
Universal Serial Bus Specification Revision 2.0

be returned to the high-speed Idle state (using the SendEOR state). After this, the port will return to the
Enabled state. The high-speed status of the port is maintained throughout the suspend-resume cycle.

Figure 11-17 and Figure 11-18 show the timing relationships for an example remote-wakeup sequence.
This example illustrates a device initiating resume signaling through a suspended hub ('B') to an awake hub
('A'). Hub 'A' in this example times and completes the resume sequence and is the "Controlling Hub".
The timings and events are defined in Section 7 .1. 7. 7.

Everything
below Hub 'A'
in Suspend
state

Full/low speed Bus driving
Full/low speed Bus driving -
repeat
Full/low speed Bus Idle or
driven at other end

High speed idle state

____o,,,J', on ro mg u rives esume ,
~ 20ms (nominal) + sends EOR ending

C t II . H b D · R (DS) /I Controlling Hub

i--------------------i: resume

-
Idle ('J') :_· ____ ::· ___ 'J, __ Resume(_('K') \ .A~--~-----------~:.,_\ ____ i?le

~ !.-Controlling. Hub Reflects Resume
, , ! (DS) 900µs

_J Hub 'B' generates

Hub
Upstream
Port i l l

i l l . . .
/ I EOP ending resume

: : :

_Idle ('J')~---~,_R_e_s..,um~e-('K_'_)-;,---;i ::: : : ::i__j_~l-e ('~')-

~ :+- Hub 'B' Drives Res~me (US and DS)
· [e.g., 1pms]

, Enabled DS

~ ""'''"'
1 1 Device
I I Hub Port
I I

,._Hub 'B' Reflects Resume (US and DS)
· 900µs

Device I~~~·~·~] Resume ('KD

Device r.·':_ . . Remote ~

Wakeup to 1 t1 : t2 :

------------~ r---
' :\ /Idle ('J')
:---------------~J-. ..L·-· Device

,._ Qevice Drives Resume
· · [e.g., 10ms] t,: t, :

Figure 11-17. Example Remote-wakeup Resume Signaling With Full-flow-speed Device

333

PA_0001543

Universal Serial Bus Specification Revision 2.0

be returned to the high—speed Idle state (using the SerldEOR state). After this, the port will return to the
Enabled state. The high-speed status ul'the port is maintained throughout the suspend-resume cycle.

Figure ll-l'l' and Figure 11—13 show the timing relationships for an example remote—wakeup sequence.
This example illustrutes a device initiating resume signaling tthugh a suspended hub (‘3') to an awake hub
(‘A'}. Hub ‘A’ in this example times and completes the resume sequence and is the "Controlling Hub‘K
The timings and events are defined in Section 7.1 .17.

Fulll'lnw speed Bus drllilng
Fullilaw speed Bus drlvlnn -
repem
Fullllawspeen Eu: Idle or

Everythlrlu driven at other and- below Huh ‘A'

c Hub {Al 1 In 51‘5”“ _ High speed Idle slateontrollln Hub 5mg
t g = = Controlling Hub Drives Resume (05) : c°""°'”"9 ““b
v.1 I u 1:1 = —h Zflms [nominal] + sends eon endlng

k Controlling Huh — ——— = 5 ' ”5"“
suspended Us Idle [J ‘ Resurn {K1 IdlePort — — — — - _ . _ .

’i ‘ ContIIrolllng Hub Reflects Resume :f Hub (0319mm;- Upstream j _ _ Hub '3' generates
Part l EOP endlng resume

:Resuirla rK'l

Enabled Us || Idle [‘J']Hub Polls_ .

4“— Hllb 'B’ Drives Ree me [LISalld DB]

[2.g..1llms]
Device I i I I I I
Hub p," + +Hub B" Reflects Resume {U5 and D5]900M!

Device """ '= r---
r— Idle [‘J'J : Resuine ['Kl] ;ldle l'J‘]- --- . f : : _.4. _ —-

DEVICE

Rem“: _ + fielder Drllvrns Rejsume _
:- t 5 5 a ms 5

Walleup 1'05 '1: 'x l: It: 9 '55

Figure ll-l'l’. Example Remote-wakeup Resume Signaling With Full-flow-speed Device

333

PA_0001 543

Huawei V. FISI Exhibit No. 1007 - 361/650

~ Controlling Hub
suspended DS
Port

Hub
Upstream
Port

Enabled DS

Universal Serial Bus Specification Revision 2.0

Everything
below Hub 'A'
in Suspend
state

Full/low speed Bus driving
Full/low speed Bus driving -
repeat
Full/low speed Bus Idle or
driven at other end

High speed idle state

---..: 20ms (nominal) ~ sends EOR ending
Controlling Hub Drives Resume (DS) . /i Controlling Hub

· · ,_· ---------------.= resume

-
Idle ('J ') i.· ___ i. ___ ,J, Resumei_('K') \ .Ji,----;---.;..--------.;.,!\ ___ __ idle

l i l 1+- Controlling. Hub Reflects Resume
j (DS) 900µs

! i !

idle \l["""'o~
1 1

Device

_Idle ('J') i __ J Resume ('K')

~

: : : :

...... :.: -----

Hub 'B' Drives Resume (US and DS)
[e.g., 1pms]

Device

I I Hub Port ~H~b 'B' Refiects Resume (US and DS)
900µs I I

Device
l~I~~·~·~] Resume ('Ki)

Device~•!_ ..
Remote ~

Wakeup to ! 11 , t,,

-----------i
'' idle

'.---------------~j _ ____ _
._ Qevice Drives Resume
· · [e.g., 10ms]

t,l t,l

Figure 11-18. Example Remote-wakeup Resume Signaling With High-speed Device

Here is an explanation of what happens at each t,,:

t0 Suspended device initiates remote-wakeup by driving a K' on the data lines.

t, Suspended hub 'B' detects the 'K' on its downstream facing port and wakes up enough within 900 µs
to filter and then reflect the resume upstream and down through all enabled ports .

t2 Hub 'A' is not suspended (implication is that the port at which 'B' is attached is selectively
suspended), detects the 'K' on the selectively suspended port where 'B' is attached, and filters and
then reflects the resume signal back to 'B' within 900 µs.

t1 Device ceases driving 'K' upstream.

t, Hub 'B' ceases driving 'K' upstream and down all enabled ports and begins repeating upstream
signaling to all enabled downstream facing ports.

t5 Hub 'A' completes resume sequence, after appropriate timing interval, by driving a speed-appropriate
end of resume downstream. (End of resume will be an Idle state for a high-speed device or a low­
speed EOP for a full-/low-speed device.)

The hub reflection time is much smaller than the minimum duration a USB device will drive resume
upstream. This relationship guarantees that resume will be propagated upstream and downstream without
any gaps.

11.10 Hub Reset Behavior

334

Reset signaling to a hub is defined only in the downstream direction, which is at the hub's upstream facing
port. Reset signaling required of the hub is described in Section 7 .1. 7 .5.

A suspended hub must interpret the start of reset as a wakeup event; it must be awake and have completed
its reset sequence by the end of reset signaling.

PA_0001544

Universal Serial Bus Specification Revision 2.0

Fuilflw speed Bus driving
Fullflaw speed Bus driving A
repeat
FUIUIOW speed BUS Idle OF

Ema-thing driven at other end- b 1

Hub ‘A' iitelsmge'fi‘l A High speed idle slamControllln Hub st we .
(9) a - ; : Controlling Huh Drives Resume {BS} 5 c”“"°"'“9 H"!+ 20m; {nominal} + sends EOR ending

kt;— Controlling Hub —— -- — i i resumesuspended D5 Idle [‘J _ . Rasumegl‘K’] g IdleP0“ —— —— — =. . E 5 . _

.i 2‘ Conirolling Hub Reflects ResumeHub - inst goonsUpstreamPort

Enabled Ds Idle {u . Resuine [‘K']
1“ Hub Ports ----- — = -- - _

+ ' + Huh ‘3 Drives Rasiame (U5 and D5]

[9..9, 1:}ms]

:‘—Hi.lb 'B' Refiocls Rdsnmo {U5 and DE}90015

i ‘— Device Dmus Resume
:- : [e.g.1Dlns] 2

1:5 (25 hi hi 1'55

Figure 11-18. Example Remote-walkout]: Resume Signaling With High-speed Device

Here is an explanation of what happens at each I”:

t‘, Suspended device initiates remote-wakeup by drivinga ‘K’on the data lines.

I, Suspended hub “13’ detects the ‘K’ on its downstream facing port and wakes up enough within 900 us
to filter and then reflect the resume upstream and dowrt through all enabled ports.

r, Hub ‘A‘ is not suspended (implication is that the port at which ‘3‘ is attached is selectively
suspended). detects the ‘K’ on the selectively suspended port where ‘B‘ is attached. and filters and
then reflects the resume signal back to ‘3‘ within 900 us.

at, Device ceases driving ‘K' upstream.

1, Hub ‘3‘ ceases driving ‘K‘ upstream and down all enabled ports and begins repeating upstream
signaling to all enabled downstream facing ports.

:5 Hub ‘A‘ completes resume sequence. alter appropriate liming interval. by driving a speed-appropriate
end of resume downstream. [End of resume will be an Idle state for a high-speed device or a low-
speed BOP for a full-flow—speed device.)

The hub reflection time is tnttch smaller than the minimum duration a USB device will drive resume

upstream. This relationship guarantees that resume will be propagated upstream and downstream without
any gaps.

11.10 Hub Reset Behavior

Reset signaling to a hub is defined onlyr in the downstream direction. which is at the hub's upstream facing
port. Reset signaling required ofthe hub is described in Section 7.1.1.5.

A suspended hub must interpret the start of reset as a wakeup event; it must be awake and have completed
its reset sequence by the end ofreset signaling.

334

PA_0001 544

Huawei V. FISI Exhibit No. 1007 - 362/650

Universal Serial Bus Specification Revision 2.0

After completion of the reset sequence, a hub is in the following state:

• Hub Controller default address is 0.

• Hub status change bits are set to zero.

• Hub Repeater is in the WFSOPFU state.

• Transmitter is in the Inactive state.

• Downstream facing ports are in the Not Configured state and SEO driven on all downstream facing
ports.

11.11 Hub Port Power Control
Self-powered hubs may have power switches that control delivery of power downstream facing ports but it
is not required. Bus-powered hubs are required to have power switches. A hub with power switches can
switch power to all ports as a group/gang, to each port individually, or have an arbitrary number of gangs of
one or more ports.

A hub indicates whether or not it supports power switching by the setting of the Logical Power Switching
Mode field in wHubCharacteristics. If a hub supports per-port power switching, then the power to a port is
turned on when a SetPortFeature(PORT _POWER) request is received for the port. Port power is turned off
when the port is in the Powered-off or Not Configured states. If a hub supports ganged power switching,
then the power to all ports in a gang is turned on when any port in a gang receives a
SetPortFeature(PORT_POWER) request. The power to a gang is not turned off unless all ports in a gang
are in the Powered-off or Not Configured states. Note, the power to a port is not turned on by a
SetPortFeature(PORT _POWER) if both C _HUB_ LOCAL _POWER and Local Power Status (in
wHubStatus) are set to 1B at the time when the request is executed and the PORT_POWER feature would
be turned on.

Although a self-powered hub is not required to implement power switching, the hub must support the
Powered-off state for all ports. Additionally, the hub must implement the PortPwrCtr!Mask (all bits set to
IB) even though the hub has no power switches that can be controlled by the USB System Software.

Note: To ensure compatibility with previous versions ofUSB Software, hubs must implement the Logical
Power Switching Mode field in wHubCharacteristics. This is because some versions of SW will not use the
SetPortFeature() request if the hub indicates in wHubCharacteristics that the port does not support port
power switching. Otherwise, the Logical Power Switching Mode field in wHubCharacteristics would have
become redundant as of this version of the specification.

The setting of the Logical Power Switching Mode for hubs with no power switches should reflect the
manner in which over-current is reported. For example, if the hub reports over-current conditions on a per­
port basis, then the Logical Power Switching Mode should be set to indicate that power switching is
controlled on a per-port basis.

For a hub with no power switches, bPwrOn2PwrGood must be set to zero.

11.11.1 Multiple Gangs
A hub may implement any number of power and/or over-current gangs. A hub that implements more than
one over-cLment and/or power switching gang must set both the Logical Power Switching Mode and the
Over-current Reporting Mode to indicate that power switching and over-current reporting are on a per port
basis (these fields are in wHubCharacteristics). Also, all bits in PortPwrCtr!Mask must be set to IB.

When an over-current condition occurs on an over-current protection device, the over-current is signaled on
all ports that are protected by that device. When the over-current is signaled, all the p01is in the group are
placed in the Powered-off state, and the C _PORT_ OVER-CURRENT field is set to 1B on all the ports.
When port status is read from any port in the group, the PORT_OVER-CURRENT field will be set to 1B as

335

PA_0001545

Universal Serial Bus Specification Revision 2.0

long as the over-current condition exists. The C_PORT_OVER-CURRENT field must be cleared in each
port individually.

When multiple ports share a power switch, setting PORT_POWER on any port in the group will cause the
power to all ports in the group to tum on. IL will not, however, cause the other ports in that group to leave
the Powered-off state. When all the ports in a group are in the Powered-off state or the hub is not
configured, the power to the ports is turned off.

lf a hub implements both power switching and over-current, it is not necessary for the over-current groups
to be the same as the power switching groups.

If an over-current condition occurs and power switches are present, then all power switches associated with
an over-current protection circuit must be turned off. If multiple over-current protection devices are
associated with a single power switch then that switch will be turned off when any of the over-cLment
protection circuits indicates an over-current condition.

11.12 Hub Controller
The Hub Controller is logically organized as shown in Figure 11-19.

Port 1

UPSTREAM ONNECTION

Status Change
Endpoint

Port 2

ENDPOINT 0:
Configuration
lnfonnation

Port 3

Port N

Figure 11-19. Example Hub Controller Organization

11.12.1 Endpoint Organization

336

The Hub Class defines one additional endpoint beyond Default Control Pipe, which is required for all hubs:
the Status Change endpoint. The host system receives port and hub status change notifications through the
Status Change endpoint. The Status Change endpoint is an interrupt endpoint. If no hub or port status
change bits are set, then the hub returns an NAK when the Status Change endpoint is polled. When a status
change bit is set, the hub responds with data, as shown in Section 11.12.4, indicating the entity (hub or port)
with a change bit set. The USB System Software can use this data to determine which status registers to
access in order to determine the exact cause of the status change interrupt.

PA_0001546

Universal Serial Bus Specification Revision 2.0

11.12.2 Hub Information Architecture and Operation
Figure 11-20 shows how status, status change, and control information relate to device states. Hub
descriptors and Hub/Port Status and Control are accessible through the Default Control Pipe. The Hub
descriptors may be read at any time. When a hub detects a change on a port or when the hub changes its
own state, the Status Change endpoint transfers data to the host in the form specified in Section 11.12.4.

Hub or port status change bits can be set because of hardware or Software events. When set, these bits
remain set until cleared directly by the USB System Software through a ClearPortFeature() request or by a
hub reset. While a change bit is set, the hub continues to report a status change when polled until all change
bits have been cleared by the USB System Software.

Device Control

Status Information
(static)

Change Information
(due to hardware

events)

Control Information Software Device
(change device state) Control

Hardware Events -

Figure 11-20. Relationship of Status, Status Change, and Control Information to Device States

The USB System Software uses the interrupt pipe associated with the Status Change endpoint to detect
changes in hub and port status.

11.12.3 Port Change Information Processing

Hubs report a port's status through port commands on a per-port basis. The USB System Software
acknowledges a port change by clearing the change state corresponding to the status change reported by the
hub. The acknowledgment clears the change state for that port so future data transfers to the Status Change
endpoint do not report the previous event. This allows the process to repeat for further changes (see
Figure 11-21).

337

PA_0001547

Universal Serial Bus Specification Revision 2.0

11.122 Hub Information Architecture and Operation

Figure l l-20 shows how status, status change, and control information relate to device states. Hub
descriptors and HubfPort Status and Control are accessible through the Default Control Pipe. The Hub
descriptors may be read at an),r time. When a hub detects a change on a port or when the hub changes its
own state. the Status Change endpoint transfers data to the host in the form specified in Section 1 1.12.4.

Hub or port status change bits can be set because ofhardware or Software events. When set, these bits
remain set until cleared directly by the USB System Software through a ClearPortf-‘eatureO request or by a
hub reset. While a change bit is set, the hub continues to repon a status change when polled until all change
bits have been cleared by the USB System Software.

E / Status Information
6: (static) Hardware Events —
3A \

E ca
8 Change Information.. (due to hardware

é events)
Change Device

I StateDevice Control

I I Control Informatlon are woe(change device state) Control

Figure 11-20. Relationship of Status, Status Change, and Control Information to Device States

The USB System Sotiware uses the interrupt pipe associated with the Status Change endpoint to detect
changes in hub and port status.

11.12.3 Port Change Information Processing

Hubs report a port's status through port commands on a per-port basis. The USB System Software
acknowledges a port change by clearing the change state corresponding to the status change reported by the
hub. The acknowledgment clears the change state [‘or that port so [inure data transfers to the Status Change
endpoint do not report the previous event. This allows the process to repeat for further changes (see
Figure 11-21).

33'?

PA_0001 547

Huawei V. FISI Exhibit No. 1007 - 365/650

Universal Serial Bus Specification Revision 2.0

Begin

System Software requests Interrupt Pipe notification for Status Change Information

Hub NAKs
status change

IN token

Interrupt Pipe returns Hub and Port Status Change Bitmap

Interrupt Pipe notification retired

System Software reads Hub or Port status (for affected ports)

Yes
• Accumulate change information
• System Software clears

corresponding change state

System Software processes accumulated change information

Re-initialize Interrupt Pipe for Status Change endpoint

Return to
beginning

Figure 11-21. Port Status Handling Method

11.12.4 Hub and Port Status Change Bitmap

338

The Hub and Port Status Change Bitmap, shown in Figure 11-22, indicates whether the hub or a port has
experienced a status change. This bitmap also indicates which port(s) has had a change in status. The hub
returns this value on the Status Change endpoint. Hubs report this value in byte-increments. That is, if a
hub has six ports, it returns a byte quantity, and reports a zero in the invalid port number field locations.
The USB System Software is aware of the number of ports on a hub (this is reported in the hub descriptor)
and decodes the Hub and Port Status Change Bitmap accordingly. The hub reports any changes in hub
status in bit zero of the Hub and Port Status Change Bitmap.

The Hub and Port Status Change Bitmap size varies from a minimum size of one byte. Hubs report only as
many bits as there are ports on the hub, subject to the byte-granularity requirement (i.e., round up to the
nearest byte).

PA_0001548

Universal Serial Bus Specification Revision 2.0

 System Software requests Interrupt Pipe notification for Status Change lnton'natlon

Hub NAKs
status change

IN token

 Change Data

Available '?

[Interrupt Pipe returns Hub and Port Status Change Bitmap]

Interrupt Pipe notification retired

System Software reads Hub or Port status (for affected ports)

II Accumulate change information
- System Software clears

corresponding change state

 An y C ha nged
State?

System Software processes accumulated change infon'nation

l
Re-inilialize Interrupt Pipe for Status Change endpoint

Retum to

beginning

Figure “-21. Port Status Handling Method

11.12.4 Hub and Port Status Change Bitmap
The Hub and Port Status Change Bitmap, shown in Figure | 1-22. indicates whether the hub or a port has
experienced a status change. This bitmap also indicates which port[s) has had a change in status. The hub
returns this value on the Status Change endpoint. Hubs report this value in byte-increments. That is. ifa
hub has six ports. it returns a byte quantity. and reports a zero in the invalid port number field locations.
The USB System Software is aware ofthe number of ports on a hub [this is reported in the hub descriptor)
and decodes the Hub and Port Status Change Bitmap accordingly. The hub reports any changes in hub
status in bit zero ot‘the Hub and Port Status Change Bitmap.

The Hub and Port Status Change Bitmap size varies [i’om a minimum size of one byte. Hubs report only as
many bits as there are ports on the hub. subject to the byte—granularity requirement (i.e.. round up to the
nearest byte).

338

PA_0001 548

Huawei V. FISI Exhibit No. 1007 - 366/650

Universal Serial Bus Specification Revision 2.0

II

I
N

I 1-------------------- I :-------------------1 2

I
1

I
0

I

Port N change detected g_ I

~

:::
~

'
:::

~

:::
:::

~

Port 2 change detected

Port 1 change detected
~

~

Hub change detected ~

Figure 11-22. Hub and Port Status Change Bitmap

Any time the Status Change endpoint is polled by the host controller and any of the Status Changed bits are
non-zero, the Hub and Port Status Change Bitmap is returned. Figure 11-23 shows an example creation
mechanism for hub and port change bits.

Hub and Port Status Change Bitmap

I

_____ J

I I
N

Figure 11-23. Example Hub and Port Change Bit Sampling

11.12.5 Over-current Reporting and Recovery
USB devices must be designed to meet applicable safety standards. Usually, this will mean that a self­
powered hub implement current limiting on its downstream facing ports. If an over-current condition
occurs, it causes a status and state change in one or more ports. This change is reported to the USB System
Software so that it can take corrective action.

A hub may be designed to report over-current as either a port or a hub event. The hub descriptor field
wHubCharacteristics is used to indicate the reporting capabilities of a particular hub (see Section 11.23.2).
The over-current status bit in the hub or port status field indicates the state of the over-current detection
when the status is returned. The over-current status change bit in the Hub or Port Change field indicates if
the over-current status has changed.

When a hub experiences an over-current condition, it must place all affected ports in the Powered-off state.
If a hub has per-port power switching and per-port current limiting, an over-current on one po1i may still

339

PA_0001549

Universal Serial Bus Specification Revision 2.0

,,,,,,.,,,,,,7,77,,7,7,77,77,77777777777777 2 t 0

Perl 2 change deteded
Port 1 change detected 4—

Hub change detected

Figure 11-22. Hub and Port Status Change Bitmap

Any time the Status Change endpoint is polled by the host controller and any ofthc Status Changed bits are
non—zero. the Hub and Port Status Change Bitmap is returned. Figure 11-23 shows an example creation
mechanism for hub and pofl change bits.

Port N

. “9193‘ OR (9%
Change — Change I". _ IO/

Detect Logio— Information —.‘ _,-3 9

V

N

Figure ll«23. Example Hub and Port Change Bit Sampling

11.12.5 Over-current Reporting and Recovery

USB devices must be designed to meet applicable safety standards. Usually. this will mean that a self—
powered hub implement current limiting on its downstream facing ports. if an over-current condition
occurs. it causes a status and state change in one or more ports. This change is reported to the USB System
Sofiware so that it can take corrective action.

A hub may be designed to report over-current as either a port or a 11th event. The hub descriptor field
wiIiibCitarm:reri.\-rics is used to indicate the reporting capabilities ofa particular hub [see Section I 1.23.2).
The over—current status bit in the hub or port status field indicates the state ol‘the over—current detection
when the status is returned. The over-current status change bit in the Hub or Port Change field indicates if
the over—current status has changed.

When a hub experiences an over-current condition, it must place all affected ports in the Powered-off state.
If a hub has per-port power switching and per-port current limiting, an over-current on one port may still

339

PA_0001 549

Huawei V. FISI Exhibit No. 1007 - 367/650

Universal Serial Bus Specification Revision 2.0

cause the power on another port to fall below specified minimums. In this case, the affected port is placed
in the Powered-off state and C _PORT_ OVER_ CURRENT is set for the port, but
PORT_OVER_CURRENT is not set. If the hub has over-cun-ent detection on a hub basis, then an over­
cun-ent condition on the hub will cause all ports to enter the Powered-off state. However, in this case,
neither C_PORT_OVER_CURRENT nor PORT_OVER_CURRENT is set for the affected ports.

Host recovery actions for an over-cUil"ent event should include the following:

1. Host gets change notification from hub with over-cun-ent event.

2. Host extracts appropriate hub or port change information (depending on the information in the
change bitmap).

3. Host waits for over-cun-ent status bit to be cleared to 0.

4. Host cycles power on to all of the necessary ports (e.g., issues a SetPortFeature(PORT_POWER)
request for each port).

5. Host re-enumerates all affected ports.

11.12.6 Enumeration Handling
The hub device class commands are used to manipulate its downstream facing port state. When a device is
attached, the device attach event is detected by the hub and reported on the status change inten-upt. The host
will accept the status change report and request a SetPortFeature(PORT_RESET) on the port. As part of the
bus reset sequence, a speed detect is performed by the hub's port hardware.

The Gel_Status(PORT) request invoked by the host will return a "nol PORT_LOW _SPEED and
PORT_HIGH_SPEED" indication for a downstream facing port operating at high-speed. The
Get_Status(PORT) will report "PORT_LOW _SPEED" for a downstream facing port operating at low­
speed. The Get_Status(PORT) will report "not PORT_LOW _SPEED and not PORT_HIGH_SPEED" for a
downstream facing port operating at full-speed.

When the device is detached from the port, the port reports the status change through the status change
endpoint and the port will be reconnected to the high-speed repeater. Then the process is ready to be
repeated on the next device attach detect.

11.13 Hub Configuration

340

Hubs are configured through the standard USB device configuration commands. A hub that is not
configured behaves like any other device that is not configured with respect to power requirements and
addressing. If a hub implements power switching, no power is provided to the downstream facing ports
while the hub is not configured. Configuring a hub enables the Status Change endpoint. The USB System
Software may then issue commands to the hub to switch port power on and off at appropriate times.

The USB System Software examines hub descriptor infonnation to determine the hub's characteristics. By
examining the hub's characteristics, the USB System Software ensures that illegal power topologies are not
allowed by not powering on the hub's ports if doing so would violate the USB power topology. The device
status and configuration info1mation can be used to determine whether the hub should be used as a bus or
self-powered device. Table 11-12 summarizes the information and how it can be used to determine the
cun-ent power requirements of the hub.

PA_0001550

Universal Serial Bus Specification Revision 2.0

Table 11-12. Hub Power Operating Mode Summary

Configuration Descriptor Hub
bmAttributes Device Status Explanation

MaxPower (Self Powered) (Self Power)

0 0 N/A N/A
This is an illegal set of information.

0 1 0 N/A
A device which is only self-powered, but does
not have local power cannot connect to the bus
and communicate.

0 1 1 Self-powered only hub and local power supply is
good. Hub status also indicates local power
good, see Section 11.16.2.5. Hub functionality is
valid anywhere depth restriction is not violated.

>0 0 N/A Bus-powered only hub. Downstream facing
ports may not be powered unless allowed in
current topology. Hub device status reporting
Self Powered is meaningless in combination of a
zeroed bmAttributes. Self-Powered.

>0 1 0 This hub is capable of both self- and bus-
powered operating modes. It is currently only
available as a bus-powered hub.

>0 1 1 This hub is capable of both self- and bus-
powered operating modes. It is currently
available as a self-powered hub.

A self-powered hub has a local power supply, but may optionally draw one unit load from its upstream
connection. This allows the interface to function when local power is not available (see Section 7.2.1.2).
When local power is removed (either a hub-wide over-current condition or local supply is off), a hub of this
type remains in the Configured state but transitions all ports (whether removable or non-removable) to the
Powered-off state. While local power is off, all port status and change information read as zero and all
SetPortFeature() requests are ignored (request is treated as a no-operation). The hub will use the Status
Change endpoint to notify the USB System Software of the hub event (see Section 11.24.2.6 for details on
hub status).

The MaxPower field in the configuration descriptor is used to report to the system the maximum power the
hub will draw from VBUS when the configuration is selected. For bus-powered hubs, the reported value
must not include the power for any of external downstream facing ports. The external devices attaching to
the hub will report their individual power requirements.

A compound device may power both the hub electronics and the permanently attached devices from VBUS.

The entire load may be reported in the hubs' configuration descriptor with the permanently attached devices
each reporting self-powered, with zero MaxPower in their respective configuration descriptors.

341

PA_0001551

Universal Serial Bus Specification Revision 2.0

11.14 Transaction Translator
A hub has a special responsibility when it is operating in high-speed and has full-/low-speed devices
connected on downstream facing ports. In this case, the hub must isolate the high-speed signaling
environment from the full-/low-speed signaling environment. This function is performed by the Transaction
Translator (TT) portion of the hub.

This section defines the required behavior of the transaction translator.

11.14.1 Overview

342

Figure 11-24 shows an overview of the Transaction Translator. The TT is responsible for pmiicipating in
high-speed split transactions on the high-speed bus via its upstTeam facing port and issuing corresponding
full-/low-speed transactions on its downstream facing ports that are operating at full-/low-speed. The TT
acts as a high-speed function on the high-speed bus and performs the role of a host controller for its
downstream facing ports that are operating at full-/low-speed. The TT includes a high-speed handler to deal
with high-speed transactions. The TT also includes a full-/low-speed handler that performs the role of a
host controller on the downstream facing ports that are operating at full-/low-speed.

Full/Low Speed Bus

Figure 11-24. Transaction Translator Overview

The TT has buffers (shown in gray in the figure) to hold transactions that are in progress and tracks the state
of each buffered transaction as it is processed by the TT. The buffers provide the connection between the
high-speed and full-/low-speed handlers. The state tracking the TT does for each transaction depends on the
specific USB transfer type of the transaction (i .e., bulk, control, interrupt, isochrnnous). The high-speed
handler accepts high-speed start-split transactions or responds to high-speed complete-split transactions.
The high-speed handler places the start-split transactions in local buffers for the full-/low-speed handler's
use.

The buffered start-split transactions provide the full-/low-speed handler with the infonnation that allows it
to issue corresponding full-/low-speed transactions to full-/low-speed devices attached on downstream
facing ports. The full-/low-speed handler buffers the results of these full-/low-speed transactions so that
they can be returned with a corresponding complete-split transaction on the high-speed bus.

The general conversion between full-/low-speed transactions and the corresponding high-speed split
transaction protocol is described in Section 8.4.2. More details about the specific transfer types for split
transactions are described later in this chapter.

PA_0001552

Universal Serial Bus Specification Revision 2.0

The high-speed handler of the TT operates independently of the full-/low-speed handler. Both handlers use
the local transaction buffers to exchange information where required.

ransact10n Trans ator

Bulk&
Control

Interrupt &
Isochronous

Figure 11-25. Periodic and Non-periodic Buffer Sections of TT

The TT has two buffer and state tracking sections (shown in gray in Figure 11-24 and Figure 11-25):
periodic (for isochronous/intenupt full-/low-speed transactions) and non-periodic (for bulk/control full­
/low-speed transactions). The requirements on the TT for these two buffer and state tracking sections are
different. Each will be described in turn later in this chapter.

11.14.1.1 Data Handling Between High-speed and Full-flow-speed
The host converts transfer requests involving a full-/low-speed device into conesponding high-speed split
transactions to the TT to which the device is attached.

Low-speed Preamble(PRE) packets are never used on the high-speed bus to indicate a low-speed
transaction. Instead, a low-speed transaction is encoded in the split transaction token.

The host can have a single schedule of the transactions that need to be issued to devices. This single
schedule can be used to hold both high-speed transactions and high-speed split transactions used for
communicating with full-/low-speed devices.

11.14.1.2 Host Controller and TT Split Transactions
The host controller uses the split transaction protocol for initiating full-/low-speed transactions via the TT
and then determining the completion status of the full-/low-speed transaction. This approach allows the
host controller to start a full-/low-speed transaction and then continue with other high-speed transactions
while avoiding having to wait for the slower transaction to proceed/complete at its speed. A high-speed
split transaction has two parts: a start-split and a complete-split. Split transactions are only used between
the host controller and a hub. No other high-/full-/low-speed devices ever participate in split transactions.

When the host controller sends a start-split transaction at high-speed, the split transaction is addressed to the
TT for that device. That TT will accept the transaction and buffer it locally. The high-speed handler
responds with an appropriate handshake to inform the host controller that the transaction has been accepted.
Not all split transactions have a handshake phase to the start-split. The start-split transactions are kept
temporarily in a TT transaction buffer.

The full-/low-speed handler processes start-split periodic transactions stored in the periodic transaction
buffer (in order) as the downstream full-/low-speed bus is ready for the "next" transaction. The full-/low­
speed handler accepts any result information from the downstream bus (in response to the full-/low-speed
transaction) and accumulates it in a local buffer for later transmission to the host controller.

At an appropriate future time, the host controller sends a high-speed complete-split transaction to retrieve
the status/data/result for appropriate full-/low-speed transactions. The high-speed handler checks this high­
speed complete-split transaction with the response at the head of the appropriate local transaction buffer and
responds accordingly. The specific split transaction sequences are defined for each USB transfer type in
later sections.

343

PA_0001553

Universal Serial Bus Specification Revision 2.0

11.14.1.3 Multiple Transaction Translators
A hub has two choices for organizing transaction translators (TTs). A hub can have one TT for all
downstream facing ports that have full-/low-speed devices attached or the hub can have one TT for each
downstream facing port. The hub must report its organization in the hub class descriptor.

11.14.2 Transaction Translator Scheduling
As the high-speed handler accepts start-splits, the full-/low-speed transaction information and data for
OUTs or the transaction information for IN s accumulate in buffers awaiting their service on the downstream
bus. The host manages the periodic TT transaction buffers differently than the non-periodic transaction
buffers.

11.14.2.1 TT Isochronous/Interrupt (Periodic) Transaction Buffering

344

Periodic transactions have strict timing requirements to meet on a full-/low-speed bus (as defined by the
specific endpoint and transfer type). Therefore, transactions must move across the high-speed bus, through
the TT, across the full-/low-speed bus, back through the TT, and onto the high-speed bus in a timely
fashion. An overview of the microframe pipeline of buffering in the TT is shown in Figure 11-26. A
transaction begins as a start-split on the high-speed bus, is accepted by the high-speed handler, and is stored
in the stmi-split transaction buffer. The full-/low-speed handler uses the next start-split transaction at the
head of the stmi-split transaction buffer when it is time to issue the next periodic full-/low-speed transaction
on the downstream bus. The results of the transaction are accumulated in the complete-split transaction
buffer. The TT responds to a complete-split from the host and extracts the appropriate response from the
complete-split transaction buffer. This completes the flow for a periodic transaction through the TT. This
is called the periodic transaction pipeline.

High Speed Start-Split

TT

Start-split
FIFO

High Speed Complete-Split

Complete-split
FIFO

Figure 11-26. TT Microframe Pipeline for Periodic Split Transactions

The TT implements a traditional pipeline of transactions with its periodic transaction buffers. There is
separate buffer space for start-splits and complete-splits. The host is responsible for filling the start-split
transaction buffer and draining the complete-split transaction buffer. The host software manages the host
controller to cause high-speed split transactions at the correct times to avoid over/under runs in the TT
periodic transaction buffers. The host controller sends data "just in time" for full-/low-speed OUTs and
retrieves response data from full-/low-speed INs to ensure that the periodic transaction buffer space required
in the TT is the minimum possible. See Section 11.18 for more detailed information.

USB strictly defines the timing requirements of periodic transactions and the isochronous transport
capabilities of the high-speed and full-/low-speed buses. This allows the host to accurately predict when

PA_0001554

11.

11.

11.

344

Universal Serial Bus Specification Revision 2.0

14.1.3 Multiple Transaction Translators

A hub has two choices For organizing transaction translators (TTs). A hub can have one TT For all
downstream facing ports that have l'ulHlowspeed devices attached or the hub can have one TT for each
dawnstream facing port. The hub must report its organization in the hub class descriptor.

14.2 Transaction Translator Scheduling

As the high-speed handler accepts start-splits. the full-flowepeed transaction information and data for
OUTS or the transaction information for [N3 accumulate in buffers awaiting their service on the downstream
bus. The host manages the periodic TT transaction buffers differently than the non-periodic transaction
buffers.

14.2.1 TT lsoohronousilnterrupt (Periodic) Transaction Buffering

Periodic transactions have strict timing requirements to meet on a full-flow—speed bus (as defined by the
specific endpoint and transfer type). Therefore. transactions must move across the high-speed bus, through
the TT, across the l'ttll-i'low-speed bus, back through the TT, and Onto the high-speed bus in a timely
fashion. An overview ol'the microframe pipeline olbuffering in the TT is shown in Figure ”-26. A
transaction begins as a start-split on the high-speed bus. is accepted by the high-speed handler, and is stored
in the start—split transaction buffer. The full—ilow—speed handler uses the next start—split transaction at the
head of the start-split transaction buffer when it is time to issue the next periodic full-flow-speed transaction
on the downstream bus. The results ol'the transaction are accumulated in the complete~split transaction
buller. The TT responds to a complete-split from the host and extracts the appropriate response from the
complete—spin transaction buffer. This completes the [low for a periodic transaction through the TT. This
is called the periodic transaction pipeline.

High Speed Start-Split High Speed Complete-Split

Start-s _ lit Com" 'Ietes lit
Fll-TlJ .l’=IFO p

Figure 111-26. T'I‘ Microframc Pipeline for Periodic Split Transactions

The T'T implements a traditional pipeline oftransactions with its periodic transaction buffers. There is
separate buffer space for start-splits and complete-splits. The host is responsible for filling the start-split
transaction buffer and draining the complete—split transaction buffer. The host software manages the host
controller to cause high-speed split transactions at the correct times to avoid overfunder runs in the 'IT
periodic transaction buffers. The host controller sends data "just in time" for full—flow-speed OUTS and
retrieves response data from full—ilew—speed le to ensure that the periodic transaction butler space required
in the TT is the minimum possible. See Section 11.18 ['or more detailed information.

USB strictly defines the timing requirements of periodic transactions and the isoclironous transport
capabilities of the high-speed and full-flow-speed buses. This allows the host to accurately predict when

PAfiOOU‘l 554

Huawei V. FISI Exhibit No. 1007 - 372/650

Universal Serial Bus Specification Revision 2.0

data for periodic transactions must be moved on both the full-/low-speed and high-speed buses, whenever a
client requests a data transfer with a full-flow-speed periodic endpoint. Therefore, the host can "pipeline"
data to/from the TT so that it moves in a timely manner with its target endpoint. Once the configuration of
a full-/low-speed device with periodic endpoints is set, the host streams data to/from the TT to keep the
device's endpoints operating normally.

11.14.2.2 TT Bulk/Control (Non-Periodic) Transaction Buffering
Non-periodic transactions have no timing requirements, but the TT supports the maximum full-/low-speed
throughput allowed. A TT provides a few transaction buffers for bulk/control full-/low-speed transactions.
The host and TT use simple flow control (NAK) mechanisms to manage the bulk/control non-periodic
transaction buffers . The host issues a start-split transaction, and ifthere is available buffer space, the TT
accepts the transaction. The full-/low-speed handler uses the buffered information to issue the downstream
full-/low-speed transaction and then uses the same buffer to hold any results (e.g. , handshake or data or
timeout). The buffer is then emptied with a corresponding high-speed complete-split and the process
continues. Figure 11-27 shows an example overview of a TT that has two bulk/control buffers.

High Speed Start-/Complete-Split

TT

Full/Low Speed Transaction
Figure 11-27. TT Nonperiodic Buffering

11.14.2.3 Full-flow-speed Handler Transaction Scheduling
The full-flow-speed handler uses a simple, scheduled priority scheme to service pending transactions on the
downstream bus. Whenever the full-/low-speed handler finishes a transaction on the downstream bus, it
takes the next start-split transaction from the start-split periodic transaction buffer (if any). If there are no
available start-split periodic transactions in the buffer, the full-/low-speed handler may attempt a
bulk/control transaction. If there are start-split transactions pending in the bulk/control buffer(s) and there is
sufficient time left in the full-/low-speed 1 ms frame to complete the transaction, the full-/low-speed handler
issues one of the bulk/control transactions (in round robin order). Figure 11-28 shows pseudo code for the
full-flow-speed handler stai1-split transaction scheduling algorithm.

The TT also sequences the transaction pipeline based on the high-speed microframe timer to ensure that it
does not start full-/low-speed periodic transactions too early or too late. The "Advance _pipeline" procedure
in the pseudo code is used to keep the TT advancing the microframe "pipeline" . This procedure is described
in more detail later in Figure 11-67.

345

PA_0001555

11

11

Universal Serial Bus Specification Revision 2.0

data I‘or periodic transactions must be aimed on both the Full—tlow—speed and high—speed buses, whenever a
client requests a data transfer with a full-flow-speed periodic endpoint. Therefore. the host can "pipeline"
data tott'rorn the TT so that it moves in a tinsel),r manner with its target endpoint. Once the configuration of
a full-flow-speed device with periodic endpoints is set. the host streams data tot‘from the TT to keep the
device‘s endpoints operating normally.

.1422 TT Bulleontrol (Non-Periodic) Transaction Buffering

Non—periodic transactions have no timing requirements. but the TT supports the maximum full-flow-speed
throughput allowed. A TT provides a few transaction buffers for bulk!control full-llow-specd transactions.
The host and TT use simpie flow control (NAK) mechanisms to manage the bulRi'contTol non-periodic
transaction buffers. The host issues a start-split transaction. and it'there is availabie buffer space. the TT
accepts the transaction. The i‘ull-tlow-speed handler uses the buffered information to issue the downstream
lull—flow—speed transaction and then uses the same butter to hold any results (e.g.. handshake or date or
timeout). The buffer is then emptied with a corresponding high-speed complete-split and the process
continues. Figure I i—2? shows an exampte overview oi'a TT that has two bu kacontro] buffers.

High Speed Start-[Complete-Split

A
sum. #1

V

FulllLow Speed Transaction

Figure ll»27. 'l'l' Nonperiodic Buffering

.14.2.3 Full-ltow-speed Handler Transaction Scheduling

The l‘ull—t’low—speed handler uses a simple. scheduled priority scheme to service pending transactions on the
downstream bus. Whenever the l'ull-liow-speed handler finishes a transaction on the downstream bus. it
takes the next start—split transaction from the start—split periodic transaction buffer (ifany). Il‘there are no
available startnspiit periodic transactions in the buffer. the Full-fiow-speed handler may attempt a
bulkfcontrol transaction. If tltere are start-split transactions pending in the bu lidcont'rol bttfl'erts) and there is
sufficient time left in the ftIII-tlow-speed 1 ms frame to compietethe transaction. the full-flow-speed handler
issues one of the bulkt’corttrol transactions [in round robin order). Figure 1 1-28 shows pseudo code for the
l'ull-t'low-speed handler start-split transaction scheduling algorithm.

The TT also sequences the transaction pipeline based on the high-speed microflame timer to ensure that it
does not start ['uli—tlowvspeed periodic transactions too early or too late. The “Advance_pipetine" procedure
in the pseudo code is used to keep the TI' advancing the microfrarne "pipeline“. This procedure is described
in more detail later in Figure 11-67.

345

PAfiOOU‘l 555

Huawei V. FISI Exhibit No. 1007 — 373/650

Universal Serial Bus Specification Revision 2.0

While (1) loop
While (not end of microframe) loop

-- process next start-split transaction
If available periodic start-split transaction then

Process next full-/low-speed periodic transaction
Else if (available bulk/control transaction) and

(fits in full-/low-speed 1 ms frame) then
Process one transaction

End if
End loop

Advance~Pipeline(); -- see description in Figure 11-67(below)
End loop

Figure 11-28. Example Full-flow-speed Handler Scheduling for Start-splits

As described earlier in this chapter, the TT derives the downstream bus's 1 ms SOF timer from the high­
speed 125 µs microframe. This means that the host and the TT have the same 1 ms frame time for all TTs.
Given the strict relationship between frames and the zeroth microframe, there is no need to have any
explicit timing information carried in the periodic split transactions sent to the TT. See Section 11.18 for
more information.

11.15 Split Transaction Notation Information

346

The following sections describe the details of the transaction phases and flow sequences of split transactions
for the different USB transfer types: bulk/control, interrupt, and isochronous. Each description also shows
detailed example host and TT state machines to achieve the required transaction definitions. The diagrams
should not be taken as a required implementation, but to specify the required behavior. Appendix A
includes example high-speed and full-speed transaction sequences with different results to clarify the
relationships between the host controller, the TT, and a full-speed endpoint.

Low-speed is not discussed in detail since beyond the handling of the PRE packet (which is defined in
Chapter 8), there are no packet sequencing differences between low- and full-speed.

For each data transfer direction, reference figures also show the possible flow sequences for the start-split
and the complete-split portion of each split transaction transfer type.

The transitions on the flow sequence figures have labels that correspond to the transitions in the host and TT
state machines. These labels are also included in the examples in Appendix A. The three character labels
are of the form: <SI C ><TI DI HIE ><number>. S indicates that this is a start-split label. C indicates
that this is a complete-split label. T indicates token phase; D indicates data phase; H indicates handshake
phase; E indicates an error case. The number simply distinguishes different labels of the same case/phase in
the same split transaction part.

The flow sequence figures fwiher identify the visibility of transitions according to the legend in
Figure 11-29. The flow sequences also include some indication of states required in the host or TT or
actions taken. The legend shown in Figure 11-29 indicates how these are identified.

Bold indicates host action
Italics indicate <hub status> or <hub action>

Both visible
Hub visible
Host visible

Figure 11-29. Flow Sequence Legend

Figure 11-30 shows the legend for the state machine diagrams. A circle with a three line border indicates a
reference to another (hierarchical) state machine. A circle with a two line border indicates an initial state.
A circle with a single line border is a simple state.

PA_0001556

Universal Serial Bus Specification Revision 2.0

A diamond Uoint) is used to join several transitions to a common point. A joint allows a single input
transition with multiple output transitions or multiple input transitions and a single output transition. All
conditions on the transitions of a path involving a joint must be true for the path to be taken. A path is
simply a sequence of transitions involving one or more joints.

A transition is labeled with a block with a line in the middle separating the (upper) condition and the (lower)
actions. The condition is required to be true to take the transition. The actions are performed if the
transition is taken. The syntax for actions and conditions is VHDL. A circle includes a name in bold and
optionally one or more actions that are performed upon entry to the state.

- Contains other state machines

- Initial state of a state machine

8 - State in a state machine

- Entry and exit of state machine

- Joint used to connect transitions

I Condition I

-i~====A=c_t-io:n:s==~~~ - Transition: taken when condition
is true and perf arms actions

Figure 11-30. Legend for State Machines

The descriptions of the split transactions for the four transfer types refer to the status of the full-flow-speed
transaction on the bus downstream of the TT. This status is used by the high-speed handler to determine its
response to a complete-split transaction. The status is only visible within a TT implementation and is used
in the specification purely for ease of explanation. The defined status values are:

• Ready - The transaction has completed on the downstream facing full-flow-speed bus with the result
as follows:

• Ready/NAK -A NAK handshake was received.

• Ready /trans_err -The full-flow-speed transaction experienced a error in the transaction.
Possible errors are: PID to PID _invert bits check failure, CRC5 check failure, incorrect PID,
timeout, CRC16 check failure, incorrect packet length, bitstuffing error, false EOP.

• Ready /ACK-An ACK handshake was received.

• Ready /Stall - A ST ALL handshake was received.

• Ready /Data -A data packet was received and the CRC check passed. (bulk/control IN).

347

PA_0001557

348

Universal Serial Bus Specification Revision 2.0

• Ready /lastdata -A data packet was finished being received. (isochronous/interrupt IN).

• Ready /moredata - A data packet was being received when the microframe timer occurred
(isochronous/interrupt IN).

• Old - A complete-split has been received by the high-speed handler for a transaction that previously
had a "ready" status. The possible status results are the same as for the Ready status. This is the
initial state for a buffer before it has been used for a transaction.

• Pending - The transaction is waiting to be completed on the downstream facing full-/low-speed bus.

The figures use "old/x" and "ready/x" to indicate any of the old or ready status respectively.

The split transaction state machines in the remainder of this chapter are presented in the context of
Figure 11-31. The host controller state machines are located in the host controller. The host controller
causes packets to be issued downstream (labeled as HSDl) and it receives upstream packets (labeled as
HSU2).

The transaction translator state machines are located in the TT. The TT causes packets to be issued
upstream (labeled as HSUl) and it receives downstream packets (labeled as HSD2).

The host controller has commands that tell it what split transaction to issue next for an endpoint. The host
controller tracks transactions for several endpoints. The TT has state in buffers that track transactions for
several endpoints.

Appendix B includes some declarations that were used in constructing the state machines and may be useful
in understanding additional details of the state machines. There are several pseudo-code procedures and
functions for conditions and actions. Simple descriptions of them are also included in Appendix B.

Transaction
Commands

HC cmd

Transaction
Results

HC_resp

Host state machines

Upstream

Host
Controller

Downstream
Hi h s eed Bus Hi h s eedBus

HSD2 HSUl
TT state machines

BC ss cs

Bulk/Ctrl Buffers Periodic Pipeline Buffers

Hub
Transaction
Translator

Figure 11-31. State Machine Context Overview

PA_0001558

348

Universal Serial Bus Specification Revision 2.0

I Ready flastdata — A data packet was finished being received. (isochronousfinterrupt IN).

I Ready lmoredata — A data packet was being received when the microfiame timer occurred
{isochronousflinterrupt IN).

I Old — A complete-split has been received by the high-speed handler for a transaction that previously
had a “ready" status. The possible status results are the same as for the Ready status. This is the
initial state for a buffer before it has been used for a transaction.

I Pending - The transaction is waiting to be completed on the downstream facing full-flow-speed bus.

The figures use “old/x“ and ‘Teadyt'x” to indicate any of the old or ready status respectively.

The split transaction state machines in the remainder ofthis chapter are presented in the context of
Figure 11—3 1. The host controller state machines are located in the host controller. The host controller
causes packets to be issued downstream (labeled as HSDl) and it receives upstream packets (labeled as
HSUZ).

The transaction translator state machines are located in the TT. The TT causes packets to be issued
upstream (labeled as H501) and it receives downstream packets (labeled as HSDZ).

The host controller has commands that tell it what split transaction to issue next for an endpoint. The host
controller tracks transactions for several endpoints. The TI has state in buffers that track transactions for
several endpoints.

Appendix B includes some declarations that were used in constructing the state machines and may be useful
in understanding additional details of the state machines. There are several pseudo-code procedures and
functions for conditions and actions. Simple descriptions of'them are also included in Appendix H.

Transaction
Results

Transactiort
Commands

Host

Controller

Hi_h Steed Bus Hih seed Bus

Hub

Transaction

Translator

 T

Bulkr’Ctrl Buffers Periodic Pipeline Buffers

Figure 11-31. State Machine Context Overview

PA_0001 558

Huawei V. FISI Exhibit No. 1007 — 376/650

Universal Serial Bus Specification Revision 2.0

11.16 Common Split Transaction State Machines
There are several state machines common to all the specific split transaction types. These state machines
are used in the host controller and transaction translator to determine the specific split transaction type (e.g.,
interrupt OUT start-split vs. bulk IN complete-split). An overview of the host controller state machine
hierarchy is shown in Figure 11-32. The overview of the transaction translator state machine hierarchy is
shown in Figure 11-33. Each of the labeled boxes in the figures show an individual state machine. Boxes
contained in another box indicate a state machine contained within another state machine. All the state
machines except the lowest level ones are shown in the remaining figures in this section. The lowest level
state machines are shown in later sections describing the specific split transaction type.

HC Do start

HC Do IsochISS

HC Do IntISS

HC Do BISS

HC Do IsochOSS

HC Do IntOSS

HC Do BOSS

RC_ Do_ complete

I HC_Do_IsochICS

HC Do IntICS
I HC _Data_ or_ timeout I

I HC_Do_BICS

I HC_Do_IntOCS

I HC_Do_BOCS

Figure 11-32. Host Controller Split Transaction State Machine Hierarchy Overview

349

PA_0001559

Universal Serial Bus Specification Revision 2.0

TT_ Process _packet

TT Do start

TT IsochSS
I TT Do IsochOSS

I TT_Do_IsochISS

TT IntSS
I TT Do TntOSS

I TT Do IntISS

TT BulkSS
I TT Do BOSS

I TT Do BISS

TT_Do_complete

I TT_IsochICS

TT IntCS
I TT Do TntOCS

I TT Do IntICS

TT BulkCS
I TT Do BOCS

I TT Do BICS

Figure 11-33. Transaction Translator State Machine Hierarchy Overview

11.16.1 Host Controller State Machine

Architecture Declarations

Package List

ieee std_logic_ 1164
ieee numeric_std
usb2statemachines behav_package
ieee std_logic_arith

Concurrent Statements

Figure 11-34. Host Controller

350

PA_0001560

Universal Serial Bus Specificatmn Revision 2.0

TT_Process_packet

TT_D0_start TT_D0_complete

TT_IsochSS I TT_IsochICS I
TT_Do_IsochOSS I

TT_Do_IsochISS I

TT_IntSS TT_IntCS

TT_Do_lntOSS I T'T_D0_IntOCS

TT_D0_IntISS I TT_D0_IntICS

TT_Bulk.SS TT_BulkCS

TT_Do_BOSS | TT_Do_BOCS

TT_Don_BISS | TT_Do_BlCS

Figure 11—33. Transaction Translator State Machine Hierarchy Overview

11.16.1 Host Controller State Machine
AI‘EI'III'JWI'B Declarations

Package List

ieee aw_bgio_1154
ieee numeric)“:
uststatemachines mhavfickage
' lid afllJ‘l

I”! a 'hgic' HC‘CommandJeady
./ x

./'

Concurrent Statements

Figure 11-34. Host Controller

350

PA_0001 560

Huawei V. FISI Exhibit No. 1007 — 378/650

Universal Serial Bus Specification Revision 2.0

11.16.1.1 HC_Process_command State Machine

HC_cmd.cmd = SOF

lssue_packet(HS01 , SOF);

/

HC_cmd.cmd = start_split [Update_Command(HC_done);

~!-""d = complete _split

HC_cmd.cmd = nonsplit

HC_Process_command

Figure 11-35. HC_Process_Command

351

PA_0001561

Universal Serial Bus Specification Revision 2.0

11.16.1.1 HC_Process_command State Machine

HC_cmd.m'Id = 30F

Issue_packel{HSD1 30F);

//.\ /'
«(Icmdcmd= startsplit U—pdate_CommandtHC_done};\ /

\ HC_cmd.cmd-— compiete_split

HC_cmd.ca11d = nonsplit

\

HC_Process_command I

Figure 11-35. HC_Process_Command

351

PA_0001561

Huawei V. FISI Exhibit No. 1007 - 379/650

Universal Serial Bus Specification Revision 2.0

11.16.1.1.1 HC_Do_start State Machine

HC_cmd.ep_type = isochronous

HC_cmd.ep_type = interrupt

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control

HC_cmd.direction = in_dir

g cmd.direction = out_d0

352

' ~

\ [HC_::d_:p_type - lsochmaoosj

~~-cmd ep_type - lalerr,pt

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control

HC_Do_Start

Figure 11-36. HC_Do_Start

PA_0001562

Universal Serial Bus Specification Revision 2.0

11.16.1.1.1 HC_Do_start State Machine

/
HC_cmd.ep_type = isochronous

._ HC_cn1d.ep_1ype = interrupt

HC_cmd.ep_iype = bulk or
HC_and.ep_typa = conlrol

HCHunddIrecflm = infidir

Hc_md.direction = ouLdir

/
HC_m1d.ep_type = isochmnous

HC_cmd.ep_lype = interrupt

\
HCficmdrepwiype = buik or
HC_crnd.ep_1ype = mnlml a

\

Hc_no_51an

Figure 11-36. HC_Da_Start

352

PA_0001562

Huawei V. FISI Exhibit No. 1007 - 380/650

Universal Serial Bus Specification Revision 2.0

11.16.1.1.2 HC_Do_complete State Machine

HC_cmd.ep_type = isochronous

& H HC_cmd.ep_type = interrupt

HC_cmd.direction = in_dir

HC_cmd.direction = out_dir

HG Do complete

Figure 11-37. HC_Do_Complete

353

PA_0001563

Universal Serial Bus Specification Revision 2.0

11.16.1.1.2 HC_Do_completa State Machine

/

HC_cmd.ep_lype = Isochronous

_. HCfim-Idgpvlype = interrupt

HC_m1d.ep_type = bulk or
HC_m1d.ep_type = control

Hc_and.direclion = in_dir

/

\
_ HC_cmd.direction = out_dir

HC_cmd.ep_lype = Isochron nus

HC_cmd.ep_type = interrupt

\\
HC_crnd.ep_type = bulk or
HC_cmd_ep__iype = contrat

\

HC_Do_corrIplete i

Figure 11-37. HC“D0_Complete

353

F’A_0001563

Huawei V. FISI Exhibit No. 1007 - 381/650

Universal Serial Bus Specification Revision 2.0

11.16.2 Transaction Translator State Machine

Architecture Declarations

Package Lisi

ieee sld_logic_ 1164
1eee numeric_std

usb2statemachines behav_package

Packet_ready(HS D2)

st1/ct1 Save (HSD2, split) ;

Figure 11-38. Transaction Translator

354

PA_0001564

Universal Serial Bus Specification Revision 2.0

11.162 Transaction Translator State Machine

Archltactura Daclarailons

Package List

i995 sldfi‘ogicj 164
ioae numanc_std
usbaiatsmachines hehav_pal:kage

ML
stflct‘t Save (H8132, split);
/

Figure 11-38. Transaction Translator

354

F’A_0001564

Huawei V. FISI Exhibit No. 1007 - 382/650

Universal Serial Bus Specification Revision 2.0

11.16.2.1 TT_Process_packet State Machine

split.PIO/= SSPLIT and split.PIO/= CSPLIT

Get_token
Wait_for _packet(

HSD2, ITG); se1/ce1

Packet_ready{ HS D2)

Save (HSD2, token);
st2/ct2

HSD2.PID = SSPLIT or
HSD2.PID = CSPLIT

Save(HSD2, split);

HSD2.PID = SOF

not SS_Buff.isochO or
(SS_Buff.isochO and
SS_Buff.saw_split)

SS_Buff.isochO and
not SS_Buff.saw_split

Down_ error;
SS_Buff.isochO <= false;

HSD2.PID /= SSPLIT and
HSD2.PID /= CSPLIT and
HSD2.PID /= SOF

/

SS_Buff.saw_split <= false;

I TI _Process_Packet I

Figure 11-39. TT_Process_Packet

355

PA_0001565

Universal Serial Bus Specification Revision 2.0

11.16.21 TT_Process_packet State Machine

splitPlD .-‘= SSPLIT and splitPlD J’= CSPLIT

\

Packe!_ready{HSDZ)

Save (HSDZ. token):
split.PlD = SSFLIT 512(612)1

HSDEPID = SSPLiT or
HSDZPID = CSPLIT

Save(HSDZ. split}:

/

SpIItPlD = CSPLIT

HSDZPID = 50F

\
- not SS_Buff.isoch0 or

\ / (SS__Bufi.IsochO and RN

SS_Buff.saw_slet <= false:

SS_Bufi.saw_sp!it}

SS_Buff.isoch0 and
not SS_Buff.saw_3plit

Downfierror;
SS_Bufi.isocho <= faise;

HSD2.PID I: SSPLIT and
HSDZPID .-'= CSPLIT and
HSD2.PID f= SOF

'|'|'_Process_Pad<et

Figure 11-39. 'IT_Process_Packet

355

PA_0001565

Huawei V. FISI Exhibit No. 1007 - 383/650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.1 TT _Do_Start State Machine

356

split.ep_type = bulk or
split.ep_type = control

[n_Do_Start

Figure 11-40. TT_Do_Start

PA_0001566

Universal Serial Bus Specification Revision 2.0

11.16.2.1.1 TT_Do_Start State Machine

A.
split.ep_type = isochmnous \
/ \

I /spllt.ap_type= Interrupt -—‘§--
:\ /

“‘ /
/

spliLeprpe = bulk or
split.ep_type = control

Tl'DoStart

Figure 11—40. '[T_Do_Start

356

F’A_0001566

Huawei V. FISI Exhibit No. 1007 - 384/650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.2 TT_Do_Complete State Machine

split.ep_type = isochronous

I TT _Oo_complete

Figure 11-41. TT_Do_Complete

11.16.2.1.3 TT _BulkSS State Machine

(token.PIO/= tokenOUT and
token.PIO/= tokenSETUP and

I

token.PIO /= tokenlN) or
. token.timeout

token.PIO= tokenOUT or
token.PIO= tokenSETUP

TT_BulkSS

Figure 11-42. TT_BulkSS

357

PA_0001567

Universal Serial Bus Specification Revision 2.0

11.16.2.1.2 Tl'_Do_Complete State Machine

splitepjrpe = isochronous

D-aeme = interrupt \’--r
\‘

splil.eptype= bulk or

splitep_type= WM

TT_Dowcnmplele

Figure 11-41. 'I'I'_Do_Complete

11.16.2.1.3 TT_BquSS State Machine

(token PIE 1': tokenOUT and
token PID J‘= tcaictaa'ISE'l'UFI and
takenFWD F— lohenlN) ortaken.timeout

_./ 1

-” "$\wken.PID-1 tokenlN
token.Pit}:\tokenDUT ortoken. PID= tokenSETUP

\\
\

TT_BquSS

Figure 1142. T'I‘mBulkSS

357

F’A_0001567

Huawei V. FISI Exhibit No. 1007 - 385/650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.4 TT _BulkCS State Machine

(token.PIO/= tokenOUT and
token.PIO/= tokenSETUP and
token.PIO /= tokenlN) or
token.timeout

token.PIO = tokenlN

TI_BulkCS

Figure 11-43. TT_BulkCS

11.16.2.1.5 TT _lntSS State Machine

358

(token.PIO /= tokenOUT and
token.PIO/= tokenlN) or
token. timeout

token.PIO = tokenlN

token.PIO = tokenOUT

TI_lntSS

Figure 11-44. TT_IntSS

PA_0001568

Universal Serial Bus Specification Revision 2.0

11.16.2.1.4 TT_Bu|kCS State Machine

{mKenPID .1: tokenOUT and
mxenPID I: lukanSE TUP and
takes-1H0 f= tokenir-l) or

/ tokemirneout

/// \

\

tokenPlD =tckanOUT or
tokanI-‘ID = hokenSETUP

“x
hokenPlD = tokenlN u.

I 'I'I'_B|.IIKCSi—_._ ‘_._. n..—

Figure 11-43. Tl‘_BulkCS

11.16.2.1.5 1'l'_lntSS State Machine

358

__/
.\\

{tnkenPiD f= tokenUUT and
tokenPlD d: tokenlN} or \.

”ks/”m \

H tokenPlD = tokenlN

tokenPlD = lokenOUT

TT_In18$

Figure 11-44. TT_IntSS

F’A_0001568

Huawei V. FISI Exhibit No. 1007 - 386/650

Universal Serial Bus Specification Revision 2.0

11.16.2.1.6 TT _lntCS State Machine

(token.PIO/= tokenlN and
token.PIO/= tokenOUT) or
token.timeout

token.PIO= token IN

token.PIO= tokenOUT

TT_lntCS

Figure 11-45. TT_IntCS

11.16.2.1. 7 TT _lsochSS State Machine

(token.PIO/= token IN and
token.PIO/= tokenOUT) or
token.timeout

In lsochSS I
Figure 11-46. TT_ IsochSS

359

PA_0001569

Universal Serial Bus Specification Revision 2.0

11.16.2.1.6 Tl'_|ntCS State Machine

{lokenPlD 1= tokenlN and
lokanPlD I: tokenOUT) or
tokenlimeou!

/
tokenPlD = tokenIN

‘\

lokenPlD = tokenOUT

TT_|ntCS

Figure 11-45. TT_IntCS

11.16.2.1.7 TT_lsochSS State Machine

(tokenPlD I: token!" and
tokenPID .‘= iokenOU T} or
tokenjlmeom

/A /

-‘ "' @233 flakeanHoKenlN —
\\

\\ /inkenPlD = IokenOUT

\

'I'I'_IsochSS

Figure ”-46. TTJsochSS

359

F’A_0001569

Huawei V. FISI Exhibit No. 1007 - 387/650

Universal Serial Bus Specification Revision 2.0

11.17 Bulk/Control Transaction Translation Overview
Each TT must have at least two bulk/control transaction buffers. Each buffer holds the information for a
start- or complete-split transaction and represents a single full-flow-speed transaction that is awaiting (or has
completed) transfer on the downstream bus. The buffer is used to hold the transaction information from the
staii-split (and data for an OUT) and then the handshake/result of the full-flow-speed transaction (and data
for an IN). This buffer is filled and emptied by split transactions from the high-speed bus via the high-speed
handler. The buffer is also updated by the full-flow-speed handler while the transaction is in progress on the
downstream bus.

The high-speed handler must accept a start-split transaction from the host controller for a bulk/control
endpoint whenever the high-speed handler has appropriate space in a bulk/control buffer.

The host controller attempts a start-split transaction according to its bulk/control high-speed transaction
schedule. As soon as the high-speed handler responds to a complete-split transaction with the results from
the corresponding buffer, the next staii-split for some (possibly other) full-flow-speed endpoint can be saved
in the buffer.

There is no method to control the start-split transaction accepted next by the high-speed handler.
Sequencing of start-split transactions is simply determined by available TT buffer space and the current
state of the host controller schedule (e.g., which start-split transaction is next that the host controller tries as
a normal part of processing high-speed transactions).

The host controller does not need to segregate split transaction bulk (or control) transactions from high­
speed bulk (control) transactions when building its schedule. The host controller is required to track
whether a transaction is a normal high-speed transaction or a high-speed split transaction.

The following sections describe the details of the transaction phases, flow sequences, and state machines for
split transactions used to support full-flow-speed bulk and control OUT and IN transactions. There are only
minor differences between bulk and control split transactions. In the figures, some areas are shaded to
indicate that they do not apply for control transactions.

11.17.1 Bulk/Control Split Transaction Sequences

360

The state machine figures show the transitions required for high-speed split transactions for full-flow-speed
bulk/control transfer types for a single endpoint. These figures must not be interpreted as showing any
particular specific timing. They define the required sequencing behavior of different packets of a
bulk/control split transaction. In particular, other high-speed or split transactions for other endpoints occur
before or after these split transaction sequences.

Figure 11-4 7 shows a sample code algorithm that describes the behavior of the transitions labeled with
Js_new _SS, Js_old_SS and Is_no _space shown in the figures for both bulk/control IN and OUT start-split
transactions buffered in the TT for any endpoint. This algorithm ensures that the TT only buffers a single
bulk/control split transaction for any endpoint. The complete-split protocol definition requires an endpoint
has only a single result buffered in the TT at any time. Note that the "buffer match" test is different for bulk
and control endpoints. A buffer match test for a bulk transaction must include the direction of the
transaction in the test since bulk endpoints are unidirectional. A control transaction must not use direction
as part of the match test.

PA_0001570

Universal Serial Bus Specification Revision 2.0

procedure Compare buffs IS
variable match:boolean:=FALSE;

begin

Is new SS is true when BC buff.status== NEW SS
- -

Is old SS is true when BC buff.status== OLD SS
Is=no_space is true when BC_buff.status == NO_SPACE

-- Assume nospace and intialize index to 0.
BC buff.status .- NO SPACE;
BC buff.index .- O·

FOR i IN Oto num buffs-1 LOOP
IF NOT match THEN

Re-use buffer with same Device Address/End point.
IF (token.endpt = cam(i) .store.endpt AND

token.dev addr = cam(i) .store.dev addr AND
((token.direction= cam(i) .store.direction AND

split.ep type/= CONTROL) OR
split.ep type= CONTROL)) THEN

If The buffer is already pending/ready this must be a retry.
IF (cam(i) .match.state= READY OR cam(i) .match.state= PENDING) THEN

BC_buff.status .- OLD SS;
ELSE

BC buff . status .- NEW_SS;
END IF;
BC buff.index:= i;
match:= TRUE;

-- Otherwise use the buffer if it's old.
ELSIF (cam(i) .match.state= OLD) THEN

BC buff.status := NEW SS;
BC-buff.index i; -

END IF;
END IF;

END LOOP;

end Compare buffs;

Figure 11-47. Sample Algorithm for Compare_buffs

Figure 11-48 shows the sequence of packets for a start-split transaction for the full-/low-speed bulk OUT
transfer type. The block labeled SSPLIT represents a split transaction token packet as described in
Chapter 8. It is followed by an OUT token packet (or SETUP token packet for a control setup transaction).
If the high-speed handler times out after the SSPLIT or OUT token packets, and does not receive the
following OUT/SETUP or DATA0/1 packets, it will not respond with a handshake as indicated by the
dotted line transitions labeled "se 1" or "se2". This causes the host to subsequently see a transaction error
(timeout) (labeled "se2" and indicated with a dashed line). If the high-speed handler receives the DATA0/1
packet and it fails the CRC check, it takes the transition "se2" which causes the host to timeout and follow
the "se2" transition.

361

PA_0001571

362

Universal Serial Bus Specification Revision 2.0

Start split

stl

SSPLIT
st2 Trans err

OUT/SETUP
Trans err

sdl

DATA0/1 set

Comppre _ buffs
...........................

Is new: SS
Accept: data

Is old SS

sh!! sh2! y y

[ACK]
~1 ______,

i
i

•
Goto
comp. split

············· ··· ·· ···················· ··· ············· ··· ·····T

Is no : space , i

sh3!

[N~K]
i
i

•

Tr.ans err
I

se2!
I
i

Inc ,rr
couqt

,--···-·-·-·-·1
se4i ses!

Retry if err_ count < 3 if err count >= 3
start split retry start split endpoint halt

I Host I 0
Figure 11-48. Bulk/Control OlJT Start-split Transaction Sequence

The host must keep retrying the start-split for this endpoint until the err_ count reaches three for this
endpoint before continuing on to some other start-split for this endpoint However, the host can issue other
start-splits for other endpoints before it retries the start-split for this endpoint. The err_ count is used to
count how many errors have been experienced during attempts to issue a particular transaction for a
particular endpoint

If there is no space in the transaction buffers to hold the start-split, the high-speed handler responds with a
NAK via transition "sh3". This will cause the host to retry this start-split at some future time based on its
normal schedule. The host does not increase its err_ count for a NAK handshake response. Once the host
has received a NAK response to a start-split, it can skip other start-splits for this TT for bulk/control
endpoints until it finishes a bulk/control complete-split

If there is buffer space for the start-split, the high-speed handler takes transition "shl " and responds with an
ACK. This tells the host it must try a complete-split the next time it attempts to process a transaction for
this full-/low-speed endpoint After receiving an ACK handshake, the host must not issue a further start­
split for this endpoint until the corresponding complete-split has been completed.

If the high-speed handler already has a start-split for this full-/low-speed endpoint pending or ready, it
follows transition "sh2" and also responds with an ACK, but ignores the data. This handles the case where

PA_0001572

Universal Serial Bus Specification Revision 2.0

an ACK handshake was smashed and missed by the host controller and now the host controller is retrying
the start-split; e.g. , a high-speed handler transition of "shl" but a host transition of "se2".

In the host controller error cases, the host controller implements the "three strikes and you're out"
mechanism. That is, it increments an error count (err_ count) and, if the count is less than three (transition
"se4"), it will retry the transaction. If the err_ count is greater or equal to three (transition "se5"), the host
controller does endpoint halt processing and does not retry the transaction. If for some reason, a host
memory or non-USB bus delay (e .g. ,a system memory "hold off') occurs that causes the transaction to not
be completed normally, the err_count must not be incremented. Whenever a transaction completes
normally, the err_ count is reset to zero.

The high-speed handler in the TT has no immediate knowledge of what the host sees, so the "se2", "se4",
and "se5" transitions show only host visibility.

This packet flow sequence showing the interactions between the host and hub is also represented by host
and high-speed handler state machine diagrams in the next section. Those state machine diagrams use the
same labels to correlate transitions between the two representations of the split transaction rules.

Figure 11-49 shows the corresponding flow sequence for the complete-split transaction for the full-/low­
speed bulk/control OUT transfer type. The notation "ready/x" or "old/x" indicates that the transaction status
of the split transaction is any of the ready or old states. After a full-/low-speed transaction is run on the
downstream bus, the transaction status is updated to reflect the result of the transaction. The possible result
status is: nak, stall, ack. The "x" means any of the NAK, ACK, STALL full-/low-speed transaction status
results. Each status result reflects the handshake response from the full-/low-speed transaction.

Complete split

ctl

CSPLIT
Trans err ct2 •• •• •• •• ••TTTT••••

OUT/SETUP eel

··· i
Match_split_state i

i

Not applicable
for control-setup

Tlans_err
No If status = ready/x '!'=> status = oldlx i

.. , , , Y i
• match • 1 i

pe,.Jing j old(stall old(ack old/nak j

chl ce5 ch2 ch3 ch4 ce2j

[NYfT] [;T~~L] [A~K] ~ t:;~----,
i i i i ce~ i
i i i I I

-. -. • • if err_count < 3 i
Retry Endpoint Go to next Retry retry immed. 41
comp. split Ii ce "t halt crud start split comp. sp t

if err count >= 3
endpoint halt

Figure 11-49. Bulk/Control OUT Complete-split Transaction Sequence

363

PA_0001573

Universal Serial Bus Specification Revision 2.0

an ACK handshake was smashed and missed by the host controller and nowr the host controller is relaying
the start-split; e.g.. a high-speed handler transition of“shl" but a host transition of"se2".

[n the host controller error cases, the host controller implements the "three strikes and you‘re out"
mechanism. That is. it increments an error count (erricounl) and. iftlte count is less titan three (transition
“SB-4"). it will retry the transaction. If the err_cotmt is greater or equal to three (transition “‘seS“). the host
controller does endpoint halt processing and does not retry the transaction. lffor some reason, a host
memory or non-USB bus delay (e.g..a system mentor),r “hold off") occurs that causes the transaction to not
be completed normally, the err_count must not be incremented. Whenever a transaction completes
normally. the erricount is reset to zero.

The high—speed handler in the TT has no immediate knowledge of what the host sees. so the "seZ", “59.4“.
and “se5" transitiOns show only host visibility.

This packet ['low sequence showing the interactions between the host and hub is also represented by host
and high-speed handler state machine diagrams in the next sectiOn. Those state machine diagrams use the
same labels to correlate transitions between the two representations of the split transaction rules.

Figure 1 1-49 shows the corresponding [low sequence for the complete-split transaction for the full-{low-
speed bulk/control OUT transfer type. The notation "readyfx" or “old/x" indicates that the transaction status
of the split transaction is any of the ready or old states. After a Full-llow-speed transaction is run on the
downstream bus, the transaction status is updated to reflect the result of‘the transaction. The possible result
status is: nak. stall, ack. The “x“ means any ol'the NAK, ACK, STALL full-tlow-speed transaction status
results. Each status result reflects the handshake response from the lull-flow-speed transaction.

Complete split

CSPLIT

OUT/SETUP

More}:spit:store

Not applicable

for control-setup

march ...

painting ota’z‘fstnti ota’jz’ack aide?“mtk
chl ceSE c112- chi c114- ce

the err

NYET STALL ACK NAK (3'29“:_____________i

cog i
5y 9y i i if erricount < 3 i

Retry _ Endpoint Go to next Retry retry im “3“]- col;
comp. split halt cmd start split comp. split

if err_count 2-= 3

l- endpoint halt
Figure 11-49. Bulkaoutro] OU'I' Complete-split Transaction Sequence

363

PA~0001 573

Huawei V. FISI Exhibit No. 1007 - 391/650

364

Universal Serial Bus Specification Revision 2.0

There is no timeout response status for a transaction because the full-/low-speed handler must perform a
local retry of a full-/low-speed bulk or control transaction that experiences a transaction error. It locally
implements a "three strikes and you're out" retry mechanism. This means that the full-/low-speed
transaction will resolve to one of a NAK, STALL or ACK handshake results . If the transaction experiences
a transaction eITor three times, the full-/low-speed handler will reflect this as a stall status result. The full­
/low-speed handler must not do a local retry of the transaction in response to an ACK, NAK, or STALL
handshake.

Start split

stl

SSPLIT
Trans err st2

IN

Com re_buffs

Is new/ SS Is olq SS
Accept[data

sht sh2i
:y :y

[l ACK
I
I
i ...

Goto
comp. split

Is _no_$pace

sh3i

[N~]
I
i ...

Retry
start split

sel:

Trans err
I -
i
i

Inci err
codnt

I

se4!
~---·-·1

sel
if err count< 3 -
retry start split

se3•

if err count >= 3
endpoint halt

Figure 11-50. Bulk/Control IN Start-split Transaction Sequence

If the high-speed handler receives the complete-split token packet (and the token packet) while the full­
/low-speed transaction has not been completed (e.g. , the transaction status is "pending"), the high-speed
handler responds with a NYET handshake. This causes the host to retry the complete-split for this endpoint
some time in the future.

If the high-speed handler receives a complete-split token packet (and the token packet) and finds no local
buffer with a corresponding transaction, the TT responds with a ST ALL to indicate a protocol violation.

Once the full-/low-speed handler has finished a full-/low-speed transaction, it changes the transaction status
from pending to ready and saves the transaction result. This allows the high-speed handler to respond to the
complete-split transaction with something besides NYET. Once the high-speed handler has seen a

PA_0001574

364

Universal Serial Bus Specification Revision 2.0

There is no timeout response status for a transaction because the Full-flow—speed handler must perform a
local retry ot‘a full-flow-speed bulk or control transaction that experiences a transaction error. It locally
implements a “three strikes and you’re out“ retry mechanism. This means that the full-flow—speed
transaction will resolve to one oI'a NAK. STA LL or ACK handshake results. ifthe transaction experiences
a transaction error three times. the Full—flow~speed handler will reflect this as a stall status result. The full-
{low—speed handler must not do a local retry ofthe transaction in response to an ACK. NAK. or STALL
handshake.

Start split

M-Wqunsmarywmwmmmmmwmmmmmmmm se IE

Is_newE_SS Is_0ki_5$ Is_n0_.fspacc '
AcceptEdata Tra?ns_err

sh 2% «no? 5113? :
Inci err

A CK NAK cotlntI

i i 504!

i i r!——————i
7 v 392‘ i

Go to Retry if err_emmt < 3 :
comp. split start split retry start split I

i
t

i
503V

if err_eount >= 3

endpoint halt

Figure 11-5”. Bulkauntrol IN Start-split Transaction SEquence

1f the high-speed handler receives the complete-split token packet (and the token packet} while the full-
Ilow-speed transaction has not been completed {e.g., the transaction status is “pending"}. the high-speed
handler responds with a NYET handshake. This causes the host to retry the complete-split For this endpoint
some time in the future.

If the high-speed handler receives a complete-split token packet (and the token packet) and finds no local
butter with a corresponding transaction, the TT responds with a STALL to indicate a protocol violation.

Once the full-ilow-speed handler has finished a full-flow-speed transaction. it changes the transaction status
from pending to ready and saves the transaction result. This allows the high—speed handler to respond to the
complete-split transaction with something besides NYET. Once the high-speed handler has seen a

PAfiOOU‘l 574

Huawei V. FISI Exhibit No. 1007 - 392/650

Universal Serial Bus Specification Revision 2.0

complete-split, it changes the transaction status from ready/x to old/x. This allows the high-speed handler to
reuse its Local buffer for some other bulk/control transaction after this complete-split is finished.

If the host times out the transaction or does not receive a valid handshake, it immediately retries the
complete-split before going on to any other bulk/control transactions for this TT. The normal "three strikes"
mechanism applies here also for the host; i.e., the en_ count is incremented. If for some reason, a host
memory or non-USB bus delay (e.g. , a system memory "hold off') occurs that causes the transaction to not
be completed normally, the e1T_count must not be incremented.

Complete split

ctl

CSPLIT
ct2

IN
Match_split _ state

No match cel 1 ••.•••••••••••••••••••.•••••••••••••••••••.•• .

· read,/.x or old/x or pending Trans/ err J
If statu!>.=.readylx =>status.= .<?I.cf!.~.

!did t old/~ak old/ack · , d·
o i a a i old/stall ! pen :mg
cdl ch2. chJ: ce5: cht

1

[nArAO!l] [N1K l [:r1~ l [;~ET l
Transjerr 1 + + +

j ! Retry Endpoint Retry

ce6! ; ________ ;~~!__~~~~--~~~~ comp. split

i ce2 Trajts err no~ trans err jt t d
""Ill-------- - . - nu rans err an

I i and I -nc. err · _ Di1tax = toggle
co•Jnt Datax /- . I I I . tog~le HC_Ac~ept_data

cef _y:~i chi c~ I Host I G
if err count >= 3
endpoint halt

if err count < 3 Retry
retry immed. start split
comp. split

Go to next
cmd

Figure 11-51. Bulk/Control IN Complete-split Transaction Sequence

If the host receives a STALL handshake, it performs endpoint halt processing and will not issue any more
split transactions for this full-/low-speed endpoint until the halt condition is removed.

If the host receives an ACK, it records the results of the full-/low-speed transaction and advances to the next
split transaction for this endpoint. The next transaction will be issued at some time in the future according
to nonnal scheduling rules.

365

PA_0001575

Universal Serial Bus Specification Revision 2.0

If the host receives a NAK, it will retry the staii-split transaction for this endpoint at some time in the future
according to normal scheduling rules. The host must not increment the err_ count in this case.

The host must keep retrying the current start-split until the err_ count reaches three for this endpoint before
proceeding to the next split transaction for this endpoint. However, the host can issue other start-splits for
other endpoints before it retries the start-split for this endpoint.

After the host receives a NAK, ACK, or STALL handshake in response to a complete-split transaction, it
may subsequently issue a start-split transaction for the same endpoint. The host may choose to instead issue
a start-split transaction for a different endpoint that is not awaiting a complete-split response.

The shaded case shown in the figure indicates that a control setup transaction should never encounter a
NAK response since that is not allowed for full-/Low-speed transactions.

Figure 11-50 and Figure 11-51 show the corresponding flow sequences for bulk/control IN split
transactions.

11.17.2 Bulk/Control Split Transaction State Machines

366

The host and TT state machines for bulk/control IN and OUT split transactions are shown in the following
figures. The transitions for these state machines are Labeled the same as in the flow sequence figures.

[HC_cmd.ep_type = control and
HC_cmd.setup

I 1ssue_p~ t(HSD1, SSPLIT);

HC_cmd.ep_type = bulk or
(HC_cmd.ep_type = control and
not HC_cmd.setup)

lssue_packet(
HSD1, SSPLIT);

lssue_packet(
HSD1, tokenOUT);

BSSO_Wait_hndshk

Wait_for_packet(
HSU2, ITG);

HSU2.P1D = ACK

Respond HC(Do_complete);

HSU2.P1D = NAK

RespondHC(Do_start);

ErrorCount < 3

RespondHC(Do_start);

(HSU2.P1D /= ACK and ~
HSU2.P1D /= NAK) or

~HS_U2.t~ime_out __ · ~--

se4

BSSO_error

lncError;

ErrorCount >= 3

se5

HC_Do_BOSS

Figure 11-52. Bulk/Control OUT Start-split Transaction Host State Machine

PA_0001576

11.

366

Universal Serial Bus Specification Revision 2.0

If the host receives a NAK, it will retry the start—split transaction for this endpoint at some time in the future
according to normal scheduling rules. The host must not increment the erriconnt in this case.

The host must keep retrying the current start—split until the err_count reaches three for this endpoint before
proceeding to the next split transaction for this endpoint. However. the host can issue other start—splits for
other endpoints before it retries the Stan—split for this endpoint.

After the host receives a NAK. ACK, or STALL handshake in response to a complete-split transaction, it
may subsequently issue a Stan—split transaction for the same endpoint. The host may choose to instead issue
a start-split transaction for a different endpoint that is not awaiting a complete-split response

The shaded case shown in the figure indicates that a control setup transaction should never encounter a
NAK response since that is not allowed for full-flow-speed transactions.

Figure 1 1—50 and Figure] 1—5] show the corresponding flow sequences for bulkfcontrol l'N split
transactions.

17.2 BulktControl Split Transaction State Machines

The host and TT state machines for bulkfcontrol [N and OUT split transactions are shown in the following
figures. The transitions [brthese state machines are labeled the same as in the [low sequence figures.

- ._ HC__cmd.ep__type = control and
', HC_crnd.setup

fl Issue_pack61(HSD1 . SSPLIT)‘.

stt

HSUZPID = ACK

RespondHCtDo_oompiete };

HC_cmd.ep_type = bulk or I‘ “a
(HC_emd.ep_type = control and
not HC_cmd setu p}

Issue_packet(
HSDt. SSF'LIT):

_/ ‘.‘
. i

snt (sh 2__-’ ‘-.
" HSU2.PID = NAK t

2

' RespondHCtDo_star-t); " a-
Issue_packett _ |
HSDi . lOkEnSETUP): fl "\ 561592 .-’r l

t ErrorCount < 3 '.1 R dHC o tart , .
Issue_packel(all espon (0.5 .J’ i

HSD1, tokenOUT); If I' I i,a’ (HSUZPID .I'= ACK and
_ HSUZ PID t: NAK) or 3

5d. t Hsuz timeout ,1" 'e’ . 1 II
- I” 't f '

IssueJacket(HSD1, DATtVtx):| f" -.\ SE4 ‘, ErrorCount >= 3I ' I
. I RespondHCtDo__hall}:

535 f"

| HC_Do_BOSS

Figure “-52. Bulkaontl-ol OUT Start-split Transaction Host State Machine

PAH0001 576

Huawei V. FISI Exhibit No. 1007 - 394/650

Universal Serial Bus Specification Revision 2.0

HC_cmd.ep_type = control and
HC_cmd.setup

lssue_packet(HSD1, CSPLIT);

HC_cmd.ep_type = bulk or
(HC_cmd.ep_type= control and
NOT HC_cmd.setup)

lssue_packet(HSD1 , CSPLIT);

ch2/ce5

HSU2.PID = NYET

Respond H C(Do_ complete);

HSU2.PID = STALL

RespondHC(Do_halt);

HSU2.PID = ACK

Respond H C(Do_ next_ cmd);

HSU2.PID = NAK

RespondHC(Do_start);

ErrorCount < 3

RespondHC(Do_complete_immediate);

lssue_packet(HSD1, tokenOUT);

BCSO_Wait_for_resp

Wait_for _packet(
HSU2, ITG);

Packet_ready(HS U2)

(HSU2.PID /= NYET and
HSU2.PID /= STALL and
HSU2.PID /= ACK and
HSU2.PID /= NAK) or
HSU2.timeout

HC_DO_BOCS

ce

ErrorCount >= 3

RespondHC(Do_halt);

/

Figure 11-53. Bulk/Control OUT Complete-split Transaction Host State Machine

367

PA_0001577

Universal Serial Bus Specification Revision 2.0

H5U2.PID = NYEI'
:11 .

HC_ I.ep_type = contra! and RospondHC(Do_oomplate),
Hcficrndaatup
IssueJackeuHSDL CSPer);

HSUZPID = STALL \
”‘2’“5 RespondHCItDcLhalt);HC_omd.ep_iype = bulk or

(HC_a'nd.ep_type= 00mm! and
NOT HC_cn1d.setup)

Issue_packel(HSD1, cserr); '
 m3 usuzmo = ACK

' ResponqunoJechmd);

lsauaJackeflHSDt LokenSETUP);

\

ErrorCount < 3

RespondHC(Do_oomplele_imn'Iediate);

lssuo_pack6t(HSD1. tokanOUT];

 (HSUZJ’ID F= NYET and ErrorCount == 3
HSLIZPID r= STALL and _____

HSU2.PID r: ACK and Reapmflcmo-ham‘
HSUZFID I: NAK) or /HSUZ.tirneout

 HC__DO_BOCS I

Figure 11-53. BulldConu-ol OUT Complete-split Transaction Host State Machine

367

PA_0001577

Huawei V. FISI Exhibit No. 1007 - 395/650

TT _5S_wait_pkt3

Universal Serial Bus Specification Revision 2.0

HSD2.PID = DAT~

TT_BSSO_Check_Buffs

TT_Do_BOSS

se1

HSD2.PID /= DAT Ax or
HSD2.timeout or
HSD2.CRC16 = bad

sh1 ls_new_SS(BC_buff)
.---- -----j Accept_data;

lssue_packet(HSU1 , ACK);
~---------~~

ls_old_SS(BC_buff) j /
lssoe_packet(HSUt , ACK); /

ls_no_space(BC_buff)

lssue_packet(HSU1 , NAK);

Figure 11-54. Bulk/Control OUT Start-split Transaction TT State Machine

TT _BOCS_Match

~

f:sc::_Buff.match.state = no_matcQ
l};ue_packet(HSU1, STALL);]

1
5

I BC_Buff.match.down_result = r_stall ~

ch2

BC_Buff.match.down_result = r_ack
ch3 lssue_packet(HSU1 , ACK);

ch4

§ _Buff.match.state /= ready
BC_Buff.match.down result= r_nak

lssue_packet(HSU1 , NAK);

BC_Buff.match.state = ready

BC_Buff.match.state := old;

TT_Do_BOCS

BC_buff.match.state = pending

lssue_packet(HSU1 , NYET);

Figure 11-55. Bulk/Control OUT Complete-split Transaction TT State Machine

368

PA_0001578

Universal Serial Bus Specification Revision 2.0

 \ HSDZPIDJ= DATA: or_ HSDZilrnaoul or

H802}? DAT” HSD2.CRC16 = bad \

Pacicet_ready (HSDZ)

3.11 iswnequstBCmbufi}
AcospLdala'.
Issue_packel(HSU1. ACK);

|s_olddSS(BG_bufi)
Issue_packet(HSU1 . ACK}::h3

M
Issue_paeka‘l(HSU1. NAK);

TT_Do_BOSS

Figure “—54. Bulk/Control OUT Start-split Transaction 11' State Machine

\

BC_Bu1'f.match.state = no_match ——
Issue_packei{HSU1. STALL);

oes

BC_Bufi.maich.dawn_result = r_stall

ch2

_ BC_Buff.malch.down_result = r_ack
Issue_paoket(HSU1. ACK};

ch3

“x

BC_Bufi.mald1.dawn_result = r_nak

Issue_pad<eI(HSU2. NAK);

BC_Buff.n1atch.shle I: ready

\
BC_Bufi.match.staie = ready
BC_Buff.match.state 1: old;

 J
BC_Buff.match.stata = aid

. BC_buff.match.state = pending

lssue_packet(HSU1, NYET);

_.—-—4-"'“

11003005

Figure 11-55. BulkIControl OUT Complete-split Transaction 11‘ State Machine

368

PA_0001578

Huawei V. FISI Exhibit No. 1007 - 396/650

Universal Serial Bus Specification Revision 2.0

st1

lssue_packet(HSD1, SSPLIT);

lssue_packet(HSD1, token IN);

Packet_ready(HS U2)

BSSI_Wait_hndshk

HSU2.P1D = NAK

RespondHC(Do_start);

sh3

sh1/sh2

/

HSU2.P1D = ACK

Respond HC(Do _complete);

se4

(HSU2.P1D /= ACK and
HSU2.P1D /= NAK) or
HSU2.timeout

se

BSSl_error

ErrorCount < 3

RespondHC(Do_start);

/,~~
ErrorCount >= 3

RespondHC(Do_halt);

se3

HC_Do_ BISS

Figure 11-56. Bulk/Control IN Start-split Transaction Host State Machine

369

PA_0001579

Universal Serial Bus Specification Revision 2.0

m1
Issue cke HSD1.SSPLIT:

436 K) HSU2.PID = NAK
RespondHC(Du_start):

//

 RaspondHCtDo_compleia): -

\ /
Packet_ready(HSU2) ErrorCount < 3

RaspundHG£Do_sta:-t):

(HSU2.P|D != ACK and //
HSUZPID I: NAK) or - -
HSU2.tlmeout ErrorCount >= 3

RespondHC{Do_halt):
HC_Do_BISS

Figure 1166. Bulleoutrol IN Start-split Transaction Host State Machine

369

PA_0001579

Huawei V. FISI Exhibit No. 1007 - 397/650

Universal Serial Bus Specification Revision 2.0

ch4 = ~ ch5 ~ U2.GRC16 = o~ ~---~----~

~ & ~ HSU2.x = HG_cmd.toggle

V "- HC_Accept_data;

HSU2.x /= HG_cmd.toggle

RespondHC(Do_start);

RespondHG(Do_next_cmd) ;

~ ct1
ce3

lssue_packet(HSD1, GSPLIT);

HSU2.PID = DATAx

lssue_packet(HSD1, token IN);

BICS_wait_response

Wait_for _packet(
HSU2, ITG);

ErrorGount >= 3
ce4

RespondHG(Do_halt);

ErrorGount < 3

Respond HG(Do_ complete _immediate);

(HSU2.PID /= DAT Ax and
HSU2.PID /= NAK and
HSU2.PID /= NYET and
HSU2.PID /= STALL) or
HSU2.timeout

ce6

cd1

ch3/ce5

HSU2.PID = STALL

Respond HG(Do_ halt);

HSU2.PID = NAK

RespondHG(Do_start);

Packet_ready(HSU2)
ch2

ch1 HSU2.PID = NYET

Respond HG(Do_ complete);

HG_Do_BICS

Figure 11-57. Bulk/Control IN Complete-split Transaction Host State Machine

370

PA_0001580

Universal Serial Bus Specification Revision 2.0

HSU2.x I: HG__cmd.toggle
Respondfictoojtart);

 HSU2.CRC16 = 0k

/ HSU2.x = HC_cmd.toggle
HC_Accepl_data;

\

\ HSU2.CRC16 = bad

RespondHCtDoJechmd):

mg“ ErrorCount >= 3

Issue_psmet{HSD1, CSPLIT); RespondHC(Do_hall);

\
Ererount < 3

RespondHC{Do_complehe_immediate);

HSUZPID = DATAX
(HSUZPID r: DATAx and

Issue_packe:(Hsn1. tokenlN): HSUZ-PID 1= “AK andHSU2.F'ID .‘= NYET and

HSUZPID .'= STALL) or
HSU2.timEIout HSUZPiD = STALL

RespondHctDojalt);

Gas / /

m/w_RBspondHC(Du_slari);
/ she

ch1 HSUZPID = NYET

RespondHC§Do_mmpleae]:

PackeLreadflH EU 2)

HC_Do_BICS

Figure 11-57. BulldConh’ol IN Complete-5131i! Transaction Hnst State Machine

370

PA_0001580

Huawei V. FISI Exhibit No. 1007 - 398/650

Universal Serial Bus Specification Revision 2.0

ls_ no_ space(BC _ buff)

s h3
lssue_packet(HSU 1, NAK);

~---~

ls_ new_ SS(BC _ buff)

TT _BISS_check
s h1

1----------, Accept_data;
lssue_packet(HSU 1, ACK);

s h2

ls_old_SS(BC_buff)

lssue_packet(HSU 1, ACK);

TT_Do_BISS

Figure 11-58. Bulk/Control IN Start-split Transaction TT State Machine

[BC_buff.match.state = no_match ~ ---

Match_split_state;

ch3

ce5

>--~~~, lssue_packet(HSU1, STALL);

BC_buff.match.down_result = r stall or
BC_buff.match.down_result = r_ack

BC_buff.match.down_result = r_data

lssue_packet(HSU1 , DATAx);

c /r BC_buff.match.down_result = r_nak 7h'J I lssue_packet(HSU1, NAK);
ch2 ~-------------~

BC_buff.match.state = old

BC_buff.match.state = ready

BC_buff.match.state := old;

TT_Do_BICS

BC_buff.match.state = pending

lssue_packet(HSU1, NYET);

Figure 11-59. Bulk/Control IN Complete-split Transaction TT State Machine

11.17.3 Bulk/Control Sequencing
Once the high-speed handler has received a start-split for an endpoint and saved it in a local buffer, it
responds with an ACK split transaction handshake. This tells the host controller to do a complete-split
transaction next time this endpoint is polled.

371

PA_0001581

Universal Serial Bus Specification Revision 2.0

|s_n0_spaoe(BC_buff)

Sm Issue_packet(HSU1.NAK);

ls_new_SS(BC_buff)

- Accept_data; ' '__*-
lssuejackeHHSUL ACK};

5M

 ’l‘LBl'SSLcl-iaek:
'p‘arejcju'ffi-

. ' _ \ . _sh2

~- ls_old_SS(BC_buff)

Issue_packot{HSU1. AGK);

H T'r_oo_§i1ss

Figure 1 1-58. BulHCnntrn] iN Start-split Transaction TT State Machine

BCmbufi.match.state=no__match “‘3‘; , -__ IssueJaackettHSULSTALL):/ /

D 3 -_
' ‘ BC_buff.match.down_result = r_stal| or

Match_splii_state: BC_buff.match.down_result = r_ack ".1

.' BC_huff.malch.down=I_*esull = rfdata

.' IssuejackefiHSUl DATAx); __ "

. BC_buff.match.down_result=r_nak)_

ch3' _, Issue_packel(HSU1,NAK);
[3 BC_buff.match.state i'= ready I

/.

BC_buff.match.slate = pending
' IssueJackeflHSU‘l. NYET):

59—.PF‘Tf.-.T?_t°_*?_-.§t_§.t_e_=_ F9351};
BC_buff.match.stale := old:

'I'|'_Do_BICS

Figure 11-59. Bulki'Contrul 1N Complete-split Transaction TT State Machine

11.113 BulkJ'Control Sequencing

Once the highespeed handler has received a start-split for an endpoint and saved it in a local buffer. it
responds wiih an ACK split transaction handshake. This tells the host coniroller to do a complete-split
transaction next time this endpoint is polled.

3371

PA~0001 581

Huawei V. FISI Exhibit No. 1007 - 399/650

Universal Serial Bus Specification Revision 2.0

As soon as possible (subject to scheduling rules described previously), the full-/low-speed handler issues the
full-/low-speed transaction and saves the handshake status (for OUT) or data/handshake status (for IN) in
the same buffer.

Some time later (according lo the host controller schedule), this endpoint will be polled for the complete­
split transaction. The high-speed handler responds to the complete-split to return the full-/low-speed
endpoint status for this transaction (as recorded in the buffer). If the host contrnller polls for the complete­
split transaction for this endpoint before the full-/low-speed handler has finished processing this transaction
on the downstream bus, the high-speed handler responds with a NYET handshake. This tells the host
controller that the transaction is not yet complete. In this case, the host controller will retry the complete­
split again at some later time.

When the full-/low-speed handler finally finishes the full-/low-speed transaction, it saves the data/status in
the buffer to be ready for the next host controller complete-split transaction for this endpoint. When the
host sends the complete-split, the high-speed handler responds with the indicated data/status as recorded in
the buffer. The buffer transaction status is updated from ready to old so the high-speed handler is ready for
either a retry or a new start-split transaction for this (or some other) full-/low-speed endpoint.

If there is an error on the complete-split transaction, the host controller will retry the complete-split
transaction for this bulk/control endpoint "immediately" before proceeding to some other bulk/control split
transaction. The host controller may issue other periodic split transactions or other non-split transactions
before doing this complete-split transaction retry.

If there is a bulk/control transaction in progress on the downstream facing bus when the EOF time occurs,
the TT must adhere to the definition in Section 11.3 for its behavior on the downstream facing bus. This
will cause an increase in the error count for this transaction. The normal retry rules will determine if the
transaction will be retried or not on the downstream facing bus.

11.17.4 Bulk/Control Buffering Requirements
The TT must provide at least two transactions of non-periodic buffering to allow the TT to deliver
maximum full-/low-speed throughput on a downstream bus when the high-speed bus is idle.

As the high-speed bus becomes busier, the throughput possible on downstream full-/low-speed buses will
decrease.

A TT may provide more than two transactions of non-periodic buffering and this can improve throughput
for downstream buses for specific combinations of device configurations.

11.17.5 Other Bulk/Control Details
When a bulk/control split transaction fails, it can leave the associated TT transaction buffer in a busy
(ready/x) state. This buffer state will not allow the buffer to be reused for other bulk/control split
transactions. Therefore, as part of endpoint halt processing for full-/low-speed endpoints connected via a
TT, the host software must use the Clear_ TT_ Buffer request to the TT to ensure that the buffer is not in the
busy state.

Appendix A shows examples of packet sequences for full-/low-speed bulk/control transactions and their
relationship with stai1-splits and complete-splits in various normal and e1rnr conditions.

11.18 Periodic Split Transaction Pipelining and Buffer Management

372

There are requirements on the behavior of the host and the TT to ensure that the microframe pipeline
correctly sequences full-/low-speed isochronous/interrupt transactions on downstream facing full-/low­
speed buses. The host must determine the microframes in which a start-split and complete-split transaction
must be issued on high-speed to correctly sequence a corresponding full-/low-speed transaction on the
downstream facing bus. This is called "scheduling" the split transactions.

PA_0001582

Universal Serial Bus Specification Revision 2.0

In the following descriptions, the 8 microframes within each full-speed (1 ms.) frame are referred to as
microframe Y

0
, Y,, Y2, • • • , Y,. This notation means that the first microframe of each full-speed frame is

labeled Y0• The second microframe is labeled Y,, etc. The last microframe of each full-speed frame is
labeled Y 1 • The labels repeat for each full-speed frame.

This section describes details of the microframe pipeline that affect both full-speed isochronous and full­
/low-speed interrupt transactions. Then the split transaction rules for interrupt and isochronous are
described.

Bulk/control transactions are not scheduled with this mechanism. They are handled as described in the
previous section.

11.18.1 Best Case Full-Speed Budget
A microframe of time allows at most 187.5 raw bytes of signaling on a full-speed bus. In order to estimate
when full-/low-speed transactions appear on a downstream bus, the host must calculate a best case full­
speed budget. This budget tracks in which microframes a full-/low-speed transaction appears. The best case
full-speed budget assumes that 188 full-speed bytes occur in each microframe. Figure 11-60 shows how a
l ms frame subdivided into micro frames of budget time. This estimate assumes that no bit stuffing occurs
to lengthen the time required to move transactions over the bus.

The maximum number of bytes in a 1 ms frame is calculated as:

1157 maximum_periodic_bytes_per_frame = 12 Mb/s * 1 ms I 8 bits_per_byte *

6 data_bits / 7 bit-stuffed_data_bits * 90% maximum_periodic_data_per_frame

Microft · mes

Max wire time

Best case wire budge
1157 bytes w/ no
bitstnffing

t

' '
'
'

' Yo '
'

187.5
'
'
'
'

188 ' '
'
'

'
'

' Y,
'

Y,

187.S 187.5

'

188 l 188 l

'

' ' ' '
' ' '
' ' ' '

' '

'
Y3

'
Y4

'
Ys

'

187.5 187.5 187.5 32J
' ' '
' ' ' '
' '
' ' ' '

l 188 ' 188 l 188 :291 I I

' ' ' '
' ' '

Figure 11-60. Best Case Budgeted Full-speed Wire Time With No Bit Stuffing

11.18.2 TT Microframe Pipeline
The TT implements a microframe pipeline of split transactions in support of a full-flow-speed bus. Start­
split transactions are scheduled a microframe before the earliest time that their corresponding full-/low­
speed transaction is expected to start. Complete-split transactions are scheduled in microframes that the
full-/low-speed transaction can finish.

When a full-/low-speed device is attached to the bus and configured, the host assigns some time on the
full-/low-speed bus at some budgeted time, based on the endpoint requirements of the configured device.

The effects of bit stuffing can delay when the full-/low-speed transaction actually runs. The results of other
previous full-/low-speed transactions can cause the transaction to run earlier or later on the full-/low-speed
bus.

The host always uses the maximum data payload size for a full-flow-speed endpoint in doing its budgeting.
It does not attempt to schedule the actual data payloads that may be used in specific transactions to full­
/low-speed endpoints. The host must include the maximum duration interpacket gap, bus turnaround times,
and "TT think time". The TT requires some time to proceed to the next full-/low-speed transaction. This
time is called the "TT think time" and is specified in the hub descriptor field wHubCharacteristics bit 5 and
6.

373

PA_0001583

Universal Serial Bus Specification Revision 2.0

#1: A full/low-speed transaction
budgeted to run here on the classic bus, ...

~ 0

I
Best case budget

HS
~····

Start-split

!
#2: ... has a HS start-split scheduled
in this microframe and ...

#3: ... has 3 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-61. Scheduling of TT Microframe Pipeline

Figure 11-61 shows an example of a new endpoint that is assigned some portion of a full-/low-speed frame
and where its start- and complete-splits are generally scheduled. The act of assigning some portion of the
full- /low-speed frame to a particular transaction is called dete1mining the budget for the transaction. More
precise rules for scheduling and budgeting are presented later. The sta1t-split for this example transaction is
scheduled in microframe Y-1 ,, the transaction is budgeted to run in microframe Y0, and complete-splits are
scheduled for microframes Y" Y2, and Y,. Section 11.18.4 describes the scheduling rules more completely.

The host must determine precisely when start- and complete- splits are scheduled to avoid overruns or
undeO"uns in the periodic transaction buffers provided by the TT.

11.18.3 Generation of Full-speed Frames
The TT must generate SOFs on the full-speed bus to establish the 1 ms frame clock within the defined jitter
tolerances for full-speed devices . The TT has its own frame clock that is synchronized to the microframe
SOFs on the high-speed bus. The SOF that reflects a change in the frame number it canies is identified as
the zeroth microframe SOF. The zeroth high-speed microframe SOF corresponds to the full-speed SOF on
the TT' s downstream facing bus. The TT must adhere to all timing/jitter requirements of a host controller
related to frames as defined in other parts of this specification.

The TT must stop issuing full-speed SOFs after it detects 250 µs of high-speed idle. This is required to
ensure that the full-/low-speed downstream facing bus enters suspend no more than 250 µs after the high­
speed bus enters suspend.

The TT must generate a full-speed SOF on the downstream facing bus based on its frame timer. The
generation of the full-speed SOF must occur within +/-3 full-speed bit time from the occunence of the
zeroth high-speed SOF. See Section 11 .22.1 for more information about TT SOF generation.

11.18.4 Host Split Transaction Scheduling Requirements

374

Scheduling of split transactions is done by the host (typically in software) based on a best-case estimate of
how the full-/ low-speed transactions can be run on the downstream facing bus. This best-case estimate is
called the best case budget. The host is free to issue the split transactions anytime within the scheduled
microframe, but each split transaction must be issued sometime within the scheduled microframe. This
description of the scheduling requirements applies to the split transactions for a single full-/low-speed
transaction at a time.

1. The host must never schedule a start-split in microframe Y6• Some error conditions may result in the
host controller erroneously issuing a start-split in this microframe. The TT response to this start-split is
undefined.

PA_0001584

Universal Serial Bus Specification Revision 2.0

#1: A lullllow-speed transaction
budgeted to run here on the classic Itus....

 N")? Vt Yr Yo Y—

Best case budget

HS A” HS Complete-splits
Start-split

#2: ...has 3 HS start-split scheduled #3: ...has 3 HS complete-split transactions
in this microframe and scheduled in the possible microframes

for this mutton-speed transaction

Figure 11-6]. Scheduling of'l‘l' .Vlieroframe Pipeline

Figure 11-6] shows an example of a new endpoint that is assigned some portion ofa full-flow-speed frame
and where its start- and complete-splits are generally scheduled. The act of assigning some portion of the
l‘ull-i’low—speed frame to a particular transaction is called determining the budget for the transaction. More
precise rules for scheduling and budgeting are presented later. The start-split for this example transaction is
scheduled in microframe Y—L, the transaction is budgeted to run in microl'rame Y,,, and complete—splits are
scheduled for microfi'ames Y1, Y1. and Y3. Section I LISA describes the scheduling rules more completely.

The host must determine precisely when start— and complete— splits are scheduled to avoid overruns or
underruns in the periodic transaction buffers provided by the TT.

11.183 Generation of Full-speed Frames
The T1" must generate SOFs on the full-speed bus to establish the I ms frame clack within the defined jitter
tolerances for fullvspeed devices. The TT has its own frame clock that is synchronized to the microfrarne
SOFs on the high—speed bus. The SOF that rellects a change in the tram:- number it carries is identified as
the zerolh microframe SOF. The zeroth high-speed microl'rame SOF corresponds to the full-speed SOF on
the TT‘S downstream facing bus. The "IT must adhere to all timingfjitter reqtirements of a host controller
related to frames as defined in other pans ofthis specification.

The TT must stop issuing full-speed SOFs after it detects 250 1.15 of higltnspeecl idle. This is required to
ensure that the full—tlow—speed downstream facing bus enters suspend no more than 250 its shot the high-
speed bus enters suspend.

The TT must generate a full—speed SOF on the downstream facing bus based on its Frame timer. The
generation ofthe full-speed SOF must occur within +f-3 full-speed bit time From the occurrence of the
zeroth high—speed SOF. See Section 11.22.] for more information about TT SOF generation.

11.18.4 Host Split Transaction Scheduling Requirements

Scheduling ofsplit transactions is done by the host (typically in software) based on a best-case estimate of
how the fitll-flow-speed transactions can be run on the downstream facing bus. This best-case estimate is
called the best case budget. The host is free to issue the Split transactions anytime within the scheduled
microframe. but each split transaction must be issued sometime within the scheduled microframe. This
description of the scheduling requirements applies to the split transactions for a single full-flow-speed
transaction at a time.

1 . The host must never schedule a start-split in microframe Y“. Some error conditions may result in the
host controller erroneously issuing a start-split in this microframe. The TT response to this start—split is
undefined.

3'34

PA~0001 584

Huawei V. FISI Exhibit No. 1007 - 402/650

Universal Serial Bus Specification Revision 2.0

2. The host must compute the staii-split schedule by determining the best case budget for the transaction
and:

I
I

a. For isochronous OUT full-speed transactions, for each microframe in which the transaction is
budgeted, the host must schedule a 188 (or the remaining data size) data byte start-split transaction.
The start-split transaction must be scheduled in the microframe before the data is budgeted to begin
on the full-speed bus. The start-split transactions must use the beginning/middle/end/all split
transaction token encodings corresponding to the piece of the full-speed data that is being sent on
the high-speed bus. For example, if only a single start-split is required, an "all" encoding is used.
If multiple start-splits are required, a "beginning" encoding is used for the first start-split and an
"end" encoding is used for the final start-split. If there are more than two start-splits required, the
additional start-splits that are not the first or last use a "middle" encoding. A zero length full-speed
data payload must only be scheduled with an "all" start-split. A start-split transaction for a
beginning, middle, or end start-split must always have a non-zero length data payload.
Figure 11-62 shows an example of an isochronous OUT that would appear to have budgeted a zero
length data payload in a start-split (end). This example instead must be scheduled with a start­
split(all) transaction.

lsoch OUT transaction with 187 data
bytes has 196 byte budget.
Transaction budgeted for Y1 and Y2.

v0 \v.
Best case budget

I HS ss!i·; .. :
I Start-split :

Schedule SS-all with 187 data bytes, not SS-begin(187 data) and SS-end (0 data).

An lsoch OUT only ever has zero length data in SS-all.

Figure 11-62. Isochronous OUT Example That Avoids a Start-split-end With Zero Data

b. For isochronous IN and interrupt IN/OUT full-/low-speed transactions, a single start-split must be
scheduled in the microframe before the transaction is budgeted to start on the full-/low-speed bus.

3. The host never schedules more than one complete-split in any microframe for the same full-/low-speed
transaction.

a. For isochronous OUT full-speed transactions, the host must never schedule a complete-split. The
TT response to a complete-split for an isochronous OUT is undefined.

b. For interrupt IN/OUT full-/low-speed transactions, the host must schedule a complete-split
transaction in each of the two microframes following the first microframe in which the full-/low­
speed transaction is budgeted. An additional complete-split must also be scheduled in the third
following microframe unless the full-/low-speed transaction was budgeted to start in microframe
Y

6
• Figure 11-63 shows an example with only two complete-splits.

375

PA_0001585

Universal Serial Bus Specification Revision 2.0

2. The host must compute the Stan-split schedule by determining the best case budget for the transaction
and:

a.
For isochronous OUT full—speed transactions. for each microframe in which the transaction is
budgeted. the host must schedule a 183 (or the remaining data size) data byte slat l-split transaction.
The start—split transaction must be scheduled in the microframe before the data is budgeted to begin
on the full-speed bus. The start-split transactions must use the beginning/middle/endfall split
transaction token encodings corresponding to the piece ol'lhe full-speed data that is being sent on
the high-speed bus. For example, ifonly a single start-split is required. an “all" encoding is used.
If multiple start-splits are required. a “beginning" encoding is used For the first start-split and an
“end“ encoding is used for the final start-split. It'there are more than two start-splits required. the
additional start-splits that are not the first or last use a “middle" encoding. A zero length full-speed
data payload must only be scheduled with an “all" slam-split. A start-split transaction fora
beginning. middle, or end start—split must always have a non—zero length data payload.
Figure I 1-62 shows an example of an isochronous OUT that would appear to have budgeted a zero
length data payload in a start—split (end). This example instead must be scheduled with a start—
sp]it(all) transaction.

Isoch OUT transaction with 18? data

bytes has Ema budget.Transaction

Best case

b.

gated for Y1 and Y2.

(v.1). it" v. v. r, r: r. try it.

a... ..i
t"

HS SS-all

Stan-split

Schedule SS-all with 18‘? data bytes, not SS—beginfllt? data] and SS-end (0 data).

An lsoch OUT only ever has zero length data in 53-3“.

Figure 11-62. lsochronous OUT Example That Avoids a Start-split-end with Zero Data

For isochronous IN and interrupt th’OUT full—tlow—speed transactions. a single Stan—split must be
scheduled in the microfrnme bEt'ore the transaction is budgeted to start an the full-flow-speed bus.

3. The host never schedules more than one complete—split in any microframe for the same Full—flow-speed
transaction.

3.
For isnchronous OUT lull-speed transactions, the host must never schedule a complete-split. The
"IT response to a complete-split for an isochronous OUT is undefined.

For interrupt INEUU'I' ltIIl-tlow-speed transactions. the host must schedule a complete-split
transaction in each ofthe two microframes following the first microframe in which the full-{low-
speed transaction is budgeted. An additional complete-split must also be scheduled in the third
following microframe unless the full-flow—speed transaction was budgeted to start in microlrame

Y0. Figure 11-63 shows an example with only two complete-splits.

375

PA~0001 585

Huawei V. FISI Exhibit No. 1007 - 403/650

Universal Serial Bus Specification Revision 2.0

#1: A full/low-speed transaction
budgeted to run here on the classic bus, ...

\
1 A I Y, (V+1)0 V, v, Y4 v,

I I Y
0 ~

... r "" ""·get
Previously budgeted transactions

I

I

I : HS

.. ··~
•••• • I

~Start-split

·:::.:::L····--...... J
I

:Hs Complete-splits

376

#2: ... has a HS start-split scheduled
in this microframe and ...

#3: ... has 2 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-63. End of Frame TT Pipeline Scheduling Example

c. For isochronous IN full-speed transactions, for each microframe in which the full-speed transaction
is budgeted, a complete-split must be scheduled for each following microframe. Also, detennine
the last microframe in which a complete-split is scheduled, call it L. IfL is less than Y6 , schedule
additional complete-splits in microframe L+ 1 and L+2.

IfL is equal to Y
6

, schedule one complete-split in microframe Y,. Also, schedule one complete­
split in microframe Y

0
of the next frame, unless the full-speed transaction was budgeted to start in

microframe Y
0

•

IfL is equal to Y,, schedule one complete-split in microframe Y
0
of the next frame, unless the full­

speed transaction was budgeted to start in microframe Y
0

• Figure 11-64 and Figure 11-65 show
examples of the cases for L= Y

6
and L=Y,.

PA_0001586

Universal Serial Bus Specification Revision 2.0

#1: A tullilow-spced transaction
budgeted to run here on the classic bus,...

\.
V» t. Y: Vt t. Y5 A L. (mt,

Previously budgeted transactions xii."- ..
Best case budget

K A L A
H5 H5 Complete-spills
Start-split

/
#2: ...has a HS start-split scheduled
in this microtrame and

#3: ...Itas 2 HS complete-split transactions
scheduled in the possible microt'rames
for this tullflow-speed ttal'tsacliort

Figure 11-63. End of Frame 11‘ Pipeline Scheduling Example

c. For isochronous 1N full—speed transactions" for each mierofmme in which the [‘ull~speed transaction
is budgeted, at complete—split must be scheduled for each following microl'rarne. Also. determine
the last microl'rame in which a complete-split is scheduled, call it L. lfL is less than Yb, schedule
additional complete—splits in microframe L 5- 1 and L- 2.

ll'L is equal to Ya, schedule one complete-split in microl'rame YT. Also, schedule one complete-
splil in microfrnme Y” ofthe next frame. unless the full-speed transaction was budgeted to start in
mict'oframe Yd.

If L is equal to Y,. schedule one complete-split in microf'rame Y" of the next frame. unless the full-
specd transaction was budgeted to start in microfmmc Y”. Figure] 1—64 and Figure 11-65 Show
examples ofthe cases for L— Yéand L—Y,.

376

PAfiOOU‘l 586

Huawei V. FISI Exhibit No. 1007 - 404/650

Universal Serial Bus Specification Revision 2.0

Microframe with
#1: A full/low-speed transaction I I 1·
budgeted to run here on the classic bus,... ast comp ete-sp It

Y1 Y2 Y3

Previously budgeted transactions

Best case budge : : ~··· ····
I I I
I •HS
: :start-split

I
#2: ... has a HS start-split scheduled
in this microframe and ...

~ from budget (L)

,---A--, ~
V4 Ys I Y6
----- I --....---·· .. •

•• ••••• _.. I

- I • HS Complete-splits
i
I

#3: ... has 4 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-64. Isochronous IN Complete-split Schedule Example at L=Y
6

#1: A full/low-speed transaction
budgeted to run here on the classic bus, ...

~
Y, Y2 Y, Y4 Ys Y6 ---------

Previously budgeted transactions •. .
l •••• : '•,, ,!,·······

Microframe with
last complete-split
from budget (L)

~
(Y+1)0

I
I Beslt case budgei : :

I I I
I I •HS

~-· I
I
I
I
I

','.4
"Extra" :

: : :start-split
plete-split

I

!
#2: ... has a HS start-split scheduled
in this microframe and ...

#3: ... has 4 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-65. Isochronous IN Complete-split Schedule Example at L=Y,

4. The host must never issue more than 16 start-splits in any high-speed microframe for any TT.

5. The host must only issue a split transaction in the microframe in which it was scheduled.

6. As precisely identified in the flow sequence and state machine figures, the host controller must
immediately retry a complete-split after a high-speed transaction error ("trans_ err").

377

PA_0001587

Universal Serial Bus Specification Revision 2.0

#1 Aiullilow s edtrilrsacli n Micron” Wflh: ' Fe 0 _
budgeted to run here on the classic hue... '33! complete-5pm

\ from budget (L)

to v. in v. v1 v, v“ V... out

Previously budgeted transactions "__.Best case bu t
dge ‘,. 1'1

H5 H5 Complete-splits "Extra" complete-splits

Start-flit
#2: ...has a H5 stilt-spilt scheduled
in this micratrame and

#3: ...has 4 HS complete-split transactions
scheduled in the possible microframes
[or this million-speed transaction

Figure 11-64. Isuehrunous IN Complete-split Schedule Example at Lch

fl er M ed” r Microfrarne with: u ow-spe ansac Ion -
budgeted to run here on the classic bus..- '35! complete-spilt

\ from budget (L)
,_,,_\ 3.

VII VI Y: VJ v-I ‘5 Yo VT (Yd-1",

PreviouslyI budgeted transactions H—B t bud t

as case ge A'" "I 'A ‘* "Extra"l-iS t’: let - ii!
HS omp e SP 5 c plate-split

Start-file
#2: ...has a HS start-split scheduledin this micrulrame and

#3: ...has I HS complete-split transactions
scheduled in the possible microframes
for this fullilow-speed transaction

Figure "-65. lsoehronous IN Complete-split Schedule Example at L=Y,

4. The host must never issue more than 16 start-splits in any high-speed microt‘rame for any TT.

5. The host must only issue a split transaction in the microframe in which it was scheduled.

6. As precisely identified in the flow sequence and state machine ti gures. the host controller must
immediately retry a completeesplil alter a high—speed transaction error (“1raus_en"‘).

37?

PAfiOOU‘l 587

Huawei V. FISI Exhibit No. 1007 - 405/650

Universal Serial Bus Specification Revision 2.0

The "pattern" of split transactions scheduled for a full-/low-speed transaction can be computed once when
each endpoint is configured. Then the pattern does not change unless some change occurs to the collection
of currently configured full-/low-speed endpoints attached via a TT.

Finally, for all periodic endpoints that have split transactions scheduled within a particular micro frame, the
host must issue complete-split transactions in the same relative order as the corresponding start-split
transactions were issued.

11.18.5 TT Response Generation

378

The approach used for full-speed isochronous INs and interrupt INs/OUTs ensures that there is always an
opportunity for the TT to return data/results whenever it has something to return from the full-/low-speed
transaction. Then whenever the full-/low-speed handler starts the full-/low-speed transaction, it simply
accumulates the results in each microframe and then returns it in response to a complete-split from the host.
The TT acts similar to an isochronous device in that it uses the microframe boundary to "carve up" the full­
/low-speed data to be returned to the host. The TT does not do any computation on how much data to return
at what time. In response to the "next" high-speed complete-split, the TT simply returns the endpoint data it
has received from the full-/low-speed bus in a microframe.

Whenever the TT has data to return in response to a complete-split for an interrupt full-/low-speed or
isochronous full-speed transaction, it uses either a DATA0/1 or MDATA for the data packet PID.

If the full-/low-speed handler completes the full-/low-speed isochronous/interrupt IN transaction during a
micro frame with a valid CRC 16, it uses the DAT A0/1 PID for the data packet of the complete-split
transaction. This indicates that this is the last data of the full-/low-speed transaction. A DATAO PID is
always used for isochronous transactions. For interrupt transactions, a DATA0/1 PID is used corresponding
to the full-/low-speed data packet PID received.

If the full-/low-speed handler completes the full-/low-speed isochronous/interrupt IN transaction during a
micro frame with a bad CRC 16, it uses the ERR response to the complete-split transaction and does not
return the data received from the full-/low-speed device.

If the TT is still receiving data on the downstream facing bus at the microframe boundary, the TT will
respond with either an MDATA PID or a NYET for the corresponding complete-split. If the TT has
received more than two bytes of the data field of the full-/low-speed data packet, it will respond with an
MDATA PID. Further, the data packet that will be returned in the complete-split must contain the data
received from the full-/low-speed device minus the last two bytes. The last two bytes must not be included
since they could be the CRC16 field, but the TT will not know this until the next microframe. The CRC16
field received from the full-/low-speed device is never returned in a complete-split data packet for
isochronous/interrupt transactions. If less than three data bytes of the full-/low-speed data packet have been
received at the end of a micro frame, the TT must respond with a NYET to the corresponding high-speed
complete-split. Both of these responses indicate to the host that more data is being received and another
complete-split transaction is required.

When the host controller receives a DAT A0/1 PID for interrupt or isochronous IN complete-splits (and
ACK, NAK, STALL, ERR for interrupt IN/OUT complete-splits), it stops issuing any remaining complete­
splits that might be scheduled for that endpoint for this full-/low-speed transaction.

If the TT has not started the full-/low-speed transaction when it receives a complete-split, the TT will not
find an entry in the complete-split pipeline stage. When this happens, the protocol state machines show that
the TT responds with a NYET (e.g., the "no match" case). This NYET response tells the host that there are
no results available cmTently, but the host should continue with other scheduled split transactions for this
endpoint in subsequent microframes.

In general, there will be two (or more) complete-split transactions scheduled for a periodic endpoint.
However, for interrupt endpoints, the maximum size of the full-/low-speed transaction guarantees that it can
never require more than two complete-split transactions. Two complete-split transactions are only required
when the transaction spans a microframe boundary. In cases where the full-/low-speed transaction actually

PA_0001588

Universal Serial Bus Specification Revision 2.0

starts and completes in the same microframe, only a single complete-split will return data; any other earlier
complete-splits will have a NYET response.

For isochronous IN transactions, more complete-split transactions may be scheduled based on the length of
the full-speed transaction. A full-speed isochronous IN transaction can be up to 1023 data bytes, which can
require portions of up to 8 microframes of time on the downstream facing bus (with the worst alignment in
the frame and worst case bit stuffing). Such a maximum sized full-speed transaction can require
8 complete-split transactions. If the device generates less data, the host will stop issuing complete-splits
after the one that returns the final data from the device for a frame.

11.18.6 TT Periodic Transaction Handling Requirements
The TT has two methods it must use to react to timing related events that affect the microframe pipeline:
current transaction abort and freeing pending start-splits. These methods must be used to manage the
microframe pipeline.

The TT must also react (as described in Section 11.22.1) when its microframe or frame timer loses
synchronization with the high-speed bus.

The TT must not issue too many full-flow-speed transactions in any microframe.

Each of these requirements are described below.

11.18.6.1 Abort of Current Transaction
When a current transaction is in progress on the downstream facing bus and it is no longer appropriate for
the TT to continue the transaction, the transaction is "aborted."

The TT full-flow-speed handler must abort the cmTent full-flow-speed transaction:

1. For all periodic transaction types, if the full-speed frame EOF time occurs

2. If the transaction is an interrupt transaction and the start-split for the transaction was received in some
micro frame (call it X) and the TT microframe timer indicates the X +4 micro frame

Note that no additional abort handling is required for isochronous transactions besides the generic IN/OUT
handling described below. Abort has different processing requirements with regards to the downstream
facing bus for IN and OUT transactions. For any type of transaction, the TT must not generate a complete­
split response for an aborted transaction; e.g., no entry is made in the complete-split pipeline stage for an
aborted transaction.

1. At the time the TT decides to abort an IN transaction, the TT must not issue the handshake packet for
the transaction if the handshake has not already been started on the downstream facing bus. The TT
may choose to not issue the IN token packet, if possible. If the transaction is in the data phase (e.g., in
the middle of the target device generated DATA packet), the TT simply awaits the completion of that
packet and ignores any data received and must not respond with a full-flow-speed handshake. The TT
must not make an entry in the complete-split pipeline stage. This processing will cause a NYET
response to the corresponding complete-split on the high-speed bus.

2. At the time the TT decides to abort an OUT transaction, the TT may choose to not issue the TOKEN or
DATA packets, if possible. If the TT is in the middle of the DATA packet, it must stop issuing data
bytes as soon as possible and force a bit-stuffing error on the downstream facing bus. In any case, the
TT must not make an entry in the complete-split pipeline stage. This processing will cause a NY ET
response to the corresponding complete-split on the high-speed bus.

11.18.6.2 Free of Pending Start-splits
A start-split can be buffered in the start-split pipeline stage that is no longer appropriate to cause a full-/low­
speed transaction on the downstream facing bus. Such a start-split transaction must be "freed" from the

379

PA_0001589

Universal Serial Bus Specification Revision 2.0

start-split pipeline stage. This means the start-split is simply ignored by the TT and the TT must respond to
a corresponding complete-split with a NYET. For example, no entry is made in the complete-split pipeline
stage for the freed start-split.

A start-split in the start-split pipeline must be freed:

1. If the full-speed frame EO F time occurs, except for start-splits received in (Y -1),

2. If the start-split transaction was received in some microframe (call it X) and the TT microframe
timer indicates the X +4 micro frame

If the TT receives a periodic stmt-split transaction in microframe Y 6, its behavior is undefined. This is a
host scheduling error.

11.18.6.3 Maximum Full-flow-speed Transactions per Microframe
The TT must not start a full-/low-speed transaction unless it has space available in the complete-split
pipeline stage to hold the results of the transaction. If there is not enough space, the TT must wait to issue
the transaction until there is enough space. The maximum number of normally operating full-speed
transactions that can ever be completed in a microframe is 16.

11.18. 7 TT Transaction Tracking
Figure 11-66 shows the TT micro frame pipeline of transactions. The 8 high-speed micro frames that
compose a full-/low-speed frame are labeled with Y 0 through Y 7 assuming the microframe timer has
occurred at the point in time shown by the arrow (e.g., time "NOW").

As shown in the figure, a start-split high-speed transaction that the high-speed handler receives in
micro frame Y 0 (e.g., a stmt-split "B") can run on the full-/low-speed bus during microframe times Y, or Y,
or Y,. This variation in starting on the full-/low-speed bus is due to bit stuffing and bulk/control
reclamation that can occur on the full-/low-speed bus. Once the full-/low-speed transaction finishes, its
complete-split transactions (if they are required) will run on the high-speed bus during microframes Y,, Y,,
orY4 •

Yu Y, Y, Y, Y4 Y5 y 6 Y,

Stan-split, B C D E F G None, A"
FS/LS transaction A A,B A, B, C B,C, D C,D, E D , E,F E, F, G F, G
Complete-splits F' , G ' A AB A,B, C B, C,D C, D , E D, E, F E,F, G

380

NOW-4 NOW-3 NOW-2 NOW-1 NOW

Figure 11-66. Microframe Pipeline

When the microframe timer indicates a new microframe, the high-speed handler must mm-k any stmt-splits
in the start-split pipeline stage it received in the previous microframe as "pending" so that they can be
processed on the full-/low-speed bus as appropriate. This prevents the full-/low-speed transactions from
rulllling on the downstream bus too early.

At the beginning of each micro frame (call it "NOW"), the high-speed handler must free (as defined in
Section 11.18.6.2) any start-split transactions from the start-split pipeline stage that are still pending from
microframe NOW-4 (or earlier) and ignore them. If the transaction is in progress on the downstream facing
bus, the transaction must be aborted (with full-/low-speed methods as defined in Chapter 8). This is
described in more detail in the previous sections. This ensures that even if the full-/low-speed bus has
encountered a babble condition on the bus (or other delay condition), the TT keeps its periodic transaction
pipeline running on time (e.g., transactions do not rllll too late). This also ensures that when the last
scheduled complete-split transaction is received by the TT, the full-/low-speed transaction has been
completed (either successfully or by being aborted).

PA_0001590

Universal Serial Bus Specification Revision 2.0

Finally, at the beginning of each microframe, the high-speed handler must change any complete-split
transaction responses in the complete-split pipeline stage from microframe NOW-2 to the free state so that
their space can be reused for responses in this microframe.

This algorithm is shown in pseudo code in Figure 11-67. This pseudo-code corresponds to the
Advance_pipeline procedure identified previously.

-- Clean up start-split state in case full-/low-speed bus fell behind
while start-splits in pending state received by TT before microframe-4 loop

Free start-split entry
End loop

-- Clean up complete-split pipeline in case no complete-splits were received
While complete-split transaction states from (microframe-2) loop

Free complete-split response transaction entry
End loop

-- Enable full-/low-speed transactions received in previous microframe
While start-split transactions from (previous microframe) loop

Set start-split entry to pending status -
End loop

Figure 11-67. Advance_Pipeline Pseudocode

11.18.8 TT Complete-split Transaction State Searching
A host must issue complete-split transactions in a micro frame for a set of full-/low-speed endpoints in the
same relative order as the start-splits were issued in a microframe for this TT. However, errors on staii- or
complete-splits can cause the high-speed handler to receive a complete-split transaction that does not
"match" the expected next transaction according to the TT's transaction pipeline.

The TT has a pipeline of complete-split transaction state that it is expecting to use to respond to complete­
split transactions. Normally the host will issue the complete-split that the high-speed handler is expecting
next and the complete-split will correspond to the entry at the front of the complete-split pipeline.

However, when errors occur, the complete-split transaction that the high-speed handler receives might not
match the entry at the front of the complete-split pipeline. This can happen for example, when a start-split
is damaged on the high-speed bus and the high-speed handler does not receive it successfully. Or the high­
speed handler might have a match, but the matching entry is located after the state for other expected
complete-splits that the high-speed handler did not receive (due to complete-split errors on the high-speed
bus).

The high-speed handler must respond to a complete-split transaction with the results of a full-/low-speed
transaction that it has completed. This means that the high-speed handler must search to find the correct
state tracking entry among several possible complete-split response entries. This searching takes time. The
high-speed handler only needs to search the complete-split responses accumulated during the previous
microframe. There only needs to be at most 1 microframe of complete-split response entries; the
microframe ofresponses that have already been accumulated and are awaiting to be returned via high-speed
complete-splits.

The split transaction protocol is defined to allow the high-speed handler to timeout the first high-speed
complete-split transaction while it is searching for the correct response. This allows the high-speed handler
time to complete its search and respond correctly to the next (retried) complete-split.

The following interrupt and isochronous flow sequence figures show these cases with the transitions labeled
"Search not complete in time" and "No split response found".

The high-speed handler matches the complete-split transaction with the correct entry in the complete-split
pipeline stage and advances the pipeline appropriately. There are five cases the TT must handle correctly:

1. If the high-speed complete-split token and first entry of the complete-split pipeline match, the high-speed
handler responds with the indicated data/status. This case occurs the first time the TT receives a
complete-split.

381

PA_0001591

Universal Serial Bus Specification Revision 2.0

2. Same as above, but this is a retry of a complete-split that the TT has already received due to the host
controller not receiving the (previous) response information.

3. If the complete-split transaction matches some other entry in the complete-split pipeline besides the first,
the high-speed handler advances the complete-split pipeline (e.g., frees response information for previous
complete-split entries) and responds with the information for the matching entry. This case can happen
due to normal or missed previous complete-split transactions. An example abnormal case could be that
the host controller was unsuccessful in issuing a complete-split transaction to the high-speed handler and
has done endpoint halt processing for that endpoint. This means the next complete-split will not match
the first entry of the complete-split pipeline stage.

4. The high-speed handler can also receive a complete-split before it has started a full-/low-speed
transaction. If there is not an entry in the complete-split pipeline, the high-speed handler responds with a
NYET handshake to inform the host that it has no status information. When the host issues the last
scheduled complete-split for this endpoint for this frame, it must interpret the NYET as an error
condition. This stimulates the normal "three strikes" error handling. If there have been more than three
errors, the host halts this endpoint. If there have been less than three errors, the host continues processing
the scheduled transactions of this endpoint (e.g., a stmi-split will be issued as the next transaction for this
endpoint at the next scheduled time for this endpoint). Note that a NYET response is possible in this case
due to a transaction error on the start-split or a host (or TT) scheduling error.

5. The high-speed handler can timeout its first high-speed complete-split transaction while it is searching the
complete-split pipeline stage for a matching entry. However, the high-speed handler must respond
correctly to the subsequent complete-split transaction. If the high-speed handler did not respond correctly
for an interrupt IN after it had acknowledged the full-/low-speed transaction, the endpoint software and
the device would lose data synchronization and more catastrophic errors could occur.

The host controller must issue the complete-split transactions in the same relative order as the original
corresponding start-split transactions.

11.19 Approximate TT Buffer Space Required
A transaction translator requires buffer and state tracking space for its periodic and non-periodic portions.

The TT microframe pipeline requires less than:

• 752 data bytes for the start-split stage

• 2x 188 data bytes for the complete-split stage

• 16x 4x transaction status (<4 bytes for each transaction) for stmi-split stage

• 16x 2x transaction status (<4 bytes for each transaction) for complete-split stage

There are, at most, 4 micro frames of buffering required for the start-split stage of the pipeline and, at most,
2 microframes of buffering for the complete-split stage of the pipeline. There are, at most, 16 full-speed
(minimum sized) transactions possible in any microframe.

The non-periodic portion of the TT requires at least:

• 2x (64 data+ 4 transaction status) bytes

Different implementations may require more or less buffering and state tracking space.

11.20 Interrupt Transaction Translation Overview

382

The flow sequence and state machine figures show the transitions required for high-speed split transactions
for full-/low-speed interrupt transfer types for a single endpoint. These figures must not be interpreted as
showing any particular specific timing. In particular, high-speed or full-/low-speed transactions for other
endpoints may occur before or after these split transactions. Specific details are described as appropriate.

PA_0001592

Universal Serial Bus Specification Revision 2.0

In contrast to bulk/control processing, the full-/low-speed handler must not do local retry processing on the
full- /low-speed bus in response to a transaction e1rnr for full-/low-speed inten-upt transactions.

11.20.1 Interrupt Split Transaction Sequences
The inte1rnpt IN and OUT flow sequence figures use the same notation and have descriptions similar to the
bulk/control figures .

In contrast to bulk/control processing, the full-speed handler must not do local retry processing on the full­
speed bus in response to a transaction e1rnrs (including timeout) of an inten-upt transaction.

Start split

stl

SSPLIT
st2

OUT

...........................

sdl Trd,ns err

DATA0/1
seli

........

not tra-f:s _ err, Tra* err
Data Jrzto _ SS _pipe

sht
T

Goto
comp. split

se2:
T

Figure 11-68. Interrupt OUT Start-split Transaction Sequence

383

PA_0001593

Universal Serial Bus Specification Revision 2.0

In contrast to bulk/control processing. the I‘utl—tlow—speed handler must not do local retry processing on the
full-Ilow-speed bus in response to a transaction error [or [‘ull-t’low-speed interrupt transactions.

1120.1 Interrupt Split Transaction Sequences

The interrupt IN and OUT [low sequence figures use the same notation and have descriptions similar to the
bulk/control figures.

In contrast to bulk/control processing. the full—speed handler must not do local retry processing on the full—
speed bus in response to a transaction errors (including timeout) of an interrupt transaction.

Star: split

 Trdns_err

5c 1

DATA0/ 1

no! frangerr, Trait/tits”
Dam_iiii‘o_SS_pipe '

5025V

sin?V

com p. split

Figure 11-68. Interrupt OUT Start-split Transaction Sequence

383

PAfiOOU‘I 593

Huawei V. FISI Exhibit No. 1007 - 411/650

384

Universal Serial Bus Specification Revision 2.0

Complete split

ctl

CSPLIT Trans err ct2 ... rm.

OUT
FastLmatch

I §e..qtc:.b.r1:<?LC:.l!f!lP(e..t.e..Jr.z.Ji1!1,.£! i

oldjstall

chl I

[sr1LL]
I
i ..

Endpoint
halt

oldfack

ch2 :

[AfK]
I
i • Go to next

cmd

I
i
i

............................... i
i

oldfnak

ch3 I

[N1K]
I
i • Retry

start split

oldlirans err Tran~_err

ch4 i ch5 i eel

[E~] [N~T]

I 1 ---t.·---1 I°ic err
! La$t NotJast cqunt

cd 7 :+ ch6T j

}--~~-- Next
1

Incj err comp. split I
codnt i

i i
L ,--------· i -- -----]

5
i ce[

3. ce'I ce . T

ce~ j ! if err count< 3
T I -

if err_ count < 3 ! i retry immed.
retry start split ! j comp. split

• T
if err count >= 3
endpoint halt

Figure 11-69. Interrupt OUT Complete-split Transaction Sequence

PA_0001594

Universal Serial Bus Specification Revision 2.0

Complete spli1

c1]

Fanimate}?

SearchnorwmzflereWW8

Nawhmspomefound

olflsralf olflack ofdfnak oldx?rans_err Tranierr
cel !

'.i

I

F,177] Irrlc err

cc 067+ C V 'Endpoint Go to next Retry Y— ----- —- Next i
halt cmd start split [mi err camp. split i

count 3
| 1

.L_.

$3! cc4i €95: cc
+ i - if err_count < 3

if err_cuunt < 3

retry start split
retry immed.

|

I comp. split‘_._._
if err_eount >= 3

endpoint halt

Figure 11—69. Interrupt OUT Complete-split Transaction Sequence

384

PAfiOOO‘I 594

Huawei V. FISI Exhibit No. 1007 - 412/650

Universal Serial Bus Specification Revision 2.0

Start split

i
i

Data into SS _pipe
- .-

Go to
comp. split

Trans err

sel:
T

Figure 11-70. Interrupt IN Start-split Transaction Sequence

Trans err

Search not

Complete split

ctl

CSPLIT
ct2

IN
Fast_t71atch

complete in time
j<III · : .. lfqspftf~f!:Sp(!1J§efqit11{]_
i
i
i old/mbredata old!lastdata old/~ak old(~tall ol'i;l/trans _ err

Trans~~·r;1rA] [n:L~1] I c:1K l [;~1LL] I ':tR l I :~~Tl
,y_ ______ 1 i + + ! Lasr_:t ____ 1

Tr:,.ns_ not ~rans_err !
1

Retry Endpoint ! 3 1 Not Jast
· h.:;: 1- ce · 1 6 · errl c -1 · start split halt ~ --T _____ y c 1 T

cell !
1

HC_AccApt_data ~--- ----·------1 Iqc err Next .
j 'r T ti not i not i cd'unt comp. split
j i T ra Is_ tran~_err, tran~_err, ·
I ce~ Ne~t comp. err i Dahtx = Dahtx /= , -.£~_i ________ l
~-·~-.~~~~·- -- -- ·-·:e~ togg~e togg~e ce~ i

Inc err Count i ch8 i T I
1

Y. _____________
1

ch7 i • if err count< 3 i

ce\ eel • Retry retry -;tart split j

Go to next cmd start split cei
if err count >= 3
endpoint halt

if err count < 3
retry immed.
comp. split

HC_Accept_data HC_reject_data
if err count >= 3
endpoint halt

Figure 11-71. Interrupt IN Complete-split Transaction Sequence

385

PA_0001595

Universal Serial Bus Specification Revision 2.0

Start split

Dnta_in[n_.$‘é'_pi}oe

Y
Go to

comp. split

Figure 11-1"). Intcrrupt IN Start-split Transaction Sequence

Complete split

ctl

Tran.c__ei'r CS1)le

Fart imifchSearch imr
' time

“No. spilt.i.fe.szzrm-E€fqyrtd._

-a{d/muredtim old/fristdara ()M/mrk aid/stat! aid/Mun er:

TransArr-
CC]

MDATA _ATAO/I-M-STALL W-NYET
______ i

1 i -'l'r:It—ns not transcrr i Retry Endpoint » (:63I lNotl_last
' crrl 9115 ' start split halt i.""T'__ __ .3 .8136"

as I. ! l-IC_AccipLdata 'I_I—t!______tu! Inc an he“ _Traits_ no i “a ! cdunt comp. spht
. . \ext comp err ! tran§_crr, tranLcrr, .

€341 Split cc 5: Datsix = Dani): I: FEE: ________!
i4—!._._._._._._._._._ .4 magic toggie cefi g' ' I

Inc crr Conn:_________ ch? : c118'l if crr_count < 3 i
ce?|— ccfi! V Retry retry start split !

_ + _ + C0 to next cmd start split ce‘i
If err_cnunt >= 3 if err_cm1nt < 3 HC_Acccpt_data HC_reject_da ta ‘
endpoint halt retry immed. If crr_count >= 3

camp. split endpoint halt

Figure 11-71. Interrupt IN Complete-split Transaction chucncc

335

PAfiOOU‘i 595

Huawei V. FISI Exhibit No. 1007 - 413/650

Universal Serial Bus Specification Revision 2.0

11.20.2 Interrupt Split Transaction State Machines

st1

lssue_packet(HSD1, SSPLIT);

lssue_packet(HSD1, tokenOUT);

sd1

lssue_packet(HSD1, DAT Ax);

sh1

RespondHC(Do_complete);

HC_Do_lnt0SS

Figure 11-72. Interrupt OUT Start-split Transaction Host State Machine

386

PA_0001596

Universal Serial Bus Specification Revision 2.0

11.202 Interrupt Split Transaction State Machines

- 511

Issue_packet(HSD‘| , _SSPLlT);

DOOUTSS

st2

lssuejackeKHSDT . tokenOUT):

Doda'tass

sd1

Issue_packet(HSD1. DATAX):

 ' sh‘!

RespondHC(Do_complete);

4 n

HC_Do_|ntOSS I

Figure 11—72. Interrupt OUT Start-spiit Transaction Host State Machine

386

PAfiOOU‘I 596

Huawei V. FISI Exhibit No. 1007 - 414/650

Universal Serial Bus Specification Revision 2.0

ct1

lssue_packet(HSD1, CSPLIT);

lssue_packet(HSD1, tokenOUT);

ch3

ch5

\ ~ 2.PID • NYET

\ \ '"' .
ce1 \

Packet_ready(HSU2)

(HSU2.P1D /= STALL and
HSU2.P1D /= NAK and
HSU2.P1D /= ACK and
HSU2.P1D /= ERR and
HSU2.P1D /= NYET) or
HSU2.timeout

ICSO_wait
Wait_for_packet(HSU2, ITG)·

HC_Do_lntOCS

ch2

HSU2.P1D = NAK

RespondHC(Do_start);

HSU2.P1D = STALL

RespondHC(Do_halt) ;

RespondHC(Do_next_cmd), ~

not HC cmd last

RespondHC(Do_next_complete),

ErrorCount < 3

RespondHC(Do_halt);

ErrmCooat >• 3 ~

I ErrorCount >= 3 J
I ErrorCount < 3 I
l ~pondHC(Do_comp_immed_now);~

Figure 11-73. Interrupt OUT Complete-split Transaction Host State Machine

387

PA_0001597

IssueNeflHSDL CSPLIT):

Issue_paekel(HSDi. 10ken0UT);

Universal Serial Bus Specification Revision 2.0

HSUZPID = NAK

RespondHC(Da_start};

___F HSU2.PID = STALL

RefipdeC(Do_halt):

m HSUZPID = ACKRespondHCtDo_nexI_und);
HSU2.P|D = NYET

6116

ca?
:31

chcmd‘lasi

HSU2.PID = ERR

not HC_cmd.Ias!
RespondHC(Do_ne)d_oomplete):

at?

EnoernH 3

PackeLreaayméuz) KapondHC(Do_start);

' RespondH Do hall;

(HSU2.PIDI‘= STALL and C{ _ }HSUZPID J= NAK and
HSUZPID 1'2 ACK and
HSUZPID I= ERR and
HSUZPID .-'= NYE!) or ErrorCcun1>= 3
HSUZJimaaul

ErrorCuuni 3: 3

ErrorCourIi < 3

RespondHQDo_mmp_immed_mw);

 HcUDowuntocs

Figure 11-13. Interrupt OUT Complete-split Transaction East State Machine

387

PA_DOD1597

Huawei V. FISI Exhibit No. 1007 - 415/650

388

Universal Serial Bus Specification Revision 2.0

/

HSD2.PID /= DATAx or
HSD2.timeout

,/
~ HSD2.PID = DATA, I

Packet_ready(HSD2) ~

sh1

se2

HSD2.CRC16 = ok

Data _into_ SS _pipe;

HSD2.CRC16 = bad

I TT _Do_lnt0SS I

Figure 11-74. Interrupt OUT Start-split Transaction TT State Machine

PA_0001598

Universal Serial Bus Specification Revision 2.0

HSDZPiD f= DATAx or
HSD2.timeout

531 ' .

I,” \ "'_
’\ &/ I"-
2/ ‘ ‘-._

' ' HSDZPID = DATAx

Packet_ready(HSD2) ___.; D»
-.. -" H592.-93.C_1.5 = 0.5. , f

‘ ' "a“ sh1_ Data_inlo_SS_pipe: "
< a EI 5&2

 TT_II'IIO55_W8H- HSDZ‘CRC16 = bad

wéit_ror-_packet(
H302...rrG-);

| TT_Do_lntOSS

Figure 11-74. Interrupt OU'I‘ Start-split Transaction 'I'T State Machine

388

PAfiOOU‘I 598

Huawei V. FISI Exhibit No. 1007 - 416/650

Universal Serial Bus Specification Revision 2.0

TT _lntoCS_match

Fast_match;

ch4

ch 1

CS_Buff.match.down_result = r_trans_err

lssue_packet(HSU 1, ERR);
~ - -~

CS_Buff.match.down result= r_nak

lssue_packet(HSU 1, NAK);

CS_Buff.match.down_result = r_ack

lssue_packet(HSU 1, ACK);

CS_Buff.match.down_result = r_stall

' -~--- / -----"'"=-_packet(HSU1, STALL); /,/ /

I CS_Buff.match.state = no_match

lssue_packet(HSU 1, NYET);

CS_Buff.match.state = match_busy

TT_ Do _I ntOCS

Figure 11-75. Interrupt OUT Complete-split Transaction TT State Machine

st1

lssue_packet(HSD1, SSPLIT);

lssue_packet(HSD1, token IN);

Respond HC(Do _complete);

HC_Do_lntl SS

Figure 11-76. Interrupt IN Start-split Transaction Host State Machine

389

PA_0001599

Universal Serial Bus Specification Revision 2.0

CS_Buff.match.down_result = r_trans_err

Issue_packet(HSU1, ERR):

/ \\'\
c113 CS_Buff.match.down_result = r_nak

Issue_packel(HSU1. NAK); \

/ \ cm CS_Buff.matoh.dcwn_result = r_ack \
CS—BL‘flma‘m-m‘e = dd \ |ssue_packel(HSU1. ACK):

\\

CS_Buff.match.down_resufl = r_stall

Issue_packet(HSU 1. STALL);

Issue_packet(HSU1. NYET):

\ /
CS_Buff.ma!ch.siate = match_busy

CSABufimatchsLate = noimatm /

1'r_oo_|mocs

Figure 11-75. Interrupt OUT Complete-split Transaction Tl" State Machine

'\s¢1
Issue_packet(HSD1. SSF'LIT};

Issue_pack91(HSD1, tokenlN):

RespondHC(Do__oomplate);

HC_DoAIntiSS b
Figure 11-76. Interrupt IN Start-split Transaction Host State Machine

389

PA_0001599

Huawei V. FISI Exhibit No. 1007 - 417/650

ct1

Universal Serial Bus Specification Revision 2.0

ce2
HSU2.PID = ERR

not HC_cmd.last

ce5 ErrorCount < 3 I
ceg ~ pondHC(Do_start);-J

ErrorCount >= 3 D
RespondHC(Do_halt); J)

Respond H C(Do_ next_ complete);

lssue_packet(HSD1, CSPLIT); [F"su2.PID = NYET

390

\

lssue_packet(HSD1, tokenlN);

HC_lntlCS_wait

HSU2.PID = NAK

RespondHC(Do_start);
ch2

HSU2.PID = STALL

RespondHC(Do_halt);

HC_Do_lntlCS

ch1

(HSU2.PID /= NAK and ~ ;d j HSU2.PID /= STALL and
HSU2.PID /= NYET and
HSU2.PID /= ERR) or
HSU2.timeout

Figure 11-77. Interrupt IN Complete-split Transaction Host State Machine

PA_0001600

Universal Serial Bus Specification Revision 2.0

“2 HSU2.PID = ERR

ErrorCount < 3

RespoMHC(Do_start);

\

ErrorCount >= 3 J

“5 HC_mvd.Ias:

W
RaspundHC(Do_halt);

not HC_cmd.last
RespondHC(Do__next__complele);

-—\c11
Issue_paGkBI(HSD1 , CSPLIT);

HSU2.PID = NYET

HSU2.PID = NAK

RespondHC(Do_star1);chZ '

.- HSU2.PID = STALL

a ”2 RespondHClDojait};
IssuejackeuHSD1, tokenlN];

/
{HSUZPID I= NAK and
HSU2.PID :‘= STALLand
HSU2.PID # NYEI' and

HSU2.PID 1": ERR) or
H5U2.timeou1

HC_Do_lnthS

Packet_ready(HSU2)

Figure 11-77. Interrupt IN Complete—split Transaction Host State Machine

390

PA_0001500

Huawei V. FISI Exhibit No. 1007 - 418/650

Universal Serial Bus Specification Revision 2.0

HSU2.x = HC_cmd.toggle

Respond HC(Do _ next_ cmd); ~ spondHC(Do_start);

HSU2.x /= HC_cmd.toggle

HC_Reject_data;

RespondHC(Do_next_complete);

~

ErrorCount >= 3

RespondHC(Do_halt);

HSU2.P1D = DATAx and
HSU2.CRC16 = ok

/
ErrorCount < 3

HC_Accept_data; RespondHC(Do_comp_immed_now);

ch5

HSU2.P1D = MDATA and
HSU2.CRC16 = ok

HC_Accept_data;

(HSU2.P1D = MDATA or
HSU2.P1D = DATAx) and
HSU2.CRC16 = bad

(HSU2.P1D /= MDATA and
ce

1
HSU2.P1D /= DATAx) or

-~~ ----------- ------1 HSU2.timeout

HC_Data_or_error

Figure 11-78. HC_Data_or_Error State Machine

••-----if}:ta_into_SS _pip2]1-----1H1-.

I TT _Do_ lntlSS

Figure 11-79. Interrupt IN Start-split Transaction TT State Machine

391

PA_0001601

Universal Serial Bus Specification Revision 2.0

HSU2.x = HC_cmd.toggle

RespondHC(Do_nexl_cmd);

RespondHC(Do_start};

HSU2.x != HG_cmd.toggle

ch? HC_Reiect_dana:

/"

/ / /ErrorCount >= 3

RespondHCtDo_nextfl_oomplete); RespondHC{Do_halt);f

HSUZPiD = DATA): and
HSU2.CRC1B = 0k

HC_Aooept_data:
ErrorCount < 3

RespondHO(Do_oomp_immed_now);

HSUZPID = MDATA and
HSU2.CRC16 = 0k

(.115 , HC#Aooept_fidata:

(HSUZPID = MDATA Dr
HSUZPID = DATAX) and
HSU2.CRC16 = bad

Mce/ {HSLI2.PID I: MDATA and
HSUZPID I: DATAX) or
HSUZJimeoul

Hc_Data_or_error

Figure 11-78. HC_Dnta_oerrmr State Machine

CS1

.— DalaJnto_SSJip&; 4*.

I TT_Do_Int¥SS

Figure 11-79. Interrupt IN Start-split Transaction TT State Machine

391

PA_0001501

Huawei V. FISI Exhibit No. 1007 - 419/650

Universal Serial Bus Specification Revision 2.0

CS_Buff.match.down_result = r_moredata

lssue_packet(HSU1, MDATA);
~-~- --~-~

/[cs_Buff.match.down_,esult = ,_lastdata)

cd 1 lssue_packet(HSU1, DATAx);

'
CS_Buff.match.down_result = r_trans_err

lssue_packet(HSU1 ,ERR);

lssue_packet(HSU1, NAK);

~

\

CS_Buff.match.down_result = r_nak

c--------------~ ~-~

CS_Buff.match.state = old

TT _lntlCS_match

Fast_match;

ch2

CS_Buff.match.down_result = r stall

lssue_packet(HSU1, STALL);

ch4

ce1

CS_Buff.match.state = no_match

lssue_packet(HSU1, NYET);

____j CS_Buff.match.state = match_busy

TT _Do_lntlCS

Figure 11-80. Interrupt IN Complete-split Transaction TT State Machine

11.20.3 Interrupt OUT Sequencing

392

Interrupt OUT split transactions are scheduled by the host controller as normal high-speed transactions with
the start- and complete-splits scheduled as described previously.

When there are several full-/low-speed transactions allocated for a given microframe, they are saved by the
high-speed handler in the TT in the start-split pipeline stage. The start-splits are saved in the order they are
received until the end of the microframe. At the end of the microframe, these transactions are available to
be issued by the full-/ low-speed handler on the full-/low-speed bus in the order they were received.

In a following microframe (as described previously), the full-/low-speed handler issues the transactions that
had been saved in the start-split pipeline stage on the downstream facing full-/low-speed bus. Some
transactions could be leftover from a previous microframe since the high-speed schedule was built assuming
best case bit stuffing and the full-/low-speed transactions could be taking longer on the full-/low-speed bus.
As the full-/low-speed handler issues transactions on the downstream facing full-/low-speed bus, it saves the
results in the periodic complete-split pipeline stage and then advances to the next transaction in the start­
split pipeline.

In a following microframe (as described previously), the host controller issues a high-speed complete-split
transaction and the TT responds appropriately.

PA_0001602

Universal Serial Bus Specification Revision 2.0

_CS_Buff‘rnatch.down_result = r_moredata
lssuejacket(HSU1. MDATA);

_,./ CS_Bufi.matcthoturl_re_suh = r_|as_tdata
” cd1 __ ___, |ssueJ3acket(HSU1, DATAx):

I 1'3"" CSflBuffmatchdownwresult = r_trans__err "
lssue_packet(HSU1.ERR]: I

l i CSfBuffmatchoowth-zsult = r_nak
Issue_pact<et(HSU1. NAK):

CS_Buff.match.state = old m2 5-.» ,- .

I " .. _.../i V '

l CS_Bufi.match.down_result = r_stat| _ ' :'
IssueJacketlHSU1. STALL); '-

CS_Buff.match_state = no_matoh

IssueJackedHSUL NYET): /

- -—- _ __ _ _ CS_Buff.match.state = match_busy

TT_Do_| ntiCS

Figure ”-80. Interrupt IN Comptetc-spiit 'l‘ransaction '[T State Machine

1120.3 Interrupt OUT Sequencing

392

Interrupt OU'I" split transactions are scheduled by the host controller as normal high—speed transactions with
the stnrl- and complete-splits scheduled as described previously.

When there are several fulla‘lowrspeed transactions allocated for a given microframe. they are saved by the
high-speed handler in the TT in the start-split pipeline stage. The start-splits are saved in the order they are
received until the end of the microframe. At the end of the microErame, these transactions are available to

be issued by the full-flow-speed handler on the full-flow-speed bus in the order they were received

In a following microframe (as described previously]. the full-flow—speed handler issues the transactions that
had been saved in the start—split pipeline stage on the downstream facing full-flow-speed bus. Some
transactiOns could be leftover from a previous microErarne since the high-speed schedule was built assuming
best case bit stuffing and the full-Jlow-speed transactions could be taking longer on the t‘ull-llow-speed bus.
As the full—flow-speed handler issues transactions on the downstream facing full-flow-speed bus, it saves the
results in the periodic complete—split pipeline stage and then advances to the next transaction in the start-
split pipeline.

In a following microfiame (as described previously], the host controller issues a high-speed complete-split
transaction and the TT responds appropriately.

PAH0001602

Huawei V. FISI Exhibit No. 1007 - 420/650

Universal Serial Bus Specification Revision 2.0

High
Speed
Bus Elli

i 64 bytes w/
i HS CRC16 :

iJ 25us microframe ~!
Full/Low-
Speed
Bus

C

Int. OUT R
C

data packet
6

~
64 bytes

Figure 11-81. Example of CRC16 Handling for Interrupt OUT

The start-split transaction for an interrupt OUT transaction includes a normal CRC16 field for the high­
speed data packet of the data phase of the start-split transaction. However, the data payload of the data
packet contains only the data payload of the corresponding full-/low-speed data packet; i.e. , there is only a
single CR Cl 6 in the data packet of the start-split transaction. The TT high-speed handler must check the
CRC on the start-split and ignore the staii-split ifthere is a failure in the CRC check of the data packet. If
the start-split has a CRC check failure, the full-speed transaction must not be started on the downstream bus.
Figure 11-81 shows an example of the CRCl 6 handling for an interrupt OUT transaction and its start-split.

11.20.4 Interrupt IN Sequencing
When the high-speed handler receives an interrupt start-split transaction, it saves the packet in the stai·t-splil
pipeline stage. In this fashion, it accumulates some number of start-split transactions for a following
micro frame.

At the beginning of the next microframe (as described previously), these transactions are available to be
issued by the full-/low-speed handler on the downstream full-/low-speed bus in the order they were saved in
the start-split pipeline stage. The full-/low-speed handler issues each transaction on the downstream facing
bus. The full-flow-speed handler responds to the full-/low-speed transaction with an appropriate handshake
as described in Chapter 8. The full-/low-speed handler saves the results of the transaction (data, NAK,
STALL, trans_err) in the complete-split pipeline stage.

During following microframes, the host controller issues high-speed complete-split transactions to retrieve
the data/handshake from the high-speed handler. When the high-speed handler receives s complete-split
transaction, the TT returns whatever data it has received during a microframe. If the full-/low-speed
transaction was started and completed in a single microframe, the TT returns all the data for the transaction
in the complete-split response occurring in the following microframe. If the full-/low-speed CRC check
passes, the appropriate DATA0/1 PID for the data packet is used. If the full-/low-speed CRC check fails , an
ERR handshake is used and there is no data packet as part of the complete-split transaction.

If the full-/low-speed transaction spanned a microframe, the TT requires two complete-splits (in two
subsequent microframes) to return all the data for the full-/low-speed transaction. The data packet PID for
the first complete-split must be an MDATA to tell the host controller that another complete-split is required
for this endpoint. This MDATA response is made without performing a CRC check (since the CRC16 field
has not yet been received on the full-/low-speed bus). The complete-split in the next microframe must use a
DATA0/1 PID if the CRC check passes. If the CRC check fails, an ERR handshake response is made
instead and there is no data packet as part of the complete-split transaction. Since full-speed interrupt
transactions are limited to 64 data bytes or less (and low-speed interrupt transactions are limited to 8 data

393

PA_0001603

Universal Serial Bus Specification Revision 2.0

bytes or less), no full-flow-speed interrupt transaction can span more than a single microframe boundary;
i.e. , no more than two microframes are ever required to complete the transaction.

The complete-split transaction for an interrupt IN transaction must not include the CRC 16 field received
from the full-flow-speed data packet (i.e., only a high-speed CRC16 lield is used in split transactions). The
TT must use a high-speed CRC16 on each complete-split data packet. If the full-speed handler detects a
failed CRC check, it must use an ERR handshake response in the complete-split transaction to reflect that
en-or to the high-speed host controller. The host controller must check the CRC16 on each returned
complete-split data packet. A CRC failure (or ERR handshake) on any (partial) complete-split is reflected
as a CRC failure on the total full-flow-speed transaction. This means that for a case where a full-/low-speed
interrupt spans a microframe boundary, the host controller can accept the first complete-split without
errors, then the second complete-split can indicate that the data from the first complete-split must be
rejected as if it were never received by the host controller. Figure 11-82 shows an example of an interrupt
IN and its CRCl 6 handling with c01Tesponding complete-split responses.

High

Eill Speed INYETI
Bus

I
64 bytes w/

1125us microframe HS CRC16

Full/Low- C

Int. IN R

Speed C
data packet 1

Bus 6

y~
2 bytes 62 bytes

Figure 11-82. Example ofCRC16 Handling for Interrupt IN

11.21 Isochronous Transaction Translation Overview

394

Isochronous split transactions are handled by the host by scheduling start- and complete-split transactions as
described previously. Isochronous IN split transactions have more than two schedule entries:

• One entry for the start-split transaction in the microframe before the earliest the full-speed transaction
can occur

• Other entries for the complete-splits in microframes after the data can occur on the full-speed bus
(similar to interrupt IN scheduling)

Furthe1more, isochronous transactions are split into microframe sized pieces; e.g., a 300 byte full-speed
transaction is budgeted multiple high-speed split transactions to move data to/from the TT. This allows any
alignment of the data for each microframe.

t\1ll-speed isochronous OUT transactions issued by a TT do not have corresponding complete-split
transactions. They must only have start-split transaction(s).

The host controller must preserve the same order for the complete-split transactions (as for the start-split
transactions) for IN handling.

PA_0001604

Universal Serial Bus Specification Revision 2.0

Isochronous INs have start- and complete- split transactions. The "first" high-speed split transaction for a
full-speed endpoint is always a start-split transaction and the second (and others as required) is always a
complete-split no matter what the high-speed handler of the TT responds.

The full-/low-speed handler recombines OUT data in its local buffers to recreate the single full-speed data
transaction and handle the microframe error cases. The full-/low-speed handler splits IN response data on
microframe boundaries.

Microframe buffers always advance no matter what the interactions with the host controller or the full-speed
handler.

11.21.1 Isochronous Split Transaction Sequences
The flow sequence and state machine figures show the transitions required for high-speed split transactions
for a full-speed isochronous transfer type for a single endpoint. These figures must not be interpreted as
showing any particular specific timing. In particular, high-speed or full-speed transactions for other
endpoints may occur before or after these split transactions. Specific details are described as appropriate.

In contrast to bulk/control processing, the full-speed handler must not do local retry processing on the full­
speed bus in response to transaction errors (including timeout) of an isochronous transaction.

Start split

,---------------,--------- * ---- -,--------------·-·1
I I I

If ~II of If beginning If mi4dle
pajload of pafload ofpafload

I I I
i i i
i

stl ·
i

st2 ·
i

st3 ·

SSPLIT-all SSPLIT -begin SSPLIT-mid

st5

OUT
s 1

DATAO

not trant err,
Data _info_ SS _pipe

sh!: ..
Go to next
cmd

T~ans err
seli

TransL_err
Down~error

se2: ..

I
If l~st
of jayload

I
i
i

st4 ·

SSPLIT-end

Figure 11-83. Isochronous OUT Start-split Transaction Sequence

395

PA_0001605

Universal Serial Bus Specification Revision 2.0

[sochronous 1N5 have start— and complete— split transactions. The “first“ high—speed split transaction for a
full-speed endpoint is always a start-split transaction and the second (and others as required) is always a
complete-split no matter what the high—speed handler ofthe TT responds.

The l‘ttlI—flowvspeetl handler recombines OUT data in its local buffers to recreate the single Full—speed data
transaction and handle the microframe error cases. The l‘ull—flow—speed handler splits IN response data on
m icroframe boundaries.

Microti'ame butters always advance no matter what the interactions with the host controller or the full-speed
handler.

1121.1 lsochronous Split Transaction Sequences

The flow sequence and state machine figures Show the transitions required for high-speed split transactions
[‘or a full—speed isochronous trans ['er type for a single endpoint. These figures must not be interpreted as
showing any particular specific timing. In particular. high-speed or full-speed transactions for other
endpoints may occur before or alter these split transactions. Specific details are described as appropriate.

In contrast to buiktcontrol processing, the full-speed handler must not do local retry processing on the full-
speed bus in response to transaction errors [including timeout) of an iscchronous transaction.

Start split

r_______________ .___________t______.................. .
i | l l

[fall of ”beginning If middle If last

payload of pajizload of pat/load of payload
t ! l lt I t l

511 ' st2' 51:3 ‘ st4‘

SSPLIT-all SSPLIT -begin SSPLIT -mid SSPLIT -end

 Trjans_err

 5613

not rranéjrr, TransLerr
Dara_in:to_SS_pipe DowirLer-ror

shli 3023
V Y

Go to next

cmd

Figure 11-83. lsochronous OU'I‘ Start-split Transaction Sequence

395

PAfiOOU‘l 605

Huawei V. FISI Exhibit No. 1007 - 423/650

396

Universal Serial Bus Specification Revision 2.0

Start split

SSPLIT
Trans err st2 ········ ············

IN sel
T

Data _into _ss _pipe

i • I Host I 0
Go to
complete split

Figure 11-84. Isochronous IN Start-split Transaction Sequence

In Figure 11-85, the high-speed handler returns an ERR handshake for a "transaction error" of the full-speed
transaction.

The high-speed handler returns an NYET handshake when it cannot find a matching entry in the complete­
split pipeline stage. This handles the case where the host controller issued the first high-speed complete­
split transaction, but the full-/low-speed handler has not started the transaction yet or has not yet received
data back from the full-speed device. This can be due to a delay from starting previous full-speed
transactions.

The transition labeled "TAdvance" indicates that the host advances to the next transaction for this full-speed
endpoint.

The transition labeled "DAdvance" indicates that the host advances to the next data area of the current
transaction for the current full-speed endpoint.

PA_0001606

Universal Serial Bus Specification Revision 2.0

Trans err
... ···· ················ ·-······

eel'

Complete split

etl

CSPLIT
et2

IN
Fast~,match

.. $e.C!!C.~11.f?t cgnzple.te.

~ Traks ~::;me I .. l!() !!Plif !f!:SP()fl5:e.J()ttr1cJ .

I i old/Ttans _ err old/lastdata old/moredata
T----- ---f eez edl ed2 eh4

ee7j ~~~~ ,---~~r ~ ~ ~ ~
eel ee4! ! ~-- _ _ T Not rrans_err i i

1 not ! Tratjts err DAdvance i i if err count< 3 if err_c~unt >= 3 1 - 1 • •

1 trans_frr ~ e~~-T Lfst Not ~ast retry immed.
comp. split i ! ti) last . i i

l _____ T_T _ __ __ \ i .'t~ ~e~ __ e:\ i .r - :e) !
. -..__L./ ·.._.!_. ./ !

Record error ehli ! !
t_ ________ T_y Not last eh3 l

TAdJance eh4t_ ________] ___ _____ T

• T
Go to next
cmd

Go to next
comp. split

Figure 11-85. Isochronous IN Complete-split Transaction Sequence

397

PA_0001607

Universal Serial Bus Specification Revision 2.0

Complete split

. Iftrm-_~‘_¢.I:I'_ ..

:

Fa511, match

E...§€9i7€¥1..’.?.?¥.§9??W€f§’._

: in time
Trais_crr

old/Tiamfrr okflafldma oké’moredara

cc]?

No. yam...3351205581?!le._ ._ _

t_______If . : _”‘2 d1‘ d2 *h4i
cc?! LLY c Y c L Y

123:" [ERR] [DATAO] [MDATA] [NYET]I I

run -3r i 3-.3—.1._._.
ce?‘ c041: i I ‘ ‘_____V Not Frans_err :— '5| | | - -

if err_count < 3 if err_c§unt >= 3 i “M I “397ch 33 Ivan“ ! !
retry immed. ! ! trans_err Y 14+“ N“ '3“. I | | lafi'm‘ - -
camp. spilt - - - | l I I

I I I 10 ca? {:08 . can; I
Y_. _T_Y___\Ir__..Y\!,__. i- -1.I_./' 11.2 -

Recoid error chli ! '
____________' Not last ch3 I

T ch4+________ ________+
TAdiiaIIce !V

Go to next Go to next

cmd comp. split

Figure 11-85. [suchrunaus IN Complete-split Transaction Sequence

397

PAfiOOU‘i 607

Huawei V. FISI Exhibit No. 1007 - 425/650

