel et al.	
	6,642,851	2003-11-04	DeLine et al.	
	6,627,918	2003-09-30	Getz et al.	
	6,615,438	2003-09-09	Franco	
	6,595,649	2003-07-22	Hoekstra et al.	
	6,582,109	2003-06-24	Miller	
	6,537,138	2003-03-25	Ohmori et al.	
	6,522,451	2003-02-18	Lynam	
	6,512,624	2003-01-28	Tonar et al.	
	6,511,192	2003-01-28	Henion et al.	
	6,501,387	2002-12-31	Skiver et al.	
	6,498,620	2002-12-24	Schofield et al.	
	6,472,979	2002-10-29	Schofield et al.	
	6,449,082	2002-09-10	Agrawal et al.	
	6,445,287	2002-09-03	Schofield et al.	
	6,441,964	2002-08-27	Chu et al.	
	6,428,172	2002-08-06	Hutzel et al.	
	6,420,036	2002-07-16	Varaprasad et al.	
	6,409,354	2002-06-25	Richard	
	6,398,377	2002-06-04	Chou	
	6,396,397	2002-05-28	Bos et al.	
	6,390,632	2002-05-21	Palathingal	
	6,356,376	2002-03-12	Tonar et al.	
	6,343,402	2002-02-05	Smith et al.	
	6,341,523	2002-01-29	Lynam	
	6,329,925	2001-12-11	Skiver et al.	
	6,320,282	2001-11-20	Caldwell	
	6,318,870	2001-11-20	Spooner et al.	

Examiner
Signature

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ' Λ pplicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04 . ${ }^{3}$ Enter Office that issued the document, by the (wo-leller code (WIPO Standard ST, 3) , ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document the document, by the two-letler code (WIPO Standard ST.3). "For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent tocum
Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{\text {A }}$ Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Conftidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form andfor suggestions for reducing this burden, should be sent io the Clief Information Officer, U.S. Patent and Trademark Office, P. 0 , Box 1450, Aloxandria, VA 22313-1450. DO NOTT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexnadria, VA 22313-1450.

Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Complete If Known	
				Application Number	12/851,045
				Filing Date	August 5, 2010
				First Named Inventor	Niall R. Lynam
				Art Unit	2872
				Examiner Name	
Sheet	3	of	12	Attorney Docket Number	DONO9 P-1624

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. }{ }^{1} \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{2(I t}$ known)			Relevant Passages or Relevant Figures Appear

	6,315,419	2001-11-13	Platzer, Jr.	
	6,310,611	2001-10-30	Caldwell	
	6,294,989	2001-09-25	Schofield et al.	
	6,286,965	2001-09-11	Caskey et al.	
	6,276,821	2001-08-21	Pastrick et al.	
	6,270,225	2001-08-07	Goolsby	
	6,260,608	2001-07-17	Kim	
	6,257,746	2001-07-10	Todd et al.	
	6,250,148	2001-06-26	Lynam	
	6,245,262	2001-06-12	Varaprasad et al.	
	6,227,689	2001-05-08	Miller	
	6,207,083	2001-03-27	Varaprasad et al.	
	6,201,642	2001-03-13	Bos	
	6,199,993	2001-03-13	Mou	
	6,198,409	2001-03-06	Schofield et al.	
	6,196,688	2001-03-06	Caskey et al.	
	6,178,034	2001-01-23	Allemand et al.	
	6,176,602	2001-01-23	Pastrick et al.	
	6,172,613	2001-01-09	DeLine et al.	
	6,164,564	2000-12-26	Franco et al.	
	6,154,306	2000-11-28	Varaprasad et al.	
	6,135,419	2001-11-13	Platzer, Jr.	
	6,128,860	2000-10-10	Varaprasad et al.	
	6,124,647	2000-09-26	Marcus et al.	
	6,116,743	2000-09-12	Hoek	
	6,111,684	2000-08-29	Forgette et al.	
	6,109,586	2000-08-29	Hock	
	6,097,023	2000-08-01	Schofield et al.	
	6,074,068	2000-06-13	Palathingal	
	6,065,840	2000-05-23	Caskey et al.	
	6,033,078	2000-03-07	Su et al.	
	6,032,323	2000-03-07	Smith et al.	
	6,030,084	2002-02-29	Schmidt	
	6,022,511	1999-12-14	Varaprasad et al.	
	6,011,486	1999-12-14	Varaprasad et al.	
	6,007,207	1999-12-28	Liu	

Examiner
 Signature

Date
 Considered

[^12]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 4 | of | 12 | Attorney Docket Number | DON09 P-1624 |

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. } \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{2(17 \text { Known }}$			Relevant Passages or Relevant Figures Appear

	6,005,724	1999-12-21	Todd	
	6,002,544	1999-12-14	Yatsu	
	5,980,050	1999-11-09	McCord	
	5,938,320	1999-08-17	Crandall	
	5,929,786	1999-07-27	Schofield et al.	
	5,922,176	1999-07-13	Caskey	
	5,910,854	1999-06-08	Varaprasad et al.	
	5,877,897	1999-03-02	Schofield et al.	
	5,864,434	1999-01-26	Taylor	
	5,863,116	1999-01-26	Pastrick et al.	
	5,847,889	1998-12-08	Komiyama et al.	
	5,838,505	1998-11-17	Palathingal	
	5,835,294	1998-11-10	Minegishi	
	5,825,527	1998-10-20	Forgette et al.	
	5,823,654	1998-10-20	Pastrick et al.	
	5,808,777	1998-09-15	Lynam et al.	
	5,805,367	1998-09-08	Kanazawa	
	5,796,532	1998-08-18	Kanazawa	
	5,796,094	1998-08-18	Schofield et al.	
	5,793,542	1998-08-11	Kondo et al.	
	5,790,327	1998-08-04	Lee et al.	
	5,790,298	1998-08-04	Tonar	
	5,788,357	1998-08-04	Muth et al.	
	5,786,772	1998-07-28	Schofield et al.	
	5,784,211	1998-07-21	Mingledorff	
	5,760,962	1998-06-02	Schofield et al.	
	5,751,489	1998-05-12	Caskey et al.	
	5,724,187	1998-03-03	Varaprasad et al.	
	5,722,836	1998-03-03	Younker	
	5,715,093	1998-02-03	Schierbeek et al.	
	5,691,855	1997-11-25	Lupkas	
	5,689,370	1997-11-18	Tonar et al.	
	5,670,935	1997-09-23	Schofield et al.	
	5,669,705	1997-09-23	Pastrick et al.	
	5,669,704	1997-09-23	Pastrick	
	5,669,699	1997-09-23	Pastrick et al.	

| Examiner | | Date
 Considered |
| :--- | :--- | :--- | :--- |

*EXAMINER; Initial if reference considered, whether or not citation is in conformanee with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ' Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www, uspto.gov or MPEP $901,04{ }^{3}{ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japancse patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Complete if Known	
				Application Number	12/851,045
				Filing Date	August 5, 2010
				First Named Inventor	Niall R. Lynam
				Art Unit	2872
				Examiner Name	
Sheet	5	of	12	Attorney Docket Number	DON09 P-1624

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \text { Cite } \\ & \text { No. }{ }^{1} \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{2(1 / 2}$ known)			Relevant Passages or Relevant Figures Appear

	5,669,698	1997-09-23	Veldman et al.	
	5,668,663	1997-09-16	Varaprasad et al.	
	5,649,756	1997-07-22	Adams et al.	
	5,644,442	1997~07-01	Lemere	
	5,621,577	1997-04-15	Lang et al.	
	5,621,569	1997-04-15	Schlenke	
	5,610,756	1997-03-11	Lynam et al.	
	5,594,593	1997-01-14	Milner	
	5,594,222	1997-01-14	Caldwell	
	5,587,699	1996-12-24	Faloon et al.	
	5,587,236	1996-12-24	Agrawal et al.	
	5,579,133	1996-11-26	Black et al.	
	5,575,552	1996-11-19	Faloon et al.	
	5,567,360	1996-10-22	Varaprasad et al.	
	5,563,744	1996-10-08	Matsumiya	
	5,559,640	1996-09-24	Vachss et al.	
	5,557,467	1996-09-17	McColgan et al.	
	5,550,677	1996-08-27	Schofield et al.	
	5,535,056	1996-07-09	Caskey et al.	
	5,530,588	1996-06-25	Vivier	
	5,526,195	1996-06-11	Thomas	
	5,525,264	1996-06-11	Cronin et al.	
	5,523,877	1996-06-04	Lynam	
	5,517,367	1996-05-14	Kim et al.	
	5,509,606	1996-04-23	Breithaupt et al.	
	5,497,306	1996-03-05	Pastrick	
	5,497,305	1996-03-05	Pastrick et al.	
	5,483,386	1996-01-09	Carson	
	5,481,409	1996-01-02	Roberts	
	5,446,576	1995-08-29	Lynam et al.	
	5,437,931	2003-08-01	Tsai et al.	
	5,432,643	1995-07-11	Huang	
	5,424,875	1995-06-13	Davis, II	
	5,412,512	1995-05-02	Zebold et al.	
	5,406,414	1995-04-11	O'Farrell et al.	
	5,371,659	1994-12-06	Pastrick et al.	

[^13]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 6 | of | 12 | Attorney Docket Number | DON09 P-1624 |

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \hline \text { Cite } \\ & \text { No. }{ }^{1} \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{2(1 \text { (} \text { known) }}$			Relevant Passages or Relevant Figures Appear

	5,361,172	1994-11-01	Schissel et al.	
	5,355,245	1994-10-11	Lynam	
	5,354,965	1994-10-11	Lee	
	5,327,288	1994-07-05	Wellington et al.	
	5,313,335	1994-05-17	Gray et al.	
	5,296,973	1994-03-22	Burke	
	5,295,021	1994-03-15	Swanson	
	5,285,060	1994-02-08	Larson et al.	
	5,262,894	1993-11-16	Wheatley et al.	
	5,253,109	1993-10-12	O'Farrell et al.	
	5,247,395	1993-09-21	Martinez	
	5,239,405	1993-08-24	Varaprasad et al.	
	5,237,459	1993-08-17	Strauss	
	5,237,458	1993-08-17	Polanyi et al.	
	5,233,461	1993-08-03	Dornan et al.	
	5,225,943	1993-07-06	Lupo	
	5,207,492	1993-05-04	Roberts	
	5,193,029	1993-03-09	Schofield et al,	
	5,189,537	1993-02-23	O'Farrell	
	5,183,099	1993-02-02	Bechu	
	5,179,471	1993-01-12	Caskey et al.	
	5,178,448	1993-01-12	Adams et al.	
	5,166,833	1992-11-24	Shyu	
	5,151,824	1992-09-29	O'Farrell	
	5,151,816	1992-09-29	Varaprasad et al.	
	5,142,407	1992-08-25	Varaprasad et al.	
	5,140,455	1992-08-18	Varaprasad et al.	
	5,118,540	1992-06-02	Hutchison	
	5,117,346	1992-05-26	Gard	
	5,115,352	1992-05-19	do Espirito Santo	
	5,115,346	1992-05-19	Lynam	
	5,107,374	1992-04-21	Lupo et al.	
	5,085,907	1992-02-04	Smith	
	5,080,492	1992-01-14	Platzer, Jr.	
	5,078,480	1992-01-07	Warszawski	
	5,076,673	1991-12-31	Lynam et al.	

Examiner
 Signature

Date

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered, luclude copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation desigiation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP 901.04 . ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{\text {A For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. }}$ the document, by the two-letter code (WIPO Standard ST.3). For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent docume

Substitute for form 1449/PTO INFORMATION DISCLOSURE STATEMENT BY APPLICANT (Use as many sheets as necessary)				Complete If Known	
				Application Number	12/851,045
				Filing Date	August 5, 2010
				First Named Inventor	Niall R. Lynam
				Art Unit	2872
				Examiner Name	
Sheet	7	of	12	Attorney Docket Number	DON09 P-1624

U. S. PATENT DOCUMENTS							
Examiner Initials*	Cite No.	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear		

	5,073,012	1991-12-17	Lynam	
	5,066,112	1991-11-19	Lynam et al.	
	5,052,792	1991-10-01	McDonough	
	5,050,977	1991-09-24	Platzer, Jr.	
	5,044,739	1991-09-03	do Espirito Santo	
	5,033,835	1991-07-23	Platzer, Jr.	
	5,022,747	1991-06-11	Polanyi et al.	
	5,014,167	1991-05-07	Roberts	
	5,005,962	1991-04-09	Edelman	
	4,989,964	1991-02-05	Meise	
	4,948,242	1990-08-14	Desmond et al.	
	4,944,581	1990-07-31	Ichikawa	
	4,932,770	1990-06-12	Caravaty	
	4,932,769	1990-06-12	Goosen	
	4,929,074	1990-05-29	Urban	
	4,917,485	1990-04-17	Baldwin, Sr.	
	4,913,542	1990-04-03	Adolfsson	
	4,906,085	1990-03-06	Sugihara et al.	
	4,906,075	1990-03-06	Majsumiya	
	4,882,565	1989-11-21	Gallmeyer	
	4,882,466	1989-11-21	Friel	
	4,859,046	1989-08-22	Traynor et al.	
	4,853,283	1989-08-01	Skolnick	
	4,828,379	1989-05-09	Parsons et al.	
	4,826,289	1989-05-02	Vandenbrink et al.	
	4,824,231	1989-04-25	Quintana	
	4,799,768	1989-01-24	Gahan	
	4,793,690	1988-12-27	Gahan et al.	
	4,773,740	1988-09-27	Kawakami et al.	
	4,770,522	1988-09-13	Alten	
	4,737,188	1988-04-12	Bahls	
	4,733,336	1988-03-22	Skogler et al.	
	4,727,302	1988-02-23	Mizuta et al.	
	4,721,364	1988-01-26	Itoh et al.	
	4,715,701	1987-12-29	Urban	
	4,712,879	1987-12-15	Lynam et al.	

| Examiner | | Date
 Considered |
| :--- | :--- | :--- | :--- |
| Signature | | |

[^14]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 8 | of | 12 | Attorney Docket Number | DON09 P-1624 |

U. S. PATENT DOCUMENTS							
Examiner Initials*	Cite No.	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear		

	4,679,906	1987-07-14	Brandenburg	
	4,678,294	1987-07-01	Van Nostrand	
	4,674,850	1987-06-23	Blom	
	4,674,849	1987-06-23	Stewart	
	4,666,264	1987-05-19	Yamabe	
	4,630,904	1986-12-23	Pastore	
	4,629,296	1986-12-16	White	
	4,623,222	1986-11-18	Itoh et al.	
	4,609,266	1986-09-02	Blom	
	4,588,267	1986-05-13	Pastore	
	4,575,202	1986-03-11	McGuire	
	4,555,166	1985-11-26	Enomoto	
	4,549,786	1985-10-29	Albers et al.	
	4,526,446	1985-07-02	Adams	
	4,499,451	1985-02-12	Suzuki et al.	
	4,470,665	1984-09-11	Blom	
	4,449,786	1984-05-22	McCord	
	4,439,013	1984-03-27	Hagn et al.	
	4,436,372	1984-03-13	Schmidt et al.	
	4,436,371	1984-03-13	Wood et al.	
	4,435,042	1984-06-03	Wood et al.	
	4,385,804	1983-05-31	Tamura et al.	
	4,350,412	1982-09-21	Steenblik et al.	
	4,331,382	1982-05-25	Graff	
	4,325,609	1982-04-20	Alford	
	4,311,363	1982-01-19	Marsalka et al.	
	4,311,362	1982-01-19	LaPorte	
	4,306,770	1981-12-22	Marhauer	
,	4,303,308	1981-12-01	Kobrin	
	4,293,191	1981-10-06	Kim	
	4,281,899	1981-08-04	Oskam	
	4,268,120	1981-05-19	Jitsumori	
	4,264,144	1981-04-28	McCord	
	4,258,979	1981-03-31	Mahin	
	4,223,983	1980-09-23	Bloom	
	4,200,359	1980-04-29	Lawson	

Examiner		Date Considered	
Signature			

[^15]

U. S. PATENT DOCUMENTS					
Examiner Initials*	Cite No. ${ }^{1}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{2(I T}$ known)		Applicant of Cited Document	Relevant Passages or Relevant Figures Appear

	4,193,668	1980-03-18	Skinner	
	3,909,117	1975-09-30	Takahashi et al.	
	3,884,606	1975-05-20	Schrenk	
	3,881,811	1975-05-06	French	
	3,826,563	1974-07-30	Davis	
	3,806,232	1974-04-23	Gray	
	3,773,882	1973-11-20	Schrenk	
	3,764,201	1973-10-09	Haile	
	3,759,647	1973-09-18	Schrenk et al.	
	3,708,222	1973-01-02	Stern	
	3,667,833	1972-06-06	Baldwin, Sr.	
	3,610,739	1971-10-05	Seashore	
	3,601,614	1971-08-24	Platzer, Jr.	
	3,563,638	1971-02-16	Panozzo	
	3,424,517	1969-01-28	Budreck	
	3,408,136	1968-10-29	Travis	
	3,404,935	1968-10-08	Creager	
	3,389,952	1968-06-25	Tobin, Jr.	
	3,375,053	1968-03-26	Ward	
	3,338,655	1967-08-29	Young	
	3,337,285	1967-08-22	Travis	
	3,280,701	1966-10-25	Donnelly et al.	
	3,267,806	1966-08-23	Azegami	
	3,266,016	1966-08-09	Maruyama et al.	
	3,175,463	1965-03-30	Seashore	
	3,170,985	1965-02-23	Katulich	
	3,146,296	1964-08-25	Fischer	
	3,131,250	1964-04-28	Ely	
	3,104,274	1963-09-17	King	
	2,911,177	1959-11-03	West	
	2,890,539	1959-06-16	Holt	
	2,778,273	1957-01-22	Fellmeth	
	2,636,419	1953-04-28	Kerr	
	2,580,014	1951-12-25	Gazda	
	2,514,989	1950-07-11	Buren	
	2,263,382	1941-11-18	Gotzinger	

Examiner		Date Considered	
Signature			

[^16]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 10 | of | 12 | Attorney Docket Number | DON09 P-1624 |

U. S. PATENT DOCUMENTS					
Examiner Initials*	Cite No. ${ }^{1}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{2 /(t / \text { known }}$			Relevant Passages or Relevant Figures Appear

	2,135,262	1938-11-01	Schumacher	
	1,672,559	1928-06-05	Doble	
	1,114,559	1914-10-20	Weed	
	D297,926	1988-10-04	Kesler	
	D493,394	2004-07-27	Lawlor et al.	
	D493,131	2004-07-20	Lawlor et al.	
	2007/0032638	2004-02-19	Tonar et al.	
	2004/0032675	2004-02-19	Weller et al.	
	2004/0032676	2004-02-19	Drummond et al.	
	2002/0036828	2002-03-28	Wong	
	2003/0043589	2003-03-06	Blank	
	2006/0050018	2006-03-09	Hutzel et al.	
	2005/0078389	2005-04-14	Kulas et al.	
	2005/0083577	2005-04-21	Varaprasad et al.	
	2005/0099693	2005-05-12	Schofield et al.	
	2006/0126150	2006-06-15	Tonar et al.	
	2005/0134983	2005-06-23	Lynam	
	2002/0159169	2002-10-31	McCord	
	2002/0159270	2002-10-31	Lynam et al.	
	2008/0308219	2008-12-18	Lynam	
	2009/0237820	2009-09-24	McCabe et al.	
	2004/0264011	2004-12-30	Lynam	
	20020105741	08-08-2002	Platzer, Jr.	
	20030117731	06-26-2003	Platzer, Jr.	
	20040165291	08-26-2004	Platzer, Jr.	
	20050232469	10-20-2005	Schofield et al.	
	20050248859	11-10-2005	Platzer, Jr.	
	20060061008	03-23-2006	Karner et al.	
	20060125919	06-15-2006	Camilleri et al.	
	20060171704	08-03-2006	Bingle et al.	
	20060184297	08-17-2006	Higgins-Luthman	
	20060268440	11-30-2006	Platzer, Jr.	
	20070058257	03-15-2007	Lynam	
	20070285789	12-13-2007	Lindahl et al.	
	20080212189	09-04-2008	Baur et al.	
	2000 $\overline{0} \overline{2} 2 \overline{54} 41$	09-18-200̄	Platzer	

Examiner
Signature

Date
 Considered

[^17]| Substitute for form 1449/PTO
 INFORMATION DISCLOSURE STATEMENT BY APPLICANT
 (Use as many sheets as necessary) | | | | Complete if Known | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 11 | of | 12 | Attorney Docket Number | DON09 P-1624 |

U. S. PATENT DOCUMENTS					
Examiner Initials*	$\begin{aligned} & \hline \text { Cite } \\ & \text { No. } \end{aligned}$	Document Number	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where
		Number-Kind Code ${ }^{\text {2 (II Known) }}$			Relevant Passages or Relevant Figures Appear

	20080304170	12-11-2008	Zhao	
	20090040306	02-12-2009	Foote et al.	
	20090115631	05-07-2009	Foote et al.	
	RE17274	1929-04-16	Porter	

Examiner		Date Considered	
Signature		Con	

[^18]| | Subs | | | Com | ete if Known |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | HOSURE | Application Number | 12/851,045 |
| | | | | Filing Date | August 5, 2010 |
| | | | necessary) | First Named Inventor | Niall R. Lynam |
| | | | | Art Unit | 2872 |
| | | | | Examiner Name | |
| Sheet | 12 | of | 12 | Attorney Docket Number | DON09 P-1624 |

FOREIGN PATENT DOCUMENTS						
Examiner Initials*	$\begin{array}{\|l\|} \hline \text { Cite } \\ \text { No. } \end{array}$	Foreign Patent Document Country Code ${ }^{3}$ Number ${ }^{4}$-Kind Code (if known)	$\begin{gathered} \text { Publication } \\ \text { Date } \\ \text { MM-DD-YYYY } \end{gathered}$	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages Or Relevant Figures Appear	T
		DE 2409748	1975-09-04	Leitz		
		DE 2550095	1976-05-20	Schiff et al.		
		DE 2647592	1978-04-27	Uta		
		DE 2915521	1980-10-30	Docie		
		DE 3302735	1984-08-02	Schulze		X
		DE 3329998	1985-03-07	Horn		X
		DE 3620228	1987-12-17	Thomen		X
		DE 4026578	1992-04-30	Kramer		X
		EP 0210757	1987-02-04	Von Seidel		X
		EP 0310261	1989-04-05	Britax Wingard Limited		X
		EP 0551802	1992-01-15	Jonsson		X
		EP 0791503	1997-08-27	Gentex Corporation		X
		EP 0917987	1999-05-26	Magneti Marelli France		X
		EP 0356099	1990-02-28	Yamada et al.		X
		EP 0728618	08-28-1996	Gentex Corporation		X
		EP 0729864	09-04-1996	Gentex Corporation		X
		FR 2628042	1988-03-01	Racel		X
		GB 1279158	1972-06-28	Hacker		X
		GB 2048189	1980-12-10	Mirrocraft Inc.		X
		GB 2092534	1982-08-18	Hagiri		X
		JP 0051637	1980-04-15	Katsumata Giken KK		X
		JP 55076721	1980-10-06	Nikken Kogyo KK		X
		JP 1186443	1989-07-25	Kitsumoto Norihiko		X
		JP 1208245	1989-08-22	Moriwake		X
		JP 362075619	1987-04-07	Tomita		X
		JP 62105103	1987-05-15	Miyake Shinya		X
		KR 2002092059	2002-12-11	Jung		X
		NL 7908257	1981-06-01	Bartholomeus		
		WO 2001081956	11-01-2001	Platzer, Jr.		X
		WO 2004026633	04-01-2004	Donnelly Corporation		X
		WO 2004047421	06-03-2004	Donnelly Corporation		X
		WO 2004103772	12-02-2004	Donnelly Corporation		X
		WO 2006124682	11-23-2006	Donnelly Corporation		X
		WO 2007005942	01-11-2007	Donnelly Corporation		X
		WO 2008051910	05-02-2008	Donnelly Corporation		X

Examiner

Date
Considered

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP $901.04 .{ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST, 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Tratslation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14, This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and 'Trademark Office, P.D, Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

1. Rückspiegel für Kraftfahrzeuge, dadurch aekennzeichnet, daß zwei Spiegelflächen durch eine horizontale Trennuna übereinander angeordnet sind und eine gegenseitig.unterschiedliche winkelstellung aufweisen.
2. Rücksniegel für Kraftfahrzeuge, nach Anspruch 2 , dadurch rekennzeichnet,. daß die beiden Spieqelflächen durch ein Zwischenstück miteinander verbunden sfind und das zwischenstück flanschstege aufweist, mit denen die Winkelstellung fixiert.ist.
3. Rückspiegel für Kraftfahrzeuge, nach Anspruch 1, dadurch gekennzeichnet, daß die Winkelstellung der beiden Spiegelflächen veränderlich ist durch drehbare Aufhängung von mindestens einem Spiegel.
4. Rückspiegel für Kraftfahrzeuqe, nach Anspruch l-3, dadurch gekennzeichnet, daß die zweite Spiegelfläche (B) als Aufsatzteil auf einflächige, marktübliche, Rückspiegel angebracht wird.

Die am Markt bekannten Rückspiegel weisen einen Mangel auf, der eine große Verunsicherung für den Kraftfahrer bedeutet: zwischen dem Sichtwinkel des Auges und dem Sichtwinkelbereich des Rückspiegels liegt ein sogenannter "toter" Sichtwinkelbereich. nieser kann bezogen auf die tberholspur einice Wagenläncen ausmachen.

Diesen Manqel stellt weitgehend die vorliegende frfinduna ab. Sie wird çemäß der beiliegenden zeichnung beschrieben.

Der normalerweise einflächige Spieqel wird durch zwei übereinander angeordnete spiegel (in $A b b$. I) (A) und (B) ersetzt und durch das Kupplunqsstück C in der horizontalen $T r e n n u n g s l i n i e ~ m i t e i n a n d e r ~$ gekoppelt. Gemäß $A b b$. II (Sicht von oben) sind beide Sniegel gegeneinander winkelversetzt. Der Spiegel (A) ist in der bisher bekannten Normalstellung angeordnet, während der Sniegel (B) den toten winkelbereich einfängt. Gemäß $A b b$. III wird vorgeschlagen, durch das Z wischenstück (C) die beiden Sniegel zueinander zu fixieren, wobei der Sfiegel (B) in der Fïhrungsrille (l)fixiert ist und der spiegel (A) in der Führunqsrille (2).

Beide Spiegel können auch gegenseitig beweglich gelagert werden, auch aus dem Wageninneren bedienbar, was jedoch auf das Wesen der Erfindung keinen Einfluß hat. Das gleiche gilt auch, wenn der Spiegel (B) als Autsatzspiegel zu einem vorhandenen Rückspiegel getrennt geliefert wird.

$$
-3
$$

$$
2409748
$$

B60R 1-02 AT:01.03.1974 OT:04.09.1975
$509836 / 0216$

PATENTANWAETE
 2550095
 SCHIFF V.FÜNER STREHL SCHÜBEL-HOPF EBBINGHAUS

POSTADRESSE: D-8 MÜNCHEN 95, POSTFACH 950160

COMBINED OPTICAL INDUSTRIES LIMITED	DIPL. CHEM. DR. OTMAR DITTMANN (+197E) KARL LUDWIE SCHIFF DIPL. CHEM. DF. ALEXANDEF V. FONER DIPL, ING. PETER STREHL DiFL, CNEA. DR, URSULA SCHOBEL-HOP DIPL. ING. DIETER EEBINGHAUS
DA-11 900	TELEFON (OB9) 482054 TELEX 5-2S5ES AURO D
	7 November 1975

Prioritaten: 7 . November 1974, GroBbritannien, Nr $-48255 / 74$ 18. August 1975, GroBbritannien; Nr $=34303 / 75$

RückspiegeI

Die Erfindung betrifft einen Rückspiegel; insbesondere Aussenrückspiegel für ein Fahrzeug, mit einem refieikierenden HauptPlächenbexeich fiur eine direkte Sicht nach hinten und wenigstens einem an den Haupt-Flächenbereich angrenzenden zweiten Flächenbereich für eine Sicht seitlich am Fahrzeug nach hinten, Die Erfindung betrifft insbesondere einen Rückspiegel, der aussen an einem Fahrzeug, beispielsweise an einem Iastwagen oder einem Kraftfahrzeug angebracht werden kann.

Aussen-Rückspiegel für Fahrzeuge sind üblicherweise aus Glas hergestellt und eben, oder leicht konvex, um eine begrenzte Rickblick- oder Raumwirkung zu erzielen. Dexartige konvexe Glasspiegel weiscn jedoch den Nachteil auf, dass es in der Praxis schwierig ist, diese Spiegel mit unterschiedlichen Krüm-
mungrsadien oder mit relativ kleinen Krümmungsradien herzustellen. Daher treten zwei schwerwiegende Nachteile auf. Weil der Krümmungsradius dieser bekannten Spiegel immer relativ gross sein muss, ist es daher nur dadurch möglich, das Gesichtfeld zu vergrössern, dass die Abmessungen des Spiegels, d. h. die Spiegelhöhe und -breite vergrössertwerden.Das führt jedoch zu relativ teuren Spiegeln und ein grosser aussen angebrachter Rü̈ckspiegel kann die Sicht des Fahrers nach vorn wesentlich becinträchtigen. Der zweite Nachteil besteht im wesentiichen darin, dass es in der Praxis relativ aufwendig una schwierig ist, einen Fahrzeugríckspiegel aus Glas herzustellen, der einen Krümmungsradius aufweist, der sich über die Breite und/oder Höhe des Spiegels hinweg ändert. Es ist in der Praxis daher aufwendig, teuer und unvorteilhaft, einen Spiegel herzustellen, der teilweise eben und teilweise konvex ist. Konvexe Spiegel führen notwendigerweise $z u$ einer Verkieinerung des reflektierten Bildes, wodurch für den Fahrer Schwierigkeiten bei der Abschätzung der Entfernungen, der Stellungen und Geschwindigkeiten bei Fahrzeugen auftreten, die von hinten kommen.

Als Kompromiss ist es bekannt, einen Aussenspiegel für Fahrzeuge aus zwei getrennten, reflekitierenden Teilen zusammenzusetzen. Der grössere Spiegelteil ist normalerweise ein ebener Spiegel und der andere Spiegelteil ist ein konvexer Spiegel, der unmittelbar an den ebenen Spiegel ancchliesst, um ein vergrössertes Gesichtsfeld zu schaffen. Fine solche Anordnung ist in der GB-PS 1133005 beschrieben. Abgeschen von der Tatsache, dass diese zusammengesetzten Spiegel in der Herstellung teuer sind, weisen sie auch erhebliche Nachteile dadurch auf, dass. das Bild unstetig, d. h. nicht kontinuierlich ist. Ein durch solche Spiegel erzeugtes Bild tritt, an der Seite des ebenen Spiegels auf und erscheint nicht gleichzeitig in dem an den ebenen Spiegel anschliessenden Randbereich des konvexen Spiegels. Der Fahrer sieht daher oft gleichzeitig zwei getrennte Spiegelbilder eines von hinten kommenden Fahrzeugs, und zwar ein Spiegelbild im ebenen Spiegelteil und das andere Spiegelbild im

- $3-$

konvexen Spiegelteil.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Rückspiegel, insbesondere einen Aussenfückspiegel für Fahrzeuge zu schaffen, der relativ kostenginstig hergestellt werden kann, optimale optische Eigenschaften im Hinblick auf aie Verwendungsart aufweist und keine diskontinuierlichen Spiegelbilder erzeugt. Darüberhinaus soll der Rückspiegel leichter als die üblichen Glasspiegel ähnlicher Abmessungen sein und soll wesentlich mehr komplexe optische Reflexionsflächen als die bekannten Glasspiegel aufweisen, ohne dass dadurch höhere Kosten entistehen:

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass der erste und der zweite Flächenbereich in Form eines einzigen reflektierenden Teils ausgebildet ist, das aus einem einstückigen Kunststoff-Formstück besteht, dass die Reflexionseigenschaften des oder der zweiten Flächenbereiche den Reflexionseigenschaften eines inlichen konvexen oder azylindrischen Spiegels entsprechen und sich von den Reflexionseigenschaften des Haupt-Filächenbereiches unterscheiden, und daß die Übergänge zwischen den Flächenbereich so ausgebildet sind, dass beim Gebrauch des. Rückspiegels keine Bild-Diskontinuitäten auftreten und die zweiten Flächenbereiche stetig ineinander übergehen, wenn das Formstück zwei oder mehr zweite Plächenbereiche aufweist.

Ublicherweise ist kein zweiter Spiegelflächenbereich zwischen der Fahrzeugkarrosserie und dem der Karrosserie zugewandten Rand des reflektierenden Teils angeordnet, da der reflektierende Haupt-Flåchenbereich eine ausreichende Sicht nach hinten an der Seite des Fahrzeugs ermöglicht. Daher ist wenigstens eine Kante des Haupt-Flächenbereiches eine Kante des refiektierenden Teils. Der eine zweite Flächenbereich, oder menrere dieser Flächenbereiche sind so ausgebildet, dass sie einen Blick sowohl nach hinten, als auch seitlich am Fahrzeug vorbei ermöglichen, d. h. dass sie die überholenden Fahrzeuge fitr cen

Fahrzeugfuhrer in seinem Gesichtsfeld erscheinen lassen. Um ein grosses Gesichtsfeld zu haben, ist es vorteilhaft, dass die Reflexionseigenschaften dieser Fläche der Reflexionseigenscheften eines ijblichen konvexen oder azylindrischen Spiegels entsprechen, dessen Krummungsradius von der Haupt-Spiegelfäche nach außen abnimmt. Normalerweise ist die zweite Spiegelfläche an der Seite der Haupt-Spiegelfläche angebracht, die bezüglich des Fahrzeuges weiter aussen liegt. Es können auch eine weitere oder mehrere weitere zweite Flächenbereiche vorgesehen werden, um eine zusätzliche Rundblickwirkung zu erzielen, d. h. um eine Sicht nach hinten und nach unten, oder eine Sicht nach hinten bei einem beladenen Lastwagen zu ermöglichen.

Die eine oder mehrere der zweiten Spiegelflächen können eine kontinuierliche, konvexe oder azylindrische Refelxionsfläche aữweisen, wobei in diesem Fall das reflektrierende Teil vorzugsweise in einem Rahmen angebracht ist.und die Sichtfläche des reflektierenden Teils eine verschleiBfeste Beschichtung aufweist, um Beschädigungen der Sicht- bzw. Spiegelfläche zu verhindern. Es gibt dafür verschiedene Materialien, beispielsweise "Resarit" und "Abcite". Diese Materialien sind flüssig, und werden auf die Spiegelifäche des reflektierenden Teils aufgebracht und trocknen dann. Verschleissfeste Beschichtungen können auch durch Bedampfung im Vakuum erzeugt werden. Die Dicke dieser Schichten hängt von den verwendeten Verfahren und Materialien ab. Die Dicke dieser Schichten kann beispielsweise in einem Bereich von 2×10^{-4} bis $8 \times 10^{-3} \mathrm{~cm}$ liegen.

Die eine zweite Fläche, oder jede dieser zweiten Flächenkann mehrere Streifenprismen aufweisen, deren Prismenwinkel von der Hauptspiegelfläche aus nach aussen abnimmt, so dass die Reflexionseigenschaften eines ublichen konvexen oder azylindrischen Spiegels erzielt werden. In diesen Fällen ist das reflektierende Teil vorteilhafterweise in einem Rahmen angebracht und es ist eine transparente Schutzschicht,bzw. ein transparentes Schutzteil vorgesehen, das vor der Sichtfläche des reflektierenden Teils liegt.

$$
2351095
$$

- 5 -

Die für die Fialterung des reflektierenden Teils vorgesehenen Rahmen sind vorteilhafterweise so ausgebildet, dass in sie das reflektierende Teil eingesetzt werden kann, wobei die Rahmen mit einem Arm oder einem Bügel am Fahrzcug befestist sind.

Die Form der reflektienenden Spiegelflächen legt die optischen Eigenschaften des Spiegels fest. Wenn das reflektierende Teil aus Kunststoff hergestellt wird, ist es möglich, der reflektierenden Fl苔che eine sehr komplizierte Form zu geben (was bei Glas oder Metall völlig unmöglich ist). Die optischen Eigenschaften des erfindungsgeaässen Spiegels können daher praktisch ohne Beschränkungen durch entsprechende Ausbildung des reflektierenden Teils gewählt werden. In den meisten Fällen ist es jedoch wünschenswert, dass der Spiegel einen reflektierenden Haupt-Fizahenbereich aufweist, der flach oder sphärisch ist, und der wenigstens teilweise von einer oder mehreren zweiten reflektierenden Spiegelflächen umgeben ist, deren Reflexionseigenschaften einer üblichen konvexen, asphärischen oder azyユindrischen Spiegelfläche entsprechen. Wenn der Haupt-plächenbereich falsch ist, sollte der zweite Flächenbereich azylindrisch sein. Wenn der Haupt-Flächenbereich sphärisch ist, sollte der zweite Flächenbereich asphärisch sein.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.

Die Erfindung wird nachstehend anhand zweier Ausfünrungsbeispiele, die beide Aussenrückspiegel für ein Fahrzeug, beispielsweise ein Lastwagen, betreffen, beschrieben, wobei auf die Zeichnungen Bezug genommen wird. Es zeigen:

Fig. 1 einen Querschnitt durch einen erfindungsgemässen Spiegel, Fig. 2 den in Fig. 1 dargestellten Spiegel, wie er aussen am Führerhaus eines Lastkraftwagens angebracht ist,
Pig. 3 eine Vorderansicht des in Fig. 1 dargestellten Spiegels, Pig. 4 einen weiteren, erfindungegemässon Spiegel in fufsicht,
Fig. 5 einen Querschnitt des in Fig. 4 dargesteliten Spiegels entlang der Schnittlinie $A-A^{\prime}$ und
$609821 / 0707$

Fig. 6 einen Querschnitt entlang der Schnittininie $\bar{B}-\bar{B}^{\prime}$ in Fig. 4.

Wie in Fig. 1 dargestellt ist, weist der Spiegel ein reflektierendes Teil 1 auf, das aus einem einstiickigen Formteil aus transparentem Kunststoffmaterial besteht und dass eine ebene Sehfläche 2 und eine reflektierende Fläche 3 aufweist. Die Fläche 3 wird in geeigneter Weise durch Aufbringen eines Metallschicht reflektierend gemacht, die mit einer Farb-Schutzschicht beschichtet ist. Die Sehfläche 2 wird durch eine transparente Schutzschicht geschiutzt, die, wie in den Zeichnungen dargestellt, aus einer Glasscheibe 4 besteht.

Das reflektierende Teil 1 und die Glasscheibe 4 sind an einer Halterungsplatte 5 mit einem Gummiring 6 angebracht, der zwei ringförmige Nuten aufweist, in denen die Aussenkanten der Halterungsplatte 5, der Glasplatte 4 bzw . des reflektierenden Teils 1 liegen. Der Gummiring 6 schafft eine wasserundurchlässige Dichtung. Der Halterungsarm 7, mit dem der Spiegel am Fahrzeug angebracht ist, ist an der Halterungsplatte 5 drehbar befestigt.

Das reflektierende Teil 1 besitzt einen ebenen, reflektierenden Haupt-Flächenbereich $3 a \operatorname{auf}$ der linken Seite in Fig. 1. Auf der rechten Seite in Fig. 1 sind auf der azylindrischen refiektierenden Fläche 3 mehrere lineare Prismenflächen 3 b vorgesehen; wobei der Prismenwinkel von links nach rechts in Fig. 1 hin kleiner wird. Das vom Spiegel dargestellte Bild besteht aus einem von der reflektierenden Hauptfläche $3 a$ erzeugten Bild und mehreren kleinen durch die Prismen $3 b$ erzeugten Bilaern, wobei das Gesichtsfeld der von den Prismen 3b erzeugten Bilder winkelmässig vom Hauptgesichtsfeld des reflektierenden Bereichs 3a in Fig. 1 nach rechts hin zunehmend versetzt sina. Die Prismenbereiche sind so klein gewählt, dass die Teilbilder der Prismenbereiche für das Auge und damit für den Benutzer des Spiegels ein einheitliches Gesatmbild erzeugen. Der Spiegel scheint daher aus einem ebenen Spiegelbereich auf der linken Seite und
$609821 / 0707$
einem konvexen Spiegelbereich auf der rechten Seite zusammengesetzt zu sein. Der Spiegel besitzt daher ein ausgedehntes, jedoch verkieinertes Gesichtsfeld auf der rechten Seite. Der effektive Krümmungsradius des gekrümmten Spiegelbereichs kann konstant sein oder in Fig. 1 nach rechts hin grösser werden. Der effektive Krümmungsradius hängt von dell Verhältnis bzw. von dem Grad ab, mit dem der Prismenwinkel über den Spiegel hinweg zunimmt.

Wie in Fig. 3 dargestellt ist, ist der Spiegel rechteckig und die Streifenprismen verlaufen senkrecht.

In Fig. 3 ist der Spiegel am Führerhaus eines Lastwagens angebracht. Die eine Neigung aufweisenden Bereiche 3 b sind auf der vom Fïhrerhaus abgewendeten Seite des Spiegels angeordnet, so dass der Fahrer ein exweitertes Gesichtsfeld ausserhalb des Lastwagens besitzt, was ihn beispielsweise ermöglicht, überholende Fahrzeuge zu beobachten. Dieses Gesichtsfeld ist in Fig. 2 schematisch durch gestrichelte Linien dargestellt.

Der Spiegel kann auch auf der anderen Seite des Fahrzeugs angebracht sein, wobei ex vor der Montage um 180° gedreht wird. Der Spiegel kann auch weitere abgeschrägte Bereiche an der Ober- und Unterseite des Spiegels aufweisen, so dass das Gesichtsfeld des Fahrers nach oben und nach unten hin vergrössert wird.
Wie in den Fig. 4 bis 5 dargestellt ist, weist der Spiegel ein reflektierendes Teil auf, das aus Kunststoff geferitigt, ist, und das mit einer optisch reflektierenden Schicht 2, beispielsweise mit einer aufgebrachten Metailschicht aus Aluminium versehen ist. Die Metalischicht kann mit einer schutzbeschichtung wetterbeständig gemacht werden. Der Spiegel weist einen ebenen Hauptbereich 3 auf, der von drei zweiten azylindrischen Flächenbereichen 4 , 5 und 6 umgeben ist. Das reflektierende Teil 1 ist vorteilhafterweise in einem Rahmen angebracht. Es sind Einrichtungen vorgesehen, um den Spiegel außerhalb eines Fahrzeuges, beispiels-

$$
2, y 1995
$$

$-8-$
weise ausserhalb eines schweren Lastwagens zu befestigen. Das reflektierende Teil 1 ist mit einer abrieb- bzw. verschleissfesten Schicht 7, beispielsweise in der zuvor beschriebenen Art beschichtet.

Wenn der Spiegel in der in Fig. 4 dargestellten Lage ausserhalb des Führerhauses eines schweren Lastkraftwagens auf der Fahrerseite angebracht ist, verschafft der Bereich 3 dem Fahrer ein unverzerrtes, jedoch eingeschränktes Gesichtsfela nach hinten, wogegen der Bereich 5 dem Fahrer ein verkleinertes, jedoch wesentlich erweitertes Gesichtsfeld bietet.

Wenn ein Fahrzeug aiso den Lastkraftwagen überholt, sieht der Fahrzeugfinher das überholende Fahrzeug mit dem Bereich 3 zunächst in unverzerrter Form. Wenn das überholende Fahrzeug sich während des Uberhoivorgangs dem zu Überholenden Fahrzeug weiter năhert, bewegt sich das vom Lastwagenfahrer zu beobachtende Bild auf dem Spiegelbereich 3 nach rechts und in den Spiegelbereich 5 hinein. Als Folge davon wird das Bild immer kleiner. Obgleich der Fahrer des Lastkraftwagens jetzt nicht mehr genau dje Entfernung des überholenden Fahrzeugs schätzen kenn, so kann er doch die winkelmässige Lage des überholenden Fahrzeugs bezüglich des Lastkraftwagens feststellen und die Bewegung des überholenden Pahrzeugs verfolgen, wenn es den Lastkraftwagen überholt. Der Fahrer sieht praktisch nur ein reflektiertes Bild, weil die Spiegelbereiche ineinender übergehen und weil zwischen den Spiegelbereichen keine plötzliche Änderung der Kriummung auftritt. Als Folge davon kann sich das vom Fahrzeugführer wahrgenommene Bild vom Bereich 3 in den Bereich 5 des Spiegels stetig verschieben, ohne dass die Spiegelbcroiche 3 und 5 gleichzeitig zwei Bilder erzeugen. Auf diese Weise wird die Sicht bzw. die Wahrnehmung des Fahrers nach hinten wesentlich verbessert, da er immer nur ein Bild in den Spiegelbereichen 3 und 5 sieht.

Die Spiegelbereiche 4 und 5 tirixen in der gieichen Weise wie
der Spiegelbereich 5 und erweitern das Gesichtsfeld des Spiegelbereichs 3 nach hinten, jeaoch in senkrechter Richtung. In entsprechender Weise sind die Spiegelbereiche 4 und 6 so angeordnet, dass der Fahrer nur ein reflektiertes Bild sieht.

Der in den Zeichnungen dargestellte Spiegel kann auch auf der anderen Seite des Führerhauses ausserhalb desselben angebracht werden, wobei der Spiegel Iediglich um 180° gedreht werden muss.

$$
2550035
$$

Ansprüche

Rückspiegel, insbesondere Aussenrückspiegel für ein Fahrzeug, mit einem reflektierenden Haupt-Flächenbereich für eine direkte Sicht nach hinten uñ wenigstens einem an den Haupt-Flächenbereich angrenzenden zweiten Flächenbereich für eine Sicht seitlich am Fahrzeug nach hinten,
 erste (3a) und dex zweite (3b) Flächenbereich in Form eines einzigen reflektierenden Teils (1) ausgebildet ist, das aus einem einstückigen Kunststoff-Formstick besteht, dass die Reflexionseigenschaften des oãer der zweiten Fiächenbereiche (3b) den Keflexionseigenschaften eines ublichen konvexeñ oder azylindrischen Spiegels entsprechen und sich von den Reflexionseigenschaften des Haupt-Flëchenbereiches (3a) unterscheiden, daß die Übergänge zwischen den Flächenbereichen so ausgebildet sind, daß beim Gebrauch des Rickspiegels keine. Bild-Diskontinuitäten auftreten und die zweiten Flächenbereiche (3b) stetig ineinander ubergehen, wenn das Formstuick (1) zwei oder mehr zweite Flächenbereiche (3b) aufweist
2. Rückspiegel nach Anspruch 1, dadurch gekennzeichnet; dass wenigstens ein Rand des Haupt-Flächenbereiches (3a) gleichzeitig ein Rand des reflektierenden Teils (1) ist.
3. Kiuckspiegel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der oder die zweiten Flächenbereiche (3b) mehrere Streifenprismen aufweisen, deren Prismenwinkel vom HauptFlächenbereich (3a) nach aussen abnimmt, so dass die Reflexionseigenschaften eines ublichen konvexen oder azylindrischen Spiegels erhalten werden.
4. Rückspiegel nach Anspruch 3, dadurch gekennzeichnet, dass das reflektierende Teil (1) in einem Rahmen (6) befestigt
ist und ein transparentes Schutzteil (4) vor der Sichtfläche des reflektierenden Teils (1) vorgesehen ist.
5. Rückspiegel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der oder die zweiten Flächenbereiche (3b,) eine stetige, konvexe Reflexionsfläche darstellen.
6. Rückspiegel nach Anspruch 5, dadurch gekennzeichnet, dass das reflektierende Teil (1) in einem Rahmen (6) befestigt ist und sich auf der Sichtfläche des reflektierenden Teils (1) eine verschleissfeste Schicht befindet.
7. Rückspiegel nach wenigstens einem der Ansprüche 1 bis 6 , dadurch gekennzeichnet, daß der Haupt-Flächenbereich (3a) eben ist und die Reflexionseigenschaften des oder der zweiten Flächenbereiche (3b) denen eines Ublichen azylindrischen Spiegels entsprechen, dessen Krimmungsradius vom HauptFlächenbereich (3a) nach außen hin abnimmt.
8. Rückspiegel nach wenigstens einem der Anspruche 1 bis 6, dadurch gekennzeichnet, daß der Haupt-Flächenbereich (3a) sphärisch ist und die Reflexionseigenschaften des oder der zweiten Flächenbereiche (3b) denen eines ưblichen asphärischen Spiegels entsprechen, dessen Krummungsradius vom HauptFlächenbereich (3a) nach auBen hin abnimmt.
9. Rückspiegel nach wenigstens einem der Anspruche 1 bis 9, dadurch gekennzeichnet, daß dieser außen an einem Fahrzeug angebracht ist.

12
Leerseite

$$
-13-
$$

$609821 / 0707$

$609821 / 0707$

[^19]Patentanspriache

1.

Rückspiegel für Fahrzeuge mit zwei im Winkel zueinander Vérlaufenden Spiegelflächen, dadurch gekennzeichnet, daß die Spiegelflä̈che (4) für den toten Winkel des Fahrzeuges als gesonderter, zusätzlicher spiegelkörper (3) auf keilförmig ansteigendem Untergrund ausgebildet ist, der auf einem Teil der normalen Rückspiegelfläche (2) leicht anbringbar eingerichtet ist.
2. Rückspiegel nach Anspruch 1, dadurch gekennzeichnet, daß der zusätzliche Spiegelkörper (3) aus einem keilförmig ansteigendem Untergrund besteht, der an seiner ebenen Rlickfläche mit einer Haftmittelschicht '(7) und einer leicht abziehbaren Deckfolie versehen ist.
3. Riickspiegel nach Anspruch I, dadurch gekennzeichnet, daß die zusätzliche Rückspiegelfläche für den toten Winkel đes Fahrzeugs kleiner als die normale Ruckspiegelfläche, etwa $1 / 3$ derselben, ausgeführt ist.
4. Rückspiegel rach Anspruch 1, dadurch gekennzeichnet, daß der zusätzlìche Rückspiegelkörper (3) an der dem Fahrzeug abgewandten Seite an den .. Rand der normalen Rückspiegelfläche anliegt und von diesem Rand nach dem Fahrzeug zu keilfärmig ansteigt.
5. Rickspiegel nach Anspruch i, dadurch gekennzeichnet, daß der zusätzliche Rückspiegel an seinem dem Fahrzeug abgewandten Umfangrand dem Umfangrand des normalen Rückspiegels angepaßt ist.
6. Rückspiegel nach Anspruch 1 , dadurch gekennzeichnet, daß die normale Rückspiegelscheibe (2) mit dem Rückspiegelkörper (3) und dessen zusätzlicher Spiegelscheibe (4) einstückig verbunden und auf einer Grundplatte des Ruckspiegelhalters (I) auswechselbar angebracht ist.

Rückspiegel für Fahrzeuge

Die Erfindung betrifft einen Rückspiegel für Fahrzeuge mit zwei im Winkel zueinander verlaufenden Spiegelflächen, von denen die eine ein normaler Rückspiegel ist und die andere für den toten Winkel des Fahrzeuges bestimmt ist. Die Ausnutzung dieser für die Verkehrssicherheit wichtigen Anordnung scheitert bisher meist daran, daß der gewöhnlich vorhandene normale Rückspiegel nur mit hohem Kostenaufwand durch einen neuen Riokspiegel mit zwei Spiegelfұächen ersetzt werden muß, was gewöhnlich unterbleibt. Versuche zur Schaffung eines Rückspiegels für den toten Winkel neben dem normalen Rückspiegel entsprechen meist den Sicherheitsvorschriften und -notwendigkeiten nicht ausreichend.

Erfindungsgemaß wird diesem Mangel dadurch abgeholfen, daß die Rückspiegelfläche fưr den toten Winkel am Fahrzeug als ge-. sonderter, zusätzlicher Spiegelkörper auf keilförmig ansteigendem Untergrund ausgebildet ist, der auf der normalen Rtickspiegelfläche leicht anbringbar eingerichtet ist. Der als zusätzlicher Spiegelköpper auf keilförmig ansteigendem Untergrund ausgefihrte Ruickspiegelteil ist auf seiner Rückfläche eben ausgefihrt und mit einem Haftmittel sowie einer abziehbaren Deckfolie versehen. Der zusätzliche Rückspiegelkörper liegt ferner an der dem Fahrzeug abgewandten Seite an dem Rand des normalen Rückspiegels an und steigt keilformig nach der gradlinig zwischen ihm und der normalen Rückspiegelflăche verlaufenden Kante an.

Weitere Einzelheiten und Vorteile der Erfindung sind in der Beschreibung im Zusammenhang mit der Zeichnung näher erläutert.

$$
809817 / 0213 \quad-2-
$$

$-\frac{E^{\prime}}{3}$

In der Zeichnung sind einige Ausfuhrungsbeispiele des Gegenstandes der Erfindung schematisch dargestellt. Es zeigt:

Fig. 1 einen normalen Rizckspiegel mit auf dessen halber Spiegelfläche angebrachtem gesondertem, zusätzlichem Spiegelkörper mit keilförmiger Rückspiegelfläche für den toten Winkel in Ansicht,

Fig. 2 einen Schnitt nach der Linie II-II der Fig. I.

Fig. 3 eine Ausführungsform des zusätzlichen Rückspiegels mit kreisbogenförmigem Außenrand des zusätzlichen - Rückspiegels.

Fig. 4 eine Ausführungsform des Außenrandes. des zusätzlichen Rückspiegels mit ovalem Außenrand,

Fig. 5 eine Ausführungsform des zusätzlichen Rückspiegels mit abgerundeten Ecken des Außenrandes,

Fig. 6 eine Gesamtansicht eines Doppelruickspiegels mit im normalen Ruickspiegel und im Ritckspiegel fir den toten Winkel angedeuteten Fahrzeugen.

In der Zeichnung ist 1 der nomale Riickspiegel eines Fahrzeuges mit der spiegelfläche. 2 , auf deren dem Fahrzeug abgekehrten seite auf einem keilförmig nach dem Fahrzeug ansteigendem Untergrundkörper 3 eine zusätzliche spiegelflăche 4 für den toten Winkel. des Fahrzeuges angebracht isti. Der Neigungswinkel des keilförmigen Anstiegs des Untergrundkörpers beträgt etwa 4 bis 6 Grad zur Normalrückspiegelfläche 2. Es empfiehlt sich, den normalen Riuckspiegel 1 mit einem Randwulst 6 zu versehen. Die Riackfläche des keilförmigen, zusätzlichen Spiegelkörpers 3 aus Kunststoff oder einem anderen Baustoff ist eben ausgeführt und mit einer Haft- oder Klebschicht 7 versehen, die bis zur Anbringung des zusatzlichen Spiegelkörpers 3 auf der normalen Rückspiegelfläche 2 mit einer nicht dargestellten abziehbaren Deckfolie abgedeckt ist. Der zusätzliche Spiegeikörper 3 ist an seinen Außenrändern
den Umrissen des normalen Ruickspiegelhalters angepaßt und weist auf der dem $F_{z} h r z e u g$ zugekehrten Seite eine gerade Kante 8 auf, die von der normalen Ruickspiegelfläche 2 etwas hervorsteht. Die Figuren 3 bis 5 zeigen einige vorhandenen Rückspiegeln angepaßte Umrisse des zusätzlichen Rückspiegels an. Figur 6 zeigt einen Doppelspiegel mit im normalen Rückspiegel 1 und im zusätzIichen Rückspiegel/ Aangedeuteten Fahrzeugen.

In manchen Faillen der Praxis kann auch die normale Ridckspiegelfläche 2 mit dem zusätzlichen Spiegelkörper 3 vereint einstückig hergestellt und mit einer ruckwärtigen Haft- oder Klebschicht sowie einer Abdeckfalie versehen und auswechselbar auf einer ebenen Grundfläche eines Rickspiegelhalters angebracht werden. Dabei wird dann beim Schadhaftwerden der Rückspiegelflächen 2, 4 die Erneuerung des kombinierten Rickspiegels vermieden.

Das dargesterlte und beschriebene Ausfihrungsbeispiel des Gegenstandes der Erfindung kann in Anpassung an die jeweiligen Falle oder Wünsche der Praxis in den Einzelheiten zahlreiche Abänderungen erfahren, ohne daß der Bereich der Erfindung verIassen wird.

> Leerseite

Fig. 2

Fig. 6
$809817 / 0213$

Licht, Schmidt, Hansmann \& Herrmann

Mirrorcraft, Inc. 2074 Arlington Avenue
Columbus, Ohio 43221
USA

Licht, Schmidt, Hansmann, Herrmana - Postiach 701205-8000 Münehen 70 *

Patentanwälte

Dipl,-Ing. Martin Licht Dr. Reinhold Schmidt Dipl.-Wirtsch.-Ing. Axet Hansmann Dipl.-Phys. Sebastian Herrmann

Albert-Roßhaupter-Str. 65 8000 München 70
Telefon: (089) 7603091
Telex: 5212284 pats d
Telegramme: Lipatli München
17. Apri1 1979 Ho/Ba

PATENTANSPROCHE

> (1.) Spiegelanordnung mjt einem Primärspiegel, dessen Reflexionsfläche durch eine Seitenkante begrenzt ist und welcher normalerweise aus einer seitlich versetzten Position bezüglich der Seitenkante eingesehen wird, derart, daß die Primär-Reflexionsfläche des Primärspiegels in einer ersten Ebene ein vorbestimmtes winkeliges Primärgesichtsfeld vorbestimmter Erstreckung abdeckt, wobei die erste Ebene im wesentlichen senkrecht zur. Seitenkante und bezügTich der Primärreflexionsfläche verläuft, dadurch gekennzeichnet, daß der Primärspiegel (10) einen Hilfsspiegel (13) trägt, welcher beträchtlich kleinere Abmessungen als der Primärspiegel besitzt und sich nahe der Seitenkante des Primärspiegels befindet, derart, daß der Hilfsspiegel unter Abstand zu einer entgegengesetzten Seitenkante des Primärspiegels endet und ein beträchtlicher primärer Reflexionsbereich dazwischen verbleibt, daß der Hilfsspiegel (13) eine bogenförmig verlaufende. Reflexionsfläche (15, 16) aufweist, welche in der ersten Ebene, im wesentichen senkrecht bezüglich der Seitenkante und der primären Reflexionsfläche des Primärspiegels, ein Hilfsgesichtsfeld vorbestimmter
Erstreckung abdeckt，wobei das Gesichtsfeld des Hilfs－ spiegels beträchtlich größer ist als das winkelige primäre Gesichtsfeld der Reflexionsfläche des Primär－ spiegels，derart，daß sich das Gesichtsfeld（Y）des Hilfsspiegels wenigstens teilweise deckend mit dem winkeligen Gesichtsfeld（X）des Primärspiegels erstreckt und sich in von der Seitenkante abgewandter Richtung über das Gesichtsfeld des Primärspiegels als auch über die Reflexionsfläche des Primärspiegels bezüglich des Gesichts－ punktes hinaus erstreckt．
2．Spiegelanordnung nach Anspruch 1，dadurch gekennzeich－ net，daß die Reflexionsfläche des Hilfsspiegels bezüglich der Reflexionsfläche des Primärspiegels so angeordnet ist， daß die Ebenen der entsprechenden Winkel－Gesichtsfelder co－planar sind．
3．Spiegelanordnung nach Anspruch 2，dddurch gekennzeich－ net，daß das winkelige Gesichtsfeld des Hilfsspiegels im wesentlichen das gesamte winkelige Gesichtsfeld des primären Spiegels in diesen Ebenen umfasst．
4．Spiegelanordnung nach Anspruch 3，dadurch gekennzeich－ net，daß die entsprechenden Winkel－Gesichtsfelder an einer Begrenzung zusammenfallen．
5．Spiegelanordnung nach Anspruch 1，dadurch gekennzeichnet， daß die Reflexionsfläche des Hilfsspiegels bogenförmig ge－ krümmt ist，derart，daß ein größeres winkeliges Gesichts－ feld als das des Primärspiegels besteht，wobei dieses Ge－ sichtsfeld in einer zweiten Ebene im wesentlichen senkrecht
zur erstgenannten Ebene verläuft.
6. Spiegelanordnung nach Anspruch 5, dadurch gekennzeichnet, daß das winkelige Gesichtsfeld des Hilfsspiegels in der zweiten Ebene das winkelige Gesichtsfeld der Reflexionsfläche des Primärspiegels abdeckt.
7. Spiegelanordnung nach Anspruch 6, dadurch gekennzeichnet, daß sich das winkelige Gesichtsfeld der Reflexionsfläche des Hilfsspiegels über das Gesichtsfeld des Primärspiegels nur in einer Richtung bezüglich der ersten Ebene hinaus erstreckt.
8. Spiegelanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Hilfsspiegel beträchtlich kleiner ist als der Primärspiegel, und daß der Hilfsspiegel nahe der Seitenkante des Primärspiegels angeordnet ist und eine Kante senkrecht zur Seitenkante verläuft.
9. Spiegelanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Reflexionsfläche des Hilfsspiegels in der ersten Ebene eine Abmessung besitzt, welche größer ist als die Abmessung innerhalb der zweiten Ebene.
10. Spiegelanardnung nach Anspruch 1, dadurch gekennzeichnet, daß der Hilfsspiegel an der Außenfläche des Primärspiegels befestigt ist.
11. Spiegelanordnung nach Anspruch 10, dadurch gekennzeichnet, daß der Hilfsspiegel ein Element mit einer Reflexionsfläche umfasst, welche in der Außenfläche befestigt ist.

12．Spiegelanordnung nach Anspruch 11，dadurch gekennzeich－ net，daß das Element am Primärspiegel befestigt ist．

13．Spiegelanordnung nach Anspruch 11，dadurch gekenn－ zeichnet，daß das Element integral mit dem Primärspiegel angeordnet ist．

14．Spiegelanordnung nach Anspruch 1，dadurch gekenn－ zeichnet，daß die Reflexionsfläche des Hilfsspiegels integral im Primärspiegel ausgebildet ist．

15．Spiegelanordnung nach Anspruch 1，dadurch gekenn－ zeichnet，daß die Reflexionsfläche des Hilfsspiegels an einer Innenfläche einer gleichförmig dicken Hülle ange－ ordnet ist．

- 5 -

> Spiegelanordnung mit einem Primärspiegel

Abstract

Spiegel für Fahrzeuge sind herkömmlicher Weise mit einer ebenen Reflexionsfläche ausreichender Größe versehen, um dem Fahrer ein Gesichtsfeld zu vermitteln. Diese Spiegel sind entweder im Inneren des Fahrzeuges als Rückspiegel angeordnet, um durch ein an der Rückseite des Fahrzeuges befindliches Fenster sehen zu können, oder sie sind an der Seitentüre oder am Seitenrahmen einer oder beider Seiten des Fahrzeuges befestigt, um das Gesichtsfeld in seitlicher Richtung zu vergrößern. Die vorliegende Erfindung betrifft primär an der Außenseite befestigte Seitenspiegel, welche an den Türen oder Türrahmen des Fahrzeuges oder an dem vorderen Cotflügel angebracht-sind. Obwohl die Aufgabe derartiger Hilfsspiegel in Form von Seitenspiegeln darin besteht, das seitliche gerichtete Sichtfeld für den Fahrer des Fahrzeuges zú erweitern, unterliegen die zur Zeit verfügbaren Spiegel dem Nachteil, daß sie unter Bezug auf das Fahrzeug selbst nicht geeignet sind, ein optimales Gesichtsfeld zu vermitteln.

Es wurden Versuche unternommen, um die Leistungsfähigkeit. derartiger Spiegel zu erhohen, indem Hilfsspiegelanordnungen entweder unabhängig von den normalen Spiegeln am Fahrzeug angeordnet wurden oder indem sie an den herkömmlichen Seitenspiegeln angebracht wurden. Derartige bisher bekannte Hilfsspiegel bestehen aus einem kreisförmigen oder bogenförmigen Abschnitt einer Kugelhulle, welche mittels Klebemittel auf der Fläche des Primärspiegels befestigbar sind, falls der Primärspiegel ausreichend groß ist, so im Falle von Lastkraftwagen. Alternativ können derartige kugelfärmige

Abstract

Abschnitte an der Außenseite des Fahrzeuges, also unabhängig van anderen Spiegeln, befestigt werden.

Obwohl diese kugelfärmigen Spiegelanordnungen ein großes Sicht- bzw. Gesichtsfeld vermitteln, erstreckt sich dieses auf einen Winkelbereich von 360°, d.h. der Vorteil dieser Gesichtsfeldvergrößerung besteht darin, daß dem Fahrer des Fahrzeuges ein stark verzerrtes Umfangs-Feld vermittelt wird. Eine derartige Verzerrung hat zur Folge, daß die Sicherheit stark beeinträchtigt ist. Ein derartiger Sjiegel erzeugt ein Sicht- oder Gesichtsfeld, welches sich uber einen witien und auch unwichtigen Seitenteil des Fahrzeugs erstreckt und welcher auch bezüglich des Fahrzeuges nach oben und nach unten gerichtete große Bereiche abdeckt. Diese Bereiche sind für den Fahrer und für die sichere Bedienung des Fahrzeuges nur von untergeordneter Bedeutung oder bedeutungslos.

Derartige kreisförmige bzw. Kugelförmige spiegel als auch andere zylindrisch-konvexe Ausführungsformen, welche geschaffen wurden, um die Nachteile des blinden Blickwinkels von herkömmlichen ebenen Reflexionsflächen zu überwinden, haben infolgedessen nicht die erwïnschten Ergebnisse erbracht. Obwoh1 derartige Spiegel dem Wunsche entsprechen, ein vergrößertes Gesichtsfeld für den Fahrer des Fahrzeuges zu erzeugen, vermitteln sie gleichzeitig ein beträchtlich größeres Gesichtsfeld als für den nutzbringenden Einsatz erforderlich ist. Infolgedessen beeinträchtigen derartige Spiegel den Fahrer und setzen die Sicherheit herab, welche ursprungtich beabsichtigt ist.

Davon ausgehend wurde ein zusammengesetzter bzw. kombinierter Spiegel geschaffen, bei welchem der Hauptteil oder

Primärabschnitt des Spiegels den herkömmlichen Zwecken dient, d.h. der. Spiegel besitzt eine ebene Reflexionsflähe, um ein verhältnismäßig schmales winkeliges Gesichtsfeld in horizontaler Ebene zu erzeugen, wobei dieses unmittelbar angrenzend am Fahrzeug sich erstreckend vorgesehen ist, wenn der Spiegel an einer Seite des Fahrzeuges besteht. Der zusammengesetzte oder kombinierte Spiegel nach der Erfindung vermittelt den Vorteil, daß der Fahrer unabhängig davon einen besonderen Bereich an der Seite des Fahrzeuges einsehen kann, welcher einen Seitenwinkel von optimal 90° bezüglich der Längsachse des Fahrzeuges abdeckt. Mit Hilfe eines derartigen Spiegels kann sich ein Fahrer der Anwesenheit eines Fahrzeuges in einem Bereich versichern, welcher bei herkömlichen und genau eingestellten Spiegeln nicht eingesehen werden kann, da diese Spiegel ein Gesichtsfeld abdecken, welches sich nur zu einem relativ begrenzten Ausmaß seitlich und winkelig nach außen erstreckt.

Ein Segment oder Abschnitt des gekrümmten oder kurvenförmigen Spiegelabschnittes ist innerhalb eines relativ kleinen Teils der Fläche des ebenen Spiegels angebracht. Durch diese Anordnung ist der kurvenförmige und gekrümmte Abschnitt in einem Flächenbereich bezüglich des Primärspiegels placiert, derart, daß das Gesichtsfeld des Primärspiegels im wesentlichen nicht durch den Zusatz des Hilfsspiegels beeinträchtigt ist. Insbesondere befindet sich der Hilfsspiegel in der unteren rechten Ecke eines an der Fahrerseite befestigten Spiegels, während ein entsprechender Spiegel an der Mitfahrerseite den Bereich der unteren linken Ecke einnimmt.

Nachfolgend sind die verschiedenen Verfahren zur Bildung eines kombinierten bzw. zusammengesetzten Spiegels erläutert, d.h. eines Spiegelsystems, mit welchem zwei voneinander getrennte Gesichtsfelder an den Seitenbereichen eines Motor-
$030044 / 0209$

```
fahrzeuges abgedeckt werden. Nach einem ersten derartigen
Verfahren wird der Hilfsspiegel als separate Einheit am
Primärspiegel befestigt, so daß auf diese Weise bereits be-
stehende Spiegel ergänzt werden und die Vorteile der Er-
findung erzielt werden können. Nach einem weiteren Verfahren
wird der Primärspiege1 so ausgebildet, daß er berejts den
Hilfsspiegel enthält. Dieser integral ausgebildete Spiegel-
teil kann entweder an der Außenseite bzw. der nach außen
gerichteten Fläche.des Primärspiegels vorgesehen sein oder
er kann in er rückwärtigen Fläche ausgebildet werden. Der
einzige Unterschied zwischen diesen zwei Verfahren besteht
darin, daß die Silberbeschichtung zur Herstellung der Reflexions-
fläche im einen Fall an der Außenfläche aufgebracht wird,
während sie im anderen Fall an der Rückseite des Primär-
spiegels aufgebracht wird.
Die Erfindung ist nachfolgend anhand von Ausführungsbei-
spielen unter Bezugnahme auf die beigefügte Zeichnung er-
läutert.
Figur 1 ist eine Vorderansicht eines Spiegels nach der
    Erfindung;
Figur 2 ist eine vergrößerte vertikale Teilschnittansicht
    von Linie 2-2 in Figur 1;
Figur 3 ist eine vergrößerte vertikale Teilschnittansicht
    von Linie 3-3 in Figur 1;
Figur 4 ist eine schematische Draufsicht des Gesichtsfeldes
    des Spiegels;
```

Figur 5 ist eine der Figur 2 vergleichbare vertikate Teilschnittansicht einer weiteren Ausführungsform des Spiegels;

Figur 6 ist eine Figur 3 vergleichbare vertikale Teilschnittansicht des Spiegels;

Figur 7 ist eine Vorderansicht eines Spiegels gemäß einer weiteren Ausführungsform der Erfindung;

Figur 8 ist eine vergrößerte vertikale Teilschnittansicht von Linie 8-8 in Figur 7;

Figur 9 ist eine vergrößerte vertikale Teilschnittansicht von Linie 9-9 in Figur 7 ;

Figur 10 ist eine Vorderansicht einer weiteren Ausführungsform eines Spiegels nach der Erfindung;

Figur 11 ist eine vergrößerte vertikale Teilschnittansicht von Linie 11-11 in Figur 10; und
Figur 12 ist eine vergrößerte vertikale Teilschnittansicht von Linie 12-12 in Figur 10.

In den Figuren 1, 2 und 3 der Zeichnung ist eine grundsätzTiche Ausführungsform der Vorrichtung nach der Erfindung dargestellt. In Figur 1 ist ein herkömmich geformter Seitenblickspiegel 10 ohne zusätzliche Trag-oder Haltebauteile wiedergegeben. Diese Halterungen bilden keinen Bestandteil der vorliegenden Erfindung, d.h. sie sind lediglich erforderlich, den Spiegel an der Seite des Fahrzeuges zu halten.

03004410209

Da derartige Halterungen oder Befestigungsmittel bekannt sind, wird auf ihre ins einzelne gehende Beschreibung verzichtet.

Der Seitenblickspiegel, als Primärspiegel 10 bezeichnet, ist als ebener Spiegelkörper wiedergegeben, welcher eine flache Platte aus Gias oder aus einem anderen optisch durchlässigen Material aufweist. Auf der Rückseite dieser Platte ist eine Beschichtung 11 aus Silbermaterial oder derglcichen aufgebracht, wie in Figur 2 dargestellt ist. Der dargestellte Primärspiegel 10 ist von herkömmlicher rechtwinkeliger Konfiguration und kann die im allgemeinen verfiigbare Größe von $7,5 \times 12,5 \mathrm{~cm}$ besitzen, wobei die Längsachse horizontal ausgerichtet ist.

An der nach außen gerichteten Fläche - 12 des Primärspiegels 10 ist der Sekundärspiegel bzw. Hilfsspiegel 13 gemäß der Erfindung befestigt. In der besonderen Ausführungsform nach der Erfindung ist der Hilfsspiegel 13 als in sich ausgebildete Einheit vorgesehen, welche insbesondere zur Befestigung an der Außenfläche 12 des Spiegels 10 dient. Gemäß Figur 2 und 3 wird der Hilfsspiegel 13 ohne weiteres mit Hilfe einer Lage von Klebematerial 14 befestigt, welches zwischen den entgegengesetzten und angrenzenden Flächen der beiden Spiegelkörper eingebracht ist.

Innerhálb des Hilfsspiegeis 13 ist ein rechtwinkelig geformter Abschnitt einer bogenförmig verlaufenden bzw. kugelförmigen Hülle 15 eingesetzt. Die Hülle 15 ist vorzugsweise mit einer reflektierenden Fläche versehen und besitzt eiren Krümmugsradius, der im Bereich von 12 cm 1 iegen kann. Die Längsabmessung des Abschnittes beträgt in der dargestellten Ausführungsform etwa 18 bis 20 cm , während die beiden $A b-$
messungen im Bereich von 1 bis 20 cm beträgt. Die bogenförmige Hülle 15 ist aus einem durchsichtigen Material gefertigt, so aus Glas und ist an der nach innen gerichteten Fläche mit einer Schicht 16 aus einem geeigneten Silbermaterial bedeckt, wobei diese Schicht die reflektierende Fläche bildet.

Die Deckfläche bzw. die Huille 15 ist in einen oben offenen Behälter bzw. ein Gehäuse 17 eingebracht, welches einen flachen Boden 18 aufweist. Von den Umfangskanten des rechtwinkeligen Bodens 18 erstrecken sich in Längsrichtung Seitenwände 19 und in Querrichtung verlaufende Endwände 20 und 21. Die eine Endwand 21, welche sich am nächsten einer Seitenkante des Primärspiegels 10 befindet, ist beträchtich höher als die entgegengesetzte Endwand 20. Gemäß Figur 2 befindet sich das Segment der kugelförmigen Hülie 15 innerhalb der umschließenden Wände 19,20 und 21 , so daß sich ein Ende im wesentlichen mit der küzeren Wand 20 erstreckt, während sich das andere Ende relativ erhöht befindet und sich mit dem oberen Ende der Wand 21 erstreckt. Das kugelförmige Segment befindet sich also in winkeliger Schräglage bezüglich der Außenfläche des Primärspiegels. In der dargestellten Ausfuhrungsform besitzt die Wand 21 eine Höhe, welche so bestimmt ist, daß das angrenzende Ende der Hülle 15 bezüglich der Fläche 12 des Primärspiegels etwa 8 mm weiter außen liegt als das entgegengesetzte Ende an der Endwand 20. Der kugelförmige Abschnitt bzw. die Hülle 15 ist innerhalb des Gehäuses 17 mit einem klebemittel 22 befestigt, welches aushärtet und eine strukturell starre Halterung für das Segment bildet.

Wie vorstehend erwähnt wurde, ist der Hilfsspiegel 13 mittels einer Schicht 14 aus Klebemittel an der Außenfläche 12 des
$030044 / 0209$

Abstract

Primärspiegels befestigt und nimmt die in Figur 1 dargestellte Lage bezüglich des Seitenspiegels ein, welcher an der linken Seite bzw. an der Fahrerseite eines Fahrzeuges zu befestigen ist. Diese Relativposition des Spiegels 10 an einem Fahrzeug ist schematisch in Figur. 4 der Zeichnung dargestellt. In Figur 4 ist gleichfalls schematisch das normale Gesichtsfeld dargestellt, welches lediglich durch Verwendung der ebenen Reflexionsfläche des Spiegels erzielt wird. Das winkelige Gesichtsfeld bezüglich einer horizontalen Ebene ist mit X bezeichnet und umfasst einen horizontalen Winkelabstand, der sich von einer Basis- oder Bezugslinie entlang der Seite des Fahrzeuges erstreckt. Vorzugsweise ist diese begrenzende Gesichtslinie in Oberlappung mit Teilen der Fahrzeugseite, so daß der Fahrer des Fahrzeuges einen besseren Bezug besitzt, um den Spiegel auf Gegenstände einzustellen, welche innerhalb dieses Gesichtsfeldes erscheinen. Das Winkelausmaß dieses Gesichtsfeldes X liegt im Bereich von etwa 35°. Es ist ersichtlich, daß dieses Gesichtsfeld für einen Fahrer nicht ausreicht, wenn sich dieser in einer Position V innerhalb des Fahrzeuges befindet und objekte einsehen will, welche unter seitlichem Abstand oder bezüglich des Fahrzeuges weiter vorne liegen, also außerhalb des Gesichtsfeldes X.

Mit Hilfe des am Primärspiegel 10 befestigten Hilfsspiegels 13 wird das seitliche winkelige Gesichtsfeld auf das Gesichtsfeld Y gemäß Figur 4 erhöht. Dieses beträchtlich größere Winkel-Gesidhtsfeld in einer Horizontalebene mit dem Spiegelaufbau erstreckt sich unter Verwendung der kugelförmigen Hülle 15 von der Basislinie A bis im wesentlichen zu einer Linie, welche um 80 bis 90° gegenüber der Seite des Fahrzeuges versetzt, also angewinkelt ist.

Einige der wesentlichen Vorteile des Aufbaues des Hilfs－ spiegels 13 nach der Erfindung besteht darin，daß dieser in horizontaler Ebene eines bevorzugten Bereiches ein ver－ hältnismäßig breites Gesichtsfeld vermittelt．Dieses Ge－ sichtsfeld ist in vertikaler Erstreckung auf ein ver－ hältnismảßig schmales Band beschränkt；dieses Band umfasst jedoch ein nahezu 90° abdeckendes horizontales Gesichtsfeld in dem Bereich，in welchem der Fahrer des Fahrzeuges andere Fahrzeuge wahrnehmen kann．Dies geschieht in einer Position， in welcher eine größere Detailabbildung unwichtig ist．Diese
© begrenzte Darstellung eines Fahrzeuges im sagenannten bifinden Bereich stellt einen beträhtlicher Vortet dar，dahingehend， daß die Reflexion bzw．das Gesichtsfeld eine Fläche abdeckt， welche normalerweise erfordern würde，daß der Fahrer sennen Kopf dreht und direkt in．diesen Bereich einsieht．Bei wechseln－ den Fahrspuren auf mehrspurigen Schnellstraßen oder Autabahnen stellt dies einen besanderen Vorteil dar．Wenn man lediglich in den ebenen Primärspiegel 10 einsiehty dann ist nur ersicht－ lich，ob sich ein Fahrzeug beträchetich hinter dem Fahrzeug des Fahrers befindet．Indessen ist kejne Anzeige in diesem Spiegel möglich，ob sich ein Fahrzeug unmittelbar seitich des eigenen Fahrzeuges befindet．Ein Vorteil der erfindungs－ gemäßen Spiegelanordnung besteht fernerhin darín，daß der in horizontaler Ebene bestehende breite Sichtwinkel in vertikaler Richtung verhältnismäßig begrenzt ist，d．h．sowoht nach oben als auch nach unten，weshalb der Fahrer nicht mit optischen Wahrnehmungen und Informationem versorge wird， welche keinen Einfluss auf seine Fahrentscheidungen besitzen． Es ist in wesentlichen die seitliche Position efnes Fabr－ zeuges in dem sagenannten＂blinden＂Winkel oder Bereich． welche fir die Sicherheit beim Lenken des eigenen Fahrzeuges erforderlich ist．Die erforderliche Einsichtname kann außer－ dem erreicht werden，ohne daß der Kopf mad die augen in bis－

03004610209
her machteiliger Weise bewegt werden milissen, wadurch die sichere Lenkung des Fahrzeages beeintracheigt werden känte.

In den Figuren 5 und 6 ist eine weitere Ausführungsform des varstehend in den Figuren 1,2 und 3 dargesteplten Hiffsspiegels 13 wiedergegeben. In den. Figuren 5 und 6 ist ein Körper dargestellta welcher direkt an der Fläche 12 des Spiegels befestigt ist. Dieser Körper ist als Abschnitt einer kugelförmigen Der kugelformige Abschnitt 23 besteht aus einem Material, welches optisch nicht durchlässig ist und vorzugsweise aus efnem geeigneten synthetischen Harzkunststaff gefertigt wird. Derartige Materiatien könnem in geeigneten Verfafren hergestellt werden; im vorliegenden Ausfuhrungsbeispiel ist der fragTiche Körper kugelformig geforme und weist eine Außenfläche 24 auf, welche mit einem geeigneten Sitberschichtmaterfal beschichtet werden kann, um die Reftextonsftäche zu bitden. Das kugelformige Segment 23 besitzt im wesent ichen die gleichen Abmessungen wie das der erstbeschriebenen Ausfünrugsform und befindet sich in etwa auf der gileichen Posption auf dem Primärspiegel 10. Während die Flache 24 dieses abschnitts mit einer versilberten Eläche versehen ist, sind die belden Seitenwande 25 ats auch dife Emdwand 26 vorzugsweise nicht silberbeschichtet. Auf diese Weise soblem unheabsichtigte Reflexionen van vertikal orientierten Gegenstanden verhindert werden, die sich entweder ahermalb oder unterfalb ces spiegels befinden, ats auch Reflexianen des Fabrzeugteils, welches sich im Bereich der Endfläche 26 befindet. Die Befestigung dieser weiteren Ausführungsform des Hilfsspiegels 23 nach der Erfindung kann in einfacher Weise mit einer Schicht 27 aus Klebemittel geschehen. Die KTebenitzelschicht befindet sich zwischem einer Bodenflache des kugetformigen Segments und der Aufenfläche iz des Primarspiegels 10.

In den Figuren 7, 8 und 9 ist eine weitere Ausführungsform der Vorrichtung nach der Erfindung dargestellt. In Figur 7 ist ein Primärspiegel 28 wiedergegeben, wekher einen Ab. schnitt mit einer kugelförmigen Fläche 29 aufweist. Dieser Abschnitt ist integral im Spiegelkörper vorgesehen. Der Primärspiegel 28 ist aus G1as oder aus einem anderen optisch durchlässigen Material gefertigt und besitzt eine Dicke, welche ausreicht, die vertikale Abmessung der Kugelfläche 29 unterzubringen. Der die kugelförmige Fläche 29 tragende Abschnitt befindet sich in der äußersten Ecke des Aufbaues, d.h., dieser Körper ist sowohl an einer Längskante als auch an einer Seitenkante des Primärspiegels 28 offen. Die Abmessungen des die kugelförmige $F 1 \ddot{c} c h e 29$ enthaltenden $A b-$ schnittes entsprechen vorzugsweise den Abschnitten der zwei weiteren, vorstehend beschriebenen Ausführungsformen. Es ist ersichtlich, daß das eine Ende angrenzend an die Unterseite 30 des Primarspiegels angepasst ist. Es ist ferner ersichtlich, daß nur eine Längs-Seitenwand 31 vorgesehen ist, welche unter einem Abstand von der unteren Längskante des Primärspiegels besteht. Das Reflexionsvermögen wird dadurch erreicht, daß die $F 1 a ̈ c h e ~ 29$ mit einem geeigneten Versilberungsmaterial beschichtet ist. Dieses Versilberungsoder Verspiegelungsmaterial ist nicht an der Seitenwandfläche 31 aufgebracht, obwohl es an der Fläche 30 des Primärspiegels vorgesehen ist.

In den Figuren 10,11 und 12 ist eine weitere Ausführungsform nach der Erfindung dargestellt. Diese Ausführungsform umfasst eine integral ausgebildete planare oder primäre Spiegelfläche 32 als auch einen Abschnitt mit einer kugelförmigen Fläche 33. Gemäß Figur 10 ist der die kugelförmige Fläche 33 enthaltende Abschnitt in seinen Dimensionen ent-

Abstract

sprechend den voranstehend beschriebenen Spiegeln ausgebildet und befindet sich in einer Ecke des Primärspiegels. Infolgedessen vermittelt dieser Abschnitt den gleichen Vorteil der Position zum Zwecke der Einsichtnahme seitlicher Flâchenbereiche, ohne daß das verhältnismäßig schmale Gesichtsfeld der Spiegelfläche 32 des Primärspiegels, welches im wesentlichen rückwärts gerichtet ist, beeinträchtigt ist. Diese besondere Ausführungsform des Spiegels ist vorzugsweise aus Kunststoff gefertigt, welcher einstuckig geformt oder gegossen werden kann, wobei hierbei die verschiedenen Flächen 32 und 31 ausgebildet werden. Obwohl die gesamte Außenfläche 32 und 33 mit einem geeigneten Silber-Beschichtungsmaterial bedeckt ist, sind die Seitenkanten-Flächen vorzugsweise nicht mit einer derartigen Silberbeschichtung versehen. Insbesondere ist die innere Kantenfläche 34 (Figur 12) nicht mit einem derartigen Silberbeschichtungsmaterial belegt. Auf diese Weise werden störende Reflexionen vermieden, welche durch die angrenzenden $F l a ̈ c h e n ~ 34 ~ u n d ~ 32 ~ e n t s t e h e n ~ k o ̈ n n t e n . ~$

Der vorstehend beschriebene Spiegel der verschiedenen Ausführungsformen eignet sich insbesondere zum Einsatz in Kraftfahrzeugen. Der Spiegel eignet sich dazu, ein beträchtlich vergrößertes Gesichtsfeld zu vermitteln, welches erforderlich ist, um sogenannte blinde• Winkel auszuschalten, also diejenigen Sichtbereiche, welche mit herkömmichen ebenen Spiegelflächen nicht eingesehen werden können. Mit Hilfe der Spiegelkonstruktion nach der Erfindung wird das Hilfs-Gesichtsfeld auf einen bestimmten Bereich beschränkt, welcher für den Fahrer des Fahrzeuges von besonderem Interesse ist, insbesondere wenn ein unmittelbar seitlich bezüglich des eigenen Fahrzeuges befindificher Gegenstand oder ein Fahrzeug wahrgenommen werden soll. Der die kugelförmige Fläche enthaltende Abschnitt ist in dieser Hinsicht von

Abstract

besonderem Vorteil, da er ein vertikal geringfügig nach oben und nach unten sich erstreckendes Gesichtsfeld vermittelt, we7ches dem durch den Primärspiegel erzeugten Bild besser angepasst und durch den Fahrer einsehbar ist. Die Winkellage des vertikalen Abschnittes bezüglich der ebenen Fläche des Primärspiegels hat zur Folge, daß dieser Abschnitt insbesondere das extrem seitliche Gesichtsfeld einsieht als auch ene Sicht-Bezugsinie an der Seite des Fahrzeuges schafft. Der Spiegelaufbau kann als separate Einheit geschaffen werden, welche leicht an bereits bestehenden Spiegeln befestigbar ist; der Aufbau kann auch in einem integral geformten System eingeordnet werden, um das äußere Erscheinungsbild eines Hilfs-Spiegelaufbaues zu vermeiden. Der Spiegel nach der Erfindung kann auch an beiden Sejten eines Fahrzeuges angeordnet werden und kann die Vorteile des erweiterten Gesichtsfeldes vermitteln.

$030044 / 0209$

$030044 / 0209$

Exterior rearview mirror for motor vehicles

Publication number: DE3302735 (A1)		
Publication date:	1984-08-02	Cited documents:
Inventor(s):	SCHULZE GEB HARTWIG [DE] +	WE DE8025168U (U1)
Applicant(s):	SCHULZE GEB HARTWIG JOHANNE +	\% DE1931112 (A1)
Classification:		5 DE1905873U (U)
		5 DE1866604U (U)
- international:	B60R1/08; B60R1/08; (IPC1-7): B60R1/06	5 DE1838998U (U)
- European:	B60R1/08D2	

Application number: DE19833302735 19830127
Priority number(s): DE19833302735 19830127

Abstract of DE 3302735 (A1)
The exterior rearview mirror has an upper mirror surface (5) as a main mirror surface for viewing behind and a lower mirror surface (6) which is bent at an angle along a horizontal line (7) relative to said upper mirror surface (5) in the direction of the rear of the mirror and by means of which the surface of the road or the edge of the pavement in the region directly next to the vehicle can be viewed from the driver's seat.

Data supplied from the espacenet database - Worldwide

Anmelder:
Schulze, geb. Hartwig, Johanne, 6237 Liederbach, DE

Erfinder:
gleich Anmelder
(56) Recherchenergebnisse nach 543 Abs. 1 PatG:

DE-GM 8025168
DE-GM 1931112
DE-GM 1905873
DE-GM 1866604
DE-GM 1838998
US 4105295
US $\quad 3826563$
US 2279751

Aussenrückspiegel für Kraftfahrzeuge
Der Außenrückspiegel weist eine obere Spiegelfläche (5) als Hauptspiegelfläche zur Rückwärtsbeobachtung und eine relativ dazu um eine horizontale Linie (7) in Richtung auf die Spiegelrückseite abgewinkelte untere Spiegelfläche (6) auf, mittels weicher die Straßenoberfläche bzw. eine Bordsteinkante im Bereich unmittelbar neben dem Fahrzeug vom Fahrersitz aus zu beobachten ist.

PATENTANSPRUECHE
(1. Aussenrückspiegel für Kraftfahrzeuge, dadurchgekennzeichnet, dass er eine obere Spiegelfläche (5)zur üblichen Rückwärtsbeobachtung und eine gegenüberdieser oberen Spiegelfläche (5) um eine wenigstensnäherungsweise horizontal verlaufende Linie (7) inRichtung auf die Spiegelrückseite abgewinkelte, untereSpiegelfläche (6) zur Beobachtung der Strassen-oberfläche unmittelbar neben dem Kraftfahrzeug,insbesondere des Bordsteins, aufweist.2. Aussenrückspiegel nach Anspruch 1, dadurch gekenn-zeichnet, dass die untere Spiegelfläche (6) nur 20\% bis30% der gesamten Fläche des Spiegels beträgt.
3. Aussenrückspiegel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Breite des Rückspiegels in an sich bekannter Weise grösser als seine Höhe, insbesondere etwa doppelt so gross wie seine Höhe ist.
4. Aussenrückspiegel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Neigungswinkel (α) der unteren Spiegelfläche (6) gegenüber der oberen Spiegelfläche (5) zwischen etwa 15° und 25°, vorzugsweise ungefähr 20°, beträgt.
5. Aussenrückspiegel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die oberen und unteren Spiegelflächen (5,6) durch getrennte, in das Spiegelgehäuse (2) eingesetzte Spiegelgläser (8,9) gebildet sind.
6. Aussenrückspiegel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die untere Spiegelfläche konvex, insbesondere zylindrisch-konvex, ausgebildet ist.

-2-
7. Aussenrückspiegel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die untere Spiegelfläche (11) ausserdem gegenüber der oberen Spiegelfläche (5) um eine im wesentlichen vertikal verlaufende Achse seitlich zum Fahrzeug hin um einen Winkel gedreht ist.
8. Aussenrückspiegel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass er dreiteilig ausgebildet ist und ausser den erwähnten oberen und unteren Spiegelflächen $(12,13)$ an einer Seite eine gegenüber der oberen Spiegelfläche (12) um eine im wesentlichen vertikale Linie (15) abgewinkelte dritte Spiegelfläche (14) zur Vermeidung des toten Winkels aufweist.
9. Aussenrückspiegel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die untere Spiegelfläche (6,11,13) unabhängig von der oberen Spiegelfläche $(5,12)$ verstellbar ist.

Aussenrückspiegel für Kraftfahrzeuge

Die Erfindung bezieht sich auf einen Aussenrückspiegel für Kraftfahrzeuge.

Es sind bereits zweiteilige Aussenrückspiegel bekannt, die ausser der für die Rückwärtsbeobachtung bestimmten Hauptspiegelfläche an einer Seite eine kleine, um eine etwa vertikale Achse abgewinkelte zweite Spiegelfläche haben, um für den Fahrer den Einfalls- und Reflektionswinkel zu vergrössern, so dass der sonst tote Winkel und damit ein gerade überholendes Fahrzeug beobachtet werden kann.

Bisher besteht jedoch noch keine Möglichkeit, vom Fahrersitz aus in einfacher und bequemer Weise die Strassenoberfläche unmittelbar neben dem Kraftfahrzeug, insbesondere den Bordstein beobachten zu können, was vor allem beim Parken das Manövrieren wesentlich erleichtern würde. Die bisher bekannten, unten am Fahrzeug montierten und seitlich abstehenden, drahtförmigen Metallfühler, welche durch das beim Berühren der Bordsteinkante erzeugte kratzende Geräusch dem Fahrer das korrekte dichte Heranfahren an die Bordsteinkante erleichtern solyen, stellen offensichtlich keine befriedigende Lösung dar und haben sich in der Praxis, wie die Erfahrung zeigt, nicht durchgesetzt.

Der Erfindung liegt die Aufgabe zugrunde, einen Aussenrückspiegel zu schaffen, welcher ausser der üblichen Rückwärtsbeobachtung auch auf einfache Weise die Beobachtung der Strassenoberfläche unmittelbar neben dem Fahrzeug, insbesondere einer Bordsteinkante, erlaubt.

Zur Lösung dieser Aufgabe ist der Aussenrückspiegel erfindungsgemäss dadurch gekennzeichnet, dass er eine

3302735
obere Spiegelfläche zur üblichen Rückwärtsbeobachtung und eine gegenüber dieser oberen Spiegelfläche um eine wenigstens näherungsweise horizontal verlaufende Linie in Richtung auf die Spiegelrückseite abgewinkelte, untere Spiegelfläche zur Beobachtung der Strassenoberfläche unmittelbar neben dem Kraftfahrzeug, insbesondere des Bordsteins, aufweist.

Auf diese Weise erleichtert der Aussenrückspiegel nach der Erfindung insbesondere das korrekte Parken dicht neben einem niedrigen, sonst nicht ohne weiteres $z u$ erkennenden Hindernis, vor allem dicht an einer Bordsteinkante, ohne Gefahr zu laufen, dass Reifen und/oder Radkappen durch Schleifen am Bordstein beschädigt werden, wie das bisher häufig vorkommt. In Ländern mit Rechtsverkehr wird der Rückspiegel nach der Erfindung natürlich vorzugsweise auf der rechten Fahrzeugseite angebracht.

Zweckmässigerweise ist die Breite des Rückspiegels, im montierten Zustand also seine Horizontalabmessung, grösser als seine Höhe, insbesondere etwa doppelt so gross wie seine Höhe, und der Bereich der unteren Spiegelfläche beträgt nur etwa 20 bis 30% der Gesamtfläche des Spiegels und hat daher die Gestalt eines nur vergleichsweise schmalen, horizontalen Streifens. Der Neigungswinkel der unteren Spiegelfläche zur oberen Spiegelfläche, welcher bei korrekter Einstellung des Rückspiegels den Bordstein zu beobachten erlaubt, hängt zwar etwas vom Ort des Rückspiegels am Fahrzeug, das heisst von der Höhe des Rückspiegels über der Strassendecke und von seinem Abstand zum Hinterrad, ab, liegt jedoch in den meisten Fällen, zumindest für die meisten Personenkraftwagen, zwischen etwa 15° und 25°; in der Regel erfüllt ein Rückspiegel nach der Erfindung mit einem Neigungswinkel von etwa 20° gut seine Funktion, wenn er in der üblichen Rückspiegelstellung seitlich an
der Aussentür, etwa einen Meter über der Strassendecke, installiert ist.

Um bei einem normal für die rückwärtige Beobachtung eingestellten Rückspiegel nach der Erfindung, in welchem der Fahrer in der unteren Spiegelfläche die Strassenoberfläche im Bereich der hinteren Fahrzeughalfte, insbesondere des betreffenden Hinterrades, beobachten kann, das Spiegelblickfeld dieser unteren Spiegelfläche zu erweitern, vor allem nach vorn zum mittleren Fahrzeugbereich hin, kann gemäss einer besonderen Ausführungsform die untere Spiegelfläche konvex, insbesondere zylindrisch-konvex, gekrümmt sein. Um gegebenenfalls das Spiegelblickfeld weiter nach vorn, bis wenigstens zum Bereich des betreffenden Vorderrades, zu erweitern bzw. zu verschieben, kann ausserdem die untere Spiegelfläche noch gegenüber der oberen Spiegelfläche um eine im wesentlichen vertikale Achse zum Fahrzeug hin, das heisst bei einem an der rechten Fahrzeugseite befestigten Spiegel in der Draufsicht im Uhrzeigersinne, gedreht sein.

Auch im Falle einer ebenen unteren Spiegelfläche kann diese etwas gegenüber der oberen Spiegelfläche um eine vertikale Achse gedreht sein, um das Spiegelblickfeld weiter nach vorn zu verschieben.
Da der Rückspiegel nach der Erfindung vor allem auf
derjenigen Fahrzeugseite sinnvoll ist, auf der
normalerweise geparkt wird, also bei Rechtsverkehr auf
der rechten Seite und bei Linksverkehr auf der linken
Seite, besteht kein grosses Interesse, bei diesem Rück-
spiegel dafur zu sorgen, dass man auf dieser Seite auch
noch den toten Winkel, also den Bereich unmittelbar
neben dem Fahrzeug, beobachten kann, da ja eine Ueber-
holung auf der anderen Fahrzeugseite stattfindet und
der Fahrer aur dieser Seite ohne weiteres einen

Abstract

bekannten zweiteiligen Spiegel für Rückwärtsbeobachtung und Beobachtung des toten Winkels montieren lassen kann. Jedoch schliesst der Rückspiegel nach der Erfindung grundsätzlich auch einen dreiteiligen Spiegel ein, welcher ausser den beiden bisher erörterten Spiegelflächen an einer Seite auch noch - in an sich bekannter Weise - eine gegenüber der für die Rückwärtsbeobachtung bestimmten Hauptspiegelfläche um eine etwa vertikale Achse abgewinkelte Spiegelfläche zur Beobachtung des toten Winkels aufweist, wobei diese dritte Spiegelfläche vorzugsweise kleiner als die Hauptspiegelfläche ist und sich entweder über die Gesamthöhe des Spiegels erstreckt, wobei dann untere Spiegelfläche und obere Hauptspiegelfläche die gleiche Breite haben, oder aber nur die Höhe der oberen Hauptspiegelfläche oder gegebenenfalls nur die Höhe der unteren Spiegelfläche einnimmt.

Zweckmässige Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.

Die Erfindung wird anhand der Zeichnungen an Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1 eine erste Ausführungsform eines Rückspiegels nach der Erfindung, und zwar die Vorderansicht eines an der rechten Fahrzeugseite angebrachten Rückspiegels,

Figur 2 einen Schnitt längs der Linie II-II nach Figur 1 ,

Figur 3 einen der Figur 2 entsprechenden Schnitt durch eine zweite Ausführungsform eines Aussenrückspiegels und

[^20]

> Figur 1 zeigt einen Aussenrückspiegel 1 , dessen Gehäuse 2 mittels eines Arms 3 in bekannter Weise einstellbar an der rechten Seite eines nur durch eine Begrenzungslinie angedeuteten Kraftfahrzeugs 4 befestigt ist. Der Rückspiegel 1 hat eine übliche, näherungsweise rechteckformige Gestalt mit abgerundeten Ecken und ist ungefähr doppelt so breit wie hoch. Er hat eine obere Spiegelfläche 5, welche die Hauptspiegelfläche zur ublichen fückwärtsbeobachtung bildet, und eine untere Spiegelfläche 6, welche gegenüber der oberen Spiegelfläche 5 um eine etwa parallel zu den Spiegelbreitseiten verlaufende, im montierten Zustand des Spiegels also im wesentlichen horizontal orientierte Linie 7 in Richtung auf die Spiegelrückseite abgewinkelt ist, wie es Figur 2 zeigt. Im betrachteten Beispiel werden beide Spiegelflächen 5 und 6 durch getrennte, in das Spiegelgehäuse 2 eingesetzte ebene Spiegelgläser 8 und gebildet, wobei die Fuge zwischen diesen beider Planspiegeln längs der Linie 7 durch eine Befestigungsmasse bzw. einen Befestigungsstreifen, beispielsweise aus Gummi, ausgefült ist.

Der Neigungswinkel $\boldsymbol{\alpha}$ (Figur 2) der unteren Spiegelfläche 6 gegenüber der oberen Spiegelfläche 5 ist so gewählt; dass bei der normalen Einstellung des Rückspiegels 1 , in welcher der Fahrer mittels der oberen Spiegelfläche 5 nach rückwärts blicken kann, vom Fahrersitz gleichzeitig auch die Strassenoberfläche unmittelbar neben dem Fahrzeug beobachtet werden kann, wie durch den gewinkelten Pfeil 10 in Figur 2 angedeutet. Dadurch kann der Fahrer insbesondere bei einem Parkmanöver den rechten Bordstein beobachten, was ein dichtes Heranfahren an den Bordstein erleichtert, ohne diesen mit Reifen oder Radkappen zu berühren. Die zweckmässige Grösse des Neigungswinkels \mathcal{L} liegt im allgemeinen zwischen etwa 15° und etwa 25°; in den


```
meisten Fällen erfüllt der Rückspiegel, sofern er an
seiner üblichen Stelle an einer Autotür montiert ist,
seinen erfindungsgemässen Zweck, wenn der Neigungs-
winkel }\alpha\mathrm{ etwa 20'0}\mathrm{ beträgt.
```

Bei der Ausführungsform nach den Figuren 1 und 2 wird der Fahrer mittels der unteren Spiegelfläche 6 im wesentlichen den Bereich der Strassenoberfläche unmittelbar neben der hinteren Fahrzeughälfte beobachten. Wenn es wünschenswert ist, das Spiegelblickfeld zu erweitern, insbesondere weiter nach vorn, kann die untere Spiegelfläche 6 auch konvex, insbesondere zylindrisch-konvex gekrümmt ausgebildet sein. Wenn das Spiegelblickfeld auch noch wenigstens teilweise den Strassenbereich neben der vorderen Fahrzeughälfte umfassen soll, kann die untere Spiegelfläche 6 auch noch in Bezug auf die obere Spiegelfläche 5 um eine etwa vertikale Achse in Richtung auf das Fahrzeug, also in Richtung auf den Befestigungsarm 3, um einen bestimmten Winkel gedreht sein. Auf diese Weise lässt sich gegebenenfalls erreichen, dass der Fahrer in der unteren Spiegelfläche 6 einen vergleichsweise grossen Abschnitt der Strassenoberfläche bzw. des Bordsteins unter Einschluss der betreffenden Hinter- und Vorder. räder bzw. der neben diesen liegenden Bereiche beobachten kann. Durch die erwähnte Massnahme kann das Spiegelblickfeld, wenn gewünscht, auch einfach weiter nach vorn verschoben werden.

Auch im Falle einer ebenen unteren Spiegelfläche lässt sich das Spiegelblickfeld für den Fahrer nach vorn in den Strassenbereich neben der Fahrzeugmitte hin verschieben, indem, wie im Ausführungsbeispiel nach Figur 3 gezeigt, die ebene untere Spiegelfläche 11 in Bezug auf die obere Spiegelfläche 5 um eine im wesentlichen vertikale Achse in Richtung auf das Fahrzeug 4 bzw. den Befestigungsarm 3 gedreht in das Spiegelgehäuse 2

eingesetzt wird, so dass sich für den Fahrer Einfallsund Reflektionswinkel entsprechend verkleinern. Natürlich ist die Grösse dieser möglichen Drehung und damit das Ausmass, das Spiegelblickfeld weiter nach vorn zu verlegen, dadurch eingeschränkt, dass der für den Fahrer massgebende Einfallswinkel bei schräg von vorn kommendem Einfallsstrahl nicht zu gross und daher die für den Fahrer sichtbare scheinbare Grösse der unteren Spiegelfläche 11 nicht zu klein sein darf.
Wenn der Rückspiegel nach der Erfindung in Ländern mit Rechtsverkehr nur auf der rechten und in Ländern mit Linksverkehr nur auf der linken Fahrzeugseite montiert wird, um die Parkmanöver auf der rechten bzw. auf der linken Strassenseite zu erleichtern, dann besteht im allgemeinen kein Interesse, den Rückspiegel auch noch so auszubilden, dass der tote Winkel auf dieser Seite, wo nicht überholt werden darf, vermieden wird. Wenn es trotzdem auch noch gewünscht wird, den normalerweise toten Winkel in einem Aussenrückspiegel nach der Erfindung zu erfassen, dann kann ein solcher Rückspiegel gemäss einer weiteren Ausführungsform, die in Figur 4 gezeigt ist, dreiteilig ausgebildet sein. Ausser der oberen Spiegelfläche 12, die wiederum die Hauptspiegelfläche für die Rückwärtsbeobachtung darstellt, und der kleineren unteren Spiegelfläche 13 weist dieser Rückspiegel an einer Seite der oberen Spiegelfläche 12 eine dritte Spiegelfläche 14 auf, die zur Vermeidung des toten Winkels in Bezug auf die die Hauptspiegelfläche bildende obere Spiegelfläche 12 um eine im wesentlichen vertikale Achse entsprechend abgewinkelt ist. Diese dritte Spiegelfläche 14; deren Breite vorzugsweise wesentlich kleiner als die der Hauptspiegelfläche ist, kann sich auch über die gesamte Höhe des Spiegels erstrecken, wodurch die untere Spiegelfläche 13 entsprechend kürzer ausfällt, oder aber gegebenenfalls. auch nur an einer Seite der unteren Spiegelfläche 13
angeordnet sein, so dass die obere Spiegelfläche 12 alsHauptspiegelfläche nicht verkleinert zu werden braucht.
Natürlich kann gegebenenfalls zur Vermeidung eines
toten Winkels bei einem zweiteiligen Rückspiegel nach
der Erfindung, wie er im Prinzip in den Figuren 1 und 2
gezeigt ist, die obere Spiegelfläche als Haupt-
spiegelfläche in bekannter Weise auch konvex ausge-
bildet sein. Gegebenenfalls können obere und untere
Spiegelflächen 5 und 6 nach Figur 1 beide konvex
gekrümmt sein.
Es ist auch möglich, das die untere Spiegelfläche bil-
dende Spiegelglas unabhängig von der oberen Spiegel-
fläche einstellbar im Spiegelgehäuse 2 zu lagern.
Der Rückspiegel nach der Erfindung ist nicht auf die
beschriebenen Ausführungsformen beschränkt, sondern
lässt hinsichtlich der Form und Gestalt des Spiegels
manigfache Varianten zu.

11-
 - Leerseite -

Fig. 3

Rearview mirror for a motor vehicle

Publication number: DE3329998(A1)	
Publication date:	1985-03-07
Inventor(s):	HORN KARL-HEINZ [DE]
Applicant(s):	HORN KARL HEINZ
Classification:	
- international:	B60R1/08; B60R1/08; (IPC1-7): B60R1/08
- European:	B60R1/08D2
Application number:	DE19833329998 19830819
Priority number(s):	DE19833329998 19830819

Abstract of DE 3329998 (A1)
Rearview mirror for a motor vehicle with a plane mirror surface, part of the plane mirror surface being constructed as a raised mirror surface.

Data supplied from the esp@cenet database - Worldwide

(71) Anmelder:

Horn, Karl-Heinz, 3578 Schwalmstadt, DE

Erfinder:
gleich Anmelder
(71) Anmelder:
Horn, Karl-Heinz, 3578 Schwalmstadt, DE
(72) Erfinder:
gleich Anmelder
(54) Rückspiegel für ein Kraftfahrzeug

Rückspiegel für ein Kraftfahrzeug mit einer ebenen Spiegelfläche, wobei ein Teil der ebenen Spiegelfläche als erhabene Spiegelfläche ausgebildet ist.

9.8.1983 W/H

838/10472

Karl-Heinz Horn, Knüllstraße 6, 3578 Schwalmstadt

Ansprüche

1. Buickspiegel für ein Kraftfahrzeug mit einer ebenen Spiegelfläche
dadurch gekennzeichnet, daß ein Teil der ebenen Spiegelfläche als erhabene
5 Spiegelfläche ausgebildet ist.
2. Rückspiegel nach Anspruch 1
dadurch gekennzeichnet, daß auf die ebene Spiegelfläche eine erhabene Spiegelfläche aufgesetzt ist.

10 3. Riückspiegel nach Anspruch 1
dadurch gekennzeichnet, daß die erhabene Spiegelfläche an der äußeren Seite der ebenen Spiegelfläche aufgesetzt ist.

$838 / 10472$

Karl-Heinz Horn
Knüllstraße 6
3578 Schwalmstadt

Rückspiegel für ein Kraftfahrzeug

Die Erfindung betrifft einen Riuckspiegel für ein Kraftfahrzeug mit einer ebenen Spiegelfläche.

Rückspiegel für Kraftfahrzeuge sind an sich be-
5 kannt. Sie besitzen im allgemeinen eine ebene Spiegelfläche. Bekanntlich kann damit ein nachfolgendes Fahrzeug dann nicht mehr gesehen werden, wenn es im toten Winkel sich befindet.

Bekannt sind an sich auch Ruickspiegel mit erhabener 10 Spiegelfläche. Dabei ist allerdings nachteilig, daß die nachfolgenden Fahrzeuge verzerrt auf der Spiegelfläche erscheinen, so daß man den Abstand des

Fahrzeuges nicht abschätzen kann.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Rückspiegel für Kraftfahrzeuge zu schaffen, der einerseits die Spiegelbilder unverzerrt wieder5 gibt, andererseits mit Sicherheit die im toten Winkel befindlichen Fahrzeuge erkennbar macht.

Nach der Erfindung wird das dadurch erreicht, daß ein Teil der ebenen Spiegelfläche als erhabene Spiegelfläche ausgebildet ist. Dadurch besteht der 10 Rückspiegel aus zwei Spiegelflächen, nämlich einer ebenen- und einer erhabenen Spiegelfläche. Zweckmäßig ist die erhabene Spiegelfläche auf der ebenen Spiegelfläche und an der äußeren Seite der ebenen Spiegelfläche angebracht.

15 Die Ausbildung hat den Vorteil, daß mit Hilfe der üblichen ebenen Spiegelfläche die nachfolgenden Fahrzeuge unverzerrt erkennbar sind, so daß der Abstand dieser Fahrzeuge nach wie vor sicher abgeschätzt werden kann. Gleichzeitig ist aber erreicht, 20 daß ein im toten Winkel befindliches Fahrzeug in der erhabenen Spiegelfläche erkennbar ist. Die verzerrte Abbildung des im toten Winkel befindlichen Fahrzeuges kann zu keinen Abstandsirrtümern führen, da bekannt ist, daß das im toten Winkel sichtbare 25 Fahrzeug in unmittelbarer Nähe des eigenen Fahrzeuges ist.

$$
4
$$

3329998

In der Zeichnung ist eine beispielsweise Ausführungsform dargestellt.

Fig. 1 zeigt den erfindungsgemäßen Rückspiegel von vorn;
Fig. 2 ist ein Schnitt gemäß der Linie II-II.

Mit 1 ist die übliche ebene Spiegelfläche bezeichnet. An der äußeren Seite dieser ebenen Spiegelfläche ist die mit 2 bezeichnete erhabene Spiegel10 fläche als Teil der ebenen Spiegelfläche angebracht und stellt mit dem gesamten Spiegel einen integrierenden Bestandteil dar.

Rearview mirror for motor vehicles

Publication number:	DE3620228
Publication date:	1987-12-17
Inventor:	MARHAUER FRIEDRICH (DE)
Applicant: Classlification:	MARHAUER UTA (DE)
- international:	B60R1/08; B60R1/08; (IPC1-7): B60R1/08
- European:	B60R1/08D2
Application number: Priority number(s):	DE19863620228 19860616
	DE19863620228 19860616

Report a data error here

Abstract of DE3620228

In order to include the blind angle, known rearview mirrors are convex and/or aspherical. This results in the disadvantage that the driver can only estimate the distances and speeds of approaching vehicles with great difficulty, which can lead to dangerous situations. The entire surface of the new rearview mirror is divided up horizontally. The upper mirror (16) is planar, and two adjacent mirrors are situated below the upper mirror. One (12) of the lower mirrors is convex and the other (14) is aspherical. The convex mirror (12) covers the same fiedd of vision as the upper mirror (16).

Fig. 1

Anmelder:
Marhauer, Uta, 3000 Hannover, DE
Erfinder:
Marhauer, Friedrich, 3000 Hannover, DE

Prüfungsantrag gem. §44 PatG ist gestelit
(54) Rückspiegel für Kraftfahrzeuge

Um den toten Winkel zu erfassen, sind die bekannten Rückspiegel konvex bzw. asphärisch ausgebildet. Hierbei besteht der Nachteil, daß der Fahrer Entfernungen und Geschwindigkeiten der herannahenden Fahrzeuge nur sehr schwer abschätzen kann, was zu gefährlichen Situationen führen kann.
Der neue Rückspiegel besitzt eine horizontale Aufteilung der gesamten Spiegelflăche. Der obere Spiegel (16) ist plan ausgebildet, und unterhalb des oberen Spiegels befinden sich zwei nebeneinander angeordnete Spiegel. Davon ist der eine Spiegel (12) konvex und der andere Spiegel (14) asphärisch ausgebildet. Der konvexe Spiegel (12) erfaßt das gleiche Sichtfeld wie der obere Spiegel (16).

Fig. 1

Patentansprüche

1. Rückspiegel für Kraftfahrzeuge, mit einem ersten konvex ausgebildeten Spiegel und einem an der dem Kraftfahrzeug abgewandten Seite des ersten Spiegels seitlich daneben angeordneten zweiten und stärker konvex ausgebildeten Spiegel, wobei der erste Spiegel der Hauptspiegel für das normale Sichtfeld ist und der zweite Spiegel den toten Winkel erfaßt, dadurch gekennzeichnet, daß horizontal über dem ersten (12) und zweiten Spiegel (14) ein plan ausgebildeter dritter Spiegel (16) winkelig angeordnet ist, der - in der Breite - das gleiche Sichtfeld wie der erste Spiegel erfaßt.
2. Rückspiegel nach Anspruch 1, dadurch gekennzeichnet, daß der erste (12) und der zweite Spiegel (14) durch eine senkrechte Trennlinie (18) voneinander getrennt sind, und daß der dritte Spiegel (16) durch eine waagerechte Trennlinie (20) von dem ersten (12) und zweiten Spiegel (14) getrennt ist. 3. Rückspiegel nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß der erste (12), der zweite (14) und der dritte Spiegel (16) auf einer gemeinsamen Grundplatte (22) angeordnet sind, die in einem Spiegelgehäuse (24) gehalten ist.
3. Rückspiegel nach Anspruch 2 und/oder 3, dadurch gekennzeichnet, daß die waagerechte Trennlinie (18) etwa mittig innerhalb des Spiegelgehäuses (24) verläuft.
4. Rückspiegel nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß der erste (12), der zweite (14) und der dritte Spiegel (16) auf einer gemeinsamen Grundplatte (22) angeordnet sind, und daß die Grundplatte (22) auf ihrer Rückseite mit einer Klebeschicht versehen ist.

Beschreibung

Die Erfindung betrifft einen Rückspiegel für Kraftfahrzeuge, mit einem ersten konvex ausgebildeten Spiegel und einem an der dem Kraftfahrzeug abgewandten Seite des ersten Spiegels seitlich angeordneten zweiten und stärker konvex ausgebildeten Spiegel, wobei der erste Spiegel der Hauptspiegel für das normale Sichtfeld ist und der zweite Spiegel den toten Winkel erfaßt.

Bei einem normalen Rückspiegel für Kraftfahrzeuge ist bekanntlich das generelle Problem zu beobachten, daß der tote Winkel von dem in den Spiegel blickenden Fahrer nicht erfaßt werden kann. Dies hat zur Folge, daß ein von hinten herannahendes überholendes Fahrzeug. daß sich in diesem toten Winkel befindet in dem normalen Rückspiegel nicht sichtbar ist und somit von dem Fahrer auch nicht wahrgenommen werden kann.

Der geschilderte Umstand kann im Straßenverkehr zu gefährlichen Situationen führen, wenn der Fahrer, der aufgrund eines Blickes in seinen Rückspiegel das im toten Winkel befindliche überholende Fahrzeug nicht sieht, seinerseits zum Überholen eines anderen vor ihm befindlichen Fahrzeuges ausscheren will. Auch beim Einfädeln in den fließenden Verkehr auf Autobahnen und Autostraßen sowie beim Ausparken können sich derartige gefahrvolle Situationen einstellen.
Zur Beseitigung der geschilderten gravierenden Nachteile der normalen Rückspiegel sind schon mehrere Wege beschritten worden, die aber in der Praxis allesamt nicht vollständig befriedigen können.

Durch die Zeitschrift "ADAC-Motorwelt" 1978, Heft 7, Seite 15, rechte Spalte, dritter Spiegel von oben ist es spiegel bekannt, der durch eine horizontale Trennung in zwei übereinander angeordnete Spiegel aufgeteilt ist, allerdings sind bier beide Spiegel plan ausgebildet. Einer
der beiden Spiegel soll den toten Winkel erfassen, und deshalb ist dieser Spiegel in einem Winkel zum anderen Spiegel angeordnet.

Bei diesem bekannten Rückspiegel ist es nachteilig, daß der sonst den kompletten Spiegel bildende Sichtbereich in Folge der Aufteilung in zwei winkelig zueinander angeordneten Spiegel zur Folge hat, daB in jedem der Spiegel nur die Hälfte des üblichen Bildes erscheint. Abgesehen von diesem den Fahrer verwirrenden Effekt wird ein in den Sichtbereich der Spiegel erscheinender Gegenstand auch noch horizontal verschoben dargestellt. Ein herannahendes Kraftfahrzeug, das in dem einen Spiegel beispielsweise in der Mitte gesehen wird, erscheint wegen der winkligen Anordnung in dem anderen Spiegel verschoben an dessen Rand.
Schließlich ist durch das deutsche Gebrauchsmuster 8025168.9 ebenfalls ein Spiegel mit einer horizontalen Trennlinie bekannt, wobei der obere Spiegel plan und der untere Spiegel konvex ausgebildet und bezüglich der Spiegelebene des ersten Spiegels entgegengesetzt zur Fahrtrichtung geneigt ist, so daß er neben dem toten Winkel auch das Sichtfeld des ersten Spiegels erfaBt. In der Praxis hat sich allerdings gezeigt, daß das menschliche Auge die beiden unterschiedlich großen Bilder kaum koordinieren kann, und außerdem besitzt der untere Spiegel mit dem Konvexglas eine zu geringe Höhe Im übrigen wird hier der tote Winkel zwar verringert, aber nicht vollständig beseitigt. Schließlich ist hier - im Gegensatz zur Erfindung - der obere plan ausgebildete Spiegel als normaler Rückspiegel vorgesehen, während dieser bei der Erfindung im unteren Bereich angeordnet ist und zudem auch noch den toten Winkel erfaßt. Der obere Spiegel bildet bei der Erfindung nicht den normalen Rückspiegel, sondern er dient dazu, dem Fahrer die Möglichkeit zu geben, in gewohnter Weise Entfernungen und Geschwindigkeiten richtig abschätzen zu können.

Gemäß einer zweckmäßigen Ausgestaltung der Erfindung sind die drei Spiegel auf einer gemeinsamen Grundplatte angeordnet, welche auf ihrer Rückseite mit einer Klebeschicht versehen ist. Dadurch wird in vorteilhafter Weise die Möglichkeit geschaffen, den neuen Rückspiegel im nachhinein auf einen bereits vorhandenen herkömmlichen Spiegel aufzukleben, so daß bereits im Verkehr befindliche Kraftfahrzeuge nachträglich mit dem neuen Rückspiegel bestückt werden können.

Andere zweckmäßige Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben und der Zeichnung zu entnehmen.

Nachfolgend wird die Erfindung anhand des in der 50 Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:

Fig. 1 eine Vorderansicht eines Rückspiegels,
Fig. 2 eine Draufsicht des Rückspiegels gemäß Fig. 1, jedoch ohne Gehäuse, und

Fig. 3 eine Querschnittsansicht des Rückspiegels gemäß Fig. 1, ebenfalls ohne Gehäuse.

Der Rückspiegel 10 umfaßt insgesamt drei Spiegelbereiche, nämlich einen ersten Spiegel 12, einen zweiten Spiegel 14 und einen dritten Spiegel 16.

Der erste Spiegel 12 ist der normale Rückspiegel für das Hauptsichtfeld. Er ist konvex mit einem gleichbleibenden Krümmungsradius ausgebildet.

Durch eine Trennlinie 18 abgesetzt schlie $B t$ sich seitlich an den ersten Spiegel 12 der zweite Spiegel 14 zur Erfassung des toten Winkels an. Der zweite Spiegel 14 ist stärker konvex gekrümmt, wobei der Krümmungsradius hier nicht konstant ist.

Über die gesamte Breite der beiden Spiegel 12 und 14 zusammen erstreckt sich oberhalb einer waagerechten Trennlinie 20 der dritte Spiegel 16, der nicht konvex, sondern plan ausgebildet ist. Dieser Spiegel 16 wird win-
5 kelig so angeordnet, daß er in seiner Breite das gleiche Sichtfeld wie der normale erste Spiegel 12 wiedergibt.

Alle drei Spiegel 12, 14 und 16 sind auf einer gemeinsamen Grundplatte 22 befestigt und bilden somit eine Spiegeleinheit. Die Grundplatte 22 ist zusammen mit den drei Spiegeln 12, 14 und 16 innerhalb eines Spiegelgehäuses 24 angeordnet, welches über einen Arm 26 mit einem hier nicht näher dargestellten Kraftfahrzeug verbunden ist.

Die waagerechte Trennlinie 20 verläuft etwa in der Mitte des Gehäuses 24, so daß der erste Spiegel 12 und der zweite Spiegel 14 die gleiche Höhe besitzen wie der dritte Spiegel 16.

Der neue Rückspiegel 10 eignet sich vorzüglich auch zum nachträglichen Einbau. Es ist nämlich möglich, die
20 Rückseite der gemeinsamen Grundplatte 22 mit einer Klebeschicht zu versehen, die durch eine Schutzfolie abgedeckt wird. Auf ein Spiegelgehäuse 24 kann in diesem Fall verzichtet werden.

Der Käufer braucht dann lediglich die Schutzfolie ab25 zuziehen, und die Grundplatte auf den bereits vorhandenen Spiegel bzw. auf die Spiegeloberfläche aufzukleben.

Für den Fall, daß die Grundplatte 22 größer als der Spiegelrahmen des bereits vorhandenen herkömmli30 chen Spiegels ist, kann auf der Rückseite der Grundplatte 22 ein kleineres Distanzstück angeordnet werden, welches dann auf die Spiegelfläche des herkömmlichen Spiegels aufgeklebt wird.

External rear view mirror for car - uses two-section mirror surface with curved area

Pubilcation number:	DE4026578
Pubilcation date:	1992-04-30
Inventor:	KRAEMER HORST (DE)
Applicant:	KRAEMER HORST (DE)
Classification:	
- International:	B60R1/08; B60R1/08; (IPC1-7): B60R1/08
- European:	B60R1/08D2
Appilcation number:	DE19904026578 19900820
Priority number(s):	DE19904026578 19900820

Report a data error here

Abstract of DE4026578

Rear view external mirror for a passenger car having a mirror surface divided into a vehicleside larger main mirror surface and an adjacent additional surface with progressive curvature. The progressive curvature is spherical and runs not only horizontally spherical and runs not only horizontally outwards but also slopingly downwards.
ADVANTAGE - Mirror having an additional surface which provides an enlargement of the field of view.

Data supplied from the especenet database - Worldwide
(10) bundestepublik

DEUTSCHLAND

DEUTSCHES
(2) Offenlegungsschrift (1)DE 4026578 A 1
(71) Anmelder:

Krämer, Horst, 1000 Berlin, DE

Erfinder:
gleich Anmelder

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Vollsicht-Außenrückspiegel für Fahrzeuge

(57) Die Gesamt-Spiegelfläche des einteilig verstellbaren Spiegeiglases hat eine einheitliche gleichförmige Ausgangs- $O p$ tik, entweder plan oder konvex mit gleichförmiger Krümmung. Sie ist unterteilt in eine fahrzeugseitige größere Haupt-Spiegelfläche mit Beibehaltung der Ausgangs-Optik, sowie in eine anschließende kleinere Zusatz-Spiegelfläche mit progressiver sphärischer Abkrümmung, die sowohl nach auswärts waagerecht wie auch nach auswärts abfallend verläuft.
Durch die sich daraus ergebende fächerförmig raumraffende Sicht-Erweiterung wird der Bereich des toten Winkels voll von waagerecht bis zur Fahrbahn erfaßt.

Gegenstand der Erfindung ist ein einteilig verstellbares Spiegelglas, das nicht nur den normalen Sehbereich erfaßt, sondern auch den vollen Bereich des toten Winkels, und zwar von waagerechter Ausdehnung bis schräg zur Fahrbahn. Der tote Winkel ist ein Nah-Bereich, und je mehr sich ein Objekt auf der Fahrbahn dem Beobachter nähert, umso mehr muß der Blick auch tiefer gehen.
Stand der Technik in bezug auf die Erfindung ist ein Spiegelglas nach dem Oberbegriff des Anspruchs. Dabei ist die Gesamt-Spiegelfläche unterteilt in eine fahrzeugseitige größere Haupt-Spiegelfläche von gleichförmiger optischer Beschaffenheit für den normalen Rückblick, sowie in eine anschließende kleinere Zusatz-Spiegelfläche für den Blick in den toten Winkel. Diese ZusatzSpiegelfläche ist progressiv asphärisch abgekrümmt mit nach auswärts waagerechtem Verlauf. Daraus ergibt sich eine raumraffende waagerechte Sicht-Erweiterung.
Diese nur waagerechte Sicht-Erweiterung ist der Mangel dieses Spiegelglases. In einem Teil-Bereich des toten Winkels wird damit selbst bei Verwendung von konvexen Flächen mit Sicherheit nur erfaßt, was über PKW-Höhe hinausreicht. PKW-Fronthauben, die ja zuerst in den toten Winkel einfahren, werden in diesem Teil-Bereich so überhaupt nicht erfaßt.
Aufgabe der Erfindung ist es, ein Spiegelglas so zu konstruieren, da mit einer Zusatz-Spicgelfläche eine raumraffende Sicht-Erweiterung nach auswärts waagerecht und gleichzeitig nach auswärts abfallend zustandekommt.
Diese Aufgabe wird erfindungsgemäß gelöst durch die kennzeichnenden Merkmale des Anspruchs. Die Zu-satz-Spiegelfläche ist progressiv sphärisch abgekrümmt, wobei die Krümmung gleichzeitig nach auswärts waagerecht und nach auswärts abfallend verläuft. Durch die sich daraus ergebende fächerförmig raumraffende Sicht-Erweiterung wird der Bereich des toten Winkels voll von waagerecht bis zur Fahrbahn erfaBt. Es erleichtert auch das schnelle Beurteilen der jeweiligen Situation, wenn man die zu beobachtenden Objekte nicht nur über der Fahrbahn sieht, sondern auch auf der Fahrbahn.

Die beiden Zeichnungen zeigen vergleichsweise den 45 Stand der Technik (2) für einen PKW-Spiegel und eine Darstellung des erfindungsgemäßen Spiegelglases (1) für einen PKW-Spiegel.

> Ausführungsbeispiel in Verbindung mit der erfindungsgemäßen Zeichnung

Die Gesamt-Spiegelfläche hat eine mittlere verwendungsübliche Größe von etwa 170 Quadratzentimetern. Das Design entspricht einem praxisgerechten PKWSpiegel, wobei die Unterkante leicht nach außen abfällt, damit sich für den Fahrer eine echte waagerechte BasisSicht ergibt. Flächengröße und Design ermöglichen es, daß die Ausgangs-Optik plan ist. Nach EURO TUV muß sich auf Planglas für einen PKW-Außenspiegel die folgende geometrische Figur beschreiben lassen: Basis 13 cm , Außenhöhe 4 cm , Innenhöhe 7 cm . Diese Figur läßt sich bei der erfindungsgemäßen Darstellung bequem im oberen Teil der Haupt-Spiegelfläche einzeichnen und beläßt noch zusätzlichen Freiraum. Auch die Zusatz-Spiegelfläche wird mehr als nur knapp den Anforderungen gerecht.
Ein Spiegelglas mit konvexer Ausgangs-Optik kann
für die Praxis und darf nach EURO TÜV entsprechend kleiner sein, wobei die bezeichnete geometrische Figur nach einer vorgegebenen Formel berechnet wird, die den Krümmungsradius berücksichtigt.

Für die rechte Fahrzeugseite, die ja weiter vom Fahrer entfernt ist, empfiehlt sich aber ein Konvex-Spiegel mit den Abmessungen des hier dargestellten Plan-Spiegels.

Das erfindungsgemäße Spiegelglas eignet sich für die Enauruistung ebenso wie fur die Zurustung. Es kan zugerüstet werden entweder mit der Gesamt-Spiegelfläche als Voll-Aufsatzstück oder mit der Zusatz-Spiegelfläche als Teil-Aufsatzstück

Patentanspruch

Fahrzeug-Außenrückspiegel mit einteilig verstellbarem Spiegelglas. Die Gesamt-Spiegelfläche hat eine einheitliche gleichförmige Ausgangs-Optik, entweder plan oder konvex mit gleichförmiger Krümmung. Sie ist unterteilt in eine fahrzeugseitige größere Haupt-Spiegelfläche mit Beibehaltung der Ausgangs-Optik, sowie in eine anschließende kleinere Zusatz-Spiegelfläche mit progressiver Abkrümmung, dadurch gekennzeichnet, daß die progressive Abkrümmung nicht asphärisch (2) sondern erfindungsgemäß sphärisch (1) ist, und daß sie nicht nur nach auswärts waagerecht (2) sondern erfindungsgemäß sowohl nach auswärts waagerecht wie auch nach auswärts abfallend (1) verläuft.

[^21]ZEICHNUNGEN SEITE 1

208 018/6

SMR USA
Exhibit 1006
Page 0281
(12)

EUROPEANN PATENT APPLICATION

(21) Application number: $\mathbf{8 6 3 0 5 0 4 2 . 3}$
(51) Int. CI.4: B 60 R $1 / 08$
(22) Date of filing: 27.06 .86
(30) Priority: 27.06 .85 US 749494
(43) Date of publication of application:
04.02 .87 Bulletin $87 / 6$
(84) Designated Contracting States:
AT BE CH DE FR GB IT Li LU NL SE
(54) A mitroror.
(57) A mirror (1) generally in the form of a rear view or wing mirror with increased field of view but with perspective being substantially retained is provided. The mirror comprises two integral and continuous mirror sections (5,6), one (5) of which is fiat to provide for recognition of distance and the otther (6) of which laterally adjoins and merges with the flat mirror in tangential manner whilst being of convex shape to increase the iaterai fieid of view whiist maintaining perspective of image to some extent at least. The mition is generally held in a body or frame (2) having a mounting foot (4) or arm (3) attached thereto.

 210
(71) Applicant: Von Seidel, Michaei

5 Romajador Avenue Sandhurst Extensions
Sandton Transvaal Province(ZA)
(72) Inventor:

The inventor has agreed to waiva his antitiemant to designation
(74) Representative: Âiisop, Joñ Rowland

Rowland Allsop 8 Co. Black Boy Yard 15 High Street
West Wycombe High Wycombe Bucks: HP14 3AE(GB)
2.

FIELD OF THE INVENTION

```
    THIS INVENTION relates to a mirror such a rear
view mirror of the general type employed for enabling
an operator to view in a rearward direction
particulariy a driver of a motor vehicle or other land
or water vehicle. Still more particularly, although
not exclusively, the invention relates to what are
widely termed "wing mirrors" and which are employed on
the outside of a motor vehicle either on a door
adjacent a front seat thereof and, particularly, but
not exclusively, adjacent a driver's seat, or on a
front fender of a vehicle.
```

BACKGROUND TO THE INVENTION

```
    wing mirrors, particularly those used on the
door of a motor vehicle, suffer from the disadvantage
that ordinary flat mirrors, which provide a realistic
size of image (and thus correctly indicate distance)
```

have insufficient field of view to enable a driver to see, in the mirror, a vehicle positioned in the well known "לlind-spot" immediately adjacent the vehicle and somewhat to the rear of the driver. In an effort to o overcome this aisadyantage, it is well known to make such wing mirrors to a convex (part spherical) shape so that a very much increased field of vision is obtained. However, the disadvantage of this course. of action is that a reduced size of image is presented in the mirror which, in turn, leads to a distorted impression as to the distance from the mirror of an object reflected therein.

In a further efforit to avoid this disadvantage, there has been made available a flat mirror having a small convex mirror in the centre; or to one side, thereof. The distance mentioned above can therefore be estimated from the flat mirror whilst the convex mirror covers the required additional field of vision This arrangement has the disadvantage that a zone of flat mirror is rendered substantially inoperative by the convex mirror and any reduced size image appearing therein will have the same disadvantage regarding its distance from the mirror as indicated above. Also, only part, and possibly none,

```
Of any required image wili appear in the flat region
of the mirror. Also the eyes of an observer must
refocus over a very short distance between the two
totally different mivror surfaces.
```

Further efforts to overcome the probiem include a number of different arrangements in which a flat mirror is either bent into two or more sections or has a lateral zone curved to a part cylindrical shape to provide an increased field of view. \#owever, bending a flat mirror to provide a part cylindrical surface in this manner generally results iñ a change of miryor characté which takes place over too short a đistañee aña also a total loss of proportion in the curved part of the mirror. The images of objects are simply too narrow and tall and in fact become extremely difficult to recognise. Proposals of this general nature form the subject matter of granted United States Patent Numbers :-

```
* 4,331.382 to Graff
    3,028,794 to Kinkella
    2,857,810 to Troedie
    3,501,227 to Landen, anḋ;
    3,628,851 to Robertson.
```


0210757

5.

It is the object of this invention to provide a rear view mirror which will alleviate, at least to some extent, the above disadvantages and which may, in addition, provioe the advantage that it will be simple For an observer to detect when an object is in the usual "blind-spot" in relation to a motor vehicle.

SUMMARY OF THE INVENTION

In accordance with this invention there is provided a mirror having in the plane of the mirror a first dimension and a second dimension at right angles to the first dimension and wherein the mirror comprises a fiat mirror section made integral with, and merging into, a convex mirror section which lies in the path of the second dimension, the flat mirror section communicating substantialiy tangentially with the convex mirror section such that the mirror, in the direction of the second dimension, has a cross-section comprising a straight portion communicating tangentially with a curved portion, the convex section having a cross-sectional shape in a direction parallel to said first dimension which increases in convexity with increasing distance from the flat mirror section.

Abstract

A further feature of the invention provides for the convex mirror section to also increase in convexity in the direction of the second dimension with increasing distance from the flat mirror section. A section through the mirror in this direction therefore may follow the path of a spiral or volute.

The cross-section of the convex section of the mirror in a direction parallel to the first dimension is conveniently part-circular with the radius of curvature decreasing with increasing distance from the £lat mirror section.

The cross-section of the mirror in the direction parallel to the second dimension may be a straight line merging tangentially with a curved line which may be part-circular (ie. of fixed radius of curvature) but is preferably one which increases in convexity with increasing distance from the flat mirror section. In the latter case the curved line may be considered to have añ "instantaneous" radius of curvature in the direction of the second dimension which will decrease either stepwise or continuously. A stepwise decrease facilitates physically generating
the surface on a pattern. Most preferabiy such
"instantaneous" iadius of curvature is substantially equal to the radius of curvature in a direction parallel to the first dimension at all points on the convex mirror section.

It is to be understood that in this specification the terms "increasing and decreasing convexity" corzespond to "decreasing and increasing instantaneous radii of curvaturen respectively.

It will be understood that the radii of curvature and dimensions of the mirror will be chosen, in each case, to provide the required field of view. It should be noted that an image in the convex mirror section will be somewhat distorted ano it is part of the advantage of the present invention that when a distorted image is viewed, a driver will know that the object being reflected is within the usual
"blind-spot" area. However, such an image will not be so distorted as to be unrecognisable. It is also within the scope of this invention that the convex section of the mirror could be slightly tinted with any suitable colour to indicate that an object being reflected is located within such "blind-spot" area.
/...
8.

In order that the invention may be more fully understood, various embodiments of the invention, in the form of a rear view wing mirror, will now be described.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings :

FIG: 1 is an isometric view of a wing mirioz according to this invention;

FIG. 2 is a diagrammatic cross-section taken along the secoñ dimension of the mirror indicated by line "A" in Fig. l illustrating the optical view lines achieved by a mirror of the invention itself (without the body, fiame or the like);

FIG. 3 is añ isometric view of a mirror sirface accoraing to the invention which can be generated on a lathe for pattern making purposes;
/..

FIG. 4 is an isometric yiew of a mirror alone in which the convex mirror section conforms to an aiternative and preferred shape:

FIG. 5 is a sectional view taken in the direction of the second dimension of the miryor (ie. along line V - V in Fig. 4 and in the direction of line " \bar{A}^{\prime} in Fig. $1 ;$ and,

FIGS. 6a to 6d illustrate some cross-sections taken at lines VIa to VIa; VIb to VIb; VIc to VIe; and vid to vid respectively in Fig. 5 in directions parallel to the first dimension of the mirror as indicated by line "B" in Fig. 1.

DETAILED DESCRIPTION WITH REFERENCE TO THE DRAWINGS

In all the illustrated embodiments of the invention a wing mirror (l) is caxried in a body or frame (2) mounted on an arm (3) having a mounting foot (4) The mirror itself has two integral sections (5)
and (6), the one (5) of which is a flat mixror section and the other (6) of which is of m convex shape. The "break away" line of join between these two sections (5) and (6) of the mirror is indicated by dotted line (7) as being a straight line but it may also be an arcuate line as in the case of the mirror shown in Fig. 3.

In the case of the embodiment illustrated in Fig. 3 the convex section is formed by turning a pattern for the mirror on a lathe and moving the tool to form the radius of curvature in the direction paralied to the second aimension. The "break away" Iine (7) is, therefore, of part circular shape in this case.

In the case of the embodiment illustrated in Figs. 4 to 6 the "break away" line (7) is straight and the mirror surface assumes its preferred shape. The mirror surface thus deviates from a straight section as it enters the convex mirror section in the direction of the second dimension (ie in Fig. 1). The convex section may have a constant radius of curvature in this direction but, in order to provide for the least distortion, preferably has a
/. . .

0210757

II.
decreasing radius of curvature. Such raĩius of Curvature preferably decreases constantly but for the purpose of facilitating development of a pattern surface, it may decrease in a step-wise manner so long as the surfaces are tangential to each other at the positions where the radius decreases by a stepped amount (ie. increasing converity). The radius of curvature of the convex section of the mirror in cross-section in directions parallel to the first dimension of the miror (ie. parailel to ine " B^{\prime} in Fig. 1) at any particular point is preferably equal to the radius of curvature of the mirror at that same point in the direction parallel to the second dimension (ie. Iine "A" in Fig. l).

In such preferied form therefore, the radius of curvature will decrease as the distance increases from the "break away" line (7). Thus; as shown clearly in Fig. 5, r_{1} is greater than r_{2} which is greater than r_{3} which is greater than r_{4}. The radius of curvature in cross-section (in directions parallel to the dimension) is illustrated in Figs. 6a to 6d respectively as being equal to the radius of curvature in the direction of the second dimension at any particular point along its length.

Referring now more particularly to Fig. 2, it will be seen that the flat section (2) of the mirror has extremities of vision, relative to a pair of hypothetical eyes given by lines of vision indicated by numerals (10) and (11). That indicated by mumeral (10) constitutes the innermost limit of vision whilst that indicated by numeral (11) indicates the outermost line of vision. Thus, there is, as usual, a substantial "blind-spot" in the general area indicated by numeral (22).

```
The convex section (6) of the mirror according to this invention, as iñicated by extremity line of vision indicated by numeral (13), embraces this general area and: in fact, can: depending on the size of the mirror, and the radii of curvature thereof, be made to bring the field of vision up to substantially that of a driver looking roughly forwardiy and what is seen out of the corner of his eye..
```

As indicated above, it will be appreciated, that the radius of curvature should not be too small otherwise the image of an object will be excessively distorted and possibly be unrecognisable. The preferred idea is to render the object recognisable
/...

$f_{3} 210757$

but in somewhat distorted image so that a driver wili then be aware of the fact that the object is in what is usuaily considered to be the "blind-spot".

It will be understood that numerous variations may be made to the above described embodiments of the invention without departing from the scope hereof.

The invention therefore provides an extremely simple yet highly effective rear view mir ror which will. it is considered, do away with the general difficulties outlined above and which are associated with presently available mirrors or mirror assemblies.

Also, the invention is not to be interpreted as being confined in scope to a convex section being ondy on one side of a flat mifrof section and, in fact, añ arcuate mirror section could be provided at two opposite sides of a fiat mirror section or around the entire periphery of the fiat mirror section, if required. In the latter case, the flat mirror . section could be circular, thus providing a convex type of mirror but with a central flat section.
The mirrors of this invention can be made by any suitable methods of manufacture such as moulding of a miryor backing following by silvering and the application of any protective coatings or the like as may be required. In particular, it is envisaged that mass production will be most easily carijed out by injection or press moulding a backing or even vacuum forming such backing. In any event, all conventional techniques can be employed as only the contour of the reflective surface is different from mirrors currently being mañufactured.

Claims

1.

A mirror (i) having in the plane of the mirror a first dimension ("B") ana a second dinension ("A") at right angies to the first dimension and wherein the mirror comprises a flat mirror section (5) made integral with, and merging into, a convex section (6) which lies in the path off the second dimension, the flat mirror section commuicating substantially tangentially with the convex mirror section such that the mirror, in the direction of the second dimension, has a cross-section comprising a straight portion communicating tangentially with a curved portion, the convex section having a cross-sectional shape in a direction parallel. to said first dimension which increases in convexity with increasing distance from the fiat mirror section.

$$
/ \ldots
$$

0210757

16.
17. A mirror as claimed in claim 1 in which the convex mirror section (6) increases in convexity in the direction of the second dimension ("A") of the mirror, with increasing distance from the flat mirror section (5).
18. A mir ror as claimed in claim 2 in which the convexity of the convex mirror section (6) is substantially the same in the direction of the first dimension ("B") as it is in the direction of the second dimension ("A") at all positions on the convex mirror section (6)
19. A mirror as claimed inclain l in which the cross-section of the convex mirror section (6) is in the direction of the first dimension ("B"), substantially part-circular in shape at all positions thereon.
20.
```
A mirror as claimed in claim l in which the Dreak-away line (7) where the fiat (5) and convex (6) mirror sections meet tangentially is a straight line.
```

/ . .

0210757

17.
18. A miryor as claimed in claim 1 dn which the bremk-away line (7) where the flat (5) and convex miryor sections meet tangentialiy is a curved line.
19. A mírior as claimed in claim 2 in which the convexity of the convex mirror section (6) increases in a stepwise manner with increasing distance from the flat mirfor section (5).
20. A mircor (l) as claimed in claim 2 in which the converity of the convex mirror section increases continuously with increasing đistance from the flat mircor section (5).
21. A mirror as ciaimed in claim 1 in which the mirror (i) is a rear view mirror beld in a suitable body or frame (2) therefor.
22.
```
A mirror as claimed in claim o in which the
body or frame (2) is carried by a mounting
foot (4) Or arm (3).
```

> / . . .

0210757

18.

Il: A mirror as claimed in ciaim in which the convex mirror section (6) is of a different colour tint from that of the flat mirror section (5).

FIG. 1

Europäisches Patentamt
European Patent Office
Office européen des brevets
(1)
Publication number:

0310261
A1

EUROPEAN PATENT APPLICATION

Application number: 88308482.4(5) Int. Cl.4: B60R 1/08
(22) Date of filing: 14.09 .88
(3) Priority: $\mathbf{3 0 . 0 9 . 8 7}$ GB 8723010
(43) Date of publication of application:
05.04.89 Bulletin 89/14
(84) Designated Contracting States:

DE ES FR GB
(7) Applicant: BRITAX WINGARD LIMITED

Kingsham Road
Chichester, West Sussex P019 2AQ(GB)
(2) Inventor: Bottrill, John
"Moelfre" 9 Langdale Avenue
Chichester West Sussex(GB)
(74) Representative: Hollinghurst, Antony Britax Limited Patent Department Chichester West Sussex PO19 2AQ(GB)Exterior rear-view mirror assembly for a vehicle.
(9) An exterior rear-view mirror assembly for a vehicle has a housing (10) arranged to be mounted at a predetermined orientation on a vehicle body and a mirror (30) mounted in the housing (10) on means (28) permitting its orientation to be adjusted relative to the housing (10). A second mirror (36), which is convex and of smaller radius of curvature than the first mirror (30), is mounted in the housing (10) either above or below the first mirror (30) so that no part thereof is further from the vehicle than the outboard edge of the first mirror (30).

Fig. 2

[^22]
EXTERIOR REAR-VIEW MIRROR ASSEMBLY FOR A VEHICLE

This invention reiates to an exterior rear-view mirror assembly for a vehicle of the type in which a housing is arranged to be mounted at a predetermined orientation on a vehicle body and a mirror is mounted in the housing on means permitting its orientation to be adjusted relative to the housing.

The mirrors of such mirror assemblies are commonly either plane mirrors or convex mirrors having a relatively large radius of curvature. Consequently, although a driver using such a mirror is able to form a relatively accurate impression of the distance between his vehicle and a following vehicle, it is probable that such a mirror will leave a so-called "blind spot" in which another vehicle passing the vehicle to which the mirror is fitted moves out of the driver's field of view in the mirror before it enters the periphery of the driver's field of view by direct vision. The present invention aims to provide a mirror assembly which is not subject to this disadvantage.

According to the invention, a mirror assembly of the foregoing type has a second convex mirror of smaller radius of curvature than the first mirror mounted in the housing either above or below the first mirror so that no part thereof is further from the vehicle than the outboard edge of the first mirror.

An embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings. in which:

Figure 1 is an elevational view of a rear view mirror in accordance with the invention from the side from which the mirror is viewed;

Figure 2 is a cross-sectional view taken on the line 2.2 in Figure 1;

Figure 3 is a partially broken away plan view of the mirror shown inFigure 2.

Referring to Figure 1, a rear view mirror assembly comprises a housing 10 mounted at one side on a base member 12 , the surface 14 of which is adapted to abut against and be secured to the body of a motor vehicle (not shown). The connection between the housing 10 and the base member 12 comprises mechanism allowing the housing 10 to be displaced forwardly or rearwardly in the event that the housing is subjected to impact. This mechanism which, in Figure 1 is covered by a sleeve 16 of flexible material, is of known type and will therefore not be described in detail.

As can be seen from Figures 1 and 2. the housing 10 comprises an upper chamber 20 and a lower chamber 22 which are separated by a partitition wall 24. A first mirror carrier 26 is mounted
on a ball-and-socket joint 28 which is secured to the interior of the chamber 20. A plane mirror 30 is mounted on the mirror carrier 26.

Similarly, a mirror carrier 32 is mounted on a 5 ball-and-socket joint 34 which is secured to the interior of the lower chamber 22. The mirror carrier 32 carries a convex mirror 36 . The relative curvatures of the mirrors 30 and 36 can best be seen from Figure 3.

As is well known, it will be necessary for different drivers to adjust the orientation of the plane mirror 30 to suit their requirements. If desired, mechanism of known type may be provided for making this adjustment remotely from the interior of the vehicle. It will usually be unnecessary for the orientation of the convex mirror 36 to be altered, only two settings being necessary depending an whether the vehicle with which it is to be used has left hand drive or right hand drive. Consequently. the ball-and-socket joint 34 may be replaced by a mounting which can be set to either of two predetermined positions at the time when the mirror is fitted to a vehicle.

Claims

1. An exterior rear-view mirror assembly for a vehicle having a housing (10) arranged to be mounted at a predetermined orientation on a vehicle body and a mirror (30) mounted in the housing (10) on means (28) permitting its orientation to be adjusted relative to the housing (10), characterised by a second mirror (36) which is convex and of smaller radius of curvature than the first mirror (30) mounted in the housing (10) either above or below the first mirror (30) so that no part thereof is further from the vehicle than the outboard edge of the first mirror (30).
2. An exterior rear-view mirror assembly according to claim 1. wherein the second mirror (36) is mounted on means (34) permitting its orientation to be adjusted relative to the housing (10).

EUROPEAN SEARCH REPORT
Application Number EP $88 \quad 30 \quad 8482$

Blind spot viewing device for a rearview-mirror.

Publication number: EP0551802 (A1)	cited documents:	
Publication date:	1993-07-21	US2778273 (A)
Inventor(s):	JONSSON TORN RUBEN [SE] +	NL9000884 (A)
Applicant(s):	JONSSON TORN RUBEN [SE] +	US2911177 (A)
Classification:		US3104274 (A)
- international:	B60R1/08; B60R1/08; (IPC1-7): B60R1/08	NL7908257 (A)
- European:	B60R1/08D2	

Application number: EP19920850006 19920115
Priority number(s): EP19920850006 19920115

Abstract of EP 0551802 (A1)
In order to improve the viewing field in the blind spot of a car driver using a rear view mirror (1), a convex mirror surface shaped like a spherical cap (5) with a central planar surface (8) is mounted on the planar or slightly convex mirror glass surface (2) of the rear view mirror, preferably near one corner of the mirror glass. The cap (5) has a radius of curvature of about 0.1 m and its size is such that the cap encloses an angle alpha of between about 2 and about 6 DEG at the intended viewing distance.

Data supplied from the espacenet database - Worldwide

Europäisches Patentamt
European Patent Office
Office européen des brevetsEUROPÄISCHE PATENTANMELDUNG
(21) Anmeidenummer: 92850006.5
(51) int. Cl^{5} : B60R 1/08
(22) Ànmeidetag: 15.01 .92
(43) Veröffentlichungstag der Anmeldung:
21.07.93 Patentibiatt $93 / 29$

Benannte Vertragsstaaten:
Át be Ch de dí es fr Gb Gr it lí iúi nil SeAnmelder: Jonsson, Torn Ruben
Järnäldersringen 563
5-136 65 Haninge(SE)
(72)

Erfinder: Jonsson, Torn Ruben
järnäidersringen $5 \mathbf{6} \widehat{3}$
S-13̂6 65 Haninge(SE)

Vertreter: Barnieske, Hans Woligang c/o H.W. Barnieske Patentibyra AB P.O. Box 25 Turingegatan 26
S-15i 21 Söcieräije 1 (SE)
(54) Toterwinkelerfassungsvorrichtung für Rückspiegel.
(57) Zwecks Verbesserung des Sichtfeldes im toten Winkel eines Wagenführers mit Hilfe eines Rückspiegels (1) ist eine konvexe Spiegelfläche in Form einer sfärischen Kalotte (5) mit einer zentralen planen Fläche (8) auf der planen oder schwach konvexen Spiegelglassfläche (2) des Rückspiegels angebracht und vorzugsweise in der Nähe einer Ecke des Spiegelglasses. Die Kalotte (5) hat einen Krümmungsradius von etwa $0,1 \mathrm{~m}$ und eine solche Grösse, dass die Kalotte bei beabsichtigtem Betrachtungsabstand einen Winkelo von zwischen etwa 2 bis etwa 6° umfasst.

Die vorliegende Erfindung bezient sich aut eine Vorrichtung für Rückspiegel für Fahrzeuge um den toten Winkel zwischen dem Sichtield des üblichen Aussentuckspiegels und dem direkien Sichtied des Wagenführers auszuschalten.

Derartige Vorrichtungen an Rückspiegeln mit weichem man durch besondere optische Ausibildungen versucht hat den s.g. toten Winkel zu vermindern sind vorbekannt. Ubliche äussere Rückspiegel sind meistenteils mit einer planen oder schwach konvexen Fläche ausgebildet. Zwecks Erhalt einer grösseren Sichtfläche sind s.g. Panoramarückspiegel verwendet worden, die durch eine konvexe Ausbidung und ener beträchtich grösseren horisontaien Länge als gewöhnliche Rückspiegel eine gewisse Verbesserung des Sichteddes gegeben haben. Hierdurch besteht jedoch der Nachteil dass der Autofahrer rückwärtigen Verkehr nicht länger in natürlicher Grösse erfassen kann, wodurch eine Beurteilung des Abstandes zu rückwärtigen Fahrzeugen und deren Geschwindigkeit schwierig zu beurteilen ist. Man hat auch schon versucht das Sichtied durch Aufteilung des Spiegeiglasses in einer äusseren Hälfe und einer inneren Hälfte zu vergrössern. Eine derartige Ausbildung führt jedoch zu ungewünschten Verzerrungen.

Zur Lösung des vorliegenden Problemes ist auch schon die Befestigung eines keineren Spiegels aul dem normaien äusseren Rückspiegel vorgeschlagen worden, wobei die Spiegelfäche des kleineren Spiegels konvex ausgebildet ist und durch den hierdurch erhaltenen Weitwinkeleffekt den Totenwinkel abdeckt - vgl hierzu beispielsweise DE OS 2139431 insbesondere Fig. 3 c. Diese hier verwendete gänzlich konvex gewölbte Spiegelfläche ergibt jedoch ein unproportional verzerrtes Bild und resultiert damit leicht zu einer falschen Beurteilung des Abstandes zu einem im toten Winkel beobachteten Fahrzeug.

Zweck vontiegender Erfindung ist die Schaffung einer Vorrichtung an derartigen Rückspiegein, die den toten Winkel abdeckt ohne zu Verzerrungen der Sichifläche zu führen.

Zur Lösung dieses Problemes wird erfindungsgemäss eine Vorrichtung vorgeschlagen die eine Wölbung hat, die im Vergleich zu einem planen oder schwach konvexen Rückspiegel einen ausgesprochenen Weitwinkeleffekt ergibt und weiche gegenüber ihrem Betrachiungsabstand ausreichend gross ist um eine sichere und korrekie Beobachtung eines im diesem Abstand befindlichen Fahrzeuges zu ergeben. Hierdurch wird der gewöhnlicherweise toie Winkel gut abjedeciki und der ausgesprochene Weitwinkeleffekt ergibt, dass besonders naheliegende im Totenwinkel befindliche Fahrzeuge gut observiert werden könmen während die Spiegelfäche des üblichen Rückspiegels für Be-
trachtungen auf längeren Abständen verwendet werden kann.

Erfindungsgemäss ist die spiegelnde konvexe Fläche ais eme hauptsächich stärisch gewölble

Ueprem ueyese6ion segneziup＿sep ueuti ui

 －uן6ejds גep emped uebinugmopry ueupsupis oule sne muluos lequelu pum gi sellemopey sep eupely

1S！

 әu！e uebe6 6un6！psejeg nz ә！s uuəm jeplqe6sne леyиоя yormyos mzq ls！ueyesebion z eyoelfsseן －ן

 －unyonidsubeg 19 цosupuoeu uonssemuosu！essn！

 －sie！dsieq sne leb́ed weule ine puplyoslleten deu！e sne lepo \｜elew wepenodyueid sne bisseuryemz
 u！e！p＇Gunpuis lep umos uiles pyoepe6qe \angle मuluos －zunuos erpgssiouqp euie younp z ssepbobelds up emoley dep bunqelynn unz siq lyoepqe emoley dep

 ＇ －प！н uolep＇子uelseq e z eq！eyossels uejollereduejd

＇191 1 İuplo
 lnf bisseuxpemz ezuel口 edepun e！p pun is！uey

 －qps6unupopheg ueprbụoḷsqeeq uilaq esemp sspp

－Uelempen u gl＇o empe
 pun ul 1 ＇0 emio uon bunupiouessop deupg uon is Quopmoper lep（ $2 \cdot$ G！－$)$ y smpersfungion leq

Patentansprüche

1. Vorrichtung an Rückspiegeln für Fahrzeuge besiehend aus einer spiegelnden konvexen Fläche (5) mit einer Wölbung (R) die - vergliechen mit einem üblichen planen oder schwach konvex ausgéoideten Rückspiegel - einen ausgesprochenen weitwinkeleffekt ergibt und die eine gegenüber ihrem vorgesehenen Betrachtungsabstand ausieichende Giösse autweist um eine sichere und korrekte Beobachtung von im toten Winkel befindlichen Fahrzeugen zu erzielen, dadurch gekennzeichnet, dass an spiegende konvexe Fläche (5) aus einer hauptsächich sfärisch gewölbien Kalotie (5) mit einer zentralen planen Fläche (0) besteht, wobei die zentrale plane Fläche (8) eiwa 5 17%, vorzugsweise 7-10 \% der totalen Spiegelfläche umfasst.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Wölbungsradius (R) der spiegelnden konvexen Fläche eine Grössenordnung von etwa $0,1 \mathrm{~m}$ hat.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kalotte (5) bei einem vorgesehenen Betrachtungsabstand einen Winkela von etwa $2^{*}-6^{*}$ aufnimmt.
4. Vorrichtung nach den Ansprüchen 1-3, dadurch gekennzeichnet, dass die Kalotte (5) zur Befestigung an einem planen oder schwach gewölbten Spiegelglass (2) eines üblichen Rückspiegels (1) vorgesehen ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Körper (5) eine Hinterseite aufweist, die wenigstens teilweise von einer Klebstoffschicht (6) und eine diese schützende abreissbare Schutzschicht (7) besteht.
6. Vorrichtung nach den Ansprüchen 1-5, dàdurch gekennzeichnet, dass der Körper (5) aus blankpolierten Metall oder einer Metallschicht auf einem Träger aus beispielsweise Kunststoff oder Glass besteht, wobel das Metail gegebenentails gegen chemische und physikalische Beanspruchung durch eine klare permanente Schuizschichi abgedecki isi.
7. Vorrichtung nach den Ansprüchen 1-3, dadurch gekennzeichnet, dass der Kalotteil (15) einsiückig mit enem planen oder schwach konvexen Spiegeigiass (12) eines ublichen Rückspiegels ausgeführt ist.

Fig. 2

EP 0551802 A1

Fig 5

Fig 6

Europäiscines Patentamt European Patent Office
Office europeen des brevets

(11)
(43) Date of publication:
27.08.1997 Bulletin 1997/35
(21) Application number: 97107166.7
(22) Date of filing: 11.12.1995
(84) Designated Contracting States:

DE ES FR GB IE IT
(30) Priority: 02.03.1995 US 399152
(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
95308981.0/0729864
(71) Applicant: GENTEX CORPORATION Zeeland, Michigan 49464 (US)
(72) inventors:

- Bauer, Frederici 7. Zeeiand, ivichigan 49464 (US)
- Tonáar, Vviiliáañ L. Zeeiand, Michigan 49464 (US)
(51) int. Cl^{6} : B60R 1/08
- Byker, Harlan J. Zeeland, Michigan 49464 (US)
- Cammenga, David J.

Zeeland, Michigan 49464 (US)
(74) Representative: Leeming, Joinn Gerard
J.A. Kemp \& Co.,

14 South Square, Gray's inn
London WC1R 5LX (GB)

Remarks:

This application was filed on 30-04-1997 as a divisional application to the application mentioned under INID code 62.

(54) Improved rearview mirror for motor vehicles

(57) An improved low cost automatic rearview mirror for automotive vehicles is provided, the mirror being capable of operating in harsh environments over wide variations in temperaṫure, humiditiy, vibration, aṫmos-
 sand and grit abrasion. In one embodiment of the invention, an improved automatically partially dimming aspheric outside rearview mirror is provided which increases the safety of night driving and in which an
inboard portion of the mirror automatically transfers from a full reflective mode to a partial reflective mode for giare protection purposes while an outboard portion of the mirror remains in the fuil refieciance mode at ail
 iment of the invention provides improved signaling means.

Description

BRIEF SUMMARY OF THE INVENTION

This invention relates to rearview mirrors for motor vehicles and, more particularly, to improved exterior rear view mirrors for motor vehicles.

Heretofore, various automatic rearview mirrors for motor vehicles have been devised which automatically change from the full reflectance mode (day) to the partial reflectance mode (night) for glare protection purposes from light emanating from the headlights of vehicles approaching from the rear. The electrochromic mirrors disclosed in U.S. Patent No. 4,902,108, issued February 20, 1990, for Single-Compartment, Self-Erasing, Solution-Phase Electrochromic Devices, Solutions for Úse Therein, and Uses Thereof; U.S. Patent No. $4, \overline{9} \overline{17}, \overline{4} \overline{7}$, issued Āprii $1 \overline{7}, 1 \overline{9} \overline{9} \overline{0}$, for Āutomatic Rearview M̄irror System for Áutomotive Vehicies; Ui.S. Patent No. 5,128,799, issued July 7, 1992, for Variable Refiectance Motor Vehicle Mirror; U.S. Patent No. 5,202,787, issued April 13, 1993, for Electro-Optic Device; U.S. Patent No. 5,280,380, issued January 18, 1994, for UV-
 Nō. 5,282,077, issūed Januuary 25, 1994, för Váriāōè Reflectance Mirror, each of which patents is assigned to the assignee of the present invention, are typical of modern day automatic rearview mirrors for motor vehicles. Such electrochromic mirrors may be utilized in a fully integiated inside/outside reariview miniror system on as an inside or an outside reanview mirror system. In general, in automatic rearview mirrors of the types disclosed in U.S. Patent Nos. 4,902,108; 4,917,477; $5,128,799 ; 5,202,787,5,280,380$ and 5,282,077, both the inside and the outside rearview mirrors are comprised of a relatively thin electro-optic medium sandwiched and sealed between two glass elements. In most cases when the electro-optic medium is electrically energized, it darkens and begins to absorb light, and the higher the voltage, the darker the mirror becomes. When the electrical voltage is decreased to zero or removed, the mirror returns to its clear state. Also, in general, the electro-optic medium sandwiched and sealed between the two glass elements is preferably comprised of solutions of electrochromic compounds which function as the media of variable transmittance in the mirrors, although it should be understood that other electro-optic media may be utiiized, inciuding an approach wherein a tungsten oxide eiectrochromic iayer is coated on one eiectrode with a solution containing at least another compound to provide counter electrode reaction. When operated automatically, the rearview mirrors of the indicated character generaliy incorporáte lighti-sensing eiectronic circuitíy which is effective to change the mirrors to the dimmed reflectance modes when glare is detected, the sandwiched electro-optic medium being activated and the mirror being dimmed in proportion to the amount of glare that is detected. As glare subsides, the mirror electrode surface. The series of coatings of the multi layer combination reflector/electrode has one or more base coatings and one or more high reflectance over coatings. The transparent coating is preferably fluorine
doped tin oxide, tin doped indium oxide (ITO) or a series of metal oxide coatings with base coatings to suppress color and reflection followed by an electrically conductive, transparent coating which contacts the electrochromic media directly Where a series of transparent coatings is used, the materials are chosen for good bonding, resistance to corrosion by the materials of the electrochromic media, resistance to corrosion by the atmosphere, minimal reflectance, high light transmission, neutrai coioration and high eiectricai conductance. Aliso, to a considerabie extent, it is possibie to make the reifiective eiectrode very higin in eiectricai conduciance to compensate in a synergistic fashion with a transparent electrode that is lower in electrical conduciance so the net result is an electrochromic mirror which darkens and ciears acceptabiy fast and uniformily with excelient optical properties.

This synergistic structure is appiicabie for both inside and outside rearview mirrors for motor vehicies. When the multilayer combination reflector/electrode is used in any mirror, it has the inherent advantage of reducing doubie images, distortion, and muitipie images from raindrops, dust, etc., while providing excellent speed of refiectance change, good high end reflectance, good uniformity of reflectance change across the surface area of the mirror, neutral color, continually variable reflectance and a low end reflectance low enough to relieve strong glare. The reduction in double images and distortion is particularly useful in the case of dimmable miriors which use glass that is bent but may have slight variations in radius of curvature or slight ripple or warp that result in slight imperfections in matching two pieces of bent glass required to make, for example, a convex electrochromic mirror.

Heretofore, non-automatically dimming aspheric exterior rearview mirrors have been provided which increase the field of view of the driver of a vehicle and virtually eliminate the wel!-known blind spots of conventional flat glass and/or curved glass exterior mirrors. In general, aspheric mirrors are made by using multiple radii of curvature or by combining several types of curvature, i.e., a man flat area (infinite radius of curvature) or a main curved area with a constant radius of curvature similar to the convex mirrors that are currently in common use on passenger side exterior mirrors in the United States, together with an aspheric area which is disposed on the outboard portion of the mirror. It is the high curvature in the aspheric area that yieids a greatly expanded fieid of view which, in generai, may be neariy doubie that of convex mirrors and neariy tripie that of flat-surface mirrors. Aspheric mirrors thus tend to eliminate the conventional so-calied blind spots, thereby enabling the drivers of the vehicles to see adjacent
 observe other vehicies, such as automobiles, motorcycles and bicycles, traveling in adjacent lanes. However, serious cost and technical problems arise when efforts are made to construct an automatically dimming aspheric outside rearview mirror with a reflective layer

Another aim of the present invention is to provide an improved dimmable rearview mirror for motor vehicles which provides a greater field of view than conventional flat or convex dimming outside rearview mirrors.

Another aim of the present invention is to provide an improved electro-optic, dimmable rearview mirror for motor vehicles, which mirror is relatively economical to manufacture and assemble, durable, efficient and reliable in operation.

Another aim of the present invention is to provide improved signaling means in conjunction with an improved outside rearview mirror for motor vehicles.

Still another aim of the present invention is to provide improved signaling means at the outboard section of a partially dimming mirror whereby technical difficulties are eliminated and costs are reduced.

Yet another aim of the present invention is to provide an improved dimmabie rearview mirror for motor vehicies in which doubie images, distortion and muitipie images from raindrops are reduced and wherein excellent speed of reflectance change, good high end refiectance, good uniformity of refleciance change across the surface area of the mirror, neutral color, continually var-
 obtained.

The above features and advantages of the present invention will be further described hereinatter in the following description of exemplary embodiments and the accompanying drawings, in which:

FIG. 1 is a front elevational view schematically illustrating an inside/outside rearview mirror system for motor vehicles, the system including a dimmable inside rearview mirror together with two dimmable outside rearview mirrors which embody the present invention and all of which are adapted to be installed on a motor vehicle in a conventional manner whereby the mirrors face the rear of the vehicle and can be viewed by the driver of the vehicle to provide a rearward view to the driver;

FIG. 2 is an enlarged simplified sectional view of the inside rearview mirror illustrated in FIG. 1, taken on the line $2-2$ thereof;

FIG. 3 is an exploded view of the left electro-optic, aspheric, partiaily dimmable outside rearview mirror iilustrated in FiG. 1;

FiG. 4 is a front eievationai view of the mirror iiiustrated in FIG. 3;

FIG. 5 is a simplified top plan view of the mirror iiluštrátéed in FiG. 4;

FIG. 6 is a simplified side elevational view of the right side of the mirror as viewed in FIG. 4, showing the electro-optic structure.

FIG. 7 is a schematic simplified side elevationa! view of another embodiment of the invention;

FIG. 8 is a schematic simplified side elevational view of still another embodiment of the invention; and

FIG. 9 is a schematic simplified top plan view of yet another embodiment of the invention.

DETAILED DESCRIPTION

In general, in outside rearview mirrors embodying the present invention, at least a portion of the rearview mirror assembly may be comprised of a relatively thin layer of an electro-optic medium sealed between two glass elements. When the electro-optic medium is electricaily energized, it darkens and begins to absorb iigint, and the higher the voitage, the darker the mirror becomes. When the electrical voltage is decreased to zero or is removed, the electro-optic medium returns to its clear state. Rearview mirrors embodying the present invention may, for example, incorporate light-sensing
 in the áórementionedu U.S. Patent Noo. 4, 917,477. Alsō, the components of mirrors embodying the present invention may be of the types disclosed in the aforementioned U.S. Patent Nos. 4,902,108; 5,128,799; $5,202,787 ; 5,280,380$ and $5,282,077$, as well as in U.S. Patent No. 5,014,167, issued May 7, 1991, for Visual Signaling Apparatus, and U.S. Patent No. 5,207,492, issued May 4, 1993, for Mirror Assembly. It should be understood, however, that other type of electronic circuitry and other types of electro-optic media and other components may be utilized in minors embodying the present invention.

In one embodiment of the present invention, an aspheric outside rearview mirror is provided wherein a large flat area and/or a large radius of curvature convex area of the mirror automatically dims, but the aspheric portion of the mirror does not. A key aspect of such embodiment of the invention resides in the fact that the front glass element is formed in one continuous piece that includes an inboard main body portion that is substantially flat, or slightly curved, and an outboard aspherical portion which is formed integrally with the main body portion and projects lateraily outwardily therefrom. In its most practical form, the outside mirror has a large radius of curvature, sphericai, convex iniboard portion, integraily joined to an outboard aspinerical portion, it being understood, however, that the dimming inboard portion could be of flat or other configuration, and that the aspherical portion could be
 formed with multipie radii of curvature or other configurations.

Referring to the drawings, an electro-optic inside/outside mirror assembly, generally designated 9 , embodying the present invention is depicted in FIGS. 1
through 6. Since some of the layers of each of the mirrors in the assembly 9 are very thin, the scale has been distorted for pictorial clarity. As shown in the drawings, the mirror assembly 9 includes a inside mirror 10 and outside mirrors 11 and 12. For clarity, in the drawings, like numbers identify components of the inside and outside minors which may be slightily different in configuration but which function in substantially the same manner and obtain the same results as similarly numbered components. For exampie, the shape of the front giass eiement of the ieft outside mirror is the reverse of the shape of the right ouiside mirror, and the front glass eiement of the inside mirror is generally longer and narrower than the front glass eiements of the outside mirrors. in the embodiment of the illustrated, each of the mirrors 10,11
 glass èmment 14, añ éaǵge seal to, and à rear glass element 16, having reflective and electically conductive metal layers 20 and 22 , respectively. An electro-optic medium 24 having the desired electro-optic properties fills the chamber 13, and a transparent electrically conductive layer such as a fluorine-doped tin oxide conductive layer 26 is carried by the front element 14. The electrically conductive layers are connected to an electrical circuit as will be described hereinafter in greater detail. If desired, a color suppression coating or coatings, such as 28, may be disposed between the conductive layer 26 and the adjacent rear surface of the front element 14. Light rays enter through the front glass element 14, the color suppression coating(s) 28, the transparent conductive layer 26 and the electro-optic medium 24 before being reflected from the electrically conductive and reflective layer 22 (or layers 20 and 22 if layer 22 is extremely thin) provided on the rear glass element 18 . The reflected rays exit by the same general path traversed in the reverse direction. In electrochromic media both the entering rays and the reflected rays are attenuated in proportion to the degree to which the electro-optic medium 24 is light-absorbing while in other eiectro-optic media the light rays may, in some cases, oniy be attenuated in one direction. Winen the eiecirooptic medium 24 is eiectrochromic and highiy ligit absorbing, the intensity of the exiting rays is diminished, the dim image remaining mainly being from light rays which are reflected off of the front surface of the front glass element 14 and the interface between the front glass element 14 and the coatings 28 and/or 26. Thus, the basic structural elements of the electro-optic portion of each of the miirors includes two electrode-bearing sides or watlis 14 and 16 , a spacing or separating seal 16, which spaces apart and holds the walls in substantially parallel relationship in an assembled device, and which surrounds a volume which in an assembled device is defined by the inside suifaces of electrode lay= ers on the electrode-bearing walls as well as the circumferential inside walls 30 of the sealing member 16. The volume of the chamber 13 is preferably filled through a sealable fill port 32 with any of the electro-optic media disclosed in this or the aforementioned patents which
have reversibly variable transmittance in the operation of the device, the medium in the chamber 13 being in contact with both electrode layers 22 and 26 during operation of the mirror. It will be understood that the electro-optic medium for achieving variable reflectance could be other solution-phase electrochromics; solid electrochromics, a combination of the two in the form of a hybrid, or any of the above in a polymerized matrix. A liquid crystal, dipolar suspension or other electro-optic medium couid aiso be utiiized in mirrors embodying the present invention.

In the embodiment of the invention i!lustrated, the reflective surface on the inside of the rear glass 18 may be comprised of a series of coatings, hereinafter termed the multilayer combination reflector/electrode, which serves as a mirror reflectance layer and also forms an integral electrode in contact with the electrochromic media. The other eiectrode on the inside suriace of the front giass 14 is the transparent electrode 26 which aiso contacts the electrochromic media inside the mirror element. The series of multilayer combination reflector/electrode coatings is comprised first of a base coating which bonds to the glass surface tenaciously and resists tho coorrosive action of the natieriais in the eiectrochromic media. The base coating is preferably chromium, but alternatively may be stainless steel, nickel-chromium, titanium, gold, silver, or any material or series of coatings which accomplish the objectives above stated. The thickness of the base coating is typically 100 to 1500 angstroms and is more typically 200 to 800 angstroms. The final reflective coating which directly contacts the electrochromic media is chosen primarily for its high reflectance, resistance to attack by the electrochromic media, resistance to atmospheric corrosion, resistance to electrical contact corrosion, and the ability to adhere to the base coating. The preferred material for the reflective coating is rhodium which has exce!lent hardness, excellent reflectance and exce!!ent conductance, but it should be understood that it is alternatively possible to choose from a group of metals and their alloys such as, but not limited to, platinum, ruthenium, iridium, and stainless steel or multiple layers including combinations thereof. The thickness of the reflective over coating is typically 100 to 1000 angstroms and is more typically 100 to 600 angstroms. The series of coatings of this multilayer combination reflector/electrode has one or more base coating(s) which generaily provide high conductance and one or more over coatings which provide adiditionai conductance and higin refiectance. By way of exampie the sheet resistance of the multilayer combination refiector/electrode may be approximately 1 to 10 ohms per square.

The transparent coating 26 is preferably made of fiuorine doped tiñ óxide or iTO or aiter nátély á seriés ôf coatings with a base coating(s) to suppress coior and reflection followed by a conductive transparent coating which contacts the electrochromic media directly. Where a series of transparent coatings is used, the materials are chosen for good bonding, good resistance
to corrosion by the materials in the electrochromic media, good resistance to corrosion by the atmosphere, minimal reflectance, high light transmission, neutral coloration and high electrical conductance. Suitable types of low cost transparent electrode coated glass substrates are "TEK 20" or "TEK 15" coated glass manutactured by Libbey Owens-Ford of Toledo, Ohio, but other suitable coatings are ITO or extremely thin metal lavers which may aiternatively function as the transparent electrode.

Transparent electrode materials are inherently limited in the balance of properties and cost. Low sheet resistance transparent coatings with a sheet resistance below approximately 10 ohms per square tend to have low transmission and other attendant shortcomings including possible haziness, coloration, non-uniformity of coating thickness and high cost. This makes a low sheet resistance transparent coating iess practicai for eiectrochromic mirrors. To a considerabie extent, it is possible to make the multilayer combination reflector/electrode low in electrical resistance to compensate in a synergistic fashion with a transparent electrode that is higher in electrical resistance so the net result is an
 aboly fast añod uniforming over its suuface areá, with excellent optical properties.

To demonstrate the surprising nature of the synergy, electrochromic mirrors have been constructed with a multilayer combination reflector/electrode of about 3 and of about 7 ohms per square sheet resistance with a front transparent electrode of about 18 to 22 ohms per square or higher which show remarkably good results for speed and uniformity of coloration and clearing. Electrochromic mirrors with reflectors on the front surface of the rear element have been previously described, but the use of multilayer coatings that combine to provide high reflectance, good adhesion to glass, low sheet resistance and ease of cleaning for electrochromic mirrors, especially in combination with a low cost high resistance transparent coating, is preferred. Thus, if desired, mirrors embodying the present invention may use a high electrical conductance multilayer combination reflector/electrode on the third surface, with a lower electrical conductance transparent front electrode on the second surface to achieve a cost effective, high performance, electrochromic mirror. This synergistic structure has the inherent advantage of reducing doubie images, distortion, and multiple images from raindrops, (particulariy with convex or sphericaily curved mirrors), whiie providing exceiient speed of refiectance change, good high end reflectance, good uniformity of reflectance change over the area of the device, neutral color and a low end reflectance, low enoughin too réiéve strong giare.

The ioliowing are exampies of components that have been found to be suitable for use in rearview mirrors embodying the present invention, it being understood that other components may also be used in rearview mirrors embodying the present invention.

EXAMPIE 1

A multilayer combination reflector/electrode was prepared by sequentially depositing approximately 300 angstroms of titanium, approximately 200 angstroms of gold and approximately 200 angstroms of platinum on the 6.5 cm by 14.4 cm surface of 20.2 cm thick sheet of soda lime float glass. The deposition was accomplished by rotating the glass sheet past three separate metal 0 targets in a magnetron sputtering system with a base pressure of a 3×10^{-6} tort and an argon pressure of $2 \times$ 10^{-3} torr. The first surface, CIE curve white light reflectance from the multilayer combination reflector/electrode with the platinum surface in contact with air, measured according to the procedure of SAE J964, was 71.9 percent and the sheet resistance of the metal layer stack was 3.2 ohms per square.

This muitilayer combination refiector/eiectrode coated giass was used as the rear eiement of an eiectrochromic mirror device. The front element was a sheet of TEK 20 transparent conductor coated glass of the same size as the rear element. The sheet resistance of the transparent conductor was approximately 20 ohms
 an epoxy perimeter seal with the transparent conductor electrode and multilayer combination reflector/electrode offset from, substantially parallel to and facing each other as shown in Figure 2. The spacing between the electrodes was about 0.014 cm . The device was vacuum filled through a small gap left in the perimeter seal with a solution made up of:
0.034 molar 5,10-dihydro-5,10-dimethylphenazine 0.034 molar 1,1 '-di(phenyl propyl)-4,4'-bipyridinium difluoroborate
0.5 molar ethyl-2-cyano-3,3-diphenylacrylate
in a solution of 3 wt\% Elvacite ${ }^{\text {TM }} 2041$ polymethy!methacrylate resin dissolved in propylene carbonate.

The small gap was plugged with a UV cure adhesive which was cured by exposure to UV light.

The reflectance of the device, (measured as before for the rear element), with no voltage applied was 56 percent and with 1.2 volts applied the reflectance decreased over a period of 5 seconds to 10 percent and within 10 seconds to 7.5 percent. On short circuiting the device, the refiectance increased over a period of 15 seconds back to 56 percent.

EXAMPLE 2

Other than as specifically mentioned, the conditions ố Exampie 1 were used in this exampie. A muitiayer combination reflector/eiectrode was prepared by sequentially depositing approximately 300 angstroms of chromium, approximately 500 angstroms of silver and approximately 300 angstroms of platinum at a base pressure of 3.7×10^{-6} torr and an argon pressure of $8 \times$
10^{-3} torr. The first surface retlectance was 73.3 percent and the sheet resistance was 0.1 ohms per square.

When an electrochromic mirror device was fabricated with this multilayer combination reflector/electrode, the device had a high end reflectance of 57.0 percent, a low end reflectance of 6.5 percent and changed from 57.0 percent to 10.0 percent reflectance in 2.0 seconds with the application of 1.2 volts.

EXAMPLE 3

Other than as specifica!ly mentioned, the conditions of Example 1 were used in this example. A multilayer combination reflector/electrode was prepared by sequentially depositing approximately 600 angstroms of chromium and approximately 300 angstroms of platinum. The base pressure of 2.1×10^{-6} torr and the argon pressure of 8×10^{-3} torr. The first surface refiectance was 73.8 percent and the sheet resistance was 3.2 ohms per square.

When an electrochromic mirror device was fabricated with this multilayer combination reflector/electrode, the device had a high end reflectance of 58.0 percent, a iow end refiectance of 7.0 percent and changed from 58.0 percent to 10.0 percent reflectance in 2.7 seconds with the application of 1.2 volts.

EXAMPLE 4

A multilayer combination reflector/electrode was prepared by the sequential deposition of approximately 600 angstroms of chromium and approximately 100 angstroms of 316 stainless steel on the 19 cm by 66 cm surface of a 0.2 cm thick sheet of flat soda lime float glass and on the convex side of a 22 cm diameter circle of glass which had been press bent to a uniform spherical curvature with a radius of curvature of 140 cm . The glass which was bent was TEK 20 tin oxide coated glass manufactured by Libbey Owens-Ford of Toledo, Ohio, and the tin oxide coating was on the concave side after the glass was bent. The deposition was accomplished in a large in-line sputtering system. The first surface reflectance from the multilayer combination reflector/electrode coatings was about 58 percent and the sheet resistance was about 7 ohms per square.

The fat and the bent glass sheets were cut into mirror shapes which were approximately 10 cm high and 16 cm wide. These were used as the rear eiements of dimmabie mirrors for the outside of an automobiie as described beiow. As compared to giass coated oniy with chromium metal, these pieces of the multilayer combination reflector/electrode coated glass were dramatically easier to clean to a condition in which they behaved as uniform high quality electrodes without pooriy coioring spots and biemishes in the final elecirochromic dimmable minor devices.

The flat and convex pieces of multilayer combination reflector/electrode coated glass were matched with mirror-shaped pieces of TEK 20 coated pieces of flat
and convex coated glass respectively. The front element convex mirror glass was also bent such that the tin oxide coating was on the concave side. Mirror devices were made by sealing nearly all the way around the perimeter of the glass pieces with an epoxy seal containing glass bead spacers which provided for a 0.015 cm spacing between the TEK 20 transparent, tin oxide electrode and the multilayer combination reflector/electrode. The spacing between the eiectrode surfaces was filied with a solution made up of:
> 0.028 molar 5,10-dihydro-5,10-dimethylphenazine 0.034 molar 1,1'-di(phenylpropyl)-4,4'-bipyridinium difluoroborate
> 0.030 molar 2-(2'-hydroxy-5'-methylphenyl)-benzotriazole
> in a solution of $3 \mathrm{wt} \mathrm{\%}$ Elvacite ${ }^{\mathrm{TM}} 2041$ polymethylmethacryiate resin dissoived in propyiene carbonate.

The small gap in the perimeter seal was plugged with a UV cure adhesive which was cured by exposure to UV light.

The high end reflectance of the mirrors was approximately 45 percent and the low end reflectance was approximately 7 percent. The mirrors changed reflectance from 45 percent to 15 percent reflectance in about 5 seconds and provided excellent glare relief when dimmed to the appropriate reflectance level during nighttime driving.

EXAMPLE 5

Every aspect of Example 4 was repeated with the exception that the multilayer combination reflector/electrode was prepared by the sequential deposition of approximately 400 angstroms of chromium and approximately 200 angstroms of rhodium. The first surface reflectance from the multilayer combination reflector/electrode was about 70 percent and the sheet resistance was about 7 ohms per square.

The flat and convex dimmable minor devices prepared with this multilayer combination reflector/electrode according to the procedure of Example 4 had a high end reflectance of about 55 percent and a low end reflectance of about 7 percent with a speed of reflectance change similar to the mirrors of Exampie 4.

An automobile equipped with an automatic inside eiectrochromic mirror, one of the above fiat mirrors as the driver's side outside mirror and one of the above convex mirrors as the passenger side outside mirror allowed the automobile operator to drive at night with essentially complete protection from glare from the headiamps of foilowing vehicies.
it has been observed that chromium coatings aione can be difficult to clean during assembly of the entire mirror, resulting in a finished minor that may exhibit contamination spots and areas of slower darkening and clearing. The use of a high reflectance material, such as
rhodium alone, can be very costly at thicknesses that provide low sheet resistance, but coated over the above-mentioned base coating(s) such as chromium results in a rear glass element which is easily cleaned prior to assembly, resulting in a finished mirror that is more optically perfect and free of contamination and darkening defects. Chromium or stainless steel alone also have the problem that the high end reflectance of the finished mirror is too low considering the attendant iosses of light from the transparent coated front substrate and eiectrochromic media. A probiem with stainiess aione and io a iesser exieni chromium aione is poor electrical contact stability to the conventional spring clip type buss bars or other electrical contact means.

The use of an inert high reflectance coating also makes attachment of spring clip type buss bars or other contact attachments more staibie and troubie free, since non-conductive compounds and oxides do not form as readily under pressure contact areas. The result of low stability electrical contact is a mirror which loses its uniformity of coloration and its range and speed of coioration and clearing over the long life required in the motor venicicie in̄aduśríy.

There is thús provided a roboust, low cost, dimmable rearview mirror for automotive vehicles, which mirror is capable of operating in harsh environments over wide variations in temperature, humidity, vibration, atmospheric corrosion, salt spray, electronic disturbances and sand and grit abrasion, and which mirior is resistant to damage from vehicle crashes and owner abuse. An additional benefit from sealing the main area of the mirror reflector inside the dimmable mirror element is long life of the reflector in the motor vehicle environment.

It is common with outside dimmable mirrors to adhere a resistance heater to the fourth surface reflective structure at the back of the rear glass substrate. This heater and its associated adhesive can cause incompatibility and field problems if conventional reflective material, such as silver, is on the back side of the back glass substrate. It is also common practice to adhesively bond the electrochromic mirror assembly to a plastic backing plate often called the glass case. Normal temperature variations experienced by this assembly can cause large forces to be exerted on a reflector structure on the back or fourth surface due to the thermai expansion mismatch of the materiais invoived. The adhesives used can aiso lead to chemical attack and degradation of the fourth surface refiector. Such probiems are avoided when the refiector is iocated inside the device, and the heater is adhered directly to the giass (fourth surface) of the rear glass element or to the tin oxide coating such as TEK 20 or TEK 15 layer which

Heretofore, probiems have been encountered with a conventional silver reflector on the back surface of the rear glass, such problems being known as silver spoilage and silver lift, and are avoided with the multilayer combination reflector/ electrode inside the mirror ele-
ment and protected by the rear glass. With the multilayer combination reflector/electrode located inside the mirror element, the environmental factors are limited to those that result from contact with the materials of the electrochromic media and the offset area where electrical contact is made; whereas with the reflector on the back of the rear glass surface, a number of other difficult environmental factors must be dealt with for the reflector to survive during the life of the mirror especialily on the exterior of a motor vehicie.

Speed of coloring, good high end reflectance (typically greater than 50% for exterior mirrors and greater than 60% for interior mirrors) and low cost - important requirements for dimmable mirrors, and the above described construction provides a mirror meeting such requirements. Thus, it is possible to use comparatively low cost practical electrode coatings to make a surprisingiy high performance mirror. Highiy conducting transparent coatings are either nondurabie, low in transmissivity and/or very high in cost. For this reason it is desirable to use comparatively low cost durable transparent coatings which have the inherent disadivantage that their conductance is lower than that of expensive
 ance which can be used to great advantage. Electrochromic mirrors with reflector/electrodes involving a single metal layer on the front surface of the rear element have been previously described. However, the concept of creating a dimmable mirror where the electrical conductance of the transparent electrode at the second surface of the mirror element is purposely made much lower than the multilayer combination reflector/electrode conductance at the third surface of the mirror element is preferred. This intentional mismatch of conductance in a symbiotic relationship using practical low cost coatings provides a structure of significant commercial potential, i.e. the conductance of the transparent electrode is substantially lower than that of the multilayer combination reflector/electrode, and the multilayer combination reflector/electrode is comprised of two or more coatings. The first coating on the rear glass is preferably the low cost, high conductance base metal such as chromium. The final coating on the multilayer combination reflector/electrode is the thin, high reflectance metal such as rhodium for the purpose of providing high reflectance and high stability in use as an electrode for the electrochromic device. The coating(s) on the back surface of the front element may inciude one or more coior suppression coatings foiiowed by fiuorine doped tin oxide, but it must be understood that any transparent coating having the required properties which is substantially lower in conductance than the coatings on the front surface of the rear element would be suitabióe. This concept may be incorporated in bouth inside and outside eiectrochromic mirrors which may incorporate ambient and glare light sensors, the glare light sensor being positioned either behind the mirror glass and looking through a section of the mirror with the reflective material removed, or partially removed, or
the glare light sensor can be positioned outside the reflective surfaces. In the alternative, areas of the electrode and reflector, such as 45 and 46, respectively, may be removed, or partially removed in, for example, a dot pattern, to permit a vacuum fluorescent display, such as a compass or clock, to show through to the driver of the vehicle. Such concept is also applicable to a mirror which uses only one video chip light sensor to measure both glare and ambient light and which is further capabie of determining the direction of giare. An automatic mirror on the inside of a vehicie can aiso contiroi one or botih outiside mirrors as siaves in an auiomatic mirror system.

The foregoing also has application in the construction of elements for mirrors where high maximum reflectance is desired, and the electrochromic materials may be solution phase containing liquids, gels, rigid geis and/or poiymers. it may aiso be a hybrid design where some or ail of the electrochromic materiais are not in solution and may be confined on the surfaces of the electrodes, and also particularly applies to electrooptic mirrors which draw more than 10 milliamps in operation at any point in their process of dimming

The above described structure is particularly effective when used with selected low cost transparent coatings, as for example, "TEK 20", marketed by Libbey Owens-Ford Co. of Toledo, Ohio. The benefits over the most commonly used automatic mirrors in use today are as follows: mirrors embodying the multilayer combination reflectorlelectrode change reflectance faster, have a clearer image, have better coloration of image in the nondimmed state, eliminate the need and inconvenience of putting silver reflective coatings on the fourth surface of the mirror element, have fewer handling steps thereby creating fewer chances for scratching in the glass during processing and providing a final product with better optical quality, and having fewer surfaces through which the light must travel, and the first surface and third surface reflections are closer together with the result that there are less multiple images and less distortion in the mirror for the driver. Moreover, when used as an outside mirror, there are less reflections from raindrops and dust on the front surface of the tront glass, and the reflector at the front surface of the rear glass element is protected from aging, exposure to airborne contaminants and physical abuse that often affect reflectors placed at the back surface of the rear glass element.

In the embodiment of the invention iilustrated in Figures i througin 6 , the front giass eiement 14 of each outside mirror is formed in one continuous piece that includes an inboard main body portion 14B that may be substantially flat with an infinite radius of curvature, or
 This curvature is generally spherical with a radius of curvature in the range of 1200 to 3000 mm and more typically in the range of 1400 to 2600 mm . The main body portion $14 B$ is integrally joined to an outboard aspherical portion 14A having a radius of curvature sub-
stantia!ly less than the radius of curvature of the main body portion 14B. Thus, the aspherical portion 14A contributes a predetermined field of view which, when combined with the field of view of the main body portion 14B, is substantially greater than the field of view of the main body portion 14B alone. The rear glass element 18 of each outside mirror of this embodiment of the invention is substantially the same size as the main body portion 14B of the front giass element so that the aspherical portion 14Á projects ilateraily outwardily, i.e., outboard of both the main body portion 14 B and the rear giass eiemeni 18 . Since the aspheric portion 14A of the íront giass element 18 projects outwardily beyond the adjacent edge of the rear giass element 18, the aspheric portion 14A of the front glass element does not dim
 dimis. it shoulud also be understoóad that a dezel structure 34, shown in dashed lines for clarity of illustration, is preferably utilized which extends around the entire periphery of the front glass element and conceals the peripheral edge portions thereof.
in this embodiment of the invention, the rear surface 36 of the front glass element 14 of each outside mirror is preferably cooated with a reflec̃tive layer 38 onnly in the area of the outboard asphoerical portion 14A. This reflective material also preferably covers the outtooard section 40 of the seal 16 so that the outboard section 40 of the seal 16 is not visible to the driver of the vehicle, although, if desired, a portion of the seal may be purposely allowed to be visible to the driver to provide a demarcation to apprise the driver that there is a difference in the minor configuration. As previously mentioned, the outboard area 14A of each outside mirror can be either aspheric, cylindrical, spherical, formed with multiple radii of curvature formed of any combination of the preceding, or be of other desired configuration. It should also be understood that the reflective layer could be on the front surface of the aspherical portion 14A

The above described construction overcomes serious cost and technical problems which are encountered when efforts are made to perfectly match two glass shapes of complex curvature. Since the rear glass element 18 and the electro-optic portion 14B of the front glass element 14 are either flat or only slightly curved, matching of the overlying portions thereof is more readily achieved, and serious mismatching, which can cause double imaging, is obviated or at least minimized. Moreover, since the aspheric portion $14 \bar{A} A$ of the front eiement 14 projects outwardiy beyond the outiboard edige of the rear giass element 18 , no matching whatsoever is required because there is only one layer of glass in the aspherical portion 14A of each outside mirror.
it wili bé underşioód thanat if a rétiective lāyer 38 , such as chromium or rhodium, is deposited on the rear surface 36 in the aspherical portion 14A of the front glass element 14, and a reflective layer such as 22 is also used as a reflector on the inner surface of the rear glass element 18, behind the electro-optic material 24,
then there will be a minimum discontinuity in the reflected image since the electro-optic media layer is very thin (typically 150 microns or less). In that connection it should be understood that light from reflection in the clear state of the electrochromic portion of the device may $10-20 \%$ less than the first surface reflectance of the layer 22 when measured with the laver 22 in contact with air.

It should also be understood that, by way of example, it is also possible to utilize indium tin oxide (ITO) as the transparent conductors on the confronting surfaces of the front and rear glass elements and a reflective layer such as silver on the back of the rear glass element. For matching purposes, it is also possible to provide a silver reflector on the back surface of the aspherical portion 14A of the front glass. In the preferred embodiment of the invention, a layer of chromium or a iayer of rhodium makes up the refiective iayer $3 \overline{8}$ provided on the back surface 36 of the aspherical portion 14A of the front glass element, limited to the aspheric area as iliustrated in the drawings. For exampie, a rhodium layer 22 can be used on the front surface of the back glass element 18, deposited over a thick
 ple, the thodium làyer may have a thickness of aboout 100-700 Angstroms, while the chromium layer may have a thickness of about 300 to 1500 Angstroms. In the alternative, instead of a dual layer of rhodium and chromium, a single layer of chromium may be utilized together with a single layer of chromium on suiface 38. A single layer of smooth, high transmission ITO is preferred for application to the surface 36 in both areas 14A and 14B to simplify the ITO coating process and to maximize reflection of 38 and minimize haze of reflector 38 . When the reflector of the outboard portion is placed on the front side of element 14 then the smoothness of the transparent conductor 36 is not critical, and it is possible to use the low cost but somewhat rough or hazy coating sold by Libbey Owens-Ford as "TEK 20" tin oxide coated glass or the Libbey Owens-Ford "TEK 15" glass or a similar type low cost tin oxide coated glass, or it is possible to remove the tin oxide transparent conductive layer prior to applying the reflector to the area 14A. Thus; if desired; the transparent conductive coating 26 on the front element 14 may be uniformly applied, selectively applied or removed from a portion of surface 36 prior to the application of the reflective layer $3 \overline{8}$ so that in the latter case the refiective layer 38 is applied directiy onto the rear surface 36 of eiement 14. This iatter configuration of the front eiement refiector is especially desirable if the transparent conductive coating has significant haze. It may also be desirable to lower the reflectivity at the area 14 A to a value as bright as, or iower thāñ, the refiectance range of the dimming portion by choice of reflector material or transmission properties of the layer 26, if present, in the area 14A.

From the foregoing description, it will be understood that much of the uniqueness of this embodiment of the invention resides in the fact that only the inboard main
body portion 14B of the front element 14 will be dimmed utilizing electro-optic principles. This permits protection from glare and yet preserves safety, since the aspheric portion 14A is not allowed to dim and the driver can stil! see nearby vehicles in adjacent lanes. Moreover, the unitary front face of the front glass element 14 can still be easily cleaned and scraped of ice in the winter. In addition, the one-piece face of the front glass element is cosmeticaily stylish. Āiso, the layers of refiective materiai can be made so ciose to the same piane that their discontinuity wiil not be objectionabie to the diriver of the vehicie. it shouid aiso be undersiood tinat for defrosting purposes, a conventional heater (not shown) can be utilized to cover either the entire back of each outside mirror assembly including both the aspherical outboard

 the heat eventually spreading throuigh thermal conduction to the outooard portion 14A.

From the foregoing description, it will be appreciated that the aspheric outboard portion of the mirror provides a greatiy increased fieid of view, thereby virtually eliminating blind spots, and mirrors embodying the presénùt invèntioñ cann replace conventionà áriver's sidue exterior mirrors or both the driver's side and the passenger's side exterior mirrors. The outside mirrors embodying the present invention combine two types of curvature, i.e., a convex main area with a large radius of curvature or a flat main area with an infinite radius of Curvature, the latier being similar to conventional United States driver side exterior mirrors, together with an aspheric section on the outboard portion of the mirror. The relatively high curvature in the aspheric area yields a greatly expanded field of view, and at the same time, since the aspheric portion does not dim, the bright outboard portion provides a danger signal in the event another vehicle is positioned immediately adjacent to the vehicle quips with mirrors embodying the present invention. It should also be understood that if desired, the aspheric portion of the mirror assembly could be tinted or provided with less reflective capability than the undimmed electro-optic portion of the mirror.

With reference to FIG. 6, a preferred arrangement for connecting the electronic conductive layers to a power source is illustrated In this arrangement, the two electrode-bearing front and rear glass elements 14 and $1 \overline{8}$ are displaced in opposite directions, liateralily from, but parailei to, the chamber 13 in order to provide exposed areas on the front and rear giass eiements. Eiectricaily conductive spring ciips 42 and 44 are provided which are placed on the coated giass sheets to make electrical contact with the exposed areas of the electrically conductive layers. Suitable electrical con-
 nected to the spring clips 42 and 44 so that desired voltage may be applied to the device from a suitable power source. It is preferred but not essential that the combination reflector/electrode, which may or may not be multilayer, function as and be maintained as the

cathode in the circuitry.

Rearview mirrors embodying the present invention preferably include a bezel 34 which extends around the entire periphery of the assembly. The bezel 34 conceals and protects the spring clips 42 and 44 and the peripheral edge portions of both of the front and the rear elements 14 and 18. By way of example, the bezel 34 may be of the type disclosed in the co-pending Continuation Application of William L. Tonar, Serial No. 08/142,875, filed October 29, 1993, which issued as US-5,448,397 on 5th September 1995.

The assembly may also include a conventiona! heater and a plastic mirror back or glass case which is adapted to snap into an outside mirror housing (not shown) that may be of any desired configuration including with and without a motor pack for remote adjustment of mirror position. The outside mirror housing is supported on the outside of an automotive vehicie in any desired or conventionai manner, and the inside mirror is supported inside the vehicie in any desired or conventional manner, whereby the field of view of each mirror may be adjusted by the driver of the vehicie in a conventional manner, as for example, through manual adjustment or by mechanical or elecirical means of the types cōnventionálily provided on modem day aútón̄̄ōoiles.

Another embodiment of the invention is illustrated in Figure 7 which enables each outside mirror to implement a signaling function, and in which the reflector on the outboard section 14 A is constructed to reflect most of the spectra while transmitting only a selected spectira of a cooperative signal light source located behind the mirror. In an alternate approach, the reflector can be made generally reflective, but partially light transmissive over a broad spectral range, thus requiring a signal light of sufficient intensity to be seen by passing vehicles after attenuation through the partially reflecting layer. In order to direct the light away from the driver's eyes either louvers or a sheet of plastic light directing film is placed behind the mirror surface between the signal light source and the reflector. The ambient light sensor in the automatic interior mirror can be used along with a conventional control circuit (not shown) to progressively reduce the signal light output under progressively darker night driving conditions. Areas behind the outboard portion of each outside mirror where the signal light is not expected to shine through can optionally be covered with black or dark paint to make the interior behind the mirror refiector less visibie cosmeticaily in the daytime. in this embodiment of the invention, a dichroic refiector in area 14Á may be utiiized, aiong with a light source that is compatibie with the dichroic refiector, e.g., a red light emitting diode. emitting in specific spectral wavelengths of the band pass region of the dichroic réfiectoror. Añóther posssibiity for á ligñ source for use with a dichroic reflector is a neon gas tube, power supplies (not shown) for the light emitting diodes or neon tube being well known in the art.

With a partially reflecting mirror, any wide band light source is acceptable provided it has sufficient light out-
put and life to withstand the automotive environment, and provided the color is acceptable for an automotive safety signal. Where a white or broad spectrum light source is preferably used, either a tinted lamp enclosure or separate colored filter between the light source and the reflector is sufficient to provide the proper orange or red light output. The preferred color of the light output with the portial reflector approach is orange. The most practical low cost light source is of the incandescent type with possibie variations to inciude haiogen, xenon or other iife-extending, high efficiency technoiogy. it is desired to produce the most ight with the ieast cost using a practical, affordabie light source for which replacement bulbs are readily available for service.

Whatever light source is used, it is preferred to use either a lamp reflector, lens or both for the purpose of increasing light output efficiency in the desired direction. The iamp refiector referred to in this case is distinctively separate from the mirror refiector on the outboard portion of the partially dimming aspheric mirror. As an alternate approach, this signal light concept and partial dimming concept can aiso be useful with a suibstantiaily uniformly curved mirror, such as a convex mirror, where

 feature behind the outboard reflector.

In order to direct light, emitting from the signal light source, away from the driver's view, a laser can be used to cut (burn) a precise controllable louver pattern in a plastic louver member effective to direct light out of the mirror so it can be seen by other vehicles on the side of the vehicle equipped with the signaling mirror, but not seen by the driver of the vehicle so equipped. The plastic louver sheet can be either extruded flat or molded flat or it can be molded in a curved shape to fit the mirror curve.

It will be understood that a laser or other suitable means can be utilized to burn slots at an angle through the plastic sheet, and that the slots can be arranged in a manner to provide the greatest practical ratio of open area with the laser cut slots being stopped at certain points to allow sufficient structural retention and support. Referring to Figure 7, a schematic simplified side elevational view of this embodiment of the invention is illustrated therein. In this embodiment of the invention, a front reflector 138 is provided on the aspherical portion 114 Á of the glass 114, the reflector 138 preferably being a very highily refiective but partiaily transparent metai coating.
it shouid be understood, however, that in this embodiment of the invention it is not necessary that the outboard portion of the mirror be aspheric, and that if desired the outboard portion can be flat or curved. If
 the condition that the reflective coating be suinstantially transmissive thereby allowing light from behind the mirror to pass through. The higher the natural reflectance of the front layers the greater will be the ability to sacrifice reflectance to transmittance and still fall within an
acceptable mirror reflectance range of about 40% to 60%. Suitable reflectors are rhodium, coated aluminum, coated silver, or other suitable different metal. The key aspect is that the natural reflectance be high enough to allow a thin controlled thickness to transmit approximately 10 to 30% or greater of the signal light and still allow approximately 40 to 60% reflectance. The glass itself is designated 114 in Figure 7, but clear plastic may be useful as an alternate.

The layer designated 115 is the louvered layer which incorporates an appropriate signal pattern which can be recognized as a turn or other signa!, which when lighted is visible to vehicles on the side, but not to driver of the vehicle quipped with outside mirrors embodying the present invention.

In the embodiment of the invention illustrated in Figure 7, an optional lens 117 is provided to direct light for efficiency. \bar{A} signai iigint source $11 \overline{9}$ is provided which may be in the form of an LED array, a fiiament liamp or lamps, or a gas filled lamp such as neon or xenon, and a reflector or reflector array 121 is provided to direct light emanating from the light source 119 toward the lens 117 and/or the louvers 115. If desired, a clear
 positioned between the louvers 115 and the glass 114. The louvers 115 would then be glued to the substrate with adhesive.

In the operation of this embodiment of the invention, when the signal light source is energized, the turn or other signal is thus visible only to the drivers of other vehicles. At the same time, the reflective surfaces of the mirror function in a conventional manner.

In accordance with the present invention, the signaling concept described hereinabove can be extended to include electro-optic dimming mirrors as shown in Figure 8. Referring to Figure 8, an electro-optic assembly generally designated 210 is provided which includes a sealed chamber 213 defined by a front glass element 214, an edge seal 216, and a rear glass element 218 having reflective but partially light transmitting and electrically conducting chromium and rhodium layers 220 and 222, respectively, on the front face thereof. An elec-tro-optic medium 224 having the desired electro-optic properties fills the chamber 213, and a transparent electrically conductive layer or layers 226; such as ITO, is carried on the back face of the front glass 214. A louvered layer 215 is provided which is secured to the back surface of the rear giass 218, the iouvered layer having an appropriate signai pattern, such as an arrow, which can be recognized as a iurn or other signai, visibie to vehicies on the side, but not to the driver of the vehicie equipped with outside mirrors embodying the invention. This embodiment of the invention includes an optional iens 217 tó adirect light for éficienency. A signāa lighint source 219 is provided which may be in the form of an LED array, a filament lamp or lamps, or a gas-filled lamp such as a neon lamp or a xenon lamp, and a reflector or reflector array 221 is provided to direct light emanating from the light source 219 toward the lens 217 and/or the a series of coatings which may be the same as the multilayer combination reflector/electrode types previously described which serve as a mirror reflective layer and also form an integral electrode in contact with the elec-
trochromic media. The other electrode on the inside surface of the front glass 114 may be the same as the transparent electrode 26 previously described which contacts the electrochromic media inside the mirror element. The multilayer combination reflector/electrode in this embodiment of the invention thus functions in the same manner and obtains the same results as the multilayer combination reflector/electrode previously described, and the transparent electrode on the inside surface of the front giass 114 aiso functions in the manner and obtains the same resuits as the transparent eiectrodes previousiy described, the difiference in this embodiment of the invention being that the multilayer combination reflector/electrode and the transparent electrode include the aspheric portion of the mirror, it being understoond that the seai 116 encompasses the entite chamber 113 which extends to the lefti end of the mition sticuctuire, as illustirated in Figuire 9 , including the aspheric porition of the mirior. Thus, the entire miriroi 111 including the aspheric portion of the mirror has the reversibly variable transmittance capabilities, and the entire mirror functions in the same manner as the inboard main body portion 14B of the embodiment of the invention illustrated in Figures 1 through 6 .

While preferred enioodiments of the iñvention have been illustrated and described, it will be understood that various changes and modifications may be made without departing from the scope of the invention which is defined by the appended claims.

Claims

1. An electro-optically dimming exterior rearview mirror (111) for automotive vehicles, said mirror comprising, in combination, front and rear spaced elements (114, 118), said front element (114) being optically transparent and including an inboard portion (140) and an outboard portion (114A) projecting laterally outwardly of said inboard portion, at least one of said inboard and outboard portions (114A, B) of said front element being of curved configuration, said front element and said rear element defining a chamber therebetween, the confronting sides of said front element and said rear element each including at least one layer of electrically conductive material $(22,26)$ said chamber containing an electro-optic reversibiy variabie transmittance medium (124) in contact with each of said eiectricaily conductive iayers, said rear eiement inciuding iight refiecting means (20, 22), said iight refiecting means of said rear element being effective to reflect light through said medium and through said front element when said light reaches said rear element
 medium and through said front eiement, and means for applying electrical potential to said layers of electrically conductive material to cause variation in the light transmittance of said electro-optic medium.
2. A mirror according to claim 1, wherein said outboard portion of said front element is of aspheric configuration.
3. A mirror according to any of the preceding claims,
wherein said inboard portion (14B; 114B) and said outboard portion (14 A ; 114A) of said front element each have a predetermined field of view, the field of view of the combination of said inboard portion and said outboard portion being greater than the field of view of said inboard portion alone.
4. A mirror according to any of the preceding claims, including means $(28 ; 128)$ disposed between said front element (14; 114) and said rear element (18; 118) for suppressing colour.
5. A mirror according to any of the preceding claims, wherein said inboard portion (14B; 114B) and said outboard portion (14A; 114A) of said front element are formed of one continuous piece of glass.
6. A mirror according to any of the preceding claims, wherein said front eiement (14; 114) and said rear element (18; 118) have confronting surface portions of curved configuration.
7. A mirror according to any of claims 1 to 12 , wherein said front element $(14,114)$ and said rear eiement (18 ; 118) have confronting surface portions of substantially flat configuration.
8. A mirror according to any of the preceding claims, wherein said reflective surface $(20,22 ; 120,122)$ on said rear side of said rear element.
9. A mirror according to any of claims 1 to 14 , wherein said reflective surface (20,$22 ; 120,122$) on said rear element $(18 ; 118)$ is located on the side of said rear clement confronting said front element (14; 114).

ER 0791503 A2

EP 0791503 A2

EP 0791503 A2

Mirror support with divergent reflective area

Publication number:	EP0917987	Also published ms:
Publication date:	1999-05-26	FR2771352 (A1)
Inventor:	JUSZCZACK FREDERIC (FR); FANELLI PHILIPPE (FR)	
Applicant:	MAGNETI MARELLI FRANCE (FR)	Clted documents:
Classtification:		EP0864465
- international:	E60R1/08; B60R1/08; (IPC1-7): B60R1/08	푼 GB2126548
- European:	B60R1/08D2	- GB2261861
Application number:	EP19980440260 19981118	
Priority number(s):	FR1997001488119971124	

Report a data error here

Abstract of EP0917987

The mirror holder (1), designed to be mounted in a rear view mirror housing and pivotable by direct pressure or remote operation, incorporates a divergent reflective zone (3) extending to one side of the main mirror surface (2). The divergent zone is produced by a chrome or varnish
reflective coating applied directly to the mirror
holder itself, and it can be a flat or curved
spherical or aspherical surface. The mirror can
also be equipped with a de-icer.

Data supplied from the especenet database - Worldwide

Europäisches Patentamt
European Patent Office
Office européen des brevets

DEMANDE DE BREVET EUROPEEN
(43) Date de publication:
26.05.1999 Bulletin 1999/21
(51) Int CI.6: B60R 1/08
(21) Numéro de dépôt: 98440260.2
(22) Date de dépôt: 18.11.1998
(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Etats d'extension désignés:
AL LT LV MK RO SI
(72) Inventeurs:

- Juszczack, Frédéric 57260 Dieuze (FR)
- Fanelli, Philippe 89140 Gisy les Nobles (FR)
(30) Priorité: 24.11.1997 FR 9714881
(71) Demandeur: MAGNETI MARELLI FRANCE F-92000 Nanterre (FR)
(74) Mandataire: Nuss, Pierre et al 10, rue Jacques Kablé 67080 Strasbourg Cédex (FR)
(54) Porte-miroir comportant une zone réfléchissante divergente
(57) La présente invention concerne un porte-miroir (1) destiné à être monté dans un boïtier de rétroviseur extérieur par l'intermédiaire d'un dispositif de montage pivotable à commande directe par appui sur le miroir (2) équipant ledit porte-miroir (1) ou à commande à distance au moyen d'un dispositif à actionnement manuel ou motorisé.

Porte-miroir caractérisé en ce qu'il comporte une zone réfléchissante (3) divergente par rapport au miroir
(2) s'étendant latéralement en prolongement de la surface de réception du miroir (2), en position de service du rétroviseur, el dont le revêtement réfléchissant est une couche réfléchissante chromée ou vernie appliquée directement sur la matière du porte-miroir (1) formant ladite zone réfléchissante (3).

L'invention est plus particulièrement applicable dans le domaine de la réalisation de dispositifs de rétrovision pour véhicules automobiles.

Description

[0001] La présente invention concerne le domaine des véhicules automobiles, en particulier de leurs accessoires, et notamment leurs moyens de rétrovision et a pour objet un porte-miroir comportant une zone réfléchissante divergente.
[0002] Actuellement, pour permettre aux automobilistes de surveiller la circulation à l'arrière et sur les côtés de leur véhicule, en particulier lors des manoeuvres de dépassement ou garage, les véhicules automobiles sont généralement équipés d'un rétroviseur intérieur central et de deux rétroviseurs extérieurs fixés chacun sur une portière avant
[0003] Ainsi, le miroir intérieur central permet essentiellement la surveillance de la zone située à l'arrière du véhicule, notamment pour apprécier l'approche ou l'éloignement d'autres véhicules, alors que les rétroviseurs extérieurs latéraux sont destinés à permettre le contrôle des zones latérales dudit véhicule, immédiatement lors des manoeuvres de dépassement ou de changement de file, ainsi que pour les manoeuvres de stationnement.
[0004] Un tel montage des rétroviseurs est généralement satisfaisant, en permettant, par installation d'un miroir central intérieur panoramique et de miroirs extérieurs orientables à distance, la couverture d'un vaste champ de vision latéral et arrière.
[0005] Cependant, du fait même de la disposition des rétroviseurs, il subsiste des zones périphériques du véhicule qui restent invisibles au conducteur et qui sont appelées angles morts. Ces angles morts obligent le conducteur à tourner plus ou moins la tête pendant les manoeuvres de dépassement de manière à s'assurer qu'aucun véhicule n'effectue de manoeuvre dans l'espace constituant l'angle mort, ce qui pourrait être dangereux et entraîner éventuellement une collision, risque augmenté par le fait que pendant cette vérification la surveillance vers l'avant du véhicule n'est plus assurée
[0006] Pour obvier à ces inconvénients, il a été proposé des rétroviseurs extérieurs présentant des moyens destinés à supp rimer plus ou moins l'angle mort de chaque rétroviseur extérieur. A cet effet, le miroir de rétroviseur peut, soit être muni d'un élément rapporté réfléchissant plan ou courbe, en saillie par rapport à lui, soit être sous forme d'un miroir sphérique ou asphérique.
[0007] Les miroirs comportant deux éléments réfléchissants sont généralement formés par un élément de plus grande surface destiné à la vue arrière latérale et par un élément de plus petite surface servant à couvrir partiellement l'angle mort correspondant.
[0008] De tels miroirs de rétroviseur extérieur nécessitent, cependant, des investissements de fabrication importants, du fait que chaque modèle de rétroviseur, pour tenir compte des normes en matière de surface de vision latérale arrière minimale, sera équipé de miroirs différents.
[0009] Les miroirs sphériques ou asphériques sont réalisés à partir d'une ébauche plane, par déformation à chaud sur un gabarit. De tels miroirs nécessitent des coûts de fabrication importants entraînant des prix de 5 revient élevés des rétroviseurs obtenus. En outre, ces miroirs ne permettent pas l'obtention d'une image non déformée.
[0010] On connaît, par ailleurs, par GB-A-2 126 548, un rétroviseur extérieur comportant un premier miroir
10 plan et un second miroir convexe contigu au premier, ces miroirs étant montés sur un porte miroir commun et déterminant une surface réfléchissante continue.
[0011] De même, le document GB-A-2 261861 a pour objet un rétroviseur extérieur comportant deux miroirs
15 adjacents formant une surface réfléchissante convexe. Ces deux miroirs peuvent être, soit adjacents, soit d'un seul tenant et reliés par une partie incurvée
[0012] Les miroirs ainsi réalisés présentent, cependant, tous l'inconvénient de ne pas être adaptés à une 0 mise en oeuvre sur des modèles de rétroviseurs différents, de sorte que chaque modèle nécessite, au moins pour la partie de miroir destinée à couvrir partiellement l'angle mort, un miroir spécifique, ce qui entraîne des frais de fabrication correspondants.
5 [0013] La présente invention a pour but de pallier les inconvénients des rétroviseurs extérieurs connus en proposant un porte-miroir permettant, tout en maintenant un confort de vision optimal, d'améliorer sensiblement le champ de vision vers l'arrière, ce à un faible prix o de revient
[0014] A cet effet, l'invention a pour objet un parlemiroir, destiné à être monté dans un boîtier de rétroviseur extérieur par l'intermédiaire d'un dispositif de montage pivotable à commande directe par appui sur le miroir équipant ledit porte-miroir ou à commande à distance au moyen d'un dispositif à actionnement manuel ou motorisé, caractérisé en ce qu'il comporte une zone réfléchissante divergente par rapport au miroir, s'étendant latéralement en prolongement de la surface de récep0 tion du miroir, en position de service du rétroviseur, et dont le revêtement réfléchissant est une couche réfléchissante chromée ou vernie appliquée directement sur la matière du porte-miroir formant ladite zone réfléchissante.
45 [0015] L'invention sera mieux comprise, grâce à la description ci-après, qui se rapporte à un mode de réalisation préféré, donné à titre d'exemple non limitatif, et expliqué avec référence au dessin schématique annexé, dont la figure unique est une vue en élévation et en coupe du porte-miroir conforme à l'invention.
[0016] La figure unique du dessin annexé représente un porte-miroir 1 destiné à être monté dans un boîtier de rétroviseur extérieur par l'intermédiaire d'un dispositif de montage pivotable à commande directe par appui sur 5 le miroir 2 équipant ledit porte-miroir 1 ou à commande à distance au moyen d'un dispositif à actionnement manuel ou motorisé.
[0017] Conformément à l'invention, le porte-miroir 1
comporte une zone réfléchissante 3 divergente par rapport au miroir 2, s'étendant en prolongement de la surface de réception du miroir 2 , de préférence latéralement par rapport cette surface, en position de service du rétroviseur, et dont le revêtement réfléchissant est avantageusement une couche réfléchissante chromée ou vernie appliquée directement sur la matière du portemiroir 1 formant ladite zone réfléchissante 3.
[0018] Ainsi, le rétroviseur extérieur muni d'un tel por-te-miroir 1 permet une vision habituelle de la partie arrière latérale correspondante du véhicule et une détection complémentaire dans l'espace correspondant à l'angle mort du miroir 2, grâce à la zone réfléchissante 3. La disposition de la zone réfléchissante divergente 3 est particulièrement avantageuse, du fait qu'elle permet un prolongement naturel du miroir 2 par la zone réfléchissante divergente 3 et donc un réglage simultané de cette dernière avec ledit miroir 2.
[0019] La zone réfléchissante divergente 3 peut se présenter, soit sous forme d'une surface plane, soit sous forme d'une surface sphérique ou asphérique. Dans le premier cas, l'image réfléchie par la zone 3 sera une image comparable à celle réfléchie par le miroir 2, tandis que dans le deuxième cas, cette image sera plus ou moins déformée du fait de la convexité de la surface.
[0020] Le miroir 2 peut être un miroir en verre ou en matière synthétique muni ou non d'un dispositif de dégivrage et collé sur le porte-miroir 1. Dans le mode de réalisation représenté au dessin annexé, la surface de réception du miroir 2 est une surface plane, cependant, cette surface pourrait également se présenter comme une surface convexe destinée à la réception d'un miroir 2 asphérique ou sphérique. Dans un tel cas, la réalisation du miroir 2 en matière synthétique pourrait permettre une conformation directe à la convexité du support ou porte-miroir 1, lors de son montage sur ce dernier par collage, ce qui entraînerait un coût de fabrication réduit en conséquence.
[0021] Conformément à une autre caractéristique de l'invention, non représentée au dessin annexé, la zone réfléchissante divergente 3 peut avantageusement être pourvue, sous sa surface de réception du revêtement réfléchissant, d'une plaquette de dégivrage. Une telle plaquette de dégivrage peut être intégrée directement dans la matière constitutive du porte-miroir 1 lors du moulage de ce dernier, par surmoulage, et présenter des moyens de branchement électrique débouchant derrière ledit porte-miroir 1 et coopérant avec des moyens correspondants prévus dans le boîtier du rétroviseur.
[0022] Ainsi, l'ensemble du miroir de rétroviseur à surfaces réfléchissantes multiples peut être maintenu dans un état de réflexion parfait permettant au conducteur du véhicule ainsi équipé de toujours disposer d'un angle de vision latéral arrière maximal.
[0023] Grâce à l'invention, il est possible de réaliser un porte-miroir, permettant, du fait de la prévision d'une zone réfléchissante divergente, l'obtention d'un champ
de vision latéral arrière considérablement élargi, de sorte que le conducteur du véhicule ainsi équipé peut voir simultanément une image normale du champ latéral arrière et une image partielle de l'espace se trouvant dans
5 l'angle mort correspondant. Cette deuxième image sera, selon le cas, avec ou sans déformation, suivant que la zone réfléchissante sera convexe, c'est-à-dire sphérique ou asphérique, ou plane.
[0024] En outre, l'invention permet une création de ré-
10 troviseurs plus étendue, du fait qu'elle rend parfaitement envisageable l'utilisation d'un même miroir plan sur des modèles de porte-miroirs différents dans leur forme et dans leurs dimensions, le miroir plan pouvant très bien ètre intégré avec une dimension figée sur des porte-mi15 roirs, dont la surface de la zone réfléchissante divergente est variable d'un modèle de rétroviseur à un autre.
[0025] Le porte-miroir ainsi obtenu est d'un prix de revient relativement faible comparativement à celui de porte-miroirs et de miroirs permettant une rétrovision la2 térale optimisée et sa mise en oeuvre, ainsi que son réglage sont particulièrement simples.
[0026] La présente invention est plus particulièrement applicable dans le domaine de la réalisation de dispositifs de rétrovision pour véhicules automobiles.
25 [0027] Bien entendu, l'invention n'est pas limitée au mode de réalisation décrit et représenté au dessin annexé. Des modifications restent possibles. notamment du point de vue de la constitution des divers éléments ou par substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.

Revendications

1. Porte-miroir (1), destiné à être monté dans un boîtier de rétroviseur extérieur par l'intermédiaire d'un dispositif de montage pivotable à commande directe par appui sur le miroir (2) équipant ledit portemiroir (1) ou à commande à distance au moyen d'un dispositif à actionnement manuel ou motorisé, caractérisé en ce qu'il comporte une zone réfléchissante (3) divergente par rapport au miroir (2), s'étendant latéralement en prolongement de la surface de réception du miroir (2), en position de service du rétroviseur, et dont le revêtement réfléchissant est une couche réfléchissante chromée ou vernie appliquée directement sur la matière du portemiroir (1) formant ladite zone réfléchissante (3).
2. Porte-miroir, suivant la revendication 1, caractérisé en ce que la zone réfléchissante divergente (3) se présente sous forme d'une surface plane.
3. Porte-miroir, suivant la revendication 1, caractérisé en ce que la zone réfléchissante divergente (3) se présente sous forme d'une surface sphérique ou asphérique.
4. Porte-miroir, suivant la revendication 1, caractérisé en ce que le miroir en verre ou en matière synthétique formant la zone réfléchissante divergente (3) est pourvue sur sa face arrière d'une plaquette de dégivrage.

5

Office européen
RAPPORT DE RECHERCHE EUROPEENNE
Numéro de la demande des brevets

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE
RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

Pour tout renseignement concernant cette annexe : voir Journal Officiei de 'Office européen des brevets. No. 12/82

EUROPEAN PATENT APPLICATION

(21) Application number: 89308231.3
(51) Int. Cl.4: G02F 1/163 , G02F 1/153Date of filing: 14.08 .89
(3) Priority: $\begin{gathered}17.08 .88 \mathrm{JP} 203285 / 88 \\ 08.02 .89 \mathrm{JP} 28970 / 89\end{gathered}$ 08.02.89 JP 28970/89
(43) Date of publication of application: 28.02.90 Bulletin 90/09
(84) Designated Contracting States: DEFR GB IT
(71) Applicant: NIKON CORPORATION 2-3, Marunouchi 3-chome Chiyoda-ku Tokyo(JP)Inventor: Yamada, Masayuki
Nikkuhaim Oppama No. 501 1-112,
Oppamahon-cho
Yokosuka-shi Kanagawa-ken(JP)
Inventor: Ushio, Yoshijiro 16-2-206, Kaminoge 3 -chome Chiyoda-ku Tokyo(JP)
(76) Representative: Burke, Steven David et al R.G.C. Jenkins \& Co. 26 Caxton Street London SWIH ORJ(GB)

Electrochromic device.

(5) The present invention relates to an electrochromic device which comprises a first electrode layer, an intermediate layer including an electrochromic layer, a second electrode layer; said first electrode layer, said intermediate layer and said second electrode layer being laminated in succession, and an electrode member connected to one of said first and second electrode layers and extending in a predetermined direction perpendicular to the direction of lamination of said first electrode layer, said intermediate layer and said second electrode layer.

The resistance R_{1}, R_{2} respectively of said first and second electrode layers and the internal resistance R_{3} of said intermediate layer satisfy the predetermined condition.

F/G. 2

Electrochromic Device

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to an electrochromic device capable of uniform coloring. reduction (for example WO_{3}), an ion conductive layer, and a layer capable of reversible electrolytic oxidation (for example iridium oxide or iridium hydroxide) laminated in succession between an upper electrode and a lower electrode for applying a pre-determined voltage.

At least one of the electrode layers directly or indirectly sandwiching the electrochromic layer has to be to be transparent in case of a transmissive ECD.

It is already known that a transparent electrode can be prepared for example from $\mathrm{SnO}_{2}, \ln _{2} \mathrm{O}_{3}$ ITO ($\mathrm{SnO}_{2}-\ln _{2} \mathrm{O}_{3}$ mixture) or ZnO , but these materials are of relatively low transparency and have to be made thin. Because of this fact, and also because of other reasons, the ECD is usually formed on a substrate such as a glass plate or a plastic plate.

Also for certain applications, a sealing substrate, for protecting the device, is positioned opposite to the substrate of the device, and the device is sealed for example with epoxy resin.

However, the conventional ECD'S have been associated with a drawback that the coloration is very slow and is not uniform, and said uneven coloration has been particularly marked in a large-sized ECD.

SUMMARY OF THE INVENTION
The object of the present invention is to provide an ECD capable of showing uniform coloration even in a large size.

The above-mentioned object can be attained, according to the present invention, by a certain relationship of the resistances of the intermediate layer including the electrochromic layer, and the upper and lower electrodes sandwiching said intermediate layer.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic view showing the current flow in an ECD, for explaining the principle of the present invention;
wherein:
p_{1} : resistivity of upper electrode layer:
p_{2} : resistivity of lower electrode layer:
ρ_{3} : ion resistivity of intermediate layer;
d_{2} : thickness of lower electrode layer;
d_{3} : thickness of intermediate layer;
l: shortest length, in the extending direction of connection electrode, of the upper or lower electrode layer not connected to said connection electrode, the connection electrode and the intermediate layer; and
55 S : superposed area of the upper electrode layer, the intermediate layer and the lower electrode layer, when seen from the direction of lamination thereof.

It is also assumed that the resistance of the connection electrode is approximately zero, which means following conditions:

$$
\frac{\rho_{4}}{d_{4}}<\frac{\rho_{1}}{d_{1}} \cdot \frac{\rho_{4}}{d_{4}}<\frac{\rho_{2}}{d_{2}}
$$

is experimentally found preferable.
For achieving more uniform coloration, R_{3} should be made as large as possible in comparison with R_{1} and R_{2}, and experimentally preferred is a condition:
$\left(R_{1}+R_{2}\right)<R_{3}:(8)$,
or more particularly:
$4\left(R_{1}+R_{2}\right)<R_{3}$
In the present invention, the relationship of magnitude of the resistances R_{1}, R_{2} of the electrode layers is not important. If both layers are transparent electrodes, the resistance of the uppermost electrode layer tends to become larger, in practical film formation, than that of the electrode layer formed directly on the substrate.

The laminate structure of the ECD of the present invention is only required to have an upper electrode layer, an electrochromic layer and a lower electrode layer and there may be employed, for example, a structure employing a liquid electrochromic layer, an intermediate layer containing fiquid electrolyte, a structure employing an organic electrochromic material or a structure utilizing metal ions such as lithium ions instead protons. However there is preferred a totally solid thin film structure composed of four layers such as electrode layer/electrochromic layerion conductive layer/electrode layer or five layers such as electrode layer/reduction coloring electrochromic layerfion conductive layer/reversible electrolytic oxidation layerielectrode layer.

The transparent electrode can be formed, for example, of $\mathrm{SnO}_{2}, \mathrm{In}_{2} \mathrm{O}_{3}$, or ITO. Such electrode layer can be generally formed by a vacuum thin film deposition technology such as vacuum evaporation, ion plating or sputtering.

The reduction coloring electrochromic layer can be generally composed of WO_{3} or MoO_{3}.
The ion conductive layer can be composed, for example, of silicon oxide, tantalum oxide, titanium oxide, aluminum oxide, niobium oxide, zirconium oxide, hafnium oxide, lanthanum oxide or magnesium fluoride. The thin film of such materials is insulating to electrons depending on the method of film preparation, but is conductive to protons $\left(\mathrm{H}^{+}\right)$and hydroxyl ions $\left\langle\mathrm{OH}^{-}\right\rangle$.

The coloring and color erasing reactions of the electrochromic layer require cations, so that H^{+}ions or Li lons have to be incorporated in the electrochromio or other layer. The H ions need not necessarily be present from the beginning but can be generated under the voltage application, and water may be added instead of H^{+}ions. The amount of water can be very small, and the coloring and color erasing reactions may take place even by the moisture spontaneously entering from the air.

It is possible to place either of the electrochromic layer and the ion conductive layer above the other. Furthermore there may be provided a reversible electrolyto oxidaton layer (evenually constiung an oxidation coloring electrochromic layer) or a catalytic layer in opposed relation to the electrochromic layer across the ion conductive layer.

Such layer may be composed, for example, of oxide or hydroxide of iridium, nickel, chromium, vanadium, rutenium or rhodium. Such materials may be dispersed in the ion conductive layer or in the transparent electrode, or may be used for dispensing the material of said layers. The opaque electrode layer may also serve as a reflective layer, and can be composed of a metal such as gold, silver, aluminum, chromium, tin, zinc, nickel, rutenium, rhodium or stainless steel.

The upper and lower electrode layers have to be connected to external wirings for charge (current) supply. However, in the use of a transparent electrode which is higher in resistance than the external wirings, a connection electrode of low resistance is superposed, in an area as large as possible, with (in contact with) the transparent electrode. Normally, the connection electrode of low resistance is formed as a belt in the peripheral area of the transparent electrode layer. Said electrode of low resistance can be composed of the materiais for the above-mentioned opaque electrode layer, for example aluminum.

In the use of opaque electrode which is generally of low resistance, a part of said electrode can be used as the connection electrode.

Fig. 3 is a schematic cross-sectional view of an embodiment of the ECD of the present invention, wherein z-direction corresponds to the direction of thickness of the ECD.

At first on the entire surface of a rectangular or parallelogram glass substrate $10(25 \times 15 \mathrm{~cm}$; area $\mathrm{S}=$ $375 \mathrm{~cm}^{2}$; length $\&$ of connection electrodes for the upper and lower electrode layers $=25 \mathrm{~cm}$) there was formed an ITO electrode layer of a thickness $d_{2}=2 \times 10^{-5} \mathrm{~cm}$ (resistivity $\rho_{2}=2 \times 10^{-4} \Omega \mathrm{~cm}$).

Then said ITO electrode layer was split into two portions, at an end part thereof by forming a narrow groove with etching or laser beam cutting, thereby forming a connection part 7 for the upper electrode, and a lower electrode layer 2.

Said connection part 7 and lower electrode layer 2 may be formed directly by masked evaporation of ITO.

On said lower electrode layer 2, there were formed, in succession, a reversible electrolytic oxidation layer 5 consisting of a mixture of iridium oxide and tin oxide, an ion conductive layer consisting of tantalum oxide, and a reduction coloring electrochromic layer 3 consisting of tungsten oxide.

The intermediate layer, consisting of the above-mentioned three layers 3,4 and 5 , has a thickness d_{2} $=1.5 \times 10^{-4} \mathrm{~cm}$, and an ion resistivity $\rho_{3}=2 \times 10^{8} \Omega^{\circ} \mathrm{cm}$.

On the electrochromic layer 3 , there was formed, by evaporation, an $1 T O$ electrode layer of a thickness $d_{1}=2 \times 10^{-5} \mathrm{~cm}$ (resistivity $\rho_{1}=4 \times 10^{-4} \Omega^{\circ} \mathrm{cm}$) as an upper electrode layer 1 . Said ITO layer was formed so as to contact, at an end thereof, with the connection part 7 formed on the substrate 10.

The resistivity and ion resistivity of the layers can be varied by suitably seiecting the conditions of film formation, such as $\mathrm{Ar}_{\mathrm{i}} \mathrm{O}_{2}$ ratio. degree of vacuum, film forming rate, substrate temperature, high-frequency power applied etc.

The resistances R_{1}, R_{2} and R_{3} of the layers are calculated as follows:
$p_{1} d_{1}=20 \Omega$
$p_{2} / d_{2}=10 \Omega$
55
$\rho_{3} \cdot d_{3}=3 \times 10^{4} \Omega \mathrm{~cm}^{2}$
$l=25 \mathrm{~cm}, \mathrm{~s}=375 \mathrm{~cm}^{2}$
Consequently:
$R_{1}=\rho_{1} \cdot{ }^{*} / d_{1} l^{2}=12 \Omega$

```
R2}=\mp@subsup{\rho}{2}{}\cdot\mp@subsup{S}{}{\prime}/\mp@subsup{d}{2}{}\mp@subsup{\ell}{}{2}=6
R3}=\mp@subsup{\rho}{3}{}\mp@subsup{}{}{*}\mp@subsup{d}{3}{\prime}/\textrm{S}=80
```

Thus the condition $4\left(R_{1}+R_{2}\right)<R_{3}<5\left(R_{1}+R_{2}\right)$ is satisfied.
Then external wirings $11 \mathrm{a}, 11 \mathrm{~b}$ were connected, by soldering or with conductive adhesive, to two

Finally a sealing glass substrate 6 , coated with epoxy sealing resin, was superposed on an area between the clips $8 \mathrm{a}, 8 \mathrm{~b}$ and the sealing resin was hardened to complete the ECD of the present embodiment. A coloring voltage (+3 V) was applied, by a power source 12 , across the upper and lower electrode layers 1,2 of thus prepared ECD, whereby the ECD showed rapid and uniform coloration over the entire surface, reducing the transmittance of the light of 633 nm to 10% after 20 seconds.

The transmittance remained in this state for a while even after the termination of voltage application, and was elevated to 70% after application or an erasing voltage $(-3 \mathrm{~V})$ for 20 seconds.

For referecne, another ECD of same dimensions and thicknesses was prepared with modified resistivity $\rho_{1} \rho_{2}$ and ion resistivity ρ_{3} of the layers. Resistances were $R_{1}=12 \Omega, R_{2}=6 \Omega$, and $R_{3}=0.15 \Omega$, so that:

Claims

 phon bronze cirps of square-C section of a length of 25 cm (con then mounted on end portions of the substrate 10 in such a manner that the clip 8 a is in contact with the connection part 7 of the upper electrode while the clip 8 b is in contact with a part of the lower electrode layer 2 . In this case, the clips $8 \mathrm{a}, 8 \mathrm{~b}$ constituting the connection electrodes are regarded as substantially zero resistance (constant potential in any part).The shape and dimension of said clips $8 \mathrm{a}, 8 \mathrm{~b}$ are so selected as to be capable of defining the position of a sealing substrate 6 to be explained later and masking the non-display portion in the peripheral part of , ρ_{2} and ion resistivity ρ_{3} of the layers. Resistances were $R_{1}=12 \Omega, R_{2}=6 \Omega$, and $R_{3}=0.15 \Omega$, so

In the same test as in the foregoing embodiment, this ECD showed uneven coloration and color erasure.

Now reference is made to Fig. 4 for explaining the definition of S and \mathcal{L}.
Fig. 4 is a plan view of a part of the ECD shown in Fig. 3, seen along Z-axis from above the upper electrode layer 1. For explaining the definition of S and $\&$, the structure shown in Fig. 4 is partly different from what is shown in Fig. 3.
S corresponds to the superposed area, when seen along z-axis, of the upper electrode 1 , the intermediate layers 3, 4, 5 and the lower electrode 2. In the structure shown in Fig. 4, the area 21 of the lower electrode 2 is smallest among these. Consequently the area S corresponds to the area 21 of the lower electrode 2 . On the other hand, if the area of the intermediate layers $3,4,5$ is smallest among the upper electrode 1 , said intermediate layers 3, 4, 5 and the lower electrode 2, the area S corresponds to the area of said intermediate layers. In Fig. 4, an area 22 indicates the remaining part of the lower electrode 2, excluding the area 21.
l corresponds to the length l_{1} of the connection electrode 7 in the x-direction in Fig. 4 , but it corresponds to the length ℓ_{3} of the lower electrode 2 in the x-direction if it is shorter than said length i_{1}. Also $\&$ corresponds to the length l_{2} of the intermediate layers $3,4,5$ if it shorter than the length ℓ_{1} of the connection electrode 7 and the length l_{3} of the lower electrode 2.

In the structures shown in Figs. 3 and 4, the upper electrode 1 is provided with the connection electrode 7 but the lower electrode 2 is not provided with the connection electrode, because the lower electrode 2 is composed of a material same as that of the connection electrode 7 and is in itself suitable as the connection electrode. If the material of the lower electrode 2 is not suitable as the connection electrode 2, a connection electrode has to be connected also to the lower electrode 2 . In such case ℓ_{3} is the length, in x-direction of the connection electrode.connected to the lower electrode 2.

1. An electrochromic device comprising:
a first electrode layer;
an intermediate layer inciuding an electrochromic layer;
a second electrode layer; said first electrode layer, said intermediate layer and said second electrode layer being laminated in succession; and
an electrode member connected to one of said first and second electrode layers and extending in a predetermined direction perpendicular to the direction of lamination of said first electrode layer, said 5 intermediate layer and said second electrode layer;
wherein the resistances R_{1}, R_{2} respectively of said first and second electrode layers and the internal resistance R_{3} of said intermediate layer satisfy foliowing condition:

said resistances R_{1}, R_{2} and R_{3} being defined as follows:

$$
R_{1}=\frac{\rho_{1} \cdot S}{d_{1} \cdot \ell^{2}}
$$

wherein
ρ_{1} : resistivity of upper electrode layer:
ρ_{2} : resistivity of lower electrode layer:
ρ_{3} : ion resistivity of intermediate layer:
layer:
d_{2} : thickness of lower electrode layer;
d3: thickness of intermediate layer;
l: shortest length, in the extending direction of connection electrode, among the upper or lower electrode layer not connected to said connection electrode, the connection electrode and the intermediate layer; and seen from the direction of lamination thereof.
2. An electrochromic device according to claim 1, wherein the resistances R_{1} and R_{2} respectively of said first and second electrode layers and the internal resistance R_{3} of the second electrode layer satisfy following condition:
$\left.R_{1}+R_{2}\right)<R_{3}$.
3. An electrochromic device according to claim 2, wherein the resistances R_{1} and R_{2} respectively of said first and second electrode layers and the internal resistance R_{3} of said intermediate layer satisty following condition:

$4\left(R_{1}+R_{2}\right)<R_{3}$.

4. An electrochromic device according to claim 3, further comprising means for applying a voltage between an electrode provided in said first electrode layer and an electrode provided in said second electrode layer.
5. An electrochromic device comprising:
a first electrode layer;
55 an intermediate layer including an electrochromic layer;
a second electrode layer; said first electrode layer, said intermediate layer and said second electrode layer being laminated in succession; and
an electrode member connected to one of said first and second electrode layers and extending in a
predetermined direction intersecting to the direction of lamination of said first electrode layer, said intermediate layer and said second electrode layer:
wherein the resistances R_{1} and R_{2} respectively of said first and second electrode layers and the internal resistance R_{3} of said intermediate layers satisfy following conditions:
$R_{1}<R_{3}$ and
$\mathrm{R}_{2}<\mathrm{R}_{3}$
said resistances R_{1}, R_{2} and R_{3} being defined as follows:
wherein
ρ_{1} : resistivity of upper electrode layer;
ρ_{2} : resistivity of lower electrode layer:
ρ_{3} : ion resistivity of intermediate layer; d_{i} : thickness of upper electrode layer; d_{2} : thickness of lower electrode layer; d_{3} : thickness of intermediate layer;
\&: shortest length, in said predetermined direction, among the first or second electrode layer not connected to the electrode member, the electrode member and the intermediate layer; and S : superposed area of the upper electrode layer, the intermediate layer and the lower electrode layer, when seen from the direction of lamination thereof.
6. An electrochromic device comprising an electrochromic layer disposed between first and second electrode layers which are coupled, respectively, to first and second electrical connection means, the resistivities of the layers being such that current flowing between the first and second connection means is distributed substantially uniformly over the area of the elctrochromic layer.

FIG. 1 PRIOR ART

F/G. 2

F/G. 4

EP0356099

Publication Title:

Electrochromic device.

Abstract:
 Abstract of EP0356099

The present invention relates to an electrochromic device which comprises a first electrode layer, an intermediate layer including an electrochromic layer, a second electrode layer; said first electrode layer, said intermediate layer and said second ele 109a ctrode layer being laminated in succession, and an electrode member connected to one of said first and second electrode layers and extending in a predetermined direction perpendicular to the direction of lamination of said first electrode layer, said intermediate layer and said second electrode layer. The resistance R1, R2 respectively of said first and second electrode layers and the internal resistance R3 of said intermediate layer satisfy the predetermined condition.

Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

EUROPEAN PATENT APPLICATION

(43) Date of publication: 28.08.1996 Bulletin 1996/35
(21) Application number: 95308932.3
(22) Date of filing: 08.12.1995
(84) Designated Contracting States: DE ES FR GB IE IT
(30) Priority: 22.02.1995 US 392041
(71) Applicant: GENTEX CORPORATION Zeeland, Michigan 49464 (US)
(72) Inventors:

- Bauer, Frederick T.

Zeeland, Michigan 49464 (US)

- Tonar, William L. Zeeland, Michigan 49464 (US)
- Byker, Harlan J. Zeeland, Michigan 49464 (US)
- Cammenga, David J. Zeeland, Michigan 49464 (US)
(74) Representative: Leeming, John Gerard J.A. Kemp \& Co., 14 South Square, Gray's Inn London WC1R 5LX (GB)

(54) Dimmable rearview mirror for motor vehicles

(57) An improved dimmable electro-optical rearview mirror for motor vehicles is provided, the mirror including a multilayer combination reflector/electrode that is low in electrical sheet resistance per unit area, and a transparent electrode that is higher in electrical sheet resistance per unit area than the multilayer combination reflectorfelectrode whereby such components operate in a synergistic fashion resulting in an electro-optic mir-
ror having improved speed of reflectance change, improved high end reflectance, good uniformity of reflectance change across the surface area of the mirror, neutral colour and continuously variable reflectance, and a low end reflectance low enough to relieve strong glare.

Description

BRIEF SUMMARY OF THE INVENTION

This invention relates to rearview mirrors for motor vehicles and, more particularly, to improved interior and/or exterior rearview mirrors for motor vehicles.

Heretofore, various automatic rearview mirrors for motor vehicles have been devised which automatically change from the full reflectance mode (day) to the partial reflectance mode (night) for glare protection purposes from light emanating from the headlights of vehicles approaching from the rear. The electrochromic mirrors disclosed in U.S. Patent No. 4,902, 108, issued February 20, 1990, for Single-Compartment, Self-Erasing, Solution-Phase Electrochromic Devices, Solutions for Use Therein, and Uses Thereof; U.S. Patent No. 4,917,477, issued April 17, 1990, for Automatic Rearview Mirror System for Automotive Vehicles; U.S. Patent No. 5,128,799, issued July 7, 1992, for Variable Reflectance Motor Vehicle Mirror; U.S. Patent No. 5,202,787, issued April 13, 1993, for Electro-Optic Device; U.S. Patent No. 5,280,380, issued January 18, 1994, for UVStabilized Compositions and Methods; and U.S. Patent No. 5,282,077, issued January 25, 1994, for Variable Reflectance Mirror, each of which patents is assigned to the assignee of the present invention and the disclosures of each of which are hereby incorporated herein by reference, are typical of modern day automatic rearview mirrors for motor vehicles. Such electrochromic mirrors may be utilized in a fully integrated inside/outside rearview mirror system or as an inside or an outside rearview mirror system. In general, in automatic rearview mirrors of the types disclosed in U.S. Patent Nos. 4,902,108; 4,917,477; 5,128,799; 5,202,787, $5,280,380$ and $5,282,077$, both the inside and the outside rearview mirrors are comprised of a relatively thin electro-optic medium sandwiched and sealed between two glass elements. In most cases, when the electrooptic medium is electrically energized, it darkens and begins to absorb light, and the higher the voltage, the darker the mirror becomes. When the electrical voltage is decreased to zero or removed, the mirror returns to its clear state. Also, in general, the electro-optic medium sandwiched and sealed between the two glass elements is preferably comprised of solutions of electrochromic compounds which function as the media of variable transmittance in the mirrors, although it should be understood that other electro-optic media may be utilized, including an approach wherein a tungsten oxide electrochromic layer is coated on one electrode with a solution containing at least another compound to provide counter electrode reaction. When operated automatically, the rearview mirrors of the indicated character generally incorporate light-sensing electronic circuitry which is effective to change the mirrors to the dimmed reflectance modes when glare is detected, the sandwiched electro-optic medium being activated and the mirror being dimmed in proportion to the amount of
glare that is detected. As glare subsides, the mirror automatically returns to its normal high reflectance state without any action being required on the part of the driver of the vehicle. The electro-optic medium is disposed in a sealed chamber defined by a transparent front glass element, a peripheral edge seal, and a rear mirror element having a reflective layer, the electro-optic medium filling the chamber. Conductive layers are provided on the inside of the front and rear glass elements, the conductive layer on the front glass element being transparent while the conductive layer on the rear glass element may be either transparent or opaque, i.e., the conductive layer on the rear glass element may also function as the reflective layer for the rear glass element, and the conductive layers on both the front glass element and the rear glass element are connected to electronic circuitry which is effective to electrically energize the electro-optic medium to switch the mirror to nighttime, decreased reflectance modes when glare is detected and thereafter allow the mirror to return to the daytime, high reflectance mode when the glare subsides as described in detail in the aforementioned U.S. Patents. For clarity of description of such a structure, the front surface of the front glass element is sometimes referred to hereinafter as the first surface, and the inside surface of the front glass element is sometimes referred to as the second surface. The inside surface of the rear glass element is sometimes referred to as the third surface, and the back surface of the rear glass element is sometimes referred to as the fourth surface.

In accordance with one aspect of the present invention, a reflective layer is provided on the inside (third surface) of the back glass of a dimming portion of the rearview mirror, which layer is comprised of a series of coatings, hereafter called the multilayer combination reflector/electrode, which also forms an integral electrode in contact with the electrochromic media. The other electrode on the inside (second) surface of the front glass is a transparent electrode which also contacts the electrochromic media inside the mirror element. The series of coatings of the reflector/electrode is comprised of at least a base coating which bonds to the glass surface tenaciously and resists the corrosive action of the materials in the electrochromic media, and a reflective over coating which directly contacts the electrochromic media and which is chosen primarily for its high reflectance, stable behavior as an electrode. resistance to corrosion by the materials of the electrochromic media, resistance to atmospheric corrosion, resistance to electrical contact corrosion, the ability to adhere to the base coating, and ease of cleaning to an uncontaminated, high quality electrode surface. The series of coatings of the multilayer combination reflector/electrode has one or more base coatings and one or more high reflectance over coatings.

In accordance with the present invention, the transparent coating is preferably fluorine doped tin oxide, tin doped indium oxide (ITO) or a series of metal oxide coatings with base coatings to suppress color and
reflection followed by an electrically conductive, transparent coating which contacts the electrochromic media directly. Where a series of transparent coatings is used, the materials are chosen for good bonding, resistance to corrosion by the materials of the electrochromic media, resistance to corrosion by the atmosphere, minimal reflectance, high light transmission, neutral coloration and high electrical conductance. Also in accordance with the present invention, to a considerable extent, it is possible to make the reflective electrode very high in electrical conductance to compensate in a synergistic fashion with a transparent electrode that is lower in electrical conductance so the net result is an electrochromic mirror which darkens and clears acceptably fast and uniformly with excellent optical properties.

This synergistic structure is applicable for both inside and outside rearview mirrors for motor vehicles. When the multilayer combination reflector/electrode is used in any mirror, it has the inherent advantage of reducing double images, distortion, and multiple images from raindrops, dust, etc., while providing excellent speed of reflectance change, good high end reflectance, good uniformity of reflectance change across the surface area of the mirror, neutral color, continually variable reflectance and a low end reflectance low enough to relieve strong glare. The reduction in double images and distortion is particularly useful in the case of dimmable convex mirrors which use glass that is bent but may have slight variations in radius of curvature or slight ripple or warp that result in slight imperfections in matching two pieces of bent glass required to make a convex, solution based electrochromic mirror.

The present invention can overcome disadvantages in prior rearview mirrors of the indicated character and provide an improved, robust, low cost dimmable rearview mirror for motor vehicles, which mirror is capable of operating in harsh environments over wide variations in temperature, humidity, vibration, atmospheric corrosion, salt spray, electronic disturbances, and sand and grit abrasion, and which is resistant to damage from vehicle crashes and owner abuse

The present invention can also provide an improved dimmable rearview mirror which increases the safety of night driving.

The present invention can further provide an improved electro-optic, dimmable rearview mirror for motor vehicles, which mirror is relatively economical to manufacture and assemble, durable, efficient and reliable in operation.

The present invention can still further provide an improved dimmable rearview mirror for motor vehicles wherein excellent speed of reflectance change, good high end reflectance, good uniformity of reflectance change across the surface area of the mirror, neutral colour, continually variable reflectance and good low end reflectance are obtained.

The above features and advantages of the present invention will be further described hereinafter with refer-
ence to the following description of exemplary embodiments, and the accompanying drawings, in which:-

Figure 1 is a front elevational view schematically illustrating an inside/outside rearview mirror system for motor vehicles, the system including a dimmable inside rearview mirror together with two dimmable outside rearview mirrors all of which embody the present invention and all of which are adapted to be installed on a motor vehicle in a conventional manner whereby the mirrors face the rear of the vehicle and can be viewed by the driver of the vehicle to provide a rearward view to the driver:

FIG. 2 is an enlarged simplified sectional view of the inside rearview mirror illustrated in FIG. 1, taken on the line 2-2 thereof

FIG. 3 is an exploded view of the left electro-optic, dimmable outside rearview mirror illustrated in FIG. 1;

FIG. 4 is a front elevational view of the mirror illustrated in FIG. 3

FIG. 5 is a simplified top plan view of the mirror illustrated in FIG. 4; and

FIG. 6 is a simplified side elevational view of the right side of the mirror as viewed in FIG. 4, showing the electro-optic structure.

DETAILED DESCRIPTION

In general, in inside and outside rearview mirrors embodying the present invention, the rearview mirror assembly is comprised of a relatively thin layer of an electro-optic medium sealed between two glass elements. When the electro-optic medium is electrically energized, it darkens and begins to absorb light, and the higher the voltage, the darker the mirror becomes. When the electrical voltage is decreased to zero or is removed, the electro-optic medium returns to its clear state. Rearview mirrors embodying the present invention may, for example, incorporate light-sensing electronic circuitry of the type illustrated and described in the aforementioned U.S. Patent No. 4,917,477. Also, the components of mirrors embodying the present invention may be of the types disclosed in the aforementioned U.S. Patent Nos. 4,902,108; 5,128,799; $5,202,787 ; 5,280,380$ and $5,282,077$. It should be understood, however, that other types of electronic circuitry and other types of electro-optic media and other components may be utilized in mirrors embodying the present invention.

Referring to the drawings, an electro-optic inside/outside mirror assembly, generally designated 9, embodying the present invention is depicted in FIGS. 1 through 6. Since some of the layers of each of the mir-
rors in the assembly 9 are very thin, the scale has been distorted for pictorial clarity. As shown in the drawings, the mirror assembly 9 includes an inside mirror 10 and outside mirrors 11 and 12. For clarity, in the drawings, like numbers identify components of the inside and outside mirrors which may be slightly different in configuration but which function in substantially the same manner and obtain the same results as similarly numbered components. For example, the shape of the front glass element of the left outside mirror is the reverse of the shape of the right outside mirror, and the front glass element of the inside mirror is generally longer and narrower than the front glass elements of the outside mirrors. Each of the mirrors 10,11 and 12 includes a sealed chamber 13 , defined by a front glass element 14, an edge seal 16 , and a rear glass element 18 , having reflective and electrically conductive metal layers 20 and 22, respectively. An electro-optic medium 24 having the desired electro-optic properties fills the chamber 13 , and a transparent electrically conductive layer such as a fluo-rine-doped tin oxide conductive layer 26 is carried by the front element 14. The electrically conductive layers are connected to an electrical circuit as will be described hereinafter in greater detail. If desired, a color suppression coating or coatings, such as 28 , may be disposed between the conductive layer 26 and the adjacent rear surface of the front element 14. Light rays enter through the front glass element 14, the color suppression coating(s) 28, the transparent conductive layer 26 and the electro-optic medium 24 before being reflected from the electrically conductive and reflective layer 22 (or layers 20 and 22 if layer 22 is extremely thin) provided on the rear glass element 18. The reflected rays exit by the same general path traversed in the reverse direction. In electrochromic media both the entering rays and the reflected rays are attenuated in proportion to the degree to which the electro-optic medium 24 is light-absorbing while in other electro-optic media the light rays may, in some cases, only be attenuated in one direction. When the electro-optic medium 24 is electrochromic and highly light absorbing, the intensity of the exiting rays is diminished, the dim image remaining mainly being from light rays which are reflected off of the front surface of the front glass element 14 and the interface between the front glass element 14 and the coatings 28 and/or 26. Thus, the basic structural elements of the electro-optic portion of each of the mirrors includes two electrode-bearing sides or walls 14 and 18 , a spacing or separating seal 16 , which spaces apart and holds the walls in substantially parallel relationship in an assembled device, and which surrounds a volume which in an assembled device is defined by the inside surfaces of electrode layers on the electrode-bearing walls as well as the circumferential inside walls 30 of the sealing member 16. The volume of the chamber 13 is preferably filled through a sealable fill port 32 with any of the electro-optic media disclosed in this or the aforementioned patents which have reversibly variable transmittance in the operation of the device,
the media in the chamber 13 being in contact with both electrode layers 22 and 26 during operation of the mirror. It will be understood that the electro-optic medium for achieving variable reflectance could be other solu-tion-phase electrochromics, solid electrochromics, a combination of the two in the form of a hybrid, or any of the above in a polymerized matrix. A liquid crystal, dipolar suspension or other electro-optic medium could also be utilized in mirrors embodying the present invention.

In accordance with the present invention, the reflective surface on the inside of the rear glass 18 is comprised of a series of coatings, hereinafter termed the multilayer combination reflector/electrode, which serves as a mirror reflectance layer and also forms an integral electrode in contact with the electrochromic media. The other electrode on the inside surface of the front glass 14 is the transparent electrode 26 which also contacts the electrochromic media inside the mirror element. The series of multilayer combination reflector/electrode coatings is comprised first of a base coating which bonds to the glass surface tenaciously and resists the corrosive action of the materials in the electrochromic media. The base coating is preferably chromium, but alternatively may be stainless steel, nickel-chromium, titanium, gold, silver, or any material or series of coatings which accomplish the objectives above stated. The thickness of the base coating is typically 100 to 1500 angstroms and is more typically 200 to 800 angstroms. The final reflective coating which directly contacts the electrochromic media is chosen primarily for its high reflectance, resistance to attack by the electrochromic media, resistance to atmospheric corrosion, resistance to electrical contact corrosion, and the ability to adhere to the base coating. The preferred material for the reflective coating is rhodium which has excellent hardness, excellent reflectance and excellent conductance, but it should be understood that it is alternatively possible to choose from a group of metals and their alloys such as, but not limited to, platinum, ruthenium, iridium and stainless steel or multiple layers including combinations thereof. The thickness of the reflective over coating is typically 100 to 1000 angstroms and is more typically 100 to 600 angstroms. The series of coatings of this multilayer combination reflector/electrode has one or more base coating(s) which generally provide high conductance and one or more over coatings which provide additional conductance and high reflectance. By way of example the sheet resistance of the multilayer combination reflector/electrode may be approximately 1 to 10 ohms per square.

The transparent coating 26 is preferably made of fluorine doped tin oxide or ITO or alternately a series of coatings with a base coating(s) to suppress color and reflection followed by a conductive transparent coating which contacts the electrochromic media directly. Where a series of transparent coatings is used, the materials are chosen for good bonding, good resistance to corrosion by the materials in the electrochromic media, good resistance to corrosion by the atmosphere,
minimal reflectance, high light transmission, neutral coloration and high electrical conductance. Types of low cost transparent electrode substrates include "TEK 20" or "TEK 15 " coated glass manufactured by Libbey Owens-Ford of Toledo, Ohio, but other suitable coatings are ITO or extremely thin metal layers which may alternatively function as the transparent electrode of the invention.

Transparent electrode materials are inherently limited in the balance of properties and cost. Low sheet resistance transparent coatings with a sheet resistance below approximately 10 ohms per square tend to have low transmission and other attendant shortcomings including possible haziness, coloration, non-uniformity of coating thickness and high cost. This makes a low sheet resistance transparent coating less practical for electrochromic mirrors. To a considerable extent, it is possible to make the multilayer combination reflectorfelectrode low in electrical resistance to compensate in a synergistic fashion with a transparent electrode that is higher in electrical resistance so the net result is an electrochromic mirror which darkens and clears acceptably fast and uniformly over its surface area, with excellent optical properties.

To demonstrate the surprising nature of the synergy, electrochromic mirrors have been constructed with a multilayer combination reflector/electrode of about 3 and of about 7 ohms per square sheet resistance with a front transparent electrode of about 18 to 22 ohms per square or higher which show remarkably good results for speed and uniformity of coloration and clearing. Electrochromic mirrors with reflectors on the front surface of the rear element have been previously described, but the use of multilayer coatings that combine to provide high reflectance, good adhesion to glass, low sheet resistance, and ease of cleaning for electrochromic mirrors, especially in combination with a low cost high sheet resistance transparent coating, is a major improvement. Thus the present invention provides a synergistic mismatch using a high electrical conductance multilayer combination reflector/electrode on the third surface with a lower electrical conductance transparent front electrode on the second surface to achieve a cost effective, high performance, electrochromic mirror. This concept is also applicable to any technology where the electrical current requirement of the electro-optic medium sandwiched between two coated glass substrates is comparatively high or where the area is comparatively large. This new synergistic structure is equally applicable to dimmable inside rearview mirrors for motor vehicles. When used in any mirror, it has the inherent advantage of reducing double images, distortion, and multiple images from raindrops, (particularly with convex or spherically curved mirrors), while providing excellent speed of reflectance change, good high end reflectance, good uniformity of reflectance change over the area of the device, neutral color and a low end reflectance, low enough to relieve strong glare.

The invention is illustrated in more detail in the following examples:

EXAMPLE 1

A multilayer combination reflector/electrode was prepared by sequentially depositing approximately 300 angstroms of titanium, approximately 200 angstroms of gold and approximately 200 angstroms of platinum on 0 the 6.6 cm by 14.4 cm surface of a 0.2 cm thick sheet of soda lime float glass. The deposition was accomplished by rotating the glass sheet past three separate metal targets in a magnetron sputtering system with a base pressure of a 3×10^{-6} torr and an argon pressure of 2 x 10^{-3} torr. The first surface, CIE curve white light reflectance from the multilayer combination reflector/electrode with the platinum surface in contact with air, measured according to the procedure of SAE J964, was 71.9 percent and the sheet resistance of the metal layer stack was 3.2 ohms per square.

This multilayer combination reflector/electrode coated glass was used as the rear element of an electrochromic mirror device. The front element was a sheet of TEK 20 transparent conductor coated glass of the same size as the rear element. The sheet resistance of the transparent conductor was approximately 20 ohms per square. The two elements were bonded together by an epoxy perimeter seal with the transparent conductor electrode and multilayer combination reflector/electrode offset from, substantially parallel to and facing each other as shown in Figure 2. The spacing between the electrodes was about 0.014 cm . The device was vacuum filled through a small gap left in the perimeter seal with a solution made up of:
0.034 molar 5,10 -dihydro-5,10-dimethylphenazine
0.034 molar $1,1^{\prime}$-di(phenyl propyl)-4,4'-bipyridinium difluoroborate
0.5 molar ethyl-2-cyano-3,3-diphenylacrylate in a solution of $3 \mathrm{wt} \%$ Elvacite ${ }^{\mathrm{TM}} 2041$ polymethylmethacrylate resin dissolved in propylene carbonate.

The small gap was plugged with a UV cure adhesive which was cured by exposure to UV light.

The reflectance of the device, (measured as before 5 for the rear element), with no voltage applied was 56 percent and with 1.2 volts applied the reflectance decreased over a period of 5 seconds to 10 percent and within 10 seconds to 7.5 percent. On short circuiting the device, the reflectance increased over a period of 15 seconds back to 56 percent.

EXAMPLE 2

Other than as specifically mentioned, the conditions 5 of Example 1 were used in this example. A multilayer combination reflector/electrode was prepared by sequentially depositing approximately 300 angstroms of chromium, approximately 500 angstroms of silver and approximately 300 angstroms of platinum at a base
pressure of 3.7×10^{-6} torr and an argon pressure of $8 \times$ 10^{-3} torr. The first surface reflectance was 73.3 percent and the sheet resistance was 0.1 ohms per square.

When an electrochromic mirror device was fabricated with this multilayer combination reflector/electrode, the device had a high end reflectance of 57.0 percent, a low end reflectance of 6.5 percent and changed from 57.0 percent to 10.0 percent reflectance in 2.0 seconds with the application of 1.2 volts.

EXAMPLE 3

Other than as specifically mentioned, the conditions of Example 1 were used in this example. A multilayer combination reflector/electrode was prepared by sequentially depositing approximately 600 angstroms of chromium and approximately 300 angstroms of platinum. The base pressure of 2.1×10^{-6} torr and the argon pressure of 8×10^{-3} torr. The first surface reflectance was 73.8 percent and the sheet resistance was 3.2 ohms per square.

When an electrochromic mirror device was fabricated with this multilayer combination reflector/electrode, the device had a high end reflectance of 58.0 percent, a low end reflectance of 7.0 percent and changed from 58.0 percent to 10.0 percent reflectance in 2.7 seconds with the application of 1.2 volts.

EXAMPLE 4

A multilayer combination reflector/electrode was prepared by the sequential deposition of approximately 600 angstroms of chromium and approximately 100 angstroms of 316 stainless steel on the 19 cm by 66 cm surface of a 0.2 cm thick sheet of flat soda lime float glass and on the convex side of a 22 cm diameter circle of glass which had been press bent to a uniform spherical curvature with a radius of curvature of 140 cm . The glass which was bent was TEK 20 tin oxide coated glass manufactured by Libbey Owens-Ford of Toledo, Ohio, and the tin oxide coating was on the concave side after the glass was bent. The deposition was accomplished in a large in-line sputtering system. The first surface reflectance from the multilayer combination reflector/electrode coatings was about 58 percent and the sheet resistance was about 7 ohms per square.

The flat and the bent glass sheets were cut into mirror shapes which were approximately 10 cm high and 16 cm wide. These were used as the rear elements of dimmable mirrors for the outside of an automobile as described below. As compared to glass coated only with chromium metal, these pieces of multilayer combination reflector/electrode coated glass were dramatically easier to clean to a condition in which they behaved as uniform high quality electrodes without poorly coloring spots and blemishes in the final electrochromic dimmable mirror devices.

The flat and convex pieces of multilayer combination reflector/electrode coated glass were matched with
mirror-shaped pieces of TEK 20 coated pieces of flat and convex coated glass respectively. The front element convex mirror glass was also bent such that the tin oxide coating was on the concave side. Mirror devices were made by sealing nearly all the way around the perimeter of the glass pieces with an epoxy seal containing glass bead spacers which provided for a 0.015 cm spacing between the TEK 20 transparent, tin oxide electrode and the multilayer combination reflector/electrode. The spacing between the electrode surfaces was filled with a solution made up of:
0.028 molar 5,10 -dihydro-5,10-dimethylphenazine
0.034 molar 1,1'-di(phenylpropyl)-4,4'-bipyridinium difluoroborate
0.030 molar 2-(2'-hydroxy-5'-methylphenyl)-benzotriazole
in a solution of 3 wt\% Elvacite ${ }^{T M} 2041$ polymeth-
ylmethacrylate resin
dissolved in propylene carbonate.
The small gap in the perimeter seal was plugged with a UV cure adhesive which was cured by exposure to UV light.

The high end reflectance of the mirrors was approximately 45 percent and the low end reflectance was approximately 7 percent. The mirrors changed reflectance from 45 percent to 15 percent reflectance in about 5 seconds and provided excellent glare relief when dimmed to the appropriate reflectance level during nighttime driving.

EXAMPLE 5

Every aspect of Example 4 was repeated with the exception that the multilayer combination reflector/electrode was prepared by the sequential deposition of approximately 400 angstroms of chromium and approximately 200 angstroms of rhodium. The first surface reflectance from the multilayer combination reflector/electrode was about 70 percent and the sheet resistance was about 7 ohms per square.

The flat and convex dimmable mirror devices prepared with this multilayer combination reflector/electrode according to the procedure of Example 4 had a high end reflectance of about 55 percent and a low end reflectance of about 7 percent with a speed of reflectance change similar to the mirrors of Example 4.

With such a construction in which there is a transparent tin oxide conductive coating on the second surface of the front convex element and a transparent tin oxide conductive coating 48 on the fourth surface of the rear convex element, the tin oxide coatings assist in the bending operation because the front and rear glass elements and their associated tin oxide coatings have the same heating and cooling characteristics during the bending operation thereby effecting a close match in the curvature of the front and rear elements as compared with trying to match the bending of tin oxide coated glass with that of uncoated glass. Moreover, with a mul-
tilayer combination reflector/electrode on the third surface of either a flat or a convex rear element, the tin oxide coating 48 on the fourth surface of either a flat or a convex rear element may be utilized as a heater. In the alternative, a conventional heater 50 may be bonded directly to the tin oxide coating 48 on the fourth surface of the rear glass element.

An automobile equipped with an automatic inside electrochromic mirror, one of the above flat mirrors as the driver's side outside mirror and one of the above convex mirrors as the passenger side outside mirror allowed the automobile operator to drive at night with essentially complete protection from glare from the headlamps of following vehicles.

It has been observed that chromium coatings alone can be difficult to clean during assembly of the entire mirror, resulting in a finished mirror that may exhibit contamination spots and areas of slower darkening and clearing. The use of a high reflectance material, such as rhodium alone, can be very costly at thicknesses that provide low sheet resistance, but coated over the above-mentioned base coating(s) such as chromium results in a rear glass element which is easily cleaned prior to assembly, resulting in a finished mirror that is more optically perfect and free of contamination and darkening defects. Chromium or stainless steel alone also have the problem that the high end reflectance of the finished mirror is low considering the attendant losses of light from the transparent coated front substrate and electrochromic media. A problem with stainless alone and to a lesser extent chromium alone is poor electrical contact stability to the conventional spring clip type buss bars or other electrical contact means.

The use of an inert high reflectance coating also makes attachment of spring clip type buss bars or other contact attachments more stable and trouble free, since non-conductive compounds and oxides do not form as readily under pressure contact areas. The result of low stability electrical contact is a mirror which loses its uniformity, coloration and clearing speed over the long life required in the motor vehicle industry.

The present invention thus provides a robust, low cost, dimmable rearview mirror for automotive vehicles, which mirror is capable of operating in harsh environments over wide variations in temperature, humidity, vibration, atmospheric corrosion, sall spray, electronic disturbances and sand and grit abrasion, and which mirror is resistant to damage from vehicle crashes and owner abuse. An additional benefit from sealing the main area of the mirror reflector inside the dimmable mirror element is long life of the reflector in the motor vehicle environment.

It is common with outside dimmable mirrors to adhere a resistance heater to the reflective structure at the back of the rear glass substrate. This heater and its associated adhesive can cause incompatibility and field problems if conventional reflective material, such as silver, is on the back side of the back glass substrate. It is
also common practice to adhesively bond the electrochromic mirror assembly to a plastic backing plate often called the glass case. Normal temperature variations experienced by this assembly can cause large forces to be exerted on a reflector structure on the back or fourth surface due to the thermal expansion mismatch of the materials involved. The adhesives used can also lead to chemical attack and degradation of a fourth surface reflector. Such problems are avoided by the present invention when the reflector is located inside the device, and the heater is adhered directly to the glass (fourth surface) of the rear glass element or to the tin oxide coating of the TEK 20 layer which may optionally be on the fourth surface.

Heretofore, problems have been encountered with a conventional silver reflector on the back surface of the rear glass, such problems being known as silver spoilage and silver lift, and are avoided with the multilayer combination reflector/electrode located inside the mirror element and protected by the rear glass. With the multilayer combination reflector/electrode inside the mirror element, the environmental factors are limited to those that result from contact with the materials of the electrochromic media and the offset area where electrical contact is made, whereas with the reflector on the back of the rear glass surface, a number of other difficult environmental factors must be dealt with for the reflector to survive during the life of the mirror especially on the exterior of a motor vehicle.

Speed of coloring, good high end reflectance (typically greater than 50% for exterior mirrors and greater than 60% for interior mirrors) and low cost are important requirements for dimmable mirrors, and the present invention provides a mirror meeting such requirements. The present invention also makes it possible to use comparatively low cost practical electrode coatings to make a surprisingly high performance mirror. Highly conducting transparent coatings are either nondurable, low in transmissivity and/or very high in cost. For this reason it is desirable to use comparatively low cost durable transparent coatings which have the inherent disadvantage that their conductance is lower than that of expensive coatings. Metals, on the other hand, have high conductance which can provide great advantage when used in accordance with the present invention. Electrochromic mirrors with reflector/electrodes involving a single metal layer on the front surface of the rear element have been previously described. However, the concept of creating a dimmable mirror where the electrical conductance of the transparent electrode at the back surface of the front element is purposely made much lower than the multilayer combination reflector/electrode conductance at the front surface of the rear element provides a major improvement. This intentional mismatch of conductance in a symbiotic relationship using practical low cost coatings provides a breakthrough of significant commercial potential. In accordance with the present invention the conductance of the transparent electrode is substantially lower than
that of the multilayer combination reflector/electrode, and the multilayer combination reflector/electrode is comprised of two or more coatings. The firsi coating on the rear glass is preferably the low cost, high conductance base metal such as chromium. The final coating on the multilayer combination reflector/electrode is the thin, high reflectance metal such as rhodium for the purpose of providing high reflectance and high stability in use as an electrode for the electrochromic device. The coating(s) on the back surface of the front element may include one or more color suppression coatings followed by fluorine doped tin oxide, but it must be understood that any transparent coating having the required properties which is substantially lower in conductance than the coatings on the front surface of the rear element would be suitable. The invention may be incorporated in both inside and outside electrochromic mirrors which may incorporate ambient and glare light sensors, the glare light sensor being positioned either behind the mirror glass and looking through a section of the mirror with the reflective material removed or partially removed, or the glare light sensor can be positioned outside the reflective surfaces. In the alternative, areas of the electrode and reflector, such as 45 and 46 , respectively, may be removed, or partially removed in, for example, a dot pattern, to permit a vacuum fluores cent display, such as a compass or clock, to show through to the driver of the vehicle. The present invention is also applicable to a mirror which uses only one video chip light sensor to measure both glare and ambient light and which is further capable of determining the direction of glare. An automatic mirror on the inside of a vehicle, constructed according to this invention, can also control one or both outside mirrors as slaves in an automatic mirror system.

The present invention also has application in the construction of elements for mirrors where high maximum reflectance is desired, and the electrochromic materials may be solution phase containing liquids gels, rigid gels and/or polymers. It may also be a hybrid design where some or all of the electrochromic materials are not in solution and may be confined on the surfaces of the electrodes. The present invention also particularly applies to electro-optic mirrors which draw more than 10 milliamps in operation at any point in their process of dimming.

The invention is particularly effective when used with selected low cost transparent coatings, as for example, "TEK 20 ", marketed by Libbey Owens-Ford Co. of Toledo, Ohio. The benefits over the most commonly used automatic mirrors in use today are as follows: mirrors embodying the present invention change reflectance faster, have a clearer image, have better coloration of image in the nondimmed state, eliminate the need and inconvenience of putting silver reflective coatings on the back surface of the rear glass, have fewer handling steps thereby creating fewer chances for scratching in the glass during processing and providing a final product with better optical quality, and having various changes and modifications may be made without departing from the scope of the invention which is defined by the appended claims.

Claims

1. An electro-optically dimming rearview mirror for motor vehicles, said mirror comprising, in combination, front and rear spaced elements, said front element and said rear element defining a chamber therebetween, said front element being transparent, the side of said front element confronting said rear element including transparent electrically conductive means, including combined electrically conductive light reflecting means, said chamber containing an electro-optic reversible variable transmittance medium in contact with said transparent electrically conductive material on said front element and said combined electrically conductive light reflecting means on said rear element, said combined electrically conductive light reflecting means on said rear element being effective to reflect light through said medium and through said front element when said light reaches said combined electrically conductive light reflecting means after passing through said medium and through said front element, said combined electrically conductive light reflecting means on said rear element having a lower electrical resistance per unit area than said transparent electrically conductive means on said front element.
2. A mirror according to claim 1, wherein said trans parent electrically conductive means on said front element comprises indium tin oxide.
3. A mirror according to claim 1 or 2 , wherein said combined electrically conductive light reflecting means on said rear element comprises chromium and rhodium.
4. A mirror according to claim 1,2 or 3 , including indicia means visible through said front element.
5. A mirror according to claim $1,2,3$ or 4 , wherein said transparent electrically conductive means on said front element includes colour suppressing means and a doped tin oxide in contact with said electrooptic medium.
6. A mirror according to any one of the preceding claims, wherein said combined electrically conductive light reflecting means on said rear element includes at least one high conductance base coating over which is deposited at least one high reflectance coating.
7. A mirror according to any one of the preceding claims, wherein said combined electrically conductive light reflecting means on said rear element includes separate layers of chromium and rhodium.
8. A mirror according to claim 7, wherein said layer of rhodium is on the side of said layer of chromium confronting said front element.
9. A mirror according to any one of the preceding claims, wherein said combined electrically conductive light reflecting means on said rear element includes coatings selected from the group consisting of rhodium, platinum, ruthenium, iridium, gold,
stainless steel, silver, titanium, nickel-chromium and chromium.
10. A mirror according to any one of the preceding claims, including resistance heater means adhered to the side of said rear element remote from said front element.
11. A mirror according to any one of the preceding claims, wherein said transparent electrically conductive means on said front element includes a coating selected from the group consisting of fluorine doped tin oxide and indium tin oxide.
12. A mirror according to any one of the preceding claims, wherein said combined electrically conductive light reflecting means is disposed on the side of said rear element confronting said front element.
13. A mirror according to claim 23, wherein said rear element also includes a conductive transparent coating on the other side than that confronting the front element.
14. A mirror according to any one of the preceding claims, wherein said combined electrically conductive light reflecting means on said rear element includes a first high conductance coating selected from the group consisting of chromium, stainless steel, nickel-chromium, gold, silver and titanium, and alloys thereof, and a second high reflectance coating selected from the group consisting of rhodium, ruthenium, iridium, platinum, chromium and stainless steel and alloys thereof.

EP 0728618 A2

$$
\square \dot{\square} \square
$$

EUROPEAN PATENT APPLICATION

(43) Date of publication: 04.09.1996 Bulletin 1996/36
(21) Application number: 95308981.0
(22) Date of filing: 11.12.1995
(84) Designated Contracting States: DE ES FR GB IE IT
(30) Priority: 02.03.1995 US 399152
(71) Applicant: GENTEX CORPORATION Zeeland, Michigan 49464 (US)
(72) Inventors:

- Bauer, Frederick T.

Zeeland, Michigan 49464 (US)

- Tonar, William L. Zeeland, Michigan 49464 (US)
- Byker, Harlan J. Zeeland, Michigan 49464 (US)
- Cammenga, David J. Zeeland, Michigan 49464 (US)
(74) Representative: Leeming, John Gerard J.A. Kemp \& Co., 14 South Square, Gray's Inn London WC1R 5LX (GB)

(54) Improved rearview mirror for motor vehicles

(57) An improved low cost automatic rearview mirror for automotive vehicles is provided, the mirror being capable of operating in harsh environments over wide variations in temperature, humidity, vibration, atmospheric corrosion, salt spray, electronic disturbances and sand and grit abrasion. In one embodiment of the invention, an electro-optically dimming exterior rearview mirror for automotive vehicles, said mirror comprising, in combination, a front element (14) having an optically transparent inboard portion (14B) and an outboard portion (14A) projecting laterally outwardly from said inboard portion, a rear element (18), said outboard portion of said front element (14) and said rear element (18) each having reflective surfaces thereon, said inboard portion (14B) of said front element and said rear element each having front and rear surfaces and defining a space (13) between said rear surface of said inboard portion and said front surface of said rear element, and electro-optic medium (24) confined in said space (13) whereby light transmittance of said medium is variable upon the application of an electrical potential thereto, said front surface of said inboard portion (14B) of said front element having a predetermined radius of curvature, said outboard portion (14A) of said front element having a front surface projecting laterally outwardly beyond said front surface of said rear element. Another embodiment of the invention provides improved signaling means.

Description

BRIEF SUMMARY OF THE INVENTION

This invention relates to rearview mirrors for motor vehicles and, more particularly, to improved interior and/or exterior rearview mirrors for motor vehicles.

Heretofore, various automatic rearview mirrors for motor vehicles have been devised which automatically change from the full reflectance mode (day) to the partial reflectance mode (night) for glare protection purposes from light emanating from the headlights of vehicles approaching from the rear. The electrochromic mirrors disclosed in U.S. Patent No. 4,902, 108, issued February 20, 1990, for Single-Compartment, Self-Erasing, Solution-Phase Electrochromic Devices, Solutions for Use Therein, and Uses Thereof; U.S. Patent No. 4,917,477, issued April 17, 1990, for Automatic Rearview Mirror System for Automotive Vehicles; U.S. Patent No. 5,128,799, issued July 7, 1992, for Variable Reflectance Motor Vehicle Mirror; U.S. Patent No. 5,202,787, issued April 13, 1993, for Electro-Optic Device; U.S. Patent No. 5,280,380, issued January 18, 1994, for UVStabilized Compositions and Methods; and U.S. Patent No. 5,282,077, issued January 25, 1994, for Variable Reflectance Mirror, each of which patents is assigned to the assignee of the present invention and the disclosures of each of which are hereby incorporated herein by reference, are typical of modem day automatic rearview mirrors for motor vehicles. Such electrochromic mirrors may be utilized in a fully integrated inside/outside rearview mirror system or as an inside or an outside rearview mirror system. In general, in automatic rearview mirrors of the types disclosed in U.S. Patent Nos. 4,902,108; 4,917,477; 5,128,799; 5,202,787, $5,280,380$ and $5,282,077$, both the inside and the outside rearview mirrors are comprised of a relatively thin electro-optic medium sandwiched and sealed between two glass elements. In most cases when the electrooptic medium is electrically energized, it darkens and begins to absorb light, and the higher the voltage, the darker the mirror becomes. When the electrical voltage is decreased to zero or removed, the mirror returns to its clear state. Also, in general, the electro-optic medium sandwiched and sealed between the two glass elements is preferably comprised of solutions of electrochromic compounds which function as the media of variable transmittance in the mirrors, although it should be understood that other electro-optic media may be utilized, including an approach wherein a tungsten oxide electrochromic layer is coated on one electrode with a solution containing at least another compound to provide counter electrode reaction. When operated automatically, the rearview mirrors of the indicated character generally incorporate light-sensing electronic circuitry which is effective to change the mirrors to the dimmed reflectance modes when glare is detected, the sandwiched electro-optic medium being activated and the mirror being dimmed in proportion to the amount of
glare that is detected. As glare subsides, the mirror automatically returns to its normal high reflectance state without any action being required on the part of the driver of the vehicle. The electro-optic medium is disposed in a sealed chamber defined by a transparent front glass element, a peripheral edge seal, and a rear mirror element having a reflective layer, the electro-optic medium filling the chamber. Conductive layers are provided on the inside of the front and rear glass elements, the conductive layer on the front glass element being transparent while the conductive layer on the rear glass element may be either transparent or opaque, i.e., the conductive layer on the rear glass element may also function as the reflective layer for the rear glass element, and the conductive layers on both the front glass element and the rear glass element are connected to electronic circuitry which is effective to electrically energize the electro-optic medium to switch the mirror to nighttime, decreased reflectance modes when glare is detected and thereafter allow the mirror to return to the daytime, high reflectance mode when the glare subsides as described in detail in the aforementioned U.S. Patents. For clarity of description of such a structure. the front surface of the front glass element is sometimes referred to hereinafter as the first surface, and the inside surface of the front glass element is sometimes referred to as the second surface. The inside surface of the rear glass element is sometimes referred to as the third surface, and the back surface of the rear glass element is sometimes referred to as the fourth surface.

If desired, and as described in detail in the applicants' copending application entitled "Dimmable Rearview Mirror for Motor Vehicles", which application is assigned to the assignee of the present invention, and the entire disclosure of which is hereby incorporated by reference, a reflective layer may be provided on the inside (third surface) of the back glass of a dimming portion of the rearview mirror, which layer is comprised of a series of coatings, hereafter called the multilayer combination reflector/electrode, which also forms an integral electrode in contact with the electrochromic media. The other electrode on the inside (second) surface of the front glass is a transparent electrode which also contacts the electrochromic media inside the mirror element. The series of coatings of the multilayer combination reflector/ electrode is comprised of at least a base coating which bonds to the glass surface tenaciously and resists the corrosive action of the materials in the electrochromic media, and a reflective over coating which directly contacts the electrochromic media and which is chosen primarily for its high reflectance, stable behavior as an electrode, resistance to corrosion by the materials of the electrochromic media, resistance to atmospheric corrosion, resistance to electrical contact corrosion, the ability to adhere to the base coating. and ease of cleaning to an uncontaminated, high quality electrode surface. The series of coatings of the multilayer combination reflector/electrode has one or more base coatings and one or more high reflectance over
coatings. The transparent coating is preferably fluorine doped tin oxide, tin doped indium oxide (ITO) or a series of metal oxide coatings with base coatings to suppress color and reflection followed by an electrically conductive, transparent coating which contacts the electrochromic media directly. Where a series of transparent coatings is used, the materials are chosen for good bonding, resistance to corrosion by the materials of the electrochromic media, resistance to corrosion by the atmosphere, minimal reflectance, high light transmission, neutral coloration and high electrical conductance. Also, to a considerable extent, it is possible to make the reflective electrode very high in electrical conductance to compensate in a synergistic fashion with a transparent electrode that is lower in electrical conductance so the net result is an electrochromic mirror which darkens and clears acceptably fast and uniformly with excellent optical properties.

This synergistic structure is applicable for both inside and outside rearview mirrors for motor vehicles. When the multilayer combination reflector/electrode is used in any mirror, it has the inherent advantage of reducing double images, distortion, and multiple images from raindrops, dust, etc., while providing excellent speed of reflectance change, good high end reflectance, good uniformity of reflectance change across the surface area of the mirror, neutral color, continually variable reflectance and a low end reflectance low enough to relieve strong glare. The reduction in double images and distortion is particularly usefui in the case of dimmabie mirrors which use glass that is bent but may have slight variations in radius of curvature or slight ripple or warp that result in slight imperfections in matching two pieces of bent glass required to make, for example, a convex electrochromic mirror.

Heretofore, non-automatically dimming aspheric exterior rearview mirrors have been provided which increase the field of view of the driver of a vehicle and virtually eliminate the well-known blind spots of conventional flat glass and/or curved glass exterior mirrors. In general, aspheric mirrors are made by using multiple radii of curvature or by combining several types of curvature, i.e., a main flat area (infinite radius of curvature) or a main curved area with a constant radius of curvature similar to the convex mirrors that are currently in common use on passenger side exterior mirrors in the United States, together with an aspheric area which is disposed on the outboard portion of the mirror. It is the high curvature in the aspheric area that yields a greatly expanded field of view which, in general, may be nearly double that of convex mirrors and nearly triple that of flat-surface mirrors. Aspheric mirrors thus tend to eliminate the conventional so-called blind spots, thereby enabling the drivers of the vehicles to see adjacent lanes in the road and to change lanes without failing to observe other vehicles, such as automobiles, motorcycles and bicycles, traveling in adjacent lanes. However, serious cost and technical problems arise when efforts are made to construct an automatically dimming varied from is high rellectance mode to parial or lower reflectance modes for glare protection purposes while an outboard portion of the mirror remains in the high reflectance mode at all times so as to provide a potential
danger/warning signal if another vehicle is nearby in adjacent lanes even under glare-producing conditions.

Another aim of the present invention is to provide an improved dimmable rearview mirror for motor vehicles which provides a greater field of view than conventional flat or convex dimming outside rearview mirrors.

Another aim of the present invention is to provide an improved electro-optic, dimmable rearview mirror for motor vehicles, which mirror is relatively economical to manufacture and assemble, durable, efficient and reliable in operation.

Another aim of the present invention is to provide improved signaling means in conjunction with an improved outside rearview mirror for motor vehicles.

Still another aim of the present invention is to provide improved signaling means at the outboard section of a partially dimming mirror whereby technical difficulties are eliminated and costs are reduced.

Yet another aim of the present invention is to provide an improved dimmable rearview mirror for motor vehicles in which double images, distortion and multiple images from raindrops are reduced and wherein excellent speed of reflectance change, good high end reflectance, good uniformity of reflectance change across the surface area of the mirror, neutral color, continually variable reflectance and good low end reflectance are obtained.

The above features and advantages of the present invention will be further described hereinafter in the following description of exemplary embodiments and the accompanying drawings, in which:

FIG. 1 is a front elevational view schematically illustrating an inside/outside rearview mirror system for motor vehicles, the system including a dimmable inside rearview mirror together with two dimmable outside rearview mirrors which embody the present invention and all of which are adapted to be installed on a motor vehicle in a conventional manner whereby the mirrors face the rear of the vehicle and can be viewed by the driver of the vehicle to provide a rearward view to the driver;
FIG. 2 is an enlarged simplified sectional view of the inside rearview mirror illustrated in FIG. 1, taken on the line 2-2 thereof;
FIG. 3 is an exploded view of the left electro-optic, aspheric, partially dimmable outside rearview mirror illustrated in FIG. 1 ;
FIG. 4 is a front elevational view of the mirror illustrated in FIG. 3;
FIG. 5 is a simplified top plan view of the mirror illustrated in FIG. 4;
FIG. 6 is a simplified side elevational view of the right side of the mirror as viewed in FIG. 4, showing the electro-optic structure.
FIG. 7 is a schematic simplified side elevational view of another embodiment of the invention;

FIG. 8 is a schematic simplified side elevational view of still another embodiment of the invention; and
FIG. 9 is a schematic simplified top plan view of yet

DETAILED DESCRIPTION

In general, in inside and outside rearview mirrors 0 embodying the present invention, at least a portion of the rearview mirror assembly may be comprised of a relatively thin layer of an electro-optic medium sealed between two glass elements. When the electro-optic medium is electrically energized, it darkens and begins 5 to absorb light, and the higher the voltage, the darker the mirror becomes. When the electrical voltage is decreased to zero or is removed, the electro-optic medium returns to its clear state. Rearview mirrors embodying the present invention may, for example, incorporate light-sensing electronic circuitry of the type illustrated and described in the aforementioned U.S. Patent No. 4,917,477. Also, the components of mirrors embodying the present invention may be of the types disclosed in the aforementioned U.S. Patent Nos. 5 4,902,108; 5,128,799; 5,202,787; 5,280,380 and 5,282,077, as well as in U.S. Patent No. 5,014,167, issued May 7, 1991, for Visual Signaling Apparatus, and U.S. Patent No. 5,207,492, issued May 4, 1993, for Mirror Assembly. It should be understood, however, that other types of electronic circuitry and other types of electro-optic media and other components may be utilized in mirrors embodying the present invention.

In one embodiment of the present invention, an aspheric outside rearview mirror is provided wherein a 5 large flat area and/or a large radius of curvature convex area of the mirror automatically dims, but the aspheric portion of the mirror does not. A key aspect of such embodiment of the invention resides in the fact that the front glass element is formed in one continuous piece 0 that includes an inboard main body portion that is substantially flat, or slightly curved, and an outboard aspherical portion which is formed integrally with the main body portion and projects laterally outwardly therefrom. In its most practical form, the outside mirror
45 has a large radius of curvature, spherical, convex inboard portion, integrally joined to an outboard aspherical portion, it being understood, however, that the dimming inboard portion could be of flat or other configuration, and that the aspherical portion could be 50 of cylindrical or spherical configuration or could be formed with multiple radii of curvature or other configurations.

Referring to the drawings, an electro-optic inside/outside mirror assembly, generally designated 9 , 5 embodying the present invention is depicted in FIGS. 1 through 6 . Since some of the layers of each of the mirrors in the assembly 9 are very thin, the scale has been distorted for pictorial clarity. As shown in the drawings, the mirror assembly 9 includes an inside mirror 10 and
outside mirrors 11 and 12. For clarity, in the drawings, like numbers identify components of the inside and outside mirrors which may be slightly different in configuration but which function in substantially the same manner and obtain the same results as similarly numbered components. For example, the shape of the front glass element of the left outside mirror is the reverse of the shape of the right outside mirror, and the front glass element of the inside mirror is generally longer and narrower than the front glass elements of the outside mirrors. In the embodiment of the illustrated, each of the mirrors 10,11 and 12 includes a sealed chamber 13 , defined by a front glass element 14, an edge seal 16 , and a rear glass element 18 , having reflective and electrically conductive metal layers 20 and 22, respectively. An electro-optic medium 24 having the desired electro-optic properties fills the chamber 13, and a transparent electrically conductive layer such as a fluorine-doped tin oxide conductive layer 26 is carried by the front element 14 . The electrically conductive layers are connected to an electrical circuit as will be described hereinafter in greater detail. If desired, a color suppression coating or coatings, such as 28 , may be disposed between the conductive layer 26 and the adjacent rear surface of the front element 14. Light rays enter through the front glass element 14 , the color suppression coating(s) 28, the transparent conductive layer 26 and the electro-optic medium 24 before being reflected from the electrically conductive and reflective layer 22 (or layers 20 and 22 if layer 22 is extremely thin) provided on the rear glass element 18. The reflected rays exit by the same general path traversed in the reverse direction. In electrochromic media both the entering rays and the reflected rays are attenuated in proportion to the degree to which the electro-optic medium 24 is light-absorbing while in other electro-optic media the light rays may, in some cases, only be attenuated in one direction. When the electrooptic medium 24 is electrochromic and highly light absorbing, the intensity of the exiting rays is diminished, the dim image remaining mainly being from light rays which are reflected off of the front surface of the front glass element 14 and the interface between the front glass element 14 and the coatings 28 and/or 26 . Thus, the basic structural elements of the electro-optic portion of each of the mirrors includes two electrode-bearing sides or walls 14 and 18, a spacing or separating seal 16 , which spaces apart and holds the walls in substantially parallel relationship in an assembled device, and which surrounds a volume which in an assembled device is defined by the inside surfaces of electrode layers on the electrode-bearing walls as well as the circumferential inside walls 30 of the sealing member 16 . The volume of the chamber 13 is preferably filled through a sealable fill port 32 with any of the electro-optic media disclosed in this or the aforementioned patents which have reversibly variable transmittance in the operation of the device, the medium in the chamber 13 being in contact with both electrode layers 22 and 26 during operation of the mirror. It will be understood that the
electro-optic medium for achieving variable reflectance could be other solution-phase electrochromics, solid electrochromics, a combination of the two in the form of a hybrid, or any of the above in a polymerized matrix. A liquid crystal, dipolar suspension or other electro-optic medium could also be utilized in mirrors embodying the present invention.

In the embodiment of the invention illustrated, the reflective surface on the inside of the rear glass 18 may be comprised of a series of coatings, hereinafter termed the multilayer combination reflector/electrode, which serves as a mirror reflectance layer and also forms an integral electrode in contact with the electrochromic media. The other electrode on the inside surface of the front glass 14 is the transparent electrode 26 which also contacts the electrochromic media inside the mirror element. The series of multilayer combination reflector/electrode coatings is comprised first of a base coating which bonds to the glass surface tenaciously and resists the corrosive action of the materials in the electrochromic media. The base coating is preferably chromium, but alternatively may be stainless steel, nickel-chromium, titanium, gold, silver, or any material or series of coatings which accomplish the objectives above stated. The thickness of the base coating is typically 100 to 1500 angstroms and is more typically 200 to 800 angstroms. The final reflective coating which directly contacts the electrochromic media is chosen primarily for its high reflectance, resistance to attack by the electrochromic media, resistance to atmospheric corrosion, resistance to electrical contact corrosion, and the ability to adhere to the base coating. The preferred material for the reflective coating is rhodium which has excellent hardness, excellent reflectance and excellent conductance, but it should be understood that it is alternatively possible to choose from a group of metals and their alloys such as, but not limited to, platinum, ruthenium, iridium, and stainless steel or multiple layers including combinations thereof. The thickness of the reflective over coating is typically 100 to 1000 angstroms and is more typically 100 to 600 angstroms. The series of coatings of this multilayer combination reflector/electrode has one or more base coating(s) which generally provide high conductance and one or more over coatings which provide additional conductance and high reflectance. By way of example the sheet resistance of the multilayer combination reflector/electrode may be approximately 1 to 10 ohms per square.

The transparent coating 26 is preferably made of fluorine doped tin oxide or ITO or alternately a series of coatings with a base coating(s) to suppress color and reflection followed by a conductive transparent coating which contacts the electrochromic media directly. Where a series of transparent coatings is used, the materials are chosen for good bonding, good resistance to corrosion by the materials in the electrochromic media, good resistance to corrosion by the atmosphere, minimal reflectance, high light transmission, neutral coloration and high electrical conductance. Suitable types
of low cost transparent electrode coated glass substrates are "TEK 20 " or "TEK 15 " coated glass manufactured by Libbey Owens-Ford of Toledo, Ohio, but other suitable coatings are ITO or extremely thin metal layers which may alternatively function as the transparent electrode.

Transparent electrode materials are inherently limited in the balance of properties and cost. Low sheet resistance transparent coatings with a sheet resistance below approximately 10 ohms per square tend to have low transmission and other attendant shortcomings including possible haziness, coloration, non-uniformity of coating thickness and high cost. This makes a low sheet resistance transparent coating less practical for electrochromic mirrors. To a considerable extent, it is possible to make the multilayer combination reflector/electrode low in electrical resistance to compensate in a synergistic fashion with a transparent electrode that is higher in electrical resistance so the net result is an electrochromic mirror which darkens and clears acceptably fast and uniformly over its surface area, with excellent optical properties.

To demonstrate the surprising nature of the synergy, electrochromic mirrors have been constructed with a multilayer combination reflector/electrode of about 3 and of about 7 ohms per square sheet resistance with a front transparent electrode of about 18 to 22 ohms per square or higher which show remarkably good results for speed and uniformity of coloration and clearing. Electrochromic mirrors with reflectors on the front surface of the rear element have been previously described, but the use of multilayer coatings that combine to provide high reflectance, good adhesion to glass, low sheet resistance and ease of cleaning for electrochromic mirrors, especially in combination with a low cost high resistance transparent coating, is preferred. Thus, if desired, mirrors embodying the present invention may use a high electrical conductance multilayer combination reflector/electrode on the third surface, with a lower electrical conductance transparent front electrode on the second surface to achieve a cost effective, high performance, electrochromic mirror. This synergistic structure has the inherent advantage of reducing double images, distortion, and multiple images from raindrops, (particularly with convex or spherically curved mirrors), while providing excellent speed of reflectance change, good high end reflectance, good uniformity of reflectance change over the area of the device, neutral color and a low end reflectance, low enough to relieve strong glare.

The following are examples of components that have been found to be suitable for use in rearview mirrors embodying the present invention, it being understood that other components may also be used in rearview mirrors embodying the present invention.

When an electrochromic mirror device was fabricated with this multilayer combination reflector/electrode, the device had a high end reflectance of 57.0 percent, a low end reflectance of 6.5 percent and changed from 57.0 percent to 10.0 percent reflectance in 2.0 seconds with the application of 1.2 volts.

EXAMPLE 3

Other than as specifically mentioned, the conditions of Example 1 were used in this example. A multilayer combination reflector/electrode was prepared by sequentially depositing approximately 600 angstroms of chromium and approximately 300 angstroms of platinum. The base pressure of 2.1×10^{-6} torr and the argon pressure of 8×10^{-3} torr. The first surface reflectance was 73.8 percent and the sheet resistance was 3.2 ohms per square.

When an electrochromic mirror device was fabricated with this multilayer combination reflector/electrode, the device had a high end reflectance of 58.0 percent, a low end reflectance of 7.0 percent and changed from 58.0 percent to 10.0 percent reflectance in 2.7 seconds with the application of 1.2 volts.

EXAMPLE 4

A multilayer combination reflector/electrode was prepared by the sequential deposition of approximately 600 angstroms of chromium and approximately 100 angstroms of 316 stainless steel on the 19 cm by 66 cm surface of a 0.2 cm thick sheet of flat soda lime float glass and on the convex side of a 22 cm diameter circle of glass which had been press bent to a uniform spherical curvature with a radius of curvature of 140 cm . The glass which was bent was TEK 20 tin oxide coated glass manufactured by Libbey Owens-Ford of Toledo, Ohio, and the tin oxide coating was on the concave side after the glass was bent. The deposition was accomplished in a large in-line sputtering system. The first surface reflectance from the multilayer combination reflectorfelectrode coatings was about 58 percent and the sheet resistance was about 7 ohms per square.

The flat and the bent glass sheets were cut into mirror shapes which were approximately 10 cm high and 16 cm wide. These were used as the rear elements of dimmable mirrors for the outside of an automobile as described below. As compared to glass coated only with chromium metal, these pieces of the multilayer combination reflector/electrode coated glass were dramatically easier to clean to a condition in which they behaved as uniform high quality electrodes without poorly coloring spots and blemishes in the final electrochromic dimmable mirror devices

The flat and convex pieces of multilayer combination reflector/electrode coated glass were matched with mirror-shaped pieces of TEK 20 coated pieces of flat and convex coated glass respectively. The front element convex mirror glass was also bent such that the tin oxide
coating was on the concave side. Mirror devices were made by sealing nearly all the way around the perimeter of the glass pieces with an epoxy seal containing glass bead spacers which provided for a 0.015 cm spacing between the TEK 20 transparent, tin oxide electrode and the multilayer combination reflector/electrode. The spacing between the electrode surfaces was filled with a solution made up of:
0.028 molar 5,10 -dihydro-5,10-dimethylphenazine
0.034 molar 1,1'-di(phenylpropyl)-4,4'-bipyridinium difluoroborate
0.030 molar 2-(2'-hydroxy-5'-methylphenyl)-benzotriazole
in a solution of 3 wt \% Elvacite ${ }^{\text {TM }} 2041$ polymethylmethacrylate resin dissolved in propylene carbonate.

The small gap in the perimeter seal was plugged with a UV cure adhesive which was cured by exposure to UV light.

The high end reflectance of the mirrors was approximately 45 percent and the low end reflectance was approximately 7 percent. The mirrors changed reflectance from 45 percent to 15 percent reflectance in about 5 seconds and provided excellent glare relief when dimmed to the appropriate reflectance level during nighttime driving.

EXAMPLE 5

Every aspect of Example 4 was repeated with the exception that the multilayer combination reflector/electrode was prepared by the sequential deposition of approximately 400 angstroms of chromium and approximately 200 angstroms of rhodium. The first surface reflectance from the multilayer combination reflector/electrode was about 70 percent and the sheet resistance was about 7 ohms per square.

The flat and convex dimmable mirror devices prepared with this multilayer combination reflector/electrode according to the procedure of Example 4 had a high end reflectance of about 55 percent and a low end reflectance of about 7 percent with a speed of reflectance change similar to the mirrors of Example 4.

An automobile equipped with an automatic inside electrochromic mirror, one of the above flat mirrors as the driver's side outside mirror and one of the above convex mirrors as the passenger side outside mirror allowed the automobile operator to drive at night with essentially complete protection from glare from the headlamps of following vehicles.

It has been observed that chromium coatings alone can be difficult to clean during assembly of the entire mirror, resulting in a finished mirror that may exhibit contamination spots and areas of slower darkening and clearing. The use of a high reflectance material, such as rhodium alone, can be very costly at thicknesses that provide low sheet resistance, but coated over the above-mentioned base coating(s) such as chromium results in a rear glass element which is easily cleaned
prior to assembly, resulting in a finished mirror that is more optically perfect and free of contamination and darkening defects. Chromium or stainless steel alone also have the problem that the high end reflectance of the finished mirror is too low considering the attendant losses of light from the transparent coated front substrate and electrochromic media. A problem with stainless alone and to a lesser extent chromium alone is poor electrical contact stability to the conventional spring clip type buss bars or other electrical contact means.

The use of an inert high reflectance coating also makes attachment of spring clip type buss bars or other contact attachments more stable and trouble free, since non-conductive compounds and oxides do not form as readily under pressure contact areas. The result of low stability electrical contact is a mirror which loses its uniformity of coloration and its range and speed of coloration and clearing over the long life required in the motor vehicle industry.

There is thus provided a robust, low cost, dimmable rearview mirror for automotive vehicles, which mirror is capable of operating in harsh environments over wide variations in temperature, humidity, vibration, atmospheric corrosion, salt spray, electronic disturbances and sand and grit abrasion, and which mirror is resistant to damage from vehicle crashes and owner abuse. An additional benefit from sealing the main area of the mirror reflector inside the dimmable mirror element is long life of the reflector in the motor vehicle environment.

It is common with outside dimmable mirrors to adhere a resistance heater to the fourth surface reflective structure at the back of the rear glass substrate. This heater and its associated adhesive can cause incompatibility and field problems if conventional reflective material, such as silver, is on the back side of the back glass substrate. It is also common practice to adhesively bond the electrochromic mirror assembly to a plastic backing plate often called the glass case. Normal temperature variations experienced by this assembly can cause large forces to be exerted on a reflector structure on the back or fourth surface due to the thermal expansion mismatch of the materials involved. The adhesives used can also lead to chemical attack and degradation of the fourth surface reflector. Such problems are avoided when the reflector is located inside the device, and the heater is adhered directly to the glass (fourth surface) of the rear glass element or to the tin oxide coating such as TEK 20 or TEK 15 layer which may optionally be on the fourth surface.

Heretofore, problems have been encountered with a conventional silver reflector on the back surface of the rear glass, such problems being known as silver spoilage and silver lift, and are avoided with the multilayer combination reflector/ electrode inside the mirror element and protected by the rear glass. With the multilayer combination reflector/electrode located inside the mirror element, the environmental factors are limited to those that result from contact with the materials of the
electrochromic media and the offset area where electrical contact is made, whereas with the reflector on the back of the rear glass surface, a number of other difficult environmental factors must be dealt with for the reflector to survive during the life of the minor especially on the exterior of a motor vehicle.

Speed of coloring, good high end reflectance (typically greater than 50% for exterior mirrors and greater than 60% for interior minors) and low cost are important requirements for dimmable minors, and the above described construction provides a minor meeting such requirements. Thus, it is possible to use comparatively low cost practical electrode coatings to make a surprisingly high performance mirror. Highly conducting transparent coatings are either nondurable, low in transmissivity and/or very high in cost. For this reason it is desirable to use comparatively low cost durable transparent coatings which have the inherent disadvantage that their conductance is lower than that of expensive coatings. Metals, on the other hand, have high conductance which can be used to great advantage. Electrochromic minors with reflector/electrodes involving a single metal layer on the front surface of the rear element have been previously described. However, the concept of creating a dimmable minor where the electrical conductance of tile transparent electrode at the second surface of the mirror element is purposely made much lower than the multilayer combination reflector/electrode conductance at the third surface of the mirror element is preferred. This intentional mismatch of conductance in a symbiotic relationship using practical low cost coatings provides a structure of significant commercial potential, i.e. the conductance of the transparent electrode is substantially lower than that of the multilayer combination reflector/electrode, and the multilayer combination reflector/electrode is comprised of two or more coatings. The first coating on the rear glass is preferably the low cost, high conductance base metal such as chromium. The final coating on the multilayer combination reflector/electrode is the thin, high reflectance metal such as rhodium for the purpose of providing high reflectance and high stability in use as an electrode for the electrochromic device. The coating(s) on the back surface of the front element may include 5 one or more color suppression coatings followed by fluorine doped tin oxide, but it must be understood that any transparent coating having the required properties which is substantially lower in conductance than the coatings on the front surface of the rear element would 50 be suitable. This concept may be incorporated in both inside and outside electrochromic mirrors which may incorporate ambient and glare light sensors, the glare light sensor being positioned either behind the mirror glass and looking through a section of the mirror with 5 the reflective material removed, or partially removed, or the glare light sensor can be positioned outside the reflective surfaces. In the alternative, areas of the electrode and reflector, such as 45 and 46 , respectively, may be removed, or partially removed in, for example, a
dot pattern, to permit a vacuum fluorescent display, such as a compass or clock, to show through to the driver of the vehicle. Such concept is also applicable to a mirror which uses only one video chip light sensor to measure both glare and ambient light and which is further capable of determining the direction of glare. An automatic mirror on the inside of a vehicle can also control one or both outside mirrors as slaves in an automatic mirror system.

The foregoing also has application in the construction of elements for mirrors where high maximum reflectance is desired, and the electrochromic materials may be solution phase containing liquids, gels, rigid gels and/or polymers. It may also be a hybrid design where some or all of the electrochromic materials are not in solution and may be confined on the surfaces of the electrodes, and also particularly applies to electrooptic mirrors which draw more than 10 milliamps in operation at any point in their process of dimming.

The above described structure is particularly effective when used with selected low cost transparent coatings, as for example, "TEK 20", marketed by Libbey Owens-Ford Co. of Toledo, Ohio. The benefits over the most commonly used automatic mirrors in use today are as follows: mirrors embodying the multilayer combination reflector/electrode change reflectance faster, have a clearer image, have better coloration of image in the nondimmed state, eliminate the need and inconvenience of putting silver reflective coatings on the fourth surface of the mirror element, have fewer handling steps thereby creating fewer chances for scratching in the glass during processing and providing a final product with better optical quality, and having fewer surfaces through which the light must travel, and the first surface and third surface reflections are closer together with the result that there are less multiple images and less distortion in the mirror for the driver. Moreover, when used as an outside mirror, there are less reflections from raindrops and dust on the front surface of the front glass, and the reflector at the front surface of the rear glass element is protected from aging, exposure to airborne contaminants and physical abuse that often affect reflectors placed at the back surface of the rear glass element.

In the embodiment of the invention illustrated in Figures 1 through 6 , the front glass element 14 of each outside mirror is formed in one continuous piece that includes an inboard main body portion 14B that may be substantially flat with an infinite radius of curvature, or slightly curved with a relatively large radius of curvature. This curvature is generally spherical with a radius of curvature in the range of 1200 to 3000 mm and more typically in the range of 1400 to 2600 mm . The main body portion 14B is integrally joined to an outboard aspherical portion 14A having a radius of curvature substantially less than the radius of curvature of the main body portion 14B. Thus, the aspherical portion 14A contributes a predetermined field of view which, when combined with the field of view of the main body portion 14B,
is substantially greater than the field of view of the main body portion 148 alone. The rear glass element 18 of each outside mirror of this embodiment of the invention is substantially the same size as the main body portion 14B of the front glass element so that the aspherical portion 14A projects laterally outwardly, i.e., outboard of both the main body portion 14B and the rear glass element 18. Since the aspheric portion 14A of the front glass element 18 projects outwardly beyond the adjacent edge of the rear glass element 18, the aspheric portion 14A of the front glass element does not dim when the electro-optic inboard portion 14B of the mirror dims. It should also be understood that a bezel structure 34, shown in dashed lines for clarity of illustration, is preferably utilized which extends around the entire periphery of the front glass element and conceals the peripheral edge portions thereof.

In this embodiment of the invention, the rear surface 36 of the front glass element 14 of each outside mirror is preferably coated with a reflective layer 38 only in the area of the outboard aspherical portion 14A. This reflective material also preferably covers the outboard section 40 of the seal 16 so that the outboard section 40 of the seal 16 is not visible to the driver of the vehicle. although, if desired, a portion of the seal may be purposely allowed to be visible to the driver to provide a demarcation to apprise the driver that there is a difference in the minor configuration. As previously mentioned, the outboard area 14A of each outside mirror can be either aspheric, cylindrical, spherical, formed with multiple radii of curvature formed of any combination of the preceding, or be of other desired configuration. It should also be understood that the reflective layer could be on the front surface of the aspherical portion 14A.

The above described construction overcomes serious cost and technical problems which are encountered when efforts are made to perfectly match two glass shapes of complex curvature. Since the rear glass element 18 and the electro-optic portion 14B of the front glass element 14 are either flat or only slightly curved, matching of the overlying portions thereof is more readily achieved, and serious mismatching, which can cause double imaging, is obviated or at least minimized. Moreover, since the aspheric portion 14A of the front element 14 projects outwardly beyond the outboard edge of the rear glass element 18, no matching whatsoever is required because there is only one layer of glass in the aspherical portion 14A of each outside mirror.

It will be understood that if a reflective layer 38 , such as chromium or rhodium, is deposited on the rear surface 36 in the aspherical portion 14A of the front glass element 14, and a reflective layer such as 22 is also used as a reflector on the inner surface of the rear glass element 18, behind the electro-optic material 24 , then there will be a minimum discontinuity in the reflected image since the electro-optic media layer is very thin (typically 150 microns or less). In that connection it should be understood that light from reflection in
the clear state of the electrochromic portion of the device may $10-20 \%$ less than the first surface reflectance of the layer 22 when measured with the layer 22 in contact with air

It should also be understood that, by way of example, it is also possible to utilize indium tin oxide (ITO) as the transparent conductors on the confronting surfaces of the front and rear glass elements and a reflective layer such as silver on the back of the rear glass element. For matching purposes, it is also possible to provide a silver reflector on the back surface of the aspherical portion 14A of the front glass. In the preferred embodiment of the invention, a layer of chromium or a layer of rhodium makes up the reflective layer 38 provided on the back surface 36 of the aspherical portion 14A of the front glass element, limited to the aspheric area as illustrated in the drawings. For example, a rhodium layer 22 can be used on the front surface of the back glass element 18, deposited over a thick highly conductive chromium layer 20 . By way of example, the rhodium layer may have a thickness of about 100-700 Angstroms, while the chromium layer may have a thickness of about 300 to 1500 Angstroms. In the alternative, instead of a dual layer of rhodium and chromium, a single layer of chromium may be utilized together with a single layer of chromium on surface 38 . A single layer of smooth, high transmission ITO is preferred for application to the surface 36 in both areas 14A and 14B to simplify the ITO coating process and to maximize reflection of 38 and minimize haze of reflector 38. When the reflector of the outboard portion is placed on the front side of element 14 then the smoothness of the transparent conductor 36 is not critical, and it is possible to use the low cost but somewhat rough or hazy coating sold by Libbey Owens-Ford as "TEK 20" tin oxide coated glass or the Libbey Owens-Ford "TEK 15" glass or a similar type low cost tin oxide coated glass, or it is possible to remove the tin oxide transparent conductive layer prior to applying the reflector to the area 14 A Thus, if desired, the transparent conductive coating 26 on the front element 14 may be uniformly applied, selectively applied or removed from a portion of surface 36 prior to the application of the reflective layer 38 so that in the latter case the reflective layer 38 is applied directly onto the rear surface 36 of element 14. This latter configuration of the front element reflector is especially desirable if the transparent conductive coating has significant haze. It may also be desirable to lower the reflectivity at the area 14 A to a value as bright as, or lower than, the reflectance range of the dimming portion by choice of reflector material or transmission properties of the layer 26, if present, in the area 14A

From the foregoing description, it will be understood that much of the uniqueness of this embodiment of the invention resides in the fact that only the inboard main body portion 14B of the front element 14 will be dimmed utilizing electro-optic principles. This permits protection from giare and yet preserves safety, since the aspheric portion 14A is not allowed to dim and the driver can still
see nearby vehicles in adjacent lanes. Moreover, the unitary front face of the front glass element 14 can still be easily cleaned and scraped of ice in the winter. In addition, the one-piece face of the front glass element is cosmetically stylish. Also, the layers of reflective material can be made so close to the same plane that their discontinuity will not be objectionable to the driver of the vehicle. It should also be understood that for defrosting purposes, a conventional heater (not shown) can be utilized to cover either the entire back of each outside mirror assembly including both the aspherical outboard portion and the automatically dimming inboard portion of the mirror, or only the automatic dimming portion with the heat eventually spreading through thermal conduction to the outboard portion 14A.

From the foregoing description, it will be appreciated that the aspheric outboard portion of the mirror provides a greatly increased field of view, thereby virtually eliminating blind spots, and mirrors embodying the present invention can replace conventional driver's side exterior mirrors or both the driver's side and the passenger's side exterior minors. The outside mirrors embodying the present invention combine two types of curvature, i.e., a convex main area with a large radius of curvature or a flat main area with an infinite radius of curvature, the latter being similar to conventional United States driver side exterior mirrors, together with an aspheric section on the outboard portion of the mirror. The relatively high curvature in the aspheric area yields a greatly expanded field of view, and at the same time, since the aspheric portion does not dim, the bright outboard portion provides a danger signal in the event another vehicle is positioned immediately adjacent to the vehicle equipped with mirrors embodying the present invention. It should also be understood that it desired, the aspheric portion of the mirror assembly could be tinted or provided with less reflective capability than the undimmed electro-optic portion of the mirror.

With reference to FIG. 6, a preferred arrangement for connecting the electronic conductive layers to a power source is illustrated. In this arrangement, the two electrode-bearing front and rear glass elements 14 and 18 are displaced in opposite directions, laterally from, but parallel to, the chamber 13 in order to provide exposed areas on the front and rear glass elements. Electrically conductive spring clips 42 and 44 are provided which are placed on the coated glass sheets to make electrical contact with the exposed areas of the electrically conductive layers. Suitable electrical conductors (not shown) may be soldered or otherwise connected to the spring clips 42 and 44 so that desired voltage may be applied to the device from a suitable power source. It is preferred but not essential that the combination reflector/electrode, which may or may not be multilayer, function as and be maintained as the cathode in the circuitry.

Rearview mirrors embodying the present invention preferably include a bezel 34 which extends around the entire periphery of the assembly. The bezel 34 conceals
and protects the spring clips 42 and 44 and the peripheral edge portions of both of the front and the rear elements 14 and 18. By way of example, the bezel 34 may be of the type disclosed in the co-pending Continuation Application of William L. Tonar, Serial No. 08/142,875, filed October 29, 1993, which is a continuation of Application Serial No. 07/907,055, filed July 1, 1992, both of which applications are assigned to the assignee of the present invention and both of which applications are hereby incorporated herein by reference. The assembly may also include a conventional heater and a plastic mirror back or glass case which is adapted to snap into an outside mirror housing (not shown) that may be of any desired configuration including with and without a motor pack for remote adjustment of minor position. The outside minor housing is supported on the outside of an automotive vehicle in any desired or conventional manner, and the inside mirror is supported inside the vehicle in any desired or conventional manner, whereby the field of view of each mirror may be adjusted by the driver of the vehicle in a conventional manner, as for example, through manual adjustment or by mechanical or electrical means of the types conventionally provided on modern day automobiles.

Another embodiment of the invention is illustrated in Figure 7 which enables each outside mirror to implement a signaling function, and in which the reflector on the outboard section 14A is constructed to reflect most of the spectra while transmitting only a selected spectra of a cooperative signal light source located behind the minor. In an alternate approach, the reflector can be made generally reflective, but partially light transmissive over a broad spectral range, thus requiring a signal light of sufficient intensity to be seen by passing vehicles after attenuation through the partially reflecting layer. In order to direct the light away from the driver's eyes either louvers or a sheet of plastic light directing film is placed behind the mirror surface between the signal light source and the reflector. The ambient light sensor in the automatic interior mirror can be used along with a conventional control circuit (not shown) to progressively reduce the signal light output under progressively darker night driving conditions. Areas behind the outboard portion of each outside mirror where the signal light is not expected to shine through can optionally be covered with black or dark paint to make the interior behind the mirror reflector less visible cosmetically in the daytime. In this embodiment of the invention, a dichroic reflector in area 14A may be utilized, along with a light source that is compatible with the dichroic reflector, e.g., a red light emitting diode, emitting in specific spectral wavelengths of the band pass region of the dichroic reflector. Another possibility for a light source for use with a dichroic reflector is a neon gas tube, power supplies (not shown) for the light emitting diodes or neon tube being well known in the art.

With a partially reflecting mirror, any wide band light source is acceptable provided it has sufficient light output and life to withstand the automotive environment,
and provided the color is acceptable for an automotive safety signal. Where a white or broad spectrum light source is preferably used, either a tinted lamp enclosure or separate colored filter between the light source and the reflector is sufficient to provide the proper orange or red light output. The preferred color of the light output with the partial reflector approach is orange. The most practical low cost light source is of the incandescent type with possible variations to include halogen, xenon or other life-extending, high efficiency technology. It is desired to produce the most light with the least cost using a practical, affordable light source for which replacement bull's are readily available for service.

Whatever light source is used, it is preferred to use either a lamp reflector, lens or both for the purpose of increasing light output efficiency in the desired direction. The lamp reflector referred to in this case is distinctively separate from the mirror reflector on the outboard portion of tile partially dimming aspheric mirror. As an alternate approach, this signal light concept and partial dimming concept can also be useful with a substantially uniformly curved mirror, such as a convex mirror, where only a portion of the mirror is automatically dimming and the outboard portion is non-dimming with a signal light feature behind the outboard reflector.

In order to direct light, emitting from the signal light source, away from the driver's view, a laser can be used to cut (burn) a precise controllable louver pattern in a plastic louver member effective to direct light out of the minor so it can be seen by other vehicles on the side of the vehicle equipped with the signaling mirror, but not seen by the driver of the vehicle so equipped. The plastic louver sheet can be either extruded flat or molded flat or it can be molded in a curved shape to fit the mirror curve.

It will be understood that a laser or other suitable means can be utilized to burn slots at an angle through the plastic sheet, and that the slots can be arranged in a manner to provide the greatest practical ratio of open area with the laser cut slots being stopped at certain points to allow sufficient structural retention and support. Referring to Figure 7, a schematic simplified side elevational view of this embodiment of the invention is illustrated therein. In this embodiment of the invention, a front reflector 138 is provided on the aspherical portion 114A of the glass 114, the reflector 138 preferably being a very highly reflective but partially transparent metal coating.

It should be understood, however, that in this embodiment of the invention it is not necessary that the outboard portion of the minor be aspheric, and that if desired the outboard portion can be flat or curved. If desired, protective coatings may also be provided upon the condition that the refiective coating be substantially transmissive thereby allowing light from behind the mirror to pass through. The higher the natural reflectance of the front layers the greater will be the ability to sacrifice reflectance to transmittance and still fall within an acceptable minor reflectance range of about 40% to
60%. Suitable reflectors are rhodium, coated aluminum, coated silver, or other suitable different metal. The key aspect is that the natural reflectance be high enough to allow a thin controlled thickness to transmit approximately 10 to 30% or greater of the signal light and still allow approximately 40 to 60% reflectance. The glass itself is designated 114 in Figure 7, but clear plastic may be useful as an alternate.

The layer designated 115 is the louvered layer which incorporates an appropriate signal pattern which can be recognized as a turn or other signal, which when lighted is visible to vehicles on the side, but not to driver of the vehicle equipped with outside mirrors embodying the present invention.

In the embodiment of the invention illustrated in Figure 7, an optional lens 117 is provided to direct light for efficiency. A signal light source 119 is provided which may be in the form of an LED array, a filament lamp or lamps, or a gas filled lamp such as neon or xenon, and a reflector or reflector array 121 is provided to direct light emanating from the light source 119 toward the lens 117 and/or the louvers 115. If desired, a clear transparent electrode heater and black mask could be positioned between the louvers 115 and the glass 114. The louvers 115 would then be glued to the substrate with adhesive.

In the operation of this embodiment of the invention, when the signal light source is energized, the turn or other signal is thus visible only to the drivers of other vehicles. At the same time, the reflective surfaces of the mirror function in a conventional manner.

In accordance with the present invention, the signaling concept described hereinabove can be extended to include electro-optic dimming mirrors as shown in Figure 8. Referring to Figure 8, an electro-optic assembly generally designated 210 is provided which includes a sealed chamber 213 defined by a front glass element 214, an edge seal 216, and a rear glass element 218 having reflective but partially light transmitting and electrically conducting chromium and rhodium layers 220 and 222 , respectively, on the front face thereof. An elec-tro-optic medium 224 having the desired electro-optic properties fills the chamber 213, and a transparent electrically conductive layer or layers 226 , such as ITO, is carried on the back face of the front glass 214. A louvered layer 215 is provided which is secured to the back surface of the rear glass 218, the louvered layer having an appropriate signal pattern, such as an arrow, which can be recognized as a turn or other signal, visible to vehicles on the side, but not to the driver of the vehicle equipped with outside mirrors embodying the invention. This embodiment of the invention includes an optional lens 217 to direct light for efficiency. A signal light source 219 is provided which may be in the form of an LED array, a filament lamp or lamps, or a gas-filled lamp such as a neon lamp or a xenon lamp, and a reflector or reflector array 221 is provided to direct light emanating from the light source 219 toward the lens 217 and/or the louvers 215. If desired, a clear transparent electrode
heater can be positioned between the louvers 215 and the rear glass 218, the louvers being fixed to the heater substrate, as with an adhesive. Thus, in the operation of this embodiment of the invention, when the signal light source is energized, the signal is visible only to drivers of other vehicles, while the electro-optic dimming features of the mirrors are visible to the driver of the vehicle equipped with the mirrors embodying the invention.

Another embodiment of the invention is illustrated in 0 Figure 9. In this embodiment of the invention, the rear glass element is substantially the same size as the front glass element including the aspherical portion thereof so that the entire mirror including the aspheric portion thereof has the reversibly variable transmittance capabilities. Referring to Figure 9, an outside mirror, generally designated 111, is illustrated which includes a sealed chamber 113 defined by a front glass element 114, an edge seal 116, and a rear glass element 118 having reflective and electrically conductive metal layer 122 and optionally also a metal under coating 120. An electro-optic medium 124 having the desired electrooptic properties fills the chamber 113, and a transparent electrically conductive layer, such as a fluorine-doped tin oxide conductive layer 126 is carried by the front element 114. The electrically conductive layers are connected to an electrical circuit in the manner previously described, and, if desired, a color suppression coating or coatings, such as 128 may be disposed between the conductive layer 126 and the adjacent rear surface of the front element 114.

In this embodiment of the invention, the front glass element 114 is formed in one continuous piece that includes an inboard main body portion 114B that may be substantially flat with an infinite radius of curvature, or slightly curved with a relatively large radius of curvature. The main body portion 114B is integrally joined to an outboard aspherical portion 114A having a radius of curvature substantially less than the radius of curvature of the main body portion 114B. Thus, the aspherical portion 114A contributes a predetermined field of view which, when combined with the field of view of the main body portion 114 B is substantially greater than the field of view of the main body portion 114B alone. The rear glass element 118 of the mirror of this embodiment of the invention is substantially the same size as the front glass element 114 and includes a main body portion 118 B that is substantially the same size as the main body portion 114B of the front glass element, and an aspherical portion 118A that is substantially the same size as the aspherical portion 114A of the front glass element.

In this embodiment of the invention the reflective surface on the inside of the rear glass 118 is comprised of a single metal layer combination reflector/electrode or a series of coatings which may be the same as the multilayer combination reflector/electrode types previously described which serve as a mirror reflective layer and also form an integral electrode in contact with the electrochromic media. The other electrode on the inside sur-
face of the front glass 114 may be the same as the transparent electrode 26 previously described which contacts the electrochromic media inside the mirror element. The multilayer combination reflector/electrode in this embodiment of the invention thus functions in the same manner and obtains the same results as the multilayer combination reflector/electrode previously described, and the transparent electrode on the inside surface of the front glass 114 also functions in the manner and obtains the same results as the transparent electrodes previously described, the difference in this embodiment of the invention being that the multilayer combination reflector/electrode and the transparent electrode include the aspheric portion of the mirror, it being understood that the seal 116 encompasses the entire chamber 113 which extends to the left end of the mirror structure, as illustrated in Figure 9, including the aspheric portion of the mirror. Thus, the entire mirror 111 including the aspheric portion of the mirror has the reversibly variable transmittance capabilities, and the entire mirror functions in the same manner as the inboard main body portion 14B of the embodiment of the invention illustrated in Figures 1 through 6.

While preferred embodiments of the invention have been illustrated and described, it will be understood that various changes and modifications may be made without departing from the scope of the invention which is defined by the appended claims.

Claims

1. An electro-optically dimming exterior rearview mirror for automotive vehicles, said mirror comprising, in combination, a front element having an optically transparent inboard portion and an outboard portion projecting laterally outwardly from said inboard portion, a rear element, said outboard portion of said front element and said rear element each having reflective surfaces thereon, said inboard portion of said front element and said rear element each having front and rear surfaces and defining a space between said rear surface of said inboard portion and said front surface of said rear element, an elec-tro-optic medium confined in said space whereby light transmittance of said medium is variable upon the application of an electrical potential thereto, said front surface of said inboard portion of said front element having a predetermined radius of curvature, said outboard portion of said front element having a front surface projecting laterally outwardly beyond said front surface of said rear element.
2. A mirror according to claim 1 and including sealing means disposed between said rear surface of said inboard portion of said front element and said front surface of said rear element, said reflective surface on said outboard portion of said front element being effective to conceal the adjacent portion of said sealing means.
3. A mirror according to claim 1 or 2 , wherein said outboard portion of said front element is of aspheric configuration.
4. A mirror according to any one of the preceding claims, wherein said reflective surface on said rear element is located on the front side of said rear element.
5. A mirror according to any one of the preceding claims, wherein said field of view of said light reflecting means of said rear element is less than the field of view of said light reflecting means of the combination of said rear element and said outboard portion of said front element.
6. A mirror according to any one of the preceding claims, the confronting sides of said inboard portion of said front element and said rear element each including at least one layer of electrically conductive material and said electro-optic medium is an elec-tro-optic reversible variable transmittance medium in contact with each or said electrically conductive layers, and further comprising means for applying electrical potential to said layers of electrically conductive material to cause variation in the light transmittance of said electro-optic medium.
7. A mirror according to any one of the preceding claims, wherein said light reflecting surface of said rear element is also electrically conductive and located on the side of said rear element confronting said front element.
8. A mirror according to any one of the preceding claims, wherein said light reflecting surface of said rear element is formed of multiple layers of electrically conductive material and is located on the side of said rear element confronting said front element.
9. A mirror according to any one of the preceding claims, said light reflecting surface of said rear element includes a layer of rhodium and a layer of chromium, said layer of rhodium being on the side of said layer of chromium confronting said front element.
10. A mirror according to claim 19, wherein said layer of chromium is greater in thickness than said layer of rhodium.
11. An electrochromic reanview mirror for automotive vehicles, comprising a partially transparent and partially reflective element, a light source, means for directing light emanating from said light source through said transparent reflective element in a predetermined direction while permitting light reflected from said transparent reflective element to be viewed from a different direction.
12. A mirror according to claim 21, wherein said partially transparent and partially reflective element includes a light transmissive reflective coating.
13. A mirror according to claim 21 or 22 , wherein said light directing means includes louvre means.
14. A mirror according to claim 21,22 or 23 , including lens means for directing light emanating from said light source toward said element.
15. A mirror according to any one of claims 21 to 24 , wherein said light directing means includes louvre means, and lens means for directing light emanating from said light source toward said louvre means.
16. A mirror according to any one of claims 21 to 25 , wherein said element has a portion thereof of aspheric configuration.
17. A mirror according to any one of claims 21 to 26 , wherein said partially transparent and partially light reflective element comprises front and rear spaced elements, said front element and said rear element defining a chamber therebetween, said front element being transparent, the side of said front element confronting said rear element including transparent electrically conductive means, the side of said rear element confronting said front element including combined electrically conductive light reflecting means, said chamber containing an elec-tro-optic reversible variable transmittance medium in contact with said transparent electrically conductive material on said front element and said combined electrically conductive light reflecting means on said rear element, said combined electrically conductive light reflecting means on said rear element being effective to reflect light through said medium and through said front element when said light reaches said combined electrically conductive light reflecting means after passing through said medium and through said front element.
18. A mirror according to any one of claims 16 to 20 or claim 27 , wherein said transparent electrically conductive means on said front element has a higher electrical resistance per unit area than said combined electrically conductive light reflecting means on said rear element.
19. A mirror according to any one claims 16 to 20,27 or 28 , wherein said transparent electrically conductive means on said front element comprises indium tin oxide.
20. A mirror according to any one of claims 16 to 20 , 27, 28 or 29 , wherein said transparent electrically conductive means on said rear element comprises chromium and rhodium.
21. A mirror according to any one of claims 16 to 20 or 27 to 30 , wherein said electrically conductive light
reflecting means on said rear element includes a coating selected from the group consisting of rhodium, platinum, titanium, ruthenium, iridium, gold, stainless steel, silver, nicked-chromium and chromium, and alloys thereof.
22. A mirror according to any one of the preceding claims, including indicia means visible through said front element.
23. A mirror according to claim 32 , when dependent on any one of claims 16 to 20 or 27 to 31 , wherein said combined electrically conductive light reflecting means on said rear element defines an opening, and said indicia means are aligned with said opening and visible through said front and rear elements.
24. A mirror according to claim 33 , wherein said indicia means comprise vacuum fluorescent display means.
25. A mirror according to any one of claims 16 to 20 or 27 to 34 , wherein combined electrical conductive light reflecting means on said rear element includes a first high conductance coating selected from the group consisting of chromium, titanium, stainless steel, nickel-chromium, gold and silver, and alloys thereof, and a second high reflectance coating selected from the group consisting of rhodium, platinum, ruthenium, iridium, stainless steel and chromium, and alloys thereof.

EP 0729864 A1

Twin-focus electrically-driven rear-view mirror for vehicle - has outer section giving normal coverage, and inner portion covering otherwise dead zone on vehicle quarter

Publication number:	FR2628042
Publication date:	1989-09-08
Inventor:	
Applicant:	RACLE JACQUES (FR)
Classification:	
- international:	B60R1/08; B60R1/08; (IPC1-7): B60R1/06
- European:	B60R1/08D
Application number:	FR1988000283119880301
Priorlty number(s):	FR1988000283119880301

Report a data error here

Abstract of FR2628042

A vehicle's rear-view mirror has a broad outer section (2) which provides coverage of the usual field behind. A narrower inner section (3) does not cover this field, but is aligned upon the blind spot otherwise encountered around the vehicle's quarter. Both sections are carried on a common support (7), but can be individually orientated by manual or power control from inside the vehicle. A driver thus receives a comprehensive presentation of traffic location behind him, including those units in course of overtaking. ADVANTAGE - Two-section individually-controllable mirror concept solves basic blind spot problern encountered in most vehicles and provides driver with comprehensive view of activity behind him.
(19)

(11) N° de publication:

2628042
(*) riutiliser que pour les
commandes de reproduction)
(51) Int CI*: B 60 R 1/06.$N^{\circ} d^{\prime}$ enregistrement national :
8802831
(12) DEMAB
(30) Priorité:

PARIS

(43) Date de la mise à disposition du public de la
demande : BOPI«Brevets» $n^{\circ} 36$ du 8 septembre 1989.
(60) Références à d'autres documents nationaux appa-
rentés:
(71) Demandeur(s) : RACLE Jacques. - FR.
(72) Inventeur(s): Jacques Racle.
(73) Titulaire(s):
(74) Mandataire(s):
(54) Rétroviseur à double foyer.
(57) Dispositif permettant d'avoir une vision instantanée d'une zone invisible située derrière soi. L'invention concerne un a ré. troviseur à double foyer » réglable et orientable.

Il est constitué d'un boîtier bloc rétroviseur 1 comportant un grand miroir 2 et un plus petit 3 situé à sa droite. séparés et orientables individue!lement, articulés dans le boîtier 1 pourvu d'un support 7. muni d'un système dorientation soit mécanique soit électrique.

Le dispositif selon l'invention est plus particulièrement destiné à tout vehicule ou engin ou autre, motorisé ou non.
 Vente des fascicules a limprimerie nationale, 27, rue de to Comention - $\mathbf{7 5 7 3 2}$ PARIS CEDEX 15

La présente invention concerne un dispositif relatif à un "RETRC--VISEUR A DOUBLE FOYER "', COmpnsó d'un miroir en deux parties:ces deux par--ties séparées, ayant une orientation différente,permettent ainsi d'obtenir un champ de vision diffórent et double,complémentaire,supprimant ainsi

Ces deux miroirs sont juxtaposés et incorporés tans un "bloc" "ré --troviseur",mais peuvent avoir une position adaptéc snit par ur díplacement latéral ou vertical,manuel ou ślectrique au mnyen d'un moteur électrique.

La forme et la taille du rótroviseur et des miroirs seront variables
et adaptées aux besoins.
Le dispositif comporte un frand miroir (I) ayant un champ de vision plus grand et plus large situé sur la partie gauche (5) et d'un miroir plus petit (2) couvrant le secteur de l'anciènne "zône morte" (6).

Le dispositif peut se présenter par la juxtapositior de 2 miroirs
(2) et (3) séparés et nrientables séparóment.
L_{a} figure 2 reprósente le dispositf.
I)-Dispositif comprenant un grand miroir (こ) et un deuxiòme plus petit (3), séparés et juxtaposós, encastrés dans un "hlnc métrnviseur" (1). 2)-Dispositif selon la revencication (1) saractérisf en ce que chaque miroir peut se mouvoir sf́parformen et s'orienter te maniòre manuelle ou éler--que,latóral ou vertical.
3)-Dispositif selon la revendication (2) earactérisé par le fait que chaque miroir permet de "couvrir" une zône différente complómentaire (5) et (6),qui vuent simultanóment ensemble permet n 'avoir une vision totale de la zône considérée.
4)-Dispositif selon la revendication (2) qui permet. त'accroitre la vision et la sécurité d'une personne qui est amenée à surveiller une zône morte" qu'il ne voit pas directement et completement,zños situées par côté (droite et pauche)et derrì̀ re lui.
5)-Dispositif selon la revendication (1) caractritisé par ean us?ge sur tout vóhicule du engin ,mntorisé ou non. se dénla̧ant sur terre, fer, эir: aoto-motn-véln-camáon,...bâteau....., avion.... on pour survellier un secteur donné d'un point donné.

DRAWINGS ATTACHED
(21) Application No. 32282/69
(22) Filed 26 June 1969
(31) Convention Application No.

P 1755828.0
(32) Filed 27 June 1968 in
(33) Germany (DT)
(45) Complete Specification published 28 June 1972
(51) International Classification B60R $1 / 08$
(52) Index at acceptance

B7J 69
G2J 11A 11B1 11B3 B7H

(54) DRIVING-MIRROR ASSEMBLY FOR A VEHICLE

(71) We, Kurt Hacker of 7 StuttgartZuffenhausen, Wollinstrasse 37, Germany and Reinhold Weigele of 7015 Korntal, Hindenburgstrasse 52, Germany, both 5 German citizens, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following

This invention is concerned with a driv-ing-mirror assembly for a vehicle.
It is known, from British patent specifications Nos. 827,336 and $1,133,005$, to promirror. These known arrangements are such that it is possible for the assembly when in use to give double-representation 20 of an object viewed by means of the assembly, one such representation being given by reflection by the plane mirror and the other representation being given by reflection by the convex mirror. The existence 25 of such double-representation is confusing to the driver, and is hence a possible source of danger, the more so because the plane mirror gives distortionless reproduction of the object at full-size, whilst the convex 30 mirror pictures the object with at least some of its dimensions reduced in size and is a possible source of apparent distortion of the shape of the object.
According to the invention there is provehicle driving-mirror assembly for a enicle, the assembly comprising a planar first mirror reflecting surface formed upon a first member, and at least one second mirror reffecting surface which is curved 40 so as to be convex towards the viewer and which is formed upon a second member, the first and second members being separate bodies fixedly interconnected to form a unit, the second mirror reflecting surface 45 having, as a portion of its periphery, a line
which lies in a plane which is a tangent plane to that second mirror reflecting sutface and which follows a corresponding portion of the periphery of the first mirror reflecting surface, the said tangent plane being arranged to coincide with or be parallel to the plane of the first mirror reflecting surface, whereby the assembly does not give double-representation of an object viewed by means of the assembly.
This arrangement, according to the invention, effectively provides what will be referred to herein as a "bend-free merger" between, or a "tangential transition" between, the (planar) first and the (convex) second mirror reflecting surfaces; for, with this arrangement, the first mirror reflecting surface is caused to effectively merge tangentially into the second mirror reflecting surface without the interposition of a bending line. This effective bend-free merger or tangential transition ensures that the said double-representation does not occur, and, moreover, can be so arranged that the field of view provided by the driving-mirror assembly is uninterrupted: thus, when an object (viewed by means of the assembly) passes across the field of view of the assembly, the object never appears to be duplicated and is seen as moving, without interruption, from the first to the second mirror reflecting surface (or vice versa).
The arrangement according to the invention is also convenient, in that experience has shown that whereas a plane mirror, or 80 a convex mirror, can be manufactured in a relatively simple manner with high precision and with high surface-quality, the same does not apply to a single mirror which is required to exhibit a transition 85 from a plane-mirror part to a convexmirror part.

There may be two of the second mirror reflecting surfaces formed upon a single said second member and similarly arranged
respectively at relatively opposite peripheral portions of the first mirror reflecting surface. Conveniently, the second member has a portion which extends behind the first mir5 ror reffecting surface so as to form a rear support for the first member.
Conveniently, the said portion of the second member also affords a protective tim for a peripheral portion of the first 10 member.

In one arrangement the assembly may be such that, in a plane which is normal to the first mirror reflecting surface and extends from that surface to intersect the sec5 ond mirror reflecting surface(s) across the width thereof, the radius of curvature of the or each second mirror reffecting surface decreases with the distance from the first mirror reflecting surface.
In an alternative arrangement the assembly may be such that, in a plane which is normal to the first mirror reflecting surface and extends from that surface to intersect the second mirror reflecting surface(s) across the width thereof, the radius of curvature of the or each second mirror reflecting surface increases, at least initially, with the distance from the first mirror reflecting surface. reference to and as illustrated in the accompanying drawings, wherein:-
Fig. 1 is a diagrammatic top view of a passenger car with an inside driving-mirror

Fig. $1 a$ is a partial top view similar to that of Fig. 1 but with an outside drivingmirror assembly;
Fig. 2 is an enlarged central section, in
a horizontal plane, of the inside drivingmirror assembly when in position in Fig. 1;
Fig. $2 a$ is a vertical cross-section through the driving-mirror assembly, said section being taken along the line A-A of Fig. 2;

Figs. $2 b$ and $2 c$ are respectively vertical cross-sections taken along the lines B-B and $\mathrm{C}-\mathrm{C}$ of Fig. 2;
Figs. 3, 4, 5 and 6 are similar to Fig. 2 but relate to modified arrangements;
Fig. 7 is an explanatory drawing;
Fig. 8 is similar to Fig. 2 and relates to one structural arrangement according to the invention; and
Fig. 9 is similar to Fig. 8 but relates to an outside driving-mirror assembly.
Referring now to the drawings in detail, Fig. 1 shows a passenger car 1 with a windshield between roof posts 2 and 3 and with the driver's seat F on the left-hand side of the vehicle. The normal direct field of view n of the driver is at both sides limited by the marginal lines of vision 20 and 21 and comprises, for instance, a viewing angle of approximately 150°. In the central area of 65 the windshield there is mounted an inside
driving-mirror assembly S which permits the viewing of an indirect field of view z by means of a central plane mirror, this indirect field of view extending behind the vehicle and being limited by a rear window 70 8 laterally defined by the roof posts 6 and 7.

At each side of the plane mirror there is provided a corresponding convexly curved mirror via which a lateral indirect viewing range, s or r, can be observed. The corresponding front marginal lines of vision 10 and 11 intersect the marginal lines of vision 20, 21 of the direct field of view at the points P, T at such a distance laterally of the vehicle that practically no blind lateral angle remains.

In a manner to be described, the central plane mirror merges by bend-free merger and tangential transition, into the two con- 85 vexly curved mirrors.
Fig. $1 a$ shows the corresponding arrangement of an outside driving-mirror assembly $\mathrm{S} a$ the field of view of which, defined by the marginal lines $10 a$ and $10 b$, deals with 90 not only the rearward blind angle t of the inside rear-view mirror S but also the lateral blind angle behind the direct marginal line of vision 20.
In the case of Fig. 1a, the driving-mirror 95 assembly $\mathrm{S} a$ comprises a plane mirror $\mathrm{S} a 2$ which (see below) merges by bend-free merger and tangential transition, into a convex mirror $\mathrm{S} a 1$.

Figs. 2 and $2 a-2 c$ show one possible form of the driving-mirror assembly S of Fig. 1. A central plane mirror reflecting surface 15 merges, at each of its opposite sides, into a respective convex mirror reflecting surface 16, 17 associated with the viewing ranges s and r (Fig. 1) respectively. As indicated in Fig. 2 by the decreasing radii of curvature U, V and W , each of the convex mirror reflecting surfaces 16,17 is progressively more curved (in the plane of the Fig. 1 drawing) with distance from the plane mirror reflecting surface 15 . In addition, as indicated by Figs. $2 b$ and $2 c$, which are cross-sections of a convex mirror reflecting surface (16,17) in planes which are normal to the mirror section of Fig. 2, the radius of curvature of each such convex mirror reflecting surface, in those normal planes, also decreases progressively with distance (of the said normal plane) from the plane 1 mirror reflecting surface 15 .
In Fig. 2, the chain lines 100 and 101 indicate the extent of the central plane mirror reflecting surface 15. It will thus be understood that there is, at each side 12 of the central plane mirror reflecting surface 15 , a boundary line which forms the common boundary of that surface and the convex mirror reflecting surface in question. At each such boundary line, the central 130
plane mirror reflecting surface 15 merges into the relevant convex mirror reflecting surface tangentially, without the interposition of a bending line; this bend-free merger
\qquad tangential transition ensures that the said double-representation does not occur and also ensures that the field of view provided by the driving-mirror assembly is uninterrupted.

Figs. 3-6 show other possible forms of the driving-mirror assembly. Here, in each case, there is a plane mirror reflecting surface E which merges, at one side, into a convex mirror reflecting surface; in each is a convex mirror reflecting sumace generatrix is the curved horizontal section shown in the drawing and of which the axis of rotation is an axis Z which is
normal to the plane mirror reflecting surface E. Moreover, in each case the generated surface of revolution (a part-annulus) is arranged to merge tangentially into the plane mirror reflecting surface E, without this bend-free merge bending line: again, sition ensures that the said double-representation does not occur and also ensures that the field of view provided by the 0 driving-mirror assembly is uninterrupted.

In the case of Fig. 3, the generatrix of the convex mirror reflecting surface has a first portion W3a which lies adjacent to the plane mirror reflecting surface E and 3 which has a radius of curvature $\mathrm{R} 3 a$, this portion merging into a second portion which has a radius of curvature $\mathbf{R} 3 b$ which is less than R3a. In this case, the radius R3a is so selected that when the driver pictures 40 an object via the first portion W3a, that picture is not greatly reduced in size as compared with the full-size picture which would be presented by the plane mirror reflecting surface E ; in the case of the sec45 ond portion W3 b, the apparent reduction in size of the object is greater but this is unimportant for that part of the field of view of the driving-mirror assembly with which the portion W $3 b$ is concerned.

In the case of Fig. 4, the generatrix of the convex mirror reffecting surface has a curvature which decreases progressively with distance from the plane mirror reflecting surface E , as indicated by the in-

In the case of Fig. 5, the generatrix of the convex mirror reflecting surface has a first portion W5a which lies adjacent to the plane mirror reflecting surface E and portio has a radius of curvature RJa, W5b portion merging into a second portion W5 which has a radius of curvature $\mathrm{R} 5 b$ which is greater than R5a. With this arrangement, which is suitable for an inside driving65 mirror assembly, the first portion W5a pro-
duces a relatively large apparent reduction in size of an object viewed by the driver via that portion which is, however, intended to correspond to a part of the field of view which is covered up by, or includes, the driver himself, the first portion being thus of lesser importance in the arrangement; the second portion $W 5 b$ produces relatively less apparent reduction in size of an object viewed by the driver via that portion.

In the case of Fig. 6, the generatrix of the convex mirror reffecting surface has inner and outer strongly curved sections W6a and W6c and a central, less strongly and uniformly curved section W6b.

Experience has shown that an almost dis-tortion-free mirroring in the curved mirror reflecting surface is obtained when the ratio between the maximum and the minimum radii of curvature at any point of the mirror reflecting surface, does not exceed a certain value. Surprisingly, relatively high values of this ratio are tolerable, without a disturbing distortion of the width-height ratio of an object mirrored by the part of the mirror reflecting surface concerned.

Fig. 7 shows the surface normal N at a point Q of a curved mirror reflecting surface W. There is drawn, in the tangential plane at the point O, a polar plot of the radii of curvature of the mirror reflecting surface W at the point Q; such a polar plot indicates, for the point Q concerned, the largest radius of curvature $\mathrm{Rmax}_{\text {max }}$ and the smallest radius of curvature Rmin. The 100 mirror reffecting surface W is preferably so arranged that the ratio of these radii of curvature nowhere exceeds $5: 1$. Experience has shown, however, that ratios of up to 7:1 are possible without disturbing distortions.
Fig. 8 shows a constructional arrangement of an inside driving-mirror assembly according to the invention. The plane mirror reflecting surface \mathbf{E} is formed upon a body Fe and is flanked, at its opposite sides, by the two convex mirror reflecting surfaces W_{s} and $\mathrm{W} r$ which are respectively formed upon curved opposite sides of the body Fa. The body Fa is shaped to receive the body Fe which is inserted into it and fixed in position. The body Fe, which provides the plane mirror reflecting surface \mathbf{E} which is required to give true mirroring, may be made of glass so as to provide a high-grade mirror reflecting surface. The body $F a$ is preferably made of fracture-resistant material in case of accidents, and may be made of sheet metal, or may be cast, or may be made of synthetic plastics material. Loops K may be provided which make it possible to mount the driving-mirror assembly on to a simple rear-view mirror already installed in the vehicle concerned.

Fig. 9 shows a constructional arrange-
ment of an outside driving-mirror assembly according to the invention. The plane mirror reflecting surface E is formed upon a body Fe and is flanked, at one side, by which is formed upon a curved side $F w$ of a body Fh . The body Fh is shaped to receive the body $F e$ which is inserted into it and fixed in position; thus, the body Fh the body Fe . The body Fe may be made of glass. The body $F h$ may be made of easily deformable and shock-absorbing material, and may be made of sheet metal.

WHAT WE CLATM IS:-

1. A driving-mirror assembly for a vehicle, the assembly comprising a planar first mirror reflecting surface formed upon
20 a first member, and at least one seoond mirror reflecting surface which is curved so as to be convex towards the viewer and which is formed upon a second member, the first and second members being separate 25 bodies fixedly interconnected to form a unit, the second mirror reflecting surface having, as a portion of its periphery, a line which lies in a plane which is a tangent plane to that second mirror reflecting surand which follows a corresponding portion of the periphery of the first mirror reflecting surface, the said tangent plane being arranged to coincide with or be parallel to the plane of the first mirror reflecting surface, whereby the assembly does not give double-representation of an object viewed by means of the assembly.
2. An assembly according to Claim 1, wherein there are two of the second mirror
40 reflecting surfaces formed upon a single said second member and similarly arranged respectively at relatively opposite peripheral portions of the first mirror reflecting surface.
45
3. An assembly according to Claim 1 or Claim 2, wherein the second member has a portion which extends behind the first mirror reflecting surface so as to form a rear support for the first member.
50 4. An assembly according to Claim 3, wherein the said portion of the second member also affords a protective rim for a peripheral portion of the first member. 5. An assembly according to any pre55 ceding Claim, wherein the first member is made of glass and the second member is made of a material resistant to fracture.
4. An assembly according to any preceding Claim, wherein, in a plane which is normal to the first mirror reflecting surface 60 and extends from that surface to intersect the second mirror reffecting surface(s) across the widt hthereof, the radius of curvature of the or each second mirror reflecting surface decreases with the distance from the first mirror reflecting surface.
5. An assembly according to Claim 6 , wherein the said radius of curvature has a first constant value over an initial region adjacent to the first mirror reflecting sur- 70 face and has a second constant value, less than the first constant value, over a further region more distant from the first mirror reflecting surface.
6. An assembly according to any one of 75 Claims 1-5, wherein, in a plane which is normal to the first mirror reflecting surface and extends from that surface to intersect the second mirror reflecting surface(s) across the width thereof, the radius of curvature of the or each second mirror reflecting surface increases, at least initially, with the distance from the first mirror reflecting surface.
7. An assembly according to Claim 8,85 wherein the said radius of curvature has a first constant value over an initial region adjacent to the first mirror reflecting surface and has a second constant value, greater than the first constant value, over 90 a further region more distant from the first mirror reflecting surface.
8. An assembly according to Claim 8, wherein the said radius of curvature is decreased, over a marginal region most 95 distant from the first mirror reflecting surface.
9. An assembly according to any preceding Claim, wherein, at any point upon the or each second mirror reflecting surface, 100 the ratio of the maximum to the minimum radius of curvature does not exceed 7:1.
10. An assembly according to Claim 11, wherein the said ratio does not exceed 5:1.
11. A driving-mirror assembly substantially as specifically described herein with reference to the accompanying drawings.

> Agents for the Applicants,

SYDNEY E. M'CAW \& CO.,
Chartered Patent Ägents,
"Saxone House",
52-56 Market Street, Manchester 1.

Fig. 2a

Fig.2b
Fig. 2c

1,279,158 COMPLETE SPECIFICATION 4 SHEETS
 This drawing is a reproduction of the Original on a reduced scale. SHEET 2

1,279, 158 COMPLETE SPECIFICATION
 4 SHEETS This drawing is a reproduction of the Original on a reduced scale. SHEET 3

Fig. 8

Fig. 9

Fig. 7

Rear view mirror for vehicles

Publication number: GB2048189 (A)
Publication date: 1980-12-10
Inventor(s):
Applicant(s): MIRRORCRAFT INC
Classification:

- international: B60R1/08; B60R1/08; (IPC1-7): B60R1/02
- European: B60R1/08D2

Application number: GB19790014733 19790427
Priority number(s): GB19790014733 19790427

Abstract of GB 2048189 (A)

A vehicle rear view mirror (10) has a composite surface including a primary reflecting surface (11) which may be planar and formed therewith a secondary or auxiliary mirror section (14), that has an arcuately curved reflecting surface, in a corner area of the primary mirror so as to be effectively non-obstructing in normal use of the primary mirror, but of sufficient size and configuration as to produce a reflected image of a relatively large angular field of view in a horizontal plane with respect to that of the primary mirror. The auxiliary mirror is integrally formed with the primary mirror and may be on the front or rear thereof.

Data supplied from the esp@cenet database - Worldwide

(12)
 UK Patent Application ${ }_{19}$ GB
 i1 2048189
 A

(21) Application No 7914733
(22) Date of filling 27 Apr 1979
(43) Application published 10 Dec 1980
(51) INT CL. ${ }^{3}$

B60R 1/02
(52) Domestic classification B7J 69
(56) Documents cited GB 1505658 GB 1279158 GB 1133005 GB 827336
(58) Field of search B7J
(71) Applicants

Mirrorcraft, Inc., 2074
Arlington Avenue,
Columbus, Ohio 43221,
United States of America
(72) Inventor

Ronald L. Docie
(74) Agents

Withers \& Rogers
(54) Rear view mirror for vehicles
(57) A vehicle rear view mirror (10) has a composite surface including a primary reflecting surface (11) which may be planar and formed therewith a secondary or auxiliary mirror section (14), that has an arcuately curved reflecting surface, in a corner area of the primary mirror so as to be
effectively non-obstructing in normal use of the primary mirror, but of sufficient size and configuration as to produce a reflected image of a relatively large angular field of view in a horizontal plane with respect to that of the primary mirror. The auxiliary mirror is integrally formed with the primary mirror and may be on the front or rear thereof.

2048189

SPECIFICATION

Rear view mirror for vehicles

BACKGROUND OF THE INVENTION

Vehicle mirrors as conventionally provided
5 comprise a planar reflecting surface of sufficient area to meet the normal requirements for establishing a field of view with respect to the vehicie operator. These mirrors may be either installed in the interior of the vehicle for rearward.
10 vision through a window at the back of the vehicle or attached to the side door panels at either side for primarily enlarging the field of view in a sideward or lateral direction. This invention is directed primarily to the exterior mounted side
15 view mirrors that are attached to the doors of the vehicle or may be mounted on the front fender. While the objective of such auxiliary mirrors in the form of a side mounted type is to enlarge and enhance the lateral directed field of view with respect to the vehicle operator, the mirrors presently available and on the market remain inherently incapable of providing the optimum field of view with a positive reference to the vehicle itself.

Attempts have been made to improve the performance of such mirrors by providing auxiliary mirror structures that may either be independently mounted on the vehicle or attached to the conventional side mounted mirrors. The usual type
30 of auxiliary mirror heretofore provided comprises a circular segment of a spherical surfaced shell that may be adhesively bonded onto a surface of the primary mirror if the primary mirror is sufficiently large as in the case of truck mirrors. Alternatively, a spherical segment mirror may be mounted exteriorly on the vehicle in independent relationship to any of the other mirrors.

While these spherical segment mirrors provide a large field of view, it will be recognized that such
40 mirrors provide an enlarged field of view through 360 degrees of viewing angle. The disadvantage of this enlargement of the field of view is that the operator of the vehicle is necessarily presented with a vastly distorted peripheral field of view
45 which includes substantial portions that are immaterial from a safety standpoint. It will be readily apparent that such a mirror provides a field of view which includes an extensive and unimportant view of the side of the vehicle and
50 which also extends substantially upwards as well as downwards with respect to the vehicle, and these areas are of no real interest or significance to safe operation of the vehicle.

Accordingly, it will be seen that the circular
55 spherical segment mirrors, as well as others, such as cylindrical convex type which have been devised in attempts to overcome the inherent blind spot that occurs with the standard planar refiecting surface mirrors have not succeeded in
60 achieving this desirable objective. While such mirrors attempt to obtain a field of view adequate for the purposes of the driver, they inherently incorporate and produce a substantially greater area of viewing that tends to detract from their

65 usefulness and accordingly tend to detract and decrease the safety features that were originally attempted to be achieved.

SUMMARY OF THE INVENTION

In accordance with this invention a composite
70 mirror is provided in which the major portion or primary section of the mirror conforms to the usual standards of'having a planar reflecting surface for producing a relatively narrow angular field of view in a horizontal plane immediately
75 adjacent to the vehicle when utilized at a side of the vehicle. The composite mirror of this invention has the further objective of enabling the operator to independently view a specified area at the side of the vehicle which includes a lateral angle of
80 substantial extent and optimally approaches a 90 degree angle to the longitudinal axis of the vehicle. Achievement of this objective thus produces a mirror wherein a vehicle operator may readily ascertain the presence of a vehicle in an area conventional planar mirror properly adjusted in accordance with specified standards to view an area which extends angularly outward from a side of the vehicle to only a relatively limited extent.

Accomplishment of this objective is achieved through the combination of a planar mirror surface and a segment of an arcuately curved mirror that is incorporated in a relatively small portion of the area of the planar mirror. This arrangement places
95 the arcuately curved segment in an area with respect to the primary mirror such that the field of view of the primary mirror is substantially unobstructed by the addition of this auxiliary mirror. Specifically, the auxiliary mirror is
100 preferably located in the lower right corner, that is, the side edge next adjacent to the vehicle body as to a mirror mounted on the driver's side of the vehicle whereas a similar type of mirror on the opposite side would have the mirror segment located in the lower left corner. This location and arrangement is for a vehicle having the driver seated on the left side and it will be understood that the arrangement would be appropriately modified for a vehicle having the driver seated on
110 the right side.
This invention illustrates the various techniques, providing a composite mirror to effectively obtain and achieve the two distinct and separate fields of view regarding the side areas of a motor vehicle. A
115 technique for providing a mirror incorporating the concepts of this invention is the integral formation of an auxiliary mirror surface with the primary mirror. This integrally formed auxiliary mirror surface may appear either on the exterior or utwardly facing surface of the primary mirror or may be incorporated in the rear surface. The only difference between these two techniques is that the silvering for forming the reflecting surface in one instance is applied to the outer surface
125 whereas in the other it would be applied to the rear surface of the primary mirror.

These and other objects and advantages of the invention will be readily apparent from the
following detailed description of the several embodiments thereof and the accompanying drawings.

DESCRIPTION OF THE DRAWING FIGURES

Figure 1 is a front view of a mirror embodying this invention.

Figure 2 is a fragmentary vertical sectional view on an enlarged scale taken along line 2-2 of Figure 1.
Figure 3 is a fragmentary vertical sectional view on an enlarged scale taken along line 3-3 of Figure 1.

Figure 4 is a diagrammatic plan view of the field of view of the mirror.

Figure 5 is a front view of a modified mirror embodying this invention.

Figure 6 is a fragmentary vertical sectional view on an enlarged scale taken along line 6-6 of Figure 5.
Figure 7 is a fragmentary vertical sectional view on an enlarged scale taken along line 7-7 of Figure 5.

DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENT

Having reference to the drawings, a basic form of the invention is shown in Figures 1, 2 and 3. In Figure 1, a conventionally shaped side view mirror is shown in elevation without the auxiliary supporting or mounting frames or bracket
30 components. Those structural components bear no relationship to this invention other than to provide the necessary support for the mirror in the attachment or mounting thereof on the side of the vehicle. However, since such mounting components are well-known, it is not deemed necessary to illustrate or describe those structures in conjunction with the illustrative embodiments.
The side view mirror includes a primary mirror 10 comprising a flat plate formed from glass or
40 other optically transmissive material having planar front and rear surfaces 11 and 12 , respectively. A coating of silvering material 13 is applied to the surface 12 thereof as indicated in Figures 2 and 3. The illustrated primary mirror 10 is of onventional rectangular configuration and may be of the generally conventional size of 7.6×12.7 centimeters and mounted with the long axis horizontally disposed. However, it will be understood that the primary mirror size may be
otherwise dimensioned.
Integrally formed with the primary mirror 10 is a secondary or auxiliary mirror structure which is generally designated by the numeral 14 and can be best seen with references to Figures 2 and 3. In this illustrative embodiment, the secondary mirror 14 is formed in the body of the glass plate forming the primary mirror and comprises a surface 15 having a generally rectangular configuration in plan view as will be noted in Figure 1. A coating of thereby forming the reflecting surface.
The secondary mirror 14 is most advantageously located in a corner area of the
minimize the loss of effective viewing area of the primary mirror. In this illustrative embodiment, the secondary mirror has the exemplary planar area dimensions of 4.8 centimeters in its longer dimension extending horizontally and 2.9 ens to the vertical of the primary mirror. Also, respect to the vertical of the primary mirror. Also, the secondary mirror is preferably located with one of its longer sides adjacent to, or coextensive with, the bottom edge 17 of the primary mirror coextensive with, the one vertical side edge 18 of the primary mirror. This vertical side edge 18 is that which is intended to be positioned next adjacent the side of the vehicle on which the
is to be mounted. Locating the secondary mirror in this area results in the cavity formed in the body of the primary mirror by generation of the mirror surface 15 being open at both the bottom edge 17 and vertical side edge 18 of the primary
longitudinal side of the secondary mirror is also generated, but the inner side edge of the secondary mirror surface 15 lies in the plane of primary mirror's rear surface 12 defining a
90 juncture line 20.
It will be further noted with reference to Figures 2 and 3 that the secondary mirror surface 15 is a non-planar surface and comprises a segment of a curved surface. This surface in the illustrative
95 embodiment is a spherical surfaced segment having a radius of curvature of the order of 12 centimeters. As previously stated, the one end of this surface segment intersects the rear surface 12 of the juncture line 20 and it will be noted with 100 reference to Figure 2 that the opposite end, at its juncture with the vertical side edge 18 , to be displaced about 0.8 centimeters from the rear surface 12 of the primary mirror. This specific dimensional configuration is considered exemplary 105 as providing particularly useful fields of view and resulting in a composite mirror structure capable of achieving the intended objective as explained in further detail hereinafter. It will also be apparent that, while the secondary mirror surface is
110 described as being a spherical surface segment of specific radius of curvature, this radius of curvature may be increased to the extent that it approaches infinity and the surface may effectively be planar, but disposed at an angle with respect to
115 the front and rear surfaces 11,12 of the primary mirror 10. However, the curved sufface is deemed advantageous in that it provides a larger field of view.

Functional objectives achieved by the
120 aforedescribed structural combination of a primary and a secondary mirror 10, 14 are diagrammatically illustrated in Figure 4. In that drawing figure, a side view mirror comprising the primary mirror and secondary mirror is shown mounted on a left side of a vehicle which is diagrammatically shown in top plan view. The respective fields of view that are provided by the reflecting surfaces of the primary mirror 10 and
secondary mirror 14 are diagrammatically shown in Figure 4. These angular fields of view are referenced to a horizontal plane with the field of view for the primary mirror designated X and laterally outward from a base or reference line A which is effectively aligned with the side of the vehicle. Preferably, this limiting line of sight overlaps portions of the side of the vehicle to reference in determining relative locations of objects that appear within that field. The angular extent of this field of view designated X is effectively of the order of 35 degrees.
15 Consequently, it will be readily seen that the field of view is clearly inadequate to provide an operator, indicated to be located at a position designated V within the vehicle with reflected images of objects or vehicles that may be laterally and are outside the angular field of view designated by the letter X.

It is the objective of the secondary mirror 14 to increase this lateral angular field of view to that substantially greater angular field of view in a horizontal plane with the mirror construction utilizing a secondary mirror surface 15 comprising a segment of a spherical segment oriented as
30 previously described, extends from the base line A to substantially a line which will be 80-90 degrees displaced from the side of the vehicle.

An extremely important advantage of the specific structural configuration of the auxiliary
35 mirror 14 of this invention is the presentation of a relatively wide field of view in a horizontal plane of a particularly important area whereas the field of view is limited in its vertical extent to a relatively narrow band. The effective viewing area laterally horizontal field of view in the region where the operator of the vehicle will be readily able to detect the presence of other vehicles at a position where greater detail is unimportant. This display of substantial advantage in that the field of view does cover an area which would otherwise require the vehicle operator to physically turn his head and directly view that area. In the matter of
50 changing lanes on multilane highways, this is a particularly important feature. Merely checking the primary planar mirror 10 only indicates whether a vehicle is in a substantially rearward position with respect to the operator's own vehicle. There is and location of a vehicle immediately sideways of the vehicle, but still sufficiently rearward that a person's normal peripheral vision is unable to detect such a vehicle.

A further important advantage of this mirror construction is that the field of view in a vertical plane is relatively limited in its vertical extent, both upwardly and downwardly, and thus the operator is not presented with a substantial amount of
65 extraneous information and detail that is of no
concern to his operating decisions. It is only the lateral position of a vehicle in this "blind spot" that is essential for the operator's safe performance and maneuvering of his vehicle. Furthermore, this disadva can head would otherwise be required and could adversely affect the proper and safe control of the vehicle.

A modified form of the mirror embodying this 5 invention is shown in Figures 5,6 and 7. This modified mirror structure comprises an integrally formed combination of a primary mirror 21 and a secondary mirror 22 . The primary mirror 21 may be of the same dimensional configuration
80 described with reference to Figure 1, but may be formed from a material that is not optically transmissive. The front surface 23 of the primary mirror is either formed to directly provide adequate reflectivity or, as is illustrated, is
85 provided with a thin layer 24 of a suitable material capable of producing a high degree of reflectivity. Also, the secondary mirror 22 is formed in a lower corner area of the primary mirror and thus provides the same advantageous viewing of lateral
90 areas as obtained with the Figure 1 embodiment. While the reflecting surfaces 23 and 25 are advantageously provided with a reflective coating, neither the peripheral edges of the primary mirror 21 nor an upper horizontally extending edge
95 surface 27 of the secondary mirror 22 would be provided with such a coating. Preferably, the edge surface 27 would be treated or conditioned to minimize its reflectivity. This would tend to minimize extraneous reflections that could possibly be generated by the adjacent and angularly disposed edge surface 27 and primary mirror front surface 23.

The mirrors of this invention were previously described as being formed from glass. It will be
105 understood that glass was suggested as an appropriate material, but it is also suggested that other materials may be suitable. For example, there are certain plastic materials which possess the desired structural characteristics and, in the case of the Figure 1 embodiment, have the necessary optical transmission characteristics. Plastics may enable a greater economy to be affected in manufacture as they may be better adapted to molding techniques to achieve the 15 necessary smooth surface for purposes of reflection.

It will be readily apparent from the foregoing detailed descriptions of the embodiments of this invention that a particular novel and useful mirror
120 is provided for automotive vehicle purposes. The mirror of this invention is specifically designed and inherently capable of providing the substantiallyincreased field of view necessary to eliminate the present blind spot that exists in the case of conventional mirrors having a single, flat, planar surface. The mirror construction of this invention limits the field of view provided by the secondary mirror surface to a specifically defined area that is of exceptional interest to the vehicle operator in 130 ascertaining the presence of an object or vehicle
immediately laterally positioned with respect to his own vehicle. The segment of spherical surface is of considerable advantage in this respect as it provides a slight vertically upward and downward
5 field of view to better form reference or a relationship to the image reflected by the primary mirror for the operator. The angular disposition of the vertical segment with respect to the primary planar mirror surface results in this segment being particularly capable of illustrating the extreme lateral extent of this field of view as well as providing a line of sight in reference with respect to the side of the vehicle. It will also be apparent that a mirror embodying this invention may be constructed to be positioned on either side of a vehicle for providing the advantageous field of view.

CLAIMS

1. An optical mirror comprising
a primary milror having a reflecting surface that includes a side edge and which is adapted to be normally viewed from a position displaced in laterally outward offset relationship with respect to said side edge, said primary reflecting surface providing a primary angular field of view of predetermined extent in a first plane oriented in generally perpendicular relationship to said side edge and said primary reflecting surface, and
a secondary mirror integrally formed with said primary mirror, said secondary mirror being substantially lesser in dimension that said primary mirror and disposed closely adjacent said side edge of said primary mirror and terminating in spaced relationship to an opposite side edge of primary mino to hereby leave a substanial primary reflecting surface area therebetween, said secondary mirror having a reflecting surface providing a secondary angular field of view of predetermined extent in said first plane oriented in generally perpendicular relationship to said side edge and said primary reflecting surface of said primary mirror with the secondary angular field of view being substantially greater than the primary angular field of view provided by the reflecting 5 surface of said primary mirror, said secondary angular field of view being at least partially coextensive with the primary angular field of view and extending beyond the primary angular field of view of said primary mirror only in a direction
2. away from said side edge and across the reflecting surface of said primary mirror with respect to the point of viewing.
3. An optical mirror according to claim 1 wherein said primary mirror has a front viewing
55 surface and said secondary mirror is formed to position its reflecting surface at the front surface of said primary mirror.
4. An optical mirror according ta claim 2
wherein each of said primary and secondary

Printed for Her Majesty's Stationary Offica by the Courier Press, Leamington Spa, 1980, Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which coples may be obtained.

${ }_{(12)}$ UK Patent Application ${ }_{(19)} \mathrm{GB}_{(11)} 2092534$ A

(21) Application No 8136435
(22) Date of filing 3 Dec 1981
(30) Priority data
(31) $55 / 172575$
(32) 3 Dec 1980
(33) Japan (JP)
(43) Application published 18 Aug 1982
(51) INT CL ${ }^{3}$ B60R $1 / 06$
(52) Domestic classification B7J 69
(56) Documents cited GB 1279158 GB 1199344 GB 1180930 GB 1133005 GB 0895855 GB 0827336 GB A 2048189
(58) Field of search B7J
(71) Applicant

Yoshikazu Hagiri
1169 Shibazakicho
Takasaki-shi Gunma-ken 370 Japan
(72) Inventor

Yoshikazu Hagiri
(74) Agents

J F Williams and Co 34 Tavistock Street London WC2E 7PB
(54) Rear-view mirror device for vehicles
(57) A rear-view mirror for vehicles comprises a plane reflective face $13 a$ and a convex reflective face $13 b$ contiguous to and at angle with 13a. A further convex face $13 c$ may also be provided. Faces $13 b, 13 c$ increase the field of view provided by the mirror.

FIG. 2

2092534

FIG. 3

FIG. $4 \stackrel{\nabla_{-}}{ }$FIG. 5

FIG. 6

2092534

FIG. 7

SPECIFICATION

Rear-view mirror device for vehicles

5 The present invention relates to a rear-view mirror device for automotive vehicles and the like.

The well-known rear-view mirrors installed outside of automotive vehicles and the like,
10 for example at the front wings or front fenders of automobiles have a single-plane mirror surface. With such a single-plane structure of the conventional rear-view mirror, the field of view of the driver in his seat is limited to a range
15 from the end of the car body to a lateral position a little away from the car body. Any object existing on the lateral side or lateral rear side of the car body will not get into the field of view of the driver via the prior-art rear-
20 view mirror device. When one is about to shift from one lane to another while driving a car along a motorway, for example, and if another car running in the latter lane is approaching your car of which you are not aware, a
25 disastrous accident will possibly result. One reads and sees almost everyday such accidents in newspapers and television newscasts. Further, the conventional rear-view mirror device used on an automotive vehicle such as
30 tractor trailer assures the view of the tractor rear, but not the view of the trailer rear, when the tractor trailer turns along a curve or around a corner. The range from the rear end of the tractor to the trailer's rear end cannot
35 be covered by the driver's sight via the conventional rear-view mirror. If a person or bicycle is standing at that curve or corner when such a large automotive vehicle turns there, he or it will possibly be caught under the
40 chassis of the vehicle because of the relatively long distance between the front and rear wheels. This is a critical problem in the field of traffic safety.
The present invention seeks to provide a and cles and the like which assures a wider field of view.
According to the present invention there is provided a rear-view mirror device for vehicles
50 comprising a mirror body and means for supporting said mirror body on a vehicle body, the surface of said mirror body including a first reflective face which is arranged to reflect in use substantially the vehicle body side and
55 its neighborhood, and a second reflective face which adjoins the edge of the first reflective face and is inclined with respect to the first reflective face so as to cover a substantial range which cannot be covered by the first
60 reflective face and extends further outwardly from the range covered by the first reflective face.

The second reflective face is preferably formed as a convex mirror contiguous to the

The apparatus may also comprise a third reflective face which is contiguous to the first reflective face and so arranged with respect to the first reflective face that it can cover, in
70 use, a side lower range of the car body to produce an image thereof contiguous to the image produced by the first reflective face.
The third reflective face is also preferably formed as a convex mirror.
75 Preferred embodiments of the present invention will now be described, by way of example only with reference to the accompanying drawings of which:

Figure 1 shows a front view of a mirror
80 device in accordance with a first embodiment of the present invention;

Figure 2 is a partly sectional side view taken along the line $11-11$ of Fig. 1;

Figure 3 is a sectional view taken along the
85 line III-III of Fig. 1 and showing only the mirror;

Figure 4 is a front view of a mirror device in accordance with a second embodiment of the present invention;
90 Figure 5 is a partly sectional side view taken along the line $V-V$ of Fig. 4;

Figure 6 is a sectional view taken along the lines VI-VI of Fig. 4 and showing only the mirror;
95 Figure 7 illustrates the functioning of the mirror device shown in Figs. 4 to 6; and

Figure 8 illustrates the rearward field of view of the mirror devices of Figs. 1 to 6. Referring now to the drawings, Figs. 1 to 3
100 show a first embodiment of the rear-view miror device according to the present invention. In the Figures, the reference numeral 11 denotes a mirror housing which is provided therein with an opening 12. A mirror 13 is
105 disposed within said housing 12 of the housing 11. The mirror 13 is fixed to an appropriate backing material which is supported through a universal joint (not shown) on the housing 11 . A stay 14 is integrally formed
110 with the housing 11 which is fixed at a portion (not shown) thereof to the body of a car or other automotive vehicle.

The mirror 13 consists of a transparent plate member on the one face of which a
115 reflective layer is formed. The mirror 13 comprises a first reflective face 13a and a second reflective face 13 b which forms an angle δ with the first reflective face 13a. The first reflective face 13 a is formed like a plane
120 mirror as shown in Fig. 2.
The second reflective face 13 b is contiguous to the first reflective face 13 a and formed like a convex mirror of an appropriate radius of curvature.
125 This example of rear-view mirror apparatus is to be installed on the front fender or front wing of a car at a certain distance, for example, 1 meter, from the windscreen 21 , as shown in Fig. 8. In the illustration, the mirror
130 device as a whole is indicated by reference
numeral 20. Before the car is driven, the mirror device is manually pivotted about the universal joint for the first reflective face to reflect the car body side and its surroundings
5 (for example, a range defined by the broken line A and the body side face) as in the case of conventional rear-view mirror. The angle δ of the second reflective face 13 b with respect to the first reflective face $13 a$ is so selected hat the second reflective face 13b can give the driver (sitting in the seat to the right of the driving direction in the illustration) a field of view defined by the line A and two dotdash line B.
The first reflective face 13a of this rear-view mirror device permits the driver to visually check the range including the car body side face and its surrounding quite the same as by the conventional rear-view mirror devices. Acrfleng the 13 b further permits the driver reflective face 13b further permits the driver to visually check the lateral side and lateral rear side, indicated by C and D, respectively, of the car. In addition, the driver of a car running along a main road can visually locate, by means of the rear-view mirror of the present invention, a car coming along a road which joins the main road obliquely. Thus, the driver can view, from the position of his seat, range which could not be covered by the conventional rear-view mirror devices. The present invention is very advantageous for traffic safety. Since the first and second reflective faces 13 a and 13 b are contiguous to
35 each other, the correlation between the images on these reflective faces is clear to the driver who will judge and act quickly and correctly at the occurrence of any imminent danger.

Figs. 4 to 7 show a second embodiment of the present invention. In the first embodiment described above, one reflective face is formed as contiguous to the lateral edge of another reflective face, to permit the driver to view a
45 range which cannot be covered by the conventional rear-view mirror. In the second embodiment, however, two reflective faces are formed as contiguous to the lateral and lower edges of a mirror 13, to cover, respectively, tional rear-view mirrors. In Figs. 4 to 7 the elements similar to those in the first embodiment are indicated with like reference numerals and symbols. As shown in Figs. 5 and 6,
55 the above-mentioned two reflective faces are formed as convex mirros which are contiguous to the first reflective face 13a and are indicated at 13 b and 13 c . The second reflective face $13 b$ is so formed as to permit the driver
60 to view a range including the lateral and lateral rear sides of a car, the range being defined by the dotted line in Fig. 8, similarly to the first embodiment. The third reflective face 13 c is so curved with respect to the first
side lower range of the car as contiguous to the view from the first reflective face 13a, when the rear-view mirror device is installed on a car body. The bending angle and radius
70 of curvature of the third reflective face 13 c are so selected that a range from the rear tyre (indicated at E) to the rear position of the door (indicated at F) as shown in Fig. 7 can be covered.
75 With this embodiment of the present invention, provision of two reflective faces contiguous to the first reflective face 13 a for covering the ranges which cannot be viewed by the conventional rear-view mirror minimize such
80 range as cannot be seen when driving a car etc. It will be clear to those skilled in the art that the mirror device permits the driver to view the lower zone of a car which is not viewable to the driver by any conventional 85 rear-view mirror.

In the foregoing, examples of rear-view mirror for use on passenger cars have been described. However, it is possible to apply the present invention to larger cars and other
90 vehicles. When the present invention is applied to a large car, it will be apparent to those skilled in the art than an accident of the type in which a person or bicycle standing at a corner is caught in under the car around the
95 corner because the distance between the front and rear wheels is relatively long, can be prevented.

As described in the foregoing, a rear-view mirror device according to the present inven-
100 tion comprises a mirror and means for supporting said mirror to the body of a car, said miror including a first reflective face to view a substantial range including the car body side face and its surroundings, and a second
105 reflective face so formed as contiguous to and curved with respect to the first face that an outer range compared with that covered by the first reflective face can be viewed as contiguous to the image on the first face.
110 Thus, the driver can view, from his seat, a range which could not be viewed by the conventional rear-view mirror. Since the first and second reflective faces are formed as contiguous to each other, also the images on
115 these reflective faces are contiguous to each other, so the driver can easily know the relation between the image on the first reflective face and that of a range which cannot be viewed by the conventional rear-view mirror.
120 He can act quickly and correctly at the occurrence of any imminent danger. Because of the contiguity between the first and second reflective faces, if the reflective face for viewing the range which is invisible by the conventional
125 rear-view mirror is narrow or the image thereon is somewhat distorted, the driver will be able to make a correct judgement. Further, since a single mirror can attain the abovementioned effects, the rear-view mirror appa-
130 ratus according to the present invention has a
simple construction and can be easily manufactured.

CLAIMS

5 1. A rear-view mirror device for vehicles comprising a mirror body and means for supporting said mirror body on a vehicle body, the surface of said mirror body including a first reflective face which is arranged to reflect
10 in use substantially the vehicle body side and its neighborhood, and a second reflective face which adjoins the edge of the first reflective face and is inclined with respect to the first reflective face so as to cover a substantial
15 range which cannot be covered by the first reflective face and extends further outwardly from the range covered by the first reflective face.
2. A rear-view mirror device as claimed in 20 claim 1, wherein the second reflective face is formed as a convex mirror contiguous to the first reflective face.
3. A rear-view mirror device as claimed in claim 1 or 2, furrher comprising a third reflec-
25 tive face which is contiguous to the first reflective face and so arranged with respect to the first reflective face that it can cover, in use, a side lower region of the car body to produce an image thereof contiguous to the
30 image produced by the first reflective face.
4. A rear-view mirror device as claimed in claim 3, wherein the third reflective face is formed as convex mirror together with the second reflective face.
35 5. A rear-view mirror device as claimed in any preceding claim wherein the first reflective face is formed as plane mirror.
6. A rear-view mirror device substantially as herein described with reference to Figs.
40 1,2,3 and 8 , or $4,5,6,7$ and 8 of the accompanying drawings.

[^23]
PATENT ABSTRACTS OF JAPAN

(11)Publication number :

55-051637
(43)Date of publication of application : 15.04.1980
(51)Int.Cl.

B60R 1/08
B60R 1/06
(21)Application number : 53-124495
(71)Applicant : KATSUMATA GIKEN:KK
(22)Date of filing :
09.10.1978
(72)Inventor: KATSUMATA ISAMU
(54) REAR-VIEW MIRROR FOR AUTOMOBILE
(57)Abstract:

PURPOSE: To prevent the images on a rear view confirmation mirror and a front side view confirmation mirror from being confused with each other, by partitioning the mirrors from each other by a holding plate. CONSTITUTION: A rear view confirmation mirror 3 , which is shaped as a vertical oblong and has a large radius of curvature, and a vehicle front side view confirmation mirror 4 , which is hemispherical and has a small radius of curvature, are attached to a support frame 2, which is provided on a support rod 1 so that support frame can be fixed or adjusted. The mirror 4 is located just under the other mirror 3 . The boundary edges of the mirrors 3,4 are fixed in the fitting grooves of a holding frame 5 . The images on the mirrors 3,4 are prevented by the presence of the holding frame 5 from being confused with each other.

（51）Int．Cl．${ }^{3}$
B $60 \mathrm{R} \quad 1 / 08$ 1／06

識別記号 庁内整理番号
7191－3D $7191-3 D$
（430公開 昭和55年（1980）4月15日
発明の数 1審査請求 未請求
（全 2 頁）
（54）自動車用バツクミラ一装置

$$
\begin{array}{lll}
\text { (21)特 } & \text { 願 } & \text { 昭53-124495 } \\
\text { (22出 } & \text { 願 } & \text { 昭53(1978)10月9日 } \\
\text { (22)発 } & \text { 明 } & \text { 者 }
\end{array} \text { 勝又勇 }
$$

沼津市足高554－3番地
（71）出 願 人 有限会社勝又技研
沼津市足高554—3番地
（74）代 理 人 弁理士 松岡宏

3．発明の詳細な説明
本発昭は特状バス，トラッタ等に装着し後方視
来るように為させた自動車用バッタミラ—装置化関する。

従来のとの種の自動車男バックミラーの搆成で はバス，トラック等の大型車で渾転撙からの庄左前研西及な゙そか直下の視界確認が非常氏困萑

であり広内死角家生み暂々事敌憲発の原区と京 り，特に大型事の左挟府において待渾転席加右
 なつていた。とのような死角を解消言るたぬ化别透にアンダーミラーを持設もたら，椱雑な光
一短を有し，運転者に分り行くく実用栍炏天上
実なもあな必要とされた。

本発明は前記に鑑み，上記久点教削除し，挠力確認上共に車体前則部周辺の䘽界め確認老確実 K行えるようにし，且つ誤認をるとをか無心自動車用バッタミラー装置を提供するあかてある －
以下図面について泰施例老説昭する。

辰で上方を長方形状とし，下方部を半円形㔚に

特閧 眧55—51637（2）
作用をもつてにるので，発明所期の目的を確其 に達成出来る。
4．图国の简単な搃明

第を図は本発明による㯰置の全体健面図。
（2） coc … 文 特
（5）．．．．．．．保 持
朹

（3）．．．．．．鑘 体
（4）\ldots ．．．鏡 体

特䇢出願代理人
 なる曲率辛徐を有する半球状の鏡体（4）を捅着せ しめ，各々镜体（3），（4）の境界鄂接会端面（a），（b）
 せた保持枠（5）反苓㧌定着させ境界を設け，全体 を該支胥摊（2）て支承させた模成を成している。本発明は以上のよ5な䪄成である加ら上部の鏡体（3）て後方權誈をし，下部の曲察半径小なる半球状の镜体（4）てもつて車体における左右前側周辺部に視界が磪春に碓認される。

特にパ人，トラック等の大犁事において，道市 の㹧に道路では壁や溉溝南の障害物が道の縁を
界は確奏に礶認てき車輸を贔溝に落としたり人 や自事車を券を込む等の事故も未然に防止され安全運祘が確保される。品，後部碓認用の鏡体 （3）と前獬周辺確認用の镜体（4）との境界部を保持势（5）で仕切つてあるため梘界佒像の唄認を防止 してかる。
この発明の荌置は以上に哾明しをような構成と

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 55076721 a
(43) Date of publication of application: 10.06 .1980
(51) Int. Cl BeOR 1/06

(21) Application number:	53148552
(22) Date of filing:	29.11 .1979
(54) BACK HIRROR	

(57) Abstract:

PURFGSE: To provide a back mirror having no blind area and rigidity with a ready fabrication by adhering a spherical inside transparent plate onto the limited area on the inside surface of a sphericaloutside transparent plate and then treating thin siluer film adhered onto the inside surfaces of the respective transparent plates.
CONSTITUTION: The outside 5 of a spherieal inside transparent plate 3 is adhered onto the lower pertion of the inside recess surface 2 of a spherical outside transparent plate 1. This is achered by a transparent adhesive so that the transparency between the outside transparent plate 1 and the inside transparent plate 3 may not be obstructed st the position of the achered portion 8 . Silver thin film is formed by vacuum evaporation process or the like on the inside surfaces of
(71) Applicant: NIKKEN KOGYO KK (72) Inventor: YANAGIHARA TAKEO
the transparent plates 1 and 3 in thus adhered state to thereby form mirror treatment on the plates 1 and 3. The peripheral edges of the back palte 8 laminated with the back of the transparent plate 1 are fixed win edgewise member \because to the transparent plate 1.
COPYRIGHT: (C) 1980, JPO\& Japio

（99）日本国特許庁（JP）
（11）特許出願公開
（12）公開特許公報（A）
昭55－76721

識別記号 庁内整理番号
7191－3D
（43公開 昭和55年（1980）6月10日

```
発明の数 1
審査請求 未請求
```

（5）Int． Cl^{3}
B 60 R 1／06
（全 3 頁）
（54）バツクミラー
（21）特 願 昭53－148552
（22）出 願 昭53（1978）11月29日
（72）発 明 者 柳原健男
大阪市生野区巽西2丁目4番5

号
（11）出 願 人 日建工業株式会社
大阪市生野区巽西 2 丁目 4 番 5号
（74）代 理 人 弁理士 中島正次

3．発炽 D释細を説明
との発明は，自動車のバックミラーに映る可視領域を広範囲に拡けて，バッタミラーK映らぬ死角項城をなくすよりKした自娌車用バックミラー に間する。

従来，自駆事用ハックミラー，特に大型自動車 の走行の際，バックミラーれ映る䫀域に死角領城 があるため，制死角㖽城内にある人又は物を後車嵦にて巻き込を事故が発生する。との上すな事故 を予防するために，近時バックミラーに稙々の改自が加えられているが，蛪造価格が高価についた り，振勒に上りミラーかびび破れたらする等の欠点があつた。

との発明は，上眍の欠点学解決するるので，そ か目的とするととるは，大をる曲率半径を干の内開的面に有ちる外副球面状运明板の内㑡面の限定項城に，上肥外晸球而状透明板の内倻曲建半径上
透明板言貼曾した嵝，外㑡球面状连明板お上び内

（2）

上り，バックミラーの可視領坡を抝げて死角を去 くすと共に，製作が容易左九め䠈価てあり，しか頙強性を僙え九バックミラーを提供するととて ある

以下，との発明を呧付図面に示す実族例に従つ て硯明する。
（1）はカラス又は硬質合成術脂等の道当庄材料て形成される外溉珼面状透明板て，その内僻凹面（2） は曲率半缺500ミリ」ートルの球面を形成してい る。（3）は硬質アクリス樹脂成型された内假球面状透明板て，この内㑡叫面（4）は，上硙外㑬球面状透
曲事羊径は200ミリメートル程度が望ましい。と の内偪球面状透明板 131 の外面（5）を上記外㑡球面状逐明板（1）の内㑡凹面（2）の下部に貼着してある。と の貼着は，透明性接着制に上り行われ，䭛接苐（6）位䏣にて，外騳の透明板（1）と内㑡の透明板（3）の透明性加損われないよりにされている。
透明板（3）を上町の如く接首嗉部にてもの透過性を

との発明は，上述の上うに，曲囲径の大なる外御球面状透明板の内獬凹面に内雄球面状蒝明板
且つその㧽管は非常に㧧固に行われ，長期の使用 に耐充るバッシミーとなし得る。更に，外面透明板に内㑬透明板を接着し走楼に，それらの内面 に同時的に鋃面薄腹付着処理して均—なミラー効
面状运明板火上り外部から有奻に保棲されるた以，
明硬質フクリル树脂材料に上る場合てもその表面 は完全に保㳟される。更に，内偑球面状镜体はそ の外面の外溉球面状鿷体上りその映像㑯城加広い在めに従来のハックミラーては死角と左る領域も他の可視僋城と共にドライバーの視野に入る丸め，従来のバックミラーの死角に上つて発生したさ5事故を未然に防止できる。
4．図面の䑌韩左既明
図面はとの発明の実施例を示すもので，第 1 図

特開罟55－76721（2）
賣わぬより汇貼着された状䫏で，外例球面状透明板（1）及 び内閛球面状透明板（3）の内湖面氏㯖空蒸着
 それぞれの透明板（1）（3）に鐄体処理をしてある。•日 は外领球面状透明板いの背部に重合した背板てあ つて，その周緑部を緑材（9）にと と背板（8）と外侕球面状透明板（1）を固定してある。

との発明のハックミラーKよると，曲率半街の小さな内誠面状透明板（3）に上る镜体はその外面
 のバッタミラーKまいては死角てあつた領域も広嶄囲に映像せしめるので，自勤車の㐐進又は折曲走行，特に左折走行時にあんて，対物又は対人事故と左る対象物を予めドライバーの視野に入る光 めとれらの事故を未然に予防出来る。内溉鏡体（3） を外唰繶体价の1／8の面穔を占めるようその下部火配雷した場合，第3図点線て示す矢印 a の領城 は既在のバッタミラーで弫る加，本発明のバッタ ミラーては縜總て示ち矢印肉の頜域が可視でき大

（4）

3 㸚は各榜成部品を分離して示した断面図，第4図は徍来のバッタミラーとの比較において本発男 の使用状態を示す説明図をある。
（1）…外侽球面状透明板
（2）…外溉透明板の凶面
（3）…内㑡球面状透明板
（a）…内側透明板の凹面
（6）…接弟部
（7）…銀面淳膜

1. Name of Invention

Back Mirror
2. Scope of Patent Claim
(1) This is a back mirror characterized as after a smaller spherical inside plate is adhered to a specific area inside of the larger spherical outside transparent plate, the inner surfaces of both plates are treated with silver thin film.
(2) This back mirror is a proposal application as indicated above in scope of patent claim (1); characterized as a spherical inside transparent plate that is adhered onto the lower inner area of spherical outside transparent plate.
(3) This back mirror is a proposal application as indicated above in scope of patent claim (1) and (2); characterized by spherical outside transparent plate made of glass material and a spherical inside transparent plate made of molded rigid acrylic material.
3. Detailed explanation of Invention

This invention is an automobile back mirror which expands the visible area reflected in the mirror and minimizes blind areas that do not appear in the back mirror.

In past automobile back mirrors, especially for large vehicles, there were blind areas that did not appear in the back mirror, causing accidents where a person or object standing in this blind area gets run over. In order to prevent such accidents, various improvements have been made on recent back mirrors, but there were drawbacks such as production costs being too expensive, mirrors cracking, etc.

This invention is to solve the above issues, and the intent is to attach a smaller spherical inside plate onto a specific area inside of the larger spherical outside transparent plate. Both inner surfaces of the plate are treated with silver thin film. This expands the visible area in the back mirror while simultaneously removing blind areas. Also, this back mirror is low in cost, is simple to manufacture and is also a robust structure.

Below is the explanation of the invention along with its pictures.
(1) is a spherical outside transparent plate made of glass or synthetic resin etc. or equivalent material. Its inner recess surface (2) has a curvature radius of 500 mm . (3) is a spherical inside transparent plate molded from rigid acrylic material. The inner recess surface (4) has a smaller curvature radius than the spherical outside transparent plate (2), where the ideal curvature radius is about 200 mm . The outer surface (5) of spherical inside transparent plate (3) is adhered to the lower inside
surface (2) of spherical inside transparent plate (1). This is adhered by a transparent adhesive so that the transparency between the outside transparent plate (1) and the inside transparent plate (3) may not be obstructed at the position of the adhered portion (6).

With the spherical inside transparent plate (3) adhered to the inner surface (2) of spherical outside transparent plate (1) as mentioned above so that the transparency is not obstructed, a silver thin film is formed by vacuum evaporation process or the like on the inner surfaces of spherical outside transparent surface (1) and spherical inside transparent surface (3) and both transparent plates (1) and (3) are mirror treated. (8) is a back plate layered behind the spherical inside transparent surface, and the peripheral edges of the back plate (8) and spherical outer transparent plate (1) are fixed via edgewise member (9).

According to the invention of this back mirror, the mirror of the spherical inside transparent plate (3) with a smaller curvature radius has a greater imaging area than that of the outside mirror (1). Therefore, areas that would be blind areas in previous back mirrors are now reflected on this new mirror. Thus, when the vehicle is in motion or turning, especially when turning left, those objects or persons in this blind area that would cause accidents in the past will already be in the field of vision of the driver, preventing accidents from occurring. When the inside mirror (3) is located on the lower portion of outside mirror (1) so that it takes up $1 / 3$ of its area, previous back mirrors would only reflect within span of dotted area (arrow A) but this invention of the back mirror would greatly expand this visible area to (arrow B) (See picture 4).

This invention adheres the entire surface on the spherical inside transparent plate to the inside surface of the spherical outer transparent plate, so adhesion process is simple and extremely robust, making it a back mirror with long term durability. Furthermore, after adhesion of the inside transparent plate to the outside transparent plate, both inside surfaces are simultaneously treated with silver thin film, resulting in an even-surface mirror effect. Also, since the spherical inside transparent plate is effectively protected by the spherical outside transparent plate, its surface is completely protected even if the spherical inside transparent plate is made of transparent rigid acrylic material which is a relatively low cost material fit for mass production. Furthermore, since the spherical inside mirror has a greater image field than that of the spherical outside mirror, areas which would have remained blind areas in previous back mirrors will now be visible to the driver, thus, allowing prevention of accidents that in the past would occur due to these
blind areas in the back mirror.
4. Simple Explanation of Pictures

The pictures show examples of this invention. Picture 1 shows the front view as it is installed, picture 2 shows the vertical section, Picture 3 shows the section of component parts, and picture 4 shows comparison of the field of vision to current back mirrors.
\square - Spherical outside transparent plate
\square - Inside recess surface of outside transparent plat
\square - Spherical inside transparent plate- Inside recess surface of inside transparent plate
\square - Adhesion area
\square - Silver thin film

DOUBLE SIDE MIRROR FOR AUTOMOBILE

Publication number: JP1186443	
Publication date:	1989-07-25
Inventor:	KITSUMOTO NORIHIKO
Applicant:	KITSUMOTO NORIHIKO
Classification:	
- International:	B60R1/06; B60R1/08; B60R1/06; B60R1/08; (IPC1-7):
	B60R1/06
- Europann:	B60R1/08D

Appilcation number: JP19880012348 19880121
Priority number(s): JP49880012348 19880121

Report a data error here

Abstract of JP1186443
PURPOSE:To contribute to traffic safety by constituting side mirrors to be arranged at the opposite sides of an automobile with master and slave mirrors thereby limiting dead angle of driver. CONSTITUTION:The side mirror
comprises a master mirror 2 and a slave mirror 3 , suitable for confirmation of rear and side views of an automobile, fixed to a side mirror lews of an automobile, fixed to a side mirro rame 1 which is fixed to the body at a base fixing section 4 . Since conditions at immediately rear section or side section, which conventionally come within dead angle, can be confirmed reliably, the side mirror contributes to safe driving.

（19）日本国特許庁（J P）
（12）公 開特許公報（A）

（51）Int． Cl^{4}		識別記号	庁内整理番号		（13）公開	平成1年（1989）7月25日		
B 60 R	1／06		$\mathrm{G}-7812-3 \mathrm{D}$					
				審査請求	未請求	請求項の数	1	（全2頁）

明 細 書

1．発明の名称 首範軋捔三面式サイドミラー
2．特許請求の範囲
自動車の两側に取付けるサイドミラーを親子二面の鏡で構成した装置。
3．発明の䛨細な説明
（A）産業上の利用分野
この発明は，自動車に取付けるサイドミラー
を，渡子二面にする事により，運転者の死角 を少なくする装惪に関するものです。
（B）侻来の技術
これまでのサイドミラーは，一面であるため，
運転者の後方視野が狭い。
（C）発明が解決しようとする問題点
道路の形状によっては，支線から本線へ合流 する時や，高速道路及び複線を併走する場合 に，現在のサイドミラーでは，後方の確認は出来るが，自車の最近かな後方や，側方が確認できず死角となって居り非常に危険である。
（D）問題点を解決するための手段
サイドミラーの形状を親子二面の鏡にする事 により後方のみならず側方の碓認が容易に出来る事になる。
（E）発明の効果本発明の効果は，運転者が走行中に道路の合流点や高速道路，及び複線での車線変更をず る場合，最近かな後力や側方の確認が出来る ため，安全運転の碓保になります。
4．図面の簡単な説明
第 図は本発明の平面図
1．サイドミラーフレーム3．子ミラー
2．桯ミラー 4．取付部
第二図は本発明の正面図

特許出願人 橘本紀彦

－302－

VISION MIRROR OF VEHICLE

Publication number: JP1208245 (A)	
Publication date:	1989-08-22
Inventor(s):	MORIWAKE TAKUMI +
Applicant(s):	MORIWAKE TAKUMI +
Classification:	
- international:	B60R1/06; B60R1/08; B60R1/06; B60R1/08; (IPC1-7): B60R1/06
- European:	B60R1/08D2
Application number: JP19880034760 19880217	
Priority number(s)	JP19880034760 19880217

Abstract of JP 1208245 (A)

PURPOSE:To allow safe checking of a wide field of sight covering side fields by equipping a back vision mirror at its side edges with a side vision mirror. CONSTITUTION:A mirror 1 is equipped with a side vision mirror, which is bent in the direction of widening the mirror surface to the right edge of a smaller back vision mirror 2 in a plane or with a radius of curvature near plane. The mirror surface of this side visions mirror 3 may be flat, curved, or hyperbolic. This widens the field of sight greatly to the side view ranges 6 , compared with the conventional arrangement which permits checking merely the back view range 5 from the point of sight 7 of the maneuverer, that accomplishes safe maneuvering of a vehicle.

Data supplied from the espacenet database - Worldwide

（19）日本国特許庁（JP）
 （11）特許出願公開
 （12）公 開 特 許 公 報（A）平1－208245

（54）Int．Cl．${ }^{4}$ 識別記号 庁内整理番号（43）公開 平成1年（1989）8月22日

B $60 \mathrm{R} \quad 1 / 06$

（54）発昭の名称 乗り物用後写鏡

（21）特 願 昭63－34760
（22）出 願 昭63（1988）2月17日

（22）	明	者	守	分	巧
（17）岡山県岡山市津高1444－24					
願	人	守	分	巧	岡山県岡山市津高1444－24

1 ，発明の名称
乘り物用後写鏡
2，特許請求の範囲
乘り物用後写鏡において後写鏡の侧緑部に侀写鏡を設けたことを特徵とする後写鏡。

3，発明の詳細な説明
（産基上の利用分野）
本発明は，乗り物用後写鏡に関するものである。

（従来の技術）

従来の後写鏡は，後方視野は確認出来ても倠方視野は確認出東なく䘽野範四が狭いと言う問題が あった。寺た平面鏡もしくはそれに近い期面率の小さい丒面鏡では視野が㹧く，曲面率の大きい広視野の曲面鏡では距離感がつかみにくいと言う問題があった。
（発明の目的）
本発明は，これら談来方法の欠点を险去するこ とを日的とするものであって，乗り物における後方覞䵟の距㒕感をつかむと共に，運転者の視点を

大きく動かすことなく的写鏡により制方視暒まで の広統囲な視野を安全に確認てきるようにした。
（実施甽）
以下図而に示した実施列に基づいて本発明を㝃明する。

第1図の实施例では右卵の自䡃車用後写鏡につ いて示している。第2図は第1図のX－Y方向の断面図で鏡体1に平面もしくはそれに近い曲面深 の小さい後写鏡2の右馿緑部を鏡面を広げる方四 に焚曲させ卵写鏡 3 としたものである。測写鏡 3 の鏡面は平面，曲面または双曲線でも良い。第3図は第1図と同じ形状の他の実施列のX－Y方向 の断面図で後写鏡2，側写銧3を分割して作成し た後，合わせて一鏡体に取り付けたものである。 また刨写鏡 3 は後写鏡 2 との合わせ部を可䚁支点 として矢符に示す機に任意の解度に動かす事も出来，また側写廐の背面に可動支点を設ければあら ゆる角度に動かすことも出来る。また後写鉒に现在広く使われているような遠隔操作により傕輖廑 よりこれな動かすことも可能である。

第4図は他の実施閉を示すものておる。説明を䈏詳にするために以下第1図と同し記号で説明する。本実施侧は自動車用の室内後写鏡についての実施列で平而もしくはきれに近い胡面率の小さい後写鏡2の両制の抑緑部を鏡面を広げる方间に然曲を せ側写鏡 3 とした实施例である。

第5図は本発明の更にその他の実施刚を示すも のである。本実施例は大型自動車用の在仜の线写鏡についての実施例て後写鏡2の右制緑部と下方
 10として取り付け大実施例である。
部8とドーー取り付け部9に本発明を取り付けた取り付け状惉の実施例である。なを実施例てはす べて右刨の後写鏡について述べたが在獬の後写鏡 については左的縁部を鏡面を広げる方向に劫曲を せ写鏡としたり，第3図のように别の鏡を合わ せて剬肎鏡とすれ話良いことは言うまでもない。 （発明の効果）
本発明は，実施狮に示すように乘り物用後写鏡

つ後方梘强範囲5についても同しくく距離感をつか むことが出来る。以上のとうり本発明を使用する ことにより従来の技術で迟べた問題点を解決する ことが出来，乘り物をより方全に傕転することが出来る。

4，図面の簡単な説明
図は本発明の寒施例を示すもので，第1図は右湖後导鏡の斜妏図。第2図は第1図のX－Y方向 の晰面図。第3図は同しく第1図の他の実旅例の $X-Y$ 方问の断面図。第4図は室内挠写鏡の平面図。第5図はその他の実施到の平面図。第6図は自動車に本発明を取り付けた取り付け㔚笖の平面図である。
図中の符号を説明をれば次のとうりである。
（1）は鏡休
（2）は後肎錇
（3）は㑬写篭
（4）は鐑体取り付け部
（5）は後方褀暒範四

の馿緑部に倒写鏡を設けたもので，その効果を第 2 図について説明すると迉転者の睍点 7 に㸚して現在広く使用されているものでは後方初野筑四5 まてしか確認出来なかったものが睸方䧋野範四6 まで視野の大輵な应大が出来る。この効果を第6図によって詳しく説明すると後写鏡のドアー取わ付け部9に取り付けた場合は䦽転者の視点7に対 してをの後方視此範且は現在一般に使われている ものては5Aまでであるが本発明では菛方得男算
 さらにこのような広視野でありなから得野莿囲に ついては距娈感をつかむことが山来，制写鏡によ り帆方視野が確認出来ることにより曹線変更時，羊路の合流点等において傕転者の初点を大きく動 かすことなく安全に運輯出来る。同しく第6図の フエンダー取り付け部8に取り付けた場合は沫通視の恶い交差点，車㡽の出し入れ時等においての

四6Bまでの新野を確記することが出来，なをか
（7）は䞡転者の梖点
（8）はフエンダー取り付け暗
（9）はトアー取り付け部
（10）は下方鏡

第6図

PAT-NO: JP362075619A

DOCUMENT-IDENTIFIER: JP 62075619 A
TITLE: GLARE-PROOF MIRROR
PUBN-DATE: \quad April 7, 1987

INVENTOR-INFORMATION:
NAME
TOMITA, MASAAKI

ASSIGNEE-INFORMATION:

NAME	COUNTRY
NIFCO INC	N/A

APPL-NO: JP60217718
APPL-DATE: September 30, 1985

INT-CL (IPC): G02F001/133, B60R001/04, G02B005/08, G02F001/133
US-CL-CURRENT: 359/603

ABSTRACT:

PURPOSE: To improve the uniformity of thickness of a liquid crystal of a curved dazzleproof mirror by forming one electrode substrate with a curved hard material and using a flexible plate-shaped body to curve the other electrode substrate along the curved hard material.

CONSTITUTION: Since an electrode substrate 11 consisting of a flexible plate material is curved along a curved hard electrode substrate 10 and has both ends held, the gap between two electrode substrates 10 and 11 is kept approximately uniform, and as the result, the thickness of a liquid crystal layer 14 is approximately uniform throughout. Plural ball-shaped spacers 15 which consist of a glass material and have the same particle size are scattered in the liquid crystal to form the liquid crystal 14 with a uniform thickness throughout more surely.

COPYRIGHT: (C)1987,JPO\&Japi
（51）Int． Cl .4

G	02	F	$1 / 133$
B	60	R	$1 / 04$
G	02	B	$5 / 08$
G	02	F	$1 / 133$

識別記号
庁内整理番号
301

309

（823）発 明 者 富 田 正 明 橫浜市戸堟区舞岡町184番地1 株式会社ニフコ内
（11）出 願 人 株式会社 ニフコ （3）代 理 人 弁理士 早川 誠志

横浜市戸堟区舞岡町184番地1

朋 㿻 息

1．発明の名妳
防阹ミラー
2．特計読求の範囲
光を反的するための反的居を有する第1の笛框基板と第2の雫揰基板との間に淶毘が保持され，

 を可交するょうにした防购ミラーにおいて；

他方の要雨基板を可暁性材で形成して，前記一方 の西復埜板に活つて洨曲杓に配閩して，的記法曲状に形成された写框基板と前記可湾性材で形成さ れた他方の留挭基板との間に清曲形状に前䟕液晶 を保持したことを特微とする防昡ミラー。

＜本発明の産業上の利用分野〉
本発朋は，液品を用いて反射事を可変する防防

ミラーに羾する。
＜従来の技術〉（第 3 図）
防脑膜として，金属酸化物等の渚色旇脱を施した り，階光揁を近ねたりして反的媒への光の透過率 を低下させて，妵しさを趽いでいる。しかして， このような防防ミラーを自动而のバックミラーな どに用いる䭪合は，視界を広くするために凸面に秷曲させている。

 して㫢しさを防くように，上記の防防昐の代わり に夜晶を利用した防旼ミラーが間発されている。第3図は，このょうに波品を防玹䐓の代りとし て用いた従来の防眩ミラーを示している。

第3図におかて，1は平板狱の透明ながラス材 よりなり，上方測からの光を反射す憂ために，そ の下面門に，金四罷などから成る反时周1aが形成されっまた上面㑇に尲明電情眉1bが形成され た返明な第1の䍡殹荎板である。

2は，シール材3，3を介して第1の電㮔桨板 1 と平行に对向して配䍜された逜明な第2の筆怔
㤆1と同梙に，平板上のカラス材よりなり，その

4は，第1の電臣基板1と第2の党婹基板2お よび，シール材3，3とによって形成された空閣 に封入された㳏㫛である。

液晶4としては，二色性染料を合む液履㑇成物 を使用し，透明雷婹 1 b ， 2 a 國に触界が印加さ れると，光送逼事が変化する。 5 は漛露材である。

留2aとの間との間に所定の露位従を与え，これ
化させるものである。

この防忶ミラーでは，入的光は，矢印Aで示す

度の均一さに達成することは全く困贅であった。
このため，液昆を用いた防政ミラーを凸面にし ようとしても，波晶图の腑さの不均一が迷けられ す，反射佻のゆかみ，明るさの不均一が生じてい た。

く本発明の目的＞

本発明は，上眍の久点を改め，坆めて容易に液晶屚の厚さを均一にした滇的形状の，液晶を用い た防忶ミラーを捉供することを目旳としている。 く本発明の一実施例〉（第 1 図）

以下，図面に基ついて本発明の一実施阴を説朋 する。

第1図は，本発明の一実施搠の防䧇ミラーを示。 す断面図である。

図において，10杜所聇の祝爵をもつために，所定の曲象で長さ方向に清曲された战状の适朋な
板であり，その下面惻には，上方㥸からの光を反的するために，アルミニウム等の金庭が蒸省され て，絽面犾に処理された反时局10aが下面进全

して反対嵓1aで反的されるが，波昆果動回路6 によって液呂4の光造過率を変えることによって，防蚶ミラーの反的実を変えることができる。

しかしながら，このような促来の液昆を用いた防眩ミラーは，平板状てあって潪曲されていない ため，白動収のハックミラーなどに用いる照合，視界が咲く，遈転の安全上，梗めて不部合であっ た。

このため，第3図に示した液昜による防玹ミラ

送明板間に波屌を保持させることが試みられてい る。

しかして，2枚の罩曲板間に保持される液㫛成 の厚みを全面にわたり均一にするには，両啰曲板 の曲面精度を高くすることが必要となる。しかし，
度）ので，いかに渎明板の曲•面槠度を高くしても，波思間の厚さを全面にわたっての10 $\mu \pm 1 \mu$ 程

面に形成されている。
破化物（剧えば酸化なンジウム）なとの透唃で雷気伝朗度の高い透明電㨁庿10bが，また，シー
 れた状银で弫ほ全面にわたつて形成されている。

11 は，可摬性を古つ送明材（明えばフラスチ ックフィルムなと）によって㤢状に形成された管 2の䨘㮔基板であり，第2の角挃基板11の下面明には，第1の罣梗基板10と同漛に全面にわた って透明霞忹分 11 a か形成されていて，シール材12a，12bを介して第1の霓框㤆10に浻って湾曲させて取付けられている。

 である。

 ひ，シール材12a，12bによって形成された

汻曲した空間に保持された液㫛㕣である。
 る液思兩動回路である。
 を吥質の流曲した雷板基板10に沿つて淯曲させ て両媏を保持するため，2つの電復隐板10，1 1閊の閊阴はほぼ均一に保たれ，この結果，液量居14の原さが全面にわたつて，ほほほ均ーとなる。 く本発朋の他の実施〉（第2图）

第2図は本発明の他の実泥刐による防砇ミラー の豆部を拡大して示している。

即ち，この実施沭では，第1図の実陁明におけ
 の球状の同一样径のスベーサ15が敬布されてい る。

このスペーサ15は，目陽とする液思問の男み と同一寸法の粗径をもち，呚品閣14の全面にほ ほ均一に县取されている。このため，可㮱性をも つ第2の電腫基板11を第1の雷模基板10に治 ってシール材12a，12bをかして取付けると，

液昷14a内に致布された同一䅅のスペーサ15，
 11 aが当接するため，液品原 14 の攵さは，一屈確実に全面にわたつて均一に肜成される。

く本発朋の奻里〉
以上の絸明のように本発朋の防玹ミラーでは，一方の雷情基㤆を渿曲した硬啠材で形成し，他方
 した硬貲材に沿って滴曲させているので，2つの出揰迳扳は全面にわたって同一閊网で対向する。 このため，2つの霞语茶板間の液届届は全面にわ たつて鸤一な厙さとなる。
一な原さとなった淍四した陏玹ミラーを，届ゅな掃造でありなから精度良く容易に実睍できる。こ のため，バッグミラーなととして用いると视界が広くなり安全となり，また反射像のゆがみ，明る さの不均一もなくなる。

4．図面の閊単な䟛明
第1図は本発明の一実做倒を示す断面図，第2

図は本発朋の他の実施例の要部を示す赃大断面図第3 図は従来の波晶を用いた防宬ミラーを示す断面図である。
$10 \cdots \cdots$ 第 1 の果栕基板， 10 a……反的居，

 12 a……シール材， 12 b……シール材， 13
 $15 \cdots \cdots$ スペーサ，16……液昆㸚動回路。

铞 1 国

待䑙出䝠人
珠式会社ニフコ

第 2 国

代理人 弁 理士 早 川碱志

CONVEX REFLECTION MIRROR

Data supplied from the espacenet database - Worldwide

（19）日本国特許庁（JP） （11）特許出願公閣
 （12）公 開特許公報（A）
 庁内整理番号
 A－7036－2H
 $\mathrm{G}-7443-3 \mathrm{D}$
 $\mathrm{J}-7036-2 \mathrm{H}$ 䉒査請求 未請求 発明の数 1 （全 3 頁）
 識別記号

（51）Int． Cl_{4}^{4}
G $02 \mathrm{~B} \quad 5 / 10$
$\mathrm{B} 60 \mathrm{R} \quad 1 / 06$
G 02 B $5 / 10$
（54）発明の名称 凸面反射鏡
（21）特 願 昭60－246703
（22）出 願 昭60（1985）10月31日

（94）代 理 人 弁理士 西山 聞一

明細需

1．発明の名称
凸面反射䠝
2．特許請求の範用
（1）鏡本体の表面領域を，使用白的に応じて任意 に設定された曲率半怪より成る错数の球面頜域 にて区割槁成し，隣接する球面領域間に生じる不連続頜域を相互の球面頜域間に涉り頂次連郓的に曲率半佳か変化する曲面にて拸行せしめ， かかる不連続頜域を相互の球面頜域を円滑に继続せしめる晕し領域と成したことを持徽とする凸面反評镜。
（2）球面領域は一端方から他端力へ向かうに従い覑次曲率半径を小ならしめる様に配直したこと を特徵とする特謂請求の範囲第1項記載の凸面反射镜。
（3）任意の球面頡域間には平面頜域が介在されて いることを特微とする特許請求の觔囲第1項記截の凸面反射鏡。
3．発明の詳钢な説明

〔発明の目的〕
産業上の利用分野
本発明は車䡛用バックミラー，防犯ミラー，
路上に㹲声されるカープミラー等の広誢界反射鋧として利用される凸面反射鏡に関するものて ある。

従来の技街

従来車軲用バックミラー，防犯ミラー，路上 に設置されるカーブミラー等の各喠用途に供さ れている凸面反射鏡は，全面に啮引同一の曲率半径にて成形されたものであるため，充分なる視認頜域の確保を得る目的で曲穴半経を小さく設定した場合は，全体に像の歪か大きく距䂇感 の把握が園難となり，又凸面反射鏡の用途によ っては特定の方向は視認䡉囲の拡がりが要求さ れるも，他の方向は政の少ない像の視認か要求 される場合があり，かかる要求に対しては全面 に粙り同一の曲率半経にて成形された従来の凸面反射鏡では，視認領域の杜張化に怑って不要範四の像も必然的に視訒されることとなるため
－用㑒によっては制って目的とする像の認識の妨沙となる等の不都合を生じていた。

発明が解決しようとする問題点

本発明は用途に応じて任意の方向に挸訆範囲 の脏かり去得られ，像の倍率も目的とする視認須域に応じて任意の倍率が得られ，且つ全面に湦り像の輄がりが自然て歪の少ない凸面反射鏡 を提供せんとするものである。
（発明の構成）

間題点を解決するなめの手戏

本発明奻かかる点に锴み，鏡本体の表面領域 を，使用目的に応じて任意に設定された的率半径より成る椱数の球面頜域にて区壾搮成し，隣接する球面領域間に生じる不連続領域を相互の球面頜域間に涉り順次連続的に曲率半径が変化 する曲面にて移行せしめ，かかる不連続領域を相互の球面領琙を円滑に継続せしめる胥し領域 と茂した凸面反射鏡を提倛して上記久点を解消 せんとしたものである。
作 用

本発明に保る凸面反射鉱は，複数の球面頼域 が配冝されているため，鏡本体内の場所により その視記範囲，倍率は設定された曲率半经に応 じて変化し，又接する球面領域間の不連続領域は䌸し敛域にて円滑に継続されているため，像に極端な歪を生じることなく自然な反射像か得られるのてある。

宔施例

以下本発明の一実施列を図面に基つもて説明 すると，

1は無幾ガラスにて型成形せしめた後，表面 を鋧面蒸着処理せしめた凸面反射鑥の镍本体で あり，該鏡本体1の表面領域2を所定の曲率半柊Ra，Rb，Rc…dり成る複数の球面領域3，3a …に区割せしめ，該球面領域 $3, ~ 3 a \cdots$ ．．．おいて隣挼する相互の球面領域3，3a…間に生じる曲面の不連続頜域4，4a…は，相互の球面頜域3 ，3a…の接線間に渋引覑次連蜩的に曲率半径が変化すると共に，相互間を段差冬生じることな く円滑に継続せしめる曲面にて搆成し，かかる

る。
又，第4図は第2の実施挒を示し，球面頜域 3，3a…を一端方から他端方へ向かうに唗い順次曲幸半䅅を小ならしめる埭に配頁したものて ，一貸㟨の視認頜域を充分に確保したい場合に適し，列えば大型車軩用のバックミラーとして下方へ至るに従い順次曲率半径を小ならしめる様に誈置したもの（一例としてRa＝600 $R b=500 \mathrm{~m}$ ，Rc＝400m）を使用すれば，通常死角ときれている前綸側方の視認か可能と なり，前铪坑よる巻き込み事故の防止に役立つ ものごかる。

又，第 3 図は第3 の実施例を示し，任意の球面須淢3，3a…笛に平面領域6を介在せしめた ちのてあう，これは持定の部分に与る像を等倍 に近い状態て視認させることにより，特に距噰感の正媈な把搌が要求される場合に通主る。

筬，何えの奉施例におかても球两頜域3，3a …の出心波，璄本体1代対し中央蟿上に整列配

図に図示する様に頃斜する軸上に配頁すること も可能であり，球面頜域 3 ，3a…の中心位置は何ら眼定するものではない。

〔発明の効果〕

要するに本発明は，鏡本体1の表面䪽域2を ，使用目的に応じて任意に設定された曲率半径 より成る腹数の球面頜域3，3a…にて区割搆成 したのて，距離感の正確なる把握を若望する頜域，視認範囲の昿がりを希望する頜域を，用㑒 に応じて䙹本体1中の上下，左吉任意の值直に自由に設定出来，又堘接する球面頜域3，3a…閣公生じる不連続頜域4，4a…を相互の球面領域3，3a…間に涉り順次連続的に曲率半径が変化方る曲面にて哆行せしめ，かかる不連続頜域 4，4a…を相互の球面頜域3，3a…を円滑に継境せしめる蛋し頜域司，5a…と成したのて，鋇本体1に愎数の曲率兴径の異なる球面領域3， 3a…か存在しているこち够ら学像が㙘孤に歪さ ことなく自然な反射像を得ることが出来ると共 に，距離感の把握も容易ならしめることが出来
，よって車䡛用バックミラー，防犯ミラー，路上に設霬されるカーブミラー等の広視界反射鏡 として広範囲に活用することが出来る等その実用的効果甚だ大なものである。
4．図面の簡単な説明
図は本発明の一実施例を示すちのにして，第 1図は本発明に係る凸面反射鏡の正面図，第2図は同上断面図，第3図乃至第6図は他の実施例を示す図てある。

1鏡本体 2表面領域 3，3a…球面領域 4．4a…不連続頏域 5，5a…量し領域
以 上

出願人	三	宅	信	也
$"$	山	田	正	弘
$"$	久	羂	孝	－

第1図

第2 図
第 3 图

第4図

第5

第6 図

DERWENT-ACC-NO: 2003-296969
DERWENT-WEEK: 200329

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: \quad Manufacture of vehicle mirror integrally
formed with
convex mirror

INVENTOR: JUNG, G Y
PATENT-ASSIGNEE: JUNG GY[JUNGI]
PRIORITY-DATA: 2001 KR-0030916 (June 1, 2001)
PATENT-FAMILY:
PUB-NO PUB-DATE LANGUAGE PAGES
MAIN-IPC
KR 2002092059 A December 11, 2002 N/A 001 B60R 001/08

APPLICATION-DATA:
PUB-NO APPL-DESCRIPTOR APPL-NO
APPL-DATE
KR2002092059A N/A 2001KR-0030916
June 1, 2001
INT-CL (IPC): B60R001/08

```
11/11/2004, EAST Version: 1.4.1
```

ABSTRACTED-PUB-NO: KR2002092059A

BASIC-ABSTRACT:

NOVELTY - The production of a vehicle mirror allows a driver to view a hidden
area without installing an auxiliary mirror and manufactures the vehicle mirror inexpensively.

DETAILED DESCRIPTION - A flat glass plate (2) is cut to a predetermined size.
After processing the edges of the flat glass plate, mercury is applied to a
rear surface of the flat glass plate. The flat glass plate is placed in a mold
frame (3). The mold frame is formed with a molding slot (3b)
having a diameter
of $30-50 \mathrm{~mm}$ and a thickness of $3-4 \mathrm{~mm}$. Heat is applied to the flat glass plate
from an upper portion by a heating device (4). At this time, the flat glass
plate is heated to 1200-1400 deg. C to form a convex part (5).
The flat glass
plate is rapidly cooled and mercury is applied to a rear side of the flat glass
plate.
CHOSEN-DRAWING: Dwg.1/10
11/11/2004, EAST Version: 1.4.1

-TERMS: MANUFACTURE VEHICLE MIRROR INTEGRAL FORMING CONVEX MIRROR

DERWENT-CLASS: L01 Q17
CPI-CODES: L01-E05; L01-G04C; L01-G07; L01-LO2;

SECONDARY-ACC-NO:
CPI Secondary Accession Numbers: C2003-077129

11/11/2004, EAST Version: 1.4.1

Octrooiraad

(10)ATerinzagelegging
(11) $\mathbf{7 9 0 8 2 5 7}$

Nederland (19) NL

(54) Achteruitkijkspiegel.

(51) Int. Cl^{3}.: B60R1/08.
(71) Aanvrager: Nicolaas Bartholomeus de Jongh te Rotterdam.
(74) Gem.: Ir. A. Siedsma c.s.

Octrooibureau Arnold \& Siedsma
Sweelinckplein 1
2517 GK 's-Gravenhage.

(43) Ter inzage gelegd 1 juni 1981.

De aan dit blad gehechte stukken ziin een afdruk van de oorspronkelijk ingediende
beschrijing met conclusie(s) en eventuele tekening(en).
"Achteruitkijkspiegel"

De uitvinding heeft betrekking op een achteruitkijkspiegel, in het bijzonder voor motorvoertuigen, omvattende een vlak hoofdspiegeldeel en een hulpspiegeldeel voor het vergroten van het gezichtsveld van de gebruiker.

Een dergelijke achteruitkijkspiegel is bekend uit de Nederlandse ter inzage gelegde octrooiaanvrage No. 77. I1500. Bij deze bekende achteruitkijkspiegel is het hulpspiegeldeel uitgevoerd als vlakke spiegel. Dit brengt een aantal problemen en beperkingen met zich mee, die de uitvinding beoogt op te lossen resp. op te heffen. Bij juiste instelling van de bekende spiegel kan inderdaad worden bereikt, dat het gezichtsveld van de gebruiker zodanig wordt vergroot, dat de "dode hoek" door het hulpspiegeIdeel wordt bestreken, hetgeen de verkeersveiligheid ten goede komt. Bij deze bekende spiegel is evenwel een juiste instelling van het uiterste belang, aangezien bij zelfs geringe verstellingen het gevaar bestaat, dat de gebruiker misleid wordt door de door hem in de spiegel waargenomen beelden. Bovendien is het hulpspiegeldeel bij de bekende achteruitkijkspiegel relatief klein uitgevoerd, zodat slechts zeer beperkte informatie over de verkeerssituatie in de doce hoek wordt Verkregen. Zoais verder blijkt uit de beschrijving van de bekende spiegel, is deze spiegel beperkt tot toepassing bij een buitenspiegel aan de zijde van de bestuurder, en wel in het bijzonder voor het bestrijken van de dode hoek.

De uitvinding stelt zich ten doel, een achteruitkijkspiegel te verschaffen, die de gebruiker meer uitgebreide informatie over de verkeerssituatie achter hem verschaft en zich bovendien leent voor toepassingen, waarbij de gebruiker gebaat kan zijn bij extra visuele informatie.

Met het oog daarop stelt de uitvinding een
achteruitkijkspiegel van het in de aanhef vermelde type voor, die volgens de uitvinding het kenmerk vertoont, dat het hulpspiegeldeel bol is.

7908257

Van voordeel is die uitvoeringsvorm, waarbij het hulpspiegeldeel is uitgevoerd als op het hoofdspiegeldeel aanbrengbaar, los element. Op deze wijze kan een bezitter van een reeds van een achteruitkijkspiegel voorzien voertuig een hulpspiegeldeel aanbrengen, zodat hij een samengestelde achteruitkijkspiegel verkrijgt met een hoofdspiegeldeel en een hulpspiegeldeel.

Praktisch is die uitvoeringsvorm van een los hulpspiegeldeel, waarbij dit hulpspiegeldeel is voorzien van een vlakke achterplaat, waarop een klevend element is aangebracht. Bij voorkeur is dit klevende element uitgevoerd als dubbelzijdig klevende, veerkrachtige plaat. Dit heeft het voordeel dat, indien door een ongeval het hoofdspiegeldeel beschadiga raakt, het hulpspiegeldeel met redelijke waarschijnlijkheid intact blijft, zodat de gebruiker zijn reis zonder gevaar kan voortzetten.

Verder geniet de voorkeur die uitvoeringsvorm, waarbij het hulpspiegeldeel rond is en zijn rand ten minste enigszins vloeiend aan het oppervlak van het hoofdspiegeldeel aansluit. Deze uitvoeringsvorm is van voordeel aangezien daarbif, anders dan bij de constructie van de bekende spiegel volgens de Nederlandse octrooiaanvrage No. 77.11500 z geen Kans bestaat, dat bijvoorbeeld bij het wassen van het voertuig de hulpspiegel losraakt.

In een verdere variant is het hulpspiegeldeel als éen geheel met het hoofdspiegeldeel uitgevoerd.

Bijvoorbeeld kan de spiegel een draagplaat met een vlak en een bol deel omvatten, op welke draagplaat een spiegelende laag is aangebracht. Deze spiegelende laag kan op de achterzijde van de draagplaat zijn aangebracht, waarbij de draagplaat transparant is. In dit geval dient de draagplaat tevens als beschermlaag voor de spiegelende laag. Ook kan de spiegelende laag aan de voorzijde van de draagplaat zijn aangebracht. In dat geval kan de draagplaat zijn uitgevoerd als geheel vlakke plaat, met een bolvormig, verdikt deel, hetgeen de stevigheid van de plaat ten goede komt, maar de spiegelende laag onbeschermd laat.

7908257

Een verdere variant is die, waarbij het hoofdspiegeldeel en het hulpspiegeldeel zijn uitgevoerd als een plaat met een vlak en een bol deel, het oppervlak van welke plaat glad is. Bijvoorbeeld kan deze plaat van gepolijst aluminium zijn.

Zoals reeds is opgemerkt, biedt de spiegel volgens de uitvinding nog verder gaande toepassingsmogelijkheden. Niet alleen de horizontale gezichtshoek van de gebruiker wordt namelijk vergroot, maar ook de verticale.
10 Hiervan kan gebruik worden gemaakt door bijvoorbeeld een spiegel volgens de uitvinding aan de van de gebruiker afgewende zijde van de auto aan te brengen, waardoor hij bijvoorbeeld bij achteruit parkeren ook lager geplaatste obstakels, bijvoorbeeld kilometerpalen of dergelijke, kan waarnemen. Verder kan een spiegel volgens de uitvinding als binnenspiegel in een voertuig worden geplaatst. Op deze wijze heeft de chauffeur steeds een goed zicht op'de in het voertuig achter hem plaatsvindende gebeurtenissen, bijvoorbeeld spelende kinderen.

De uitvinding zal nu worden toegelicht aan de hand van de bijgaande tekening. Hierin tonen:
fig. I een aanzicht van een uitvoeringsvoorbeeld van een spiegel volgens de uitvinding;
fig. 2 een dwarsdoorsnede langs de lijn II-II
in \ddagger ig. 1 :
fig. 3 een tweede uitvoeringsvorm van de spiegel volgens de uitvinding;
fig. 4 een derde uitvoeringsvorm van de spiegel volgens de uitvinding;
fig. 5 een schematisch bovenaanzicht van een auto met een spiegel volgens de uitvinding, waarbij de horizontale gezichtshoek van de chauffeur is weergegeven; en fig. 6 een schematisch zijaanzicht van een auto, waarbij de verticale gezichtshoek van de chauffeur is weergegeven.

Fig. 1 toont een aanzicht van een eerste uitvoeringsvorm van een achieruitkijkspiegel volgens de uitvinding. Deze spiegel omvat een vlak hoofdspiegeldeel 1 en 7908257
een bol hulpspiegeldeel 2, welk hoofdspiegeldeel 1 is ingebed in een huis 3, waarvan de rand 4 in fig. 1 zichtbaar is. Het hulpspiegeldeel 2 beslaat slechts een relatief klein gedeelte van het spiegeloppervlak van het hoofdspiegeldeel 1, waardoor de normaal met een vlakke spiegel verkregen informatie praktisch geheel behouden blijft. Door de bolle vorm van de spiegel 2 wordt een grotere gezichtshoek verkregen, een en ander zoals schematisch in fig. I is weergegeven in de vorm van het in de achteruitkijkspiegel door de gebruivolgens fig. 1 langs de lijn II-II. In dit uitvoeringsvoorbeeld is de hulpspiegel 2 uitgevoerd als los op het hoofdspiegeldeel l aangebracht element, omvattende het eigenlijke hulpspiegeldeel 2, een hulpspiegeldeelhuis 5, bijvoorbeeld uit aluminium, met een vlak achteroppervlak, waarop een tweezijdig klevend, veerkrachtig element 6 is aangebracht. Zoals uit deze figuur blijkt, is de omtreksrand van het hulpspiegeldeelhuis 5 zodanig gevormd, dat, te zamen met het tweezijdige kleefelement een enigszins vloeiende aansluiting op het oppervlak van het hoofdspiegeldeel 1 wordt verkregen.

Fig. 3 toont een tweede uitvoeringsvoorbeeld van de spiegel volgens de uitvinding, waarin het spiegelhuis niet is weergegeven. In deze uitvoeringsvorm omvat de spiegel een draagplaat 7, aan de achterzijde waarvan een spiegelende lasg 8 is aangebracht. De draagplaat 7 moet in dit geval uit transparant materiaal bestaan; de spiegelende laag 8 kan zijn uitgevoerd als reflecterende kunststof, aluminiumfolie, spiegelende kunststof of door een opdamptechniek op de draagplaat 7 zijn aangebracht.

Fig. 4 toont een derde variant van de spiegel volgens de uitvinding, waarbij een draagplaat 9, waarvan het achteroppervlak geheel vlak is en het voorvlak ten dele vlak en ten dele bol, aan zijn voorzijde is voorzien van een spiegelende laag 10. Deze spiegelende laag 10 kan in principe op dezelfde wijze zijn uitgevoerd als reeds aan de hand van fig. 3 is besproken.

7908257

Opgemerkt wordt, dat in het uitvoeringsvoorbeeld volgens fig. 3 de spiegelende laag 8 door de draagplaat 7 tegen beschadiging is bescherma. In het uitvoeringsvoorbeela volgens fig. 4 is dat niet het geval; de spiegelende laag 10 is derhalve bij voorkeur een weinig steviger, dikker, uitgevoerd dan de spiegelende laag 8.

Ten overvloede wordt opgemerkt, dat het uitvoeringsvoorbeeld volgens de fig. 1 en 2 in die zin van de uitvoeringsvoorbeelden volgens de fig. 3 en 4 verschilt, dat bij de fig. 1 en 2 sprake is van een hoofdspiegeldeel met een daarop aanbrengbaar los hulpspiegeldeel, terwijl in de fig. 3 en 4 sprake is van een achteruitkijkspiegel, waarbij het hoofdspiegeldeel en het hulpspiegeldeel geintegreerd zijn uitgevoerd.

Fig. 5 toont, hoe de horizontale gezichtshoek van een gebruiker vergroot door toepassing van een spiegel volgens de uitvinding. Met getrokken lijnen zijn de grenzen van het gezichtsveld in horizontale richting van de gebruiker bij gebruik van het hoofdspiegeldeel weergegeven; de onderbroken lijnen tonen de grenzen van het gezichisveld van de gebruiker, indien hij in het hulpspiegeldeel kijkt. Duidelijk is, dat geen enkele wezenlijke informatie voor de gebruiker verloren gaat, terwijl, zelfs bij een aanzienlijke verstelling van de gehele achteruitkijkspiegel, een voldoend groot gezichtsveld overblijft. Het behoeft geen betoog, dat dit een zeer belangrijke eigenschap is, die is verkregen door toepassing van een bol hulpspiegeldeel volgens de uitvinding.

De in fig. 6 getekende situatie heeft betrekking op het geval, waarin de chauffeur gebruik maakt van de achteruitkijkspiegel volgens de uitvinding om bijvoorbeeld in achterwaartse richting te parkeren. Behalve de reeds aan de hand van fig. 5 beschreven horizontale vergroting van zijn gezichtshoek blijkt uit fig. 6 de aanzienlijke vergroting van de verticale gezichtshoek, die in hei bijzonder van belang is voor het waarnemen van laag geplaatste obstakels, overstekende kinderen, of dergelijke. De getrokken lijnen duiden, evenals in fig. 5 , het gezichtsvela met het hoofdspiegeldeel aan, texwijl de onderbroken lijnen het gezichtsveld van het hulpspiegeldeel weergeven.

7908257

De uitvinding beperkt zich niet tot de beschreven uitvoeringsvoorbeelden. Diverse wijzigingen in de onderdelen en in hun onderlinge samenhang kunnen worden aangebracht, zonder dat daardoor het kader van de uitvinding wordt
hulpspiegeldeel vloeiend, met een geleidelijke overgang aansluit op het hoofdspiegeldeel, zodat in het hoofdspiegeldeel en het hulpspiegeldeel geen van elkaar gescheiden beelden worden waargenomen, maar slechts éen beeld, dat hulpspiegeldeel vervormd is.

COINCLUSIES

1. Achteruitkijkspiegel, in het bijzonder voor motorvoertuigen, omvattende een vlak hoofdspiegeldeel en een hulpspiegeldeel voor het vergroten van hei gezichtsveld van de gebruiker, met het kenmerk, dat het hulpspiegeldeel bol is.
2. Achteruitkijkspiegel volgens conclusie 1 , met het kenmerk, dat het hulpspiegeldeel is uitgevoerd als op het hoofdspiegeldeel aanbrengbaar, los element.
3. Achteruitkijkspiegel volgens conclusie 2 , met het kenmerk, dat het hulpspiegeldeel is voorzien van een vlakke achterplaat, waarop een klevend element is aangebracht.
4. Achteruitkijkspiegel volgens conclusie 3 , met het kenmerk, dat het klevende element is uitgevoerd als dubbelzijdig klevende, veerkrachtige plaat.
5. Achteruitkijkspiegel volgens conclusie 3 of 4 , met het kenmerk, dat het hulpspiegeldeel rond is en zijn rand ten minste enigszins vloeiend aan het oppervlak van het hoofdspiegeldeel aansluit.
6. Achteruitkijkspiegel volgens conclusie $I_{\text {, }}$ met het kenmerk, dat het hulpspiegeldeel is uitgevoerd als Een geheel met het hoofdspiegeldeel.
7. Achteruitkijkspiegel volgens conclusie $5_{\text {, }}$ gekenmerkt door een draagplaat met een vlak en een bol deel, waarop een spiegelende laag is aangebracht.
8. Achteruitkijkspiegel volgens conclusie 7 , met het kenmerk, dat de draagplaat transparant is en de spiegelende laag op de achterzijde daarvan is aangebracht.
9. Achteruitkijkspiegel volgens conclusie 7, met het kenmerk, dat de spiegelende laag op de voorzijde van de draagplaat is aangebracht.
10. Achteruitkijkspiegel volgens conclusie 6, met het kenmerk, dat het hoofdspiegeldeel en het hulpspiegeldeel zijn uitgevoerd als plaat met een vlak en een bol deel, 5 het oppervlak van welke plaat glad is. 7908257
```
    -8-
    11. Hulpspiegeldeel als omschreven in eén der
conclusies 2, 3, 4 of 5.
```


FIG. 1

FIG. 2

FIG. 3

- ${ }^{8}$

FIG: $4{ }^{9}$)

FIG. 5

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date

 1 November 2001 (01.11.2001)

PCT
(10) International Publication Number WO 01/81956 A1
(51) International Patent Classification':

G02B 5/08
(21) International Application Number: PCT/US01/13283
(22) International Filing Date: 24 April 2001 (24.04.2001)
(25) Filing Language:
(26) Publication Language:
(30) Priority Data:

091551,676
24 April 2000 (24.04.2000) US 09/733,410 11 December 2000 (11.12.2000) US
(71) Applicant and
(72) Inventor: PLATZER, George, E., Jr. [US/US]; 424 Cypress Road, Rochester Hills, MI 48309 (US).
(74) Agents: NEMAZI, John, E. et al.; Brooks \& Kushman, 1000 Town Center, 22nd floor, Southfield, MI 48075 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU, $\mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BR}, \mathrm{BY}, \mathrm{BZ}, \mathrm{CA}, \mathrm{CH}, \mathrm{CN}, \mathrm{CO}, \mathrm{CR}, \mathrm{CU}$, $\mathrm{CZ}, \mathrm{DE}, \mathrm{DK}, \mathrm{DM}, \mathrm{DZ}, \mathrm{EE}, \mathrm{ES}, \mathrm{FI}, \mathrm{GB}, \mathrm{GD}, \mathrm{GE}, \mathrm{GH}, \mathrm{GM}$, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(57) Abstract: A composite mirror includes a main viewing mirror (40) and an auxiliary blindzone viewing mirror (36) juxtaposed to expose the vehicle blindzone to the operator.

Compound Automotive Rearview Mirror

Field of Invention

The present invention relates generally to mirrors having multiple surfaces of differing magnification and, particularly, to the application of such mirrors as external side rearview automotive operator aides.

Background of the Invention

Originally, motor vehicles, particularly passenger cars, did not have mirrors to assist the driver. Early in this century however, both inside and outside mirrors were added to automotive vehicles to provide rearward and limited lateral visibility. As the number of vehicles and driving speeds increased, rearward visibility became ever more important.

Today, all passenger cars have a mirror centrally located inside the vehicle. This mirror is the primary mirror. It provides a wide viewing angle, giving an excellent view to the adjacent lanes at a distance of two or more car lengths to the rear. However, it is deficient in that it is unable to view the adjacent lanes at distances of less than one to two car lengths to the rear. In an effort to eliminate this deficiency and to provide rearward visibility when the rear window is blocked, outside mirrors were added to vehicles.

Presently, passenger cars are required by law to have a unit magnification outside rearview mirror on the driver's side. A unit magnification mirror is a plane mirror which produces the same size image on the retina as that which would be produced if the object were viewed directly from the same distance. Furthermore, as provided in Federal Motor Vehicle Safety Standard 111 (FMVSS 111), "The mirror shall provide the driver a field of view of a level road surface extending to the horizon from a line perpendicular to a longitudinal plane tangent to the driver's side of the vehicle at the widest point, extending 8 feet out from the tangent plane 35 feet behind the driver's eyes,
with the seat in the rear most position." FMVSS 111 thus effectively determines the size of the mirror, which a manufacturer must provide. The size will vary among different manufacture's vehicles because of the placement of the mirror on the vehicle with regard to the driver's seat location.

Unfortunately, outside mirrors meeting FMVSS 111 still do not provide adequate adjacent lane visibility to view cars that are in the range of one car length to the rear. That is, a blindzone exists where a vehicle is not visible in either the inside mirror or the outside mirror. Even a glance over the shoulder may not be adequate to observe a vehicle in the blindzone. For many vehicles, the door pillar between the front and rear doors obscures the view to the blindzone. Furthermore, this obstruction is not obvious to most drivers, and they may assume that the "over the shoulder glance" has allowed them to see the blindzone when in reality it has not.

Rearward vision in automobiles is mathematically described in a paper published by the Society of Automotive Engineers (SAE) in 1995. That paper is designated as SAE Technical Paper 950601. It is entitled, The Geometry of Automotive Rearview Mirrors - Why Blindzones Exist and Strategies to Overcome Them, by George Platzer, the inventor of the present invention. That paper is hereby incorporated by reference.

A common method of overcoming the blindzone is to add a spherically convex blindzone-viewing mirror to the required plane main mirror. Spherically convex mirrors provide a wide field of view, but at the penalty of a reduced image size. However, this may be acceptable if the mirror is only used to indicate the presence of a vehicle in the blindzone and it is not used to judge the distance or approach speed of vehicles to the rear. Simply placing a round segment of a convex mirror on the main mirror surface, as is commonly done with stick-on convex mirrors, does not solve the problem. Doing so can provide a view to the rear which includes the blindzone, but it will also show much of the side of the car, the sky and the road surface, which are distracting and extraneous to the safe operation of the vehicle. What is required is a convex blindzone-viewing mirror that shows the driver primarily
only the blindzone. In this way, if the driver sees a vehicle in the blindzoneviewing mirror, he knows it is unsafe to move into the adjacent lane. All extraneous and distracting information should be removed from the blindzoneviewing mirror. Furthermore, by eliminating the irrelevant portions of the bull's-eye mirror, the remaining portion can have a larger radius of curvature, thereby increasing the image size for the given amount of area that is to be allocated to the convex mirror.

Other problems with add-on mirrors are that they:

- may interfere with the requirements of FMVSS 111;
- may substantially decrease the plane main mirror viewing angle;
- interfere with cleaning, especially when there is ice on it; and
- appear as an unsightly excrescence on the main mirror. A blindzoneviewing mirror that is provided by a car manufacturer must not appear to be an afterthought, but rather an integral part of the mirror.

Summary of the Invention

One object of the present invention is to provide a unit magnification main mirror, which meets the requirements of FMVSS 111 and simultaneously provides a blindzone-viewing mirror having a magnification of less than unity that is in application able to show an automobile driver's side blindzone.

Another object of the invention is to provide a less than unit magnification mirror that meets the requirements of FMVSS 111 on the passenger's side and simultaneously provides a blindzone- viewing mirror having a magnification of less than unity that is able to show the driver the blindzone on the passenger's side.

Yet another object of the invention is to provide a mirror having a combination of two surfaces of different magnification that is not objectionable in appearance.

Still another object of the invention is to provide a mirror having a combination of two surfaces of different magnification that is inexpensive and easy to manufacture.

In a preferred embodiment of the invention, a less than unit magnification mirror is located in the upper and outer region of a unit magnification mirror, and it is optimized in size and orientation to provide primarily only a view of the blindzone while leaving the region surrounding it available to meet the requirements of FMVSS 111. The less than unit magnification mirror is integral with the unit magnification mirror. In yet another preferred embodiment of the invention, the unit magnification main mirror includes means operative to selectively vary the intensity of the reflection from the main mirror while maintaining a relatively fixed reflection intensity characteristic of the auxiliary mirror.

Brief Description of the Drawings

In the drawings, wherein for clarity certain details may be omitted from one or more views:

Figure 1, is a plan view of an automobile on a three-lane highway depicting the field of view of the outside mirrors and the blindzones;

Figure 2, is a diagram showing the requirements of FMVSS 111 for the horizontal field of view of the driver's outside mirror;

Figure 3, is a diagram showing the requirements of FMVSS 111 for the vertical field of view of the driver's outside mirror;

Figure 4, is an image of the road as seen in the driver's outside mirror showing the effect of the requirements of FMVSS 111 on the horizontal width and the vertical height of the mirror;

Figure 5, is a perspective drawing showing how a less than unit magnification mirror can be placed on the driver's outside mirror to avoid conflicting with the requirements of FMVSS 111 and yet provide a wide angle mirror to observe the blindzone;

Figure 6, is a front view of the mirror of Figure 5;

Figure 7, is side sectional view of the mirror of Figure 6 in the plane along line 7-7 in the direction of the arrows showing the proper location of the center of the sphere on which the surface of the blindzone mirror lies, so as to produce vertical centering of the image of a vehicle that is in the blindzone;

Figure 8, is a top sectional view of the mirror of Figure 6 in the plane along line 8-8 looking in the direction of the arrows showing the proper location of the center of the sphere on which the surface of the blindzone mirror lies, so as to produce horizontal centering of the image of a vehicle that is in the blindzone;

Figure 9 , is a plan view of a two-lane highway showing a vehicle in the right lane equipped with the mirror of Figure 5 and four positions of an overtaking vehicle in the left lane;

Figure 10a, shows the image of an overtaking vehicle in Figure 9, in a mirror like that of Figure 5;

Figure 10b, is like Figure 10a except that the overtaking vehicle is farther to the rear; Figure 10c, is like Figure 10b except that the overtaking vehicle is farther to the rear;

Figure 10d, is like Figure 10c except that the overtaking vehicle is farther to the rear;

Figure 11, is a front view of a driver's side mirror embodying the teachings of this invention;

Figure 12, is an enlarged top sectional view of the mirror of Figure 11 taken in the plane along line12-12 in the direction of the arrows.

Figure 13, is a top view of a circular segment of a spherical mirror;
Figure 14, is a side view of the mirror of Figure 13;
Figure 15, is a top view of the mirror of Figure 13 wherein the mirror has been cut into square elements;

Figure 16, is a side sectional view of the mirror of Figure 15 taken in the plane along line 16-16 looking in the direction of the arrows;

Figure 17, depicts how the mirror of Figures 15 and 16 can be rearranged into a planar array of reflecting facets;

Figure 18, shows how light is reflected from the mirror of Figure 14;

Figure 19, shows how light reflected from the mirror of Figure 17 simulates the reflections from the mirror of Figure 14;

Figure 20, shows a mirror alternatively embodying the teachings of the invention;

Figure 21, is an enlarged side sectional view of the mirror of Figure 20 taken in the plane along line 21-21 and looking in the direction of the arrows;

Figure 22, is a diagram comparing a directly reflected ray from a front surface mirror to a refracted ray from a second surface mirror;

Figure 23, is a diagram comparing the radius of curvature of a front surface mirror to the radius of curvature of a second surface mirror;

Figure 24, shows another embodiment of a mirror using the teachings of the invention;

Figure 25, shows an enlarged top sectional view of the mirror of Figure 24 in the plane along line 25-25 looking in the direction of the arrows;

Figure 26, shows yet another embodiment of a mirror employing the teachings of the invention;

Figure 27, is an enlarged top sectional view of the mirror of Figure 26 in the plane along line 27-27 looking in the direction of the arrows;

Figure 28, shows still another embodiment of a mirror employing the teachings of the invention;

Figure 29, is an enlarged top sectional view of the mirror of Figure 28 in the plane along line 29-29 and looking in the direction of the arrows;

Figure 30, shows another embodiment of a mirror using the teachings of the invention;

Figure 31, is an enlarged top sectional view of the mirror of Figure 30 taken in the plane along line 31-31 looking in the direction of the arrows;

Figure 32, shows yet another mirror embodying the teachings of this invention;

Figure 33, is an enlarged top sectional view of the mirror of Figure 32 taken in the plane along line 33-33 and looking in the direction of the arrows;

Figure 34, shows another mirror incorporating the teachings of the invention;

Figure 35, shows still another mirror incorporating the teachings of the invention;

Figure 36, is a front view of a prior art mirror having variable reflectivity;
Figure 37, is a top sectional view of the mirror of Figure 36 in the plane along line 37-37 looking in the direction of the arrows;

Figure 38 , is a front view of a variable reflectivity mirror embodying the present invention;

Figure 39a, is a top sectional view of the mirror of Figure 38 in the plane along line 39-39 looking in the direction of the arrows;

Figure 39b, shows another embodiment of a variable reflectivity mirror employing the teachings of the present invention similar in a number of respects to the embodiment of Figure 39a;

Figure 40, is a front view of an alternative embodiment variable reflectivity mirror;

Figure 41 , is a top sectional view of the mirror of Figure 40 in the plane along line 41-41 looking in the direction of the arrows;

Figure 42, is a front view of another alternative embodiment variable reflectivity mirror;

Figure 43, is a top sectional view of the mirror of Figure 42 in the plane along line 43-43 looking in the direction of the arrows;

Figure 44, is a front view of another alternative embodiment variable reflectivity mirror similar in a number of respects to the embodiment of Figures 42 and 43;

Figure 45 , is a top sectional view of the mirror of Figure 44 in the plane along line 45-45 looking in the direction of the arrows;

Figure 46, is a front view of another alternative embodiment variable reflectivity mirror;

Figure 47a, is a broken, top sectional view of the mirror of Figure 46 on an enlarged scale in the plane along line 47-47 looking in the direction of the arrows;

Figure 47b, shows another embodiment of a variable reflectivity mirror similar in a number of respects to the embodiment of Figure 47a;

Figure 47c, shows yet another embodiment of the variable reflectivity mirror similar in a number of respects to the embodiment of Figure 47a;

Figure 48, is a front view of another alternative embodiment variable reflectivity mirror similar in a number of respects to the embodiment of Figures 46 and 47a;

Figure 49, is a top sectional view of the mirror of Figure 48 in the plane along line 49-49 looking in the direction of the arrows;

Figure 50, is a front view of another alternative embodiment variable reflectivity mirror similar in a number of respects to the embodiment of Figure 46 and 47c;

Figure 51, is a top sectional view of the mirror of Figure 50 in the plane along line 51-51 looking in the directions of the arrows;

Figure 52 , is a front view of yet another alternative embodiment variable reflectivity mirror;

Figure 53, is a top sectional view of the mirror of Figure 52, in the plane along line 53-53 looking in the direction of the arrows;

Figure 54, is an exploded perspective view of the mirror of Figure 52;
Figure 55 is a front view of another embodiment of a mirror employing the teachings of this invention;

Figure 56 is an enlarged sectional view of the mirror of Figure 55 taken along section line 56-56 in the direction of the arrows;

Figure 57 is an exploded view of a mirror assembly of the present invention; and
Figure 58 is a cross-sectional side view of a mirror and bezel.

Detailed Description of the Preferred and Alternative Embodiments

Referring now in greater detail to the drawings, Figure 1 shows a midsized passenger car 10 in the middle lane of a three-lane highway with 12 -foot wide lanes. The vehicle 10 is equipped with a driver's side outside mirror 12. The driver's eyes are shown centered at point 14, from which the driver has a field of view to the rear in the horizontal plane encompassing the acute angle formed by lines 16 and 18. Line 20 defines the rearward limit of the driver's peripheral vision when looking at mirror 12. Thus, the area bounded by lines 18 and 20 is a blindzone, shown crosshatched, which cannot be observed in either the driver's direct forward vision or indirectly in the mirror.

SAE Technical Paper 950601 describes the horizontal field of view of a plane mirror in a mathematical equation as a function of the mirror's dimensions and the position of the eyes relative to the mirror. Typically, the angle θ subtended by lines 16 and 18 is in the order of 15° to 20°. Angle θ is given by Eq. 1, and it is,

$$
\begin{equation*}
\theta=2 \tan ^{-1}\left[\frac{w \cos \lambda+D}{2 \sqrt{s_{L}^{2}+s_{T}^{2}}}\right], \tag{Eq. 1}
\end{equation*}
$$

where: $\quad \mathrm{w}=$ mirror width;
$\mathrm{D}=$ interpupillary distance;
$S_{\mathrm{L}}=$ the longitudinal distance along the axis of the vehicle form the driver's eyes to the center of the mirror;
$S_{T}=$ the transverse distance perpendicular to the longitudinal axis from the driver's eyes to the center of the mirror; and

$$
\lambda=1 / 2 \tan ^{-1}\left(\mathrm{~s}_{\mathrm{T}} / \mathrm{s}_{\mathrm{L}}\right) .
$$

As described in SAE Technical Paper 950601, the peripheral vision line 20 cannot be precisely located. It depends on the location of the drivers' eyes relative to the mirror 12 and several other factors. For example, Burg (Journal of Applied Psychology, Vol.5, No. 12, 1968) has shown that the angular extent of peripheral vision is a function of age. At age 20 it extends 88° from straight-ahead to the side. At 70 years, this angle has dropped to 75°.

Angle ϕ in Figure 1 is the angle of the peripheral vision line 20 relative to line 22 , which is perpendicular to the longitudinal axis of vehicle 10. Typically this angle will be in the range of 40 degrees.

Figure 2 shows the requirement imposed on the width of mirror 12 by FMVSS 111. As previously stated, the mirror 12 must be able to show a point, as 24 , which is 244 cm (8 feet) out from a plane 26 tangent to the side of the vehicle and 1067 cm (35 feet) behind the driver's eyes with the seat in the rear most position. Point 28 is 1067 cm behind the driver's eyes and in
plane 26. Points 24 and 28 are on the road surface. Angle θ in Figure 2 is obviously,

$$
\begin{equation*}
\theta=\tan ^{-1}\left(\frac{244}{S_{L}+1067}\right) . \tag{Eq. 2}
\end{equation*}
$$

Angle θ has a value of about 11.5° for almost any passenger car, and the variation in θ produced by variations in s_{L} is a second order effect. Hence, the width of the mirror required by FMVSS 111 can be calculated by solving Equation 1 for w. Then,

Angle θ in this case is equal to 11.5°. Using values of $S_{L}=45.7 \mathrm{~cm}, \mathrm{~S}_{\mathrm{T}}=$ 70 cm , and $\mathrm{D}=6.4 \mathrm{~cm}, \mathrm{w}$ is found to be 9.4 cm . This value can vary significantly among vehicles, since in Eq.3, S_{L} and S_{T} variations no longer produce only second order effects as in Eq. 2. In practice, vehicle manufactures will specify mirror widths in excess of the FMVSS 111 requirements to further reduce the blindzone size.

Figure 3 shows the requirements imposed on the vertical dimension of mirror 12 by FMVSS 111. In the vertical plane, vision is monocular since the eyes are not separated as they are in the horizontal plane. SAE Technical Paper 950601 shows that for monocular vision, the interpupillary distance D drops out of Equation 1, so that it becomes,

$$
\begin{equation*}
\theta=2 \tan ^{-1}\left[\frac{w \cos \lambda}{2 \sqrt{s_{L}^{2}+s_{T}^{2}}}\right] . \tag{Eq. 4}
\end{equation*}
$$

Then,

$$
w=\frac{2 \sqrt{s_{L}^{2}+s_{T}^{2}} \tan \frac{\theta}{2}}{\cos \lambda} .
$$

In Figure 3, h is the height in cm of mirror 12 above the ground, and it can vary significantly from a sports car to a sedan to a van. Angle θ_{v} is the angle that determines what the vertical dimension, w_{v}, of mirror 12 must be, in conjunction with the distance of the eye from the mirror. Angle θ_{v} replaces angle θ in Equation 5 when calculating the vertical dimension of the mirror. Applying Equation 5 to the required vertical dimension of the mirror, w_{v},

$$
\begin{equation*}
w_{V}=\frac{2 \sqrt{s_{L}^{2}+s_{v}^{2}} \tan \frac{\theta_{v}}{2}}{\cos \lambda_{V}}, \tag{Eq. 6}
\end{equation*}
$$

where: $\quad S_{v}=$ vertical distance in the vertical plane from the eye to the mirror;

$$
\begin{aligned}
\lambda_{\mathrm{V}} & =1 / 2 \tan ^{-1}\left(S_{\mathrm{V}} / S_{\mathrm{L}}\right) ; \text { and } \\
\theta_{\mathrm{V}} & =\tan ^{-1}\left(\frac{h}{S_{V}+1067}\right) .
\end{aligned}
$$

Substituting measured values of $\mathrm{h}, \mathrm{S}_{\mathrm{L}}$, and S_{V} from one mid-size passenger car gave a value for w_{v} of 6.4 cm .

The FMVSS 111 requirement for the vertical dimension of the mirror is only a minimum, and it does not provide a satisfactory mirror. Drivers usually set their mirrors so that if the car is on a straight and level road, the horizon will be in about the center of the mirror. This means that if point 24 is to be visible with the horizon centered, the mirror should be about 12.7 cm high. Most passenger car mirrors are not this large vertically, and are closer to 10.2 cm to 11.4 cm . However, the requirements of the standard are met.

Figure 4 shows mirror 12 adjusted so that the horizon 30 lies at its center. Point 24 is shown in the lower left-hand corner. Also shown is point 28 in the right-hand corner. Line 32 represents the dashed yellow lane marker between the two left lanes. Line 34 represents the left edge of the left lane. Lines 32 and 34 converge at infinity on the horizon. The mirror has
been adjusted so that point 28 is just visible, i.e. rotating the mirror farther outward would make point 28 disappear from view.

As previously mentioned, a mirror constructed to just meet the requirement in its horizontal field of view would have an excessively large blindzone. This could be remedied by providing an auxiliary blindzoneviewing mirror of less than unit magnification with a wide field of view, located such that it does not interfere with line 34 . Such an auxiliary mirror 36 is shown in Figure 5 attached to a plane main viewing mirror 40. Mirror 36 is a spherically convex mirror having dimensions and an orientation such that its field of view encompasses the region in Figure 1 between lines 18 and 38 . Mirror 36 can be made small enough so that is does not excessively encroach on the plane area of the main viewing mirror 40 above line 34 . For example, if mirror 40 is 10 cm wide, mirror 36 could easily be $4.4 \times 4.4 \mathrm{~cm}$ square. Using 4.4 cm as the horizontal dimension for mirror 36 , the radius of curvature required to encompass the blindzone can be calculated from another equation in SAE Technical Paper 950601. There it is shown that the field of view of a convex mirror is,

$$
\begin{equation*}
\theta=2\left[2 \tan ^{-1} \frac{w}{2 r}+\tan ^{-1} \frac{w \cos \lambda+D}{2 \sqrt{s_{L}^{2}+s_{T}^{2}}}\right] \tag{Eq. 7}
\end{equation*}
$$

All of the variables in Equation 7 are the same as Equation 1 except for r, which is the radius of curvature of the convex mirror. Angle θ in Equation 7 is to be taken as the angle between lines 18 and 38 in Figure 1. Line 38 is seen to extend from mirror 12 and intersect the peripheral vision line 20 in the center of the adjacent lane. The angle between lines 18 and 38 is about 25°. Using $w=4.5 \mathrm{~cm}, S_{L}=46.0 \mathrm{~cm}, S_{T}=61.0 \mathrm{~cm}$ and $D=6.4 \mathrm{~cm}, r$ calculates out to be 29.9 cm . Selection of 25° as the blindzone width is partially subjective. It involves the choice of the peripheral vision angle, the positioning of the mirror and an estimate of how much of the geometrically defined blindzone must be included to assure that a driver is able to see a vehicle in the
blindzone. In general a radius of curvature in the range of 20 cm to 35 cm will be satisfactory depending upon the vehicle.

A key factor in the shaping and positioning of the blindzone- viewing mirror is the required location of the center of the sphere from which the segment is taken. A vehicle in the blindzone should appear centered in the auxiliary blindzone-viewing mirror. Figures 6,7 and 8 comprise a geometric orthographic projection showing the proper orientation of a spherically convex mirror segment 36 relative to a plane mirror 40. A radius 42 and an arc 44 of the sphere from which segment 36 is taken, must pass through the center 46 of the face of segment 36. The location of the center of the sphere must be specified so that centering of the image of a vehicle in the blindzone will occur.

As previously stated, most drivers adjust their mirrors so that if they were on a straight and level road, the horizon would be approximately centered in the mirror. Vertical centering of an image in the blindzone-viewing mirror 36 then requires that the image of the horizon pass through center 46 of mirror 36. This simply requires that radius 42 lie in a plane perpendicular to plane mirror 40 , and that the plane also pass through center point 46 , as shown in Figure 7.

Horizontal centering of the view of the blindzone in mirror 36 requires that radius 42 be located such that it passes through center 46 of mirror 36 and also falls along line 48 in Figure 1 which bisects the acute angle formed by lines 18 and 38. The actual position of radius line 42 in Figure 8 relative to the vehicle is dependent upon how the driver has positioned the mirror relative to the vehicle. However, the position of line 42 relative to line 50 in Figure 8 is constant. If the driver is instructed to position the plane mirror so that the side of the car is just visible, the position of line 42 is then effectively constant relative to the side of the vehicle, and the blindzone view is effectively centered about line 48 in Figure 1.

The field of view in the plane main viewing mirror is θ degrees wide as shown in Figure 1. If the driver so chooses, he or she could readjust the main viewing mirror so angle θ straddles line 48 . Then, the plane mirror view would be centered on the blindzone. Many drivers actually set their mirrors this way to view the blindzone. Since the angle of reflection is equal to the angle of incidence, rotating the field of view outward by say 30°, would require rotating the mirror outward by 15°. Hence, to make the plane mirror look into the center of the blindzone requires that it be rotated by $1 / 2$ of the angle between line 48 and line 52 , where line 52 bisects angle θ. Again selecting the blindzone width as 25°, and using a value of 15° for θ, the field of view would have to be rotated $1 / 2\left(25^{\circ}+15^{\circ}\right)=20^{\circ}$. This would require rotating the mirror 10° to look into the center of the blindzone with the plane mirror.

The same reasoning applies to the convex blindzone-viewing mirror. If radius 42 were perpendicular to the surface of plane mirror 40 , the field of view of the convex mirror would be centered about line 52 in Figure 1. But we want the spherical mirror's field of view to be centered about line 48 when the plane mirror is adjusted to just see the side of the vehicle. Therefore in Figure 8 , line 42 should be at an angle of 10° to line 50 . The exact angle chosen will be dependent upon the vehicle and the assumptions made for the position of line 48 in Figure 1.

The criteria required to size, place and orient the less than unit magnification auxiliary blindzone-viewing mirror have now been established. Using these criteria will provide a mirror which conforms with FMVSS 111, centers the image of a vehicle in the blindzone in the less than unit magnification mirror, and optimizes the image size for the space allocated to the less than unit magnification mirror. Mirror 36 in Figure 5 may be visualized as a spherically convex bull's-eye mirror wherein all extraneous portions of the bull's-eye have been removed, leaving only that portion which will show a vehicle in the blindzone. When driving with a mirror so configured, a vehicle overtaking on the driver's side will be seen in the main viewing mirror when the vehicle is to the rear of the blindzone. As the vehicle
approaches, it appears to slide outwardly off of main viewing mirror 40 and onto blindzone-viewing mirror 36 . Figure 9 shows an overtaking vehicle at various distances behind vehicle 10 of Figure 1. Figures 10a, 10b, 10c and 10 d show the position of the image of the overtaking vehicle on mirror 12 in

Figure 9. Note that a small portion of the left rear fender of vehicle 10 is seen in the lower right-hand corner of the plane main mirror. Figure 10d shows the image of the overtaking vehicle at a position 11d in Figure 9 about 12 car lengths to the rear of vehicle 10. Figure 10 c shows the image of the vehicle at a position 11 c about 3.5 car lengths to the rear. Figure 10 b shows the image of the vehicle at position 11 b about 1.25 car length back, and it is seen mostly in the plane main viewing portion of the mirror, but partially in the auxiliary blindzone-viewing portion. Figure 10a shows the image of the overtaking vehicle in position 11a, which is entirely in the blindzone, and it is seen that the image is entirely in the blindzone-viewing mirror. Thus, the image of the approaching vehicle moves from inside to outside across the mirror, and this is one reason why the auxiliary mirror is placed in the upper and outer quadrant of the rearview mirror. Placing it on the inner quadrant would disturb the apparent flow of the image of the overtaking vehicle as it moves across the main mirror from inside to outside.

Next, various ways of implementing the combination of the main viewing mirror and the blindzone-viewing mirror will be shown. One simple way is to adhere a glass or plastic segment of a spherically convex mirror to the plane mirror as shown in Figure 5. However, the stick-on mirror is objectionable in its appearance, its vulnerability to damage, and its interference with cleaning the mirror. It would be highly desirable to reduce its protrusion above the surface of the main mirror. One way of doing this is shown in Figures 11 and 12. Figure 11 is a front view of a plane mirror 54 to which an auxiliary blindzone-viewing mirror 56 has been adhered. Mirror 56 is a planar array of small square reflecting facets that simulate the reflection from a segment of a spherically convex mirror such as the auxiliary blindzoneviewing mirror 36 in Figure 5. As will be shown, the planar array of reflecting facets provides a very thin mirror compared to the spherically convex mirror it simulates. Figure 12 is an enlarged top sectional view of mirrors 54 and 56
taken along section line 12-12 in Figure 11. Figure 12 shows that the facets are progressively more canted relative to the plane surface of mirror 54 in moving from right to left across mirror 56. For clarity, the facets in Figures 11 and 12 are shown larger than they really are. While sixty-four facets are shown, a practical mirror will have several hundred facets, and with that many facets the mirror may be as thin as 0.5 mm .

Figures 13 to 17 show the concept of creating a planar array of reflecting facets, which will perform the function of a spherically convex mirror. Figure 13 is plan view of a spherically convex mirror 58 of the familiar bull'seye type having a radius r. Figure 14 is a side view of mirror 58 showing how it is a solid segment of a sphere of radius R. The surface of mirror 58 is highly polished and has a reflective coating. In Figure 15, the mirror of Figure 13 is cut into an array of squares by an imaginary infinitely thin knife. All of the cuts are perpendicular to the base 60 of mirror 58, as shown in Figure 16, which is a sectional side view of Figure 15 taken along section line 16-16. Only one material is present in the cross-section, so crosshatching is not used since this would make the drawing confusing.

Next, imagine that we take the mirror of Figure 15, which is now cut up into an array of square rods, turn it upside down, and let the reflecting ends all drop to the same plane surface. Then the rods are adhered together is some manner at the end opposite the polished end so that the reflecting facets stay in the same plane. Now the array may be turned back over to give the planar array of facets of Figure 17. In this array of facets, the highest point of each facet is located on a reference plane 62. Notice that the slope of each facet in Figure 17 has the slope of each corresponding segment in Figure 16. Figures 18 and 19 correspond with Figures 14 and 17 redrawn to show that the convex mirror and the planar array of facets reflect light in the same way. Parallel light rays reflecting off of corresponding points on the two mirrors reflect in the same direction. For example, ray 64 reflects off of point 66 as ray 68 , and ray 70 reflects off of point 72 on the facet as ray 74 , which is parallel to ray 68 . Likewise, rays 76 and 82 reflect off of points 78 and 84 as parallel rays 80 and 86 .

The planar array shown in Figure 17 is derived from convex mirror 15 that was cut up into squares. However, the facets do not all need to be squares of the same size, or for that matter, even be square. A factor in determining the size of a square is the depth of the facet below line 62 in Fig.17. This depth determines the practical thickness of an array that can be formed in a thin sheet of plastic. For example, if the maximum depth of a facet at the perimeter of the convex mirror is say 1.0 mm , an injection molding incorporating the facet should be at least 2.0 mm thick. Thus, the planar array shown in Figure 19 could be 2.0 mm thick with a facet depth of 1.0 mm . Noting in Fig. 17 that the depth of a facet when the squares are all the same size, varies directly with the distance from the center of the mirror, it is obvious that a square starting at the center of the mirror can be much larger before its depth equals that of a square farther away from the center. In fact, it is seen that about three squares in Fig. 19 are required to produce the depth of the outer square if the individual depths of the first three are added up. While the square size depicted in Fig. 15 is not intended to be a practical size, the fact that the squares closer to the center can be larger than the squares farther from the center is verified.

The advantage of using larger squares where possible is that the image quality is better with fewer squares, i.e., the mirror does not have to be divided up into as many pieces to simulate the convex mirror. Also, larger squares have less ability to produce discernable diffraction effects. Finally, the fewer the number of squares required to simulate the convex mirror, the easier it is to build the mold to form the mirror.

The depth of any given facet below line 16 in Fig. 17 is easily determined. Line 60 in Fig. 16 is the chord of arc 58. The distance, d, along the convex mirror axis from the center of the mirror to the chord is:

$$
\begin{equation*}
d=R\left[1-\cos \left(\sin ^{-1} \frac{c}{R}\right)\right] \tag{Eq. 8}
\end{equation*}
$$

where R = radius of curvature of the convex mirror(see Fig.14)
$\mathrm{c}=$ the distance along the chord from the mirror axis to the point where the facet depth is to be determined.

Or, solving Eq. 8 for c :

$$
c=R \sin \left[\cos ^{-1}\left(1-\frac{d}{R}\right)\right] . \quad \text { Eq. } 8
$$

Now let's construct a mirror having different sized squares, but formed so that they all have the same depth. Let's select the depth of the facets as 1.0 mm and the radius of curvature of the mirror as 180 mm . We will calculate the distance along the chord, starting at the center of the mirror, and going out from the center in both directions, for successive squares, each having a depth of 1.0 mm . The table below shows the result of this calculation, and Figures 16 a and 17a, which are like Figures 16 and 17, pictorially show the size of the required

d,mm	C, mm	$\left(\mathrm{c}_{n}-\mathrm{C}_{n-1}\right), \mathrm{mm}$
1	19	19
2	27	8
3	33	6
4	38	5
5	42	4
6	46	4

squares along a diameter. Off of the horizontal or vertical axis, the squares cannot be placed precisely to maintain a depth of 1.0 mm . A slight variation of the depth will not matter. Figure 15a shows an array of squares comprised of elements that differ from each other in steps of $1 / 2$ of the previous square's dimension, e.g., the largest square is 20 mm square, the next is 10 mm , then 5 mm and finally 2.5 mm . This dimensioning is desirable to allow the elements
to fit together. Again, the depth of the elements will not all be 1.0 mm , but exactness is not required.

The array of Fig. 15a is made by the process described for making the array of Figure 17. Square metal rods are assembled in a frame, and the ends are machined and polished as group to a convex shape. Then, the frame is slightly loosened and the machined rod ends are all pushed to the same plane, and the frame is tightened. This array can be used in several ways to make a tool to duplicate the array in a transparent material.

Figure 15a also shows another way to make a planar array, but with circular array elements. First, a solid cylinder is machined for the center element. Then, a group of hollow cylinders are machined to overlap each other with a slight clearance. These cylinders are then pinned at one end and machined and polished on the other end to form a convex surface. The cylinders are then unpinned, the machined end is pushed to the same plane and the cylinders are repinned. Again, this array becomes the basis of a forming tool.

Mirror 58 in Figure 18 and the planar array of Figure 19 would correspond exactly if the number of facets could be made infinite. With finite dimensions, there will be some distortion, and the array pattern will be discernible. However, a very good approximation is produced with facets that are in the order of 0.5 mm to 1.5 mm square.

The planar array of facets shown in Figure 19 simulates the convex bull's-eye mirror of Figure 14. Any portion of convex bull's-eye mirror 58 may be simulated by a planar array of facets. For example, the convex mirror 36 of Figure 5, which is actually a portion of a bull's-eye mirror, is easily represented by a planar array.

To show the principal of the planar array of reflecting facets, a convex mirror was imagined being cut up into square elements with an infinitely thin knife. Of course this cannot be done in the real world, but there
are practical ways of fabricating such an array. One way is to assemble a group of square steel wires held together by a frame. The wires may be, for example, 3 cm or so long and .75 mm square. One end of the assembly is machined to the desired convex shape and then polished to a mirror finish. Next, the pressure on the frame is released just enough to be able to push the machined and polished ends to same plane. The assembly may be resecured by a variety of methods. Such an assembly can be used in a plastic injection mold to replicate the surface, or it might be used to press the pattern into a plastic or glass surface. The surface of the replica is then coated with a reflective metal by one of several common methods such as sputtering, vacuum deposition or chemical deposition.

The choice of material used for the square wires depends upon the application. For short run injection molding, aluminum wire could be used. For greater durability in an injection mold, hard steel or nickel is required.

The assembly just described was machined to a convex shape. Any replication in another surface formed by the assembly is the negative of the machined surface. That is, looking directly at the pressed or molded surface produced by a convex surface would appear as a concave surface. However, if the pattern is pressed into a thin sheet of transparent plastic or glass and the pattern is viewed through the glass or plastic, it appears as a convex mirror.

Depending upon whether a first surface convex mirror (the reflective coating is on the front or first surface) is desired, or if a second surface convex mirror (the reflective coating is on the back or second surface) is desired, determines if the rod assembly is machined convex or concave. Obviously, a tool used to form a convex mirror on a first surface mirror should be machined concave. Likewise, a tool used to form a mirror appearing convex in a second surface mirror should be machined convex.

While the planar array just described used square facets, other arrays of facets may be used. For example, the facets may be rectangles,
parallelepipeds, rings and even irregular random shapes as described by Blom in U.S. Patent 4,674,850. Part of the method used to make a Fresnel lens could be used to make a convex mirror. Fresnel lenses are made by machining very narrow concentric rings in a soft metal with a special diamond tool. The surface of each ring is slightly canted relative to the plane of the lens. As the rings progress outward from the center, the cant angle increases. At the center the cant angle is zero, and at the outer edge of the lens the cant angle may be for example 30°. A section through the center of a Fresnel lens will look like the section of Figure 17. The machined rings are used to press the ring pattern into a transparent plastic. The surface can then be converted to a mirror by applying a reflective coating to it. As with the planar array of square facets, the mirror 36 which is a portion of a bull's-eye mirror, may be simulated by using a portion of a Fresnel bull's-eye pattern. That is, the mirror 36 could be simulated by segments of concentric circular rings.

While the rings of a Fresnel lens are evenly spaced and a fraction of a millimeter apart, the rings do not have to be evenly spaced or close together. A circular array of rings can be made by the process just described for making an array of square facets, but instead of using a bundle of square rods, a bundle of concentric cylinders is used.

Having developed the concept of the planar array of reflecting facets, various ways of using such an array will be shown. While arrays of squares are shown in these examples, it should be understood that any suitable type of array might be used. Figure 11 has already shown a planar array 56 adhered to mirror 54. The array in this case is molded or pressed into a thin plate of a thermoplastic material. The thermoplastic plate can be quite thin. The thickness depends on the number of facets per square centimeter. Referring to Figure 19, it is obvious that if more facets are used to simulate the convex mirror of Figure 16, the depth of the facets will decrease. For example, with facets that are 0.75 mm square, the maximum depth of the edge facets will be in the range of .05 mm . Thus, array mirror element 56 in

Figure 12 can have a thickness in the range of 0.5 mm thick and still provide adequate material in which to form the .05 mm deep facets.

Figure 20 is a front view of a plane main viewing mirror 88 to which an auxiliary blindzone-viewing mirror 90 has been adhered. Mirror 90 in this embodiment is a thin second surface planar array of reflecting facets as opposed to the first surface planar array of Figure 11. Figure 21 is an enlarged top sectional view of mirrors 88 and 90 taken along the section line indicated by 21-21 in Figure 20. Here, the material of array mirror 90 must be transparent, being glass or plastic. If a plastic is used, it should be one of the optical grades plastics, e.g.: an acrylic such as Lucite manufactured by E.I. du Pont; a polycarbonate such as Lexan manufactured by General Electric; or a cyclic olefin copolymer such as Topas manufactured by the Ticona division of Hoechst. The facets formed in the thin plate of mirror 90 have a reflective metal coating 92 applied to them. Also, if mirror 90 is implemented in a plastic material, its plane first surface may be protected by an optically transparent abrasion resistant coating such as a siloxane. Several companies including G. E. Silicones (Waterford, NY) and Dow Chemical Co (Midland, MI) manufacture siloxanes used as transparent hardcoats on plastics. This embodiment has the advantage of protecting the faceted surface and its reflective coating.

Any second surface faceted mirror will produce additional deviation of an incident ray of light due to the fact that the front surface of the glass or plastic and the reflecting second surface of the material are not parallel. In fact, the glass or plastic between the front and back surfaces form a prism. As is well known, a prism produces a deviation of an incident ray which is proportional to the prism angle and the index of refraction of the material of which the prism is composed. Thus, the deviation of a ray caused by a second surface faceted mirror varies from facet to facet, and it is necessary compensate the mirror for this deviation by changing the prism angles relative to the flat front surface.

If the faceted second surface mirror of Figure 21 is to have the same field of view as the first surface mirrors of Figures $5,6,7,8$ and 12, it can be shown that to a first approximation, its element's angles should correspond to those of a convex mirror similar to that of Figure 5, except that radius 42 in Figures 7 and 8 should be greater by a factor of μ, the index of refraction of the glass or plastic, and the angle β between lines 42 and 50 in Figure 8 should be less by a factor of $1 / \mu$. This results from the fact that the angle of a second surface facet mirror element relative to the plane of the front surface of the thin plate in which the faceted mirror has been formed must be less than the angle of a corresponding element on a first surface faceted mirror due to refraction. Figure 22 shows why this is so. Here, a line 94 represents the edge a plane parallel to the plane of the unity gain mirror to which the faceted mirror is adhered. Line 96 is a first surface mirror element at an angle α to line 94 , and line 98 is a second surface mirror element at an angle α ' to line 94. Line 100 represents a ray of light that reflects off of surface 96 , becoming ray 102 going to an observer's eye. Line 100 is at an angle γ to the perpendicular to line 94. Line 102 is at an angle φ to the perpendicular to line 94. Knowing that the sum of the angles in a triangle is 180°, it is seen that for the first surface mirror,

$$
\begin{equation*}
\alpha=\frac{\gamma-\varphi}{2} . \tag{Eq. 9}
\end{equation*}
$$

For the second surface mirror, the region between lines 94 and 98 is a refracting medium having an index of refraction μ. Ray 100 is refracted at line 94 such that the angle of refraction, γ^{\prime}, is related to incident angle γ by the familiar equation,

$$
\begin{equation*}
\frac{\sin \gamma}{\sin \gamma}=\mu \tag{Eq. 10}
\end{equation*}
$$

Solving for γ^{\prime},

$$
\begin{equation*}
\gamma^{\prime}=\sin ^{-1}\left(\frac{\sin \gamma}{\mu}\right) \tag{Eq. 11}
\end{equation*}
$$

The refracted ray reflects off of surface 98 , and at line 94 again undergoes refraction, emerging along line 102. In leaving the refractive medium at line 94 , the ray bends away from the perpendicular to line 94 , so that,

$$
\begin{equation*}
\varphi^{\prime}=\sin ^{-1}\left(\frac{\sin \varphi}{\mu}\right) . \tag{Eq. 12}
\end{equation*}
$$

Again using the geometry of triangles, it can be shown that

$$
\begin{equation*}
\alpha^{\prime}=\frac{\gamma^{\prime}-\varphi^{\prime}}{2} . \tag{Eq. 13}
\end{equation*}
$$

Substituting Eq. 11 and 12 into Eq. 13,

$$
\alpha^{\prime}=\frac{1}{2}\left[\sin ^{-3}\left(\frac{\sin \gamma}{\mu}\right)-\sin ^{-1}\left(\frac{\sin \varphi}{\mu}\right)\right] . \text { Eq. } 14
$$

Using the power series expansion for the arcsine and sine, and assuming γ and φ are small,

$$
\begin{equation*}
\alpha^{\prime} \cong \frac{1}{2}\left(\frac{\gamma}{\mu}-\frac{\varphi}{\mu}\right) \cong \frac{1}{\mu}\left(\frac{\gamma-\varphi}{2}\right) \cong \frac{\alpha}{\mu} . \tag{Eq. 15}
\end{equation*}
$$

Hence, to a first approximation, the angle of a given facet on a second surface mirror is reduced by a factor of $1 / \mu$ compared to a corresponding facet on a first surface mirror.

Since the angle of each facet on a second surface mirror is reduced by a factor of $1 / \mu$, this obviously increases the spherical radius of the second surface mirror as compared to the first surface mirror. In fact, we can guess that the radius is increased by a factor of μ, but to verify this, let's return to Figure 8 and examine the top view of mirror 36 repeated in Figure 23. Arc 44 includes the surface of the front surface spherical mirror 36 in Figure 8. That sphere is centered at point 104 and it has a radius indicated by line 42. Line 42 is at an angle β to line 50 , which is perpendicular to mirror 40 . If a second
surface mirror is to produce the same view as mirror $36, \beta$ must be reduced by a factor of $1 / \mu$ since radii 42 and 110 are respectively perpendicular to arcs 44 and 112 at point 46 , and the lines tangent to arcs 44 and 112 at point 46 are related by Eq. 15. Hence, the radius 110 of the sphere generating the second surface mirror must be at an angle β / μ to line 50 , and its center 108 must lie on line 114 for arc 112 to pass through point 46 in the direction of line 110. Second surface 106 must be interpreted in view of second surface 134 in Figure 31. In Figure 23, a refracting medium is not shown in front of surface 106 since the drawing would then become confusing. Since spherical arcs 44 and 112 both pass through point 46 , and both spheres are symmetrical about axis 114 , then

$$
\begin{equation*}
d=R \sin \beta=R^{\prime} \sin \frac{\beta}{\mu}, \tag{Eq. 18}
\end{equation*}
$$

where: $\quad d=$ the distance between line 50 and line 114;
$R=$ radius 42 of first surface mirror 36 ; and
$R^{\prime}=$ radius 110 of second surface mirror 106.
Solving for R^{\prime},

$$
\begin{equation*}
R^{\prime}=R \frac{\sin \beta}{\sin \frac{\beta}{\mu}} \tag{Eq. 19}
\end{equation*}
$$

Again using the power series approximation,

$$
\begin{equation*}
R \cong \mu R \tag{Eq. 20}
\end{equation*}
$$

Equation 17 and Equation 20 are approximations. Accurate values of α^{\prime} and R^{\prime} are obtained using a computer solution.

Figures 24 and 25 show another embodiment of this invention wherein a faceted mirror 116 is adhered to the back of a first surface plane mirror 118. Figure 24 is a front view of mirror 118. Figure 25 is an enlarged top sectional view of mirrors 116 and 118 taken along section line 25-25 in Figure 24. Since mirror 118 is a first surface mirror having a reflective coating 120 on the front surface, the metallization in front of mirror 116 must be removed for mirror 116 to be visible from the front. Thus, a window 122 in the

[^0]: *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ' Applicant's urique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USP'TO Patent Documents at www, uspto gov or MPEP $901.04 .{ }^{3}$ Enter Office that issued the document, by the two-leterer code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document Thy the approprate symbols as indicated on the documen 17 Th This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to oblain or reain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 2 hours to conplete, including galhering, prepariing, and subniting the conpleted applieation fornt to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form andfor suggestions for reducing this burden, should be sent to

[^1]: *EXAMINER: Inilial if relerence considered, whelher or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. uspto.gov or MPEP $901.04 .^{3}$ Fnter Office that issued next communication to applicant. Applicant's unique citation designiation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. Uspto.gov or MPEP $901.04{ }^{3}{ }^{3}$ Fnter Office that issued Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

 This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and subanitting the completed application application. Contidentiality is governed by 35 U.S.C. 122 and 37 CRR 1. 14 . This collection is estimated to take 2 hours to complece, including gatiering, preparing, and subiniting the compleled application the Chief Information Officer, U.S. Patent and Trademark Office, P.0, Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO:

[^2]: This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.
 Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

[^3]: U.S. Patent and Trademark Office

[^4]: 1) \triangle Notice of References Cited (PTO-892)
 2) \square Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) \boxtimes Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date 8/10/10.
[^5]: *EXAMINER: Inilial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next conmmurication to applicant. ' Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www,uspto.gov or MPEP 901.04 . ${ }^{3}$ Enter Office that issued the document, by the Lwo-letter code (WIPO Standard ST.3). ${ }^{4}$ Por Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

 This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) a pplication. Confidentiality is governed by 35 U.S.C. 122 and 37 C.R 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Tithe will vary depending upon the individual case. Any conments on the annumt of time you require to complete this form and/or suggestions for reducing this burden, should be sent i the Chief Information Officer, U.S. Patent and Trademark office, P.O, Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THS ADDRESS. SEND TO:

[^6]: *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ' Applicami's urique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USP'TO Patent Documents at www, uspto gov or MPEP $901.04 .{ }^{3}$ Enter Office that issued The document, by the two-leterer code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document
 This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to oblain or relain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 2 hours to conplete, including galhering, prepariing, and subniting the conpleted applieation fornt to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form andfor suggestions for reducing this burden, should be sent to

[^7]: *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ' Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www, usplo.gov or MPEP $901.04 .{ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japancse patent documents, the indication of the year of the reign of tho Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

 This colleclion of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application, Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will yary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to

[^8]: *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Juclude copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www, uspto.gov or MPEP 901.04 . ${ }^{3}$ Enter Office that issued the document, by the fwo-letter code (WIPO Standard ST.3). ${ }^{\text {A }}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of decument by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. "Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1,14. This collection is estimated to take 2 hours to complete, including gathering. preparing, and submilting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to

[^9]: *EXAMINER: Initial if reference considered, whether or not cilation is in conformance with MPEP 609 . Draw line througli citation it not in conformance and not considered. Include copy of this form with next communicalion to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at wwww .uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Empcror must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{\circ}$ Applicant is to place a check mark here if English language Translation is attached.

 This collection of information ts required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a berefit by the public which is to file (and by the USPTO to process) an application, Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1,14. This collection is estimated to take 2 hours to compleet, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual casc. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to

[^10]: ${ }^{\text {E EXAMANER: }}$ Initial if relerence considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. $\mathbf{~ W p p t o . g o v}$ or MPEP 901.04 . ${ }^{3}$ Finter Office that issued next communication to applicant. Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. $\mathbf{4 s p t o . g o v}$ or MPEP $901.04 .{ }^{3}$ Finter Ofice that issue Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

 This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and subanitting the completed application application. Contidentiality is governed by 35 U.S.C. 122 and 37 CRR 1.14. This collection is estimated to take 2 hours to complete, bncluding gathering, preparing, and subiniting the compleed application the Chief Information Officer, U.S. Patent and Trademark Office, P.0, Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO:

[^11]: ${ }^{*} E X A M I N E R$: Initial if reference considered, whether or not citation is in conformance with MPEP 609 . Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ${ }^{3}$ Enter Office that issued the document, by the two-letter code (YIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial mumber of the patent document. ${ }^{3}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to lake 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.0, Box 1450, Alexandria, VA 22313-1450, DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO; Comisionex or phtereiperuermw

[^12]: *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ' Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USP'FO Patent Docuncnts at www, aspto.gov or MPEP 901,04 . ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST, 3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document.
 This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to conplete, including gathering, preparing, and submitting the completed application forn to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form andfor suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O, Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

[^13]: Examiner
 Signature

 ## Date
 Considered

[^14]: *EXAMINER; Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ' Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www, uspto.gov or MPEP $901,04 .{ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). "For Japanese patent documents, the indication of the yenr of the reign of the Emperor must precede the serial number of the patent document Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST, 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

 This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the publio which is to file (and by the USPTO to process) an application Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you reguire to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.0, Box 1450, Alexandria, YA 22313-1450, DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

[^15]: *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. \mathbf{W}. the document, by the two-lelter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Empcror must precede the serial number of the patent document. ${ }^{5}$ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. "Applicant is to place a check mark herc if English language Translation is attached.

 This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complele, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.0, Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

[^16]: *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered, Inciude copy of this form with next communication to applicant. ${ }^{1}$ Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www, uspto.gov or MPEP $901.04 .{ }^{3}$ Enter Oftice that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. "Applicant is to place a check mark here if English language Translation is attached.

 This collection of information is required by 37 CFR 1.97 and 1.98 . The information is reguired to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO, Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to
 Commissioner for Patents, P.O. Hox 1450, Alexandria, VA 22313-1450.

[^17]: *EXAMINER: Initial if relerence considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. 'Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www. H . the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached.

 This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and subunitting the completed application form to the USPTO. Time will vary depending upon the individual case Any comments on the amount of time you require to complete this form and/or sugestions for reducing this burden, should be sent to The Chiff Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

[^18]: *EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation it not in conformance and not considered. Include copy of this form with next communication to applicant. ' Applicant's unique citation designation number (optional). ${ }^{2}$ See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04 . ${ }^{3}$ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ${ }^{4}$ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial mumber of the patent documents Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ${ }^{6}$ Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98 . The information is required to abtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you requirc to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.0, Box 1450, Alcxandria, VA 22313-1450, DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS, SEND TO; Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

[^19]: Prüfungsantrag gem. $\S 28 \mathrm{~b}$ PatG ist gestellt

[^20]: Figur 4 die Vorderansicht einer dritten Ausführungsform mit drei Spiegelflächen.

[^21]: Hierzu 1 Seite(n) Zeichnungen

[^22]: Xerox Copy Centre

[^23]: Printed for Her Majesty's Stationery Office
 by Burgess \& Son (Abingdon) Itd 1982
 Published at The Patent Office. 25 Southampton Buildings.
 London, WC2A 1AY, from which copies may be obtained.

