Huawei v. FISI Exhibit No. 1007 - 226/650

Huawei v. FISI Exhibit No. 1007 - 227/650

200

Universal Serial Bus Specification Revision 2.0

Figure 8-6 shows the packeis composing a generic stari-split transaction. There are two packets in the token
phase: the SPLIT special token and a full-/low-speed token. Depending on the direction of data transfer and
whether a handshake is defined for the transaction type, the token phase is optionally followed by a data
packet and a handshake packet. Start split transactions can consist of 2, 3, or 4 packets as determined by the
specific transfer type and data direction.

Token Phase
Figure 8-6. Packets in a Start-split Transaction

Figure 8-7 shows the packets composing a generic complete-split transaction. There are two packets in the
token phase: the SPLIT special token and a full-/low-speed token. A data or handshake packet follows the
token phase packets in the complete-split depending on the data transfer direction and specific transaction
type. Complete split transactions can consist of 2 or 3 packets as determined by the specific transfer type

and data direction.
Token Phase -

Figure 8-7. Packets in a Complete-split Transaction

The results of a split transaction are returned by a complete-split transaction. Figure 8-8 shows this
conceptual “conversion” for an example interrupt IN transfer type. The host issues a start-split (indicated
with 1) to the hub and then can proceed with other high-speed transactions. The start-split causes the hub to
issue a full-/low-speed IN token sometime later (indicated by 2). The device responds to the IN token (in
this example) with a data packet and the hub responds with a handshake to the device. Finally, the host
sometime later issues a complete-split (indicated by 3) to retrieve the data provided by the device. Note that
in the example, the hub provided the full-/low-speed handshake (ACK in this example) to the device
endpoint before the complete-split, and the complete-split did not provide a high-speed handshake to the
hub.

PA_0001410

Huawei v. FISI Exhibit No. 1007 - 228/650

Universal Serial Bus Specification Revision 2.0

1

Start

sot [SSPUIT > -
Full/Low-Speed

IN Token
IN Token
3 | INToken
Complete
split Data0
- —_—
High-Speed Full-/Low-Speed
Bus Bus

Figure 8-8. Relationship of Interrupt IN Transaction to High-speed Split Transaction

A normal full-/low-speed OUT transaction is similarly conceptually “converted” into start-split and
complete-split transactions. Figure 8-9 shows this “conversion™ for an example interrupt OUT transfer
type. The host issues a start-split transaction consisting of a SSPLIT special token, an OUT token, and
a DATA packet. The hub sometime later issues the OUT token and DATA packet on the full-/low-
speed bus. The device responds with a handshake. Sometime later, the host issues the complete-split
transaction and the hub responds with the results (either full-/low-speed data or handshake) provided by
the device.

201

PA_0001411

Huawei v. FISI Exhibit No. 1007 - 229/650

Universal Serial Bus Specification Revision 2.0

1

Start 2
splitl OUT Token FullLow-speed
Data0
OUT Token
Data0
CcsPuT AR
3 OUT Token
Complete
split ACK
e
Full-/Low-Speed
“High-Speed e
Bus

Figure 8-9. Relationship of Interrupt OUT Transaction to High-speed Split OUT Transaction

The next two sections describe the fields composing the detailed start- and complete-split token packets.
Figure 8-10 and Figure 8-12 show the fields in the split-transaction token packet. The SPLIT special token
follows the general token format and starts with a PID field (after a SYNC) and ends with a CRCS field
(and EOP). Start-split and complete-split token packets are both 4 bytes long. SPLIT transactions must
only originate from the host. The start-split token is defined in Section 8.4.2.2 and the complete-split token
is defined in Section 8.4.2.3.

8.4.2.2 Start-Split Transaction Token

202

(Isb) (msb)
Field | SPLIT | Hub |SC [Port| S | E|ET| CRCS
PID |Addr
Bits 8 71117 11]11]2 5
L W

|

Figure 8-10. Start-split (SSPLIT) Token

The Hub addr field contains the USB device address of the hub supporting the specified full-/low-speed
device for this full-/low-speed transaction. This field has the same definition as the ADDR field definition
in Section 8.3.2.1.

A SPLIT special token packet with the SC (Start/Complete) field set to zero indicates that this is a start-split
transaction (SSPLIT).

The Port field contains the port number of the target hub for which this full-/low-speed transaction is
destined. As shown in Figure 8-11, a total of 128 ports are specified as PORT<6:0>. The host must
correctly set the port field for single and multiple TT hub implementations. A single TT hub
implementation may ignore the port field.

PA_0001412

Huawei v. FISI Exhibit No. 1007 - 230/650

Huawei v. FISI Exhibit No. 1007 - 231/650

Huawei v. FISI Exhibit No. 1007 - 232/650

Universal Serial Bus Specification Revision 2.0

The SOF packet delivers two pieces of timing information. A function is informed that an SOF has
occurred when it detects the SOF PID. Frame timing sensitive functions, that do not need to keep track of
frame number (e.g.. a full-speed operating hub), need only decode the SOF PID; they can ignore the frame
number and its CRC. If a function needs to track frame number, it must comprehend both the PID and the
time stamp. Full-speed devices that have no particular need for bus timing information may ignore the SOF
packet.

8.4.3.1 USB Frames and Microframes

USB defines a full-speed | ms frame time indicated by a Start Of Frame (SOF) packet each and every lms
period with defined jitter tolerances. USB also defines a high-speed microframe with a 125 ps frame time
with related jitter tolerances (See Chapter 7). SOF packets are generated (by the host coniroller or hub
transaction translator) every 1ms for full-speed links. SOF packets are also generated after the next seven
125 s periods for high-speed links.

Figure 8-14 shows the relationship between microframes and frames.

Full / Low-Speed Frame Size (1 ms)
_1ms | 1ms

il -
- Lt Bl Ll Lgi X R 1

\—| Full-Speed USB Frame Ticks \—| Full-Speed Isochronous Data Payload

High-Speed Micro-Framles (125 us)
[XX]
N 0{ 0 0|

USB 2.0 Micro-Frame Ticks ;
(1/8" Full-Speed Frame) High-Speed Isochronous Data Payload

Figure 8-14. Relationship between Frames and Microframes

High-speed devices see an SOF packet with the same frame number eight times (every 125 ps) during each
1 ms period. If desired. a high-speed device can locally determine a particular microframe “number” by
detecting the SOF that had a different frame number than the previous SOF and treating that as the zeroth
microframe. The next seven SOFs with the same frame number can be treated as microframes 1 through 7.

205

PA_0001415

Huawei v. FISI Exhibit No. 1007 - 233/650

Huawei v. FISI Exhibit No. 1007 - 234/650

Huawei v. FISI Exhibit No. 1007 - 235/650

Huawei v. FISI Exhibit No. 1007 - 236/650

Huawei v. FISI Exhibit No. 1007 - 237/650

Huawei v. FISI Exhibit No. 1007 - 238/650

Universal Serial Bus Specification Revision 2.0

Transaction Transaction
commands Results Host

! Controller
HC emd| |HC resp

Downstream Upstream
Bus Bus

I Device
Functions

Figure 8-18. State Machine Context Overview

HC Process_command

HC _Do_start

HC_Do_complete

HC _Do_nonsplit

Figure 8-19. Host Controller Top Level Transaction State Machine Hierarchy Overview

The host controller state machines are located in the host controller. The host controller causes packets to
be issued downstream (labeled as HSD1) and it receives upstream packets (labeled as HSU2).

The device state machines are located in the device. The device causes packets to be issued upstream
(labeled as HSU1) and it receives downstream packets (labeled as HSD2).

The host controller has commands that tell it what transaction to issue next for an endpoint. The host
controller tracks transactions for several endpoints. The host controller state machines sequence to
determine what the host controller needs to do next for the current endpoint. The device has a state [or each
of its endpoints. The device state machines sequence to determine what reaction the device has to a
transaction.

The appendix includes some declarations that were used in constructing the state machines and may be
useful in understanding additional details of the state machines. There are several pseudo-code procedures
and functions for conditions and actions. Simple descriptions of them are also included in the appendix.

Figure 8-20 shows an overview of the overall state machine hierarchy for the host controller for the non-
split transaction types. Figure 8-21 shows the hierarchy of the device state machines. The state machines

211

PA_0001421

Huawei v. FISI Exhibit No. 1007 - 239/650

Huawei v. FISI Exhibit No. 1007 - 240/650

Universal Serial Bus Specification Revision 2.0

Global Actiens.

Signais Status State Reglster Statements
SIGHAL SCOPE DEFAULT
™ heal OUT [BULK,NAK,0,0,ck, in_dirc, TRUE, ALLOATA, FALSE, FR
Packegs device INT ‘O d
token Nyt PfOcess Decl 4
ieee sid, Inulc 1164

ioen fAurmaric_s
umumamnbem _packige

 Packet_ready(HSD2)
Sm:HSDZ token);

ot

Figure 8-22. Device Top Level State Machine

/

token.PID /= tokenOUT and
token.PID /= tokenIN and
token.PID /= tokenSETUP and
token.PID /= ping and
(token.PID = ping and
not device.HS)

token.PID = tOkGﬂOUT’
token.PID = tokenSETUP

token.PID = tokenIN
—

device.HS and
token.PID = ping
i

Y

Device_process_trans

Figure 8-23. Device_process_Trans State Machine

213

PA_0001423

Huawei v. FISI Exhibit No. 1007 - 241/650

Universal Serial Bus Specification Revision 2.0

token.PID = tokenSETUP and
device.ep(token.endpt).ep_type /= control

-

-Tf"
(token.PID = tokenSETUP and

device.ep(token.endpt).ep_type = control) or
token.PID = tokenOUT

device.ep(token.endpt).ep_| type isochronous

_ (not device.HS and
(device.ep(token.endpt).ep_type = bulk or
device.ep(loken.endpt).ep_Lype = control)) or
device.ep(token.endpt).ep_type = interrupt

\

device.HS and
(device.ep(token.endpt).ep_type = bulk or
device.ep(token.endpt).ep_type = control)

——

Device_Do_OUT J

Figure 8-24. Dev_do_OUT State Machine

214

PA_0001424

Huawei v. FISI Exhibit No. 1007 - 242/650

Universal Serial Bus Specification Revision 2.0

device.ep(token.endpt).ep_type = isochronous %

.
./ .
g e

N b

S /
device.ep(token.endpt).ep_type = bulk or o
device.ep(token.endpt).ep_type = control or o

device.ep(token.endpt).ep_type = interrupt /

Device Do_IN

Figure 8-25. Dev_do_IN State Machine

215

PA_0001425

Huawei v. FISI Exhibit No. 1007 - 243/650

Universal Serial Bus Specification Revision 2.0

HC_cmd.ep_type = isochronous .

\
N\
\

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control or
HC_cmd.ep_type = interrupt

HC_cmd.direction = in_dir /’

]

HC_cmd.direction = out_dir

=
HC_cmd.ep_type = isochronous
(not HC_cmd.HS and
(HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control)) or
HC_cmd.ep_type = interrupt
HC_cmd.HS and
{HC_cmd.ep_type = bulk or i
HC_cmd.ep_type = control)

@

HC_Do_nonsplit

Figure 8-26. HC_Do_nonsplit State Machine

216

PA_0001426

Huawei v. FISI Exhibit No. 1007 - 244/650

Huawei v. FISI Exhibit No. 1007 - 245/650

Universal Serial Bus Specification Revision 2.0

HSD2.x or
_ not device.ep(token.endpt).space_avail
r] W
(not HSD2.x) and
HSD2.CRC16 = ok and X
/,\,.-) __——— device.ep(token.endpt).space_avail
}V Dev_accept_data; N\, \
l,-’.l \-.\ I|II
HSD2.x /= \ ,
,-f - device.ep(token.endpt).toggle and T ".\ \
/| HSD2.CRC16 = ok S\ |
/
token.PID = tokenSETUP and | HSD2.x = device.ep(token.endpt).toggle and
HSD2.PID = datax | HSD2.CRC16 = ok and
[device.ep(token.endpt).space_avail

Dev_accept data;

\ \ Issue_packet(HSU1, ACK); |

l" token.PID = tokenOUT and |
| HSD2.PID = datax -
\ |

1 HSD2.x = device.ep(token.endpt).toggle and
[

\ HSD2.CRC16 = ok and
not device.ep(token.endpt).space_avail /

| Issue_packet(HSU1, NAK);
¥ |

L
" device.ep(token.endpt).ep_trouble | ’ /
Issue_packet(HSU1, STALL); <4

" (HSD2.PID = datax and /
HSD2.CRC16 = bad) or g
HSD2.PID /= datax or =
HSD2.timeout

| Dev_Do_BCINTO

Figure 8-27. Host High-speed Bulk OUT/Control Ping State Machine

8.5.1.1 NAK Responses to OUT/DATA During PING Protocol
The endpoint may also respond to the OUT/DATA transaction with a NAK handshake. This means that the
endpoint did not accept the data and does not have space [or a wMaxPacketSize data payload at this time.

The host controller must return to using a PING token until the endpoint indicates it has space.
A NAK response is expected to be an unusual occurrence. A high-speed bulk/control endpoint must speeify
its maximum NAK rate in its endpoint descriptor. The endpoint is allowed to NAK at most one time each
binterval period. A NAK suggests that the endpoint responded to a previous OUT or PING with an
inappropriate handshake, or that the endpoint transitioned into a state where it (temporarily) could not

218
PA_0001428

Huawei v. FISI Exhibit No. 1007 - 246/650

Universal Serial Bus Specification Revision 2.0

accept data. An endpoint can use a blnterval of zero to indicate that it never NAKs. An endpoint must
always be able 10 accept a PING from the host, even if'it never NAKs.

If a timeout occurs after the data phase, the host must return to using a PING token. Note that a transition
back to the PING state does not affect the data toggle state of the transaction data phase.

Figure 8-27 shows the host controller state machine for the interactions and transitions between PING and
OUT/DATA tokens and the allowed ACK, NAK, and NYET handshakes for the PING mechanism.

Figure 8-29 shows the device endpoint state machine for PING based on the buffer space the endpoint has
available.

/\ ___ not device.ep(token.endpt).space_avail

by Issue_packet(HSU1, NAK);

P

device.ep(token.endpt).space_avail

lssue_packet(HSU1, ACK);) :
- * -

c_l_evicg.ep(_tqkel_'t.enqpt}.ep___troqble
Issue_packet(HSU1, STALL);

Not allowed for control
setup transaction

Dev_HS_ping

Figure 8-28. Dev_HS_ping State Machine

219

PA_0001429

Huawei v. FISI Exhibit No. 1007 - 247/650

Universal Serial Bus Specification Revision 2.0

-

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
| not device.ep(token.endpt).space_avail

//‘ Issue_packet(HSU1, NAK); S
3

HSD2.x /= device.ep(token.endpt).toggle and
/ | HSD2.CRC16 = ok

/f/ — \

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
device.ep(token.endpt).space_avail

Dev_accept_data;

Issue_packet{HSU1, ACK);

not device.ep(token.endpt).space_avail
Issue_packet{(HSU1, NYET);
—

ot A
A

by
T4

device.ep(token.endpt).ep_trouble
Issue_packet(HSU1, STALL);

e P

(HSD2.PID = datax and
HSD2.CRC16 = bad) or
HSD2.PID /= datax or
HSD2.timeout

[Dev_HS_BCO

Figure 8-29. Device High-speed Bulk OUT /Control State Machine

Full-/low-speed devices/endpoints must not support the PING protocol. Host controllers must not support
the PING protocol for full-/low-speed devices.

Note: The PING protocol is also not included as part of the split-transaction protocol definition. Some
split-transactions have equivalent flow control without using PING. Other split-transactions will not benefit
from PING as defined. In any case, split-transactions that can return a NAK handshake have small data
payloads which should have minor high-speed bus impact. Hubs must support PING on their control
endpoint, but PING is not defined for the split-transactions that are used to communicate with full-/low-
speed devices supported by a hub.

220

PA_0001430

Huawei v. FISI Exhibit No. 1007 - 248/650

Universal Serial Bus Specification Revision 2.0

8.5.2 Bulk Transactions

Bulk transaction types are characterized by the ability to guarantee error-free delivery of data between the
host and a function by means of error detection and retry. Bulk transactions use a three-phase transaction
consisting of token, data, and handshake packets as shown in Figure 8-30. Under certain flow control and
halt conditions, the data phase may be replaced with a handshake resulting in a two-phase transaction in
which no data is transmitted. The PING and NYET packets must only be used with devices operating at
high-speed.

Idle
High-speed OUT only
ke N ouT
/ Error
DATADI DATAD/
[Bamad | | [wax | [srau]
ata
Error Idie
Idia
»
»
High-spead only
andshake
ACK Data NYET IACK | ‘NAK | |sm.|.| Data
Error Errar
L L L o ldle
~
[] Host [] Function

Figure 8-30. Bulk Transaction Format

When the host is ready to receive bulk data, it issues an IN token. The function endpoint responds by
returning either a data packet or, should it be unable to return data, a NAK or STALL handshake. NAK
indicates that the function is temporarily unable to return data, while STALL indicates that the endpoint is
permanently halted and requires USB System Software intervention. If the host receives a valid data
packet, it responds with an ACK handshake. If the host detects an error while receiving data, it returns no
handshake packet to the function.

When the host is ready to transmit bulk data, it first issues an OUT token packet followed by a data packet
(or PING special token packet, see Section 8.5.1). If the data is received without error by the function, it
will return one of three (or four including NYET, for a device operating at high-speed) handshakes:

¢ ACK indicates that the data packet was received without errors and informs the host that it may send
the next packet in the sequence.

¢ NAK indicates that the data was received without error but that the host should resend the data because
the function was in a temporary condition preventing it from accepting the data (e.g., buffer full).

+ Ifthe endpoint was halted, STALL is returned 1o indicate that the host should not retry the transmission
because there is an error condition on the function.

If the data packet was received with a CRC or bit stufl error, no handshake is returned.

Figure 8-31 and Figure 8-32 show the host and device state machines respectively for bulk, control, and
interrupt QUT full/low-speed transactions. Figure 8-27, Figure 8-28, and Figure 8-29 show the state
machines for high-speed transactions. Figure 8-33 and Figure 8-34 show the host and device state machines
respectively for bulk, control, and interrupt IN transactions.

221

PA_0001431

Huawei v. FISI Exhibit No. 1007 - 249/650

Universal Serial Bus Specification Revision 2.0

(HSU2.PID /= STALL and
HSU2.PID /= NAK and
HSU2.PID /= ACK) or
HSU2.timeout

Packet_ready(HSU2) /

/ ErrorCount < 3

RespondHC(Do_same_cmd);

4
Issue_packel(HSD1, datax);

\
ErrorCount >= 3

RespondHC(Do_halt);

not HC_cmd.setup

Is:;%_pac:et(ou_r HSU2.PID = STALL L
1, wkenOLT), | RespondHC(Do_halt);
(HC cmd.setup
S Issue_packet(HSD1, tokensetup); HSU2.PID = NAK

RespondHC(Do_same_cmd);

o

HSU2.PID = ACK
RespondHC(Do_next_cmd);

Not allowed for control
setup transaction

HC_Do_BCINTO

Figure 8-31. Bulk/Control/Interrupt OUT Transaction Host State Machine

222

PA_0001432

Huawei v. FISI Exhibit No. 1007 - 250/650

Universal Serial Bus Specification Revision 2.0

HSD2.x or

___ not device.ep(token.endpt).space_avail \
4 (not HSD2.x) and \
e HSD2.CRC16 = ok and

f_,_—ff” device.ep(token.endpt).space_avail
@f Dev_accept_data;

it

HSD2.x /= I
-~ device.ep(token.endpt).toggle and —
/" | HSD2.CRC16 = ok .
/£

token.PID = tokenSETUP and HSD2.x = device.ep(token.endpt).toggle and ‘
HSD2.PID = datax HSD2.CRC16 = ok and

device.ep(token.endpt).space_avail \l
Dev_accept data;

token.PID = tokenOUT and

\ Issue_packet(HSU1, ACK);
HSD2.PID = datax

P

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and

not device.ep(token.endpt).space_avail
Issue_packet(HSU1, NAK);

Packet_ready(HSD2)
N

device.ep(token.endpt).ep_trouble
Issue_packet(HSU1, STALL);

=

"~ (HSD2.PID = datax and 7
HSD2.CRC16 = bad) or A
HSD2.PID /= datax or ="
HSDZ2.timeout

Dev_Do_BCINTO

Figure 8-32. Bulk/Control/Interrupt OUT Transaction Device State Machine

223

PA_0001433

Huawei v. FISI Exhibit No. 1007 - 251/650

Universal Serial Bus Specification Revision 2.0

(HSU2.PID /= NAK and

HSU2.PID /= STALL and
— HSU2.PID /= datax) or

(HSU2.PID = datax and

Packet_ready(HSU2)

HSUZ2.CRC16 = bad) or \
HSU2 timeout / \
\ ErrorCount < 3
\\ RespondHG(Do_same_cmd);
\\ \
HSUZ2.PID = STALL ErrorCount >=3
RespondHC(Do_halt); RespondHC(Do_halt);

Issue_packet(HSD1, tokenIN);
S

-/

HSU2.PID = NAK
RespondHC(Do_same_cmd);

HSU2.PID = datax and
HSU2.CRC16 = ok and
HSU2.x /= HC_cmd.toggle /

HSU2.PID = datax and
HSUZ2.CRC16 = ok and
HSU2.x = HC_cmd.toggle

HC_Accept_data;

Issue_packet(HSD1, ACK);
RespondHC(Do_same_cmd);

Issue_packet(HSD1, ACK);
RespondHC(Do_next_cmd);

| HC_Do_BCINTI |

Figure 8-33. Bulk/Control/Interrupt IN Transaction Host State Machine

224

PA_0001434

Huawei v. FISI Exhibit No. 1007 - 252/650

Universal Serial Bus Specification Revision 2.0

~ device.ep(token.endpt).ep_trouble)

e Issue_packet(HSU1, STALL);

device.ep(token.endpt).data_avail Sul
Issue_packet(HSU1, datax); e

— %

not device.ep(token.endpt).data_avail i
Issue_packet{HSU1, NAK); A

HSD2PID=ACK
RespondDev(Do_next_data); P

———__ HSD2.PID /= ACK or
HSD2.timeout

Dev_Do_BCINTI

Figure 8-34. Bulk/Control/Interrupt IN Transaction Device State Machine

Figure 8-35 shows the sequence bit and data PID usage for bulk reads and writes. Data packet
synchronization is achieved via use of the data sequence toggle bits and the DATAO/DATA1 PIDs. A bulk
endpoint’s toggle sequence is initialized to DATAO when the endpoint experiences any configuration event
(configuration events are explained in Sections 9.1.1.5 and 9.4.5). Data toggle on an endpoint is NOT
initialized as the direct result of a short packet transfer or the retirement of an IRP.

E\rl:'::; [out || outey |- [ourem |
DATAD DATAY DATAWT

R [wo [we | [e]
DATAD DATA1 DATAD

Figure 8-35. Bulk Reads and Writes

The host always initializes the first transaction of a bus transfer to the DATAO PID with a configuration
evenl. The second transaction uses a DATA1 PID, and successive data transfers alternate for the remainder
of the bulk transfer. The data packet transmitter toggles upon receipt of ACK, and the receiver toggles upon
receipt and acceptance of a valid data packet (refer 1o Section 8.6).

8.5.3 Control Transfers

Control transfers minimally have two transaction stages: Setup and Status. A control transfer may
optionally contain a Data stage between the Setup and Status stages. During the Setup stage, a SETUP
transaction is used to transmit information to the control endpoint of a function. SETUP transactions are
similar in format to an OUT but use a SETUP rather than an OUT PID. Figure 8-36 shows the SETUP
transaction format. A SETUP always uses a DATAO PID for the data field of the SETUP transaction. The

225

PA_0001435

Huawei v. FISI Exhibit No. 1007 - 253/650

Universal Serial Bus Specification Revision 2.0

function receiving a SETUP must accept the SETUP data and respond with ACK; if the data is corrupted,
discard the data and return no handshake.

Idle
Token SETUP
_\
Data | DATAO |
H

Handshake ACK [rover

Idie

[[] Hest [] Function
Figure 8-36. Control SETUP Transaction

The Data stage, if present, of a control transfer consists of one or more IN or OUT transactions and follows
the same protocol rules as bulk transfers. All the transactions in the Data stage must be in the same
direction (i.e., all INs or all OUTs). The amount of data to be sent during the data stage and its direction are
specified during the Setup stage. If the amount of data exceeds the prenegotiated data packet size, the data
is sent in multiple transactions (INs or OUTs) that carry the maximum packet size. Any remaining data is
sent as a residual in the last transaction.

The Status stage of a control transfer is the last transaction in the sequence. The status stage transactions
follow the same protocol sequence as bulk transactions. Status stage for devices operating at high-speed
also includes the PING protocol. A Status stage is delineated by a change in direction of data flow from the
previous stage and always uses a DATA]1 PID. If, for example, the Data stage consists of OUTs, the status
is a single IN transaction. If the control sequence has no Data stage, then it consists of a Setup stage
followed by a Status stage consisting of an IN transaction.

Figure 8-37 shows the transaction order, the data sequence bit value, and the data PID types for control read
and write sequences. The sequence bits are displayed in parentheses.

Setup Data Status
Stage Stage Stage
——— S e
5;:1:0' [seopw | [ouren | [our@ |- | outwen | [we |
DATAD DATA1 DATAD DATAQ/ DATA1
g"“;""' ISETUP(Q] I [IN (1) I | IN (0) | I IN (0/1) I I OUT (1) I
- DATAD DATA1 DATAD DATAOA DATA1
Setup Status
Stage Stage

—t— ——

gg:’x ISETUP (|| IN (1) |

DATAD DATA1

Figure 8-37. Control Read and Write Sequences

220

PA_0001436

Huawei v. FISI Exhibit No. 1007 - 254/650

Huawei v. FISI Exhibit No. 1007 - 255/650

Huawei v. FISI Exhibit No. 1007 - 256/650

Universal Serial Bus Specification Revision 2.0

Idle

Token ol

DATAO/

|DATA1 ‘ NAK | | STAI.L|
Data

Error LA_, Idle

Handshake

l ACK I Data ' ACK | | NAK | |s'm|_|_ | Data

Error ‘ T Error
.Idle

D Host |:| Function
Figure 8-38. Interrupt Transaction Format

When an endpoint is using the interrupt transfer mechanism for actual interrupt data, the data toggle
protocol must be followed. This allows the function to know that the data has been received by the host and
the event condition may be cleared. This “guaranteed™ delivery of events allows the function to only send
the interrupt information until it has been received by the host rather than having to send the interrupt data
every time the function is polled and until the USB System Software clears the interrupt condition. When
used in the toggle mode, an interrupt endpoint is initialized to the DATAO PID by any configuration event
on the endpoint and behaves the same as the bulk transactions shown in Figure 8-35.

8.5.5 Isochronous Transactions

Isochronous transactions have a token and data phase, but no handshake phase, as shown in Figure 8-39.
The host issues either an IN or an OUT token followed by the data phase in which the endpoint (for INs) or
the host (for OUTSs) transmits data. Isochronous transactions do not support a handshake phase or retry
capability.

Idle
L our |
l W | Token
|DATAx | IDATAx | Data
L Error
X - ldle

|:| Host |:| Function
See Note Below

Figure 8-39. Isochronous Transaction Format

229

PA_0001439

Huawei v. FISI Exhibit No. 1007 - 257/650

Universal Serial Bus Specification Revision 2.0

Note: A full-speed device or Host Controller should be able to accept either DATAO or DATA]1 PIDs in
data packets. A full-speed device or Host Controller should only send DATAO PIDs in data packets. A
high-speed Host Controller must be able to accept and send DATAO, DATAIL, DATA2, or MDATA PIDs in
data packets. A high-speed device with at most | transaction per microframe must only send DATAO PIDs
in data packets. A high-speed device with high-bandwith endpoints (e.g., one that has more than 1
transaction per microframe) must be able to accept and/or send DATAOQ, DATA1, DATA2, or MDATA
PIDs in data packets.

Full-speed isochronous transactions do not support toggle sequencing. High-speed isochronous transactions
with a single transaction per microframe do not support toggle sequencing. High bandwidth, high-speed
isochronous transactions support data P1D sequencing (see Section 5.9.1 for more details).

Figure 8-40 and Figure 8-41 show the host and device state machines respectively for isochronous OUT
transactions. Figure 8-42 and Figure 8-43 show the host and device state machines respectively for
isochronous IN transactions.

-

Issue_packet{HSD1, tokenOUT);

™

¥

Issue_packet(HSD1, datax);

RespondHC(Do_next_cmd);
“m

HC_Do_lsochO

Figure 8-40. Isochronous OUT Transaction Host State Machine

230

PA_0001440

Huawei v. FISI Exhibit No. 1007 - 258/650

Universal Serial Bus Specification Revision 2.0

HSD2.PID /= datax or
(HSD2.PID = datax and
HSD2.CRC16 = bad) or
HSD2.timeout

Dev_Record_error;

Packet_ready(HSD2)

L8

HSD2.PID = datax and
HSD2.CRC16 = ok

Dev_Accept_data;

RespondDev(Do_next_data);

-

Dev_Do_lsochO

Figure 8-41. Isochronous OUT Transaction Device State Machine

HSU2.PID = datax and
HSU2.CRC16 = ok

HC_Accept_data;

Packet_ready(HSU2)

HSU2.PID /= datax or
(HSU2.PID = datax and
HSU2.CRC16 = bad) or
HSUZ.timeout

Issue_packet(HSD1, tokenIN);

B

RespondHC({Do_next cmd);

o

HC_Do_lsachl

Figure 8-42. Isochronous IN Transaction Host State Machine

231

PA_0001441

Huawei v. FISI Exhibit No. 1007 - 259/650

Universal Serial Bus Specification Revision 2.0

Issue_packet(HSU1, datax); -- data0

RespondDev(Do_next_data);

A

l Dev_Do_lsochl]

Figure 8-43. Isochronous IN Transaction Device State Machine

8.6 Data Toggle Synchronization and Retry

232

The USB provides a mechanism to guarantee data sequence synchronization between data transmitter and
receiver across multiple transactions. This mechanism provides a means of guaranteeing that the handshake
phase of a transaction was interpreted correctly by both the transmitter and receiver. Synchronization is
achieved via use of the DATAO and DATA1 PIDs and separate data toggle sequence bits for the data
transmitter and receiver. Receiver sequence bils toggle only when the receiver is able to accept data and
receives an error-free data packet with the correct data PID. Transmitter sequence bits toggle only when the
data transmitter receives a valid ACK handshake. The data transmitier and receiver must have their
sequence bits synchronized at the start of a transaction. The synchronization mechanism used varies with
the transaction type. Data toggle synchronization is not supported for isochronous transfers.

The state machines contained in this chapter and in Chapter 11 describe data toggle synchronization in a
more compact form. Instead of explicitly identifying DATAO and DATA], it uses a value "DATAX" to
represent either/both DATAO/DATAT1 PIDs. In some cases where the specific data PID is important,
another variable labeled “x" is used that has the value 0 for DATAO and 1 for DATAI.

High-speed, high-bandwidth isochronous and interrupt endpoints support a similar but different data
synchronization technique called data PID sequencing. That technique is used instead ol data toggle
synchronization. Section 5.9.1 defines data PID sequencing.

PA_0001442

Huawei v. FISI Exhibit No. 1007 - 260/650

Huawei v. FISI Exhibit No. 1007 - 261/650

Huawei v. FISI Exhibit No. 1007 - 262/650

Universal Serial Bus Specification Revision 2.0

the transaction by generating a bit stuffing violation for full-/low-speed. An error for high-speed must be
forced by taking the currently calculated CRC and complementing it before transmitting it. This causes a
detectable error at the receiver and guaraniees that a partial packet will not be interpreted as a good packet.
The transmitter should not try to force an error at the receiver by sending a constant known bad CRC. A
combination of a bad packet with a “bad” CRC may be interpreted by the receiver as a good packet.

8.6.5 Low-speed Transactions

The USB supports signaling at three speeds: high-speed signaling at 480 Mb/s, full-speed signaling at
12.0 Mb/s, and low-speed signaling at 1.5 Mb/s. Hubs isolate high-speed signaling from full-/low-speed
signaling environments.

Within a full-/low-speed signaling environment, hubs disable downstream bus traffic to all ports to which
low-speed devices are attached during full-speed downstream signaling. This is required both for EMI
reasons and to prevent any possibility that a low-speed device might misinterpret downstream a full-speed
packet as being addressed to it.

Figure 8-48 shows an IN low-speed transaction in which the host (or TT) issues a token and handshake and
receives a data packet.

Hub enables low- Hub disables low-
speed port outputs speed port outputs
”mpa'f:u'ﬂ?;;“d * Token sent at low-speed +
5 —
| SYNC | PID Hub setup SYNC | PID ENDP ... | EOP |
Data packet sent at low-speed
s

SYNC PID DATA CRC EQP |

Hub disables low-

Hub enables low- speed port outputs
Preamble speed port outputs
sent at full-speed * Handshake sent at | peed *
& % BN
| SYNC ‘ PID Hub setup ‘ SYNC 1 PID ‘ EOP |

Figure 8-48. Low-speed Transaction

All downstream packets transmitted to low-speed devices within a full-/low-speed signaling environment
require a preamble. Preambles are never used in a high-speed signaling environment., The preamble
consists of a SYNC followed by a PRE PID, both sent at full-speed. Hubs must comprehend the PRE PID;
all other USB devices may ignore it and treat it as undefined. At the end of the preamble PID, the host (or
TT) drives the bus to the Idle state for at least one {ull-speed bit time. This Idle period on the bus is termed
the hub setup interval and lasts for at least four full-speed bit times. During this hub setup interval, hubs
must drive their full-speed and low-speed ports to their respective Idle states. Hubs must be ready to repeat
low-speed signaling on low-speed ports before the end of the hub setup interval. Low-speed connectivity
rules are summarized below:

1. Low-speed devices are identified during the connection process, and the hub ports to which they are
connected are identified as low-speed.

2. All downstream low-speed packets must be prefaced with a preamble (sent at [ull-speed), which turns
on the output buffers on low-speed hub ports.

235

PA_0001445

Huawei v. FISI Exhibit No. 1007 - 263/650

Huawei v. FISI Exhibit No. 1007 - 264/650

Huawei v. FISI Exhibit No. 1007 - 265/650

Huawei v. FISI Exhibit No. 1007 - 266/650

Huawei v. FISI Exhibit No. 1007 - 267/650

Huawei v. FISI Exhibit No. 1007 - 268/650

Huawei v. FISI Exhibit No. 1007 - 269/650

Huawei v. FISI Exhibit No. 1007 - 270/650

Huawei v. FISI Exhibit No. 1007 - 271/650

Huawei v. FISI Exhibit No. 1007 - 272/650

Huawei v. FISI Exhibit No. 1007 - 273/650

Huawei v. FISI Exhibit No. 1007 - 274/650

Huawei v. FISI Exhibit No. 1007 - 275/650

Huawei v. FISI Exhibit No. 1007 - 276/650

Huawei v. FISI Exhibit No. 1007 - 277/650

Huawei v. FISI Exhibit No. 1007 - 278/650

Huawei v. FISI Exhibit No. 1007 - 279/650

Huawei v. FISI Exhibit No. 1007 - 280/650

Huawei v. FISI Exhibit No. 1007 - 281/650

Huawei v. FISI Exhibit No. 1007 - 282/650

Huawei v. FISI Exhibit No. 1007 - 283/650

Huawei v. FISI Exhibit No. 1007 - 284/650

Huawei v. FISI Exhibit No. 1007 - 285/650

Huawei v. FISI Exhibit No. 1007 - 286/650

Huawei v. FISI Exhibit No. 1007 - 287/650

Huawei v. FISI Exhibit No. 1007 - 288/650

Huawei v. FISI Exhibit No. 1007 - 289/650

Huawei v. FISI Exhibit No. 1007 - 290/650

Huawei v. FISI Exhibit No. 1007 - 291/650

Huawei v. FISI Exhibit No. 1007 - 292/650

Huawei v. FISI Exhibit No. 1007 - 293/650

Huawei v. FISI Exhibit No. 1007 - 294/650

Huawei v. FISI Exhibit No. 1007 - 295/650

