
NFLE 1009 - Page 1

 zitROLESIEaEE SL UES REESE A EEE EEE ET TTEIR EOten

Nowit’s time to change gearsa little. In the first half of the book we concentrated on the whys and howsof
developing reusable software components. We focused primarily on the COM and OLEtechnologies that pro-
vide us withthe ability to build software components. We now understand what COM, OLE, and ActiveX are
all about. We investigated using C++, custom COM interfaces, and Automation in the creation of software
components, and now we're ready to develop the ultimate software components: ActiveX controls.

In this chapter we'll investigate what it takes to implement an ActiveX control. We'll look at the history
of the OLE and ActiveX control standards and discuss various ways ActiveX controls can be used in con-
junction with visual developmenttools, such as Microsoft's Visual Basic and Visual C++. Once we have a
broad understanding of the technology used to implementcontrols, we'll use the remaining chapters to
focus on the developmentof various types of ActiveX controls. This chapter provides an introduction to the
technology. After this, it will be all coding.

 JLE’s Compound Document Architecture
Theinitial goal of OLE was to provide software users with a document-centric environment. OLE defines
COM-based interfaces that enable applications to embed software objects developed by various vendors.
This important capability has addedsignificantly to the ease of use of various software products.

Figure 7.1 shows Microsoft Word with a Visio drawing embedded within the Word document. If I want
to edit the Visio drawing, I can do so within Word by double-clicking on the embedded drawing; Visio exe-
cutes “in-place,” and the Word menu changes to a Visio one. This arrangement allows me to use Visio’s
functionality completely within Word. The benefit of this technology is that the user doesn’t have to switch
betweenapplications to get work done. The focus is on the creation of the document and not on the assem-
bling of different application “pieces” into a complete document, explaining the origin of the term document-
centric. The document, and notthe applications needed to combine and produceit, is the user’s focus.

291

NFLE1009 - Page 1

NFLE 1009 - Page 2

2Q2_+ CHAPTER 7eenen snneneeretarerininniennaetttbetrttattbentemteenremcanatnittastninnaentnse

LI RCLLICLLEUULLEALUTEAL GELLECISAULALUTELACLLERSCCLCAMILLE MOALILLELEELACELINEOLALIAETTLEALECLLILLALLAMEECRCULEii ugh?
Se

Properties. Methods

lJ
OLE Gontro!

_ [ehenticontaner

gg5
g4
bsZ
gZg
g
g4

¢ggggZ
g%e
g5gZ
3Z
gzgg%gg
g%.

 sennaeenean]

Figure 7.1 Visio drawing embedded in a Word document.

There are some problems with this shift in paradigms. Many usersinitially get confused when the Word
menu changesto Visio’s or Excel’s. Also, most applications are large and cumbersome and experience signif-
icant performance problems when users attempt to launch several large applications at once. These prob-
lems will be overcome as users assimilate the changes and as developers restructure their applications to
include smaller modulesof functionality that operate independently (and as a whole).

ActiveX controls are built using many of the techniques of OLE compound documents. Plenty of mater-
ial is available that explains OLE as a compound documentstandard, so J won’t spend muchtimeonit here
except whenit directly pertains to the development of ActiveX controls.

Compound Document Containers and Embedded
Servers

Compound document containers are those applications that allow the embedding of OLE-compliant com-
pound document servers. Examples of containers include Microsoft's Word and Excel, Corel’s WordPerfect,
and others.

Applications such as Visio are embedded servers that support being activated in-place within a com-
pound document container application. This technique of being invoked within another application and
merging its menusis called visual editing. The user double-clicks on the server’s site—its screen location
within the container—and the embeddedserveris launched and becomesactivated in-place.

Compound documentservers are typically implemented as executables and therefore are large. They
include the complete functionality of the application that is being embedded within the container applica-

NFLE1009 - Page 2

NFLE 1009 - Page 3

ActiveX Controls 293Sree

tion. This is one reason that the effective use of compound documenttechnology wasinitially viewed as
requiring extensive system resources. But with advances in hardware and the moveto 32-bit operating sys-
tems, this is no longer a serious problem.

Many compound documentcontainers are also compound documentservers. You can embed a Word
document in an Excel spreadsheet as well as embed an Excel spreadsheet within a Word document. (This is
one reason they are such large applications.) Most ActiveX controls are embeddedservers that are designed

to perform quite differently from compound documentservers.

ActiveX Controls
ActiveX controls incorporate, or use, much of the technology provided by COM, OLE, and ActiveX—in par-
ticular, those technologies pioneered in compound documents. Many COM-based interfaces must be imple-
mented by both the client (or container) and the control to provide this powerful component-based environ-
ment. Figure 7.2 illustrates the communication between a control andits client.

ActiveX ControlContainer Ce
ee “Properties = =~ Methods©

ActiveX Control

Persistence

Figure 7.2 Interaction between a controlandits client.

In Chapter 1, we discussed the importance of discrete software components to the future of software devel-
opment. The underlying technology required to build robust software components is provided by COM and
the ActiveX control specification. Problems must be overcome, but today ActiveX controls provide the most
comprehensive solution.

In Chapter 6, we used Automation to encapsulate a nonvisual software component, our Expression
class. The ActiveX control architecture provides a robust method of building visible software components.
In addition to the visible aspect, ActiveX controls also provide a way to communicate events externally so

NFLE1009 - Page 3

NFLE 1009 - Page 4

294 ~ CHAPTER 7

that users of the control can use these events to signal other programmatic actions. A simple exampleis a
timer control whose only purpose is to provide a consistent series of events that the control user can tie to
some other programmaticaction.

Another important capability of ActiveX controls is their ability to save their state. This quality of per-
sistence allows a control userto initially define a control’s characteristics knowing that they will persist
between application design, running, and distribution. This capability is not intrinsically supported by the
Automation servers discussed in Chapter 6.

 Types ctiveX Contr
There are three basic ActiveX control types. Graphical controls provide significant functionality by their
visual representation and manipulation of data. An example might be an image display control. The second
type is also graphical, but it implements or extends a standard Windowscontrol. Its behavior is based on,
and uses, the functionality of an existing control provided by Windows. An example is a standard listbox
that has been enhanced to contain checkboxes. The third type, nonvisual controls, providesall their func-
tionality without any graphical requirements. Examples of nonvisual controls include a timer control, a
Win32 API control, and a network services control. Their main purpose is to expose Automation methods,
properties, and events for a visual developer. Except for the timer control (whose purpose is to provide a
uniform timer event and would be prohibitively expensive to implement using Automation), most nonvi-
sual controls can function as Automation servers. However, providing an implementation using ActiveX
controls makes them easier to use within graphical development environments, provides persistence of
state, and supports an event mechanism to communicate with the container. We will develop examples of
all three control types in the remaining chapters.

An additional control type is the Internet-aware control. An Internet-aware control can take the form of
any of the three control types but has additional environmental requirements. Internet-aware controls must
be designed to workeffectively in low-bandwidth environments and to carefully implementuser services.
Wewill discuss these requirementsin detail in Chapter12.

o

 ctiveX Controls as Software Components
We've come a long wayin ourquest for a technique to build robust and reusable software components, and
we've finally reached a comprehensive destination. In Chapter 6, we saw howeffective Automation is at
providing reusable components by wrapping C++ classes and exposing their functionality. We also found
three limitations of Automation. First, it provides only limited outgoing notification capabilities.
Automation components are inherently synchronous and provide only one-way communication in their
basic configuration. This is one reason that Automation objects are driven by Automation controllers. The
secondlimitation involves the lack of a visual aspect to Automation components. Third, Automation, in con-
trast to controls, lacks a persistence mechanism.Persistence of control properties is an important feature not
provided through Automation.

NFLE1009 - Page 4

NFLE 1009 - Page 5

ActiveX Controls ~ 295

From now on wewill focus exclusively on the design, development, anduse of ActiveX controls. They

provide a sophisticated event mechanism so that they can notify their users of events. Events are fired asyn-
chronously, notifying the user of an important occurrence within the component and allowing the control
user to harness the event and perform otheractions in a larger component-based application. ActiveX con-
trols also allow easy implementation of the visual or GUI aspect of a software component. This and other
features of ActiveX controls provide a rich environment on which to build visually oriented development
tools. And remember, the COM standard is an open one, andits design is completely documentedforall to
use. This arrangement creates an environment where vendors will develop tools for using this technology.
Theavailability of third-party tools can only benefit those who develop software components.

Thecreation of rich, control-based development environments is important to the ultimate success of
the component-based development paradigm. One of the problems of component developmentis the appli-
cation’s dependency on many different system-level and application-level components. The ultimate success
of component-based software depends on robusttools that ease the tasks of distribution and managementof
the application and its components. Today, ActiveX controls are supported by nearly all major development
tools. They have becomethe de facto software component.

Another important feature of ActiveX controls is that Microsoft has placed them at the center of its new
Internet-based software focus. ActiveX controls are used throughout Microsoft's new Web-based technolo-
gies. Internet Exploreritself is implemented using a robust and feature-laden ActiveX control. ActiveX con-
trols can be embedded within HTML-based Web pages to add tremendousapplication-like functionality to
static Web-based documents. Thousands of ActiveX controls are available, and the market will only grow as
the Internet and corporate intranets continue to flourish.

Some Terminology
A lot of terminology is associated with the OLE compound documentstandard, so I'll provide you with
someshort definitions to help as we move forward. The terminology for OLE changes often, and someof the
terms are equivalent. Some ofthe definitions are cyclical, so you may have to loop throughtwice.

Ul-Active Object
Embeddable objects are Ul-active when they have been activated in-place and are being acted upon by the
user. The Ul-active server merges its menus with that of the containing application (such as Word). Only one
server can be Ul-active within a containerat a time.

Active Object
When embeddable objects are not Ul-active, they are active, loaded, or passive. (Local server objects have an
additionalstate: running.) Most ActiveX controls prefer to remain in the active state, because it provides the
control with a true HWND in which to renderitself. In the loaded state, an embeddable object typically pro-

NFLE1009 - Page 5

NFLE 1009 - Page 6

296 + CHAPTER 7

vides a metafile representation of itself for the container to display and lies dormant waiting to be in-place
activated.

Embeddable Object
An embeddable object supports enough.of the OLE documentinterfaces that it can be embedded within an
OLEcontainer. This doesn’t mean that it supports in-place activation, only that it can renderitself within the
container. The object is said to be “embedded”becauseit is stored in the container’s data stream. For exam-
ple, in our previous Visio demonstration, the Visio object, which Microsoft Word knows nothing about, is
actually stored or embedded within Word’s .DOCfile, which is a compound documentfile.

Passive Object
A passive object exists only in the persistent storage stream, typically on disk. To be modified, the object
must be “loaded” into memory andplaced in the running state. A passive object is just a string of bits ona
storage device. Software is required to load, interpret, and manipulate the object.

 Visual Editing and in-Place Activation
These terms describe the capability of an embeddable object to be activated in-place. In-place activation is
the process of transitioning the object to the active state. In most compound document container applica-
tions, this process also forces the object into the ULactivestate if it is an outside-in object. Once the object is
activated, the user can interact with the embedded object. When the object is in-place active, the server and
container can merge their menus.

Outside-in Object
Outside-in objects becomeactive and Ul-active at the same time. Outside-in objects are activated and imme-
diately become Ul-active by a double-click of the mouse. Compound documentservers are outside-in
objects. You must double-click the Visio object to invoke Visio when editing within Microsoft Word.

Inside-Out Object
Inside-out objects become Ul-active with a single mouseclick. They are typically already in the active state
within the container. ActiveX controls are inside-out objects, although this option can be controlled by the
control developer. With the creation of the OLE Controls 96 specification, which we will discuss in detail
shortly, controls are not required to support any in-place activation interfaces.

NFLE1009 - Page 6

NFLE 1009 - Page 7

ActiveX Controls @ 297teteratNNURSECERteNeNANITONCTORCLETETBLSIETASEtatttetsteatanitainincCanaiat

penvanencrcncaisivocnc

 ActiveX Control Containers
ActiveX controls are discrete software elements that are similar to discrete hardware components and are of
little use by themselves. You need a control container to actually use an ActiveX control. Control containers
make it easy to tie together various ActiveX controls into a more complex and useful application. An impor-
tant feature of an ActiveX control container is the presenceofa scripting languagethat is used to allow pro-

grammatic interaction withthe various controls within the container.
ActiveX control containers are similar to the compound documentcontainers that we describedearlier,

but the older compound documentcontainers lack a few newinterfaces specified for ActiveX controls.
ActiveX controls can still function within compound documentcontainers(if they're designed properly), but.
manyof their most discerning features will not be accessible.

Although compound documentcontainers and ActiveX control containers share many internal charac-
teristics, their ultimate goals differ. As we’ve discussed, compound document containers focus on the
assembly of documents for viewing and printing and are typically complete applications. ActiveX control
containers are usually used as “forms” that contain controls that are tied together with a scripting language
to create an application. Figure 7.3 shows two Visual Basic forms, each containing some ActiveX controls.
Contrast this with the Word and Visio examplein Figure 7.1.

Figure 7.3 Two Visual Basic forms, each with some ActiveX controls.

Container

In typical visual development environments, the container operates in various modes. When the developeris
designing a form (control container) or Web page, the control should behave differently than whenit is actu-
ally being executed. To use Visual Basic as an example, when a Visual Basic developer needsa listbox con-
trol, the developerclicksthe listbox icon on thetool palette, drags a representation of the listbox control, and

NFLE1009 - Page 7

NFLE 1009 - Page 8

298 &CHAPTER7 _

drops it on a form. Thelistbox representation is merely a rectangle with a namein thetop left corner. During
design time, there is no need to create a window just to provide a representation of the contro]. When the
Visual Basic form andits associated code are executed by a user of the application, the listbox control win-
dow is actually created and therefore needs to behavelike a listbox and perform any special functions
through its exposed properties, methods, and events. These two modesare referred to as the design-phase
and rius-time modes.

Visual Basic also allows a developer to single-step through the application. At each break-point, you
can examinevariables, check the call stack, and so on. When VisualBasic is in this mode—debug mode—the
listbox control is frozen and doesn’t act on any window events.

I used Visual Basic for this example, but there are a large numberof other control containers, including
Visual C++, Borland’s Delphi, Microsoft’s Internet Explorer, and so on. The ActiveX control standard pro-
vides two ambient properties that can be implemented by the container to indicate its various modes.
Ambientproperties are containerstates that can be queried by the contained controls. If the ambient prop-
erty UserModeis TRUE,it indicates that the containeris in a mode in whichthe application user can interact
with a control. This mode would normally equate to a run-time mode in the Visual Basic example.If
UserMode is FALSE, the container is in a design-type mode. The UIDead property indicates, when TRUE,
that the control should not respond to any user input. This is similar to the debug modeof Visual Basic.

Throughouttherest of the chapters,I’ll use the terms design phase, run-time mode, and debug modeto
distinguish the differences in a container’s states.

Control and Container Interfaces

Although we haven't directly covered OLE compound documentservers in this book, we understand how
the technology works. Compound document servers can be implemented as local servers, in-process
servers, or both. ActiveX controls are almost always implemented as in-process servers. Most of the compo-
nents that we’ve developed so far have been in-process servers, so we’re comfortable with them.

The primary difference between the Expression in-process server of Chapter 5 and an ActiveX con-
trol is that the Expression object is missing a few ActiveX control~based interfaces. Many of these inter-
faces are required for a control to be classified as a compound document server and concern themselves
with the control’s visual aspect andits ability to be embedded andin-place activated in an OLE compound
documentcontainer.

The act of building a component or a container amounts to a process of implementing and exposing a
series of COM-based interfaces. A control implementsaseries of interfaces that a container expects and vice
versa. Figure 7.4 showsthe large numberofinterfaces that a control typically implements.I say “typically,”
because the requirements for implementing an ActiveX control have recently been loosened significantly.
The basic concept of an ActiveX control has changed from its being a hybrid compound documentserverto
being a small and nimble COM-based component. The newer control specifications reduce to one the num-
ber of interfaces a control must implement. We'll discuss these new standardsshortly.

NFLE 1009 - Page 8

NFLE 1009 - Page 9

ActiveX Controls + 299evvcsrsinonnroucsepntnsnnanentnabenstimstnaitestituteeitesietiitiittrittitseNHbCt

Y (DataObject

§ Ioeech CLSID = (00954144-3861-1010-92F3-040224009C02)
4 Innne {A8C39720-0954-101B-822E-G0440037B2FC} = Grid Contial~% lleCache :: Control =

§ (kCocol InprocServer2 = CAWINNT\System32\GRID32Z.0C%lDkeInFlaceActiveDbject HiceStatus = 0

 P 1lelnPlaceDbiect
~~ Y% 1DteObject

Y 1PeiPropestyBrowsing
—D iPersist

© iPetsistMemary
= ® jPersistPropertyBag
~% iPersistStorage

? iPersitSteamtnt
2 IProvideClazetnfo

<~% tProvideClazelnfo2
iG [SpeciyPropertyPages

? Wrknown
2 ® MewObject

Y MewObject2
ideCl Object

 i 1 = 131473
1 ProglD = MSGrid Grid

TookboxBitmap32 = C:AWINNTSystemn324GRID32,00%, 1
TypeLlis = (46B28723-0854-101B-B22E 004400378 2FC}Version = 1.0

MSGurid.Grid = Grid Control
CLSID = (A8C28720-0854-101B8-B22E-004A00378 2FC}

TypeLib = {E1S68843-3803-101C-AC6E-040224009C02}
{88838723-0854-1018-B22E -00440037B2FC}
21.0 = Microsoft Grid Control

~O

 & yain32 = CAWINNTASpstem32\GRID32.00%
FLAGS =2
HELPDIR = C:\VB4

Figure 7.4 Control-implemented interfaces.

S

 ActiveX Controls and Containers: story
ActiveX controls—called OLE controls at the time—were introduced as an OLE-basedtechnologyin early
1994 as a replacementfor the aging Visual Basic custom control (VBX). However, the technology was new,
and very few development tools supported the use of OLE controls. Visual Basic 4.0, the version that pro-
vided support for OLE controls, would not be delivered until late 1995. Microsoft Access version 2.0 pro-
vided minimal support, as did Microsoft FoxPro version 3.0. You could develop ActiveX controls starting
with the late 1994 release of Visual C++ version 2.0. However, even though you could develop controls, you
could not use them within Visual C++. This capability had to wait for the late 1995 release of Visual C++ 4.0.

The initial version of the OLE control specification, now called the OLE Controls 94 spec, required an
ActiveX control to implementa large number of COM-basedinterfaces. Most of these interfaces were part of
the compound documentspecification, because ActiveX controls were really in-process compound docu-
mentservers with a couple of new interfaces (such as I0leContro1). During this period, OLE control con-
tainers were just compound documentcontainers that implemented a few additional, control-specific inter-
faces (such as LOleControlSite).

In early 1996, after more than a year’s experience with implementing and using OLE controls, Microsoft
modified the specification significantly and called it the OLE controls 96 specification. The new specification
addresses a numberof performanceissues inherent with controls implemented using the 1994 specification.
The new specification also adds significant new features and capabilities for controls and containers.

NFLE 1009 - Page 9

NFLE 1009 - Page 10

300 + CHAPTER 7

The OLE Controls 94 Specification
The original OLE control architecture was specified as an extension to the existing compound document
specification. An OLE control had to implementall the interfaces required by a compound document
embedded server with in-place activation capabilities (such as IOleObject and IOleInPlaceoObject). In
addition to these original interfaces, OLE controls had to implementall the control-specific interfaces (such
as IDispatch and IO0leContro1). In all, a control that meets the OLE controls 94 specification and pro-
vides supportfor all control features would implement more than 15 interfaces. These interfaces are listed in
Table 7.1 along with a short description of their purpose.

Table 7.1 OLE Controls 94 Interfaces

Conirol-Side Interface Purpose/MFC Methods

IOleObject Providesthe essence of the OLE compound documentarchitecture. Through this inter-
face, the container and server communicate to negotiate the size of the embedded
object(the control, in our case} as well as get the MiscStatusbits for the control.
Manyofits methods are not needed in an ActiveX control.

IOleInPlaceObject A control must implement 10leInPlaceObject to support the ability to be acti-
vated and deactivated in-place within the container. The interface also provides a
method to notify the control whenits size changesorit is moved within the container.

IOleInPlaceActiveObject A control must implement [0leInPlaceActiveObject to provide support for the
use, and translation of, accelerator keys within the control. Many of
IOleInPlaceActiveObject’s methods are not required for ActiveX controls.

IoleControl Anewinterface added to support ActiveX controls. It provides methods to enhance the
interaction with the control’s container. I0leContro1 primarily adds functionality so
that the control and container can work together when handling keyboard input.

IDataObject A control implementsthis interface to provide graphical renderings to the container.

IViewObject2 implemented by controls that provide a visual aspect. IviewObject2 provides the
container with methodstotell the controlto renderitself within the container’s client
area,

IPersistStream, Thepersist interfaces are implemented by the controlso that they may persist their
IPersistStreamInit, values within the container’s structured storage. A control’s properties can persist
IPersistStorage betweeninstantiations.

IProvideClassInfo Implemented by an ActiveX controlto allow a client application (usually a container) to
efficiently obtain the type information for the control. It contains only one method,
GetClassInfo,which returns aninterface pointer that provides access to the con-
trol’s binary representation ofits type library.

NFLE1009 - Page 10

NFLE 1009 - Page 11

ActiveX Controls + 301cnnnHNACACETATESOTEENTNCROOMNSPAAESTATETE

Table 7.1 OLE Controls 94 Interfaces (continued)

Gontrol-Side Interface Purpose/MFC Methods

IspecifyPropertyPages Provides a wayforthe container to query the controlforits list of property pages.
ISpecifyPropertyPageshas only one method: GetPages. The Get Pages
methodis called by the container. The container provides a pointer fo a CAUUIDstruc-
ture that returns a counted array of CLSIDs. This enumeratesall the property page
CLSIDsused by the control. The container uses these CLSIDs with a COM function, typ-
ically cocreateInstance,to instantiate the page objects.

IPerPropertyBrowsing Provides a wayforthe controlto furnish additional information aboutits properties.

IpropertyPage2 Implemented by each property page component, it provides the container with meth-
odsto get the size, move, create, destroy, activate, and deactivate the component's
property page windows.

IconnectionPointContainer Used to provide the container with an outgoing IDispatchinterface. This enables
the control to communicate events to the container.

IConnectionPoint A control can support several event sets. For each one,the control must provide an
implementation of the IconnectionPoint interface.

IDispatch A control's properties and methods are provided through its IDispatchinterface.

As you can imagine, implementing a control without the help of MFC would be an arduoustask at best.
Implementation of a control container is even more difficult. It also requires a large numberofinterfaces,
and a container must manage multiple controls within it.

Shortly after the release of the OLE Controls 94 specification, Microsoft released a document that
described howa container and its controls should interact with each other. Muchof this coordination was

already specified via the compound documentspecification, but there wasstill a need for a documentthat
would help developers understand the complex relationship between a controland its container. The result-
ing document, OLE Controls and Container Guidelines Version 1.1, was releasedin late 1995.

The guidelines put forth the minimum requirements of a control or control container. They describe the
interfaces that are mandatory and those that are optional. It basically provides a set of guidelines for control
and container developers. The large numberof interfaces, methods, and techniques and the inherentlimita-
tions of human language madeit difficult to get all containers and controls to work together. This was to be
expected with a new and complex technology. However, the guidelines gave developers a goodset of rules
to follow when developing a control or container.

OLE Controls 96 Specification
Although OLE controls were a wonderful new technology that validated the concept of component-based
development, they weren't perfect. The large numberof interfaces and methodsthat a control had to imple-
ment, coupled with the requirement that most controls display a window when running, made them some-
what “heavy.” Building an application with a large number of OLE controls could be problematic; there

NFLE1009 - Page 11

NFLE 1009 - Page 12

302 + CHAPTER 7

were also some functionality holes that needed to befilled. To address these issues, Microsoft released, in
early 1996, the OLE Controls 96 specification.

Thefull text of the specification is part of the ActiveX SDK andis available from Microsoft. Following
are someof the new features.

° Mouseinteraction for inactive objects. The previous control specification stated that most controls
should stay in the active state by setting the OLEMISC_ACTIVATEWHENVISIBLEflag. This arrange-
ment required the container to load and activate a control whenever it was visible. Activating a con-
trol required the creation of a window to handle any userinteraction (such as mouseclicks and drag-
and-drop) with the control. The new specification adds a new interface, [PointerInactive,that
allowsa control to interact with the user while in the inactive state. The presence of this capability is
communicated to the container with the OLEMISC_TGNOREACTIVATEWHENVISIBLEflag.

° Drawing optimizations. The old control specification required a contro] to reselect the old font,
brush, and pen into the container-supplied device context whenever it was finished processing the
IOleView: : Draw call. The new specification adds a parameter to the Draw method that indicates
whether the control mustreset the state of the device context. It is up to the container to support this
new feature, but the control can determine whether it is supported by checking the pvAspect para-
meter for the DVASPECTINFOFLAG_CANOPTIMIZEflag.If this flag is set, the control does not have
to take the steps required to restore the state of the container-supplied device context after drawing
its representation.

° Flicker-free activation and deactivation. When a control is activated in-place by a container, the
control does not know whether its display bits are in a valid state. A new interface,
IOleInPlaceSiteEx, communicates to the control whether or not a redraw is necessary. The new
interface adds three methods to IOleInPlaceSite.

° Flicker-free drawing. Another new interface has been added to the OLE Controls 96 specification to
support flicker-free drawing, nonrectangular objects, and transparent objects. As we'll see in Chapter
9, flicker-free drawing can be achieved by using an off-screen device context, but it consumes addi-
tional resources. The new IViewObjectEx interface adds methods and parameters to makeflicker-
free drawing easier to implementat the control. Nonrectangular and transparent controls were sup-
ported in the previous control specification, but they required a great deal of drawing work on the
part of the control developer. The new specification provides additional drawing aspects (such as
DVASPECT_TRANSPARENT) that make implementation of nonrectangular and transparent controls
easier and moreefficient.

°¢ Windowless controls. The previous specification required in-place active objects to maintain a win-
dow whenactive. This requirement was necessary, as we mentionedearlier, to support user interac-
tion within the control. This issue has now been addressed with the [PointerInactiveinterface.

Controls that require a window also make nonrectangular and transparent regions difficult to imple-
ment. Windowless controls draw their representation directly on a device context provided by the
container. There is no need for a true HWND. To support this capability, though, several issues must

NFLE1009 - Page 12

NFLE 1009 - Page 13

ActiveX Controls + 303cementCOCBACONACCNONECNUCCCCCSSNAONICTRNONENLCOSEOCANN

be handled. User interaction beyond mouseclicks and drag-and-drop, such as keystrokes, must be
handled by the container and passed to the control. Another new interface,
IOleInPlaceSiteWindowless, which is derived from IOleInPlaceActiveObject, supports
these new requirements.It provides methods to handle focus, mouse capture, and painting of a con-
trol without a window.

° In-place drawing for windowless controls. A windowless control drawsdirectly on a device con-
text provided by the container. Several methods in IOleInPlaceSiteWindowlessenable the con-
trol to get and release a device context, invalidate regions, andscroll the area in which it draws.

e Hit detection for nonrectangular controls. The new IViewObjectEx interface has two methods
that support hit detection within nonrectangular controls. The container calls these methodsto deter-
mine whether the area clicked by the user is within the extents of a nonrectangularcontrol.

° Quick activation. The process of loading a control into a container can affect performance. The nego-
tiation that occurs during this process can take some time. For this reason, a new interface,
IQuickActivate, streamlines the control loading process. The new interface encapsulates many of
the calls and callbacks that are required when a controlis loaded.

e Undo. The undosection is container-specific. It allows a container to implement a multilevel undo
mechanism. ‘

° Control sizing. In the Controls 94 specification, control sizing is managed byaseries of calls and
callbacks while the control and container negotiate the sizing of the control. Several interfaces and
methods are involved in this process. The new specification provides an additional method in the
new IViewObjectEx interface that makes this process moreefficient. It also provides several con-
trol sizing options.

¢ Translation of event coordinates. The Controls 94 specification required controls to use HIMETRIC
units when passing coordinates to the container. The Controls 96 specification uses device units or
points, a technique that’s more consistent with the values used in methods and properties.
Translations are necessary for containers that support both controltypes.

° Textual persistence. Certain containers (such as Visual Basic) store control properties in a text for-
mat. This arrangement makesit easy for control users to modify property values using a simple text
editor. Before the Controls 96 specification, the interfaces that are used to implementthis efficient
mechanism of saving properties were not documented. The new specification documents a new
interface that lets you efficiently save a control’s properties in a property bag by implementing the
IPersistPropertyBaginterface.

That summarizes the enhancements added by the OLE Controls 96 specification. As you can see, most of the
changes focus on making ActiveX controls more efficient to implement and use. It will take some time for
the developmenttool vendors to incorporate these changesinto their containers, but it will eventually hap-
pen. Also, with the release of Visual C++ version 4.2, many of these features are supported at the control
developmentlevel. We'll cover some of them as we build the example controls. Table 7.2 lists the newinter-
faces added by the Controls 96 specification.

NFLE1009 - Page 13

NFLE 1009 - Page 14

304 + CHAPTER7

Table 7.2 New ControlInterfaces

Conirol-Side Interface Purpose/MFC Methods

IPointerInactive Provides a way for the control to respondto user interaction when the controlis not in
the active state.

IOleInPlaceSiteEx Adds flicker-free redrawing methods.

IOleInPlaceSiteWindowless—Supports the creation of windowless controls.

IQuickActivate Provides a moreefficient way ofinitially loading a control.

IViewObjectEx Adds drawing optimizations, support for nonrectangular objects, and new controlsizing
options.

IPersistPropertyBag Adds moreefficient ways ofstoring andretrieving text-based control properties.

IProvideClassinfo2 The new IProvideClassInfo2interface provides an additional method, GetGUID,
thatreturns the GUID specified in the GUIDKIND parameter.This is useful when the con-
tainer is implementing a control’s outgoing, or event, interface.g

Control and Container Guidelines Version 2.0

Along with the OLE Controls 96 specification, Microsoft released a document that provides guidelines for
control and container developers. By following the guidelines, developers can help make their controls and
containers work together reliably. The ActiveX control is becoming ubiquitous within development tools
and applications. The large numberof controls and containers, with their specialized functionality, makesit
imperative for certain guidelines to be followed. By following the guidelines, a developer makes the control
or container useful within the maximum number of development environments.

The guideline documentis currently part of the ActiveX SDK. You can look there for detailed informa-
tion on each guideline. Following is a summary of the key control-specific aspects of the guidelines. Some of
the concepts presented in this summaryare coveredin detail later in the chapter.

¢ A COM object. An ActiveX controlis just a specialized COM object. The only basic requirements for
a control is that it support self-registration and the Unknown interface. These are the only true
requirements of a control. However, such a control could not provide much functionality. The guide-
lines show how a developer can add only those interfaces that the control needs. The ultimate pur-
poseis to make the controlas lightweight as possible.

° Self-registration. control must support self-registration by implementing the DllRegisterServer
and DllUnregisterServer functions and must add the appropriate embeddable objects and
Automation server entries in the Registry. A control must also use the componentcategories APIto
indicate which services are required to host the control.

e Interface support.If a control supports an interface, it must support it at a basic level. The document
provides guidelines for each potential ActiveX control and container interface. It describes which
methods must be implemented within aninterfaceif that interface is implemented.

NFLE 1009 - Page 14

NFLE 1009 - Page 15

ActiveX Controls + 305netETATeeattitheamancaentpenairhatictanrananiniabsitnnstitttiittttintamaratoateninildetniesNAbtaictmirmoonenenpitSECIStcetatarenmamnousneniititiesttetS

e Persistence support. If a control needs to provide persistence support, it must implementat least
one TPersist* interface and should, if possible, support more than one. This requirement makesit
easier for a container to host the control. Support for [PersistPropertyBag is highly recom-
mended, because most of the major containers provide a “Save as text” capability.

e Ambient properties. If a control supports ambient properties, it must respect certain ambient prop-
erties exposed by the container. They are LocaleID, UserMode, UIDead, ShowGrabHandles,
ShowHatching, and DisplayAsDefault.

e Dual interfaces. The guidelines strongly recommend that ActiveX controls and containers support
dual interfaces. If you recall from Chapter 6, an Automation server implements a dual interface by
providing both an IDispatchinterface and a COM custom interface for its methods and properties.

* Miscellaneous. ActiveX controls should not use the WS_GROUP or WS_TABSTOP windowflags,
because it may conflict with the container’s use of these flags. A control should honora container’s
call to IOleControl::FreezeEvents. When events are frozen, a container will discard event
notifications from the control.

ActiveX Controls for the Internet

ActiveX controls are a perfect solution to many of the problems facing Web developers. Web pages are small
applications. They need controls, such as edit boxes and listboxes, and in most regards can be developed as
regular Windowsapplications, especially now that most of Microsoft's technologies (such as VBScript and
ActiveX controls) are supported within a Web browser.Internet Explorer is a highly functional ActiveX con-
trol container. It implements much of the new Controls 96 functionality as well as many other ActiveX tech-
nologies. ActiveX controls can be used within the Web environment, but there are some additional require-
ments for controls that have large amounts of data. We'll cover Internet-based ActiveX controls in detail in
Chapter 12.

ActiveX controls can be contained within Web browsers that support the ActiveX container architec-
ture. Today, the most prevalent example is Microsoft’s Internet Explorer. A control is typically thought of as
a button or edit box, but a control can also be a much larger entity, basically a whole application. Most of
Internet Explorer's functionality is contained within one ActiveX control. For most controls, operating
within the Web environment is not a problem. However, some controls manipulate large amounts of data.
The major difference between a local machine environment and the Web is bandwidth. The OLE-Controls-
COM Objects for the Internet specification describes new techniques and interfaces to facilitate working in
low-bandwidth environments.

ActiveX Control Functional ategories
A fully functional ActiveX control typically implements around 15 interfaces. Now, with the additional
interfaces described in the OLE Controls 96 specification, a large, full-featured control might implement 20
or more interfaces. Such a control, however, would be complex to implement, at least without the help of
MFC.

NFLE1009 - Page 15

NFLE 1009 - Page 16

306 + CHAPTER 7

The Control and Container Guidelines document reduces control requirements by requiring controls to
implement only those interfaces that they need. If a control does not want to support events, it need not
implement the interfaces (such as IConnectionPointContainer) needed for events. By following the
guidelines, a control developer is now free to implementonly thoseinterfaces that are necessary. The guide-
line documentcategorizes the possible control-implementedinterfaces by function. The next several sections
describe the major ActiveX functional categories according to the interfaces that they must implement.

 Standar ject Interfaces
An ActiveX control is a typical COM object. It must provide the most basic COM service: the IUnknown
interface. To create an instance of a control, it must also havea class factory, which requires the implementa-
tion of one of the [ClassFactoryinterfaces. The IClassFactory2 interface provides additional, license-
oriented features for components that implementit. We'll discuss this in more detail in Chapter8.

ocument Interfaces

ActiveX controls are typically compound document servers. The compound documentinterfaces provide

support for important features such as displaying a visual representation of the control, user interaction with
the control, and in-place activation. Several interfaces are needed to supportthis functionality.

The I0leObject interface provides basic embedded object supportso that the control (compound doc-
ument server) can communicate with the container. There are a number of methods in the IOleObject

interface, but only a few are of interest to ActiveX controls. The SetExtent and GetExtent methodsare
used to negotiate a control’s extent or size, and the GetMiscStatus method returns the various

 OLEMISC_* status bits set for the control. We’ll cover each of these methods in the section on control

Registry key entries.

The I0leView[x] interfaces provide a way for the container to obtain a graphical rendering of the
control. The control implements this interface and drawsits representation onto a device context provided
by the container. Theinitial version of this interface, IOleView, was part of the original compound docu-
ment specification. The OLE Controls 94 specification added GetExtent, which allowed the container to
get a server’s extents throughthis interface instead of L0leObject. Then, as part of the OLE Controls 96
specification, the I0leViewEx interface was added. This interface includes five new methodsthatfacilitate
flicker-free drawing, nonrectangular objects, hit testing, and additional control sizing options. MFC versions

4.2 and higher support the new I101leViewEx interface.

The IDataObject interface is used by compound documentservers to provide the container with a
method of rendering data to a device other than a device context. ActiveX controls typically use the
IOleView[x] interface instead of IDataObj ect,but it can be implementedif needed.

A control must implement the compound document IOleInPlaceObject interface to support the
ability to be activated and deactivated in-place within the container. This interface also provides a methodto
notify the control whenits size changes or is moved within the container.

NFLE 1009 - Page 16

NFLE 1009 - Page 17

_ActiveX Controls + 307

A control must implement ITOleInPlaceActiveObject to provide support for the use, and transla-
tion of, accelerator keys within the control. Many of IOleInPlaceActiveObject’s methods are not
needed for ActiveX controls.

The compound documentinterface, [OleCache2, can be implemented by a control to provide caching
of its representation, improving performance in somesituations.

Most ActiveX controls provide a graphical representation, so most controls should provide support for
the compound documentinterfaces. However,this is no longer a requirement.If a control is nonvisual and
does not require these interfaces, it is free to not implement them. A well-behaved container should still be
able to handle the control.

Fora control to provide basic functionality, it needs to implement some properties and methods. As wedis-
cussed in Chapter 6, Automation is a standard way of exposing member variables and memberfunctions
from a COM-basedserver. A control provides services by providing an implementation of the IDispatch
interface. Once implemented, a control becomes an Automationserver.

A control’s Automation interface is one of its most important features. The control standards provide a
numberof standard properties and methods. When designing a control, you will typically spend much of
your time working with properties and methods.Let’s look at the different types implemented by ActiveX
controls.

Properties
A control property is basically a characteristic of the control. Examples includecolor, height, font, and so on.
In a software componentsense, the properties of a control enable a developerto affect the appearance and
behaviorof a control. In most cases, a property maps to a C++ class membervariable that maintains the
value of a property.

Control developers can implement custom properties that are specific to the control being developed
(such as “Count”) as well as use the stock properties provided by the ActiveX control standard. Certain
properties may be valid only during the execution or run-time phase of a container. An exampleis a prop-
erty that contains the number of elements in a listbox or one that contains the HWND of the control. During
the design phase, this property has no meaningto the controluser.It is useful only during the execution of
the application. Other properties may be read-only at run timeorevenwrite-onlyat design time.

Standard and Stock Properties
The ActiveX Control standard provides a set of standard properties that should be used instead of imple-
menting custom properties for similar functionality. This arrangement provides a standard or uniform inter-
face for the component user. All ActiveX controls that expose a particular functionality will use the same

NFLE1009 - Page 17

NFLE 1009 - Page 18

SOS+CHAPTER7

property name. Examples include BackColor, Caption, and hwnd. These are properties that almostall
visual ActiveX controls should provide. Table 7.3 lists the standard properties currently defined by the stan-

dard. Wewill also use the term stock properties, which are ActiveX control standard properties whose
implementation is provided by MFC.

Table 7.3 Standard Control Properties
 Property Purpose

Appearance” Appearance ofthe control (e.g., 3-D).

AutoSize if PRUE, the control should sizeto fit within its container.

BackColor* The background color of the control.

BorderStyle” Thestyle of the control’s border. A short that currently supports only two values. A zero indicates no
border, and 1 indicates to draw a normal, single-line border around the control. More styles may be
definedin the future.

BorderColor The color of the border around the control.

BorderWidth The width of the border around the control,

DrawMode The mode of drawing used bythe control.

DrawStyle Thestyle of drawing used by the control.

DrawwWidth The width of the pen used for drawing.
Fillcolor Thefill color.

Fillstyle Thestyle ofthe fill color.

Font” The font used for any text in.the control,

ForeColor” Thecolor of any text or graphics within the control.

Enabled* TRUE indicates that the control can accept input.
hWnd" The hwnd ofthe control’s window.

TabStop Indicates whetherthe control should participate in the tab stop scheme.

Text*, Caption*

BorderVisible

ABSTRthatindicates the caption ortext ofthe control. Both properties are implemented with the
sameinternal methods. Only one ofthe two maybe used.
Show the border.

* Indicates stock implementation provided by MFC

Ambient Properties
The definition of ambient is “surrounding or encircling,” and this precisely describes the relationship
between ActiveX control containers and the ActiveX controls contained therein. The ActiveX control stan-

dard defines a set of ambient properties that are read-orly characteristics of the control container. These
characteristics define the ambiance surrounding each of the controls. A good example is the container’s
ambient font. To provide a uniform visual interface to the application user, the container may define an

NFLE1009 - Page 18

NFLE 1009 - Page 19

ActiveX Conirols + 309seenanennonsocesointatnreiarinnamnicieiainaeatitertmniiinuiscsbinaabinetnthatianacmiteininiteuuiibtinsitettastmitetamaraeatnstetsiapenpatensenasinatenrt ne penne

ambient font that each control should considerusing.If a control in the container uses a fontto display text
information, it would be nice if it would use the font thatall the other controlsare using.

Ambient properties are also useful from a development perspective. The developer can quickly change
the ambient property of a container and affectall the controls within it. Instead of changing the property for
every control, the developer has to changeit only at the containerlevel.

Ambient properties are provided by the default [Dispatchofthe client site provided to a control by a
contro] container. Whena control is loaded, MFC calls QueryInterface for the default IDispatch onits

client site. To retrieve an ambient property, the control calls IDispatch: : Invoke with the DISPID of the
ambient property. These are standard, known DISPIDs, so there is no need to use
IDispatch: :GetIDsOfNames beforehand.

Not all ambient properties pertain directly to the GUI aspects of a container and its controls. Other
properties are used by the container to indicate its current state to the enclosed controls. The UserMode
ambient property is used to indicate the state of the container.Is it currently in design, run, or debug mode?
The DisplayNameproperty conveys to the control its external name used by the container. The correct use
of ambient properties is important to the development of ActiveX controls, and we will cover each one in
detail in later chapters. The ambient properties are shown in Table 7.4.

Table 7.4 Ambient Properties

Broperiy——Purpose/MFCMethodtoAccess

BackColor Background colorofthe control. OLE_COLOR COleControl: :AmbientBackColor

DisplayName The nameofthe control as given by the container. This name should be used when the control needs
fo display information to the user. CString COleControl: :AmbientDisplayName

Font The recommended fontfor the control. LPFONTDISP COleControl: :AmbientFont

ForeColor Foreground colorfor text. OLE_COLOR COleControl: :AmbientForeColor
LocaleID The container’s locale ID. LCID ColeControl: : AmbientLocaleID

MessageReflect if this property is TRUE,the container supports reflecting messages backto the control, BOOL
COleControl: :ContainerReflectsMessages

ScaleUnits A string namefor the container’s coordinate units (such as “twips” or “cm”}. CString
COleControl: :AmbientScaleUnits -

TextAlign Indicates how the control should justify any textual information. O = numbersto the right, text fo the
left, 1 = left justify, 2 = centerjustify, 3 = right justify, 4 = fill justify. short
COleControl: :AmbientTextAlign

UserMode Returns TRUEif the containeris in run mode; otherwise, the containeris in design mode. BOOL
COleControl: :AmbientUserMode

UIDead The UIDead property indicates to the controlthatit should not accept or act on anyuser input
directed to the control. Containers may use this property to indicate to the controlthat it is in design
modeorthatit is running, but the developer hasinterrupted processing during debugging. BOOL
COleControl: :AmbientUIDead

NFLE1009 - Page 19

NFLE 1009 - Page 20

310 + CHAPTER 7

Table 7.4 Ambient Properties (continued)

Property Purpose/ MFC Method to Access

ShowGrabHandles if TRUE,the control should show grab handles when Ul-active. BOOL
COleControl: :AmbientShowGrabHandles

ShowHatching If TRUE,the control should show diagonalhatch marks arounditself when Ul-active, BOOL
COleControl: :AmbientShowHatching

DisplayAsDefault The containersets this praperty to TRUE for a buttan style control whenit becomes the default button
within the container. This occurs when the usertabs to the specific controlor the controlis actually the
default button on the form, andthe focus is on a nonbutton control. The button should indicate thatit

is the default button bythickeningits border.

SupportsMnemonics If TRUE,the container supports the use of mnemonics within controls.

AutoClip if TRUE,the container automatically clips any portion of the control’s rectangle that should not be dis-
played. if FALSE,the control should honorthe clipping rectangle passed to it in
IOleInPlaceObject’s SetObjectRects method.

 Control Methods

In Chapter 6, we discussed Automation methods. ActiveX control methodsare basically the same and are
implemented via the Dispatch interface. One of the new features of ActiveX controls (in contrast to Visual
Basic custom controls) is the ability they give you to implement custom methods. These methodsallow the
control user to call specific functionality within the control. This is no different from our Automation server
examples of Chapter6.

The ActiveX control standard currently provides two standard methodsthat should be implemented in
your controlif it supports the behavior (Table 7.5). The Refresh method causes an immediate redraw of the
control, and the Doclick method causesthe control to fire the standard click event. (We'll cover events ina

moment.) Implementing these methods requires just two mouseclicks, and wewill doso in the controls that
we develop.

Table 7.5 Standard Control Methods

Method Purpose/MFC Method
Refresh Redraw the control. colecontrol: :OnRefresh

DoClick Generate a Click event. COleControl: :OnDoClick

NFLE1009 - Page 20

NFLE 1009 - Page 21

/ ActiveX Controls + 31 1

Property P
Controls that support the concept of properties should also provide support for property pages. Activex
controls need a standard wayto visually present their properties to the user of the control (the visual devel-
oper). The ActiveX control standard added property page technology as partof its implementation. Each con-
trol has associated with it one or more property pagesthat allow visual manipulationof its properties. Asits
property values change, the controlis notified and can act on the request.

A property pageis similar (visually) to a single tab of the tabbed dialog boxes that have become popular
in Windowsapplications. Tabbed dialog boxes allow presentation of large amounts of data within a small
space andallow the grouping of related application features within a tab. A dialog box containing multiple
tabs is similar to a Windows95 property sheet.

Windows95 uses property sheets throughout its new interface. Property sheets are part of the
Windows 95 API and are one of the new common controls. Windows 95 has added many new full-featured
common controls, and we will use one of them to build an ActiveX control in a later chapter.

OLE property pages are different from the Windows 95 commoncontrol and provide additional capa-
bilities. Each OLE property pageis itself a component, or COM object, as we will see. Currentiy there are
three stock property pages that ActiveX controls can use: Font, Color, and Picture. They provide stan-
dard implementations for properties that many controls will use. A control developer can also provide one
or more custom property pages for a control.

The control containeris responsible for managing the design and run-time environment of which many
controls may be a part. Implementing each control’s property pages as distinct COM objects allows the con-
tainer to invoke or instantiate the pages independentof the control. This is important, because the user may
choose multiple controls, either of the same orof different types, and may want to modify the properties that
are commonto the selected controls. It is the responsibility of the container to filter through the property
pages and display only those that are common amongtheselected controls. Once this is done, the property
page componentis responsible for notifying its respective control. In other words, the container knows
when to display a control’s property pages (at the request of a user) and is responsible for querying each
selected control to obtain its respective property pages. The container then assembles them into a property
sheet that frames the property pages. Once this property sheet is complete, the user can modify and apply
the changes to the underlying controls. As this occurs, the property page communicates directly with the
control, requiring no help from the container (Figure 7.5).

NFLE1009 - Page 21

NFLE 1009 - Page 22

312 << CHAPTER 7

Figure 7.5 Control property sheet.

The container creates the property sheet frame that contains the OK, Cancel, Apply, and Help buttons. The
property pages within this frame are individual COM objects and are manipulated by the container using
Automation. These capabilities are provided by new OLEinterfaces specified in the ActiveX control stan-
dard, although they can be used outside ActiveX controls. Let’s briefly look at each one.

iSpecifyPropertyPages
The ISpecifyPropertyPagesinterface is implemented bythe control. It provides a way for the container
to query the control forits list of property pages. ISpecifyPropertyPages has only one method:
GetPages. The GetPages methodis called by the container. The container provides a pointer to a CAUUID
structure that returns a counted array of CLSIDs. This enumeratesall the property page CLSIDs used by the
control. The container uses these CLSIDs with a COM function, typically cocreateInstance,to instanti-
ate the page objects.

typedef struct tagCAUUID

{

ULONG cElems;

GUID FAR* pElems;

} CAUUID;

// ISpecifyPropertyPages

BEGIN_INTERFACE_PART (SpecifyPropertyPages, ISpecifyPropertyPages)

INIT_INTERFACE_PART(COleControl, SpecifyPropertyPages)

NFLE1009 - Page 22

NFLE 1009 - Page 23

ActiveX Controls + 313

STDMETHOD (GetPages) (CAUUID FAR*);

END_INTERFACE_PART (SpecifyPropertyPages)

[PropertyPageSite
IPropertyPageSitefacilitates communication between the property page component and the property
sheet frame as implemented by the container. An IPropertyPageSite pointer is provided to each prop-
erty pageafter it has been instantiated through [PropertyPage: : SetPageSite. The OnStatusChange
method is used by the property page to indicate to the frame that one or more properties have been modi-
fied. The frame then enables the Apply button.

The GetLocaleID methodis used by the property page to retrieve the appropriate language identifier
from the property frame. The GetPageContainer method currently has no defined behavior but may be
used in the future to obtain an interface on the property sheet frameitself. The TranslateAccelerator
method helps in the managementof accelerator keys used by the property pages.

[PropertyPage2
The IPropertyPage2 interface is implemented by each property page component and provides the con-
tainer with methodsto get the size of as well as move, create, destroy, activate, and deactivate the compo-
nent’s property page window.The container creates a frame for each property page and uses these methods
to manage the display of the property sheet. This arrangement allows the property sheet to appear and
behaveas if driven by one application, when, in fact, a property sheet comprises individual components
housed within a frame windowcreated by the container. Each methodis detailed in Table 7.6.

Table 7.6 [PropertyPage2 Methods

Methods Purpose/MFC Method

SetPageSite Initializes the property page byproviding a pointer to the IPropertyPageSite.
COlePropertyPage: :OnSetPageSite

Activate Causes creation of the dialog box based on the property page dialog resource specified by the control
developer.

Deactivate Destroys the dialog window created by the preceding method.

GetPageInfo Returnsto the property frame a PROPPAGEINEFOstructure that containsthe title, size, and help infor-
mation for the property page.

SetObjects Passes to the property pagea list of IDispatch interfaces for each of the controls that will be affected
by changes madevia the property page.

Show Called by the frame with a nCmdShow parameter. This usually either shows or hides the property page
window. MFC passes the nCmdsShow parameter to the ShowwWindow method,

Move Called by the frame to move the property page window. An LPRECTstructure is provided andis
passed to the MoveWindow method by MFC.

NFLE1009 - Page 23

NFLE 1009 - Page 24

314 + CHAPTER 7

Table 7.6 tPropertyPage2 Methods(continued)

Metheds Purpose/MFC Methed

IsPageDirty Called by the frame to determine whether the Apply button should be enabled.

Apply The Apply button waspressed, and all changes need to be propagated to all the affected
controls. MFC calls the DoDataExchange method implementedin the property sheet.

Help The Help button on the frame was pressed. MFC calls the property page’s OnHelp
method. The default implementation does nothing.

TranslateAccelerator The frame passes keystrokes to the page so thatit can act on the message. MFC passesthe
keystroke to PreTranslateMessageif it is notintercepted by the property page.

EditProperty Called by the frame with the DISPID of the property that is requesting edit. The default
MFC implementation, onEditProperty, does nothing.

 roperty Persistence
A control that provides property support through the IDispatch and property page interfaces may also
want to support persistence of those properties. Not all properties require persistence, but from a user’s per-
spective, persistence of properties makes developmentofapplicationseasier.

During the container’s design phase (when building an application using a visual tool), the developer
typically modifies various properties of a control. To save the resulting state of the control’s properties, the
development tool and its containers ask each control to save the state of its properties. This process, called
serialization, provides persistence of a control’s state. Persistence allows a control to have a uniqueinitial
state, set during the design phase, when loaded and activated within a container. The IPersistStorage
and IPersistStreamInit interfaces provide this capability.

IPersistStorage is supported by OLE compound documentcontainers. IPersistStorage
accesses OLE’s structured storage technology, which provides a hierarchical storage mechanism above the
operating system’s file system. OLE embedded servers implementthis interface so that the container can ask
each embeddedobjectto serialize itself within the container’s structured storage file. For compound docu-
ment objects, this requires the storage of a large and complex set of data (such as a Word documentor an
Excel spreadsheet). This interface provides more functionality (and therefore largerfiles) than is usually
required for lighter weight ActiveX control objects.

The IPersistStreamInit interface was added with the ActiveX control specification and provides a
simpler, stream-based approachto serialization. ActiveX control containers typically support this interface
in addition to [PersistStorage. To support embedding within both container types, controls should
implementboth interfaces.

Another persistence interface, IPersistPropertyBag, was added by the Controls 96 specification.
IPersistPropertyBagand the container-side interface, [PropertyBag, provide an efficient method of
saving and loading text-based properties. The control implements IPersistPropertyBag, through which
the containercalls Load and Save, thereby notifying the control to eitherinitialize itself or save its property

NFLE 1009 - Page 24

NFLE 1009 - Page 25

ActiveX Controls + 315escSESHTNESSIEAOSOOOOHOINSAONEMNESEISENAISIAOENESINNAINAHRIENCANAUEIEENENR N PT

values. It does this through the I[PropertyBag: :Read and IPropertyBag: :Write methods provided

by the container. The property bag persistence mechanism is very effective in a Web-based environment,
where a control’s property information may be stored within the HTML document.

A control should support as many of these persistence interfaces as possible to provide the mostflexi-
bility to the container. Likewise, a container should support as many as possible. The morepersistence inter-
faces are implemented, the greater the chancethat a container and control will work togetherefficiently.

 Connectable Objects and Control Events
A major improvement provided by the ActiveX control architecture is the addition of an outgoing event
mechanism. In Chapter 6, we described Automation as a primarily one-way technique of communicating
(programmatically) with another component. This technique wassufficient for using or driving components
or applications, but it does not provide the robust feedback needed when multiple componentsare interact-
ing or whena higher-levelentity is used to tie controls together.

Events provide a way for a control to notify its container that something is about to occur or has
occurred. The containertypically provides a way for a user to perform certain actions wheneverit is, notified
of these events. There is no requirementthat the container actually implement or perform any actions when
it receives control event notifications. As we described earlier, a containeris usually a partof a larger devel-
opment environmentin which thereis either an interpreted script-like language (such as Visual Basic) or a
compiled language such as Visual C++. This language is used to perform programmatic actions when a con-
trol fires an event.

Event communication between COM-based components is a major addition to the technology and is
used extensively by ActiveX controls. The technology is termed connectable objects, because it provides true
peer-to-peer communication between cooperating components. Events are implemented within ActiveX
controls using the IDispatch interface and the connectable objects interfaces: IConnectionPoint and
IConnectionPointContainer.

ActiveX controls implement the IconnectionPointContainerinterface to indicate to the container
that they support one or more outgoing (or event) interfaces. These outgoing interfaces allow the control to
invoke Automation methods within the container. The IconnectionPointContainerinterface provides
a mechanism to establish this link.

The IConnectionPointContainerinterface contains two methods. EnumConnectionPointspro-
vides a way for the container to iterate through all the connection points within the control. The
FindConnectionPoint method uses an interface ID (IID) to identify the specific interface that a container
is looking for. Each of these methods provides a way to obtain pointers to the IConnectionPointinter-
face.

IConnectionPointis also implemented by the control, but not as part of its main interface.(It’s not
available via QueryInterface.) IConnectionPoint is implemented on a different object and is used to
set up the outgoing connection with the container.

IConnectionPoint provides five methods, but we'll discuss only two of them. The other methods
provide more functionality than we need for our purposes. The Advise methodis used by the container to

NFLE 1009 - Page 25

NFLE 1009 - Page 26

316 + CHAPTER 7

establish a connection with the control. The container passes an interface pointer to one ofits interfaces to
the control. (For events, this interface is an IDispatch.) The control then calls methods implemented by the
container by calling through this interface. The Unadvise methodis used to terminate this connection. This
process is fairly complex, but Table 7.7 details the use of these interfaces to set up event notification between
the control and its container. The interface that we are setting upis a pointer to the container’s implementa-
tion of our control’s event set. The Automation methodsare specified by the control but implementedin the
container.

Table 7.7 Event Set IDispatch Setup
Container Control

Inserts and loads the control. Contains the definition of the event IDispatch.

Uponload,it queries for the control’s type information. Returnsthe type information for the control. This is a binary
The control must provide a primary event set IDispatch: version ofthe definitions from the -ODLfile. The control
pPPCI = QueryInterface(IProvideClassInfo[x]) should implement IProvideClassInfo2, becauseit
pPCI->GetClassInfo() makesit easier for the container to determine the HID of the

control’s default eventset.

From the type information, determinetheIID for the default
eventset. For our example, we will use IID_EventSet.
If the control implements IProvideClassInfo2,
the container can call GetGUIDwith the

GUIDKIND_DEFAULT_SOURCE_IID parameterto quickly
determine the eventsetIID.

Get the IconnectionPointContainerinterface: Return its IconnectionPointContainer implementation.
pICPC = QueryInterface

{ IConnectionPointContainer }

Get the ConnectionPointinterface for the defauit event set: Return an IConnectionPointpointerfor the specified IID.
pICP = pICPC->FindConnectionPoint

(IID_EventSet)

The container must now implementthe event set as an Set an internal pointer equal to the container’s (event)
automation interface.It then calls through the IDispatch implementation:
connection pointto set the control’s pointerto the
container’s implementation of the event IDispatch:
pICP~->Advise(pEventDispatch)

m_pEventDispatch = pEventDispatch

Whenthe controlfires an event, it does somethinglike this:
m_pEventDispatch->Invoke(myDispID...)

The control knows the DISPID as well asall the parameters and
types, becauseit defines them.

NFLE1009 - Page 26

NFLE 1009 - Page 27

- Activex Controls > a 17

A control’s methods provide a way for the container to perform actions within the control. Control events

provide a way for the control to perform actions within the container. As we’ve discussed, controls are
Automation servers that expose their methods and properties using the [Dispatchinterface. This arrange-
mentallows client to obtain the control’s IDispatch and then the DISPIDs of each method and property
(using IDispatch: :GetIDsOfNames). The client can then call these methods within the control using
IDispatch: : Invoke.

Control events are implemented in a similar way except in reverse. As you add events to a control, it
builds code that will call an Automation method for each event with its parameters. The definition of this
interface is provided to the container (via IProvideClassInfo[x]) as the control is being loaded. The
new IProvideClassInfo2 interface adds the GetGUID method to makeit easier for the container to find

the correct event set. By passing the dwGuidKind parameter of DEFAULT_SOURCE_ITID,the control returns
the default event IID.

The container then implements the [Dispatch interface based on the type information provided by the
control. The [Dispatch pointeris then returned to the control through the IConnectionPoint: :Advise
method. Later, when a control needs to fire an event, it calls through this IDispatch: : Invoke with the
DISPID of the event method. (The control knows the DISPID becauseit defined it, so there is no needto call

Get IDsOfNames.) This call invokes the method within the container(i.e., the eventfires).

Standard Events

To present a uniform eventset for users of ActiveX controls, the ActiveX control standard currently provides
nine standard events that can be used to develop an ActiveX control. These events are ones that visual con-
trols usually provide to notify the control user when they occur. They arelisted in Table 7.8. The only one
that requires more explanation, in this short overview, is the stock Error event, which provides a simple
mechanism to report errors that occur within your control. You should follow specific rules when using the
Error event, and wewill cover them in one of our example controls. As with the standard properties, the
events implemented by MFCarecalled stock events.

Table 7.8 Standard Events

Event Purpose/Stock MFC Function

Click Fired by a BUTTONUP eventfor any of the mouse buttons. COleControl: :FireClick

Db1Click Fired by a BUTTONDBLCLK message. COleControl::FireDblclick

Error Fired by the control when anerror occurs. COleControl: :FireError

KeyDown Fired by the WM_SYSKEYDOWN or WM_KEYDOWN message. COleControl: :FireKeyDown

KeyPress Fired by the WM_CHAR message. COleControl: :FireKeyPress

KeyUp Fired by the wM_SYSKEYUP or WM_KEYUP message. COleControl: :FireKeyUp

MouseDown Fired by the BUTTONDOWN event. COleControl: : FireMouseDown

MouseMove Fired by the WM_MOUSEMOVE message. ColeControl: :FireMouseMove

MouseUp Fired by the BUTTONUP event. ColeControl: :FireMouseUp

NFLE1009 - Page 27

NFLE 1009 - Page 28

318 < CHAPTER 7

Custom Events

MEC allows you to define custom events for your controls. The return values and parameters are the same
as those for Automation methods. The primary difference between stock and custom events is that MFC
provides an implementation for each stock event that automatically fires when the event occurs. For custom
events, the developer must implementthe code that fires the event.

 eystroke Handling
ActiveX controls are typically visual components that provide some kind of interaction with the control
user. If a control needs to process keystrokes, it should implement the IOleContro1 interface. It contains
four methods, of which twoare specific to keystroke processing.

GetControlinfofills in a caller-supplied CONTROLINFOstructure. This structure defines the key-
board mnemonics implemented in the control and contains a dwFlags variable that describes how the con-
trol will behave if the user presses the Esc or Return key whenthe controlis Ul-active.

The container calls OnMmemonic when a keystroke matches one in the control’s mnemonic table set by
a previous GetControlinfocall. A button control can handle accelerators and other button-type details by
using these two methods and the OLEMISC_ACTSLIKEBUTTONflag. The container should also expose the
DisplayAsDefault ambient property and provide an implementation of the
IOleControlSite: :TranslateAccelerator method. A control has first crack at keystrokes when it’s
Ul-active, but it can call this methodif it does not use the message:

interface IOleControl : [Unknown

{

HRESULT GetControlInfo(CONTROLINFO *pCtrlinfo) ;

HRESULT OnMnemonic(LPMSG pMsg) ;

HRESULT OnAmbientPropertyChange(DISPID dispID);

HRESULT FreezeEvents(BOOL fFreeze) ;
}

typedef struct tagCONTROLINFO

{

ULONG ch;

HACCEL hAccel;

USHORT cAccel;

DWORD dwFlags;

} CONTROLINFO;

The other two methods of I0leControl are important for most controls. The container calls
OnAmbientPropertyChangedto inform the control that one or more ambient properties have changed.
The only parameter is the DISPID of the property that changed. If more than one property changed,
DISPID_UNKNOWN is passed to the control.

NFLE 1009 - Page 28

NFLE 1009 - Page 29

ActiveX Controls + 319

FreezeEventsis called by the container to freeze and unfreeze the control’s event mechanism.If
FreezeEvents passes TRUE, the container will ignore any events fired by the control until the container
unfreezes the control by calling this method with a FALSE parameter. Some containers may, for example,
wantto freeze events while the other controls in the containerarestill beinginitialized.

Control Containment

The ActiveX control architecture allows a control to contain other ActiveX controls without making the par-
ent control implementall the required container-side interfaces. The controls are “contained” in the usual
Windowssense of parent and child windowsand not in the compound documentsense. To support simple
control containment, the container must implement the ISimpleFrameSite interface. The control must
call the methods when processing its window messages. Here’s the definition for [SimpleFrameSite:

interface ISimpleFrameSite : public IUnknown

{

PreMessageFilter(HWND hwnd, UINT msg, WPARAM wp, LPARAM lp,

LRESULT FAR* lplResult, DWORD FAR* lpdwCookie) ;

PostMessageFilter(HWND hwnd, UINT msg, WPARAM wp, LPARAM lp,

LRESULT FAR* lplResult, DWORD dwCookie) ;

}

To support simple frame containment, a control must doall of the following:

1, It mustcall the container’s PreMessageFilter method before processing any window messages
and mustcall the container’s PostMessageFilter methodafter processing the message. The mes-
sage shouldnotbe processedif the PreMessageFilter returns S_FALSE.

2. The control must be implemented as an in-process server.

3. The control should set the OLEMISC_SIMPLEFRAMEflag.

4. The control must properly handle painting of subclassed controls. This requires treating the wParam
in the WM_PAINT messageas the handle to a device context.

MFC and ActiveX Controls

Visual C++ and the MFClibraries provide a feature-rich environment for implementing and using ActiveX
controls. Most of the functionality is contained in two MFC classes: COleControl and
COlePropertyPage. We'll cover both classes in detail in the next few chapters. However,I’d like to briefly
discuss COleControl1 in the contextofall the interfaces we’ve describedin this chapter.

The base COleControl class implements 22 COM-basedinterfaces. The default behavior of
COleControl is full featured. It provides all the functionality described in the “Control Functional

NFLE1009 - Page 29

NFLE 1009 - Page 30

320 +CHAPTERZ

Categories” section and supports nearly all the new features described in the Controls 96 specification as
well as those discussed in ActiveX Controls—COM Objects for the Internet. This meansthat, by default, any
controls you build with MFC must alwayscarry around this weightevenif the functionality isn’t used. This
isn’t necessarily bad, because using tools such as MFCis a trade-off. There are, however, otheralternatives
for developing controls.

The ActiveX SDK gives you a lightweight control framework that provides a small subset of MFC’s con-
trol functionality. For developers who wantto build small, efficient controls, this tool gets them started.It
does require a good understanding of the implementation of ActiveX controls.

Visual C++ also provides an tool that makes it easy to create basic ActiveX controls. ControlWizardis
very similar to AppWizard. It provides a skeletal control project based on answers to a few questions.
ControlWizard allows a developerto write his or herfirst control in a matter of minutes.

 tiveX Control Su

Along with the specification of ActiveX controls, Microsoft's tools have provided variouslevels of develop-
ment support. The following sections providea brief look into the history of Microsoft’s support for control
development within Visual C++.

Visual C++ Version 2.0 (MFC 3.0)
Visual C++ version 2.0 (32-bit), released in the fall of 1994, wasthe first version to provide support for build-
ing ActiveX controls using MFC. The CD-ROM contained the Control Development Kit (CDK), a separately
installable set of components. They included a modified version of ClassWizard and a new control-based
AppWizard called, appropriately, ControlWizard, that madeit easy to build a “shell” control with the
desired base functionality.

The CDK contained two new MFCclasses—COleControl and COlePropertyPage—that provided
most of the CDK functionality. The CDK also included a subset of the other MFCclasses to use in building
controls. The important point about the version 2.x releases is this: using Visual C++ version 2.x, you could
only build ActiveX controls; you could notactually use them within Visual C++. There were several ActiveX
control hosting environments (such as Visual Basic and Visual FoxPro), but you could not host controls
within Visual C++ dialogs or views. This capability would have to wait until version 4.0 and higher.

Thelatest 16-bit version of Visual C++ (version 1.51) was also provided on the CD-ROM. A 16-bit ver-
sion of the CDK wasprovidedthat wasinstalled separately. Control projects that wereinitially started using
the 32-bit version of ControlWizard would easily move between the two environments: Visual C++ 2.0 and
Visual C++ 1.51. This arrangement madeit simple to target both 16-bit and 32-bit platforms.

NFLE 1009 - Page 30

NFLE 1009 - Page 31

ActiveX Controls + 321
SunnnnTrnnnrirr=lle

Visual C++ Version 2.1 (MFC 3.1)
Visual C++ version 2.1, released in early 1995, basically fixed some of bugsin the previous version CDK that
madeit difficult to build usable controls. Version 2.1 was a very stable release and madeit rather easy to
build effective ActiveX controls. Visual Basic 4.0, which was a great ActiveX control container, had been out
for a few months, and most developmenttool vendors were hard at work to provide tools to facilitate the
use and development of ActiveX controls. This support made developing ActiveX controls a worthwhile
endeavor.

Thelatest 16-bit version of Visual C++, version 1.52b, was also shipped on the CD-ROM. The CDK was
updated with minorfixes.

Visual C++ Version 2.2 (MPC 3.2)
Visual C++ version 2.2 was released in the summerof 1995. It added a few new features and bugfixes for
the CDK. It shipped with version 1.52c of the 16-bit Visual] C++ environment, which is basically the same
version available today (September 1996).

Visual C++ Version 4.0 (MFC 4.0)
Visual C++ version 4.0, a major release (October 1995), added significant features for ActiveX control devel-
opers and users. Visual C++ now provided control hosting capabilities, making it easy to incorporate
ActiveX controls within Visual C++ dialog boxes. ActiveX controls could be created dynamically and added
to MFC-based views.Finally, all the features of ActiveX controls could be used by Visual C++ developers.

Aspart of the major 4.0 release, the earlier CDK wasintegrated within the rest of MFC. The full comple-
ment of MFC classes could now be used within ActiveX controls. ActiveX controls became simply MFC-
based DLLs. They were no different from any other MFC-based COM server.

However, Version 4.0 removed someof the previous functionality. ControlWizard lost the ability to
import a VBX header definition and build a skeleton project. Also, ControlWizard no longer would generate
both 16-bit and 32-bit projects, so multiplatform support became harder to manage. These changes were nec-
essary because parallel upgrades to the 16-bit compiler were discontinued. The 16-bit version (1.52c)
shipped with Visual C++ 2.2 was the last upgrade to the 16-bit version of Visual C++. The primary focus
was now 32-bit development.

Visual C++ Version 4.1 (MFC 4.1)
Visual C++ version 4.1 addedlittle, except for bug fixes, that was specific to ActiveX control development.
An example and Tech Note (65) were added that showed how to convert an MFC-based Automation server
to support both the [Dispatch interface and a custom interface, thereby providing dual interface support.

NFLE1009 - Page 31

NFLE 1009 - Page 32

322+CHAPTER 7insertiSNCSSEAATESSONSSAAStetneCtnepCenerENESEciscsstteseemneiSirneeesieneienentiIsaNsessisetiviiitees,

Visual C++ Version 4.2 (MFC 4.2)
Visual C++ version 4.2 added support for many of the enhancements outlined in the OLE Controls 96 speci-
fication. These features include windowless controls, flicker-free controls, nonrectangular controls, and other
control optimizations. Internet-based enhancements were also added. CAsyncMonikerFile,
CDataPathProperty,and other classes were added to support this new Internet functionality.

As this book was going to press, Microsoft released the beta of Visual Basic 5.0 Control Creation
Edition. You can now use Visual Basic to develop ActiveX controls. The Control Creation Edition is
free, so you should definitely download it and give it a try. For details, check out my website at
hitp://www.WidgetWare.com.

 Win32 versus Winl6 Control Development

Thelast version of Visual C++ to make it easy to move between 16-bit and 32-bit platforms was version 2.2.
The 32-bit version also came with the 16-bit Visual C++ version 1.52c. If you built your controlsinitially with
version 2.2, they could easily be moved back and forth between version 2.2 and version 1.52c. However,
these versions lack some of the important new ActiveX features.If you need to support both platforms, you
basically have three choices. You can use the older versions of Visual C++ and place a few #ifdef WIN32
lines aroundthe bit-specific code. Another good alternative is to use the non-MFCcontrol framework pro-
vided with the ActiveX SDK, which we'll discuss in Chapter 12. The third optionis to write your own frame-
work. Right now,I think the best option is to use the non-MFC framework from the ActiveX SDK.

 xtended Controls

The control container is responsible for and manages the control's site, or location. There is information
about the control that only the container knows. Examples include the control’s position within the con-
tainer and the control's external name. The control user may wish to modify these values. The best way to
present this information to the user would be to secretly add these container-specific properties to each con-
trol within the container, giving the user a seamless property interface. Each control would have a top,
left, and name property. To provide this capability, a container needs a way to “wrap”a control and aug-
mentits propertylist. OLE aggregation makesthis task easy.

The ActiveX control standard describes an extended conirol that is created by the container and is aggre-
gated with the original control (Figure 7.6). The container-specific properties, or extended properties, are
implemented by the container in the aggregate object. Containers may also want to implement container-
wide properties that, if modified, affect all the controls within the container. An example is the extended
visible property.If the container’s visible property is FALSE,it would indicate that each control within
the containeris not visible. Extended controls make this easy. Although the extended control can hide the
implementation of properties for a given control if necessary, the standard recommendsthat control devel-
opers not use the extended control properties that are currently defined. These properties are listed in Table
7.9. Although the standard does not specify any extended methods or events, a container could add them
using the extended control.

NFLE1009 - Page 32

NFLE 1009 - Page 33

ActiveX Controls + 323

Figure 7.6 Extended control.

Table 7.9 Extended Control Properties

Type/Name Purpose

BSTR Name The name givento the control by the user.

BOOL Visible Thevisibility of the control.

TDispatch Parent An IDispatch for the container’s extended properties.
BOOL Cancel Is the control the default Cancel button for the container?

BOOL Default Is the control the Default button for the container?

Just like all the OLE components we’ve studied so far, ActiveX controls require specific entries in the system
Registry. These entries describeattributes of the control that potential containers will use whenloadingit. Each
of the following entries is a subkey under the control’s CLSID, Each control typically has a ProgID registered
that points backto the specific CLSID, as doall the components that we developed in previous chapters.

Control

The Control entry indicates that the componentis an ActiveX control. This entry allows containers to eas-
ily identify the ActiveX controls available on the system by searching through the Registry looking only for
CLSIDs with a Control subkey. There is no value for the controlentry. Its existenceis all that is required.

NFLE 1009 - Page 33

NFLE 1009 - Page 34

324 < CHAPTER 7

lnprocServer32
This entry indicates that the control is a 32-bit in-process server. We used this subkey for the in-process
servers that we developed in earlier chapters. The only difference is that the filename of an ActiveX control
has an extension of OCX. The OCX extensionisn’t a requirement—16-bit MFC leavesit as DLL—butuse ofit
is recommendedso thatit is easy to distinguish between a DLL and a control. Here’s the entry for the con-
trol that we will develop in Chapter8.

InprocServer32 = c:\postit\objd32\postit.ocx

Insertable

The Insertable entry indicates that the component can be embedded within a compound document con-
tainer. This is the entry used by compound documentservers such as Visio, Word, and Excel. Compound
documentcontainers populate the Insert Object dialog box by spinning through the Registry looking for the
Insertable key. ActiveX controls should add this subkey only if they can provide functionality when
embedded within a compound documentcontainer. Because ActiveX controls are a superset of visual
servers, they can always be inserted within a compound documentcontainer, and this is one wayto test the
robustness of your controls.

NiscStatus

The MiscStatusentry specifies various options of interest to the contro] container. These values can be
queried beforethe control is loaded, and in somecases they indicate to the container how the control should
be loaded. The value for this entry is an integer equivalent of a bit mask value composed of optional
OLEMISC_* flags. Many of these values were added with the ActiveX control specification and so are spe-
cific primarily to ActiveX controls. Table 7.10 details OLEMISCbits of interest to control developers.

Table 7.10 Control OLEMISC Status Bits

Name Purpose

ACTIVATEWHENVISIBLE This bit is set to indicate thatthe control prefers to be active whenvisible. This option
can be expensive whenthere are a large numberof controls. The Controls 96 specifi-
cation makesit possible for controls to perform mostfunctions even when notactive.
This flag should beset so that the control will work in containers that do not support the
new specification.

IGNOREACTIVATEWHENVIS IBLE Added by the Controls 96 specification.If a control supports the new optimized control
behavior, it should setthis flag to inform new containersthat they can safely use the
Controls 96 specification enhancements.

NFLE1009 - Page 34

NFLE 1009 - Page 35

ActiveX Controls + 325

Table 7.10 Control OLEMISC StatusBits (continued)

Name Purpose

INVISIBLEATRUNTIME Indicates that the control should bevisible only during the design phase. When running, the con-
trol should not be visible. Any controlthat provides only nonvisual serviceswill fit in this category.

ALWAYSRUN The control should always be running. Controls such as those that are invisible at run time may
needto setthis bit to ensure that they are loaded and runningatall times. In this way,their
events can be communicated to the container.

ACTSLIKEBUTTON The controlis a button and so should behavedifferently if the containerindicates to the control
thatit should act as a default button.

ACTSLIKELABEL The container should treatthis controllike a static label. For example, the container should
alwaysset focus to the next controlin the tab order.

NOUIACTIVE Indicates that the control does not support UI activation. The control maystill be in-place acti-
vated, butit does not have a Ul-active state.

ALIGNABLE Indicates that the container should provide a wayto align the control in various ways, usually
along a side orthe top of the container.

IMEMODE Indicates that the control understands the input method editor mode, which is used for localiza-
tion and internationalization within controls.

SIMPLEPRAME The control uses the ISimpleFrameSite interface(if supported by the container).
ISimplePFrameSite allows a control to contain instances of other controls. This is similar to

group box functionality.

SETCLIENTSITEFIRST A controlsets this bit to request that the containerset up the control's site before the controlis
constructed. In this way, the control can use information from the client site (particularly ambient
properties) during loading.

ProglD
The value of the ProgID entryis set to the current, version-specific ProgID for the control. This is no differ-
ent from the entries for our components in earlier chapters.

 ToolbarBitmap32
The ToolbarBitmap32 entry value specifies the filename and resource ID of the bitmap used for the tool-
bar of the container. MFC stores the control’s bitmap within the OCXfile’s resources, so a typical entry looks
like this:

ToolbarBitmap32 = c:\postit\objd32\postit.ocx, 1

NFLE 1009 - Page 35

NFLE 1009 - Page 36

326 + CHAPTER 7

Typelib
The TypeLib entry value specifies the GUID of the type library for the control. The container uses this
GUIDto look up the location of the type library. The typelibraries installed on the system are listed as sub-
keys under the TypeLib key in the Registry. The typelibrary information for the controlis in the resources
of the OCXfile, so the path and filenameare the same as the InprocServer32 entry.

Version

The value of this subkey indicates the current version of the control.

As wediscussed earlier, the ActiveX Controls 96 specification requires that ActiveX controls support the
concept of component categories. The control Registry entries that wejust discussedarestill useful and nec-
essary for support of containers that have not movedto the new specification. However, as a control devel-
oper you should also provide component category support for your controls. First, let’s take a look at what
componentcategories are.

Why Component Categories?
Early in the days of ActiveX controls, a few Registry entries were all that were needed to specify the func-
tionality of a control. The Control Registry key indicated the existence of a control, and the Insertable
key indicated whetherthe control could function as a simple OLE embeddedvisual server. Today, however,
the functional capabilities of all COM-based components (especially controls) continues to expand rapidly.
A moreefficient and useful mechanism for categorizing the capabilities of these objects is needed.

Today, my NT machine has several hundred COM-based componentsinstalled. My Registry is filled
with CLSIDs and ProgIDs of these components, and there are only a few waysto distinguish the differences
in capabilities between these objects. Only a few Registry entries indicate their purpose. Wouldn'tit be great
if I could sift through these components and get a specific view of the functionality of each one? That's
where the new componentcategories specification comes in. Thanks to component categories, the OLE-
VIEWutility now shows me a more understandable view of the components on my system (see Figure 7.7).

NFLE1009 - Page 36

NFLE 1009 - Page 37

ActiveX Controls @ 327

8-18) Active Serpting Engine
{8} Active Scripting Engine with Patsing
@) Automation Objects
@) Controls
(2) Controls sately initializable trom persist

(ZI Controls that are intemet aware
(6 Conttols that are safely ectipteble
{B\ Document Objects

(-(&) Embeddable Objects
- OLEViewer interface Viewers
{G) OLEViewer Interface Viewers
(Gd OLEViewerInterface Viewers

i (2) Support initialize via PersistPropertyB &
4] ts GB OLE 1.0 Objects

t- 'P COMLibrary Objects
| @-@& AllObjects

{) Application IDs
@ Type Libraries

4 EE] Itedaces

Component Categoti
i (ODESGA57-288.4-11CF-A229-004400307352}[409] = Support

{DE BEAS8-28.4.4-11CF-4.228-0044003D 7352} [409] = Control
{40FGED 3-2438-1 10F-A3DB-O20036F 1 2502} [409] = Ernbedd:

OldKey = Insertable
~ {40FC6E 04-2438-11CF-43DB -CE0036F12502} [403] = Controls

OldKey = Contiel
{40FC6ED5-2438-11CF-A3DB-080036F12502} [409} = Automat

- DidKey = Prograramable
~- {40FC6EDE-2439-11CF-A3DB-O80036F12502} [409] = Docume

OldKey = DocObject
{40FC6ED9-2438-1 1CF-83D 8 -02003EF12502} [409] = _Printab!

OldKey = Printable
{64494F82-F927-11CE-9059-080036F12502} [403} = OLEViewer
{7374B140-977C-11CF-SFAS-00SA006C42C4}

409 = Controls that are safely scriptable
~ {7374B 142-977C-1 1CF-9FAS-OOSA0G6C42C4}

Figure 7.7 OLEVIEW with componentcategories.

The CATID

Categories are identified using a category ID. A CATID is another namefor the 128-bit GUID used
throughout COM. Along with the CATID there is a locale ID, which is specified by a string of hexadeci-
mal digits and a human-readable string. The known CATIDsare stored in the Registry under the
HKEY_CLASSES_ROOT\Component Categories key. Figure 7.8 shows some of the Registry entries
underthis key.

 + CE) COMCTLSharCtrl1
> COMCTLTreeCtri.1
+ corfile
+] Campanent Categaries

| 20 {ODE86A5?-2BAA-11 CF-A229-00AA003Ds_
+ C2 {ODE 86A58-2BAA-1 1 CF-A229-00AA4003D".*
+1 {40FCBED3-24368-11 CF-A3DB-080036F12.>

Le OldKey
rE) Cb6E

id
+ CE) {40FCBED5-2438-11 CF-A3DB-080038F12
~ (5) 440FC6ED8-2 438-11 CF-A3DB-080038F12
|- (3) {40FC6EDS-2438-1 1 CF-A3DB-080036F12
t- €{64454F82-F827-1 1 CE-9059-080036F1 25C
CE) {737481 40-977C-1 1 CF-9FAQ-O0AAD0BC4e
| CE) {737 4B1 42-977C-11CF-9FA9-00AA006C4:.~ «
Gn {7DD95801-9882-11CF-9FAS-O0AA006C4: i.
-Ca {7DD95802-9862-11CF-SFA9-O0AA006C4’=
+E] {FOB7A1A1-984?-1 1 CF-8F20-00805F2CDI*,
i (7 {FOB7A1A2-98 47-11 CF-8F20-00805F2CDi*

+ G2 ControlDocument “

<No Name> : REG_SZ: Control

2438-11 CF-A3DB-080036F12

Figure 7.8 Category IDsin the Registry.
NFLE1009 - Page 37

NFLE 1009 - Page 38

328 ¢ CHAPTER 7

The old Registry entries that were previously used to categorize components are supported for backward
compatibility. As you can see in Figure 7.8, some Registry entries have an 01dKey entry, which provides a
way to mapthe older Registry mechanism to the new componentcategories one. Table 7.11 lists the CATIDs
associated with the old Registry entries.

Table 7.11 Category IDs for Old Registry Entries

Old Registry Entry CATID Symbol GUID ~ OO
from COMCAT.H

Control CATID_Control AOFC6ED4-2438-1 1 cf-A3DB-O80036F1 2502

Insertable CATID_Insertable AOFC6ED3-2438-1 1cf-A3DB-080036F12502

Programmable CATID_Programmable AOFC6EDS-2438-1 1cf-A3DB-080036F 12502

DocObject CATID_DocObject AOFC6ED8-2438-1 1 cf-A3DB-O80036F 1 2502

Printable CATID_Printable AOFC6ED9-2438-1 1cf-A3DB-O80036F 12502

Categorizing Your Controls
You categorize a control in two ways:first, by the control’s capabilities and, second, by the capabilities
required by its potential container. Two new Registry entries are used to communicate this information. The
Implemented Categories entry lists those category capabilities that your control provides, and the
Required Categories entry lists those categories that your control requires from a container. These sub-
keys are added below the CLSID of a control. Here’s an example:

HKEY_CLASSES_ROOT\CLSID\ {12345678~...}

; CATID for “Insertable”

\Implemented Categories\{40FC6ED3~2438-11cf~A3DB~080036F12502}

; CATID for “Control”

\Implemented Categories\ {40FC6ED4-2438~-11cf-A3DB-080036F12502}

;The CATID for an internet aware control

\Implemented Categories\{...CATID_InternetAware...}

;Our control requires ISimpleFrame support

\Required Categories\{...CATID_SimpleFrameControl...}

Currently, the componentcategories specification describes a few standard categories. Additional categories
will be added as the technologies require them. For example, the ActiveX scripting model uses two compo-
nent categories to indicate scripting support within controls. Table 7.12 shows someof the defined categories
as of this writing.

NFLE 1009 - Page 38

NFLE 1009 - Page 39

ActiveX Controls © 329

Table 7.12 ActiveX Component Categories

CATID Symbol from COMCAT.H Purpose

CATID_PersistsToMoniker, Used byInternet-aware controls to indicate which persistence methods
CATID_PersistsToStreamInit, they support. These can be usedto indicate that an interface is required
CATID_PersistsToStream, if the control supports only one persistence method.
CATID_PersistsToStorage,

CATID_PersistsToMemory,

CATID_PersistsToFile,

CATID_PersistsToPropertyBag

CATID_SimpleFrameControl The control implements or requires the container to provide
ISimpleFrameSite interface support.

CATID.PropertyNotifyControl The control supports simple data binding.

CATID_WindowlessObject The control implements the new windowless feature of the Controls 96
specification.

CATID_InternetAware The control implements or requires someofthe Internet-specific function-
ality, in particular the new persistence mechanisms for Web-based con-
trols.

CATID_VBFormat, CATID_VBGetControl The control uses one or both of these Visual Basic—specific interfaces.

CATID_VBDataBound The control supports the advanced data binding interfaces.

As part of the ActiveX SDK, Microsoft provides the componentcategories specification. It describes how to
implement componentcategories within your COM-based components and provides (guess what?) two
new interface definitions to help with the management of component categories: ICatRegister and
IcatInformation. An implementation of these interfaces is provided by a new DLL that is part of the
ActiveX SDK.It is called the Component Categories Manager.

The Component Categories Manager
To make it somewhat easy to add componentcategory support to your ActiveX controls, Microsoft provides
the Component Categories Manager (CCM). This simple in-process server implements the ICatRegister
and ICatInformation interfaces. Component categories are defined Registry entries, and the CCM pro-
vides a simple way to maintaining these entries within the Registry. To create an instance of the CCM, you
use the COM CoCreateInstance method and pass the defined CCM CLSID:
CLSID_StdComponentCategoriesMgr.

lCatRegister
The ICatRegister interface provides methodsfor registering and unregistering specific componentcate-
gories. Here’sits definition:

NFLE 1009 - Page 39

NFLE 1009 - Page 40

330_4 CHAPTER 7—

interface ICatRegister : IUnknown

{

3

There are six registration methods, three of which are used to reverse the registration process. The unregister
methods do the opposite of the register methods, so we'll coveronly the three registration methods.

HRESULT RegisterCategories(

ULONG cCategories,

CATEGORYINFO rgCategoryInfo[]);

HRESULT UnRegisterCategories(

ULONG cCategories,

CATID rgcatid{]);

HRESULT RegisterClassImplCategories (

REFCLSID rclsid,

ULONG cCategories,

CATID rgcatid[]);

HRESULT UnRegisterClassImplCategories(

REFCLSID rcelsid,

ULONG cCategories,

CATID rgcatid[]);

HRESULT RegisterClassReqCategories(

REFCLSID rclsid,

ULONG cCategories,

CATID rgcatid[]);

HRESULT UnRegisterClassReqCategories(

. REFCLSID rclsid,

ULONG cCategories,

CATID rgcatid[]);

RegisterCategory takes the count and an array of CATEGORYINFO entries and ensures that they are
registered on the system as valid componentcategories. This means placing them below the
HKEY_CLASSES_ROOT\Component Categories entry. In most cases, the category will already be in the
Registry, but it doesn’t hurt to make sure. Here’s the definition of the CATEGORYINFOstructure and some
simple code that shows how to use the RegisterCategory method:

typedef struct tagCATEGORYINFO

{

CATID catid;

LCID lcid;

OLECHAR szDescription[128];

} CATEGORYINFO;

NFLE 1009 - Page 40

NFLE 1009 - Page 41

acronis

4include “comcat.h”

ActiveX Controls > 331

HRESULT CreateComponentCategory(CATID catid, WCHAR* catDescription)

{

}

TCatRegister* per = NULL ;

HRESULT hr = S_OK ;

// Create an instance of the category manager.

hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,

NULL,

CLSCTX_INPROC_SERVER,

TID_ICatRegister,

(void**})&pcr);

if (FAILED (hr))

return hr;

CATEGORYINFO catinfo;

catinfo.catid = catid;

// English locale ID in hex

catinfo.lcid = 0x0409;

// Make sure the description isn’t too big.

int len = weslen({catDescription);

if (len>127)

len = 127;

wesnepy(catinfo.szDescription, catDescription, len);

catinfo.szDescription[len] = ‘'\0';

hr = per->RegisterCategories(1, &catinfo);

pcr->Release({);

return hr;

The preceding code creates an instance of the Component Category Manager using its defined CLSID,
CLSID_StdComponentCategoriesmgr, while asking for the ICatRegister interface. If everything
works, a CATEGORYINFO structure is populated with the information provided by the caller, and the
RegisterCategory methodis called. However, we haven’t yet added anything for a specific component.

To add the \Implemented Categories Registry entries for a control, we use the RegisterClassI
mplCategories method.It takes three parameters: the CLSID of the control, a count of the number of
CATIDs, and an array of CATIDs to place under the \Implemented Categories key. Here’s some code
to mark a control as implementing the Control category.

ICatRegister* pcr = NULL ;

HRESULT hr = S_OK ;

NFLE1009 - Page 41

NFLE 1009 - Page 42

332 @ CHAPTER 7a

// Create an instance of the category manager.

hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,
NULL,

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**)&per);

if (SUCCEEDED (hr))

{

// Register that we support the “Control” category

CATID rgcatid[ll;

rgcatid[0] = CATID_Control;

hr = pcr~>RegisterClassImplCategories(clsid, 1, rgcatid);

}

1£ (per != NULL)

pcer->Release()};

To add \Category Required entries for a control, you use the RegisterClassReqCategories
method. It takes the same parameters as RegisterClassImp1Categories, and the example codeis
nearly identical to the preceding code, so there’s no need to demonstrate it. You would register required cat-
egories only if your control required some specific container capability such as ISimpleFrameSite sup-
port.

The Container and Control Guidelines document requires that a control support both registering and
unregistering of categories. The other three methods take the same parameters but reverse the registration
process. If you provide componentcategory registration for your controls you must also support unregister-
ing them. All the controls that we will develop will provide this support.

[Catinformation

The [CatInformationinterface provides methods that enumerate over the available categories on the sys-
tem, get the description associated with a given CATID,retrievea list of components that support a set of
categories, and determine whethera specific class supports or requires a specific category. Two methods
return enumerators for the implemented and required categories for a specific component. Here’s the defini-
tion of IcCat Information:

interface ICatInformation : IUnknown

{

HRESULT EnumCategories (

LCID lcid,

IEnumCATEGORYINFO** ppenumCategoryInfo) ;

HRESULT GetCategoryDesc(

NFLE1009 - Page 42

NFLE 1009 - Page 43

ActiveX Controls > 333

REFCATID rceatid,

LCID lcid,

OLECHAR* ppszDeSc);

HRESULT EnumClassesOfCategories (

ULONG cImplemented,

CATID rgcatidImpl[],

ULONG cRequired,

CATID rgcatidReq[]

TEnumCLSID** ppenumClsid) ;

HRESULT IsClassOfCategories(

REFCLSID relsid,

ULONG cImplemented,

CATID rgcatidImpl []

ULONG cRequired,

CATID rgcatidReq[]);

HRESULT EnumImplCategoriesOfClass (

REFCLSID rcelsid,

IEnumCATID** ppenumCatid);

HRESULT EnumReqCategoriesOfClass(

REFCLSID rclsid,

TEnumCATID** ppenumCatid);

yi

The ICatInformationinterface isn’t really needed by a control, but containers use it extensively within
their Insert Control dialog boxes. The categories provide a useful mechanism to filter the components avail-
able on the system. The container user is presented with an effective way of determining which component
provides the needed capabilities.

Summary
In this chapter we've described the technology used to implement ActiveX controls. The ActiveX control
standard provides a solid foundation on which to build software components. ActiveX controls provide
Automation properties, methods, and events. They also allow implementation of the visual aspect of a com-
ponent. There are three basic types of ActiveX controls: graphical controls, controls subclassed from existing
windowscontrols, and nonvisualcontrols.

ActiveX controls use muchof the existing technology provided by OLE, including the OLE document
standard and the interfaces used to implement in-place-capable embedded servers. ActiveX controls must
reside within a container application in order to be used. To support embedding and activation within a
container, controls must implement a number of COM-basedinterfaces.

NFLE1009 - Page 43

NFLE 1009 - Page 44

3224 CHAPTER 7

Although compound document containers typically support the embedding of ActiveX controls, their
purposeis different from that of typical ActiveX control containers. Compound documentcontainers sup-
port the embeddingof large applications that provide significant functionality and are usedin the process of
documentcreation. Control containers support the embedding of smaller componentsthat are tied together
to form applications. Typically, a control container exists within a visually oriented development environ-
ment or tool. A good example is Visual Basic. Another example of an ActiveX control containeris
Microsoft’s Internet Explorer.

Initially, it was necessary for ActiveX controls to implement a large number of COM-basedinterfaces.
However, with the introduction of the OLE Controls 96 specification and the Control and Container Guidelines
2,0, ActiveX controls can now implementonly those interfaces whose functionality they use. The OLE
Controls 96 specification also provides a number of enhancements that make controls moreefficient.

ActiveX controls that provide a visual representation should implement a number of compound docu-
ment interfaces. ActiveX controls implement properties, methods, and events based on the Automation and
connectable objects standards. Events provide an additional capability within ActiveX controls and allow
the container to tie programmatic actions to a control’s events.

Control containers can provide the control with information about its surrounding environment
through ambient properties. Ambient properties allow controls to adapt their appearance and some behav-
iors to those of the container. Control containers can also implement an extended control that aggregates
with a control to present additional properties to the control user. This approach provides a uniform, con-
tainer-specific property set for all controls within the container. The container also provides the control with
a wayof serializing its properties. In this way, the control can be destroyed and re-created while maintain-
ing its characteristics.

Controls allow modification of their properties through custom and stock property pages. Property
pages are independent COM objects that are typically instantiated by the control's container. Visual C++
provides a number of classes and tools that make the development of ActiveX controls easier.
ControlWizardinitially builds a skeletal control project with a great deal of basic functionality.

Anextended control is provided by the container. It aggregates with the control and exposes additional
properties and events implemented by the container. For COM to identify controls, specific Registry entries
are defined by the standard. Recently, because the simple Registry entries do not provide a granular enough
indication of a component’s requirements and capabilities, the concept of a component category was add to
the COM specification.

NFLE 1009 - Page 44

NFLE 1009 - Page 45

A Simple Control

To help you get to know Visual C++ and ControlWizard and learn how MFC implements Activex controls,
in this chapter we'll develop a fairly simple control. The control provides functionality similar to that of the
Windowslabel control. Our sample contains text that you can modify (during design time and run time),
and it has attributes such as font and color and events such as Click. As we develop this control, we will
delve into the details of ControlWizard and the source code it produces for us. We will then augment the
generated source to include stock and custom properties, stock and custom methods, stock and custom
events, and ambient properties. When wearefinished with this chapter, you should havea solid grounding
in ActiveX controls. Each of the remaining chapters will focus on developing specific control types. Our pur-
pose hereis to introduce manyof the topics that we will investigate thoroughly in later chapters.

 First Control

Ourfirst control is a simple visual implementation of the ubiquitous Post-it note. We will implementas
inany of the stock properties, methods, and events as we can, showing how each oneis used within a con-
trol. We will also build a custom property page and use two ofthe stock property pages provided by MFC.
Using the POSTIT control, we will also investigate MFC’s implementation of ActiveX controls so that we can
do more neat things in the chapters to come. To give you an idea of where weare going, Figure 8.1 shows
the POSTIT control andits property pages within a container.

339
NFLE 1009 - Page 45

NFLE 1009 - Page 46

336 @ CHAPTER 8

Figure 8.1 The POSTIT control andits property pages.

ControlWizard is similar to AppWizard in that it generates the project files for a skeletal control based on
the options you choose. After you use ControlWizard to generate the initial files for a control, you will not
use it again on that specific project. Instead, you will use ClassWizard to add features to your control, just as
wehave inthe past with projects created by AppWizard. To summarize, in Visual C++ you use AppWizard
or ControlWizardto initially generate a project. After that, you use ClassWizard to managethe addition of
features to the project.

Start Visual C++ and create a new project. Select OLE ControlWizard from the New Project Workspace
dialog box. Select a root directory for the project and name the project POSTIT. Your dialog box should like
the one shownin Figure8.2.

Click the Create button to create the project. In the next dialog box, Step 1 of 2, set the Runtime
license check box to Yes, please to indicate that we wantto use this feature in the POSTIT project. Take
the defaults on the other two options. Click Next after ensuring that your dialog box looks similar to the
one in Figure 8.3.

The second ControlWizard dialog box allows you to choose various options for your control. For our
fist project, we'll choose Activates when visible, Available in “Insert Object” dialog, and Has an “About”
box. Let’s take a look at the possible optionsin Figure 8.4.

NFLE1009 - Page 46

NFLE 1009 - Page 47

A Simple Control + 337

Figure 8.2 New Project dialog box.

EEOroe|
Figure 8.3 OLE ControlWizard Step 1 of 2.

NFLE1009 - Page 47

NFLE 1009 - Page 48

338 + CHAPTER 8

Figure 8.4 OLE ControlWizard Step 2 of 2.

Activate When Visible

For most controls, you should check the Activate when visible flag. This adds the OLEMISC_ACTIVATE-
WHENVISIBLEflag to the MiscStatus entry within the Registry. By setting this flag, you indicate to the
container that you wantthe control to be active, which means that you have a true hwnd wheneverthe con-
trol is visible within the container. Containers need not support this flag, but if they don’t, they won't be
very good control containers (and so won't last very long).

Invisible at Runtime

Certain controls do not require a visible representation at run time. These controls are typically called nonvi-
sual controls. MFC includes an example, TIME, that needs to be visible only during the design process.If
youcheck this option, ControlWizard will not create a window for your control, and you will need to imple-
ment only the design-time drawing functions within the framework. We will develop a nonvisual control
later in the book.

 Available in “Insert Object” Dialog
As we've discussed, a controlis identified in the Registry by the existence of a Control subkey belowits
CLSID entry. If you check this option, ControlWizard will also register the control with the Insertable
subkey. This option will allow the control to be accessed from applicationsas if it were a compound docu-
mentserver. If you want to try your control in a noncontrol container, go ahead and check this option.It’s
easy to changelater.

NFLE1009 - Page 48

NFLE 1009 - Page 49

_ASimpleControl+ 339enna

Has an “About” Box
Choosing this option will provide a custom method, AboutBox, a dialog resource, and the code to invoke
the About box dialog for your control. Most containers provide a wayfor this method to be invoked during
design modeso that the control user can obtain version information.

Acts as Simple Frame Control
If you select this option, ControlWizard will set the OLEMISC_STMPLEFRAMEflag. This option is typically
used for controls that group other controls and treat them all as one tab stop. The simple frame controlacts
as the parent window ofa group of contained, orchild, controls. The Windows group box is an example of
this kind of control.

Which Window Class, li Any, Should This Control Subclass?
Oneof the quickest and mosteffective ways to develop an ActiveX control is to subclass the functionality of
an existing Windowscontrol. Muchofthe functionality will already be provided by the Windowscontrol.It
is then relatively easy to augment this basic behavior. This option allows you to select the contro] that you
will subclass. Wewill cover this option in another chapter.

Advanced...

The Advanced button opens a dialog box that contains a numberof new options. The optimization options
presented in this dialog box are part of the OLE Controls 96 specification that we discussed in Chapter 7.It
will take some time for most control containers to support these options, but we should try to use them if
possible. For ourfirst control, we won't use any of these special options (Figure8.5).

Figure 8.5 Advanced ActiveX features.

NFLE1009 - Page 49

NFLE 1009 - Page 50

340 + CHAPTER 8

WINDOWLESS ACTIVATION

If your control does not require a window to provide its services, you should check this option. A control
typically needs a windowtocall many of the Windows API functions. However, the container can provide a
window handle to facilitate making function calls within your control. Using a window will increase the
memory requirements of your control and will also require additional load time wheninstantiated by a con-
tainer. If you choose windowless activation, the Unclipped device context and Flicker-free activation
options will be disabled. They relate only to controls with windows.

UNCLIPPED Device CONTEXT

The container passes controls a device context on which to draw. The container mayset up a clipping region
to ensure that the control does not draw outside its boundaries. By checking this option, you inform the con-
tainer that your control is well behaved and will not draw outsideits client rectangle. The container can then
act moreefficiently by not setting up a clipping context to pass to the control.

FLICKER“FREE ACTIVATION

If your control represents itself the same way whenin the active and inactive states, this option will help
eliminate flicker when the control is switched betweenstates.

Mouse Pointer Notirications WHEN INACTIVE

This option provides an implementation of the IPointerInactiveinterface. Your control will receive
mouse move messages whenin theinactive state.

Optimized DrawinGc Cope

If you click this option, the control will indicate that it can take advantage of the new OLE Controls 96 opti-
mized drawing options. However, the container must support the new optimizations.

LOADS PROPERTIES ASYNCHRONOUSLY

As an enhancement to support low-bandwidth environments suchas the Internet, ActiveX controls can have
someof their persistent properties loaded asynchronously. For example, a control may have a property that
is a GIFfile, which may take some time to load over the Internet. This option allows the control to load the
imagein the background. We'll usethis option in Chapter12.

Edit Names...

The Edit Names dialog box, shownin Figure 8.6, allows you to change the names of your C++ classes, their
filenames, and so on. The most important items here are the Type ID, which is the ProgID for our control,
and the Type Name, which the container uses when referring to the control. ControlWizard produces two
main classes for yourcontrol’s implementation: the control class and the property pageclass.

NFLE 1009 - Page 50

NFLE 1009 - Page 51

ASimpleControl + 341

Figure 8.6 Edit Namesdialog box.

Click OK in the Edit Names dialog box and then Finish in the OLE ControlWizard Step 2 of 2 dialog box.
Thefinal dialog box is shownin Figure 8.7. Click OK, and ControlWizard will generate the control’s project
files. Then go ahead and compile andlink the project.

Figure 8.7 New Project Information dialog box.

NFLE1009 - Page 51

NFLE 1009 - Page 52

342 ~ CHAPTER 8 snnnniniuntarprcuagneunintsntsatinenencinssienncsinnucnnrectansetsinniiaanntstrbetteCetAOACHINNTLERRRCCNAtttCHOI,

 Contro

Just like AppWizard, ControlWizard generates all the files needed for a typical ActiveX control project.
Table 8.1 describesthe files generated by ControlWizard.

Table 8.1 ControlWizard-Generated Files

File Purpose

ReadMe.txt A file containing information about the project. It details the files created and their purpose.

Postit.cpp, Postit.h CWinaApp-derived class that provides the defauit MFC DLL implementation.

PostitCtl.cpp, PostitCtl.h Contains the declaration and implementation ofthe control object. This is a class derived from
cOlecontrol.

PostitPpg.cpp, PostitPpg-h Contains the declaration and implementation ofthe control’s property page component. As we
described in Chapter 7, a property pageisitself a COM object.

Postit.odl An ODLfile that contains the type information for ourcontrol.

PostitCil.bmp Bitmap for your controlthat the container can useonits toolbar, and elsewhere.
Postit.ico Thisis the icon used in the About box for our control.

Postit.mak The project’s makefile.

Postit.def The Windowsdefinition file for our control. This file exports the four functions (such as
Dl1lRegisterServer)that we need as a COMin-process server.

Postit.rc, Resource.h Resourcefile containing our About box dialog, a default property page dialog definition, and
the string table for our control.

Postit.lic A default licensefile for our new control.

StdAfx.cpp, StdAf.h Standard MFC include and implementationfiles. These files provide support for the MFC classes.

Before we start adding functionality to the POSTIT control, let’s take a detailed look at the source codethat
ControlWizard generated for us. As wedothis, we'll also review the new MFC controlclasses.

 COleControlModule

COleControlModuleis derived from CWinApp. CWinApp provides the frameworkfor a basic Windowsappli-
cation for both DLL and EXE implementations, as we’ve seen in previous chapters. The POSTIT.Hfile inherits
all the functionality of CWinApp and overrides only the InitInstance and ExitInstance methods. The
only interesting thing in this file is the declarations of the version numbervariables that are available in all your
control modules. These variables are useful for maintaining different versions of your controls.

// postit.h : main header file for POSTIT.DLL

#if !defined(__AFXCTL_H__)

#error include ‘afxctl.h’ before including this file

NFLE1009 - Page 52

NFLE 1009 - Page 53

A Simple Control+343Sn caceeemcaeeeR matteas

gendif

ginclude “resource.h” // main symbols

PILITETELTTALTTTTA LTTE TAT AAT ATAATTAAAAA TAA AATAAT

// CPostitApp : See postit.cpp for implementation.

class CPostitApp : public COleControlModule

{

public:
BOOL InitInstance();

imt ExitInstance();

}

extern const GUID CDECL _tlid;

extern const WORD _wVerMajor;

extern const WORD _wVerMinor;

The POSTIT.CPPfile, which implements the CPostitApp class,is a little more interesting. This file con-
tains the exported DLL functions that support programmaticregistration of the control within the Registry.
As we learned in Chapter 5, COM recommends that the D11RegisterServer function be implemented
within in-process server applications to provide easy registration of components. The ActiveX control stan-
dard goes one step further and recommendsthe use of another function, D11UnregisterServer,that
makes it easy to removeall your component-specific information from the Registry. This is a great idea. If
applications don’t provide an easy removal mechanism,the Registry can easily becomecluttered with appli-
cations and components that you've previously removed.

| imagine that future versions of Visual C++ will also handle the steps necessary to register a con-
trol’s component categories. The 4.x versions, however, do not. Later in this chapter we will add
componentcategory support to our control. The D1iRegister* functions provide a perfect place to
perform this task.

Two functions are missing from POSTIT.CPPthat are important to our COM-based implementation. As
you may recall, COM-based components implemented in DLLs must export two functions:
D1lGetClassObject and D11CanUnloadNow. In Chapter 5, we implemented them in our main
CWinApp-derivedclass file, SERVER.CPP. Where are they? MFC has once again encapsulated someof the
complexity for us. These required entry points are provided by an MFC DLL.Thecodeis in OLEEXP.CPP:

FETETLTTTTSTTTTTTAT TET ATA AAA AY

// DllGetClassObject
extern “C”

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)

{

AFX_MANAGE_STATE (AfxGetStaticModuleState());

return AfxDllGetClassObject(rclsid, riid, ppv);

NFLE1009 - Page 53

NFLE 1009 - Page 54

344 + CHAPTER 8

}

LILELETETELATATTLTT ALTA ATA AT

// D11lcanUnloadNow

extern “C”

STDAPI D11CanUnloadNow (void)

{

AFX_MANAGE,STATE (AfxGetStaticModuleState());

return AfxD11CanUnloadNow() ;

}

As we described in Chapter 5, the MFC-provided A£xD11GetClassObject looks througha list of
COleObjectFactory objects within the DLL. Once the object is found, it constructs an instance of the
object and returns the IClassFactoryinterface. So don’t worry, they’re still there. They’ve just been hid-
den for our convenience. We'll cover the AFX_MANAGE_STATEcall shortly.

// postit.cpp : Implementation of CPostitApp and DLL registration.

#include “stdafx.h’

#include “postit.h”

#ifdef _DEBUG

fundef THIS_FILE

static char BASED_CODE THIS_FILE[] = __FILE_;
#endif

CPostitApp NEAR theApp;

const GUID CDECL BASEDCODE _tlid =

{ Oxbbf8b099, Oxbe9e, Oxllce, { Oxa4, Ox3c, Oxac, Oxe7, Oxlf, 0x16, Oxdb, Ox7f£ } };

1;

0;

const WORD _wVerMajor

const WORD _wVerMinor

LELELELELLLTETTTALTTTAT ATTA TATA AAT ATAAAAAA A AAT A AT

// CPostitApp::InitInstance - DLL initialization

BOOL CPostitApp: :InitInstance()

{

BOOL bInit = COleControlModule: :InitInstance();

if (bInit)

// TODO: Add your own module initialization code here.

NFLE1009 - Page 54

NFLE 1009 - Page 55

ASimple Control+345

return biInit;

}

TILEELELLELELELPETETAT ELTA TAAATAATATATAA ATA AA AAT AE ETL

// CPostitApp::ExitInstance - DLL termination

int CPostitApp: :ExitInstance(}

{

// TODO: Add your own module termination code here.

return COleControlModule: :ExitInstance();

}

PELTLLELETTTTAT AAT ATTATTT LT AETT A TATETETEEA AT EAE EETET AL TT

// DllRegisterServer - Adds entries to the system registry

STDAPI DllRegisterServer (void)

{

AFX_MANAGE_STATE (_afxModuleAddrThis) ;

if (!AfxOleRegisterTypeLib (AfxGetInstanceHandle(}), _tlid))

return ResultFromScode {SELFREG_E_TYPELIB);

if (!coOleObjectFactoryEx: :UpdateRegistryAll (TRUE))

return ResultFromScode (SELFREG_E_CLASS) ;

return NOERROR;

}

PILTELTETETTATETTAEL TELLTALE ATTAATTAATTL

// DllUnregisterServer - Removes entries from the system registry

STDAPI DllUnregisterServer (void)

{

AFX_MANAGE_STATE (_afxModuleAddrThis) ;

if (!AfxOleUnregisterTypeLib(_tlid))

return ResultFromScode (SELFREG_E_TYPELIB) ;

if (!cOleObjectFactoryEx: :UpdateRegistryAll (FALSE))

return ResultFromScode (SELFREG_E_CLASS}) ;

return NOERROR;

}

There are a few items that we need to cover in POSTIT.CPP. The DllRegisterServer and

DllUnregisterServer functionsfirst call the AFX_MANAGE_STATE macro,so let’s lookatit.

NFLE1009 - Page 55

NFLE 1009 - Page 56

346+ CHAPTER 8

AFX_MANAGE_STATE
Even though ActiveX controls are small components, they depend heavily on many aspects of the MFC
libraries. To maintain a small size, controls use the shared library (DLL) implementation of MFC. Because
the MFC codecan be shared amongall the control, this saves a great deal of code space when an application
uses many controls in its implementation.

MFC, when implemented in a DLL, needs to keep track of various internal variables and states that
pertain to its internal implementation. This state information must be maintained for every module (such
as a DLL) that accesses the MFC DLLs. When the MFC DLLs(such as MFC40.DLL) are being used by a
number of user DLLs, the MFC internal state data mustreflect the process that is currently using MFC.
That’s what AFX_MANAGE_STATEis for. It ensures that the internal state of MFCisset to reflect that of the

calling module. Your control functions must follow three rules to make sure that the MFC state informa-
tion is correct:

° If the function is exported or exposed externally, you must call the AFX_MANAGE_STATE macro
before anythingelsein the function. This is exemplified by the DllRegisterServercall.

e If your control contains another window’s control as a child window,your control shouldcall
AFX_MANAGE_STATE whenprocessing any messages for the child window.

e Jf the function is a memberof a COM interface, it should use the METHOD_MANAGE_STATE macro.

 eControl

The COleControlclass provides the bulk of the MFC implementation. COleContro1 is derived from
MFC’s CWnd class, which encapsulates the functionality of a window. As you can imagine,there is tremen-
dous functionality in the CWndclass, and wewill focus on methodsofthis class in the remaining chapters as
we develop various types of ActiveX controls. Our purpose now is to understandalittle about
cOlecontrol.

COleControl contains more than 100 methods, and this number doesn’t include the hundredsthat are

inherited from the parent CWnd class. Table 8.2 describes some of the more important methods of
COleControl. The methods deal with controlinitialization, persistence, ambient properties, events, stock
properties, data binding, and drawing. They are documented completely in MFC’s on-line help.

Table 8.2 Important ColeContro1 Members

Method Purpose

SetInitialSize Sets theinitial size of the control, specified in device units (pixels). This methodis usually

called in your control’s constructor.

SetModi fiedFlag Indicates that a persistent property within the control has been changed.

ExchangeExtent Serializes the size of the control.

NFLE1009 - Page 56

NFLE 1009 - Page 57

_ASimple Control+347NC earn

Table 8.2 Important ColeControl Members(continued)

Method Purpose
ExchangeVersion

mxchangeStockProperties

pDoPropertyExchange

onReset

InvalidateControl

TranslateColor

ThrowError

AmbientBackColor,

AmbientForeColor,

AmbientUserMode,

AmbientUIDead,etc.

FireClick, FireDb1Click,

FireMouseDown,etc.

FireEvent [Name]

GetBackColor, SetBackCcolor

SetFont

SelectStockFont

GetHwnd

GetText, InternalGetText,
SetText

DoSuperclassPaint

OnDraw

OnDrawMetafile

OnAmbientPropertyChange

OnTextChanged

OnSetExtent

Serializes the control’s current version. The_wVerMinor and _wVerMajorvariables

are provided by Contral Wizard, and can be used to identify the current version of the
control,

Serializes all of the control’s defined stock properties.

Called to save orrestore the persistent properties ofthe control.

Resets the control’s properties to their initialstate.
Forces a redraw ofthe control.

Converts an OLE_COLOR value into a COLORREFvalue.

Throwsan errorfrom within a control. Used to communicate a failure during the execu-
tion of code outside a method or property handler function.

Returns the current value of the named ambient property.

Fires the specific stock event.

Fires a custom event.

Gets orsets the stock BackColor property.
Sets the stock font.

Selects the stock fontinto the current device context.

Returns the HWNDofthe control’s window or NULL.

Gets or sets the Text or Caption stock property. InternalGetText should be
used internally by the control’s methods.

Called in onDraw to paint a control that has subclassed a Windowscontrol.

Called by the framework to renderthe control on the passed DC.

Called by the framework whenit wants a metafile representation ofthe control. This will
typically occur whenprinting or in design or nonuser modeandthe control doesn’t have
a valid HWND.

Called when a container’s ambient property or properties have changed.

Called when the stock Text or Caption property has changed.

Called whenthe container has changed the control’s extents,

NFLE1009 - Page 57

NFLE 1009 - Page 58

348+CHAPTER 8

POSTITCTL.H and POSTITCTL.CPP implement our control’s COleControl-derived class:
CPostitCtrl. Let’s take a look at what weinitially get from ControlWizard. (I haven’t included every-
thing—just the items that are interesting.)

// PostitCtl.h : Declaration of the CPostitCtrl ActiveX control class.

LELLELETTEL ELTA ELTET TTT EL ATT AATTL ELATEDETEAAT ETAT ELA A

// CPostitCtrl : See Postitctl.cpp for implementation.

class CPostitCtrl : public COleControl

f .

DECLARE_DYNCREATE (CPostitCtr1l)

// Overrides

// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL (CPostitCtr1)

public:

virtual void OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid);

virtual void DoPropExchange(CPropExchange* pPX);

virtual void OnResetState();

virtual DWORD GetControlFlags{);

//}}APX_VIRTUAL

// Implementation

protected:

~CPostitCtrl();

BEGIN_OLEFACTORY (CPostitcCtrl) // Class factory and guid

virtual BOOL VerifyUserLicense();

virtual BOOL GetLicenseKey(DWORD, BSTR FAR*};

END_OLEFACTORY (CPostitCtr1)

DECLARE,OLETYPELIB(CPostitCtr1l) // GetTypeInfo

DECLARE_PROPPAGEIDS (CPostitCtr1) // Property page IDs

DECLARE_OLECTLTYPE (CPostitCtrl) } // Type name and misc status

// Message maps, etc.

yi

I've left out all the message maps, dispatch maps, event maps, and so on. Wewill cover themalittle later.
What's left are the four default overrides: OnDraw, DoPropExchange, OnReset, and GetControlFlags.

These are the only methods that are required to be implemented by the new control, but to make a control
do muchof anything we'll have to override a few more.

NFLE1009 - Page 58

NFLE 1009 - Page 59

A Simple Control +349

The BEGIN_OLEFACTORY and END_OLEFACTORY macro pair provides our control with the licens-
ing capability that we chose in ControlWizard. This macro pair provides the declaration of the addi-
tional methods in the IClassFactory2 interface that we discussed in Chapter 7. Because we chose the
licensing option, we are required to implement the VerifyLicenseKey and GetLicenseKey meth-
ods in our .CPPfile.

The DECLARE_OLETYPELIB macro providesa static method that will return a pointer to the control's
type library information. The DECLARE_PROPPAGEIDS macrosets up a static function that will return an
array of CLSIDsfor the property pages defined for the control. These CLSIDswill be defined later in POS-
TITCTL.CPP. The DECLARE_OLECTLTYPE macro provides twostatic functions for our class that let us
access the ID of the type library within the resource file and return the OLEMISC status bits used by the
control.

Nowlet’s go through what ControlWizard generated for us in POSTITCTL.CPP. Wewill skip the mes-
sage, dispatch, and event maps, but we will get to them shortly.

// PostitCtl.cpp : Implementation of the CPostitCtrl ActiveX control class.

LULELLTATTLTTETLTLAT ELTA TATA TELLTALE TEL ALL ALAA TATA AAT ALE

// Initialize class factory and guid

IMPLEMENT_OLECREATE_EX(CPostitCtrl, “POSTIT.PostitCtrl.1”,

Oxbb£8b096, Oxbe9e, Oxllce, Oxa4, Ox3c, Oxac, Oxe7, Oxlf, 0x16, Oxdb, Ox7f)

This macro implements ourclass factory functions and should look similar to what we covered in earlier
chapters. The following code declares the ProgID for the control andinitializes the class factory for our con-
trol. The implementation for ActiveX controls tacks on some additional functionality. The _EX adds an over-
ride of a virtual method to return the CLSIDofthe control.

TLLTELTTLTLTAT LTTE ELLA TALL TEE ALT TET LE TATE ALTA ALE ATTA A AAA TAT

// Type library ID and version

IMPLEMENT_OLETYPELI8(CPostitCtrl, _tlid, _wVerMajor, _wVerMinor)

LELTTEETLELET ELLEATLLAAT ALL ETAT EAA ELE EAA EL TL ETL

// Interface IDs

const IID BASEDCODE IID_DPostit =

{ Oxbbf8b097, Oxbe9e, Oxllce, { Oxa4, 0x3c, Oxac, Oxe?, Oxlf, 0x16, Oxdb, Ox7f } };

const IID BASEDCODE IID_DPostitEvents =

{ Oxbbf8b098, Oxbe9e, Oxllce, { Oxa4, Ox3c, Oxac, Oxe7, Ox1f, 0x16, Oxdb, Ox7f } };

The IMPLEMENT_OLETYPELIB macro defines the static class methods that load the type library from the
control’s resources and return it to the caller. The interface ID definitions are for the control’s (incoming)
method and property Dispatch implementation andfor the (outgoing) event IDispatchinterface. These
IDs are also declared in the control’s ODLfile.

NFLE1009 - Page 59

NFLE 1009 - Page 60

350 + CHAPTER 8scsianasinnesnttinttSEAASISISOSINRACtHNTRErememernmneciecitathciteltnaraCihitnNHSSLENOIRtthe

// Primary dispatch interface for CPostitCtrl

{ wuid(BBF8B097~BE9E-11CE-A43C~ACE71F16DB7F) ,

helpstring(“Dispatch interface for Postit Control”), hidden]

dispinterface _DPostit

// Event dispatch interface for CPostitCtrl

{ wuid(BBF8B098-BE9E~11CE-A43C-ACE71F16DB7F),

helpstring(*Event interface for Postit Control”)]

dispinterface _DPostitEvents

These IIDs provide a way for the container to specify a specific interface within the controlafter it gets the
control’s type information through the IProvideClassInfointerface.

FITITEELTETTTELTTTALLTT TATE LAT ELT ATE TALL TATA TAA AATTAT EEL

// Control type information

static const DWORD BASEDCODE _dwPostitOleMisc =

OLEMISC_ACTIVATEWHENVISIBLE |

OLEMISC__SETCLIENTSITEFIRST |

OLEMISC_INSIDEOUT |

OLEMISC_CANTLINKINSIDE |
OLEMISC__RECOMPOSEONRESIZE;

IMPLEMENT_OLECTLTYPE(CPostitCtrl, IDS_POSTIT, _dwPostitOleMisc)

#define IMPLEMENT_OLECTLTYPE (class_name, idsUserTypeName, dwOleMisc} \

UINT class_name: :GetUserTypeNameID() { return idsUserTypeName; } \

DWORD class_name::GetMiscStatus{} { return dwOleMisc; }

When weused ControlWizard to create our control, we answered various questions concerning the behav-
iorof the control. ControlWizard used our answerstoinitialize the dwPostitOleMisc variable. This infor-

mation is provided to the container through the control’s IOleObject: :GetMiscStatus method. The
frameworkcalls the virtual class methods implemented by the IMPLEMENT_OLECTLTYPE macro.

Control Licensing
ActiveX controls are small software components that mustbe distributed along with the applications devel-
oped using them. Commercial developers need ways to ensure that these components are licensed so that
users won't be tempted to copy the components from machine to machine without paying for their use.
Licensing is similar to copy protection but worksa little differently. The distribution of the component with
an application that uses it should be easy: just distribute the appropriate .OCXfiles that the application
dependson. This is fine, but the developer or marketer of the ActiveX control will normally allow distribu-
tion of the control only for use as a run-time component. Instead of providing two different OCXfiles, the

NFLE 1009 - Page 60

NFLE 1009 - Page 61

A Simple Control +351cmantttOOO tricianseeeeUSnananepacectabaitasNinonteatinSeNNNAOL

same OCX handles both environments. The design-time capabilities of a component are reserved for those
who purchaseit for use in the development of specific applications; users shouldn't be allowed to distribute
a design-time—capable OCX.

The ActiveX control standard provides a way to addlicensing capability to a control. This is an optional
feature that commercial developers will use, but it can also be used for internally developed components.
An additional interface was added to the OLE specification to provide this control licensing facility.

The IClassFactory2interface was added to provide licensing support for ActiveX controls. Three
additional methods were added: RequestLickey, GetLicInfo, and CreateInstanceLic. During the
developmentcycle using an ActiveX container-basedtool, the GetLicInfo methodensuresthat the con-
trol can be used during the design process. Whenthetool is building a distributable version ofthe appli-
cation that uses the control, a call is made to RequestLicKey, which returns an implementation-defined
key that is stored within the application. Later, after the application and the run-time version of the con-
trol are installed on a user’s machine, the application will pass the stored key to CreateInstanceLic
when aninstance of the controlis created.

The new methodsprovided in IClassFactory2 only specify a licensing APT; they do not specify how
the licensing should be implemented. The keys that are passed back and forth between the container and the
control can be as simpleas a text string or as complex as using a secure encryption method that requires a
licensing server. The MFC implementation provides a simple default method that depends on the existence
of a .LIC file and a text string contained within it. The MFC implementation can be extended, as always, if
you require a more stringent licensing model. Control licensing support through the IClassFactory2
interface is provided by MFC with an enhancementof the COleObjectFactoryclass.

COleObjectFactoryEx
The BEGIN_OLEFACTORY macro added a nested class to CPostitCtrl called CPostitCtrlFactory.

ControlWizard provides the implementation of the UpdateRegistry method that either registers or
unregisters the control's entries within the Registry with the help of the AExO1le* Registry functions. Each of
the parameters supplies the information to store within the Registry. I’ve commented each parameter with
its matching Registry entry.

LTLLTELLLIETLLTLELELTLLALTA LATTA ELT TATA TATATALLAL EA AA A EALAAL

// CPostitCtrl::CPostitCtrlFactory: :UpdateRegistry -

// Adds or removes system registry entries for CPostitCtrl

BOOL CPostitCtrl::CPostitCtrlFactory: :UpdateRegistry(BOOL bRegister}

{

// TODO: Verify that your control follows apartment-model threading rules.

// Refer to MFC TechNote 64 for more information.

// If your control does not conform to the apartment-model rules, then

// you must modify the code below, changing the 6th parameter from

// afxRegInsertable | afxRegApartmentThreading to afxRegInsertable.

if (bRegister)

NFLE1009 - Page 61

NFLE 1009 - Page 62

352 ¢ CHAPTER 8

return AfxOleRegisterControlClass(
AfxGetInstanceHandle(),

m_clsid, // CLSID

m_lpszProgID, // ProgID

IDS_POSTIT, // Textual control name

IDB_POSTIT, // ToolboxBitmap32

// Threading model used by the control

afxRegInsertable | afxRegApartmentThreading,

_dwPostitOleMisc, // MiscStatus

_tlid, // TypeLib

_wVerMajor,

_wVerMinor) ; // Combined to create version
else

return AfxOQleUnregisterClass{m_clsid, m_lpszProgID);

}

The following two methods provide the default MFC implementation of the control licensing feature. This is
a fairly simple implementation, but it can be easily enhanced by replacing the Afx functions with ones of

‘ your own. The default implementation creates a .LIC file with the name of your control project (such as
POSTIT.LIC) that contains a copyrightin the initial line and then a paragraph about “severe criminal pun-
ishment” and so on. The two methods that ControlWizard implemented are methods of the
IClassFactory?2interface.

TLLTLTTETTTETTTATETT TELAT TATTLE AT ATTA ETT ATTATAEAT ALA AD

// Licensing strings

static const TCHAR BASEDCODE _szLicFileName[] = _T(*POSTIT.LIC”);

static const TCHAR BASEDCODE _szLicString[{} = _T(*Copyright (c) 1996 “);

TELTELTTTETETTATETTLT ETT ATTAATTA ATTAATAAT AEE ET

// CPostitCtrl::CPostitCtrlFactory: :VerifyUserLicense -

// Checks for existence of a user license

BOOL CPostitCtrl::CPostitCtrlPactory: :VerifyUserLicense()

{

return AfxVerifyLicFile(AfxGetInstanceHandle(), .szLicFileName,

_szLicString};

}

PLLTTLTETTTTATET ELTA PTTL TET T AT ALTTAETATETATATATATAAETAAAAAETAEAA ETT

// CPostitCtrl::CPostitCtrlFactory::GetLicenseKey -

// Returns a run-time licensing key

BOOL CPostitCtrl::CPostitCtrlFactory: :GetLicenseKey (DWORD dwReserved,

BSTR FAR* pbstrKey)

NFLE1009 - Page 62

NFLE 1009 - Page 63

_A Simple Control_353- enePORNSTSECON INCLINEStcntttennerNishincsrrentoeientenaeioinntnttstaiStitattt mensettleIMCL

if (pbstrKey == NULL)
return FALSE;

*pbstrKey = SysAllocString(_szLicString) ;

return (*pbstrKey != NULL);

}

Whenthe control is inserted into a container during design mode, the containercalls VerifyUserLicense.
As you can see, VerifyUserLicensecalls the helper function, AfxVerifyLicFile, which checksfor the
instanceof the -LIC file in the samedirectory as the control’s DLL. Oncethe file is found,the text of the first
line in the file is compared with the text in _szLicString.If any of these functions fail, the function
returns FALSE, indicating that the control is not licensed. A nonzero return indicates that the control is
licensed.

Later, the container(or tool) user creates a distributable version of an application that contains the con-
trol. The container calls GetLicenseKey to obtain a key from the control; the key is stored along with the

application distribution files (including the .OCX file). After installation, when the application is executed
(in user mode), the container calls VerifyLicenseKeywith its saved internal key. The controlverifies that
this key is valid and returns TRUE if the key is valid and FALSE otherwise.

ControlWizard did not provide us with a version of VerifyLicensekKey.Its base implementation
calls GetLicenseKey and compares the return with that provided by the container. To provide a more
secure approach, you would need to override and implement your own VerifyLicenseKey method as
well as modify GetLicenseKey and VerifyUserLicense. Whenoverriding these functions, you must
use multiple scope operators because your COleObjectFactoryEx-derived class is nested within the
COleControl-derived class. Useful methods provided by COleObj ectFactoryExare listed in Table 8.3.

Table 8.3 Useful coleobjectFactoryEx Methods

Method Purpose

UpdateRegistry(BOOL) if the parameter is TRUE, the Registry is updated with the control’s information. if
FALSE,all control-specific information is removed from the Registry.

GetLicenseKey{ DWORD, BSTR *) The containercalls this functionto retrieve a unique key to store with the distributed
application. When the application is run, the container calls veri fyLicenseKey
to ensure that the controlis licensed.

VerifyLicenseKey(BSTR) Called by the container during run-time modeto ensure thatthe controlis licensed.

VerifyUserLicense(void) Called by the containerto verify the use of the control in a design-time mode.

That sums up the basic functionality provided by the ControlWizard-generatedfiles, except for the property
page files, which we’ll cover shortly. Now let’s add somereal functionality to the POSTIT control.

Starting with Visual C++ version 4.0, the tclassFactory2interface functionality was moved into
the coleobjectFactory class. However, ControlWizardstill generates code that expects the exis-
tence of the coleObjectFactoryEx class. MFC solvesthis dilemma by doing this:
#define COleObjectFactoryEx COleObjectFactory

NFLE1009 - Page 63

NFLE 1009 - Page 64

354+CHAPTER8sitAAORULESE OSISIDA ALOUANSSOSAIDAOOISEELECHNISLOEAEIDItettteattSSNinciteEENAONCROTTSty

Drawing the Control
The container provides a control site in which the control rendersitself. There are various conditions under
which the container will request that the control draw itself: when the control is created, when the controlis
hidden by another window and then uncovered, when the container switches from design mode to user
mode, and so on. The default MFC implementation calls COleControl: : OnDrawforall these actions.It is
our job, as implementors of the control, to render the control whenever OnDrawis called. There are other
COleControl methodsthatpertain to drawing, and wewill cover them in later chapters.

Following is the default implementation from POSTITCTL.CPP.ControlWizard provides a default ren-
deringthatfills the backgroundof the control and then drawsanellipse.

PELTELTTTELTLTTLELATL ET TAT ET ATTA ET AAA AT AA ELE A ET AAAEA ET AA AEL E TA L

// CPostitCtrl::OnDraw - Drawing function

void CPostitCtrl::OnDraw(CDC* pde, const CRect& rcBounds, const CRect& reInvalid}

{

// TODO: Replace the following code with your own drawing code.

pde->FillRect (rcBounds, CBrush: :FromHandle((HBRUSH) GetStockObject {WHITE_BRUSH)));

pdc->Ellipse (rcBounds) ;

}

The OnDraw method has three parameters. The first parameter is a pointer to an MFC CDC object, which
encapsulates a Windowsdevice context. We'll cover the details of device contexts and the methods provided
by the cnc class in Chapter 9. For now,a device context is an area of the screen that has default brushes, pens,
colors, and fonts that are used when drawingthe control.

The second parameter, rcBounds,is an instance of MFC’s CRectclass that contains the bounding rec-
tangle of our control within the container. The third parameter provides a hint as to what part of rcBounds
has changed. This information can be used to update only a part of your controlif it requires a lot of inten-
sive drawing. We'll use the first two parametersin this chapter.

Whenour control is constructed, MFCsets its initial size to 50 by 100 device units (or pixels). To over-
ride this default, we call COleControl: :SetInitialSize in the control’s constructor. A square of 200
pixels is fine for our POSTIT control, so add the following codeto the constructor:

LETELELELLTTATTTAAT TTL TATA TAT AEAALTEAAA AEE A ET TL

// CPostitCtrl::CPostitCtrl - Constructor

CPostitCtr1l: :CPostitCtrl ()

{

InitializelIDs(&IID_DPostit, &IID_DPostitEvents) ;

// TODO: Initialize your control’s instance data here.

SetInitialSize(200, 200);

NFLE1009 - Page 64

NFLE 1009 - Page 65

__ASimple Control + 355centennialterapaeateestineneinNeititaesmsntanmitrit eraseevn

Whenthe controlis initially created, the container will provide a controlsite of 200 by 200 units. Addthe fol-
lowing code to draw the control into the device context provided:

LLELELELETLLTELLTTAT ATTA EL TAEDAALLTELTELLTALE TL

// CPostitCtrl::OnDraw - Drawing function

void CPostitCtrl::OnDraw({ CDC* pdc, const CRect& rcBounds, const CRect& rceInvalid)

{

— 7 / Create a yellow brush.for. the background of the control

__cBrush bkBrush; :
___bkBrush.CreateSolidsrush (RGB(Oxff, Oxff, 0x00));

| // ill the background: with BackColor

|| pde->Fillrect(reBounds, &bkBrush’);

. // Drawthe text :
pdc->SetBkMode(TRANSPARENT);
ff Set: the: text color to hlack

| pde=>SetTextColor(RGB(6x00, 0x00, Ox00.));

| // Draw some text

= pde->DrawText (“This is ‘a simple POSTIT control”,

Ly: CRect.(rcBounds::):;

DTLEFT | DT_WORDBREAK);

}

To draw our simple control, we create a yellow brush. Wethenfill the control's bounding rectangle with this
background brush. To providealittle functionality, we next draw sometext in the control using DrawText.
Prior to that, we set the drawing mode to TRANSPARENTandset the text color to black. DrawText does
much of the drawing workfor us; it will automatically word-wrap andleft-justify our text within the bound-
ing rectangle. Compile and link the project, and we'll doa little testing.

 egistering the Control
Before we can do anything with the control, we need to register it in the Windows Registry just as we regis-
ter all other COM-based components. The default behavior of Visual C++ is to register the control after
every build. A Custom Build option in Project/Settings calls REGSVR32 with the path and filename of your
control. REGSVR32 calls D1L1RegisterServer, which updates the Registry with the control information.If
you gettired ofthis action being performed by Visual C++ after every build, remove thelines in the Custom
Build section in Project/Settings. Later, if you need to register the control, you can use the Tools/Register
Control option.

NFLE1009 - Page 65

NFLE 1009 - Page 66

S56+CHAPTER 8

Testing the Control
MECprovides a rudimentarytesting facility for the controls that you create. I say “rudimentary” becauseit
doesn’t provide all the features of a commercial control container such as Visual Basic 4.0. The primary defi-
ciency of MFCis that it lacks an easy-to-use scripting language to manipulate a control’s methods and
events. Its method of allowing the user to modify the container’s ambient properties and the control’s stock
properties is also lacking, but the Test Container allows us to test basic control functionality. Later in this
chapter we will look at the features provided by commercial control containers.

The Test Container can be started from the Visual C++ environmentby selecting Test Container from
the Tools menu.Start it and insert the POSTIT control using the Edit/Insert OLE Control menu item. You
should see somethinglike the screen in Figure 8.8.

Figure 8.8 Control inserted into the Test Container.

If you get an error such as “Unable to Insert Control” when attempting to insert the control into the
Test Container, it probably indicates that the .LIC file isn’t in the same directory as the .OCX file.
Visual C++ initially places the .LIC file into the main project path but creates the debug version of
the .OCXfile in the \PROJNAME\DEBUGdirectory. To quickly get around this problem, copy the
PROJNAMELLIC file, which in our case is POSTIT.LIC, to the DEBUG directory.

Go ahead and play around with the control. When you moveandresize the control, the containercalls the
OnDraw methodandthe control is completely redrawn. Notice that as you resize the control, the text within
it word-wraps. You can dothese things with the control only whenit is outlined with a hatched border. This
indicates that the control is Ul-active, which is similar to a typical window getting focus. Only one control
within a container can be Ul-active at a given time. Try this by inserting a few more copies of the POSTIT

NFLE 1009 - Page 66

NFLE 1009 - Page 67

A Simple Control + 357areca

control. (Click the toolbar button marked OCX. That's the default toolbar bitmap provided by MFCfor our
control, but we will change it to something more representative in a moment.)

Afterinserting a few morecopies of the control, you can single-click on a control to makeit Ul-active.
Whenyou doso, any other control that is Ul-active will go to the active state and lose its hatched border.
This single-click activation indicates that the control is an OLE inside-out object. This differs from older visual
servers, where you were required to double-click.

 itmap
The default toolbar bitmap contains the text “OCX.” Let’s change this to something that better represents our
control’s purpose. Within Visual C++, change to the resource view, open the Bitmapfolder, and double-click on
the IDB_POSTITbitmap.Edit the bitmap to resemble a yellow notepad, as we’ve done in Figure 8.9.

void CPostitc
cDC*

(4 Create
CBrush bkB:
bkBrush .Cr

Registering OLE control...
RegSvr32: DllRegisterServe

Figure 8.9 Editing the control’s bitmap.

Save the changes. The next time wetest the control, we'll have a nice toolbar button representation. Our con-
trol still doesn’t do much,so let’s add the stock properties provided by MFC.

 ng Stock Properties
As detailed in Chapter 7, the ActiveX control standard specifies 17 standard properties that controls may
typically implement. These standard properties provide generic functionality and provide a way to present
a uniform set of properties that most controls will typically implement. MFC currently supplies stock imple-

NFLE 1009 - Page 67

NFLE 1009 - Page 68

$58¢CHAPTER 8 -

mentations for nine of these standard properties. We'll add eight of them to our POSTIT control. Mostof the
stock properties affect the appearance of the control.

Control properties are implemented using automation (IDispatch). Each control has an [Dispatch
interface for its stock and custom properties and its methods. To implement them for ourcontrol, we'll use
ClassWizard just as we did in Chapter 6. Fire up ClassWizard and go to the OLE Automation tab. Make
sure the Class Nameis CPostitCtr1, and click the Add Properties button. You will get a dialog box like
the one in Figure 8.10.

Figure 8.10 Adding stock properties with ClassWizard.

Add every stock property available except Caption and ReadyState. The Caption and Text properties
use the same internal implementation. The only difference is the external name of the property. Controls
should use the Caption property to represent small amounts of textual information that typically does not
change during run time. Buttons, labels, and the like typically use the Caption property. Controls (such as
a multiline edit field) that havealot of text that will be modified at run time should use the Text property.
We’re implementing a control that may contain a lot of textual information, so we will expose the Text
property. After adding eightof the stock properties, the OLE Automation tab should look like Figure 8.11.

The stock properties are implemented with get and set functions. Each stock property has a Get anda
Set method within COleControl that allow these properties to be inodified externally, usually via the con-
tainer’s property interface or yourcontrol’s custom property pages. The only current exception is Hwnd. It
has only a Get method for obvious reasons. Whenevera stock property is modified throughits Set method,
the Set method will call an OnPropertyChanged method, where “Property” is the actual name of the
property (such as OnBackColorChanged). The default impleinentation calls InvalidateControl1, forc-
ing a redraw of the control. You can easily modify this behavior by overriding any of the
OnPropertyChanged inethodswithin yourcontrolclass.

NFLE 1009 - Page 68

NFLE 1009 - Page 69

LA Simple Conirol + 359momentCNN

Figure 8.11 Stock properties added by ClassWizard.

Mostof the stock properties affect the look of a control: its background and foregroundcolor, the font, the
caption, and so on. Next, we'll modify our control’s OnDraw method to use these stock properties when
drawing. The following sections deal with each stock property and how it is used when you’re drawing a
control. The last section provides the complete source for OnDraw, so don’t worry about typing in until
we're finished.

Appearance
The stock appearance property provides the control developer with a standard property that controls the
appearanceof a control. MFC’s current implementation provides just two different options: draw the control
using 3-D or not. The implementation uses the Win32 Windowsstyle, WS_EX_CLIENTEDGE,to control the
3-D style.

 BackColor

The BackColorproperty can be used to specify the backgroundof a control. The backgroundtypically cov-
ers the entire area of a control; the salient features of a control are drawn ontop of the background. Our con-
trol currently creates a yellow backgroundandfills the control with it. By implementing the stock
BackColor property, we make it easy for the control user to modify this attribute. To draw the control
using the BackColor property, use the COleControl: :GetBackColor method:

// Get the stock BackColor

CBrush bkBrush;

bkBrush.CreateSolidBrush(TranslateColor(GetBackColor({)));

NFLE 1009 - Page 69

NFLE 1009 - Page 70

360 +CHAPTER 8

GetBackColor retrieves the current value of the BackColor property. The default value of the
BackColor property is the ambient property of the container. If the user does not select a specific back-
ground color, the container’s background color will be used. The COleControl: :TranslateColor
method converts an OLE_COLOR type into the COLORREFtype needed by the CDC class methods.

ForeColor

The stock ForeColor property can be used in various ways. Controls that contain text typically use this
color for the text. This doesn’t have to be thecase. If the control contains many items that you wantthe user
to be able to customize via a color property, you can choose whateverattribute you feel indicates the fore-
ground color of your control. If you need additional color properties,it is easy to define custom properties
for this purpose. We will do this in Chapter 9. ForeColoris similar to the BackColor property in thatit
defaults to the ambient property of the containerif not explicitly set. Here’s the new codefor the text in the
POSTIT control:

// Set the text color to the stock ForeColor

pdc->SetBkMode(TRANSPARENT);

pdc->SetTextColor(TranslateColor(GetForeColor())};

If you need to set a stock property programmatically, based on some internal state change or event, Set
functions are available for most of the stock properties. In this case, itis SetForeColor.

Caption or Text
As we've discussed, the Caption and Text properties are basically the same. The internal methods to
manipulate them are GetText, SetText, and InternalGetText. The InternalGetText method
should be used to get the text within your control class. It returns a CString reference instead of an
automation BSTR. To draw ourtext, we need only change one parameter of the DrawText method.It now
calls InternalGetTextto obtain the value of the Text property:

// Draw the text

pdc~>DrawText (InternalGetText (),

-1, CRect{ rcBounds },

DT_LEFT | DT_WORDBREAK);

BorderStyle
The stock BorderStyle property affects the drawing of the border around the control. The current MFC
implementation provides only two settings. A zero indicates no border, and a value of 1 denotes drawing of
a border around the control. The COleControl class supports both settings, so we don’t have to modify our
drawing code to supportthis property.

NFLE1009 - Page 70

NFLE 1009 - Page 71

A Simple Control + 361

Font

The stock Font property provides an easy way to expose a font property for your control. If your control
uses text in its representation or in any way needsa font, the stock font property makes this easy to man-

age. COleControl provides a method, SelectStockFont,for selecting the stock font into the current
device context (DC). The stock font initially contains the ambient font of the container. You can easily
changeits value with COleControl: ;SetFont,or the user can changeit through the container’s prop-
erty browser, which will call OnSetFont. The default implementation of OnSetFont updates the stock
font and invalidates the control. This is fine for most situations. The following codeillustrates how to use
SelectStockFontin your OnDraw code:

cFont* pOldFont = SelectStockFont({ pde);

// Use the font

// Restore the old font back into the DC

pdc~->SelectObject(pOldFont);

This example also demonstrates how the Drawing Optimization option can make a control moreefficient.If
drawing optimization is supported by a container, there is no need to select the old font back into the device
context, thus savingalittle time. We'll coverthis in more detail in Chapter 9.

Hwind

The stock Hwnd property is a read-only property that exposes the HWND (handle of the window)of the con-
trol. This property should also be a run-time-only property, because some containers may not create a win-
dow for your control when the container is in design mode. The Hwnd property wouldn’t have muchuse at
design time any way, becauseit is typically used at runtimeto allow the container’s scripting language to
directly access, and thus provide, a way to send Windows messages directly to a control’s Hwnd. I expect
that most containers will not expose this property during the design phase. A control developer need not do
anything to handle this stock property; COleContro1 handles it completely.

Enabled

The stock Enabled property is used to indicate, using either TRUE or FALSE, whether a control is enabled.
The Windowsoperating system provides an API function, Enabl eWindow, that controls the behavior and
appearance of a standard window. When a windowis enabled, it functions normally. When a window is not
enabled, or is disabled, it does not accept user input and typically changes its appearance as an indication to
the user. An example is the standard Windowscheckbox control. Whenit is disabled, the checkbox and the
text associated with it are “grayed out” to indicate thatit does not accept input.

We'll change the background style of our control to use a diagonal hatching to indicate that it is dis-
abled. We will check the Enabled property before drawing the backgroundof our control:

NFLE1009 - Page 71

NFLE 1009 - Page 72

362 + CHAPTER 8

// Create a brush using the stock BackColor

CBrush bkBrush;

// Tf the control is enabled use a solid brush

// otherwise use a hatched brush to indicate the disabled state

if (GetEnabled{))

bkBrush.CreateSolidBrush(TranslateColor(GetBackColor()));

else

bkBrush.CreateHatchBrush{ HS_DIAGCROSS, TranslateColor(GetBackColor(}

// Pill the background with BackColor

pdc->FillRect(rcBounds, &bkBrush };

Ve

Not much is new here except that we’ve added the check of the Enabled property and havecreated a
hatched brushtofill the control’s background.

FELTLTATATTATTTATATTTAL TATA TATAAATAAT AAT AT ATA AEE

As promised, here’s the complete OnDraw method with the new codethat uses the stock properties:

// CPostitCtrl::OnDraw - Drawing function

void CPostitCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)

{

// Create a brush with the stock BackColor

CBrush bkBrush;

if (GetEnabled({) }

bkBrush.CreateSolidBrush(TranslateColor(GetBackColor{)));

else

bkBrush.CreateHatchBrush(HS_DIAGCROSS, TranslateColor(GetBackColor()}

/f Pill the background with BackColor

pde~->FillRect(reBounds, &bkBrugh);

pdc->SetBkMode(TRANSPARENT);

// Set the text color to the ForeColor

// If the control is disabled, draw the

// text in the background color

if (GetEnabled()

pdc~>SetTextColor(TranslateColor(GetForeColor() });
else

pdc->SetTextColor(TranslateColor(GetBackColor().));

// Select the font. SelectStockFont

// is a method of COleControl that uses the stock

// font property for the control

V)e

NFLE1009 - Page 72

NFLE 1009 - Page 73

A Si ple Control+363eectONANIMATEUREOEEOLCOTTOCTODOTOONESEELLETENTIONTN sronsenrcrneonnconntnnti

eeCFont* pOldFont.= SelectStockFont({ pdc);

 y/ Get the text and draw it
__pde->DrawText| InternalGetText(),
CS +1, CRect(rcBounds),

DT_.LEFT | DT_WORDBREAK..) ;

_ // Restore the old-font of the’ DC

| pde-SSelectoObject (poldFont:);

}

Add the preceding code to POSTITCTL.CPP and compile and link the project.

When you add or remove a property, method, or event to a control, you must update the type
library before attempting to build the project. The 16-bit version of Visual C++ requires that you
explicitly makethe typelibrary apart from the build, so be sure to dothis first.

Testi Test Container

Now that we’ve added supportfor the stock properties and have modified the OnDraw codeto use them, we
should give them a try. The Test Container works fine for testing these changes. The stock properties ini-
tially default to the ambient properties of the container. Start the Test Container and select the Edit/Ambient
properties menu item. Set the BackColor and ForeColorproperties to gray and red. Now insert a POS-
TIT control. The control will use the ambient colors when renderingitself. It’s hard to determine whether the
ForeColor property worked, because we haven't specified the text for the control, but this is easy to do.

To access the properties for a specific control in the container, make sure the controlis Ul-active by sin-
gle-clicking on it. Then invoke the View/Properties menu item. This pops up a modeless Properties dialog
box that allows you to modify the stock properties that we added.This isn’t the actual property page created
for your control; instead, it’s the container’s property browser. We'll define and use our own property pages
ina moment. As you modify these properties and apply them to the control, it will redraw the control using
the new values.

Add sometext to the control using the Text property, and change the background and foregroundcol-
ors. Set the BorderStyle property to 1, and a border will be drawn aroundthe control. Set the Enabled
property to zero and watch what happens. There are many things you can do with this control even with
just the stock properties. Play with the control until you are comfortable with what's going on in the code.
Next, we will add a custom property pageto our control.

COlePropertyPage
Property pages provide a wayfor a control to graphically present custom and stock properties to the control
user. The user can then modify the properties and apply the changes to the control. This manipulation usu-
ally is done whenthe user configures the control during the container’s design phase.

NFLE 1009 - Page 73

NFLE 1009 - Page 74

364 + CHAPTER 8

MFCprovides the COlePropertyPage class to make it easy to implement property pages for your
control. The container usually provides a way for the control user to modify stock properties, which are
knownto exist within most controls. But some containers, such as Visual C++’s Resource editor do not sup-
ply this capability, so it is important to provide aninterfaceto all the properties used in your control. This is
easy to do by implementing a combination of custom and stock property pages for your control. Let’s take a
quick look at the COlePropertyPageclass andthe initial files produced by ControlWizard.

Each property pageis itself a COM-based componentwith a CLSID. This arrangement makesit easy for
the container to load andactivate a control's property page without bothering the control. When a controlis
initially loaded, the containerretrieves a list of the property page CLSIDsthat should be invokedfor the con-
trol. When the user wants to modify a control's properties, the container instantiates each property page and
frames it to create a property sheet. We discussed this in Chapter 7. The important thing to understand is
that each property page is a distinct COM-based component object. The COlePropertyPageclass does
almostall the work for us. Here’s the initial POSTITPPG.Hfile:

// PostitPpg.h : Declaration of the CPostitPropPage property page class.

LELELETTTTETETTTTT TET ET TATTLEEETTTAEET ELA EEETTT

// CPostitPropPage : See PostitPpg.cpp for implementation.

class CPostitPropPage : public COlePropertyPage

{

DECLARE_DYNCREATE (CPostitPropPage}

DECLARE_OLECREATE_EX (CPostitPropPage)

// Constructor

public:

CPostitPropPage({);

// Dialog Data

//{{APX_DATA(CPostitPropPage)

enum { IDD = IDD_PROPPAGE_POSTIT };

//}}AFX_DATA

// Implementation

protected:

virtual void DoDataExchange (CDataExchange* pDX) ; // DDX/DDV support

// Message maps

protected:

//{{APX_MSG (CPostitPropPage}

// NOTE ~ ClassWizard will add and remove member functions here.

// DO NOT EDIT what you see in these blocks of generated code !

//}YAFX_MSG

DECLARE_MESSAGE_MAP()

NFLE1009 - Page 74

NFLE 1009 - Page 75

 trenNACHNAADCOOatomnNmeenacastoniiititintinet

There’s nothing special here except the enum { IDD_PROPPAGE_POSTIT } and the DoDataExchange
declaration. The enum value contains the dialog resource for the property page. We'll modify this dialog box
in the next section. The DoDataExchange method provides an easy mechanism for moving data between
controls within a dialog box and class membervariables.

cOlePropertyPage derives from CDialog, which derives from CCmdTarget, so we have COM sup-

port built into our new class. And the DECLARE_OLECREATE_EX macro provides a class factory for our
property page.All the pieces are there for making this class a COM-based component:

// PostitPpg.cpp : Implementation of the CPostitPropPage property page class.

IMPLEMENT_DYNCREATE (CPostitPropPage, COlePropertyPage)

PLELTELLELETETELTATTAT ATTATATTLEETATALTA

// Initialize class factory and guid

IMPLEMENT_OLECREATE_EX(CPostitPropPage, “POSTIT.PostitPropPage.1”

Oxbbf8b09a, Oxbe9e, Oxllce, Oxa4, Ox3c, Oxac, Oxe7, Oxlf, 0x16, Oxdb, Ox7f)

PILELLETTTTTTTT ETE ET TATA ATETEEELA ELTA ETAT AE ATT

// CPostitPropPage: :CPostitPropPageFactory: :UpdateRegistry -

// Adds or removes system registry entries for CPostitPropPage

BOOL CPostitPropPage: :CPostitPropPageFactory: :UpdateRegistry(BOOL bRegister)

{

if (bRegister)

return AfxOleRegisterPropertyPageClass (AfxGetInstanceHandle(),

m_clsid, IDS_POSTIT_PPG);
else

return AfxOleUnregisterClass(m_clsid, NULL);

}

FETTLTELTTTTTTTTTATTTTTLATA TATTLE ATTATTTATTETL

// CPostitPropPage: :CPostitPropPage ~ Constructor

CPostitPropPage: :CPostitPropPage()

COlePropertyPage(IDD, IDS,_POSTIT_PPG_CAPTION)

//{{AFX_DATA_INIT (CPostit PropPage)

//}}AFX_DATA_INIT

}

PELTLTTELTTTTTETTTTTTTT LTTE LAT ALATA TAEDATATAAAAATT TL

// CPostitPropPage: :DoDataExchange - Moves data between page and properties

NFLE1009 - Page 75

NFLE 1009 - Page 76

366 + CHAPTER 8

void CPostitPropPage: : DoDataExchange (CDataExchange* pDX)

{

//{{AFX_DATA_MAP (CPostitPropPage)

//}}AFX_DATA_MAP

DDP_PostProcessing (pDX) ;

}

POSTITPPG.CPP looks very similar to POSTITCTL.CPP. The IMPLEMENT_OLECREATE_EX macro con-
tains the ProgID and CLSID for our property page and the UpdateRegistry method. The
DoDataExchange methodis implemented but currently doesn’t do anything. We will add to and discussit
in the next section. Table 8.4 providesa list of useful COlePropertyPage methods.

Table 8.4 Useful colePropertyPage Methods

Method Purpose

COlePropertyPage—The constructortakes the ID of a dialog resource and anID ofa string resource for the caption of the

page.

IsModified indicates whether the user has modified any items on the property page.

SetModifiedFlag Indicates that an item on the page has been modified.

OnHelp Called when the user presses the help key on the property sheet, when the pageis the current tab.

OnInitDialog Called when the property pageis initialized.

OnEditProperty Called when the user edits a specific property on the page.

onSetPageSite Called when the containerloads the pageto displayit within its property page frame.

ControlWizard provides us with a custom property page that we can use to let control users modify our
control’s stock or custom properties. The COlePropertyPageclass is derived from CDialog and uses a
dialog resource to describe its appearance. We need to add a custom property that allows toggling the use of
the container’s ambient properties. To add this property to the resourcestab, click the Dialog folder and then
double-click the IDD_PROPPAGE_POSTIT dialog resource. Add a checkbox with the text Use Ambients
and with an ID of IDC_USEAMBIENTS. While you’re at it, add a checkbox for our stock Enabled
(IDC_ENABLED) and BorderStyle (IDC_BORDER)properties and a multiline edit field (IDC_TEXT)
for our Text property. See Figure 8.12.

We now needto create the custom UseAmbients property. Using ClassWizard, select the OLE
Automation tab, add a property of type BOOLusing Get/Set methods, andcall it UseAmbients. Now add
the following code to POSTITCTL.H and POSTITCTL.CPP.It adds a membervariable to our control class
for maintaining the UseAmbients property. Wealso call InvalidateControlto force a redraw whenthe
property changes.

NFLE1009 - Page 76

NFLE 1009 - Page 77

A Simple Control + 367

Figure 8.12 Editing the custom property pagedialog resource.

// PostitCtl.h

class CPostitCtrl : public COleControl

{

DECLARE_DYNCREATE (CPostitCtrl)

// Implementation members

BOOL m_bUseAmbients;

};

// PostitCtl.cpp

CPostitCtrl::CPostitctrl()

{

InitializelIDs(&IID_DPostit, &IID_DPostitEvents) ;

// TODO: Initialize your control's instance data here.

m_bUseAmbients = FALSE;

SetInitialSize(200, 200 };

}

LULTLELTLELL ET ATLLLAEL TLE ELTALAA EALEAAALLELELATLALALALAAL EY

// CPostitCtrl message handlers

NFLE1009 - Page 77

NFLE 1009 - Page 78

368 + CHAPTER 8

BOOL CPostitCtrl: :GetUseAmbients()

{

// TODO: Add your property handler here

return m_bUseAmbients;

}

void CPostitCtrl: :SetUseAmbients (BOOL bNewValue)

{

// TODO: Add your property handler here

m_bUseAmbients =. bNewValue;

SetModifiedFlag();

// Redraw the control

IinvalidateControl()};

// Update any property. browser

BoundPropertyChanged(dispidUseaAmbients.);

}

Thecall to BoundPropertyChangedis an importantone.It notifies any associated object, usually the con-
tainer, that a property has changed within the control. It does this through the IPropertyNotifySink
interface. For example, this onecall will ensure that Visual Basic’s property browser will always be in sync
with boththe control and the control’s custom property pages.

For our custom property page to access our custom property, we must create a variable for it in the
CPostitPropPageclass. Start ClassWizard and select the Member Variables tab. From the Class Name

dropdown,select CPostitPropPage. Click the Add Variable button and add a variable for the IDC_USE-
AMBIENTS checkbox. When adding the variable, be sure to type the nameof the associated property
(within the control) in the Optional OLE Property Name field. Adding a property name here forces the
property to be retrieved from the control. It adds a DDP_Check entry for the property. In a momentyou will
see exactly what this does. The dialog box is shownin Figure 8.13.

While you're at it, go ahead and add member variables for the other three stock properties that we
placed on the custom property page. When adding these variables, be sure to select the correct stock prop-
erty name from the Optional OLE Property Namefield. The Text property is shown being added in Figure
8.14.

NFLE1009 - Page 78

NFLE 1009 - Page 79

ASimpleControl + 369a ciccmmrenrannnoneneonenstin

Figure 8.13 Adding a membervariable for the useambients property.

Figure 8.14 Adding a membervariable for the stock text property.

The value of m_bUseAmbients is modified when the property page user changes the value ofits checkbox.
This is done using the normal dialog data exchange macros. ClassWizard addsthe following highlighted
code to the CPostitPropPageclass:

NFLE1009 - Page 79

NFLE 1009 - Page 80

370 + CHAPTER 8

// PostitPpg.h

class CPostitPropPage :

{

public COlePropertyPage

// Dialog Data

he

//{{AFX_DATA (CPostitPropPage)

enum { IDD = IDD_PROPPAGE_POSTIT };

BOOL m_bEnabled;

CString m_strText};

BOOL, m_bBorderStyle;

BOOL m_bUseAmbients;

//\}APX_DATA...

// PostitPpg.cpp

TLELELTLLTATELLALAALT ATT ATAALTE TAT AEA TEAL ETAT ELT A ET TTL

// CPostitPropPage::CPostitPropPage - Constructor

CPostitPropPage: :CPostitPropPage()

}

COlePropertyPage(IDD, IDS_POSTIT_PPG_CAPTION)

//{{AFX_DATA_INIT(CPostitPropPage)

m_bEnabled = FALSE;

m_strText =. _T("")}

m_bBorderStyle = FALSE;
m_bUseAmbients: .= FALSE;

//}}AFX_DATA_INIT

FELTLTLATLTATTTTELTT ELLA TATTLE TATA TATAAAAEAT AAT ETA ATT ETL

// CPostitPropPage: :DoDataExchange - Moves data between page and properties

void CPostitPropPage: : DoDataExchange (CDataExchange* pDX)

{

//{{AFX_DATA_MAP (CPostitPropPage)

DDP_Check(pDxX, IDC_ENABLED, m_bEnabled,. _T(*Enabled*}

DDX_Check(pDX,. IDCENABLED, “m_bEnabled)';

DDP._Text (pDX,;- IDC_TEXT, m_strText, _T("Text”));

“DDEText (pDX; IDC_TEXT; m=strText)};

DDP:_Check(pDX,' IDCBORDER, m_bBorderStyle,

DDX_Check(pDX, IDC_BORDER, m_bBorderStyle) ;

DDP_Check(pDX, IDC_USEAMBIENTS, m_bUseAmbients,

;

T(*BorderStyle"));

T(*UseAmbients’));

NFLE 1009 - Page 80

NFLE 1009 - Page 81

_A Simple Control# 371rerelenTen

 opeCheck(pDX, IDC_USEAMBIENTS, m_bUseAmbients) ;
//} }AFX_DATA_MAP
DDP_PostProcessing (pDX) ;

j

The DoDataExchange method moves property values between the dialog controls, identified with their
{Ds, and the membervariables of the CPostitProgPageclass. Thedirection ofthetransfer, either from the
membervariables to the dialog controls or from the dialog controls to the membervariables,is indicated by
the m_bSaveAndValidate member of the CDataExchangeclass. FALSE indicates a transfer to the con-
trols.

The DDXfunctions actually exchange the dialog data. The DDP functions were addedfor controls and
extend MFC’s data exchange mechanism to support synchronization of properties across automation-based
components. The DDP functions use automation to either get or set the control’s property values. The fourth
parameter of the DDP functionis the name of the automation property that is being affected.

Whenthe container loads a control’s property page, DoDataExchangeis called with the
m_bSaveAndValidateflag set to FALSE to indicate that the dialog’s controls should be loaded. Each DDP
function, as it is encountered, uses IDispatch: : Invoke to obtain the associated property value from the
control; in other words, the control’s GetProperty methodis called. The Invoke may be preceded by a
call to IDispatch: :GetIDsOfNamesif the property does not have a standard DISPID (e.g., stock proper-
ties). The control’s property value is then stored in the property page object’s member variable (such as
m_bUseAmbients). Next, the DDX method is called to transfer the property value to the dialog control.
This process is repeated for each DDP/DDXpair. Once this process is finished, the property pageis dis-
played.

Whenthe user modifies a property value and clicks the property sheet’s Apply or OK button, the
reverse occurs. DoDataExchange is called with m_bSaveAndValidate set to TRUE. This time the DDP

functions update an internal map of the property values, and the Invokecall is deferred until the
DDP_PostProcessing methodis called. This is because the appropriate value hasn’‘t yet been transferred
from the dialog control to the property page membervia the DDX function. Oncethe transfer has occurred,
the DDP_PostProcessing method updates each property that was changedvia the property sheetby call-
ing the control’s appropriate Set function using IDispatch: : Invoke.

The DDP functions currently support most of the automation types. Depending on the property type,
you use the appropriate DDP function. For example, if your property is stored ina short, you could use the
DDP_CBIndex to map the value of the property to a position within a combo box. Wewill do this in a later
chapter. The various DDPfunctionsare asfollows:

DDP_Text (CDataExchange*pDX, int id, BYTE& member, LPCTSTR pszPropName) ;

DDP_Text (CDataExchange*pDX, int id, int& member, LPCTSTR pszPropName) ;

DDP_Text (CDataExchange*pDX, int id, UINT& member, LPCTSTR pszPropName) ;

DDP_Text (CDataExchange*pDX, int id, long& member, LPCTSTR pszPropName};

DDP_Text (CDataExchange*pDX, int id, DWORD& member, LPCTSTR pszPropName) ;

DDP_Text (CDataExchange*pDxX, int id, float& member, LPCTSTR pszPropName) ;

DDP_Text (CDataExchange*pDX, int id, double& member, LPCTSTR pszPropName);

NFLE1009 - Page 81

NFLE 1009 - Page 82

372 + CHAPTER 8 ne

DDP_Text (CDataExchange*pDxX, int id, CString& member, LPCTSTR pszPropName) ;

DDP_Check (CDataExchange*pDX, int id, int& member, LPCTSTR pszPropName) ;

DDP_Radio(CDataExchange*pDX, int id, int& member, LPCTSTR pszPropName) ;

DDP_LBString(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName) ;

DDP_LBStringExact (CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName) ;

DDP_LBIndex(CDataExchange* pDX, int id, int& member, LPCTSTR pszPropName) ;

DDP_CBString(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName) ;

DDP_CBStringExact (CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName) ;

DDP_CBIndex(CDataExchange* pDX, int id, int& member, LPCTSTR pszPropName) ;

MFCprovides three stock property pages that you can use to allow users to modify your control’s proper-
ties. The three property pages provide support for yourcolor, font, and picture type properties. We will use
the color and font property pages to allow the user to modify our control’s stock BackColor, ForeColor,
and Font properties. As mentioned previously, containers normally provide an effective way of modifying
standard (and often custom) properties, but to build a control that is useful in all control containers, we need
to providean interfacefor all the properties of our control. The stock property pages give us an easy way to
provide a standardinterface to Color, Font, and Picture property types.

The three stock property pages are identified by their CLSIDs. To use them within your control, you
add them using the PROPPAGEID macro. This technique adds the CLSIDsto the array of property page
CLSIDs that is maintained by the control. When the container invokes the property sheet for the control, it
determines which pagesto load by askingforthis array.

Addthe following code to POSTITCTL.CPP. Be sure to change the page count in the BEGIN_PROP~-
PAGEIDS macro from1to 3.

// TODO: Add more property pages as needed. Remember to increase the count!

BEGIN_PROPPAGEIDS (CPostitctrl, 3)

PROPPAGEID (CPostitPropPage: :guid)

PROPPAGEID (CLSID_CColorPropPage}

PROPPAGEID(CLSID_CFontPropPage }-
END_PROPPAGEIDS (CPostitCtrl)

By adding twolines of code, we provide a nice way for the control user to modify the Font, BackColor,
and ForeColor properties. The standard property pages determine which properties to display within
their dropdownsbyiterating through all your control’s properties. If the supported property type is found,
the property page addsit to its list. To add a custom color property to your control—say HeadingColor—
use ClassWizard to add a property of type OLE_COLOR. Whenthe standard property sheet is loaded, it will
include your new custom property.

NFLE1009 - Page 82

NFLE 1009 - Page 83

ASimpleControl +373

Earlier, we added a custom property, UseAmbients, that allows the control user to indicate whether the
control should use the ambient properties provided by the container or the ones specified by the user. We
need to modify our drawing code to check the UseAmbients property to determine which property set to
use. The new OnDrawcodeis as follows:

PELELLLELETTLLTLATLLTL TTA T ATA LTAATTATATAATATETAAETATAEAAT TL L

y/ CPostitCtrl::OnDraw - Drawing function

yoid CPostitCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)

{

CBrush bkBrush;

// Use a local color reference for increased efficiency

© °COLORREF ‘crBack;

| COLORREF crFore;

// Use the container’s properties if the UseAmbients

// property is true

_ 4f-(m_bUseAmbients }

|
exBack.:=.TranslateColor(: AmbientBackColor().);

erFore: =. TranslateColor(:AmbientForeColor()* };

erBack..=)TranslateColor(:GetBackColor ().")3

crFore: =, TranslateColor(* GetForeColor()})3

}

if (GetEnabled().)

bkBrush. CreateSolidBrush(crBack });
else

bkBrush.CreateHatchBrush(HS_DIAGCROSS, crFore

// Pill the background with BackColor

pde->FillRect(rcBounds, &bkBrush };

pdc->SetBkMode(TRANSPARENT };

//;Set,;-the:.text,color., tothe ForeColor

// If the: control is disabled} draw the

//; text. inthe: background:.color

eit: (sGetEnabled().)

NFLE1009 - Page 83

NFLE 1009 - Page 84

374 ~~ CHAPTER&pecneinnasiwtitm sssStOHASUACRINGEreARESINRAAneOTERONTPCOCODRIENCE,

-. pde->SetTextCalor(crFore);
else

pdc->SetTextColor(crRack:);
// Select the font

CFont* pOldFont;

if (m_bUseAmbients }

{

CFontHolder font(&m_xFontNotification };

// Get the ambient font’s IDispatch

LPFONTDISP lpFontDisp = AmbientFont{};

// If the container doesn’t have an ambient font

// use the stock font instead

if (lpFontDisp == NULL }

pOldFont = SelectStockFont(pdc);
else

{

// Initialize the CFontHolder. with the

// ambient font dispatch

font.InitializeFont(NULL,:lpFontDisp);

poldFont = SelectFontobject(pde, font);

//: Release the font: dispatch

lpFontDisp~>Release();

}

else

poldFont = SelectStockFont{ pdc };

// Get the text and draw it

pdc~>DrawText(InternalGetText (),

-1, CRect(rcBounds },

DT_LEFT | DT_WORDBREAK);

// Restore the old font of the DC

pdc->SelectObject(pOldFont);
}

The font selection code needsa little more explanation. To effectively handle changing to and from the ambi-
ent Font property, we use the CFontHolderclass. We'll cover that in the next section. Before we do that,
though, we need to add one more method to our control.

Wheneverthe container’s ambient properties change and the m_UseAmbientsflag is TRUE, we need to
redraw the control. The COleControl1: :OnAmbientPropertyChange methodis called when any of the

NFLE1009 - Page 84

NFLE 1009 - Page 85

A Simple Control + 375pectPOATA vse “ “ ‘

container’s ambient properties changes.First, we override this method in POSTITCTL.H, and then we add
the implementation code to POSTITCTL.CPP. Youcaninitially override a methodby clicking the Messages
dropdown whenediting POSTITCT.CPP.Scroll down to OnAmbientPropertyChange and select it. It
will be added to both the .H and the .CPPfiles.

class CPostitCtrl : public COleControl

{

// Overrides

// Override OnAmbientPropertyChange

virtual void OnAmbientPropertyChange(DISPID);

yi

// PostitCtl.cpp

void CPostitCtrl::OnAmbientPropertyChange(DISPID dispid }

{

// TODO: Add your specialized code here and/or call the base class

 _// Tf the-user does not want ambients just return

if (.m_bUseAmbients == FALSE)

return;

_//- Redraw’ the control

- TnvalidateControl {);

COleControl: :OnAmbientPropertyChange(dispid);

}

OnAmbientPropertyChange provides the DISPID of the specific ambient that changed. If more than one
property has changed,this function passes DISPID_UNKNOWN. We don’t really care which ambient changes,
so in all cases we call InvalidateControl, which forces a redraw. If the UseAmbients property is
FALSE,there is no need to deal with ambients and wejust return.

 CFontHolder

The CFontHolderclass encapsulates a Windows font object. It contains an implementation of the COM
IFont and IFontDispinterfaces that provides methods for communicating font information and font
property changes among COM-based components.

Weuse the CFontHolder class to obtain the ambient Font property. The following code is from
OnDraw:

NFLE 1009 - Page 85

NFLE 1009 - Page 86

376 ~~ CHAPTER 8

if (m_bUseAmbients }

{

CFontHolder font(&m_xFontNotification);

// Get the ambient font’s IDispatch

LPFONTDISP lpFontDisp = AmbientFont();

// Tf the container doesn’t have an ambient font

// use the stock font instead

if (lpFontDisp == NULL)

pOldFont = SelectStockFont(pde };
else

{

// Initialize the CFontHolder with the

// ambient font dispatch

font.InitializeFont(NULL, lpFontDisp);

pOldFont = SelectFontObject(pdc, font);

// Release the font IDispatch

lpFontDisp->Release()};

}

The constructor for the CFontHolderclass requires a pointer to an [PropertyNotifySinkinterface. The
COleControl class contains a protected member, m_xFontNotification, that implements an
IPropertyNotifySinkinterface for the handling of ambient fonts. We use this member to construct an
instance of CFontHolder. After construction, CFontHolder must be initialized with a call to the
InitializeFont method.

InitializeFont takes two parameters: a pointer to a FontDesc structure that specifies the font’s
characteristics, and a pointer to the ambient font’s IDispatch. Only oneof the two parameters is required,
and in our case we need only a pointer to the ambient font’s IDispatch. We’re in luck—the AmbientFont
method returns an LPFONTDISP—so wepass it to InitializeFont. This action creates a valid
CFontHolderobject that we then pass to COleControl: :SelectFontObject. This function selects the
ambientfont into the device context. If any of this fails, we use the stock font provided by MFC.

 Testing the
Wecan use the Test Container to test the addition of ambient property support to our control. Start the Test
Container and from the Edit menu choose Set Ambient Properties. Before inserting the control, change the
ForeColor, BackColor, and Font ambient properties from their default values. Now insert the control.
Whenthe controlfirst loads, it will use the ambient properties of the container even thoughtheinitial value

NFLE 1009 - Page 86

NFLE 1009 - Page 87

 _ASimpleControl+ 377

of the UseAmbients property is FALSE. Remember, theinitial value of stock properties defaults to the
ambient values of the container. Now, invoke the property sheet for the control by selecting Postit Control
Object/Properties from the Edit menu. This action will bring up the custom and two stock property pages
that we added to the control. Add sometext for the control, check the UseAmbients checkbox, and modify
the colors and font. Nowclick the Apply button. Only the text that you entered will change the appearance
of the control. To use the new values for the stock properties, we need to “turn off” the use of ambient prop-
erties. Do this and press the Apply button. The control will now use the values of the stock properties.

The Apply button calls IDispatch: : Invoke with the DISPID of the changed property. This calls the

specific property’s Set method (such as SetUseAmbients) with the new property value. After updating
the property value within the control, the Set method will typically call InvalidateControl, which will
force a redraw ofthe control.

Continue to play with the UseAmbients as well as all the other stock and ambient properties. Try out
the Enabled and BorderStyle properties, too. This experimentation should give you a good sense of
what goes on as various properties are changed and whateffects they have on the underlying control. But
remember that what we are doing with the Test Container is simulating the use of the control in design
mode. The behavioris quite different during run mode. During design mode, muchof the state, or appear-
ance, of the control is configured, and during run time, methods and events do muchofthe real work.

Adding a Stock Event

Nowlet’s add a stock event to the POSTIT control. As we've discussed, a control event provides a way for
the control to communicate events such as mouseclicks, internal state changes, and so on to the user of the
control. Events are communicated through the container, which normally provides a scripting language that
makes it easy to harness these events for useful purposes.

Adding events is as easy as adding a methodor property. Invoke ClassWizard and choose the OLE
Events tab. Now click Add Event and choose the Click stock event. Click the OK button, and ClassWizard

will add an entry to our dispatch map and our control’s ODLfile to indicate that we support the Click
event. Figure 8.15 shows the Add Eventdialog box.

The stock events, with the exception of the Error event, are automatically fired by MFC. Byclicking a
few buttons we have added aneventthat will fire each time the user clicks the mouse anywhere within the
control. Here’s the code added to POSTITCTL.CPPandthe definition added to POSTIT.ODL.

NFLE1009 - Page 87

NFLE 1009 - Page 88

378 < CHAPTER 8

Figure 8.15 Add Eventdialog box.

// Postitctl.cpp

FTLTTTTATTATLTTLTTATTTA TTT TTA TATA TATA AAA ATTA ATTA AAA AAT AA

// Event map

BEGIN_EVENT_MAP (CPostitCtrl, COleControl)

//{{APX_EVENT_MAP (CPostitctrl)

| SEVENTSTOCK_CLICK ()
//}}AFX_EVENT_MAP

END_EVENT_MAP()

// postit.odl

// Event dispatch interface for CPostitCtrl

{ uuid(BBF8B098-BE9E-11CE-A43C-ACE71F16DB7F) ,

helpstring(*Event interface for Postit Control’)]

dispinterface _DPostitEvents

{

properties:

// Event interface has no properties

methods:

// NOTE ~ ClassWizard will maintain event information here.

// Use extreme caution when editing this section.

NFLE 1009 - Page 88

NFLE 1009 - Page 89

A Simple Control 379

//{{AFX_ODL_EVENT (CPostitCtrl)

(id (DISPID_CLICK)]..void Click();

//\}AFX_ODL_EVENT

ye

Event maps are very similar to dispatch maps. Event mapsdefine a table of DISPIDs and their associated
member functions. The primary difference is how they are used within a control. As we discussed in
Chapter7, the container will retrieve the control’s event IDispatchdefinition and implementit within the
container. The control will then use [Dispatch: : Invoketo fire its events as they occur. This is easy for
the control to do, because the DISPIDsare already known.

‘As we covered in Chapter 7, the ActiveX standard provides two stock methodsthat controls should imple-
mentif it’s appropriate. The two methods—Refresh and DoClick—really pertain only to visual controls,
so you typically won’t implement them in nonvisual controls. The Refresh method might be used for cer-
tain nonvisual controls, such as a database or data-feed control in which the concept of refreshing is rele-
vant.

It is easy to provide these two methodsfor your control. Start ClassWizard, go to the OLE Automation
tab, and click the Add Method button. There are two methodspresentin the External Namefield: Refresh
and DoClick. Add each of these by clicking OK. That’s all there is to it. The default implementation for
Refreshis to invalidate the control, forcing a redraw. The default implementation of DoClick is to call the
OnClick method, which in turn fires the stock Click event. This arrangementis just fine for our simple
control. We will test this behaviorlater using a commercial container.

To providealittle functionality for our POSTIT control user, we'll add two custom methods. These methods
will allow the control user to set a timer within the control that will go off after a predetermined time inter-
val. Control users can employ this behavior any way they choose, and I’ll demonstrate a simple use when
building an application with the controllater.

Start ClassWizard and add a method to CPostitCtl1 called SetAlarmTime. This method takes one

parameter, a short. SetAlarmTime returns a BOOLto reportthe successorfailure of the methodcall. Next,
add another method andcall it StopAlarm. This method returns void and takes no parameters. Next, edit
POSTITCTL.CPP and addthe following code to the methods provided by ClassWizard:

#define TIMER_ID 100

BOOL CPostitCtr1::SetAlarmTime(short sSeconds)

{

// TODO: Add your dispatch handler code here

NFLE1009 - Page 89

NFLE 1009 - Page 90

330 +CHAPTER8 scariersosSAbUSH tetNHmenancinreaneititsipttssotenbantitttreeee

// Set the timer, return TRUE on success, FALSE. on error

if (-GetHwnd())

return SetTimer(. TIMER_ID, sSeconds * 1000, NULL.);
else

return FALSE;

}

void CPostitCtrl: :StopAlarm()

{

// TODO: Add your dispatch handler code here

KillTimer(TIMER_ID };

}

Our custom methods provide a way for the control user, during run time, to set an alarm thatwill fire after
the indicated number of seconds has elapsed. The SetAlarmTime methodfirst checks to ensure that our
control has a valid window handle and then calls the Cwnd: :SetTimer method with the numberofsec-

onds provided. We multiply this value by 1000, because SetTimer expects the time in milliseconds.

The StopAlarm methoddestroys the timer by calling Cwnd: :KillTimer.After setting the timer, the
control user may decide to cancelit later. The Windows timer mechanism will post a WM_TIMER message
after the time period has elapsed. To trap this message, we use ClassWizard to add the WM_TIMER message
to our message map. Then ClassWizard adds an OnTimer method to POSTITCTL.CPP, as shown next. J
won't go through each step, because you should be familiar with ClassWizard by now.

// PostitCtl.cpp

void CPostitCtrl: :OnTimer (UINT nIDEvent}

{

// TODO: Add your message handler code here and/or call default

COleControl: :OnTimer (nIDEvent) ;

}

Wenow needto add an event so that we can notify the control user when the timerfires.

 Adding a Custo
Custom events provide a way to inform users that something happened within the control. In ourcase,this
event is the expiration of the timer. Adding a custom eventis only slightly different from adding a stock
event as we did previously. From ClassWizard’s OLE Events tab, add an event with an external name of
AlarmFired, and leave the default internal name, FireAlarmFired. Include a long parameter andcall it
nTimerID. This parameterwill report to the user the ID of the timer that expired. This value isn’t useful in
our case, but if we wanted to let users maintain multiple timers, it would allow users to identify the specific
timer that fired. We would need only add another parameter, for a unique timer ID, to both the
SetAlarmTime and StopAlarm methods.Ill leave this as an exercise.

NFLE1009 - Page 90

NFLE 1009 - Page 91

 meenNTCRCNtT

Whenthe control receives the WM_TIMER message, it will fire the event using our internal method:
FireAlarmFired. Once wefire the alarm event, we need to kill the timer so that it won’t continuetofire.
Addthe following code to the OnTimer method in POSTITCTL.CPP:

void CPostitCtrl::OnTimer (UINT nIDEvent)

{

// TODO: Add your message handler code here and/or call default

“@nIDEvent == TIMER_ID)

: FireAlarmFired(. nIDEvent).;
//-Cancel the alarm

KillTimer(TIMER_ID);

COleControl::OnTimer (nIDEvent} ;

Serializing the Properties of a Control

When a user places a control on a container and sets the properties so that the control behaves in the
expected manner,the settings should persist. The container is responsible for causing the control to persist
between design modeandrun time, but the control must decide which properties it wants to persist to the
container. This processis called serialization, and MFC provides the DoPropExchange methodfor this pur-
pose. Here’s the default implementation provided by ClassWizard:

LEPLELELTEIETELTTALLTATATTLEALATAATA TA AAT ET ATL

// CPostitCtrl::DoPropExchange - Persistence support

void CPostitCtrl: :DoPropExchange (CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange (pPX) ;

// TODO: Call PX_ functions for each persistent custom property.

}

The default implementation serializes all the stock properties that you have defined for your control. It is
your responsibility to serialize any custom properties that you have added—in ourcase, the UseAmbients
property. Its type is BOOL, so we use the function PX_Bool. The PX* functions are listed in Table 8.5. The
first parameter is a pointer to the property exchange object, the second parameter is the nameof the prop-
erty as you would like it stored, and the third parameter is a reference to the property itself. An optional
fourth parametercan be used to set the default value for the property. By providing default parameters for
the properties, the control will have an initial state when inserted into a container. Complex property types
(such as font) require additional parameters, which are shown in Table 8.5. The table does not show the
first three parameters, because they are always the same.

NFLE1009 - Page 91

NFLE 1009 - Page 92

382_+ CHAPTER 8

LULLTLATTATTLTTT STAT PTAET ETAT TATA AAT ATLA TATE ATT AT AAT AATAEL

// CPostitCtrl::DoPropExchange - Persistence support

void CPostitCtr1: : DoPropExchange (CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange (pPX);

// TODO: Call PX_ functions for each persistent custom property.

PX_Bool(pPX, _T(“UseAmbients’), m_bUseAmbients, FALSE);

Table 8.5 DoPropExchange Functions

Function/Type Purpose

PX_Blob(HGLOBAL&) Serializes an objectin a binary format.

PX_Bool(BOOLE&) Serializes the property as a Boolean.

PX_Color(OLE_COLOR&) Serializes the property as an OLE_COLORtype.

PX_Currency(CY&) Serializes the property as a currency data type.

PX_Double(double&) Serializes the property as type double.

PX_Font(CFontHolder&, Serializes the property as a font. This function takes a few more parameters than
const FONTDESC FAR*, the others.
LPFONTDISP)

PX_Float(floats) Serializes the property as a float.
PX_TUnknown

(LPUNKNOWN&, REFIID) Serializes the IUnknown pointer.

PX_Long(long&) Serializes the property as type Long.

PX_ULong(ULONG&) Serializes the property as type unsigned long,
PX_Picture

(CPictureHolders) Serializes a picture property.

PX_Short(short&) Serializes the property as type short.

PX_UShort (USHORT&) Serializes the property as type unsigned short.

PX_String(CString&) Serializes the property as type CString.

Whenthe containerserializes its contents, it calls each control and asksit for its property information. The
container then uses its own technique of serializing the property information, usually in some form offile.
Visual Basic serializes property information in a textual format that is easy to understand, so the following
listing shows our controlafter it has been serialized within a Visual Basic form. This exampleillustrates only
property-set persistence and not the more elaborate binary persistence that can be used by a control.

NFLE 1009 - Page 92

NFLE 1009 - Page 93

_A Simple Conirol+ 383academe ns vsnannsanseneseenitsttitesstatertenbnSitetneeeeternasineSeeMRettont wiettantnecine

pegin PostitLib.Postit Postitl
Height = 3135

Left = 480

TabIndex = 0

Top = 240

Width = 2895

_version = 65536

_extentx = 5106

_extenty = 5530

_stockprops = 125
text = “Meet Nicole for lunch at 11:30 at Fiddler's.”

forecolor = 255

backcolor = 65535

BeginProperty font {FB8F0823-0164~101B-84ED-08002B2EC713}

name = “Monotype Corsiva"”
charset = 0

weight = 400
size = 12

underline = 0 ‘False

italic = -~l ‘True

strikethrough = 0 ‘False

EndProperty

borderstyle = -1

useambients = 0 ‘False

End

Wecanlearnalittle about what the container is doing by inspectingits serialization file. You might notice
that not all of our properties are listed, in particular the Enabled property. If a property’s value is the
same as its default value, as specified in the DoPropertyExchange PX_ functions, there is no need to
store the property value. When the container loads a control, it first sets the control’s property values to
the defaults provided in DoPropertyExchange.It then loads the properties from persistent storage,
which overlays only those property values that differ from their default values. This arrangement saves
space in the persistentfile. ,

 Testing the Final Control in a Real Container
One important aspect of developing ActiveX controls is that you should strive to make them work inall
available containers. Because the ActiveX control standard is open and leaves certain aspects of its imple-
mentation up to the implementor, there will be differences in the containers provided by various tool ven-
dors. One thing is certain: there will be many products that will support ActiveX controls. As I write this,

NFLE1009 - Page 93

NFLE 1009 - Page 94

384+ CHAPTER 8

many vendors have stated publicly that their tools will support ActiveX controls. For commercial control
developers, this is wonderful news. The more containers that support ActiveX controls, the more customers
there are for useful and unique controls. But the one container that will set the standard for the others is
Visual Basic. Why? Visual Basic has a very large installed base and so immediately (via upgrades) will
becomethe most ubiquitous, and standard-setting, container.

WhatI’m getting at is this: to really test your controls, you should test them in as many containers as
you can. Containers typically exist within the context of a developmenttool. Each tool has different goals, so
it is important to test in these divergent environments. The controls in this book have been tested with the
Test Container, Visual Basic 4.0, Visual C++ 4.2, and Internet Explorer 3.0.

Figure 8.16 shows our POSTIT control within a Visual Basic 4.0 form. As you can see, from the proper-
ties window,Visual Basic has added several new properties to our control. Most containers will provide
additional properties in this manner using the extended control method that was described in Chapter7.
Manycontrol properties can be managed only by the container (via an extended control). Only the container
knowsthe position of the control within the container, so it adds the Top, Left, Height, and Width prop-
erties. It also adds other properties that it can easily manage, such as Visible, TabStop, and Index. The
Index property is used for control arrays, which provide dynamiccreation of controls at run time. The con-
tainer, again, is best equipped to handlethis situation.

3 se
LEHOQOOREFREa

Figure 8.16 POSTIT control in a Visual Basic form.

One thing that the Test Container lacks is a robust way to test our control’s methods and events. So we'll
develop a simple Visual Basic program to exercise the control. I expect the scripting syntax and techniques
to be fairly similar among various control container tools. So although the code here is specific to Visual
Basic, it should easily translate to other control environments.

Our simple application is composed of two forms(containers) and a few ActiveX controls. It provides a
means to set up an event that will act as a reminder. When the event occurs, a dialog box will pop up and

NFLE1009 - Page 94

NFLE 1009 - Page 95

A Simple Control+385omen

inform the user with the reminder. I won’t go throughthe steps neededto build the application. You can run
it yourself with either Visual Basic 4.0 or a 32-bit version of DISPTEST.Ill just show you the two forms and
the sevenlines of codethattie everything together. The two forms are shownin Figure 8.17.

eet Nicole at Fiddler’s for lunch a

1:30.
Meet Nicole at Fiddler's for lunch at 11:30.

Figure 8.17 Visual Basic application.

Whenthe application runs, the Main form is shown. The user enters the text for the reminder along with the
numberof minutes. Then the user clicks OK and the following code executes:

Private Sub cmdOK_Click()

‘Extract the alarm time and multiply by 60

‘to get the number of seconds

nAlarm = txtTime * 60

‘Call the SetAlarmTime method.

frmRem.Postitl.SetAlarmTime nAlarm

‘Set the text in postit control on the Reminder form
frmRem.Postit1l.Text = txtText

‘Hide the Reminder form

frmRem. Hide

End Sub

Private Sub cmdCancel_Click()}

‘Stop the timer

frmRem. Postit1.StopAlarm
End Sub

NFLE 1009 - Page 95

NFLE 1009 - Page 96

386 + CHAPTER 8mpctntSEESEOELTCHIeerDeneelpeeSOASNISLttnoatIICHSNESIterentinshatresseosoanintesiinimtsnttttbititettat

The codeis pretty self-explanatory. We call our POSTIT custom method, SetAlarmTime, with the number
of seconds andalso set the stock Text property with the text that the user entered. We then ensure that the
Reminderform is hidden from view. This code sets everything up. If the user clicks the Cancel Alarm but-
ton, we call the StopAlarm method. Nowlet’s look at the code in the Reminderform.

Private Sub Postitl_AlarmFired(ByVal lAlarmID As Long}

‘The alarm fired, make sure the Reminder form is visible

frmRem. Show

End Sub

Private Sub Postitl_Click()

Unload Me

End Sub

There are two events that we added to our control. The stock Click event, which is fired whenever the user

clicks the mouse anywhere within the control, unloads the form. This makesit easy for the application user
to discard the reminderafter it is no longer needed. Our custom event, AlarmFired, displays the Reminder
form along with the POSTIT control and the contained text of the reminder. Not bad for just seven lines of
code (not counting the comments).

The visual developer doesn’t usually use many of the methods and events that are provided by the con-
trol. In that case, the event just fires and does nothing, but it is always there ready for the developer to
employif needed.

This isn’t the most robust or useful application, but rememberits purpose is purely didactic. The impor-
tant thing is that we havetied a few different components together with the Visual Basic language. Most of
the work is performed in each control. Visual Basic is just the glue, wiring, or breadboard—however you
wantto think about it—thatties these discrete components together.

Wecould easily have developed this simple little application with Visual Basic’s label and timer con-
trols instead of our POSTITcontrol, but we wouldn’t have learned anything.

 Adding Component Category Su
As we discussed in Chapter 7, the OLE Control 96 specification requires that controls provide component
category support in their implementation. Our control doesn’t have any special requirements, andit is
rather simple to add componentcategory support. POSTITCTL.CPPcurrently does the following whenthe
DllRegisterServerfunctionis called:

FELETETETTTTLTTLELTET TTTTEE AET ATA ALAE EAETAET ETL

// CPostitCtrl::CPostitCtrlFactory: :UpdateRegistry -

// Adds or removes system registry entries for CPostitCtrl

FLELTLTTTELLELTT ETAT TATTLEATLA ATETAET E

BOOL CPostitCtrl::CPostitCtrlFactory: :UpdateRegistry(BOOL bRegister)

{

NFLE1009 - Page 96

NFLE 1009 - Page 97

A Simple Control + 387ee

if (bRegister)

return AfxOleRegisterControlClass (

AfxGetInstanceHandle(},

m_clsid,

m_lpszProgID,

IDS_POSTIT,

IDB_POSTIT,

afxRegInsertable | afxRegApartmentThreading,
_dwPostitOleMisc,

_tlid,

_wVerMajor,

_WVerMinor) ;
else

return AfxOleUnregisterClass(m_clsid, m_lpszProgID);

}

As the comments indicate, AfxOleRegisterControlClass updates the system registry with all the con-
trol-specific information. These entries, such as Control, TypeLib, and InProcServer32, were described
in Chapter 7. COM-based servers must also provide a function to remove a server's Registry entries. MFC
maps our control’s DllUnregisterServer call to the preceding function, which then calls
AfxOleUnregisterClass to remove the entries. Everything works as planned. Now, however, we need
to also provide component category support. Add the following code to POSTITCTL.CPP:

// PostitCtl.cpp

#include <comcat.h>

HRESULT CreateComponentCategory(CATID. catid,;:.WCHAR*. catDéescription~)

t

a |" ICatRegister* per. =: NULL: ;
HRESULT hr = SOK;

a AL Creaté an instance of the category. manager.
- hr = CoCreateInstance (CLSID_StdComponentCategoriesMgr,

NULL,

CLSCTRKINPROC..SERVER,

TID.TCatRegister,

- (void**) &pcr™:);

|| if (PAILED(hr))
return: hr;

NFLE1009 - Page 97

NFLE 1009 - Page 98

388 + CHAPTER 8

}

CATEGORYINFO catinfo;

catinfo.catid = catid;

//. English. locale ID in hex

catinfo.lcid = 00409;

int len = wcslen(catDescription};

wesncpy(catinfo.szDescription, catDescription, len);

catinfo.szDescription{len] = ‘\0';

hr = per->RegisterCategories(1, &catinfo);

per->Release();

return hr;

This code, from Chapter 7, takes a category ID and a description and makes sure the entry exists in the
“Component Categories” section of the Registry. We need to make sure that the entry is there before weflag
our control. Once we ensure that the category exists, we update our control’s Registry entries with the
“Implemented Categories” keys. Here’s some general codeto dothis:

HRESULT. RegisterCLSIDInCategory(REFCLSID.clsid,, CATID catid. }

{

.I@atRegister* per,.= NULL: ;
HRESULT *hr's= S_OK: ;

/}/ Create an instance of the category manager.
hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,

NULL,

CLSCTX_INPROC,_SERVER,

IID_ICatRegister,

(void**)&per)};

if). (SUCCEEDED (hr})

{

CATID. rgcatid[1];

rgcatid[0}.= catid;

hr. =; per->RegisterClassImplCategories(. clsid;..1;.rgcatid.);

} :

1f.(- per: !=. NULL: }

per->Release().;

return hr;

HRESULT UnregisterCLSiDInCategory{ REFCLSID clsid, CATID catid }

{

NFLE 1009 - Page 98

NFLE 1009 - Page 99

A Simple Control +389

[CatRegister* per = NULL ;

HRESULT hr = S_OK ;

y// Create an instance of the category manager.

hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,

NULL,

CLSCTX_INPROC_SERVER;,

TID_ICatRegister,
(void**)&per’);

Z£ (SUCCEEDED (hr) }

{

CATID rgcatid{l];

rgcatid[0] = catid;

hr = per->UnRegisterClassimplCategoriés (clsid; 1," rgcatid
: :I

if (per != NULL)

per~>Release();

return hr;

}

Both of the preceding functions take a CLSID and a CATID and update the associated Registry entries. In
one case the entries are added, andin the other the entries are removed. All this is easy, because the compo-
nent category manager does most of the work. After we add these three support functions, the code addi-
tions for UpdateRegistryare straightforward:

PULTELETTLEELELTAET TTT TA ETTAL ATT ATA ELLAATATAATALAAET ATAET

// CPostitCtrl: :CPostitCtrlFactory: :UpdateRegistry -

// Adds or removes system registry entries for CPostitctrl

FELELTETELETTTLATLTTT TALE TATA ALATA AAAAAT

BOOL CPostitCtrl: :CPostitCtrlFactory: :UpdateRegistry(BOOL bRegister)

{

if (bRegister)

{

CreateComponentCategory(*CATIDControl;

L’Controls*-);

RegisterCLSIDInCategory(m_clsid,

CATIDControl.);

return AfxOleRegisterControlClass (

AfxGet InstanceHandle(),

m_clsid,

m_lpszProgID,

IDS_POSTIT,

NFLE 1009 - Page 99

NFLE 1009 - Page 100

390 <¢ CHAPTER 8

IDB_.POSTIT,

afxRegInsertable | afxRegApartmentThreading,
_dwPostitOleMisc,

_tlid,

_wVerMajor,

_wVerMinor) ;

}

else

{

UnregisterCLSIDInCategory(m_clsid,

CATIDControl };

return AfxOleUnregisterClass(m_clsid, m_lpszProgID)} ;

}

After we link and register the control, the new “Implemented Categories” entry will be placed in the
Registry. Figure 8.18 showsthe Registry entries for our POSTIT control.

C4 {87711240-A7D0-11CE-83FD-02608C3E CUBA}
+ GS {B7711241-A7D0-1 1CE-83FD-02608C3ECOBA}
+ Ga {B9D22270-0C24-1 01 B-AEBD-04021C009402}
+ ©) {(BBF8B096-BE9E-1 1 CE-A43C-ACE71F16DB7F}

€) Control
& Implemented Categories

+ Co {0DE86A5?-2BAA-1 1 CF~A229-0044003D7352}
+E] (40FC6ED 4-2439-11 CF-AIDB-080036F1 2502}
+ © {7D0D95801-9862-1 1 CF-9FA9-DOAA006C42C4}
5 {7DD95802-9882-1 1 CF-9FAS-O0AAI06C42C4}

© InprocServer32
(©Insertable

MiscStatus
© ProgiD
©) ToolboxBitmap32
(Co TypeLib
© Version

+ G {BBF8B094-BE9E-1 1 CE-A43C-ACE71F16DB7F}
BBFA854A4-0F0F-1 1D0-A633-DCF8E3000000}

{BD11A280-2E 73-11 CF-B6CF-00AA00A74DAF}
{BD84B380-8CA2-1069-AB1LLPMSAR 281 OCA 2. 9p 2

Figure 8.18 Component categories for our control.

The control has three other component categories registered. These categories makeit easier to embed the
control in Internet Explorer. We'll cover this in more detail in Chapter 12. For now,here’s the additional
code to support Internet Explorer:

#include <objsafe.h>

// Add to UpdateRegistry function

NFLE 1009 - Page 100

NFLE 1009 - Page 101

createComponentCategory(CATID_SafeForInitializing,

L’Controls safely initializable from persistent data”);

RegisterCLSIDInCategory(m_clsid,
CATID_SafeForInitializing });

CreateComponentCategory(CATID_SafeForScripting,
L’Controls that are safely scriptable”);

RegisterCLSIDInCategory(m_clsid,
CATID_SafeForScripting);

CreateComponentCategory(CATID_PersistsToPropertyBag,

L"Support initialize via PersistPropertyBag”);

RegisterCLSIDInCategory(m_clsid,

CATID_PersistsToPropertyBag);

The componentcategory symbols and .LIB files are part of the ActiveX SDK.If you're using Visual
C++ 4.x, you will need to install the ActiveX SDK to compile and link the examples. IF you don’t
install the SDK, you can just remove the references to COMCAT.H. However, by the time you read
this, the later versions of Visual C++ {5.x} will have intrinsic support for component categories.
Check out my Website for the most recent examples and details on newer versions of Visual C++.

 Debugging the Control
Visual C++ makesit fairly easy to debug DLL applications. To step through the code for the POSTIT control,
we need only set a break-point on the lines we want to debug and press F5. This action brings up a dialog
box. In Executable for Debug Session, enter the path and filename for the Test Container (or any other con-
tainer). On my machine, it would be c:\msdev\bin\tstcon32.exe. After clicking OK, you will get a dialog
box complaining that TSTCON32.EXE doesn’t contain any debug information and asking whether it’s OK
to continue.It is. This will bring up the Test Container. You can then insert your control into the container,
and you will eventually break on your break-points.

If you make a mistake typing in the debug executable filename, you canaccess it from the
Build/Settings/Debugtab. Thefirst entry field, Executable for debug session, contains the path to the exe-
cutable.

Summary
We've covereda lot of material in this chapter, so let’s summarize the topics. Visual C++ and MFC include a
numberof classes and tools to help in the creation of ActiveX controls. Visual C++ includes a code genera-
tion tool called ControlWizard that is similar to AppWizard. ControlWizard builds an ActiveX control pro-
ject based on answers you supply to various questions. ControlWizard generatesthe initial control code, and
ClassWizard is used thereafter to make additional changes.

NFLE1009 - Page 101

NFLE 1009 - Page 102

392 ~ CHAPTER 8

A few MECclasses are used exclusively for ActiveX control development. COleContro1Modulepro-
vides the application-level class for a control’s DLL implementation. This class provides the COM-specific
external functions, D1lRegisterServer and DllUnregisterServer. MFCalso provides an additional
COM-based interface, IClassFactory2, that provides componentlicensing methods. This interface is
implemented within MFC with the COleClassFactoryExclass and provides a default licensing modelfor
controls.

The COleControlclass is derived from Cwnd and contains hundreds of methods. It provides the bulk
of the ActiveX control functionality. One of the most important methods in COleControlis OnDraw, which
is called by the container wheneverthe control requires rendering within its site. Many of the control devel-
opment details are handled in OnDraw. Other important COleControl methods include
SetInitialSize, OnAmbientPropertyChange, and DoDataExchange.

The ActiveX control standard defines stock properties and methods that control developers should use
if appropriate for the control’s implementation. We addedall of them to our control and explored each one.
Font properties require the use of MFC’s CFontHolderclass.This class provides methods to manage OLE’s
font manipulation interfaces, which allow efficient managementof fonts between COM-based components.

ActiveX controls depend on the services of another COM-based component, the property page.
Property pages provide a uniform interface to the control’s custom and stock properties. Each property page
is a distinct componentthat is used by both the container and the control. The container loads the property
pages for a control and frames them within a property sheet. When a user modifies a control’s property, the
property page, using automation, modifies the property within the control.

Ambient properties are read-only properties exposed by the container. They provide information about
the container’s environmentto the control. There are ambient properties for the container’s visual state, such
as Color and Font, as well as ambients that indicate the current modeof the container. These latter proper-
ties indicate whether the container is currently in design phase, run mode, or debug mode.Thisstate is
importantto the control, because its behavior changes depending on the container’s state.

Methods and events allow the control user to use the control’s functionality as well as to be notified of
changes that occur within the control. This two-way communication is an importantattribute of controls.
The Activex control standard defines several standard events, and the stock implementations of these events
are provided by the MFC.

Serialization of a control's properties enables the container to maintain the state of a control between the
design phase and the running phase.Serialization also provides a way for the control to recognize previous
versionsofitself and to adjust the loading of properties accordingly. The container is responsible for the rep-
resentation of the control’s property information (when you're using property-set persistence) and ensures
thatit will be provided to the control in a uniform way.

Controls are COM-based in-process servers and must be added to the system Registry before being
used. Visual C++ has a menu item, Register Control, that performs this task. You should also register your
control using the new Component Categories specified by the OLE Controls 96 specification. MFC doesn’t
currently provide this registration by default, but it is easy to do using the provided component categories
manager component.

Testing of controls is performed with either the Test Container or with any commercially available con-
tainer (such as Visual Basic or Internet Explorer). The debugging of controls is similar to debugging other
COM-based in-processservers.

NFLE1009 - Page 102

NFLE 1009 - Page 103

In this chapter, we'll concentrate on controls that display information. Most ActiveX controls have a graphi-
cal element. We’ll focus on what is required to produce a control that drawsefficiently and provides a useful
representation in the various environments it may encounter. We will also review the MFCclasses and tech-
niques that we will use when drawing the ActiveX control.

 Clock Contr

Our example control for this chapter is a clock. I know there are hundreds of clock variations available for
Windows, but by implementing a clock we'll learn howto effectively draw ActiveX controls. Figure 9.1
shows the completed clock control within a container.

393
NFLE1009 - Page 103

NFLE 1009 - Page 104

394+ CHAPTERa

60 4 @
Stop) ReliesHome.Seatch »Fave a: Ei

pe\2ED\exanpes\chapdMhinstesthin

icles

Figure 9.1 The clock conirol.

We'll use ControlWizard to create the project. We discussed how to use ControlWizard in Chapter8, so we
won't spend muchtime onit here. Start Visual C++ and use ControlWizard to build a control project with
the name CLOCK. Choosethe following options:

° In the Step 1 of 2 dialog box, take the defaults of No License, Yes, comments, and No helpfiles.

@ InStep 2 of 2, take the defaults.

Click Finish and create the control. After the project is created, use ClassWizard to add the following stock
properties through the OLE Automationtab:

e

o

NFLE1009 - Page 104

NFLE 1009 - Page 105

Graphical Controls + 395cettetttHCONCACADietNTRONCICAOCMANALCOCTttCONACECOEPNERSAAAAAE

e Enabled

° Font

Our clock doesn’t have a caption or any text, so you might wonder why we need the Font property. You'll
see in a moment. Wewill use it to draw the control’s ambient display name during the container’s design

phase.

 ing Classes
Before we jump into the drawing code, let’s review some of the techniques used to draw graphics in the
Windowsoperating system. We touched on this in Chapter 8, and I'd like to expound onit a little more
before we go further. We'll explore drawing by looking at the classes within MFC that encapsulate the
Windowsgraphical drawing API functions.

The CDC Class

Displaying information within the Windows environment requires the use of the graphical device interface
(GDPfunctions. GDI provides a device-independentinterface to manipulate the devices (such as your video
card, monitor, and printer) connected to your computer. Manufacturers provide device drivers for their par-
ticular hardware, and we developers use the Windows GDI API to manipulate these devices.

Most of the GDI functions work with or need a device context (DC), which provides the connection
between your program andthe device the DC represents. A device context is usually an area on the screen
or printer but may also represent a memory construct called a metafile, which wewill discuss in a moment. A
device context maintains a set of attributes that affect the behavior of the various GDI functions on the DC.

Example DC attributes includeits default brush, pen, font, backgroundcolor, and text drawing modes.

The MFC coc class encapsulates a Windows device context and provides methods to manipulate it.
Most of the method namesare identical to those of the Windows GDI API, so if you have worked with them
before, there shouldn't be much to learn. As we saw in Chapter 8, the COleControl: :OnDraw method
receives a CDC pointer in which to renderthe control.

The majority of the methods in the cbcclass are for modifying the attributes of a device context orfor
actually drawing on the device context. We can’t cover them all, but we’ll cover someof the important ones
that you will use when drawing your controls. Table 9.1 lists some of the useful members of the CDC class.
To get a quick listing of them all from within Visual C++, position the cursor on the text CDC andpressF1.

NFLE 1009 - Page 105

NFLE 1009 - Page 106

396 + CHAPTER 9snsrtentsesetrenneentonineneinsteintitanateanticiNethmptiateciattetrnencnatitattniacastmtrannetteTetettINeet

Table 9.1 Useful coc Metheds

Method Purpose

FillRect(CRect , CBrush*) Fills the area indicated by the CRect parameter with the brush provided.

Ellipse(LPRECT) Drawsanellipse in the rectangle provided. The default pen,fill mode, and brush are
used.

Rectangle(CRect) Draws a rectangle with the defauit pen,fill mode, and brush.

MoveTo(POINT) Movesto the point provided.

LineTo(POINT) Drawsa line from the currentposition to the point provided using the default pen.

SelectObject(CBrush*), Selects the GDI objectinto the device context and returns a pointerto the previously
SelectObject(CPen*), selected object. This object should be selected back into the DC when you're finished.
SelectObject(CFont* }

SelectStockObject(int) Selects a system-provided GDI objectinto the device context. Examples include:
WHITE_BRUSH, BLACK_PEN,

SYSTEM_FONT, and so on.

SetBkColor(COLORREF) Sets the background color of the device context.

SetBkMode(int) Sets the backgroundfill behavior.

SetTextColor(COLORREF) Sets the color of the text for the device context.

TextOut(...), Draws text on the device context
ExtTextOut(...),

DrawText(...)

SetTextAlign(UINT) Sets the default alignmentfor text output.

CreateCompatibleDc(cpc*) Creates a memory DC with the characteristics of the DC provided.

SaveDC () Savesthe state of the device context. This includesall the attributes of the DC

(brushes, pens, and so on). The method returns anintegeridentifying the saved DC.
This value is later passed to the RestoreDc method.

RestoreDC(int) Restores that state of a device context previously saved with the SaveDC method. An
integeridentifying the saved DC is required.

SetMappingMode({ int) Sets the mapping modeforthe device context.

GetDeviceCaps(int) Returns various characteristics of the DC. An exampleis the logical size of a device
unit or pixel.

The DC provided to the onDraw method is set up by the container, and we cannot make any assumptions
about its current attribute set. We must ensure that the DC is set up the way we needit to draw ourcontrol.
Here are some example CDC methodsas they might be used in your control’s OnDraw method:

pdc->SetBkMode(TRANSPARENT);

pde->SetTextColor({ TranslateColor(AmbientForeColor() });

CBrush bkBrush(TranslateColor(GetBackColor()));

NFLE1009 - Page 106

NFLE 1009 - Page 107

GraphicalControls + 397pesteONOEOTAATECACCSNOUTANENCHANTNEATLETNECOIet sactntttieamtninsndsttirnenrnenancnesrnnst

cBrush* pOldBrush = (CBrush*) pdc->SelectObject(&bkBrush);

cpen* pOldPen = (CPen*) pdc->SelectStockObject{ BLACK_PEN });

pdc->SetTextAlign(TA_CENTER | TA_TOP);

pde->Ellipse(LPCRECT(rcBounds));

pdce->ExtTextout(rcBounds.left, rcBounds.top, ETO_CLIPPED, rcBounds,
strCaption, strCaption.GetLength(), NULL);

SelectObject(pOldBrush);

SelectObject(pOldPen);

The first five methods set up attributes of the device context. We set the background mode to
TRANSPARENT, which indicates that the background will not be redrawn the next time that we use a draw-
ing function. We then set the default text color for drawing text. An instance of a CBrush object is created
and initialized to the stock background color. The COleControl::TranslateColor methodis used to
convert a color value from the OLE_COLOR type to the COLORREF type expected by the CDC method. We
then use Select.Object to select the new brush into the device context. We save the old brush so that we

can restoreit later.

The GDI provides a numberof stock objects that are available for the developer to use. The
SelectStockObject methodselects a system-provided GDIobject into the device context. A BLACK_PEN
and the control’s BackColor property will be used when we use the drawing functions. Next, we set the
alignment method for text drawing using SetTextAlign. These five methods modify the DC and provide
the default behavior for the drawing methods.

‘The Ellipse method draws a bounding ellipse inside the rectangle provided. When it draws the
ellipse, the device context’s attributes are used. ExtTextOutalso uses theattributes of the DC when draw-
ing the text. By setting the attributes in the DC, we need not provide a bunch of parameters to the various
drawing functions that we use, because they are maintained within the DCitself.

When we're finished drawing, we restore the DC’s brush and pen to what they were before westarted.
Wedothis because the bkBrushinstance was created onthe stack and so will go out of scope whenthe func-
tion exits. If we do not select the old brush back into the DC, the DC will be left using an invalid GDI object.

Someof the GDI functions that modify a DC’s attributes require the creation of a GDI object to provide
as a parameter. When youcreate the object, it is important to restore the old object and to delete the GDI
object when you're finished using it. The C++ language makes it easy to handlethis situation. When creating
anew GDIobject (such as brush, pen, or font), you should create it using the stack as we did in the preced-
ing example for the bkBrush object. Whenthe instance is created on the stack, the compiler will ensure that
it is cleaned up whenit goes out of scope. The destructor is called, and the GDI object is deleted. Each of
MFC’s GDI object classes behaves this way.

Creation and destruction of drawing objects every time a control draws can be very expensive. The OLE
Control 94 specification, however, required the control to maintain, and thusreset, the state of the device
context provided by the container. This meantthat the control hadto restore the DCtoits original state after
each call to OnDraw. The OLE Controls 96 specification allows the control and container to coordinate their
efforts when drawing.If they both support optimized drawing, the control need not reset the DC every time.

NFLE1009 - Page 107

NFLE 1009 - Page 108

398 + CHAPTER 9

This arrangement makes the drawing process moreefficient. When weinitially built the clock project, we
checked the Optimize drawing option. We’ll make useof this option later in this chapter.

The CBrush Class

The CBrushclass provides methods for creating, destroying, and using a Windows GDI brush object.
Brushesare used tofill regions with a particular color. Each device context has a default brushthat is used to
fill the background when using various GDI functions (or CDC methods).

// Create a brush on the stack and initialize it

// to the control's current background color

// When bkBrush goes out of scope its destructor will

// free the GDI resource

CBrush bkBrush(TranslateColor(GetBackColor()));

// Create a bright red brush from the heap

// You must delete the brush to free up its resources

CBrush* pBrush = new CBrush(RGB(OxFF, 0x00, 0x00));

// Use the brush...

delete pBrush;

// Create a blue hatched brush

CBrush hatchedBrush(HS_CROSS, RGB(0x00, 0x00, OxFF);

In the preceding examples, we used the RGB macro to provide the CBrush constructor with a specific color.
The RGB macro constructs a Windows COLORREF value by combining the three parameters. Each parameter
specifies the intensity of each specific color—red, green, or blue—in the resulting combinedcolor. Following
are example colors that you can produce with the macro.If the device context in which you are selecting the
color does not support the particular hue, it will do its best to match thecolor using a dithering algorithm.

RGB(0x00, 0x00, 0x00) // Black

RGB(OxFF, OxFF, OxFF) // White

RGB(OxFF, 0x00, 0x00) // Red

RGB(0xCO, OxCO, Oxc0) // Light Gray

RGB(OxFF, OxFF, 0) // Yellow

The CPen Class

The CPen class encapsulates a GDI pen object and provides a convenient method of selecting pens for use
within a device context. Pens can be solid, dashed, dot, or even null. Solid pens also support a parameter
that allows the pen to be sized. Thesize is specified in pixels. Here are some example uses of CPen:

NFLE 1009 - Page 108

NFLE 1009 - Page 109

Graphical Controls + 399pensewonseranenstsatenncisannsnsrinamaraieectaittconaannstiniiisicimfsiaaniNtciattenittttttNTSNMTNNCNtttRNANARTELNOIN constraerateeos

// Create a solid blue pen 2 pixels wide
cPen penBlue(PS_SOLID, 2, RGB{ 0x00, 0x00, OxFF));

// Create a dashed black pen 1 pixel wide
cPen pen;

pen.CreatePen(PS_DASHED, 1, RGB(OxFF, OxFF, OxFF));

// Create a Null pen

CPen penNULL{ PS_NULL, 1, 0)

The pen and brush objects provide a null implementation. You can select a null brush into a device context
to ensure that the bounding area of a CDC method will be treated as TRANSPARENT. A null pen can be
selected into a device context so that no border will be drawn when using the various CDC methods(such as
Ellipse).

The CFont Class

The CFont class encapsulates a Windows font object. The constructor creates an uninitialized font object
that must then beinitialized using either the CreateFont or the CreateFontIndirect method. We
haven't encountered the need to create a font for our controls to use—we’ve been using the stock font prop-
erty—but we have used the CFontclass to create a pointer to save the old font when weselect our stock font
into the DC.

// Select the stock font and save the old one

CFont* pOldFont = SelectStockFont(pde);

// Set up the text drawing modes in the DC

pdc->SetBkMode(TRANSPARENT);

pdc->SetTextAlign(TA_LEFT | TA_TOP);

// Do something with the font

// Draw the text in the upper left corner

pdc->ExtTextOut(rceBounds.left, rcBounds.top, ETO_CLIPPED,

rceBounds, strName, strName.GetLength(), NULL);

// Restore the old font

if (poldFont)

pde->SelectObject{ pOldFont };

 The CBitmap Class
The CBitmapclass is similar to the CFont class in that its constructor creates an uninitialized bitmap object
that mustbeinitialized later using one of various class methods. LoadBitmap loads a bitmap from an appli-

NFLE 1009 - Page 109

NFLE 1009 - Page 110

400 + CHAPTER 9Reec

cation’s resource file. LoadOEMBitmap loads one of the standard, Windows-provided bitmaps, which
include checkboxes, arrows, checks, and so on. The method of interest in this chapter is
CreateCompatibleBitmap. We will use this method later when wecreate an off-screen DC to remove
flicker from our clock control.

@

rawing the Cloci
Ourclock uses an analog representation, so weinitially need to drawacircle to outline the clock’s face. This
is easy. We just use the CDC:Ellipse method. Thefollowing code creates a brush using the stock back-
ground color and selects it into the DC. It then creates a solid black pen andselects it into the DC. We then
fill the bounding rectangle with the background color and draw the ellipse using the coordinates of the
boundingrectangle.

CBrush bkBrush(TranslateColor({ GetBackColor{) });

CBrush* pOldBrush = pdc->SelectObject(&bkBrush });

int iPenWidth = 1;

CPen penBlack(PS_SOLID, iPenWidth, RGB(0x00, 0x00, 0x00 });

CPen* pOldPen = pdc->SelectObject(&penBlack);

pdc->FillRect(rcBounds, &bkBrush);

pdc->Ellipse(LPCRECT(rcBounds));

The sections that follow describe the process of drawingthe clock. Each section has a snippet of codeto illus-
trate the concepts. At the end, I’ll present the complete source for the OnDraw method.So if you're typing
along, go ahead and add the sourcethat is highlighted, but wait until later to add the source for OnDraw.

Wewantourclock to be round, so wesetits initial size to 200 by 200 pixels in the control’s constructor.
Later we will add code to ensurethat our clock’s boundingrectangle is always square.

CClockCtrl: :CClockCtrl ()

{

InitializeIIDs(&IID_DClock, &IID_DClockEvents) ;

// TODO: Initialize your control's instance data here.

_. SetInitialsize(’ 200; 200.); 2
}

Next we need to draw tick marks for the minutes (or seconds) and the hours. Thisis a little more compli-
cated, and we need to use a little trigonometry.

 awing the Tick Marks or Calculating the Tick Mark Points
Weneed to draw tick marks for the second as well as the hour positions on the clock. The hourticks will be
slightly larger than the seconds’ ticks. We won't spend much time on the algorithms that we’re using to

NFLE1009 - Page 110

NFLE 1009 - Page 111

 Graphical Controls + 401Sram “era

draw theclock. I’ll provide a quick overview andan illustration so that you can delveinto it if you wantto.
Figure 9.2 shows a diagram of our control. The outer circle outlines the face of the clock. The innercircle
shows how wewill calculate and draw the tick marks. By drawinga line connecting the twocircles, we will
create a “tick.” The trick, then, is to calculate the points on the twocircles and then connect them.

(-100, 100) (100, 100)

 This tick mark is
produced by

connecting the
points between
the twocircles.

(-100, -100) (100,-100)

Figure 9.2 Drawingthe clock.

To get the points on both circles, we use the cosine and sine functions provided in MATH.H. The cos and
sin functions take an angle in radians as their parameter, and weall rememberthat 2n radians equals a full
circle (right!). MATH.H doesn’t provide a symbolfor m, so we needthe following #definesfor our calcula-
tions.

#define PI 3.141592654

#define START_ANGLE (.5 * PI)

Pi to nine digits is just fine. START_ANGLE equates to m/2 radians (90 degrees), which is the 12:00 position
on our clock. Westore the tick points in an array, and bystarting our calculations at 7/2 radians, we ensure
that our array’s zero index valuewill be at the 12:00 position. In other words, array position 10 is equal to 10
minutes after the hour, and so on. To calculate the point on the circle, we use the usual trig functions. The
equations are shown next,first in their mathematical form and then in C++ (@ = theta).

// to get the x coordinate

cosine@ = x / r or x = cosine@ * r

X = cos(angle) * xr

// To get the y coordinate

sine@ = y /r OR y = sine@ * r

y = sin(angle) * r

NFLE1009 - Page 111

NFLE 1009 - Page 112

402 + CHAPTER 2

rcBounds UpperLeft Isn’t at (0, 0)
Ourcalculations are a little more complicated than this, because the rcBounds parameter provided to
OnDraw by the container need not, and probably will not, provide the upper left coordinates as (0,0). If you
assume otherwise, you'll probably end up drawingin the container’s client area, outside the control’s rectan-
gle. For performance reasons, most containers will not provide a clipping region for your control. A clipping
region provided by the container would ensure that, even if your control tried to draw outside the con-
tainer’s boundaries, the clipping region would clip it. Most containers do not provide clipping regions, so
you needto be careful not to draw outside the bounding rectangle provided by the container. This relation-
ship between the container’s client area and the control's site is shownin Figure 9.3.

(0,0)

Figure 9.3 Container and control coordinates.

Drawing the Clock Hands
Drawing the handsfor our clock is easy once we understand how to draw theticks. We again use an imagi-
nary circle that is inscribed within the outer circle. The length of each hand is determined by the radius of
the smaller circle. The hour hand will be one-half the size of the outer circle, so we divide the outercircle

radius by 2. The minute and second hands are the same length andare slightly smaller than the circle used
to draw the hour tick marks. Although the minute and second hands are the same length, we will draw
them with different thicknesses.

To make drawing the handsfast, we will maintain an array of points within our controlclass. This array
is calculated along with the tick marks array. In ourinitial implementation, we calculate these points every
time we draw the control. This requirement is very expensive, but we will eliminate it in a moment.

NFLE 1009 - Page 112

NFLE 1009 - Page 113

_Gra hical Controls + 403

Here’s the code that handles the ticks and the size and placementof our clock’s hands. This code calcu-
Jates all possible tick and hand positions and stores them in an array. OnDraw then usesthe calculated point
arrays later to do the drawing.This technique makes the drawing codefairly easy to understand.

7/ ClockCtl.CPP - : Implementation of the CClockCtrl OLE control class.

#include “stdafx.h”

#include *Clock.h”

#include “ClockCtl.h”

#include “ClockPpg.h”

#include <math.h>

#ifdef _DEBUG

#define PI 3.141592654

#define START_ANGLE (.5 * PT)

void CClockCtrl: :CalcTicksAndHands(CDC *pdc, const CRect& rcBounds }

f |
int nRadius = rcBounds.Width() / 2;

double r2x, r2y, rix, rly;

// Calculate the size of the hour and

// minute tick marks. We use a simple

// scaling method to determine the sizes.

short sHourTickLen = rcBounds.Width(}) / 20 + 2;

short sMinuteTickLen = rcBounds.Width() / 40 + 1;

// Calculate the minute and second hand arrays

double angle = START_ANGLE;

// The inscribing circle must be slightly smaller than the HourTick

// circle so that we won't “hit” it. We subtract an additional 2 pixels

// to ensure this.

// The radius of the circle for the minute and second hand coordinates

int r2 = nRadius - sHourTickLen ~ 2;

// Work ourselves around the circle in 60 unit increments

// The radian angle changes within the loop
// £3 is the size of the hour hand. Half the radius

int r3 = nRadius / 2;

for (int i = 0; i < 60; i++)

{

r2x = cos{ angle) * r2°+ rcBounds.left;

NFLE 1009 - Page 113

NFLE 1009 - Page 114

404 < CHAPTER 9

ff The: direction of:.the,¥ axis:..is reversed

//-when using..the MMTEXT mapping. mode.: The. ¥

/foaxis increases as. you move: DOWN-instead: of up:

// We reverse the direction by negating the. sin
ray-= -sin(-angle j}*°r2°+ rcBounds. top;

m_MinSecHands [i] .x = short ¢ r2x yj

mMinSecHands [i] .y. = short(r2y Vs

// Calculate size of hour hand

vax = cos(angle =). *°r3) + rcBounds left;

ray =.=sin(angle) * r3 + rcBounds stop;

// Store: the hour ticks in-an array

m:HourHands [i] .x = ‘short (r2x9)3

mHourHands [ily = short(ray);

angle == (2 * PI) / 60;

' :

/i Calculate the tick arrays
Lf Calculate the small ticks for eachminute

angle = STARTANGLE;
12 = nRadius — sMinuteTickLen:

int rl = nRadius;.

for (4 = 0; 1-< 60; i++)
{

vlx = cos(angle)) * rl + rcBounds. left;
rly = -sin(angle) * rb + rcBounds.top;

r2x = cos (angle)°* 42 +) rcBounds left;

ray = -sin(angle) * r2 4 rceBounds.top;

off Bach tick is composed of two points
// store them in a 2x60 arrayof points
m_MinuteTicks[0][4].x = short(rix };
mMinuteTicks[0]{i].y = short (rly);

m-MinuteTicks[1] [i] “x = short (12x);

mMinuteTicks[1][i}.y = short (r2y);

ff Get the next radian angle
angle -= (2 * PI) / 60;

i

f/f Calculate the’ hour: ticks

NFLE1009 - Page 114

NFLE 1009 - Page 115

Graphical Controls « 405eene

angle = START_ANGLE;

| er2e= nRadius.- sHourTickben; | for(i 0p-b <12;0ite)

{

// Get the point on. the outer circle

rlx =' cos (angle yet els ¥cBounds left;
rly =)-sin(angle} * r1°+ reBounds . top;
// Get the point on the inner. (smaller) circle.
rox = cos(angle’) * +2. + rcBounds left;
ray. =°-sin(angle’) -*°r2/+ ¢eBounds: top;

/fé:EBach:.tick-is composed. of two points —
//-store-them-in-a 2x12varray ‘of points S
mHourTicks [0] [i]. = short (rls Vee
m:HourTicks [0] [ilvyo= short

m_HourTicks [1] (il.

_

a”
(

= short (-r2x ie
(m:HourTicks [1] [i]l.y = short

angle == (2°* PI) o/.12;

Drawing the Clock’s Tick Marks and Hands
Once we've calculated everything and stored it in the memberarrays, the drawingis straightforward. Here
is the code to draw the tick marks. Weiterate through our two-dimensional array and use the MoveTo and
LineTo drawingprimitives.

// Draw the minute/second ticks

for (int i = 0; i < 60; i++)

pdc->MoveTo(m_MinuteTicks[0] [i]);

pde->LineTo(m_MinuteTicks[1][i]);

}

// Draw the hour ticks

// with a larger pen

CPen penBlk(PS_SOLID, 2, RGB(0x00, 0x00, 0x00 });

pdc->SelectObject(spenBlk Vy
for (i= 0; i < 12; i++)

{

pdc->MoveTo(m_HourTicks[0] fi]);

pde~->LineTo(m_HourTicks[1l] [i] };

NFLE 1009 - Page 115

NFLE 1009 - Page 116

406 + CHAPTER 9?

Drawing each of the handsis only slightly more complicated. We use the time—minute, hour, or second—as
an offset within the appropriate array. The drawing of each handis very similar, so I’ve shown only the
hour hand code. The only tricky part is calculating the array offset for the hour.

// Use the foreground color for the clock hands

// Draw the hour hand

int iPenWidth = 1;

CPen penHour{ PS_SOLID, iPenWidth + 3, TranslateColor(GetForeColor()));

pde->SelectObject(&penHour);

// Move to the center of the bounding rectangle

pdc->MoveTo(ptCenter);

// Bn hour spans 5 minute ticks plus the number of minutes divided

// by 12. This provides the gradual movement of the hour hand.

int wHourTick = { m_wHour * 5) + (int) (m_wMinute / 12);

// Draw from the center to the array point

pdc->LineTo(mHourHands[wHourTick] };

Getting the Current Time
To have an accurate clock, we need to get the time from the operating system. MFC provides a CTime class
that also isolates the platform differences in time functions. So we can write the GetTime function likethis:

void CClockCtrl: :GetTime()

{

CTime time = CTime: :GetCurrentTime ();

m.wHour’:=. time,GetHour();

aif: (miwHour >=. 12}

mwHour.. == 12;

m_wMinute = time.GetMinute();

m_wSecond. = time.GetSecond();

}

Before we see the complete OnDraw source, there is one more thing that we need to cover: Windows map-
ping modes.

Mapping Modes
Figure 9.2 depicts the Cartesian coordinate system that we've all used, but the device context that we get
from the container won’t provide us with such a coordinate system. We mustcreate it ourselves. To do so,
we need a quick review of Windows’ mapping modes. For a more detailed treatment, see Programming
Windows 3.1, Third Edition, by Charles Petzold (Microsoft Press), and the Win32 SDK documentation.

NFLE 1009 - Page 116

NFLE 1009 - Page 117

GraphicalControls+407

A mapping mode is another attribute of the device context. To understand mapping modes, you must
first understand the difference between logical coordinates and device coordinates. Device coordinates are
described in termsof pixels, a unit whosesize is dependent on thetype of display you are using. If you spec-
ify an area of 320 by 240 pixels (or device units) and if the program is running on a VGA monitor (640x480),
the area will cover one quarterof the screen (half the width and half the height). The true size of a pixel is
dependent on the underlying hardware. If you want a control whosesize is always 1 inch by 1 inch, you
must use logical coordinates, and one of Windows’ physical unit mapping modes.

Windows’ eight mapping modesarelisted in Table 9.2. Each mapping modecreates a logical space that
is mapped to the physical space of the display orprinter.

Table 9.2 Windows Mapping Modes

Mapping Mode_Description

MM_TEXT Mapsonelogical unit to one device unit or pixel. The positive y-axis extends downward.

MM_HIMETRIC Mapsonelogical unit to 0.01 millimeters. The positive y-axis extends upward.

MM_LOMETRIC Maps onelogical unit to 0.1 millimeters. The positive y-axis extends upward.

MM_HIENGLISH Mapsonelogicalunit to 0.001 inches. The positive y-axis extends upward.

MM_LOENGLISH Mapsonelogical unit to 0.01 inches. The positive y-axis extends upward.

MM_TWIPS Mapsonelogical unit fo one twentieth of a point, or 1/1440inches. The positive y-axis extends
upward,

MM_ANISOTROPIC Mapsa logical unit to an arbitrary physical unit specified by the developer. Both the x-axis and the
y-axis can be arbitrarily scaled. This allows stretching of the coordinate system.

MM_ISOTROPIC Mapsa logicalunit to an arbitrary physical unit specified by the developer. The x-axis and y-axis
maintain a 1-to-1 ratio.

The easiest mapping mode to work with is MM_TEXT. In this mapping mode, device coordinates and logical
coordinates are the same. To put it another way,the logical coordinates map directly to pixels. In MM_TEXT,
the upperleft corneris point (0,0); Y increases as you move down, and X increases as you moveacross the
screen. Theinitial view of a DC with an MM_TEXT mapping modeis depicted in Figure 9.4.

Theinitial setup of our device context will be like Figure 9.4. This is just one quadrant of the Cartesian
coordinate system. We need to adjust the coordinate system sothat it reflects what we used back when we
were learning trig. We adjust the coordinate system by changing the mapping of the logical coordinates to
device coordinates with the CDC method SetWindowOrg. SetWindowOrg changes the mappingof logical
coordinates to device coordinates. Initially, logical point (0,0) maps to device point (0,0). Device point (0,0) is
always the upperleft corner of the device. To change the coordinate system for our logical points, we use
SetWindowOrg, which takes as a parameter a logical point. After the call, the logical point provided will
mapto the device point (0,0). This technique changes our logical coordinate system to that of Figure 9.5.

NFLE 1009 - Page 117

NFLE 1009 - Page 118

AO8 + CHAPTER 9

nannies

x-axis increases

y-axis increases

Figure 9.4 Default mm_TEXTsettings.

Figure 9.5 New logical coordinates.

This system is slightly different from the coordinate system we’re used to. As you can see, the y-axis
increases as you move downthe axis instead of when moving up. This isn’t a serious problem; wejust
adjust the calculation of the Y point when calculating the arrays for the clock’s ticks and hands. The follow-
ing code, from CalcTicksAndHands,illustrates this change:

NFLE1009 - Page 118

NFLE 1009 - Page 119

// Work ourselves around the circle in 60 unit increments

// The radian angle changes within the loop

// v3 is the size of the hour hand. Half the radius

int r3 = nRadius / 2;

for { int i = 0; i < 60; i++)

{

r2x = cos(angle) * r2 + rcBounds.left;

“ff The divection.of the ¥. axis is reversed
// when using the MM:TEXT: mapping mode. The: ¥

Tf axis increases as. You. move DOWN. instead'.of up.
_// We reverse the direction by negating. the. sin

ray = -sin(angle }.*;r2>+ rcBounds: top;

m_MinSecHands [i] .x = short(r2x);
m_MinSecHands{i].y = short(r2y };

// Calculate size of hour hand

r2x = cos({ angle) * r3 + rcBounds.left;

r2y = -sin(angle).* r3°+-rcBounds. top;

// Store the hour ticks in an array

m_HourHands[i].x = short(r2x });

m_HourHands([i].y = short(r2y);

angle -= (2 * PI) / 60;

}

_ Graphical Controls + 409

Once we have the device context set to a coordinate system that maps the logical coordinates to what we
expect, the calculation of the drawing points is relatively easy. The following code sets up a logical coordi-
nate system like that in Figure 9.5:

// Set the coordinate system so that the point

// (rcBounds.left, rcBounds.top) is in the

// center of the control’s bounding rectangle

pdc->SetWindowOrg(-(nRadius * 2) / 2, ~(nRadius * 2) / 2);

POINT ptCenter;

ptCenter.x = rcBounds.left;

ptCenter.y = rcBounds.top;

NFLE 1009 - Page 119

NFLE 1009 - Page 120

4710 < CHAPTER 9

he OnDraw Source

I promised the complete OnDraw source, and hereit is. It uses the other functions that we've investigated:
CalcTicksAndHands and GetTime. The source that needs to be added to CLOCKCTL.His also provided.

// clockctl.h

class CClockCtrl : public COleControl

{

DECLARE_DYNCREATE (CClockCtr1l)

// Implementation

protected:

~CClockctrl ();

void GetTime ();

void CalcTicksAndHands (CDC*;-const=CRect&.);

WORD m:wHour;

WORD mwMéinute;

WORD mwSecond;

POINT. m.HourHands [601];
POINT mMinSecHands [60];

POINT m_MinuteTicks [2] [60];

POINT mHourTicks[2] [12];

mi

// clockctl.cpp

void CClockCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)

{

-//-Create:a brush. for the- background

CBrush: bkBrush (:TranslateColor(. GetBackColor().));

CBrush*. pOldBrush = pdc->SelectObject (&bkBrush’.) ;

7? Select ‘a solid black pen 1: pixel wide

CPen penBlack(:.PS_SOLID;' 1; RGB{ 0x00, 0x00; 0x00));

CPen* pOldPen = pdc->SelectObject (&penBlack’);

pdc->FillRect (:rcBounds,:.&bkBrush’);

//: draw. the. face: of'-the-clock

pdc~>Ellipse(LPCRECT (., rcBounds:).) ;

int nRadius = rcBounds.Width(). / 2;

NFLE1009 - Page 120

NFLE 1009 - Page 121

Graphical Controls +Allneene

//, Calculate the tick and hand arrays

CalcTicksAndHands (. pdc;-rcBounds :);

//. Set the. coordinate: system. so. that the point: 0,0 is‘’in.the

 // centerof the control/s bounding rectangle (square)
pdc->SetWindow0rg ()-(nRadius 2). /°2,>- (mRadius 2*)2)./02.)%.

POINT: ptCenter;

| ptCenter.x = rcBounds.left;

ptCenter ly. = reBounds: top;

{/ Draw. the minute/second ticks
for: (sint 2 = 0p is < 60; i+4))

{

pde->MoveTo(! m:MinuteTicks{0]fi}>:);

: pdce->LineTo(m_MinuteTicks(1] fil);

8

// Draw the hour. ticks

// with a.larger pen

CPen penBlk(PS_SOLID, 2, RGB(0x00,.0x00, 0x00));

pdc->SelectObject(&penBlk);

for (.i = 0; i.<.12; i++)

{

pde->MoveTo ('m_HourTicks [0]. [i]-);

pdc~>LineTo(m_HourTicks[{1] [i]);

}

// Get the current time

GetTime();

// Use the foreground color for the clock hands

// Draw the hour hand

int. iPenWidth = 1;

CPen penHour(PS_SOLID, iPenWidth + 3,.TranslateColor (GetForeColor())};3
pdc->SelectObject(.&penHour);

pdc~>MoveTo (ptCenter) ;

int wHourTick = (m_wHour * 5) + (int) (m_wMinute / 12 };

pdc->LineTo(..m.HourHands [wHourTickl...);

//) Draw the. minute: hand

CPen penMin(. PS_SOLID,; iPenWidth + 2; TranslateColor(GetForeColor()));

pdc->SelectObject(&penMin);

NFLE1009 - Page 121

NFLE 1009 - Page 122

412 + CHAPTER 9

pd¢d-sMoveTo(ptCenter) ;

pdc->LineTo() m:MinSecHands [mwMinute]) ;

7/- Draw. the second hand :

CPen. penSecond(PSSOLID; iPenWidth, PranslateColor(GetForeColor()3))3
pdc->SelectObject(&penSecond yi
pdc->MoveTo (ptCenter};;

pdc->LineTo (. m-MinSecHands [mwSecond]-)-;

// Restore the device context

pdc->SelectObject (poldBrush: };

pde-SSelectObject(. poldPen:');

}

, We've covered almost everything in the source. As you can see, we use several different pen sizes when we
draw the clock’s outline, tick marks, and hands. We use the ForeColorfor the hand color but have hard

coded a black pen for the clock’s outline and tick marks. A nice exercise would be to provide a custom color
property to allow the user to change these. The CLOCK project on the accompanying CD-ROM provides
this feature (and others).

 edrawing the Clock Every Secon
To make ourclock tick, we'll implement a timer that will fire every second. This is similar to what we did in
Chapter 8, but we now wantthe timer to fire continually. Use ClassWizard to add a WM_TIMER handler to
the CClockCtr1 class and add the following code:

void CClockCtrl: :OnTimer (UINT nIDEvent)

{

InvalidateControl();

COleControl: :OnTimer (nIDEvent) ;

Use of the wa_TIMER message requires a true HWND for our clock control. A window for a control
{7 isn’t created unless the container activates the control. ControlWizard set the OLEMISC_ACTIVATE-

Hl WHENVISIBLEflag for our control, so control containers should providethis functionality.
NOTE

Wheneverthe timer fires, we call COleControl: :InvalidateControl, forcing a redraw. You should
use this method instead of directly calling the OnDraw method, primarily because you don’t know which
DC to passtoit.

Weneed to add StartTimer and StopTimer methodsto the class just as we did in Chapter 8. Add
the declarations to CLOCKCTL.H and then addthe following code to CLOCKCTL.CPP:

NFLE 1009 - Page 122

NFLE 1009 - Page 123

Graphical Controls+ 413eneLNLEARNIEATEINACCNNONTRERNONTTOAPECItMETEOREOENORELIROLCINECNCCNOLEEREESTI StateSAIS

afine: TIMERID 100

cClockCtrl: : StartTimer ()

eTimer(TIMER_ID, 1000, NULL);

cClockCtrl: :StopTimer()
illTimer(TIMER_ID);

Wewantthe clock to run only when the container is in run modeandthe control is enabled. To ensurethis,
wecheck the AmbientUserMode and Enabled properties at various places within the control.

When and where should westart the timer? A logical choice might be when the UserMode ambient
property changes. A new value of TRUE would signal a StartTimer, and a value of FALSE would cause a
call to StopTimer. Code such as the following would take care of this. We also check to make sure that the
control is enabled.

void CClockCtrl: :OnAmbientPropertyChange(DISPID dispid)

{

1£ (dispid == DISPID_AMBIENT_USERMODE || dispid == DISPID_UNKNOWN)
{

if (AmbientUserMode() && GetEnabled())

StartTimer();

else

StopTimer ();

}

The problemis thatI’ve tried the preceding code with many containers, and it doesn’t work. Apparently the
containers don’t call the I0leControl: :OQnAmbientPropertyChange method when switching from
design mode to run mode. (Some of the samples included with Visual C++ use this method, but don’t be
fooled. It doesn’t work.) The ActiveX control standardis still young, and it doesn’t specify the exact behavior
of containers. There are still areas that need a moresolid definition.

This code doesn’t work because a control’s instance is usually deleted and re-created when a container
goes from run modeto design mode, and the ambient property has no chanceto change. This is an attribute
of the container and so may vary. The previous method will work for containers that maintain the instance
of a control when switching between design mode and run mode, so we should includeit in our control's
code.

If a control’s instance is deleted and re-created when the container switches modes, we are assured that

the control’s HWND will also be deleted and re-created. To trap this event and possibly start the timer, we
override COleControl: :OnCreate. Using ClassWizard, add a handler for the WM_CREATE message. Then
add the following code:

NFLE1009 - Page 123

NFLE 1009 - Page 124

ANA+CHAPTER

int CClockCtrl1::OnCreate(LPCREATESTRUCT lpCreateStruct)}

{

if (COleControl::OnCreate({lpCreateStruct) == <1)

return <1;

Lf (AmbientUserMode() && GetEnabled().)

StartTimer ();

return 0;

The preceding code is again dependenton the creation of a window for the control. As discussed in
the previous note, a container that honors the OLEMISC_ACTIVEWHENVISIBLEflag will provide an
HWND for the control. In our case, we need the actual window only atrun time.

NOTE

This code works in all the containers that I’ve tested. When the control’s HWND is created, we check the

UserMode and Enabledproperties.If they are both TRUE, westart the timer. To be safe, you could imple-
ment both methods described previously and use a Boolean flag such as m_bTimerStarted to ensure that
you don’t start the timer twice if both events occur.

To ensure that the timer is stopped when the control is destroyed, we trap the WM_DESTROY message
that is generated by Windows whenevera windowis destroyed. Use ClassWizard to trap WM_DESTROY and
add the following code:

void CClockCtrl::OnDestroy ()}

{

COleControl::OnDestroy();

StopTimer OQ;
}

Wealsostart and stop the timer whenthe control’s Enabled property is changedat run time. The following
code from CLOCKCTL.CPP, handles this situation. You must also add the declaration to CLOCKCTL.H.

void CClockCtr1: :OnEnabledChanged (}

{

// Only start the timer if in run mode

if (AmbientUserMode())

{

// Only start the. timer if the control is enabled

if (GetEnabled({) }

StartTimer ();
else

StopTimer ();

NFLE1009 - Page 124

NFLE 1009 - Page 125

Graphical Controls +415

AmbientUIDead
There is one other place where we need to shut downthe clock. A container actually has three modes of
operation. The AmbientUserMode property handlesthe first two: design mode and run mode. Thethird
mode occurs when a developmenttool that uses ActiveX control containers runs in debug mode. When
debugging, the tool user may be single-stepping throughits (usually) interpreted language. During this
time, it is recommendedthat controls disable any user input and basically act as if they have been disabled.
The AmbientUIDead method provides a way to check the container’s state. To provide support forthis
modeas well as the others we’ve discussed, the OnAmbientPropertyChange methodlookslike this:

void CClockCtrl::OQnAmbientPropertyChange(DISPID dispid)

{

if. (dispid == DISPID_AMBIENT_USERMODE||

dispid == DISPID_AMBIENT_UIDEAD’.. ||
dispid: ==. DISPID.UNKNOWN:)

{ ee
if-(AmbientUserMode() && GetEnabled() && !AmbientUIDead())

StartTimer ();

else

StopTimer();

}

else

| // Jast redraw the control

 | AnvalidateControl();

}

In Visual Basic when you press Ctrl-Break, the OnAmbientPropertyChange methodis called with a
DISPID of DISPID_AMBIENT_UIDEAD. The AmbientUIDead method returns TRUE and westop the timer.
Whenthe user presses F5 to run, the methodis called again, AnbientUIDead returns FALSE, and we
restart the timer.

 Testing the Cloc
We've added quitea bit of code, so let’s give the clock a test. Compile and link the project and insertit into
the Test Container. There isn’t much you can do with the clock except let it run (Figure 9.6). You can change
the background and foreground colors and so on, but we've donethat before. Let’s add some morefeatures.

NFLE 1009 - Page 125

NFLE 1009 - Page 126

416 + CHAPTER 9

Figure 9.6 Clock controlin the Test Container.

Restricting the Size or Shape of the Control
To simplify the drawing of our clock, we'll ensure that the area bounding the control is square. This is easy
to do. Whenthe user of the control (usually in design mode) attempts to changeits size or extents, the con-
tainer will notify the control through the COleControl: :OnSetExtent method. OnSetExtentreceives
the new extents for the control. The control can leave the new extents as they are, or it can change them to
whateverit wants.

For our purposes, we require only that the resulting area be square. First we override OnSetExtentin
our control's class, and then we ensure that the returned SIZEL structure contains a square extent. The
SIZELstructure contains a width (cx) and height(cy) of type long:

typedef struct tagSIZE

{

LONG Cx;

LONG cy;

} SIZE, *PSIZE, *LPSIZE;

typedef SIZE SIZEL;

typedef SIZE *PSIZEL, *LPSIZEL;

Addthe following code to CLOCKCTL.H and CLOCKCTL.CPP:

NFLE1009 - Page 126

NFLE 1009 - Page 127

// clockctl.h : Declaration of the CClockCtrl OLE control class.

class CClockCtrl : public COleControl

{

// Overrides

© yirtual BOOL CClockCtrl::OnSetExtent(LPSIZEL lpSizeL };

hi

// clockctl.cpp

BOOL CClockCtrl: :OnSetExtent(LPSIZEL lpSizeli:')

C
|1/ Make sure the extent:is a square
_// Use the smaller of the sizes for the square

 if (IpSizel->cy <= IpSizeL->cx.)

. ipSizeL->cx= 1pSizeLe>cy;

else

 IpSizel->cy =lpSizel->cx;

UL Call the parent implementation

 | return COleControl::OnSetExtent(lpSizeL);

Most of OLE uses HIMETRIC units for all its sizes and measurements. The SIZEL structure provides the
new extents in HIMETRIC units. If your control uses some other unit, you must convert it to HIMETRIC
before modifying the SIZEL structure. In our case, we don’t care aboutthe size. We just wantit to be square,

Graphical Controls + Al7pantsAIOORLENTAENNSNEOSSTALETMUNMENRONIOUIEOONSSIIESE OSISTUNTEDARELNTTTMNECOONRTNNTNNTSILENT

so we take the smaller of the two sizes and assign that value to the other.

Calculating HIMETRIC Units
If you want yourcontrol to be a certain size, you may need to convert the device units into HIMETRICunits.
Here’s how to doit. If we wanted our clock to always be 200 by 200 pixels in size, basically not allowing the
user to resize the control, we would convert our units (pixels) to HIMETRIC units and return this value in
the SIZEL structure. We could do somethinglike this:

#define HIMETRIC_PER_INCH 2540 // HIMETRIC units per inch

BOOL CClockCtrl::OnSetExtent({ LPSIZEL IpSizeL)

{

CDC cdc;

cdce.CreateCompatibleDC(NULL);

NFLE 1009 - Page 127

NFLE 1009 - Page 128

418+CHAPTER7

}

// One way to do it

long lpx = cdc.GetDeviceCaps(LOGPIXELSX);

IpSizeL->cx = MulDiv(200, HIMETRIC_PER_INCH, lpx);

long lpy = cdc.GetDeviceCaps{ LOGPIXELSY);

IpSizeL->cy = MulDiv(200, HIMETRIC_PER_INCH, Ipy });

// Another, easier way to do it

CSize size(200, 200);

// Convert the device units to HIMETRIC units

cdc.DPtoHIMETRIC(&size);

IpSizeL->cx = size.cx;

lpSizeL->cy = size.cy;

// Call the parent implementation

return COleControl::OnSetExtent(lpSizeL);

The preceding code creates a CDC object and then calls CreateCompatibleDc. By passing NULL as the
parameter, we get a DC that is compatible with the main display. We then call GetDeviceCapsto deter-
mine the numberof logical pixels per inch for the display. We use the Windows Mul Div function to multi-
ply HIM

ETRIC_PER_INCH by 200 and then divide the result by the logical pixels. This calculation gives us

the number of HIMETRIC units equal to 200 logical pixels. We do this for both the width (cx) and height
(cy). The result is stored in the SIZ1

EL structure, which is passed to the parent’s method. This approach

ensures that our clock control will always be 200 by 200 logical pixels. I’ve also shown another way to doit
using the CDC: : DPtoHIMETRIC method. J included the first method to show you how to get device capa-
bilities using GetDeviceCaps.

If, on the other hand, we want our clock to always be 1 inch by 1 inch independentof the display, the
OnSetExtent method could be codedlikethis:

#define HIMETRIC_PER_INCH 2540 // HIMETRIC units per inch

BOOL CClockCtrl::OnSetExtent(LPSIZEL lpSizeL)

{

}

The OnSet!

// Set the SIZEL structure to be a 1~inch square

lpSizeL->cx = lpSizeL->cy = HIMETRIC_PER_INCH;

// Call the parent implementation

return COleControl::OnSetExtent(lpSizeL };

Extent code is easy, because the STZ!EL structure is in logical HIMETRIC units. The

SetInitialSize call in the control’s constructor would bea just little more complicated, becauseit
expects its dimensionsin pixels:

CClockCtrl1: :CClockCtrl ()

{

NFLE 1009 - Page 128

NFLE 1009 - Page 129

___ Graphical Controls + 419

InitializeIIDs(&IID_DClock, &IID_DClockEvents) ;

// TODO: Initialize your control’s instance data here.

cDC cdc;

cdc .CreateCompatibleDC(NULL);

int cx = cdc.GetDeviceCaps(LOGPIXELSX };

int cy = cdc.GetDeviceCaps(LOGPIXELSY);

// Set the initial control size to a one-inch square

SetInitialSize(cx, cy);

}

This codeis similar to what we did earlier. We create a CDC object that is compatible with the display, and
we use the GetDeviceCaps methodto get the logical numberof pixels per inch. We then use the result to
set the initial size of our control. The actual size of the control will always be physically 1 inch by 1 inch
regardless ofthe resolution of the display device.

 inatine Control Flicker

As you've probably noticed, the clock “flickers” every time the control is redrawn. The redraw occurs 60
times per minute, and the flicker is annoying. You would have a rough timeselling such a control, with its
unprofessional appearance. The solution to the flicker problem is to use an “off-screen” device context.

We're familiar with the purpose of a device context. Our control currently draws into the device context
provided by the container. It drawsdirectly on the display screen (or printer), and as the control is redrawn
each second, this drawing process can be “seen.” This redraw causes the flicker. To eliminate the problem
and also to simplify the drawing code, we will draw first into a memory device context. Then we will bit-blt
the contents of the memory DC to the screen DC. The speed and directness of the bit-blt transfer will elimi-
nate any discernible flicker.

Using a memory DC also makes the drawing moreefficient. We will call the CalcHandsAndTicks
method only when the size of the control changes. Resizing occurs infrequently anyway, and we shouldn't
be calculating the arrays every time we draw the control. We will also eliminate the need for the array calcu-
lation routine to adjust its points when the rcBounds upperleft corneris not (0,0).

First, we'll add three members to the control class: a CBitmap pointer to hold a bitmap compatible with
the control, a CSize memberto keep track of the control’s current size, and a Boolean switch to indicate
whether the control’s size has changed:

// clockctl.h

// Implementation

protected:

~CClockCtrl();

NFLE 1009 - Page 129

NFLE 1009 - Page 130

420 + CHAPTER 9

BOOL m_bResize;

CBitmap* m_pBitmap;

CcSize m_sizeControl;

hi

// clock.cpp

PILEELEELELELLLT ET ETTET TELLTALE ETAL TATTLE TATA LAA A AL

// CClockCtrl::cClockCtrl - Constructor

CClockCtrl: :CClockCtrl ()

{

m_bResize.= TRUE;

mpBitmap = NULL;

m.sizeControl.cy = m_sizéeControl.cx’ = 0;

}

FEELELTTTET ETT AETL ETAT ETAT AAT TATA TATTLE ELTA TAT ATE ETT LT A AL

// CClockCtrl::~CClockCtrl - Destructor

CClockCtrl::~CClockCtrl ()

{

// delete the bitmap. for. the. control

delete. m:-pBitmap;

}

Next, we move the clock drawing code to another method, DrawClock. This new method does not use the
rcInvalid parameter and can also assume that the rcBounds parameter will have an upperleft corner of
(0,0). We can assumethis because we ensure it when wecreate the memory device context and pass it to the
DrawClock method. There is now a check of the m_bResize membervariable to determine whether the

control’s size has changed. Werecalculate the clock’s tick marks and hand arrays only when the control is
resized. The resize event is caught in the new OnDraw codethat wewill discuss in a moment.

void CClockCtrl: :DrawClock(CDC *pdc, const CRect& rcBounds)

{

// Make sure that we don’t get an invalid: rcBounds
//.It should. now: always have an upper left of 0,0
ASSERT (: rcBounds: left) ==);

ASSERT. rcBounds .tap':== yy

//- Our center will now always be: 0,0 after the
//. SetWindowOrg call

CPoint ptcénter () 0; 0);

NFLE 1009 - Page 130

NFLE 1009 - Page 131

Graphical Conirols + 4217

//ptCenter.x = reBounds.left;

/f/ptCenter.y = rcBounds. top;

GetTime();

//Only recalc the arrays when: the control’s- size changes

Lf: (-m_bResize

{

m_bResize = FALSE;

CalcTicksAndHands (.'pdc;-rcBounds.);

}

When wecall the CalcTicksAndHands method in DrawClock, we know that the upperleft corner of
rcBoundsis (0,0), so we can simplify the code in CalcTicksAndHands by removing the addition of
rcBounds. left and rcBounds.top in our calculations:

#define PI 3.141592654

#define START_ANGLE (.5 * PI)

void CClockCtrl::CalcTicksAndHands(CDC *pde, const CRect& rcBounds }

{

// Calculate the hand arrays

double angle = START_ANGLE;

double r2x, r2y, rlx, rly;

int r2 = nRadius - sHourTickLen - 2;

// v3 is the hour hand, half the radius

int r3 = nRadius / 2;

for (int i = 0; i < 60;. it+)

{

//.xcBounds. left. is always: zero. now
a r2x =.cos{ angle.)*/r2.-+.rcBounds. left;

Ld r2y°=.-sin(angle.)..*.r2:)+.reBounds. top;

r2x = cos(-angle.):.* r2;

ray =.-sint:angle.)..*°-r2:

m_MinSecHands[i}.x = (short) r2x;

m_MinSecHands{(i].y = (short) r2y;

// Calculate size of hour hand

tf r2x-= "cos (- angle:) #134 reBounds:-lett;

LE ray.=.-sin(-angle)* 3° +-reBounds.- top;
r2x = cos(angle) * r3;

ray = -sin(angle } * 413;

NFLE 1009 - Page 131

NFLE 1009 - Page 132

422 << CHAPTER 9

m_HourHands[i}.x
It

(short) r2x;

m_HourHands{i].y = (short) r2y;

angle -= (2 * PI) / 60;

}

Then we change the OnDraw codeto look like this:

void CClockCtrl::OnDraw(CDC* pde, const CRect& rcBounds, const CRect& rcInvalid)

{

// Our memory DC

CDC... deMem;

offeInitialize: our: memory DC: to. the characteristics

//-of: the-DC: provided by the: container.
dcMem.CreateCompatibleDc(pde };

/foT£ the bounding rectangle has..changed

//:We need .to: re-create our..bitmap and

//-recalculate the clock’s. ticks-and: hands

if: (m_sizeControl:!=-rcBounds.Size().)

t

 (/ Save the new size of the control
_ m_sizeControl = reBounds.Size();

// This flagis used by the control drawing
// rvoutine to determine if ie should recalc _

: i. the clock’s ticks, hands; etc.
m_bResize = TRUE; ae :

// Gelete any existing bitmap and create
// a new one ©

LE (m_pBitmap)

delete mM.pBitmap:

m_pBitmap = new. CBitmap;

/7 Create a bitmap compatible with the current
/f- DC provided by. the container

m_pBitmap~>CreateCompatibleBitmap (. pde,

reBounds.Width()};

ycBounds..Height'()<);

NFLE 1009 - Page 132

NFLE 1009 - Page 133

 hical Controls

/f/Select..the compatible bitmap into our

/7/{-memory*DC. and; save the old: bitmap.

CBitmap* pOldBitmap = dcMem.SelectObject(m_pBitmap };

7/ Create: a bounding rectangle with.upper left corner of 0,0

CRect':rcDrawBounds({ 0, 0, rcBounds.Width(}, rcBounds.Height());

//. Save. the. memory, DC's state

_) [/-so that DrawClock: can modify ‘it
int. TSavedDC = dcMem.SaveDC ();

// Draw the’ clock into: our memory DC

: DrawClock (&dcMem, rcDrawBounds };
// Restore the DC

deMem.RestoreDc (iSavedDC);

Off BitBlt: the memory’ DC: representation

//--into-the- actual ‘screen’ DC

pdc->BitBlt(’ rcBounds.left,

: ycBounds’. top,

rcBounds .Width(),

rcBounds.. Height(y,
&dcMem;

0,

0,

SRCCOPY:.).;

// Restore the old. bitmap, it will be

fy, destroyed: when, the memory. DC. ‘goes

// out. of scope:

deMem.Selectobject'(pOldBitmap’™);

}

I’ve commented the code, so I'll just hit the high points here. On entry to OnDraw, we create an instance of
the CDC class to use as our memory-based DC.Bycalling CreateCompatibleDc,weinitialize the DC to be
compatible with the DC provided by the container. Theinitial DC returned by CreateCompatibleDC can-
not be used until it is initialized with an appropriate bitmap for the control (which we will do in a moment).
Whenwe're using an off-screen (or memory) DC, the drawing of the control (using various CDC methods)
modifies or “drawsinto” the bitmap of the DC.Later, the CDC: :BitB1t method will copy this bitmap into
the screen (or printer) device context.

Next, we determine whether the control's size has changed.If it has, we set the m_bResize variable to
TRUEto indicate to DrawClockthat it needs to recalculate the arrays of clock ticks and hand points. We
then save the new size of the control so that we won’t execute this code unless the control’s size changes
again.

NFLE1009 - Page 133

NFLE 1009 - Page 134

4,24 ~ CHAPTER 9

Each timethe size of the control changes, we re-create our CBitmap instance. As described previously,
the rendering of the control in the memory DC occursin the bitmap of the DC. We need to ensure that the
bitmap is of the proper size and color depth of the container-provided DC.First, we delete any existing
instance of the bitmap and create another CBitmap instance. The next call, CreateCompatibleBitmap,
creates a bitmap for our memory DC that is compatible with the DC provided by the container.(It has the
same color depth and so on.) All this occurs only if the user has resized the control during the design phase.
At run time,this code is executed only once: whenthe controlis initially created.

Once we have a compatible memory DC anda bitmapthat will support the rendering of our control,
we use the SelectObject methodto select the bitmap into the memory DC. Next, we create a temporary
CRect object with the extents of the control. We also ensure that the upperleft coordinates are (0,0). This
approach makes the drawing code in DrawClock and CalcHandsAndTicksless complicated. We save the
state of the DC and call DrawClock with the memory DC and the CRect object. DrawClock renders
directly into the memory DC (modifying its bitmap). DrawClock behavesas if it were drawing with a
screen-based DC. When DrawClockreturns, the memory DC’sstate is restored and the memory DC (basi-
cally its bitmap) is copied to the screen DC using the BitBlt method. Thefirst four parameters of BitBlt
specify the location andsizeof the transfer within the destination DC(the screen). We use the rcBoundsleft
and top values as the starting location of the destination and use the Width and Height methodsto indi-
cate the size of the destination rectangle. The fifth parameter is the source DC (our memory DC). The next
two parameters provide the upperleft starting points of the source DC. Because our memory DC’s bounds
start at (0,0), we specify 0,0 as the starting coordinates of the source DC. We’refinished. The clock is drawn
without any noticeable flicker. All that is left is the cleanup step of selecting the previous bitmap back into
our memory DC.If we forget this step, m_pBitmap, the compatible bitmap that we are maintaining for our
control, would be deleted.

rclavalid

The rcInvalid parameter passed to OnDraw is provided by the container, and it indicates the area of the
control’s image that needs to be rendered. In many cases this parameter will contain the same coordinates
that are provided by rcBounds, but whenthe container determines that only a portion of the control needs
to be rendered, rcInvalid will contain only the invalid region of the control. Use of the rcInvalid para-
meter can provide an alternative way of optimizing drawing of your controls, and you may not need to add
the complexity of using a memory-based device context as discussed previously. We can also use it with our
memory-based DC approach by copying only the area of the control that the container indicatesis invalid.
Wedothis by changing the parameters of the BitB1tcall in the OnDraw method:

void CClockCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)
{

//- BitBlt- the: memory DC representation

/flointo the actual screenDe
 | // py using the tcInvalid rectangle 9”

// We may only: copy a partial “image of the

NFLE1009 - Page 134

NFLE 1009 - Page 135

GraphicalControls + 425

- ff clock. This will improve performance
pde->BicBlt(xeinvalid. Jett,

- retnvalid. top,

_rcInvalid.width(),
_ ecInvalid.Height ()

- adetiem, S : :
_reInvalid.left - rcBounds.left, _

/ reinvalid-top- xcBounds .top,
_ SRCCOPY);

// Restore the old bitmap, it will be

// destroyed when the memory DC goes

// out of scope.

dcMem.SelectObject(pOldBitmap);

}

We use the rcInvalid rectangle instead of the rcBounds rectangle we used previously. Using this tech-
nique, the size of the destination area may be different from the size of the bitmap in our memory-based DC.
Weadjust the source DC coordinates by subtracting the left and top bounding points from the left and top
reInvalid points. This technique ensures that the source starting corner maps to the rcInvalid-based
destination corner. Using this approach, webit-blt only the area of the control that needs to be repainted.

There is one problem with the memory-based DC approach to drawing controls. Under certain condi-
tions, a control’s container may request that the control renderitself into a metafile device context. As you'll
see in a moment, some of the preceding techniques won’t work when we're drawing into a metafile DC.
That’s the reason weseparated the drawing codefor the clock.

 etafiles

A metafile is a recording of a series of GDI function calls that can be stored in memory or on disk. These
metafiles can be “replayed” to reproduce a copy of the original image. Some containers may use a metafile
to represent the visual portion of a control. Control containers typically do this only during the design
phase, and most containers that I’ve used employ the metafile representation only when printing an image
of the control. Because ofthedifficulties of rendering to metafiles,] imagine that most control containers will
provide a true screen device context during both design mode and run mode and require the control to pro-
vide a metafile representation only when printing.

A metafile representation of a visual server’s image is used extensively by OLE compound document
containers. This arrangementallows the container to display an image withoutactivating the visual editing
server. For large visual editing server applications (such as Excel), this is appropriate, but ActiveX controls
are much smaller and expect to be active wheneverthey are visible. This means that they will have an HWND
and device context and do not need to provide a metafile representation. But withalittle forethought in the
design of your controls,it is not difficult to provide a good metafile representation of your control.

NFLE 1009 - Page 135

NFLE 1009 - Page 136

426 + CHAPTER 9peneaeRSSICONOSUNINNEEOAEHEA SHSSIDBOAONINSESSANSONEOOOSONSSUNSTEINinerttiesantlemtenSetiattptattrants

OnDrawMetafile

COleControl provides a method, OnDrawMetafile,thatis called explicitly when the container requires a
metafile representation. The default implementationcalls the control’s OnDraw method. We've added some
CDC methodsthat are not supported in metafiles, so we need to override OnDrawMetafile for our control.
All the code in the OnDraw method deals withsetting up and drawing into a memory DC,and the drawing
code is in DrawClock. In our OnDrawMetafile method, we pass the provided metafile DC to our
DrawClock method:

class CClockCtrl : public COleControl

{

// Overrides

virtual void OnDrawMetafile(CDC* pdc, const CRect& rcBounds });

Mi

void CClockctrl::OnDrawMetafile(CDC* pdc, const CRect& rcBounds)
{

ASSERT.(reBounds . left m= 0);
ASSERT.(: rcBounds..top,.==.0 };

DrawClock(:.pde,* rcBounds’);

; :

The metafile DC’s upper left corner will always be (0,0). This is important, because we changed our
DrawClock method to require an upperleft corner of (0,0). To test this assertion, I've added two ASSERT
macrosthat check the coordinates to ensure that they are always(0,0).

Metatile Resirictions
Metafile device contexts have a few restrictions. Because metafile DCs are not associated with a true device

(such as the display), certain DC-related functions will not work properly when used with a metafile DC.
The CDC methods that should not be used when you're drawing into a metafile DC can be described as
groups of functions that act specifically on a device (Table 9.3). The physical device context is not known
when you're drawing into the metafile DC.

NFLE1009 - Page 136

NFLE 1009 - Page 137

Graphical Controls + 427etnaRCANetheUTSASHISUALNOMCNRNCLONaNCInLtneatntIDLO ain onttNetter sitet

Table 9.3 CDC Methods that Shouldn’t Be Used with Metafiles

Method Group Example Methods

Methodsthatretrieve data from the physical device. GetDeviceCaps, GetTextColor, GetTextMetrics,
This includes most Get * and Enum* methods. EnumFonts, EnumObjects, DPtoLP, LPtoDP,etc.

Methods that appear to be GDIfunctions butin reality DrawText, TabbedTextOut, InvertRect, DrawIcon,
are implemented by other parts of the Windows DrawFocusRect, FrameRect, GrayString,etc.
operating system.

Methodsthat expectthe device context to be SaveDC, RestoreDC, CreateCompatibleDc,
associated with a physical device. CreateCompatibleBitmap,etc.

You can use most of these methods when drawing in a metafile DC, but they will have no effect when the
metafile is subsequently played. The main reason weseparated the OnDraw and DrawClock code is that we
wantedto place the code that is not supported by metafiles (all the code needed to draw in an off-screen DC)
in a separate routine. The drawing code that works within metafiles is placed in the DrawClock routine.
When the container needs a metafile representation and therefore calls OnDrawMetafile, we pass the DC
to the DrawClockroutine.

Win32 Enhanced Metatiles

The Win32 API removes the metafile restrictions by providing a new metafile format called enhanced
metafiles. If the container provides an enhanced metafile DC, enhanced metafiles remove the problem of hav-
ing two different drawing routines for your controls.

In most cases, the container passes the metafile DC to your control in the OnDrawMetafile method
and so is responsible for providing you with either a standard or an enhanced metafile DC. I expect that 32-
bit containers will use the enhanced version of metafiles, because it makes developmentof the control’s code
easier.

The container can also request a metafile (CP_METAFILEPICT) through the IDataObject: :GetData
interface method. In this case, MFC creates an instance of the CMetafileDc class and passes this device
context to your control’s OnDrawMetafile method. The metafile is recorded and passed back to the con-
tainer as an actual metafile. The container can then play the metafile within whatever device context it
chooses.

If your control will be used only in 32-bit environments and you know that the containers that will be
used for your control all provide enhanced metafile support, you can probably get away with only one
drawing routine. Unfortunately, most control developers do not have this luxury. To be safe, you should
probably separate the drawing code that is dependent on a nonmetafile representation as we did with the
clock control.

NFLE1009 - Page 137

NFLE 1009 - Page 138

428 << CHAPTER 9

 Testing the Metaft
The best way to test whether your control can draw its metafile representation properly is to use the Test
Container. With your control Ul-active, select the Edit/Draw Metafile option. The Test Container will pass
your control’s OnDrawMetafile a metafile DC and will display the result in a window (Figure 9.7).

Figure 9.7 Test Container’s display of the metafile DC.

 drawing the Control in Design Mode
Whenthe container is in design mode, some controls display their name somewhere within their bounding
rectangle. The container may provide an ambient property, DisplayName, that controls can display when
they draw themselves in design mode. The following code, when addedto ourcontrol’s DrawClock
method, will providethis ability (Figure 9.8).

void CClockCtrl::DrawClock{ CDC *pdc, const CRect& rcBounds }

{

oo // Lio the container is in design mode.

if(1 AmbientUserMode() }

_//Get the display name from the container |

CString strName = AmbientDisplayName();
//-Tf it is. empty, supply a default name

NFLE1009 - Page 138

NFLE 1009 - Page 139

__GraphicalControls + 429

if (-strName. IsEmpty () }
strName = "Clock";

JfSet thetext color to the foregroundcolor
 pde >SetTextColor(TranslateColor(GetForeColor(} Yi
 // Select thestock font and save the oldone

CFont* poldFont |= SelectStockFont (pd):

Us Set upthe text drawingmodes in the Dc
_ pde-2SetBkMode(TRANSPARENT);

_ pde->SetTextAlign(TALLEFT | TA_TOP);

//Drawthe text inthe upper: left: comer
- pde->ExtTextOut(rcBounds.left, rcBounds. top, ETO:CLIPPED,

. reBounds, strName, strName.GetLength(), NULL’);

ie Restore the old font
Ap(pOldront)

pde->SelectObject(boldFont);

Figure 9.8 Clock control in design mode.

NFLE 1009 - Page 139

NFLE 1009 - Page 140

430 << CHAPTER 9

Hiding Properties |
Weadded the stock Font property so that we could use it when drawing the control’s name in design
mode. Ourclock doesn’t need or use the font for anything else, so there is no need to expose the property for
the control user to modify. The Object Description Language hidden keyword provides a way to hide prop-
erties. Container applications and visual tools should checkfor this attribute and should notdisplay it to the
user. We modify our control’s ODL file and add the hiddenattribute to our stock Font property as follows:

// clock.odl : type library source for OLE Custom Control project.

// Primary dispatch interface for CClockCtrl

dispinterface _DClock

{

properties:

// NOTE - ClassWizard will maintain property information here.

// Use extreme caution when editing this section.

//{ {AFX_ODL_PROP(CClockCtr1}

[id (DISPID_APPEARANCE), bindable, requestedit] short Appearance;

{id(DISPID_BACKCOLOR), bindable, requestedit] OLE_COLOR BackColor;

[id(DISPID_BORDERSTYLE), bindable, requestedit] short BorderStyle;

[id(DISPID_ENABLED), bindable, requestedit] boolean Enabled;

[1d (DISPID_FORECOLOR), bindable, requestedit] OLE_COLOR ForeColor;

[id(DISPID_FONT), bindable, hidden] IFontDisp* Font;

[id(DISPID_HWND)] OLEHANDLE hwnd; .

//}}AFX_ODL_PROP

}

Adding the hidden attribute will make the font property inaccessible from tools such as Visual Basic. We
don’t have to do this, but if we don’t, the existence of a font property on a control that doesn’t display any
text at run time may be confusing for the control user. In a later chapter we will discuss other ways to hide
properties from the container’s browser. We also shouldn't provide a way to modify the Font property
from the control’s custom property page.

Wecould also have used the ambient font property provided by the container when drawing the
clock’s design time representation in our clock example. Instead, we added a hiddenfont property
to introduce this concept of a hidden property.

NFLE1009 - Page 140

NFLE 1009 - Page 141

Graphical Controls + 431 peesANOCDAENCONROEinstoretaprootapennsanreretrenritenstnteasiateannaisectitssespeneitianestaMSTASanti

The SecondChange Event
To add functionality to our control, let’s add a custom event. Using ClassWizard, add an event called
SecondChange. Then, wheneverthe control’s timer messagefires, we should also fire the SecondChange
event:

void CClockCtrl::OnTimer(UINT nIDEvent)

{

oS FireSecondChange ();

InvalidateControl ();

COleControl: :OnTimer(nIDEvent) ;

}

We'll use this event in the next example to update an externalfield.

The Date Property
A control user might also want to obtain the time of day from thecontrol. This is easy to do and will provide
an opportunity to use the Automation DATE data type. Invoke ClassWizard and add a custom property with
a nameof Date. Specify a data type of DATE, use the Get /Set implementation method, and clear out the
Set method. We will not allow the user to “set” the date property, although it might be a neat feature to
add.

After adding the new property, add the following code to the implementation method:

DATE CClockCtr1: :GetDate ()

{

COleDateTime timeNow;

timeNow..=..COleDateTime: :GetCurrentTime ();

return (DATE) timeNow;

 felime

The COleDateTimeclass encapsulates the Automation DATE data type. A DATE is an eight-byte floating-
point value that indicates both the date and the time. The floating-point value can specify any date and time
from January 1, 100, to December 31, 9999, with a resolution of about one millisecond. The integer value of
the number specifies the date, and the fractional portion specifies the time. The date December 30, 1899, at
midnight is represented as 0.0. Table 9.4 gives other examples.

NFLE 1009 - Page 141

NFLE 1009 - Page 142

432 ~~ CHAPTER 9

Table 9.4 Example DATE Values

Date Numeric Representation

December 30, 1899, midnight 0.00

January 1, 1900, midnight 2.00

January 1, 1900, 6 AM 2.25

January 1, 1900, neon 2.50

January 4, 1900, 9 PM 5.875

December 29, 1899, midnight ~1.00

December 18, 1899, noon -12.50

The DATE type is supported natively by Visual Basic and Visual C++ (through the COleDateTimeclass)
and most other Automation-compatible tools. The COleDateTimeclass has several useful methods. You've
seen one, GetCurrentTime, and we'll use another onein the next example.

Wehaven’t discussed how to build the clock control’s property pages, because nothing special is required
that we haven’t already covered. The custom property page needs the stock properties that we’ve added to
the clock control, with the exception of the Font property discussed previously. The property page for the
clock control on the accompanying CD-ROMis shownin Figure 9.9.

Figure 9.9 Property pagesfor the clock control.

NFLE 1009 - Page 142

NFLE 1009 - Page 143

Graphical Controls + 433

The control on the accompanying CD-ROM hasadditional capabilities beyond those described in this chap-
ter. Included are additional color properties for specifying the colorsof the clock face, outline, and ticks, and
properties that modify the sizing of the control during the design phase.

 IFC Control Container Support
Visual C++ version 4.0 and higher supports the use of ActiveX controls within MFC-based applications. This
major enhancement to Visual C++ allows C++ developers to take full advantage of this new component
technology. With a couple of keystrokes, we can now use ActiveX controls on MFC dialog boxes and views.

The MFC development team added support for control containment by adding functionality to the
CWnd class. The new CWnd class is actually a complete ActiveX control container.

The CWnd Class

The Cwnd class maintains an embeddedinstance of the COleControlContainer and COleControlSite

classes. These two classes implementthe interfaces necessary for the CWnd object to act as an ActiveX control
container. However,the classes are not documented because they are only used internally by MFC.

COleControlContainer implements the [0leInPlaceFrame and 10leContainerinterfaces. One
of the characteristics of a control container is that it can contain any number of embedded objects (controls).
To handle this, coleControlContainer maintains a list of COleControlSite objects.
COleControlSite implements the interfaces necessary to manage the specific embedded objectsite.
Examples of these interfaces include IOleClientSite, IOleInPlaceSite, IOleControlSite, and the
ambient property IDispatchinterface.

Table 9.5 lists some of the new CWnd methodsthat pertain specifically to ActiveX control containment.

Table 9.5 New Ccwnd Methods

Method Purpose

CreateControl Lets you dynamically create an instance of an ActiveX control.

GetControlUnknown Returns the TUnknown of any associated control.

InvokeHelper Calls an automation method on the control.

GetProperty,SetProperty Gets orsets the specified property value in the control.

OnAmbientProperty Called by MFC to get the specified ambient property value. The control can override this
method andsetits own ambientproperties.

m_pCtr1Cont An embedded instance of the COleControlCcontainerclass.

m_pCtrlSite An embedded instance of the ColeControlsite class.This class gives the control access
to its site interfaces. If the value of this member is NULL, then the object is not an ActiveX
control.

NFLE1009 - Page 143

NFLE 1009 - Page 144

A34 + CHAPTER 9

 NM ExXa

To fully understand what’s going on when we’re using Visual C++ as a control container, let's build a sim-
ple application that uses the new CLOCKcontrol. Start Visual C++ and create a new project with the follow-
ing characteristics:

e¢ MFC AppWizard(exe): Namethe project Contain.

e MFC AppWizard Step 1: Choose a Dialog based application.

° MFC AppWizard Step 2 of 4: Take the defaults, but ensure that OLE Control supportis included.

© MFC AppWizard Step3 of4: Take the defaults.

© MFC AppWizard Step 4 of 4: Take the defaults.

Click Finish and create the project.

Clicking the OLE Control support checkbox adds a call to AExEnableControlContainerto the
InitInstancecall of our application:

// Contain.cpp

BOOL CContainApp: :InitInstance(}

{

AfxEnableControlContainer ();

}

This call initializes the global instance of the COccManagerclass. COccManager manages the ActiveX con-
trols within the application. It routes control events, creates and destroys the COleControlContainer and
COleControl1Site instances, and generally controls everything about contained ActiveX controls. As with
the other new container classes, COccManager isn’t documented. If you’re curious, you can take a look at
the OCCCONT.CPP, OCCSITE.CPP, and OCCMGR.CPFfiles in the \MSDEV\MFC\SRCdirectory.

Once we have control support for our application, all we have to do next is to start the Component
Gallery Insert /Component and insert the control that we want to use. For our example, we’ll use the
CLOCKcontrol that we developed in this chapter. Component Gallery will displayalist of all the controls
registered on your system. Figure 9.10 shows the Component Gallery dialog box just before insertion of the
CLOCKcontrol.

NFLE1009 - Page 144

NFLE 1009 - Page 145

_Graphical Controls + 435

ButtonCil Calendar Cb Control Chart Fx
Control

CheckboxCt§Cire3 Control=CikCtl Object
Object

Figure 9.10 inserting the clock control with ComponentGallery.

Select the CLOCKcontrol and click the Insert button. A dialog box confirms that you want to generate the
indicated classes. Control containment in Visual C++ uses the static Automation wrappering technique that
we used in Chapter 6. Whenyouinsert the control into our project, Component Gallery will create two new
classes, create appropriate header and implementationfiles, and insert thefiles into the project. The Confirm
Classes dialog box is shownin Figure 9.11.

The checked classles} wil be generated
_ theGLE control, Clickon aclassname
__ brovise of ediils attibutes.

vies
 (WiCOleFont

: Clas name Base class
_ [CClock | Ownd |

Hencefie
© (Clock.

De eplementetion fle:ee
: [Clockcpp . S

Figure 9.11 Adding the Clock control wrapperclasses.

NFLE1009 - Page 145

NFLE 1009 - Page 146

A36_ + CHAPTER 9

Here’s a quick look at the two new classes:

// Clock.h

// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by

// Microsoft Visual C++, your modifications will be overwritten.

// Dispatch interfaces referenced by this interface

class COleFont;

VLLTTLTATTSTLTTTT LATTE TTS TTT ET

// CClock wrapper class

TELTLTTLTATTTTTTTLTTTATT TAT TTA AT AT

class CClock : public CWnd

{

protected:

DECLARE_DYNCREATE (CClock)

public:

CLSID const& GetClsid()

{

static CLSID const clsid =

{ Oxcc57abb4,

Oxad4e,

Oxllce,

{ Oxb4, Ox4b, 0x8, 0x0, Ox5a, 0x56, 0x47, 0x18 } };

return clsid;

}

virtual BOOL Create(LPCTSTR lpszClassName,

LPCTSTR lpszWindowName, DWORD dwStyle,

const RECT& rect,

CWnd* pParentWnd, UINT nID,

CCreateContext* pContext = NULL)

return CreateControl (GetClsid(),

lpszWindowName,

dwStyle,

rect,

pParentWnd,

nID) ;

NFLE1009 - Page 146

NFLE 1009 - Page 147

BOOL Create (LPCTSTR lpszWindowName, DWORD dwStyle,

const RECT& rect, CWnd* pParentWnd, UINT nID,

CFile* pPersist = NULL, BOOL bStorage = FALSE,

BSTR bstrLicKey = NULL)

{ return CreateControl (GetClsid(),

lpszWindowName,

dwStyle,

rect,

pParentwnd,

nID,

pPersist,

bStorage,

bstrLickey) ;

// Attributes

public:

short GetAppearance(};

void SetAppearance({short);

OLE_COLOR GetBackColor();

void SetBackColor (OLE_COLOR};

short GetBorderStyle() ;

void SetBorderStyle(short) ;

BOOL GetEnabled{);

void SetEnabled(BOOL);

COleFont GetFont () ;

void SetFont (LPDISPATCH) ;

OLE_COLOR GetForeColor();

void SetForeColor (OLE_COLOR) ;

OLE_HANDLE GetHWnd({);

void SetHWnd (OLE_HANDLE) ;

unsigned long GetFaceColor(};

void SetFaceColor {unsigned long);

unsigned long GetTickColor(};

void SetTickColor (unsigned long);

BOOL GetAllowResize();

void SetAllowResize(BOOL);

// Operations

public:

yi

void AboutBox();

GraphicalControls + 437

NFLE 1009 - Page 147

NFLE 1009 - Page 148

A38 + CHAPTER 9

Here's the definition for the CClock wrapperclass. It provides dynamic creation methods (such as Create)
and Automation wrapper functions for each of the control’s properties and methods. Here’s the FONT.H
file:

// Font.n

TLETPTTALETAATATA LATTA AAT AAT

// COleFont wrapper class

TTLTTETPTETAATETATTT TAA AAT

class COleFont : public COleDispatchDriver

{

public:

COleFont() {} // Calls COleDispatchDriver default constructor

COleFont (LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) (}

COleFont (const COleFont& dispatchSrc) : COleDispatchDriver(dispatchSrce) {}

// Attributes

public:

CString GetName();

void SetName (LPCTSTR);

CY GetSize();

void SetSize(const CY&);

BOOL GetBold();

void SetBold(BOOL) ;

BOOL GetItalic();

void SetItalic(BOOL);

BOOL GetUnderline();

void SetUnderline(BOOL) ;

BOOL GetStrikethrough();

void SetStrikethrough (BOOL) ;

short GetWeight();

void SetWeight (short) ;
short GetCharset();

void SetCharset (short) ;

// Operations

public:

hi

The COleFontclass provides an Automation interface around the OLE font object. OLE provides an IFont
interface so that fonts can be marshaled across processes. A similar interface is provided for picture objects
with the COlePicture object. The implementationfiles use the Automation property and method manipu-

NFLE 1009 - Page 148

NFLE 1009 - Page 149

_Graphical Controls + 439

lation methodsof the COleDispatchDriverclass to provide access to the clock’s properties and methods.
Here’s a part of CLOCK.CPP:

// Clock.cpp

// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by

// Microsoft Visual C++, your modifications will be overwritten.

#include “stdafx.h”

#include “clock.h”

// Dispatch interfaces referenced by this interface
#include “Font.h’

IMPLEMENT_DYNCREATE(CClock, CWnd)

LILTLELELTTTELELTT ATTA ATTAATL

// CClock properties

short CClock: :GetAppearance()

{

short result;

GetProperty (DISPID_APPEARANCE, VT_I2, (void*)&result) ;

return result;

void CClock::SetAppearance (short propVal)

{

SetProperty (DISPID_APPEARANCE, VT_I2, propVal);

OLE_COLOR CClock: :GetBackColor()

{

OLE_COLOR result;

GetProperty (DISPID_BACKCOLOR, VT_I4, (void*)&result);

return result;

void CClock: :SetBackColor (OLE_COLOR propVal)

{

SetProperty (DISPID_BACKCOLOR, VT_1I4, propVal);

COleFont CClock: :GetFont ()

{

NFLE 1009 - Page 149

NFLE 1009 - Page 150

440 ~< CHAPTER 9

LPDISPATCH pDispatch;

GetProperty(DISPID_FONT, VT_DISPATCH, (void*) &pDispatch);

return COleFont (pDispatch);
}

void CClock::SetFont (LPDISPATCH propVal)

{

SetProperty(DISPID_FONT, VT_DISPATCH, propVal);

LTLTELTETETTLTTT TATA ATL

// CClock operations

TELTETTELTTTETTTAA TTT AAT

void CClock: :AboutBox ()

{

InvokeHelper (Oxfffffdd8, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);

}

With the addition of the clock control to our project, it can now be used in the resource editor. Open up the
application’s main dialog resource, IDD_CONTAIN_DIALOG, makethe dialog box a bit larger, and place an
instance of the CLOCK control on the dialog box by draggingit from the control pallette and dropping it on
the dialog. Give it an ID of IDC_CLOCK. Also, place an entry field below the clock and give it an ID of
IDC_TIME. This is shown in Figure 9.12.

Figure 9.12 Placing the clock control on the dialog box.

NFLE1009 - Page 150

NFLE 1009 - Page 151

Graphical Controls + 441

Nowstart ClassWizard and add MemberVariables for the two controls on our dialog box. Use member
names of m_Clock and m_Time. Be sure to add the members using the Control category; the default cate-
gory is Value.

MECprovides two waysto create controls: statically and dynamically. Here, we’re creating the control
statically at design time. The control properties will be stored in the .RC file, and the control will be created
(deserialized) and displayed when the application is executed. Dynamic creation of controls is also sup-
ported in MFC, and we'll do that in a moment. We haven’tyet written a line of code, but we can build the
project and have a functional application. Figure 9.13 displays the new application.

Figure 9.13 The initial application.

Events

To see how MEC supports control event handling, let’s perform an action when the clock’s Secondchange
eventfires. Using ClassWizard go to the Message Mapstab andselect the clock’s ID, IDC_CLOCK; the tab
will list one “message” in the Messageslistbox. Click Add Function and add the OnSecondChangeClock
method to the CONTAINDLG.CPPfile. This is shownin Figure 9.14.

NFLE1009 - Page 151

NFLE 1009 - Page 152

442 ~~ CHAPTER 9

Figure 9.14 Adding an event method.

ClassWizard adds an event handler for the SecondChange event. When the SecondChangeeventfires, the

OnSecondChange methodwill be called. Add the highlighted code:

BEGIN_EVENTSINK_MAP(CContainDlg, CDialog)

//{ (AFX_EVENTSINK_MAP (CContainDlg)

ON_EVENT(CContainDlg, IDC_CLOCK, 1, OnSecondChangeClock, VTS_NONE)

//}}AFX_EVENTSINK_MAP

END_EVENTSINK_MAP ()

void CContainDlg: :OnSecondChangeClock()

{

cOleDateTime date = m_Clock.GetDate();
: ‘mTime. SetWindowText(date. Format.(Mc! M3

Wheneverthe control fires the SecondChangeevent, weget the current date using the Date property and
assign it to an instance of the COleDateTimeclass that we studied earlier. We then use the Format method
to get a string representationof the time that we can use to updatethetext in the edit window.

How does the SecondChangeevent find its way to the OnSecondChangeClock method? As with
most other things in MFC, there’s an event map that manages and routes events. An event map is almost
identical to the dispatch maps we discussed in Chapter 6. MFC’s CCmdTarget class has a large number of
mapping capabilities. MFC’s message maps, interface maps, dispatch maps, and event mapsareall handled
in much the same way. The macrosset up severalstatic class and data members that allow mapping of mes-

NFLE 1009 - Page 152

NFLE 1009 - Page 153

Graphical Controls + 443

sages, events, and so on to the appropriate C++ method.In the case of contained contro] events, the instance
of the COccManagerclass handles looking up events in the event map and calling the right method.

Dynamic Creation
MFC also supports dynamic creation of controls. In the preceding scenario, we embedded an instance of a
control, which wasserialized and stored in the project’s resourcefile. In this section, we'll dynamically cre-
ate two controls and position them on the dialog box at run time;first, another instance of the Clock control
and then an instance of the Postit control from Chapter8.

When weinserted the Clock control into the CONTAIN project, it created a wrapperclass for the con-
trol. This arrangement madeit easy for us to access the properties and methodsspecific to the Clock control.
The wrapperclass contains a Create function that simplifies calling the inherited Cwnd: : CreateControl
method. Here’s a look from CLOCK.H:

CLSID const& GetClsid()

{

static CLSID const clsid =

{ OxccS7abb4,

Oxadde,

Oxllice,

{ Oxb4, Ox4b, 0x8, 0x0, Ox5a, 0x56, 0x47, 0x18 } };

return clsid;

}

virtual BOOL Create(LPCTSTR lpszClassName,

LPCTSTR lpszWindowName, DWORD dwStyle,
const RECT& rect,

CWnd* pParentWnd, UINT nID,

CCreateContext* pContext = NULL)

return CreateControl (GetClsid(),

lpszWindowName,

dwStyle,

rect,

pParentWnd,

nID);

}

virtual BOOL Create(LPCTSTR lpszWindowName,

DWORD dwStyle,

const RECT& rect,

CWnd* pParentWnd, UINT nID,

NFLE 1009 - Page 153

NFLE 1009 - Page 154

444 + CHAPTER 9

CFile* pPersist = NULL,

BOOL bStorage = FALSE,

BSTR bstrLicKey = NULL)

return CreateControl (GetClsid(),

lpszWindowName ,

dwStyle,

rect,

pParentWnd,

nID,

pPersist,

bStorage,

bstrLickey);

}

Because the wrapper class knows the CLSID of the control, the Create method provides a shorthand way
of calling CreateControl. The best place to create a control for a dialog box is in the handler for the
WM_INITDIALOG message. OnInitDialogis called before the dialog box is displayed. We add a member
variable to the dialog class to hold the new clock instance and then create the control:

//

// ContainDlg.h : header file
//

class CContainDlg : public CDialog

{

// Implementation

protected:

HICON m_hIcon;

CClock* _ m_pClock;

ye

//

// ContainDlg.cpp

{ff

BOOL CContainDlg: :OnInitDialog(}

{

CDialog::OnInitDialog({);

NFLE1009 - Page 154

NFLE 1009 - Page 155

Graphical Controls + 445einerEMREAESYTETtetasoetntesisenaartiataapansetinitessttitihtteNmentistiateisintiiteastetiiecitenetuitiiastinremrsrmnanentnnmnntatineameniiemeinen

// TODO: Add extra initialization here

es m-pClock:=-new., CClock; : : :
 mipClock->Create (0; 9 WS_VISIBLE, — oe

“Rect (200, 25, 275, 100),

this; ke

l00yre:

iy Make the dynamic clock looka litele different
m_pClock-->SetAppearance(1Mt
‘m-pClock->SetFaceColor(RGB(0, 255, O.ve S
m_pClock->SetTickColor(RGB(0, 255, Ove

return TRUE; // return TRUE unless you set the focus to a control

}

Wecreate an instance of the wrapperclass, assign it to our membervariable, and then call Create. Create
is similar to CreateControl, and the details of each parameter are described in Table 9.6. Once the control
is created, we modify someof its properties by calling the wrapper class methods. Here we’ve set the
appearance to 3-D and haveset the tick and face color to green. ,

Table 9.4 CreateCcontrol Parameters

Parameter Description

CLSID or ProglD CreateControlis overloaded to take either the CLSID or ProgID ofthe controlto create. In our exam-
ple, the wrapperclass passes the CLSID forus.

lpszWindowName The nameof the window.Forcontrols,this text will be used to set the Caption or ‘Text property ofthe
control.

dwStyles Anyinitial windowstyles for the control. The most common is WS_VISIBLE.Others that can be used for
ActiveX controls are WS_BORDER, WS_DISABLE, WS_GROUP, and WS_TABSTOP.

Rect The control’s size and position. The rectangle coordinatesindicate the left, top, right, and bottom extents
(e.g.,CRect(left, top, right, bottom)).

Parent The parent window ofthe control. This must be supplied. In our case, the dialog window (this) is the
parent.

nid The ID for the control.

pPersist A pointerto a CFile object that contains the persistentstate of the control. Because the control wascreated
dynamically, we must provide the location and value of the control’s persistent data.If they aren’t pro-
vided, the controlwill be created without any persistence information.

bStorage Indicates whether the pPersist parameteris stored as IStream or IStorage data.

bStrLickey License key information.If the control requiresa license, the key is provided here.

NFLE1009 - Page 155

NFLE 1009 - Page 156

4A6+CHAPTER 9

There are a few drawbacks in creating controls dynamically.First, they won't, by default, have any persis-
tent data. Unless wefill out the pPersist parameter, the control will be created as is. We could provide
persistence support, but this would require a mechanism for storing the data prior to the control's creation.
That mechanism, however, is the responsibility of control containers. If you need to implementa full
ActiveX control container, MFC provides a great place to start.

Another problem is that the dynamic approach makesit harderto tie the control’s events to a specific
handler. If you know which events you wantto handle, you can write the handler and then manually enter
the events in the event map. To do this for our dynamic clock control, we create a new handler function,
onSecondChangeDyn, and manually addit to the event map:

//

// ContainDlg.h : header file

//

class CContainDlg : public CDialog

{

// Generated message map functions

//{{AFX_MSG (CContainDlg)

virtual BOOL OnInitDialog(};

afx_msg void OnSysCommand(UINT nID, LPARAM 1Param);

afx_msg void OnPaint(};

afx_msg HCURSOR OnQueryDragIcon();

afx_msg void OnSecendChangeClock();

DECLARE_EVENTSINK_MAP ()

//)AFX_MSG

afx_msg void OnSecondChangeClockDyn () ;
DECLARE_MESSAGE_MAP()

//

// ContainDlg.cpp

//

NFLE1009 - Page 156

NFLE 1009 - Page 157

 Graphical Controls + 447

BEGIN_EVENTSINK_MAP(CContainDlg, CDialog)
//{{AFX_EVENTSINK_MAP (CContainDlg)

ON_EVENT(CContainDlg, IDC_CLOCK, 1, OnSecondChangeClock, VTS_NONE)

//}}AFX_EVENTSINK_MAP

ON_EVENT (CContainDlg, 100, 1 , OnSecondChangeClockDyn, VTS_NONE)

END_EVENTSINK_MAP()

y qd cContainDig:':OnSecondchangeClockDyn (}

cOleDateTime date = m_pClock->GetDate().;

m_EditDyn.. SetWindowText | date. Format (-°8%"")}.);

You must place the ON_EVENT macro outside ClassWizard’s area, or ClassWizard will get confused.In the
preceding example, we've also added a second entryfield to the dialog box to hold the time from our
dynamically created control.

MFC allows you to create any control dynamically, even without the wrapper class generated by the
ComponentGallery. To demonstrate this, let’s place an instance of the Postit control from Chapter 8 on our
dialog box at run time. The only control-specific information required is the CLSID or ProgID of the control.
Whengenerating a control, ControlWizard creates a default ProgID of “Project.ProjectCtrl.1.” So our Postit’s
ProgID is “Postit.PostitCtrl.1.” That’s all we need to create an instance and addit to our dialog box. Here’s
the code for OnInitDialog:

//

// ContainDlg.h : header file

//

class CContainDlg : public CDialog

{

// Implementation

protected:

HICON m_hIcon;

CClock* m_pClock;

CWnd* m_pPostit;

NFLE 1009 - Page 157

NFLE 1009 - Page 158

44,8 ~< CHAPTER 9eeneeenshantnineieninnisainantitnNretnaeenCtstONNANTESTtRAOCNACAtLIENCCAHTENNeNOSteeta

};

//

// ContainDlg.cpp
‘tf

BOOL CContainDlg: :OnInitDialog({)

{

CDialog: :OnInitDialog()};

// Make the dynamic clock look a little different

m_pClock~->SetAppearance(1 };

, 255, 0));

, 255, 0));

m_pClock->SetFaceColor(RGB{ 0

m_pClock->SetTickColor(RGB(0

m_pPostit .=newCWnd;

mPPostit--2Createcontrol(““Postit,PostitCtrl. Lf,
SA dynamically cre ted POsTIT control! ",

\WS_VISIBLE, =

CRect (300,73, 31
“this,”

‘LOL);

/-f Set some of the “SESER properties.
m.pPostit=>SetProperty (DISPID_APPEARANCE, VE12, aly}

KCOLOR, Vor4, RGB (239: 255, 252 Diy
 m-pPostit-pSetFroperty(|DISPID_BA

returnTRUE; Lb return TRUE unless: youset the |focus.to a control

5 oe

In this case, we’ve added a CWnd* membervariable to maintain the control instance. We create a new CWnd

object and call the CreateControl method, passing in the ProgID of the control to create. For ActiveX con-
trols, the LpszWindowName parameter is used to set the control's caption or text property. The other para-
meters includethe size and position of the control within the dialog box, the parent window (this), and the
ID of the control.

NFLE1009 - Page 158

NFLE 1009 - Page 159

Graphical Controls + 449

Because we don’t have a wrapperclass for this control, we must use the basic control manipulation
methods supplied by cwWnd. Weset the Appearance property to 3-D andset the background color to white
using SetProperty.

Whencreating controls dynamically, we are responsible for destroying them when the application
shuts down.In dialog-based applications,it’s best to do this in the dialog’s Dest royWindow method.
Overrideit in the CContainD1gclass and addthe following code:

BOOL CContainD1g: :DestroyWindow()

{

// Destroyour dynamic ‘controls mpClock->DestroywWindow(My

delete m_pClock;

m_pPostit->Destroytindow();
delete mpPostit;) 22

return CDialog: :DestroyWindow();

}

Nowbuild the project. When we'refinished, we get an application that looks like Figure 9.15.

Figure 9.15 CONTAIN dialog box with all of the controls.

NFLE1009 - Page 159

NFLE 1009 - Page 160

 Summary
In this chapter we covered the graphical drawing classes provided by MFC. These classes—CBrush, CPen,
and so on—encapsulate the Windowsgraphical device interface API functions. They provide a layer above
the GDI and makeit a little easier to work with the GDI.

Wealso described how to build a clock control that uses many of the MFC drawing classes. When ren-
dering your controls, remember that the rcBounds parameter provided to the OnDraw methodtypically
does not provide an upperleft corner of (0,0). Your control’s drawing code must be adjusted to account for
this, or you may inadvertently draw on the container’s client area. Another important item to rememberis
that the device context provided to your control by the containeris in an undefined state, and you mustset
it up the way you need it before rendering yourcontrol.

Webriefly discussed the Windows mapping modes andthe differences between logical and device
coordinates. We used the MM_TEXT mapping mode when drawing our clock control, becauseit is the easiest
to understandinitially. The coordinate system for the control’s rendering area is an attribute of the device
context and can be changed.

The size of device units, or pixels, is dependent on the hardware device on which your controlis ren-
dered. You specify the initial size of your control in device units in the control’s constructor using the
SetInitialSize method. You can control the size and shape of your control by overriding the
COleControl: :OnSetExent method and modifying the extents of the control in the provided SIZEL
structure. The SIZEL structure’s extent sizes are in HIMETRIC units, and we discussed ways to convert
between device units and HIMETRICunits.

The container uses the ambient property UIDeadto notify the control that it is in some sort of debug
mode andso the control should not allow user input.

Controls that often draw and update their appearance may needto use an off-screen or memory device
context to eliminate flicker. Because the clock control redrawsitself every second, we modified it to use a
memory DC. Containers may require that the control renderitself into a metafile device context at various
times, such as when you're printing an imageof the control. Webriefly discussed metafiles and the restric-
tions to follow when you draw into a metafile DC. ColeControl: :OnDrawMetafile is called whenever
the container requests a metafile representation.

NFLE 1009 - Page 160

NFLE 1009 - Page 161

GraphicalControls + 451centsACCCOROONALALOETNCUAEALNOTADOANCTCNOTMAIRAAAHACE wnstneaatmarravncneon

If you need to use a property within your control but do not want to expose it to visual tool users, you
can mark the property as hiddenin the control’s ODLfile. This indicates to property browsers that the prop-

erty should notbe displayed.
Finally, we looked at using ActiveX controls in Visual C++ applications. In MFC version 4.0, the Cwnd

class was enhanced to provide ActiveX container support. Several methods, such as CreateControl,
SetProperty, and OnAmbientProperty, were added to make if easy to manage ActiveX controls within
MEC applications. Other useful, but undocumented, classes (such as COleContainer) were also added.
MECprovides a great deal of support for embedding ActiveX controls in dialogs as well as in view-derived
classes. Controls can be placed on dialogs at design time or created and placed dynamically at run time.

NFLE 1009 - Page 161

NFLE 1009 - Page 162

EIEIOSPELELEBIALEELEEEEEOLEDELELLELENTELEAEEEEELLNSLREEEDEE ERLEELEEEONES ONENEESIECETLELIUEECE SE

In this chapter, we'll look at the details of developing ActiveX controls by subclassing existing Windows
standard (non-ActiveX) controls. Subclassing is an effective way of reusing existing control functionality
within Windows. By subclassing an existing control, you automatically gain its capabilities. I was tempted to
say you “inherit” capability from the control, but subclassing a controlis different from deriving a new class
based on anotherclass (as in C++).

The Windowsoperating system provides many controls, and there are even more now that Windows
95 provides additional full-featured common controls. Examples of common controls include the Rich Text
Format (RTF) control and the tree-list view control. In this chapter we will cover the basics of subclassing,
and someof the issues involved, by subclassing a Windows EDIT control and one of the Windows 95 com-
mon controls. Understanding the basics of this control will allow you to subclass the other controls as well.

ndows Control

In the SDK/C world of Windows development, subclassing a standard control is a commonoccurrence.It is
similar to object-oriented inheritance in that you acquire the features of the control and are able to augment
only those capabilities that you need to. If the control already provides exactly the feature you need, you just
pass the message (method) to the original implementation. One major difference is that Windows subclass-
ing can be performed only on an instance of a control. Inheritance in C++ is done using classes and not
instancesofthe classes.

You subclass a control because you want to provide functionality that is similar to that already pro-
vided by a standard control. Anedit field that accepts only numbers,a listbox that contains icons andtext, a
3-D static field—the possibilities are endless. When you subclass an existing control, much of the drawing
code and controlstructures are already implemented for you. However, this is not the case when you imple-

453

NFLE 1009 - Page 162

NFLE 1009 - Page 163

A54 + CHAPTER 10

ment an owner-draw control. Owner-draw controls provide an effective way to represent information in a
familiar Windowsformat(suchas a listbox).

A simple Windowscontro] (such as EDIT)is actually just a window.All controls have a window proce-
dure that processes messages sent to the window.Standard windows, such as the EDIT control, have a win-
dowprocedurethat is part of the Windowsoperating system. Although we don’t have access to the source
code for the window procedure, the design of Windows makesit easy to subclass, and usethe featuresof, an
existing window.

A window is subclassed by replacing its default window procedure with one written by the developer.
The new window procedure modifies the behavior of the window by discarding messages intended for the
original window procedure, performing some additional actions and forwarding the message, or modifying
the contents of the message and passing it on. To remind you whatit looks like in C, the following code
demonstrates this technique. It subclasses an EDIT control windowandallowsthe entry only of uppercase
alpha characters.

WNDPROC pfnOriginalEditProcedure;

// Create an EDIT window

HWND hwndEdit = CreateWindowEx(“EDIT”, ...);

// Subclass the window by setting the address of its window

// procedure to that of the new subclass procedure. Save the old procedure’s

// address so we can call it too.

pfnOriginalEditProcedure = SetWindowLong(hwndEdit,

GWL_WNDPROC,

(LONG) SubclassEditProcedure);

// Subclass procedure. All messages are now processed first by

// this procedure

LRESULT APIENTRY SubclassEditProcedure(HWND hwnd,

UNIT uMsg,

WPARAM wParam,

LPARAM lParam)

switch(uMsg)

{

case WM_CHAR:

// If it’s an alpha character make it uppercase

if (isalpha(wParam) }

wParam = toupper(wParam };

// otherwise ignore the character
else

return 0;

NFLE 1009 - Page 163

NFLE 1009 - Page 164

Subclassing WindowsControls + 455eectITTTTCNNTCRCTITNTTTtNTCI cnr enoneecenservtmenneneunsiecrsetonttnsesperanntts

break;

case default:

break;

}

return CallWindowProc(pfnOriginalEditProcedure, hwnd, uMsg, wParam, lParam);

}

If an existing Windowscontrol provides a capability that you need within your control andif there are no
special requirements that preclude your use of the control, you should probably subclassit. If not, as in the
clock example of Chapter 9, you can always implementall the functionality and drawing yourself.

It was in Chapter 6 that we last saw the Expressionclass, and I promised you then that we would seeit
one moretime.In this chapter, our goal is to encapsulate the functionality of the Expression componentin
an ActiveX control. We'll subclass the Windows Edit control and enhanceit to provide numeric expression
evaluation. This arrangementwill make it easy for the user of a visual tool (such as Visual Basic) to drag-
and-drop the controlin a container and instantly gain expression evaluation capabilities.

 Creating the it Project
Use AppWizard to build a ControlWizard-based project with the name EEdit. Follow these steps to specify
each of ControlWizard’s options:

e In the OLE Control Wizard Step 1 of 2 dialog box, take the defaults No runtime license, Yes, com-
ments, and Nohelp files.

¢ In OLE Control Wizard Step 2 of 2, take the defaults Activate when visible and Has “About” box.
From the Which windowclass, if any, should this control subclass? dropdown, choose the EDIT
control.

° Click Finish and create the controlproject.

There is an option that you use when creating an ActiveX control that subclasses an existing Windows con-
trol. When you subclass an existing Windows control, ControlWizard adds the needed code. Figure 10.1
showsthe Control Options dialog box.

NFLE1009 - Page 164

NFLE 1009 - Page 165

436 ~~ CHAPTER 10°erencetteBRAUNAUAHAILEICONHSNOELENOOANCETCORNEASENCOUN

Figure 10.1 Subclass Windowscontrol option.

ControlWizard allows youto choose to subclass any of the standard Windowscontrols listed in Table 10.1.
ControlWizard also allows youto subclass any of the new Windows 95 commoncontrols. Later in this chap-
ter, we will look at subclassing other Windowscontrols, including the new Windows 95 commoncontrols.

Table 10.1 Standard Windows Controls

Windows Class Name and Use Standard Control

Button BUTTON:a Windowspush button.

Static STATIC:providesthe ability to display text in various ways.

Edit EDIT: provides either a single-line entry field or a multiline entry field that has useful editor-like
features.

Listbox LISTBOX: a standard Windowslistbox. Listbox controls can operate in different modes (multise-
lect, single select, and so on). To modify the modeofa listbox, appropriatestyle bits are
applied during creation.

Combo box COMBOBOX:a standard Windows combo box.It also supports various modesby specifying
differentstyle bits during creation.

Scroll bar SCROLLBAR:the horizontal and vertical scroll bars that you use in most Windows applications.

After the project is created, start ClassWizard and addthe following stock properties through the OLE
Automation tab as we did in Chapter 9. When developing a visual control, you will almost always use at
least someof the stock properties.

NFLE1009 - Page 165

NFLE 1009 - Page 166

____Subclassing Windows Controls + 457meetDOLLAALLALALAALLEALAAALAALAOLEAEAALAAADDANAAA

e Appearance

e BackColor

¢ ForeColor

e hWnd

e BorderStyle
e Enabled

e Text

e Font

Because we're using the stock font and color properties, go ahead and addthe stock font and color property

pages. Here’s the new code needed for EEDITCTL.CPP:

u TODO: Add more property pages as3 needed. Remember to increase the count!
BEGINPROPPAGEIDS(CEEditctrl, 3) _ S ee i

PROPPAGEID (CEEdit PropPage: squid)
PROPPAGEID (CLSID_CColorPropPage) _
PROPPAGEID(CLSID_CFontPropPage)

END_PROPPAGEIDS (CEEditCtr1)

Compile and link the project, register the control, and insert it into a container. Right away you will see that
the control provides significant functionality. You can type text directly into the control, and you can even
change thefont thatit uses.It’s a basic Windowsedit control, but not everything works yet (from an Activex
control perspective). Try changing the background and foreground color properties of the contro]. No luck?
In the remaining sections, we'll solve this problem and add functionality in the process.

 Code Added by ControlWizard
In Chapter 8 we went through the code generated by Contro]Wizard. When wechose to subclass a
Windowscontrol, ControlWizard generated some additional code. In particular, it automatically provided
an override of COleControl: : PreCreateWindow. The following code is from EEDITCTL.CPP:

TELEPTTETTTATETTELLTALEAAT

// CEEGitCtrl::PreCreateWindow - Modify parameters for CreateWindowEx

BOOL CEEditCtr1: : PreCreateWindow(CREATESTRUCT& cs)

{

cs.lpszClass = _T(“EDIT"”);

return COleControl::PreCreateWindow(cs) ;

NFLE1009 - Page 166

NFLE 1009 - Page 167

458 <~ CHAPTER 10pentUPSHSLLLNSENERUINLNECiiettitatestttnttntoerManCNeCITNttSieteNLINTNLONDICESnotNONELINNessieoberrenantUiteeCsiettea

This method provides most of what is required to subclass an existing control. The PreCreateWindow
methodis called just before the creation of the (OLE) control’s window.A reference to the window’s CRE-
ATESTRUCTis passed to allow you to modify the parameters used in the creation of the window.As you can
see, ControlWizard addeda line that sets the window class to EDIT. When PreCreateWindowreturns, the

framework will use the CreateWindowEx function to create an instance of the new EDIT window (or con-

trol) using the parameters of the CREATESTRUCTstructure. The members of CREATESTRUCTare parameters
of the CreateWindowEx function.

typedef struct tagCREATESTRUCT {

LPVOID lpCreateParams;

HANDLE hinstance;

HMENU hMenu;

HWND hwndParent ;

int Cy;
int CX;

int Vv;

int x;

LONG style;

LPCSTR lpszName;

LPCSTR lpszClass;

DWORD dwExStyle;

} CREATESTRUCT;

When you're subclassing a control, MFC needs to keep track of the original window procedure so that you
can call it to pass messages through. For subclassed controls, ControlWizard adds a function to your con-
trol’s implementation file that indicates to the framework that the control has been subclassed. It’s called
IsSubclassedControl:

LLLLTLLELTETETTAT LTTETATAAED ETAL ETE ETAT TL

// CEEditCtrl::IsSubclassedControl - This is a subclassed control

BOOL CEEditCtrl: :IsSubclassedControl ()

{

return TRUE;

It is no longer necessary to override Get SuperWndProcaddr in controls that subclass Windows con-
trols. The cwnd class now does this automatically for each control class. Versions of MFC prior to
4.0 required this override in the coleControl-derived class.

The OnDraw code provided by ControlWizardis also different when you subclass a control. It contains only
acall to COleControl: :DoSuperclassPaint:

NFLE 1009 - Page 167

NFLE 1009 - Page 168

Subclassing Windows Controls +459

PELTLLETTTTELTTT TTT ELTA ATTA AAA ATTA ATA ATA TL

// CEEGitCtrl::OnDraw - Drawing function

yoid CEEGitCtrl::OnDraw(CDC* pdc,

const CRect& rcBounds,

const CRect& rcInvalid)

DoSuperclassPaint (pdc, rcBounds);

}

DoSuperclassPaint sets up the device context and sends a WM_PAINT messageto the default window
procedure for the subclassed control, as shownnext. If you lookclosely at the following code, you'll see that
the framework sends the WM_PRINT message instead of WM_PAINT when running on Windows 95 and
WindowsNTversion 4.x:

void COleControl: :DoSuperclassPaint (CDC* pDC, const CRect& rcBounds)

{

if (m_hWnd == NULL)

CreateWindowForSubclassedControl ();

if (m_hWnd != NULL)

CRect rcClient;

GetClientRect (&rcClient} ;

if (rcClient.Size() != rcBounds.Size())}

{

pDC->SetMapMode (MM_ANISOTROPIC) ;

pDC->SetWindowExt (rcClient.right, rcClient.bottom);

pDC~>SetViewportExt (rcBounds.Size());

}

pDC->SetWindowOrg(0, 0);

pDC->SetViewportOrg (rcBounds.left, rcBounds. top);

BOOL bwWin4d = afxData.bWin4;

_AfxFil1PSOnStack();

::CallwindowProc(

*GetSuperWndProcAddr {),

mhWnd, (bWin4 ? WM_PRINT : WM_PAINT),

(WPARAM) (pDC->m_hDC) ,

(LPARAM) (bWin4 ? PRF_CHILDREN | PRF_CLIENT : 0));

NFLE1009 - Page 168

NFLE 1009 - Page 169

AGO + CHAPTER 10

This technique works fine when the control is in the running state, but it doesn’t provide a good representa-
tion when the container requests a metafile representation or when the container is in design mode. Wewill
discuss this problem in moredetail in a later section.

Selecting the subclass option also provides a default reflected message OCM_COMMAND handler to our
control code. We will look at this message handler in detail later when wediscuss a subclassed control’s
reflector window.

The standard EDIT control provided by Windowshasa great deal of built-in functionality. It can function as
a single-line entry field that supports copy, cut, and paste (via the clipboard) or as a multiline edit control
that provides manyof the features of an editor. Much of the functionality of the Windows Notepadutility is
providedvia an EDIT control.

A standard control’s functionality is defined by the messages it sends and receives. Table 10.2 shows
some of the messages handled by the EDIT control. This informationis available for all the standard controls
and the Windows 95 commoncontrols via on-line help or in the Win32 SDK manuals. Our focus is on the
EDIT control, but the techniques wewill use are also applicable to the others.

Table 10.2 Useful EDIT Control Messages

Message Purpose

EM_GETLIMITTEXT (Win32) Returns the currenttext limit.

EM_GETLINE Retrieves a line of text from the control.

EM_GETLINECOUNT Returns the numberoflines of text in the control.

EM_GETSEL Returns the currently selected text.

EM_REPLACESEL Replacesthe selected text with the provided text.

EM_LINELENGTH Returnsthe length of theline specified.

EM_SETLIMITTEXT (Win32}, Sets the maximum number of characters that can be entered into the edit control.
EM_LIMITTEXT {Win]16}

EM_SETREADONLY

EM_SETSEL

EN_CHANGE

EN_KILLFOCUS

EN_MAXTEXT

EN_SETFOCUS

Sets the control’s read-only mode. No inputis accepted from the user.

Selects a range of characters in the control.

Sent fo the parent when the controlidentifies that the control’s content has changed.

Sentto the parent whenthe controlloses focus.

Sentto the parent when the numberof characters trying to be inserted is larger than the maxi-
mum textlimit.

Sentto the parent when the control gains focus.

NFLE 1009 - Page 169

NFLE 1009 - Page 170

____Subclassing Windows Controls + 461

Table 10.2 Useful EDIT Control Messages(continued)
eettnnnnaenne—eoreerne

Message Purpose

EN_UPDATE Sentfo the parent whenthe contentsof the control are aboutto be changed. The EN_CHANGE
eventis sent after the changehasoccurred.

WM_COMMAND Sentto the parent window with oneofthe control’s notification messages encoded in the
WPARAM parameter.

WM_COPY Copies the contents of the control to the clipboard with the CF_TEXT format.

WM_CTLCOLOREDIT {Win32},—Sent to the parent by the controlto allow the parent windowtoselect the color ofthe control
WM_CTLCOLOR (Win16) whenit is to be drawn.

WM_PASTE Pastes the contents ofthe clipboard into the control.

The messages prefixed with EN_ are called notification messages. These messages are sent from the controlto
its parent and are used to notify the parent of events or changes within the control. For example, the
EN_CHANGEnotification message is sent to the parent window whentext within the edit control is modified.

The EM_ messages are sent to the control to force it to change its state or to set various characteristics of
the control. For example, the EM_SETLIMITTEXT message sets the maximum numberof characters that the
control will accept. To find out the current text limit, you send the EM_GETLIMITTEXT message.

ft.
NOTE

The EM_GETLIMITTEXT and EM_SETLIMITTEXT messages are provided only in Win32. The Win16
implementation provides only the eM_LIMITTEXT message and so gives you no wayto retrieve the
LIMITTEXTvalue of an edit control.

The standard controls also support various standard window messages, such as WM_COPY and WM_PASTE,
which copy and paste text in the control to the clipboard. The WM_CTLCOLOR message is important for stan-
dard controls, because it plays a role in the drawing and coloring of the control. The WM_COMMAND message
is used to pass the EN_ notification messages to the control’s parent. The EN_ notification messages are
passed as parameters of a WM_COMMAND message. We will cover these messages in more detail later as we
use them within our ActiveX control.

 indow Style Bits
Each of the standard Windowscontrols has variousstyle bits that affect the controls’ behavior or appearance.
Depending on your requirements, you specify style bits by ORing them with the style memberof the CRE-
ATESTRUCT in the PreCreateWindow method of your control. Each control has both general(e.g.,
WM_BORDER) and specific (e.g., ES_LEFT) style bits. We’re focusing on the EDIT control here, so I’ve listed
the EDIT control-specific style bits in Table 10.3.

NFLE1009 - Page 170

NFLE 1009 - Page 171

462 +CHAPTER 10

Table 10.3 EDIT ControlStyle Bits

EDIT Control Style Purpose

ES_MULTILINE Indicates that the window will support the control’s multiline features.

ES_LEFT* Left-justify the text in the control.

ES_RIGHT* Right-justify the text in the control.

ES_CENTER* Centerthe text in the control.

ES_LOWERCASE Astext is entered in the control, makeit all lowercase.

ES_UPPERCASE Astext is entered in the control, makeit all uppercase.

ES_AUTOHSCROLL If this bit is set, the controlwill allow the text to scroll when the numberof characters in the edit
control exceeds the numberthat can be displayed. If this flag is notset, the entry field will allow
only a fixed numberof characters.

ES_AUTOVSCROLL* If set, will allow the text fo scroll vertically when used with a multiline entry field.

ES_NOHIDESEL Whenset, the text that is selected will continue to show selected whenthe control loses focus.

ES_READONLY The entry field is read-only. No text can be entered.

ES__PASSWORD All characters entered will display as asterisks.

ES_WANTRETURN* A carriagereturn will be inserted when the user presses the Enter key in a multiline edit field.

* Indicates multiline feature only

 ChangingaWindow’s Style B ation
Oneofthe style bits that would be useful for our control is ES_AUTOHSCROLL.If weset this style bit, the text
will scroll left if the user typesin a text string that is larger than the entry field.If this flag is not set, the con-
trol will beep and will not allow any inputif the text cannot be displayed completely within the entry field.

To support this ability, we add the ES_AUTOHSCROLLflag to the CREATESTRUCTstyle field in the
PreCreat eWindow method:

LELTELETLPTELTALET TATTLE AET TTA ATA TATTLE ETT ETT AAT EET ATL

// CEEditCtrl::PreCreateWindow - Modify parameters for CreateWindowEx

BOOL CEEditCtrl1::PreCreateWindow(CREATESTRUCT& cs)

{

cs.lpszClass = _T(“EDIT”);

cs.style.|= ES_AUTOHSCROLL;
return COleControl: :PreCreateWindow(cs) ;

NFLE1009 - Page 171

NFLE 1009 - Page 172

SubclassingWindowsControls + 463

Changing a Window’s Style Bits at Run Time
You can also change somestyle bits after a window has been created. To changethe style bits of a created
window, you use the GetWindowLong and SetWindowLong functions. The style bits of a window are
stored in a DWORDthat is part of every window structure. The following code shows howto change a win-
dow’sstyle bit after it has been created:

void SetSomeProperty(BOOL bNewValue)

{

// Get the current style bits

DWORD dwStyle = ::GetWindowLong(GetSafeHwnd{), GWL_STYLE);

// If the user turned on the property

if (m_bProperty)

{

dwStyle |= WS_WINDOWSTYLEBIT;
}

// Turn off the style bit
else

{

dwStyle &= ~WS_WINDOWSTYLEBIT;

}

// Update the style for the window

::SetWindowLong(GetSafeHwnd(}, GWL_STYLE, dwStyle);

OleControlssRecreateControlWindow

Mostofthe style bits that are specific to a standard control cannot be changed unless you destroy and re-cre-
ate the window. COleControl provides a function, RecreateControlWindow, that makesthis easy.

As part of our EEdit implementation, we decided that the ES_AUTOHSCROLL flag would provide addi-
tional] functionality. For instructional purposes, we'll allow the control user to either enable or disable the
AUTOHSCROLL functionality. We'll add a property that can be changed during the design phase and at run
time. Run-time supportwill require that we destroy and re-create the window.

Using ClassWizard, add an AutoScrol1 property of type BOOL with Get and Set methods as the
implementation of the EEdit control. We also need a member variable—call it m_bAutoScro11—to store
the property’s value. The default value will be TRUE, because we want the AUTOHSCROLL capability enabled
by default. Add the new member variable to EEDITCTL.H and add the following code for
DoPropExchange, PreCreateWindow, and the Get and Set methods for the new property to EED-
ITCTL.CPP:

NFLE1009 - Page 172

NFLE 1009 - Page 173

4464 <~ CHAPTER 10serotoninearneeterictenntteinisitihcsttiiteaeenbnetientontittsitnntneatitbditttetlettrnbannemamtttHasEhtNnhaNatiAINStIItttttReet

// EEditctl.h

class CEEditCtrl : public COleControl

{

// Implementation

protected:

~CEEditCtr1();

“)BOOL m_pAutoScroll;

i

// EEditCtl.cpp

CEEditCtr1l: :CEEditCtrl ()

{

InitializelIDs(&IID_DEedit, &IID_DEeditEvents) ;

// TODO: Initialize your control’s instance data here.

mbautoserol1 ae i eosappssn eosanennee sesnnensens seen ce

FTETELTELTLTETTTTAT ALATA TATA TAT EAT LT LT ALTAATTA ALATA TET

// CEEditCtrl::DoPropExchange - Persistence support

void CEEditCtrl: :DoPropExchange (CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange (pPX);

// TODO: Call PX_ functions for each persistent custom property.

- // Store/retrievethe AutoSerollpropertyvalue9
ff The default is TRUE oe

PX_Bool(pPX, “AutoScroll”, m_bAutoScroll, TRUE);

}

DELLELTTTELELTATATLTATTL TTT ATTA TL TATTLE ATTA AAT ATA ATAAb

// CEEditCtrl::PreCreateWindow ~ Modify parameters for CreateWindowEx

BOOL CEEditCtrl: : PreCreateWindow(CREATESTRUCT& cs)

{

cs.lpszClass = _T(*“EDIT”);

NFLE 1009 - Page 173

NFLE 1009 - Page 174

Subclassing Windows Controls # 465semununnninnonmanteeinaccunairenacestatateeminintuticotaeeraitsiseenoetette rnanerpaegrierpneStitatcI serenereruns

Zo (. mbAutoScroll.)

cs.style. |= ES_AUTOHSCROLL;
return COleControl: : PreCreateWindow (cs) ;

}

BOOL CEEditCtrl: :GetAutoScroll ()

{

_ eeturn mbautoseroll;
}

void CEEditCtrl: :SetAutoScroll(BOOL bNewValue)

{

/ mbAutoScroll = bNewValue;
ome AmbientUserMode().)

. | -RecreateControlwindow() ;
_ SetModifiedFlag();
}

Wenowcheck and set the appropriate style bits before the creation of the window in PreCreateWindow.
Because the control’s windowis nonexistent or will be destroyed and re-created when the user switches to
run mode, the PreCreateWindow method will handle design-time modification of the property.

Whenthe ActiveX control is operating at run time, the user can now modify the AUTOHSCROLL behav-
ior at run time with a call similar to this:

‘Turn autoscroll off

EEdit1.AutoScroll = False

This code will call SetAutoScrol1l1, which sets the new value of m_bAutoScroll to FALSE andcalls

RecreateControlWindow. RecreateControlWindow calls PreCreateWindow, and the windowis cre-

ated without the ES_AUTOHSCROLL bit. The framework maintains the state of the control throughoutthis
process. A side effect is that the user may see the control quickly disappear and reappearas it is destroyed
and re-created.

The colecontro1 class maintains only the “text” of our EEdit window. Other Windowscontrolstate
information, such as the m_sMaxLength property (which we will cover next), is not maintained dur-
ing the call to RecreateControlwWindow. We can manage this by maintaining the MaxLength
value within our control’s class and resetting the value when the ww_CREATE messageis received for
the newly re-created window. Other subclassed controls, such as listboxes, also require that you
maintain certain control state information if you use the RecreateControlwindow method.

Go ahead and compile and link the project and insert the control into your favorite container (not the Test
Container). Add a few of the EEdit controls and change their AutoScrol1 properties during the design
phase and during run timeto get a sense of exactly whatis going on.

NFLE 1009 - Page 174

NFLE 1009 - Page 175

A66 + CHAPTER 10<ccsananaeasecttoneoRtACateereteitSICAttetnCTEOPTNeOeETNCH,

 lodifying Contro essages
You can also modify the behavior a standard Windowscontrol by sending it messages that are defined by
the control. The standard EDIT control allows youto limit the numberof characters that can be entered into
the entry field. You dothis by sending it an EM_SETLIMITTEXT message. The control mustexist before you
send it the message, so modifying a control’s behavior in this manner requires a different approach from
that used above.

Add a new property to the control—call it m_sMaxLength—of type short. The control must have a
valid HWND before wecan initialize the control with the property value. The best timeto initialize this value
is when the control’s windowisinitially created. Right after a windowis created, it receives the WM_CREATE
message. Open ClassWizard and add a handler for the WM_CREATE message. We will use this eventto set
the MaxLengthfor the conirol. Addthe following highlighted code:

// eeditctl.h

class CEEditCtrl : public COleControl

{

// Implementation

protected:

~CEEditCtrl();

BOOL m_bAutoScroll;

short:: m_sMaxLength;

hi

// EEditctl.ecpp

CEEditCtr1::CEEditctrl ()

{

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents) ;

// TODO: Initialize your control’s instance data here.

m_bAutoScroll = TRUE;

msMaxLength = 0).

void CEEditCtrl1: :DoPropExchange (CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange(pPX) ;

// TODO: Call PX_ functions for each persistent custom property.

NFLE1009 - Page 175

NFLE 1009 - Page 176

SubclassingWindows Controls >467cremSRNACOTS naINentitiesnietttntretmrticttiaetnnananeNNNnNeetnintattit

PX_Bool({ pPX, “AutoScroll”, m_bAutoScroll, TRUE);

PeShort(: pPx, .“MaxLength’”, m_sMaxLength; 0-.);
}

#ifdef .WIN32
gdefine “LIMITMSG-EMSETLIMITTEXT
delse
gdefine LIMITMSG EM_LIMITTEXT

int CEEditCtr1l::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

if (COleControl::OnCreate(lpCreateStruct) == ~-1)

return -1;

_ 4 (musMaxLength)

“SendMessage(LIMITMSG, m_sMaxLength, 0);

return 0;

}

short CEEditCtrl: :GetMaxLength ()

{

return m_sMaxLength;

}

void CEEditCtr1l::SetMaxLength(short nNewValue)

{

m_sMaxLength = nNewValue;

if (AmbientUserMode(}.)

{

if ((m_sMaxLength)

SendMessage(LIMITMSG, m_sMaxLength, 0);
else

SendMessage(LIMITMSG, 32000, 0);

}

SetModifiedFlag();

}

There are differences between the Win16 and Win32 implementations of the WM_LIMIT message, so we use
the _WIN32 symbolto isolate the differences between the platforms. Oncethat is done, the implementation
of the new property is easy. Whenthe control’s windowis created, we check the value of the property.If it is
nonzero, we use the SendMessage method to modify the behavior of the control. If the control user wants

NFLE1009 - Page 176

NFLE 1009 - Page 177

A468 ¢ CHAPTER 10_“oresNISHINONeRICHELIEUTORTARESONENESSTOTTORITANNINONES

to change the MaxLengthof the control at run time, the SetMaxLength method handles this. If
m_sMaxLengthisset to zero, a limit of 32000 is sent to the control, effectively allowing unlimited text entry,

Added Expression Capabilities with ActiveX
Controls

When welast used the Expression class in Chapter 6, we provided an automation interface so thatits
capabilities could be used from non-C++ languages. By developing an ActiveX control implementation, we
are making the Expression component's functionality more accessible to developers whousevisualtools.
Wealso provide a feedback, or event, mechanism sothat the tool user can easily tie additional actions to the
control’s features.

Adding the Stock Events
Because our EEdit control is primarily a visual one, it should provide the stock MFC events. Using
ClassWizard, add the following stock events to the CEEditCtr1class:

© Click

@ DbIClick

° KeyDown

° KeyUp

° KeyPress
¢ MouseDown

© MouseUp
e MouseMove

Adding these stock events provides the control user with the ability to perform actions when one of the
events is fired by the default implementation of COleControl. We didn’t add any codeat all, but the con-
trol user can now add behavior based on the userclicking or double-clicking within the edit field.

 ‘eflected Window Messages
_ Standard Windowscontrols are usually associated with a parent window. That’s one of the reasons that
they’re called child windows. In most cases, the parent window is a Windowsdialog box. The dialog win-
dow acts a lot like an ActiveX control container, because it coordinates the behavior of its child windows.It

NFLE1009 - Page 177

NFLE 1009 - Page 178

ls + 469 Sub lassing WindowsC nt

controls the tabbing order of the controls, notifies them of changes in the environment, and accepts mes-

sages, or notifications, from the child controls when something occurs. .
Whena control is subclassed for use within an ActiveX control, this dialog-based environment does not

necessarily exist. ActiveX controls have their owntechniquesof interacting with the container. The container
and controls work togetherto establish the tabbing order, ambient properties provide a way for the control
to retrieve information from the container, and the control can fire events to notify the container of internal
changes. The functionality is similar to that in a parent/child window environment,but the implementation
is quite different. Instead of Window messages going back and forth, we use automation.

WhatI’m gettingat is this; there is no parent windowfor the subclassed controls to post and receive the
Windowsmessagesthat define their behavior. To solve this problem, the ActiveX control standard describes
a reflector window. Thereflector window is created by the COleControl implementation, but a reflector
window caninstead be provided by the container. The container technique would reduce overhead, because
it could use only one window that could act as the parent for all contained ActiveX controls that use sub-
classing.If the control container providesthis feature,it must set the MessageReflect ambient property to
TRUE.If the container does not support messagereflection, the framework will create its own reflector win-
dow for each ActiveX control that subclasses a Windowscontrol. This is done by the COleControl base
class.

The purposeof the reflector windowis to reflect back to the ActiveX control certain Windows messages
that would otherwise go to the parent (Figure 10.2). A contro] notification message such as BN_CLICKED,
EN_CHANGED, and so on will be reflected back to the ActiveX control so that it can be implemented as an
OLEevent. For example, the WM_CTLCOLOR messageis sent to the parent to get information about how the
child window should paintitself but instead is now reflected back to the ActiveX control for handling. The
ActiveX control can then get the container’s ambient color properties and paintitself appropriately. Table
10.4 shows the messagesthat are reflected back to the ActiveX control.

Parent window

messages
WM_CONMAND

WM_CTLCOLOR,etc.

 Reflector Window
or

Container Implementation

Messages
reflected back
to the conirol

Figure 10.2 A control’s reflector window.

NFLE 1009 - Page 178

NFLE 1009 - Page 179

A7O +CHAPTER 10spsrenennetsnsuoseananatane ttntentaasCNNeSNsteenCAOOEASESOOONIONEOREONSMSTORESIECROSTONNISAIMENENCITRONNCHTHOUSteCHENSHAH,

Table 10.4 Windows Messages Reflected Back to an ActiveX Control

Message from Control Message Reflected Back to Control

WM_COMMAND OCM_COMMAND

WM_CTLCOLOR (Win16}) OCM_CTLCOLOR

WM_CTLCOLOREDIT (Win32) OCM_CTLCOLOREDIT

WM_CTLCOLORBTN (Win32) OCM_CTLCOLORBTN

WM_CTLCOLORDLG (Win32) OCM_CTLCOLORDLG

WM_CTLCOLORLISTBOX {Win32} OCM_CTLCOLORLISTBOX

WM_CTLCOLORMSGBOX (Win32) OCM_CTLCOLORMSGBOX

WM_CTLCOLORSCROLLBAR (Win32) OCM_CTLCOLORSCROLLBAR

WM_CTLCOLORSTATIC (Win32) OCM_CTLCOLORSTATIC

WM_DRAWITEM OCM_DRAWITEM

WM_MEASUREITEM OCM_MEASURELTEM

WM_DELETEITEM OCM_DELETEITEM

WM_VKEYTOITEM OCM_VKEYTOITEM

WM_CHARTOITEM OCM_CHARTOITEM

WM_COMPAREITEM OCM_COMPAREITEM

WM_HSCROLL OCM_HSCROLL

WM_VSCROLL OCM_VSCROLL

WM_PARENTNOTIFY OCM_PARENTNOTIFY

By default, ColeControl does nothing with the messages that are reflected back to the control. Tofire an
event or in any wayact on oneof the reflected messages, you must addit to your control’s message map and
provide a message handler. The codeinitially provided by ControlWizard adds support for the OCM_COM-
MAND message by addingit to your message map and providing a default method that does nothing. Hereis
the code from EEDITCTL.CPP:

NFLE1009 - Page 179

NFLE 1009 - Page 180

SubclassingWindowsControls + 471

// EEditctl.cpp

BEGIN_MESSAGE_MAP (CEEditCtr1, COleControl)

//{{AFX_MSG_MAP (CEEditCtr1)

ON_MESSAGE (OCM_COMMAND, OnOcmCommand)

//)}AFX_MSG_MAP

ON_OLEVERB (AFX_IDS_VERB_EDIT, OnEdit)

ON_OLEVERB (AFX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP(}

PLLELLTTETLTLAT TALL ATTAALTATATATTA AAT ATTAAL ETL

// CEEditCtrl::OnOcmCommand - Handle command messages

LRESULT CEEditCtrl: :OnOcmCommand(WPARAM wParam, LPARAM 1Param)

{

#ifdef _WIN32

WORD wNotifyCode = HIWORD(wParam);

telse

WORD wNotifyCode = HIWORD(1Param);

#endif

// TODO: Switch on wNotifyCode here.

return 0;

}

ControlWizard provides a default handler for the OCM_COMMAND message, because youtypically fire events
when your control receives notification messages. For example, when subclassing a BUTTON control, you
will trap the BN_CLICKED messageandfire the stock Click event.

 rocessing a Control’s Notification Messages
For our EEdit control, we will process the EN_CHANGEDnotification message and fire an event that notifies
the control user that text in the edit control has changed. First, using ClassWizard, add a custom eventcalled
FireChange. The event requires no parameters. Figure 10.3 showsthe addition of the custom event.

NFLE 1009 - Page 180

NFLE 1009 - Page 181

472 ~ CHAPTER 10

Figure 10.3 Adding a custom eveni.

Once the event is added, we needto fire it when appropriate. The EEdit control sendsa notification message
to its parent, which is reflected back to the ActiveX control via the OCM_COMMAND message handler. This
message handler calls the OnOcmCommand method with the parameters of the notification message. We
check the notify code of the message, and,if it is EN_CHANGE, wefire the change event. Add the following
code to EEDITCTL.CPP:

LELTELLTAETETAAT ETATTATTLEATTATLEAEA ALL

// CEEditCtrl::OnOcmCommand - Handle command messages

LRESULT CEEditCtr1l::OnOcmCommand(WPARAM wParam, LPARAM 1Param)

{

#ifdef _WIN32

WORD wNotifyCode = HIWORD(wParam) ;
#else

WORD wNotifyCode = HIWORD(1Param) ;
#tendif

// TODO: Switch on wNotifyCode here.

switch(wNotifyCode.)

{

case.-ENCHANGE:

FireChange(};

break;

}

return 0;

NFLE 1009 - Page 181

NFLE 1009 - Page 182

As you can see, the code generated by ControlWizard takes care of breaking out the notification parameter
from either the wParam or the 1Param depending onthe platform we are compiling for. We are interested

only in the EN_CHANGE notification, so we add a switch statement to identify it and to fire the custom
event that we addedearlier. Rather painless, isn’t it? Setting the colors of a subclassed control is slightly
more involved.

Setting the Colors of a Subclassed Control
When you subclass a control, it’s important to get the colors to draw correctly. We've briefly discussed the
WM_CTLCOLOR message, which a standard control sends to its parent when it needs to draw itself. The
WM_CTLCOLOR message contains the DC of the child control, so when the parent receives the messageit sets
the attributes of the provided DC to those appropriate for the drawing of the child window. The return
value of WM_CTLCOLORis a handle to the brushthat is used for the control’s background color.

This sounds great, but whois the parent? As we've discussed, the parent of a subclassed controlwill be
the control’s reflector window. Depending on the environment in which the control is running, the frame-
work may provide the reflector window,or the container may provide a similar mechanism.In both cases,
the controlitself becomes the “parent” of the subclassed control. By using the reflected message handlerfor
the OCM_CTLCOLOR message, we provide ourselves with the brushes for coloring the control.

ClassWizard doesn’t currently let you add reflected message handlers. You must add them yourself,
butit’s easy. ControlWizardinitially added a handler for our notification messages, so we add anotherline
with the new handler. Add the following highlighted code to EEDITCTL.CPP:

FITETTLTLTTLTTATTTLAT ETAT AAA LL A ETAT TATA TALL A AT ALT ATLAAY

// Message map

if

BEGIN_MESSAGE_MAP(CEEditCtrl, COleControl)

//{{AFX_MSG_MAP(CEEditCtr1)

ON_MESSAGE (OCM_COMMAND, OnOcmCommand)

ON.MESSAGE (OCMCTLCOLOREDIT, OnOcmCt1Color)

//}}AFX_MSGMAP

ON_OLEVERB (AFX_IDS_VERBEDIT, OnEdit)

ON_OLEVERB (AFX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP ()

Notice that we added a handler for an OCM_CTLCOLOREDIT message and not one for OCM_CTLCOLOR. We'll
get to that in a moment. Next, we need to add the declaration for OnOcmCt1Color to EEDITCTL.H and

then implementit in EEDITCTL.CPP:

// BEditctl.h

class CEEditCtrl : public COleControl

NFLE1009 - Page 182

NFLE 1009 - Page 183

474 ~< CHAPTER 10

// Implementation

protected:

~CEEditCtrl ();

BOOL m_bAutoScroll;

short m_sMaxLength;

CBrush*. mpBackBrush; ©

// Subclassed control support

BOOL PreCreateWindow (CREATESTRUCT& cs);

BOOL IsSubclassedControl();

LRESULT OnOcmCommand (WPARAM wParam, LPARAM 1Param);

_ LRESULT OnOcmCtlColor(. WPARAM wParam, LPARAM 1Param);

hi

// BEditctl.cpp

CEEditCtrl: :CEEditCtrl ()

{

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents) ;

// TODO: Initialize your control’s instance data here.

_) mpBackBrush = NULL?
m_bAutoScroll = TRUE;

m_sMaxLength = 0;

LRESULT CEEdItCtrl: :OnOcmCt1lColor (WPARAM: wParam, LPARAM: lParam’)

t

- Af € mopBackBrush’ == NULL.)

m_pBackBrush: =. new..CBrush(.TranslateColor(: GetBackColor()").);

€DC* pde- = CDC::FromHandle ((HDC). wParam);

| pdc->SetBkMode(TRANSPARENT);
pdc->SetBkColor (TranslateColor(GetBackColor() });

pdce->SétTextColor(TranslateColor(GetForeColor().));

_ HBRUSH fart hbr = (HBRUSH far*) m_pBackBrush->GetSafeHandle();;

“return ((DWORD) -hbr);
,o

NFLE 1009 - Page 183

NFLE 1009 - Page 184

Subclassing WindowsControls + 475eneroerOIA

The code in OnOcmCt1Coloris what you would typically see in the parent (such as a dialog box) of many
child controls. When the messageis received, we set the background modeandcolor andthe text color just
as we would in a normal OnDraw method. Thetricky part involves the handling of the background color
brush.

Whenprocessing the WM_CTLCOLOR message, we return either a handle to a valid brush or NULL.If
NULLis returned, the default system backgroundcolor is used. We need to return a handle to a brushthatis
the current background color, so to process this message we need to maintain an instance of the CBrush
class with the current background color of our control. We need a CBrush pointer memberin ourcontrol
class, and wecall it m_pBackBrush. Wealso needto be notified when the BackColor property is changed
so that we can update our brush with the new color. Override the OnBackColor method bydeclaringit in
EEDITCTL.H andadd the following implementation code. You can also addit through ClassWizard.

class CEEditCtrl : public COleControl

{

// Overrides

virtual void OnBackColorChanged();

// Implementation

protected:

~CEEGitCtr1();

CBrush* m_pBackBrush;

};

// eeditctl.cpp

void CEEditCtr1::OnBackColorChanged()
{

_ delete m.pBackBrush; ; : -
i: _M_pBackBrush = new. CBrush(TranslateColor(GetBackColor())°):);
- InvalidateControl(); a
}

Whereverthe user changes the BackColor property, we delete the old brush and create a new one withthe
new color. We also need to ensure that the brush is deleted whena control's instance is destroyed. Add the
following codeto the control’s destructor:

CEEditCtrl1: :~CEEditCtrl{}

{

// TODO: Clean up your control’s instance data here.

delete’ m_pBackBrush;

NFLE1009 - Page 184

NFLE 1009 - Page 185

476 < CHAPTER 10sencepeeTAPPtenerieASONTTNetensatniteNttNtsia

WM_CTLCOLOR and Win32
The WM_CTLCOLOR messageis used only in Win16. Hereis its definition:

WM_CTLCOLOR

hdcChild = (HDC) wParam; // DC of the child window

hwndChild = (HWND) LOWORD(lParam); // hwnd of the child window

nctlType = (int) HIWORD(lParam }; // type of the control

The nCtlType parameter contains the control type: CTLCOLOR_BTN, CTLCOLOR_DLG, CTLCOLOR_EDIT,
and so on. When Microsoft moved the Windows messages from Win16 to Win32, the W4_CTLCOLOR mes-
sage was one that did not make the transition. In Win16, WM_CTLCOLOR’s wParam, a WORD, contained the
child’s 16-bit device context, and the 1Param, a DWORD, contained both the child window’s HWND(16 bits)
and the child control type (16 bits).

In Win32, the size of a HANDLE went from 16 bits to 32 bits, so the HWND and HDC parameters increased
to 32 bits. Although the wParam and 1Param parameters in Win32 are both 32-bit, this did not leave room
for the control type to be passed within the message.Torectify this, the WM_CTLCOLOR message was broken
into seven different messages (one for each control type) in Win32.

This arrangementisn’t really a big problem, and MFC doesa pretty goodjob of hiding these differences
within the framework. The only exception occurs when we handle the reflected window messagesusing the
OCM_.* macros.

Because of the differences between the Winl6 and Win32 implementations of the reflected message
macros (OCM_*), we wouldlike to code the message map asfollows:

TELEELETAETELTTTTLELETLET ATTA LATTA TTA ATTATAAAAT

// Message map

//

BEGINMESSAGE_MAP(CEEditctr1, COleControl)
//{{APX_MSG_MAP (CEEditCtrl)

ON_MESSAGE (OCM_COMMAND , _ OnOcmCommand)
#ifdet _WIN32 : a ee

ON_MESSAGE(OCM_CTLCOLOREDIT,a#else- a. .

ONMESSAGE (OCI.CTLCOLOR,|ondenctColor)
dendlé /

//}}AFX_MSG_MAP

ON_OLEVERB (AFX_IDS_VERB_EDIT, OnEdit)

ON_OLEVERB (APX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP(}

NFLE1009 - Page 185

NFLE 1009 - Page 186

_Subclassing|WindowsControls + 477erin eNOCNTNOLNAANCtpainOIANInNeNAnhaerettn

But ClassWizard parses the message map without any C++ preprocessing, so this code won’t work. One
way to overcomethis problem is to #undefine the OCM_CTLCOLOREDIT symbol under Win16 and rede-
fine it to OCM_CTLCOLOR.This technique allowsus to use one sourcefile for both platforms.

DEELLTTTETLLLLTTEETTATAEEL LT TTT LTP ELT ALATT TATATTTTTT

// Message map

//

cause of the ‘differences between the.Winl6éand
Z Wo_CTLCOLOR ‘message, we need tomodify the|
inefor the ocL_CTLCOLOREDITsymbol. under. Wins.

BEGIN,MESSAGEMAP (CEEAitCtr1, COleControl)

//{({AFX_MSG_MAP (CEEditCtr1)

ON_MESSAGE (OCM_COMMAND, OnOcmCommand)

ON_MESSAGE (OCM_CTLCOLOREDIT, OnOcmCt1Color)

//}}AFX_MSG_MAP

ON_OLEVERB (AFX_IDS_VERB_EDIT, OnEdit)

ON_OLEVERB (AFX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP()

We've made quite a few modifications to our control, so let’s go ahead and compile, link, and test the control
within a container. Figure 10.4 shows a simple Visual Basic application that uses the control. When you
modify the control's stock color properties, it will affect the control’s run-time representation. But it doesn’t
draw right when you're in design mode. What's going on?

Figure 10.4 EEdit control on a Visual Basic form.

NFLE1009 - Page 186

NFLE 1009 - Page 187

478 & CHAPTER10_

 th Control Subcilassing

The major problem with subclassing windowsis that you must provide some form of representation during
the container’s design phase. The DoSuperclassPaint method doesn’t do a very good job of drawing the
control without a true window and without the reflector window that is needed to process the WM_CTL-
COLOR messages. Another problem is that DoSuperclassPaint may not workatall for containers that

require a metafile representation of the control. What can we do?

For one thing, the design-phase representation of a control is not nearly as importantas its representa-
tion at run time. In Visual Basic 3.0, a listbox was represented as a rectangle with its name in the upperleft
corner in the design phase. That wasit. Because of the various requirements of control containers, it is prob-
ably best to render the design-time representation of your subclassed control yourself. It can be as simple or
as complex as you would like, but don’t let the problem of a design-phase representation stop you from
gaining the advantages of subclassing an existing Windowscontrol.

As we discussed in Chapter 9, it is important to provide a drawing routine that will work with a
metafile device context. When drawing a subclassed control, as a metafile or in the design phase, I’ve taken
the following approach. Develop a drawing routine that best represents the control. Typical controls will
provide the nameof the control in the upper left corner during the design phase, just as we did with the
clock control in Chapter 9. Represent the control with a shape that is representative of its size and location.
Use as many of the stock and custom properties as possible when drawing the control. This includes the
color, font, and border properties.

Using this approach, here are the OnDrawMetafile and OnDraw methodsfor our EEdit control:

void CEEditCtrl::OnDrawMetafile(CDC* pdc, const CRect& rcBounds }

{

DrawDesign(pdc, xcBounds };

}

void CEEditCtrl: :OnDraw(

cDc* pdce, const CRect& rcBounds, const CRect& rcInvalid)

// T& the container isin’ design. mode

// Draw the design. representation

1£. (1 AmbientUserMode ():-)

DrawDesign(pdc, rcBounds);

else :

DoSuperclassPaint(pdc, rcBounds);

}

As youcansee, if the container is asking for a metafile representation orit is in design mode, wecall a new
method, DrawDesign. Whenthe control is running, the DoSuperclassPaint method drawsthe control
its native way: by processing the WM_CTLCOLOR* messages and so on. The only purpose of the

NFLE 1009 - Page 187

NFLE 1009 - Page 188

Subclassing Windows Controls + 479merresi sosmasrncunrseae a paseo cease “s vase sseneananittetneestaseresPSS aeons

DrawDesign methodis to provide a good representation of the control the rest of the time (either during
design or whenit is being printed by the container). This approachis fairly straightforward:

void,CEEditCtr1: :DrawDesign (CcDC* pdc, const CRect& rcBounds)

|| eBrush bkBrush(TranslateColor(GetBackColor({)));

pdc->FillRect(reBounds,: &bkBrush };

if Get the stock “text” property value
| String strName:=-InternalGetText ();

a Set the textcolor to. the foreground: color
— pde->SetTextColor(TranslateColor(GetForeColor()));

// Select the stock font. and: save: the: old-one

: CFont* poldFont = SelectStockFont(pdc };

ff Set up the text drawing modes in: the DC
_ pde->SetBkMode(TRANSPARENT);

_ pdo->SetTextAlign(TALLEFT | TA_TOP);

/f/oDraw: the text in’ the’ upper left corner

| edo->ExtTextout(reBounds: left’ -+ 1) rcBounds: top + 1, ‘ETO.CLIPPED;

rcBounds, “strName, strName.GetLength(), NULL};

 | (fF Restore the old font:

Li -(@ poldFont) :

| _ §pde=>Selectobject(poldront..);
L

This code is similar to the drawing code that you’ve seen before. The only thing is the use of the
InternalGetText methodto get the text to draw in the control. The value of the Text property is initially
set in the control's OnResetState method, whichis called when a control is placed within a container for
the first time. This is a good spotto initialize our default Text property to the ambient DisplayName prop-
erty:

TTTTTELETTETATAATET TAAL ALATA ATEELTAAAALT A A A AL

// CEEditCtrl::OnResetState - Reset control to default state

void CEEditCtrl1: :OnResetState({)

{

COleControl::OnResetState(}; // Resets defaults found in DoPropExchange

// TODO: Reset any other control state here.

SetText (AmbientDisplayName()>);

NFLE1009 - Page 188

NFLE 1009 - Page 189

430 + CHAPTER 10

The preceding codesets theinitial value of the control’s Text. property to the ambient DisplayName prop-
erty provided by the container. Many controls that expose the Text property default its value in this way.
For our purposes here, though, a default value of EEdit1 for a control that accepts only numeric expres-
sions doesn’t make sense. A more appropriate default value would be zero (J just wanted to show you how
to doit).

LELTTELTTLLATA ELTA TATTLE TTT AAATTAATA AEA TEL

// CEEditCtrl::OnResetState ~ Reset control to default state

void CEEditCtrl: :OnResetState()

{

cOleControl::OnResetState(); // Resets defaults found in DoPropExchange

// TODO: Reset any other control state here.

SetText (0%);

Values for Your Control’s States

When yourcontrolis initially placed in a container, COleControl: :OnResetState is called. This

method, in turn, calls your control's OnPropertyExchange method with IsLoading() set to TRUE. The
CPropExchange: : IsLoading methodindicates the direction of the property exchange. Whenit is TRUE,
the container is loading the properties; whenit is FALSE, the properties are being saved. Becausethis is the
first time that the control has been loaded by the container and becausethere is no persistent data that has
beenpreviously stored, the default values of the PX_ functions are used.

If you haven't provided default values for your PX_ functions, garbage will be returned for each of your
properties. It is important to either set the default values of your control’s properties by providing the
defaults in the PX_ functions or set them in the OnResetState method. Use the following guidelines for
help in determining where youshouldinitialize data used in your control.

In the Contrel’s Constructor

Control instance data that is used internally by the control and isn’t directly exposed (for example, by a
property) should be initialized here.

In the Control’s DePropertyExchange Method
As I mentionedearlier, you can provide a default value for your control's properties as the last parameter of
the CPropertyExchange PX_* functions. Here is an example from the AutoScroll property that we
addedearlier:

NFLE 1009 - Page 189

NFLE 1009 - Page 190

Subclassing Windows Conirols + 481sortasecnettttrocmanentanise scenceenonttonncsmnncrintretpasmstr

PELELLLLTTTLLTATATTLLAT TAAL TAAL TATA TTT AAT TAT TAAL AEATAT

// CEEditCtr1::DoPropExchange - Persistence support

yoid CEEditCtr1: :DoPropExchange (CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange (pPX) ;

// TODO: Call PX_ functions for each persistent custom property.

/Store/retrievethe AutoScroll propertyvalue| .
{/The default isTRUE —
PX_Bool(pP¥, “AutoScroll”, m_bAutoScroll, TRUE);

}

There’s another good reason to provide default values for your control’s properties here. If the property’s
value is the default value, there will be no need to store it whenserializing the control's state. This technique
may save storage space in the container’s persistencefile.

in the Contrel’s OnResetState Method

You can also initialize your control's properties in the OnResetState method. This is a good place to pro-
vide defaults for stock properties that are different from those provided by the
CcOleControl: : DoPropExchange (pPX) method. COleContro1 provides the default values for the stock
properties, but you can override them when the control is initially loaded by changing their values in
onResetStateafter it has called COleControl: :OnResetState. For example, if you want your control
to default to having a border, you cansetits value in OnResetStateasfollows:

TELPELLTLLTETTTETALLTTEATTA ATA AEEAEA ATTA AL

// CEEditCtr1l::OnResetState - Reset control to default state

void CEEditCtrl: :OnResetState ()

{

COleControl::OnResetState(}; // Resets defaults found in DoPropExchange

// TODO: Reset any other control state here.

//-Parn off anyborder and: make’ the control: 3D

m.sBorderStyle = 0;

msAppearance -=.1;.
}

You could also use the SetBorderStyle methodto set the initial borderstyle, but in this case it’s rather
expensive. SetBorderStylecalls RecreateControlWindowto destroy and re-create our control’s win-
dow, because the WS_BORDER style can be set only before the windowis created. The same goes for the
appearancestyle.

NFLE1009 - Page 190

NFLE 1009 - Page 191

482 + CHAPTER 10 ten

OnResetStateis called before your control’s windowis created, so this is an effective way ofinitializ-
ing your control properties that can’t be effectively defaulted using the default values in the PX_ functions of
DoPropertyExchange, as described earlier.

oS

 ing the Expression Functionality
We're halfway through the chapter, and we haven’t discussed the addition of the Expression class. The
addition of expression evaluation is fairly trivial compared with what we’ve doneto get the EEdit controlto
behavein a civilized manner. Before we begin using the Expressionclass, be sure to copy the EXPRESS.H
and EXPRESS.CPPfiles from the Chapter 2 directory on the accompanying CD-ROM andtheninsert the
-CPPfile to the project. Also, add the includeto the top of EEDITCTL.CPP.

Our goal is to provide an entry field that accepts only a simple algebraic expression. This includes dig-
its, operators, and the parenthesis characters. The user will enter an expression into the entry field, and the
expression will be evaluated whenthe control loses focus.

To add this functionality, we need to add message handlers for the appropriate control messages:
WM_KILLFOCUS and WM_CHAR. Using ClassWizard, add handlers for these two messages and addthefol-
lowing code to the OnKillFocus method:

// EEditCtl.cpp : Implementation of the CEEditCtrl OLE control class.

#include “stdafx.h”

#include “EEdit.h’

#include “EEditCtl.h”

#include “EEditPpg.h”

#include “Express.h”

#ifdef _DEBUG

#define new DEBUG_NEW

FELELELETETTELALTLLT TTT AT ALATA TAAT TATA TATA ATT AAT AAT A AAT AAA EAA AL AL

// CEEditCtrl message handlers

void CEEditCtrl: :OnKillFocus (CWnd* pNewwnd)

{

COleControl: :OnKillFocus (pNewwWnd);

if (AmbientUserMode() == FALSE ||. AmbientUIDead() .)
return;

//°Get the value of the “text” property. and

//-use it to’ construct’ our’ expression object

Expression exp(InternalGetText(), TRUE);

NFLE1009 - Page 191

NFLE 1009 - Page 192

SubclassingWindows Controls + 483om omniaSORESNAEPattestSNEESUIIACIOtanitenet sarsisentanttsiesendet siete

oki (exp.Validate () == FALSE.)
{

 SetFocus ();

else
|

char. szTemp[128];

long lResult: =-exp.Evaluate();
sprintf (szTemo; 31d”, 1Resukt ');

// Set the new value of the “text” ‘property
_7/ This will also update the edit control

| SetText (szTemp.);
}

Wheneverthe application user tabs out of the Edit control or clicks on another control, it receives a
WM_KILLFOCUS message. Wefirst check to make sure that we are not in design mode and that the container
has not set the ambient UIDead property. Next, we retrieve the text from the control using the
GetWindowText method. Using the entered text, we construct an instance of our Expressionclass.If the
expression is invalid, we call the SetFocus method; otherwise, we evaluate the expression and place the
result into the control using the SetWindowText method.

By returning focus to the control when an invalid expression is entered, we require users to always
enter a valid expression. Users cannot tab to a different control within the application or even exit the appli-
cation withoutentering a valid expression. This type of validation is called field-level validation and may not
be the behavior we want. Using the SetFocus method within a focus handler such as OnKillFocusis not
recommended. We'll providealternative solutions in a moment.

Onething that we can do to help ensurethat the application user enters a valid expression is to disallow
the entry of invalid (expression) characters. We trap the WM_CHAR message for this reason. By subclassing
the Edit control, we have an opportunity to inspect and possibly ignore any message destined for the con-
trol. We allow the majority of the messages to pass throughto the original window procedure. The excep-
tions are WM_KILLFOCUS and WM_CHAR. Weintercepted the kill focus message to perform someaction, but
weintercept the WM_CHAR messageto filter, or remove, certain characters that are entered by the user. Add
the following code:

void CEEditCtrl::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)

{

if. (AmbientUserMode() == FALSE || AmbientUIDead().)—

return;

Lf (isdigit(/ncChar) “}) Isoperator (nchar) [| nChar“=s2.0" || nChar’== ‘Ab!)
{

CcOleContrel: :OnChar(nChar, nRepCnt, nFlags’);

NFLE 1009 - Page 192

NFLE 1009 - Page 193

 A84_ + CHAPTER 10

}

#ifdef _WIN32
else

::Beep(100, 100);

#endif

}

#define LEFT_PAREN. ‘(*

#define. RIGHTPAREN :*.).!

#define MULTIPLY ae

#def ine. SUBTRACT vt

#define PLUS var

#define DIVIDE vEt

static BOOL IsOperator(UINT nChar })

f :

switch(nChar)

{

case LEFT_PAREN:

case RIGHT_PAREN:

case MULTIPLY:

case SUBTRACT:

case PLUS:

case DIVIDE:

return TRUE;

}

return FALSE;

}

Again we check the UserMode and UIDead ambients and return if the container is in a state in which we
should not process messages.If it is not, we check to see whether the character entered is either a digit, an
operator, a space, or the backspace character. If it is not one of these, we use the Win32 Beep function to
inform the user that the character cannot be entered into the entry field. If the character is valid, we passit to
the edit control and it is processed normally.

 ow to Handle an Invalid Entry Condition
Wheneveryouare validating the entry within an edit field, things geta little tricky. When the user enters an
invalid expression in our control, what should we do? Here are someof the options:

NFLE1009 - Page 193

NFLE 1009 - Page 194

Su 2classing Windows Controls + 485NOreeeeNC LearsesNettietttttsOatpatelANNER

® Set focus back to the control. This technique ensures that a valid expression is entered by not allow-
ing the userto tab out of the control.

° Display a message box with a warning messagethat the expressionis invalid. Either continueor set
focus back to the control.

e Leave the invalid expression in the control, but fire an event that allows users to perform their own
action.

e Replace the invalid expression with a textual error message and continue or set focus back to the
control.

Oneof our goals as control developers is to give the control userflexible options for using the control. So
let's add a property, called ValidateAction, whose value will determine our action when an invalid
expression is entered. We will provide the control user with the first three options described earlier. Using
ClassWizard, add the ValidateAction property; its type is short. Be sure to use the Get/Set-style of
implementation. The three possible values of the property will be handled with an C++ enumerated type
structure as follows. Add the following enumerated type to EEDIT.H so that wecan useit in the property
page and controlfiles.

typedef enum

£

ActionSetFocus = 0,

ActionMsgBox = 1,
ActionEvent = 2

}- enumAction;

Our new OnKil1lFocus code now checksfor the value of the ValidateAction property and acts accord-
ingly. Depending on the value of ValidateAction, weeither return focus to the control, pop up a message
box to indicate an error, or fire the ExpressionInvalid event. The following code provides this imple-
mentation:

// eeditctl.h

class CEEditCtrl : public COleControl

{

// Implementation

protected:

~CEEditCtrl ();

BOOL m_bAutoScroll;

short m_sMaxLength;

CBrush* m_pBackBrush;

short m_sValidateAction;

void DrawDesign(CDC*, const CRect&);

NFLE1009 - Page 194

NFLE 1009 - Page 195

436 < CHAPTER 10

DECLARE_OLECREATE_EX(CEEditCtr1) // Class factory and guid

DECLARE_OLETYPELIB (CEEditCtr1l) // GetTypeInfo

di

// eeditctl.cpp

CEEGitCtr1: :CEEditCtrl()

{

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents) ;

// TODO: Initialize your control‘s instance data here.

m_pBackBrush = NULL;

m_bAutoScroll = TRUE;

=msMaxLength = 0;

m_sValidateAction = short({ ActionSetFocus);

void CEEditCtrl: :DoPropExchange (CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

cOleControl: :DoPropExchange (PPX);

// TODO: Call PX_ functions for each persistent custom property.

PX_Bool(pPX, “AutoScroll’, m_bAutoScroll, TRUE };

PX_Short(pPX, “MaxLength”, m_sMaxLength, 0);

 Px,“Validateaction", msValidateaction, short(ActionSetFocus });

void CEEditCtrl: :O0nKillFocus (CWnd* pNewWnd)

{

cOleControl: :OnKillFocus (pNewWwWnd) ;

if (AmbientUserMode() == FALSE || AmbientUIDead())
return;

// Get the value of the “text” property and

// use it to construct our expression object

Expression exp(GetInternalText(), TRUE);

if (exp.Validate() == FALSE)

{

NFLE 1009 - Page 195

NFLE 1009 - Page 196

pennONACCORECONOLEENACOONTEINtNNt raninnsennsnisetistomcrses

}

SubclassingWindows Controls + 487

switch(. m.sValidateAction)

{

case ActionSetFocus:

//. You cannot. get out of this without

// fixing the expression. Including out of the

// application!

SetFocus (};

break;

case’ ActionMsgBox:

// Maybe use a Validate on LostFocus property

// or’ instead fire an “Invalid Expression” event

AfxMessageBox(“Error in Expression, please re-enter”, MB_OK };

break;

case ActionEvent:

‘PireExpressionInvalid();

break;

else

char szTemp[128];

long 1Result = exp.Evaluate();

sprintf(szTemp, “ld”, 1lResult }; *

// Set the new value of the “text” property

// This will also update the edit control

SetText (szTemp };

short CEEditCtrl: :GetValidateAction()

{

return m_sValidateAction;

void CEEditCtrl1::SetValidateAction(short nNewValue)

{

m.SValidateAction = nNewValue; °

BoundPropertyChanged(dispidvalidateAction);
SetModifiedFlag();

NFLE1009 - Page 196

NFLE 1009 - Page 197

A88 + CHAPTER 10

We haven'tyet added the ExpressionInvalid event, so go ahead and use ClassWizard to add this event.
It passes no parameters.Jts only purposeis to notify the control user that an invalid expression wasentered.

Enumerating Property Values
So far, the properties we have used in our controls have beeneither textual (BSTR), Boolean (BOOL), or one
of the other OLE supported types (such as OLE_COLOR). Textual property values are easily presented to the
control user for modification, as are the stock and Boolean types. Most container applications provide sup-
port for your properties if they are represented by one of the standard automation types.

But what do you do if you need to represent a property value as a short internally and wantto pro-
vide a range of values to the control user? For our ValidateAction property, using the methods that
we've investigated so far, the user would be required to enter either a 0, 1, or 2 value to indicate the appro-
priate validate action. There is no way of ensuring that the user won't enter 195. MFC provides a mechanism
for enumerating property values to ensure that only valid property values are entered. This method is sup-
ported by the cOlePpropertyPage DDX and DDPfunctions, but you must do someof the work yourself.

First, you add a property of type short. Then you edit your control’s ODLfile and create an enumer-
ated type that enumerates all the possible values of the property. Here’s how to do this for our new
ValidateAction property in EEDIT.ODL.I’ve also added an enumerated property for the stock
BorderStyle and Appearanceproperties.

// EEdit.odl : type library source for OLE Custom Control project.

// This file will be processed by the Make Type Library (mktyplib) tool to

// produce the type library (eedit.tlb) that will become a resource in

// eedit.ocx.

#include <olectl,h>

{ uuid(D5F64C96-D2F1-11CE~869D-08005A564718), version(1.0),

helpstring{*Eedit OLE Custom Control module”), control J

library EEdithLib

{

importlib(STDOLE_TLB};

importlib(STDTYPE_TLB);

typedef enum

{

(helpstring({“Flat’}] Flat = 0,

fhelpstring(*3D")] ThreeD = 1

} enumAppearance;

typedef enum

{

NFLE 1009 - Page 197

NFLE 1009 - Page 198

semenOCMCILARAENOENEONCUNUNTNeSLNNNNTCT

4

___Subclassing Windows Controls + 489

: fhelpstring("None”)] None = 0,

' [helpstring ("Single”)]. Single’=1
} enumBorderstyle;

“typedef enum

thelpstring (“SetFocus”)]} SetFocus’ = 0;

{helpstring (“DisplayMsgBox”) |. DisplayMsgBox =. 1,
{helpstring (“FireEvent”)]. PireBvent.=-2

} enumValidateAction;

// Primary dispatch interface for CEEditCtrl

[uuid (D5F64C94-D2F1-11CE-869D-08005A564718)

helpstring(“Dispatch interface for Eedit Control”), hidden]

dispinterface _DEedit

{

properties:

// NOTE - ClassWizard will maintain property information here.

//

//{A

id(D

id(D

id(D

id(D

id{D
id({3

Use extreme caution when editing this section.
FX_ODL_PROP (CEEditCtr1)

id (DISPID..APPEARANCE)})... bindable, requestedit] enumAppearance Appearance;

SPID_BACKCOLOR), bindable, requestedit] OLE_COLOR BackColor;

id(DISPID_BORDERSTYLE), bindable, requestedit] enumBorderStyle BorderStyle;

SPID_ENABLED}, bindable, requestedit}] boolean Enabled;

SPID_FONT), bindable] IFontDisp* Font;

id(DISPID_FORECOLOR), bindable, requestedit] OLE_COLOR ForeColor;

SPID_HWND)] OLE_HANDLE hwnd;

SPID_TEXT), bindable, requestedit] BSTR Text;

id(1)]° enumValidateAction. ValidateAction;

id(2)] short MaxLength;
}] boolean AutoScroll;

//}}AFX_ODL_PROP

a

The ODL enum keywordis similar to the one used with C and C++ except that each value can have associ-
ated with it additional attributes. For our purposes, the helpstringattribute provides a way to associate a
textual description with the property value. Good property browsers will query these values from the con-
trol (from its type information) and display them to the control user whenselecting a value for an enumer-
ated property. Figure 10.5 shows our ValidateAction property and its enumerated types in Visual Basic’s
properties window.

NFLE1009 - Page 198

NFLE 1009 - Page 199

49Oo + CHAPTE R 1 O surrisenesesnetourntntnoutetesinsetpsscstssaieintnaenteneiyssusnawietoiiauapinensttinnsettetiieaetnianiestmMcimtireititeessing

About)
(Custom)
Appearance

fauloscol Tue
BackColor __.. SH8OG0B00F&
BordeiStyle 0: None
Dragicon (None)
Dragtode foManualEnabled Te

Height 285
HelpContextID oOladex :
Left AA30 ae
MaxLength A)
Name BEd
Tabindet 8
TabStep _. Tye
Tag :
Text

 WhatsThisHelplO
th

|

conn font

t

|

|

Figure 10.5 validateAction property and its enumerated types.

Wealso need to provide this enumerated property functionality in our control’s custom property page.
We'll dothat next.

As wediscussed in Chapter 8, not all development environments that support ActiveX controls will provide
a nice property browser. We need to provide, via our control’s custom and stock property pages, the neces-
sary interface to allow a user to changeall our control’s properties. The ActiveX control standard specifies
that property pages for controls can be either 250x62 dialog units (DLU) or 250x110 DLUsin size. The
default size provided by Visual C++ is the smaller: 250x62 DLUs. For the EEdit control, we need to increase
the size of our custom property page to 250x110 by modifyingit in the Visual C++ dialog editor. Double-
click on EEDIT.RC and changethesizeof the control’s IDD_PROPPAGE_EEDIT dialog to 250x110 DLUs.

Next, add the following controls to the dialog for our stock and custom properties:

° IDC_ENABLED: checkbox

® IDC_APPEARANCE:droplist combo box

© IDC_BORDERSTYLE:droplist combo box

° IDC_TEXT: multiline edit field

® IDC_VALIDATEACTION: droplist combo box

e IDC_MAXLENGTH:single-line edit field

® IDC_AUTOSCROLL: checkbox

NFLE1009 - Page 199

NFLE 1009 - Page 200

_SubclassingWindowsControls + 491

When you'refinished, you should have something that looks like Figure 10.6.

Figure 10.6 Editing the custom property page.

Wenow need a waytolist the enumerated property values that we defined in our ODLfile. Because we
used droplist combo boxes,this is easy. Whenediting the styles of the droplist combo boxes, you can enter
the default items that will be displayed when the dialog box is loaded. All we needto dois to list the enu-
merated values in the sameorderthat they are declared. In other words, the item number within the combo
box should equate to the associated property value. Figure 10.7 shows the values as entered for our
ValidateAction property.

Figure 10.7 Setting the comboboxlist values.

You should also do this for the IDC_BORDERSTYLE combo box. Now that we have the enumerated types
defined in the dialog box, we need to ensure that the value is properly transferred to and from the control
whenthe property is being edited via the property page.

NFLE1009 - Page 200

NFLE 1009 - Page 201

AQ2 + CHAPTER 10°

ClassWizard will doall this for you. On the MemberVariables tab, for each control add an appropriate
membervariable. Use the Value category and be sure to enter the nameof the property in the Optional OLE
property namefile. This is shown in Figure 10.8.

Figure 10.8 Adding membervariables for the property page.

The following highlighted code shows the changes that ClassWizard makes to EEDITPPG.H and EED-
ITPPG.CPP.

// EEditppg.h

LELELELETTTTETTTTA TATA TATE ATTA ATAETAT ATTA ETAT ALY,

// CEEditPropPage : See eeditppg.cpp for implementation.

class CEEditPropPage : public COlePropertyPage

{

// Dialog Data

//{{AFX_DATA (CEEdi tPropPage)}

enum { IDD = IDD_PROPPAGE_EEDIT };

int.. m_sAppearance;

BOOL m_bAutoScroll;

int... msBorderStyle;

BOOL: mbEnabled;

int)m_sMaxLength;

cString’mstrText;

int. msValidateAction;

NFLE 1009 - Page 201

NFLE 1009 - Page 202

Subclassing Windows Controls + 493peirpinhcrancONHOIOSAateaa NaNRNETmiteNesiCitNthtNtCNttitnENTaitsiittttnmrieiamretunuitsetetbHet nenntrsseannennttiene

//}}AFX_DATA

// Implementation

protected:
virtual void DoDataExchange (CDataExchange* pDX); // DDX/DDV support

hi

PELELEEETELTAEET ETAL LLLELLA ETATAAA TAEALAELATAT A TL

// CEEGitPropPage: :CEEditPropPage - Constructor

CEEditPropPage: :CEEditPropPage()

COlePropertyPage(IDD, IDS_EEDIT_PPG_CAPTION)

//{{AFX_DATA_INIT (CEEditPropPage)

m_sAppearance = -1; " : :

m_bAutoSeroll = FALSE;

tm.sBorderStyle = -1;

m..bEnabled ‘= FALSE;

m_sMaxLength = 0;
mstrText:= “TON; sS

“m_sValidateaction Bend}
//} }AFX_DATA_INTT}

LELTLELTELTELLTAL TTT TAL ATTA AEA ATA ATTALLTEALALALA EL AAE A E A L

// CEEditPropPage: :DoDataExchange - Moves data between page and properties

void CEEditPropPage: :DoDataExchange (CDataExchange* pDX)

{

//{{AFX_DATA_MAP (CEEditPropPage)

DDP.CBIndex (pDx, IDC.APPEARANCE, .m-sAppearance,:--T (“Appearance”).);

DD¥_CBIndex (pbx, IDC_APPEARANCE, m_sAppearance);
DDP..Check (pD¥, IDC_AUTOSCROLL, ‘m’bAutoScrol1l, —T(*Autoserol1”"));

DD¥_Check (pbx, IDC.AUTOSCROLL; mbAutoSceroll) ;
DDP_.CBIndex (pDX,: IDC:-BORDERSTYLE,. misBorderStyle,).T(“BorderStyle”):.);

DDX..CBIndex (pDX, IDC_BORDERSTYLE, msBorderStyle) po
DDP.Check (pbx, IDC.ENABLED, ‘m_bEnabled,T(“Enabled”));

DDX_Check (pbx, .IDC_ENABLED, m_bEnabled)’;
DDP_Text(pDX, IDC_MAXLENGTH, m_sMaxLength, _T("MaxLength"));
DDKText (pbx, ‘IDC_MAXLENGTH, m_sMaxLength) ; eos
DDV_MinMaxInt (pDX,.msMaxbength, .0,-32000);

-DDP_Text (pDX, IDCTEXT, mostrText) oT ("Text"))3
DDE.Text (pDX;..IDC:TEXT;m-strText) ;

NFLE 1009 - Page 202

NFLE 1009 - Page 203

AQ4 + CHAPTER10

DDP_CBIndex(pDX, IDC_VALIDATEACTION, m_sValidateAction, _T(*“ValidateAction”));

DDX_CBIndex (pDX, IDC_VALIDATEACTION, m_sValidateAction);

//}JAFX_DATA_MAP

DDP_PostProcessing(pDX);

}

Most of this code should look familiar. The only new items are the DDP_CBIndex, DDX_CBIndex, and
DDV_MinMaxIntfunctions in the DoDataExchange method. The DDP_CBIndex function transfers (either

to or from) the value of the property page’s m_sValidateAction variable to the ValidateAction prop-
erty in the control. DDX_CBIndex uses the valueto set or get the index of the combo boxto that of the enu-
merated property value. These functions make it easy to handle enumerated properties as strings in the
property page and as shortsin the control. The DDV_MinMaxInt function restricts the values that can be
entered into the MaxValueproperty’s entry field. Figure 10.9 showsthe finished page.

Figure 10.9 Finished EEdit property page.

With our new EEdit control, it is easy to write an application that provides similar functionality as that of the
application we built with Visual C++ in Chapter 3. Using Visual Basic, we can create a similar application
with almost zero lines of code. On the accompanying CD-ROM,an application is provided that allows you
to test the various configurations of the EEdit control. Figure 10.10 showsthetest application.

NFLE1009 - Page 203

NFLE 1009 - Page 204

Subclassing Windows Controls + 495

Figure 10.10 Test application.

 rawing Your Controls the 3- indows 95 Way
Drawing your controls with the 3-D look of Windows95is fairly easy. When drawingthe control during the
design phase, you can use the Win32 DrawEdge function. For our EEdit control, the addition of the follow-
ing code to the DrawDesign methodwill draw a 3-D edge aroundthe contro! during the design phase:

#ifdef _WIN32

::DrawEdge(pdc->GetSafeHde(),

CRECT (rcBounds) ,

EDGE_SUNKEN,

BF_RECT | BF_ADJUST };
#endif

If you want your control to have a 3-D appearance at run time (and if it’s a control that has a window),
include the new WS_EX_CLIENTEDGE extended Windowsstyle bit in the PreCreateWindow method.This
bit is recognized only in Windows 95 and Windows NT 4.0. If you’re developing windowless controls, the
DrawEdge function makesit easy to draw 3-D-style images during the design phase and at run time.

ELETELTETLTTATETELELTAATT TTA ELT TAT ATLA AAA AAAATEEATTAETETATATAET AATAEA TTL

// CEEditCtrl::PreCreateWindow - Modify parameters for CreateWindowEx

BOOL CEEditCtrl: :PreCreateWindow(CREATESTRUCT& cs)

{

NFLE1009 - Page 204

NFLE 1009 - Page 205

A496 ~ CHAPTER 10seinaparntstinonteosassnmninessiintaviniaarsivocatnpiicciecnmtntpastiststsomcnamanriisisitnatitttttaaensetntsmitenininuettintintmnsititnbCitataethitinmitniameetitstaimtoispinesmoninateitiatetmtmmnenitinttlettertéteKtetg

cs.lpszClass = _T(“EDIT’);

cs.style |= ES_AUTOHSCROLL;

// Add 3-D support).under: Windows. 95

cs.dwExStyle |= WS_EXCLIENTEDGE;
return COleControl: : PreCreateWindow(cs) ;

}

If you need 3-D support on other platforms, the easiest way to add it is to use the standard 3-D support
DLLs (such as CTL3DV2.DLL and CTL3D32.DLL). This technique is described in detail in the Microsoft
Developer Network article “Adding 3-D Effects to Controls.” You should also read MFC Tech Notes 51 and
52, because you should not add 3-D effects to controls when running on operating systemsthat already pro-
videthis functionality (such as Windows 95 and WindowsNT 4.0).

Visual C++ versions 4.0 and higher handle drawing 3-D controls with the new Appearance prop-
£7. erty. It checks the version of the operating system and uses the appropriate method,either

|| WS_EX_CLIENTEDIT or DrawEdge,to provide 3-D support.

Subclassing the new Windows 95 common controls is just a little more involved that what we’ve done here
with the Windowsstandard controls. The primary trick is to know the Windowsclass names for the new
common controls. As we discussed previously, ControlWizard modifies the CREATESTRUCTclass in the
PreCreateWindow method. A list of control names and functionality is provided in Table 10.5. You can
obtain additional information by studying the COMMCTRL.H and RICHEDIT.Hfiles.

BOOL CYourCtrl::PreCreateWindow(CREATESTRUCT& cs)

{

cs.lpszClass =._T(.“SysTreeView32");

return COleControl: :PreCreateWindow(cs) ;

NFLE1009 - Page 205

NFLE 1009 - Page 206

Subcla sing WindowsControls+ AQF

Table 10.5 Windows 95 Common Controls

Cemmon Control Name Windows Class
Name to Subclass

Toolbar: A standard toolbar control. Provides tooltip support, dockability,
and automatic sizing.

Tooltips: A control that makesit easy ot implementtooltips not only for your
toolbar butalso forall the controls in your application.

Status bar: A controlthat providesstatus information. The status bar also
acts as a progress indicator.

Progress: A simple progress control. Usedto display the progress of a
lengthy process.

Track bar; Another namefora slider control. UpDown:

The UpDowncontrol is similar to a spin button control. It’s basically an
entry field with up and down buttons.

Header: An easier way to do headings for lists of items. A much better way
than using tabsinalistbox.

List view: An icon-container-like control that supports drag-and-drop.
Tree view: Provides a hierarchical and graphical view of your data.
Rich text edit: A controlthatis similar to the standard EDIT control but

provides RTF functionality.

HotKey: Allows a user fo enter a hot-key bytyping it on the keyboard
(e.g., Cirl+Shift+X).

Tab: Providesthe strip of tabs at the top of a standard tabbed
dialog, but doesn’t provide help with the page-switching, and so on.

Animate: A controlthat plays simple AVIfiles.

ToolbarWindow32

tooltips_class32

msctls_statusbar32

msctls_progress32

msctls_trackbar32

msctls_updown32

SysHeader32

SysListView32

SysTreeView32
RICHEDIT or RichEdit20A

msctls_hotkey32

SysTabControl32

SysAnimate32

ubclassines the Tree View Control

To demonstrate how to subclass one of the new Windows 95 commoncontrols, we'll subclass the tree view

control. It provides a hierarchical view of whatever the control user wants to provide. An example of a tree
view control is the Project Workspace viewer of Visual C++’s Developer Studio. The class,file, and resource
viewsall use the tree view control.

Our implementation won’t have all the features of the tree view ActiveX control that comes with Visual
Basic, but it will demonstrateall the techniques to create such a control. It won't be hard to add more func-
tionality to our basic control. You should be comfortable with ControlWizard by now,so create a new con-
trol project with the following characteristics:

NFLE 1009 - Page 206

NFLE 1009 - Page 207

498 + CHAPTER 10

e Namethe project TreeV.

° Take the default options, but be sure to subclass the tree view control. The class nameis
SysTreeView32.

e Add the Appearance, Enabled, Font, and hWndstock properties through ClassWizard.

MFCprovidesclasses that make it a bit easier to access the functionality of the Windows 95 commoncon-
trols. Instead of rememberingall the Windows messages (such as TVM_INSERTITEM), you can use a method
within the class (such as Insert Item). In the EEdit example, we used CWnd: : SendMessagewith the win-
dow messagesto affect the behaviorof the EDIT control. In this example, we'll use MFC’s CTreeCtr1 class.

Using the MFC Control Classes
Using MFCclasses soundslike a perfect solution. However, Visual C++ doesn’t make it as easy as it should
be. First, the project created with ControlWizard doesn’t include the common control headerfile, so we must
add it before we get started. Edit STDAFX.H and include AFXCMN.H:

// stdafx.h : include file for standard system include files,

// or project-specific include files that are used frequently,

// but are changed infrequently

#define VC_EXTRALEAN // Exclude rarely used stuff from Windows headers

#include <afxctl.h> // MFC support for OLE Controls

// Add common control support
#include <afxemn.h>

// Delete the two includes below if you do not wish to use the MFC

// database classes

#ifndef _UNICODE

#include <afxdb.h> // MFC database classes

#include <afxdao.h> // MFC DAO database classes

#endif //_UNICODE

Second, using the MFC control class within COleControl1 isn’t straightforward. When you’re subclassing a
control within COleControl, the HWND of the COleControl-derivedclass is actually the HWND of the sub-
classed control. In our case, this is the HWND of the tree view control. However, COleControl does not con-

tain the tree view-specific methods, so we can't directly use them. We could do something sneaky like this:

hItem = ((CTreeCtrl*) this)->InsertItem(&tvStruct });

Casting the COleControl-derived class to the appropriate control class works, but only because we’re
lucky. It works because the CTreeCtr1 implementation uses C++ inline methods. If MFC ever changesits
implementation to use standard C++ methods instead of inline, the preceding code will cause run-time pro-

NFLE1009 - Page 207

NFLE 1009 - Page 208

nentsssansiuierpecaboninsoanesapseseaeneinntisuniinannailasisiimmetetupiesuntiinhtirasiesietibitnitbensétsieSubclassing Windows Controls +499

tection faults. If casting is the only way to solve a problem, you should question whether there’s something
wrong with the approach.There usually is. We need another technique.

The best solution I’ve foundis to add a CTreeCtrl1 memberto our CTreeVCtr1 class. Then, if we can

somehow attach our subclassed HWND to this new member, everything will work great. There’s just one
problem: MEC maintains a list of HWNDs that are attached to CWnd-derived objects. The HWND for our control
was addedto the list when the CTreeVvCtr1 instance wascreated. We,therefore, can’t dothis:

int CTreeVCtrl::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

1£ (COleControl::OnCreate(lpCreateStruct) == -1)

return -1;

// TODO: Add your specialized creation code here

m:TreeCtrl.Attach(-this-};

}

Because the map already contains the HWND of the control, t
workaround I can find. First, add a handler for the WM_CRI

his code will cause an ASSERT. Here’s the best

TREEVCTL.H and TREEVCTL.CPP:

//

// TreevCtl.h : Declaration of the CTreevCtrl OLE contro

//

class CTreevCtrl : public COleControl

{

// Implementation

protected:

~CTreevCtrl ();

CTreeCtrl m_TreeCtrl;

di

//

// TreevCtl.cpp

//

CTreevCtrl::~CTreevCtrl ()}

{

// TODO: Clean up your control's instance data here.

m_TreeCtrl.m_hwWnd = 0;

EATE method. Then add the following code to

1 class.

NFLE1009 - Page 208

NFLE 1009 - Page 209

500+CHAPTER 10 _

int CTreevCtrl::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

if (COleControl: :OnCreate(lpCreateStruct) == -1)

return -1;

// TODO: Add your specialized creation code here

m_TreeCtrl.m_hwnd = m_hWnd,;

return 0;

}

Weaddaninstance of CTreeCtr1, but we don’t use the Attach or Create methodto create the window,

Instead, we assign the HWND of the COleContro1-derived class to the m_hwWnd memberof our CTreeCtrl
instance. This works just fine. However, we must ensure that the control won't be destroyed twice, so weset
the m_hwWnd memberto zero in the control’s destructor. Now that we've fixed that problem, we can start
adding somefunctionality through our new CTreeCtr1 member.

Wewort spend muchtime on the specifics of the tree view control. You can read the MFC documenta-
tion for the details. Instead, we'll focus on the issues of subclassing as we build the control. A tree view con-
trol needs an imagelist. An imagelist is a new Windows 95 commoncontrol that maintains a list of images,
either bitmaps or icons. Each item in the tree view is typically associated with one of the images maintained
in the list view.

The accompanying CD-ROM containsthe six .ICO files that we'll use in our control. You need to add
these to your project with the IDslisted in Table 10.6. You can quickly do this through Developer Studio’s
Insert/Resource/Import menuitem. Be sure to add the icons in the order shown in Table 10.6. The imagelist
insertion code requires that the icon IDs are consecutive.

Table 10.6 .ICO Files in the Tree View Control

Resource Symbol_Filename
IDI_AUTHOR AUTHORI.ICO

IDI_AUTHOR2 AUTHOR2.ICO

IDI_NOTE NOTE.ICO

IDI_BOOKS BOOKS.ICO

IDI_BOOK BOOK.ICO

IDI_CARDFILE CARDFILE.ICO

Weneed an instance of MFC’s imagelist control, CImageList, within our CTreevCtr1 class. Wefill the
image list with our icons and then pass thelist to the tree view control. The following code demonstrates
this:

NFLE 1009 - Page 209

NFLE 1009 - Page 210

//

// TreeVCtl.h :

//

Declaration of the CTreeVCtrl OLE control class.

class CTreevCtrl

{

: public COleControl

// Implementation

protected:
~CTreeVCtrl();

Subclassing WindowsConirols + 501

CTreeCtrl m_TreeCtrl;

CImageList.... m.ImageList;

void CreateImageList();

hi

//

/{ TreeVCtl.cpp : Implementation of the CTreevctrl OLE control class.

//

yoid CTreeVCtrl::CreateImagebist ()

{.

| moImageList.Create (32,32, FALSE, 6; 0°);

f/-Set the background mask: color. to: white.

mTmageList.SetBkColor(RGB(:255,.:255,-255.)) 3

for(int i-=°0;.4.<) 6; i++.)

{
HICON hIcon =": ;LoadIcon (. AfxGetResourceHandle(),

MAKEINTRESOURCE(.: IDIE_-AUTHOR + i))3

m:ImageList .Add(hicon®}:; :
}

ASSERT (m-InageList GetImageCount() == 6);

//- Set the image list for: the tree

m_TreeCtrl. SetImagebist (sm:ImageList: TVSILNORMAL.);

} : : :

int CTreevCtrl: :OnCreate(LPCREATESTRUCT lpCreateStruct)
{

NFLE 1009 - Page 210

NFLE 1009 - Page 211

502 ~@ CHAPTER 10

if (COleControl: :OnCreate(lpCreateStruct) == ~1)

return -1;

// TODO: Add your specialized creation code here

// Set up the HWND for our embedded CTreeCtrl instance

m_TreeCtrl.m_hWnd = m_hWnd;

CreateImageList ();

return 0;

}

In the preceding code, we create an instance of the imagelist control, setting the image size to 32x32 pixels.
Wespecify that no mask will be used and indicate that the initial size of the list is six images. The call to
CImageList: :SetBkColorsets the backgroundcolor of the images to white, whichis the color I used for
the backgroundof the images. Next, we loop through and load the six icons and add each oneto the image
list. Finally, we associate the image list with the tree view control.

Our simple tree view control has only four custom properties. Using ClassWizard, add the following
custom properties. Use the Get and Set implementation technique and add the appropriate implementa-
tion variables to TREEVCTL.H.

e HasLines: Boolean, m_bHasLines

e HasLinesAtRoot: Boolean, m_bHasLinesAtRoot

® HasButtons: Boolean, m_bHasButtons

e IndentSize: long, m_lIndentSize

Here’s the code from TREEVCTL.H:

//
// TreevCtl.h : Declaration of the CTreeVCtrl OLE control class.

//

class CTreevCtrl : public COleControl

{

DECLARE_DYNCREATE (CTreevCtr1)

// Implementation

protected:

~CTreevCtrl1();

CTreeCtrl m_TreeCtrl;

CImagelist m_Imagehist;

NFLE1009 - Page 211

NFLE 1009 - Page 212

oo._SubclassingWindows Controls + 503

CreateImageList ();

melIndentSize;

mbHasLines; m_bHasButtons;
m_bHasLinesAtRoot ;

di

Whenweinitially created the control with ControlWizard, it added the following code:

BOOL CTreeVCtrl1: :PreCreateWindow(CREATESTRUCT& cs)

{

cs.lpszClass = _T("SysTreeView32");

return COleControl: :PreCreateWindow(cs) ;

}

As you mayrecall from the EEdit example, we can set up any additional window styles here in
PreCreateWindow. There are several styles specific to the tree view control, and I've listed them in Table
10.7. To start, we'll use the TVS_LINESATROOT, TVS_HASBUTTONS, and TVS_HASLINESstyles, which map
directly to three of the properties we added.

BOOL CTreeVCtrl1: :PreCreateWindow(CREATESTRUCT& cs}

{

if (m_bHasbLinesAtRoot)

cs.style |= TVS_LINESATROOT;
1£ (.m_bHasButtons)

cs.style |= TVS_HASBUTTONS;
if: (m_bHasLines.)

cs.style [= TVS_HASLINES;

cs.lpszClass = _T(*SysTreeView32");

return COleControl: :PreCreateWindow(cs);

NFLE 1009 - Page 212

NFLE 1009 - Page 213

S04 + CHAPTER 10

Table 10.7 Styles of the Tree View Conirol

Siyle Description

TVS_HASLINES Displaylines linking children to their parents.

TVS_LINESATROOT Displaylines attached to the rootitem.

TVS_HASBUTTONS Show plus sign “buttons” to expand and contract the hierarchy.

TVS_EDITLABELS Allow theuserto edit the text associated with each item in the control.

TVS_SHOWSELALWAYS Showthe selected item evenafter the control loses focus.

TVS_DISABLEDRAGDROP_Disable begin drag notifications.

Weset the appropriate window styles based on the value of our properties. The default value for each prop-
erty is TRUE. Here’s the code needed to make the property values persistent. The PX function for the
IndentSize property is also provided. ,

void CTreeVCtrl: :DoPropExchange (CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange (pPX);

// TODO: Call PX_ functions for each persistent custom property.

PX_Bool(pPx, _T(“HasLiries”),;*m_bHasLines, TRUE.);

PX.Bool (PX221 (*HasLinesAtRGot’” } omibHashinesatRoot; TRUE-);

PX_Bool (DPX; T(-“HasButtons’), m_bHasButtons, TRUE);
PRLong (-pPK, TT (“IndentSize! My milindentsize; Oy}

}

The newer Windows95 controls support changing styles at run time using the SetWindowLong API func-
tion. For each of our “Has” properties, we'll use this function to update the control at run time.It’s simple.
Here’s the code for the HasLinesproperty:

BOOL CTreeVCtrl: :GetHasLines ()

{

return mibHasLines;

}

void CTreeVCtrl: :SetHasLines(BOOL bNewValue)

{

if (GetSafeHwnd()..== 0.)

return;

m_bHasLines = bNewValue;:.

DWORD: dwStyle. =: :GetWindowLong (. mhWnd. GWL:STYLE.) ;

NFLE1009 - Page 213

NFLE 1009 - Page 214

“einenepeeSubclassingWindows¢ Controls >S05
£ at (lunbHasbines:)
Gc

‘dwStyle g= ~TVS_HASLINES;

- ::SetwWindowLong(mhWnd; GWLULSTYLE,.dwStyle..);

 dwStyle [= TVS_HASLINES;
::SetWindowLong(m_hWind, GWL_STYLE, dwStyle);

/ LeForcea redraw andupdate any browser.
. SetModifiedFlag O:
‘BoundPropertyChanged (dispidHasLines);

}

When the property is updated, wefirst make sure that we can get a valid HWND.If we can’t get an HWND,
we’re probably in design mode, which isn’t a problem. Then we use the GetWindowLong function to
retrieve the existing windowstyle bits. We check the new value of the property and either turn on or turn off
the TVS_HASLINES style. Next, we invalidate the control to force a repaint and call
BoundPropertyChanged to update any attached browsers. This same approachis used for each of the
“Has” properties. With a few Copy/Paste commands, you should have the other methods working in no
time. The IndentSize property isn’t muchdifferent:

void CTreeVCtrl::SetIndentSize(long nNewValue)

{

ii -(GetSafeHimd() == 0°)"
return;

: molIndentSize = nNewValue;
aTreeCtrl.Setandent(mlIndentSize.);
 af / Force aredraw and update anybrowser

SetModifiedPlag:Os
: BoundPropertyChanged(dispidindéntSize):

)

Instead of setting windowstyle bits, we call the SetIndent method of CTreeCtr1 to set the new indent
value. Now the control user can change the style of our tree control at both design time and run time.
Because the new controls support changing these styles at run time, there’s no need to worry about saving
the state of the control, calling RecreateControl, and then restoring the earlier state. This approach
makes changing styles much moreefficient.

NFLE 1009 - Page 214

NFLE 1009 - Page 215

506 + CHAPTER 10

To finish the control, let’s add someitemsto the tree view. Typically, you would expose a method from
the control that would allow the control user to add items to the view, but for our example we'll add them
within the control. First, we need an AddItem method:

HTREETTEM CTreevCtrl: :Additem(. HTREEITEM hParent,
HTREEITEM hAfter,

LPSTR. szText,

int -.iImage,

int iSelImage)

| HTREELTEM hitem;

“TVINSERTSTRUCT tyStruct;

tvStruct item:mask = TVIFTEXT | EVEFLIMAGE: | --TVIF_SELECTEDIMAGE;
tvStruct Parent = hParent;

tyStruct :hinsertAfter = hatter;

tvStruct -item.ilmage = ilmage;
tyStruct.item.iSelectedImage =-iSelimage;

‘tvStruct.item.pszText-=.szText;

“tyStruct-item.cchTextMax = strlen(seText::)j

hitem= m_TreeCtrl.Insertitem(etvStruct);

“return (hitem);
t

This method takes as a parameter the parent item, the item after whichit should beinserted, the text associ-
ated with the item, the nonselected image, and finally the image to use when the item is selected. The imple-
mentation is straightforward. Wefill out the tree view TV_INSERTSTRUCTstructure andcall the
InsertItem method. This action adds the specific item to the tree view.

Earlier, we added the item icons to the project and inserted them into an image list control. Whenever
we addan item, we provide the index value of the image that we want associated with that particular item.
This is tricky, because when a resource is added by Visual C++,it assigns the ID. I’ve added an enumerated
type to the CTreeVCtr1classto ease the task of managing the IDs:

//

// TreeVCtl.h : Declaration of the CTreeVCtrl OLE control class.

//

class CTreevCtrl : public COleControl

{

// Constructor

public:

CTreevCtrl();

NFLE1009 - Page 215

NFLE 1009 - Page 216

_Subclassing WindowsControls + 507aCe sveapnnisenecnaNTseamensuniincornmanatetsii paniesstnnanssinenesiiices

enum

ICON,AUTHOR,

ICONAUTHOR2,

ICON_NOTE,

ICON.BOOKS,

ICON_BOOK,

ICON_CARDFILE,

Ve

hi

The next method inserts a series of items into the control using the AddItem method.Foreach item that we
insert, we provide the following:

e Ahandle to the parent item or zeroif there isn’t one.

e A handleto theitem to insert before. In our case, we use the TVI_SORT symbol, whichindicates that
the control should just sort the items. ‘

° Thetext to display for the item.

° An index into the imagelist control specifying the image to associate with the item.

° Anindex into the imagelist control specifying the image to use whenthe item is selected.

EMLELT ELTALLL

// Rdd some. test: items

 TLLTELAT
BOOL CTreeVCtrl::TestItems ()
€

| HPREEITEM hParent, hchildl, hchild2;

 //-Insert: the root: object

hParent = AddItem (0, TVI.SORT,

“Authors”, ICON.CARDFILE,

ICONCARDFILE };

// Insert the authors, their books,..and: magazines

hchildl = AddItem(hParent,.TVISORT,

*“Charles::Petzold”,: ICON:AUTHOR,

ICON,AUTHOR2™:):;

hChild2 = AddItem(hChild1,.: TVI_SORT,

“Books”, _ICON_BOOKS,.ICON_BOOKS:);

NFLE1009 - Page 216

NFLE 1009 - Page 217

508 + CHAPTER 10

AddItém(: hChild2)-TVI.SORT;

*Programming Windows. 3.1;<.Third Edition”,

TCONBOOK, ICON.BOOK -)-7

AddItem (hchild2;,-TVISORT,

“Programming The 08/2 Presentation Manager”,
ICON.BOOK, ICONBOOK) 7

Additem(hchildl, TVI_SORT,

“Articles”, ICONNOTE, ICONNOTE };

hChildl = AddTtem(hParent, TVI_SORT,
“Mark Nelson’, ICONAUTHOR,

TCON_AUTHOR2) ;
hChild2:= Addiltem(hChildl, TVESORT;

“Books”, ICOMBOOKS, ICONBOOKS);
aAddItem(hchild2, TVI_SORT,

“C++) Programmers Guide to the STL”).

ICONBOOK, “ICONBOOK);
AddItem(: hChild1; -TVI_SORT,

“Articles”, ICONNOTE, ICON_NOTE);

hchild): =-AddItem(:hParent; TVE_SORT,
“Jeffrey Richter", ICON_AUTHOR,
ICON_AUTHOR2);

hChild2 = Additem(hChildl, TVI_SORT, _
“Books”, ICON_BOOKS, ICON_BOOKS

AddItem(hchild2, TVI.sorT,
‘Windows 3.1: A Developer's ‘guide’,
ICONBOOK, ICONBOOK);

AddItem(hchildl, TVI_SORT,

“articles”, ICONNOTE, ICON_NOTE);.

return TRUE;

}

Once you've added these methods, build the project andinsert it into your favorite container. You should
see something like Figure 10.11.

NFLE 1009 - Page 217

NFLE 1009 - Page 218

SubclassingWindows Controls +509

Windows 3.1: A Developer's Guide

Figure 10.11 Our subclassed tree view control.

The Property Page
Addingthe code for the property page is easy, and we've doneit several times before. Take a look at Figure
10.12 and build one similar to that. Actually, there isn’t any code to write. ClassWizard does everything for
you. However, you need to-add the enumerated properties for the appearance property to CTREEV.ODLin
order make your property page more robust. You may also want to add componentcategory supportso that
you can embed the control in Internet Explorer. All this is implemented in the example control on the
accompanying CD-ROM.

Figure 10.12 Ourtree view control’s property sheet.

NFLE 1009 - Page 218

NFLE 1009 - Page 219

STO+CHAPTER 10 _

Summary
Our focus in this chapter was on the subclassing of standard controls provided by the Windowsoperating
system. Subclassing is an effective way of reusing existing functionality provided by standard controls.
Reuse by subclassing works by intercepting messages meant for the original window procedureofthe stan-
dard control and then either discarding or modifying the messages. This is a common technique for devel-
oping applications in C using the Windows SDK.

Windowsprovides six standard controls and Windows 95 provides an additional 10 commoncontrols, all
of which can be subclassed. To subclass a control, we override the COleControl: : PreCreateWindow

method and modify the CREATESTRUCT with the class name of the control being subclassed. We can make
additional modifications to the control in the PreCreateWindow method. A control'sstyle bits affect the behav-
ior of the control. Certain style bits can be set only before the creation of the control window,and others can be
modified after the window is created. We looked at both types. COleControl: :RecreateControlWindow
provides an easy way to modify style bits that can be set only before the windowis created.

Subclassed controls expect to have a parent window that helps in the managementof the child control’s
environment. ActiveX controls do not have a parent window,because they are stand-alone windowsinserted
within a container. The ActiveX control standard specifies the need for a reflector window to reflect messages
intended for the parent window backto the child window.In this regard, the child windowactsalsoasits par-
ent and so is in control ofall its messages. One set of messages sent by a subclassed controlis its notification
messages, whichsignify that events have occurred. When a notification message is reflected back to the control,
it fires an OLE eventto alert the control user. Handling the coloring of the control also requires working with
reflected messages, particularly the WM_CTLCOLOR* messages. These messages, normally sent to a parent dialog
window,contain instructions on thecolors to use for painting the child control. By respondingto thereflected
WM_CTLCOLOR* messages, an ActiveX controltells itself how it should be colored.

Oneof the problems of control subclassing is the difficulty of providing a good design-phase represen-
tation of the control. With a little thought, you can handle this problem. In many situations, a control’s
design-phase representation is not nearly as important as its run-time representation. You mayalso need to
provide your own metafile representation of the control.

The best wayto set default values for your control's property valuesis to provide a default value to the
property exchange functions in the DoPropertyExchange method. In some cases, you may also have to
set default values in the control’s OnResetState method.

After you have subclassed a standard control, it is easy to intercept messages using the MFC message
map functionality. To intercept a message, use ClassWizard to add a handler for the message. Thendiscard,
handle, or modify the message in the handlercode.

You can enumerate property values for property browsers by adding an enumerated type with the
associated helpstrings to your control’s .ODL file. To add support for enumerated properties in your
control’s custom property page, use a droplist combo boxthatis prefilled with the textual representation of
the enumerated property. The DDP_CBIndex function makes it easy to convert and transfer the property
values to and from the control.

Property pages can be one of twosizes: either 250x62 or 250x110 dialog units (DLUs). You can use the
DrawEdge function, the WS_EX_CLIENTEDGE windowstyle, and MFC’s stock Appearance property to
provide a 3-D appearance for your controls.

Using MFC’s Windows95 control classes within your own controlsis fairly easy to do. By subclassing
the new commoncontrols, you can quickly take advantage of the features provided by these controls.

NFLE 1009 - Page 219

NFLE 1009 - Page 220

LAINOERTOETEOLNRSL RECALLTELBLEOSESEECELEGECEESPEIESEOTELLELEEAUEEODTEEDELLEEEDL

 nvisu

We've covered two of the three broad types of ActiveX controls: graphical controls and controls that sub-
class existing Windowscontrols. In this chapter we will investigate the design and use of nonvisual ActiveX
controls, which provide their functionality without providing a visual element.

To illustrate how easy it is to build a simple client/server application with ActiveX controls, we will
develop a control that provides Win32 named pipes services, allowing a visual tool user to create applica-
tions using Win32 named pipes. The details of interacting with the API functions will be contained within
the ActiveX control, and the control user will need just a handful of properties and methodsto build appli-
cations using named pipes.

oals of Nonvisual Controls

The goals of a nonvisual control are similar to those that we’ve described for components in general. The
goal is to build controls that encapsulate the complexity of a problem and expose a more user-friendly way
of interacting with that problem. We demonstrated this in the first half of the book by converting the
Expression C++ class to an automation component. By exposing only four expression methods, we made
it easy for a component user to harness the expression evaluation capabilities of our C++ class. In Chapter
10, we converted the Expression component to work as an ActiveX control. We could also convert the
Expression componentto a nonvisualcontrol, but let’s do somethinga little more interesting.

The example control we'll develop uses the Win32 pipes API. Pipes provide a way for processes to share
information easily. Interprocess communication with pipes can be used between processes on a single, local

S11
NFLE1009 - Page 220

NFLE 1009 - Page 221

512 ¢ CHAPTER11sansnarniantntSUBLET DnSSSEPCOMSONSULARRNINMLCESNONTOOHOIOUSEAEROE EUNIRONCNNNNttt

machine or between processes that are on separate, or remote, machines. We'll briefly cover the features of
Win32 pipes. For a more detailed look at pipes and other interprocess communication and networking tech-
niques available under Win32, see Mark Andrews’s book, C++ Windows NT Programming (second edition,
M&T Books, 1996).

Two fundamental pipe types are supported by Win32. Anonymous pipes provide only one-way commu-
nication between processes, do not support network communication, and are typically used by processes
that have a parent-child relationship. Named pipes allow both one-way and two-way communication
between processes and support communication between processes on local and networked machines. Our
example control will use namedpipes.

Named Pipes
Named pipes provide client/server—style communication techniques. The server process initially creates a
namedpipe by calling the CreateNamedPipe function. This action creates a named pipe instance with a
unique nameandallowsclient processes that know the nameof the pipe to connectto, and begin conversing
with, the server process. The client process uses either the CreateFile or the CallNamedPipe function to
connect to the pipe created by the server process. Many pipe-based applications support the connection of
multiple client processes to a single server process, the typical configuration of client/server applications.
For our example control, the server will allow a connection only from oneclient processat a time.

Message Types
Namedpipes support two different message-processing models. A message between processes can be han-
dled as a byte stream or as message unit. The various pipe API functions take parameters that specify the
read and write modefor the specified pipe. For our purposes, we will use the message-based mode of opera-
tion for our pipe control. Data sent via the WriteFile function will be sent and read as a unit by both the
server and theclient processes. This is the most effective method of sending messages that have an inherent
structure. The byte stream modeis useful for passing unstructured data between processes.

Asynchronous versus Synchronous 1/0
Namedpipes support two methodsof performing I/O. Asynchronous I/O allowsthe process to start a read
or write operation and then to continue with other tasks. When the read or write operation completes, the
processis notified, usually via a semaphore, that the operation has completed. The process can then obtain
and use the data from the read operation or free the data used in the write operation. Asynchronous opera-
tion requires the use of threads under Win32. Supporting multiple threads in an ActiveX control is beyond
the scope ofthis book, so we will use a hybrid approach for our control.

Synchronous operation is easier to understand and is how wetypically develop programs. When we
make a function call, the program waits until the function operation is completed before returning. This is
the single-thread-of-execution model that we use when wedevelop most programs. To provide support for

NFLE 1009 - Page 221

NFLE 1009 - Page 222

Nonvisual Controls 513

pipes in ourcontrol, we'll simulate the existence of a thread for our server’s pipe. We will use a Windows
timer and the PeekNamedPipe function to simulate this process.

Pipe Names
Pipe names must be uniqueto distinguish them from other named pipesin the system. They do not haveto
be unique networkwide, because pipe names are qualified with the server’s name in a networked environ-
ment. Pipe namesare not case-sensitive and can be as many as 256 characters in length. Here is the format of
a pipe name:

\\servername\pipe\this.is.a.pipe.name

The first part of the pipe nameis the network nameofthe server’s machine. On Windows NT and Windows
95, the name of a networked machine begins with “\\” followed by the machine’s name. The “\pipe” part
of the name is required and specifies the global area for pipe names on the machine being addressed.
Finally, the text following “\pipe\” gives the unique nameof the specific pipe: “this.is.a.pipe.name.”

A fully qualified pipe namefor a pipe on a local machineis as follows:

\\.\pipe\this.is.a.pipe.name

The single dot (’.”) is shorthand for the local machine name. When you're developing applications that use
pipes for local machine interprocess communication,thisis all that is required. This approach is much better
than hard coding the local machine’s name, because it will change as you move your applications to other
machines. Table 11.1 lists the named pipe functions that wewill use in our PIPE control.

Table 11.1 Win32 Named Pipe API Functions

Function Purpose

CreateNamedPipe Used bythe server process to create an instance of a namedpipe. The name ofthe pipeis
provided as a parameter. Clients cannot connect to a named pipe until it has been explicitly
created bythe server process.

CreateFile Used byclient processes to connect to a named pipe. The pipe name passed may contain a
network pathnameallowing the intermachine communication.

ConnectNamedPipe Used bythe server process to waitfor a client process to connectfo the pipe.

CallNamedPipe This function is a helper function for client processes.It encapsulates multiple calls into one.It
connects to a pipe, waiting if necessary, and then writes to and readsfrom the pipe.It then
closes the pipe.

WaitNamedPipe Used bytheclient to wait for an instance ofthe pipe to becomeavailable. The wait time can
beinfinite or the default value used in the CreateNamedPipefunction.

DisconnectNamedPipe Closes the server end of the pipe.If a clientis still connected to the pipe, an error will occur
whenit next accessesthe pipe.

NFLE 1009 - Page 222

NFLE 1009 - Page 223

S14 @ CHAPTER 11

Table 11.1 Win32 Named Pipe API Functions (continued)
 Function Purpose

PeekNamedPipe Copies data from a pipe without actually removing it and also returns information about the
pipe.

ReadFile Readsdata from a pipe.

WriteFile Writes data to a pipe.

CloseHandle Closes a pipe handle, which closesthe pipe.

 Creating the Pipe Control Project
Start Visual C++ and ControlWizard andcreate a new control project. Call it Pipe and use these options:

e In the Step 1 of 2 dialog box, take the defaults of No License, Yes, comments, and Nohelpfiles.

e In Step 2 of 2, take all the defaults except one. Be sure to check the Invisible at runtime option.
° Click Finish and create the control.

The only new item that we checked is the Invisible at runtime option. This option adds the
OLEMISC_INVISIBLEATRUNTIME flag to the control's MiscStatusflags stored in the Registry. This flag
tells the container that the control will be visible only during the design phase.

 rawing the Control
All that’s needed during the design phase is a simple representation of the control. It’s easy for the control
userto select the control by clicking on its representation, gaining access to the control’s properties, events,
and methods. Add the following code to the PIPECTL.CPPfile. Weset the initial size of the control and ini-
tialize the pipe’s handle in the control’s constructor.

FEETATLTTETTTTATATTTATT TTT TATA DATTA AAT AAT AEE ATA AAT A A A AL

// CPipeCtrl::CPipeCtrl ~ Constructor

CPipeCtr1l::CPipeCtrl()

{

InitializeIIDs(&IID_DPipe, &IID_DPipeEvents};

// Set the control’s initial size

SetInitialSize(28, 26 };

}

FLPELLTTATTTTELAATTTT TATTLE AATETATATA TATA TATA AAT

NFLE 1009 - Page 223

NFLE 1009 - Page 224

Nonvisual Controls + 515

// CPipeCtrl::OnDraw - Drawing function

void CPipeCtr1: :OnDraw(

cbc* pdc, const CRect& rcBounds, const CRect& rcInvalid)

cBitmap. bitmap;

BITMAP. bmp;

CPictureHolder, picHolder;
CRect. rceSrcBounds;

bitmap: LoadBitmap(° IDB_PIPE);

bitmap .GetObject (sizeof (BITMAP) , &bmp.);
reSrcBounds. right ‘= bmp: bmwWidth;

rceSrcBounds.bottom = bmp.bmHeight;

aifdef _WIN32
:?DrawEdge (pdc->GetSafeHdc(),

CRect (.rcBounds:.);

EDGE_RAISED,

BF.RECT..| BF_ADJUST.);
#endif

picHolder .CreateFromBitmap (| (HBITMAP) bitmap.m_hObject; NULL, FALSE.);

picHolder. Render (pdc;rcBounds, rcSrcBounds’);

The preceding technique could be made more efficient by maintaining an instance of the control’s
bitmap in our class and using the Bit-B1t functions, as we did in Chapter 9, but I’m using this
method for two reasons.First, it introduces you to the cPictureHolder class. Second, the render-
ing of a nonvisual control occurs only during the design phase (hopefully a small percentage ofits
lifetime), so its rendering doesn’t really require the techniques used in Chapter 9.

Wediscussed in Chapter 10 most of what is shown here, with the exception of the CPictureHolderclass
that we will discuss in a moment. To provide a design-phase representation of the control, we use the con-
trol’s tool palette bitmap image. We use the CBitmap: : LoadBitmap methodto load the bitmap from the
control’s resource file. The GetObject methodretrieves information about a GDI object, and weuseittofill
this BITMAPstructure:

typedef struct tagBITMAP {

LONG bmType; «

LONG bmwWidth;

LONG bmHeight;

LONG bmWidthBytes;

WORD bmPlanes;

NFLE1009 - Page 224

NFLE 1009 - Page 225

S16 % CHAPTERITLASHEDOEEOOSRTOAMOLESUEERROENCHNANCNNCOTOONSher

WORD bmBitsPixel;

LPVOID bmBits;

} BITMAP;

Wethen draw a 3-D border aroundthe control using the DrawEdge function. The EDGE_RAISEDflag draws
the control as a raised button on the container. Next, we get the true size of the bitmap andstoreit in
reSrcBounds.Using our instance of CPictureHolder, weuse its CreateFromBitmap methodtoinitial-
ize the picture object with our control’s bitmap. We then renderthe control into the container’s device con-
text using the Render method. Figure 11.1 shows the PIPE control in the Test Container. You will need to
modify the control's tool palette image in the PIPE.RCfile.

 File Edit View Options Help

| S| 2/8) || |

—
oid

Figure 11.1 The pipe controlin the Test Container.

CPictureHolder

The CPictureHolderclass provides methods that makeit easy to manipulate and display bitmaps,icons,
and metafiles. It supplies an implementation of the OLE IPictureinterface that provides a uniform way of
working with picture type objects.

A CPictureHolder instance must be initialized to empty using the CreateEmpty methodor using
one of the three picture type initialization methods: CreateFromBitmap, CreateFromIcon,or
CreateFromMetafile. Onceinitialized, the item can be rendered into a DC by using the Render method.

The CPictureHolderclass can be used to provide Picture properties for your controls. When
you're adding a property with ClassWizard, one of the automation property types is LPPICTUREDISP. This
property allows you to include in your control an instance of CPictureHolderthat can be easily modified

NFLE1009 - Page 225

NFLE 1009 - Page 226

Nonvisual Controls * 517ntPEEAIELLOOLEDceaseinchesgeasstansmereeepcmanateeCNNA

py the control user. Visual C++ also provides a stock property page, PROPPAGEID(
CLSID_CPicturePropPage), that you can usein controls that use Picture properties.

OnSetExtent

Although the preceding code allows rendering of our control's bitmap to various sizes, expanding a bitmap
image doesn’t always produce a nice representation of the original bitmap. We’ll override the
onSetExtent method, as we did in previous chapters,to fix the size of the control’s representation. Notall
containers will honor the return of OnSetExtent, but the preceding rendering code handlesthesituation in
which the control user may size the control larger than we would like; it renders the image correctly, only
larger. Add the following code for the OnSetExtent method. We'll cover the changes to PIPECTL.H
shortly.

// pipectl.cpp

BOOL. CPipeCtr1::OnSetExtent(LPSIZEL lpSizeL)

t
cDC cde;

cdc.CreateCompatibleDc(NULL);

CSize size(28, 26);

cdc. DPtoHIMETRIC(&gize };

tt
lpSizebL->cx=size.cx;

IpSizeL->cy.= size.cy;

///Call the parent: implementation

return COleControl: :OnSetExtent(lpSizeL);

 ding the Pipe Functionality
The next few sections describe the various properties, methods, and events that we will add to the PIPE con-
trol’s implementation. To give you an idea of what you will see, we'll take a look at what we need to add to
PIPECTL.H. This will be quicker than showing a snippet of the .H file every time we need to add a new
membervariable or overriding prototype, and you'll get a quick introduction to what we'll be doing.
Following are the pertinentsections of PIPECTL.H:

// pipectl.h : Declaration of the CPipeCtrl OLE control class.

TTLTLLTTLLATTLTTTTLTTATAATATAT TATA AT TATAATA AAT AAA AAA ALAA EL

// CPipeCtrl : See pipectl.cpp for implementation.

class CPipeCtrl : public COleControl

NFLE1009 - Page 226

NFLE 1009 - Page 227

S18 ¢ CHAPTER 11

//

DECLARE_DYNCREATE (CPipeCtr1l)

Constructor

public:

/]

//

CPipeCtrl();

Overrides

virtual BOOL OnSetExtent(LPSIZEL lpSizeL };

virtual void OnSetClientSite();

virtual void OnFreezeEvents(BOOL bFreeze);

Implementation

protected:

hi

~CPipeCtr1();

void StartTimer (};

void StopTimer ();

BOOL CreatePipe();

void ClosePipe(};

void ReadPipe();

HANDLE: mhPipe;

CString. m_strPipeName;

short m_sPipeType;

int m_iFreeze;

CString “m_strError;

// PipeCtrl.cpp

CPipeCtrl: :CPipeCtr1{)

{

InitializelIDs(&IID_DPipe, &IID_DPipeEvents) ;

// Set the control's initial size

SetInitialSize(28, 26);

m_hPipe = 0;

m_iFreeze = Q;

NFLE 1009 - Page 227

NFLE 1009 - Page 228

trols + 519

Weoverride the OnSetClientSite method to create a window for our control. The OnFreezeEvents

method providesindications from the container about whether the control should fire events. We already
covered why weoverride OnSetExtent. ,

The member methods—StartTimer, StopTimer, CreatePipe, ClosePipe, and ReadPipe—are
helper functions used by the control’s exposed methods. m_hPipe is a handleto the pipe instancefor the
control. m_strPipeName, m_sPipeType, and m_strErrorare variables for properties exposed by the
control, and m_iFreeze holds the currentstate of the container’s Freeze state. All these will be discussed
in moredetail as we build the control.

 ng the
Our PIPE control requires only three properties. We don’t need any of the MFC stock properties, because
they are used primarily by visually oriented controls. Using ClassWizard, add the three properties discussed
next. The first, ErrorMsg, contains a text string of any errors that occur during processing. The second,
PipeName, contains the nameofthe pipe. The third, PipeType,indicates the modeof the control. Our con-
trol will have two general modesof operation, as indicated by the PipeType property. Each instance of the
control will operate as either a pipe server or a pipeclient process. ,

Errerivisg
The ErrorMsg property, type BSTR, is used to report to the user of the control a text error message. The
property is read-only, because it can only be queried and cannot be Set. The property is meaningful only
during the run phase of the container andso is also considered a run-time—only property.

To make a property read-only whenusing ClassWizard, you must choose the Get/Set method of imple-
mentation (which we always do) and then clear out the Set Function entry field. ClassWizard will add the
address of the SetNotSupportedfunction in the dispatch map:

TLLTTLTTELELTTTAT ELT ETATTATTLE ELTA ATAAAT AAT AT A AL

// Dispatch map

BEGIN_DISPATCH_MAP(CPipeCtrl, COleControl)

//{{AFX_DISPATCH_MAP (CPipeCtr1)

DISP_PROPERTY_EX(CPipeCtrl, “ErrorMsg”, GetErrorMsg, SetNotSupported, VT_BSTR}

END_DISPATCH_MAP()

The COleControl::SetNotSupported method is actually a helper function for the
COleControl: :ThrowError method, which we will discuss in more detail later. The SetNotSupported

method is implementedlike this:

void COleControl: :SetNotSupported(}

{

NFLE 1009 - Page 228

NFLE 1009 - Page 229

520 + CHAPTER 11paerennmey entessanienanpanrattreiTEStasentsereeisemlsrnanermnsttethtpecanetssittstalibantaalatoNaINtteetersottttttefanniegartrasrstiiteSmeettesscererintataatities

ThrowError (CTL_E_SETNOTSUPPORTED, AFX_IDP_E_SETNOTSUPPORTED);

}

This code reports the error to the container using the automation exception mechanism. You can also use
SetNotSupportedto provide a run-time—only implementation of a property:

void CYourControl::SetAProperty(short sNewValue)

{

// Tf not running report an error

if (! AmbientUserMode() }

{

// Throw the CTL_E_SETNOTSUPPORTED error

SetNotSupported();

}

// Go ahead and set the property value

}

Ina previous chapter we discussed the use of the ODL hidden keywordas a wayof hiding properties from
property browsers. Another methodis to check the UserModeof the container and,if it is not in run mode,
disallow the getting of a property’s value. As we described earlier, the ErrorMsg property should not be
displayed during the design phase andis valid only during run time. The code for our GetErrorMsg
method uses the GetNotSupported methodto enforce this requirement:

BSTR CPipeCtrl: :GetErrorMsg()

{

//: Most: containers*that provide property browsers (e.g. VB}
/fewill trap thisexception and: will: not display theproperty
// in the preperty browser. This is just what we want.
//, Tf we’re notin’ run:.-mode don't allow anyone toget the
// property's value. : bes
if (AmbientUserModé (}. ==. FALSE }

GetNotSupported();

return mistrError.AllocSysString();

}

GetNotSupportedis implementedjust like the SetNotSupported method.It throws a CTL_E_GETNOT-
SUPPORTEDexception.

NFLE 1009 - Page 229

NFLE 1009 - Page 230

Nonvisual Controls + 521ennNONCCNNCLCAAETTAONOLINTipetennant

PipeName
The PipeName property is of type BSTR and containsthefully qualified pipe namethat the control uses
whencreating or connecting to a pipe instance.It is the responsibility of the control user to provide the con-
trol with a valid pipe name. We could easily add rudimentary syntactic checking (such as ensuring the exis-
tence of “\pipe\”in the name), but I’ll leave that as an exercise.

BSTR CPipeCtrl: :GetPipeName()

{

|) -return m_strPipeName.AllocSysString();
}

void CPipeCtrl::SetPipeName (LPCTSTR lpszNewValue)

{

_ // 2f the pipe name ismodified during. run-time

a it will only cake effect the next time that either
- // aserver calls ‘Create’ or a client calls “Connect”
| mstrpipeName = lpszNewValue;

: BoundPropertyChanged(dispidPipeName);
SetModifiedFlag();

Pipelype
The PipeType property indicates the current mode of operation for the control. Its type is short but can
contain only two values: zero and 1. As we did in Chapter 10, we need to set up an enumerated type in
PIPE.ODL and modify the property’s type so that we can present a nice interface for containers whose prop-
erty browsers support enumerated property types.

// pipectl.cpp

short CPipeCtrl: :GetPipeType()

{

return m_sPipeType;
}

void CPipeCtrl::SetPipeType(short nNewValue)

{

“ff Don't allow setting ofthe property at run time
/i-Phis isn't absolutely necessary; but it's ‘an example

PCat a property that cannot be modified when’ running:

NFLE1009 - Page 230

NFLE 1009 - Page 231

522 + CHAPTER 11

// If you were to allow modification of the control’s mode

// during run time, we would have to ensure that any active

// pipe connections were cleaned up, and so on.

if. (AmbientUserMode().)

ThrowError(CTL_E_SETNOTSUPPORTEDATRUNTIME,

“You can’t change the PipeType property at runtime” };

m_sPipeType = nNewValue;

BoundPropertyChanged({ dispidPipeType);

SetModifiedFlag();

}

// pipe.odl

typedef enum

{

[helpstring(“Server”)] Server = 0,
u bE{helpstring(*Client’)] Client

} enumPipeType;

[uuid(96612B01-D79F-11CE-86A3-08005A564718)

helpstring("“Dispatch interface for Pipe Control”), hidden }

dispinterface _DPipe

{

properties:

// NOTE - ClassWizard will maintain property information here.

// Use extreme caution when editing this section.

//{{AFX_ODL_PROP (CPipeCtr1l)

[id(1)] BSTR PipeName;

[id(2)] enumPipeType PipeType;

(id(3)] BSTR ErrorMsg;

//}}AFX_ODL,PROP

he

For containers that don’t provide a nice interface to a conitrol’s properties, we need to provide one of our
ownvia the control's custom property page. Just as we did in Chapter 10, we'll use a dropdown combo box
to present the PipeType enumerated options in the control’s custom property page. A simple entryfield
will suffice for the PipeName property.

The following code showsthe additions to the property page implementationfiles. It’s best to add these
using ClassWizard, but you can add individually if you want to. We've also added an enumerated type to
PIPE.H so that we can useit throughoutthe project.

NFLE1009 - Page 231

NFLE 1009 - Page 232

_NonvisualControls +523

// pipe.h

#include “resource.h” // main symbols

typedef enum

{
il oaTypeserver
u BRTypeClient

} enumPipeType;

// pipeppg.h

LELELELTTTETTT LTTE TAT TATTLE TATEATLLATTA AEE ALTE

// CPipePropPage::CPipePropPage - Constructor

CPipePropPage: :CPipePropPage (}

COlePropertyPage(IDD, IDS_PIPE_PPG_CAPTION)

//{{AFX_DATA_INIT(CPipePropPage)

//}}AFX_DATA_INIT

.

// pipectl.h

LLETEETELELTLTLT TELLTALE TATTLE EAT AETAET TT TAEAET ATTA ET AT TE TTT

// CPipePropPage: :DoDataExchange - Moves data between page and properties

void CPipePropPage: :DoDataExchange (CDataExchange* pDX)

{

//{{APX_DATA_MAP (CPipePropPage)

//}}AFX_DATA_MAP

DDP_PostProcessing (pDX) ;

}

NFLE1009 - Page 232

NFLE 1009 - Page 233

S24 << CHAPTER 11

Weneed not include the ErrorMsg property on our control’s custom property page, becauseit is a run-
time-only property and does not needto be accessed during the design process (Figure 11.2).

Figure 11.2 The pipe control's custom property page.

Wheneveryou add properties to your controls, you should also ensure that they have default values and are
serialized using the DoPropExchange methodin the control’s implementationfile. In our case, this is
PIPECTL.CPP:

PELTELETTETETELEETAT TATTLE TATTLE ATAAAT EAALETAATAAEALEALAL

// CPipeCtrl::DoPropExchange - Persistence support

void CPipeCtr1l: :DoPropExchange (CPropExchange* pPX)}

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange (pPX) ;

// TODO: Call PX_ functions for each persistent custom property.

(/- Default: too *TypeServer”

PX_Short(PPX, .“PipeType”, m_sPipeType, TypeServer);
// Provide a default pipe name
PX_String(. pPX,. “PipeName”,.mstrPipeName, “\\\\.\\pine\\OCX.PIPE”..);

}

Again, because our ErrorMsg property is needed only at run time and has no default value or any persis-
tent state, there is no needtoserialize it.

NFLE 1009 - Page 233

NFLE 1009 - Page 234

_Nonvisual Controls + 525

 dding the
Because our PIPE control doesn’t have a visual element, most (if not all) of its functionality is provided
through the methods that it exposes to the control user. One of our goals is to hide the complexity of the
underlying API calls by doing much of the work within the control and exposing only a small number of
abstracted, high-level methods.

Our control's PipeType property indicates whetherit should act as a pipe server or a pipe client. To
make this interface easy to use, we provide methods that are specific to the modeof the control. If the con-
trol is configured to act as a server, the user must use the server-specific methods,andif it is configured as a
pipe client, the user must use the client-specific set of methods. The five PIPE methods—twofor a server
instance andthree fora client instance—are listed in Table 11.2.

Table 11.2 PIPE Control Methods

Method/Applicable Mode Purpose

Create (Server) The Create methodis used bya pipe server to create an instance of a pipe. The
nameofthe pipe is provided by the P.ipeNameproperty. Only oneinstance of a
pipe is supported percontrol.

Destroy(Server) The Destroy method is used by a pipe server to destroy the previous instance of a
pipe.

Connect (Client) The Connect methodis used by a pipeclient to connectto a server's pipe instance.
The nameofthe pipe to connectto is provided by the PipeNameproperty.

Disconnect (Client) The Disconnect methodis used bya pipeclient to disconnect from a server's
pipe instance.

Write (Client) The Write method is used by a pipeclient to send data to a server's pipe instance.
A Writeis not valid until the client has successfully connected to a server's pipe via
the Connect method.

Using ClassWizard, add the five methodslisted in Table 11.2 to the PIPE control. All the methods return
BOOL, and only the Write method requires a parameter. Write sends a message to the pipe server and
takes a parameter of type LPCTSTR. After you have added the methods, add the implementation code
described in the next few sections.

Greate

The Create method creates an instance of a pipe. A pipe control that is configured to behave as a server
uses this method to create a pipe that can be accessed bya client process. The nameof the pipe is provided

by the PipeNameproperty. Only one instance of a pipe is supported per control. The following code imple-ments the Create method:

NFLE1009 - Page 234

NFLE 1009 - Page 235

526 + CHAPTER 11

BOOL CPipeCtrl::Create(}

{

//. Clear any error message

m_strError,Empty(};

// Make sure we're the right type

if (msPipeType: != TypeServer :)

{

m_strError = *"Create’. should not be’ called from-a pipe Client’;

return FALSE;

// We've already create: apipe instance

if, (mhPipe)

m_strError ‘=.“A.Pipe’-has. already been created; use “Destroy”; and try again’;
return. FALSE;

//-L&-CreatePipe: fails;.it: will set

//: the ErrorMsg property,.so° all-we ‘have

//to.do:is.return FALSE..indicating:the error *.

if. (CreatePipe()) == FALSE)

return FALSE;

// Start. a timer. to: check: for: connections

//- and’ writes to the pipe
StartTimer ();

: return TRUE;
}

The Create methodfirst clears the ErrorMsg string. As you will see, we dothis at the beginning ofall the
automation methods of our control. This technique ensures that the error string is cleared every time the
user calls a method within the control. All our methods return a BOOL that indicates the success orfailure of

the method.If the method returns FALSE,the control user should check or display the ErrorMsg property,
which will contain the specific error. The following Visual Basic codeillustrates the error checking technique
that should be used:

If Not Pipe.Create Then

MsgBox Pipe. ErrorMsg
End If

Afterinitializing the error string, we check to ensure that the PipeType property is consistent with the
method being called. We also will do this in all the subsequent methods that wediscuss.If that check suc-

NFLE1009 - Page 235

NFLE 1009 - Page 236

 al Controls @ 527

ceeds, we check to see whether we already have a valid pipe handle. If we do, we again return FALSE along
with an appropriate error message.

Finally, we get to some functionality. Wecall the CreatePipe helper method that we will discuss in a
moment. If it is successful, we start a timer that we will use to periodically check the pipe for both connec-
tions and data. Wewill also discuss this timer in a later section.

Destroy
The Destroy method is used by a pipe server to destroy the previous instance of a pipe. A control config-
ured asa servertypically calls this method before shutting down.

BOOL CPipeCtrl: :Destroy()

{

/f/ Clear any. error’ message

m_strError. Empty ();

/f/ Make sure we're the: right’ type

if.-¢ msPipeType.! =. TypeServer’)

{

mstrError.=)."\Destroy’ should not..be called from: a pipe Client”;

return.FALSE;

}

ClosePipe();

StopTimer();

return: TRUE;

}

The Destroy method contains mostly error-checking code, which we’ve discussed previously. If all goes
well, we use the ClosePipe helper method and stop the timer. The Create and Destroy methodspro-
vide the interface for a control configured to act as a server. The next three methodsare specific to a control
that is configured as a pipeclient.

Connect

The Connect methodis used by a pipeclient to connectto a server’s pipe instance. The nameof the pipe to
connect to is provided by the PipeNameproperty.

BOOL CPipeCtrl::Connect (}

{

//. Clear: any. error. message

mostrkrror: Empty ();

NFLE 1009 - Page 236

NFLE 1009 - Page 237

528 + CHAPTER 11

// Make sure we’re the right type

if (m_sPipeType != TypeClient }

{

M_strError = *‘Connect’ should not be called with type set to pipe Server";

return FALSE;

if (mhPipe)

{

m_strError = “A pipe is already Connected’;

return FALSE;

}

// Attempt a connect to the server's pipe

m_hPipe = ::CreateFile(LPCTSTR(m_strPipeName },

GENERIC.WRITE,

0,

NULL,

OPEN_EXISTING,

FILE_FLAGWRITE_THROUGH,

NULL };

// An error returns. INVALID_HANDLE_VALUE

if (m_hPipe == INVALIDHANDLEVALUE.)

DWORD dwError = ::GetLastError();

switch(dwError.}

{

case ERROR_FILE_NOT_FOUND:

m_strError. Format(
‘Unable to open the specified pipe $s. Error is FILE_NOT_FOUND’,

LPCTSTR(mstrPipeName));

break;

default:

m_strError. Format(

“Unknown Error trying to open the specified pipe %s,. LastError is %d",

LPCTSTR(m_strPipeName),

dwError);

break;

NFLE 1009 - Page 237

NFLE 1009 - Page 238

Nonvisual Conirols + 529

}

/f- Reset the pipe handle:ta: zero

mhPipe ="0;

// Indicate an ‘error:.occurred

return: FALSE;

_ // Success

return TRUE;

}

Almostall the code is for error checking. The real work occurs in the CreateFile function call. See the
Win32 help file for specifics concerning the parameters of the CreateFile function. If CreateFile suc-
ceeds, we have a valid connection between a server's pipe instance and ourclient control.

Disconnect

The Disconnect methodis used by a pipeclient to disconnect from a server control’s pipe instance. As
mentioned previously, the client control can maintain only one connection to a pipe at a time and must dis-
connect before attempting to connect to anotherpipe instance.

BOOL CPipeCtrl: :Disconnect ()

{

/# Clear anyerror message

mstrError. Empty ()}

//-Make sure we're the right type

Lf. (mosPipeType” l= TypeClient).
{ f

: mstyvError = “ ‘Disconnect! should not be called from a pipe Server”;
return FALSE; : ‘}pee

// Closethe pipe ©
ClosePipe() i return TRUE;

NFLE1009 - Page 238

NFLE 1009 - Page 239

530 + CHAPTER11

This code contains the usual error checking andfinally a call to the helper function, ClosePipe, which does
all the work.For a client control, ClosePipe calls CLoseHand1lewiththe pipe’s handle.

Write

The Write methodis used by a pipe client to send data to a server's pipe instance. A Write is not valid
until the client has successfully connected to a server's pipe via the Connect method,

BOOL CPipeCtrl::Write(LPCTSTR Message)
{

// Clear any error message

m_strError.Empty ();

// Make sure we’re the right type

if (m_sPipeType != TypeClient }

{

m_strError = “‘Write’ should not be called from a pipe Server’;

return. FALSE;

// Make sure we have a valid pipe

if (mhPipe == 0)

{

mstrError = “Pipe: is not ‘Connected! ";
return FALSE;

//- Number of bytes written to the. pipe

DWORD. dwWritten;

//- Write tothe: pipe

BOOL bRet => ::WriteFile(:m_hPipe,

Message,

strlen(Message),

&dwwritten,

NULL);

// A FALSE return indicates an error

if (! bRet)

{

// Get the error number and fire the error event

DWORD dwError = ::GetLastError();

m_strError.Format(“Unable to write to pipe. LastError = %d",

NFLE 1009 - Page 239

NFLE 1009 - Page 240

_Nonvisual Controls 531

dwError };

//: Close. the.pipe

ClosePipe();

return::PALSE;

}

return TRUE ;
}

Again, this code is mostly error checking followed by the work. The WriteFile function takes the data
passed through the LPCTSTR Message parameter and writes to the pipe. If an error occurs during the
write, indicated by a FALSE return, we build an error message andassign it to the ErrorMsg property. We
then close the pipe and return FALSE.If all goes well, we return TRUE,indicating success.

Helper Methods
The preceding automation methods depend on a few internal helper functions. The CreatePipe and
ClosePipe methodsare described next.

The CreatePipe methodis called by the control’s Create method and also from the OnTimer
method that we will discuss in a moment. CreatePipe calls the named pipe API function
CreateNamedPipe with parameters that are appropriate for single pipe instance server. Parameters of note
include PIPE_TYPE_MESSAGE, whichindicates that the pipe will treat the data exchanges as type messages,
and PIPE_ACCESS_INBOUND, whichindicates that the pipe will only be receiving messages from client
processes and will not transfer any data to theclient.

If m_hPipe contains the symbol INVALID_HANDLE_VALUE,indicating an error, the Win32
GetLastError functionis called to retrieve the specific error that occurred. This return value, along witha
textual error message, is later passed to the container via our FirePipeError event.

BOOL CPipeCtrl::CreatePipe ()

A

_ // Cxeate aninstance. of a named pipe
// Use the name. provided: by. the control: user

m-hPipe -= iiCreateNamedPipe(LPCTSTR(m_strPipeName),
PIPE_ACCESS_INBOUND -|. FILE_FLAG_OVERLAPPED,

PIPE_WAIT | PIPE_TYPE_MESSAGE| PIPE_READMODE_MESSAGE,
1,

BUFFER_SIZE,

BUFFER_SIZE,

100,

NULL);

NFLE 1009 - Page 240

NFLE 1009 - Page 241

532 ¢ CHAPTER11

f? Check: for an: error: return ©

if (mbPipe == INVALID_HANDLE_VALUE)
f ; oo .

“char szTemp[128]; a
“DWORD dwError 2 ::GetLastBrror(); :

_sprintf(szTemp, “Unable to CreatePipe Lasterror = $d\n", dwirrox);

_f/Set theerror property
mistrError = szTemp;

 _mhbPipe =

//Returnanerror|
return FALSE;

L

Jf Success
oreturn TRUE;

BS :

The ClosePipe methodis called by many methods, including those that support the server and those that
supporttheclient. If the pipe handle is valid, ClosePipe checks the modeof the control, and if the control
is acting as a server, it disconnects any clients from the pipe. Independentofthe control’s mode, ClosePipe
then closes the pipe handle. It completes its function by setting the m_hPipe memberto zero.

void CPipectrl::ClosePipe ()

{ : ee

Th Close the pipe if there is a valia handle:
AE (mbpipe) ee

EL Disconnectifwe are aserver
4b m_sPipeTyp : == Typeserver)

: ::DisconnectNamedPipe(m_bPipe);_ eS.
_ ::CloseHiandie(m_hPipe Ve ee

mbPipe = 0;
:

Events

Wealso need two events for our PIPE control. One event reports that a control, acting as a server, has
received data from a client. The other is used to report pipe-specific errors to the control user. Using

NFLE 1009 - Page 241

NFLE 1009 - Page 242

Nonvisual Controls +533eeHELISOTOOLATESNEOTETADSTUTEESSEOCNATTIRADEANNeeATIPCippeentNENAAONPEONENEEN

ClassWizard, add two events. Thefirst, MessageReceived, passes a BSTR parameterto the container. The
second, PipeError, passes both a long and a BSTR parameter.

NessageReceived
The MessageReceived event is used to communicate the reception of a message from a client (control)

process. The MessageReceived eventis sent only to an instanceof a contro] thatis acting as a pipe server.
A control configured as a pipe client uses the Write method to send data, and whenthe data is received by
the server, it is passed on via the MessageRecievedevent. You will see how MessageReceivedis used
in a moment, when wediscuss the ReadPipe method.

PipeError
The PipeError event provides a wayof reporting errors that occur outside the scope of a control’s automa-
tion methods. In a moment, when wediscuss control error handling, you will see that there is a certain pro-
tocol that must be followed when you're handling errors within your control. The PipeError event passes
the result of the Win32 GetLastError function along with a text description of the error.

Visual C++ also provides the stock Error event, which can be used to communicate error information
back to the container.

Freezing Events
ActiveX control containers may not always be ina state that allows them to receive events from controls.
Whenthe containeris initially loading its contained controls, when the container is re-creating and destroy-
ing control instances, or when the container is processing an event from anothercontrol, it may not be able
to handle the firing of multiple simultaneous events.

The ActiveX control standard provides an interface method, I0leControl: :FreezeEvents,that the
container can use to notify the control whenit should and should notfire events. This method is mapped to
the COleControl: :OnFreezeEvents method for your controls to use. The default implementation pro-
vided by COleControl does nothing. The OnFreezeEvents method passes a boolean parameter that
indicates whetherthe control should fire events. If the parameter is TRUE, the control should notfire events,
andif it is FALSE, the control can process events normally.

This soundsfine, but what should a control doif it needs to fire an event and the container won'tlet it?

The control can do one ofthree things. It can fire the event normally (and the container will ignoreit), it can
throw the event away by notfiring it, or it can queue the event using an internal mechanism andfireit later,
when the container again allowsthe firing of events. Thefirst two methods—firing or throwing the event
away—are simple to do. The third method isn’t hard to implement but requires that you maintaina list of
events along with any contextual information neededto fire the event later. Some controls may even require
a priority queuing mechanism that maintains synchronization of the control’s events. We will use the second

NFLE1009 - Page 242

NFLE 1009 - Page 243

534 + CHAPTER 11-sinunsnuninennvnarnenenninasnssasatosenso intinatuneiANNANIUCUOOOOOSCENCANAUNTILtttINRIARIRSRte

method.If the container indicates that the control should notfire events and if the control has an eventto

fire, it will ignore the event and continue processing.

First, we override the OnFreezeEvents method. Then we maintain the state of the container’s

FreezeEventflag. This isn’t difficult. Add the following code to PIPECTL.CPP:

void CPipeCtrl::OnFreezeEvents(BOOL. bFreeze.)

{

if. (bPFreeze:)

miFreezer+;
else

m_iFreeze—;

}

Wheneverthe container changes the FreezeEventstate, we either increment or decrement the value of a
membervariable in our control’s implementation class. We must maintain a count of the OnFreezeEvents
calls, because the container can nest FreezeEventscalls.

Now, when weneedto fire an event, we check our member variable to determine whether the event

can befired. It looks somethinglike this:

// Fire the MessageReceived event

// If the container says it’s OK

if (m_iFreeze ==)

FireMessageReceived(szBuffer };

You could queue events within your controls using something similar to this. This method requires a class
that contains the type andstate of a given event. The control class also maintains a list of these event
instances using the MFC CObList class:

void CYourCtrl::OnFreezeEvents(BOOL bFreeze)

{

if (bFreeze)

m_iFreezet+;
else

m_iFreeze-;

// If events allowed

if (m_iFreeze == 0 }

{

// check the queve

POSITION pos = m_EventList.GetHeadPosition({);

while(pos)

{

CEvent* pEvent = (CEvent*) m_EventList.GetNext(pos };

NFLE1009 - Page 243

NFLE 1009 - Page 244

Nonvisual Controls + 535

pEvent->Fire();

void CYourControl: :SomeMethod (}

{ .

// If we can’t fire the event, queue it

if (m_iFreeze)

{

// Build event object

// and add it to the tail of the event list

CEvent* pEvent = new CEvent(type);

m_EventList.AddTail(pEvent };

}

else

FireEvent(...);

}

The complexity is in the design of the CEvent class, ensuring that the events still have meaning after the
code that would havefired them has already executed.

Applications that use Win32 pipes to provide client/server services typically implement the server side
using multiple threads. The named pipes API makes it easy for a server process to provide a thread for each
client that connects to an instance of a pipe. As I mentionedearlier, it is beyond the scope of this chapter to
investigate the complexities of implementing an ActiveX control that uses multiple threads. Without the
ability to start a thread for each client connection, we mustlimit to one the numberofclient connections for
each instanceof the control. We also must simulate the existence of an executing thread for the server side of
the pipe. We simulate this thread with the help of a timer message.

Using ClassWizard, add a handler for the WM_TIMER message and add methods to PIPECTL.H and
PIPECTL.CPPto supportthe starting and stoppingofthe timer. This codeis identical to that used in the
CLOCKcontrol of Chapter9.

// pipectl.h

// Implementation

protected:

~CPipeCtrl();

NFLE1009 - Page 244

NFLE 1009 - Page 245

5336 + CHAPTER 11

void StartTimer{);

void StopTimer ();

// pipectl.cpp

#define TIMER_ID:100

void, CPipeCtrl::StartTimer(}

{

SetTimer(.TIMERID, 200; NULL);
} :

void CPipeCtrl: :StopTimer()
f ee
oo KAlPimer (TIMERID);

}

As you can see from the preceding timer code, wefire the timer every 200 milliseconds. Every time the timer
fires, we check the status of the pipe using the PeekNamedPipe function. Add the following code to the
-OnTimer message handler:

// pipectl.cpp

void CPipeCtrl::OnTimer(UINT nIDEvent}

{

LE. (-mchPipe’)

(:

BOOL bRet;

DWORD dwavailable;
fh Peek the pipe.to determine if there
//is.any data in the pipe, Also,. we can...

Le. determine ifja client.‘dis: .connected. toees
/ /:the pipe by the return code from peckNanedpipe
bRet = : :PeekNamedPipe(mohPipe,

NULL;

NULE;

NULL,

gdwavailable;

NULL);
LE Ch -bRet’)

(:
DWORD dwError: = ;:GetLastError();

NFLE1009 - Page 245

NFLE 1009 - Page 246

_NonvisualControls|+537

Th Depending on the error do: different: things
ff These error codes are defined in WINERROR.H

switch(dwerror)
Cc :

_j/This eerror indicates that there is

Li 20 client connected. to the pipe
IL so ignore it, and continue

case”ERROR_BAD_PIPE:
break;

WsThis.error occursShen a client
/ disconnects from ‘thepipe. We close

“current instance of the pipe

 / and re-~createa new ne.
|case:ERROR_BROKEN._PIPE:

 “ClosePipe(); ae
AEC CreatePipe() == FALSE)

{

iError during create, shut down
‘stopTimer() :
LE mhiFreeze se0)
 : FirePipebrror(dwError,

 - “Unable toCreate a new Pipe after a client. disconnect”);

7:if weget. an error that 4we don’ t expect
/we closethe pipe, stop the timer, and —

report‘the error. This stops us ‘from

gettinginto an endless timer loop.

a
ClosePipe() ; :
ifC meAFreeze == 0

_FirePipeError(dwError, “Unknown error in \PeekNamedPipe!”:);oe
a

a
i

fF Tf thereis data in the pipe

NFLE1009 - Page 246

NFLE 1009 - Page 247

338 <+ CHAPTER 11eensserenettttetetekICSTNarinteneseCroneStttitiaNetADNNCSTRUIeneaIeeireeNi

“of call the: read: function

df (dwaAvailable)

. ReadPipe();

}

The preceding code executes only when the control is acting as a pipe server. It.continually checks the status
of the server’s pipe using the PeekNamedPipe function. The return code of PeekNamedPipe indicates
whethera client process is connected to the pipe. If there is a valid connection, we check the dwAvailable
flag, and, if there is data availablein the pipe, wecall the ReadPipe function.

If we encounter an error while processing the WM_TIMER message, wefire the PipeError event. We
use an event because when processing the WM_TIMER message, we are not executing in the context of an
automation method or property. The control user has not actually made a synchronouscall to the control, so
there is no other way to report an error exceptto fire an event. We will discuss this further in a moment. As
you can see, if the container is not accepting events, we continue with the normal processing of the method.

If PeekNamedPipe returns successfully and if the dwAvailable parameterindicates that there is data
in the pipe, the ReadPipe helper methodis called:

#define BUFFERSIZE 512

void CPipeCtrl::ReadPipe()

- BOOL pRet; :
char szbuffer [BUFFER|SIZE -+ Ui
unsigned long. ulRead; S
di Readthe pipe_ Ret= : ReadFile|a _szBuffer,

BUPFER_SIZE,
&ulRead,

ee

/1-R TRUE returnindicates success
GE (bRet)

5/ ulRead contains the number of bytes 5in
// the pipe message.
if (ulRead) =

{ oo
szBuffer [ulRead] = OAQE:
// Fire the MessageReceived event
// I= the container says it’s OK

NFLE 1009 - Page 247

NFLE 1009 - Page 248

Nonvisual Controls + 539

if (m_iFreeze == }

FireMessageReceived(szBuffer);

}

//-A- FALSE return: indicates failure

else

{ ;

// Use the ::GetLastError function to get
// the actual error number

DWORD dwError.=°::GetLastError(};

// Pass back the error.number and a message to. the container

if (m_iFreeze. =< }

FirePipeError(dwError, “Error while reading the pipe’);

ClosePipe();

}

The ReadPipe codeis straightforward.It is called only when PeekNamedPipehas indicated thatthere is
data to read from the pipe. ReadPipe uses the Win32 ReadFile function, and,if the return is successful,
ReadPipe zero terminates the buffer. If the container allows events, ReadPipe calls the

MessageReceived event with the data read from the pipe. If an error occurs, ReadPipe gets the error
numberandpassesit along with a text message to the container via the PipeErrorevent.

Certain nonvisual controls need the services of a true HWND when working as an ActiveX control. In this
case, youneedto explicitly create a windowforyourcontrol.

Invisible Controls That Require a Window
Our PIPE control needsthe services of a window. The default implementation provided by ControlWizard
does not create a window for the control. This is appropriate, because we told ControlWizard that our con-
trol would be invisible at run time so there is no apparent need for a window.Still, there are reasons to have
a window fora control. Our reason is that we want to use a window to handle the WM_TIMER message.

If your nonvisual control needs the services of a window when loaded and runningin a container, the
COleControl: :RecreateControlWindow method will create a default window for your control when
called. To ensure that the control’s window is created as soon as possible, the best place to putthis is the
COleControl: :OnSetClientSite method. OnSetClientSiteis called as the container loads the con-

trol within the container. It is a good place to initially create the default window. We need a true HWND only
whenthe container is in run mode, so we check the ambient property UserMode before calling
RecreateControlWindow.

// This ensures that. our control has a valid HWND

// as soon as it is placed on a container at: run time

NFLE1009 - Page 248

NFLE 1009 - Page 249

 540 + CHAPTER 11eeeiammmnmenmnnimemmnaienaeanamenammennammmmmnedietmmaanemeamaninameemmmtnammntentineaeieamnmmmenemeinammnmnmnamaammetonmaee

void: CPipeCtrly:OnSetCclientsite ()

{

if (AmbientUserMode())
RecreateControlWindow();

 andling Errors in Controls
There are three basic ways to handle errors that occur in your controls. The first is the typical procedural
waythat weare all familiar with: a return value from your class methods. The second methodis to use the
automation exception mechanism. This technique is useful in automation properties, because the value
returned from a property method is the value of the property and you can’t return an “error.” The third
approach uses an event to communicate the error to the container. This technique should be used when the
container is not executing in the context of your control's methodsor properties (it’s doing somethingelse).

The automation methods and properties that are exposed by our control are called synchronously by
the container. When you're using a scripting language such as Visual Basic, a methodcall like the following
one does not return until the method is complete:

‘ Call the pipe control's Create method

If Not Pipel.Create then

MsgBox Pipel.ErrorMsg
End If

The preceding code executes synchronously, so the most effective and efficient way of reporting errorsis to
return a value from the call, as we have done. This is the preferred method of reporting errors when you're
using automation methods. In this case, the error is encountered while executing code within the control,
and the container code (such as Visual Basic) is waiting on the return from the automation call.

Automation properties return the value of the property, so the preceding method of returning an error
value won't work. Get /Set methodsare typically used to implementthe assignmentandretrieval of a con-
trol’s properties, and automation provides an exception mechanism to report error conditions to the con-
tainer. We have used this technique in most of the controls we have developed. The SetNotSupported
method is an example of the use of this exception mechanism.It uses the COleControl: :ThrowError
method andis similar to the C++ method of handling exceptions. For example, a run-time property uses the
automation exception mechanism to inform the container that the property can be accessed only at run time.
The following codeillustrates this technique:

void CPipeCtr1::SetPipeType (short nNewValue)

{

// Don’t allow setting of the property at run time

// This isn’t absolutely necessary, but it’s an example

// of a property that cannot be modified when running.

// Tf you were to allow modification of the control’s mode

NFLE 1009 - Page 249

NFLE 1009 - Page 250

Nonvisual Controls + 5AprenatalALTONOERSUNTRENNTNOSSOIRHONCONLthnthTOENSIDCMOORERECenANNOASUHIEerent

// @uring run time, we would have to ensure that any active

// pipe connections were cleaned up, and so on.

if (AmbientUserMode() }

ThrowError(CTL_E_SETNOTSUPPORTEDATRUNTIME,

“You.can’t: change. the’ PipeType..property. at: runtime”);

m_sPipeType = nNewValue;

SetModifiedFlag();

}

The SetPipeType method returns a void, but wearestill able to communicate to the container that the

property cannot be modified during runtime. This technique of using an automation exception to communi-
cate with the container can be used only whenthe controlis executing in the context of an automation prop-
erty or method.

There are times, however, when an error may occur in your control’s code when the container is not
waiting for a return from an automation call. For example, the OnTimer method in our PIPE control exe-
cutes every 200 milliseconds andis never explicitly called by the container. In this case, errors that occur can-
not be reported using the techniques described earlier. Instead, an event must be used.

The event technique should be used in any control code that is executed outside an automation method
or property. In this case, the automation contentis not present, and the ThrowError method will not work
properly. Instead, your control should fire an event to inform the container that an error has occurred. We
used this technique in our OnTimer and ReadPipe methods, because they execute asynchronously and are
nevercalled directly by the container. Here’s a snippet of the code:

void CPipeCtrl: :ReadPipe()

{

// A TRUE return indicates success

if (bRet)

{

}

// A FALSE return indicates failure

else

{

// Use the ::GetLastError function to get

// the actual error number

DWORD dwError = ::GetLastError({);

//- Pass back the error number’ and.a message to the container

if -@ miFreeze == } : :

FirePipeError(dwError, “Error while reading: the pipe” J;
" ClosePipe();

NFLE 1009 - Page 250

NFLE 1009 - Page 251

542 <~ CHAPTER 11seriSNRRNATIOEECENNCCTRTTERCNECETLTTLPERNNCHSpa,

This code informsthe container of the problem byfiring the PipeError event with the error information.

The automation exception mechanism is used to implement run-time-only, read-only, and design-
time—-only properties.

Run-Time—Only Properties
Run-time—only properties are those properties that can be accessed and modified only when the containeris
in run mode. An example of this type is the ErrorMsg property that is used in our PIPE control. To enforce
the use of the property only at run time, we used the SetNotSupported and GetNotSupported methods,
Each of these methods uses COleControl: :ThrowError to notify the container that the property cannot
be accessedat various times. Here is the code for the ErrorMsg property:

BSTR CPipeCtrl: :GetErrorMsg ()

{

// Most containers that provide property browsers (e.g., VB)

// will trap this exception and will not display the property

// in the property browser. This is just what we want.

// If we're not in run mode don’t allow anyone to get the

// property's value.

if (AmbientUserMode(} == FALSE)

GetNotSupported(};

return m_strError.AllocSysString(};

}

If the container is not in run mode, we throw the CTL_E_GETNOTSUPPORTED exception. To enforce run-
time-onlysetting of a property, you would dothis:

void CYourControl::SetAProperty(short sNewValue)

{

// If not running report an error

if (! AmbientUserMode())

{

// Throw the CTL_E_SETNOTSUPPORTED error

SetNotSupported({);

}

// Go ahead and set the property value

NFLE1009 - Page 251

NFLE 1009 - Page 252

 Nonvisval Controls + 543cntnNOHOALLUCATORANRTORTHESECHashenemtttecn

Design-Time-Only Properties
To implement properties that can be modified only during the container’s design phase, you would do the
opposite of what we’ve just discussed. There are a numberof standard error messages that can be thrown
from within your control’s code. Two of them are specific to not allowing the modification of properties at
run time:

void CYourControl::SetAProperty(short sNewValue)}

{

// Tf not design phase report an error

if (AmbientUserMode())

{

ThrowError(CTL_E_SETNOTSUPPORTEDATRUNTIME,

“Property cannot be set at runtime”);

}

// Go ahead and set the property value

sProperty = sNewValue;

}

short CYourControl: :GetAProperty ()

{

// Tf not design report an error

if (AmbientUserMode())

{

ThrowError(CTL_E_GETNOTSUPPORTEDATRUNTIME,

“Get not allowed at runtime”);

}

// Go ahead and return the property value

return sProperty;

}

Containers can look for these specific exceptions and report them consistently.

 sing the Control
To test the controls, let’s develop a Visual Basic application that uses our new PIPE control. Actually, we'll
develop three application. Thefirst one will demonstrate how to use the PIPE control by using two instances
of the control within one application. The next example will contain two Visual Basic applications: one that
will act as the server application and another that will act as the client. These applications can be run on sep-
arate machines in a networked environment.

NFLE 1009 - Page 252

NFLE 1009 - Page 253

S44 ~~ CHAPTER 11MeeraiAIRIEIRCCNENCINOCNCCCNONELEANECNACESTNCTAOENATALCpttNNNtata

Figure 11.3 showsourfirst application, a Visual Basic form that contains two instances of the PIPE con-
trol. One of the controls acts as a pipe server, and the otheracts as a pipe client. This application shows how

easy it is to use the PIPE control and provides a simple way to test the control. This application basically
talks to itself.

Figure 11.3 Visual Basic form with two instancesofthe PIPE control.

The PIPE control instances can’t be seen on the form—they are invisible at run time—but they provide the
majority of the functionality of the application. First, the Create button is clicked to create an instance of the
server pipe, and then the Connect button is clicked to connect the client pipe control to the server's instance.
You can then enter text in the entry field and sendit to the server’s pipe. As the server receives messages
from the client, it logs them in the listbox. Here is the Visual Basic source code for the complete application,
all of about 30 linesof code:

Private Sub cmdConnect_Click({)

If Not ClientPipe.Connect Then

MsgBox ClientPipe.ErrorMsg
End If

End Sub

Private Sub cmdCreate_Click({)

If Not ServerPipe.Create Then

MsgBox ServerPipe.ErrorMsg
End If

End Sub

Private Sub cmdDisconnect_Click()

NFLE1009 - Page 253

NFLE 1009 - Page 254

Nonvisual Controls + 545

If Not ClientPipe.Disconnect Then

MsgBox ServerPipe.ErrorMsg
End If

End Sub

Private Sub cmdSend_Click()

If Not ClientPipe.Write(Text1l) Then

MsgBox ClientPipe. ErrorMsg
End If

End Sub

Private Sub Destroy_Click(}

If Not ServerPipe.Destroy Then

MsgBox ServerPipe.ErrorMsg
End If

End Sub

Private Sub ServerPipe_PipeError (ByVal dwError As Long, ByVal szError As String)

MsgBox “Error occurred “ & dwError & “ “ & szError

End Sub

Private Sub ClientPipe_PipeError (ByVal dwError As Long, ByVal szError As String)

MsgBox “Error occurred “ & dwError & “ “ & szError
End Sub

Private Sub ServerPipe_MessageReceived (ByVal szMessage As String)

Listl.AddItem szMessage
End Sub

The next application contains two Visual Basic executables that run on separate machines in a networked
environment. It is similar to the previous application but allows communication to occur across machines.
Figure 11.4 showsthe server application.

NFLE1009 - Page 254

NFLE 1009 - Page 255

\WApipeOCX2. PIPE

i Tom, from tea_awind5
Hi Tom, from twa_windS
JHi Tom, fram twa_windS

i Tom, from bya_windS

Figure 11.4 The server application.

The only difference is that you are allowed to modify the PipeName property before you create the pipe
instance. As you can see, the PipeNamecontains a local pipe filename. The messages received are from an
instance ofthe client application running on another machine (Figure 11.5).

Figure 11.5 Message received from another machine.

The combined numberof Visual Basiclines of code is again around 30. By encapsulating the Win32 API calls
and providing an easy-to-use interface to our ActiveX control, we have madeit easy for a visual tool user to
develop useful applications. That is the goal of building software components: provide robust functionality
that is easy to use.

NFLE 1009 - Page 255

NFLE 1009 - Page 256

Nonvisual Controls547

Summary
Nonvisual controls provide functionality by exposing properties and methods that supply an abstraction of
a more complex technology. Uses for nonvisual controls are numerous: wrapping a C++ class to provideits
functions to a visual tool user, abstracting a group of operating system functions, or providing an easy-to-
use interface for business-specific problem. In these examples, nonvisual controls can makeit easy for a
visual tool user to gain accessto functionality.

Win32 named pipes provide a wayto test this theory. They supply a mechanism for communication
between processes on local and remote machines. Named pipes can be used to implementbasic client/sever
techniques between processes.

Nonvisual controls require the developer to provide a design-phase-only representation of the control,
because it will not be visible when the container is in run mode. An easy way to represent a nonvisual con-
trol at design timeis to use its toolbar bitmap image. The CPictureHolderclass provides a way to allow
the bitmap to be manipulated.

An ActiveX control container can inform its contained controls that they either can or cannotfire events.
There are various reasons that a container may disable the firing of a control’s events, and it is important
that the control honor this request. COleControl provides a method, OnFreezeEvents,that is called
whenever the container requests a change in the FreezeEventsstatus. A simple way to implementthis
behavior in your controls is to maintain a flag that mirrors the setting of the last OnFreezeEventscall.
Whenever your contro] needsto fire an event, you should check this flag.If it is TRUE, the simplest thing to
do is to notfire the event, effectively throwing the event away. A more sophisticated method would be to
save the events andfire them later.

Nonvisual controls are instantiated without a true window.If your control requires the use of a win-
dow, you can call the COleControl: :RecreateControlWindow method. The best time to do this is
when the control is initially placed within a container. The OnSetClientSite methodis called when this
occurs.

There are three ways to handle errors in your control code. For automation methods and properties,
you should use a standard return value if possible. You can also use the COleControl: : ThrowError
method to cause an automation exception. This technique is used to implement the SetNotSupported and
GetNotSupported methods that are used to implement run-time-only, read-only, and design-time—only
properties. The ThrowError method should be used only within an automation method. Whenerrors
occur in your control outside an automation call, you must use an event to communicate the problem to the
container. MFC providesa stock error eventforthis case.

NFLE1009 - Page 256

NFLE 1009 - Page 257

LOTIEETEDEOEAESTEEDSLEELEYEEEESESSERETSEE ETELIEHOETARSEENELSE

ActiveX controls can be used as is in web-style applications. In most cases, this means applications (HTML-
based Web pages) that use a Web browser. However, several new ActiveX specifications provide additional
techniques that can be used to make ActiveX controls more Internet-aware. In this chapter, we will explain
these new techniques, build a control that uses them, and discuss someof the tools that can be used to build
andtest Internet-aware ActiveX controls.

 at Are Internet-Aware Controls?

Internet-aware controls differ only slightly from the controls we’ve developed. Internet-aware controls are
concerned with two additional issues: lack of bandwidth and the need for security. The Activex SDK
includes new technologies that enable controls to operate effectively in low-bandwidth environments and
provides security techniques to help with the management of component software in the Internet (or

intranet) environment.

The issue of bandwidth is addressed with a new URL and Asynchronous Moniker specification, which
allows a control to handle large property values (such as an image) moreefficiently. Asynchronous monikers
provide a mechanism for the control to download large amounts of property information asynchronously.
Before the asynchronous moniker specification, the container was forced to wait while a control’s properties
were loaded.In a low-bandwidth environment, suchas the Internet, this wait is not acceptable.

ActiveX controls have full access to the machine on which they are executing. In an Internet-type envi-
ronment, where controls are part of Web documents, a numberof security issues arise. The new component
downloadspecification allows transparent download andregistration of controls to machines browsing
Web documents. In this environment, security issues must be addressed. ActiveX provides several tech-
niques to make ActiveX components secure and safe in Internet-type environments.

549
NFLE1009 - Page 257

NFLE 1009 - Page 258

5350 + CHAPTER 12 neniennsiosivtnsernesasnemnineesipesstesistints

This chapter contains many new terms that you may not be familiar with. Internet-based technologies are
becoming important in all aspects of development. Even if you don’t write Web-based software, it is radi-
cally changing the tools you use. Microsoft is rapidly changing the focus of its commercial software, operat-
ing systems, and developmenttools to make use of Web-based technologies. What follows is a quick intro-
duction to someof the terms that we will encounter. This book is about component software development,
So it is impossible to coverall the technologies that are used in Web-based environments. Several books are
listed in the Bibliography for those who need information on technologies such as HTML, Java, HTTP, and
so on. The following definitions will help introduce youto these technologies.

RTM

Hypertext Markup Language (HTML)is the language of the Web environment. The development of HTML
along with a standard protocol (HTTP) to transport HTML documentsis the primary reason for the tremen-
dous growth of the Web. HTML makesit easy to describe static documents for publishing in Web-based
environments.

A Webpage begins as an ASCII-based HIML document. The document describes its contents using
various elements. An elementis demarcated with a set of tags, usually a begin-tag and an end-tag. Here’s an
example:

<P>This sentence is centered.</P>

Here we have an example of the paragraph element. Its begin tag is <P> andits end tag is </P>. An element
can also have zero or more attributes that modify the effect of an element. Here’s an example of the ALIGN
attribute in our paragraph example:

<P ALIGN = CENTER>This sentence is centered.</P>

Oneof the most important elements in HTMLis the anchor. An anchor supplies a jumping point, or go to,
within a Web page, thus providing its hypertext capabilities. The anchor elementis specified with the
<A> tag pair. Here’s an example:

Click here to go to CNN

As you can imagine, there are a large number elements specified by HTML. We’re just taking a quick look.
Here’s a minimal HTMLversion 3.2 document:

<!DOCTYPE HTML PUBLIC *-//W3C//DTD HTML 3.2//EN*>
<HTML>

<HEAD>

<TITLE>A Minimal Web Page</TITLE>
</HEAD>

<BODY>

</BODY>

</HTML>

NFLE1009 - Page 258

NFLE 1009 - Page 259

Internet-Aware Controls + 551

The primary purpose of HTMListo specify text- and image-based documents in a machine- and display-
independent way. HTMLdescribes the formatting characteristics of a document. Later, we'll take a look at
the OBJECT element, which allows the embedding of ActiveX controls. By adding ActiveX controls to
HTMLdocuments, you add dynamic capabilities to Web documents.

VBScript
VBScript is a subset of both Visual Basic and Visual Basic for Applications. Visual Basicis a full implementation
of the language andis integrated into a full-featured development environment. Visual Basic for Applications is
a subset of Visual Basic that is used as the macro language for many of Microsoft’s high-end applications.
VBScript is a subset that removes any commands(such as CreateObject, FileCopy, and Open)that provide
unsecure access to the local machine.

VBScript is used to add logic to HTML-based documents. To do this, however, the logic mustbetied to
a component such as an ActiveX control. Internet Explorer provides an object model that allows a VBScript
developer to access most browserfunctionality. For example, here’s a quick VBScript program that displays
information about the viewing browser. This program is quite different from a static HTML document,
becauseit is actually executed each timeit is viewed. The HTML codeis generated and interpreted dynami-
cally.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2//EN”’>

<HTML>

<HEAD>

<TITLE>Our First Script</TITLE>

<SCRIPT LANGUAGE="VBScript”">
<f—

document.write "<CENTER>”

document.write “<H2>” & “Here’s some information about your browser” & “</H2>”

document.write “Name: ° & Window.Navigator.AppName & “
”

document.write “Version: * & Window.Navigator.AppVersion & “
”

document.write “Code name: “ & Window.Navigator.AppCodeName & “
”

document.write “User agent: “ & Window.Navigator.UserAgent

document.write “</CENTER>”

document .close
—>

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

NFLE 1009 - Page 259

NFLE 1009 - Page 260

552 + CHAPTER 12

URL

A uniform resource locator (URL) specifies the exact location of a resource within a Web-based environ-
ment. It comprises four parts: the specific protocol of accessing the resource (such as HTTP), the address of
the machine that contains the resource (such as www.microsoft.com), the resource location on the machine

(usually a filename), and any parameters that should be passed to the resource. Here are some typical URLs:

 SONNEeBEOMIELECa

http: //www.sky.net/~toma/fag.htm

mailto: toma@sky.net

news: //msnews .microsoft.news

A URLis an important and powerful attribute of Web-based environments.It specifies everything that a
browser needs to work with the given resource: the encoded data type and the exact, unique location in a
networkof several million machines.

nts

ActiveX controls are important to Microsoft's Web-based software strategy. Microsoft’s Web browser,
Internet Explorer, is a capable ActiveX control container. By allowing the embeddingof controls, a browser
can now provide accessto all the capabilities of the local machine. This feature, complete access to the Win32
API, is what makes the use of ActiveX controls so compelling in Web-based applications.

Building Web-based applications by embedding controls and connecting them with a script language
such as VBScriptis similar to building other, non-Web applications. By moving its Visual Basic and Activex
technologies to the Web, Microsoft has madeit easy for developers to leverage their existing expertise.
We'vealready written a few Visual Basic applications that use ActiveX controls, and writing a browser-
based application using VBScript and ActiveX controls is only slightly different.

 ILE Controls/COM Objects for nternet
The primary ActiveX SDK documentthat describes the requirements for providing Internet-aware support
for ActiveX controlsis titled OLE Controls/COM Objects for the Internet. Most of this documenthas been incor-
porated into the ActiveX SDK on-line help. It provides a good comprehensive view of the new technologies
that make COM objects, specifically ActiveX controls, useful in low-bandwidth environments. The next few
sections describe these new techniques.

The Object Element
The HTMLstandard provides a special element for embedding object instances within HTML-based pages.
It is used to embed images, documents, applets, and, in our case, ActiveX controls. Here’s the OBJECTele-
mentfor the control that we will develop later in this chapter:

<OBJECT ID="Asyncl” WIDTH=280 HEIGHT=324

NFLE1009 - Page 260

NFLE 1009 - Page 261

Internet-Aware Controls + 553emeratOONtPROTCOTSNnCthttistemmaneeretatoconniinienantoeiiatieisath renee srtiomeerenemtoas

CLASSID="CLSID: 0C7B4FD3-13C1-11D0-A644-B4C6CE000000”

CODEBASE="http://www.sky.net/~toma/Async.ocx’>

<PARAM NAME="_Version” VALUE="65536">

<PARAM NAME="_ExtentX” VALUE="7403">

<PARAM NAME="_ExtentY” VALUE="8567">

<PARAM NAME="_StockProps” VALUE="173">
<PARAM NAME="BackColor” VALUE="16777215">

<PARAM NAME="Appearance” VALUE="1">

<PARAM NAME="TextPath” VALUE="http://www.sky.net/~toma/log’>

</OBJECT>

The OBJECT element has several importantattributes. The ID attribute is used to specify a namefor the
embeddedobject. This name is useful when you're using VBScript to access the component programmati-
cally. The WIDTH and HEIGHTattributes specify the extents of the object.

The next attribute, CLSID, is used by the container (browser) to instantiate a local copy of the embed-
ded ActiveX control. (The control may not reside on the local machine, and this is a problem that the specifi-
cation solves. We'll discuss this detail in a moment.) All the container must dois call CocreateInstance

with the provided CLSID. After the control is created, the container passes the controlits persistent data pro-
vided by the PARAM elements.

The PARAM elementis valid only within an OBJECT element. Its purposeis to store property values of
the embedded object. The NAMEattribute provides the property name, and the VALUEattribute provides any
value. The TYPE attribute, which isn’t shown in our example, indicates the specific Internet media type for
the given property.

You should recognize the BackColor and Appearance properties from our previous examples. There
are several properties that we have not discussed. Properties prefixed with an underscore are internal prop-
erties maintained by MFC. For example, the _StockPropsentryis a bit mask that specifies which of MFC’s
stock properties are used by the control. The TextPath property is a new one.It’s actually a new property
type, a data path, defined for Internet-aware controls. We'll discuss this new property type in detail shortly.

Remember, an ActiveX browseris just an ActiveX control container, and the OBJECT element provides
a standard wayof serializing the state of an embedded control. If you compare how Visual Basic saves the
state of a form (.FRM)to the attributes in the OBJECT element, you'll see that they are very similar.

 Persistent Control

When a control is instantiated by a container, the container provides an interface (such as
IPersistPropertyBag) to the control through which it can load its persistent properties. In most cases,
this property data is small: a font, a color, or a small string. Each property value is usually less than 100
bytes. In our case, the control is embedded within a Web page, and this property data is stored (and
retrieved) via the PARAM element.

This arrangement works fine for most cases, but what if we have a very large property value, such as a
2-MB GIF or BMP image? Should we encode and store the BMP data in-line (via the PARAM element) in the

NFLE 1009 - Page 261

NFLE 1009 - Page 262

554 + CHAPTER 12_seenneernncnamtimeatspenitentnananetmatanetaatatthtettniansennatatattenitttteNCtetttthttttneMCtem

HTML document? Wecould, but loading the document in a low-bandwidth environment would be excruci-
ating, especially given the fact that a control's properties are loaded synchronously. The browser would be
virtually locked while the 2MB+ HTML page was downloaded.

In other cases, a control’s persistent data cannot, by definition, be stored locally in the HTML document.
If a control provides streaming video or audio, the data is real-time and can be supplied onlyafter instantia-
tion by the container. In addition, it must be processed asynchronouslyor it will never work. A major addi- |
tion to the ActiveX control architecture is support for these large property values through the new data path
property.

Data Path Properties
The data path property is a new property type added by the COM Objects for the Internet specification. A
data path property is simple: it is a simple BSTR that contains a link (such as a URL) to the property data.
Instead of embedding the data for the property within the HTML document, youstorea link to the data.
This technique isn’t new. The concept of maintaining links to document data began with OLE version 1.0.
Now,this concept has become important to Web-based documents. Figure 12.1 illustrates how a control's
small and large properties are stored within a document.

HTML Document Large Property Values

_ Seeee (BLOBs)

Control

Smati Property

|
a
a

| : | Smali Property|

4 | | Small Property1
if

URL

| Monikers

[Data Path
Property

oe | Data Path |‘ | Propa 4 oie
ne |: od

Figure 12.1 Data path properties and links.

Data path properties enable a control to store property data independently of the controlitself. This is an
important new capability. For example, if you write a controlthat retrieves and displays a weather map,the
weather map image can be accessed through a data path property. When the control is placed in a Web
page, only a link, via a URL, is needed. As the weather map is updated throughout the day, updating the

NFLE 1009 - Page 262

NFLE 1009 - Page 263

Internet-Aware Controls + 555

image is as easy as changing thefile specified in the control's data path property (a URL). The local control
can then periodically refresh the image.

There are four key points to remember when you’re working with data path properties:

© They enable progressive rendering of images. Asynchronous downloading allows the container to
load and instantiate several controls at the same time. This capability is important in the Web envi-
ronment.

e The control is ultimately responsible for the format of the downloaded data.

® The container, in mostcases, tells the control whereto retrieve the data. URLs can be specified rela-
tive to the container’s location, so in many cases only the container can produce the absolute URL.

e Data path properties provide a mechanism to stream continuousdata (such as audio data) to a con-
trol.

Asis usually the case, we'll see that MFC makesit easy to implement data path properties in a control.

Monikers

A moniker, in COMatleast, is an object that namesor identifies a particular instance of a COM object. In
Chapter 4, we discussed how to create generic instances of COM objects using the CoCreateInstance
function. CoCreateInstance concernsitself with the creation of an object type but not a specific instance
of that object. Monikers provide a way to create a specific instance of an object.

Monikers are themselves COM objects. However, they are small and encapsulate only the data neces-
sary to re-create an instanceof the object from some storage mechanism independentof the moniker. In our
example of an ActiveX control, a specific control instance embedded within a Web documentis identified
with a moniker. The moniker encapsulates the CLSID of the control and how and wherethe control's persis-
tent data is stored. In other words, the container identifies a particular embedded control via a moniker. The
container and controls also identify data path properties using monikers.

The act of instantiating, initializing, and returning an interface pointer to the object named by a moniker
is called binding. Instantiating and initializing an object that contains a large amount of data (such as an
object that manipulates images) can take a significant amount of time, especially in a low-bandwidth envi-
rorument. In this environment we need a new type of moniker.

Asynchronous Monikers
Before the release of the ActiveX specification, binding an object through its moniker occurred synchro-
nously. The Internet’s low-bandwidth environment, however, required the ability for this process to occur
asynchronously. Instantiating a large object across a 14,400-baud line can take some time. Asynchronous
monikers allow the container to instantiate a control, synchronouslyinitialize the control with any small
local properties, and then permit asynchronous loadingofthe control's large properties.

NFLE1009 - Page 263

NFLE 1009 - Page 264

3356 + CHAPTER 12enonetsnentireetniinsedsinntneaeesiataumamssininnatiettttNLAatastpetntttNNRONSoneReneeemninitntenastninasnsintinnntiirimneeNtntitttitttentty

Asynchronous monikers, through the IBindStatusCal1lbackinterface, also allow a control and con-
tainer to communicate the progress of an asynchronous download. This technique enables the container to
display an indication to the user of how muchof the data has beenreceived.

URL Monikers

Currently, the only implementation of an asynchronous moniker is the URL moniker. A URL monikeris
named with a URL andis usedto instantiate and retrieve the data stored outside the control’s small proper-
ties. Typically, a COM object and its persistent data are stored together locally. In the case of data path prop-
erties, the data is stored somewhereacross the network.

Anew COM API, CreateURLMoniker, takes a URL string and returns an IMonikerinterface pointer,
Because URLscan bespecified relative to the current default location of the container,it is preferable that the
container create the moniker and passit to the control. However,if the control is executing in a container
that does not support data path properties, it can do the work itself by using the new
MkParseDisplayNameExfunction.

The ReadyState Property and the OnReadyStateChange Event
With the addition of data path properties, a control will now be active and runningbeforeall its properties
are initialized. For this reason, a new standard property, ReadyState, and a standard event,
OnReadyStateChange, were added.

If a control depends on data containedin its data path properties, it may not be ready to interact witha
user or with the container. The ReadyState property, whose potential values are listed in Table 12.1, is
used by the control user and the container to determine the readiness state of a control. The
OnReadyStateChangeeventis fired by the control to inform both the control user and the container of any
changein its readiness state. A new return code, E_PENDING, has also been addedto the control specifica-
tion. A control can return E_PENDING in those methods that depend on properties that have not finished
loading. For example, if the control cannot properly render its content, it may return E_PENDING from
OnDraw. However, this behaviorwill be correctly interpreted only by those containers that support the new
Internet-aware control standards.

Table 12.1 Control Readiness States

Control State Description

READYSTATE_UNINITIALIZED Default state after instantiation of control by the container.

READYSTATE_LOADING Control is loading its local and asynchronous properties.

READYSTATE_LOADED Controlis now initialized,All its local, synchronous properties have finished loading.

READYSTATE_INTERACTIVE The control supports user interaction, but some asynchronousdata is still loading.

READYSTATE_COMPLETE Control has loaded all its asynchronous property data andis ready to interactfully with
the user.

NFLE1009 - Page 264

NFLE 1009 - Page 265

Internet-Aware Controls + 5357erenneunnmpercinbebitsachienommttASeinrsineinuutietnnmientastnenstninotitntaenmntnnnennieine ncanenesnnarnaceninesnsntsmsnsecsstaansetaeNsetIOETTtcteHNC

 onent Categories
Wediscussed componentcategories in detail in Chapter 7. Component categories provide a way for a COM
object to describe the functionality it supports and the functionality it requires of its container. Several com-
ponent categories are specific to Internet-aware controls. Each is listed in Table 12.2. Two of the component
categories—CATID_SafeForScripting and CATID_SafeForInitializing—indicate a control’s
safety level when executing within a browser environment.

Table 12.2 Internet-Specific Component Categories

CATID Symbol from COMCAT.H Purpose

CATID_PersistsToMoniker, Used by Internet-aware controls to indicate which persistence methods
CATID_PersistsToStreamInit, they support. These can be used to indicate that an interfaceis required
CATID_PersistsToStream, if the control supports only one persistence method.
CATID._PersistsToStorage,

CATID_PersistsToMemory,

CATID_PersistsToFile,

CATID_PersistsToPropertyBag

CATID_RequiresDataPathHost The control expects help from the container with its data path properties.
The container must support IBindHost.

CATID_InternetAware The control implements or requires someofthe Internet-specific function-
ality, in particular the new persistence mechanisms for Web-based con-
trols, The control also handles large property values with the new data
path property type. This includes support for asynchronous downloads.

CATID_SafeForScripting Thecontrolis safe for use within scripting environments.

CATID_SafeForInitializing The control can safely beinitialized.

CATID PersistsTo*

If a control supports only one of the persistent interfaces, it should indicate so by registering the correct
CATID_PersistsTo* componentcategory in the Required Categoriessection. Controls developed
with MFC’s COleControl class support the majority of these persistence interfaces and do not need to
specify this category.

 CATID_RequiresDataPathHiost
A data path property can contain either a relative or an absolute URL.It is desirable for a control’s container
to help manage a conirol’s data path properties by creating the appropriate URL moniker and passing the
bind context to the control. New control containers such as Internet Explorer support this capability.
However, older containers such as Visual Basic 4.0 do not.

NFLE1009 - Page 265

NFLE 1009 - Page 266

558 ¢ CHAPTER 12SirenANANUACARLESNNUAEOROONORODINCCNLTNOLESANODEttOCCULTNEONCNETNAEECENCEteeemteRtty

A control can actually create a URL moniker and download the remote data without the help of the
container as long as the specified URL is absolute. If the URL is specified relative to the path maintained by
the container, however, the moniker creation will fail because the control does not have the complete URL.

The RequiresDataPathHost category is used by those controls that require a container to help with
the moniker creation and asynchronous downloading of data path properties. If a control requires this sup-
port, it should register this category under the Required Categories section. We will do this for our
example controllater. .

CATIDInternetAware
A control that is Internet-aware implements its large properties with data path properties and also handles
downloading these properties asynchronously. The control also uses the ReadyState property andits asso-
ciated OnReadyStateChangeeventso that the control user and container can determinethe readinessstate

of the control. Our example control does this, so we will register this component category.

CATID_SateForScripting
ActiveX controls have complete access to the machine on which they are executing and potentially can harm
the local system or expose capabilities that allow the control user to cause harm. Within Web browsers, such
as Internet Explorer, a control’s capabilities can be used by the scripting language of the browser (such as
VBScript). The control may be safe when executing under normal circumstances, but what about when the
control’s capabilities are used by an untrustworthy or malicious script?

For example, suppose you develop a control that exposes a CreateObject function that allows a
script writer to create instances of Automation objects within VBScript. The control is not safe. It would be
easy for someoneto use the CreateObject methodto instantiate an external application (such as Microsoft
Word) anduseit to deletelocalfiles, install a virus, and so on.

If your control in any way exposesfunctionality that can be used by a malicious script to harm the local
system, it is not safe for scripting. If the control does not expose potentially malicious functionality, it can
register the SafeForScripting component category or implement the IObjectSafety interface within
the control. If a controlis safe for scripting, it can be used within ActiveX browsers with their security level
set to high.

CATID_SateForlnitializing
In a browser environment, a control can also cause damageto a local systemif the data it downloadsis from
a malicious or untrustworthy source. Whenthe control is instantiated on the local machine, the container
provides an IPersist* interface to initialize any persistent data. Because the data’s location is provided by
the script writer, the data is also a potential security problem.If a control’s persistent data, even when com-
ing from an unknownsource, cannot harm the local machine, it can indicate that it is safe for initializing by
registering the SafeForInitializing component category or by implementing the IobjectSafety
interface.

NFLE 1009 - Page 266

NFLE 1009 - Page 267

Internet-Aware Controls + 559

IObjectSafety : public IUnknown

{

public:

virtual HRESULT GetInterfaceSafetyOptions(REFIID, DWORD, DWORD }
ul oO

virtual HRESULT SetInterfaceSafetyOptions(REFIID, DWORD, DWORD)
a Co

Li

 Component Download
ActiveX specifies a new component downloadservice that provides a platform-independent wayof trans-
porting COM-based components to a user’s local machine. As part of the download, the service will also
verify the integrity of the componentand,onceit’s downloaded,will register it on the local machine. For our
purposes in this chapter, a COM-based componentis an ActiveX control and its dependencies (such as
DLLs). However, the component download specification provides the ability to download any COM-based
component.

Downloading and installing software on a user’s machine should not be taken lightly. Security is an
important part of the component download service. Before downloading a component, the service uses the
code signing andcertificate mechanisms provided by the WinVerifyTrust service, which we will discuss in
more detail shortly.

When Internet Explorer or another ActivexX-compliant control container encounters the OBJECTele-
ment with a CLSID attribute, it attempts to locate and instantiate the object using the new COM API func-
tion CoGetClassObjectFromURL. If COM cannot instantiate the component on the local machine,it
searches for the component packagefile specified in the OBJECT element’s CODEBASEattribute. The location
of the component package can be specified in the CODEBASEvalue, but the local machine’s Internet search
path (if defined) is ultimately used to locate the componentpackage.

If the componentis found,it is downloaded and verified as safe using the WinVerifyTrustservice.If all
goes well, the control is registered on the local machine. After registration, the componentis instantiated and
the requested interface is returned to the client, andfinally we see the control within the browser.

A component may require the downloading of multiple files to the local machine. An ActiveX control
developed with MFC will require the MFC run-time DLLs. ActiveX provides three techniques for packaging
a componentfile and its dependencies. You can specify the actual executable (such as POSTIT.OCX), or you
can specify a Windows.CABfile or a stand-alone .INFfile. Each one has certain advantages.

A Single Portable Executable
This is the simplest way to specify the downloading of a component. You need only specify the URL to the
executable in the CODEBASEattribute of the OBJECT element. Here’s an example for the Asynccontrol that
wewill developat the end of this chapter:

NFLE1009 - Page 267

NFLE 1009 - Page 268

360 + CHAPTER 12 soneany

<OBJECT ID="Async1” WIDTH=291 HEIGHT=303
CLASSID="CLSID: 0C7B4FD3-13C1-11D0-A644-B4C6CE000000”

pEBASE=YREED?//uini.elynet/=toma/ASYNC.CCKYS
<PARAM NAME="_Version” VALUE="65536">

<PARAM NAME="_ExtentX” VALUE="7694">

<PARAM NAME="_ExtentY” VALUE="7985">

<PARAM NAME="_StockProps” VALUE="165">

<PARAM NAME="BackColor” VALUE="16777215">

<PARAM NAME="Appearance” VALUE="1">

<PARAM NAME="TextPath” VALUE="http://www.sky.net/~toma/log’>

</OBJECT>

Because Internet Explorerinstalls all the MFC DLLsthat a control depends on, you can be fairly certain that
the MFC DLLsthat your control needs will already exist on the target machine. If you specify the explicit
location of your OCX file, Internet Explorer will downloadit andregister it on the local machine.

By using the single portable executable (PE) mechanism for component download, you lose some capa-
bilities provided by the following two methods. First, you can specify only onefile. If your control depends
on DLLsthat will not always exist on the target machine, you will need to use one of the other methods.
Also, the file cannot take advantage of compression, and platform-independent downloadis not supported.

FF 2

A CABFile

Using a .CABfile lets you package multiple files for downloadto the target machine. The format of a .CAB
file is specified using Lempel-Ziv compression, which allows for quicker downloads. To compressfiles and
store them in a .CABfile, you can use the DIANTZ.EXEutility provided with the ActiveX SDK.

The primary reason for using a .CABfile is to save download time by packaging multiplefiles in a com-
pressed format. Youstill need an .INFfile to actually install the components on the target machine. Here’s a
sample .INFfile that uses a .CABfile:

; ASYNC.INF - Demonstrates CAB file support through INF

[Add.Code]

ASYNC . OCK=ASYNC .OCK

MFC42 .DLL=MFC42 .DLL

[ASYNC .OCX]

file=http://www.sky.net/~toma/ASYNC.CAB

clsid={0C7B4FD3-13C1-11D0-A644-B4C6CE000000}

FileVersion=1,0,0,0

(MFC42.DLL]

NFLE 1009 - Page 268

NFLE 1009 - Page 269

Internet-Aware Controls + 561

file=http: //www.sky.net/~toma/ASYNC.CAB

FileVersion=4,2,0,0

The preceding exampleillustrates storing two files—ASYNC.OCX and MFC42.DLL—in the ASYNC.CAB
file. The ASYNC.INFfile is specified in the CODEBASEattribute:

<OBJECT ID="Asyncl” WIDTH=291 HEIGHT=303
CLASSID="CLSID: 0C7B4FD3 -13C1-11D0-A644-B4C6CE000000"

CODEBASE="http://www: sky. net/~toma/ASYNC. INF“>

<PARAM NAME="_Version” VALUE="65536">
<PARAM NAME="_ExtentX” VALUE="7694">

ASYNC.INF is downloadedfirst, and then ASYNC.CAB is downloaded and the components are installed
on the local machine. :

A Stand-Alone INF File

In the previous example, we used an .INFfile to install the components. By using a stand-alone.INFfile,
you gain cross-platform capabilities. You specify an .INF file in the CODEBASE attribute as shown previ-
ously, but you add platform-specific entries to the file. After the browser downloadsthe .INFfile, it down-
loads the platform-specific binaries based on the options providedin the .INFfile. Here’s an example:

; Sample ASYNC.INF for ASYNC.OCX where multiple platforms are supported

(Add. Code]

ASYNC .OCX=ASYNC .OCX

[ASYNC .OCX]

file-win-x86=http://www.sky.net/~toma/x86/ASYNC.OCX

file-win-mips=http: //www.sky.net/~toma/mips/ASYNC.OCX

file-win-alpha=http: //www.sky.net/~toma/alpha/ASYNC.OCX

clsid={0C7B4FD3-13C1-11D0-A644-B4C6CE000000}

FileVersion=1,0,0,0

Only the target machine knowsits platform. After downloading the .INFfile, it can download the platform-
specific binary. For more information regarding component download, check out the ActiveX SDK.

Internet Search Path

Even though the CODEBASEattribute specifies the location of a component, there is another step involved.
When CoGetClassObjectFromURL determines that the component must be downloadedbeforeinstantia-

NFLE 1009 - Page 269

NFLE 1009 - Page 270

562 + CHAPTER 12

tion, it first searches the Internet search path (ISP). A machine’s Internet search path is located in the
Registry under the HKEY_LOCAL_MACHTNEkey.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows

\CurrentVersion\InternetSettings \CodeBaseSearchPath

First searching the ISP makes available additional administration options to the local machine administra-
tors. In local area or intranet environments, the ISP can be used to specify the location of an object store
server, where most components can be found. Using this technique, components can be located and down-
loaded without specification of the CODEBASEattribute. This behavior can also be used to disallow the
downloading of components from unknownor untrusted servers.

The search path takes this form:

<URL1> ; <URL2>;CODEBASE;<URL3>...

The position of the CODEBASE keyword within the ISP affects how components are located. The component
download service searches the ISP in the order specified. If CODEBASEis not specified in the ISP, code will
not be downloaded from sources other than those explicitly indicated in the ISP. This approach is helpfulin
those environments where additional security is needed.

ActiveX Controls and Security
In the previous section we discussed how controls are located, downloaded to the local machine, and exe-
cuted. In such an environment, security is of major concern. An ActiveX control has full access to the Win32
API. This arrangement provides the highest degree of functionality for control writers, but it also creates a
potential security problem. Java takes the sandbox approach of not allowing direct access to the local hard-
ware. This technique helps with security, but it reduces functionality significantly. To maintain a high level
of functionality, Microsoft uses the new WinVerifyTrust service to protect local machines from malicious
components.

Microsoft's approach to security in the Web environmentis like that used in software retail channels.
There is no guarantee that the software you buy fromalocal retailer is benign. There is no guarantee, but
there is significant trust. When you purchase a software package from a vendor, such as Microsoft, you
know wherethe software came from, and you're pretty confident that it will not harm your machine.

Microsoft has taken the steps to set up such an environmentof trust on the Web by providing technolo-
gies that ensure the authenticity and integrity of a component. A componentis marked with a digital signa-
ture based on Microsoft’s Authenticode technology. The component's signature is then maintained and veri-
fied by a trusted authority.

Digital Signatures
To ensure authenticity and integrity, each component is marked using a public-private key mechanism. This
digital signature, which you can view as a complex checksum,is attached to a component. If the componentis
compromised in any way,the digital signature will becomeinvalid.

NFLE1009 - Page 270

NFLE 1009 - Page 271

Internet-Aware Controls + 563

Code Signing
To sign your components using Authenticode so that they can be trusted in the Internet environment, you
must register and obtain a certificate from oneofthe certification authorities such as VeriSign or GTE. After
receiving yourcertificate, you can use the MAKECERT, SIGNCODE, and CHKTRUSTutilities provided
with the ActiveX SDKto sign your controls.

Internet Explorer Security Levels
Internet Explorer will not download components that have not been properly signed. Internet Explorer
allows the user to specify the security level. If the security level is set to high, your controls must be signed
(if they do not already reside on the local machine) and they must be safe for scripting andsafe for initializ-
ing (Figure 12.2). Your control specifies these characteristics through the componentcategories that we dis-
cussedearlier.

Figure 12.2 Internet Explorer security levels.

ObtainingaCertificate
Individual software developers can obtain certificates for $20 per year through VeriSign. The chargefor soft-
ware development companies is $400 per year. VeriSign can be reached at www.verisign.com.

NFLE1009 - Page 271

NFLE 1009 - Page 272

564 + CHAPTER 12

MFC Support for Internet-Aware Controls
Selecting the Load properties asynchronously option in ControlWizard does three things. ControlWizard
adds the stock ReadyState property to your control, implements the ReadyStateChange eventfor you,
and initializes the ready state of your control to READYSTATE_LOADINGin the control's constructor. This
setup sets up your control to use MFC’s support for data path properties

ReadyState Support
COleControl contains a member, m_lReadyState,that maintains the current readystate of your control.
By default, this memberis set to READYSTATE_COMPLETE.In our case, we indicated that our control loads
properties asynchronously, so AppWizard set our control's state initially to READYSTATE_INITIALIZED.
We're now responsible for updating the readiness state of our control as it moves throughits variousstates.
MECprovides three new methods pertaining to ReadyState and asynchronous download support.

COleControl: :GetReadyState returns the current state of the control. Because the control’s state

can be modified through the asynchronousarrival of data, you should check the current state of the control
whenperforming operations that depend on the existence of certain property data. For example,if your con-
trol downloads and displays an image, you may wantto check the current ready state in your OnDraw code.

You use the InternalSetReadyState method to update the current readiness state of the control.
You will typically call this method in the asynchronous download code, as you'll see ina moment. The Load
methodis used to force downloading of an asynchronous property. The Load method takes as a parameter
the URLfor the property.

CDataPathProperty
The CDataPathProperty class is derived from MFC’s new asynchronous monikerclass:
CAsyncMonikerFile. The CDataPathPropertyclass is specifically used for ActiveX controls to encap-
sulate the asynchronous downloadprocess. Most of the functionality is provided by CAsynMonikerFile,
and the control developer need only implement the OnDataAvailable method. Table 12.3 details some of
the important CbataPathProperty members.

Table 12.3 cDataPathProperty Members

Member Description

CDataPathProperty(pControl), The constructor takes an optional pointer to the associated control. If you do
not provide the control instancein the constructor, you mustlatercall
SetControl to set up the association.

SetControl{ pControl) Associates a control with the data path instance.

Open(szPath, pControl) Opensa file (usually specified as a URL) for asynchronous downloading.

SetPath(szPath) / GetPath() Sets or gets the path, usually a URL.

NFLE 1009 - Page 272

NFLE 1009 - Page 273

Internet-Aware Controls + 565tarotinnications

Table 12.3 cbataPathProperty Members (continued)

Member Description

cOleControl* GetControl () Returns the ActiveX controlinstance associated with the data path property.

ResetData() Notifies the containerthat the data associated with this property is no longer
valid. The default behavioris to restart the download process.

To demonstrate someof the techniques discussed in this chapter,let’s build a simple Internet-aware control.
The control subclasses the RichEdit common control. It uses the ES_MULTILINEstyle so that it can dis-
play a large amountof data. The control will retrieve and display the contents of any data specified via its
data path property. The data is downloaded asynchronously using the new data path property and MFC’s
CDataPathPropertyclass. Jt also demonstrates the use of the new ReadyState property and
OnReadyStateChangeevent.

Create the Async Project
Use AppWizardto build a ControlWizard-based project with the name Async. Follow these steps to specify
each of ControlWizard’s options:

° In the OLE Control Wizard Step 1 of 2 dialog box, take the defaults of No runtimelicense, Yes, com-
ments, and No help files.

¢ In OLE Control Wizard Step 2 of 2, take the defaults of Activate when visible and Has “About”box.
From the Which window class, if any, should this control subclass? dropdown, choose the EDIT
control.

@ In OLE Control Wizard Step 2 of 2, click the Advanced button and enable the Loads Properties
Asynchronously option.

e Click Finish and create the control project.

e Using ClassWizard, add the following four stock properties: Appearance, BorderStyle, BackColor,
and Font.

° Add the stock color and font property pages to the control.

The RichEdit Control

In Chapter 10, we focused on useful techniques for subclassing existing Windowscontrols. Toward the end
of the chapter we also discussed subclassing the new Windows 95 commoncontrols. ControlWizard lets you

NFLE1009 - Page 273

NFLE 1009 - Page 274

566 ¢ CHAPTER 12 _

subclass most of them, but conspicuously absent from the list is the new RichEdit control. In our example,
we'll use this new control, but a few additional steps are required to get everything to work. We'll coverthis
first.

The RichEdit control is a big improvement over the basic EDIT control. RichEdit provides an edit-type
control with complete font, paragraph,bullet, text color, and embedded OLE object support. Using RichEdit
you can implement a good editor without mucheffort. Actually, Microsoft did—WordPad uses the RichEdit
control. It’s also written in MFC, and the sourceis included on the Visual C++ CD-ROM.

To subclass the RichEdit control, wefirst fix the code added by ClassWizard:

BOOL CAsyncCtr1: : PreCreateWindow(CREATESTRUCT& cs)

return COleControl: :PreCreateWindow(cs) ;

}

You've seen this before. We change the window class nameand set the appropriate styles for our control. To
use the RichEdit control, you must load the RICHED32 DLL. You might expect MFC’scall to
InitCommonControls to do this, but there must be some reason that it doesn’t. This extra step is probably
why Microsoft omitted the RichEdit control from the subclass window option, but it’s easy, so let’s do it.
Here’s the code to add to ASYNCCTL.H and ASYNCCTL.CPP:

// AsyneCtl.h

LELTETTATT TATA AAA

// CAsyncCtrl : See AsyncCtl.cpp for implementation.

FELTLTTTATT AT ATT A

class CAsyneCtrl : public COleControl

{

// Implementation

protected:

~CAsyncCtrl();

// AsyncCtl.cpp

NFLE 1009 - Page 274

NFLE 1009 - Page 275

 Internet-Aware Co f

CAsyncCtrl: :CAsyncCtrl ()

{

InitializelIIDs(&IID_DAsynec, &IID_DAsyncEvents} ;

m_lReadyState = READYSTATE_LOADING;

// TODO: Call InternalSetReadyState when the readystate changes.

// TODO: Initialize your control’s instance data here.

m_ARTF = LoadLibrary(“RICHED32.DLL”);

}

CAsyneCtrl::~CAsyncCtrl ()

{

f/- Release: the: richedit. dll

Lf (-mhRTF.)

{ 4
FreeLibrary(m_hRTE);
mHRTF = 0;

}

Once we've finished that, we can focus on making this contro] Internet-aware. Our control is fairly simple.
To demonstrate how to use a data path property, our control will download and display a remote file whose
filename is specified using a URL. The file can be big or small. Either way, the data will be downloaded
asynchronously and eventually displayed within the RichEdit control.

Implementing a Data Path Property
Using ClassWizard, add a data path propertyto the control. The type is BSTR. Nameit TextPath and use the
Get/Set method of implementation. The implementation of a data path property requires you to derive a
class from CDataPathProperty and implement the OnDataAvailable method. You mustthen contain
an instance of this class within your COleControl-derivedclass. First, we create the class.

Using ClassWizard, click Add Class, and add the CAsyncTextclass. Be sure to derive it from
CDataPathProperty. You should specify the files as ASYNCTXT.H and ASYNCTXT.CPP. We will need
two membervariables to manage the downloading,so let’s add them next:

//

// AsynceTxt.h : header file
//

class CAsyncText : public CDataPathProperty
{

DECLARE_DYNAMIC (CAsyncText)

NFLE1009 - Page 275

NFLE 1009 - Page 276

368 + CHAPTER 12

// Attributes

public:

// Operations

public:

CAsyncText (COleControl* pControl = NULL);

virtual ~CAsyncText() ;

// Implementation

protected:

cString m:strText;

= DWORD m..dwReadBefore;

M

Next, we embed an instance of the new class within the COleControl-derived class (CAsyncText) and

associate the two instances by passing a pointer to the control class to our CDataPathProperty-derived
member. We then use the CAsyncText instance in the Get and Set methodsfor our TextPath property:

//

// AsyncCtl.h
//

class CAsyncCtrl : public COleControl

{

DECLARE_DYNCREATE (CAsyncCtr1)

// Implementation

protected:

~CAsyncCtrl();

CAsyncText:m:ddpText ;

HINSTANCE m_hRTF;

//

// AsyncCtl.cpp

//

#include “Async.h”

7/ Include our, new. CDataPathProperty-derived class

#include “AsyncTxt .h”
#include “AsyncCtl.h”

#include “AsyncPpg.h”

NFLE 1009 - Page 276

NFLE 1009 - Page 277

Internet-AwareControls + 569

CAsyneCtrl: :CAsyneCtrl ()

{

InitializelIDs(&IID_DAsync, &IID_DAsyncEvents) ;

m_lReadyState = READYSTATE_LOADING;

// TODO: Call InternalSetReadyState when the readystate changes.

// TODO: Initialize your control’s instance data here.

// Associate our control with our CDataPathProperty member

| mddpText. SetControl(this))- :
m_HRTF = LoadbLibrary(“RICHED32.DLL” };

BSTR CAsyncCtr1l: :GetTextPath ()

{

eString strResult = m_ddpText.GetPath();
_-retumstrResult.AllocSysString();

}

void CAsyncCtrl::SetTextPath(LPCTSTR lpszNewValue)

{

(bead (IpsaNewValue, mddpText.);
SetModifiedFlag(}; 7

}

The CAsyncText class will manage the downloading of the asynchronous data. We expose the Get /Set
methods for the TextPath property, which sets and retrieves the path property of CAsyncText. When the
control is instantiated, the smaller, synchronous properties are loaded first. Once they are loaded, the con-
tainer creates an asynchronous moniker with the URL specified through the TextPath property and passes
the data to the CAsyncText member. Toretrieve the data and store it within our control, we override the

CDataPathProperty: :OnDataAvailable method. Do this with ClassWizard and then add the follow-

ing code:

void CAsyncGetText: :OnDataAvailable(DWORD dwSize, DWORD bscfFlag)

{

// TODO: Add your specialized code here and/or call the base class

ae if f Becitlag&BSCE_EIRSTDATANOTIFICATION }
- mistrText = °

on. dwReadBefore =0; - co —— wee
GetControl(|>tnteralsetReadystate(READYSTATELOADING);

NFLE 1009 - Page 277

NFLE 1009 - Page 278

570+CHAPTER 12 seansenasisonnsnasiceantenaspctnaeresenieaneepeeounneite

if (dwSize }

{

DWORD dwArriving = dwSize - m_dwReadBefore;

Lf

{

(dwArriving > 0 }

int nLen = m_strText.GetLength();

LPTSTR psz = m_strText.GetBuffer(nLen + dwArriving);

Read(psz + nLen, dwArriving);

m_strText .ReleaseBuffer(nLen + dwArriving);

m_dwReadBefore = dwSize;

if (GetControl()->GetReadyState() < READYSTATE_INTERACTIVE)

{

GetControl (}->SetText(m_strText };

GetControl ()->InternalSetReadyState(READYSTATE_INTERACTIVE };

ww

}

// Tell the control and the container that

// all of the data is here.

if (bscfFlag & BSCF_LASTDATANOTIFICATION)

{

GetControl ()->SetText(mstrText);

GetControl ()~->InternalSetReadyState(READYSTATE..COMPLETE });

}

CDataPathProperty: :OnDataAvailable(dwSize, bscfFlag);

}

Here’s where most of the work gets done. OnDataAvailable is called periodically as data arrives from the
remote system. OnDataAvailable signals the arrival. You then read the data using Read, whichis inher-
ited from CFile.

The data will arrive in chunks, and the preceding code managesthe arrival and storage of the data. The
first parameter contains the number of bytes that have beenreceived, including the count of the data cur-
rently in the buffer. The second parameter specifies one of three potential states of the download.
BSCF_FIRSTDATANOTIFICATIONindicates that this is the first piece of data, BSCF_INTERMEDIARYNOTI -
FICATIONindicates that we're in the middle of the transfer, and BSCF_LASTDATANOTIFICATIONtells us
that the transferis finished.

NFLE 1009 - Page 278

NFLE 1009 - Page 279

Internet-Awa re Controls+57 1

Whenwe're notified that the transfer is starting, we set the m_strText member to nu11, set the byte
counter to zero, and inform the container that the controlis in the loading state. Then, as the data arrives, we
calculate its size and call the Read method,storing the data in the m_strText buffer.

If this is our first time through and if we have somedata, we call SetText, which is a method in our
control that places the data in the RichEdit control. This approach quickly provides some data for the user to
view. By setting the control’s ready state to interactive, we indicate that the control can handle keystrokes.

Whenall the data has been received, as indicated by the LASTDATANOTIFICATIONflag, we update the
RichEdit control with all the text and notify the container that the control has completed downloading andis
fully operational.

There are a few miscellaneous functions thatI’ve not shown youyet. First, we have a methodto set the
text in the RichEdit control. I’ve also implemented the BackColor property for our control. Setting colors
for some of the newer commoncontrols is different from what we did in Chapter 10. The RichEdit control
uses a messageto set its color, so we override OnSetBackColor and send the new color to the control. We
needto set the colorright after the control is created, so we trap the WMCREATE messageandsetthe color
there, too. Here are the required methods:

void: CAsyncCtrl::SetText(.CString& str)

{

SetWindowText(str’);

InvalidateControl ():3

}

void CAsyncCtrl: :OnBackColorChanged()

{

// Tf we're. running, set: the. background: color

Tf) (: AmbientUserMode (}:~)

{

SendMessage (:: EM.SETBKGNDCOLOR;

FALSE;

TranslateColor({ GatBackColor()));

}

COleControl: :OnBackColorChanged ();

}

int CAsyneCtrl::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

if (COleControl: :OnCreate(lpCreateStruct) == -1)

return -1;

//. Set the’ background: color. ofthe edit control

SendMessage(.. EM.SETBRGNDCOLOR,

FALSE,

TranslateColor(GetBackColor(})));

return 0; NFLE 1009- Page 279

NFLE 1009 - Page 280

S72 + CHAPTER12

Drawing the Control
Wealso need to modify the control’s OnDraw code to draw a simple design-phase representation, as we've
donein earlier chapters:

void CAsyncCtrl: :OnDraw(

cDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)

-f{ Tf the container is in design-mode
LL Draw the design representation

Ab AmbientUserMode())
| DrawDesign(pde, rcBounds:);

DeSuperclassPaint(pdc, rcBounds };

}

vold CAsyncCtrl::DrawDesign(. CDC* pdc, Const CRect&. rcBounds.)

_. CBrush bkBrush(TranslateColor(.GetBackColor()-));
_pde->FillRect (reBounds, &bkBrush’);

~ eString strName= AmbientDisplayName();

/] Set the textcolor to the foreground color

- pde->SetTextColor(: TranslateColor(. GetForeColor()')};

“// Selectthestock font andsave the old one
" CFont* poldFont =SelectStockFont(pde:)}

yy Set up the text drawing modes “in theDe
- pdo-+SetBkMode(TRANSPARENT);

pdce=>SetTextAlign(TA_LEFT. |) TALTOP.):;

“// Draw the text in the upper-left: corner
pde=>ExtTextOut(-rcBounds.left' +1, rcBounds.top + 1,. ETOCLIPPED,

rcBounds,.strName,; strName.GetLength(), NULL.).;.

“// Restore the old’ font

“if -(poldFont’) :

pdce=>Selectobject (..poldFont..);

NFLE 1009 - Page 280

NFLE 1009 - Page 281

Internet-Aware Controls > 573

More Component Categories
There are several componentcategories that pertain to Internet-aware controls. We discussed them previ-
ously in the “Component Categories” sections of this chapter. All that remains is to write the code to mark
our control as being Internet-aware, safe for scripting, and safe for initializing. We developed code in
Chapter 7 that makesit easy to register contro]-implemented control categories. However, we also need to
mark our control as requiring the RequiresDataPathHost category. Our control requires the services of
the container to initiate the download of the TextPath property.

You should recall that a control can specify its component categories under two different subkeys:
Implemented and Required. All our controls so far have added categories underthe Implemented sub-
key. We now need to add a category under the required section. Here is the new code:

HRESULT RegisterCLSIDInReaCategory(REFCLSIDclsid, CATID catid)

‘IcatRegister* per= NULL ;
HRESULT hr =S_OK;

qi Create an instance of the category manager...
hr = CoCreateinstance(CLSID.StdComponéntCategoriesMgr, —

CLSCTX_INPROC_SERVER,
IIDICatRegister,

: (void**)&per..);

if (SUCCEEDED (hr))
a : :

CATID rgcatid(];
rgcatid[0] = catid; 0

"hr=per->RegisterClassReaCategories (clsid, 1, rgcatid);

 ‘AE (por |= NULL)
_per->Release();

return hr; >

HRESULT UnregisterCLSIDInReqCategory(REFCLSIDclsid, CATID catid)

“ICatRegister* per = NULL;

HRESULT hr = SOK;

-// Create an instance of the categorymanager,

— hres CoCreatelnstance(CLSID_StdComponentCategoriestigr,

NFLE1009 - Page 281

NFLE 1009 - Page 282

574@ CHAPTER 12 —

NULL,

CLSCTX_INPROC_SERVER,

TIDICatRegister,

(void**)&pcr);

if (SUCCEEDED (hr))

{

CATID rgcatid [1];

rgcatid[0}..= catid;

hr = pcer-SUnRegisterClassReqCategories(*clsid; 1) rgqcatid’);
}

if (per !=.NULL’)

per=>Release();

return hr;

}

This codeis similar to the RegisterCLSIDInCategory that we’ve usedbefore. The only difference is that
we call ICatRegister: :RegisterClassReqCategories. Using the functions that we developed previ-
ously plus the preceding two functions, we can now code our update Registry function:

FETETPTTTTATTTTAT ETT AT

// CAsyncCtrl::CAsyncCtrlFactory: :UpdateRegistry -

// Adds or removes system Registry entries for CAsyncCtrl
FITTTETATTTTTTTT PATTY

BOOL CAsyncCtrl::CAsyncCtrlFactory: :UpdateRegistry(BOOL bRegister)

{

if (bRegister)

{

CreateComponentCategory(CATIDControl,

L’Controls" =);

RegisterCLSIDInCategory(moclsid;

CAPIDControl);

CreateComponentCategory(° CAPID:SafeForInitializing,

L“Controls safely initializable: from persistent. data’):

RegisterCLsIDincategory (m.clsid,

CATID:SafeForInitializing);

CreateComponentCategory (-. CATID:.SafeForScripting;

L"Controls' that are safely ‘scriptable’:);

RegisterCLSIDInCategory(:m_clsid,

CATID:SafeForScripting:) 7»

NFLE 1009 - Page 282

NFLE 1009 - Page 283

}

else

{

Internet-Aware Controls + 373

CreateComponentCategory(.. CATID.PersistsToPropertyBag;

L’ Support initialize via PersistPropertyEag’);
RegisterCLsIDincategory (-miclsid,

CATIDPersistsToPropertyBag);

CreateComponentCategory(: CATIDRequiresDataPathHost,

L” Requires. Data Path.Host”..);

RegisterCLSIDInReaCategory(-m:clsid,;

CATIDRequiresDataPathHost};

CreateComponentCategory(. CATID,InternetAware,

L’Internet~-Aware’ });

RegisterCLSIDInCategory(m_clsid,

CATID_InternetAware);

return AfxOleRegisterControlClass(

AfxGetInstanceHandle(),

m_clsid,

m_lpszProgID,

IDS_ASYNC,

IDB_ASYNC,

afxRegApartmentThreading,

_dwAsyncOleMisc,

_tlid,

_werMajor,

_wVerMinor) ;

UnregisterCLSIDInCategory(.miclsid,

CATID:Control |);

UnregisterCLSIDInCategory(m_clsid,

CATID.SafeForInitializing);

UnregisterCLSIDInCategory(muclsid, :

CATIDSafeForScripting);
UnregisterCLSIDIinCategory (mclsid,

CATID:PersistsToPropertyBag.\);

UnregisterCLSIDInCategory.(mclsid; oe

CATIDInternetaware |) }

UnregisterCLSIDInReqCategory(mcisid,

CATID*RequiresDataPathHost..).;

return AfxOleUnregisterClass(m_clsid, m_lpszProgID);

NFLE1009 - Page 283

NFLE 1009 - Page 284

576 + CHAPTER 12

Build the project, and let’s test our new Internet-aware control using ActiveX Control Pad and Internet
Explorer.

Testing the Control
The best way to test the control is to embed it in a Web page and set the TextPath property to point to a
large file on a remote system. If you want, you can pointit to http://www.sky.net/~toma/log, whichis a
text file that logs the hits to my Web site. The quickest way to build a test Web page is to use Microsoft's
ActiveX Control Pad.

ActiveX Control Pad

Microsoft's ActiveX Control Pad utility makes it easy to add ActiveX controls to HTML-based Web pages.It

allows you to build simple Web pages, embed ActiveX controls, and add codeto tie everything together
with VBScript.

We'll test the functionality of our Async control by developing a simple Web page. Start ActiveX
Control Pad and perform the following steps. Figure 12.3 showsthe control within Activex Control Pad.

1. Using Edit/Insert ActiveX Control, insert an instance of our new Asynccontrol.

2. Set the BackColor to white using the property editor, and set the TextPath property to point toa
URLof your choice.

Figure 12.3 Inserting the Async control with ActiveX Control Pad.

NFLE 1009 - Page 284

NFLE 1009 - Page 285

Internet-Aware Controls + 577

Whenyou close the control edit window, Control Pad will insert the OBJECT element code into the new
HTML document. When you're finished, you should have something like this in the editor:
<HTML>

<HEAD>

<TITLE>New Page</TITLE>

</HEAD>

<BODY>

<OBJECT ID="Asyncl” WIDTH=324 HEIGHT=335
CLASSID="CLSID: 0C7B4FD3-13C1-11D0-A644-B4C6CE000000">

<PARAM NAME="_Version” VALUE="65536">

<PARAM NAME="_ExtentX” VALUE="8573 ">

<PARAM NAME="_ExtentY” VALUE="8855">

<PARAM NAME="_StockProps” VALUE="165">
<PARAM NAME="BackColor” VALUE="16777215">

<PARAM NAME="Appearance” VALUE="1">

<PARAM NAME="TextPath” VALUE="http://www.sky.net/~toma/log’>

</OBJECT>

</BODY>

</HTML>

This HTML code defines a basic Web page with an embeddedinstance of our control. Let’s makeit a bit
more intelligent. Using Control Pad, add twolistbox controls. A numberof basic controls come with Internet
Explorer. Theyare listed under the Microsoft Forms* controls. Insert one control before the definitionof the
Async control andoneafter the definition. Then use Control Pad to add some VBScript code to the Web
page. Select Tools/Script Wizard to bring up Script Wizard.

Script Wizard is easy to use. Select the control or window that you want to add codeto andstart typing
the code. We need to add code to the Window OnLoad event, the ListBox] Changeevent, and our Async
control’s ReadyStateChange event. Figure 12.4 shows how to add the OnLoad event code with Script
Wizard.

NFLE1009 - Page 285

NFLE 1009 - Page 286

578 CHAPTER 12

@ Globat Variables
@ ListBox
@. ListBox?
@ Procedures

I] window

LigtBoxi. dditem ‘heep . net/-toma/ faq.htm”
ListBox1l.AddItem "http . net/~toma/ faqauco,. heim
ListBox1.a4ddItem “http . net/~toma/ faqgen. htm"
ListBoxl.éddIrem "heop . net/~toma/faqgenz. hum”
ListBox1. AddItem "http net/~toma/faqsub. hrm”

Figure 12.4 Adding VBScript with Script Wizard.

Following is the complete code for our simple example. Notice that we’re using a table to house our embed-
ded controls. The HTML specification does not provide a good methodof aligning embedded controls,
applets, or even images. For our example, we’re using a table to align the controls, but a better solution
might be to use Microsoft’s HTML Layoutcontrol. It provides complete 2-D layout capabilities similar to
those you have whenlaying out a Windowsdialog box or Visual Basic form.

<HTML>

<HEAD>

<TITLE>New Page</TITLE>

</HEAD>

<BODY>

<CENTER>

<Hl>Our Async Control in Internet Explorer!</H1>
</CENTER>

<SCRIPT LANGUAGE="VBScript’>
<i-

Sub window_onLoad()

ListBox1l.AddItem “http://www.sky.net/~toma/fag.htm”

ListBoxl.AddItem “http://www.sky.net/~toma/faqauto.htm’

ListBox1l.AddItem “http://www.sky.net/~toma/faqgen. htm”

ListBoxl.AddItem “http: //www.sky.net/~toma/faqgen2.htm’

ListBox1l.AddItem “http://www.sky.net/~toma/fagqsub.htm”
end sub

NFLE1009 - Page 286

NFLE 1009 - Page 287

Internet-AwareControls + 579

—>

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">
<!-

Sub ListBoxl_Change (}

Asyncl.TextPath = ListBoxl.Text
end sub
=>

</SCRIPT>

<TABLE CELLPADDING = 10>

<TR>
<TD>

<OBJECT ID="ListBoxl” WIDTH=199 HEIGHT=264

CLASSID=" CLSID: 8BD21D20-EC42-11CE-9E0D-00AA006002F3">

<PARAM NAME="ScrollBars” VALUE="3">

<PARAM NAME="DisplayStyle” VALUE="2">

<PARAM NAME="Size” VALUE="5239;6984">

<PARAM NAME="MatchEntry” VALUE="0">

<PARAM NAME="FontCharSet” VALUE="0">

<PARAM NAME="FontPitchAndFamily” VALUE=’2">
</OBJECT>

<TD>

<SCRIPT LANGUAGE="VBScript’>
<b

Sub Asyncl:ReadyStateChange (: NewState.)
Select:Case NewState

Case. 0

ListBox2 .Additem “Initialized’”

Case 1

ListBox2.AddItem “Loaded”

Case.2

ListBox2: AddItem “Loading”

Case 3

ListBox2.AddItem “Interactive”

Case 4

ListBox2.AddItem “Complete”
End Select

end sub
—>

NFLE 1009 - Page 287

NFLE 1009 - Page 288

580 + CHAPTER 12

</SCRIPT>

<OBJECT ID="Async1” WIDTH=291 HEIGHT=303
CLASSID="CLSID: 0C7B4FD3~-13C1-11D0~-A644-B4C6CE000000%>

<PARAM NAME="_Version” VALUE="65536">

<PARAM NAME="_ExtentX” VALUE="7694">

<PARAM NAME="_ExtentY” VALUE="7985">

<PARAM NAME="_StockProps” VALUE="165">
<PARAM NAME="BackColor” VALUE="16777215">

<PARAM NAME="Appearance” VALUE="1">

<PARAM NAME="TextPath” VALUE="http://www.sky.net/~toma/log’>

</OBJECT>

CaS

<OBJECT ID="ListBox2” WIDTH=227 HEIGHT=95
CLASSID="CLSID: 8BD21D20-EC42~-11CE-9E0D-00AA006002F3 ">

<PARAM NAME="BackColor” VALUB="16777215">

<PARAM NAME="ForeColor” VALUE="255">

<PARAM NAME="ScrollBars” VALUE="3">

<PARAM NAME="DisplayStyle” VALUE="2">

<PARAM NAME="Size" VALUE="5979;2512">

<PARAM NAME="MatchEntry” VALUE="0">
<PARAM NAME="FontCharSet” VALUE="0">

<PARAM NAME="FontPitchAndFamily” VALUE="2">
</OBJECT>

</TRBLE>

</BODY>

</HTML>

After adding all the code, save the HTML document and fire up Internet Explorer. You should see some-
thing like Figure 12.5.

NFLE1009 - Page 288

NFLE 1009 - Page 289

Internet-Aware Controls + 581

rowser Type. Moziia/3 ObSaGold (WindS, N)emote Host: tbeliart mdicon com
emote Addr: 19 202,137.73
ion Sep 2 16.17 53 COT 1996rowser Type Mozilla/2.0 (compatible, MSIE43 dailas-3.% diabaccess att.»199.69.134 43

lon Sop 2 18:17:55 COT 1936
owser Type Mozillaf2.0 (compatible, MSIEemote Hast” 43.dattas-3 tx dia-accessatt
emote Addr: 199.69.134.43
fon Sep 2 18 45.67 COT 1995

Figure 12.5 The Asynccontrolin Internet Explorer.

Notice the progress indicator in the lower right-hand corner. In Figure 12.5, the control is downloading a
very large (>500 KB)file. The progress functionality of asynchronous property download providesthis feed-
back to the container.

 The ActiveX Control Framewor

The ActiveX SDK includes an ActiveX control framework (also known as BaseCtl). This framework is some-

timescalled the Light Weight Control Framework, becauseits purpose is to allow the developer to build small
ActiveX controls. The framework isn’t currently supported by Microsoft but is provided for those developers
who havea solid understanding of ActiveX controls and don’t want the overhead of MFC when developing
their controls. For more information on developing controls using this framework, visit my Website.

 Summary
Internet-aware controls differ only slightly from the controls developed in previous chapters. Internet-aware
controls are concerned with two additional issues: low bandwidth and security. The ActiveX SDK provides
new technologies that enable controls to operate effectively in low- bandwidth environments and supports
security techniques to help with the management of component software in the an Internet (or intranet)
environment.

HTMLis the language of the Web, and a few HTMLelementsare useful for ActiveX controls. VBScript
is Microsoft’s Visual Basic implementation for browser environments. ActiveX browsers, such as Internet

NFLE1009 - Page 289

NFLE 1009 - Page 290

S82 4 CHAPTER 12 Oo

Explorer, are ActiveX control containers. A control is embedded within a Web page using the HTML
OBJECT element.

Nearly all of the new technologies that allow controls to operate in the low-bandwidth Internet environ-
ment are outlined in the OLE controls /COM objects for the Internet specification. The primary new addition
for controls is the concept of a data path property. Data path properties use URL monikers to enable asyn-
chronous downloadingof a large property value such as an image. During the download process, the con-
trol indicates its state through the new ReadyState property and OnReadyStateChange event.

A number of new component categories were added specifically for Internet-aware controls. A few of
them are required for controls to operate safely within the Web environment. When browsing Web pages, a
user may not have the embedded ActiveX controls on his or her local machine. In this case, the new compo-
nent download specification enables a browser to locate, download,register, and execute the component on
the local machine.

ActiveX controls have full access to the machine on which they are executing. In an Internet-type envi-
ronment, where controls are part of Web documents, there are a numberof security issues. The new compo-
nent downloadspecification allows transparent download andregistration of controls to machines browsing
Web documents. Microsoft has specified a mechanism for ensuring the authenticity and integrity of compo-
nents in the Web environment. As a software developer, you must register for this service in order to digi-
tally sign your components.

MECprovides support for the new Internet-aware control techniques. The new CDataPathProperty
class makes it easy to provide asynchronous property download support to your controls. Testing your
Internet-awarecontrols is easy using Microsoft's ActiveX ControlPad.

NFLE1009 - Page 290

NFLE 1009 - Page 291

(EEEETSTATLIROT

As developers, we sometimes spend hours, even days, trying to determine how to implementa particular
feature of our softwareorto fix a bizarre bug. The software developmentuniverse is expandingsofast that
it requires long days and nights of study and research just to stay current. That’s why collaboration among
developers is important. Internet newsgroups, forums, list servers, and FAQsall help increase our produc-
tivity. Instead of knocking your head against the wall for two days, you can find an answer, usually with
sample code, that will allow youto implement a feature in muchless time. It all comes downto collabora-
tion and the management of information. That’s what makes the Internet, as embodied in the Web, an
importanttool for software developers.

I know—you're probably skeptical of all the hype. A year ago, so wasI. But after using the Web and
building my own Website, I really believe that it is changing the way we develop software and will also
change the way we conduct day-to-day business.

My Website is devoted to ActiveX development,particularly controls, and contains an ActiveX control
FAQ that I maintain. This chapter will answer a few of the most frequently asked questions concerning
ActiveX controls. Along the way, I will provide an explanation of what is going on under the hood in hopes
of providing you with additional insight into the development of ActiveX controls.

As part of this chapter I’ve developed a control that demonstrates the techniques that we will discuss. It
even has an appropriate name: FAQ.OCX. The control doesn’t do anything, but it demonstrates several
techniques that you should find useful when developing your own controls.

All the questions are answeredin the context of using the Microsoft Foundation Classlibraries. A part
of Visual C++, the MFC framework makes it rather easy to develop ActiveX controls. However, using MFC

583

NFLE 1009 - Page 291

NFLE 1009 - Page 292

584 ~~ CHAPTER 13

can sometimes obscure the understanding you need to solve some of the problems you'll encounter during
development. The sample control was developed with Visual C++ version 4.1.

How do | restrict or change the size of my control?

This question, andits variations, is the most frequently asked ActiveX control question. I see this question
posted regularly to one of the OLE, ActiveX, or control-based newsgroups, solet’s address it right away.
Regular windowsare typically sized using the various Windows API functions (such as SetWindowPos).
You can restrict the size of a window by trapping the WM_WINDOWPOSCHANGING message and modifying
the WINDOWPOSstructure.

ActiveX controls, however, differ from regular windows, because they provide their functionality only
when contained within an ActiveX control container, The container endows ActiveX controls with signifi-
cantly more capabilities than regular windows have, but this power comesat a cost. To reside within an
OLEcontainer, a control must implement several COM-basedinterfaces. If the control wants to muck with
its environment(of whichsize is an attribute), it must negotiate these changes with its container.

The container provides the control with an area in which to work, and the control must respect this
area. Changes to the control’s size must be negotiated with the container. The MFC COleControl class pro-
vides four methods to facilitate control sizing: SetInitialSize, SetControlSize,
OnSetObjectRects, and OnSetExtent.

Developers face two common situations in which control sizing is an issue. First, you may want to
restrict your control’s size (or its extents) so that users cannot produce an invalid condition during the
design phase. You might, for example, have an analog clock that should always be squareor a fixed-size
icon that serves as the control's representation (typically for a nonvisual control such as a timer). Second, as
the control’s developer you may needto affect its size based on oneof its properties. An example would be
an image control that needs to size dynamically based on the extents of the image. We’ll cover both scenar-
ios.

Nonvisual controls typically display a small bitmap during the design phase, often the toolbar bitmap
that the control provides to containers that support it. The bitmap imageis a set size, and there is no needfor
the user to size the control, but the container provides sizing handles by default. To restrict the size of the
bitmap image, we need to do twothings. First, we set the initial size of the controlto its static size using the
COleControl: :SetInitialSize method. This code should be placed in your control’s constructor:

FELLELETTETETALTET ETTATATATL

// CFAQCtr1::CFAQCtrl - Constructor

CFAQCtr1: :CFAQCtr1 ()

{

InitializelIDs(&IID_DFAQ, &IID_DFAQEvents) ;

SetInitialSize(28, 28);

}

SetInitialSize takes as a parameter the size of the control in pixels. It converts the unit to HIMETRIC
(OLE’s favorite) and sets the extents maintained within COleControl. This technique takes care ofthe ini-

NFLE 1009 - Page 292

NFLE 1009 - Page 293

ActiveX ConirolFrequently»Asked Questions ~ 585

tial size of the control whenit is created, but how do westop the user from sizing the control during the
design phase? To do this, we need to understand howthe control and its container interact.

The container provides a control with its site, or location within the container. The containeris responsi-
ble for allowing the user to size the control’s site and will inform the control of its new size. If a control, an
in-place OLE server, wants to be informed aboutthese size changes, it sets the OLEMISC_RECOMPOSEONRE-
SIZEbit in its MiscStatus flags. For AppWizard-generated controls, MFC turnsthis bit on by default and
delivers it to the container via its implementation of IOleObject: :GetMiscStatus. If this bit is set, the
container will notify the control of any change in size by calling the IoleObject: : SetExtent method.

COM-basedinterfaces are just declarations; you must provide the implementation. MFC supplies a
default implementation forall the interfaces required of an ActiveX control. The default implementation of
IOleObject::SetExtentresizes the control. Actually, it does a bit more—because various things must
occur depending on the state of the control—butfirst it gives us an opportunity to augment the default
implementation by calling COleControl: :OnSetExtent. We can override OnSetExtent and do one of
two things. We can return FALSE, whichtells the container that the control cannot be resized, or we can
modify the extents passed via the SIZEL structure and return TRUE. For our purposes, we want to disallow=

any sizing of our iconic representation, so we return FALSE:

BOOL CFAQCtr1::OnSetExtent(LPSIZEL lpSizeL)

{

return FALSE;

}

That's all there is to it—just two newlines of code to implementa control offixed size.

As I mentioned, we can also modify the extents in the SIZEL structure. One optionavailable in the FAQ
control is to ensure that the control is always square. To do this, we need only pick one of the extents and
assign it to the other:

BOOL CFAQCtr1::OnSetExtent(LPSIZEL lpSizeL)

{

// Make sure the control is a square.

// Use the smaller of the extents for the sides.

if (lpSizeL->cy <= lpSizeL->cx)

lpSizeL->cx = lpSizeL->cy;
else

lpSizeL->cy = lpSizeL->cx;

return COleControl::OnSetExtent(lpSizeL);

}

This is easy, too, but you must remember one thing. The extents provided in the SIZEL structure are in
HIMETRICunits. If you are working in something other than HIMETRIC,such as pixels (device units), you
will need to convert the unit. The following code ensures that a control’s size is always 200x200 pixels:

NFLE 1009 - Page 293

NFLE 1009 - Page 294

586 + CHAPTER 13

BOOL CFAQCtr1::OnSetExtent(LPSIZEL lpSizeL)

{

// Ensure that the control is always sized

// at 200x200 pixels. Get a DC and convert

// the pixels to HIMETRIC.

CDC cde;

cde.CreateCompatibleDC(NULL);

lpSizeL->cx = lpSizeL->cy = 200;

cdc.DPtoHIMETRIC(lpSizeL);

return COleControl::OnSetExtent(IpSizeL);

}

This methodisn’t the mostefficient way of doing the conversion. A faster implementation, one that does not
require a DC,is left as an exercise for the reader.

Weunderstand how to handle situations in which the user or container is manipulating the size of the
control, but what about when you need to change the control’s extents from within the control? It’s easy.
MECprovides anothersize-related method: SetControlSize. The FAQ control demonstrates all these siz-

ing scenarios. It has a property, ControlSize,that allows you to changeits sizing behavior anditssize. J
won't spend much time on the control—you can experiment with it yourself—but you need just a bit of
understanding for this section. ControlSize is a dynamic enumerated property (we'll discuss this in a
moment) that provides the user with a list of potential control sizes, one of which is “Draw Iconic.”
Whenever this property is set, the control must negotiate its new size with the container by calling
COleControl: :SetControlSize

void CPAQCtr1::SetControlSize(short nNewValue}

{

POSITION pos = m_lstSizes.GetHeadPosition();

while(pos)

{

cCtrlSize* pSize = (cCtrlSize*) m_lstSizes.GetNext(pos);

if (nNewValue == pSize->m_sCookie)

{

m_pControlSize = pSize;

// SetControlSize forces a redraw so no need

// to call SetModifiedFlag or InvalidateControl.

COleControl: :SetControlSize({ pSize->m_sizeCtrl.cx,

pSize->m_sizeCtrl.cy };

BoundPropertyChanged(dispidControlSize);

break;

NFLE 1009 - Page 294

NFLE 1009 - Page 295

ActiveX ControlFreq

COleControl: :SetControlSize does different things depending on the in-place state of the control. If
the control is in-place active, SetControlSize calls OnPosRectChange through its IOleInPlaceSite
interface, which is implemented by the container. This call informs the container of the new extents, and the
container has an opportunity to accept, ignore, or modify the new extents. The container informs the control
of any modifications by calling I0leInPlaceObject: :SetObjectRects. You can act on this call by
overriding COleControl: :OnSetObjectRects.This negotiation takes place when your control is in-
place active, which typically meansat run time, although some containers (such as Delphi) in-place activate
controls while in design mode.

During the design phase, a call to SetControlSizeresizes the window through OnSetExtent, which
changes COleContro1-maintained extents. OnSetExtentalso calls COleControl: :InvalidateControl,
which informs the container, through T[AdviseSink: :OnViewChanged, that the view of the control has
changed. The container then calls IOleObject:: :GetExtentto obtain the control’s new size andfinally forces
the control to redraw through IViewObject : : Draw. Whew!I told you that functionality comes with a price,
andit’s more than just processingtime;it is also this complexity thing. That’s why frameworks are so popular.
Theyshield us(alittle) from this complexity.

That should cover sizing of your controls. I haven't talked about changing the coordinates of a control,
but this question comes up muchless frequently because the default implementation works fine. Seldom
does the control implementation need to manipulate its position within the container. If you need to,
though, take a look at COleControl: : SetRectInContainer.

Oneother thing. The behaviorI’ve discussed depends on a solid container implementation. Withoutit,
the sizing scenarios will not work as desired. Both the container and the control must work together. If one
of them does not follow the standard,all bets are off. Of course, your control should do its best when it
encounters hostile environments. I’ve tested these techniques with various containers. Visual Basic and
Visual C++ support them all; Delphi and Visual FoxPro still need some work. Let’s get to some more ques-
tions.

Can | access my controlfrom its property page?

This question is posed in different ways, all of them concerned primarily with how to obtain better, more
direct communication with a control from its property page. MFC’s DDP function mechanismis limited. The
DDP functions allow communication only of a small number of automation types. That’s it. When you're
developing even modestly complex controls, the DDP functions don’t provide enough (direct) communica-
tion with the control.

An ActiveX control and each of its property pages are implemented as separate COM objects. Property
pages can be instantiated independently of any associated control. For this reason, property pages use
automation to communicate with controls, most often to get and set property values. This design allows a
container to associate a property page with multiple controls. A user can select two or more controls, and the
container will intersect their properties and show only those pages includedin this intersection. This
arrangementallowsa control user to quickly set a specific property (say, the font) of a group of controls.

MFC-provided DDP functions, which use automation, do not always provide enoughflexibility to
effectively manipulate a control's properties. As we'll see in the next question, it would be nice if we could
access the associated control instance within the property page. Well, MFC makesthis access rathereasy.

NFLE1009 - Page 295

NFLE 1009 - Page 296

588 + CHAPTER 13

Whenthe container constructs a property sheet by assembling the control’s various property pages, the
container provides each page instance withalist of control instances that should be affected. This informa-
tion is provided through IPropertyPage: :SetObjects. Upon construction of a property page, an array
of IUnknown pointers is provided to the property page. The property page’s implementation of
SetObjectswill typically call QueryInterface for the IDispatch pointers of any associated controls.
The property page can then easily get and set a control’s properties through this interface.

MFC’s COlePropertyPage: :GetObjectArray method makesit easy to access a property page’s
array of IDispatchpointers. Once you havethis pointer, you can use CCmdTarget : :FromIDispatchto
obtain the actual COleControl-derived instance of your control. FromIDispatch checks to ensure that
the IDispatch Vtable pointer that you provideis the same as MFC’s IDispatch implementation. In other
words, this technique will work only if your control was written using MFC’s CCmdTarget-based classes
(such as COleControl). This technique also requires MFC version 4.0 and above.

Enoughtalk. Let’s see some code:

LPDISPATCH CFAQPropPage: :GetControlDispatch ()

{

// Get the property page’s IDispatch array

ULONG ulObjects;

LPDISPATCH* lpObjectArray = GetObjectArray(&ulObjects);

ASSERT(lpObjectArray != NULL);

// I'm assuming there is but one control, ours

// This is a pretty straightforward assumption

// Most containers don’t even support multi-control

// selection of custom property pages.

// Return the dispatch

return(lpObjectArray[0] };

}

The preceding code retrieves the IDispatch pointer of our control by returning the first element of the
page’s object array. We make the assumptionthat this is our control’s IDispatch, and today thisis a fairly
easy assumption to make. With just this information, we can now directly interact with our control but only
through its IDispatch. The following code sets the Filename property of our FAQ control:

void CFAQPropPage::SetControlFilename(const CString& strFilename)

{

// Needed for Unicode conversion functions

USES_CONVERSION;

// Get the dispatch of the control

LPDISPATCH lpdispControl = GetControlDispatch();

// Update the control here using automation calls

COleDispatchDriver PropDispDriver;

NFLE1009 - Page 296

NFLE 1009 - Page 297

ActiveX Control Frequently Asked Questions #589

DISPID dwDispID;

// Get a Unicode string

LPCOLESTR lpOleStr = T2COLE(“Filename”);

if (SUCCEEDED(lpdispControl->GetIDsOfNames (IID_NULL,

(LPOLESTR*) &lpOleStr,

1, 0, &dwDispID)))

PropDispDriver.AttachDispatch(lpdispControl, FALSE);

PropDispDriver.SetProperty(dwDispID, VT_BSTR, strFilename);

PropDispDriver.DetachDispatch()};

}

The preceding code could probably use a little explanation. USES_CONVERSION is a macro provided in
AFXPRIV.Hthat facilitates the conversion of ANSI strings to Unicode strings. In MFC versions before 4.0,
ANSI-to-Unicode string translation was provided by default. In MFC versions 4.0 and higher, you must do
the conversions yourself. All Win32 OLEcalls expect Unicode strings. T2COLE converts an ANSI string to a
const Unicodestring. For additional details, check out AFXPRIV.H and MFC Tech Note 59: “Using MFC
MBCS/Unicode Conversion Macros.” The rest of the code retrieves the IDispatch of our control and
attaches it to an instance of COleDispatchDriver.This makesit easier to use the IDispatch methods.

The preceding steps mimic how the standard DDP functions update andretrieve property values from
a control. The DDP functions use the COlePropertyPage: :SetPropText methods. Several

SetPropText methods are implemented within COlePropertyPage. Each oneis overloadedto take a dif-
ferent property type. The SetPropText methods aren’t documented, but by using them wecan shorten the
preceding codeto this:

void CFAQPropPage: :SetControlFilename({ CString& strFilename }

{

SetPropText(“Filename”, strFilename);

}

If you need to access only the automation properties or methods of your control, the preceding techniques
will work fine. However, if you need to access non-automation aspects of your control or would rather use
straight C++ bindings(it’s faster), you can dothis:

CFAQCtr1* CFAQPropPage: :GetControlInstance()

{

LPDISPATCH lpdispControl = GetControlDispatch();

ASSERT(lIpdispControl != NULL);

return (CFAQCtr1*} CCmdTarget::FromIDispatch({ lpdispControl };

NFLE1009 - Page 297

NFLE 1009 - Page 298

590 + CHAPTER 13

The FromIDispatch method of CCmdTarget allows youto retrieve the C++ instance associated with an
IDispatch pointer. This technique requires that your property page and control implementation use MFC,
but it works. Another requirementis that the COM object be implemented in-process. ActiveX controls are
always implemented as in-process servers—I haven't yet found an exception—so this requirementisn’t a
problem.

By retrieving the instance of our control, we can do just about anything with our control within the
property page. In the answerto the next question, we will use this new flexibility to manipulate an array of
properties.

How can | implementa property array?

Why, you ask, would I want to access my control instance from its property page? There are a few reasons.
Oneis that the DDP functions provided by MFC don’t always give us the functionality we need, especially
whenit comes to property arrays. A good example of a property array, or parameterized property,isalist-
box control that allows the userto prefill the listbox, during the design phase, with strings. Thislist of strings
can be manipulated via one property name and index (the parameter) like this:

Dim str as String

str = Listbox.List{ 1

Here, List is a property array that holds the strings contained within the listbox. The DDPfunctions do not
allow you to get and set property values stored within arrays, so we must do something else. We communi-
cate with our control directly using the technique described in the previoussection:

void CFAQPropPage: : DoDataExchange (CDataExchange* pDX)

{

// Set or retrieve the string list

// from the control instance

if (pDX->m_bSaveAndValidate)

UpdateList ();
else

RetrieveList();

DDP_PostProcessing (pDX);

}

Within our property page implementation, whenever DoDataExchangeis called we check the state of the
data transfer. If the page is updating the control’s properties, as indicated by m_bSaveAndValidate, we
update an associated list within the control. When we're retrieving the control's properties, the reverse
occurs. The code for each methodretrieves the control instance and either queries or updates a multiline edit
field within the property page:

//

NFLE1009 - Page 298

NFLE 1009 - Page 299

ActiveX Control Frequently Asked Questions ~ 5914

// Spin through the multiline edit box and update the control's list
//

void CFAQPropPage: :UpdateList ()

{

CStringList strList;

CEdit* pEdit = (CEdit*) GetDlgItem(IDC_PROPERTYLIST);

// Get the number of lines

int nLines = pEdit->GetLineCount (};

for (int line = 0; line < nLines; linet+)

{

char szLine[128];

int nCount = pEdit->GetLine(line, szLine, sizeof(szLine }) - 1 };

// GetLine doesn’t null terminate

szLine[nCount] = ‘\0';

if (nCount)

strList .AddTail{ szLine);

// Get the control instance

CFAQCtr1* pFAQCtr1 = GetControlInstance();

// Pass the list to the control

pFAQCtrl->SetPropertyArray(strList };

//

// Get the property array list from the control
//

void CFAQPropPage: :RetrieveList ()

{

CStringList strList;

CEdit* pEdit = (CEdit*} GetDlgItem{ IDC_PROPERTYLIST);

// Clear any existing data in the edit box

pEdit->SetSel(0, -1)};

pEdit~>ReplaceSel(“”);

// Get the control instance

CFAQCtr1* pFAQCtr1l = GetControlInstance();

// Get the list from the control

pFAQCtr1->GetPropertyArray(strList };

NFLE 1009 - Page 299

NFLE 1009 - Page 300

592 + CHAPTER 13

}

// Fill the entry box

POSITION pos = strList.GetHeadPosition();

while(pos)

{

// Add a CR/LF pair when inserting into the
// multiline EDIT.

CString str = strList.GetNext({ pos) + “\r\n";

pEdit->ReplaceSel(str });

}

// Clear any selection

pEdit->SetSel(-1, 0);

Within the property page, a CStringList instance is maintained that contains a list of strings for the
droplist. A private method within the COleControl-derived class, which takes a CStringList reference,
is used to pass the data to the control instance. Most of the preceding code deals with getting the control’s
instance and is described in the property page section. The important part is that we’re not using the
DDX/DDPfunctions but instead are doing the work ourselves. A similar approach is needed within the
controltoo:

JELTATTATTT ATT

// Property array implementation

LELTLTETTTT TAT

void CPAQCtr1::GetPropertyArray(CStringList& rList)

{

}

void CFAQCtr1::SetPropertyArray(CStringList& rList)

{

rList.RemoveAll (};

POSITION pos = m_lstStrings.GetHeadPosition();

while(pos }

{

rList.AddTail(m_lstStrings.GetNext(pos));

m_lstStrings.RemoveAl1 ();

POSITION pos = rList.GetHeadPosition();

while(pos)

{

m_lstStrings.AddTail({ rList.GetNext(pos));

NFLE 1009 - Page 300

NFLE 1009 - Page 301

ActiveX Control FrequentlyAskedQuestions @ 593

}

These methodsare called from within the property page to update the control’s string list member. Now we
can maintain a property array both within the control and within the property page.

But that’s only half the problem. Another FAQis, “How can I serialize (or persist) a property array?”
This isn’t a straightforward question. The default control persistence (PX) functions don’t handle property
arrays either, so we do something similar to our property page solution. Again, we check thedirection of the
property exchangein our control’s DoPropExchange methodand call the appropriate internal method:

void CFAQCtr1: :DoPropExchange (CPropExchange* pPX}

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl1: :DoPropExchange (pPX);

// Save or restore the list of strings

1£ (pPX->IsLoading())

LoadPropArray(pPX);
else

SavePropArray(pPX);

}

void CFAQCtr1: :LoadPropArray(CPropExchange* pPX }

{

// Make sure the list is empty

m_lstStrings.RemoveAll();

// Get the size of the list

short sListSize;

PX_Short{ pPX, “ListSize”, sListSize, 0);

// Read in the list

CString strPropName;

CString strValue;

for(int i = 0; i < shistSize; i++ }

{

strPropName.Format(“%s%d", “List”, i };

PX_String(pPX, strPropName, strValue, *” };

m_lstStrings.AddTail({ strValue };

}

void CFAQCtr1: :SavePropArray(CPropExchange* pPX }

{

short sListSize = m_lstStrings.GetCount ();

NFLE1009 - Page 301

NFLE 1009 - Page 302

594~ CHAPTER 13

// Write out the list size

PX_Short({ pPX, “ListSize”, sListSize };

// write out the strings

int i = 0;

CString strPropName;

CString strValue;

POSITION pos = m_lstStrings.GetHeadPosition();

while(pos)

{

strPropName.Format(“$s%d", “List”, i++);

strValue = m_lstStrings.GetNext(pos);

PX_String({ pPX, strPropName, strValue };

}

Thetrick here is to generate appropriate property namesandstorethe strings there. The PX function prop-
erty name parameter need not be a valid property name for your control; any value will do. I’ve added a
ListSize property name and List0 through Listn property namesto store any numberofstrings that
the user may enter during the design phase.

T'll be thefirst to admit that this method may not be the mostefficient way to do this, but it works. A
better solution would probably be to use the PX_Blob function andstore the strings in a binary format, an
approach that would require less storage. This technique adds some complexity though, because MFC-
based classes cannotbedirectly serialized using PX_Blob.

HowcanI providea list of valid options for my properties?

Manycontrol properties have a valid range of values. The default ClassWizard implementation does not
provide a rangelimit for your properties. The primary technique of ensuring valid values for your control’s
properties is to use enumerated properties, which provide a way to prevent entry of invalid property values as
well as providing a more user-friendly representation. Figure 13.1 is the property page of our FAQ control
with three enumerated properties. You should also recognize the multiline entry field from the previous dis-
cussion.

NFLE 1009 - Page 302

NFLE 1009 - Page 303

Figure 13.1 FAQ control property page.

There are two ways of implementing enumerated properties: statically and dynamically. Static enumerated
properties are the easiest to implement and should be sufficient for most control properties. The control
developer basically hard codes the potential property values with the control’s type information via the
-ODLfile. The enumerated type’s HelpString parameters can be queried by property browsers via the
ITypeInfo interface. You define an enumerated type and then change your property definition to use the
enumerated type instead of the default short value. Here’s a simple definition for the stock Model prop-
erty from FAQ.ODL:

//

// FAQ.ODL

//

{ uuid(D09D8510-B240-11CF-A58E-0000837E3100), version(1.0)

helpstring(*“FAQ ActiveX control module”), control]

library FAQLib

{

importlib(STDOLE_TLB) ;

importlib(STDTYPE_TLB);

“typedef: enum

{

[helpstring ("Festiva")] Festiva = 0,
fhelpstring ("Escort")] Escort = 1
{helpstring(“Tempo”)] Tempo = 2

NFLE 1009 - Page 303

NFLE 1009 - Page 304

S96 + CHAPTER 13

(helpstring (*Probe”).]" Probe: =" 3

{helpstring (“Taurus”)]-Taurus.=-4

} enumModel ;

// Primary dispatch interface for CFAQCtrl

[wnid(D09D8511-B240-11CF-A58E-0000837E3100)

helpstring("“Dispatch interface for FAQ Control”), hidden]

dispinterface _DFAQ

{

properties:

// NOTE - ClassWizard will maintain property information here.

// Use extreme caution when editing this section.

//{{AFX_ODL_PROP (CFAQCtr1}

{id(1)] short ControlSize;

{id(2)] BSTR Filename;

{id(3)] enumModel Model;
//}}AFX_ODL_PROP

}

In property browsers (such as Visual Basic, Visual C++, and Delphi) that support this technique, only the
five enumerated options are shown. The useris able to choose only from this list. You should also use these
options in your control’s custom property. page. (Remember, not all tools provide property browsers, and
that’s one reason for custom property pages.) You can add the enumerated options using the
DDP/DDX_CBIndex functions within the DoDataExchange method:

void CFAQPropPage: :DoDataExchange (CDataExchange* pDX)

{

//{{AFX_DATA_MAP (CFAQPropPage}

DDP_CBIndex (pDX, IDC_MODEL, m_sModel, _T("Model”) };

DDX_CBIndex (pDX, IDC_MODEL, m_sModel);

//}}AFX_DATA_MAP

DDP_PostProcessing (pDX);
}

There are two techniques you can useto initialize the combo box with the valid strings. First, you can over-
ride OnInitDialog and add thestrings there. Second, you can enter the strings within the Developer
Studio resource editor at design time. Combo boxes with the droplist style allow the entry of a default list of
strings. To keep things nice, you may also want to add an enum to your contro] class and use it in your con-
trol code. The sample control demonstratesall these techniques.

NFLE1009 - Page 304

NFLE 1009 - Page 305

ActiveX ConirolFrequently Asked Questions # 597

BOOL CFAQPropPage: :OnInitDialog(}

{

COlePropertyPage: :OnInitDialog();

// Here’s one way to populate the static enumerated

// property combo box. The other is to add the strings

// in the resource editor.

CComboBox* pWnd = (CComboBox*) GetDlgItem(IDC_MODEL);

pWnd->AddString(“Festiva”);

pWnd~->AddString(“Escort”);

pWnd->AddString(“Tempo”);

pWnd~>AddString(“Probe” };

pWnd->AddString(“Taurus” };

return TRUE; // return TRUE unless you set the focus to a control

// EXCEPTION: OCX Property Pages should return FALSE

}

class CFAQCtrl : public COleControl

{

// Enumerated property members

short m_sModel;
enum

{

Festiva = 0,

Escort = 1,
ue boTempo
ul WwProbe

Taurus = 4

Ye

You can also provide enumerated property values dynamically. This approach is a little more complicated
and is best used when the enumerated values can change or are dependent on other properties within your
control, or when a targeted container(or tool) does not support static enumerated properties.

For controls to provide dynamic enumerated properties, they must implement the
IPerPropertyBrowsinginterface. MFC’s COleControl class provides a default implementation and
allows your derived-control class to augment this implementation via the OnGetPredefinedStrings,
OnGetPredefinedvValue, and OnGetDisplayString methods.

NFLE1009 - Page 305

NFLE 1009 - Page 306

S9& + CHAPTER 13

Wewill look at the implementation first from the control side and later from the property pageside. To
provide dynamic enumerated properties, the three I[PerPropertyBrowsing methods must be imple-
mented within your control's class. For demonstration purposes, the FAQ control enumeratesits
ControlSize property dynamically. What follows will describe what is required to implement
ControlSize as a dynamic enumerated property. The following definition describes a small CCtr1Size
class. Each CCtr1Size instance contains a single ControlSize property definition.

// ControlSize dynamic property support class

class CCtrlSize : public CObject

{

public:

cCtrlSize(CSize, short, CString);

cCtrlsize();

public:

CSize m_sizeCtrl;

short m_sCookie;

CString m_strDisplayString;

yi

The control maintains a linked list of valid Contro1Size values. The potential property values are dynamic
and can be added to this list throughout the lifetime of the control. The control instance also maintains a
pointer into the linkedlist that identifies the current value of the property. This makes it easy to obtain the
value in the various control methods. Here’s a snippet from FAQCTL.H:

class CFAQCtrl : public COleControl

{

// Dynamic enumerated property overrides

virtual BOOL OnGetPredefinedStrings(DISPID dispid,

CStringArray* pStringArray,

CDWordArray* pCookieArray };

virtual BOOL OnGetPredefinedValue(DISPID dispid,

DWORD dwCookie,

VARIANT FAR* lpvarOut);

virtual BOOL OnGetDisplayString(DISPID dispid,

CString& strValue);

cCtr1lSize* m_pControlSize;

CObList m_lstSizes;
enum

{

NFLE1009 - Page 306

NFLE 1009 - Page 307

ActiveX Control Frequently Asked Questions + 599

IconicCookie = 0,

SmallCookie = 1,

MediumCookie = 2,

LargeCookie = 3,

XLargeCookie = 4

i

There are the overrides, a CCtr1Size pointer to maintain the current value, and a CObList to maintain a
list of valid values. When the control is constructed, this list is initialized with potential values.

CFAQCtr1: :CFAQCtr1 (}

{

// Build a list of valid control sizes

CCtr1lSize* pSize;

pSize = new CCtrlSize(CSize(28, 28 },

IconicCoockie,

* Draw Iconic” };

m_lstSizes.AddTail(pSize);

// Default is to draw iconic

m_pControlSize = pSize;

pSize = new CCtrlSize(CSize(100, 100),

SmallCookie,

“100 x 100");

m_lstSizes.AddTail({ pSize);

pSize = new CCtrlSize(CSize(200, 200),

MediumCookie,

“200 x 200”);

m_lstSizes.AddTail(pSize);

pSize = new CCtrlSize(CSize(300, 300),

LargeCookie,

“300 x 300”);

m_lstSizes.AddTail(pSize);

pSize = new CCtrlSize(CSize(400, 400 },

XLargeCookie,

“400 x 400”);

m_lstSizes.AddTail(pSize);

NFLE1009 - Page 307

NFLE 1009 - Page 308

600 + CHAPTER 13

The default property setting is to “Draw Iconic,” butit is reset if a different persistent value has beenset for
the control. Also, COleControl: :SetControlSize is called after the correct ControlSize value is

obtained, so you must be careful when using dynamic properties. If you set a persistent value, you must
ensure that the value is there when you're constructing the control later or that you provide an effective
default mechanism for the value.

void CFAQCtr1: :DoPropExchange (CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: : DoPropExchange (pPX);

// If loading the property, find the correct entry in the list

// and initialize the current property value

if (pPX->IsLoading())

{

}

// Get the cookie value and find the appropriate entry in the list

m_pControlSize = 0;

short sCookie;

T(“ControlSize”), sCookie, IconicCookie);on
PX_Short(pPX

POSITION pos = m_lstSizes.GetHeadPosition();

while(pos)
{

CCtrlSize* pSize = (CCtrlSize*) m_lstSizes.GetNext(pos);

if (short(sCookie) == pSize->m_sCookie)

{

m_pControlSize = pSize;

break;

}

ASSERT(m_pControlSize != 0 };

// When loading the size property, update the control's size

COleControl: :SetControlSize(m_pControlSize->m_sizeCtrl.cx,

m_pControlSize->m_sizeCtrl.cy);

else

{

ASSERT(m_pControlSize != 0 };

// Save cookie value of the dynamic ControlSize property

PX_Short(pPX, _T(“ControlSize”),
poo

NFLE1009 - Page 308

NFLE 1009 - Page 309

ActiveX Control FrequentlyAsked Questions # 601

m_pControlSize->m_sCookie,

IconicCookie);

}

Nowthat we understand the internal managementof the potential property values, let’s implement the enu-
merated property methods. The OnGetPredifinedsStrings method is called by the container, via
IPerPropertyBrowsing: :GetPredefinedstrings, to get a list of potential property values. The
DISPID of the specific property is provided along with a pointerto a string array and a DWORDarray.If the
container is asking for our ControlSize property, wefill both lists with values from our CCtr1Sizelist
and return TRUE. A TRUE return indicates that the arrays have been filled with values. The cookie array
allows the container to later ask for the specific property value associated with the cookie. In our case, the
cookie is the position of the value within the list. Later, this approach will make it easier to implement our
custom property page, because wewill use the cookie as an index into our combo box:

BOOL CFAQCtr1: :OnGetPredefinedStrings(DISPID dispid,

CStringArray* pStringArray,

CDWordArray* pCookieArray)

if (dispid == dispidControlSize)

{

POSITION pos = m_lstSizes.GetHeadPosition();

while(pos)

{

CCtrlSize* pSize = (CCtrlSize*) m_lstSizes.GetNext(pos);

pStringArray~->Add(pSize->m_strDisplayString);

pCookieArray->Add(pSize->m_sCookie };

}

return TRUE;

}

// Tf it’s not ours, let our parent handle the request

return COleControl: :OnGetPredefinedStrings(dispid,

pStringArray,

pCookieArray);

}

If a user now selects a specific property value string, the container will ask for its associated value.
OnGetPredefinedValue, via IPerPropertyBrowsing: :GetPredefinedValue, provides the DISPID
and cookie for the requested value and a VARIANTfor the return. All we have to do nowis to spin through
our list, match the cookies, and return the property value. In our case, the cookie value is the same as the
property value, so wefill out the VARIANT and return TRUE, indicating that the value was found.

NFLE 1009 - Page 309

NFLE 1009 - Page 310

602 + CHAPTER 13

BOOL CFAQCtr1::OnGetPredefinedValue(DISPID dispid,

DWORD dwCookie,

VARIANT FAR* lpvarOut)

if (dispid == dispidControlSize)

{

POSITION pos = m_lstSizes.GetHeadPosition();

while(pos }

{

CCtrlSize* pSize = (CCtrlSize*} m_lstSizes.GetNext(pos };

if (short (. dwCookie) == pSize->m_sCookie)

{

VariantInit(lpvarOut);

IpvarOut->vt = VT_12;

lpvarOut->iVal = short(QwCookie);

return TRUE;

}

// Call the parent implementation

return COleControl: :OnGetPredefinedValue(dispid, dwCookie, lpvarOut);

}

OnGetDisplayString returnsthe current “string” setting for the DISPID provided. This method is called
by the container wheneverit needs to update its display. Hereis its implementation:

BOOL CFAQCtr1::OnGetDisplayString(DISPID dispid, CString& strValue }

{

if (dispid == dispidControlSize)

{

// This should never happen, we’re just being safe.

if (m_pControlSize == 0)

strValue = “Unknown”;

else

strValue = m_pControlSize->m_strDisplayString;

return TRUE;

}

That finishes the control-side implementation. Now let’s move on to our custom property page. In oursolu-
tion for static enumerated properties, we used a comboboxfilled with strings that we defined when compil-
ing the control, or we added them duringinitialization of the dialog box. For dynamic properties, we need to

NFLE 1009 - Page 310

NFLE 1009 - Page 311

__ ActiveX Control Frequently Asked Questions¢603

retrieve the possible values from the control at run time. Thanks to the previous discussions, we should be
able to do this rather easily. The cookie that we used to identify a specific property value can also be used to
indicate the property’s index within our combo box. So, within our property page, we will use the technique
that a typical property browser woulduseto retrieve the property’s potential values:

void CFAQPropPage: :GetControlSizeStrings {)

{

// Get the dispatch of the control

LPDISPATCH lpdispControl = GetControlDispatch({);

// Using IDispatch, query for IPerPropertyBrowsing

LPPERPROPERTYBROWSING lpBrowse;

HRESULT hr = lpdispControl->QueryInterface(IID_IPerPropertyBrowsing,

(LPVOID*) &lpBrowse);

if { SUCCEEDED(hr))

{

CALPOLESTR castr;

CADWORD cadw;

// Get the property strings associated with our

// ControlSize property. This also returns an array

// of “cookies,” but we don’t actually need them.

hr = lpBrowse->Get PredefinedStrings(CFAQCtr1::dispidControlSize,

&castr,

&cadw);

if (SUCCEEDED(hr))

{

//

// Move the strings to our combo box

//

CComboBox* pWnd = (CComboBox*) GetDlgItem(IDC_CONTROLSIZE);

for (ULONG i = 0; i < castr.cElems; i++)

{

// Must include AFXPRIV.H

USES_CONVERSION;

// W2A converts the OLE (Unicode) string to ANSI

pWnd->AddString(W2A(castr.pElems[i]));

}

//

// Free any memory allocated by the server

//

NFLE1009 - Page 311

NFLE 1009 - Page 312

604 ~~ CHAPTER 13

CoTaskMemFree((void *)cadw.pElems);

for (i = 0; i < castr.cElems; i++ }

CoTaskMemFree((void *)castr.pElems{i]);

CoTaskMemFree((void *)castr.pElems };

}

// We're finished so release IPerPropertyBrowsing

lpBrowse->Release({);

}

Weget our control’s IDispatch and query through it for IPerPropertyBrowsing. Wethencall
GetPredefinedstringstoget our array of strings and cookies. Next, we iterate over this array and popu-
late our combo box. That's all there is to it. The standard PX_CBIndex function handles updating the con-
trol when the user changes a property value. There are sometricky parts. You must deallocate the arrays
using COM functions, but once you've done it (and you’ve now doneit once), you’ve done it a hundred
times.

How can | set up a custom property dialog box and access it from Visual Basic’s
browser using the “...” option?

When developing custom property pages for your controls, you can manipulate and validate those values
entered by the control user. However, most visual tools (such as Visual Basic and Delphi) provide their own
property browsers. The default behavior of these browsers allows the control user to enter property values
that are limited only by the range of the property’s intrinsic type. For example, if you have a property thatis
of type short, the usercan enter any valuethatis within the range of a short. What do you doif you need
to provide morestringent property validation? What if you wouldlike to provide a more user-friendly inter-
face that helpsthe userselect the correct property value? Onesolution, as we discussedearlier, is to provide
enumerated properties, but what if the values can’t be enumerated? One example of a property thatis diffi-
cult to enumerate is a filename. To provide a nice, user-friendly interface for these types of properties, you
must implement per-property browsing.

From a user perspective, per-property browsing enables modification, via a control-specific property
page, of a property from within a tool’s browser. In Visual Basic and Visual C++, this additional capability is
identified by the appearanceofellipses (”...”) beside the property. Whentheellipses button is clicked, a con-
trol-specific property sheet is displayed. This approach allows custom property manipulation within any
tool that supports per-property browsing.

The IPerPropertyBrowsing interface that we described earlier is used to implement per-property
browsing—specifically, through an implementation of the MapPropertyToPage method.
MapPropertyToPage does basically what it says. The browser passes the DISPID of a specific property,
and,if the control wants to provide per-property browsing, it returns the CLSID of the supporting property
page.

NFLE1009 - Page 312

NFLE 1009 - Page 313

ActiveXControlFrequentlyAskedQuestions+605
To demonstrate per-property browsing, let’s implement a custom property page for the Filename

property of our FAQ control. The Filename property doesn’t do much;it has the usual Get /Set methods
and a PX_String function for persistence, but that’s it. We'll use it to demonstrate per-property browsing
and to answer another FAQ thatI often get: “How can I pop up a standardfile dialog box from within the
property browser?”

I’ve added a second custom property pageto the control(the process for doing this is described in the
MEC documentation) and have provided an entry field for the filename. We have placed a button on the
page to invoke a standardfile dialog box (Figure 13.2).

Figure 13.2 Filename property page.

Theellipses button invokes a standardfile dialog box that allowsthe user to browsefor a specific filename:

void CFAQPropPage2: :OnSearch()

{

CString strExt = “All files (*.*) | kok [|":

CFileDialog fileDialog{ TRUE,

Ree

NULL,

OFN_SHAREAWARE | OFN_LONGNAMES,
strExt,

this);

fileDialog.m_ofn.nFilterIndex = 0;

fileDialog.m_ofn.lpstrTitle = “FAQ Filename Dialog’;

NFLE1009 - Page 313

NFLE 1009 - Page 314

606 + CHAPTER 13

fileDialog.m_ofn.lpstrFile = m_strFilename.GetBuffer (_MAXPATH);

BOOL bResult = fileDialog.DoModal{) == IDOK ? TRUE : FALSE;

m_strFilename.ReleaseBuffer() ;

if { bResult == IDOK)

{

CWnd* pWnd = GetDlgItem(IDC_FILENAME };

pWnd->SetWindowText (m_strFilename);

SetControlStatus(IDC_FILENAME, TRUE);

}

Weinvoke a modalfile dialog box and allow the user to choose a filename. When OKis pressed, we update
the filename entry field and call COlePropertyPage: : SetControlStatus, which marks the property as
“dirty” and enables the Apply button on the property sheet. Now everything is handled justlike any other
property in a custom property page. When OKor Apply is pressed, the DDP function is used to update the
property within the control instance.

To enable per-property browsing, we override the default implementation of OnMapPropertyToPage.
When a well-behaved property browser enables editing for a specific property, it calls
[PerPropertyBrowsing: :MapPropertyToPage to see whether the control supports per-property
browsing. If per-property browsing is supported, the GUID ofthe associated property page is returned.
Whena container calls MapPropertyToPage, COleControl gives the control a chance to handle the
method through OnMapPropertyToPage. The DISPID of the specific property is provided. Here’s our
implementation from the FAQcontrol:

//

// Support for VB's “...” browser option. Displays a specific

// property page based on the provided dispid. In our case we

// will pop up our “Filename” property page.
//

BOOL CFAQCtr1l::OnMapPropertyToPage(DISPID dispid, LPCLSID lpclsid, BOOL* pbPageOptional

{

// Return our custom “Filename” property page if
// the client asks for it.

if (dispid == dispidFilename }
{

*lpelsid = CFAQPropPage2::guid;

*pbPageOptional = FALSE;

return TRUE;

}

return COleControl: :OnMapPropertyToPage(dispid, lpclsid, pbPageOptional };

NFLE1009 - Page 314

NFLE 1009 - Page 315

ActiveXControlFrequentlyAsked Questions + 607

In Visual Basic, when the user clicks on the ... button, Visual Basic calls MapPropertyToPage to get the
GUID ofthe associated property page. If one is provided, the container builds a property frame with the spe-
cific property page. This technique allows control-specific editing outside a control’s custom property pages.

The pbPageOptionalflag indicates to the property browser whether or not the property can be edited
outside its property page. Our filename property can be edited within an external browser, so weset the flag
to TRUE.

The three other I[PerPropertyBrowsing methods that we used earlier to implement dynamic enu-
merated properties are not needed here. It’s not possible for us to enumerate all the valid filenames,
although we could check the filenamefor syntactic validity. Oh well, yet another exercise for the reader.

When | change a property's value through its property page, the tool’s property
browserisn’t updated. Why nof?

You've already seen code from the FAQ sample that answersthis question. If you want your design-time prop-
erty changes via your control’s property pages to immediately update an external property browser (such as
Visual Basic or Delphi), you needonly call the BoundPropertyChanged methodafter setting the new value:

void CYourCtrl::SetSomeProperty(short nNewValue)

{

m_sSomeProperty = nNewValue;

// Update the property browser

BoundPropertyChanged(dispidSomeProperty };

SetModifiedFlag()};

}

BoundPropertyChanged informs the browser, via IPropertyNotifySink: :OnChanged, that a con-

trol’s property value has changed. The browser then retrieves the new value through the control’s
IDispatch. The parameter provides the dispatch ID of the property that changed. DISPID_UNKNOWN can
be used to force an updateof all known properties.

Why can’tIset the colors on my subclassecl BUTTON control?

Button controls do not pay attention to the reflected OCM_CTLCOLORBTN message. If you wantto create a
button control that provides custom color capabilities, you will have to use an owner-drawcontrol.

How can | provide Fl support for my properties within Visual Basic’s property
browser?

To add support for F1 help within various browsers, you need to modify yourcontrol’s ODLfile. The mod-
ifications specify the help context IDs for your control’s properties, methods, and events. The steps and key-
wordsrequired to modify the .ODLfile are explained in Microsoft Knowledge Base article Q130275.

NFLE 1009 - Page 315

NFLE 1009 - Page 316

608 + CHAPTER 13

Howdo | add supportfor the Help bution in my property page?

First you need to create a .HLPfile for your properties. Then for each of your custom property pages, add a
call to SetHelpInfoin the constructor of your property page class. You must provide a short commentfor
tooltip support, the filename of your .HLP file, and the help context ID to be passed during the WinHelp
call. The default implementation of the Help button calls WinHelp with the parameters provided via
SetHelpInfo.If necessary, you can change this default behavior by overriding and implementing the
COlePropertyPage: : OnHelp method.

Howdo| return an array ofitems from my control?

To return an array of items, you can use an automation safe array. There isn’t room to discussall the features
of safe arrays here, so J’ll briefly cover how to use them in an automation method. A tremendous amount of
documentation comes with Visual C++ that covers the various safe array APIs and so on.

Add a method to your control that takes a VARIANT pointer as a parameter. A variant is a generic data
type that can hold values or pointers to other, more specific automation types. One of the data types that can
be contained within a variant is a safe array. You can havean array of shorts, longs, BSTRs, Dates, and so
on. In the method, allocate a SAFEARRAY, allocate space for the items, and then populate the array with
these values. Then initialize the VARIANT structure. The following code creates a SAFEARRAY of BSTR ele-
ments. As with all automation data, the server allocates the storage, and theclient (for example, Visual Basic)
is responsible for the deallocation.

void CMyControl::GetArray(VARIANT FAR* pVariant)
{

// Get the number of items

int nCount = GetCount();

// Create a safe array of type BSTR

// cElements of the first item indicates the size of the array

SAFEARRAYBOUND saBound[1];

SAFEARRAY* pSA;

saBound[{0].ckElements = nCount;

saBound[0].1Lbound = 0;

pSA = SafeArrayCreate(VI_BSTR, 1, saBound);

for(long i = 0; i < nCount; it+)

{

BSTR bstr;

// Get the next item, create a BSTR, and

// stuff it in the array. GetItem returns a CString.

bstr = GetItem(i }.AllocSysString();

NFLE1009 - Page 316

NFLE 1009 - Page 317

ActiveX Control Frequently Asked Questions + 609

SafeArrayPutElement(pSA, &i, bstr);

::SysFreeString(bstr };

}

// Init the variant

VariantInit(pVariant);

// Specify its type and value

pVariant->vt = VT_ARRAY | VT_BSTR;
pVariant->parray = pSA;

}

The Visual Basic codeto access the elementsof the array would look somethinglikethis:

Dim t As Variant

Dim i as Integer

MyControll.GetArray t

For i = 0 To MyControl1l.Count - 1

ListBox.AddItem t(i

Next i

How can | communicate with other controls in the container?

To communicate with other ActiveX controls within a container, use the ITOleItemContainer: : Enum

Objects method. COleControl provides a method, GetClientSite, that provides access to the
IOleClientSite interface. Through this method you can get a pointer to the I0leItemContainerinterface.
Once you have a pointerto this interface, you can enumerate overthe contained controls:

void CMyCtrl: :EnumControls()

{

LPOLECONTAINER pContainer = NULL;

// Get a pointer to the I0leItemcontainer interface

HRESULT hr = GetClientSite()->GetContainer(. &pContainer);

if (SUCCEEDED(hr)}

{

// Types of objects to enum

DWORD dwFlags = OLECONTF_ONLYIFRUNNING |

OLECONTF_EMBEDDINGS |
OLECONTF_ONLYUSER;

LPENUMUNKNOWN pEnumUnknown = NULL;

hr = pContainer->EnumObjects(dwFlags, &pEnumUnknown);

NFLE 1009 - Page 317

NFLE 1009 - Page 318

610 CHAPTER 13

if (SUCCEEDED(hr }))

{

LPUNKNOWN pNextControl = NULL;

// Loop through the controls

while(SUCCEEDED({ hr }) && pEnumUnknown->Next({ 1, &pNextControl, NULL) == S_OK)

{

LPDISPATCH pDispatch = NULL;

// Get the IDispatch of the control

hr = pNextControl->QueryInterface(IID_IDispatch, (LPVOID*) &pDispatch);

if (SUCCEEDED(hr))

{

COleDispatchDriver PropDispDriver;

DISPID dwDispID;

// Use automation to access various properties and methods

USES_CONVERSION;

LPCOLESTR lpOleStr = T2COLE(“SomeProperty” };

if (SUCCEEDED(pDispatch->GetIDsofNames (IID_NULL,

(LPOLESTR*)&lpOleStr, 1, 0, &dwDispID)))

PropDispDriver.AttachDispatch(pDispatch, FALSE) ;

UINT uiCount;

PropDispDriver.GetProperty(dwDispID, VT_I4, &uiCount };

PropDispDriver .DetachDispatch() ;

pNextControl->Release();

}

pEnumUnknown->Release ();

}

The preceding example demonstrates how to access the IDispatchofall the controls within the container.
There are many other things you could do. To identify the controls you're looking for, you could implement
a custom interface within the (target) control and then call QueryInter faceto find it. You could also look
for a specific CLSID of a controlafter retrieving the [0leObject interface. You should be able to do almost
anything once you've found the control you're looking for.

NFLE 1009 - Page 318

NFLE 1009 - Page 319

ActiveX Control Frequently Asked Questions + 611

Why does AmbientUserModealwaysreturn True?

You're probably checking the value of AmbientUserModein your control’s constructor, destructor, or
OnSetClientSite method. The value of AmbientUserModeis always TRUE if the control hasn’t yet set
up its ambient [Dispatch connection to its container. You won't get a valid return from
AmbientUserModein either the constructor or destructor of your control, but you can in
OnSetClientSiteif you first ensure that the ambient [Dispatch has been set up. The following code
demonstrates how to check AmbientUserModeduringthe call to OnSetClientSite:

// Ensure the control has a valid HWND as soon as it

// is placed on the container

void CYourCtr1: :OnSetClientSite()

{

// We only need the window at run time

// Only call recreate when there is a valid ambient dispatch

if (m_ambientDispDriver.m_lpDispatch && AmbientUserMode())
RecreateControlWindow() ;

}

The m_ambientDispDriver member of COleControl maintains the ambient dispatch of the container.
Only if m_lpDispatchis valid is there an appropriate connection to the container, thus allowingretrieval
of ambient properties. The preceding code ensures that RecreateControlWindowis only called once,
whenthe controlis initially created as the container loadsthe control.

How do | change the actual Namevalue of my conirol (VB’s Name property)?

The Name property that Visual Basic uses is the control’s actual coclass name. To quickly change this
exposed name, modify your control’s coclass interface name. The following example shows where this
nameis located in the .ODLfile. I’ve changed the namefrom Ccc to SomethingElse.

// Class information for CCccCtrl

[uuid (3B082A53-6888-11CF-A4EE-524153480001) ,

helpstring(*Ccc"), control]

coclass SonethingElse_
{

{[default] dispinterface _DCcc;

[default, source] dispinterface _DCccEvents;

yi

NFLE1009 - Page 319

NFLE 1009 - Page 320

612 + CHAPTER 13

I’m having trouble registering my control. What can | do?

The most common problem you'll encounter when attempting to register a control is the absence of DLLs
that the control depends on (such as MFC40.DLL). If you’re still having problems after ensuring that the
right DLLsare installed, you can simulate what REGSVR32.EXE does with the following code. This tech-
nique allows you to trace through andsee exactly where things are going awry.

//

//

//

//

//

//

//

//

RegisterServer takes as a parameter the

explicit path and filename of the OLE

server that you want to register.

E.g., ¢:\winnt\system32\clock.ocx

This function loads the DLL/OCX and calls

the DllRegisterServer function.

DWORD RegisterServer(char* szPath)

{

}

HINSTANCE hInstance = ;::LoadbLibrary(szPath);

if (z= hInstance)

{

return ::GetLastError();

}

typedef void (FAR PASCAL *REGSERVER) (void);

REGSERVER RegServer =

(REGSERVER) ::GetProcAddress(hInstance,

_T(“DllRegisterServer"”));

if { 0 == RegServer)

{

::FreeLibrary(hInstance);

return ::GetLastError({);

}

RegServer ();

::FreeLibrary(hInstance);

return 0;

Can I create an instance of my conirol with Visual Basic’s CreateObject function?

I’ve included this question because it was asked four times in a matter of days. It’s also nice to know that
you can use your ActiveX controls as automation servers if necessary. The main attraction of this approachis

NFLE1009 - Page 320

NFLE 1009 - Page 321

ActiveX Control Frequently Asked Questions + 613

that it provides dynamic creation of the control. Using most tools, your control must be placed on a form
during the design phase. If you use Visual Basic’s CreateObject function, there are no design-time depen-
dencies within your Visual Basic project. This flexibility, however, comes with a significant cost. Using your
control as an automation server will negate two of the most important features of ActiveX controls: events
and persistence.

Visual Basic’s CreateObject function creates an instance of an automation server. It uses the standard

COM APIs to create the instance and then query for the server’s IDispatch. ActiveX controls are automa-
tion servers. However, they also implement a numberof other COM-basedinterfaces and expect to be active
within a container. The primary difference between a standard automation server and an ActiveX controlis
that the control natively supports events and provides a persistence mechanism for its properties (through
its container).

By default, a control expects to have a control site containing various interfaces, but CreateObject
cannot provide them. COleControl does, however, provide a way for a control to behave as just an
automation server; you need only override COleControl: :IsInvokeAllowed and return TRUE. This
technique allows you to use CreateObject on your control, although you must be sure that everything
will still work without any persistence or event support. You can check for this condition by testing the state
of the m_bInitializedflag. If it is FALSE, the control has not beeninitialized via the standard container
persistence mechanism. The following code allows your control to behave as an automation server and
exposes a property, IsControl,thatindicatesits state:

BOOL CFAQCtr1::IsInvokeAllowed(DISPID dispid }

{

return TRUE;

}

BOOL CFAQCtr1::GetIsControl {)

{

// If in design mode don't display the property

// in the property browser. Throw the

// CTL_E_GETNOTSUPPORTED exception instead.

if (! AmbientUserMode())

{

GetNotSupported() ;

}

// mbInitialized indicates whether the container’s

// persistence mechanism was used to load the control.

// If it ig FALSE, we are acting as an automation server.

return m_bInitialized;

}

Once you've set up your control to work as an automation server, you need to instantiate it. By default,
ControlWizard creates a ProgID for controls as PROJECT. PROJECTCtr1.1. This is specified in the IMPLE-

NFLE1009 - Page 321

NFLE 1009 - Page 322

614 + CHAPTER 13

MENT_OLECREATE_EX macro, so it’s easy to change. To create an instance of your control in Visual Basic,
you would do something like this:

Dim objFAQCtrl as Object

Set objFAQCtr1 = CreateObject(“FAQ.FAQCtr].1”)

‘ Do something with the control instance

objFAQCtr1.IsControl

*‘ Now release it

Set objFAQCtrl = Nothing

 more Answers

If you have other ActiveX control questions, be sure to check out the FAQ I maintain at
http://www.sky.net/~toma/faq.htm. If the answerisn’t there, send your question to me at toma@sky.net
or tom@widgetware.com.I’ll do my best to answerit in a timely manner. I also encourage you to contribute
any specific issues that you’ve encountered or special tricks that you’ve learned while grappling with
ActiveX control development. As product developmenttimelines continue to shrink and the technologies
that we use become more complex, we must do what we can to maintain our productivity.

NFLE1009 - Page 322

NFLE 1009 - Page 323

The CD-ROM contains the source codeforall the example programs discussed in the book. The structure of
the CD-ROMis illustrated in Figure A.1. I have not included a setup program to copy the files from the CD-
ROM; a simple XCOPY command will allow youto select those items that you are interested in. For exam-
ple, to copy the complete CD-ROM contents to your hard drive, create a directory (e.g., XBOOK), and issue
the following XCOPY command.Of course, you will have to substitute youractual hard drive and CD-ROM
deviceletter.

c:\KXbook\XCOPY d:*.* /s

This will create the directory structure shown in Figure A.1 under your XBOOKdirectory. The contents of
each directory are detailed here.

 \ (Root)

|

\Wini6 \Misc | \www \examples

: : 5 La
\chap2 \chap2

\Wilkins... ve | oo
\chap3 J \chap3 |

\Multi

\chapt1 \chap12

\chap12 \chap13

Figure A.1 CD-ROMhierarchy.

61 5 NFLE1009 - Page 323

NFLE 1009 - Page 324

616 ~ APPENDIX A

\Winl6 Directory
I've included the source files and projects from thefirst edition of the book for those interested in developing
16-bit ActiveX controls. Each chapter directory contains a Visual C++ version 1.52b makefile for the exam-
ple projects and controls.

\Examples Directory
The \examples subdirectories contain all the Visual C++ project files for the example programs. Table A.1
details the contents of each directory.

Pat

\examples\chap2\express

\examples\chap3

\examples\chap4\server

\examples\chap4\client

\examples\chap5\server

\examples\chap5\client

\examples\chapé\Autosvr

\examples\chapé\server

\examples\chapé\client

\examples\chapé\VcClient

\examples\chapé\vbelient

\examples\chapé\vbdriver

\examples\chap8\postit

\examples\chap8\vb

\examples\chap9\clock

\examples\chap9\contain

\examples\chap10\eedit

\examples\chap10\vb

\examples\chap10\treev

\examples\chap1 1\pipe

Table A.1 \Example Directory Contents

Description

Containstheinitial EXPRESS.H and EXPRESS.CPPfiles. The makefile included here works with

Visual C++ andis built as a Win32 console application.

Visual C++ project files for the Chapter 3 project.

Visual C++ project files for the Chapter 4 SERVER project.

Visual C++ project files for the Chapter 4 CLIENT project.

Visual C++ project files for the Chapter 5 SERVERproject.

Visual C++ project files for the Chapter 5 CLIENT project.

The projectfiles for the MFC-based automation server we developed in Chapter 6.

Theprojectfiles for the non-MFC automation server.

The projectfiles for the non-MFC automationclient.
MFC-based automation client.

Visual Basic automation client example. This Visual Basic example uses the non-MFC automa-
tion server.

Visual Basic automation client driver example. This Visual Basic example demonstrates access-
ing the MFC-based localserver.

Visual C++ project files for the POSTIT control.

Project files for the Visual Basic example program that uses the POSTIT control.

Visual C++ projectfiles for the analog CLOCKcontrol.

Visual C++ project files for the CONTAIN container example.

Visual C++ project files for the EEDIT control.

Visual Basic projectthat uses the EEDIT control.

Visual C++ project files for the TREEV control.

Visual C++ project files for the PIPE control.

NFLE 1009 - Page 324

NFLE 1009 - Page 325

CD-ROM Instructions + 617

Table A.1 \Example Directory Contents (continued)

Path Description

\examples\chap1 1 \vb Projectfiles for the three Visual Basic example programsthat use the PIPE control.

\examples\chap1 2\asyne Visual C++ projectfiles for the ASYNC control.

\examples\chap12\htm HTMLfiles using the sample control.

\examples\chap13\FAQ Visual C++ project files for the FAQ control.

 Directory
The \WWW directory contains an HTML-based page that contain references to ActiveX resources on the
Web.Just load up the DEFAULT.HTMfile in your browser.

\Misc Directory
The \misc directory contains additional sample control source not directly discussed in the text. For starters,
there is great example of a control acting as a container for other controls in the \Misc\Wilkins hierarchy.
Bob Wilkins (bob@havana.demon.co.uk) developed this example, and it demonstrates several useful tech-
niques for embedding controls within another control. For the latest information on this example, check out
his Website at: http:/ /www.netlink.co.uk/users/havana/projects.html.

The \Multi directory contains a control that demonstrates embedding multiple Windowscontrols
within one ActiveX control.

Table A.2 \Misc Directory Contents

Pat! Description

\Misc\Wilkins\xwdecell, The XWDCELLdirectory contains Bob’scell control. The XWDGRID directory contains the grid
\Misc\Wilkins\xwdgrid, control that is actually a control container that contains a number of XWDCELLcontrols.
\Misc\Wilkins\vbtest The VBTESTdirectory contains a Visual Basic executable that implements a crossword puzzle.

\Misc\Multi A simple control that demonstrates how to embed multiple Windows controls within one ActiveX
control. The control contains a multiline EDIT control and a BUTTONcontrol.

NFLE1009 - Page 325

NFLE 1009 - Page 326

SLAELCREILEENELECTELESSESELDLESELLISLIESECEIEIESLOTSSITELEDEREPECETEEGOSSELEEETELEESECEEDELEEEBLOESCECE

 ctiveX § ocumentation

The Activex SDK contains several documents that are instrumental to understanding ActiveX control and
related technologies. Followingis a list of the major documents:

OLE Controls/COM Objectsfor the Internet

Internet Component Download Specification

Asynchronous Moniker Specification

Component Categories Specification

OLEControls 96 Specification
OLE Control and Container Guidelines Version 2.0

URL Monikers Specification

ActiveX SDK On-line Help

 , a
er Publications

Armstrong, Tom, “Frequently Asked Questions—With Answers—-About ActiveX Controls,”
Component Builder, July and August 1996).

Andrews, Mark, C++ Windows NT Programming, New York, NY: M&T Books, 1994.

Blaszczak, Mike, “Implementing OLE Control] Containers with MFC and the OLE Control
Developer’s Kit,” Microsoft Systems Journal (April 1995).

Blaszczak, Mike, MFC 4 Programming with Visual C++, Chicago, IL: Wrox Press Ltd., 1996.

619

NFLE1009 - Page 326

NFLE 1009 - Page 327

620 + APPENDIX B — a

Brockschmidt, Kraig, Inside OLE, second edition, Redmond, WA: Microsoft Press, 1995.

Brockschmidt, Kraig, “OLE Integration Technologies,” Dr. Dobb’s Special Report: The Interoperable
Objects Revolution (Winter 1994/1995). .

Cargill, Tom, C++ Programming Style, Reading, MA: Addison-Wesley, 1992.

Chappell, David, Understanding ActiveX and OLE, Redmond, WA:Microsoft Press, 1996.

Cilwa, Paul, and Duntemann,Jeff, Windows Programming Power with Custom Controls, Scottsdale, AZ:
The Coriolis Group, 1994.

DiLascia, Paul, “OLE Made Almost Easy: Creating Containers and Servers Using MFC 2.5,” Microsoft
Systems Journal (April 1994).

Eckel, Bruce, C++ Inside & Out, Berkeley, CA: Osborne McGraw-Hill, 1993.

Entsminger, Gary, The Tao of Objects, New York, NY: M&T Books, 1990.

Goodman,Kevin J., Windows NT: A Developer's Guide, New York, NY: M&T Books, 1994.

Harris, Lawrence, Teach Yourself OLE Programming in 21 Days, Indianapolis IN: Sams Publishing,
1995.

Helman, Paul, and Veroff, Robert, Intermediate Problem Solving and Data Structures, Menlo Park, CA:
The Benjamin/Cummings Publishing Company,Inc., 1986.

Kruglinski, David J., Inside Visual C++, second edition, Redmond, WA:Microsoft Press, 1994.

Lang, Eric, “Building Component Software with Visual C++ and the OLE Control Developer’s Kit,”
Microsoft Systems Journal (September 1994).

Meyers, Scott, Effective C++, Reading, MA: Addison-Wesley, 1992.

Microsoft Developer Network (MSDN) CD-ROM, Redmond, WA:Microsoft, 1995.

The MSDN CD-ROMis produced every quarter and distributed to MSDN members.It contains a
tremendous amount (600 MB) of developer-oriented material: white papers, complete books, numer-
ous program examples, back issues of MSJ, and so on. Every serious Windowsdevelopers should
subscribe to this service. Following are some example items:

NFLE1009 - Page 327

NFLE 1009 - Page 328

__Bibliography+621

OLE Control Developer’s Kit: User’s Guide & Reference, Redmond, WA:Microsoft Press, 1994.

OLE Programmer's Reference Volume One, Redmond, WA:Microsoft Press, 1996.

OLE Automation Programmer's Reference Volume Two, Redmond, WA:Microsoft Press, 1996.

Petzold, Charles, Programming Windows 3.1, third edition, Redmond, WA:Microsoft Press, 1992.

Prosise, Jeff, “Wake Up and Smell the MFC: Using the Visual C++ Classes and Application
Framework,” Microsoft Systems Journal (June 1995).

Richter, Jeffrey M., Windows 3.1: A Developer’s Guide, New York, NY: M&T Books, 1992.

Williams, Sara, and Kindel, Charlie, “The Component Object Model,” Dr. Dobb’s Special Report: The
Interoperable Objects Revolution (Winter 1994/1995).

NFLE1009 - Page 328

NFLE 1009 - Page 329

/Automation switch, 268
__stdcall, 160
abstract class, C++, 40, 115
ActiveX, 188-189

comparedto OLE,1, 12, 113, 151, 187-
189

compared to COM,187-189
ActiveX Automation. See Automation

ActiveX Control Pad, 576-581
ActiveX Controls, xxv, 291-334

and componentcategories. See
componentcategories

adding custom events, 380-381
adding custom methods, 379-380
adding stock events, 377-379
adding stock methods, 379
adding stock properties, 357-363
and Automation, 294, 307-310

as software components, 294
debugging, 391
drawing, 354-355
drawing in design-mode, 514-516
error handling, 540-542
events, 315-318

custom, 318, 380-381

freezing, 319, 533-535
maps, 379, 442
standard, 317
stock, 377

functionalcategories, 305-319
interfaces, 298-299, 306-319
Internet-aware, 294, 305, 549-582

licensing, 350-353
methods, 310-311

Refresh, 310, 379
DoClick, 310, 379

properties, 307-310
ambient, 298, 308-309, 373-377

data path, 554, 567-571
design-time-only, 543
enumerating values, 488-490
extended, 323

read-only, 519
run-time-only, 542
persistence, 314-315
serializing, 381-383
standard, 307-308
stock, 307-308

Appearance, 359
BackColor, 308, 359

BorderStyle, 308, 360
Caption, 308, 358, 360
Enabled, 308, 361
Font, 308
ForeColor, 308, 360
Hwnd,308, 361

ReadyState, 556
Text, 308, 358, 360

property pages, 311-314, 490-494
modifying custom, 366-372, 490-494
stock, 372

property sheets, 311
reflected window messages, 468-471
registering, 355
registry entries, 323-326
serialization, 381

subclassing. See subclassing Windows
controls

testing,
ambientproperties, 376-377
in the Test Container, 356, 363, 428

metafile representation, 425-428
toolbar bitmap, modification, 357
types, 294

ActiveX Scripting, 188
AddRef. See [Unknown::AddRef

AFX_MANAGE_STATEmacro, 344-346

623

AFXCMN.H,498
AfxDlIICanUnloadNow,219

AfxDliGetClassObject, 218, 344
AFXOLE.H,180
AfxOlelnit, 196

AfxOleLockApp,207
AfxOleUnlockApp, 207
AFXPRIV.H,171-175, 589

AfxRegisterControlClass, 387
AfxUnregisterControlClass, 387
AfxVerifyLicFile, 353
AFXWIN.H,200

aggregation. See Component Object Model,
the ambient properties. See ControlContainers and ActiveX Controls

applets, 6, 14-15
application frameworks, 6, 78-79
application generators, 80
applications as components,10-13
AppWizard. See Visual C++
ASSERT macro, 109
ASSERT_POINTER macro, 109
ASSERT_KINDOF macro, 109

asynchronous monikers. See monikers.
Automation, xxv, 12, 221-289

(See also [Dispatch)
and inheritance, 266

automating an MFCapplication, 279-287
controllers, 222, 245

data types, 228-230
properties and methods, 226, 230
standard application properties, 287
wrapping C++ classes with, 256-262

8

Beep, 484
BEGIN_INTERFACE_MAP macro, 203
BEGIN_INTERFACE_PART macro, 202
BEGIN_MESAGE_MAP macro, 103

NFLE1009 - Page 329

NFLE 1009 - Page 330

624 + INDEX

BEGIN_OLEFACTORYmacro,349, 351
BEGIN_PROPPAGEIDSmacro, 372

binary standard,4, 7-8, 56, 114, 145, 187
Binding

in Automation, 222-223, 271-273

late vs. early in C++, 38, 41
BITMAPstructure, 515
black box, xxiv
BN_CLICKED,101-104, 282, 469-471

Browser.See Internet Explorer
BSTR, 161, 171, 240

Cc

C++, the language, 17-76
and application frameworks, 78-79
andinterface implementations, 127-132
andreuse, 3, 9, 17, 54-56

and software complexity,xxiii, 6
class composition, 31, 45-47, 71-73

class nesting, 133-137, 202-208
classes, 18-20

abstract, 40, 115
static members, 26, 51-54

constructors, 20-23

copy constructors, 50
destructors, 24-26
inheritance, 3, 26-31, 55

multiple, 44-45
whento use, 30-31

interface vs. implementation, 56-57
keywords,

const, 47
friend, 130

private, 19-20, 31-34
protected, 19-20, 31-34
public, 19-20, 31-34
static, 26, 51-54
this, 49, 127, 136

mangling 3, 6-8, 37
methods, 19
offsetof macro, 135-137, 204

operators

assignment, 50
delete, 23-24

multiple scoping, 135
new, 23-24

overloading, 51
overloading, 36-38
overriding, 34-36
problemswith, 6-7

references, 47
structures, 20
virtual functions, 38-41

in COM,114-121

pure, 40,115
Vtable, 41-43, 115

CABfiles, 560-561

CAsyncMonikerFile, 564
CATEGORYINFOstructure, 330-331
CATID, 327
CATID_Control, 328

CATID_DocObject, 328
CATID_Insertable, 328

CATID_InternetAware, 329, 557-558
CATID_Persists*, 329, 557
CATID_Printable, 328

CATID_Programmable, 328
CATID_PropertyNotifyControl, 329
CATID_RequiresDataPathHost, 557, 573
CATID_SafeForlnitializing, 557-559
CATID_SafeForScripting, 557-558
CATID_SimpleFrameControl, 329
CATID_VBDataBound,329
CATID_VBFormat, 329
CATID_VBGetControl, 329

CATID_WindowlessObject, 329
CAUUIDstructure, 312

CBitmap, 399, 419, 515
CBitmap::CreateCompatibleBitmap, 400
CBitmap::GetObject, 515
CBitmap::LoadBitmap, 515
CBrush, 397-398, 475
CComboBox, 194

CCmdTarget, 104, 197-210, 256-266
CCmdTarget::EnableAutomation, 263-266
CCmdTarget::External* methods, 205
CCmdTarget::FromI[Dispatch, 588, 590
CCmdTarget::Internal* methods, 205
CCmdTarget::OnFinalRelease, 207
CCmdTarget::MemberIDFromName,265
CDataPathProperty, 564, 567-571
CDataPathProperty::OnDataAvailable, 564,

569-571

CDC, 354, 395-398, 423-425
CDC::BitBlt, 423-425

CDC::CreateCompatibleDC,418, 423-424
CDC::DPtoHIMETRIC,418
CDC::DrawText, 355, 360

CDC::Ellipse, 397, 400
CDC::ExtTextOut, 397
CDC::FillRect, 355

CDC::GetDeviceCaps, 418-419
CDC::LineTo, 405
CDC::MoveTo,405

CDC:SelectObject, 397
CDC:SelectStockObject, 397
CDC::SetBkMode, 355

CDC::SetTextAlign, 397
CDC::SetTextColor, 355

CDC::SetWindowOrg, 407
CDialog, 192, 246, 365
CDialog::DoModal, 195
CDialog::OnInitDialog, 194, 248, 444, 596
CDocTemplate, 85, 91
CDocument, 85-89, 280

CDocument::UpdateAllViews, 285
CF_METAFILEPICT,427
CFile, 53-54, 570
CFont, 399
CFontHolder, 374
CFontHolder::InitializeFont, 376
CFormView,84-86, 97, 177, 279

CFormView::OnInitialUpdate, 90, 99
CFrameWnd,85, 90

CImageList, 500
ClImageList::SetBkColor, 502
class identifier (CLSID), 137, 214, 553
ClassWizard, See Visual C++

clipping region, Windows, 402
CListBox, 30
CloseHandle, 532

CLSIDFromProgID,139, 192
CMainFrame, 90
CMainFrame::PreCreateWindow, 100
CMetafileDC, 427

CMultiDocTemplate, 91
CObject, 30, 35, 45, 109-111
CObList, 71, 534, 599
CoBuildVersion, 152, 179

COccManager,434, 443
CoCreateGuid, 138
CoCreateInstance, 145, 154, 244, 248, 553,

555

CoCreateInstanceEx, 154

codesigning, 563
CODEBASEattribute, 559-562

CoGetClassObject, 144-145, 153, 176, 182,
210, 268

CoGetClassObjectFromURL,559-562
Colnitialize, 152, 179, 196
COleControl, 319-322, 346-350
COleControl::AmbientBackColor,

COleControl::AmbientDisplayName,428,

NFLE1009 - Page 330

NFLE 1009 - Page 331

479

COleControl::AmbientFont,
COleControl::AmbientForeColor,
COleControl::AmbientUIDead, 415
COleControl::AmbientUserMode,415, 539,

611

COleControl::BoundPropertyChanged, 368,607

COleControl::DoPropExchange,348, 381-
383, 480-481, 504, 524, 593

COleControl::DoSuperclassPaint, 458-459,478

COleControl::GetBackColor, 359
COleControl::GetClientSite, 609

COleControl::GetNotSupported, 520, 542
COleControl::GetReadyState, 564
COleControl::GetText, 360

COleControl::InternalSetReadyState, 564
COleControl::InternalGetText, 360, 480
COleControl::InvalidateControl, 358, 366,
375

ColeControl::IsInvokeAllowed, 613
ColeControl::IsSubclassedControl, 458

COleControl:;OnAmbientPropertyChange,
318, 374-375, 413

COleControl::OnCreate, 413
COleControl::;OnDraw, 348, 354-355
COleControl::OnDrawMetafile, 426-428
COleControl::OnFreezeEvents, 519, 533-534

COleControl::OnGetDisplayStrings, 597,601-604

COleControl::OnGetPredefinedStrings, 597,
601-604

COleControl::OnGetPredefinedValue, 597,
601-604

COleControl::OnMapPropertyToPage,604-606

COleControl::OnResetState, 348, 479-481
COleControl::OnSetClientSite, 519, 539, 611
COleControl::OnSetExtent, 416-419, 517,
584

COleControl::OnSetFont, 360-361

COleControl::OnSetObjectRects, 584, 587
COleControl::PreCreateWindow, 457,

461-465, 495-496, 566
COleControl::RecreateControlWindow,

463-465, 505, 539, 611

COleControl::SelectFontObject, 376
COleControl::SelectStockFont, 361
COleControl::SetControlSize, 584-586, 600
COleControl::SetInitialSize, 354, 418, 584

COleControk:SetNotSupported, 519, 542
COleControl::SetRectInContainer, 587
COleControl::ThrowError, 519, 540-543

COleControl::TranslateColor, 360, 397
COleControlContainer, 433
COleControlSite, 433-434
COleControlModule, 342-346
COleDataTime, 431-432, 442

COleDispatchDriver, 254, 274-279, 439
COleDispatchImp, 263-265
COleFont, 438

COleObjectFactory, 197, 211-218, 267, 344,
351, 353

COleObjectFactory::Register, 215
COleObjectFactory::RegisterAll, 215, 268
COleObjectFactory::Revoke, 216
COleObjectFactory::RevokeAll, 216
COleObjectFactory::UpdateRegistry, 216
COleObjectFactory::UpdateRegistryAll, 216
COleObjectFactoryEx, 351-353
COleObjectFactoryEx::GetLicenseKey,352-353

COleObjectFactoryEx::VerifyLicenseKey,352-353

COleObjectFactoryEx::VerifyUserLicense,352-353

COlePicture, 438

COlePropertyPage, 319-322, 363-366, 488,608

COlePropertyPage::DoDataExchange,
365-366, 371, 596

COlePropertyPage::GetObjectArray, 588
COlePropertyPage::OnHelp, 608
COlePropertyPage::SetControlStatus, 606
COlePropertyPage:SetPropText, 589
COleTemplateServer, 267
COleVariant, 229
COLORREE,360, 397

COM.See Component Object Model, the
COMCAT.H,391

command messages, 104-105
CommandLinelnfo, 94-95
COMMCTLH,496

component,
assemblers, 14

-based development, 1-15
builders, 14

building with C++, 54-57, 113-114
hardware, xxiii-xxiv
interfaces, 10-11, 114-121
lifetimes, 121
software, xxili-xxiv
visual vs. non-visual, 223

componentcategories, 149, 326-333, 343,
386-391

INDEX + 625

component download, 559-562 -
ComponentGallery. See Visual C++,
Component Gallery
Component Object Model, the, 113-62,187-190

aggregation, 127, 150, 322
and C++ abstract classes, 115
and C++, 114-117

and C++class nesting, 133-137, 201-208
and componentsoftware,xxiv, 11
andinterface implementations, 127-132
and multiple interfaces, 125-137
and Vtables, 114-121
API, 151-156

as a binary standard, 7-11, 114, 187
class factories, 143-145, 210
class identifier (CLSID), 137, 214
client/server flow, 156-159
containment, 150
custom interface, 149

distributed (DCOM), 148
dual interface, 271-272, 305

GUID.See globally unique identifier
housings, 146
IID. See interface identifier

interfaces, 114-125

marshaling, 147-148
standard, 223

reference counting, 121-125, 203
standardinterfaces, 117

compound documents. See OLE Documents
connectable objects, 315-318
contract, interface, 57
CONTROLINEFO,318
Control Containers, 297

ambient properties, 305, 309-310
extended controls, 322-323, 384

freezing events, 305, 319, 533-535
history, 299-305
interfaces, 298-299

MECSupport. See Microsoft FoundationClasses

modalities, 297-298

Control, registry entry, 149, 323, 338
controlnotifications, 102, 461

controlling unknown, 150
ControlWizard, See Visual C++

CoRegisterClassObject, 152, 215
COSERVERINFOstructure, 153-155
CoUninitialize, 152, 180, 196
CPen, 398
CPictureHolder, 515-517

NFLE1009 - Page 331

NFLE 1009 - Page 332

626 + INDEX

CPropExchange::IsLoading, 480
CREATESTRUCTstructure, 458, 462
CreateFile, 512, 528-529

CreateNamedPipe, 512, 531
CreateObject. See Visual Basic statements
CreateURLMoniker, 556
CreateWindowEx, 458
CRect, 37, 424

CSingleDocTemplate, 91, 94
CSize, 419

CString, 47-49, 71
CString::AllocSysString, 251
CStringList, 67, 71-76, 592
CStringStack, 59, 71-76, 171
CTime, 406
CTreeCtrl, 498-509
CTreeCtrl::InsertItem, 506

CurVer,registry entry, 142

custom controls,xviii
CView,84, 89, 285-286
CView::GetDocument, 286

CView::OnUpdate, 285
CWinApp,85, 91-92, 165, 342
CWinApp::AddDocTemplate, 94
CWinApp::Enable3dControls, 93
CWinApp::Exitinstance, 180, 343
CWinApp:InitInstance, 92, 166, 179, 215,

218, 267, 342

CWinApp::LoadStdProfileSettings, 93
CWinApp::ProcessShellCommand, 95
CWinApp::Run,95
CWnd,30, 101-102, 433-448
CWnd::CreateControl, 433, 443-445

CWnd::GetDlgltem, 108-109
CWnd::GetWindowText, 107-109, 483
CWnd::KillTimer, 380
CWnd::SetFocus, 483

CWnd::SetProperty, 448
CWnd::SendMessage, 467, 498
CWnd::SetTimer, 380
CWnd::SetWindowText, 107, 483
CWnd::WindowProc, 104

ID
DEBUG,109-110

data path properties, 554, 567-571
DDPfunctions, 371-372, 492-494, 587, 590

DDP_PostProcessing, 371
DDV_MinMaxInt, 494
DDxXfunctions, 371-372, 492-494

DEBUG_NEW,110

debugging
and in-processservers, 185, 391
and MFC, 109-112
ActiveX controls, 391

DECLARE,DISPATCH_MAP,258, 263
DECLARE_DYNAMIC macro, 110, 212
DECLARE_DYNCREATEmacro, 109-111,

212

DECLARE_INTERFACE_MAP macro,201
DECLARE_MESSAGE_MAPmacro,103
DECLARE_OLECREATEmacro, 213
DECLARE_OLECREATE_EXmacro, 365

DECLARE_OLETYPELIB macro, 349-350
DECLARE_PROPPAGEIDSmacro,349

decorating, See C++ mangling
DefWindowProc, 104
DEFINE,GUID macro,137, 199

delete. See C++ operators
DestroyWindow,248, 448
Developer Studio,78
developmentmethodologies, 4-6
device context (DC), Windows, 354
device coordinates, 407
device units, 354

dialog units (DLUs), 490
DIANTZ.EXE,560

digital signatures, 562-563
DirectX, 113, 189

DisconnectNamedPipe, 532
dispatch map. See Microsoft FoundationClasses

DispatchMessage, 101
DISPPARAMS,242, 249
DISP_FUNCTIONmacro,263
DISP_PROPERTY macro , 263
DISP_PROPERTY_EX macro, 263
DISPID,224, 234, 249-251, 309
DISPID_AMBIENT_UIDEAD,415
DISPID_AMBIENT_USERMODE,415
DISPIDUNKNOWN,375

dispinterface, 223
DISPTEST.EXE,243, 385
Distributed COM,148
DlICanUnloadNow,155, 167, 343

DliGetClassObject, 155, 166, 176, 182, 210,
343

DilMain, 166

DilRegisterServer, 216, 343, 355, 386
DilUnregisterServer, 343, 387
document/ view architecture. See Microsoft

Foundation Classes

DrawEdge, 495
dualinterfaces, COM. See Component
Object Model.

E

encapsulation, 19, 31
enumerated properties, 488-490, 521-522,

594-604

embeddable object, 296
EM_GETLIMITTEXT,461
EM_SETLIMITTEXT,461, 466
EN_CHANGE,461, 469-471
EnableWindow, 361
END_INTERFACE_MAP macro, 204
END_INTERFACE_PART macro, 202
END_MESSAGE_MAP macro, 103
END_OLEFACTORYmacro, 349
ES_AUTOHSCROLL,463
events. See ActiveX Controls

Expression class
accessing with Visual Basic, 243-245
as a C++ class, 19, 57-76

as a COM object, 163, 191
as an ActiveX control, 455

as an Automation component, 231, 255
as an MFC application, 80, 279-287

expression evaluation
infix vs. postfix, 59

extended controls. See Control Containers

extern “C”, 8

FE
FAILED macro, 162

Feynman,Richard P., 113
flicker-free activation, 302

flicker-free drawing, 302, 419
friend. See C++ keywords
free, 23

function overloading. See overloading
function overriding. See overriding

G
GDIfunctions. See CDC

GetLastError, 531

GetMessage, 101
GetScode, 162

GetWindowLong,463, 505
globally unique identifier (GUID), 137
GUIDGEN.EXE,138

NFLE 1009 - Page 332

NFLE 1009 - Page 333

|

has-arelationships. See C++ class
composition

HIMETRICunits, 303, 417-419, 584-586
HKEY_CLASSES_ROOT,140, 327
HRESULT,118, 160-162
HTML,5, 15, 295, 315, 549-553, 576-580

and ActiveX controls, 551-553

object element, 552, 559, 577
param element, 553

TBindStatusCallback, 556
ICatInformation, 332-333

ICatRegister, 329
IClassFactory, 143, 166, 183, 197, 207, 306
IClassFactory::CreateInstance, 143-145, 183,

207

IClassFactory::LockServer, 143-145, 167,
207

IClassFactory2, 306, 349-353
IConnectionPoint, 301, 315-317
IConnectionPointContainer, 301, 315-317

IDataObject, 300, 306, 427
IDispatch, 149, 200, 223-226, 301, 307, 588

and ambient properties, 309
and dualinterfaces, 271
and events, 315-318

binding, 222-223, 271-273
MFCimplementation, 254-273
non-MFCimplementation, 231-243

IDispatch::GetIDsOfNames, 225-226,
236-237, 249, 309, 371

IDispatch::GetTypelnfo, 226, 236
IDispatch::GetTypeInfoCount,226, 236
IDispatch::Invoke, 224-225, 237-243, 250,
309, 371

IFont, 375
IFontHoider, 375
IMoniker, 556
IMPLEMENT_DYNAMICmacro, 110
IMPLEMENT_DYNCREATEmacro,

109-111, 214
IMPLEMENT_OLECREATE macro, 212-214
IMPLEMENT_OLECREATE_EX macro,

366, 614
IMPLEMENT_OLETYPELIB macro, 349

in-place activation, 296
in-process server, 146
INFfiles, 560-561
InitCommonControls, 566

infix, expressions, 57
inheritance and reuse, 2-4, 9, 55
INITGUID.H,138

InprocServer(32), registry entry, 142, 324
Insertable, registry entry, 142, 149, 324, 338
inside-out object, 296
instance, 20

integrated circuit (IC), xxiii-xxiv
INTERFACE_PART macro, 204
interface contract, 57
interface identifier (IID), 137

interface implementations, 127-132
interface maps, MFC, 201-210
Internet,

and ActiveX controls, xxv, 14-15, 188,
305, 549-582
and MFC,79, 564

and software development,1, 14-15
-aware controls, 294, 549-582

Internet Explorer, 13, 295, 305, 509, 549,
563, 581

Internet Search Path, 561-562

IObjectSafety, 558
JOleCache, 307
IOleClientSite, 433, 609
TOleContainer, 433
IOleControl, 300, 318, 533

IOleInPlaceActiveObject, 300, 303, 307
IOleInPlaceFrame, 433

IOleInPlaceObject, 300, 306
IOleInPlaceSite, 302, 433
TOleInPlaceSiteEx, 302
JOleInPlaceSiteWindowless, 303
JOleItemContainer, 609

IOleObject, 300, 306, 610
TOleObject::GetMiscStatus, 350, 585
TOleObject::GetExtent, 587
IOleView,302, 306, 326

IPerPropertyBrowsing, 301, 597-607
IPersistPropertyBag, 303, 314, 553
IPersistStorage, 300, 314
IPersistStream, 300, 314
TPersistStreamInit, 300, 314
TPointerInactive, 302, 340

1PropertyBag, 314
IPropertyNotifySink, 368, 376
IPropertyPage::SetObjects, 588
IPropertyPage2, 301, 313
IPropertyPageSite, 313
TProvideClassInfo, 300, 317, 350
TQuickActivate, 303

INDEX #627

is-a relationships, 30, 45, 71-73
IsEqualCLSID,139
IsEqualGUID,139
IsEquallID, 139
ISimpleFrameSite, 319, 332
ISpecifyPropertyPages, 301, 312
TUnknown,117-137, 150-151, 200

TUnknown::QueryInterface, 117-125
TUnknown::AddRef, 117-125
TUnknown::Release, 117-125

TViewObject::Draw, 587
TViewObject2, 300
TViewObjectEx, 302, 303

J
Java, 1-6, 15, 43, 550

L
local servers, 146-148, 266

LocalServer32, registry entry, 142
LRPC, 148 :

M
Macintosh,4, 79
malloc, 23

mangling. See C++ mangling
mapping modes, Windows, 406-407
marshaling. See Component Object Model,the

memory management,
in C+4, 20-25

metafiles, 395, 425-428
metafiles, enhanced, 427
METHOD_MANAGE_STATEmacro,346
METHOD_PROLOGUEmacro,135-137,
208

MEC- See Microsoft Foundation Class
Libraries

Microsoft Foundation Class Libraries, xxv, 6

ActiveX container support, 433-449
and ActiveX, 187-191
and ActiveX controls, 319-322, 433
and ASSERTs, 109

and class nesting, 125, 133-137, 202
and COM-basedinterfaces, 125, 187-191

and IDispatch, 254-255, 266-268
and inheritance, 30, 45, 125
and OLE, 187-191

and portability, 4, 79
and Visual C++, 78

application class hierarchy, 31

NFLE1009 - Page 333

NFLE 1009 - Page 334

628 + INDEX

as an application framework, 78-79
classes. See “name”of class

debugging techniques, 24, 109-111
dispatch maps, 255, 262-266
document/view architecture, 81, 86-91,
280-287

drawingclasses, 395-400
interface maps, 201-210
message maps, 100-104
window messageflow, 105

MIDL.EXE,150

MiscStatus, registry entry, 324-325
MkParseDisplayNameEx, 556
MKTYPLIB.EXE, 150

MM_TEXT, mapping mode, 407
monikers, 555

asynchronous, 549, 555
URL, 556

multiple inheritance
and C++, See C++ inheritance
and COM,126-127
and MFC,45

multiple scoping operator, C++, 135
MULTL_QIstructure, 154

N
named pipes, Win32, 511-513
new. See C++ operators
Notinsertable, registry entry, 142

Oo

object. See software object
object HTMLelement. See HTML.
Object Description Language (ODL),

149-150, 268-271, 430, 595, 607, 611

Object Linking and Embedding See OLE
object-oriented languages, xxiv, 5-6
object-oriented systems, 7
Objective-C, 44
OCM_COMMAND,470-472
OCM_CTLCOLOR,473-476
OCM_CTLCOLORBTN,607
OCX.See ActiveX Controls

ODL.See Object Description Language
offsetof, C macro, 135-137
OLE,1, 188

compared to Activex, 1, 12, 113,
187-191

compared to COM,113, 187-191
Compound Documents. See OLE

Documents
OLE Automation. See Automation

OLEControl specifications, 78, 299-302, 305
OLE Documents, 11, 188, 291-299, 306
OLE_COLOR,360, 397
OLE2VER.H,179
OLEVIEW.EXE,142, 176
Olelnitialize, 196
OLEMISCbits, 306
OLEMISC_ACTIVATEWHENVISIBLE,

338, 412, 414
OLEMISC_ACTSLIKEBUTTON,318
OLEMISC_INVISIBLEATRUNTIME,514
OLEMISC_RECOMPOSEONRESIZE,585
OLEMISC_SIMPLEFRAME,319, 339

OnReadyStateChange, 556
out-of-process server. See local server
overloading

C++ constructors, 37
C++ functions, 36-38

C++ operators, 51
overriding

C++ functions, 34-36

outside-in object, 296

P
param HTMLelement. See HTML.
PeekNamedPipe, 536-539
pipes, Win32. See namedpipes.
pixels. See device units
polymorphism,xxiv, 38, 115
postfix, expressions, 59
program 1D (ProgID), 139, 142, 214, 447
Prog!D,registry entry, 142, 325
ProgIDFromCLSID,139
property pages. See ActiveX Controls,
property pages.

pThis pointer, 136-137
PURE macro, 160

purevirtual functions. See C++ virtual
functions

PX_* functions, 382-383

Q
QueryInterface. See [Unknown

R
rcBounds, 354, 402, 420
reInvalid, 420, 424-425
ReadFile, 538-539
Release. See [Unknown::Release

teference counting. See Component Object
Model, the

reflector window,469

REGEDIT.EXE,140-142, 175
REGSVR32.EXE,217, 355, 612

registry, the Windows, 139-142, 355
remove procedurecalls (RPC), 139, 147
remoteserver, 146-148
ResultFromScode, 162
reuse, 2-4, 9-10

andis-a relationships, 45, 55, 71-73
andportability, 4
types of, 3
via C++ classes, 54-56
via inheritance, 3

RGB macro, 398
Rich Edit control, 453, 565-567
RICHEDIT.H,496
RTFcontrol. See Rich Edit control.

RTTLSee runtimetype identification
run-timetype identification, 110, 212-213
RUNTIME_CLASS macro, 94, 213

S
SafeArray, 230, 608-609
SCODE. See HRESULT

self registration, 304
serialization. See ActiveX Controls

SetWindowLong,454, 463, 504
SetWindowPos, 584
SIZELstructure, 416, 585
Smalltalk, 3-6, 43-44, 49

software component(See also component)
and reuse, 3
defined, 9-10

software object, 9
and C++, 18, 114

SOM.See System Object Model
static members. See C++ classes

STDMETHODmacro,159-161
STDMETHODIMPmacro,159-161

subclassing, Windowscontrols, 339,453-455

problemswith, 478
Windows95, 496-509

SUCCEEDEDmacro,162

SysAllocString, 175
SysFreestring, 185
System Object Model, 3,7
SysTreeView32, 498

T
T2COLE macro, 195, 589
T2OLE macro,171, 248

NFLE1009 - Page 334

NFLE 1009 - Page 335

Test Container, the, 356, 363, 428

this. See C++ keywords
Tokenizerclass, 67-71, 171

ToolBarBitmap32,registry entry, 325
TRACEmacro, 109
Tree View control, 497-509
TV_INSERTSTRUCT,506

TVS_ styles, 503
type information. See Object Description
Language

TypeLib,registry entry, 326
type library. See Object Description
Language

U
Ul-active, 295, 356
Unicode, 171-176, 237, 589
UNIX, 4, 79

universally unique identifier (UUID), 137
USES_CONVERSION macro, 175, 248, 589
URL.See uniform resource locator.

uniform resource locator (URL), 549
UUIDGEN.EXE,138

Vv
VARIANT,228-230, 240, 252

VariantChangeType, 241-242
VariantInit, 240, 251-252

VBScript, 5, 14-15, 305, 551, 576-581
VBX.See Visual Basic custom controls

Verisign, 563
Version,registry entry, 326
virtual functions, See C++ virtual functions

Visual Basic, 139, 146
as a control container, xxiv,
as an automation controller, 222,
243-244, 288

as glue, xxiv
statements and keywords

CreateObject, 139, 227, 244, 289,

558, 612-613
Declare, 8
Me, 49

Nothing, 244
testing ActiveX Controls in, 383-386

Visual Basic custom controls (VBX), xxiv, 5
Visual C++, xxv, 77-78

a history, 320-322
AppWizard, 80-87

building a Dialog-based EXE, 245,434

building a DLL, 163-164, 231-232
building an MDI EXE,255-256
building an SDI EXE, 80-84, 177,273-274

generatedfiles, 87
ClassWizard, 99-104

and Automation, 254-262, 273-279,
283

and message maps, 100-104
ComponentGallery, 434-441
DeveloperStudio, 78
editing resources, 97-99, 279-280, 357,
440, 491

ControlWizard, 320, 336-342

generatedfiles, 342
options, 336-341

visual editing, 292, 296
visual programming, 5
Vtables,

and message maps, 101-102
and multiple COM interfaces, 125-137
in Automation, 223-224
in C++, 41-43
use in COM,114-121

Web,The.See Internet
Win16 vs Win32

ActiveX Control development, 5, 320-322

INDEX + 629

and Visual C+4, 77, 320-322

development, 77, 320-322
DLLs, 166-167
EM_LIMITTEXT,467

interoperability using COM, 146-148
WM_CTLCOLOR,461, 476-477

windowless controls, 302

window messages, 102
Windowscontrols,

EDIT, 460-461
standard, 456
Windows95, 497

WindowsRegistry. See registry
windowstylebits, 461-463
WINERROR.H,162, 246

WinHelp, 608
WinMain,92

WinVerifyTrust, 559
WriteFile, 512, 530-531
WM..CHAR,482-483
WM_COMMAND,102
WM_CREATE,413, 465-466, 499, 571
WM_CTLCOLOR,469-477
WM_DESTROY,414
WM_INITDIALOG,193, 444
WM_KILLFOCUS,482
WM_LBUTTONDOWN,101-104
WM_PAINT, 102, 319, 459
WM_TIMER,380-381, 412, 535, 538
WS_BORDER,461, 481
WS_EX_CLIENTEDGE,359, 495

NFLE1009 - Page 335

NFLE 1009 - Page 336

About the CD-ROM

With the ever increasing pace of change in the software developmentindustry, there comesthe difficulty of
providing samples program that are currentas of the latest release of the compiler, SDK, and so on. Luckily,
we now have the Web to make distribution of software rather easy. Please check out my Website for the
most recent samplesat:

http://www.WidgetWare.com

If you need assistance with the samples included on the CD-ROM,or have other questions, check out the
ActiveX control FAQ that I maintain at the URL above. You can contact me with questions and comments
at: tom@WidgetWare.com.I'll do my best to respond promptly.

Tom Armstrong,

November, 1996

NFLE 1009 - Page 336

NFLE 1009 - Page 337

DESIGNINGAND USING
ActiveX ControLs

> Master component
automationto transform

any COM/OLEprogram
into a reusable component
in your project.

> Learn the MFC application
frameworkto eliminate

the need to build a

foundation for your
OCUCMCCMee

See howthe C++ language
and the Visual C++

development enyironment
MemCm CISCathhy
build software components

Use the COMto enable

PURLOSt
creation at a systemlevel

Wrap C++ classes with
Automation

Explore the architecture
OL

~ Create each of the control

types for desktop and
Conaryyurcenetry

Access FAQsfor many
automation and control

deyelopment problems

Praise far Tam Armstrong's Sesigning and Using GF Custom
I’m reading your bookfrom coverto cover currently and I hay
ta say it is exactly what I’ve been lookingfor... I will be
recommendingit to all of my colleagues as *the* book to ger fi
OLEcontrol development, especially ifyou wantto doit via
MFC. I think that chapters 4 and 5 are worth the price of the
book alone, Congrats on a great book, Juvry 4a

Microsoft created ActiveX controls as reusable components hii
can bring Web pages andstatic programsto life by fusing new
functions into existing projects, Designing and Using ActiveX’
Controls teaches you all about component-based development
using Visual C++, the MFC libraries, and the Component Objet
Model,

Learn to build a variety of components from the ground up: 4
simple control, a graphical clock, subclassing standard Windows
controls, new Windows 95 common controls, non-visual control
encapsulating the Win32 Named Pipes API, and Internet-Awat
controls.

The companion CD-ROMincludesthe source codeforall the’
example programsin the book, projects andfiles for 16-bit Active
controls, links to ActiveX resources on the Web, and several oth
useful reusable controls that demonstrate more advanced concep)

}OM) \tist tonis a software developer and project leader&
DST Systems’ Advanced Technologies Group, where he
incorporates ActiveX controls into many programs. Heis the’
author of the acclaimed Designing and Using OLE Custom
Controls (M&T Books, 1995), which served as the foundation ft

this book, and his Website (www.WidgetWare.com)is a popula
resource about OLE and ActiveX development and Visual C+4

NINNAse
9002TENG?AND USING AGT

Used, Very Good
502 UTR1992

Intermediate/ Advanced New York, New York 10011

ea fel Wi Cover art © WestlighiOW 9
esacAnll Cover design by Gary Szezecina

NFLE1009 - Page 337

