Huawei v. FISI Exhibit No. 1007 - 361/650

Huawei v. FISI Exhibit No. 1007 - 362/650

Huawei v. FISI Exhibit No. 1007 - 363/650

Huawei v. FISI Exhibit No. 1007 - 364/650

Huawei v. FISI Exhibit No. 1007 - 365/650

Huawei v. FISI Exhibit No. 1007 - 366/650

Huawei v. FISI Exhibit No. 1007 - 367/650

Huawei v. FISI Exhibit No. 1007 - 368/650

Huawei v. FISI Exhibit No. 1007 - 369/650

Universal Serial Bus Specification Revision 2.0

11.14 Transaction Translator

A hub has a special responsibility when it is operating in high-speed and has full-/low-speed devices
connected on downstream facing ports. In this case, the hub must isolate the high-speed signaling
environment from the full-/low-speed signaling environment. This function is performed by the Transaction
Translator (TT) portion of the hub.

This section defines the required behavior of the transaction translator.

11.14.1 Overview

342

Figure 11-24 shows an overview of the Transaction Translator. The TT is responsible for participating in
high-speed split transactions on the high-speed bus via its upstream facing port and issuing corresponding
full-/low-speed transactions on its downstream facing ports that are operating at full-/low-speed. The TT
acts as a high-speed function on the high-speed bus and performs the role of a host controller for its
downstream facing ports that are operating at full-/low-speed. The TT includes a high-speed handler to deal
with high-speed transactions. The TT also includes a full-/low-speed handler that performs the role of a
host controller on the downstream facing ports that are operating at full-/low-speed.

High Speed Bus

High-Speed Handler

//"\

Isoch/Int || Isoch/Int B/C
Start-split| |[Comp.-split In/OutIn/Out

A

X

Full/Low-Speed Handler

$

Full/Low Speed Bus ¥

Figure 11-24. Transaction Translator Overview

The TT has buffers (shown in gray in the figure) fo hold transactions that are in progress and tracks the state
of each buffered transaction as it is processed by the TT. The buffers provide the connection between the
high-speed and full-/low-speed handlers. The state tracking the TT does for each transaction depends on the
specific USB transfer type of the transaction (i.e., bulk, control, interrupt, isochronous). The high-speed
handler accepts high-speed start-split transactions or responds to high-speed complete-split transactions.
The high-speed handler places the start-split transactions in local buffers for the full-/low-speed handler’s
use.

The buffered start-split transactions provide the full-/low-speed handler with the information that allows it
to issue corresponding full-/low-speed transactions to full-/low-speed devices attached on downsiream
facing ports. The full-/low-speed handler buffers the results of these full-/low-speed transactions so that
they can be returned with a corresponding complete-split transaction on the high-speed bus.

The general conversion between full-/low-speed transactions and the corresponding high-speed split
transaction protocol is described in Section 8.4.2. More details about the specific transfer types for split
transactions are described later in this chapter.

PA_0001552

Huawei v. FISI Exhibit No. 1007 - 370/650

Universal Serial Bus Specification Revision 2.0

The high-speed handler of the TT operates independently of the full-/low-speed handler. Both handlers use
the local transaction buffers to exchange information where required.

Transaction Translator

Bulk & | | Interrupt &
Control| [Isochronou

Figure 11-25. Periodic and Non-periodic Buffer Sections of TT

The TT has two buffer and state tracking sections (shown in gray in Figure 11-24 and Figure 11-25):
periodic (for isochronous/interrupt full-/low-speed transactions) and non-periodic (for bulk/control full-
/low-speed transactions). The requirements on the TT for these two buffer and state tracking sections are
different. Each will be described in turn later in this chapter.

11.14.1.1 Data Handling Between High-speed and Full-/low-speed

The host converts transfer requests involving a full-/low-speed device into corresponding high-speed split
transactions to the TT to which the device is attached.

Low-speed Preamble(PRE) packets are never used on the high-speed bus to indicate a low-speed
transaction. Instead, a low-speed transaction is encoded in the split transaction token.

The host can have a single schedule of the transactions that need to be issued to devices. This single
schedule can be used to hold both high-speed transactions and high-speed split transactions used for
communicating with full-/low-speed devices.

11.14.1.2 Host Controller and TT Split Transactions

The host controller uses the split transaction protocol for initiating full-/low-speed transactions via the TT
and then determining the completion status of the full-/low-speed transaction. This approach allows the
host controller to start a full-/low-speed transaction and then continue with other high-speed transactions
while avoiding having to wait for the slower transaction to proceed/complete at its speed. A high-speed
split transaction has two parts: a start-split and a complete-split. Split transactions are only used between
the host controller and a hub. No ather high-/full-/low-speed devices ever participate in split transactions.

When the host controller sends a start-split transaction at high-speed, the split transaction is addressed to the
TT for that device. That TT will accept the transaction and buffer it locally. The high-speed handler
responds with an appropriate handshake to inform the host controller that the transaction has been accepted.
Not all split transactions have a handshake phase to the start-split. The start-split transactions are kept
temporarily in a TT transaction buffer.

The full-/low-speed handler processes start-split periodic transactions stored in the periodic transaction
buffer (in order) as the downstream full-/low-speed bus is ready for the “next” transaction. The full-/low-
speed handler accepts any result information from the downstream bus (in response to the full-/low-speed
transaction) and accumulates it in a local buffer for later transmission to the host controller.

At an appropriate future time, the host controller sends a high-speed complete-split transaction to retrieve
the status/data/result for appropriate full-/low-speed transactions. The high-speed handler checks this high-
speed complete-split transaction with the response at the head of the appropriate local transaction buffer and
responds accordingly. The specific split transaction sequences are defined for each USB transfer type in
later sections.

343

PA_0001553

Huawei v. FISI Exhibit No. 1007 - 371/650

11.

11.

11.

344

Universal Serial Bus Specification Revision 2.0

14.1.3 Multiple Transaction Translators

A hub has two choices for organizing transaction translators (TTs). A hub can have one TT for all
downstream facing ports that have full-/low-speed devices attached or the hub can have one TT for each
downstream facing port. The hub must report its organization in the hub class descriptor.

14.2 Transaction Translator Scheduling

As the high-speed handler accepts start-splits, the full-/low-speed transaction information and data for
OUTSs or the transaction information for INs accumulate in buffers awaiting their service on the downstream
bus. The host manages the periodic TT transaction buffers differently than the non-periodic transaction
buffers.

14.2.1 TT Isochronous/Interrupt (Periodic) Transaction Buffering

Periodic transactions have strict timing requirements to meet on a full-/low-speed bus (as defined by the
specific endpoint and transfer type). Therefore, transactions must move across the high-speed bus, through
the TT, across the full-/low-speed bus, back through the TT, and onto the high-speed bus in a timely
fashion. An overview of the microframe pipeline of buffering in the TT is shown in Figure 11-26. A
transaction begins as a start-split on the high-speed bus, is accepted by the high-speed handler, and is stored
in the start-split transaction buffer. The full-/low-speed handler uses the next start-split transaction at the
head of the start-split transaction buffer when it is time to issue the next periodic full-/low-speed transaction
on the downstream bus. The results of the transaction are accumulated in the complete-split transaction
buffer. The TT responds to a complete-split from the host and extracts the appropriate response from the
complete-split transaction buffer. This completes the flow for a periodic transaction through the TT. This
is called the periodic transaction pipeline.

High Speed Start-Split High Speed Complete-Split
| A

1T

Start-split| | Complete-split
FIF'c}J .Il,-=IF0 :

v

Figure 11-26. TT Microframe Pipeline for Periodic Split Transactions

The TT implements a traditional pipeline of transactions with its periodic transaction buffers. There is
separate buffer space for start-splits and complete-splits. The host is responsible for filling the start-split
transaction buffer and draining the complete-split transaction buffer. The host software manages the host
controller to cause high-speed split transactions at the correct times to avoid over/under runs in the TT
periodic transaction buffers. The host controller sends data “just in time” for full-/low-speed OUTs and
retrieves response data from full-/low-speed INs to ensure that the periodic transaction buffer space required
in the TT is the minimum possible. See Section 11.18 for more detailed information.

USB strictly defines the timing requirements of periodic transactions and the isochronous transport
capabilities of the high-speed and full-/low-speed buses. This allows the host to accurately predict when

PA_0001554

Huawei v. FISI Exhibit No. 1007 - 372/650

11

Universal Serial Bus Specification Revision 2.0

data for periodic transactions must be moved on both the full-/low-speed and high-speed buses, whenever a
client requests a data transfer with a full-/low-speed periodic endpoint. Therefore, the host can “pipeline™
data to/from the TT so that it moves in a timely manner with its target endpoint. Once the configuration of
a full-/low-speed device with periodic endpoints is set, the host streams data to/from the TT to keep the
device's endpoints operating normally.

.14.2.2 TT Bulk/Control (Non-Periodic) Transaction Buffering

Non-periodic transactions have no timing requirements, but the TT supports the maximum full-/low-speed
throughput allowed. A TT provides a few transaction buffers for bulk/control full-/low-speed transactions.
The host and TT use simple flow control (NAK) mechanisms to manage the bulk/control non-periodic
transaction buffers. The host issues a start-split transaction, and if there is available buffer space, the TT
accepts the transaction. The full-/low-speed handler uses the buffered information to issue the downstream
full-/low-speed transaction and then uses the same buffer to hold any results (e.g., handshake or data or
timeout). The buffer is then emptied with a corresponding high-speed complete-split and the process
continues. Figure 11-27 shows an example overview of a TT that has two bulk/control buffers.

High Speed Start-/Complete-Split

T
Bulk/Ctrl #1 | Bulk/Ctrl #2

Full/Low Speed Transaction

Figure 11-27. TT Nonperiodic Buffering

11.14.2.3 Full-/low-speed Handler Transaction Scheduling

The full-/low-speed handler uses a simple, scheduled priority scheme to service pending transactions on the
downstream bus. Whenever the full-/low-speed handler finishes a transaction on the downstream bus, it
takes the next start-split transaction from the start-split periodic transaction buffer (if any). If there are no
available start-split periodic transactions in the buffer, the full-/low-speed handler may attempt a
bulk/control transaction. If there are start-split transactions pending in the bulk/control buffer(s) and there is
sufficient time left in the full-/low-speed 1 ms frame to complete the transaction, the full-/low-speed handler
issues one of the bulk/control transactions (in round robin order). Figure 11-28 shows pseudo code for the
full-/low-speed handler start-split transaction scheduling algorithm,

The TT also sequences the transaction pipeline based on the high-speed microframe timer to ensure that it
does not start full-/low-speed periodic transactions too early or too late. The “Advance_pipeline” procedure
in the pseudo code is used to keep the TT advancing the microframe “pipeline”™. This procedure is described
in more detail later in Figure 11-67.

345

PA_0001555

Huawei v. FISI Exhibit No. 1007 - 373/650

Huawel v. FISI Exhibit No. 1007 - 374/650

Huawei v. FISI Exhibit No. 1007 - 375/650

348

Universal Serial Bus Specification Revision 2.0

¢ Ready /lastdata — A data packet was finished being received. (isochronous/interrupt IN).

e Ready /moredata — A data packet was being received when the microframe timer occurred

(isochronous/interrupt IN).

e Old - A complete-split has been received by the high-speed handler for a transaction that previously
had a “ready” status. The possible status results are the same as for the Ready status. This is the

initial state for a buffer before it has been used for a transaction.

Pending — The transaction is waiting to be completed on the downstream facing full-/low-speed bus.

The figures use “old/x™ and “ready/x” to indicate any of the old or ready status respectively.

The split transaction state machines in the remainder of this chapter are presented in the context of
Figure 11-31. The host controller state machines are located in the host controller. The host controller
causes packets to be issued downstream (labeled as HSD1) and it receives upstream packets (labeled as

HSU2).

The transaction translator state machines are located in the TT. The TT causes packets to be issued
upstream (labeled as HSU1) and it receives downstream packets (labeled as HSD2).

The host controller has commands that tell it what split transaction o issue next for an endpoint. The host
controller tracks transactions for several endpoints. The TT has state in buffers that track transactions for

several endpoints.

Appendix B includes some declarations that were used in constructing the state machines and may be useful
in understanding additional details of the state machines. There are several pseudo-code procedures and
functions for conditions and actions. Simple descriptions of them are also included in Appendix B.

Transaction Transaction
Commands Results Host
y T Controller

HC cmd| |HC resp

Downstream Upstream

High speed Bus High speed Bus

Hub
Cs Transaction
T Translator

BC

I

Bulk/Ctrl Buffers

SS

!

Periodic Pipeline Buffers

Figure 11-31. State Machine Context Overview

PA_0001558

Huawei v. FISI Exhibit No. 1007 - 376/650

Huawel v. FISI Exhibit No. 1007 - 377/650

Universal Serial Bus Specification Revision 2.0

TT Process_packet

TT Do start

TT Do complete

TT IsochSS

TT IsochICS

| TT Do _IsochOSS

[TT Do IsochISS

TT IntSS TT IntCS

[TT Do _IntOSS | | TT Do_IntOCS |
| TT Do_IntISS | | TT _Do_IntICS |
TT BulkSS TT BulkCS

| TT Do BOSS | | TT Do BOCS |
| TT Do BISS | | TT Do BICS |

Figure 11-33. Transaction Translator State Machine Hierarchy Overview

11.16.1 Host Controller State Machine

Package List

ieee std_legic_1164
ieee numeric_std
usb ines behav_p
eee std_logic_arith

Concurrent Statements

Architecture Declarations.

HC_Command_ready
=2 5

22

Figure 11-34. Host Controller

350

PA_0001560

Huawei v. FISI Exhibit No. 1007 - 378/650

Universal Serial Bus Specification Revision 2.0

11.16.1.1 HC_Process_command State Machine

HC_cmd.cmd = SOF
Issue packet(HSD1, SOF),

/.\ .

.<-lc cmd.cmd = start_split Update_Command(HC_done);
\ /

. HC_cmd.cmd = complete_split

HC_cmd.cmd = nonsplit

N

HC_Process_command |

Figure 11-35. HC_Process_Command

351

PA_0001561

Huawei v. FISI Exhibit No. 1007 - 379/650

Universal Serial Bus Specification Revision 2.0

11.16.1.1.1 HC_Do_start State Machine

/

HC_cmd.ep_type = isochronous

— HC_emd.ep_type = interrupt
HC_cmd.ep_type = bulk or
HC_cmd.ep_type = confrol

HC_emd. direction = in_dir

HC_cmd.direction = out_dir

/

HC_cmd.ep_type = isochronous

HC_cmd.ep_type = interrupt

T,

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control

-

SN

[HC_Do_Start \

Figure 11-36. HC Do_Start

352

PA_0001562

Huawei v. FISI Exhibit No. 1007 - 380/650

Universal Serial Bus Specification Revision 2.0

11.16.1.1.2 HC_Do_complete State Machine

i
HC_cmd.ep_type = isochronous

— HC_cmd.ep_type = interrupt

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control
HC_cmd.direction = in_dir

/

\

- HG_cmd.direction = out_dir

HC_cmd.ep_type = isochronous

HC_cmd.ep_type = interrupt

N

HC_cmd.ep_type = bulk or
HC_cmd.ep_lype = conltrol

e

| Hc_Do_compiete |
Figure 11-37. HC_Do_Complete

353

PA_0001563

Huawei v. FISI Exhibit No. 1007 - 381/650

Universal Serial Bus Specification Revision 2.0

11.16.2 Transaction Translator State Machine

Architecture Declarations
Package List
ieea std_logic_1164
ieee numeric_sid
L hines behav_|

Packet. ready(HEMR)
sttt Save (HSD2, split);
/

-

Figure 11-38. Transaction Translator

354

PA_0001564

Huawei v. FISI Exhibit No. 1007 - 382/650

Universal Serial Bus Specification Revision 2.0

11.16.2.1 TT_Process_packet State Machine

split.PID /= SSPLIT and split.PID /= CSPLIT

N\

sellcel

Packet_ready(HSD2)
Save (HSD2, token);

split.PID = SSPLIT

st2/ct2 /
HSD2.PID = SSPLIT or
HSD2.PID = CSPLIT
Save(HSD2, split);

i

split.PID = CSPLIT

HSD2.PID = SOF

\

SS_Buff.saw_split <= false;

- not SS_Buff.isochO or
(SS_Buff.isochO and
SS_Buff.saw_split)

ﬁ\\\

SS_Buff.isochO and

not SS_Buff.saw_split
Down_error;
SS_Buff.isochO <= false;

HSD2.PID /= SSPLIT and
HSD2.PID /= CSPLIT and
HSD2.PID /= SOF

TT_Process_Packet

Figure 11-39, TT_Process_Packet

355

PA_0001565

Huawei v. FISI Exhibit No. 1007 - 383/650

Universal Serial Bus Specification Revision 2.0

o

split.ep_type = isochronous \

P \
-éw_me = interrupt —;-
o, /

split.ep_type = bulk or
split.ep_type = control

\./

Figure 11-40. TT_Do_Start

11.16.2.1.1 TT_Do_Start State Machine

356

PA_0001566

Huawei v. FISI Exhibit No. 1007 - 384/650

Universal Serial Bus Specification Revision 2.0

e
>

/

11.16.2.1.2 TT_Do_Complete State Machine

/

split.ep_type = isochronous

--Qempe =interupt -
o

split.ep_type = bulk or
split.ep_type = control

=

Figure 11-41. TT_Do_Complete

11.16.2.1.3 TT_BulkSS State Machine

(token.PID /= tokenOUT and

token.PID /= tokenSETUP and

token.PID /= tokenIN) or T
token.timeout .

/

N
- "J@‘ token PID = tokenlN

£
token.PID = tokenQUT or
token.PID = tokenSETUP

B

B
BN

TT_BulkSs

Figure 11-42. TT_BulkSS

357

PA_0001567

Huawei v. FISI Exhibit No. 1007 - 385/650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.4 TT_BulkCS State Machine

(token.PID /= tokenOUT and

token PID /= tokenSE TUP and

token PID /= tokenIN} or
/ token timeout

-~
i, token.PID = tokenOUT or
g @ ion D - tokenSETUP

B
token.PID = tokeniN

[TT_BukCS]

Figure 11-43. TT_BulkCS

11.16.2.1.5 TT_IntSS State Machine

(token.PID /= tokenOUT and
token.PID /= tokenIN} or
token.timeout

-

8 " token.PID = tokenIN
\\.

token.PID = tokenOUT
~

®

TT_IntSS

Figure 11-44, TT_IntSS

358

PA_0001568

Huawei v. FISI Exhibit No. 1007 - 386/650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.6 TT_IntCS State Machine

(token.PID /= tokenIN and
token.PID /= tokenOUT) or
token.timeout

token.PID = tokenIN

——
token PID = tokenOUT

TT_IntCS

Figure 11-45. TT_IntCS

11.16.2.1.7 TT_lsochSS State Machine

(token.PID /= tokenIN and
token.PID /= tokenOUT) or
token.timeout

/

2 /
- “ token PID = tokenlN

\\\
\\ /
token.PID = tokenQUT
=

Figure 11-46. TT_lIsochSS

359

PA_0001569

Huawei v. FISI Exhibit No. 1007 - 387/650

Huawei v. FISI Exhibit No. 1007 - 388/650

Huawei v. FISI Exhibit No. 1007 - 389/650

Universal Serial Bus Specification Revision 2.0

Start split

st ll

SSPLIT

? e
SR Trans err

OUT/SETUP

Trans_err
sdl ¢
DATA0/1 sel
Compare_buffs
A 4
f_new_SS Is old SS Is no space i —
ceept: data Y
shl sh2 sh3 se2!
A ¥ |
|
[ACK] NAK hontaog
| count
| ! ety !
| | | |
. i 4! 5
v v S se
Goto Retry iferr_count<3 iferr_count>=3
comp. split start split retry start split endpoint halt
Host [T]

Figure 11-48. Bulk/Control OU'I' Start-split I'ransaction Sequence

The host must keep retrying the start-split for this endpoint until the err_count reaches three for this
endpoint before continuing on to some other start-split for this endpoint. However, the host can issue other
start-splits for other endpoints before it retries the start-split for this endpoint. The err_count is used to
count how many errors have been experienced during attempts to issue a particular transaction for a
particular endpoint.

If there is no space in the transaction buffers to hold the start-split, the high-speed handler responds with a
NAK via transition “sh3”. This will cause the host to retry this start-split at some future time based on its
normal schedule. The host does not increase its err_count for a NAK handshake response. Once the host
has received a NAK response to a start-split, it can skip other start-splits for this TT for bulk/control
endpoints until it finishes a bulk/control complete-split.

If there is buffer space for the start-split, the high-speed handler takes transition “sh1™ and responds with an
ACK. This tells the host it must try a complete-split the next time it attempts to process a transaction for
this full-/low-speed endpoint. After receiving an ACK handshake, the host must not issue a further start-
split for this endpoint until the corresponding complete-split has been completed.

If the high-speed handler already has a start-split for this full-/low-speed endpoint pending or ready, it
follows transition *“sh2" and also responds with an ACK, but ignores the data. This handles the case where

362

PA_0001572

Huawei v. FISI Exhibit No. 1007 - 390/650

Universal Serial Bus Specification Revision 2.0

an ACK handshake was smashed and missed by the host controller and now the host controller is retrying
the start-split; e.g., a high-speed handler transition of *sh17 but a host transition of “se2”.

In the host controller error cases, the host controller implements the “three strikes and you’re out”
mechanism. That is, it increments an error count (err_count) and. il the count is less than three (transilion
“sed™), it will retry the transaction. If the err_count is greater or equal to three (transition “se5™), the host
controller does endpoint halt processing and does not retry the transaction. If for some reason, a host
memory or non-USB bus delay (e.g..a system memory “hold off”) occurs that causes the transaction to not
be completed normally, the err_count must not be incremented. Whenever a transaction completes
normally, the err_count is reset to zero.

The high-speed handler in the TT has no immediate knowledge of what the host sees, so the “se2"”, “sed™,
and “se5™ transitions show only host visibility.

This packet flow sequence showing the inieractions between the host and hub is also represenied by host
and high-speed handler state machine diagrams in the next section. Those state machine diagrams use the
same labels to correlate transitions between the two representations of the split transaction rules.

Figure 11-49 shows the corresponding flow sequence for the complete-split transaction for the full-/low-
speed bulk/control OUT transfer type. The notation “ready/x” or “old/x™ indicates that the transaction status
of the split iransaction is any of the ready or old states. Afier a full-/low-speed transaction is run on the
downstream bus, the transaction status is updated fo reflect the result of the transaction. The possible result
status is: nak, stall, ack. The “x” means any of the NAK, ACK, STALL full-/low-speed transaction status
results. Each status result reflects the handshake response from the full-/low-speed transaction.

Complete split

ctll
CSPLIT

ct2 y Not applicable

OUT/SETUP cel for control-setup

Trans err

Match_split_state
ready/x or old/x

I
|

!

25 _ — . T*ans err

If status = ready/x == status = old/x =

No : o i
|

|

match
pengling i oldistall oldiack oldinak
chl ced ch2 ch3 ch4 ce
A 4 A 4 Y :
Ine err

NYET | |STALL| | ACK | | NAK J deast

! ! ! ! T !

1 i | | ce; |

| | | i Y i

v \ 4 v iferr_count <3 |

Rehy Endpoint Gotonext Retry retryimmed. o4
comp. spHt emd start split €omp. split

if err_count >=3
Host [TTJ endpoint halt

Figure 11-49. Bulk/Control OUT Complete-split Transaction Sequence

363

PA_0001573

Huawei v. FISI Exhibit No. 1007 - 391/650

364

Universal Serial Bus Specification Revision 2.0

There is no timeout response status for a transaction because the full-/low-speed handler must perform a
local retry of a full-/low-speed bulk or control transaction that experiences a transaction error. It locally
implements a “three strikes and you’re out” retry mechanism. This means that the full-/low-speed
transaction will resolve to one of a NAK, STALL or ACK handshake results. If the transaction experiences
a transaction error three times, the [ull-/low-speed handler will reflect this as a stall status result. The full-
/low-speed handler must not do a local reiry of the transaction in response to an ACK, NAK, or STALL
handshake.

Start split

N

SSPLIT

Trans err
st2 w

IN

sel
Compgare_buffs
i I
Is new 8§ Is old SS Is_no_space i
Accept: data Tra?ns o
shl sh2 sh3 :
Inclerr
ACK NAK cornt
T !
i i se4!
| T T
v v se2¢ i
Go to Retry if err_count<3 :
comp. split start split retry start split |
i.
I
Host [r] i
se3!
v

iferr_count>=3
endpoint halt

Figure 11-50. Bulk/Control IN Start-split Transaction Sequence

If the high-speed handler receives the complete-split token packet (and the token packet) while the full-
/low-speed transaction has not been completed (e.g., the transaction status is “pending”), the high-speed
handler responds with a NYET handshake. This causes the host to retry the complete-split for this endpoint
some time in the future.

If the high-speed handler receives a complete-split token packet (and the token packet) and finds no local
buffer with a corresponding transaction, the TT responds with a STALL to indicate a protocol violation.

Once the full-/low-speed handler has finished a full-/low-speed transaction, it changes the transaction status
from pending to ready and saves the transaction result. This allows the high-speed handler to respond to the
complete-split transaction with something besides NYET. Once the high-speed handler has seen a

PA_0001574

Huawei v. FISI Exhibit No. 1007 - 392/650

Universal Serial Bus Specification Revision 2.0

complete-split, it changes the transaction status from ready/x to old/x. This allows the high-speed handler to
reuse its local buffer for some other bulk/control transaction after this complete-split is finished.

If the host times out the transaction or does not receive a valid handshake, it immediately retries the
complete-split before going on to any other bulk/control transactions for this TT. The normal “three strikes™
mechanism applies here also for the host; i.e., the err_count is incremented. If for some reason, a host
memory or non-USB bus delay (e.g., a system memory “hold of”") occurs that causes the transaction to not
be completed normally, the err_count must not be incremented.

Complete split

ct ll

CSPLIT

IN
Match split_state
.. readvix or old/x or pending
Trans_err If status = ready/x == status = old/x .
oldlack ™" -
old/data old/nak oldistall pemz;’mg
cdl ch2 ch3 ces chl:
A y y h 4 4
[DA TAO/I] [NAK] [STALL] [NYET]
[
Trans jerr :] I !
; : Retry Endpoint Retry
cebi : start split halt comp. split
I e |
:L‘_q{:_z_ _Trangs_err nogtrans_err m%t trans_err and
Inclerr ana Datax = togel
cm*nt Da%ax /= acills o
. toggle HC_Ac#ept_data
r—T—n i i
cc% cc@ ch% ch% Host [T]
iferr_count>=3 iferr_count<3 Retry Go to next
endpoint halt retry immed. start split cmd

comp. split

Figure 11-51. Bulk/Control IN Complete-split Transaction Sequence

If the host receives a STALL handshake, it performs endpoint halt processing and will not issue any more
split transactions for this full-/low-speed endpoint until the halt condition is removed.

If the host receives an ACK, it records the results of the full-/low-speed transaction and advances to the next
split transaction for this endpoint. The next transaction will be issued at some time in the future according
to normal scheduling rules.

365

PA_0001575

Huawei v. FISI Exhibit No. 1007 - 393/650

Universal Serial Bus Specification Revision 2.0

1f the host receives a NAK, it will retry the start-split transaction for this endpoint at some time in the future
according to normal scheduling rules. The host must not increment the err_count in this case.

The host must keep retrying the current stari-split until the err_count reaches three for this endpoini before
proceeding to the next split transaction for this endpoint. However, the host can issue other start-splits for
other endpoints before it retries the start-split for this endpoint.

After the host receives a NAK, ACK, or STALL handshake in response to a complete-split transaction, it
may subsequenily issue a starl-split transaction for the same endpoint. The host may choose to instead issue
a start-split transaction for a different endpoint that is not awaiting a complete-split response.

The shaded case shown in the figure indicates that a control setup transaction should never encounter a
NAK response since that is not allowed for full-/low-speed transactions.

Figure 11-50 and Figure 11-51 show the corresponding flow sequences for bulk/control IN split
transactions.

11.17.2 Bulk/Control Split Transaction State Machines

The host and TT state machines for bulk/control IN and OUT split transactions are shown in the following
figures. The transitions for these staie machines are labeled the same as in the flow sequence figures.

B HC_cmd.ep_type = control and
| 7~ HC_cmd.setup

| Issue_packel{HSD1, SSPLIT);

st

HSUZ2.PID = ACK
RespondHC(Do_complete);

rd \

HC_cmd.ep_type = bulk or >
(HC_cmd.ep_Llype = control and
not HC_cmd setup)

Issue_packet(

J

shifsh2/ . \
HSD1, SSPLIT); 2 e HSU2.PID = NAK \
p s .
: 4 7 " RespondHC(Do_start), — i-
Issue_packel(40 /]
HSD1, tokenSETUP), /' \ sotse2 /|
[ErrorCount < 3

/ R dHC(Do_start);
Issue_packel(/ \ espondHC(Do_s !)
HSD1, tokenOUT); 1 |
/ (HSU2.PID /= ACK and i
/" HSU2.PID /= NAK) or |
y HSU2 timeout 4 |
,:; "_I o !
\ / ErrorCount >= 3

/ \ se4 /
I F \ R H halt);
| packet_ready(HSU2) ESP""CI' C(Do_halt);

sd1 |

Issue_packet(HSD1, DATAX);
|

BSSO_Wait_hndshk
Wai_for_packel(

| HC_Do_BOSS

Figure 11-52. Bulk/Control OUT Start-split Transaction Host State Machine

366

PA_0001576

Huawei v. FISI Exhibit No. 1007 - 394/650

Universal Serial Bus Specification Revision 2.0

HSUZ.PID = NYET
RespondHC(Do_complete);

et
HC_cmd.ep_type = control and
HC_cmd.setup

Issue_packet{(HSD1, CSPLIT);

HSU2.PID = STALL \
RespondHC(Do_halt);

ch2ices
HC cmd.ep_type = bulk or

(HC_cmd.ep_type= control and
NOT HC_cmd.setup)

Issue_packet(HSD1, CSPLIT);

cha HSUZ.PID = ACK
' RespondHC(Do_next_cmd);

Issue_packet{HSD1, tokenSETUP);

\

ErrorCount < 3
RespondHC(Do_complete_immediate);

Issue_packet(HSD1, tokenOUT);

(HSU2.PID /= NYET and ErrorCount >= 3

HSU2.PID /= STALL and .
HSU2.PID /= ACK and Rompe oDy ol
HSU2.PID /= NAK) or P

HSU2.timeout

HC_DO_BOCS

Figure 11-53. Bulk/Control OUT Complete-split Transaction Host State Machine

367

PA_0001577

Huawei v. FISI Exhibit No. 1007 - 395/650

Universal Serial Bus Specification Revision 2.0

sal

M HSD2 PID /= DATAX or

- HSD2 timeout or
HSD.?.\.P\I\D Lol HSD2 CRC16 = bad ™

Packel_ready (HSD2)

sh1 Is_new_SS(BC_buff)
Accept_dala;
Issue_packet(HSU1, ACK);

Is_old_SS(BC_buff)
Issue_packet(HSU1, ACK);

sh3

Is_no_space(BC_buff)
Issue_packel(HSU1, NAK);

TT_Do_BOSS

Figure 11-54. Bulk/Control OUT Start-split Transaction TT State Machine

R
Issue_packet(HSU1, STALL);

BC_Buff.match.state = no_match

ces,
BC_Buff.match.down_result = r_stall

ch2
- BC_Buff.match.down_result = r_ack

Issue_packet(HSU1, ACK);

ch3

-
BC_Buff.maich.down_result = r_nak
Issue_packet(HSU1, NAK);

BC_Buff.match.state /= ready

S

BC_Buff.match.state = ready
BC_Buff.match.state := old;

A

BC_Buff.match.state = old

. BC_buff.match.state = pending
Issue_packet(HSU1, NYET);

S

| TT Do _BOCS

Figure 11-55. Bulk/Control OUT Complete-split Transaction TT State Machine

368

PA_0001578

Huawei v. FISI Exhibit No. 1007 - 396/650

Universal Serial Bus Specification Revision 2.0

-

Issue_packet(HSD1, SSPLIT);

HSU2.PID = NAK
RespondHC(Do_start);

A

P

v’

sh1/sh2

Issue_packet(HSD1, tokenIN); HSU2.PID = ACK e
RespondHC(Do_complete); -
\ /
Packet_ready(HSU2) ErrorCount <3

RespondHC(Do_start);

(HSU2.PID /= ACK and //

HSU2.PID /= NAK) or ;

HSU2 timeout ErrorCount >= 3
RespondHC(Do_halt);

HC_Do_BISS

Figure 11-56. Bulk/Control IN Start-split Transaction Host State Machine

369

PA_0001579

Huawei v. FISI Exhibit No. 1007 - 397/650

Universal Serial Bus Specification Revision 2.0

HSU2.x /= HC_cmd.toggle
RespondHC(Do_start);

HSU2.CRC16 = ok
e HSU2.x = HC_cmd.toggle

HC_Accept_data;

N
\ HSU2.CRC16 = bad

/o

RespondHC(Do_next_cmd);

- o

ErrorCount >= 3
RespondHC(Do_halt);

Issue_packet(HSD1, CSPLIT);

Ty
ErrorCount < 3
RespondHC(Do_complete_immediate);

HSUZ2.PID = DATAx

(HSU2.PID /= DATAx and
Issue_packet(HSD1, tokenIN); HSU2.PID /= NAK and
HSU2.PID /= NYET and
HSU2.PID /= STALL) or
HSUZ2.timeout

HSU2.PID = STALL
RespondHC(Do_halt);

v

cha,rm/ HSUZ.PID = NAK
RespondHC(Do_start);
// ch2
ch1 HSU2.PID = NYET
RespondHC({Do_complete);

Packet_ready(HSUZ2)

HC_Do_BICS

Figure 11-57. Bulk/Control IN Complete-split Transaction Host State Machine

370

PA_0001580

Huawei v. FISI Exhibit No. 1007 - 398/650

Universal Serial Bus Specification Revision 2.0

Is_no_space(BC_buff)
~ Issue_packet(HSU1, NAK);

Is_new_SS(BC_buff) "
S Accept_data; A

[» TT_BISS_check
Issue_packet(HSU1, ACK);

Sompare_BC_buff:

S_sh2
" lIs_old_SS(BC_buff)
Issue_packet(HSU1, ACK);

TT_Do_BISS |

Figure 11-58. Bulk/Control IN Start-split Transaction TT State Machine

BC_buff.match.state = no_match ‘\/&_ Issue_packet(HSU1, STALL);
o
| o (1
y ‘ BC_buff.match.down_result =r_stall or
Match_split_state; BC_buff.match.down_result =r_ack \

[BC_buff.match.down_result = r_data

| Issue_packet(HSU1, DATAX);
| g
I.' i /" BC_buff.match.down_result = r_nak ;
B Issue_packet{HSU1, NAK); A
A o
>~ &y '
. : \ ¥
_r"' BC_buff.match.state /= ready I| B & buff tetch.state=aid
~ —~— _\‘ |I : P
>

B_dfimateh stte = veatly
BC_buff.match.state := old: BC_buff.match,slate = pending_

Issue_packet(HSU1, NYET);

_ TT_Do_BICS _
Figure 11-59. Bulk/Control IN Complete-split Transaction TT State Machine

11.17.3 Bulk/Control Sequencing
Once the high-speed handler has received a start-split for an endpoint and saved it in a local buffer, it
responds with an ACK split transaction handshake. This tells the host controller to do a complete-split

transaction next time this endpoint is polled.

371

PA_0001581

Huawei v. FISI Exhibit No. 1007 - 399/650

Huawei v. FISI Exhibit No. 1007 - 400/650

Universal Serial Bus Specification Revision 2.0

In the following descriptions, the 8 microframes within each full-speed (1 ms.) frame are referred to as
microframe Y, Y, Y,, ..., Y. This notation means that the first microframe of each full-speed frame is
labeled Y. The second microframe is labeled Y , etc. The last microframe of each full-speed frame is
labeled Y,. The labels repeat for each full-speed frame.

This section describes details of the microframe pipeline that affect both full-speed isochronous and full-
/low-speed interrupt transactions. Then the split transaction rules for interrupt and isochronous are
described.

Bulk/control transactions are not scheduled with this mechanism. They are handled as described in the
previous section.

11.18.1 Best Case Full-Speed Budget

A microframe of time allows at most 187.5 raw bytes of signaling on a full-speed bus. In order to estimate
when full-/low-speed transactions appear on a downstream bus, the host must calculate a best case full-
speed budget. This budget tracks in which microframes a full-/low-speed transaction appears. The best case
full-speed budget assumes that 188 full-speed bytes occur in each microframe. Figure 11-60 shows how a

| ms frame subdivided into microframes of budget time. This estimate assumes that no bit stuffing occurs
to lengthen the time required to move transactions over the bus.

The maximum number of bytes in a 1 ms frame is calculated as:
1157 maximum_periodic_bytes per frame = 12 Mb/s * 1 ms/ 8 bits_per_byte *

6 data_bits / 7 bit-stuffed_data_bits * 90% maximum_periodic_data_per_frame

Microfrimes
Yo Yy

Max wire time

Best case wire budget
1157 bytes w/ no
bitstuifing

Figure 11-60. Best Case Budgeted Full-speed Wire Time With No Bit Stuffing

11.18.2 TT Microframe Pipeline

The TT implements a microframe pipeline of split transactions in support of a full-/low-speed bus. Start-
split transactions are scheduled a microframe before the earliest time that their corresponding full-/low-
speed transaction is expected to start. Complete-split transactions are scheduled in microframes that the
full-/low-speed transaction can finish.

When a full-/low-speed device is attached to the bus and configured, the host assigns some time on the
full-/low-speed bus at some budgeted time, based on the endpoint requirements of the configured device.

The effects of bit stuffing can delay when the full-/low-speed transaction actually runs. The results of other
previous full-/low-speed transactions can cause the transaction to run earlier or later on the full-/low-speed
bus.

The host always uses the maximum data payload size for a full-/low-speed endpoint in doing its budgeting.
It does not attempt to schedule the actual data payloads that may be used in specific transactions to full-
/low-speed endpoints. The host must include the maximum duration interpacket gap, bus tumaround times,
and “TT think time™. The TT requires some time to proceed to the next full-/low-speed transaction. This
time is called the “TT think time™ and is specified in the hub descriptor field wHubCharacteristics bit 5 and
0.

373

PA_0001583

Huawei v. FISI Exhibit No. 1007 - 401/650

Universal Serial Bus Specification Revision 2.0

#1: A full/low-speed transaction
budgeted to run here on the classic bus,...

(-1, > Y,
Best case budget i

A

HS HS Complete-splits

Start-split
#2: ...has a HS start-split scheduled #3: ...has 3 HS complete-split transactions
in this microframe and ... scheduled in the possible microframes

for this full/low-speed transaction

Figure 11-61. Scheduling of TT Microframe Pipeline

Figure 11-61 shows an example of a new endpoint that is assigned some portion of a full-/low-speed frame
and where its start- and complete-splits are generally scheduled. The act of assigning some portion of the
full-/low-speed [rame to a particular transaction is called determining the budget for the transaction. More
precise rules for scheduling and budgeting are presented later. The start-split for this example transaction is
scheduled in microframe Y-1., the transaction is budgeted 1o run in microframe Y, and complete-splits are
scheduled for microframes Y, Y,, and Y,. Section 11.18.4 describes the scheduling rules more completely.

The host must determine precisely when start- and complete- splits are scheduled to avoid overruns or
underruns in the periodic transaction buffers provided by the TT.

11.18.3 Generation of Full-speed Frames

The TT must generate SOFs on the full-speed bus to establish the 1 ms frame clock within the defined jitter
tolerances for full-speed devices. The TT has its own frame clock that is synchronized to the microframe
SOFs on the high-speed bus. The SOF that reflects a change in the frame number it carries is identified as
the zeroth microframe SOF. The zeroth high-speed microframe SOF corresponds to the full-speed SOF on
the TT’s downstream facing bus. The TT must adhere to all timing/jitter requirements of a host controller
related to frames as defined in other parts of this specification.

The TT must stop issuing full-speed SOFs after it detects 250 us of high-speed idle. This is required to
ensure that the full-/low-speed downstream facing bus enters suspend no more than 250 s afier the high-
speed bus enters suspend.

The TT must generate a full-speed SOF on the downstream facing bus based on its frame timer. The
generation of the full-speed SOF must occur within +/-3 full-speed bit time from the occurrence of the
zeroth high-speed SOF. See Section 11.22.1 for more information about TT SOF generation.

11.18.4 Host Split Transaction Scheduling Requirements

Scheduling of split transactions is done by the host (typically in software) based on a best-case estimate of
how the full-/low-speed transactions can be run on the downstream facing bus. This best-case estimate is
called the best case budget. The host is free to issue the split transactions anytime within the scheduled
microframe, but each split transaction must be issued sometime within the scheduled microframe. This
description of the scheduling requirements applies to the split transactions for a single full-/low-speed
transaction at a time.

1. The host must never schedule a start-split in microframe Y,. Some error conditions may result in the
host controller erroneously issuing a start-split in this microframe. The TT response to this start-split is
undefined.

374

PA_0001584

Huawei v. FISI Exhibit No. 1007 - 402/650

Universal Serial Bus Specification Revision 2.0

2. The host must compute the start-split schedule by determining the best case budget for the transaction
and:

a.

For isochronous OUT full-speed transactions, for each microframe in which the transaction is
budgeted, the host must schedule a 188 (or the remaining data size) data byte start-split transaction.
The start-split transaction must be scheduled in the microframe before the data is budgeted to begin
on the full-speed bus. The start-split transactions must use the beginning/middle/end/all split
transaction token encodings corresponding to the piece of the full-speed data that is being sent on
the high-speed bus. For example, if only a single start-split is required, an ““all” encoding is used.
If multiple start-splits are required, a “beginning™ encoding is used for the first start-split and an
“end” encoding is used for the final start-split. If there are more than two start-splits required, the
additional start-splits that are not the first or last use a “middle” encoding. A zero length full-speed
data payload must only be scheduled with an “all” start-split. A start-split transaction for a
beginning, middle, or end start-split must always have a non-zero length data payload.

Figure 11-62 shows an example of an isochronous OUT that would appear to have budgeted a zero
length data payload in a start-split (end). This example instead must be scheduled with a start-
split(all) transaction.

Isoch OUT transaction with 187 data
bytes has 196 byte budget.
Transaction budgeted for Y1 and Y2.

(v-1), Y, Y, Y, Y, Y, Y, Y; ¥
Best case budget i
A
HS SS-all
Start-split

b.

Schedule SS-all with 187 data bytes, not SS-begin(187 data) and SS-end (0 data).
An Isoch OUT only ever has zero length data in SS-all.
Figure 11-62. Isochronous OUT Example That Avoids a Start-split-end With Zero Data

For isochronous IN and interrupt IN/OUT full-/low-speed transactions, a single start-split must be
scheduled in the microframe before the transaction is budgeted to start on the full-/low-speed bus.

3. The host never schedules more than one complete-split in any microframe for the same full-/low-speed
transaction.

a.

For isochronous OUT full-speed transactions, the host must never schedule a complete-split. The
TT response to a complete-split for an isochronous OUT is undefined.

For interrupt IN/OUT full-/low-speed transactions, the host must schedule a complete-split
transaction in each of the two microframes following the first microframe in which the full-/low-
speed transaction is budgeted. An additional complete-split must also be scheduled in the third
following microframe unless the full-/low-speed transaction was budgeted to start in microframe
Y,. Figure 11-63 shows an example with only two complete-splits.

375

PA_0001585

Huawei v. FISI Exhibit No. 1007 - 403/650

Universal Serial Bus Specification Revision 2.0

#1: A full/low-speed transaction
budgeted to run here on the classic bus,...

vir vl Y: Y, Y,, Y“ /—dﬂ Y. (Y+1}“
Previously budgeted transactions A
Best case bud
get & A >
HS HS Complete-splits
Start-split

#2: ...has a HS start-split scheduled
in this microframe and ...

#3: ...has 2 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-63. End of Frame TT Pipeline Scheduling Example

c. Forisochronous IN full-speed transactions, for each microframe in which the full-speed transaction
is budgeted, a complete-split must be scheduled for each following microframe. Also, determine
the last microframe in which a complete-split is scheduled, call it L. If L is less than Y, schedule
additional complete-splits in microframe L+1 and L+2.

If L is equal to Y, schedule one complete-split in microframe Y,. Also, schedule one complete-
split in microframe Y, of the next frame, unless the full-speed transaction was budgeted to start in
microframe Y.

If L is equal to Y., schedule one complete-split in microframe Y, of the next frame. unless the full-
speed transaction was budgeted to start in microframe Y . Figure 11-64 and Figure 11-65 show
examples of the cases for L= Y and L=Y .

376

PA_0001586

Huawei v. FISI Exhibit No. 1007 - 404/650

Universal Serial Bus Specification Revision 2.0

#1: A fulllow-speed transaction Microframe with
: -Spe 0 .
budgeted to run here on the classic bus,... last complete-split

\ from budget (L)

Y, % Y, Y, ¥ Y. Y, Y, (V+1),

Previously budgeted transactions _

Best case budget
A A A
HS HS Complete-splits “Extra” complete-splits

Slal‘t-?lit

#2: ...has a HS start-split scheduled
in this microframe and ...

#3: ...has 4 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-64. Isochronous IN Complete-split Schedule Example at L=Y,

ik i i Microframe with
: A fullllow-speed transaction -
budgeted to run here on the classic bus,... last complete-splll
\ from budget (L)
f‘—A—“\
Y, Y, Y, Y, Y, Y. Y, Y, (Y+1),
previously budgeted ransactions._ ANAJ I,
Best case budget
est case budge! P i A A -
HS: Complete-split:
i e s coplete-split

Starl-;lil

#2: ...has a HS start-split scheduled
in this microframe and ...

#3: ...has 4 HS complete-split transactions
scheduled in the possible microframes
for this fullllow-speed transaction
Figure 11-65. Isochronous IN Complete-split Schedule Example at L=Y
4. The host must never issue more than 16 start-splits in any high-speed microframe for any TT.

5. The host must only issue a split transaction in the microframe in which it was scheduled.

6. As precisely identified in the flow sequence and state machine figures, the host controller must
immediately retry a complete-split after a high-speed transaction error (“trans_err™).

377

PA_0001587

Huawei v. FISI Exhibit No. 1007 - 405/650

Huawei v. FISI Exhibit No. 1007 - 406/650

Huawel v. FISI Exhibit No. 1007 - 407/650

Universal Serial Bus Specification Revision 2.0

start-split pipeline stage. This means the start-split is simply ignored by the TT and the TT must respond to
a corresponding complete-split with a NYET. For example, no entry is made in the complete-split pipeline
stage for the freed start-split.

A start-split in the start-split pipeline must be [reed:
1. Ifthe full-speed frame EOF time occurs, except for start-splits received in (Y-1),

2. Ifthe start-split transaction was received in some microframe (call it X) and the TT microframe
timer indicates the X+4 microframe

If the TT receives a periodic start-split transaction in microframe Y, its behavior is undefined. This is a
host scheduling error.

11.18.6.3 Maximum Full-/low-speed Transactions per Microframe

The TT must not start a full-/low-speed transaction unless it has space available in the complete-split
pipeline stage to hold the results of the transaction. If there is not enough space, the TT must wait to issue
the transaction until there is enough space. The maximum number of normally operating full-speed
transactions that can ever be completed in a microframe is 16.

11.18.7 TT Transaction Tracking

Figure 11-66 shows the TT microframe pipeline of transactions. The 8 high-speed microframes that
compose a full-/low-speed frame are labeled with Y through Y, assuming the microframe timer has
occurred at the point in time shown by the arrow (e.g., time “NOW™).

As shown in the figure, a start-split high-speed transaction that the high-speed handler receives in
microframe Y, (e.g., a start-split “B™) can run on the full-/low-speed bus during microframe times Y, or Y,
or Y,. This variation in starting on the full-/low-speed bus is due to bit stuffing and bulk/control
reclamation that can occur on the full-/low-speed bus. Once the full-/low-speed transaction finishes, its
complete-split transactions (if they are required) will run on the high-speed bus during microframes Y., Y.,
orY,.

| i i i ' | |
Y, . % [¥ P ¥y E Y b ¥ Y

E | ’. ; i : E
Swart-splits B : L5 : D i E i B i G : None, : A’
FSLS transactiof A H as | asc | BCD | CcDE | DEF | LEG | EG
Complete-splits F.G" |} A i AB i AB.C | BC.D | CD.E | D.E.F | E.F.G

i i ! i ! : R

NOW-4 NOW-3 NOW-2 NOW-1 NOW

380

Figure 11-66. Microframe Pipeline

When the microframe timer indicates a new microframe, the high-speed handler must mark any start-splits
in the start-split pipeline stage it received in the previous microframe as “pending” so that they can be
processed on the full-/low-speed bus as appropriate. This prevents the full-/low-speed transactions from
running on the downstream bus too early.

At the beginning of each microframe (call it *NOW?™), the high-speed handler must free (as defined in
Section 11.18.6.2) any start-split transactions from the start-split pipeline stage that are still pending from
microframe NOW-4 (or earlier) and ignore them. If the transaction is in progress on the downstream facing
bus, the transaction must be aborted (with full-/low-speed methods as defined in Chapter 8). This is
described in more detail in the previous sections. This ensures that even if the full-/low-speed bus has
encountered a babble condition on the bus (or other delay condition), the TT keeps its periodic transaction
pipeline running on time (e.g., transactions do not run too late). This also ensures that when the last
scheduled complete-split transaction is received by the TT, the full-/low-speed transaction has been
completed (either successfully or by being aborted).

PA_0001590

Huawei v. FISI Exhibit No. 1007 - 408/650

Huawei v. FISI Exhibit No. 1007 - 409/650

Huawel v. FISI Exhibit No. 1007 - 410/650

Universal Serial Bus Specification Revision 2.0

In contrast to bulk/control processing, the full-/low-speed handler must not do local retry processing on the
full-/low-speed bus in response to a transaction error for full-/low-speed interrupt transactions.

11.20.1 Interrupt Split Transaction Sequences
The interrupt IN and OUT f{low sequence figures use the same notation and have descriptions similar to the
bulk/control figures.

In contrast to bulk/control processing, the full-speed handler must not do local retry processing on the full-
speed bus in response to a transaction errors (including timeout) of an interrupt transaction.

Start split
Sﬂl
SSPLIT
si2 w
ouT
sdl Trans_err
sel
DATA(/1
not trans_err, Trans_err
Data_ipto S8S pipe
se2
v
shl
v
Co o Host [T]

comp. split

Figure 11-68. Interrupt OUT Start-split Transaction Sequence

383

PA_0001593

Huawel v. FISI Exhibit No. 1007 - 411/650

Universal Serial Bus Specification Revision 2.0

Complete split

ctl

CSPLIT
ct2
| OouT |

Fast: match

Trans err

Search not complete in time

No split response found !

oldistall oldiack oldinak o!dx?é'ans__err Tran%ﬁerr

chl ch2 ch3 chd | chs cel |
A A A A 4 |

[STALL] [AICK] { NflK} [E[\TR] [N}[’ET] i

= : : : r-—-!-—-—1 Inc err
* * v- 2i La$t Nh(;it !ast cq‘unt
ce ch6y i
Endpoint Go to next Retry -—pfl+ Next i
halt emd start split Incjerr comp. split |
count |
| |
T e T
| : | ce
o cedi ceSi

if err_count <3
retry immed.
i comp. split

if err_count <3

i
retry start split |

: v
if err_count >=3
endpoint halt

Figure 11-69. Interrupt OUT Complete-split Transaction Sequence

384

PA_0001594

Huawel v. FISI Exhibit No. 1007 - 412/650

Universal Serial Bus Specification Revision 2.0

Start split
st Ii
SSPLIT
... rans_err
sel
v

i
Data_into_SS_pipe
v

Go to
comp, split

Figure 11-70, Interrupt IN Start-split Transaction Sequence

Complete split

CSPLIT
ct

Trans err

Fast .?mm::h
Search not

. complete in time

. No split response found

a!d/miuredam ola’/f;.rsrdara old/nak ()l'cf}fs'.“a(! o]i‘:i/n‘:ms err :
Trams 0T i cd|: chl ch2 ch3 chd |
Y N b A J
E[MDATA] {DATAO/I} [NAK] [STALL] [ERR] [NYET]
i T T T T T T
[, _ i i i i . S
- i I 1 i + + : i Ladt g 1
r4ans_ not frans_err Retry Endpoint : ce3 | Not |ast
erri chs H start split halt i'"‘r"“'“"j chby
achk HC_Acc#pt_data Y N Tnic err Next
P E Trahs M| i . comp. split
i) Nesteoni ... | — trank_err, trank_err, :
ced ol B Tl Db Datdx /= L
i Split cesi [y |
R AT S——— . 1 toggle . !
¢ ' i v I
Fuie c"j'f‘,‘i 777777777 ch7 : cthl iferr_count<3 |
ce'f“: cc%! v Retry retry start split |
)) Go tonext emd seart split ced*
iferr_count>=3 iferr_count<3 HC Accept data HC reject_data)
endpoint halt retry immed. = = if err_count >=3
comp. split endpoint halt
Figure 11-71. Interrupt IN Complete-split Transaction Sequence
385

PA_0001595

Huawel v. FISI Exhibit No. 1007 - 413/650

Universal Serial Bus Specification Revision 2.0

11.20.2 Interrupt Split Transaction State Machines
| st1

Issue_packet(HSD1, SSPLIT);

DoOUTSS

st2

Issue_packet(HSD1, tokenOUT);

DodataSS

sd1

Issue_packet(HSD1, DATAX);

RespondHC(Do_complete);

“»
HC_Do_IntOSS |

Figure 11-72. Interrupt OUT Start-split Transaction Host State Machine

386

PA_0001596

Huawel v. FISI Exhibit No. 1007 - 414/650

Universal Serial Bus Specification Revision 2.0

HSU2.PID = NAK
RespondHC(Do_start);

i

_ HSU2.PID=STALL
RespondHC(Do_halt);

N HSU2.PID = ACK

b RespondHC(Do_next_cmd);
HSU2.PID = NYET

Issue_packet{HSD1, CSPLIT);

ch6 |

ce’?
cel
HC_cmd.last

HSU2.PID = ERR

nol HC_cmd last
RespondHC(Do_next_complete);

cl2

Issue_packet(HSD1, tokenOUT);

ErrorCount < 3
RespondHC(Da_start);

Packel_ready(HSU2)

(HSUZ.PID /= STALL and
HSU2.PID /= NAK and
HSU2.PID /= ACK and
HSUZ.PID /= ERR and
HSUZ.PID /= NYET) or
HSU2.timeout

RespondHC(Do_hall);

ErrorCount >= 3

ErrorCount >= 3

ErrorCount < 3
RespondHC(Do_comp_immed_now);

| HC_Do_intoCS |

Figure 11-73. Interrupt OUT Complete-split Transaction Host State Machine

387

PA_0001597

Huawei v. FISI Exhibit No. 1007 - 415/650

Universal Serial Bus Specification Revision 2.0

HSD2.PID /= DATAx or

HSD2.timeout
et
| HSD2.PID = DATAx
Packet_ready(HSD2) ‘ =
B HEDECRDIE=ak [T/

s _ I:.)-ata._in-lo_.SS;Pipei

se2

HSD2.CRC16 = bad

TT_IntOSS_wait
Wait_for_packet(
HSD2, ITG);

| TT_Do_IntOSs

Figure 11-74. Interrupt OUT Start-split Transaction TT State Machine

388

PA_0001598

Huawel v. FISI Exhibit No. 1007 - 416/650

Universal Serial Bus Specification Revision 2.0

CS_Buff.match.down_result =r_trans_ermr
Issue_packet(HSU1, ERR);

o \\

X 3 CS_Buff.match.down_result =r_ack \
CS_BUff.matCh.State =old \ |Ssue_Packel(HSU1. ACK):

CS_Buff.match.down_result = r_stall
Issue_packet(HSU1, STALL);

Issue_packet(HSU1, NYET);

=N vy

CS_Buff.match.state = match_busy

CS_Buff.match.state = no_match /

| TT_Do_Intocs

Figure 11-75. Interrupt OUT Complete-split Transaction TT State Machine

._\sﬂ

Issue_packel(HSD1, SSPLIT);

Issue_packet(HSD1, tokenIN);

RespondHC(Do_complete);

Figure 11-76. Interrupt IN Start-split Transaction Host State Machine

HC_Do_IntISS

389

PA_0001599

Huawei v. FISI Exhibit No. 1007 - 417/650

Universal Serial Bus Specification Revision 2.0

2 HSU2.PID = ERR

ErrorCount < 3
RespondHC(Do_start);

83 HC emd.last = =
rrorCount >=

RespondHC(Do_halt);

not HC_cmd.last
RespondHC(Do_next complete);

il |

Issue_packet{HSD1, CSPLIT);

HSU2.PID = NYET

HSU2.PID = NAK
RespondHG(Do_start);

ch2

HSU2.PID = STALL
RespondHC(Do_halt);

| 2

Issue_packet(HSD1, tokeniN);

(HSU2.PID /= NAK and
HSU2.PID /= STALL and
HSU2.PID /= NYET and
HSU2.PID /= ERR) or
HSU2.timeout

Packet_ready(HSU2)

HC_Do_IntiCS]

Figure 11-77. Interrupt IN Complete-split Transaction Host State Machine

390

PA_0001600

Huawei v. FISI Exhibit No. 1007 - 418/650

Universal Serial Bus Specification Revision 2.0

HSU2.x = HC_cmd.toggle
RespondHC(Do_next_cmd);

S

.

HSU2.x /= HC_cmd.toggle
ch? HC_Reject_data;

RespondHC(Do_start);

/ P
P
ErrorCount >=3 ’
RespondHC(Do_next_complete); RespondHC(Do_hall;
i

s

HSU2.PID = DATAx and
HSU2.CRC16 = ok

HC_Accept_data;

ErrorCount < 3
RespondHC(Do_comp_immed_now);

HSU2.PID = MDATA and
HSU2.CRC16 = ok

HC_Accept_data;

chd

(HSU2.PID = MDATA or
HSU2.PID = DATAx) and
HSU2.CRC16 = bad

Mw/ (HSUZ.PID /= MDATA and

e HSUZ.PID /= DATAX) or
= HSU2 timeout

HC_Data_or_error |

Figure 11-78. HC_Data_or_Error State Machine

B> Data_into_SS_pipe; — »> I

| TT_Do_IntISS

Figure 11-79. Interrupt IN Start-split Transaction TT State Machine

391

PA_0001601

Huawei v. FISI Exhibit No. 1007 - 419/650

Universal Serial Bus Specification Revision 2.0

CS_Buff.match.down_result = r_moredata
Issue_packet(HSU1, MDATA);

5 i CS_Buff.match.down_result = r_lastdata \
g u NSO ! \
$E T Issue_packet(HSU1, DATAX);

CS_Buff.match.down_result = r_trans_err
lssue_packet(HSU1,ERR);

i CSfBuff.match .down_result = r_nak]
Issue_packet(HSU1, NAK); } .

CS_Buffmatch state =old e 2 Z |

| CS_Buff.match.down_result = r_stall
Issue_packet(HSU1, STALL);

CS_Buff.match.state = no_match
Issue_packet(HSU1, NYET);

— ____ CS_Buff.match.state = match_busy

TT_Do_IntiCS

Figure 11-80. Interrupt IN Complete-split Transaction TT State Machine

11.20.3 Interrupt OUT Sequencing
Interrupt OUT split transactions are scheduled by the host controller as normal high-speed transactions with
the start- and complete-splits scheduled as described previously.
When there are several full-/low-speed transactions allocated for a given microframe, they are saved by the
high-speed handler in the TT in the start-split pipeline stage. The start-splits are saved in the order they are
received until the end of the microframe. At the end of the microframe, these transactions are available to
be issued by the full-/low-speed handler on the full-/low-speed bus in the order they were received.

In a following microframe (as described previously), the full-/low-speed handler issues the transactions that
had been saved in the start-split pipeline stage on the downstream facing full-/low-speed bus. Some
transactions could be leftover from a previous microframe since the high-speed schedule was built assuming
best case bit stuffing and the full-/low-speed transactions could be taking longer on the full-/low-speed bus.
As the full-/low-speed handler issues transactions on the downstream facing full-/low-speed bus, it saves the
results in the periodic complete-split pipeline stage and then advances to the next transaction in the start-
split pipeline.

In a following microframe (as described previously), the host controller issues a high-speed complete-split
transaction and the TT responds appropriately.

392

PA_0001602

Huawei v. FISI Exhibit No. 1007 - 420/650

Universal Serial Bus Specification Revision 2.0

High
Speed
Bu§

64 bytes w/
{ IS CRC16

Full/Low-
Speed
Bus

e
64 bytes

Figure 11-81. Example of CRC16 Handling for Interrupt OUT

The start-split transaction for an interrupt OUT transaction includes a normal CRC16 field for the high-
speed data packet of the data phase of the start-split transaction. However, the data payload of the data
packet contains only the data payload of the corresponding full-/low-speed data packet; i.e., there is only a
single CRC16 in the data packet of the start-split transaction. The TT high-speed handler must check the
CRC on the start-split and ignore the start-split if there is a failure in the CRC check of the data packet. If
the start-split has a CRC check failure, the full-speed transaction must not be started on the downstream bus.
Figure 11-81 shows an example of the CRC16 handling for an interrupt OUT transaction and its start-split.

11.20.4 Interrupt IN Sequencing

When the high-speed handler receives an interrupt start-split transaction, it saves the packet in the start-split
pipeline stage. In this fashion, it accumulates some number of start-split transactions for a following
microframe.

At the beginning of the next microframe (as described previously), these transactions are available to be
issued by the full-/low-speed handler on the downstream full-/low-speed bus in the order they were saved in
the start-split pipeline stage. The full-/low-speed handler issues each transaction on the downstream facing
bus. The full-/low-speed handler responds to the full-/low-speed transaction with an appropriate handshake
as described in Chapter 8. The full-/low-speed handler saves the results of the transaction (data, NAK,
STALL, trans_err) in the complete-split pipeline stage.

During following microframes, the host controller issues high-speed complete-split transactions to retrieve
the data/handshake from the high-speed handler. When the high-speed handler receives s complete-split
transaction, the TT returns whatever data it has received during a microframe. If the full-/low-speed
transaction was started and completed in a single microframe, the TT returns all the data for the transaction
in the complete-split response occurring in the following microframe. If the full-/low-speed CRC check
passes, the appropriate DATAO0/1 PID for the data packet is used. If the full-/low-speed CRC check fails, an
ERR handshake is used and there is no data packet as part of the complete-split transaction.

If the full-/low-speed transaction spanned a microframe, the TT requires two complete-splits (in two
subsequent microframes) to return all the data for the full-/low-speed transaction. The data packet PID for
the first complete-split must be an MDATA to tell the host controller that another complete-split is required
for this endpoint. This MDATA response is made without performing a CRC check (since the CRC16 field
has not yet been received on the full-/low-speed bus). The complete-split in the next microframe must use a
DATAO/1 PID if the CRC check passes. If the CRC check fails, an ERR handshake response is made
instead and there is no data packet as part of the complete-split fransaction. Since full-speed interrupt
transactions are limited to 64 data bytes or less (and low-speed interrupt transactions are limited to 8 data

393

PA_0001603

Huawel v. FISI Exhibit No. 1007 - 421/650

Universal Serial Bus Specification Revision 2.0

bytes or less), no full-/low-speed interrupt transaction can span more than a single microframe boundary;
i.e., no more than two microframes are ever required to complete the transaction.

The complete-split transaction for an interrupt IN transaction must not include the CRC16 field received
[rom the [ull-/low-speed data packet (i.e., only a high-speed CRC16 [ield is used in split transactions). The
TT must use a high-speed CRC16 on each complete-split data packet. 1f the full-speed handler detects a
failed CRC check, it must use an ERR handshake response in the complete-split transaction to reflect that
error to the high-speed host controller. The host controller must check the CRC16 on each returned
complete-split data packet. A CRC failure (or ERR handshake) on any (partial) complete-split is reflected
as a CRC failure on the total full-/low-speed transaction. This means that for a case where a full-/low-speed
interrupt spans a microframe boundary, the host controller can accept the first complete-split without
errors, then the second complete-split can indicate that the data from the first complete-split must be
rejected as if it were never received by the host controller. Figure 11-82 shows an example of an interrupt
IN and its CRCI16 handling with corresponding complete-split responses.

High

Speed -

Bus

64 bytes w/
HS CRCl16

e

125us microframe

Fuil/Low-
Speed
Bus

|
2 bytes 62 bytes

Figure 11-82. Example of CRC16 Handling for Interrupt IN

11.21 Isochronous Transaction Translation Overview

394

Isochronous split transactions are handled by the host by scheduling start- and complete-split transactions as
described previously. Isochronous IN split transactions have more than two schedule entries:

e One entry for the start-split transaction in the microframe before the earliest the full-speed transaction
can occur

e Other entries for the complete-splits in microframes after the data can occur on the [ull-speed bus
(similar to interrupt IN scheduling)

Furthermore, isochronous transactions are split into microframe sized pieces; e.g., a 300 byte [ull-speed
transaction is budgeted multiple high-speed split transactions to move data to/from the TT. This allows any
alignment of the data for each microframe.

Full-speed isochronous OUT transactions issued by a T'T do not have corresponding complete-split
transactions. They must only have start-split transaction(s).

The host controller must preserve the same order for the complete-split transactions (as for the start-split
transactions) for IN handling.

PA_0001604

Huawel v. FISI Exhibit No. 1007 - 422/650

Universal Serial Bus Specification Revision 2.0

Isochronous INs have start- and complete- split transactions. The “first” high-speed split transaction for a
full-speed endpoint is always a start-split transaction and the second (and others as required) is always a
complete-split no matter what the high-speed handler of the TT responds.

The [ull-/low-speed handler recombines OUT dalta in its local bulfers (o recreale the single full-speed data
transaction and handle the microframe error cases. The full-/low-speed handler splits IN response data on
microframe boundaries.

Microframe buffers always advance no matter what the interactions with the host coniroller or the full-speed
handler.

11.21.1 Isochronous Split Transaction Sequences

The flow sequence and state machine figures show the transitions required for high-speed split transactions
for a full-speed isochronous transfer type for a single endpoint. These figures must not be interpreted as
showing any particular specific timing. In particular, high-speed or full-speed transactions for other
endpoints may occur before or after these split transactions. Specific details are described as appropriate.

In contrast to bulk/control processing, the full-speed handler must not do local retry processing on the full-
speed bus in response to transaction errors (including timeout) of an isochronous transaction.

Start split

[T R]

[| \ \
If all of If beginning If middle If last
payload of payload of payload of payload

\ | | |

i | | |
st lé 5t2¢ st31+ St4¢

SSPLIT-all | [SSPLIT -begin| [SSPLIT -mid| |SSPLIT -end

4 A 4 v A 4
st5
A 4
OouT
Trans_err
DATAO sel
not trans_err, Trans_err
Data_into_SS pipe Down_error
shl se2
v v
Go to next
cmd

Figure 11-83. Isochronous OUT Start-split Transaction Sequence

395

PA_0001605

Huawei v. FISI Exhibit No. 1007 - 423/650

Universal Serial Bus Specification Revision 2.0

Start split

st ll

SSPLIT

st2 w]
r,N se];

Dma_fn;fo_SS _pipe

Trans err

|

v Host [TT]
Go to
complete split

Figure 11-84. Isochronous IN Start-split Transaction Sequence

In Figure 11-85, the high-speed handler returns an ERR handshake for a “transaction error” of the full-speed
transaction,

The high-speed handler returns an NYET handshake when it cannot find a matching entry in the complete-
split pipeline stage. This handles the case where the host controller issued the first high-speed complete-
split transaction, but the full-/low-speed handler has not started the transaction yet or has not yet received
data back from the full-speed device. This can be due to a delay from starting previous full-speed
transactions.

The transition labeled "TAdvance" indicates that the host advances to the next transaction for this full-speed
endpoint.

The transition labeled "D Advance" indicates that the host advances to the next data area of the current
transaction for the current full-speed endpoint.

396

PA_0001606

Huawel v. FISI Exhibit No. 1007 - 424/650

retry immed.
comp. split

Universal Serial Bus Specification Revision 2.0

Complete split

ctll

CSPLIT

drans e D

L] Host [Tf]

Fast._match

celi
i Search not complete

= in time
@ Trams_err
i
v

No split response found

! old/Trans_err old/lastdata r)[ff;mm'eda!a

ceTi ch; cdg cd% a.h4v
il::fntt" [ERR J [DATAO] [MDATAJ [NYET }
ced | ___y Not frans_err :' 1

iferr_count<3 iferr_count >=3 et Frans erx ::)hé P !
i trans_grr e L+st Not 'ast
I ! la{s_t i i i
i I toce7 ce¥ ce i
; |
| ATEEEE T__V ______ =~ :—,r_ ________ !\M: /,___.g i
Recotd error hi i !
v Not last oh3 !
T chdy Py
TAdvance |
v
Go to next Go to next
emd comp. split
Figure 11-85. Isochronous IN Complete-split Transaction Sequence
397

PA_0001607

Huawel v. FISI Exhibit No. 1007 - 425/650

