
Universal Serial Bus Specification Revision 2.0

G
(LSb) (MSb) (LSb)

D0 I D1 D2 I D3 I D4 Ds I D5 I D1 IG I
Byte N-1 Byte N Byte N+1

Figure 8-4. Data Field Format

Data packet size varies with the transfer type, as described in Chapter 5.

8.3.5 Cyclic Redundancy Checks
Cyclic redundancy checks (CRCs) are used to protect all non-PID fields in token and data packets. In this
context, these fields are considered to be protected fields. The PID is not included in the CRC check of a
packet containing a CRC. All CRCs are generated over their respective fields in the transmitter before bit
stuffing is performed. Similarly, CRCs are decoded in the receiver after stuffed bits have been removed.
Token and data packet CRCs provide 100% coverage for all single- and double-bit errors . A failed CRC is
considered to indicate that one or more of the protected fields is corrupted and causes the receiver to ignore
those fields and, in most cases, the entire packet.

For CRC generation and checking, the shift registers in the generator and checker are seeded with an all
ones pattern. For each data bit sent or received, the high order bit of the current remainder is XORed with
the data bit and then the remainder is shifted left one bit and the low-order bit set to zero. If the result of
that XOR is one, then the remainder is XORed with the generator polynomial.

When the last bit of the checked field is sent, the CRC in the generator is inverted and sent to the checker
MSb first. When the last bit of the CRC is received by the checker and no errors have occurred, the
remainder will be equal to the polynomial residual.

A CRC error exists if the computed checksum remainder al the end of a packet reception does nol match the
residual.

Bit stuffing requirements must be met for the CRC, and this includes the need to insert a zero at the end of a
CRC if the preceding six bits were all ones.

8.3.5.1 Token CRCs
A five-bit CRC field is provided for tokens and covers the ADDR and ENDP fields of IN, SETUP, and
OUT tokens or the time stamp field of an SOF token. The PING and SPLIT special tokens also include a
five-bit CRC field. The generator polynomial is:

G(X) = XS+ X' + 1

The binary bit pattern that represents this polynomial is 00101B. If all token bits are received without error,
the five-bit residual at the receiver will be O 11 OOB.

8.3.5.2 Data CRCs

198

The data CRC is a 16-bit polynomial applied over the data field of a data packet. The generating
polynomial is:

G(X) =X1'+ X 1s+ X' + 1

The binary bit pattern that represents this polynomial is 1000000000000101 B. If all data and CRC bits are
received without error, the 16-bit residual will be 100000000000110 IB.

PA_0001408

Universal Serial Bus Specification Revision 2.0

8.4 Packet Formats

This section shows packet formats for token, data, and handshake packets. Fields within a packet are
displayed in these figures in the order in which bits are shifted out onto the bus.

8.4.1 Token Packets

Figure 8-5 shows the field formats for a token packet. A token consists of a PID, specifying either IN,
OUT, or SETUP packet type and ADDR and ENDP fields. The PING special token packet also has the
same fields as a token packet. For OUT and SETUP transactions, the address and endpoint fields uniquely
identify the endpoint that will receive the subsequent Data packet. For IN transactions, these fields uniquely
identify which endpoint should transmit a Data packet. For PING transactions, these fields uniquely
identify which endpoint will respond with a handshake packet. Only the host can issue token packets. An
IN PID defines a Data transaction from a function to the host. OUT and SETUP PIDs define Data
transactions from the host to a function. A PING PID defines a handshake transaction from the function to
the host.

(lsb) (msb)

Field PIO ADDR ENDP CRC5

Bits 8 7 4 5

\

f
J

Figure 8-5. Token Format

Token packets have a five-bit CRC that covers the address and endpoint fields as shown above. The CRC
does not cover the PID, which has its own check field. Token and SOF packets are delimited by an EOP
after three bytes of packet field data. If a packet decodes as an otherwise valid token or SOF but does not
terminate with an EOP after three bytes, it must be considered invalid and ignored by the receiver.

8.4.2 Split Transaction Special Token Packets
USB defines a special token for split transactions: SPLIT. This is a 4 byte token packet compared to other
nonnal 3 byte token packets. The split transaction token packet provides additional transaction types with
additional transaction specific information. The split transaction token is used to support split transactions
between the host controller communicating with a hub operating at high speed with full-/low-speed devices
to some of its downstream facing ports. There are two split transactions defined that use the SPLIT special
token: a start-split transaction (SSPLIT) and a complete-split transaction (CSPLIT). A field in the SPLIT
special token, described in the following sections, indicates the specific split transaction.

8.4.2.1 Split Transactions
A high-speed split transaction is used only between the host controller and a hub when the hub has full
/low-speed devices attached to it. This high-speed split transaction is used to initiate a full-/low-speed
transaction via the hub and some full-/low-speed device endpoint. The high-speed split transaction also
allows the completion status of the full-/low-speed transaction to be retrieved from the hub. This approach
allows the host controller to start a full-/low-speed transaction via a high-speed transaction and then
continue with other high-speed transactions without having to wait for the full-/low-speed transaction to
proceed/complete at the slower speed. See Chapter 11 for more details about the state machines and
transaction definitions of split transactions.

A high-speed split transaction has two parts: a start-split and a complete-split. Split transactions are only
defined to be used between the host controller and a hub. No other high-speed or full-/low-speed devices
ever use split transactions.

199

PA_0001409

200

Universal Serial Bus Specification Revision 2.0

Figure 8-6 shows the packets composing a generic start-split transaction. There are two packets in the token
phase: the SPLIT special token and a full-/ low-speed token. Depending on the direction of data transfer and
whether a handshake is defined for the transaction type, the token phase is optionally followed by a data
packet and a handshake packet. Start split transactions can consist of 2, 3, or 4 packets as determined by the
specific transfer type and data direction.

SSPLIT
Token FS/LS Token

Token Phase

I 1
I DATAx j (_________ _

,---------
!_Handshake

Figure 8-6. Packets in a Start-split Transaction

Figure 8-7 shows the packets composing a generic complete-split transaction. There are two packets in the
token phase: the SPLIT special token and a full-/low-speed token. A data or handshake packet follows the
token phase packets in the complete-split depending on the data transfer direction and specific transaction
type. Complete split transactions can consist of 2 or 3 packets as determined by the specific transfer type
and data direction.

CSPLIT
Token FS/LS Token

Token Phase

f
l._ D ___ A_T_Ax·-----

or r--------------1
I Handshake I
L_ _ ______ _

Figure 8-7. Packets in a Complete-split Transaction

The results of a split transaction are returned by a complete-split transaction. Figure 8-8 shows this
conceptual "conversion" for an example interrupt IN transfer type. The host issues a start-split (indicated
with 1) to the hub and then can proceed with other high-speed transactions. The start-split causes the hub to
issue a full-/low-speed IN token sometime later (indicated by 2). The device responds to the IN token (in
this example) with a data packet and the hub responds with a handshake to the device. Finally, the host
sometime later issues a complete-split (indicated by 3) to retrieve the data provided by the device. Note that
in the example, the hub provided the full-/low-speed handshake (ACK in this example) to the device
endpoint before the complete-split, and the complete-split did not provide a high-speed handshake to the
hub.

PA_0001410

1

Host

3
Complete

Split

Universal Serial Bus Specification Revision 2.0

IN Token

IN Token

DataO

High-Speed
Bus

Hub

2
Full/Low-Speed

IN Token

DataO

'-------v-----

Full-/Low-Speed
Bus

Device

Figure 8-8. Relationship of Interrupt IN Transaction to High-speed Split Transaction

A normal full-/low-speed OUT transaction is similarly conceptually "converted" into staii-split and
complete-split transactions. Figure 8-9 shows this "conversion" for an example interrupt OUT transfer
type. The host issues a start-split transaction consisting of a SSPLIT special token, an OUT token, and
a DATA packet. The hub sometime later issues the OUT token and DATA packet on the full-/low
speed bus. The device responds with a handshake. Sometime later, the host issues the complete-split
transaction and the hub responds with the results (either full-/low-speed data or handshake) provided by
the device.

201

PA_0001411

Universal Serial Bus Specification Revision 2.0

1

Start

so ‘
IN Taken

3 m Token
Complete

Split Datao

‘ "-___-_‘VF-—_J

H'Qh‘gPWd Full-lLow-Speed
BUS Bus

Figure 8-8. Relationship of Interrupt IN Transaction to High—speed Split Transaction

A normal full-flow-speed OUT transaction is similarly conceptually “converted" into start-split and
complete—split transactions. Figure 8—9 shows this “conversion" for an example interrupt OUT transfer
type. The host issues a start-split transaction consisting of a SSPLIT special token. an OUT token. and
a DATA packet. The hub sometime later issues the OUT token and DATA packet on the full-flow—
speed bus. The device responds with a handshake. Sometime later. the host issues the complete-split
transaction and Lhe hub responds with Ihe results (either full-ilow-speed data or handshake) provided by
the device.

201

PA_000141 1

Huawei V. FISI Exhibit No. 1007 - 229/650

Universal Serial Bus Specification Revision 2.0

1
Start 2
Split OUT Token Full/Low-speed

DataO
OUT Token

Host Hub DataO Device

ACK

3
OUT Token

Complete
Split ACK

'--------y-----

Full-flow-Speed

High-Speed Bus

Bus

Figure 8-9. Relationship of Interrupt OUT Transaction to High-speed Split OUT Transaction

The next two sections describe the fields composing the detailed start- and complete-split token packets.
Figure 8-10 and FigLu-e 8-12 show the fields in the split-transaction token packet. The SPLIT special token
follows the general token format and starts with a PID field (after a SYNC) and ends with a CRC5 field
(and EOP). Start-split and complete-split token packets are both 4 bytes long. SPLIT transactions must
only originate from the host. The start-split token is defined in Section 8.4.2.2 and the complete-split token
is defined in Section 8.4.2.3.

8.4.2.2 Start-Split Transaction Token
(lsb) (msb)

202

Field SPLIT Hub SC Port s E ET CRC5
PID Addr

Bits 8 7 1 7 1 1 2 5 \.. _______ ..,.)

V

t
Figure 8-10. Start-split (SSPLIT) Token

The Hub addr field contains the USB device address of the bub supporting the specified full-/low-speed
device for this full-/low-speed transaction. This field has the same definition as the ADDR field definition
in Section 8.3.2.1.

A SPLIT special token packet with the SC (Start/Complete) field set to zero indicates that this is a start -split
transaction (SSPLIT).

The Port field contains the port number of the target hub for which this full-/low-speed transaction is
destined. As shown in Figure 8-11, a total of 128 ports are specified as PORT<6:0>. The host must
coITectly set the port field for single and multiple TT hub implementations. A single TT hub
implementation may ignore the port field.

PA_0001412

Universal Serial Bus Specification Revision 2.0

1
Start

Split OUT Token

Datat)

3 OUT Token

Guanete
Split ACK

k—T—J

Fult-tLow-Speed

High-§peed Bus
Bus

Figure 8-9. Relationship of Interrupt OUT Transaction to High-speed Split OUT Transaction

The next two sections describe the fields composing the detailed start— and complete—split token packets.
Figure 8—10 and Figure 8-12 show the fields in the split—transaction token packet. The SPLIT special token
follows the general token format and starts with a PID field [after a SYNC} and ends with a CRCS field
[and EDP}. Stan-split and complete-split token packets are both 4 bytes long. SPLIT transactions must
only originate from the host. The start-split token is defined in Section 8.4.2.2 and the complete-split token
is defined in Section 3.4.2.3.

8.4.2.2 Start-Split Transaction Token

202

(lab) (msb)

PFD Addt

Bits . R 7 l 7 l l 2 5

Figure 8-10. Start-split (SSPLIT) Token

The Hub add: lield contains the USB device address of the hub supporting the specified full-flow-speed
device for this fitll-tlow-speed transaction. This field has the same definition as the ADDR field definition
in Section 8.3.2.1.

A SPLIT special token packet with the SC (StanfCompleteJ field set to zero indicates that fliis is a start-split
transaction (SSPLIT).

The Port field contains the port number of the target hub for which this full-flow-speed transaction is
destined. As shown in Figure S~ l l. a total of 128 pons are specified as PORT<6:OP. The host must
correctly set the port field for single and multiple TT hub implementations. A single TT huh
implementation may ignore the port Field

PA_0001412

Huawei V. FISI Exhibit No. 1007 - 230/650

Universal Serial Bus Specification Revision 2.0

(LSb) (MSb)

I Port 01 Port 11 Port 2 1 Port 3 1 Port 4 1 Port 5 1 Port 6 1

Figure 8-11. Port Field

The S (Speed) field specifies the speed for this inten-upt or control transaction as follows:

• 0 - Full speed

• 1 - Low speed

For bulk IN/OUT and isochronous IN start-splits, the S field must be set to zero. For bulk/control IN/OUT,
inten-upt IN/OUT, and isochronous IN start-splits, the E field must be set to zero.

For full-speed isochronous OUT start-splits, the S' (Start) and E (End) fields specify how the high-speed
data payload con-esponds to data for a full-speed data packet as shown in Table 8-2.

Table 8-2. Isochronous OUT Payload Continuation Encoding

s E High-speed to Full-speed Data Relation

0 0 High-speed data is the middle of the full-
speed data payload

0 1 High-speed data is the end of the full-speed
data payload

1 0 High-speed data is the beginning of the full-
speed data payload

1 1 High-speed data is all of the full-speed data
payload.

Isochronous OUT start-split transactions use these encodings to allow the hub to detect various en-or cases
due to lack ofreceiving stmi-split transactions for an endpoint with a data payload that requires multiple
start-splits. For example, a large full-speed data payload may require three start-split transactions: a start
split/beginning, a start-split/middle and a start-split/end. If any of these transactions is not received by the
hub, it will either ignore the full-speed transaction (if the start-split/beginning is not received), or it will
force an en-or for the con-esponding full-speed transaction (if one of the other two transactions are not
received). Other en-or conditions can be detected by not receiving a start-split during a microframe.

The ET (Endpoint Type) field specifies the endpoint type of the full-/low-speed transaction as shown in
Table 8-3.

' The S bit can be reused for these encodings since isochronous transactions must not be low speed.

203

PA_0001413

Universal Serial Bus Specification Revision 2.0

Table 8-3. Endpoint Type Values in Split Special Token

ET value Endpoint
(msb:lsb) Type

00 Control

01 Isochronous

10 Bulk

11 Interrupt

This field tells the hub which split transaction state machine to use for this full-/low-speed transaction.

The full-/low-speed device address and endpoint number information is contained in the normal token
packet that follows the SPLIT special token packet.

8.4.2.3 Complete-Split Transaction Token
(lsb) (msb)

Field SPLIT Hub SC Port s u ET CRC5
PID Addr

Bits 8 7 1 7 1 1 2 5

Figure 8-12. Complete-split (CSPLIT) Transaction Token

A SPLIT special token packet with the SC field set to one indicates that this is a complete-split transaction
(CSPLIT).

The U bit is reserved/unused and must be reset to zero(OB).

The other fields of the complete-split token packet have the same definitions as for the start-split token
packet.

8.4.3 Start-of-Frame Packets

204

Start-of-Frame (SOF) packets are issued by the host at a nominal rate of once every 1.00 ms ±0.0005 ms for
a full-speed bus and 125 µs ±0.0625 µs for a high-speed bus. SOF packets consist of a PID indicating
packet type followed by an 11-bit frame number field as illustrated in Figure 8-13.

(lsb) (msb)

Field PIO FrameNumber CRC5

Bits 8 11 5
\...._ ______ }

f
Figure 8-13. SOF Packet

The SOF token comprises the Loken-only transaction that distributes an SOF marker and accompanying
frame number at precisely timed intervals corresponding to the start of each frame. All high-speed and full
speed functions, including hubs, receive the SOF packet. The SOF token does not cause any receiving
function to generate a return packet; therefore, SOF delivery to any given function cannot be guaranteed.

PA_0001414

Universal Serial Bus Specification Revision 2.0

The SOP packet delivers two pieces of timing information. A function is informed that an SOP has
occurred when it detects the SOP PID. Frame timing sensitive functions, that do not need to keep track of
frame number (e.g., a full-speed operating hub), need only decode the SOF PID; they can ignore the frame
number and its CRC. If a function needs to track frame number, it must comprehend both the PID and the
time stamp. Full-speed devices that have no particular need for bus timing information may ignore the SOP
packet.

8.4.3.1 USB Frames and Microframes
USB defines a full-speed 1 ms frame time indicated by a Start Of Frame (SOF) packet each and every lms
period with defined jitter tolerances. USB also defines a high-speed microframe with a 125 µs frame time
with related jitter tolerances (See Chapter 7). SOP packets are generated (by the host controller or hub
transaction translator) every lms for full-speed links. SOP packets are also generated after the next seven
125 µs periods for high-speed links.

Figure 8-14 shows the relationship between microframes and frames.

Full I low-Speed Frame Size (1 ms)

1 ms 1 ms
••• --'--i Full-Speed USB Frame icks ~ Full-Sp ed Isochronous Data Payload

High-Speed Micro-Fra s {125 us)

1111111111111111 111111111111111 1111 ...
U USB 2.0 Micro-Frame Ticks ~ .

I (1/Sth Full-Speed Frame) I High-Speed Isochronous Data Payload

Figure 8-14. Relationship between Frames and Microframes

High-speed devices see an SOP packet with the same frame number eight times (every 125 µs) during each
1 ms period. If desired, a high-speed device can locally dete1mine a particular microframe "number" by
detecting the SOP that had a different frame number than the previous SOP and treating that as the zeroth
microframe. The next seven SOFs with the same frame number can be treated as microframes 1 through 7.

205

PA_0001415

Universal Serial Bus Specification Revision 2.0

8.4.4 Data Packets
A data packet consists of a PID, a data field containing zero or more bytes of data, and a CRC as shown in
Figure 8-15. There are four types of data packets, identified by differing PIDs: DAT AO, DATAl, DATA2
and MDATA. Two data packet PIDs (DATAO and DATAl) are defined to support data toggle
synchronization (refer to Section 8.6). All four data PIDs are used in data PID sequencing for high
bandwidth high-speed isochronous endpoints (refer to Section 5.9). Three data PIDs (MDATA, DAT AO,
DATAl) are used in split transactions (refer to Sections 11.17-11.21).

(lsb) (msb)

Field PIO DATA CRC16

Bits 8 0-8192 16
\...._ _______ }

f
Figure 8-15. Data Packet Format

Data must always be sent in integral numbers of bytes. The data CRC is computed over only the data field
in the packet and does not include the PID, which has its own check field.

The maximum data payload size allowed for low-speed devices is 8 bytes. The maximum data payload size
for full-speed devices is 1023. The maximum data payload size for high-speed devices is 1024 bytes.

8.4.5 Handshake Packets

206

Handshake packets, as shown in Figure 8-16, consist of only a PID. Handshake packets are used to report
the status of a data transaction and can return values indicating successful reception of data, command
acceptance or rejection, flow control, and halt conditions. Only transaction types that support flow control
can return handshakes. Handshakes are always returned in the handshake phase of a transaction and may be
returned, instead of data, in the data phase. Handshake packets are delimited by an EOP after one byte of
packet field. If a packet decodes as an otherwise valid handshake but does not terminate with an EOP after
one byte, it must be considered invalid and ignored by the receiver.

(lsb) (msb)

Field PIO

Bits 8

Figure 8-16. Handshake Packet

There are four types of handshake packets and one special handshake packet:

• ACK indicates that the data packet was received without bit stuff or CRC errors over the data field and
that the data PID was received correctly. ACK may be issued either when sequence bits match and the
receiver can accept data or when sequence bits mismatch and the sender and receiver must
resynchronize to each other (refer to Section 8.6 for details). An ACK handshake is applicable only in
transactions in which data has been transmitted and where a handshake is expected. ACK can be
returned by the host for IN transactions and by a function for OUT, SETUP, or PING transactions.

• NAK indicates that a function was unable to accept data from the host (OUT) or that a function has no
data to transmit to the host (IN). NAK can only be returned by functions in the data phase of IN
transactions or the handshake phase of OUT or PING transactions. The host can never issue NAK.

PA_0001416

Universal Serial Bus Specification Revision 2.0

NAK is used for flow control purposes to indicate that a function is temporarily unable to transmit or
receive data, but will eventually be able to do so without need of host intervention.

• STALL is returned by a function in response to an IN token or after the data phase of an OUT or in
response to a PING transaction (see Figure 8-30 and Figure 8-38). STALL indicates that a function is
unable to transmit or receive data, or that a control pipe request is not supported. The state of a
function after returning a STALL (for any endpoint except the default endpoint) is undefined. The host
is not permitted to return a STALL under any condition.

The STALL handshake is used by a device in one of two distinct occasions. The first case, known as
"functional stall," is when the Halt feature associated with the endpoint is set. (The Halt feature is
specified in Chapter 9 of this document.) A special case of the functional stall is the "commanded
stall." Commanded stall occurs when the host explicitly sets the endpoint's Halt feature, as detailed in
Chapter 9. Once a function's endpoint is halted, the function must continue returning STALL until the
condition causing the halt has been cleared through host intervention.

The second case, known as "protocol stall," is detailed in Section 8.5.3. Protocol stall is unique to
control pipes. Protocol stall differs from functional stall in meaning and duration. A protocol ST ALL
is returned during the Data or Status stage of a control transfer, and the ST ALL condition terminates at
the beginning of the next control transfer (Setup). The remainder of this section refers to the general
case of a functional stall.

• NYET is a high-speed only handshake that is returned in two circumstances. It is returned by a high
speed endpoint as part of the PING protocol described later in this chapter. NYET may also be
returned by a hub in response to a split-transaction when the full-/low-speed transaction has not yet
been completed or the hub is otherwise not able to handle the split-transaction. See Chapter 11 for
more details.

• ERR is a high-speed only handshake that is returned to allow a high-speed hub to report an error on a
full-/low-speed bus. It is only returned by a high-speed hub as part of the split transaction protocol.
See Chapter 11 for more details.

8.4.6 Handshake Responses
Transmitting and receiving functions must return handshakes based upon an order of precedence detailed in
Table 8-4 through Table 8-6. Not all handshakes are allowed, depending on the transaction type and
whether the handshake is being issued by a function or the host. Note that if an error occurs during the
transmission of the token to the function, the function will not respond with any packets until the next token
is received and successfully decoded.

8.4.6.1 Function Response to IN Transactions
Table 8-4 shows the possible responses a function may make in response to an IN token. If the function is
unable to send data, due to a halt or a flow control condition, it issues a STALL or NAK handshake,
respectively. If the function is able to issue data, it does so. If the received token is corrupted, the function
returns no response.

207

PA_0001417

Universal Serial Bus Specification Revision 2.0

Table 8-4. Function Responses to IN Transactions

Token Received Function Tx Function Can Action Taken
Corrupted Endpoint Halt Transmit Data

Feature

Yes Don't care Don't care Return no response

No Set Don't care Issue STALL handshake

No Not set No Issue NAK handshake

No Not set Yes Issue data packet

8.4.6.2 Host Response to IN Transactions
Table 8-5 shows the host response to an IN transaction. The host is able to return only one type of
handshake: ACK. If the host receives a corrupted data packet, it discards the data and issues no response.
If the host cannot accept data from a function, (due to problems such as internal buffer overrun) this
condition is considered to be an error and the host returns no response. If the host is able to accept data and
the data packet is received error-free, the host accepts the data and issues an ACK handshake.

Table 8-5. Host Responses to IN Transactions

Data Packet Host Can Handshake Returned by Host
Corrupted Accept Data

Yes N/A Discard data, return no response

No No Discard data, return no response

No Yes Accept data, issue ACK

8.4.6.3 Function Response to an OUT Transaction

208

Handshake responses for an OUT transaction are shown in Table 8-6. Assuming successful token decode, a
function, upon receiving a data packet, may return any one of the three handshake types. If the data packet
was corrupted, the function returns no handshake. If the data packet was received error-free and the
function's receiving endpoint is halted, the function returns STALL. If the transaction is maintaining
sequence bit synchronization and a mismatch is detected (refer to Section 8.6 for details), then the function
returns ACK and discards the data. If the function can accept the data and has received the data error-free,
it returns ACK. If the function cannot accept the data packet due to flow control reasons, it returns NAK.

PA_0001418

Universal Serial Bus Specification Revision 2.0

Table 8-6. Function Responses to OUT Transactions in Order of Precedence

Data Packet Receiver Sequence Bits Function Can Handshake Returned
Corrupted Halt Match Accept Data by Function

Feature

Yes N/A N/A N/A None

No Set N/A N/A STALL

No Not set No N/A ACK

No Not set Yes Yes ACK

No Not set Yes No NAK

8.4.6.4 Function Response to a SETUP Transaction
SETUP defines a special type of host-to-function data transaction that permits the host to initialize an
endpoint's synchronization bits to those of the host. Upon receiving a SETUP token, a function must accept
the data. A function may not respond to a SETUP token with either STALL or NAK, and the receiving
function must accept the data packet that follows the SETUP token. If a non-control endpoint receives a
SETUP token, it must ignore the transaction and return no response .

8.5 Transaction Packet Sequences

The packets that comprise a transaction varies depending on the endpoint type. There are four endpoint
types: bulk, control, interrupt, and isochronous.

A host controller and device each require different state machines to correctly sequence each type of
transaction. Figures in the following sections show state machines that define the correct sequencing of
packets within a transaction of each type. The diagrams should not be taken as a required implementation,
but to specify the required behavior.

Figure 8-17 shows the legend for the state machine diagrams. A circle with a three-line border indicates a
reference to another (hierarchical) state machine. A circle with a two-line border indicates an initial state.
A circle with a single-line border represents a simple state.

209

PA_0001419

210

Universal Serial Bus Specification Revision 2.0

- Contains other state machines

- Initial state of a state machine

8 - State in a state machine

- Entry and exit of state machine

- Joint used to connect transitions

I Condition I

1 --A-c-ti-on_s __ ~ - Transition: taken when condition
~-------~

is true and performs actions

Figure 8-17. Legend for State Machines

The "tab" shapes with arrows are the entry or exit (respectively in the legend) to/from the state machine.
The entry/exit relates to another state in a state machine at a higher level in the state machine hierarchy.

A diamond Uoint) is used to join several transitions to a common point. A joint allows a single input
transition with multiple output transitions or multiple input transitions and a single output transition. All
conditions on the transitions of a path involving a joint must be true for the path to be taken. A path is
simply a sequence of transitions involving one or more joints.

A transition is labeled with a block with a line in the middle separating the (upper) condition and the (lower)
actions. The condition is required to be true to take the transition. The syntax for actions and conditions is
VHDL. The actions are performed if the transition is taken. A circle includes a name in bold and
optionally one or more actions that are performed upon entry to the state.

The host controller and device state machines are in a context as shown in Figure 8-18. The host controller
determines the next transaction to run for an endpoint and issues a command (HC _ cmd) to the host
controller state machines. This causes the host controller state machines to issue one or more packets to
move over the downstream bus (HSDl).

The device receives these packets from the bus (HSD2), reacts to the received packet, and interacts with its
function(s) via the state of the corresponding endpoint (in the EP _array). Then the device may respond with
a packet on the upstream bus (HSUl). The host controller state machines can receive a packet from the bus
(HSU2) and provide a result of the transaction back to the host controller (HC _resp). The details of what
packets are sent on the bus is determined by the transfer type for the endpoint and what bus activity the state
machines observe.

The state machines are presented in a hierarchical form. Figure 8-19 shows the top level state machines for
the host controller. The non-split transactions are presented in the remainder of this chapter. The split
transaction state machines (HC_Do_start and HC_Do_complete) are described and shown in Chapter 11.

PA_0001420

Universal Serial Bus Specification Revision 2.0

Transaction
commands

Transaction
Results

HC cmd HC _resp

Host state machines

Downstream
Bus

Upstream
Bus

HSD2 HSU1
Device state machines

Ep array

!
Functions

Host
Controller

Device

Figure 8-18. State Machine Context Overview

HC Process command - -

I HC_Do_start

I HC _Do_ complete I

I HC_Do_nonsplit

Figure 8-19. Host Controller Top Level Transaction State Machine Hierarchy Overview

The host controller state machines are located in the host controller. The host controller causes packets to
be issued downstream (labeled as HSD 1) and it receives upstream packets (labeled as HSU2).

The device state machines are located in the device. The device causes packets to be issued upstream
(labeled as HSUI) and it receives downstream packets (labeled as HSD2).

The host controller has commands that tell it what transaction to issue next for an endpoint. The host
controller tracks transactions for several endpoints. The host controller state machines sequence to
determine what the host controller needs to do next for the current endpoint. The device has a state for each
of its endpoints . The device state machines sequence to determine what reaction the device has to a
transaction.

The appendix includes some declarations that were used in constructing the state machines and may be
useful in understanding additional details of the state machines. There are several pseudo-code procedures
and functions for conditions and actions. Simple descriptions of them are also included in the appendix.

Figure 8-20 shows an overview of the overall state machine hierarchy for the host controller for the non
split transaction types. Figure 8-21 shows the hierarchy of the device state machines. The state machines

211

PA_0001421

Universal Serial Bus Specification Revision 2.0

Transaction Transaction

eonmands Results “051

Figure 8-18. State Machine Contest Overview

HC_Proccss_command

HC_Do_start

HC_Do_complete

HC_Do_non5plit

Figure 8-19. Host Controller Top Level Transaction State Machine Hierarchy Overview

The host Controller state machines are located in the host controller. The host controller causes packets to
be issued downstream [labeled as HSDl) and it receives upstream packets (labeled as HSUZ).

The device state machines are located in the device. The device causes packets to be issued upstream
(labeled as HSUl) and it receives downstream packets (labeled as HSDZ).

The host controller has commands Ihat tell it what transaction to issue next for an endpoint. The host
controller hooks transactions for several endpoints. The host controller state machines sequence to
determine what the host controller needs to do next For the current endpoint. The device base state For each
of its endpoints. The device state machines sequence to determine what reaction the device has to a
transaction.

The appendix includes some declarations that were used in constructing the state machines and may be
useful in understanding additional details of the state machines. There are several pseudo~code procedures
and Functions for conditions and actions. Simple descriptions ol'them are also included in ll'le appendix.

Figure 8—20 shows an overview of the overall state machine hierarchy for the host controller for the non»
split transaction types. Figure 8-2] shows the hierarchy of the device state machines. The state machines

21]

PA_0001421

Huawei V. FISI Exhibit No. 1007 - 239/650

212

Universal Serial Bus Specification Revision 2.0

common to endpoint types are presented first. The lowest level endpoint type specific state machines are
presented in each following endpoint type section.

HC _Do_ nonsplit

HC HS BCO

HC Do BCINTO

HC Do BCINTI

HC Do IsochO

HC Do Isochl

Figure 8-20. Host Controller Non-split Transaction State Machine Hierarchy Overview

Device Process trans

Dev do OUT
I Dev Do IsochO

I Dev Do BCINTO

I Dev_HS_BCO

Dev do IN
I Dev Do Isochl

I Dev Do BCINTI

I Dev_ HS _ping

Figure 8-21. Device Transaction State Machine Hierarchy Overview

PA_0001422

Universal Serial Bus Specification Revision 2.0

Global Actions Concurrent Statements Architecture Declarations Signals Status State Register Statements

Package Li st

std_logic_1164
1eee numeric_std
usb2statemachines behav _package

SIGNAL SCOPE DE FAULT
hsul OUT
device INT
t:oke n I NT

(BULK, NAK, 0 , 0, ok , i n_dir, TRUE, ALLDATA, FALSE, FA
' O '
, 0 . Process Declarations

Packet_ready(HSD2)

Save(HSD2, token);

Figure 8-22. Device Top Level State Machine

token.PIO/= tokenOUT and
token.PIO/= tokenlN and
token.PIO/= tokenSETUP and
token.PIO/= ping and
(token.PIO = ping and
not device.HS)

token.PIO = tokenOUT or
token.PIO = tokenSETUP

token.PIO = tokenlN

device.HS and
token.PIO = ping

I Oevice_process_trans

Figure 8-23. Device_process_Trans State Machine

213

PA_0001423

Universal Serial Bus Specification Revision 1.0

MM“ Cfllmmflllfll kflllhfiull Dock-Ban! Elm-la m. “Highly-Marni321mm 5min airma-
P ‘ neul OUT ram.m.a.e.nk.ln_d1r,mn,mm_mz_m

9 LI Mica m ‘ a'cckln INT . D' Hull! Did-10D!!!lane sn_lunlc_l16¢
luau running“
mmsmm

Pantm_raadytHSD2i
SMEHSD‘Z. mum}: . \-

'\.I

Figure 8-22. Device Top Level State Machine

token.PlD I: tokenOUT and
loken.PlD r: tokenlN and
tokenPlD i= tokenSETUP and

tokenPlD h ping and
(tokenPlD = ping and

/"not deviueJ-IS)

r

/

/ /token.PlD = tokenOUT or
token‘F'lD = tokenSETUP

3““ tokenPlD = tokenlN /,-’

\\ Ha (Xx\ a

\M (x'_J
deviceHS and "
token.PlD = ping

]_Device_ptqoe55-_trz_ms I

Figure 8—23. DeviceJrocesLTraus State Machine

213

PA_0001423

Huawei V. FISI Exhibit No. 1007 - 241/650

214

Universal Serial Bus Specification Revision 2.0

token.PIO= tokenSETUP and

(token.PIO= tokenSETUP and
device.ep(token.endpt).ep_type = control) or
token.PIO= tokenOUT

device.ep(token.endpt).ep_type = isochronous

(not device.HS and
{device.ep(token.endpt).ep_type = bulk or
device.ep(token.endpt).ep_type = control)) or
device.ep(token.endpt).ep_type = interrupt

device.HS and
{device.ep(token.endpt).ep_type = bulk or
device.ep(token.endpt).ep_type = control)

Oevice_Oo_OUT

Figure 8-24. Dev_do_OUT State Machine

PA_0001424

Universal Sorta] Bus Specification Revision 2.0

loken.PID = tokanSETUP and — H‘x
device_ep(token.endpt).ep_type I: control

{IokenPlD = toanSETUP and
device.ep(token.endpt).ep_type = control) or
tokenPlD = tokenOUT f-

/fl»-

device.ep(token.andpt).ap_type = isochronous

_ (not devica.HS and

(devioespfloken.endpt).ep_typo = bulk or
\ devioe.ep(tnken.endpt}.ep_type = control» or
\ device.ep(token.endpt}.ep_type = interrupt

devioeHS and

(device.ep(token.endpt).ep_type = bulk or
device.ap(token_endpt).ep_type = control)

EH.—________

Figure 8-24. Dev_do_OUT State Machine

214

F’A_0001424

Huawei V. FISI Exhibit No. 1007 - 242/650

Universal Serial Bus Specification Revision 2.0

device.ep(token.endpt).ep_type = isochronous

device.ep(token.endpt).ep_type = bulk or
device.ep(token.endpt).ep_type = control or
device.ep(token.endpt).ep_type = interrupt

Device_Do_lN

Figure 8-25. Dev_do_IN State Machine

/

215

PA_0001425

Universal Serial Bus Specification Revision 2.0

 J/

//

devicespftoken.endpt).ep_typa = isochmnous

.411

x,\.

devlcaemtokensndpt).ep_lype = bulk or
devioe.ap(token.endpt).ep_type = control or
davica.ep(token.endpt).ep_type = interrupt

K.

 Tifléyflgjfibil '

Flgnre 8-25. Dev_do_IN State Machine

215

PA_0001425

Huawei V. FISI Exhibit No. 1007 - 243/650

216

Universal Serial Bus Specification Revision 2.0

~ _cmd.ep_type = isochronous =i

HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control or
HC_cmd.ep_type = interrupt

HC_cmd.direction = in_dir

HC_cmd.direction = out_dir

I HC_cmd.ep_type = isochronous

,--

i (not HC_cmd.HS and
(HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control)) or
HC_cmd.ep_type = interrupt

HC_cmd.HS and
(HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control)

HC_Do_nonsplit

Figure 8-26. HC_Do_nonsplit State Machine

PA_0001426

Universal Serial Bus Specificaflon Revision 2.0

HC_cmu.ep_type = isochronuus

HE.

HC_cmd.ap_type = bulk or
HC_cmd.ep_type = control or
HC_cmd.ep_rype = interrupt

J

HC_cmd.directiun = in_dira

. -<
HC_and.directlon = out_dir

\.
//

HC__cmd.ep_type = isochronuus

(not HC_cmd.HS and a,
(HC_cmd.ep_type = bulk or
HCicrnd.epitype = control» or
HC_cmd.ep_type = interrupt

HC__crnd.HS and
{HC_cmd.ep_iype = bulk or
HC__crnd.ep__type = canto!)

\

Figure 8-26. HC_Do_non5plit State Machine

216

PA_0001426

Huawei V. FISI Exhibit No. 1007 - 244/650

Universal Serial Bus Specification Revision 2.0

8.5.1 NAK Limiting via Ping Flow Control
Full-/low-speed devices can have bulk/control endpoints that take time to process their data and, therefore,
respond to OUT transactions with a NAK handshake. This handshake response indicates that the endpoint
did not accept the data because it did not have space for the data. The host controller is expected to retry the
transaction at some future time when the endpoint has space available. Unfortunately, by the time the
endpoint NAKs, most of the full-/low-speed bus time for the transaction had been used. This means that the
full-/low-speed bus has poor utilization when there is a high frequency ofNAK'd OUT transactions.

High-speed devices must support an improved NAK mechanism for Bulk OUT and Control endpoints and
transactions. Control endpoints must support this protocol for an OUT transaction in the data and status
stages. The control Setup stage must not support the PING protocol.

This mechanism allows the device to tell the host controller whether it has sufficient endpoint space for the
next OUT transaction. If the device endpoint does not have space, the host controller can choose to delay a
transaction attempt for this endpoint and instead try some other transaction. This can lead to improved bus
utilization. The mechanism avoids using bus time to send data until the host controller knows that the
endpoint has space for the data.

The host controller queries the high-speed device endpoint with a PING special token. The PING special
token packet is a normal token packet as shown in Figure 8-5 . The endpoint either responds to the PING
with a NAK or an ACK handshake.

A NAK handshake indicates that the endpoint does not have space for a wMaxPacketSize data payload. The
host controller will retry the PING at some future time to query the endpoint again. A device can respond to
a PING with a NAK for long periods of time. A NAK response is not a reason for the host controller to
retire a transfer request. If a device responds with a NAK in a (micro)frame, the host controller may choose
to issue the next transaction in the next blnterval specified for the endpoint. However, the device must be
prepared to receive PIN Gs as sequential transactions, e.g., one immediately after the other.

An ACK handshake indicates the endpoint has space for a wMaxPacketSize data payload. The host
controller must generate an OUT transaction with a DATA phase as the next transaction to the endpoint.
The host controller may generate other transactions to other devices or endpoints before the OUT /DAT A
transaction for this endpoint.

If the endpoint responds to the OUT /DAT A transaction with an ACK handshake, this means the endpoint
accepted the data successfully and has room for another wMaxPacketSize data payload. The host controller
continues with OUT/DATA transactions (which are not required to be the next transactions on the bus) as
long as it has transactions to generate.

If the endpoint instead responds to the OUT/DATA transaction with a NYET handshake, this means that the
endpoint accepted the data but does not have room for another wMaxPacketSize data payload. The host
controller must return to using a PING token until the endpoint indicates it has space.

217

PA_0001427

Universal Serial Bus Specification Revision 2.0

HS02.x or
not device.ep(token.endpt).space_avail

(not HS02.x) and
HS02.CRC16 = ok and
device.ep(token.endpt).space_avail

Oev_accept_data;

HS02.x /=
device.ep(token.endpt).toggle and
HS02.CRC16 = ok

token.PIO= tokenSETUP and
HS02.PIO = datax

HS02.x = device.ep(token.endpt).toggle and
HS02.CRC16 = ok and
device.ep(token.endpt).space_avail

token.PIO = tokenOUT and
HS02.PIO = datax

Oev_accept_data;

lssue_packet(HSU1, ACK);

HS02.x = device.ep(token.endpt).toggle and
HS02.CRC16 = ok and
not device.ep(token.endpt).space_avail

lssue_packet(HSU1, NAK);

device.ep(token.endpt).ep_trouble

lssue_packet(HSU1, STALL);

(HS02.PIO = datax and
HS02.CRC16 = bad) or
HS02.PIO /= datax or
HS02.timeout

Oev_Oo_BCINTO

/

Figure 8-27. Host High-speed Bulk OUT/Control Ping State Machine

8.5.1.1 NAK Responses to OUT/DATA During PING Protocol

218

The endpoint may also respond to the OUT/DATA transaction with a NAK handshake. This means that the
endpoint did not accept the data and does not have space for a wMaxPacketSize data payload at this time.
The host controller must return to using a PING token until the endpoint indicates it has space.

A NAK response is expected to be an unusual occurrence. A high-speed bulk/control endpoint must specify
its maximum NAK rate in its endpoint descriptor. The endpoint is allowed to NAK at most one time each
blnterval period. A NAK suggests that the endpoint responded to a previous OUT or PING with an
inappropriate handshake, or that the endpoint transitioned into a state where it (temporarily) could not

PA_0001428

Universal Serial Bus Specification Revision 2.0

HSDZJ: or

__ _ not clevtoe.eofloken.endpt).space‘avait

(not H3023) and
HSDELRC‘IS = 0k and ‘x

. ' _-—- -*-""' deyiflfiflgjtoken.endpl).spaoe___avail

9' E Dev_accept_data; ‘ “I.J

" [HSsz t: '\I_ ‘-" - device.ep{ioken.endpt}.toggla and |' - '\-. '.
Hsozcnma = ok 'I

r I I”; ' \ I

token.F'lD = tokenSETUP and H302): = device .epttoken.endpt).toggie and "' i
Hsomo = data): H302.CRC15 = 0k and 'I

E .u' device.ep(tol<en.endpt}.sp_ace__aval_l " '.

fi _ Dev_accept_data; ll'L- I
1" _ ‘ _ — I

' II ‘_ IssuorpackeflHSU‘i. ACK); 'I

' tokenPlD = tokenOUT and -. '- ' -l- HSD2.F'|D = datax ll. -- 3

- II H3023 = device.ep{token.endpt).toggle andHSDEERClG = ok and

_ notdevioeopuoken.endptlsflcograjt _ _ , ‘.'
""~ _ Issue_pacltet{HSU1. NAK): .'

" Rx. _- _ -' III

" device-s9(tsksn_-esdpttensues_ . '
lssueJacketU-lSUT. STALL); i" I

' (HSDZPID = data): and
HSDZ.CRC16 = bad) or
HSDZPID I: data): or
H302.timeout
 - exponents; _.

Figure 8-27. Host High-speed Bulk OU'I'fControl Ping State Machine

8.5.1.1 NAK Responses to OUTIDATA During PING Protocol
The endpoint may also respond to the DUTIDATA transaction with a NAK handshake. This means that the
endpoint did not accept the data and does nol have space for a wMaer-kerSize data payload at this time.
The host controller must return to usingo PING token until the endpoint indicates it has space.

A NAK response is expected to be an unusual occurrence. A high—speed bulkicontrol endpoint must specify
its maximum NAK rate in its endpoint descriptor. ‘The endpoint is allowed to NAK at most one time each
bhiteww‘ period. A NAK suggests that the endpoint responded to a previous OUT or PING with an
inappropriate handshake. or that the endpoint transitioned into a state where it (temporarily) could not

218

PA‘0001428

Huawei V. FISI Exhibit No. 1007 - 246/650

Universal Serial Bus Specification Revision 2.0

accept data. An endpoint can use a blnterval of zero to indicate that it never NAKs. An endpoint must
always be able to accept a PING from the host, even if it never NAKs.

If a timeout occLffS after the data phase, the host must return to using a PING token. Note that a transition
back to the PING state does not affect the data toggle state of the transaction data phase.

Figure 8-27 shows the host controller state machine for the interactions and transitions between PING and
OUT/DATA tokens and the allowed ACK, NAK, and NYET handshakes for the PING mechanism.

Figure 8-29 shows the device endpoint state machine for PING based on the buffer space the endpoint has
available.

not device.ep(token.endpt).space_avail

lssue_packet(HSU1, NAK);

device.ep(token.endpt).space_avail

lssue_packet(HSU1, ACK);

device.ep(token.endpt).ep_trouble

lssue_packet(HSU1, STALL);

Dev_HS_ping

Not allowed for control
setup transaction

Figure 8-28. Dev_HS_ping State Machine

219

PA_0001429

Universal Serial Bus Speeifieatiun Revisiun 2.0

accept data. An endpuinl can use a Miiren‘al 01' zero to indicate that it never NAKs. An endpoint must
always be able In accept a PING from the heel. even ifil never NAKS.

[ft] timeout occurs alter Ihe data phase. the [lust must return to using a PING token. Note that a transition
back to lhe PING stale dues nut affect the data toggle slate ul'the transaction slaw phase.

Figure 8-27 shows the hem controller slate machine [or the interactions and Irtlnsiliuns between PING and
OUTIDATA tokens and the allowed ACK. NAK. and NYET handshakes for the PING mechanism.

Figure 8-29 shows the device endpoint state machine for PING based on the buffer space the endpuinl has
available

. _lssuejackeflHSUL NAK‘lt -a. _ _ _ _ ___ _J not devlce.ep(token.endpt).space_avafl

eley'lce.epltqleenendgt}.space_avall
lssuejackettHSUtACK): _

I - . ""10-\I

99“.?E-F3PUQ'FBUBFEPU-E.P_—*_"E’”P'e
IssuejackeqHSUL STALL):

Not allowed for control
setu p1ra nsactio Fl

 l gD‘g‘EH‘SJfing

Figure 8728. DegHSfiping State Machine

219

PAfl0001429

Huawei V. FISI Exhibit No. 1007 - 247/650

220

Universal Serial Bus Specification Revision 2.0

HSD2.x = device.ep(token.endpt).toggle and
HSD2.CRC16 = ok and
not device.ep(token.endpt).space_avail

lssue_packet(HSU1, NAK);

HSD2.x /= device.ep(token.endpt).toggle and
HSD2.CRC16 = ok

~-~--
HSD2.x = device.ep(token.endpt).toggle and -::~&
HSD2.CRC16 = ok and

r--- ---------1 device.ep(token.endpt).space_avail

Dev_accept_data;

device.ep(token.endpt).space_avail

lssue_packet(HSU1 , ACK);

not device.ep(token.endpt).space_avail

lssue_packet(HSU1, NYET);

dev;oo.ep(token.endpt).ep _tmuble /

~ a,ket(HSU1, STA//

Dev_wait_Odata1 (HSD2.PID = datax and
HSD2.CRC16 = bad) or
HSD2.PID /= datax or
HSD2.timeout

Dev_HS_BCO

Figure 8-29. Device High-speed Bulk OUT /Control State Machine

Full-/low-speed devices/endpoints must not support the PING protocol. Host controllers must not support
the PING protocol for full-/low-speed devices .

Note: The PING protocol is also not included as part of the split-transaction protocol definition. Some
split-transactions have equivalent flow control without using PING. Other split-transactions will not benefit
from PING as defined. In any case, split-transactions that can return a NAK handshake have small data
payloads which should have minor high-speed bus impact. Hubs must support PING on their control
endpoint, but PING is not defined for the split-transactions that are used to communicate with full-/low
speed devices supp01ied by a hub.

PA_0001430

Universal Serial Bus Specification Revision 2.0

' H802): =device.epttoken.endpt).toggle and
' HSD2.BRC16 = 0k and

A _n_ot device.e_p(token.endpt).space_avaii

.. IssueJackeqHsuLNAK); j '-

HSDZJ: I= device.eptloken.endot).toggle and
-" HSD2.CRC1B = ok

HRH.

I .- 5" .. \I.

HSDZJt = devioaepfloken.endot}.toggle and a “no

- HSD2.CRC16 = ok and fi' ‘.
Q_ device-op(token.ondp1}.spaco_avail ' I 'I

_ . 7,", 7,, , -. I

' . Davfiacoeptfioola; . ‘- I

. '.‘ I\I I
" _ \-. device‘epfloken‘ondpt)‘space_avail II

I. t ‘ x |

Iésuejackeuus'm, AC'K); ‘
not device.ep(token.endpt}.space_avail "- '_ _ _ _ -. I

". -_ Issue_packe1(Hsu1. NYET); ‘-.

HSD2.PID = datax '- _ ' " --o._.__

dewce‘ep[token.endpt}.ep_trouble

PackeLrBadflHSDZI '- _ Issue_packet(Hsu1. STALL):

(HSDEPID = datax and
HSD2.CRC16 = bad) or
HSDZPID .-'= Blatant or
H5D2.tirneoul

- Patiosjfib I

Figure 8-29. Device High-speed Bulk OUT {Control State Machine

Full-Ilow-speed devicesfendpoiuts must not support the PING protocol. Host controllers must not support
the PING protocol for full-flow-speed devices.

Note: The PING protocol is also not included as part oI'lhe split-transaction protocol definition. Some
split-transactions have equivalent flow control without using PING. Other split-transactions will not benefit
from PING as defined. In any case. split—transactions that can return a NAK handshake have small data
payloads which should have minor high-speed bus impact. Hubs must support PING on their control
endpoinlr but PING is not defined for the split—Iransactions that are used to communicate with full—flow—
speed devices supported by a hub.

220

PA‘000143D

Huawei V. FISI Exhibit No. 1007 - 248/650

Universal Serial Bus Specification Revision 2.0

8.5.2 Bulk Transactions
Bulk transaction types are characterized by the ability to guarantee error-free delivery of data between the
host and a function by means of error detection and retry. Bulk transactions use a three-phase transaction
consisting of token, data, and handshake packets as shown in Figure 8-30. Under certain flow control and
halt conditions, the data phase may be replaced with a handshake resulting in a two-phase transaction in
which no data is transmitted. The PING and NYET packets must only be used with devices operating at
high-speed.

oken

Error

ata

Idle

andshake

D Host D Function

Figure 8-30. Bulk Transaction Format

When the host is ready to receive bulk data, it issues an IN token. The function endpoint responds by
returning either a data packet or, should it be unable to return data, a NAK or STALL handshake. NAK
indicates that the function is temporarily unable to return data, while STALL indicates that the endpoint is
permanently halted and requires USB System Software intervention. If the host receives a valid data
packet, it responds with an ACK handshake. If the host detects an error while receiving data, it returns no
handshake packet to the function.

When the host is ready to transmit bulk data, it first issues an OUT token packet followed by a data packet
(or PING special token packet, see Section 8.5 .1). If the data is received without error by the function, it
will return one of three (or four including NYET, for a device operating at high-speed) handshakes:

• ACK indicates that the data packet was received without errors and informs the host that it may send
the next packet in the sequence.

• NAK indicates that the data was received without error but that the host should resend the data because
the function was in a temporary condition preventing it from accepting the data (e.g., buffer full).

• If the endpoint was halted, ST ALL is returned to indicate that the host should not retry the transmission
because there is an error condition on the function.

If the data packet was received with a CRC or bit stuff error, no handshake is returned.

Figure 8-31 and Figure 8-32 show the host and device state machines respectively for bulk, control, and
interrupt OUT full/low-speed transactions. Figure 8-27, Figure 8-28, and Figure 8-29 show the state
machines for high-speed transactions. Figure 8-33 and Figure 8-34 show the host and device state machines
respectively for bulk, control, and inte1n1pt IN transactions.

221

PA_0001431

222

Universal Serial Bus Specification Revision 2.0

(HSU2.P1D /= STALL and
HSU2.P1D /= NAK and
HSU2.P1D /= ACK) or
HSU2.timeout

ErrorCount < 3

RespondHC(Do_same_cmd);
lssue_packet(HSD1, datax);

not HC_cmd.setup

lssue_packet(
HSD1, tokenOUT);

HC_cmd.setup

lssue_packet(HSD 1, tokensetup);

Not allowed for control
setup transaction

HC_ Do_ BCINTO

ErrorCount >= 3

Respond HC(Do_ halt);

HSU2.P1D = STALL

RespondHC(Do_halt);

HSU2.P1D = NAK

RespondHC(Do_same_cmd);

HSU2.P1D = ACK

Respond HC(Do _ next_ cmd);

Figure 8-31. Bulk/Control/Interrupt OUT Transaction Host State Machine

PA_0001432

222

Universal Serial Bus Specification Revision 2.1]

{HSUZPID I“: STALL and
HSU2.PID 1': NAK and

HSU2.F'|D i= AGK) or
HSU2.timeout

Packet__ready[HSU2} _

~--. ‘ .- " ErrorCount < 3
. _ __ _ ' RespondHC(Da_same_cmd); '5‘

lssue_packet(HSD1, daiax); \ \

'. ' .. '-. _ ErrPr‘PPEJn!” 3 _
I". w. _‘ RespondHC{DG_halt):

\"~. -.._ .‘
.‘ ' --.___

not HC_cmd.setup "' I EH "-.

Issue—Packet! ' HSU2 PID = STALL 5 H]-. I'. \ IR ——— '— —— |——-—'___) .
H501” mmmun' 'I ‘-., _ RespdeC(Do_halt}: i ;' t '- ‘. . .' I

. _ __HEJ pmdéetyn _ ___ \-- ___ __ _ ___ _ ___ _ _ __ _.

Issue_packet{HSDi. lokenselup); "x‘ I HSU2.P|D = NAK ‘
"\ _ /" "'-\ i RespondHC(Do_same_cmd); I I

HSU2.PID = ACK
- —

RespondHC(Do_next_cmd):

Not allowed fur cumml

I setup transaction

Figure 8-31. BulkiContmli'Inlerrnpt OUT Transuiinn Host Stale Machine

PA_0001432

Huawei V. FISI Exhibit No. 1007 - 250/650

token.PIO= tokenSETUP and
HS02.PIO = datax

token.PIO = tokenOUT and
HS02.PIO = datax

Universal Serial Bus Specification Revision 2.0

HS02.x or
not device.ep(token.endpt).space_avail

(not HS02.x) and
HS02.CRC16 = ok and
device.ep(token.endpt).space_avail

Oev_accept_data; \
~-~

HS02.x /=
device.ep(token.endpt).toggle and
HS02.CRC16 = ok

HS02.x = device.ep(token.endpt).toggle and
HS02.CRC16 = ok and
device.ep(token.endpt).space_avail

Oev_accept_data;

lssue_packet(HSU1 , ACK);

HS02.x = device.ep(token.endpt).toggle and
HS02.CRC16 = ok and

\

not device.ep(token.endpt).space_avail

lssue_packet(HSU1, NAK);

~ ket~,eady(HSD~ :
device.ep(token.endpt).ep_trouble

lssue_packet(HSU1, STALL);

Dev_ wait_ Odata

Wait_for _packet(
HS02, ITG);

(HS02.PIO = datax and
HS02.CRC16 = bad) or
HS02.PIO /= datax or
HS02.timeout

Oev_Oo_BCINTO

Figure 8-32. Bulk/Control/Interrupt OUT Transaction Device State Machine

223

PA_0001433

Universal Serial Bus Specification Revisinn 2.0

K-
.r

.3

tokenPlD = tokenSETUF‘ and
HSDZPID = data):

J"

[I taken‘PlD = tokenOUT and I\
\.

PackeLreadytHSM)

HSDZAPlD = datax '-

_ ,———7- "" device.ep(token.endpt).sant_e:_avai| I

r" I _

If. ?

___ not device.epflaken.endpt).space_avail

HSDZ.X = device.ep(tokenendptjloggle and \' "HSD2.CRC16 = okand I

device.ep(token.endpt).space_avail "

HSDZJC 0!

{not Hsuzx] and
H302.CRC16 = 0k and

Dev_accept_data:

HSDZ.x I: "I. 'I

device.ep(ioken.endpt]joggle and - « 'II II
HSDZ.CRC1E = 0k ' ‘ '- |

Dev_acoept_data; ‘ '.

H302): = device.ep{token.endpl}.loggfe and I _e" I"HSD2.BRC16 = 0k and |

[19! device:ep(token.endp_g.3pace_avail ..I' I
_lssuejacketU-CSUL NAK); .

HIM-l Fifi???”t9kf'1'FnF’PUEP-Jr959i?_ .
| IssuefipackeflHSULSTALL]: If

" (HSDEPID = data): and
HSDZ.CRC16 = bad} or
HSDZPID I: datax or "'
HSDZJimaoul

| _ .Déviléificimg;_4

Figure 8-32. BulkJControlflnlL-rrupl OU'I' Transaction Device State Machine

223

PAHOOO1433

Huawei V. FISI Exhibit No. 1007 - 251/650

Wait_data

Wait_for _packet(
HSU2, ITG);

Universal Serial Bus Specification Revision 2.0

(HSU2.P1D /= NAK and
HSU2.P1D /= STALL and

>--- ~ HSU2.P1D /= datax) or
(HSU2.P1D = datax and

SU2.CRC16 = bad) or
SU2.timeout

~-------~--~

ErrorCount < 3

Respond H C (Do_ same_ cm d);

HSU2.P1D = STALL ~ EcmcCouot >= 3

I 1ssue_packet(HSD1, token IN);

RespoodHC(D.'.':-::~ ~ C(Do _ halt);

224

HSU2.P1D = datax and
HSU2.CRC16 = Ok and
HSU2.x = HC_cmd.toggle

HC_Accept_data;

HSU2.P1D = NAK

RespondHC(Do_same_cmd);

HSU2.P1D = datax and
HSU2.CRC16 = ok and
HSU2.x /= HC_cmd.toggle

lssue_packet(HSD1, ACK);
RespondHC(Do_same_cmd);

lssue_packet(HSD1, AC~
RespondHC(Do_next_cmd); J

HC_Do_BCINTI _1

Figure 8-33. Bulk/Control/Interrupt IN Transaction Host State Machine

PA_0001434

Universal Serial Bus Specification Revision 2.0

(HSUZPID I= NAK and
HSUZPID i: STALL and

HSUZPID i= datax) or
(HSUZPID = data): and
HSU2.CRC16 = bad) or
HSUE.timaout

Packei_ready(HSU2}

_ _I§r_rorppunt<3

I, '. REspofidHcmojéHchmd):
', '. I

I I'. .1

\I Eta—sfiEfifi-Iéffiiiélfif . RespondHCiDcLhaII):
E‘s-sueflpackeflH-S-D—‘I,tel—kenle: I ‘. ~

- ' HSUZPID = NAK

-. RespondHC(Do_same_m1d): . " .-

_ HSUZPID = datax and
HSUZPID - dalax and HSU2.CRC16 ___ 0k andHSU2.CRC15 = 0k and _ .5

HSU2.x = HC_cmd.toggle - ”392‘5-’"-HP%5T9‘:99'9 - f
H (3..Accept_data: lssueuaackeu . A K}.RespondHC{Do_same_cmd):

I53u2_packm(HSD1. ACK);
RespondHC(Do_next_cmd):

, mtgbpfi'ghm

Figure 8-33. BullenntroIflnterrupt IN Transaction Host State Machine

224

. HSU2.PID= STALL -. M

PA_0001434

Huawei V. FISI Exhibit No. 1007 - 252/650

Universal Serial Bus Specification Revision 2.0

~ ~ device.ep(token.endpt).ep_trouble

\ ~ lssue_packet(HSU1, STALL);

dev;ce.ep(tokeo.eodpt).data_ava~

lssue_packet(HSU1 , datax);

Dev_resp
Wait_for _packet(

HSD2, ITG);

not device.ep(token.endpt).data_avail

lssue_packet(HSU1, NAK);

HSD2.PID = ACK

RespondDev(Do_next_data);

Packet_ceady(HSD2~~ --///

~ HSD2.PID/=ACKor
HSD2.timeout

Dev_Do_BCINTI

Figure 8-34. Bulk/Control/Interrupt IN Transaction Device State Machine

Figure 8-35 shows the sequence bit and data PID usage for bulk reads and writes. Data packet
synchronization is achieved via use of the data sequence toggle bits and the DATAO/DATAl PIDs. A bulk
endpoint's toggle sequence is initialized to DATAO when the endpoint experiences any configLu-ation event
(configuration events are explained in Sections 9 .1.1.5 and 9 .4.5). Data toggle on an endpoint is NOT
initialized as the direct result of a short packet transfer or the retirement of an IRP.

Bulk OUT(O) I I OUT (1) OUT (0/1)
Write

DATAO DATA1 DATA0/1

Bulk I I Read IN (0) IN (1) IN (0/1)

DATAO DATA1 DATA0/1

Figure 8-35. Bulk Reads and Writes

The host always initializes the first transaction of a bus transfer to the DAT AO PID with a configuration
event. The second transaction uses a DAT Al PID, and successive data transfers alternate for the remainder
of the bulk transfer. The data packet transmitter toggles upon receipt of ACK, and the receiver toggles upon
receipt and acceptance of a valid data packet (refer to Section 8.6).

8.5.3 Control Transfers
Control transfers minimally have two transaction stages: Setup and Status. A control transfer may
optionally contain a Data stage between the Setup and Status stages. During the Setup stage, a SETUP
transaction is used to transmit information to the control endpoint of a function. SETUP transactions are
similar in format to an OUT but use a SETUP rather than an OUT Pill. Figure 8-36 shows the SETUP
transaction format. A SETUP always uses a DA TAO PID for the data field of the SETUP transaction. The

225

PA_0001435

Universal Serial Bus Specification Revision 2.0

"-. ' devtoeepttokenendpt).ep_trouble
Issue_packeqH3U‘l, STALL):

deviceepttolfenendpttdata__avall ._ __
lssue_packet{HSU1. datax}: .. .

not oevtceepttoken_.end[.1t).d_ata__atra_il
IssuelackettHSU 1. NAK):

HSDZPlD = ACK
RospondDev(Do_next_dataJL

Pack_al_ready(t-t502)

@5'" - .. _ HSDZPID 1: ACK or
HSDZtimeout

. 'Deflfipliitclflif'l ‘ I

Figure 8-34. BulkJ‘Conlrolflnterrupt IN Transaction Device State Machine

Figure 8-35 shaws the sequence bit and data PID usage for bulk reads and writes. Data packet
synchronization is achieved via use ot'the data sequence toggle bits and the DATAOI'DATA]. PtDs. A hulk
endpoint‘s leggte sequence is initialized to DATAO when the endpoint experiences any configuration event
[configuration events are explained in Sections 9.1.1.5 and 9.4.5). Data toggle on an endpoint is NOT
initialized as the direct result ot‘u short packet transfer or the retirement ot'an IRP.

Bulk OLI‘I’ {at OUT (1;- -" OUT [tintWrite
mm DATM nArAttIt

Built

mu m m mnew: new 01mm

Figure 8-35. Bulk Roads and Writes

The host always. initializes the first transaction Ora bus transfer to the DATAO PID with a Gunfigtn'atinn
event. The second transaction uses 2: DATA] PID. and successive data transfers alternate for the remainder

of the bulk transfer. The data packet h'ansm'rtlet' toggles upon receipt of ACK. and the receiver toggles upon
receipt and acceptance of a valid data packet {refer to Section 8.6).

8.5.3 Control Transfers

Control transfers minimally have two transaction stages: Setup and Status. A control transfer may
optionally contain a Data stage between the Setup and Status stages. During the Setup stage. a SETUP
transaction is used to transmit information to the control endpoint ofa timctinn. SETUP transactions are
similar in format to an OUT but use a SETUP rather than an OUT PID. Figure 8-36 shows the SETUP
transaction tom-int. A SETUP always uses a DATAt] PID for the data field 01' the SETUP transaction. The

225

PA_0001435

Huawei V. FISI Exhibit No. 1007 - 253/650

226

Universal Serial Bus Specification Revision 2.0

function receiving a SETUP must accept the SETUP data and respond with ACK; if the data is corrupted,
discard the data and return no handshake.

Idle

Token SETUP

....... ~

Data DATAO

Handshake

Idle

D Host D Function

Figure 8-36. Control SETUP Transaction

The Data stage, if present, of a control transfer consists of one or more IN or OUT transactions and follows
the same protocol rules as bulk transfers. All the transactions in the Data stage must be in the same
direction (i.e. , all INs or all OUTs). The amount of data to be sent during the data stage and its direction are
specified during the Setup stage. If the amount of data exceeds the prenegotiated data packet size, the data
is sent in multiple transactions (INs or OUTs) that carry the maximum packet size. Any remaining data is
sent as a residual in the last transaction.

The Status stage of a control transfer is the last transaction in the sequence. The status stage transactions
follow the same protocol sequence as bulk transactions. Status stage for devices operating at high-speed
also includes the PING protocol. A Status stage is delineated by a change in direction of data flow from the
previous stage and always uses a DAT Al PID. If, for example, the Data stage consists ofOUTs, the status
is a single IN transaction. If the control sequence has no Data stage, then it consists ofa Setup stage
followed by a Status stage consisting of an IN transaction.

Figure 8-37 shows the transaction order, the data sequence bit value, and the data PID types for control read
and write sequences. The sequence bits are displayed in parentheses.

Setup Data Status
Stage Stage Stage

,-----A----,. ,-----A----,.
Control I SETUP (0) I I OUT (1) I I OUT(O) OUT (0/1) I I IN(1) I Write

DATAO DATA1 DATAO DATA0/1 DATA1

Control SETUP (0) I I IN (1) I I IN (0) IN (0/1) I I OUT(1)
Read

DATAO DATA1 DATAO DATA0/1 DATA1

Setup Status
Stage Stage

,-----A----,. ,---------A----

No-data I SETUP (OJ I I IN (1)
Control · · ·

DATAO DATA1

Figure 8-37. Control Read and Write Sequences

PA_0001436

226

Universal Serial Bus Specification Revision 2.0

function receiving a SETUP must accept the SETUP data and respond with ACK; it‘ the data is corrupted.
discard the data and return no handshake.

Idle

t... m
\—\

D...-

Handshaka m m"

Idle

D Host |:| Function

Figure 836. Control SETUP 'l‘ransaction

The Data stage. if present. ofa control transfer consists ofone or more]N or OUT transactions and follows
the same protocol ruies as buth transfers. All the transactions in the Data stage must be in the same
direction [i.e.. all this or all OUTS). The amount ofdata to be sent during the data stage and its direction are
specified during the Setup stage. It'tlte amount ofdata exceeds the pro-negotiated data packet size, the data
is sent in multiple transactions (TNS or OUTS) that carry the maximum packet size. Any remaining data is
sent as a residual in the East transaction.

The Status stage ol'tt control transfer is the lust transaction in the sequence. The status stage transactions
follow the same protocol sequence as bulk transactions. Status stage for devices operating at high—speed
also includes the PING protocol. A Status stage is delineated by a change in direction of data flow from the
previous stage and always uses a DATA] PID. If, for example. the Data stage consists ofOUTs. the status
is a single IN transaction. If the control sequence has no Date stage. then it consists of u Setup stage
followed by a Status stage consisting ofan IN transaction.

Figure S~37 shows the transaction order. the data sequence bit value, and the data PID types For control read
and write sequences. The sequence bits are displayed in parentheses.

Setup Data Status
Stage Stage Stage

/——/\F\I——A——\r—P—t

Com. amp 0
Write H H H i 1 HDATAD DATM Damn Damon BATA1

Read DATAD nn‘mt Dam: Damon OATM

Setup Status
Stage Siege

f—J—T—t !_'_h‘——\

Control HDATAD on‘mt

Figurc 8-37. Control Read and Write Sequences

PAfi0001436

Huawei V. FISI Exhibit No. 1007 - 254/650

Universal Serial Bus Specification Revision 2.0

When a STALL handshake is sent by a control endpoint in either the Data or Status stages of a control
transfer, a STALL handshake must be returned on all succeeding accesses to that endpoint until a SETUP
PID is received. The endpoint is not required to return a STALL handshake after it receives a subsequent
SETUP PID. For the default endpoint, if an ACK handshake is returned for the SETUP transaction, the host
expects that the endpoint has automatically recovered from the condition that caused the STALL and the
endpoint must operate normally.

8.5.3.1 Reporting Status Results
The Status stage reports to the host the outcome of the previous Setup and Data stages of the transfer. Three
possible results may be returned:

• The command sequence completed successfully.

• The command sequence failed to complete.

• The function is still busy completing the command.

Status reporting is always in the function-to-host direction. Table 8-7 summarizes the type ofresponses
required for each. Control write transfers return status information in the data phase of the Status stage
transaction. Control read transfers return status information in the handshake phase of a Status stage
transaction, after the host has issued a zero-length data packet during the previous data phase.

Table 8-7. Status Stage Responses

Status Response Control Write Transfer Control Read Transfer
(sent during data phase) (sent during handshake phase)

Function completes Zero-length data packet ACK handshake

Function has an error ST ALL handshake ST ALL handshake

Function is busy NAK handshake NAK handshake

For control reads, the host must send either an OUT token or PING special token (for a device operating at
high-speed) to the control pipe to initiate the Status stage. The host may only send a zero-length data packet
in this phase but the function may accept any length packet as a valid status inquiry. The pipe's handshake
response to this data packet indicates the current status. NAK indicates that the function is still processing
the command and that the host should continue the Status stage. ACK indicates that the function has
completed the command and is ready to accept a new command. STALL indicates that the function has an
error that prevents it from completing the command.

For control writes, the host sends an IN token to the control pipe to initiate the Status stage. The function
responds with either a handshake or a zero-length data packet to indicate its current status. NAK indicates
that the function is still processing the command and that the host should continue the Status stage; return of
a zero-length packet indicates normal completion of the command; and STALL indicates that the function
cannot complete the command. The function expects the host to respond to the data packet in the Status
stage with ACK. If the function does not receive ACK, it remains in the Status stage of the command and
will continue to return the zero-length data packet for as long as the host continues to send IN tokens.

If during a Data stage a command pipe is sent more data or is requested to return more data than was
indicated in the Setup stage (see Section 8.5.3.2), it should return STALL. If a control pipe returns STALL
during the Data stage, there will be no Status stage for that control transfer.

227

PA_0001437

Universal Serial Bus Specification Revision 2.0

8.5.3.2 Variable-length Data Stage
A control pipe may have a variable-length data phase in which the host requests more data than is contained
in the specified data structure. When all of the data structure is returned to the host, the function should
indicate that the Data stage is ended by returning a packet that is shorter than the MaxI'acketSize for the
pipe. If the data structure is an exact multiple ofwMaxPacketSize for the pipe, the function will return a
zero-length packet to indicate the end of the Data stage.

8.5.3.3 Error Handling on the Last Data Transaction
If the ACK handshake on an IN transaction is corrupted, the function and the host will temporarily disagree
on whether the transaction was successful. If the transaction is followed by another IN, the toggle retry
mechanism will detect the mismatch and recover from the error. If the ACK was on the last IN of a Data
stage, the toggle retry mechanism cannot be used and an alternative scheme mL1st be used.

The host that successfully received the data of the last IN will send ACK. Later, the host will issue an OUT
token to stmi the Status stage of the transfer. If the function did not receive the ACK that ended the Data
stage, the function will interpret the start of the Status stage as verification that the host successfully
received the data. Control writes do not have this ambiguity. If an ACK handshake on an OUT gets
corrupted, the host does not advance to the Status stage and retries the last data instead. A detailed analysis
ofretry policy is presented in Section 8.6.4.

8.5.3.4 STALL Handshakes Returned by Control Pipes
Control pipes have the unique ability to return a STALL handshake due to function problems in control
transfers. If the device is unable to complete a c01mnand, it returns a STALL in the Data and/or Status
stages of the control transfer. Unlike the case of a functional stall, protocol stall does not indicate an error
with the device. The protocol STALL condition lasts until the receipt of the next SETUP transaction, and
the function will return ST ALL in response to any IN or OUT transaction on the pipe until the SETUP
transaction is received. In general, protocol stall indicates that the request or its parameters are not
understood by the device and thus provides a mechanism for extending USB requests.

A control pipe may also support functional stall as well, but this is not recommended. This is a
degenerative case, because a functional stall on a control pipe indicates that it has lost the ability to
communicate with the host. If the control pipe does support functional stall, then it must possess a Halt
feature, which can be set or cleared by the host. Chapter 9 details how to treat the special case of a II alt
feature on a control pipe. A well-designed device will associate all of its functions and Halt features with
non-control endpoints. The control pipes should be reserved for servicing USB requests.

8.5.4 Interrupt Transactions

228

Interrupt transactions may consist of IN or OUT transfers. Upon receipt of an IN token, a function may
return data, NAK, or STALL. If the endpoint has no new interrupt information to return (i.e. , no interrupt is
pending), the function returns a NAK handshake during the data phase. If the Halt feature is set for the
interrupt endpoint, the function will return a STALL handshake. If an interrupt is pending, the function
returns the interrupt information as a data packet. The host, in response to receipt of the data packet, issues
either an ACK handshake if data was received error-free or returns no handshake if the data packet was
received corrupted. Figure 8-38 shows the interrupt transaction format.

Section 5.9.1 contains additional information about high-speed, high-bandwidth interrupt endpoints. Such
endpoints use multiple transactions in a microframe as defined in that section. Each transaction for a high
bandwidth endpoint follows the transaction format shown in Figure 8-38.

PA_0001438

Token

Data

Handshake

ACK

Universal Serial Bus Specification Revision 2.0

Data
Error

OUT

'----~---------.,__---~----..,__ _ __,,_---1_ Idle

D Host D Function

Figure 8-38. Interrupt Transaction Format

When an endpoint is using the interrupt transfer mechanism for actual interrupt data, the data toggle
protocol must be followed. This allows the function to know that the data has been received by the host and
the event condition may be cleared. This "guaranteed" delivery of events allows the function to only send
the interrupt information until it has been received by the host rather than having to send the interrupt data
every time the function is polled and until the USB System Software clears the interrupt condition. When
used in the toggle mode, an interrupt endpoint is initialized to the DAT AO PID by any configuration event
on the endpoint and behaves the same as the bulk transactions shown in Figure 8-35.

8.5.5 Isochronous Transactions

Isochronous transactions have a token and data phase, but no handshake phase, as shown in Figure 8-39.
The host issues either an IN or an OUT token followed by the data phase in which the endpoint (for INs) or
the host (for OUTs) transmits data. Isoclll"onous transactions do not support a handshake phase or retry
capability.

Idle

Token

DATAx DATAx Data

Error

Idle

D Host D Function

See Note Below

Figure 8-39. Isochronous Transaction Format

229

PA_0001439

Universal Serial Bus Specification Revision 2.0

To ken

Data

Handshake

Idle

CI Host I:I Function

Figure 8-38. Interrupt Transaction Format

When an endpoint is using the interrupt transfer mechanism For actual interrupt data. the data toggle
protocol must be followed. This allows the Function to know that the data has been received by the host and
the event condition may be cleared. This “guaranteed" delivery of events allows the function to only send
the interrupt information until it has been received by the host rather than having to send the interrupt data
every lime the function is polled and until the USB System Sohware clears the interrupt condition. when
used in the toggle mode. an interrupt endpoint is initialized to the DATAO PID by any configuration event
on the endpoint and behaves the same as the bulk transactions shown in Figure 8’35.

8.5.5 lsochronous Transactions

[sochronous transactions have a token and data phase. but no handshake phase. as shown in Figure 8-39.
The host issues either an [N or an OUT token followed by the data phase in which the endpoint {for le} or
the host {For OUTS) transmits data. lsochronous transactions do not support a handshake phase or retry
capability.

Idle

Idle

|:| Host |:| Funcu‘on

See Note Below

Figure 8-39. lsoehronous Transaction Format

229

PAfl0001439

Huawei V. FISI Exhibit No. 1007 - 257/650

230

Universal Serial Bus Specification Revision 2.0

Note: A full-speed device or Host Controller shOLtld be able to accept either DAT AO or DATAl PIDs in
data packets. A full-speed device or Host Controller should only send DATAO PIDs in data packets. A
high-speed Host Controller must be able to accept and send DATAO, DATAl, DATA2, or MDATA Pills in
data packets. A high-speed device with at most 1 transaction per micro frame must only send DAT AO Pills
in data packets. A high-speed device with high-bandwith endpoints (e.g., one that has more than 1
transaction per microframe) must be able to accept and/or send DAT AO, DAT Al, DATA2, or MDATA
Pills in data packets.

Full-speed isochronous transactions do not support toggle sequencing. High-speed isochronous transactions
with a single transaction per microframe do not support toggle sequencing. High bandwidth, high-speed
isochronous transactions support data PID sequencing (see Section 5.9.1 for more details).

Figure 8-40 and Figure 8-41 show the host and device state machines respectively for isochronous OUT
transactions. Figure 8-42 and Figure 8-43 show the host and device state machines respectively for
isochronous IN transactions.

lssue_packet(HSD1, tokenOUT);

HC_Do_lsochO

Figure 8-40. Isochronous OUT Transaction Host State Machine

PA_0001440

230

Universal Serial Bus Specification Revision 2.0

Note: A Full—speed device or Host Controller should be able to accept either DATAD or DATA! [’le in

data packets. A full-spectl deViCe or Host Controller should only send DATAU Pl'Ds in data packets. A
high—speed Host Controller must be able to accept and send DATAO, DATAI, DATAZ. or MDATA Ple in
data packets. A high-speed device with at most I transaction per microl'rarne must onlyr send DATAD P105
in data packets. A high—speed device with high—bandwith endpoints [e.g.. one that has more than I
transaction per microl‘rame) must be able to accept andtor send DATAU. DATA] . DATA2‘ or MDATA
PlDS in data packets.

Full-speed isochronons transactions do not support toggle sequencing. Highnspeed isoeltronous transactions
with a single transaction per microframe do not support toggle sequencing. High bandwidth. high-speed
isochronous transactions support data PlD sequencing (see Section 5.9.1 for more details }.

Figure 8-40 and Figure 8-4] show the host and device state machines respectively for isochronous OUT
transactions. Figure 8—42 and Figure 343 show the host and device state machines respectively for
isochronous IN transactions.

IEuaJiackaanm. taker-tour);

IssuejaokeflHSDl. datax);

FiespondHClDanext‘cmd];
1‘.

Hcfiojeoclaé']

Figure 340. [sochronous OUT Transaction Host State Machine

PA_0001440

Huawei V. FISI Exhibit No. 1007 - 258/650

Universal Serial Bus Specification Revision 2.0

Packet_ready(HS02)

I

HS02.PID /= datax or
(HS02.PID = datax and
HS02.CRC16 = bad) or
HS02.timeout

Dev_ Record_ error;

HS02.PID = datax and
HS02.CRC16 = ok

Dev_Accept_data;

] Respond Dev(Do _ next_ dat~

Dev_Do_lsochO

Figure 8-41. Isochronous OUT Transaction Device State Machine

HSU2.PID = datax and
HSU2.CRC16 = ok

Packet_ready(HSU2) HC_Accept_data;

Wait_lsochl_resp
Wait_for _packet(

HSU2, ITG);

/ HSU2.PID /= datax or
(HSU2.PID = datax and
HSU2.CRC16 = bad) or
HSU2.timeout

lssue_packet(HS01, tokenlN);

RespondHC(Do_next_cmd);

HC_Do_lsoch l

Figure 8-42. Isochronous IN Transaction Host State Machine

\

231

PA_0001441

Universal Serial Bus Specification Revision 2.0

HSDEPID I: datax or

. " (HSDZPID = datax and

."wx HSDZ.CRC16 = bad) or
"'- HSD2.timeout

Dav_Reoord_error:Packet_ready(HSD2)

HSD2.PID = datax and _
HSD2.CRC16 = 0k

Dev_Acoept_data;
RespondDev{Do_next_data): I

2*-

Figure 841. Isochwnuus OUT Transaction Device State Machine

Qua“ HSUZPID = datax and
.. \ " '“- HSUZERCTB = ok

Packet_ready(HSU2) HC_Acnept_data:
'\

HSU2.PID I: data): or _
(HSUZPID = daiax and \.

HSU2. CRC1E= bad) or "IIHSUZ.timeout

Issuewpal:ket(HSD1 lakeniN—); .m—“II‘

RespondHCtDcLnext_cmd};

| fiéfiafiéfifil

Figure 8-42. Isochranous IN Transaction Host State Machine

231

PA_0001441

Huawei V. FISI Exhibit No. 1007 - 259/650

Universal Serial Bus Specification Revision 2.0

~~
~ -a-c-ke- t-(H_S_U_ 1,-d-a-ta_x_)_; ---- d-a-ta- 0-~

Dev_Do_lsochl

Figure 8-43. Isochronous IN Transaction Device State Machine

8.6 Data Toggle Synchronization and Retry

232

The USB provides a mechanism to guarantee data sequence synchronization between data transmitter and
receiver across multiple transactions. This mechanism provides a means of guaranteeing that the handshake
phase of a transaction was interpreted correctly by both the transmitter and receiver. Synchronization is
achieved via use of the DA TAO and DATAl PIDs and separate data toggle sequence bits for the data
transmitter and receiver. Receiver sequence bits toggle only when the receiver is able to accept data and
receives an error-free data packet with the correct data PID. Transmitter sequence bits toggle only when the
data transmitter receives a valid ACK handshake. The data transmitter and receiver must have their
sequence bits synchronized at the start of a transaction. The synchronization mechanism used varies with
the transaction type. Data toggle synchronization is not supported for isochronous transfers.

The state machines contained in this chapter and in Chapter 11 describe data toggle synchronization in a
more compact form. Instead of explicitly identifying DAT AO and DAT Al, it uses a value "DAT Ax" to
represent either/both DAT AO/DAT A 1 PTDs. Tn some cases where the specific data PTD is important,
another variable labeled "x" is used that has the value O for DA TAO and 1 for DATAl.

High-speed, high-bandwidth isochronous and interrupt endpoints support a similar but different data
synchronization technique called data PID sequencing. That technique is used instead of data toggle
synchronization. Section 5.9.1 defines data PID sequencing.

PA_0001442

Universal Serial Bus Specification Revision 2.0

Issue_paci<et(Hs'LJ1" datax); —datao

RespondDevwo‘next‘data};

_ _ a

LoeflDbflsoshL- _]
Figure 8-43. Isochl‘onons TN Transaction Device State Machine

8.6 Data Toggle Synchronization and Retry

232

The USB provides a mechanism to guarantee data sequence synchronization between data transmitter and
receiver across multiple transactions. This mechanism provides a means ol'gnaranteeing that the handshake
phase of a transaction was interpreted correctly by both the transmitter and receiver. Synchronization is
achieved via use ol'the DATAI) and DATA} 1’le and separate data toggle sequence bits for the data
transinitterand receivert Receiver sequence bits toggle only when the receiver is able to accept data and
receives an error-free data packet with the correct data. PlD. Transmitter sequence bits toggle only when the
data transmitter receives a valid ACK handshake. The data transtniher and receiver must have their

sequence bits synchronized at the start of'a nomactioit‘ The synchronization mechanism used varies with
the transaction type. Data toggle synchronization is not supported [or isocltronous transfers

The state machines contained in this chapl er and in Chapter] I describe data toggle synchronization in a
more compact form. Instead of explicitly identifying DATAO and DATA] . it uses a value “DATAx” to
represent eitherfhnlh DATA UI'DATAI PIDE. In some cases where the specific data FIT) is important.
another variable labeled “It" is used that has the value 0 ['or DATAO and l for DATA 1.

High-speed high-bandwidth isoehronous and interrupt endpoints support a similar but dttl'erent data
synchronization technique called data PID sequencing. That technique is used instead ol'data toggle
synchronization Section 5.9.] defines data PID sequencing.

PA_0001442

Huawei V. FISI Exhibit No. 1007 - 260/650

Universal Serial Bus Specification Revision 2.0

8.6.1 Initialization via SETUP Token

Host

SETUP

DATAO

Accept
data

ACK

Device

Figure 8-44. SETUP Initialization

Control transfers use the SETUP token for initializing host and function sequence bits. Figure 8-44 shows
the host issuing a SETUP packet to a function followed by an OUT transaction. The numbers in the circles
represent the transmitter and receiver sequence bits. The function must accept the data and return ACK.
When the function accepts the transaction, it must set its sequence bit so that both the host's and function's
sequence bits are equal to one at the end of the SETUP transaction.

8.6.2 Successful Data Transactions
Figure 8-45 shows the case where two successful transactions have occurred. For the data transmitter, this
means that it toggles its sequence bit upon receipt of ACK. The receiver toggles its sequence bit only ifit
receives a valid data packet and the packet's data PID matches the current value of its sequence bit. The
transmitter only toggles its sequence bit after it receives an ACK to a data packet.

During each transaction, the receiver compares the transmitter sequence bit (encoded in the data packet PID
as either DA TAO or DAT Al) with its receiver sequence bit. If data cannot be accepted, the receiver must
issue NAK and the sequence bits of both the transmitter and receiver remain unchanged. If data can be
accepted and the receiver's sequence bit matches the PID sequence bit, then data is accepted and the
sequence bit is toggled. Two-phase transactions in which there is no data packet leave the transmitter and
receiver sequence bits unchanged.

DATAO

Accept
data

ACK

Transfer i

DATA1

Accept
data

ACK

Transfer I+ 1

Figure 8-45. Consecutive Transactions

8.6.3 Data Corrupted or Not Accepted
If data cannot be accepted or the received data packet is corrupted, the receiver will issue a NAK or STALL
handshake, or timeout, depending on the circumstances, and the receiver will not toggle its sequence bit.

233

PA_0001443

Universal Serial Bus Specification Revision 2.0

8.6.1 Initialization via SETUP Token

Rust Device

SETUP

DATAD

Accept
data96@ @®@

Figure 8-44. SETUP Initialization

Control transfers use the SETUP token for initializing host and Function sequence bits. Figure 8—44 shows
the host issuing a SETUP packet to a function followed by an OUT transaction The numbers in the circles
represent the transmitter and receiver sequence bits. The function must accept the data and relunt ACK.
When the function accepts the transaction. it must set its sequence bit so that both the host‘s and function's
sequence bits are equal to one at the end ofthe SETUP transaction.

8.6.2 Successful Data Transactions

Figure 845 shows the case where two successful transactions have occurred. For the data transmitter. this
means that it toggles its sequence hit upon receipt of ACK. The receiver toggles its sequence bit only if' it
receives a valid data packet and the packet’s data PID matches the current value ofits sequence bit. The
transmitter only toggles its sequence bit afler it receives an ACK to a data packet.

During each transaction, the receiver compares the transmitter sequence bit (encoded in the data packet Pll)
as either DATAU or DATAI) with its receiver sequence bit. If data cannot be accepted. the receiver must
issue NAK and the sequence bits of both the transmitter and receiver remain unchanged. If data can be
accepted and the receiver‘s sequence bit matches the PID sequence bit. then data is accepted and the
sequence bit is toggled. Two—phase transactions in which there is no data packet leave the transmitter and
receiver sequence bits unchanged.

DATAO OATA1

Accept Acceptdata data
ACK firm

23
Transfer! Transfer 1+ 1

Figure 8-45. Consecutive Transactions

8.6.3 Data Corrupted or Not Accepted

It'data cannot be accepted or the received data packet is corrupted, the receiver will issue a NAK or STALL
handshake, or timeout, depending on the circumstances, and the receiver will not toggle its sequence bit.

233

PA_0001443

Huawei V. FISI Exhibit No. 1007 - 261/650

Universal Serial Bus Specification Revision 2.0

Figure 8-46 shows the case where a transaction is NAKed and then retried. Any non-ACK handshake or
timeout will generate similar retry behavior. The transmitter, having not received an ACK handshake, will
not toggle its sequence bit. As a result, a failed data packet transaction leaves the transmitter's and
receiver's sequence bits synchronized and untoggled. The transaction will then be retried and, if successful,
will cause both transmitter and receiver sequence bits to toggle.

DATAO

Reject
data

NAK

Transfer i

DATAO

Accept
data

ACK

Retry
Transfer i

Figure 8-46. NAKed Transaction with Retry

8.6.4 Corrupted ACK Handshake

234

The transmitter is the last and only agent to know for sure whether a transaction has been successful, due to
its receiving an ACK handshake. A lost or corrupted ACK handshake can lead to a temporary loss of
synchronization between transmitter and receiver as shown in Figure 8-4 7. Here the transmitter issues a
valid data packet, which is successfully acquired by the receiver; however, the ACK handshake is corrupted.

@)

DATAO

Accept
data

®)

Transfer i

DATAO

Ignore
data

ACK

Transfer i
(retried)

DATA1

ACK

Transfer i + 1

Figure 8-47. Corrupted ACK Handshake with Retry

At the end of transaction i , there is a temporary loss of coherency between transmitter and receiver, as
evidenced by the mismatch between their respective sequence bits. The receiver has received good data, but
the transmitter does not know whether it has successfully sent data. On the next transaction, the transmitter
will resend the previous data using the previous DAT AO PID. The receiver's sequence bit and the data PID
will not match, so the receiver knows that it has previously accepted this data. Consequently, it discards the
incoming data packet and does not toggle its sequence bit. The receiver then issues ACK, which causes the
transmitter to regard the retried transaction as successful. Receipt of ACK causes the transmitter to toggle
its sequence bit. At the beginning of transaction i+ l, the sequence bits have toggled and are again
synchronized.

The data transmitter must guarantee that any retried data packet is identical (same length and content) as
that sent in the original transaction. If the data transmitter is unable, because of problems such as a buffer
underrun condition, to transmit the identical amount of data as was in the original data packet, it must abort

PA_0001444

8.6

234

Universal Serial Bus Specification Revision 2.0

Figure 8—46 shows the case where a transaction is NAKed and then retried. Any non-ACK handshake or
timeout will generate similar retry behavior. The transmitter, having not received an ACK handshake, will
not toggle its sequence hit. As a result. a failed data packet transaction leaves the transmitter’s and
receiver’s sequence bits synchronized and untoggled. The transaction will then be retried and, ifsuecessful.
will cause both transmitter and receiver sequence bits to toggle.

OATAO DATAD

Accept
data
NSK

Reject

NAK

M @@ 2
Transfer 1' RetryTransfer it

Figure 8—46. NAKed Transaction with Retry

.4 Corrupted ACK Handshake

The transmitter is the last and only agent to know for sure whethera transaction has been successful, due to
its receiving an ACK handshake. A lost or corrupted ACK handshake can lead to a temporary loss of
synchronization between transmitter and receiver as shown in Figure 8—41 Here the transmitter issues a
valid data packet. which is successfully acquired by the receiver; however. the ACK handshake is corrupted.

DATAD DATAD DATA1

Accept
data

Failed AC 2a
3

ACK

Transfer i Transfer 1 Transfer] it 1
(retried)

it2a»,6
Figure 8-47. Corrupted ACK Handshake with Retry

At the end oftransaction .5, there is a temporary loss ofcoherency between transmitter and receiver, as
evidenced by the mismatch between their respective sequence bits. The receiver has received good data. but
the transmitter does not know whether it has successfully sent data. On the next transaction. the transmitter
will resend the previous data using the previous DATAO PID. The receiver’s sequence bit and the data PlD
will not match. so the receiver knows that it has previously accepted this data. Consequently. it discards the
incoming data packet and does not toggle its sequence bit. The receiver then issues ACK. which causes the
transmitter to regard the retried transaction as successful. Receipt of ACK causes the transmitter to toggle
its sequence biti At the beginning of transaction il 1, the sequence bits have toggled and are again
synchronized.

The data transmitter must guarantee that any retried data packet is identical [same length and content) as
that sent in the original transaction. If the data transmitter is unable, because of problems such as a buffer
underrun condition, to transmit the identical amount oi‘data as was in the original data packet. it must abort

PA_0001444

Huawei V. FISI Exhibit No. 1007 - 262/650

Universal Serial Bus Specification Revision 2.0

the transaction by generating a bit stuffing violation for full-/low-speed. An error for high-speed must be
forced by taking the currently calculated CRC and complementing it before transmitting it. This causes a
detectable error at the receiver and guarantees that a partial packet will not be interpreted as a good packet.
The transmitter should not try to force an error at the receiver by sending a constant known bad CRC. A
combination of a bad packet with a "bad" CRC may be interpreted by the receiver as a good packet.

8.6.5 Low-speed Transactions

The USB supports signaling at three speeds: high-speed signaling at 480 Mb/s, full-speed signaling at
12.0 Mb/s, and low-speed signaling at 1.5 Mb/s. Hubs isolate high-speed signaling from full-/low-speed
signaling environments.

Within a full-/low-speed signaling environment, hubs disable downstream bus traffic to all ports to which
low-speed devices are attached during full-speed downstream signaling. This is required both for EMI
reasons and to prevent any possibility that a low-speed device might misinterpret downstream a full-speed
packet as being addressed to it.

Figure 8-48 shows an IN low-speed transaction in which the host (or TT) issues a token and handshake and
receives a data packet.

Hub enables low
speed port outputs

Hub disables low
speed port outputs

Preamble l
sent at full-speed l Token sent at low-speed

' ~ ~----------~ -----------~ r--

I SYNC PID I Hub setup SYNC ~D ENDP ··· EOP C

SYNC

Preamble
sent at full-speed

~

SYNC PID

Data packet sent at low-speed

PID DATA CRC

Hub enables low
l speed port outputs
l Handshake sent at low-speed

Hub setup I SYNC PID I EOP

Figure 8-48. Low-speed Transaction

Hub disables low
speed port outputs

'
All downstream packets transmitted to low-speed devices within a full-/low-speed signaling environment
require a preamble. Preambles are never used in a high-speed signaling environment. The preamble
consists of a SYNC followed by a PRE PID, both sent at full-speed. Hubs must comprehend the PRE PID;
all other USB devices may ignore it and treat it as undefined. At the end of the preamble PID, the host (or
TT) drives the bus to the Idle state for at least one full-speed bit time. This Idle period on the bus is termed
the hub setup interval and lasts for at least four full-speed bit times. During this hub setup interval, hubs
must drive their full-speed and low-speed ports to their respective Idle states. Hubs must be ready to repeat
low-speed signaling on low-speed ports before the end of the hub setup interval. Low-speed connectivity
rules are summarized below:

1. Low-speed devices are identified during the connection process, and the hub ports to which they are
connected are identified as low-speed.

2. All downstream low-speed packets must be prefaced with a preamble (sent at full-speed) , which turns
on the output buffers on low-speed hub ports.

235

PA_0001445

Universal Serial Bus Specification Revision 2.0

the transaction by generating a hit smiling violation For full—flow—speed. An error for high—speed must be
forced by taking the currently calculatcd CRC and compiernenting it before transmitting it. This causes a
detectable error at the receiver and guarantees that a partial packet will not be interpreted as a good packet.
The transmitter should not try to force an error at the receiver by sending a constant known bad CRC. A
combination ot‘a bad packet with a “bad“ CRC may be interpreted by the receiver as a good packet.

8.6.5 Low-speed Transactions

The USB supports signaling at three speeds: high-speed signaling at 480 Mbi's. full-speed signaling at
12.0 Mots. and low—speed signaling at 1.5 bes. Hubs isolate high—speed signaling from [till—flow—speed
signaling environments.

Within a full—ilow—speed signaling environment, hubs disabIe downstream bus traffic to all ports to which
low-speed devices are attached during full-speed downstream signaling. This is required both for EMI
reasons and to prevent any possibility that a low-speed device might misinterpret downstream a full-speed
packet as being addressed to it.

Figure 8-48 shows an l'N low-speed transaction in which the host (or TT) issues a token and handshake and
receives a data packet.

Hui: enables lew- Huh disables low-
speed part outputs speed putt outputs

aentpdfariigzeed + Token sent at law—spend +
r—A—\ / A

Data packet sent at lowest-teed

/—/\—\

Hub disables Iow-

Hub enables low- speed port outputs
Preamble speed port outputs

59'“ 3‘ fail-speed * Handshake sent at towvspsed *
,—A— \ -\ ,-

SYNC PID Hub setup SYNC PID EDP

Figure 8-48. Low-speed Transaction

All downstream packets transmitted to low-speed devices within a full-flow—speed signaling environment
require a preamble. Preambles are never used in a high-speed signaling environment. The preamble
consists ofa SYNC followed by a PRE PID, both sent at Full—speed. Hubs must comprehend the PRE PID;
all other USB devices may ignore it and treat it as undefined. At the end of'the preamble P11). the host (or
T1") drives the bus to the Idle state For at least one full-speed bit time. This idle period on the bus is termed
the hub setup interva! and lasts for at least Four full-speed bit times. During this hub setup interval. hubs
must drive their full-speed and low-speed ports to their respective ldle states. Hubs must be ready to repeat
lowwspeed signaling on low-speed ports before the end of the hub setup interval. Low-speed connectivity
rules are summarized below:

]. Low—speed devices are identified during the connection process, and the hub ports to which they are
connected are identified as low-speed.

2. All downstream low—speed packets must be prefaced with a preamble {sent at Full—speed}. which turns
on the output buffers on low-speed hub ports.

235

PA~0001445

Huawei V. FISI Exhibit No. 1007 - 263/650

Universal Serial Bus Specification Revision 2.0

3. Low-speed hub port output buffers are turned off upon receipt of EOP and are not turned on again until
a preamble PID is detected.

4. Upstream connectivity is not affected by whether a hub p011 is full- or low-speed.

Low-speed signaling begins with the host (or TT) issuing SYNC at low-speed, followed by the remainder of
the packet. The end of the packet is identified by an End-of-Packet (EOP), at which time all hubs tear down
connectivity and disable any p011s to which low-speed devices are connected. Hubs do not switch ports for
upstream signaling; low-speed ports remain enabled in the upstream direction for both low-speed and full
speed signaling.

Low-speed and full-speed transactions maintain a high degree of protocol commonality. However, low
speed signaling does have certain limitations which include:

• Data payload is limited to eight bytes, maximum.

• Only interrupt and control types of transfers are supported.

• The SOF packet is not received by low-speed devices.

8.7 Error Detection and Recovery
The USB permits reliable end-to-end communication in the presence of errors on the physical signaling
layer. This includes the ability to reliably detect the vast majority of possible errors and to recover from
errors on a transaction-type basis . Control transactions, for example, require a high degree of data
reliability; they support end-to-end data integrity using error detection and retry. Isochronous transactions,
by virtue of their bandwidth and latency requirements, do not permit retries and must tolerate a higher
incidence of uncorrected errors.

8.7.1 Packet Error Categories

236

The USB employs three error detection mechanisms: bit stuff violations, PID check bits, and CRCs. Bit
stuff violations are defined in Section 7.1.9. PID errors are defined in Section 8.3.1. CRC errors are
defined in Section 8.3 .5.

With the exception of the SOF token, any packet that is received corrupted causes the receiver to ignore it
and discard any data or other field information that came with the packet. Table 8-8 lists error detection
mechanisms, the types of packets to which they apply, and the appropriate packet receiver response.

Table 8-8. Packet Error Types

Field Error Action

PIO PIO Check, Bit Stuff Ignore packet

Address Bit Stuff, Address CRC Ignore token

Frame Number Bit Stuff, Frame Number CRC Ignore Frame Number field

Data Bit Stuff, Data CRC Discard data

PA_0001446

Universal Serial Bus Specification Revision 2.0

8.7.2 Bus Turn-around Timing
Neither the device nor the host will send an indication that a received packet had an error. This absence of
positive acknowledgement is considered to be the indication that there was an error. As a consequence of
this method of error reporting, the host and USB function need to keep track of how much time has elapsed
from when the transmitter completes sending a packet until it begins to receive a response packet. This time
is referred to as the bus turn-around time. Devices and hosts require turn-around timers to measure this
time.

For full-/low-speed transactions, the timer starts counting on the SEO-to-'J' transition of the EOP strobe and
stops counting when the Idle-to- 'K' SOP transition is detected. For high-speed transactions, the timer starts
counting when the data lines return to the squelch level and stops counting when the data lines leave the
squelch level.

The device bus tum-around time is defined by the worst case round trip delay plus the maximum device
response delay (refer to Sections 7 .1.18 and 7 .1.19 for specific bus turn-around times). If a response is not
received within this worst case timeout, then the transmitter considers that the packet transmission has
failed.

Timeout is used and interpreted as a transaction error condition for many transfer types. If the host wishes
to indicate an error condition for a transaction via a timeout, it must wait the full bus turn-around time
before issuing the next token to ensure that all downstream devices have timed out.

As shown in FigLu-e 8-49, the device uses its bus tum-around timer between token and data or data and
handshake phases. The host uses its timer between data and handshake or token and data phases.

If the host receives a corrupted data packet, it may require additional wait time before sending out the next
token. This additional wait interval guarantees that the host properly handles false EOPs.

8.7.3 False EOPs

I OUT/SETUP I
I
device waits

IN

host waits

Data

Data

Handshake I

host waits

!Handshake

device waits

Figure 8-49. Bus Tum-around Timer Usage

False EOPs must be handled in a manner which guarantees that the packet currently in progress completes
before the host or any other device attempts to transmit a new packet. If such an event were to occur, it
would constitute a bus collision and have the ability to corrupt up to two consecutive transactions.
Detection of false EOP relies upon the fact that a packet into which a false EOP has been inse11ed will
appear as a truncated packet with a CRC failure. (The last 16 bits of the data packet will have a very low
probability of appearing to be a correct CRC.)

The host and devices handle false EOP situations differently . When a device receives a corrupted data
packet, it issues no response and waits for the host to send the next token. This scheme guarantees that the
device will not attempt to return a handshake while the host may still be transmitting a data packet. If a
false EOP has occurred, the host data packet will eventually end, and the device will be able to detect the
next token. If a device issues a data packet that gets corrupted with a false EOP, the host will ignore the

237

PA_0001447

Universal Serial Bus Specification Revision 2.0

packet and not issue the handshake. The device, expecting to see a handshake from the host, will timeout
the transaction.

If the host receives a c01rnpted full-/low-speed data packet, it assumes that a false EOP may have occuiTed
and waits for 16 bit times to see ifthere is any subsequent upstream traffic. Ifno bus transitions are
detected within the 16 bit interval and the bus remains in the Idle state, the host may issue the next token.

Otherwise, the host waits for the device to finish sending the remainder of its full-/low-speed packet.
Waiting 16 bit times guarantees two conditions:

• The first condition is to make sure that the device has finished sending its packet. This is guaranteed by
a timeout interval (with no bus transitions) greater than the worst case six-bit time bit stuff interval.

• The second condition is that the transmitting device's bus tum-around timer must be guaranteed to
expire.

Note that the timeout interval is transaction speed sensitive. For full-speed transactions, the host must wait
full-speed bit times; for low-speed transactions, it must wait low-speed bit times.

If the host receives a corrupted high-speed data packet, it ignores any data until the data lines return to the
squelch level before issuing the next token. For high-speed transactions, the host does not need to wait
additional time (beyond the normal inter-transaction gap time) after the data lines return to the squelch
level.

If the host receives a data packet with a valid CRC, it assumes that the packet is complete and requires no
additional delay (beyond normal inter-transaction gap time) in issuing the next token.

8.7.4 Babble and Loss of Activity Recovery

238

The USB must be able to detect and recover from conditions which leave it waiting indefinitely for a
full-/low-speed EOP or which leave the bus in something other than the Idle state at the end of a
(micro)frame.

• Full-/low-speed loss of activity (LOA) is characterized by an SOP followed by lack of bus activity (bus
remains driven to a 'J' or 'K') and no EOP at the end of a frame.

• Full-/low-speed babble is characterized by an SOP followed by the presence of bus activity past the end
ofa frame.

• High-speed babble/LOA is characterized by the data lines being at an unsquelched level at the end of a
micro frame.

LOA and babble have the potential to either deadlock the bus or delay the beginning of the next
(micro)frame. Neither condition is acceptable, and both must be prevented from occurring. As the USB
component responsible for controlling connectivity, hubs are responsible for babble/LOA detection and
recove1y. All USB devices that fail to complete their transmission at the end of a (micro)frame are
prevented from transmitting past a (micro)frame's end by having the nearest hub disable the port to which
the offending device is attached. Details of the hub babble/LOA recovery mechanism appear in
Section 11.2.5.

PA_0001448

Universal Serial Bus Specification Revision 2.0

Chapter 9
USB Device Framework

A USH device may be divided into three layers:

• The bottom layer is a bus interface that transmits and receives packets.

• The middle layer handles routing data between the bus interface and various endpoints on the device.
An endpoint is the ultimate consumer or provider of data. It may be thought of as a source or sink for
data.

• The top layer is the functionality provided by the serial bus device, for instance, a mouse or ISDN
interface.

This chapter describes the common attributes and operations of the middle layer ofa USB device. These
attributes and operations are used by the function-specific portions of the device to communicate through
the bus interface and ultimately with the host.

9.1 USB Device States
A USB device has several possible states. Some of these states are visible to the USB and the host, while
others are internal to the USB device. This section describes those states.

9.1.1 Visible Device States
This section describes USB device states that are externally visible (see Figure 9-1). Table 9-1 summarizes
the visible device states.

Note: USB devices perform a reset operation in response to reset signaling on the upstream facing port.
When reset signaling bas completed, the USB device is reset.

239

PA_0001449

240

Universal Se . I na Bus Specification Revision 2.0

(~
//,,.(Attached

\

Hub Reset
or Hub

Deconfigured Configured

Power
Interruption

Reset

~

) Powered

I ,,. "---/
Bus ~-~~:end~ Inactive

_----B=u=s_A_c~tiv_i_ty- Suspended

Address
Assigned

Bus
Inactive

Bus
Inactive

~

Suspend~

/ , Suspended

~ Device O .
0

. ev1ce
econf1gured Configured

~ Bus

~ Configured Inactive

/~---. __ Bus:~ity _____S~~y
Figure 9-1 D , . evice State Diagram

PA_0001450

Universal Serial Bus Specification Revision 2.0

, Attached

Hub Reset

i or HUb II

Deconfigured Configured]

"2‘ Inactive -. Suspended

__f‘ , Bus Activity " "

Power .. -.

Interruption: ," 'Reset II

"W "‘ Inactive

. _. . Default - Suspended _I

Reset -Y--.. Bus Activity

-Address .
Assigned

I _, -' Inactive
" w“. Address I_i‘i_ -_ Suspended .

'- v.‘ Bus Activity

. Device Device .

._'-,Deconfigured Configured

Bus 5 “HA.
.\ Inactive :

Configured .i‘ . Suspended _I

II -v.__ Bus Activity

Figure 9-1. Device State Diagram

240

PA_0001450

Huawei V. FISI Exhibit No. 1007 - 268/650

Universal Serial Bus Specification Revision 2.0

Table 9-1. Visible Device States

Attached Powered Default Address Configured Suspended State

No -- -- -- -- -- Device is not attached to
the USB. Other attributes
are not significant.

Yes No -- -- -- -- Device is attached to the
USB, but is not powered.
Other attributes are not
significant.

Yes Yes No -- -- -- Device is attached to the
USB and powered, but
has not been reset.

Yes Yes Yes No -- - Device is attached to the
USB and powered and
has been reset, but has
not been assigned a
unique address. Device
responds at the default
address.

Yes Yes Yes Yes No - Device is attached to the
USB, powered, has been
reset, and a unique
device address has been
assigned. Device is not
configured.

Yes Yes Yes Yes Yes No Device is attached to the
USB, powered, has been
reset, has a unique
address, is configured,
and is not suspended.
The host may now use
the function provided by
the device.

Yes Yes -- -- -- Yes Device is, at minimum,
attached to the USB and
is powered and has not
seen bus activity for 3 ms.
It may also have a unique
address and be
configured for use.
However, because the
device is suspended, the
host may not use the
device's function.

241

PA_0001451

Universal Serial Bus Specification Revision 2.0

9.1.1.1 Attached
A USB device may be attached or detached from the USB. The state of a USB device when it is detached
from the USB is not defined by this specification. This specification only addresses required operations and
attributes once the device is attached.

9.1.1.2 Powered
USB devices may obtain power from an external source and/or from the USB through the hub to which they
are attached. Externally powered USB devices are termed self-powered. Although self-powered devices
may already be powered before they are attached to the USB, they are not considered to be in the Powered
state until they are attached to the USB and VBUS is applied to the device.

A device may support both self-powered and bus-powered configurations. Some device configurations
support either power source. Other device configurations may be available only if the device is self
powered. Devices report their power source capability through the configuration descriptor. The current
power source is reported as part of a device's status. Devices may change their power source at any time,
e.g., from self- to bus-powered. If a configuration is capable of supporting both power modes, the power
maximum reported for that configuration is the maximum the device will draw from VBUS in either mode.
The device must observe this maximum, regardless of its mode. If a configuration supports only one power
mode and the power source of the device changes, the device will lose its current configuration and address
and return to the Powered state. If a device is self-powered and its current configuration requires more than
100 mA, then if the device switches to being bus-powered, it must return to the Address state. Self-powered
hubs that use VBUS to power the Hub Controller are allowed to remain in the Configured state if local
power is lost. Refer to Section 11.13 for details.

A hub port must be powered in order to detect port status changes, including attach and detach. Bus
powered hubs do not provide any downstream power until they are configured, at which point they will
provide power as allowed by their configuration and power source. A USB device must be able to be
addressed within a specified time period from when power is initially applied (refer to Chapter 7). After an
attachment to a port has been detected, the host may enable the port, which will also reset the device
attached to the port.

9.1.1.3 Default
After the device has been powered, it must not respond to any bus transactions until it has received a reset
from the bus. After receiving a reset, the device is then addressable at the default address.

When the reset process is complete, the USB device is operating at the correct speed (i.e., low-/full-/high
speed). The speed selection for low- and full-speed is determined by the device termination resistors. A
device that is capable of high-speed operation determines whether it will operate at high-speed as a part of
the reset process (see Chapter 7 for more details).

A device capable of high-speed operation must reset successfully at full-speed when in an electrical
environment that is operating at full-speed. After the device is successfully reset, the device must also
respond successfully to device and configuration descriptor requests and return appropriate infonnation.
The device may or may not be able to support its intended functionality when operating at full-speed.

9.1.1.4 Address

242

All USB devices use the default address when initially powered or after the device has been reset. Each
USB device is assigned a unique address by the host after attachment or after reset. A USB device
maintains its assigned address while suspended.

A USB device responds to requests on its default pipe whether the device is currently assigned a unique
address or is using the default address.

PA_0001452

Universal Serial Bus Specification Revision 2.0

9.1.1.5 Configured
Before a USB device's function may be used, the device must be configured. From the device's
perspective, configuration involves correctly processing a SetConfiguration() request with a non-zero
configuration value. Configuring a device or changing an alternate setting causes all of the status and
configuration values associated with endpoints in the affected interfaces to be set to their default values.
This includes setting the data toggle of any endpoint using data toggles to the value DAT AO.

9.1.1.6 Suspended
In order to conserve power, USB devices automatically enter the Suspended state when the device has
observed no bus traffic for a specified period (refer to Chapter 7). When suspended, the USB device
maintains any internal status, including its address and configuration.

All devices must suspend if bus activity has not been observed for the length of time specified in
Chapter 7. Attached devices must be prepared to suspend at any time they are powered, whether they have
been assigned a non-default address or are configured. Bus activity may cease due to the host entering a
suspend mode of its own. In addition, a USB device shall also enter the Suspended state when the hub port
it is attached to is disabled. This is referred to as selective suspend.

A USB device exits suspend mode when there is bus activity. A USB device may also request the host to
exit suspend mode or selective suspend by using electrical signaling to indicate remote wakeup. The ability
of a device to signal remote wakeup is optional. If a USB device is capable of remote wakeup signaling, the
device must support the ability of the host to enable and disable this capability. When the device is reset,
remote wakeup signaling must be disabled.

9.1.2 Bus Enumeration
When a USB device is attached to or removed from the USB, the host uses a process known as bus
enumeration to identify and manage the device state changes necessaiy. When a USB device is attached to
a powered port, the following actions are taken:

1. The hub to which the USB device is now attached informs the host of the event via a reply on its status
change pipe (refer to Section 11.12.3 for more information). At this point, the USB device is in the
Powered state and the port to which it is attached is disabled.

2. The host determines the exact nature of the change by querying the hub.

3. Now that the host knows the port to which the new device has been attached, the host then waits for at
least 100 ms to allow completion of an insertion process and for power at the device to become stable.
The host then issues a port enable and reset command to that port. Refer to Section 7 .1. 7. 5 for
sequence of events and timings of connection through device reset.

4. The hub performs the required reset processing for that port (see Section 11.5 .1.5). When the reset
signal is released, the port has been enabled. The USB device is now in the Default state and can draw
no more than 100 mA from VBUS. All of its registers and state have been reset and it answers to the
default address.

5. The host assigns a unique address to the USB device, moving the device to the Address state.

6. Before the USB device receives a unique address, its Default Control Pipe is still accessible via the
default address. The host reads the device descriptor to determine what actual maximum data payload
size this USB device's default pipe can use.

7. The host reads the configuration information from the device by reading each configuration zero to
n-1, where n is the number of configurations. This process may take several milliseconds to complete.

243

PA_0001453

Universal Serial Bus Specification Revision 2.0

8. Based on the configuration information and how the USB device will be used, the host assigns a
configuration value to the device. The device is now in the Configured state and all of the endpoints in
this configuration have taken on their described characteristics. The USB device may now draw the
amount ofVBUS power described in its descriptor for the selected configuration. From the device's
point of view, it is now ready for use.

When the USB device is removed, the hub again sends a notification to the host. Detaching a device
disables the port to which it had been attached. Upon receiving the detach notification, the host will update
its local topological information.

9.2 Generic USB Device Operations
All USB devices support a common set of operations. This section describes those operations.

9.2.1 Dynamic Attachment and Removal
USB devices may be attached and removed at any time. The hub that provides the attachment point or port
is responsible for rep011ing any change in the state of the port.

The host enables the hub port where the device is attached upon detection of an attachment, which also has
the effect ofresetting the device. A reset USB device has the following characteristics:

• Responds to the default USB address

• Is not configured

• Is not initially suspended

When a device is removed from a hub port, the hub disables the port where the device was attached and
notifies the host of the removal.

9.2.2 Address Assignment
When a USB device is attached, the host is responsible for assigning a unique address to the device. This is
done after the device has been reset by the host, and the hub port where the device is attached has been
enabled.

9.2.3 Configuration

244

A USB device must be configured before its function(s) may be used. The host is responsible for
configuring a USB device. The host typically requests configuration information from the USB device to
determine the device's capabilities.

As part of the configuration process, the host sets the device configuration and, where necessary, selects the
appropriate alternate settings for the interfaces.

Within a single configuration, a device may support multiple interfaces. An interface is a related set of
endpoints that present a single feature or function of the device to the host. The protocol used to
communicate with this related set of endpoints and the purpose of each endpoint within the interface may be
specified as part of a device class or vendor-specific definition.

In addition, an interface within a configuration may have alternate settings that redefine the number or
characteristics of the associated endpoints. If this is the case, the device must support the Getlnterface()
request to report the current alternate setting for the specified interface and Setlnterface() request to select
the alternate setting for the specified interface.

Within each configuration, each interface descriptor contains fields that identify the interface number and
the alternate setting. Interfaces are numbered from zero to one less than the number of concurrent interfaces
supported by the configuration. Alternate settings range from zero to one less than the number of alternate

PA_0001454

Universal Serial Bus Specification Revision 2.0

settings for a specific interface. The default setting when a device is initially configured is alternate setting
zero.

In support of adaptive device drivers that are capable of managing a related group ofUSB devices, the
device and interface descriptors contain Class, SubC!ass, and Prutuc:ul fields. These fields are used to
identify the function(s) provided by a USB device and the protocols used to communicate with the
function(s) on the device. A class code is assigned to a group ofrelated devices that has been characterized
as a part of a USB Class Specification. A class of devices may be further subdivided into subclasses, and,
within a class or subclass, a protocol code may define how the Host Software communicates with the
device.

Note: The assignment of class, subclass, and protocol codes must be coordinated but is beyond the scope of
this specification.

9.2.4 Data Transfer
Data may be transferred between a USB device endpoint and the host in one of four ways. Refer to
Chapter 5 for the definition of the four types of transfers. An endpoint number may be used for different
types of data transfers in different alternate settings. However, once an alternate setting is selected
(including the default setting of an interface), a USB device endpoint uses only one data transfer method
until a different alternate setting is selected.

9.2.5 Power Management
Power management on USB devices involves the issues described in the following sections.

9.2.5.1 Power Budgeting
USB bus power is a limited resource. During device enumeration, a host evaluates a device's power
requirements. If the power requirements of a particular configuration exceed the power available to the
device, Host Software shall not select that configuration.

USB devices shall limit the power they consume from VBUS to one unit load or less until configured.
Suspended devices, whether configured or not, shall limit their bus power consumption as defined in
Chapter 7. Depending on the power capabilities of the port to which the device is attached, a USB device
may be able to draw up to five unit loads from VBUS after configuration.

9.2.5.2 Remote Wakeup
Remote wakeup allows a suspended USB device to signal a host that may also be suspended. This notifies
the host that it should resume from its suspended mode, if necessary, and service the external event that
triggered the suspended USB device to signal the host. A USB device rep011s its ability to support remote
wakeup in a configuration descriptor. lf a device supports remote wakeup, it must also allow the capability
to be enabled and disabled using the standard USB requests.

Remote wakeup is accomplished using electrical signaling described in Section 7.1.7.7.

9.2.6 Request Processing
With the exception of SetAddress() requests (see Section 9.4.6), a device may begin processing of a request
as soon as the device returns the ACK following the Setup. The device is expected to "complete"
processing of the request before it allows the Status stage to complete successfully. Some requests initiate
operations that take many milliseconds to complete. For requests such as this, the device class is required to
define a method other than Status stage completion to indicate that the operation has completed. For
example, a reset on a hub port takes at least 10 ms to complete. The SetPortFeature(PORT_RESET) (see
Chapter 11) request "completes" when the reset on the port is initiated. Completion of the reset operation is

245

PA_0001455

Universal Serial Bus Specification Revision 2.0

signaled when the port's status change is set to indicate that the port is now enabled. This technique
prevents the host from having to constantly poll for a completion when it is known that the request will take
a relatively long period of time.

9.2.6.1 Request Processing Timing
All devices are expected to handle requests in a timely manner. USB sets an upper limit of 5 seconds as the
upper limit for any command to be processed. This limit is not applicable in all instances. The limitations
are described in the following sections. It should be noted that the limitations given below are intended to
encompass a wide range of implementations. If all devices in a USB system used the maximum allotted
time for request processing, the user experience would suffer. For this reason, implementations should
strive to complete requests in times that are as short as possible.

9.2.6.2 Reset/Resume Recovery Time
After a port is reset or resumed, the USB System Software is expected to provide a "recovery" interval of
IO ms before the device attached to the port is expected to respond to data transfers. The device may ignore
any data transfers during the recovery interval.

After the end of the recovery interval (measured from the end of the reset or the end of the EOP at the end
of the resume signaling), the device must accept data transfers at any time.

9.2.6.3 Set Address Processing
After the reset/resume recovery interval, if a device receives a SetAddress() request, the device must be able
to complete processing of the request and be able to successfully complete the Status stage of the request
within 50 ms. In the case of the SetAddress() request, the Status stage successfully completes when the
device sends the zero-length Status packet or when the device sees the ACK in response to the Status stage
data packet.

After successful completion of the Status stage, the device is allowed a SetAddress() recovery interval of
2 ms. At the end of this interval, the device must be able to accept Setup packets addressed to the new
address. Also, at the end of the recovery interval, the device must not respond to tokens sent to the old
address (unless, of course, the old and new address is the same).

9.2.6.4 Standard Device Requests

246

For standard device requests that require no Data stage, a device must be able to complete the request and
be able to successfully complete the Status stage of the request within 50 ms of receipt of the request. This
limitation applies to requests to the device, interface, or endpoint.

For standard device requests that require data stage transfer to the host, the device must be able to return the
first data packet to the host within 500 ms ofreceipt of the request. For subsequent data packets, if any, the
device must be able to return them within 500 ms of successful completion of the transmission of the
previous packet. The device must then be able to successfully complete the status stage within 50 ms after
returning the last data packet.

For standard device requests that require a data stage transfer to the device, the 5-second limit applies. This
means that the device must be capable of accepting all data packets from the host and successfully
completing the Status stage if the host provides the data at the maximum rate at which the device can accept
it. Delays between packets introduced by the host add to the time allowed for the device to complete the
request.

PA_0001456

Universal Serial Bus Specification Revision 2.0

9.2.6.5 Class-specific Requests
Unless specifically exempted in the class document, all class-specific requests must meet the timing
limitations for standard device requests. If a class document provides an exemption, the exemption may
only be specified on a request-by-request basis.

A class document may require that a device respond more quickly than is specified in this section. Faster
response may be required for standard and class-specific requests.

9.2.6.6 Speed Dependent Descriptors
A device capable of operation at high-speed can operate in either full- or high-speed. The device always
knows its operational speed due to having to manage its transceivers correctly as pai1 of reset processing
(See Chapter 7 for more details on reset). A device also operates at a single speed after completing the reset
sequence. In particular, there is no speed switch during normal operation. However, a high-speed capable
device may have configurations that are speed dependent. That is, it may have some configurations that are
only possible when operating at high-speed or some that are only possible when operating at full-speed.
High-speed capable devices must support reporting their speed dependent configurations.

A high-speed capable device responds with descriptor information that is valid for the current operating
speed. For example, when a device is asked for configuration descriptors, it only returns those for the
current operating speed (e.g. , full speed). However, there must be a way to determine the capabilities for
both high- and full-speed operation.

Two descriptors allow a high-speed capable device to report configuration information about the other
operating speed. The two descriptors are: the (other_speed) device_qualifier descriptor and the
other_ speed_ configuration descriptor. These two descriptors are retrieved by the host by using the
GetDescriptor request with the corresponding descriptor type values.

Note: These descriptors are not retrieved unless the host explicitly issues the corresponding GetDescriptor
requests. If these two requests are not issued, the device would simply appear to be a single speed device.

Devices that are high-speed capable must set the version number in the bcdUSB field of their descriptors to
0200H. This indicates that such devices support the other_speed requests defined by USB 2.0. A device
with descriptor version numbers less than 0200H should cause a Request Error response (see next section) if
it receives these other_speed requests. A USB l.x device (i.e., one with a device descriptor version less
than 0200H) should not be issued the other_speed requests.

9.2.7 Request Error
When a request is received by a device that is not defined for the device, is inappropriate for the current
setting of the device, or has values that are not compatible with the request, then a Request Error exists.
The device deals with the Request Error by returning a STALL PID in response to the next Data stage
transaction or in the Status stage of the message. It is preferred that the ST ALL PID be returned at the next
Data stage transaction, as this avoids unnecessary bus activity.

247

PA_0001457

Universal Serial Bus Specification Revision 2.0

9.3 USB Device Requests
All USB devices respond to requests from the host on the device's Default Control Pipe. These requests are
made using control transfers. The request and the request's parameters are sent to the device in the Setup
packet. The host is responsible for establishing the values passed in the fields listed in Table 9-2. Every
Setup packet has eight bytes.

Table 9-2. Format of Setup Data

Offset Field Size Value Description

0 bmRequestType 1 Bitmap Characteristics of request:

D7: Data transfer direction
0 = Host-to-device
1 = Device-to-host

D6 ... 5: Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

D4 ... 0: Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4 ... 31 = Reserved

1 bRequest 1 Value Specific request (refer to Table 9-3)

2 wVa/ue 2 Value Word-sized field that varies according to
request

4 wlndex 2 Index or Word-sized field that varies according to
Offset request; typically used to pass an index or

offset

6 wLength 2 Count Number of bytes to transfer if there is a
Data stage

9.3.1 bmRequestType

248

This bitmapped field identifies the characteristics of the specific request. In particular, this field identifies
the direction of data transfer in the second phase of the control transfer. The state of the Direction bit is
ignored if the wLength field is zero, signifying there is no Data stage.

The U SB Specification defines a series of standard requests that all devices must support. These are
enumerated in Table 9-3. In addition, a device class may define additional requests. A device vendor may
also define requests supported by the device.

Requests may be directed to the device, an interface on the device, or a specific endpoint on a device. This
field also specifies the intended recipient of the request. When an interface or endpoint is specified, the
wlndex field identifies the interface or endpoint.

PA_0001458

Universal Serial Bus Specification Revision 2.0

9.3.2 bRequest
This field specifies the particular request. The Type bits in the bmRequestType field modify the meaning of
this field. This specification defines values for the bRequest field only when the bits are reset to zero,
indicating a standard request (refer to Table 9-3).

9.3.3 wValue
The contents of this field vary according to the request. It is used to pass a parameter to the device, specific
to the request.

9.3.4 wlndex
The contents of this field vary according to the request. It is used to pass a parameter to the device, specific
to the request.

The wlndex field is often used in requests to specify an endpoint or an interface. Figure 9-2 shows the
format of wlndex when it is used to specify an endpoint.

D7 D6 I D5 I D4 D3 I D2 I D1 I DO

Direction Reserved (Reset to zero) Endpoint Number

D15 D14 I D13 I D12 D11 I D10 I D9 I DB

Reserved (Reset to zero)

Figure 9-2. wlndex Format when Specifying an Endpoint

The Direction bit is set to zero to indicate the OUT endpoint with the specified Endpoint Number and to one
to indicate the IN endpoint. In the case of a control pipe, the request should have the Direction bit set to
zero but the device may accept either value of the Direction bit.

Figure 9-3 shows the format of wlndex when it is used to specify an interface.

D7 D6 D5 D4 D3 D2 D1 DO

Interface Number

D15 D14 D13 D12 D11 D10 D9 DB

Reserved (Reset to zero)

Figure 9-3. wlndex Format when Specifying an Interface

9.3.5 wlength
This field specifies the length of the data transferred during the second phase of the control transfer. The
direction of data transfer (host-to-device or device-to-host) is indicated by the Direction bit of the
bmRequestType field. If this field is zero, there is no data transfer phase.

On an input request, a device must never return more data than is indicated by the wLength value; it may
return less. On an output request, wLength will always indicate the exact amount of data to be sent by the
host. Device behavior is undefined if the host should send more data than is specified in wLength.

249

PA_0001459

Universal Serial Bus Specification Revision 2.0

9.4 Standard Device Requests
This section describes the standard device requests defined for all USB devices. Table 9-3 outlines the
standard device requests, while Table 9-4 and Table 9-5 give the standard request codes and descriptor
types, respectively.

USB devices must respond to standard device requests, even if the device has not yet been assigned an
address or has not been configured.

Table 9-3. Standard Device Requests

bmRequestType bRequest wValue wlndex wlength Data

00000000B CLEAR_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint

10000000B GET _CONFIGURATION Zero Zero One Configuration
Value

10000000B GET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language Length
Descriptor ID

Index

10000001B GET _INTERFACE Zero Interface One Alternate
Interface

10000000B GET_STATUS Zero Zero Two Device,
10000001B Interface Interface, or
10000010B Endpoint Endpoint

Status

00000000B SET _ADDRESS Device Zero Zero None
Address

00000000B SET _CONFIGURATION Configuration Zero Zero None
Value

00000000B SET _DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language Length
Descriptor ID

Index

00000000B SET_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint

00000001B SET _INTERFACE Alternate Interface Zero None
Setting

10000010B SYNCH_FRAME Zero Endpoint Two Frame Number

250

PA_0001460

Universal Serial Bus Specification Revision 2.0

Table 9-4. Standard Request Codes

bRequest Value

GET_STATUS 0

CLEAR_FEATURE 1

Reserved for future use 2

SET_FEATURE 3

Reserved for future use 4

SET_ADDRESS 5

GET _DESCRIPTOR 6

SET _DESCRIPTOR 7

GET _CONFIGURATION 8

SET _CONFIGURATION 9

GET _INTERFACE 10

SET _INTERFACE 11

SYNCH_FRAME 12

Table 9-5. Descriptor Types

Descriptor Types Value

DEVICE 1

CONFIGURATION 2

STRING 3

INTERFACE 4

ENDPOINT 5

DEVICE_QUALIFIER 6

OTHER_SPEED_CONFIGURA TION 7

INTERFACE_POWER
1 8

' The INTERFACE _POWER descriptor is defined in the current revision of the USE Inte,jace Power
Management Specification.

251

PA_0001461

Universal Serial Bus Specification Revision 2.0

Feature selectors are used when enabling or setting features, such as remote wakeup, specific to a device,
interface, or endpoint. The values for the feature selectors are given in Table 9-6.

Table 9-6. Standard Feature Selectors

Feature Selector Recipient Value

DEVICE_REMOTE_WAKEUP Device 1

ENDPOINT_HALT Endpoint 0

TEST_MODE Device 2

If an unsupported or invalid request is made to a USB device, the device responds by returning STALL in
the Data or Status stage of the request. If the device detects the error in the Setup stage, it is preferred that
the device returns STALL at the earlier of the Data or Status stage. Receipt of an unsupported or invalid
request does NOT cause the optional Halt feature on the control pipe to be set. If for any reason, the device
becomes unable to communicate via its Default Control Pipe due to an error condition, the device must be
reset to clear the condition and restart the Default Control Pipe.

9.4.1 Clear Feature
This request is used to clear or disable a specific feature.

bmRequestType bRequest wValue wlndex wLength Data

252

00000000B CLEAR _FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint

Feature selector values in wValue must be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device, only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients.

A ClearFeature() request that references a feature that cannot be cleared, that does not exist, or that
references an interface or endpoint that does not exist, will cause the device to respond with a Request
Error.

If wLength is non-zero, then the device behavior is not specified.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

This request is valid when the device is in the Address state; references to interfaces
or to endpoints other than endpoint zero shall cause the device to respond with a
Request Error.

This request is valid when the device is in the Configured state.

Note: The Test_Mode feature cannot be cleared by the ClearFeature() request.

PA_0001462

Universal Serial Bus Specification Revision 2.0

9.4.2 Get Configuration
This request returns the current device configuration value.

bmRequestType bRequest wValue wlndex wlength Data

10000000B GET _CONFIGURATION Zero Zero One Configuration
Value

If the returned value is zero, the device is not configured.

If w Value, wlndex, or wLength are not as specified above, then the device behavior is not specified.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

The value zero must be returned.

The non-zero bConjiguration Value of the cunent configuration must be returned.

9.4.3 Get Descriptor
This request returns the specified descriptor if the descriptor exists.

bmRequestType bRequest wValue wlndex wlength Data

10000000B GET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language ID Length
Descriptor (refer to

Index Section 9.6.7)

The wValue field specifies the descriptor type in the high byte (refer to Table 9-5) and the descriptor index
in the low byte. The descriptor index is used to select a specific descriptor (only for configuration and
string descriptors) when several descriptors of the same type are implemented in a device. For example, a
device can implement several configuration descriptors. For other standard descriptors that can be retrieved
via a GetDescriptor() request, a descriptor index of zero must be used. The range of values used for a
descriptor index is from O to one less than the number of descriptors of that type implemented by the device.

The wlndex field specifies the Language ID for string descriptors or is reset to zero for other descriptors.
The wLength field specifies the number of bytes to return. If the descriptor is longer than the wLength field,
only the initial bytes of the descriptor are returned. If the descriptor is shorter than the wLength field, the
device indicates the end of the control transfer by sending a short packet when further data is requested. A
sh011 packet is defined as a packet shorter than the maximum payload size or a zero length data packet (refer
to Chapter 5).

The standard request to a device supports three types of descriptors: device (also device_ qualifier),
configuration (also other_speed_configuration), and string. A high-speed capable device supports the
device_ qualifier descriptor to return information about the device for the speed at which it is not operating
(including wMaxPacketSize for the default endpoint and the number of configurations for the other speed).
The other_ speed_ configuration returns information in the same structure as a configuration descriptor, but
for a configuration if the device were operating at the other speed. A request for a configuration descriptor
returns the configuration descriptor, all interface descriptors, and endpoint descriptors for all of the

253

PA_0001463

Universal Serial Bus Specification Revision 2.0

interfaces in a single request. The first interface descriptor follows the configuration descriptor. The
endpoint descriptors for the first interface follow the first interface descriptor. If there are additional
interfaces, their interface descriptor and endpoint descriptors follow the first interface's endpoint
descriptors. Class-specific and/or vendor-specific descriptors follow the standard descriptors they extend or
modify.

All devices must provide a device descriptor and at least one configuration descriptor. If a device does not
support a requested descriptor, it responds with a Request Error.

Default state:

Address state:

Configured state:

This is a valid request when the device is in the Default state.

This is a valid request when the device is in the Address state.

This is a valid request when the device is in the Configured state.

9.4.4 Get Interface
This request returns the selected alternate setting for the specified interface.

bmRequestType bRequest wValue wlndex wLength Data

10000001B GET _INTERFACE Zero Interface One Alternate
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to determine the currently selected alternate setting.

If w Value or wLength are not as specified above, then the device behavior is not specified.

If the interface specified does not exist, then the device responds with a Request Error.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

A Request Error response is given by the device.

This is a valid request when the device is in the Configured state.

9.4.5 Get Status
This request returns status for the specified recipient.

bmRequestType bRequest wValue wlndex wLength Data

254

10000000B GET_STATUS Zero Zero Two Device,
10000001B Interface Interface, or
10000010B Endpoint Endpoint

Status

The Recipient bits of the bmRequestType field specify the desired recipient. The data returned is the current
status of the specified recipient.

PA_0001464

Universal Serial Bus Specification Revision 2.0

If w Value or wLength are not as specified above, or if wlndex is non-zero for a device status request, then
the behavior of the device is not specified.

If an interface or an endpoint is specified that does not exist, then the device responds with a Request Error.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

If an interface or endpoint that does not exist is specified, then the device responds
with a Request Error.

A GetStatus() request to a device returns the inf01mation shown in Figure 9-4.

D7 I D6 I D5 I D4 I D3 I D2 D1 DO

Reserved (Reset to zero) Remote Self
Wakeup Powered

D15 I D14 I D13 I D12 I D11 I D10 D9 DB

Reserved (Reset to zero)

Figure 9-4. Information Returned by a GetStatusO Request to a Device

The Self Powered field indicates whether the device is currently self-powered. IfDO is reset to zero, the
device is bus-powered. IfDO is set to one, the device is self-powered. The Self Powered field may not be
changed by the SetFeature() or ClearFeature() requests.

The Remote Wakeup field indicates whether the device is currently enabled to request remote wakeup. The
default mode for devices that support remote wakeup is disabled. If D 1 is reset to zero, the ability of the
device to signal remote wakeup is disabled. If D 1 is set to one, the ability of the device to signal remote
wakeup is enabled. The Remote Wakeup field can be modified by the SetFeature() and ClearFeature()
requests using the DEVICE_ REMOTE_ WAKEUP feature selector. This field is reset to zero when the
device is reset.

A GetStatus() request to an interface returns the information shown in Figure 9-5 .

D7 D6 D5 D4 D3 D2 D1 DO

Reserved (Reset to zero)

D15 D14 D13 D12 D11 D10 D9 DB

Reserved (Reset to zero)

Figure 9-5. Information Returned by a GetStatus() Request to an Interface

255

PA_0001465

Universal Serial Bus Specification Revision 2.0

A GetStatus() request to an endpoint returns the information shown in Figure 9-6.

D7 D6 D5 D4 D3 D2 D1 DO

Reserved (Reset to zero) Halt

D15 D14 D13 D12 D11 D10 D9 DB

Reserved (Reset to zero)

Figure 9-6. Information Returned by a GetStatusO Request to an Endpoint

The Halt feature is required to be implemented for all inte1rnpt and bulk endpoint types. If the endpoint is
currently halted, then the Halt feature is set to one. Otherwise, the Halt feature is reset to zero. The Halt
feature may optionally be set with the SetFeature(ENDPOINT_HALT) request. When set by the
SetFeature() request, the endpoint exhibits the same stall behavior as if the field had been set by a hardware
condition. If the condition causing a halt has been removed, clearing the Halt feature via a
ClearFeature(ENDPOINT_HALT) request results in the endpoint no longer returning a STALL. For
endpoints using data toggle, regardless of whether an endpoint has the Halt feature set, a
ClearFeature(ENDPOINT _HALT) request always results in the data toggle being reinitialized to DAT AO.
The Halt feature is reset to zero after either a SetConfiguration() or Setlnterface() request even if the
requested configuration or interface is the same as the current configuration or interface.

It is neither required nor recommended that the Halt feature be implemented for the Default Control Pipe.
However, devices may set the Halt feature of the Default Control Pipe in order to reflect a functional error
condition. If the feature is set to one, the device will return ST ALL in the Data and Status stages of each
standard request to the pipe except GetStatus(), SetFeature(), and ClearFeature() requests. The device need
not return STALL for class-specific and vendor-specific requests.

9.4.6 Set Address
This request sets the device address for all future device accesses.

bmRequestType bRequest wValue wlndex wLength Data

256

00000000B SET_ADDRESS Device Zero Zero None
Address

The wValue field specifies the device address to use for all subsequent accesses.

As noted elsewhere, requests actually may result in up to three stages. In the first stage, the Setup packet is
sent to the device. In the optional second stage, data is transferred between the host and the device. In the
final stage, status is transferred between the host and the device. The direction of data and status transfer
depends on whether the host is sending data to the device or the device is sending data to the host. The
Status stage transfer is always in the opposite direction of the Data stage. If there is no Data stage, the
Status stage is from the device to the host.

Stages after the initial Setup packet assume the same device address as the Setup packet. The USB device
does not change its device address until after the Status stage of this request is completed successfully. Note
that this is a difference between this request and all other requests. For all other requests, the operation
indicated must be completed before the Status stage.

If the specified device address is greater than l 27, or if wlndex or wLength are non-zero, then the behavior
of the device is not specified.

PA_0001466

Universal Serial Bus Specification Revision 2.0

Device response to SetAddress() with a value of O is undefined.

Default state:

Address state:

Configured state:

If the address specified is non-zero, then the device shall enter the Address state;
otherwise, the device remains in the Default state (this is not an error condition).

If the address specified is zero, then the device shall enter the Default state;
otherwise, the device remains in the Address state but uses the newly-specified
address.

Device behavior when this request is received while the device is in the Configured
state is not specified.

9.4.7 Set Configuration
This request sets the device configuration.

bmRequestType bRequest wValue wlndex wLength Data

00000000B SET _CONFIGURATION Configuration Value Zero Zero None

The lower byte of the w Value field specifies the desired configuration. This configuration value must be
zero or match a configuration value from a configuration descriptor. If the configuration value is zero, the
device is placed in its Address state. The upper byte of the wValue field is reserved.

Ifwlndex, wLength, or the upper byte ofwValue is non-zero, then the behavior of this request is not
specified.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

If the specified configuration value is zero, then the device remains in the Address
state. If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device enters the
Configured state. Otherwise, the device responds with a Request Error.

If the specified configuration value is zero, then the device enters the Address state.
If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device remains in
the Configured state. Otherwise, the device responds with a Request Error.

9.4.8 Set Descriptor
This request is optional and may be used to update existing descriptors or new descriptors may be added.

bmRequestType bRequest wValue wlndex wLength Data

00000000B SET _DESCRIPTOR Descriptor Language ID Descriptor Descriptor
Type and (refer to Length
Descriptor Section 9.6.7)

Index or zero

257

PA_0001467

Universal Serial Bus Specification Revision 2.0

The wValue field specifies the descriptor type in the high byte (refer to Table 9-5) and the descriptor index
in the low byte. The descriptor index is used to select a specific descriptor (only for configuration and string
descriptors) when several descriptors of the same type are implemented in a device. For example, a device
can implement several configuration descriptors. For other standard descriptors that can be set via a
SetDescriptor() request, a descriptor index of zero must be L1sed. The range of values used for a descriptor
index is from Oto one less than the number of descriptors of that type implemented by the device.

The wlndex field specifies the Language ID for string descriptors or is reset to zero for other descriptors.
The wLength field specifies the number of bytes to transfer from the host to the device.

The only allowed values for descriptor type are device, configuration, and string descriptor types.

If this request is not supported, the device will respond with a Request Error.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

If supported, this is a valid request when the device is in the Address state.

If supported, this is a valid request when the device is in the Configured state.

9.4.9 Set Feature
This request is used to set or enable a specific feature.

bmRequestType bRequest wValue wlndex wLength Data

258

00000000B SET_FEATURE Feature Test Selector Zero Zero None
00000001B Selector Interface
00000010B Endpoint

Feature selector values in wValue must be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device; only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients.

The TEST_MODE feature is only defined for a device recipient (i.e., bmRequestType = 0) and the lower
byte ofwlndex must be zero. Setting the TEST_MODE feature puts the device upstream facing port into
test mode. The device will respond with a request error if the request contains an invalid test selector. The
transition to test mode must be complete no later than 3 ms after the completion of the status stage of the
request. The transition to test mode of an upstream facing port must not happen until after the status stage
of the request. The power to the device must be cycled to exit test mode of an upstream facing port of a
device. See Section 7.1.20 for definitions of each test mode. A device must support the TEST_ MODE
feature when in the Default, Address or Configured high-speed device states.

A SetFeature() request that references a feature that cannot be set or that does not exist causes a STALL to
be returned in the Status stage of the request.

PA_0001468

Universal Serial Bus Specification Revision 2.0

Table 9-7. Test Mode Selectors

Value Description

OOH Reserved

01H Test_J

02H Test_K

03H Test_SEO_NAK

04H Test_Packet

05H Test_Force _ Enable

06H-3FH Reserved for standard test selectors

3FH-BFH Reserved

COH-FFH Reserved for vendor-specific test modes.

If the feature selector is TEST_MODE, then the most significant byte of wlndex is used to specify the
specific test mode. The recipient ofa SetFeature(TEST_MODE ...) must be the device; i.e., the lower byte
of wlndex must be zero and the bmRequestType must be set to zero. The device must have its power cycled
to exit test mode. The valid test mode selectors are listed in Table 9-7. See Section 7.1.20 for more
information about the specific test modes.

If wLength is non-zero, then the behavior of the device is not specified.

If an endpoint or interface is specified that does not exist, then the device responds with a Request Error.

Default state:

Address state:

Configured state:

9.4.10 Set Interface

A device must be able to accept a SetFeature(TEST_MODE, TEST_SELECTOR)
request when in the Default State. Device behavior for other SetFeature requests
while the device is in the Default state is not specified.

If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

This is a valid request when the device is in the Configured state.

This request allows the host to select an alternate setting for the specified interface.

bmRequestType bRequest wValue wlndex wlength Data

00000001B SET _INTERFACE Alternate Interface Zero None
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to select the desired alternate setting. If a device only supports a default setting for the
specified interface, then a STALL may be returned in the Status stage of the request. This request cannot be
used to change the set of configured interfaces (the SetConfiguration() request must be used instead).

If the interface or the alternate setting does not exist, then the device responds with a Request Error. If
wLength is non-zero, then the behavior of the device is not specified.

259

PA_0001469

Default state:

Address state:

Configured state:

Universal Serial Bus Specification Revision 2.0

Device behavior when this request is received while the device is in the Default state
is not specified.

The device must respond with a Request Error.

This is a valid request when the device is in the Configured state.

9.4.11 Synch Frame
This request is used to set and then report an endpoint's synchronization frame.

bmRequestType bRequest wValue wlndex wLength Data

10000010B SYNCH_FRAME Zero Endpoint Two Frame
Number

When an endpoint supports isochronous transfers, the endpoint may also require per-frame transfers to vary
in size according to a specific pattern. The host and the endpoint must agree on which frame the repeating
pattern begins. The number of the frame in which the pattern began is returned to the host.

If a high-speed device supports the Synch Frame request, it must internally synchronize itself to the zeroth
microframe and have a time notion of classic frame. Only the frame number is used to synchronize and
reported by the device endpoint (i.e. , no microframe number). The endpoint must synchronize to the zeroth
micro frame.

This value is only used for isochronous data transfers using implicit pattern synchronization. IfwValue is
non-zero or wLength is not two, then the behavior of the device is not specified.

If the specified endpoint does not support this request, then the device will respond with a Request Error.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

The device shall respond with a Request Error.

This is a valid request when the device is in the Configured state.

9.5 Descriptors

260

USB devices report their attributes using descriptors. A descriptor is a data structure with a defined format.
Each descriptor begins with a byte-wide field that contains the total number of bytes in the descriptor
followed by a byte-wide field that identifies the descriptor type.

Using descriptors allows concise storage of the attributes of individual configLu-ations because each
configuration may reuse descriptors or portions of descriptors from other configurations that have the same
characteristics. In this manner, the descriptors resemble individual data records in a relational database.

Where appropriate, descriptors contain references to string descriptors that provide displayable information
describing a descriptor in human-readable form. The inclusion of string descriptors is optional. However,
the reference fields within descriptors are mandatory. If a device does not support string descriptors, string
reference fields must be reset to zero to indicate no string descriptor is available.

If a descriptor returns with a value in its length field that is less than defined by this specification, the
descriptor is invalid and should be rejected by the host. If the descriptor returns with a value in its length

PA_0001470

Universal Serial Bus Specification Revision 2.0

field that is greater than defined by this specification, the extra bytes are ignored by the host, but the next
descriptor is located using the length returned rather than the length expected.

A device may return class- or vendor-specific descriptors in two ways:

1. If the class or vendor specific descriptors use the same format as standard descriptors (e.g., start with a
length byte and followed by a type byte), they must be returned interleaved with standard descriptors in
the configuration information returned by a GetDescriptor(Configuration) request. In this case, the
class or vendor-specific descriptors must follow a related standard descriptor they modify or extend.

2. If the class or vendor specific descriptors are independent of configuration information or use a non
standard format, a GetDescriptor() request specifying the class or vendor specific descriptor type and
index may be used to retrieve the descriptor from the device. A class or vendor specification will
define the appropriate way to retrieve these descriptors.

9.6 Standard USB Descriptor Definitions
The standard descriptors defined in this specification may only be modified or extended by revision of the
Universal Serial Bus Specification.

Note: An extension to the USB 1.0 standard endpoint descriptor has been published in Device Class
Specification for Audio Devices Revision 1.0. This is the only extension defined outside USB Specification
that is allowed. Future revisions of the USB Specification that extend the standard endpoint descriptor will
do so as to not conflict with the extension defined in the Audio Device Class Specification Revision 1.0.

9.6.1 Device
A device descriptor describes general information about a USB device. It includes information that applies
globally to the device and all of the device's configurations. A USB device has only one device descriptor.

A high-speed capable device that has different device information for full-speed and high-speed must also
have a device_qualifier descriptor (see Section 9.6.2).

The DEVICE descriptor of a high-speed capable device has a version number of 2.0 (0200H). If the device
is full-speed only or low-speed only, this version number indicates that it will respond c01Tectly to a request
for the device_ qualifier desciptor (i.e., it will respond with a request error).

The bcdUSB field contains a BCD version number. The value of the bcdUSB field is OxJJMN for version
JJ.M.N (JJ - major version number, M - minor version number, N - sub-minor version number), e.g.,
version 2.1.3 is represented with value Ox0213 and version 2.0 is represented with a value of Ox0200.

The bNumConjigurations field indicates the number of configurations at the current operating speed.
Configurations for the other operating speed are not included in the count. If there are specific
configurations of the device for specific speeds, the bNumConjigurations field only reflects the number of
configurations for a single speed, not the total number of configurations for both speeds.

If the device is operating at high-speed, the bMaxPacketSizeO field must be 64 indicating a 64 byte
maximum packet. High-speed operation does not allow other maximum packet sizes for the control
endpoint (endpoint 0).

All USB devices have a Default Control Pipe. The maximum packet size of a device's Default Control Pipe
is described in the device descriptor. Endpoints specific to a configuration and its interface(s) are described
in the configuration descriptor. A configuration and its interface(s) do not include an endpoint descriptor
for the Default Control Pipe. Other than the maximum packet size, the characteristics of the Default
Control Pipe are defined by this specification and are the same for all USB devices.

The bNumConjigurations field identifies the number of configurations the device supports. Table 9-8 shows
the standard device descriptor.

261

PA_0001471

Universal Serial Bus Specification Revision 2.0

Table 9-8. Standard Device Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant DEVICE Descriptor Type

2 bcdUSB 2 BCD USB Specification Release Number in
Binary-Coded Decimal (i.e., 2.10 is 210H).
This field identifies the release of the USB
Specification with which the device and its
descriptors are compliant.

4 bDeviceC/ass 1 Class Class code (assigned by the USB-IF).

If this field is reset to zero, each interface
within a configuration specifies its own
class information and the various
interfaces operate independently.

If this field is set to a value between 1 and
FEH, the device supports different class
specifications on different interfaces and
the interfaces may not operate
independently. This value identifies the
class definition used for the aggregate
interfaces.

If this field is set to FFH, the device class
is vendor-specific.

5 bDeviceSubC/ass 1 SubClass Subclass code (assigned by the USB-IF).

These codes are qualified by the value of
the bDeviceC/ass field.

If the bDeviceC/ass field is reset to zero,
this field must also be reset to zero.

If the bDeviceC/ass field is not set to FFH,
all values are reserved for assignment by
the USB-IF.

262

PA_0001472

Universal Serial Bus Specification Revision 2.0

Table 9-8. Standard Device Descriptor (Continued)

Offset Field Size Value Description

6 bDeviceProtoco/ 1 Protocol Protocol code (assigned by the USB-IF).
These codes are qualified by the value of
the bDeviceC/ass and the
bDeviceSubC/ass fields. If a device
supports class-specific protocols on a
device basis as opposed to an interface
basis, this code identifies the protocols
that the device uses as defined by the
specification of the device class.

If this field is reset to zero, the device
does not use class-specific protocols on a
device basis. However, it may use class-
specific protocols on an interface basis.

If this field is set to FFH, the device uses a
vendor-specific protocol on a device basis.

7 bMaxPacketSizeO 1 Number Maximum packet size for endpoint zero
(only 8, 16, 32, or 64 are valid)

8 idVendor 2 ID Vendor ID (assigned by the USB-IF)

10 idProduct 2 ID Product ID (assigned by the manufacturer)

12 bed Device 2 BCD Device release number in binary-coded
decimal

14 iManufacturer 1 Index Index of string descriptor describing
manufacturer

15 iProduct 1 Index Index of string descriptor describing
product

16 iSeria/Number 1 Index Index of string descriptor describing the
device's serial number

17 bNumConfigurations 1 Number Number of possible configurations

263

PA_0001473

Universal Serial Bus Specification Revision 2.0

9.6.2 Device_Qualifier
The device_ qualifier descriptor describes information about a high-speed capable device that would
change if the device were operating at the other speed. For example, if the device is currently operating
at full-speed, the device_ qualifier returns information about how it would operate at high-speed and
vice-versa. Table 9-9 shows the fields of the device_ qualifier descriptor.

Table 9-9. Device_Qualifier Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of descriptor

1 bDescriptorType 1 Constant Device Qualifier Type

2 bcdUSB 2 BCD USB specification version number (e.g.,
0200H for V2.00)

4 bDeviceC/ass 1 Class Class Code

5 bDeviceSubC/ass 1 SubClass SubClass Code

6 bDeviceProtoco/ 1 Protocol Protocol Code

7 bMaxPacketSizeO 1 Number Maximum packet size for other speed

8 bNumConfigurations 1 Number Number of Other-speed Configurations

9 bReserved 1 Zero Reserved for future use, must be zero

The vendor, product, device, manufacturer, product, and serialnumber fields of the standard device
descriptor are not included in this descriptor since that information is constant for a device for all supported
speeds. The version number for this descriptor must be at least 2.0 (0200H).

The host accesses this descriptor using the GetDescriptor() request. The descriptor type in the
GetDescriptor() request is set to device_ qualifier (see Table 9-5).

Ifa full-speed only device (with a device descriptor version number equal to 0200H) receives a
GetDescriptor() request for a device_qualifier, it must respond with a request error. The host must not make
a request for an other_speed_configuration descriptor unless it first successfully retrieves the
device_ qualifier descriptor.

9.6.3 Configuration

264

The configuration descriptor describes information about a specific device configuration. The descriptor
contains a bConfigurationValue field with a value that, when used as a parameter to the SetConfiguration()
request, causes the device to assume the described configuration.

The descriptor describes the number of interfaces provided by the configuration. Each interface may
operate independently. For example, an ISDN device might be configured with two interfaces, each
providing 64 Kb/s bi-directional channels that have separate data sources or sinks on the host. Another
configuration might present the ISDN device as a single interface, bonding the two channels into one
128 Kb/s bi-directional channel.

When the host requests the configuration descriptor, all related interface and endpoint descriptors are
returned (refer to Section 9.4.3).

PA_0001474

Universal Serial Bus Specification Revision 2.0

A USB device has one or more configuration descriptors. Each configuration has one or more interfaces
and each interface has zero or more endpoints. An endpoint is not shared among interfaces within a single
configuration unless the endpoint is used by alternate settings of the same interface. Endpoints may be
shared among interfaces that are part of different configurations without this restriction.

Once configured, devices may support limited adjustments to the configuration. If a particular interface has
alternate settings, an alternate may be selected after configuration. Table 9-10 shows the standard
configuration descriptor.

Table 9-10. Standard Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant CONFIGURATION Descriptor Type

2 wTota/Length 2 Number Total length of data returned for this
configuration. Includes the combined length
of all descriptors (configuration, interface,
endpoint, and class- or vendor-specific)
returned for this configuration.

4 bNumlnterfaces 1 Number Number of interfaces supported by this
configuration

5 bConfigurationVa/ue 1 Number Value to use as an argument to the
SetConfiguration() request to select this
configuration

6 iConfiguration 1 Index Index of string descriptor describing this
configuration

265

PA_0001475

Universal Serial Bus Specification Revision 2.0

Table 9-10. Standard Configuration Descriptor (Continued)

Offset Field Size Value Description

7 bmAttributes 1 Bitmap Configuration characteristics

D7: Reserved (set to one)
D6: Self-powered
D5: Remote Wakeup
D4 ... 0: Reserved (reset to zero)

D7 is reserved and must be set to one for
historical reasons.

A device configuration that uses power from
the bus and a local source reports a non-zero
value in bMaxPowerto indicate the amount of
bus power required and sets D6. The actual
power source at runtime may be determined
using the GetStatus(DEVICE) request (see
Section 9.4.5).

If a device configuration supports remote
wakeup, D5 is set to one.

8 bMaxPower 1 mA Maximum power consumption of the USB
device from the bus in this specific
configuration when the device is fully
operational. Expressed in 2 mA units
(i.e., 50 = 100 mA).

Note: A device configuration reports whether
the configuration is bus-powered or self-
powered. Device status reports whether the
device is currently self-powered. If a device is
disconnected from its external power source, it
updates device status to indicate that it is no
longer self-powered.

A device may not increase its power draw
from the bus, when it loses its external power
source, beyond the amount reported by its
configuration.

If a device can continue to operate when
disconnected from its external power source, it
continues to do so. If the device cannot
continue to operate, it fails operations it can
no longer support. The USB System Software
may determine the cause of the failure by
checking the status and noting the loss of the
device's power source.

9.6.4 Other_Speed_Configuration

266

The other_ speed_ configuration descriptor shown in Table 9-11 describes a configuration of a high
speed capable device if it were operating at its other possible speed. The structure of the
other_ speed_ configuration is identical to a configuration descriptor.

PA_0001476

Universal Serial Bus Specification Revision 2.0

Table 9-11. Other_Speed_Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of descriptor

1 bDescriptorType 1 Constant Other_speed_Configuration Type

2 wTota/Length 2 Number Total length of data returned

4 bNumlnterfaces 1 Number Number of interfaces supported by this speed
configuration

5 bConfiguration Value 1 Number Value to use to select configuration

6 iConfiguration 1 Index Index of string descriptor

7 bmAttributes 1 Bitmap Same as Configuration descriptor

8 bMaxPower 1 mA Same as Configuration descriptor

The host accesses this desc1iptor using the GetDescriptor() request. The descriptor type in the
GetDescriptor() request is set to other_speed_configuration (see Table 9-5).

9.6.5 Interface
The interface descriptor describes a specific interface within a configuration. A configuration provides one
or more interfaces, each with zero or more endpoint descriptors describing a unique set of endpoints within
the configuration. When a configuration supports more than one interface, the endpoint descriptors for a
particular interface follow the interface descriptor in the data returned by the GetConfiguration() request.
An interface descriptor is always returned as part of a configuration descriptor. Interface descriptors cannot
be directly accessed with a GetDescriptor() or SetDescriptor() request.

An interface may include alternate settings that allow the endpoints and/or their characteristics to be varied
after the device has been configured. The default setting for an interface is always alternate setting zero.
The Setlnterface() request is used to select an alternate setting or to return to the default setting. The
Getlnterface() request returns the selected alternate setting.

Alternate settings allow a portion of the device configuration to be varied while other interfaces remain in
operation. If a configuration has alternate settings for one or more of its interfaces, a separate interface
descriptor and its associated endpoints are included for each setting.

If a device configuration supported a single interface with two alternate settings, the configuration
descriptor would be followed by an interface descriptor with the bJnterfaceNumber and bAlternateSetting
fields set to zero and then the endpoint descriptors for that setting, followed by another interface descriptor
and its associated endpoint descriptors. The second interface descriptor's bJnterfaceNumber field would
also be set to zero, but the bAlternateSetting field of the second interface descriptor would be set to one.

If an interface uses only endpoint zero, no endpoint descriptors follow the interface descriptor. In this case,
the bNumEndpoints field must be set to zero.

An interface descriptor never includes endpoint zero in the number of endpoints. Table 9-12 shows the
standard interface descriptor.

267

PA_0001477

