
Universal Serial Bus Specification Revision 2.0

Table 9-12. Standard Interface Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant INTERFACE Descriptor Type

2 blnterfaceNumber 1 Number Number of this interface. Zero-based
value identifying the index in the array of
concurrent interfaces supported by this
configuration.

3 bA/ternateSetting 1 Number Value used to select this alternate setting
for the interface identified in the prior field

4 bNumEndpoints 1 Number Number of endpoints used by this
interface (excluding endpoint zero). If this
value is zero, this interface only uses the
Default Control Pipe.

5 blnterfaceC/ass 1 Class Class code (assigned by the USB-IF).

A value of zero is reserved for future
standardization.

If this field is set to FFH, the interface
class is vendor-specific.

All other values are reserved for
assignment by the USB-IF.

6 blnterfaceSubC/ass 1 SubClass Subclass code (assigned by the USB-IF).
These codes are qualified by the value of
the blnterfaceC/ass field.

If the blnterfaceC/ass field is reset to zero,
this field must also be reset to zero.

If the blnterfaceC/ass field is not set to
FFH, all values are reserved for
assignment by the USB-IF.

268

PA_0001478

Universal Serial Bus Specification Revision 2.0

Table 9-12. Standard Interface Descriptor (Continued)

Offset Field Size Value Description

7 blnterfaceProtoco/ 1 Protocol Protocol code (assigned by the USB).
These codes are qualified by the value of
the blnterfaceC/ass and the
blnterfaceSubC/ass fields. If an interface
supports class-specific requests, this code
identifies the protocols that the device
uses as defined by the specification of the
device class.

If this field is reset to zero, the device
does not use a class-specific protocol on
this interface.

If this field is set to FFH, the device uses
a vendor-specific protocol for this
interface.

8 ilnterface 1 Index Index of string descriptor describing this
interface

9.6.6 Endpoint
Each endpoint used for an interface has its own descriptor. This descriptor contains the information
required by the host to determine the bandwidth requirements of each endpoint. An endpoint descriptor is
always returned as part of the configuration information returned by a GetDescriptor(Configuration)
request. An endpoint descriptor cannot be directly accessed with a GetDescriptor() or SetDescriptor()
request. There is never an endpoint descriptor for endpoint zero. Table 9-13 shows the standard endpoint
descriptor.

Table 9-13. Standard Endpoint Descriptor

Offset Field Size Value Description

0 bLenath 1 Number Size of this descriptor in bvtes

1 bDescriptorTvoe 1 Constant ENDPOINT Descriptor Tvpe

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB device
described by this descriptor. The address is
encoded as follows:

Bit 3 ... 0: The endpoint number
Bit 6 .. .4: Reserved, reset to zero
Bit 7: Direction, ignored for

control endpoints
0 = OUT endpoint
1 = IN endpoint

269

PA_0001479

Universal Serial Bus Specification Revision 2.0

Table 9-13. Standard Endpoint Descriptor (Continued)

Offset Field Size Value Description

3 bmAttributes 1 Bitmap This field describes the endpoint's attributes when it is
configured using the bConfigurationVa/ue.

Bits 1 .. 0: Transfer Type
00 = Control
01 = Isochronous
10 = Bulk
11 = Interrupt

If not an isochronous endpoint, bits 5 .. 2 are reserved
and must be set to zero. If isochronous, they are
defined as follows:

Bits 3 .. 2: Synchronization Type

00 = No Synchronization
01 = Asynchronous
10 = Adaptive
11 = Synchronous

Bits 5 . .4: Usage Type

00 = Data endpoint
01 = Feedback endpoint
10 = Implicit feedback Data endpoint
11 = Reserved

Refer to Chapter 5 for more information.

All other bits are reserved and must be reset to zero.
Reserved bits must be iqnored by the host.

270

PA_0001480

Universal Serial Bus Specification Revision 2.0

Table 9-13. Standard Endpoint Descriptor (Continued)

Offset Field Size Value Description

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is capable of
sending or receiving when this configuration is
selected.

For isochronous endpoints, this value is used to
reserve the bus time in the schedule, required for the
per-(micro)frame data payloads. The pipe may, on an
ongoing basis, actually use less bandwidth than that
reserved. The device reports, if necessary, the actual
bandwidth used via its normal, non-USB defined
mechanisms.

For all endpoints, bits 10 .. 0 specify the maximum
packet size (in bytes).

For high-speed isochronous and interrupt endpoints:

Bits 12 .. 11 specify the number of additional transaction
opportunities per microframe:

00 = None (1 transaction per microframe)
01 = 1 additional (2 per microframe)
10 = 2 additional (3 per microframe)
11 = Reserved

Bits 15 .. 13 are reserved and must be set to zero.

Refer to Chapter 5 for more information.

6 blnterval 1 Number Interval for polling endpoint for data transfers.
Expressed in frames or microframes depending on the
device operating speed (i.e., either 1 millisecond or
125 µs units).

For full-/high-speed isochronous endpoints, this value
must be in the range from 1 to 16. The blnterval value
is used as the exponent for a 2bl"0

"'"
1
·
1 value; e.g., a

blnterval of 4 means a period of 8 (24
.
1
).

For full-flow-speed interrupt endpoints, the value of
this field may be from 1 to 255.

For high-speed interrupt endpoints, the blnterval value
is used as the exponent for a 2blcte,val·1 value; e.g., a
blnterval of 4 means a period of 8 (24

.
1
). This value

must be from 1 to 16.

For high-speed bulk/control OUT endpoints, the
blnterval must specify the maximum NAK rate of the
endpoint. A value of O indicates the endpoint never
NAKs. Other values indicate at most 1 NAK each
blnterval number of microframes. This value must be
in the range from O to 255.

See Chapter 5 description of periods for more detail.

The bmAttributes field provides information about the endpoint's Transfer Type (bits 1..0) and
Synchronization Type (bits 3 .. 2). In addition, the Usage Type bit (bits 5 . .4) indicate whether this is an
endpoint used for normal data transfers (bits 5 . .4=00B), whether it is used to convey explicit feedback
information for one or more data endpoints (bits 5 . .4=0IB) or whether it is a data endpoint that also serves

271

PA_0001481

272

Universal Serial Bus Specification Revision 2.0

as an implicit feedback endpoint for one or more data endpoints (bits 5 . .4=10B). Bits 5 .. 2 are only
meaningful for isochronous endpoints and must be reset to zero for all other transfer types .

If the endpoint is used as an explicit feedback endpoint (bits 5 . .4=0IB), then the Transfer Type must be set
lo isochronous (bilsl..O = OIB) and the Synchronization Type must be sel lo No Synchronization
(bits 3 .. 2=00B).

A feedback endpoint (explicit or implicit) needs to be associated with one (or more) isochronous data
endpoints to which it provides feedback service. The association is based on endpoint number matching. A
feedback endpoint always has the opposite direction from the data endpoint(s) it services. If multiple data
endpoints are to be serviced by the same feedback endpoint, the data endpoints must have ascending
ordered-but not necessarily consecutive-endpoint numbers. The first data endpoint and the feedback
endpoint must have the same endpoint number (and opposite direction). This ensures that a data endpoint
can uniquely identify its feedback endpoint by searching for the first feedback endpoint that has an endpoint
number equal or less than its own endpoint number.

Example: Consider the extreme case where there is a need for five groups of OUT asynchronous
isochronous endpoints and at the same time four groups of IN adaptive isochronous endpoints. Each group
needs a separate feedback endpoint and the groups are composed as shown in Figure 9-7.

OUT Nr of OUT IN Nr of IN
Group Endpoints Group Endpoints

1 1 6 1

2 2 7 2

3 2 8 3

4 3 9 4

5 3

Figure 9-7. Example of Feedback Endpoint Numbers

The endpoint numbers can be intertwined as illustrated in Figure 9-8 .

2 3 4 5 OUT

2 3 4 IN

D Data Endpoint 0 Feedback Endpoint

Figure 9-8. Example of Feedback Endpoint Relationships

PA_0001482

Universal Serial Bus Specification Revision 2.0

High-speed isochronous and interrupt endpoints use bits 12 .. 11 ofwMaxPacketSize to specify multiple
transactions for each microframe specified by blnterval. If bits 12 .. 11 ofwMaxPacketSize are zero, the
maximum packet size for the endpoint can be any allowed value (as defined in Chapter 5). If bits 12 .. l l of
wMaxPacketSize are not zero (0), the allowed values for wMaxPacketSize bits 10 .. 0 are limited as shown in
Table 9-14.

Table 9-14. Allowed wMaxPacketSize Values for Different ~umbers of Transactions per Microframe

wMaxPacketSize wM axPacketSize
bits 12 .. 11 bits 10 .. 0 Values

Allowed

00 1 -1024

01 513 -1024

10 683 - 1024

11 NIA; reserved

For high-speed bulk and control OUT endpoints, the blnterval field is only used for compliance purposes;
the host controller is not required to change its behavior based on the value in this field.

9.6.7 String
String descriptors are optional. As noted previously, if a device does not support string descriptors, all
references to string descriptors within device, configuration, and interface descriptors must be reset to zero.

String descriptors use UNICODE encodings as defined by The Unicode Standard, Worldwide Character
Encoding, Version 3.0, The Unicode Consortium, Addison-Wesley Publishing Company, Reading,
Massachusetts (URL: http://www.unicode.com). The strings in a USB device may support multiple
languages. When requesting a string descriptor, the requester specifies the desired language using a sixteen
bit language ID (LANGID) defined by the USB-IF. The list of currently defined USB LANGIDs can be
found at http://www.usb.org/developers/docs.htrnl. String index zero for all languages returns a string
descriptor that contains an array of two-byte LANGID codes supported by the device. Table 9-15 shows the
LANGID code array. A USB device may omit all string descriptors. USB devices that omit all string
descriptors must not return an array ofLANGID codes.

The array of LANG ID codes is not NULL-terminated. The size of the array (in bytes) is computed by
subtracting two from the value of the first byte of the descriptor.

Table 9-15. String Descriptor Zero, Specifying Languages Supported by the Device

Offset Field Size Value Description

0 bLength 1 N+2 Size of this descriptor in bytes

1 bDescriptorType 1 Constant STRING Descriptor Type

2 wLANG/0[0] 2 Number LANGID code zero

...

N wLANGID[x] 2 Number LANGID codex

273

PA_0001483

Universal Serial Bus Specification Revision 2.0

The UNICODE string descriptor (shown in Table 9-16) is not NULL-terminated. The string length is
computed by subtracting two from the value of the first byte of the descriptor.

Table 9-16. UNICODE String Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant STRING Descriptor Type

2 bString N Number UNICODE encoded string

9.7 Device Class Definitions
All devices must support the requests and descriptor definitions described in this chapter. Most devices
provide additional requests and, possibly, descriptors for device-specific extensions. In addition, devices
may provide extended services that are common to a group of devices. In order to define a class of devices,
the following information must be provided to completely define the appearance and behavior of the device
class.

9.7.1 Descriptors
If the class requires any specific definition of the standard descriptors, the class definition must include
those requirements as part of the class definition. In addition, if the class defines a standard extended set of
descriptors, they must also be fully defined in the class definition. Any extended descriptor definitions must
follow the approach used for standard descriptors; for example, all descriptors must begin with a length
field.

9.7.2 lnterface(s) and Endpoint Usage
When a class of devices is standardized, the interfaces used by the devices, including how endpoints are
used, must be included in the device class definition. Devices may further extend a class definition with
proprietary features as long as they meet the base definition of the class.

9.7.3 Requests
All of the requests specific to the class must be defined.

274

PA_0001484

Universal Serial Bus Specification Revision 2.0

Chapter 10
USB Host: Hardware and Software

The USB interconnect suppmis data traffic between a host and a USB device. This chapter describes the
host interfaces necessary to facilitate USB communication between a software client, resident on the host,
and a function implemented on a device. The implementation described in this chapter is not required.
This implementation is provided as an example to illustrate the host system behavior expected by a USB
device. A host system may provide a different host software implementation as long as a USB device
experiences the same host behavior.

10.1 Overview of the USB Host

10.1.1 Overview
The basic flow and interrelationships of the USB communications model are shown in Figure 10-1.

•

Host

Client

USB Bus
Interface

•

Interconnect Device

Function

USB Device

USB Bus
Interface

Actual communications flow

Logical communications flow

Figure 10-1. Interlayer Communications Model

The host and the device are divided into the distinct layers depicted in Figure 10-1. Vertical arrows
indicate the actual communication on the host. The corresponding interfaces on the device are
implementation-specific. All communications between the host and device ultimately occur on the
physical USB wire . However, there are logical host-device interfaces between each horizontal layer.
These communications, between client software resident on the host and the function provided by the
device, are typified by a contract based on the needs of the application cmTently using the device and the
capabilities provided by the device.

This client-function interaction creates the requirements for all of the underlying layers and their interfaces.

275

PA_0001485

276

Universal Serial Bus Specification Revision 2.0

This chapter describes this model from the point of view of the host and its layers. Figure 10-2 illustrates,
based on the overall view introduced in Chapter 5, the host's view of its communication with the device.

Host Interconnect

• • .,.,
I I

Client
.. , I

• j manages interfaces • .. I

Pipe Bundle..,

to an interface
' I

IRPs Configuration

"'
USB Driver Host

Software

HC Driver

' ..
USB System
manages pipes

HW-Defined

V

Host .. • Controller HC-
Defined

USB Bus
Interface

I I

Default Pipe

to Endpoint Zero

a
USB Wire

Pipe: Represents connection
abstraction between two horizontal
layers

Optional
Component • Interprocess Communication

Figure 10-2. Host Communications

PA_0001486

Universal Serial Bus Specification Revision 2.0

There is only one host for each USB. The major layers of a host consist of the following:

• USB bus interface

• USB System

• Client

The USB bus interface handles interactions for the electrical and protocol layers (refer to Chapter 7 and
Chapter 8). From the interconnect point of view, a similar USB bus interface is provided by both the USB
device and the host, as exemplified by the Serial Interface Engine (SIE). On the host, however, the USB
bus interface has additional responsibilities due to the unique role of the host on the USB and is
implemented as the Host Controller. The Host Controller has an integrated root hub providing attachment
points to the USB wire.

The USB System uses the Host Controller to manage data transfers between the host and USB devices.
The interface between the USB System and the Host Controller is dependent on the hardware definition of
the Host Controller. The USB System, in concert with the Host Controller, performs the translation
between the client's view of data transfers and the USB transactions appearing on the interconnect. This
includes the addition of any USB feature support such as protocol wrappers . The USB System is also
responsible for managing USB resources, such as bandwidth and bus power, so that client access to the
USB is possible.

The USB System has three basic components:

• Host Controller Driver

• USB Driver

• Host Software

The Host Controller Driver (HCD) exists to more easily map the various Host Controller implementations
into the USB System, such that a client can interact with its device without knowing to which Host
Controller the device is connected. The USH Driver (USHD) provides the basic host interface (USHDl) for
clients to USB devices. The interface between the HCD and the USBD is known as the Host Controller
Driver Interface (HCDI). This interface is never available directly to clients and thus is not defined by the
USB Specification . A particular HCDT is, however, defined by each operating system that supports various
Host Controller implementations.

The USBD provides data transfer mechanisms in the form ofl/0 Request Packets (IRPs), which consist of
a request to transport data across a specific pipe. In addition to providing data transfer mechanisms, the
USBD is responsible for presenting to its clients an abstraction of a USB device that can be manipulated for
configuration and state management. As part of this abstraction, the USBD owns the default pipe (see
Chapter 5 and Chapter 9) through which all USB devices are accessed for the purposes of standard USB
control. This default pipe represents a logical communication between the USBD and the abstraction of a
USB device as shown in Figure 10-2.

In some operating systems, additional non-USB System Software is available that provides configuration
and loading mechanisms to device drivers. In such operating systems, the device driver shall use the
provided interfaces instead of directly accessing the USBDI mechanisms.

The client layer describes all the software entities that are responsible for directly interacting with USB
devices. When each device is altached to the system, these clients might interact directly with the
peripheral hardware. The shared characteristics of the USB place USB System Software between the client
and its device; that is, a client cannot directly access the device's hardware.

277

PA_0001487

Universal Serial Bus Specification Revision 2.0

Overall, the host layers provide the following capabilities:

• Detecting the attachment and removal of USB devices

• Managing USB standard control flow between the host and USB devices

• Managing data flow between the host and USB devices

• Collecting status and activity statistics

• Controlling the electrical interface between the Host Controller and USB devices, including the
provision of a limited amount of power

The following sections describe these responsibilities and the requirements placed on the USBDI in greater
detail. The actual interfaces used for a specific combination of host platform and operating system are
described in the appropriate operating system environment guide.

All hubs (see Chapter 11) report internal status changes and their port change status via the status change
pipe. This includes a notification of when a USB device is attached to or removed from one of their ports.
A USBD client generically known as the hub driver receives these notifications as owner of the hub's
Status Change pipe. For device attachments, the hub driver then initiates the device configuration process.
In some systems, this hub driver is a part of the host software provided by the operating system for
managing devices.

10.1.2 Control Mechanisms
Control information may be passed between the host and a USB device using in-band or out-of-band
signaling. In-band signaling mixes control information with data in a pipe outside the awareness of the
host. Out-of-band signaling places control information in a separate pipe.

There is a message pipe called the default pipe for each attached USB device. This logical association
between a host and a USB device is used for USB standard control flow such as device enumeration and
configuration. The default pipe provides a standard interface to all USB devices. The default pipe may
also be used for device-specific communications, as mediated by the USBD, which owns the default pipes
of all of the USB devices.

A particular USB device may allow the use of additional message pipes to transfer device-specific control
information. These pipes use the same communications protocol as the default pipe, but the information
transferred is specific to the USB device and is not standardized by the USB Specification.

The USBD supports the sharing of the default pipe, which it owns and uses, with its clients. It also
provides access to any other control pipes associated with the device.

10.1.3 Data Flow

278

The Host Controller is responsible for transferring streams of data between the host and USB devices.
These data transfers are treated as a continuous stream of bytes. The USB supports four basic types of data
transfers:

• Control transfers

• Isochronous transfers

• Interrupt transfers

• Bulk transfers

For additional information on transfer types, refer to Chapter 5.

Each device presents one or more interfaces that a client may use to communicate with the device. Each
interface is composed of zero or more pipes that individually transfer data between the client and a
particular endpoint on the device. The USBD establishes interfaces and pipes at the explicit request of the
Host Software. The Host Controller provides service based on parameters provided by the Host Software
when the configuration request is made.

PA_0001488

Universal Serial Bus Specification Revision 2.0

A pipe has several characteristics based on the delivery requirements of the data to be transferred.
Examples of these characteristics include the following:

• The rate at which data needs to be transferred

• Whether data is provided at a steady rate or sporadically

• How long data may be delayed before delivery

• Whether the loss of data being transferred is catastrophic

A USB device endpoint describes the characteristics required for a specific pipe. Endpoints are described
as part of a USB device's characterization information. For additional details, refer to Chapter 9.

10.1.4 Collecting Status and Activity Statistics
As a common communicant for all control and data transfers between the host and USB devices, the USB
System and the Host Controller are well-positioned to track status and activity information. Such
information is provided upon request to the Host Software, allowing that software to manage status and
activity information. This specification does not identify any specific information that should be tracked or
require any particular format for reporting activity and status information.

10.1.5 Electrical Interface Considerations
The host provides power to USB devices attached to the root hub. The amount of power provided by a port
is specified in Chapter 7.

10.2 Host Controller Requirements
In all implementations, Host Controllers perform the same basic duties with regard to the USB and its
attached devices. These basic duties are described below.

The Host Controller has requirements from both the host and the USB. The following is a brief overview
of the functionality provided. Each capability is discussed in detail in subsequent sections.

State Handling

Serializer/Deserializer

(micro)frame Generation

Data Processing

Protocol Engine

Transmission Error
Handling

Remote Wakeup

As a component of the host, the Host Controller reports and manages
its states.

For data transmitted from the host, the Host Controller converts
protocol and data information from its native format to a bit stream
transmitted on the USB. For data being received into the host, the
reverse operation is performed.

The Host Controller produces SOF tokens at a period of 1 ms when
operating with full-speed devices, and at a period of 125 ~ts when
operating with high-speed devices.

The Host Controller processes requests for data transmission to and
from the host.

The Host Controller supports the protocol specified by the USB.

All Host Controllers exhibit the same behavior when detecting and
reacting to the defined error categories.

All Host Controllers must have the ability to place the bus into the
Suspended state and to respond to bus wakeup events.

279

PA_0001489

Root Hub

Host System Interface

Universal Serial Bus Specification Revision 2.0

The root hub provides standard hub function to link the Host
Controller to one or more USB ports.

Provides a high-speed data path between the Host Controller and host
system.

The following sections present a more detailed discussion of the required capabilities of the Host
Controller.

10.2.1 State Handling
The Host Controller has a series of states that the USB System manages. Additionally, the Host Controller
provides the interface to the following two areas ofUSB-relevant state:

• State change propagation

• Root hub

The root hub presents to the hub driver the same standard states as other USB devices. The Host Controller
supports these states and their transitions for the hub. For detailed discussions ofUSB states, including
their interrelations and transitions, refer to Chapter 9.

The overall state of the Host Controller is inextricably linked with that of the root hub and of the overall
USB. Any Host Controller state changes that are visible to attached devices must be reflected in the
corresponding device state change information such that the resulting Host Controller and device states are
consistent.

USB devices request a wakeup through the use of resume signaling (refer to Chapter 7). The Host
Controller must notify the rest of the host of a resume event through a mechanism or mechanisms specific
to that system's implementation. The Host Controller itself may cause a resume event through the same
signaling method.

10.2.2 Serializer/Deserializer
The actual transmission of data across the physical USB takes places as a serial bit stream. A Serial
Interface Engine (SIE), whether implemented as part of the host or a USB device, handles the serialization
and deserialization ofUSB transmissions. On the host, this SIE is part of the Host Controller.

10.2.3 Frame and Microframe Generation

280

It is the Host Controller's responsibility to partition USB time into quantities called "frames" when
operating with full-speed devices, and "microframes" when operating with high-speed devices. Frames and
microframes are created by the Host Controller through issuing Start-of-Frame (SOF) tokens as shown in
Figure 10-3. The SOF token is the first transmission in the (micro)frame period. Host controllers operating
with high-speed devices generate SOF tokens at 125 µs intervals. Host controllers operating with full
speed devices generate SOF tokens at 1.00 ms intervals. After issuing an SOF token, the Host Controller is
free to transmit other transactions for the remainder of the (micro)frame period. When the Host Controller
is in its normal operating state, SOF tokens must be continuously generated at appropriate periodic rate,
regardless of other bus activity or lack thereof. If the Host Controller enters a state where it is not
providing power on the bus, it must not generate SOFs. When the Host Controller is not generating SOFs,
it may enter a power-reduced state.

PA_0001490

Universal Serial Bus Specification Revision 2.0

(micro)frame N-1 (micro)frame N micro frame N+1

V
EOF Interval (micro)frame N-1) EOF Interval (micro)frame N) EOF Interval (micro)frame N+1)

Figure 10-3. Frame and Microframe Creation

The SOF token holds the highest priority access to the bus. Babble circuitry in hubs electrically isolates
any active transmitters during the End-of-microframe or End-of-Frame (EOF) interval, providing an idle
bus for the SOF transmission.

The Host Controller maintains the current (micro)frame number that may be read by the USB System.

The following apply to the current (micro)frame number maintained by the host:

• Used to uniquely identify one (micro)frame from another

• Incremented at the end of every (micro)frame period

• Valid through the subsequent (micro)frame

Host controllers operating with full-speed devices maintain a current frame number (at least 11 bits) that
increments at a 1 ms period. The host transmits the lower 11 bits of the current frame number in each SOF
token transmission.

Host controllers operating with high-speed devices maintain a current microframe number (at least 14 bits)
that increments at a 125 µs period. The host transmits bits 3 through 13 of the current microframe number
in each SOF token transmission. This results in the same SOF packet value being transmitted for eight
consecutive microframes before the SOF packet value increments.

When requested from the Host Controller, the current (micro)frame number is the (micro)frame number in
existence at the time the request was fulfilled. The current (micro)frame number as returned by the host
(Host Controller or HCD) is at least 32 bits, although the Host Controller itself is not required to maintain
more than 11 bits when operating with full-speed devices or 14 bits when operating with high-speed
devices.

The Host Controller shall cease transmission during the EOF interval. When the EOF interval begins, any
transactions scheduled specifically for the (micro)frame that has just passed are retired. If the Host
Controller is executing a transaction at the time the EOF interval is encountered, the Host Controller
terminates the transaction.

10.2.4 Data Processing
The Host Controller is responsible for receiving data from the USB System and sending it to the USB and
for receiving data from the USB and sending it to the USB System. The particular format used for the data
c01mnunications between the USB System and the Host Controller is implementation specific, within the
rules for transfer behavior described in Chapter 5.

10.2.5 Protocol Engine
The Host Controller manages the USB protocol level interface. It inserts the appropriate protocol
information for outgoing transmissions. It also strips and interprets, as appropriate, the incoming protocol
information.

281

PA_0001491

Universal Serial Bus Specification Revision 2.0

10.2.6 Transmission Error Handling
The Host Controller must be capable of detecting the following transmission error conditions, which are
defined from the host's point of view:

• Timeout conditions after a host-transmitted token or packet. These errors occur when the addressed
endpoint is umesponsive or when the structure of the transmission is so badly damaged that the
targeted endpoint does not recognize it.

• Data errors resulting in missing or invalid transmissions:

The Host Controller is unable to completely send or receive a packet for host specific reasons, for
example, a transmission extending beyond EOF or a lack of resources available to the Host
Controller.

An invalid CRC field on a received data packet.

• Protocol errors:

An invalid handshake PID, such as a malformed or inappropriate handshake

A false EOP

A bit stuffing error

For each bulk, control, and interrupt transaction, the host must maintain an error count tally. Errors result
from the conditions described above, not as a result of an endpoint NAKing a request. This value reflects
the number of times the transaction has encountered a transmission error. It is recommended that the error
count not be incremented when there was an error due to host specific reasons (buffer underrun or overrun),
and that whenever a transaction does not encounter a transmission error, the error count is reset to zero.

If the error count for a given transaction reaches three, the host retires the transfer. When a transfer is
retired due to excessive errors, the last error type must be indicated. Isochronous transactions are attempted
only once, regardless of outcome, and, therefore, no error count is maintained for this type.

10.2.7 Remote Wakeup
IfUSB System wishes to place the bus in the Suspended state, it commands the Host Controller to stop all
bus traffic, including SOFs. This causes all USB devices to enter the Suspended state. In this state, the
USB System may enable the Host Controller to respond to bus wakeup events. This allows the Host
Controller to respond to bus wakeup signaling to restart the host system.

10.2.8 Root Hub
The root hub provides the connection between the Host Controller and one or more USB ports. The root
hub provides the same functionality for dealing with USB topology as other hubs (see Chapter 11), except
that the hardware and software interface between the root hub and the Host Controller is defined by the
specific hardware implementation.

10.2.8.1 Port Resets

282

Section 7.1. 7.5 describes the requirements of a hub to ensure all upstream resume attempts are
overpowered with a long reset downstream. Root hubs must provide an aggregate reset period of at least
50 ms. If the reset duration is controlled in hardware and the hardware timer is <50 ms, the USB System
can issue several consecutive resets to accumulate the specified reset duration as described in
Section 7 .1. 7.5.

PA_0001492

Universal Serial Bus Specification Revision 2.0

10.2.9 Host System Interface
The Host Controller provides a high-speed bus-mastering interface to and from main system memory. The
physical transfer between memory and the USB wire is performed automatically by the Host Controller.
When data buffers need to be filled or emptied, the Host Controller informs the USB System.

10.3 Overview of Software Mechanisms
The HCD and the USBD present software interfaces based on different levels of abstraction. They are,
however, expected to operate together in a specified manner to satisfy the overall requirements of the USB
System (see Figure 10-2). The requirements for the USB System are expressed primarily as requirements
for the USBDI. The division of duties between the USBD and the HCD is not defined. However, the one
requirement of the HCDI that must be met is that it supports, in the specified operating system context,
multiple Host Controller implementations.

The HCD provides an abstraction of the Host Controller and an abstraction of the Host Controller's view of
data transfer across the USB. The USBD provides an abstraction of the USB device and of the data
transfers between the client of the USBD and the function on the USB device. Overall, the USB System
acts as a facilitator for transmitting data between the client and the function and as a control point for the
USE-specific interfaces of the USB device. As part of facilitating data transfer, the USB System provides
buffer management capabilities and allows the synchronization of the data transmittal to the needs of the
client and the function.

The specific requirements for the USBDI are described later in this chapter. The exact functions that fulfill
these requirements are described in the relevant operating system environment guide for the HCDI and the
USBDI. The procedures involved in accomplishing data transfers via the USBDI are described in the
following sections.

10.3.1 Device Configuration
Different operating system environments perform device configuration using different software
components and different sequences of events. The USB System does not assume a specific operating
system method. However, there are some basic requirements that must be fulfilled by any USB System
implementation. In some operating systems, existing host software provides these requirements. In others,
the USB System provides the capabilities.

The USB System assumes a specialized client of the USBD, called a hub driver, that acts as a
clearinghouse for the addition and removal of devices from a particular hub. Once the hub driver receives
such notifications, it will employ additional host software and other USBD clients, in an operating system
specific manner, to recognize and configure the device. This model, shown in Figure 10-4, is the basis of
the following discussion.

283

PA_0001493

284

Universal Serial Bus Specification Revision 2.0

Optional
Component

....,. Configuration
Control

~ Optional
Configuration
Control

Device
Driver

,

~
Host Softwar e

n Configuratio
Support

t
Hub

Driver

l
USBD

•

' '

HCD

Figure 10-4. Configuration Interactions

When a device is attached, the hub driver receives a notification from the hub detecting the change. The
hub d1iver, using the information provided by the hub, requests a device identifier from the USBD. The
USBD in tum sets up the default pipe for that device and returns a device identifier to the hub driver.

The device is now ready to be configured for use. For each device, there are three configurations that must
be complete before that device is ready for use:

1. Device Configuration: This includes setting up all of the device's USB parameters and allocating all
USB host resources that are visible to the device. This is accomplished by setting the configuration
value on the device. A limited set of configuration changes, such as alternate settings, is allowed
without totally reconfiguring the device. Once the device is configured, it is, from its point of view,
ready for use.

2. USB Configuration: In order to actually create a USBD pipe ready for use by a client, additional USB
information, not visible to the device, must be specified by the client. This information, known as the
Policy for the pipe, describes how the client will use the pipe. This includes such items as the
maximum amount of data the client will transfer with one IRP, the maximum service interval the client
will use, the client's notification identification, and so on.

3. Function Configuration: Once configuration types 1 and 2 have been accomplished, the pipe is
completely ready for use from the USB 's point of view. However, additional vendor- or class-specific
setup may be required before the client can actually use the pipe. This configuration is a private matter
between the device and the client and is not standardized by the USBD.

PA_0001494

Universal Serial Bus Specification Revision 2.0

The following paragraphs describe the device and USB configuration requirements.

The responsible configuring software performs the actual device configuration. Depending on the
particular operating system implementation, the software responsible for configuration can include the
following:

• The hub driver

• Other host software

• A device driver

The configuring software first reads the device descriptor, then requests the description for each possible
configuration. It may use the information provided to load a particular client, such as a device driver,
which initially interacts with the device. The configuring software, perhaps with input from that device
driver, chooses a configuration for the device. Setting the device configuration sets up all of the endpoints
on the device and returns a collection of interfaces to be used for data transfer by USBD clients. Each
interface is a collection of pipes owned by a single client.

This initial configuration uses the default settings for interfaces and the default bandwidth for each
endpoint. A USBD implementation may additionally allow the client to specify alternate interfaces when
selecting the initial configuration. The USB System will verify that the resources required for the support
of the endpoint are available and, if so, will allocate the bandwidth required. Refer to Section 10.3.2 for a
discussion of resource management.

The device is now configured, but the created pipes are not yet ready for use. The USB configuration is
accomplished when the client initializes each pipe by setting a Policy to specify how it will interact with
the pipe. Among the information specified is the client's maximum service interval and notification
information. Among the actions taken by the USB System, as a result of setting the Policy, is determining
the amount of buffer working space required beyond the data buffer space provided by the client. The size
of the buffers required is based upon the usage chosen by the client and upon the per-transfer needs of the
USB System.

The client receives notifications when IRPs complete, successfully or due to errors. The client may also
wake up independently ofUSB notification to check the status of pending IRPs.

The client may also choose to make configuration modifications, such as enabling an alternate setting for
an interface or changing the bandwidth allocated to a paiiicular pipe. In order to perform these changes,
the interface or pipe, respectively, must be idle.

10.3.2 Resource Management
Whenever a pipe is setup by the USBD for a given endpoint, the USB System must determine ifit can
support the pipe. The USB System makes this determination based on the requirements stated in the
endpoint descriptor. One of the endpoint requirements, which must be supported in order to create a pipe
for an endpoint, is the bandwidth necessary for that endpoint's transfers. There are two stages to check for
available bandwidth. First the maximum execution time for a transaction is calculated. Then the
(micro)frame schedule is consulted to determine if the indicated transaction will fit.

The allocation of the guaranteed bandwidth for isochronous and interrupt pipes, and the determination of
whether a particular control or bulk transaction will fit into a given (micro)frame, can be determined by a
software heuristic in the USB System. If the actual transaction execution time in the Host Controller
exceeds the heuristically determined value, the Host Controller is responsible for ensuring that
(micro)frame integrity is maintained (refer to Section 10.2.3). The following discussion describes the
requirements for the USB System heuristic.

285

PA_0001495

Universal Serial Bus Specification Revision 2.0

In order to determine if bandwidth can be allocated, or if a transaction can be fit into a particular
(micro)frame, the maximum transaction execution time must be calculated. The calculation of the
maximum transaction execution time requires that the following information be provided: (Note that an
agent other than the client may provide some of this information.)

• Number of data bytes (wMaxPacketSize) to be transmitted.

• Transfer type.

• Depth in the topology. If less precision is allowed, the maximum topology depth may be assumed.

This calculation must include the bit transmission time, the signal propagation delay through the topology,
and any implementation-specific delays, such as preparation or recovery time required by the Host
Controller itself. Refer to Chapter 5 for examples of formulas that can be used for such calculations.

10.3.3 Data Transfers
The basis for all client-function communication is the interface: a bundle of related pipes associated with a
paiticular USB device.

Exactly one client on the host manages a given interface. The client initializes each pipe of an interface by
setting the Policy for that pipe. This includes the maximum amount of data to be transmitted per IRP and
the maximum service interval for the pipe. A service interval is stated in milliseconds and describes the
interval over which an IRP's data will be transmitted for an isochronous pipe. It describes the polling
interval for an interrupt pipe. The client is notified when a specified request is completed. The client
manages the size of each IRP such that its duty cycle and latency constraints are maintained. Additional
Policy information includes the notification information for the client.

The client provides the buffer space required to hold the transmitted data. The USB System uses the Policy
to determine the additional working space it will require.

The client views its data as a contiguous serial stream, which it manages in a similar manner to those
streams provided over other types of bus technologies. Internally, the USB System may, depending on its
own Policy and any Host Controller constraints, break the client request down into smaller requests to be
sent across the USB. However, two requirements must be met whenever the USB System chooses to
undertake such division:

• The division of the data stream into smaller chunks is not visible to the client.

• USB samples are not split across bus transactions.

When a client wishes to transfer data, it will send an IRP to the USBD. Depending on the direction of data
transfer, a full or empty data buffer will be provided. When the request is complete (successfully or due to
an error condition), the IRP and its status is returned to the client. Where relevant, this status is also
provided on a per-transaction basis.

10.3.4 Common Data Definitions

286

In order to allow the client to receive request results as directly as possible from its device, it is desirable to
minimize the amount of processing and copying required between the device and the client. To facilitate
this, some control aspects of the IRP are standardized such that different layers in the stack may directly
use the information provided by the client. The particular format for this data is dependent on the
actualization of the USBDI in the operating system. Some data elements may in fact not be directly visible
to the client at all but are generated as a result of the client request.

PA_0001496

Universal Serial Bus Specification Revision 2.0

The following data elements define the relevant information for a request:

• Identification of the pipe associated with the request. Identifying this pipe also describes information
such as transfer type for this request.

• Notification identification for the partiCLllar client.

• Location and length of data buffer that is to be transmitted or received.

• Completion status for the request. Both the summary status and, as required, detailed per-transaction
status must be provided.

• Location and length of working space. This is implementation-dependent.

The actual mechanisms used to communicate requests to the USBD are operating system-specific.
However, beyond the requirements stated above for what request-related information must be available,
there are also requirements on how requests will be processed. The basic requirements are described in
Chapter 5. Additionally, the USBD provides a mechanism to designate a group of isochronous lRPs for
which the transmission of the first transaction of each IRP will occur in the same (micro)frame. The USBD
also provides a mechanism for designating an uninterruptable set of vendor- or class-specific requests to a
default pipe. No other requests to that default pipe, including standard, class, or vendor request may be
inserted in the execution flow for such an uninterruptable set. If any request in this set fails, the entire set is
retired.

10.4 Host Controller Driver
The Host Controller Driver (HCD) is an abstraction of Host Controller hardware and the Host Controller's
view of data transmission over the USB. The HCDT meets the following requirements :

• Provides an abstraction of the Host Controller hardware.

• Provides an abstraction for data transfers by the Host Controller across the USB interconnect.

• Provides an abstraction for the allocation (and de-allocation) of Host Controller resources to support
guaranteed service to USB devices.

• Presents the root hub and its behavior according to the hub class definition. This includes supporting
the root hub such that the hub driver interacts with the root hub exactly as it would for any hub. In
paiticular, even though a root hub can be implemented in a combination of hardware and software, the
root hub responds initially to the default device address (from a client perspective), returns descriptor
information, supports having its device address set, and supports the other hub class requests.
However, bus transactions may or may not need to be generated to accomplish this behavior given the
close integration possible between the Host Controller and the root hub.

The HCD provides a software interface (HCDI) that implements the required abstractions. The function of
the HCD is to provide an abstraction, which hides the details of the Host Controller hardware. Below the
Host Controller hardware is the physical USB and all the attached USB devices .

The HCD is the lowest tier in the USB software stack. The HCD has only one client: the Universal Serial
Bus Driver (USBD). The USBD maps requests from many clients to the appropriate HCD. A given HCD
may manage many Host Controllers.

The HCDI is not directly accessible from a client. Therefore, the specific interface requirements for the
HCDI are not discussed here.

10.5 Universal Serial Bus Driver
The USBD provides a collection of mechanisms that operating system components, typically device
drivers, use to access USB devices. The only access to a USB device is that provided by the USBD. The
USBD implementations are operating system-specific. The mechanisms provided by the USBD are
implemented, using as appropriate and augmenting as necessary, the mechanisms provided by the operating
system environment in which the USB runs. The following discussion centers on the basic capabilities

287

PA_0001497

Universal Serial Bus Specification Revision 2.0

required for all USBD implementations. For specifics of the USBD operation within a specific
environment, see the relevant operating system environment guide for the USBD. A single instance of the
USBD directs accesses to one or more HCDs that in turn connect to one or more Host Controllers. If
allowed, how USBD instancing is managed is dependent upon the operating system environment.
However, from the client's point of view, the USBD with which the client communicates manages all of
the attached USB devices.

10.5.1 USBD Overview
Clients ofUSBD direct commands to devices or move streams of data to or from pipes. The USBD
presents two groups of software mechanisms to clients: command mechanisms and pipe mechanisms.

Command mechanisms allow clients to configure and control USBD operation as well as to configure and
generically control a USB device. In particular, command mechanisms provide all access to the device's
default pipe.

Pipe mechanisms allow a USBD client to manage device specific data and control transfers. Pipe
mechanisms do not allow a client to directly address the device's default pipe.

Figure 10-5 presents an overview of the USBD structure.

Message
and · (Hub)

~ ·-/
(/) .

: C i

- ~
: I-

c
Q)

E

Services

ctl
ro
0
Q)

Host
Controller

Driver

USB Host
Controller

Q)
u

·;;:
Q)

0
"'O
C

e
c
0

CJ

Host
Controller

Driver

Figure 10-5. Universal Serial Bus Driver Structure

10.5.1.1 USBD Initialization

288

Specific USBD initialization is operating system-dependent. When a particular USB managed by USBD is
initialized, the management information for that USB is also created. Part of this management information
is the default address device and its default pipe used to communicate to a newly reset device.

When a device is attached to a USB, it responds to a special address known as the default address (refer to
Chapter 9) until its unique address is assigned by the bus enumerator. In order for the USB System to
interact with the new device, the default device address and the device's default pipe must be available to
the hub driver when a device is attached. During device initialization, the default address is changed to a
unique address.

PA_0001498

Universal Serial Bus Specification Revision 2.0

10.5.1.2 USBD Pipe Usage
Pipes are the method by which a device endpoint is associated with a Host Software entity. Pipes are
owned by exactly one such entity on the host. Although the basic concept of a pipe is the same no matter
who the owner, some distinction of capabilities provided to the USBD client occurs between two groups of
pipes:

• Default pipes, which are owned and managed by the USBD

• All other pipes, which are owned and managed by clients of the USBD

Default pipes are never directly accessed by clients , although they are often used to fulfill some part of
client requests relayed via command mechanisms.

10.5.1.2.1 Default Pipes
The USBD is responsible for allocating and managing appropriate buffering to support transfers on the
default pipe that are not directly visible to the client such as setting a device address . For those transfers
that are directly visible to the client, such as sending vendor and class commands or reading a device
descriptor, the client must provide the required buffering.

10.5.1.2.2 Client Pipes
Any pipe not owned and managed by the USBD can be owned and managed by a USBD client. From the
USBD viewpoint, a single client owns the pipe. In fact, a cooperative group of clients can manage the pipe,
provided they behave as a single coordinated entity when using the pipe.

The client is responsible for providing the amount of buffering it needs to service the data transfer rate of
the pipe within a service interval attainable by the client. Additional buffering requirements for working
space are specified by the USB System.

10.5.1.3 USBD Service Capabilities
The USBD provides services in the following categories:

• Configuration via command mechanisms

• Transfer services via both command and pipe mechanisms

• Event notification

• Status reporting and error recovery

10.5.2 USBD Command Mechanism Requirements
USBD command mechanisms allow a client generic access to a USB device. Generally, these commands
allow the client to make read or write accesses to one of potentially several device data and control spaces.
The client provides as little as a device identifier and the relevant data or empty buffer pointer.

USBD command transfers do not require that the USB device be configured. Many of the device
configuration facilities provided by the USBD are command transfers .

Following are the specific requirements on the command mechanisms provided.

10.5.2.1 Interface State Control
USBD clients must be able to set a specified interface to any settable pipe state. Setting an interface state
results in all of the pipes in that interface moving to that state. Additionally, all of the pipes in an interface
may be reset or aborted.

289

PA_0001499

Universal Serial Bus Specification Revision 2.0

10.5.2.2 Pipe State Control
USBD pipe state has two components:

• Host status

• Reflected endpoint status

Whenever the pipe status is reported, the value for both components will be identified. The pipe status
reflected from the endpoint is the result of the endpoint being in a particular state. The USBD client
manages the pipe state as reported by the USBD. For any pipe state reflected from the endpoint, the client
must also interact with the endpoint to change the state.

A USBD pipe is in exactly one of the following states:

• Active: The pipe's Policy has been set and the pipe is able to transmit data. The client can query as to
whether any IRPs are outstanding for a particular pipe. Pipes for which there are no outstanding IRPs
are still considered to be in the Active state as long as they are able to accept new IRPs.

• Halted: An error has occurred on the pipe. This state may also be a reflection of the corresponding
Halted endpoint on the device.

A pipe and endpoint are considered active when the device is configured and the pipe and/or endpoint is
not stalled. Clients may manipulate pipe state in the following ways:

• Aborting a Pipe: All of the IRPs scheduled for a pipe are retired immediately and returned to the client
with a status indicating they have been aborted. Neither the host state nor the reflected endpoint state
of the pipe is affected.

• Resetting a Pipe: The pipe's IRPs are aborted. The host state is moved to Active. If the reflected
endpoint state needs to be changed, that must be commanded explicitly by the USBD client.

• Clearing a Halted pipe: The pipe's state is cleared from Halted to Active.

• Halting a Pipe: The pipe's state is set to Halted.

10.5.2.3 Getting Descriptors
The USBDI must provide a mechanism to retrieve standard device, configuration, and string descriptors, as
well as any class- or vendor-specific descriptors.

10.5.2.4 Getting Current Configuration Settings

290

The USBDI must provide a facility to return, for any specified device, the current configuration descriptor.
If the device is not configured, no configuration descriptor is returned. This action is equivalent to
returning the configuration descriptor for the current configuration by requesting the specific configuration
descriptor. It does not, however, require the client to know the identifier for the current configuration.
This will return all of the configuration information, including the following:

• All of the configuration descriptor information as stored on the device, including all of the alternate
settings for all of the interfaces

• lndicators for which of the alternate settings for interfaces are active

• Pipe handles for endpoints in the active alternate settings for interfaces

• Actual wMaxPacketSize values for endpoints in the active alternate settings for interfaces

Additionally, for any specified pipe, the USBDI must provide a facility to return the wMaxPacketSize that
is currently being used by the pipe.

PA_0001500

Universal Serial Bus Specification Revision 2.0

10.5.2.5 Adding Devices
The USBDI must provide a mechanism for the hub driver to inform USBD of the addition of a new device
to a specified USB and to retrieve the USBD ID of the new USB device. The USBD tasks include
assigning the device address and preparing the device's default pipe for use.

10.5.2.6 Removing Devices
The USBDI must provide a facility for the hub driver to inform the USBD that a specific device has been
removed.

10.5.2.7 Managing Status
The USBDI must provide a mechanism for obtaining and clearing device-based status on a device,
interface, or pipe basis.

10.5.2.8 Sending Class Commands
This USBDI mechanism is used by a client, typically a class-specific or adaptive driver, to send one or
more class-specific commands to a device.

10.5.2.9 Sending Vendor Commands
This USBDI mechanism is used by a client to send one or more vendor-specific commands to a device.

10.5.2.10 Establishing Alternate Settings
The USBDI must provide a mechanism to change the alternate setting for a specified interface. As a result,
the pipe handles for the previous setting are released and new pipe handles for the interface are returned.
For this request to succeed, the interface must be idle; i.e., no data buffers may be queued for any pipes in
the interface.

10.5.2.11 Establishing a Configuration
Configuring software requests a configuration by passing a buffer containing the configuration information
to the USBD. The USBD requests resources for the endpoints in the configuration, and if all resource
requests succeed, the USBD sets the device configuration and returns interface handles with corresponding
pipe handles for all of the active endpoints. The default values are used for all alternate settings for
interfaces.

Note: The interface implementing the configuration may require specific alternate settings to be identified.

10.5.2.12 Setting Descriptors
For devices supporting this behavior, the USBDI allows existing descriptors to be updated or new
descriptors to be added.

10.5.3 USBD Pipe Mechanisms
This part of the USBDI offers clients the highest-speed, lowest overhead data transfer services possible.
Higher performance is achieved by shifting some pipe management responsibilities from the USBD to the
client. As a result, the pipe mechanisms are implemented at a more primitive level than the data transfer
services provided by the USBD command mechanisms. Pipe mechanisms do not allow access to a device's
default pipe.

USBD pipe transfers are available only after both the device and USB configuration have completed
successfully. At the time the device is configured, the USBD requests the resources required to support all

291

PA_0001501

Universal Serial Bus Specification Revision 2.0

device pipes in the configuration. Clients are allowed to modify the configuration, constrained by whether
the specified interface or pipe is idle.

Clients provide full buffers to outgoing pipes and retrieve transfer status information following the
completion of a request. The transfer status returned for an outgoing pipe allows the client to determine the
success or failure of the transfer.

Clients provide empty buffers to incoming pipes and retrieve the filled buffers and transfer status
information from incoming pipes following the completion of a request. The transfer status returned for an
incoming pipe allows a client to determine the amount and the quality of the data received.

10.5.3.1 Supported Pipe Types
The four types of pipes supported, based on the four transfer types, are described in the following sections.

10.5.3.1.1 Isochronous Data Transfers
Each buffer queued for an isochronous pipe is required to be viewable as a stream of samples. As with all
pipe transfers, the client establishes a Policy for using this isochronous pipe, including the relevant service
interval for this client. Lost or missing bytes, which are detected on input, and transmission problems,
which are noted on output, are indicated to the client.

The client queues a first buffer, starting the pipe streaming service. To maintain the continuous streaming
transfer model used in all isochronous transfers, the client queues an additional buffer before the current
buffer is retired.

The USBD is required to be able to provide a sample stream view of the client's data stream. In other
words, using the client's specified method of synchronization, the precise packetization of the data is
hidden from the client. Additionally, a given transaction is always contained completely within some client
data buffer.

For an output pipe, the client provides a buffer of data. The USBD allocates the data across the
(micro)frames for the service period using the client's chosen method of synchronization.

For an input pipe, the client must provide an empty buffer large enough to hold the maximum number of
bytes the client's device will deliver in the service period. Where missing or invalid bytes are indicated,
the USBD may leave the space that the bytes would have occupied in place in the buffer and identify the
error. One of the consequences of using no synchronization method is that this reserved space is assumed
to be the maximum packet size. The buffer-retired notification occurs when the IRP completes. Note that
the input buffer need not be full when returned to the client.

The USBD may optionally provide additional views of isochronous data streams. The USBD is also
required to be able to provide a packet stream view of the client's data stream.

10.5.3.1.2 Interrupt Transfers
The Interrupt out transfer originates in the client of the USBD and is delivered to the USB device. The
Interrupt in transfer originates in a USB device and is delivered to a client of the USBD. The USB System
guarantees that the transfers meet the maximum latency specified by the USB endpoint descriptor.

The client queues a buffer large enough to hold the interrupt transfer data (typically a single USB
transaction). When all of the data is transferred, or if the error threshold is exceeded, the IRP is returned to
the client.

10.5.3.1.3 Bulk Transfers

292

Bulk transfers may originate either from the device or the client. No periodicity or guaranteed latency is
assumed. When all of the data is transferred, or if the error threshold is exceeded, the IRP is returned to the
client.

PA_0001502

Universal Serial Bus Specification Revision 2.0

10.5.3.1.4 Control Transfers
All message pipes transfer data in both directions. In all cases, the client outputs a setup stage to the device
endpoint. The optional data stage may be either input or output and the final status is always logically
presented to the host. For details of the defined message protocol, refer to Chapter 8.

The client prepares a buffer specifying the command phase and any optional data or empty buffer space.
The client receives a buffer-retired notification when all phases of the control transfer are complete, or an
error notification, if the transfer is aborted due to transmission error.

10.5.3.2 USBD Pipe Mechanism Requirements
The following pipe mechanisms are provided.

10.5.3.2.1 Aborting IRPs
The USBDI must allow IRPs for a particular pipe to be aborted.

10.5.3.2.2 Managing Pipe Policy
The USBDI must allow a client to set and clear the Policy for an individual pipe or for an entire interface.
Any IRPs made by the client prior to successfully setting a Policy are rejected by the USBD.

10.5.3.2.3 Queuing IRPs
The USBDI must allow clients to queue IRPs for a given pipe. When IRPs are returned to the client, the
request status is also returned. A mechanism is provided by the USBD to identify a group of isochronous
IRPs whose first transactions will all occur in the same (micro)frame.

10.5.4 Managing the USB via the USBD Mechanisms
Using the provided USBD mechanisms, the following general capabilities are supported by any USB
System.

10.5.4.1 Configuration Services
Configuration services operate on a per-device basis . The configuring software tells the USBD when to
perform device configuration. A hub driver has a special role in device management and provides at least
the following capabilities:

• Device attach/detach recognition, driven by an interrupt pipe owned by the hub driver

• Device reset, accomplished by the hub driver by resetting the hub port upstream of the device

• Tells the USBD to perform device address assignment

• Power control

The USBDI additionally provides the following configuration facilities, which may be used by the hub
driver or other configuring software available on the host:

• Device identification and access to configuration information (via access to descriptors on the device)

• Device configuration via command mechanisms

When the hub driver informs the USBD of a device attachment, the USBD establishes the default pipe for
the new device.

293

PA_0001503

Universal Serial Bus Specification Revision 2.0

10.5.4.1.1 Configuration Management
Configuration management services are provided primarily as a set of specific interface commands that
generate USB transactions on the default pipe. The notable exception is the use of an additional interrupt
pipe that delivers hub status directly to the hub driver.

Every hub initiates an interrupt transfer when there is a change in the state of one of the hub ports.
Generally, the port state change will be the connection or removal of a downstream USB device. (Refer to
Chapter 11 for more information.)

10.5.4.1.2 Initial Device Configuration
The device configuration process begins when a hub reports, via its status change pipe, the connection of a
new USB device.

Configuration management services allow configuring software to select a USB device configuration from
the set of configurations listed in the device. The USBD verifies that adequate power is available and the
data transfer rates given for all endpoints in the configuration do not exceed the capabilities of the USB
with the current schedule before setting the device configuration.

10.5.4.1.3 Modifying a Device Configuration
Configuration management services allow configuring software to replace a USB device configuration with
another configuration from the set of configurations listed in the device . The operation succeeds if
adequate power is available and the data transfer rates given for all endpoints in the new configuration fit
within the capabilities of the USB with the current schedule. If the new configuration is rejected, the
previous configuration remains.

Configuration management services allow configuring software to return a USB device to a Not
Configured state.

10.5.4.1.4 Device Removal
Error recovery and/or device removal processing begins when a hub reports via its status change pipe that
the USB device has been removed.

10.5.4.2 Power Control

294

There are two cooperating levels of power management for the USB: bus and device level management.
This specification provides mechanisms for managing power on the USB bus. Device classes may define
class-specific power control capabilities.

All USB devices must support the Suspended state (refer to Chapter 9). The device is placed into the
Suspended state via control of the hub port to which the device is attached. Nonnal device operation ceases
in the Suspend State; however, if the device is capable of wakeup signaling and the device is enabled for
remote wakeup, it may generate resume signaling in response to external events.

The power management system may transition a device to the Suspended state or power-off the device in
order to control and conserve power. The USB provides neither requirements nor commands for the device
state to be saved and restored across these transitions. Device classes may define class-specific device state
save-and-restore capabilities.

The USB System coordinates the interaction between device power states and the Suspended state.

It is recommended that while a device is not being used by the system (i.e. , no transactions are being
transmitted to or from the device besides SOF tokens), the device be suspended as soon as possible by
selectively suspending the port to which the device is attached. Suspending inactive devices reduces
reliability issues due to high currents passing through a transceiver operating in high-speed mode in the
presence of short circuit conditions described in Section 7 .1.1. Some of these short circuit conditions are
not detectable in the absence of transactions to the device. Suspending the unused device will place the

PA_0001504

Universal Serial Bus Specification Revision 2.0

transceiver interface into full-speed mode which has a greater reliability in the presence of short circuit
conditions.

10.5.4.3 Event Notifications
USBD clients receive several kinds of event notifications through a number of sources:

• Completion of an action initiated by a client.

• Inteil'upt transfers over stream pipes can deliver notice of device events directly to USBD clients. For
example, hubs use an inteil'upt pipe to deliver events coffesponding to changes in hub status.

• Event data can be embedded by devices in streams.

• Standard device interface commands, device class commands, vendor-specific commands, and even
general control transfers over message pipes can all be used to poll devices for event conditions.

10.5.4.4 Status Reporting and Error Recovery Services
The command and pipe mechanisms both provide status reporting on individual requests as they are
invoked and completed.

Additionally, USB device status is available to USBD clients using the command mechanisms.

The USBD provides clients with pipe effor recovery mechanisms by allowing pipes to be reset or aborted.

10.5.4.5 Managing Remote Wakeup Devices
The USB System can minimize the resume power consumption of a suspended USB tree. This is
accomplished by explicitly enabling devices capable ofresume signaling and controlling propagation of
resume signaling via selectively suspending and/or disabling hub ports between the device and the nearest
self-powered, awake hub.

In some eITor-recovery scenarios, the USB System will need to re-enumerate sub-trees. The sub-tree may
be partially or completely suspended. During effor-recovery, the USB System must avoid contention
between a device issuing resume signaling and simultaneously driving reset down the port. Avoidance is
accomplished via management of the devices' remote wakeup feature and the hubs' port features. The
rules are as follows:

• Issue a SetDeviceFeature(DEVICE _REMOTE_ WAKEUP) request to the leaf device, only just prior to
selectively suspending any port between where the device is connected and the root port (via a
SetPortFeature(PORT_SUSPEND) request).

• Do not reset a suspended port that has had a device enabled for remote wakeup without first enabling
that port.

• Verify that after a remote wakeup, the devices in the subtree affected by the remote wakeup are still
present. This will typically be done as part of determining which potential remote wakeup device was
the source of the wakeup. This should be done to ensure that a suspended device is not disconnected
(and possibly reconnected) or reset (e.g., by noise) during a suspend/resume process.

10.5.5 Passing USB Preboot Control to the Operating System
A single software driver owns the Host Controller. If the host system implements USB services before the
operating system loads, the Host Controller must provide a mechanism that disables access by the preboot
software and allows the operating system to gain control. Preboot USB configuration is not passed to the
operating system. Once the operating system gains control, it is responsible to fully configure the bus. If
the operating system provides a mechanism to pass control back to the preboot environment, the bus will be
in an unknown state. The preboot software should treat this event as a powerup.

295

PA_0001505

Universal Serial Bus Specification Revision 2.0

10.6 Operating System Environment Guides
As noted previously, the actual interfaces between the USB System and host software are specific to the host
platform and operating system. A companion specification is required for each combination of platform and
operating system with USB supp011. These specifications describe the specific interfaces used to integrate the
USB into the host. Each operating system provider for the USB System identifies a compatible Universal USB
Specification revision.

296

PA_0001506

Universal Serial Bus Specification Revision 2.0

Chapter 11
Hub Specification

This chapter describes the architectural requirements for the USH hub. lt contains a description of the three
principal sub-blocks: the Hub Repeater, the Hub Controller, and the Transaction Translator. The chapter
also describes the hub's operation for error recovery, reset, and suspend/resume. The second half of the
chapter defines hub request behavior and hub descriptors.

The hub specification supplies sufficient additional information to permit an implementer to design a hub
that conforms to the USB specification.

11.1 Overview
Hubs provide the electrical interface between USB devices and the host. Hubs are directly responsible for
supporting many of the attributes that make USB user friendly and hide its complexity from the user. Listed
below are the major aspects ofUSB functionality that hubs must support:

• Connectivity behavior

• Power management

• Device connect/disconnect detection

• Bus fault detection and recovery

• High-, full-, and low-speed device support

A hub consists of three components: the Hub Repeater, the Hub Controller, and the Transaction Translator.
The Hub Repeater is responsible for connectivity setup and tear-down. It also supports exception handling,
such as bus fault detection and recovery and connect/disconnect detect. The Hub Controller provides the
mechanism for host-to-hub communication. Hub-specific status and control commands permit the host to
configure a hub and to monitor and control its individual downstream facing ports. The Transaction
Translator responds to high-speed split transactions and translates them to full-/low-speed transactions with
full-/low-speed devices attached on downstream facing ports.

11.1.1 Hub Architecture
Figure 11-1 shows a hub and the locations of its upstream and downstream facing ports. A hub consists of a
Hub Repeater section, a Hub Controller section, and a Transaction Translator section. The hub must
operate at high-speed when its upstream facing port is connected at high-speed. The hub must operate at
full-speed when its upstream facing port is connected at full-speed.

The Hub Repeater is responsible for managing connectivity between upstream and downstream facing ports
which are operating at the same speed. The Hub Repeater supports full-/low-speed connectivity and high
speed connectivity. The Hub Controller provides status and control and permits host access to the hub. The
Transaction Translator takes high-speed split transactions and translates them to full-/low-speed transactions
when the hub is operating at high-speed and has full-/low-speed devices attached. The operating speed of a
device attached on a downstream facing port determines whether the Routing Logic connects a port to the
Transaction Translator or hub repeater sections.

297

PA_0001507

Universal Serial Bus Specification Revision 2.0

Port 0

Upstream Facing Port Upstream Facing Port State Machines

Transaction - Hub
Translator Repeater

Hub State
Machines

·················--Roµ~ing: Logic
····-· ·- :

.--
1
I

Port 1 Port 2
Downstream Facing Ports

Hub
Controlle

Port N

Figure 11-1. Hub Architecture

Downstream
Facing Port
State Machine(s)

When a hub's upstream facing port is attached to an electrical environment that is operating at full-/low
speed, the hub's high-speed functionality is disallowed. This means that the hub will only operate at full
/low-speed and the transaction translator and high-speed repeater will not operate. In this electrical
environment, the hub repeater must operate as a full-/low-speed repeater and the routing logic connects
ports to the hub repeater.

When the hub upstream facing port is attached to an electrical environment that is operating at high-speed,
the full-/low-speed hub repeater is not operational. In this electrical environment when a high-speed device
is attached on downstream facing port, the routing logic will connect the port to the hub repeater and the
hub repeater must operate as a high-speed repeater. In this case, when a full-/low-speed device is attached
on a downstream facing port, the routing logic must connect the port to the transaction translator.

11.1.2 Hub Connectivity
Hubs exhibit different connectivity behavior depending on whether they are propagating packet traffic, or
resume signaling, or are in the Idle state.

11.1.2.1 Packet Signaling Connectivity

298

The Hub Repeater contains one port that must always connect in the upstream direction (referred to as the
upstream facing port) and one or more downstream facing ports. Upstream connectivity is defined as being
towards the host, and downstream connectivity is defmed as being towards a device. Figure 11-2 shows the
packet signaling connectivity behavior for hubs in the upstream and downstream directions. A hub also has
an Idle state, during which the hub makes no connectivity. When in the Idle state, all of the hub's ports are
in the receive mode waiting for the stmi of the next packet.

PA_0001508

Universal Serial Bus Specification Revision 2.0

ownstream
Ports

Upstream
Port

Downstream
Connectivity

D Enabled Port

~ Port not Enabled

Upstream
Connectivity

Figure 11-2. Hub Signaling Connectivity

D
Idle

(No Connectivity)

If a downstream facing port is enabled (i.e., in a state where it can propagate signaling through the hub), and
the hub detects the start of a packet on that port, connectivity is established in an upstream direction to the
upstream facing port of that hub, but not to any other downstream facing p01is. This means that when a
device or a hub transmits a packet upstream, only those hubs in line between the transmitting device and the
host will see the packet. Refer to Section 11.8.3 for optional behavior when a hub detects simultaneous
upstream signaling on more than one port.

In the downstream direction, hubs operate in a broadcast mode. When a hub detects the start of a packet on
its upstream facing port, it establishes connectivity to all enabled downstream facing ports. If a port is not
enabled, it does not propagate packet signaling downstream.

11.1.2.2 Resume Connectivity
Hubs exhibit different connectivity behaviors for upstream- and downstream-directed resume signaling. A
hub that is suspended reflects resume signaling from its upstream facing port to all of its enabled
downstream facing ports. Figure 11-3 illustrates hub upstream and downstream resume connectivity.

Downstream
Ports

Upstream
Port

Downstream Connectivity

Upstream
Port

S:lurce ofresure
sig:,aling

Upstream Connectivity

Figure 11-3. Resume Connectivity

D
IZJ

Enabled Port

Disabled or
Suspended
Port

Enabled or
Suspended
Port

299

PA_0001509

Universal Serial Bus Specification Revision 2.0

If a hub is suspended and detects resume signaling from a selectively suspended or an enabled downstream
facing port, the hub reflects that signaling upstream and to all of its enabled downstream facing ports,
including the port that initiated the resume sequence. Resume signaling is not reflected to disabled or
suspended ports. A detailed discussion of resume connectivity appears in Section 11.9.

11.1.2.3 Hub Fault Recovery Mechanisms
Hubs are the essential USB component for establishing connectivity between the host and other devices. It
is vital that any connectivity faults, especially those that might result in a deadlock, be detected and
prevented from occurring. Hubs need to handle connectivity faults only when they are in the repeater mode.

Hubs must also be able to detect and recover from lost or corrupted packets that are addressed to the Hub
Controller. Because the Hub Controller is, in fact, another USB device, it must adhere to the same timeout
rules as other USB devices, as described in Chapter 8.

11.2 Hub Frame/Microframe Timer
Each hub has a (micro)frame timer whose timing is derived from the hub's local clock and is synchronized
to the host (micro)frame period by the host-generated Start-of-(micro)frame (SOF). The (micro)frame
timer provides timing references that are used to allow the hub to detect a babbling device and prevent the
hub from being disabled by the upstream hub. The hub (micro)frame timer must track the host
(micro)frame period and be capable ofremaining synchronized with the host even if two consecutive SOF
tokens are missed by the hub.

The (micro)frame timer must lock to the host's (micro)frame timing for worst case clock accuracies and
timing offsets between the host and hub. There are specific requirements for hubs when their upstream
facing port is operating at high-speed and full-speed .

11.2.1 High-speed Microframe Timer Range

300

The range for a microframe timer must be from 59904 to 60096 high-speed bits .

The nominal microframe interval is 60000 high-speed bit times . The hub microframe timer range specified
above is 60000 +/- 96 high-speed bit times in order to accommodate host accuracy, hub accuracy, repeater
jittter, and hub quantization. The +/-96 full-speed bit time variation is calculated in Table 11-2.

Table 11-1. High-speed Microframe Timer Range Contributions

Source of Variation Variation (ppm) Variation (bits) Over Comment
One Microframe Interval

Host accuracy +/- 500 +/- 30

Hub accuracy +/- 500 +/- 30

Host jitter +/- 2

Hub chain jitter +/- 20 Four hubs in series
upstream of hub; 0 to 5
bits of jitter per hub

Quantization +/-14 Bits need to round total
variation to multiple of 16

PA_0001510

Universal Serial Bus Specification Revision 2.0

11.2.2 Full-speed Frame Timer Range
The range of the frame timer must be from 11958 to 12042 full-speed bits.

The nominal frame interval is 12000 full-speed bit times. The hub frame timer range specified above is
12000 +/- 42 full-speed bit times in order to accommodate host accuracy and hub accuracy. The +/-42 full
speed bit time variation is calculated in Table 11-2.

Table 11-2. Full-speed Frame Timer Range Contributions

Source of Variation Variation (ppm) Variation (bits) Over Comment
One Frame Interval

Host accuracy +/- 500 +/- 6

Hub accuracy +/- 3000 +/- 36 +/-6 bits due to hub
accuracy (500 ppm)

+/-30 bits due to 1.x
parent hub accuracy
(2500 ppm)

11.2.3 Frame/Microframe Timer Synchronization
A hub's (micro)frame timer is clocked by the hub's clock source and is synchronized to SOF packets that
are derived from the host's (micro)frame timer. After a reset or resume, the hub's (micro)frame timer is not
synchronized. Whenever the hub receives two consecutive SOF packets, its (micro)frame timer must be
synchronized. Synchronized is synonymous with lock(ed). An example for a method of constructing a
timer that properly synchronizes is as follows .

11.2.3.1 Example (Micro)frame Timer Synchronization Method
The hub maintains three timer values: (micro)frame timer (down counter), current (micro)frame (up

counter), and next (micro)frame (register). After a reset or resume, a flag is set to indicate that the
(micro)frame timer is not synchronized.

When the first SOF token is detected, the current (micro)frame timer resets and starts counting once per hub
bit time. On the next SOF, if the timer has not rolled over, the value in the current (micro)frame timer is
loaded into the next (micro)frame register and into the (micro)frame timer. The current (micro)frame timer
is reset to zero and continues to count and the flag is set to indicate that the (micro)frame timer is locked.
The (micro)frame timer rolls over when the count exceeds 60096 for high-speed or 12042 for full-speed (a
test at 65535 for high-speed or 16383 for full-speed is adequate). If the current (micro)frame timer has
rolled over, then an SOF was missed and the (micro)frame timer and next (micro)frame values are not
loaded. When an SOF is missed, the flag indicating that the timer is not synchronized remains set.

Whenever the (micro)frame timer counts down to zero, the current value of the next (micro)frame register is
loaded into the (micro)frame timer. When an SOF is detected, and the current (micro)frame timer has not
rolled over, the value of the current (micro)frame timer is loaded into the (micro)frame timer and the next
(micro)frame registers. The current (micro)frame timer is then reset to zero and continues to count. If the
current (micro)frame timer has rolled over, then the value in the next (micro)frame register is loaded into
the (micro)frame timer. This process can cause the (micro)frame timer to be updated twice in a single
(micro)frame: once when the (micro)frame timer reaches zero and once when the SOF is detected.

301

PA_0001511

Universal Serial Bus Specification Revision 2.0

11.2.3.2 EOF Advancement

302

The hub must advance its EOF points based on its SOF decode time in order to ensure that in the tiered
topology, hubs farther away from the host will always have later EOF points than hubs nearer to the host.
The magnitude of advance is implementation-dependent; the possible range of advance is derived below.

The synchronization circuit described above depends on successfully decoding an SOF packet identifier
(PID). This means that the (micro)frame timer will be synchronized to a time that is later than the
synchronization point in the SOF packet: later by at least 40 bit times for high-speed or 16 bit times for full
speed. Each implementation also takes some time to react to the SOF decode and set the appropriate
timer/counter values. This reaction time is implementation-dependent but is assumed to be less than 192 bit
times for high-speed and four bit times for full-speed. Subsequent sections describe the actions that are
controlled by the (micro)frame timer. These actions are defined at the EOFl, EOF2, and EOF. EOFl and
EOF2 are defined in later sections. These sections assume that the hub's (micro)frame timer will count to
zero at the end of the (micro)frame (EOF). The circuitry described above will have the (micro)frame timer
counting to zero after 40 to 192 for high-speed bit times or 16-20 full-speed bit times after the start of a
(micro)frame (or end of previous (micro)frame). The timings and bit offsets in the later sections must be
advanced to account for this delay (i.e., add 40-192 for high-speed or 16-20 bit times for full-speed to the
EOF l and EOF2 points).

Advancing the EOF points by the processing delay ensures that the spread between the EOFs is only due to
the propagation delay. For example, for high-speed, the maximum spread between 2 EOF points anywhere
on the USB is less than 216 bits (144 + 72). 144 bit times are due to 36 bit times of max latency through
4 repeaters. 72 bit times are due to five maximum cable and interconnect delays of 30 ns each. As can be
seen in Figure 11-4 without EOF advancement, a hub with a larger tier number could have an EOF occuring
earlier than a hub with a smaller tier number. In Figure 11-5 with EOF advancement ensures that in the
tiered topology, hubs with larger tier numbers always have later EOF points than hubs with smaller tier
numbers. Note: 13 bit times in the figures is an example maximum cable delay (approximately 30 ns).

Time !,. ,.,_,,, ~

.
' i'

Tier
Depth

Tier 1

3+192 bits delay
TierN

TicrN+l

Figure 11-4. Example High-speed EOF Offsets Due to Propagation Delay Without EOF
Advancement

~

Tier

Time

Depth

Tier 1

TierN

13+13+36 bits delay

TierN+l

Figure 11-5. Example High-speed EOF Offsets Due to Propagation Delay With EOF Advancement

PA_0001512

Universal Serial Bus Specification Revision 2.0

11.2.3.3 Effect of Synchronization on Repeater Behavior
The (micro)frame timer provides an indication to the hub Repeater state machine that the (micro)frame
timer has synchronized to SOF and that the (micro)frame timer is capable of generating the EOFl and
EOF2 timing points. This signal is important after a global resume because of the possibility that a full
/low-speed device may have been detached, and a low-/full-speed device attached while the host was
generating a long resume (several seconds) and the disconnect cannot be detected. The new device will bias
D+ and D- to appear like a Kon the hub which would then be treated as an SOP and, unless inhibited, this
SOP would propagate though the resumed hubs. Since the hubs would not have seen any SOFs at this point,
the hubs would not be synchronized and, thus, unable to generate the EOFl and EOF2 timing points. The
only recovery from this would be for the host to reset and re-enumerate the section of the bus containing the
changed device. This scenario is prevented by inhibiting any downstream facing port from establishing
connectivity until the hub is locked after a resume.

11.2.4 Microframe Jitter Related to Frame Jitter
The period between the SOFs from the Transaction Translator must not vary by more than+/- 42 ns . The
microframe timer count must be used by the Transaction Translator to generate SOFs to full-speed devices
(and keepalives to low-speed devices) connected to it.

The SOF received at the upstream facing port of the hub is repeated with a local clock. The frequency of
this clock may be a divided version of the bit rate. This could result in a quantization error and microframe
to-microframe jitter. The microframe-to-microframe jitter of a hub repeater must be between O and 5 bit
times. This means that the latency through the repeater of consecutive SOFs must differ by less than 5 bits.
A hub may register the SOF for internal use, e.g., microframe synchronization. This requires SOF PID
detection. The circuitry used for internal registering of the SOF must have a jitter which is less than or
equal to 16 bits. This means that the microframe timer count values between consecutive equally spaced
SOFs must differ by less than or equal to 16 bits. The host controller frequency may drift over the period of
a micro frame resulting in micro frame period jitter. The host controller source jitter for SOFs must be less
than 4 bits. This means that the consecutive periods between SOFs must differ by less than 4 bits. These
requirements ensure that the micro frame period at the end of five hub tiers will have a jitter of less than
40 bits (4 from host controller+ 4*5 from hub repeaters+ 16 from the internal SOF registering). This
means that the consecutive periods between SOFs as measured at any microframe timer will differ by less
than 40 bits (83 .3 ns at 480 Mbs). This is less than the+/- 42 ns variation allowed.

11.2.5 EOF1 and EOF2 Timing Points
The EOFI and EOF2 are timing points that are derived from the hub's (micro)frame timer. Table 11-3
specifies the required host and hub EOF timing points for high-speed and full-speed operation.

Table 11-3. Hub and Host EOF1/EOF2 Timing Points

Bit Times Before EOF Bit Times Before EOF
for High-speed for Full-speed

Label Notes

EOF1 560 32 End-of-(micro)frame point #1

EOF2 64 10 End-of-(micro)frame point #2

These timing points are used to ensure that devices and hubs do not interfere with the proper transmission of
the SOF packet from the host. These timing points have meaning only when the (micro/frame timer has
been synchronized to the SOF.

The host and hub (micro)frame markers, while all synchronized to the host's SOF, are subject to certain
skews that dictate the placement of the EOF points . Figure 11-6 illustrates EOF2 timing point for high-

303

PA_0001513

Universal Serial Bus Specification Revision 2.0

speed operation. Figure 11-7 illustrates the EOF 1 high-speed timing point. The numbers in the figures are
in high-speed bit times.

~ ime

~~---tEF_F_l~~~~~~~-+--~E-----,~F=O
tier m

tier depth EOF2=64 quantization= 16

tier n
W~I
skew=38

Figure 11-6. High-speed EOF2 Timing Point

____ "~-+1-tz_·m_e ________ E+-kd=----F_2 __ E---19F=O tier o
OF propagation=216

304

EOFI =560 (skew=2
EOP propagation=216 +

tier depth quiescent time= 8

-----+-+~---+-------------+---+-----+I tier 5

skew=38

Figure 11-7. High-speed EOFl Timing Point

At the EOF2 point, any port that has upstream connectivity will be disabled as a babbler. Hubs operating as
a full-/low-speed repeater prevent becoming disabled by sending an end of packet to the upstream hub
before that hub reaches its EOF2 point (i.e., at EOF 1).

Figure 11-8 illustrates EOF timing points for full-/low-speed repeater operation.

EOF1 EOF2

Bit times i i SOF

... I I I
50 40 30 r EOF1 range ---i

20 10 r EOF2range -i
0

Figure 11-8. Full-speed EOF Timing Points

The hub operating as a full-/low-speed repeater is permitted to send the EOP if upstream connectivity is not
established at EOF 1 time. A full-speed repeater must send the EOP if connectivity is established from any
downstream facing port at the EOFl point.

A high-speed repeater must tear down upstream connectivity at the EOFl point.

A high-speed repeater must tear down connectivity after the bus returns to the Idle state and the Elasticity
buffer is emptied (as described in Section 11.7 .2) rather than on decoding an EOP pattern as in full-/low
speed. Therefore, abrupt end of signaling (i.e, without a high-speed EOP) may cause malformed packets,
and this must not affect repeater operation. The host controller design must be capable of processing such
packets correctly.

PA_0001514

Universal Serial Bus Specification Revision 2.0

11.2.5.1 High-speed EOF1 and EOF2 Timing Points
The EOF2 point is 64 bit times before EOF as shown in Figure 11-6, and the EOF 1 point is 560 bit times
before EOF as shown in Figure 11-7.

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or
between hubs. This timing skew represents the difference between different microframe timers on different
hubs and the host. The total accumulated skew can be as much as 38 bit times. This is composed of ±2 bit
times of (micro)frame host source jitter and Oto 36 bit times ofrepeater jitter as derived earlier. This skew
timing affects the placement of the EOFl and EOF2 points .

Note: The hub skew timing assumes that the microframe interval will not be changed by the host after the
microframe timers have synchronized.

EOF skew can be from -2 to+ 38 bits, so all EOFs are within 256 bits (216 bits ofEOF propagation delay+
40 bits of EOF skew) of each other.

Note: The EOF2 point is based on 16 bit times for quantization+ 38 bit times of skew; therefore, the EOF2
point needs to located at least 54 bit times before EOF. The EOF2 point is set at 64 bit times to allow
babble detection to be done with a divided (by 16) version of the bit clock . An upstream-directed packet
ending before EOF 1 must reach every upstream hub/host before it gets to its EOF2 point. This is achieved
if the EOF 1 point is located at least 544 bits before any upstream EOF (64 bits of EOF2 offset + 216 bits of
EOP propagation delay+ 8 bits of idle time+ 216 bits ofSOF propagation delay+ 38 bits ofEOFl skew+
2 bits ofEOF2 skew). The EOFl point is set at 560 bit times to allow using a divided (by 16) version of the
bit clock.

11.2.5.2 Full-speed EOF1 and EOF2 Timing Points
When the hub operates as a full-/low-speed repeater, the EOFl point is 10 bit times before EOF and EOFl
is 32 bit times before EOF as shown in Figure 11-8.

The EOF2 point is defined to occur at least one bit time before the first bit of the SYNC for an SOP. The
period allowed for an EOP is four full-speed bit times (the upstream facing port on a hub is always full
speed).

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or
between hubs. This timing skew represents the difference between different frame timers on different hubs
and the host. The total accumulated skew can be as large as ±9 bit times. This is composed of±l bit times
per frame of quantization error and ±1 bit per frame of wander. The quantization error occurs when the hub
times the interval between SOFs and arrives at a value that is off by a fraction of a bit time but, due to
quantization, is rounded to a full bit. Frame wander occurs when the host's frame timer is adjusted by the
USB System Software so that the value sampled by the hub in a previous frame differs from the frame
interval being used by the host. (Note: Such adjustment was pennitted in the USB 1.0 and 1.1 specification
but is no longer permitted.) These values accumulate over multiple frames because SOF packets can be lost
and the hub cannot resynchronize its frame timer. This specification allows for the loss of two conseCL1tive
SOFs. During this interval, the quantization error accumulates to ±3 bit times, and the wander accumulates
to ±1 ± 2 ± 3 = ±6 for a total of ±9 bit times of accumulated skew in three frames . This skew timing affects
the placement of the EOFl and EOF2 points as follows.

A hub must reach its EOF2 point one bit time before the end of the frame. In order to ensure this, a 9-bit
time guard-band must be added so that the EOF2 point is set to occur when the hub's local frame timer
reaches 10. A hub must complete its EOP before the hub to which it is attached reaches its EOF2 point. A
hub may reach its EOF2 point nine bit times before bit time 10 (at bit time 19 before the SOF). To ensure
that the EOP is completed by bit time 19, it must start before bit time 23. To ensure that the hub starts at bit
time 23 with respect to another bub, a hub must set its EOFl point nine bit times ahead of bit time 23 (at bit
time 32). If a hub sets its timer to generate an EOP at bit time 32, that EOP may start as much as 9 bit times
early (at bit time 41).

305

PA_0001515

Universal Serial Bus Specification Revision 2.0

11.3 Host Behavior at End-of-Frame
It is the responsibility of the USB host controller (the host) to not provoke a response from a device if the
response would cause the device to be sending a packet at the EOF2 point. Furthermore, because a hub will
terminate an upstream directed packet when the hub reaches its EOFl point, the host should not start a
transaction if a response from the device (data or handshake) would be pending or in process when a hub
reaches its EOFl point. The implications of these limitations are described in the following sections.

Note: The above requirements can be met if the host controller ensures that the last transaction will
complete by its EOFl. The time consumed by a transaction (and consequently the latest start time of the
transaction) can be evaluated by accumulating the various delay components in the transaction. The packet
lengths should include all fields and account for bit-stuffing overhead as described in Chapter 7 and
Chapter 8. Formulae for calculating transaction times are located in Section 5.11.3.

In defining the timing points below, the last bit interval in a (micro)frame is designated as bit time zero. Bit
times in a (micro)frame that occur before the last have values that increase the fu1iher they are from bit time
zero (earlier bit times have higher numbers). These bit time designations are used for convenience only and
are not intended to imply a particular implementation. The only requirement of an implementation is that
the relative time relationships be preserved.

Host controllers issuing high-speed transactions on a high-speed bus must meet the above requirements.
Host controllers issuing full-/low-speed transactions on a full-/low-speed bus may also use the following
three behaviors near EOF.

11.3.1 Full-flow-speed Latest Host Packet
Hubs are allowed to send an EOP on their upstream facing ports at the EOF l point ifthere is no
downstream-directed traffic in progress at that time. To prevent potential contention, the host is not allowed
to start a packet if connectivity will not be established on all connections before a hub reaches its EOFl
point. This means that the host must not start a packet after bit time 42.

Note: Although there is as much as a six-bit time delay between the time the host starts a packet and all
connections are established, this time need not be added to the packet start time as this phase delay exists for
the SOF packet as well, causing all hub frame timers to be phase delayed with respect to the host by the
propagation delay. There is only one bit time of phase delay between any two adjacent hubs and this has
been accounted for in the skew calculations.

11.3.2 Full-flow-speed Packet Nullification
If a device is sending a packet (data or handshake) when a hub in the device's upstream path reaches its
EOFl point, the hub will send a full-speed EOP. Any packet that is truncated by a hub must be discarded.

A host implementation may discard any packet that is being received at bit time 41. Alternatively, a host
implementation may attempt to maximize bus utilization by accepting a packet if the packet is predicted to
start at or before bit time 41.

11.3.3 Full-flow-speed Transaction Completion Prediction

306

A device can send two types of packets: data and handshake. A handshake packet is always exactly 16 bit
times long (sync byte plus PID byte.) The time from the end ofa packet from the host until the first bit of
the handshake must be seen at the host is 17 bit times. This gives a total allocation of 3 5 bit times from the
end of data packet from the root (start ofEOP) until it is predicted that the handshake will be completed
(start ofEOP) from the device. Therefore, if the host is sending a data packet for which the device can
return a handshake (anything other than an isochronous packet), then if the host completes the data packet
and starts sending EOP before bit time 76, then the host can predict that the device will complete the
handshake and start the EOP for the handshake on or before bit time 41. For a low-speed device, the 36 bit
times from start of EOP from root to start of EOP from the device are low-speed bit times, which convert 1

PA_0001516

Universal Serial Bus Specification Revision 2.0

to 8 into full-speed bit times. Therefore, if the host completes the low-speed data packet by bit time 329,
then the low-speed device can be predicted to complete the handshake before bit time 41.

Note: If the host cannot accept a full-speed EOP as a valid end of a low-speed packet, then the low-speed
EOP will need lo complete before bit time 41, which will add 13 full-speed bit times to the low-speed
handshake time.

As the host approaches the end of the frame, it must ensure that it does not require a device to send a
handshake if that handshake cannot be completed before bit time 41. The host expects to receive a
handshake after any valid, non-isochronous data packet. Therefore, if the host is sending a non-isochronous
data packet when it reaches bit time 76 (329 for low-speed), then the host should start an abnormal
termination sequence to ensure that the device will not try to respond. This abnormal termination sequence
consists of 7 consecutive (non-bitstuffed) bits of 1 followed by an EOP. The abnormal termination
sequence is sent at the speed of the current packet. Note: The intent of this sequence is to force a
bitstuffing violation (and possibly other errors) at the receiver.

If the host is preparing to send an lN token, it may not send the token if the predicted packet from the device
would not complete by bit time 41. The maximum valid length of the response from the device is known by
the host and should be used in the prediction calculation. For a full-speed packet, the maximum interval
between the start of the 1N token and the end of a data packet is :

token_ length + (packet_ length + header+ CRC) * 7 /6 + 18

Where token _length is 34 bit times, packet _length is the maximum number of data bits in the packet,
header is eight bits of sync and eight bits of PID, and CRC is 16 bits. The 7 /6 multiplier accounts for the
absolute worst case bit-stuff on the packet, and the 18 extra bits allow for worst case tum-around delay. For
a low-speed device, the same calculation applies, but the result must be multiplied by 8 to convert to full
speed bit times, and an additional 20 full-speed bit times must be added to account for the low-speed prefix.
This gives the maximum number of bit times between the start of the IN token and the end of the data
packet, so the token cannot be sent if this number of bit times does not exist before the earliest EOFl point
(bit time 41). (For example, take the results of the above calculation and add 41. If the number of bits left
in the frame is less than this value, the token may not be sent.)

The host is allowed to use a more conservative algorithm than the one given above for deciding whether or
not to start a transaction. The calculation might also include the time required for the host to send the
handshake when one is required, as there is no benefit in starting a transfer if the handshake cannot be
completed.

11.4 Internal Port
The internal port is the connection between the Hub Controller and the Hub Repeater. Besides conveying
the serial data to/from the Hub Controller, the internal port is the source of certain resume signals.
Figure 11-9 illustrates the internal port state machine; Table 11-4 defines the internal port signals and
events.

307

PA_0001517

Universal Serial Bus Specification Revision 2.0

!Rx_Suspend
Inactive

! = Logical NOT

Rx_Suspend

Suspend Delay

EOI

Fsus

Resume Event

GResume

Figure 11-9. Internal Port State Machine

Table 11-4. Internal Port Signal/Event Definitions

Signal/Event Name Event/Signal Description
Source

EOI Internal End of timed interval

Rx_Suspend Receiver Receiver is in the Suspend state

Resume_Event Hub Controller A resume condition exists in the Hub Controller

11.4.1 Inactive
This state is entered whenever the Receiver is not in the Suspend state.

11.4.2 Suspend Delay
This state is entered from the Inactive state when the Receiver transitions to the Suspend state.

This is a timed state with a 2 ms interval.

11.4.3 Full Suspend (Fsus)
This state is entered when the Suspend Delay interval expires.

11.4.4 Generate Resume (GResume)

308

This state is entered from the Fsus state when a resume condition exists in the Hub Controller. A resume
condition exists if the C_PORT_SUSPEND bit is set in any port, or if the hub is enabled as a wakeup source
and any bit is set in a Port Change field or the Hub Change field (as described in Figures 11-22 and 11-20,
respectively).

In this state, the internal port generates signaling to emulate an SOP _FD to the Hub Repeater.

PA_0001518

Universal Serial Bus Specification Revision 2.0

11.5 Downstream Facing Ports
The following sections provide a functional description of a state machine that exhibits the correct behavior
for a downstream facing port.

Figure 11-10 is an illustration of the downstream facing port state machine. The events and signals are
defined in Table 11-5. Each of the states is described in Section 11.5 .1. In the diagram below, some of the
entry conditions into states are shown without origin. These conditions have multiple origin states and the
individual transitions lines are not shown so that the diagram can be simplified. The description of the
entered state indicates from which states the transition is applicable.

Note: For the root hub, the signals from the upstream facing port state machines are implementation
dependent.

309

PA_0001519

SetTest

Universal Serial Bus Specification Revision 2.0

Configuration = 0

ClearPortFeature(PORT _POWER)#
SetConfiguration(non-zero) #

Power_Source_Off #
Over-current

Disconnect_ Detect

ClearPortFeature(PORT _ENABLE)

Disabled

SetPortFeature(PORT _RESET) ----~

= Logical OR

& = Logical AND

= Logical NOT

SetConfiguration(non-zero)

SetPortFeature(PORT _POWER)

EOI

~ Resetting

EOI

Rx_Suspend & (SEO# K)

Rptr_Enter_WFEOPFU

Rx_Suspend & (SEO# K)

(!Rx_Suspend & PK) #
ClearPortFeature(PORT _SUSPEND

Resuming

EOI

SendEOR

Rptr_Exit_WFEOPFU

EOI

~---"--~!(PK#PS)&EOI

PK/TrueRWU

PS

!(PK#PS)&EOI

PK /TrueRWU

PS

Port Outputs in States

The hub is not configured.

Powered_off: Port requires explicit
request to transition.

Disconnected: Port does not propagate
any traffic in either direction. All ports
are HiZ. Port is timing length of J/K
(2.5µS to 2mS).

Disabled: Port cannot propagate any
traffic. All ports are HiZ.

Resetting: Drive SEO through the port for
10mS.

Enabled: Port can propagate both
upstream and downstream traffic.

Transmit: Port propagates downstream
directed traffic.

Suspended: No traffic is propagated
downstream or upstream.

I Resuming: Drive 'K' for 20mS.

TransmitR: Port propagates downstream
directed resume signaling.

Restarts and Restart_E: Port enters one of
these states to wait through timing
iintervals or for clocks to restart. Delay
iinterval is implementation dependent.

State machine exports:
TrueRWU signal
("/TrueRWU" indicates signal is
generated on transition from state)

Figure 11-10. Downstream Facing Hub Port State Machine

310

PA_0001520

Universal Serial Bus Specification Revision 2.0

Table 11-5. Downstream Facing Port Signal/Event Definitions

Signal/Event Name Event/Signal Description
Source

Power_source_off Implementation- Power to the port not available due to over-current or
dependent termination of source power (e.g., external power

removed)

Over-current Hub Controller Over-current condition exists on the hub or the port

EOI Internal End of a timed interval or sequence

SEO Internal SEO received on port

Disconnect_Detect Internal Disconnect seen at port

LS Hub Controller Low-speed device attached to this port

SOF Hub Controller SOF token received

TrueRWU Internal K lasting for at least TDDIS (see Table 7-13)

PK Internal K lasting for at least TDDIS

PS Internal SEO lasting for at least TDDIS

K Internal 'K' received on port

Rx_Resume Receiver Upstream Receiver in Resume state

Rx_Suspend Receiver Upstream Receiver in Suspend state

Rptr_Exit_WFEOPFU Hub Repeater Hub Repeater exits the WFEOPFU state

Rptr_Enter_WFEOPFU Hub Repeater Hub Repeater enters the WFEOPFU state

Port_Error Internal Error condition detected (see Section 11.8.1)

SetTest Hub Controller Logical OR of SetPortFeature(Test_SEO_NAK),
SetPortFeature(Test_ J), SetPortFeature(Test_ K),
SetPortFeature(Test_PRBS),
SetPortFeature(Test_Force _Enable)

Configuration = 0 Hub Controller Hub controller's configuration value is zero

311

PA_0001521

Universal Serial Bus Specification Revision 2.0

11.5.1 Downstream Facing Port State Descriptions

11.5.1.1 Not Configured
A port transitions to and remains in this state whenever the value of the hub configuration is zero. While the
port is in this state, the hub will drive an SEO on the port (this behavior is optional on root hubs) . No other
active signaling takes place on the p011 when it is in this state.

11.5.1.2 Powered-off
This state is supported for all hubs .

A port transitions to this state in any of the following situations:

• From any state except Not Configured when the hub receives a ClearPortFeature(PORT _POWER)
request for this port

• From any state when the hub receives a SetConfiguration() request with a configuration value other
than zero

• From any state except Not Configured when power is lost to the port or an over-current condition exists

A port will enter this state due to an over-current condition on another port if that over-current condition
may have caused the power supplied to this port to drop below specified limits for port power (see
Section 7.2.1.2.1 and Section 7.2.4.1).

If a hub was configured while the hub was self-powered, and then if external power is lost, the hub must
place all ports in the Powered-off state. If the hub is configured while bus powered, then the hub need not
change port status if the hub switched to externally applied power. However, if external power is
subsequently lost, the hub must place ports in the Powered-off state.

In this state, the port 's differential and single-ended transmitters and receivers are disabled.

Control of power to the port is covered in Section 11.11 .

11.5.1.3 Disconnected

312

A port transitions to this state in any of the following situations:

• From the Powered-off state when the hub receives a SetPortFeature(PORT _ POWER) request

• From any state except the Not Configured and Powered-off states when the port's disconnect timer times
out

• From the Restart Sor Restart Estate at the end of the restart interval - -

In the Disconnected state, the port's differential transmitter and receiver are disabled and only connection
detection is possible.

This is a timed state. While in this state, the timer is reset as long as the po11's signal lines are in the SEO or
SEl state. If another signaling state is detected, the timer starts. Unless the hub is suspended with clocks
stopped, this timer's duration is 2.5 µs to 2 ms.

If the hub is suspended with its remote wakeup feature enabled, then on a transition to any state other than
the SEO state or SEl state on a Disconnected port, the hub will start its clocks and time this event. The hub
must be able to start its clocks and time this event within 12 ms of the transition. If a hub does not have its
remote wakeup feature enabled, then transitions on a port that is in the Disconnected state are ignored until
the hub is resumed.

PA_0001522

Universal Serial Bus Specification Revision 2.0

11.5.1.4 Disabled
A port transitions to this state in any of the following situations:

• From the Disconnected state when the timer expires indicating a connection is detected on the port

• From any but the Powered-off, Disconnected, or Not Configured states on receipt of a
ClearPortFeature(PORT _ ENABLE) request

• From the Enabled state when an error condition is detected on the port

A port in the Disabled state will not propagate signaling in either the upstream or the downstream direction.
While in this state, the duration of any SEO received on the port is timed. If the port is using high-speed
terminations when it enters this state, it switches to full-speed terminations. The port must not perform
normal disconnect detection until at least 4 ms after entering this state.

11.5.1.5 Resetting
Unless it is in the Powered-off or Disconnected states, a port transitions to the Resetting state upon receipt
of a SetPortFeature(PORT_RESET) request. The hub drives SEO on the port during this timed interval.
The duration of the Resetting state is nominally 10 ms to 20 ms (10 ms is preferred).

A hub in high-speed operation will use the high-speed terminations of the port when in this state.

11.5.1.6 Enabled
A port transitions to this state in any of the following situations:

• At the end of the Resetting state

• From the Transmit state or the TransmitR state when the Hub Repeater exits the WFEOPFU state

• From the Suspended state if the upstream Receiver is in the Suspend state when a K' is detected on the
port

• At the end of the SendEOR state

• From the Restart_ E state when a persistent Kor persistent SEO has not been seen within 900 µs of
entering that state

While in this state, the output of the port's differential receiver is available to the Hub Repeater so that
appropriate signaling transitions can establish upstream connectivity.

A port which is using high-speed terminations in this state switches to full-speed terminations on
Rx_Suspend (i.e., when the hub is suspended). The port must not perform normal disconnect detection until
at least 1 ms after Rx_ Suspend becomes active.

11.5.1.7 Transmit
This state is entered from the Enabled state on the transition of the Hub Repeater to the WFEOPFU state.
While in this state, the port will transmit the data that is received on the upstream facing port.

For a low-speed port, this state is entered from the Enabled state if a full-speed PRE PID is received on the
upstream facing port. While in this state, the port will retransmit the data that is received on the upstream
facing port (after proper inversion).

In high-speed, this state is used for testing for disconnect at the port. The disconnect detection circuit is
enabled after 32 bits of the same signaling level ('J' or 'K') have been transmitted down the port.

Note: Because of the timing skew in the repeater path to the downstream facing ports, all downstream
facing ports may not be enabled for disconnect detection at the same instant in time.

313

PA_0001523

Universal Serial Bus Specification Revision 2.0

11.5.1.8 TransmitR
This state is entered in either of the following situations:

• From the Enabled state if the upstream Receiver is in the Resume state

• From the Restart_ S or Restart_ E state if a PK is detected on the port

When in this state, the port repeats the resume 'K' at the upstream facing port to the downstream facing
port. Depending on the speed of the port, two behaviors are possible on the K->SEO transition at the
upstream facing port at the end of the resume.

• Upstream facing port high-speed and downstream facing port full-flow-speed: After the K->SEO
transition, the port drives SEO for 16 to 18 full-speed bit times followed by driving J for at least one
full-speed bit time. Note: The timer in the Resume state of the upstream port receiver state machine
which generates EOITR can be used to time this requirement at the downstream facing p011(s). The
pullup resistor and the latency of the Transaction Translator(TT) results in this Idle state being
maintained for at least one low-speed bit time ensuring that a device sees the same end of res Lime
behavior below the TT as it would below a USB 1.x hub.

• Upstream facing port and downstream facing p011 are the same speed: port continues to repeat the
signaling which follows the K->SEO transition.

A port operating in high-speed reverts to its high-speed terminations within 18 full-speed bit times after the
K->SEO transition as described in Section 7.1.7 .7.

11.5.1.9 Suspended
A port enters the Suspended state:

• From the Enabled state when it receives a SetPortFeature(PORT_SUSPEND) request

• From the Restart_S state when a persistent Kor persistent SEO has not been seen within 900 µs of
entering that state

While a port is in the Suspended state, the port's differential transmitter is disabled. A high-speed port
reverts from high-speed to full-speed terminations but its speed status continues to be high-speed. The port
must not perform normal disconnect detection until at least 4 ms after entering this state.

An implementation must have a K/SEO 'noise' filter for a port that is in the suspended state. This filter can
time the length of K/SEO and, if the length of the K/SEO is shorter than TD DIS, the port must remain in this
state. If the hub is suspended with its clocks stopped, a transition to K/SEO on a suspended port must cause
the port to immediately transition to the Restart_ S state.

11.5.1.10 Resuming

314

A port enters this state from the Suspended state in either of the following situations:

• If a 'K' is detected on the port and persists for at least 2.5 µs and the Receiver is not in the Suspended
state. The transition from the Suspended state must happen within 900 µs of the J->K transition.

• When a ClearPortFeature(PORT_SUSPEND) request is received.

This is a timed state with a nominal duration of 20 ms (the interval may be longer under the conditions
described in the note below). While in this state, the hub drives a 'K' on the port.

Note: A single timer is allowed to be used to time both the Resetting interval and the Resuming interval and
that timer may be shared among multiple ports. When shared, the timer is reset when a port enters the
Resuming state or the Resetting state . If shared, it may not be shared among more than ten p011s as the
cumulative delay could exceed the amount of time required to replace a device and a disconnect could be
missed.

PA_0001524

Universal Serial Bus Specification Revision 2.0

11.5.1.11 SendEOR
This state is entered from the Resuming state if the 20 ms timer expires. It is also entered from the Enabled
state when an SOF (or other FS token) is received and a low-speed device is attached to this port.

This is a timed state which lasts for three low-speed bit times.

In this state, if the port is high-speed it will drive the bus to the Idle state for three low-speed bit times and
then exit from this state to the Enabled state. It must also revert to its high-speed terminations within
18 full-speed bit times after the K->SEO transition as described in Section 7 .1. 7. 7.

If the port is full-speed or low-speed, the port must drive two low-speed bit times of SEO followed by one
low-speed bit time ofldle state and then exit from this state to the Enabled state.

Since the driven SEO period should be of fixed length, the SendEOR timer, if shared, should not be reset. If
the hub implementation shares the SendEOR timing circuits between ports, then for a port with a low-speed
device attached, the Resuming state should not end until an SOF (or other FS token) has been received (see
Section 11.8.4.1 for Keep-alive generation rules).

11.5.1.12 Restart_S
A port enters the Restart_S state from the Suspended state when an SEO or 'K' is seen at the port and the
Receiver is in the Suspended state.

In this state, the port continuously monitors the bus state. If the bus is in the 'K' state for at least TDDIS, the
port sets the C_PORT_SUSPEND bit, exits to the TransmitR, and generates a signal to the repeater called
'TrueRWU'. If the bus is in the 'SEO' state for at least TDDIS, the port exits to the Disconnected state.
Either of these transitions must happen within 900 µs after entering the Restart_ S state; otherwise, the port
must transition back to the Suspended state.

11.5.1.13 Restart_E
A port enters the Restart_E state from the Enabled state when an 'SEO' or 'K' is seen at the port and the
Receiver is in the Suspended state.

In this state, the port continuously monitors the bus state. If the bus is in the 'K' state for at least TDDIS, the
port exits to the TransmitR state and generates a signal to the repeater called 'TrueRWU'. If the bus is in the
'SEO' state for at least TDDIS, the port exits to the Disconnected state. Either of these transitions must
happen within 900 µs after entering the Restart_ E state; otherwise the port must transition back to the
Enabled state.

11.5.1.14 Testing
A port transitions to this state from any state when the port sees SetTest.

While in this state, the port executes the host command as decoded by the hub controller. If the command
was a SetPortFeature(PORT_TEST, Test_Force_Enable), the port supports packet connectivity in the
downstream direction in a manner identical to that when the port is in the Enabled state.

11.5.2 Disconnect Detect Timer

11.5.2.1 High-speed Disconnect Detection
High-speed disconnect detection is described in Section 7.1.7.3.

315

PA_0001525

Universal Serial Bus Specification Revision 2.0

11.5.2.2 Full-flow-speed Disconnect Detection
Each port is required to have a timer used for detecting disconnect when a full-/low-speed device is attached
to the port. This timer is used to constantly monitor the port's single-ended receivers to detect a disconnect
event. The reason for constant monitoring is that a noise event on the bus can cause the attached device to
detect a reset condition on the bus after 2.5 µs of SEO or SE l on the bus. If the hub does not place the port in
the disconnect state before the device resets, then the device can be at the Default Address state with the port
enabled. This can cause systems errors that are very difficult to isolate and correct.

This timer must be reset whenever the D+ and D- lines on the port are not in the SEO or SEl state or when
the p011 is not in the Enabled, Suspended, Disabled, Restart-E, or Restart_S states. This timer must be reset
for 4ms upon entry to the Suspended and Disabled states. This timer times an interval TDDIS. The range of
TDDIS is 2.0 µs to 2.5 as defined in Table 7-13. When this timer expires, it generates the
Disconnect_ Detect signal to the port state machine.

This timer can also be used for filtering the K/SEO signal in the Suspended, Restart_ E, or Restart_ S states as
described in Section 11.5 .1.

11.5.3 Port Indicator

316

Each downstream facing port of a hub can support an optional status indicator. The presence of indicators
for downstream facing ports is specified by bit 7 of the wHubCharacteristics field of the hub class
descriptor. Each port's indicator must be located in a position that obviously associates the indicator with
the port. The indicator provides two colors: green and amber. This can be implemented as physically one
LED with two color capability or two separate LEDs. A combination of hardware and software control is
used to inform the user of the cwTent status of the p011 or the device attached to the p011 and to guide the
user through problem resolution. Colors and blinking are used to provide information to the user.

An external hub must automatically control the color of the indicator as specified in Figure 11-11.
Automatic port indicator setting support for root hubs may be implemented with either hardware or
software. The port indicator color selector value is zero (indicating automatic control) when the hub
transitions to the configured device state. When the hub is suspended or not configured, p011 indicators
must be off.

Table 11-6 identifies the mapping of color to port state when the port indicators are automatically
controlled.

Table 11-6. Automatic Port State to Port Indicator Color Mapping

Power Downstream Facing Hub Port State
Switching

Powered-off Disconnected, Disabled, Not Enabled, Suspended,
Configured, Resetting, Transmit, or Resuming,
Testing TransmitR SendEOR,

Restart_E, or
Restart_S

With Off or amber if due Off Green Off
to an over-current
condition

Without Off Off or amber if due to an over- Green Off
current condition

PA_0001526

Universal Serial Bus Specification Revision 2.0

Automatic
Mode

8
~ !a~nabled or Transmit or TransmitR)

~d PORT_OVER_CURRENT != 1)

PORT OVER CURRENT= 1 - -

~ PORT_OVER_CURRENT = 1

SetPortFeatur e~
(PORT_POWER) Amber

SetPortF eature
(PORT_INDICATOR,

indicator_selector != 0)

SetPortFeature
(PORT_INDICATOR,
indicator_ selector = 0)

Figure 11-11. Port Indicator State Diagram

In Manual Mode the color of a port indicator (Amber, Green, or Off) is set by a system software USB Hub
class request. In Automatic Mode the color of a port indicator is set by the port state information.

Table 11-7 defines port state as understood by the user.

Table 11-7. Port Indicator Color Definitions

Color Definition

Off Not operational

Amber Error condition

Green Fully operational

Blinking Software attention

Off/Green

Blinking Hardware attention

Off/Amber

Blinking Reserved

Green/Amber

Note that the indicators reflect the status of the port, not necessarily the device attached to it. Blinking of
the indicator is used to draw the user's attention to the port, irrespective of its color.

317

PA_0001527

Universal Serial Bus Specification Revision 2.0

Port indicators allow control by software. Host software forces the state of the indicator to draw attention to
the port or to indicate the current state of the port.

See Section 11.24.2. 7.1.10 for the specification of indicator requests.

11.5.3.1 Labeling
USB system software uses port numbers to reference an individual port with a ClearPortFeature or
SetPortFeature request. If a vendor provides a labeling to identify individual downstream facing ports, then
each port connector must be labeled with their respective port number.

11.6 Upstream Facing Port
The upstream facing port has four components: transmitter, transmitter state machine, receiver, and receiver
state machine. The transmitter and its state machine are the Transmitter, while the receiver and its state
machine are the Receiver. The Transmitter and Receiver operate in high-speed and full-speed depending on
the current hub configuration.

11.6.1 Full-speed
Both the transmitter and receiver have differential and single-ended components. The differential
transmitter and receiver can send/receive 'J' or K'to/from the bus while the single-ended components are
used to send/receive SEO, suspend, and resume signaling. The single-ended components are also used to
receive SEl . In this section, when it is necessary to differentiate the signals sent/received by the differential
component of the transmitter/receiver from those of the single-ended components, DJ and DK will be used
to denote the differential signal, while SJ, SK, SEO, and SEl will be used for the single-ended signals.

When the Hub Repeater has connectivity in the upstream direction, the transmitter must not send or
propagate SEI signaling. Instead, the SEl must be propagated as a DJ.

11.6.2 High-speed
Both the transmitter and receiver have differential components only. These signals are called HJ and HK.
The HS_Idle state is the idle state of the bus in high-speed.

It is assumed that the differential transmitter and receiver are turned off during suspend to minimize power
consumption. The single-ended components are left on at all times, as they will take minimal power.

11.6.3 Receiver

318

The receiver state machine is responsible for monitoring the signaling state of the upstream connection to
detect long-term signaling events such as bus reset, resume, and suspend. This state machine details the
operation of the device state diagram shown in Figure 9-1 in the Default, Address, Configured, and
Suspended state. The Suspend, Resume, and ReceivingSEO states are only used when the upstream facing
port is operating in full-speed mode with full-speed terminations. The ReceivingIS, ReceivingHJ, and
ReceivingHK states are only used when the upstream facing port is operating in high-speed mode with high
speed terminations; so these states are categorized as the HS (high-speed) states, and all other states are
categorized as nonHS in the description below.

PA_0001528

Universal Serial Bus Specification Revision 2.0

Figure 11-12 illustrates the state transition diagram.

Tx_active
HJ J

Receiving HJ ReceivingJ

EOI

HK Suspend
K

Receivin HK

EOI

Resume
SEO

HS_ldle
HS &EOR

EOI & !HS_ldle

State Machine Exports:

Rx_Bus_Reset(Bus_Reset)
Rx_Suspend(Suspend)
Rx_Resume(Resume)
EOITR

= Logical OR
& = Logical AND
! = Logical NOT

EOI & HS_ldle

Figure 11-12. Upstream Facing Port Receiver State Machine

Table 11-8 defines the signals and events referenced in the figures.

319

PA_0001529

Universal Serial Bus Specification Revision 2.0

Table 11-8. Upstream Facing Port Receiver Signal/Event Definitions

Signal/Event Event/Signal Description
Name Source

HS Internal Port is operating in high-speed

Tx_active Transmitter Transmitter in the Active state

J Internal Receiving a 'J' (IDLE) or an 'SE1' on the upstream facing port

HJ Internal Receiving an HJ on the upstream facing port

EOI Internal End of timed interval

EOITR Internal Generated 24 full-speed bit times after the K->SEO transition
at the end of resume

HK, K Internal Receiving an HK, 'K' on the upstream facing port

Tx_resume Transmitter Transmitter is in the Sresume state

HS_ldle Internal Receiving an Idle state on the high-speed upstream facing
port

SEO Internal Receiving an SEO on the full-speed upstream facing port

EOR Internal End of Reset signaling from upstream

POR Implementation- Power_ On_ Reset
dependent

11.6.3.1 ReceivinglS
This state is entered

• From the ReceivingHJ or ReceivingHK state when a SEO is seen at the port and the p01i is in high
speed operation

• From the Resume state when a EOITR is seen and the port is in high-speed operation

• From the Bus Reset state at the End of Reset signaling from upstream when the port is in high-speed
operation

This is a timed state with an interval of 3 ms. The timer is reset each time this state is entered.

11.6.3.2 ReceivingHJ
This state is entered from an HS state when a HJ is seen on the bus.

11.6.3.3 ReceivingJ

320

This state is entered from a nonHS state except the Suspend state if the receiver detects an SJ (or Idle) or
SEl condition on the bus or while the Transmitter is in the Active state.

This is a timed state with an interval of 3 ms. The timer is reset each time this state is entered.

The timer only advances if the Transmitter is in the Inactive state.

PA_0001530

Universal Serial Bus Specification Revision 2.0

11.6.3.4 Suspend
This state is entered when:

• The 3 ms timer expires in the ReceivingJ

• The 3 ms timer expires in the ReceivingIS state and the port has removed its high-speed
terminations and connected its D+ pull-up resistor and the resulting bus state is not SEO.

When the Receiver enters this state, the Hub Controller starts a 2 ms timer. If that timer expires while the
Receiver is still in this state, then the Hub Controller is suspended. When the Hub Controller is suspended,
it may generate resume signaling.

11.6.3.5 ReceivingHK
This state is entered from an HS state when a HK is seen on the bus.

11.6.3.6 ReceivingK
This state is entered from any nonHS state except the Resume state when the receiver detects an SK
condition on the bus and the Hub Repeater is in the WFSOP or WFSOPFU state.

This is a timed state with a duration of 2.5 µs to 100 µs. The timer is reset each time this state starts.

11.6.3. 7 Resume
This state is entered:

• From the ReceivingK state when the timer expires

• From the Suspend state while the Transmitter is in the Sresume state or ifthere is a transition to the
K state on the upstream facing port

If the hub enters this state when its timing reference is not available, the hub may remain in this state until
the hub's timing reference becomes stable (timing references must stabilize in less than 10 ms). If this state
is being held pending stabilization of the hub's clock, the Receiver must provide a K to the repeater for
propagation to the downstream facing ports. When clocks are stable, the Receiver must repeat the incoming
signals.

Note: Hub timing references will be stable in less than 10 ms since reset requirements already specify that
they be stable in less than 10 ms and a hub must support reset from suspend.

11.6.3.8 ReceivingSEO
This state is entered from any nonHS state except Bus_ Reset when the receiver detects an SEO condition
and the Hub Repeater is in the WFSOP or WFSOPFU state.

This is a timed state. The minimum interval for this state is 2.5 µs. The maximum depends on the hub but
this interval must timeout early enough such that if the width of the SEO on the upstream facing port is only
10 ms, the Receiver will enter the Bus_ Reset state with sufficient time remaining in the 10 ms interval for
the hub to complete its reset processing. Furthermore, if the hub is suspended when the Receiver enters this
state, the hub must be able to start its clocks, time this interval, and complete its reset (chirp) protocol and
processing in the Bus_Reset state within 10 ms. It is preferred that this interval be as long as possible given
the constraints listed here. This will provide for the maximum immunity to noise on the upstream facing
port and reduce the probability that the device will reset in the presence of noise before the upstream hub
disables the port.

The timer is reset each time this state starts.

321

PA_0001531

Universal Serial Bus Specification Revision 2.0

11.6.3.9 Bus_Reset
This state is entered:

• From the ReceivingSEO state when the timer expires. As long as the port continues to receive SEO, the
Receiver will remain in this state.

• This state is also entered while power-on-reset (POR) is being generated by the hub's local circuitry.
The state machine cannot exit this state while POR is active.

• The 3 ms timer expires in the ReceivingIS state and the p011 has removed its high-speed terminations
and connected its D+ pull-up resistor and the resulting bus state is still SEO.

In this state, a high-speed capable port will implement the chirp signaling, handshake, and timing protocol
as described in Section 7.1.7.5.

11.6.4 Transmitter

322

This state machine is used to monitor the upstream facing port while the Hub Repeater has connectivity in
the upstream direction. The purpose of this monitoring activity is to prevent propagation of erroneous
indications in the upstream direction. In particular, this machine prevents babble and disconnect events on
the downstream facing ports of this hub from propagating and causing this hub to be disabled or
disconnected by the hub to which it is attached. Figure 11-13 is the transmitter state transition diagram.
Table 11-9 defines the signals and events referenced in Figure 11-13.

Rx Bu Reset

Inactive
HS&(EOF1#~~--~
HEOP) WFEOP & !Rx_Suspend

EOF1 &! HS .-----_,__~----,
Active 14------,

SEOsent

EOF1&!HS RepeatingSEO -~--_.

Rx_Suspend &
Rptr_WFEOP

EOl#J

GEOPTU

Sresume
EOI

State Machine Exports:

Tx_Active(Active)
Tx_Resume(Sresume)

= Logical OR

& = Logical AND

! = Logical NOT

Figure 11-13. Upstream Facing Port Transmitter State Machine

PA_0001532

Universal Serial Bus Specification Revision 2.0

Table 11-9. Upstream Facing Port Transmit Signal/Event Definitions

Signal/Event Event/Signal Description
Name Source

Rx_Bus_Reset Receiver Receiver is in the Bus_Reset state

EOF1 (micro)frame Hub (micro)frame time has reached the EOF1 point or is
Timer between EOF1 and the end of the (micro)frame

J Internal Transmitter transitions to sending a 'J' and transmits a 'J'

Rptr_WFEOP Hub Repeater Hub Repeater is in the WFOEP state

K Internal Transmitter transmits a 'K'

SEOsent Internal At least one bit time of SEO has been sent through the
transmitter

Rx_Suspend Receiver Receiver is in Suspend state

HEOP Repeater Completion of packet transmission in upstream direction

HS Internal Upstream facing port is operating as high-speed port

EOI Internal End of timed interval

11.6.4.1 Inactive
This state is entered at the end of the SendJ state or while the Receiver is in the Bus Reset state. This state
is also entered at the end of the Sresume state. While the transmitter is in this state, both the differential and
single-ended transmit circuits are disabled and placed in their high-impedance state.

When port is operating as a high-speed port, this state is entered from the Active state at EOFI or after an
HEOP from downstream.

11.6.4.2 Active
This state is entered from the Inactive state when the Hub Repeater transitions to the WFEOP state. This
state is entered from the RepeatingSEO state if the first transition after the SEO is not to the J state. In this
state, the data from a downstream facing port is repeated and transmitted on the upstream facing port.

11.6.4.3 RepeatingSEO
The port enters this state from the Active state when one bit time of SEO has been sent on the upstream
facing port. While in this state, the transmitter is still active and downstream signaling is repeated on the
port. This is a timed state with a duration of 23 full-speed bit times.

11.6.4.4 SendJ
The port enters this state from the RepeatingSEO state if either the bit timer reaches 23 or the repeated
signaling changes from SEO to 'J' or 'SEI '. This state is also entered at the end of the GEOPTU state. This
state lasts for one full-speed bit time. During this state, the hub drives an SJ on the port.

323

PA_0001533

Universal Serial Bus Specification Revision 2.0

11.6.4.5 Generate End of Packet Towards Upstream Port (GEOPTU)
The port enters this state from the Active or RepeatingSEO state if the frame timer reaches the EOF 1 point.

In this state, the port transmits SEO for two full-speed bit times.

11.6.4.6 Send Resume (Sresume)
The port enters this state from the Inactive state if the Receiver is in the Suspend state and the Hub Repeater
transitions to the WFEOP state. This indicates that a downstream device (or the port to the Hub Controller)
has generated resume signaling causing upstream connectivity to be established.

On entering this state, the hub will restart clocks if they had been turned off during the Suspend state.
While in this state, the Transmitter will drive a K' on the upstream facing port. While the Transmitter is in
this state, the Receiver is held in the Resume state. While the Receiver is in the Resume state, all
downstream facing ports that are in the Enabled state are placed in the TransmitR state and the resume on
this port is transmitted to those downstream facing ports.

The port stays in this state for at Least 1 ms but for no more than 15 ms.

11.7 Hub Repeater
The Hub Repeater provides the following functions:

• Sets up and tears down connectivity on packet boundaries

• Ensures orderly entry into and out of the Suspend state, including proper handling ofremote wakeups

11.7.1 High-speed Packet Connectivity

324

High-speed packet repeaters must reclock the packets in both directions. Reclocking means that the
repeater extracts the data from the received stream and retransmits the stream using its own Local clock.
This is necessary in order to keep the jitter seen at a receiver within acceptable limits (see Chapter 7 for
definition and limits on jitter).

Reclocking creates several requirements which can be best understood with the example repeater signal path
shown in Figure 11-14.

Squelch
Port Selector state

machine

'-----~ Data
'>---------.i Recovery

Rev stream

Rev Clk

Elasticity
Buffer

Xmt Clk

Figure 11-14. Example Hub Repeater Organization

Xmt stream

PA_0001534

Universal Serial Bus Specification Revision 2.0

11.7.1.1 Squelch Circuit
Because of squelch detection, the initial bits of the SYNC field may not be seen in the rest of the repeater.
At most, 4 bits of the SYNC field may be sacrificed in the entire repeater path.

The squelch circuit may take at most 4 bit times to disable the repeater after the bus returns to the Idle state.
This results in bits being added after the end of the packet. This is also known as EOP dribble and up to
4 random bits may get added after the packet by the entire repeater path.

11.7.1.2 Data Recovery Unit
The data recovery unit extracts the receive clock and receive data from this stream. Note that this is a
conceptual model only; actual implementations (e .g. , DLL) may achieve the reclocking by the local clock
without separation of the receive clock and data.

11.7.1.3 Elasticity Buffer
The half-depth of the elasticity buffer in the repeater must be at least 12 bits .

The total latency of a packet through a repeater must be less than 36 bit times. This includes the latency
through the elasticity buffer.

The elasticity buffer is used to handle the difference in frequency between the receive clock and the local
clock and works as follows . The elasticity buffer is primed (filled with at least 12 bits) by the receive clock
before the data is clocked out of it by the transmit clock. If the transmit clock is faster than the receive
clock, the buffer will get emptied more quickly than it gets filled. If the transmit clock is slower, the buffer
will get emptied slower than it gets filled. If the half-depth of the buffer is chosen to be equal to the
maximum difference in clock rate over the length of a packet, bits will not be lost or added to the packet.
The half-depth is calculated as follows.

The clock tolerance allowed is 500 ppm. This takes into account the effect of voltage, temperature, aging,
etc. So the received clock and the local clock could be different by 1000 ppm. The longest packet has a
data payload of 1 Kbytes. The maximum length of a packet is computed by adding the length of all the
fields and assuming maximum bit-stuffing. This maximum length is 9644 bits (9624 bits of packet+ 20 bits
of EOP dribble). This means that when the repeater is clocking out a packet with its local clock, it could get
ahead ofor fall behind the receive clock by 9.644 bits (1000 ppm*9644). This calculation yields 10 bits.
The half-depth of the elasticity buffer in the repeater must be at least 12 bits to provide system timing
margin.

11.7.1.4 High-Speed Port Selector State Machine
This state machine is used to establish connectivity on a valid packet and to keep the repeater from
establishing connectivity from a port which is seeing noise. This state machine must implement the
behavior shown in Figure 11-15. (Note: This state machine may be implemented on a per-port or per-hub
basis.)

325

PA_0001535

Universal Serial Bus Specification Revision 2.0

Rx Bus Reset

... I
EB Emptied

Inactive
~ Enable Transmit

!Squelch ' ~

Squelch&EOI& !SORP , ,
~

Priming ~

EOl&SORP

!Squelch&EOl&!SORP

Squelch ,, ! = Logical NOT

.... &=Logical AND
..... Not Packet

#=Logical OR

Figure 11-15. High-speed Port Selector State Machine

Table 11-10. High-speed Port Selector Signal/Event Definitions

Signal/Event Name Event/Signal Description
Source

Rx_Bus_Reset Internal Receiver is in the Bus_reset state.

EB Emptied Internal All bits accumulated in the elasticity buffer have been
transmitted.

EOI Internal End of interval of time needed for priming elasticity buffer

Squelch Internal Bus is in squelch state

SORP Internal Start Of Repeating Pattern; a 'JKJK' or 'KJKJ' pattern has
been seen in data in elasticity buffer.

11. 7.1.4.1 Inactive
This state is entered

• From the Enable Transmit state when all the bits accumulated in the elasticity buffer have been
transmitted

• From the Priming state if squelch is seen and the elasticity buffer is primed without a SORP being seen

• From the Not Packet state when the squelch circuit indicates a squelch state on the port

• From on any state on Rx_Bus_Reset

11.7.1.4.2 Priming

326

This state is entered from the Inactive state when the squelch circuit indicates that valid signal levels have
been observed at the port. This is a timed state and the priming interval is the time needed for the
implementation to fill the elasticity buffer with at least 12 bits.

PA_0001536

Universal Serial Bus Specification Revision 2.0

11. 7 .1.4.3 Enable Transmit
This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed and the
bits in the elasticity buffer include the SORP pattern.

In this state, the state machine generates a signal "start of high-speed packet" (SOHP) to the repeater state
machine which allows the repeater to establish connectivity from this port to the upstream facing port (or
downstream facing ports).

11.7.1.4.4 Not Packet
This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed, and the
bits in the elasticity buffer do not include the SORP pattern, and the squelch signal is not active.

11.7.2 Hub Repeater State Machine
The Hub repeater state machine in Figure 11-16 shows the states and transitions needed to implement the
Hub Repeater. Table 11-11 defines the Hub Repeater signals and events. The following sections describe
the states and the transitions.

11.7.2.1 High-speed Repeater Operation
Connectivity is setup on SOHP and tom down on HEOP. (HEOP is either the EBemptied signal from the
port selector state machine 'OR' the EOI signal which causes the transition out of the SendEOR state in
downstream facing port state machine.) Several of the state transitions below will occur when the HEOP is
seen. When such a transition is indicated, the transition does not occur until after the hub has repeated the
last bit in the elasticity buffer. Some of the transitions are triggered by an SOHP. Transitions of this type
occur as soon as the hub detects the SOHP from the port selector state machine ensuring that a valid packet
start has been seen.

11.7.2.2 Full-flow-speed Repeater Operation
Connectivity is setup on SOP and tom down on EOP. Several of the state transitions below will occur when
the EOP is seen. When such a transition is indicated, the transition does not occur until after the hub has
repeated the SEO-to-'J' transition and has driven 'J' for at least one bit time (bit time is determined by the
speed of the port.) Some of the transitions are triggered by an SOP. Transitions of this type occur as soon
as the hub detects the 'J'-to-'K' transition, ensuring that the initial edge of the SYNC field is preserved.

327

PA_0001537

Universal Serial Bus Specification Revision 2.0

11.7.2.3 Repeater State Machine

Rx_Bus_Reset
~

SOP_FU

Rx Resume -

SOP FU

A

....

DEOP

....

328

~

WFSOPFU
.....

~ ...
A

UEOP & !Lock

,r

....
WFEOPFU ...

...
UEOP & Lock

,,
1
~ Rx_Suspend ,..

WFSOP EOF1
j ..

SOP FD

, I'

WFEOP
EOF2

~ ..

.... ..

State Machine Exports:

Rptr _ WFEOP(WFEOP)
Rptr_WFSOPFU(WFSOPFU)
Rptr _Enter_ WFEOPFU
Rptr _ Exit_ WFEOPFU

= Logical OR

& = Logical AND

! = Logical NOT

Figure 11-16. Hub Repeater State Machine

PA_0001538

Universal Serial Bus Specification Revision 2.0

Table 11-11. Hub Repeater Signal/Event Definitions

Signal/Event Event/Signal Description
Name Source

Rx_Bus_Reset Receiver Receiver is in the Bus_Reset state

HEOP Three sources of HEOP:

Internal (Port selector, EBEmptied signal from port selector state machine OR

Downstream port, transition at EOI from SendEOR state in downstream facing
port state machine OR

Upstream port
receiver) EOITR from upstream facing port receiver state machine

UEOP Internal (HEOP)EOP received from the upstream facing port

DEOP Internal Generated when the Transmitter enters the (Inactive) SendJ
state

EOF1 (Micro)frame Timer (micro)frame timer is at the EOF1 point or between EOF1
and End-of-(micro)frame

EOF2 (Micro)frame Timer (micro)frame timer is at the EOF2 point or between EOF2
and End-of-(micro)frame

Lock (Micro)frame Timer (micro)frame timer is locked

Rx_Suspend Receiver Receiver is in the Suspend state

Rx_Resume Receiver Receiver is in the Resume state

SOP_FD Internal (SOHP)SOP received from downstream facing port or Hub
Controller. Generated (after SOHP identified) on the
transition from the Idle to K state on a port.

SOP_FU Internal (SOHP)SOP received from upstream facing port.
Generated (after SOHP identified) on the transition from the
Idle to K state on the upstream facing port.

11.7.3 Wait for Start of Packet from Upstream Port (WFSOPFU)
This state is entered in either of the following situations:

• From any other state when the upstream Receiver is in the Bus_Reset state

• From the WFSOP state if the (micro)frame timer is at or has passed the EOFI point

• From the WFEOP state at the EOF2 point

• From the WFEOPFU if the (micro)frame timer is not synchronized (locked) when an (HEOP)EOP is
received on the upstream facing port

In this state, the hub is waiting for an (SOHP)SOP on the upstream facing port, and transitions on
downstream facing ports are ignored by the Hub Repeater. While the Hub Repeater is in this state,
connectivity is not established.

329

PA_0001539

Universal Serial Bus Specification Revision 2.0

This state is used during the End-of-(micro)frame (past the EOF 1 point) to ensure that the hub will be able
to receive the SOF when it is sent by the host.

11.7.4 Wait for End of Packet from Upstream Port (WFEOPFU)
The hub enters this state if the hub is in the WFSOP or WFSOPFU state and an (SOHP)SOP is detected on
the upstream facing port. The hub also enters this state from the WFSOP, WFSOPFU, or WFEOP states
when the Receiver enters the Resume state.

While in this state, connectivity is established from the upstream facing port to all enabled downstream
facing ports. Downstream facing ports that are in the Enabled state are placed in the Transmit state on the
transition to this state.

11.7.5 Wait for Start of Packet (WFSOP)
This state is entered in any of the following situations:

• From the WFEOP state when an (HEOP)EOP is detected from the downstream facing port

• From the WFEOPFU state if the (micro)frame timer is synchronized (locked) when an (HEOP)EOP is
received from upstream

• From the WFSOPFU or WFEOPFU states when the upstream Receiver transitions to the Suspend state

A hub in this state is waiting for an (SOHP)SOP on the upstream facing port or any downstream facing port
that is in the Enabled state. While the Hub Repeater is in this state, connectivity is not established.

11.7.6 Wait for End of Packet (WFEOP)
This state is entered from the WFSOP state when an (SOHP)SOP is received from a downstream facing
port in the Enabled state.

In this state, the hub has connectivity established in the upstream direction and the signaling received on an
enabled downstream facing p01i is repeated and driven on the upstream facing port. The upstream
Transmitter is placed in the Active state on the transition to this state.

If the Hub Repeater is in this state when the EOF2 point is reached, the downstream facing port for which
connectivity is established is disabled as a babble port.

Note: The full-speed Transmitter will send an EOP at EOFI, but the Repeater stays in this state until the
device sends an (HEOP)EOP or the EOF2 point is reached.

11.8 Bus State Evaluation
A hub is required to evaluate the state of the connection on a port in order to make appropriate port state
transitions. This section describes the appropriate times and means for several of these evaluations.

11.8.1 Port Error

330

A Port Error can occur on a downstream facing port that is in the Enabled state. A Port E!Tor condition
exists when:

• The hub is in the WFEOP state with connectivity established upstream from the port when the
(micro)frame timer reaches the EOF2 point.

• At the EOF2 point, the Hub Repeater is in the WFSOPFU state, and there is other than Idle state on the
port.

PA_0001540

Universal Serial Bus Specification Revision 2.0

If upstream-directed connectivity is established when the (micro)frame timer reaches the EOF 1 point, the
upstream Transmitter will (return to Inactive state) generate a full-speed EOP to prevent the hub from being
disabled by the upstream hub. The connected port is then disabled if it has not ended the packet and
returned to the Idle state before the (micro)frame timer reaches the EOF2 point.

11.8.2 Speed Detection
At the end of reset, the bus is in the Idle state for the speed recorded in the port status register. Speed
detection is described in Section 7 .1. 7. 5.

If the device connected at the downstream facing port is high-speed, the repeater (rather than the
Transaction Translator) is used to signal between this port and the upstream facing port.

Due to connect and start-up transients, the hub may not be able to reliably determine the speed of the device
until the transients have ended. The USB System Software is required to "debounce" the connection and
provide a delay between the time a connection is detected and the device is used (see Section 7.1. 7.3). At
the end of the debounce interval, the device is expected to have placed its upstream facing port in the Idle
state and be able to react to reset signaling. The USB System Software must send a
SetPortFeature(PORT_RESET) request to the port to enable the port and make the attached device ready for
use.

The downstream facing port monitors the state of the D+ and D- lines to determine if the connected device
is low-speed. Ifso, the PORT_LOW _SPEED status bit is set to one to indicate a low-speed device. If not,
the PORT_LOW _SPEED status bit is set to zero to indicate a full-/high-speed device. Upon exit from the
reset process, the hub must set the PORT_HIGH_SPEED status bit according to the detected speed. The
downstream facing port performs the required reset processing as defined in Section 7.1.7.5. At the end of
the Resetting state, the hub will return the bus to the Idle state that is appropriate for the speed of the
attached device and transition to the Enabled state.

11.8.3 Collision
If the Hub Repeater is in the WFEOP state and an (SOHP)SOP is detected on another enabled port, a
Collision condition exists. There are two allowed behaviors for the hub in this instance. In either case,
connectivity teardown at EOFl and babble detection at EOF2 is required.

The first, and preferred, behavior is to 'garble' the message so that the host can detect the problem. The hub
garbles the message by transmitting a ('J' or) 'K' on the upstream facing port. This ('J' or) 'K' should persist
until packet traffic from all downstream facing ports ends. The hub should use the last ('J' or 'K') EOP to
terminate the garbled packet. Babble detection is enabled during this garbled message.

A second behavior is to block the second packet and, when the first message ends, return the hub to the
WFSOPFU or WFSOP state as appropriate. If the second stream is still active, the hub may reestablish
connectivity upstream. This method is not preferred, as it does not convey the problem to the host.
Additionally, if the second stream causes the hub to reestablish upstream connectivity as the host is trying to
establish downstream connectivity, additional packets can be lost and the host cannot properly associate the
problem.

Note: In high-speed repeaters, use of the SOHP to detect collisions would need replication of the datapath
shown in Figure 11-14 at every port. The unsquelch signal at a port can be used instead of the SOHP to
detect collisions; in this case, the second behavior (blocking) described above must be used.

11.8.4 Low-speed Port Behavior
When a hub is configured for full-/low-speed operation, low-speed data is sent or received through the hub's
upstream facing port at full-speed signaling even though the bit times are low-speed.

Full-speed signaling must not be transmitted to low-speed ports.

331

PA_0001541

Universal Serial Bus Specification Revision 2.0

If a port is detected to be attached to a low-speed device, the hub port's output buffers are configured to
operate at the slow slew rate (75-300 ns), and the port will not propagate downstream-directed packets
unless they are prefaced with a PRE PIO. When a PRE PIO is received, the 'J' state must be driven on
enabled low-speed ports within four bit times of receiving the last bit of the PRE PID.

Low-speed data follows the PIO and is propagated to both low- and full-speed devices. Hubs continue to
propagate downstream signaling to all enabled ports until a downstream EOP is detected, at which time all
output drivers are turned off

Full-speed devices will not misinterpret low-speed traffic because no low-speed data pattern can generate a
valid full-speed PIO.

When a low-speed device transmits, it does not preface its data packet with a PRE PID. Hubs will
propagate upstream-directed packets of full-/low-speed using full-speed signaling polarity and edge rates.

For both upstream and downstream low-speed data, the hub is responsible for inverting the polarity of the
data before transmitting to/from a low-speed port.

Although a low-speed device will send a low-speed EOP to properly terminate a packet, a hub may truncate
a low-speed packet at the EOFl point with a full-speed EOP. Thus, hubs must always be able to tear down
connectivity in response to a full-speed EOP regardless of the data rate of the packet.

Because of the slow transitions on low-speed ports, when the D+ and D- signal lines are switching between
the 'J' and 'K', they may both be below 2.0 V for a period of time that is longer than a full-speed bit time. A
hub must ensure that these slow transitions do not result in termination of connectivity and must not result in
an SEO being sent upstream.

11.8.4.1 Low-speed Keep-alive
All hub ports to which low-speed devices are connected must generate a low-speed keep-alive strobe,
generated at the beginning of the frame, which consists of a valid low-speed EOP (described in
Section 7 .1.13 .2). The strobe must be generated at least once in each frame in which an SOF is received.
This strobe is used to prevent low-speed devices from suspending ifthere is no other low-speed traffic on the
bus. The hub can generate the keep-alive on any valid full-speed token packet. The following rules for
generation of a low-speed keep-alive must be adhered to:

• A keep-alive must minimally be derived from each SOF. It is recommended that a keep-alive be
generated on any valid full-speed token.

• The keep-alive must start by the eighth bit after the PIO of the full-speed token.

11.9 Suspend and Resume

332

Hubs must support suspend and resume both as a USB device and in terms of propagating suspend and
resume signaling. Hubs support both global and selective suspend and resume. Global and selective
suspend are defined in Section 7.1.7.6. Global suspend/resume refers to the entire bus being suspended or
resumed without affecting any hub's downstream facing port states; selective suspend/resume refers to a
downstream facing p01i of a hub being suspended or resumed without affecting the hub state. Global
suspend/resume is implemented through the root port(s) at the host. Selective suspend/resume is
implemented via requests to a hub. Device-initiated resume is called remote-wakeup (see Section 7 .1. 7. 7).

If the hub upstream facing port is in (high-speed) full-speed, the required behavior is the same as that for a
function with upstream facing port in (high-speed) full-speed and is described in Chapter 7.

When a downstream facing port operating at high-speed goes into the Suspended state, it switches to full
speed terminations but continues to have high-speed port status. In response to a remote wakeup or
selective resume, this port will drive full-speed 'K' throughout its Resuming state. The requirements and
timings are the same as for full-speed ports and described below. At the end of this signaling, the bus will

PA_0001542

