
NFLE 1009 - Page 1

Now it’s time to change gears a little. In the first half of the book we concentrated on the whys and hows of

developing reusable software components. We focused primarily on the COM and OLE technologies that pro~
vide us with the ability to build software components. We now understand what COM, OLE, and ActiveX are

all about. We investigated using C++, custom COM interfaces, and Automation in the creation of software

components, and now we’re ready to develop the ultimate software components: ActiveX controls.

In this chapter we’ll investigate what it takes to implement an ActiveX control. We’ll look at the history

of the OLE and ActiveX control standards and discuss various ways ActiveX controls can be used in con-

junction with visual development tools, such as Microsoft’s Visual Basic and Visual C++. Once we have a

broad understanding of the technology used to implement controls, we’ll use the remaining chapters to

focus on the development of various types of ActiveX controls. This chapter provides an introduction to the

technology. After this, it will be all coding.

 apeend ecu ant Arehéeecture
The initial goal of OLE was to provide software users with a document—centric environment. OLE defines

COM—based interfaces that enable applications to embed software objects developed by various vendors.

This important capability has added significantly to the ease of use of various software products.

Figure 7.1 shows Microsoft Word with a Visio drawing embedded within the Word document. If I want

to edit the Visio drawing, 1 can do so within Word by double-clicking on the embedded drawing; Visio exe-

cutes “in—place," and the Word menu changes to a Visio one. This arrangement allows me to use Visio’s

functionality completely within Word. The benefit of this technology is that the user doesn’t have to switch

between applications to get work done. The focus is on the creation of the document and not on the assem—

bling of different application ”pieces” into a complete document, explaining the origin of the term document

centric. The document, and not the applications needed to combine and produce it, is the user’s focus.

2%

NFLE 1009 - Page 1

NFLE 1009 - Page 2

292 e» CHAPTER 7”WMme .MWWWWWMWWWMWWMWWMWW‘M

,0 arm/xzm/g/m/m x/x/tz/zq/qg/wmm mmmzzm-zmm em/mr/aaa/mw'wamxxmzmx/zmlaw/«mam,.I , .n ‘ I” _ _ i' r 5/
\\\

Properties Marinade L L i

l
OLE 611mm!

\\\\\\\\\\\\5\\\\\\\

 \\\\\\\\\\\\\\\\\~:l.\\\\\\\\\\\\\ ‘mMmeewuuwwmwww_

Figure 7.1 Visio drawing embedded in a Word document.

There are some problems with this shift in paradigms. Many users initially get confused when the Word

menu changes to Visio's or Excel’s. Also, most applications are large and cumbersome and experience signif-

icant performance problems when users attempt to launch several large applications at once. These prob-

lems will be overcome as users assimilate the changes and as developers restructure their applications to

include smaller modules of functionality that operate independently (and as a whole).

ActiveX controls are built using many of the techniques of OLE compound documents. Plenty of mater-

ial is available that explains OLE as a compound document standard, so I won’t spend much time on it here

except when it directly pertains to the development of ActiveX controls.

éemeeend Qeeemeee iemaners and Embe eied

Servere

Compound document containers are those applications that allow the embedding of OLE-compliant com»

pound document servers. Examples of containers include Microsoft’s Word and Excel, Corel’s WordPerfect,
and others.

Applications such as Visio are embedded servers that support being activated in-place within a com~

pound document container application. This technique of being invoked within another application and

merging its menus is called visual editing. The user doubleuclicks on the server’s site—its screen location

within the container—and the embedded sewer is launched and becomes activated in-place.

Compound document servers are typically implemented as executables and therefore are large. They

include the complete functionality of the application that is being embedded within the container applica-

NFLE 1009 - Page 2

NFLE 1009 - Page 3

ActiveX Controls e 23423::WWWHMmmwmnmwawwmmammmcmwmm

fion. This is one reason that the effective use of compound document technology was initially viewed as

requiring extensive system resources. But with advances in hardware and the move to 32~bit operating sys—
tems, this is no longer a serious problem.

Many compound document containers are also compound document servers. You can embed a Word
document in an Excel spreadsheet as well as embed an Excel spreadsheet within a Word document. (This is

one reason they are such large applications.) Most ActiveX controls are embedded servers that are designed

to perform quite differently from compound document servers.

eeriee genereis

ActiveX controls incorporate, or use, much of the technology provided by COM, OLE, and ActiveX—in par~

ticular, those technologies pioneered in compound documents. Many COM-based interfaces must be imple~

mented by both the client (or container) and the control to provide this powerful component—based environ—

ment. Figure 7.2 illustrates the communication between a control and its client.

ActiveX Control Container“ , , _ , '_ 3 ~
' ' = * ' - * ' ~ Properties ' ‘ methods '

 ActiveX Control

Persistence

Figure 7.2 Interaction between C: control and its client.

In Chapter 1, we discussed the importance of discrete software components to the future of software devel-

opment. The underlying technology required to build robust software components is provided by COM and

the ActiveX control specification. Problems must be overcome, but today ActiveX controls provide the most
comprehensive solution.

In Chapter 6, we used Automation to encapsulate a nonvisual software component, our Expression

class. The ActiveX control architecture provides a robust method of building visible software components.

In addition to the visible aspect, ActiveX controls also provide a way to communicate events externally so

NFLE 1009 - Page 3

NFLE 1009 - Page 4

294- % CHAPTER 7

that users of the control can use these events to signal other programmatic actions. A simple example is a

timer control whose only purpose is to provide a consistent series of events that the control user can tie to

some other programmatic action

Another important capability of ActiveX controls is their ability to save their state. This quality of per-

sistence allows a control user to initially define a control's characteristics knowing that they will persist

between application design, running, and distribution. This capability is not intrinsically supported by the
Automation servers discussed in Chapter 6.

There are three basic ActiveX control types. Graphical controls provide significant functionality by their

visual representation and manipulation of data. An example might be an image display control. The second

type is also graphical, but it implements or extends a standard Windows control. Its behavior is based on,

and uses, the functionality of an existing control provided by Windows. An example is a standard listbox

that has been enhanced to contain checkboxes. The third type, nonvisual controls, provides all their func-

tionality without any graphical requirements. Examples of nonvisual controls include a timer control, a

Win32 API control, and a network services control. Their main purpose is to expose Automation methods,

properties, and events for a visual developer. Except for the timer control (whose purpose is to provide a

uniform timer event and would be prohibitively expensive to implement using Automation), most nonvi-

sual controls can function as Automation servers. However, providing an implementation using ActiveX

controls makes them easier to use within graphical development environments, provides persistence of

state, and supports an event mechanism to communicate with the container. We will develop examples of

all three control types in the remaining chapters.

An additional control type is the Internet-aware control. An Internet-aware control can take the form of

any of the three control types but has additional environmental requirements. Internet-aware controls must

be designed to work effectively in low—bandwidth environments and to carefully implement user services.

We will discuss these requirements in detail in Chapter 12.

6

 stage as: a as E frigate ia genmts
We’ve come a long way in our quest for a technique to build robust and reusable software components, and

we’ve finally reached a comprehensive destination. ’In Chapter 6, we saw how effective Automation is at

providing reusable components by wrapping C++ classes and exposing their functionality. We also found

three limitations of Automation. First, it provides only limited outgoing notification capabilities.

Automation components are inherently synchronous and provide only one-way communication in their

basic configuration. This is one reason that Automation objects are driven by Automation controllers. The

second limitation involves the lack of a visual aspect to Automation components. Third, Automation, in con-

trast to controls, lacks a persistence mechanism. Persistence of control properties is an important feature not

provided through Automation.

NFLE 1009 - Page 4

NFLE 1009 - Page 5

A tiveX Controls 4%» 2@5

From now on we will focus exclusively on the design, development, and use of ActiveX controls. They

provide a sophisticated event mechanism so that they can notify their users of events. Events are fired asyn—
chronously, notifying the user of an important occurrence within the component and allowing the control

user to harness the event and perform other actions in a larger component-based application. ActiveX con—

trols also allow easy implementation of the visual or GUI aspect of a software component. This and other

features of ActiveX controls provide a rich environment on which to build visually oriented development

tools. And remember, the COM standard is an open one, and its design is completely documented for all to

use. This arrangement creates an environment where vendors will develop tools for using this technology.

The availability of third—party tools can only benefit those who develop software components.

The creation of rich, control—based development environments is important to the ultimate success of

the component-based development paradigm. One of the problems of component development is the appli—

cation’s dependency on many different system~level and application—level components. The ultimate success

of component-based software depends on robust tools that ease the tasks of distribution and management of

the application and its components. Today, ActiveX controls are supported by nearly all major development

tools. They have become the de facto software component.

Another important feature of ActiveX controls is that Microsoft has placed them at the center of its new

Internet-based software focus. ActiveX controls are used throughout Microsoft’s new Web—based technolo—

gies. Internet Explorer itself is implemented using a robust and feature-laden ActiveX control. ActiVeX con-

trols can be embedded within HTML-based Web pages to add tremendous application—like functionality to

static Web-based documents. Thousands of ActiveX controls are available, and the market will only grow as

the Internet and corporate intranets continue to flourish.

game Termmeéogy
A lot of terminology is associated with the OLE compound document standard, so I’ll provide you with

some short definitions to help as we move forward. The terminology for OLE changes often, and some of the

terms are equivalent. Some of the definitions are cyclical, so you may have to loop through twice.

U|=Active Obect

Embeddable objects are UI-active when they have been activated in-place and are being acted upon by the

user. The UI-active server merges its menus with that of the containing application (such as Word). Only one
server can be UI—active within a container at a time.

Active @biect
When embeddable objects are not UI-active, they are active, loaded, or passive. (Local server objects have an

additional state: running.) Most ActiveX controls prefer to remain in the active state, because it provides the

control with a true HWND in which to render itself. In the loaded state, an embeddable object typically pro—

NFLE 1009 - Page 5

NFLE 1009 - Page 6

29$ 6’ CHAPTER 7

vides a metafile representation of itself for the container to display and lies dormant waiting to be in—place
activated.

EmbeddIhle @iqeti
An embeddable object supports enoughtof the OLE document interfaces that it can be embedded within an

OLE container. This doesn’t mean that it supports in—place activation, only that it can render itself within the

container. The object is said to be “embedded” because it is stored in the container's data stream. For exam-

ple, in our previous Visio demonstration, the Visio object, which Microsoft Word knows nothing about, is

actually stored or embedded within Word’s .DOC file, which is a compound document file.

PIssive @bjeti
A passive object exists only in the persistent storage stream, typically on disk. To be modified, the object

must be ”loaded” into memory and placed in the running state. A passive object is just a string of bits on a

storage device. Software is required to load, interpret, and manipulate the object.

 Visml Editing Ind n-Plce Activation
These terms describe the capability of an embeddable object to be activated in-place. In~p1ace activation is

the process of transitioning the object to the active state. In most compound document container applica—

tions, this process also forces the object into the UI—active state if it is an outside-in object. Once the object is

activated, the user can interact with the embedded object. When the object is in-place active, the server and

container can merge their menus.

@uiside=in @bieti
Outside-in objects become active and UI—active at the same time. Outside—in objects are activated and imme-

diately become UI-active by a double-click of the mouse. Compound document servers are outside-in

objects. You must doub1e~click the Visio object to invoke Visio when editing within Microsoft Word.

inside=®ut @bieti
Inside-out objects become UI—active with a single mouse click. They are typically already in the active state

within the container. ActiveX controls are inside-out objects, although this option can be controlled by the

control developer. With the creation of the OLE Controls 96 specification, which we will discuss in detail

shortly, controls are not required to support any in-place activation interfaces.

NFLE 1009 - Page 6

NFLE 1009 - Page 7

ActiveX Controls 9 29?amWW.WWWMMMWMmeWWWWWWWMWWWKWWWWMmWWW”
WW"

 artiste gentrsé streamers

ActiveX controls are discrete software elements that are similar to discrete hardware components and are of

little use by themselves. You need a control container to actually use an ActiveX control. Control containers

make it easy to tie together various ActiveX controls into a more complex and useful application. An impor~

tant feature of an ActiveX control container is the presence of a scripting language that is used to allow pro—

grammatic interaction with the various controls within the container.

ActiveX control containers are similar to the compound document containers that we described earlier,

but the older compound document containers lack a few new interfaces specified for ActiveX controls.

ActiveX controls can still function within compound document containers (if they’re designed properly), but.

many of their most discerning features will not be accessible.

Although compound document containers and ActiveX control containers share many internal charac—

teristics, their ultimate goals differ. As we’ve discussed, compound document containers focus on the

assembly of documents for viewing and printing and are typically complete applications. ActiveX control

containers are usually used as ”forms” that contain controls that are tied together with a scripting language

to create an application. Figure 7.3 shows two Visual Basic forms, each containing some ActiveX controls.

Contrast this with the Word and Visio example in Figure 7.1.

Figure 7.3 Two Visual Basic forms, each with some ActiveX controls.

gontafigs

In typical visual development environments, the container operates in various modes. When the developer is

designing a form (control container) or Web page, the control should behave differently than when it is actu~

ally being executed. To use Visual Basic as an example, when a Visual Basic developer needs a listbox con-

trol, the developer clicks the listbox icon on the tool palette, drags a representation of the listbox control, and

NFLE 1009 - Page 7

NFLE 1009 - Page 8

293 fEHAPTER7 ,

drops it on a form. The listbox representation is merely a rectangle with a name in the top left corner. During

design time, there is no need to create a window just to provide a representation of the control. When the

Visual Basic form and its associated code are executed by a user of the application, the listbox control win-

dow is actually created and therefore needs to behave like a listbox and perform any special functions

through its exposed properties, methods, and events. These two modes are referred to as the design-phase
and run—time modes.

Visual Basic also allows a developer to single—step through the application. At each break-point, you

can examine variables, check the call stack, and so on. When Visual Basic is in this mode—debug mode—the

listbox control is frozen and doesn’t act on any window events.

I used Visual Basic for this example, but there are a large number of other control containers, including

Visual C++, Borland’s Delphi, Microsoft’s Internet Explorer, and so on. The ActiveX control standard pro-

vides two ambient properties that can be implemented by the container to indicate its various modes.

Ambient properties are container states that can be queried by the contained controls. If the ambient prop—

erty Us erMode is TRUE, it indicates that the container is in a mode in which the application user can interact

with a control. This mode would normally equate to a run-time mode in the Visual Basic example. If

Us erMode is FALSE, the container is in a design-type mode. The UIDead property indicates, when TRUE,

that the control should not respond to any user input. This is similar to the debug mode of Visual Basic.

Throughout the rest of the chapters, I’ll use the terms design phase, run—time mode, and debug mode to

distinguish the differences in a container’s states.

isssrsé as assasisss Esessgsees

Although we haven’t directly covered OLE comporuid document servers in this book, we understand how

the technology works. Compound document servers can be implemented as local servers, in—process

servers, or both. ActiveX controls are almost always implemented as in~process servers. Most of the compo—

nents that we’ve developed so far have been in—process servers, so we’re comfortable with them.

The primary difference between the Expression in—process server of Chapter 5 and an ActiveX con—

trol is that the Expression object is missing a few ActiveX control—based interfaces. Many of these inter-

faces are required for a control to be classified as a compound document server and concern themselves

with the control's visual aspect and its ability to be embedded and in—place activated in an OLE compormd
document container.

The act of building a component or a container amounts to a process of implementing and exposing a

series of COM—based interfaces. A control implements a series of interfaces that a container expects and vice

versa. Figure 7.4 shows the large number of interfaces that a control typically implements. I say ”typically,”

because the requirements for implementing an ActiveX control have recently been loosened significantly.

The basic concept of an ActiveX control has changed from its being a hybrid compotmd document server to

being a small and nimble COM-based component. The newer control specifications reduce to one the num—

ber of interfaces a control must implement. We'll discuss these new standards shortly.

NFLE 1009 - Page 8

NFLE 1009 - Page 9

ActiveX Controls % 29?1“AWWNWWMMMVMasawmwmtmv“MWNWMWMWWWWWMWWM a.WNWMWWMV,MMWM ”cw-"M”,MMmama.“,s»..~MM,MyWMMWW/, WNW/Mawmwwmm.“MAMWMWW,MMWMW/rw M

 . Gauge Como!Biirlafic hi!

; Ionneclbccwflonlahel /
? lDataniecl

g :DW‘C" crsmqwmwsaemm . 3~04022a00sc021
9 Igiicmha Mama-sandman; mmoaamzrc) 250d Comet

. 3C .. I. Control:

g BEIGE”: r Obi ‘ InptocSelverZZnE:\WIHHT\Sy;tem32\EFt|D32UD<
r ac CNE ‘35 .

‘ MECSIatu: = Cl
? Imelnnmoaea 1.131473

-~? (DEDbiccl

? tF’evF'IopeMflvowzing
: ? (Penis?

? lFersithemoty
‘? lPetsizlPropellyBag
~ ? IPelaizlSlolege

? lPetcizlSlleemlnh
? thvideELaszlrdo

- ? tPtm-idefllaxlrloZ
, »? ISpecuwmpenyPage:

9 IUI‘JLnown
‘ 9 Niewflbiecl

? IVrewCIbgcQ
ideCtlUbiecl

'1 Hogan = MSGvid Enid
Tooktoxffivlmfi = E:\WINNT\Sy:tem32'\GR|DSZ,UD<. 1
Typciib x $883872DBSA-1 UiB-EZZEDOAADQSFBZFE}rVetzion x10

MSGcid Grid 1: Grid Control
ELSIU = U-‘xSC3872IJ-DBSA-1mB-DZZE-UUAADDWBZ‘FC}

TypeLib =iE1AEBEA3~3503401E-AEEE-UJDZZWIJSCUZ}
$3838723DBSA-1 UiB‘BZZEEflGADflSYBZFCi
i 1.0 = Microsoft GM Comet

- U
' win32 1: C:\W1NNT\Sy3tEm32'\GHIU32IJD<

FLAGS = 2
HELPDIR = E:\V84

Figure 7.4 Control-implemented interfaces.

4?

 Assists gentrsés ass ' isstasess: sassy
ActiveX controls—called OLE controls at the time—were introduced as an OLE-based technology in early

1994 as a replacement for the aging Visual Basic custom control (VBX). However, the technology was new,

and very few development tools supported the use of OLE controls. Visual Basic 4.0, the version that pro—

vided support for OLE controls, would not be delivered until late 1995. Microsoft Access version 2.0 pro—

vided minimal support, as did Microsoft FoxPro version 3.0. You could develop ActiveX controls starting

with the late 1994 release of Visual C++ version 2.0. However, even though you could develop controls, you

could not use them within Visual C++. This capability had to wait for the late 1995 release of Visual C++ 4.0.

The initial version of the OLE control specification, now called the OLE Controls 94 spec, required an

ActiveX control to implement a large number of COM-based interfaces. Most of these interfaces were part of

the compound document specification, because ActiveX controls were really in—process compound docu—

ment servers with a couple of new interfaces (such as IOleControl). During this period, OLE control con—

tainers were just compound document containers that implemented a few additional, control—specific inter—

faces (such as IOleControlSite).

In early 1996, after more than a year’s experience with implementing and using OLE controls, Microsoft

modified the specification significantly and called it the OLE controls 96 specification. The new specification

addresses a number of performance issues inherent with controls implemented using the 1994 specification.

The new specification also adds significant new features and capabilities for controls and containers.

NFLE 1009 - Page 9

NFLE 1009 - Page 10

gee a CHAPTER 7

The Olin? Ceatrais M §peritiretien
The original OLE control architecture was specified as an extension to the existing compound document

specification. An OLE control had to implement all the interfaces required by a compound document

embedded server with in—place activation capabilities (such as IOleObj ect and IOleInPlaceObj ec t). In

addition to these original interfaces, OLE controls had to implement all the control-specific interfaces (such

as IDispatch and IOleControl). In all, a control that meets the OLE controls 94 specification and pro-

vides support for all control features would implement more than 15 interfaces. These interfaces are listed in

Table 7.1 along With a short description of their purpose.

Table 7.1 OLE Controls 94 lnterfaces

Control-Si e lnte ace Purpese MFG Met a s

IOleObj ect Provides the essence of the OLE compound document architecture. Through this inter-

face, the container and server communicate to negotiate the size of the embedded

obiect (the control, in our case) as well as get the MiscStatus bits for the control.

Many of its methods are not needed in an ActiveX control.

IOleInPlaceObj ect A control must implement IOleInPlaceObj ect to support the ability to be acti-

vated and deactivated in-place within the container. The interface also provides a

method to notify the control when its size changes or it is moved within the container.

IOleInPlaceActiveObj ect A control must implement IOleInPlaceActiveObj ect to provide support for the

use, and translation of, accelerator l<eys within the control. Many of

IOleInPlaceActiveObj ect’s methods are not required for ActiveX controls.

IOleControl A new interface added to support ActiveX controls. It provides methods to enhance the

interaction with the control's container. IOleControl primarily adds functionality so

that the control and container can work together when handling keyboard input.

IDataObj ect A control implements this interface to provide graphical renderings to the container.

Ivi ewObj ect2 lmplemented by controls that provide a visual aspect. Iviewobj ect2 provides the
container with methods to tell the control to render itself within the container’s client
area.

IPersistStream, The persist interfaces are implemented by the control so that they may persist their

IPersistStreamInit, values within the container's structured storage. A control’s properties can persist
IPersistStorage between instantiations.

IProvideClassInfo Implemented by an ActiveX control to allow a client application (usually a container) to

efficiently obtain the type information for the control. It contains only one method,

GetClassInfo, which returns an interface pointer that provides access to the con-

trol's binary representation of its type library.

NFLE 1009 - Page 10

NFLE 1009 - Page 11

ActiveX Controls ¢ 39?,wwwwMWmWWWWWMWWWWWW

Table 7.1 OLE Controls 94 interfaces (continued)

Controlfiiae lntefiuce Purposefifitc Methods

ISpeCifyPrOpertyPages Provides a way for the container to query the control for its list of property pages.

ISpecifyPropertyPages has only one method: GetPages. The GetPages

method is called by the container. The container provides a pointer to a CAUUID struc-

ture that returns a counted array of CLSIDs. This enumerates all the property page

CLSIDs used by the control. The container uses these CLSIDs with a COM Function, typ-

ically CoCreateInstance, to instantiate the page objects.

IPerPropertyBrowsing Provides a way For the control to Furnish additional information about its properties.

IPropertyPage2 implemented by each property page component, it provides the container with meth-

ods to get the size, move, create, destroy, activate, and deactivate the component's

property page window;

IConnectionPointContainer Used to provide the container with an outgoing IDispatch interface. This enables
the control to communicate events to the container.

IConnectionPoint A control can support several event sets. For each one, the control must provide an

implementation of the IConnectionPoint interface.

IDispatch A control’s properties and methods are provided through its IDispatch interface.

As you can imagine, implementing a control without the help of MFC would be an arduous task at best.

Implementation of a control container is even more difficult. It also requires a large number of interfaces,

and a container must manage multiple controls within it.

Shortly after the release of the OLE Controls 94 specification, Microsoft released a document that
described how a container and its controls should interact with each other. Much of this coordination was

already specified via the compound document specification, but there was still a need for a document that

would help developers understand the complex relationship between a control and its container. The result—

ing document, OLE Controls and Container Guidelines Version 1.1, was released in late 1995.

The guidelines put forth the minimum requirements of a control or control container. They describe the

interfaces that are mandatory and those that are optional. It basically provides a set of guidelines for control

and container developers. The large number of interfaces, methods, and techniques and the inherent limita-

tions of human language made it difficult to get all containers and controls to work together. This was to be

expected with a new and complex technology. However, the guidelines gave developers a good set of rules

to follow when developing a control or container.

DEE Seatrais es gperii'utiaa
Although OLE controls were a wonderful new technology that validated the concept of component-based

development, they weren’t perfect. The large number of interfaces and methods that a control had to imple-

ment, coupled with the requirement that most controls display a window when running, made them some-

What ”heavy.” Building an application with a large number of OLE controls could be problematic; there

NFLE 1009 - Page 11

NFLE 1009 - Page 12

332 a» CHAPTER 7

were also some functionality holes that needed to be filled. To address these issues, Microsoft released, in

early 1996, the OLE Controls 96 specification.

The full text of the specification is part of the ActiveX SDK and is available from Microsoft. Following
are some of the new features.

a Mouse interaction for inactive objects. The previous control specification stated that most controls

should stay in the active state by setting the OLEMISC_ACTIVATEWHENVISIBLE flag. This arrange-

ment required the container to load and activate a control whenever it was visible. Activating a con-

trol required the creation of a window to handle any user interaction (such as mouse clicks and drag-

and—drop) with the control. The new specification adds a new interface, IPointerInactive, that

allows a control to interact with the user while in the inactive state. The presence of this capability is

communicated to the container with the OLEMISC_IGNOREACTIVATEWHENVISIBLE flag.

- Drawing optimizations. The old control specification required a control to reselect the old font,

brush, and pen into the container—supplied device context whenever it was finished processing the

IOleview: :Draw call. The new specification adds a parameter to the Draw method that indicates

whether the control must reset the state of the device context. It is up to the container to support this

new feature, but the control can determine whether it is supported by checking the vaspect para-

meter for the DVASPECTINFOFLAG__CANOPTIMIZE flag. If this flag is set, the control does not have

to take the steps required to restore the state of the container—supplied device context after drawing

its representation.

0 Flicker-free activation and deactivation. When a control is activated in-place by a container, the

control does not know whether its display bits are in a valid state. A new interface,

IOleInPlaceSiteEx, communicates to the control whether or not a redraw is necessary. The new
interface adds three methods to IOleInPlaceSite.

0 Flicker-free drawing. Another new interface has been added to the OLE Controls 96 specification to

support flicker—free drawing, nonrectangular objects, and transparent objects. As we’ll see in Chapter

9, flicker-free drawing can be achieved by using an off-screen device context, but it consumes addi-

tional resources. The new Iviewobj ectEx interface adds methods and parameters to make flicker-

free drawing easier to implement at the control. Nonrectangular and transparent controls were sup-

ported in the previous control specification, but they required a great deal of drawing work on the

part of the control developer. The new specification provides additional drawing aspects (such as

DVASPECT_TRANSPARENT) that make implementation of nonrectangular and transparent controls
easier and more efficient.

0 Windowless controls. The previous specification required in-place active objects to maintain a win~

dow when active. This requirement was necessary, as we mentioned earlier, to support user interac~
tion within the control. This issue has now been addressed with the IPointerInactive interface.

Controls that require a window also make nonrectangular and transparent regions difficult to imple-

ment. Windowless controls draw their representation directly on a device context provided by the
container. There is no need for a true HWND. To support this capability, though, several issues must

NFLE 1009 - Page 12

NFLE 1009 - Page 13

ActiveXM Controls e 3G3WMKAWMWWWWmmWM.a...WWWWMW.M.W.WWWWMWWWNW/Maw”. .MWW,..MWWMWNM.MWM.WWWWM\W”mm. WWWMW, «W.,vammwwmwmsmw»WWWWM

be handled. User interaction beyond mouse clicks and drag~and~drop, such as keystrokes, must be

handled by the container and passed to the control. Another new interface,

IOleInPlaceSiteWindowless, which is derived from IOleInPlaceActiveObject, supports

these new requirements. It provides methods to handle focus, mouse capture, and painting of a con-
trol without a window.

a In-place drawing for windowless controls. A windowless control draws directly on a device con—

text provided by the container. Several methods in IOleInPlaceSiteWindowless enable the con-

trol to get and release a device context, invalidate regions, and scroll the area in which it draws.

- Hit detection for nonrectangular controls. The new IviewobjectEx interface has two methods

that support hit detection within nonrectangular controls. The container calls these methods to deter—

mine whether the area clicked by the user is within the extents of a nonrectangular control.

a Quick activation. The process of loading a control into a container can affect performance. The nego—

tiation that occurs during this process can take some time. For this reason, a new interface,

IQuickActivate, streamlines the control loading process. The new interface encapsulates many of

the calls and callbacks that are required when a control is loaded.

6 Undo. The undo section is container-specific. It allows a container to implement a multilevel undo
mechanism. '

- Control sizing. In the Controls 94 specification, control sizing is managed by a series of calls and

callbacks while the control and container negotiate the sizing of the control. Several interfaces and

methods are involved in this process. The new specification provides an additional method in the

new Iviewobj ectEX interface that makes this process more efficient. It also provides several con-

trol sizing options.

° Translation of event coordinates. The Controls 94 specification required controls to use HIMETRIC

units when passing coordinates to the container. The Controls 96 specification uses device units or

points, a technique that’s more consistent with the values used in methods and properties.

Translations are necessary for containers that support both control types.

0 Textual persistence. Certain containers (such as Visual Basic) store control properties in a text for-

mat. This arrangement makes it easy for control users to modify property values using a simple text

editor. Before the Controls 96 specification, the interfaces that are used to implement this efficient

mechanism of saving properties were not documented. The new specification documents a new

interface that lets you efficiently save a control’s properties in a property bag by implementing the
IPersistPropertyBag interface.

That summarizes the enhancements added by the OLE Controls 96 specification. As you can see, most of the

changes focus on making ActiveX controls more efficient to implement and use. It will take some time for

the development tool vendors to incorporate these changes into their containers, but it will eventually hap~

pen. Also, with the release of Visual C++ version 4.2, many of these features are supported at the control

development level. We'll cover some of them as we build the example controls. Table 7.2 lists the new inter-

faces added by the Controls 96 specification.

NFLE 1009 - Page 13

NFLE 1009 - Page 14

am e CHAPTEBW7

Table 7.2 New Control interfaces

Control-Side Intefiace Purpose7MFC Methods

IPointerInactive Provides a way for the control to respond to user interaction when the control is not in
the active state.

IOleInPlaceSiteEx Adds Flicker-Free redrawing methods.

IOleInPlaceSitewindowless Supports the creation of windowless controls.

IQuickActivate Provides a more efficient way of initially loading a control.

IViewObjectEx Adds drawing optimizations, support for nonrectangular objects, and new control sizing
options.

IPersistPropertyBag Adds more efficient ways of storing and retrieving text-based control properties.

IProvideClassInfoZ The new IProvideClassInfoZ interface provides an additional method, GetGUID,

that returns the GUlD specified in the GUIDKIND parameter. This is useful when the con-

tainer is implementing a control’s outgoing, or event, interface.

{antral and €ontairier Guidelines Versien 2.0

Along with the OLE Controls 96 specification, Microsoft released a document that provides guidelines for

control and container developers. By following the guidelines, developers can help make their controls and

containers work together reliably. The ActiveX control is becoming ubiquitous within development tools

and applications. The large number of controls and containers, with their specialized functionality, makes it

imperative for certain guidelines to be followed. By following the guidelines, a developer makes the control

or container useful within the maximum number of development environments.

The guideline document is currently part of the ActiveX SDK. You can look there for detailed informa—

tion on each guideline. Following is a summary of the key control—specific aspects of the guidelines. Some of

the concepts presented in this summary are covered in detail later in the chapter.

0 A COM object. An ActiveX control is just a specialized COM object. The only basic requirements for

a control is that it support self-registration and the IUnknown interface. These are the only true

requirements of a control. However, such a control could not provide much functionality. The guide-

lines show how a developer can add only those interfaces that the control needs. The ultimate pur-

pose is to make the control as lightweight as possible.

0 Self~registration. control must support self-registration by implementing the DllRegisterServer

and DllUnregisterServer functions and must add the appropriate embeddable objects and

Automation server entries in the Registry. A control must also use the component categories API to

indicate which services are required to host the control. '

9 Interface support. If a control supports an interface, it must support it at a basic level. The document

provides guidelines for each potential ActiveX control and container interface. It describes which

methods must be implemented within an interface if that interface is implemented.

NFLE 1009 - Page 14

NFLE 1009 - Page 15

ActiveX Controls é 3§5WWWWWWMWWWWWWWOWWWMWMWWMWWWMWWWWmWWWWMWMW

- Persistence support. If a control needs to provide persistence support, it must implement at least

one IPersist* interface and should, if possible, support more than one. This requirement makes it

easier for a container to host the control. Support for IPersistPropertyBag is highly recom~

mended, because most of the major containers provide a ”Save as text” capability.

° Ambient properties. If a control supports ambient properties, it must respect certain ambient prop—

erties exposed by the container. They are LocaleID, UserMode, UIDead, ShowGrabHandles,
ShowHatching, and DisplayAsDefaul t.

0 Dual interfaces. The guidelines strongly recommend that ActiveX controls and containers support

dual interfaces. If you recall from Chapter 6, an Automation server implements a dual interface by

providing both an IDispatch interface and a COM custom interface for its methods and properties.

6 Miscellaneous. ActiveX controls should not use the WS_GROUP or WS_TABSTOP window flags,

because it may conflict with the container’s use of these flags. A control should honor a container’s
call to IOleControl : :FreezeEvents. When events are frozen, a container will discard event
notifications from the control.

ActiveX {entreis fer re Entereee

ActiveX controls are a perfect solution to many of the problems facing Web developers. Web pages are small

applications. They need controls, such as edit boxes and listboxes, and in most regards can be developed as

regular Windows applications, especially now that most of Microsoft’s technologies (such as VBScript and

ActiveX controls) are supported within a Web browser. Internet Explorer is a highly functional ActiveX con-

trol container. It implements much of the new Controls 96 functionality as well as many other ActiveX tech-

nologies. ActiveX controls can be used within the Web environment, but there are some additional require—

ments for controls that have large amounts of data. We’ll cover Internet-based ActiveX controls in detail in

Chapter 12.

ActiveX controls can be contained within Web browsers that support the ActiveX container architec-

ture. Today, the most prevalent example is Microsoft’s Internet Explorer. A control is typically thought of as

a button or edit box, but a control can also be a much larger entity, basically a whole application. Most of

Internet Explorer’s functionality is contained within one ActiveX control. For most controls, operating

within the Web environment is not a problem. However, some controls manipulate large amounts of data.

The major difference between a local machine environment and the Web is bandwidth. The OLE-Controls-

COM Objects for the Internet specification describes new techniques and interfaces to facilitate working in
low~bandwidth environments.

Active}? Centre? Essctéena ategsres
A fully functional ActiveX control typically implements around 15 interfaces. Now, with the additional

interfaces described in the OLE Controls 96 specification, a large, full-featured control might implement 20

or more interfaces. Such a control, however, would be complex to implement, at least without the help of
MFC.

NFLE 1009 - Page 15

NFLE 1009 - Page 16

3% of CHAPTER 7

The Control and Container Guidelines document reduces control requirements by requiring controls to

implement only those interfaces that they need. If a control does not want to support events, it need not

implement the interfaces (such as IConnectionPointContainer) needed for events. By following the

guidelines, a control developer is now free to implement only those interfaces that are necessary. The guide—

line document categorizes the possible control-implemented interfaces by function. The next several sections

describe the major ActiveX functional categories according to the interfaces that they must implement.

 gsas as gm siestaees
An ActiveX control is a typical COM object. It must provide the most basic COM service: the IUnknown

interface. To create an instance of a control, it must also have a class factory, which requires the implementa-

tion of one of the IClassFactory interfaces. The IClassFactoryZ interface provides additional, license—

oriented features for components that implement it. We'll discuss this in more detail in Chapter 8.

is seer era's aseefaees

ActiveX controls are typically compound document servers. The compound document interfaces provide

support for important features such as displaying a visual representation of the control, user interaction with

the control, and in-place activation. Several interfaces are needed to support this functionality.

The IOleObj ect interface provides basic embedded object support so that the control (compound doc-
ument server) can communicate with the container. There are a number of methods in the IOleObject

interface, but only a few are of interest to ActiveX controls. The SetExtent and GetExtent methods are

used to negotiate a control’s extent or size, and the GetMiscStatus method returns the various
OLZEMISC_* status bits set for the control. We'll cover each of these methods in the section on control

Registry key entries.

The IOleViewfx] interfaces provide a way for the container to obtain a graphical rendering of the

control. The control implements this interface and draws its representation onto a device context provided

by the container. The initial version of this interface, IOleVi ew, was part of the original compound docu—

ment specification. The OLE Controls 94 specification added GetExtent, which allowed the container to

get a server’s extents through this interface instead of IOleObject. Then, as part of the OLE Controls 96

specification, the IOleVi ewEx interface was added. This interface includes five new methods that facilitate

flicker—free drawing, nonrectangular objects, hit testing, and additional control sizing options. MFC versions

4.2 and higher support the new IOleVi ewEx interface.

The IDataObj ect interface is used by compound document servers to provide the container with a

method of rendering data to a device other than a device context. ActiveX controls typically use the

IOleVi ew [x] interface instead of IDataObj ec t, but it can be implemented if needed.

A control must implement the compound document IOleInPlaceObj ect interface to support the

ability to be activated and deactivated in—place within the container. This interface also provides a method to

notify the control when its size Changes or is moved within the container.

NFLE 1009 - Page 16

NFLE 1009 - Page 17

_-,.:’-’_C.*ive>:<. CQDTFOIS gt 3a?

A control must implement IOleInPlaceActiveObj ect to provide support for the use, and transla-

tiOn of, accelerator keys within the control. Many of IOleInPlaceActiveObj ect’s methods are not
needed for ActiveX controls.

The compound document interface, I01 eCacheZ, can be implemented by a control to provide caching

of its representation, improving performance in some situations.

Most ActiveX controls provide a graphical representation, so most controls should provide support for

the compound document interfaces. However, this is no longer a requirement. If a control is nonvisual and

does not require these interfaces, it is free to not implement them. A well~behaved container should still be
able to handle the control.

" gas aaiega gag

For a control to provide basic functionality, it needs to implement some properties and methods. As we dis—

cussed in Chapter 6, Automation is a standard way of exposing member variables and member functions

from a COM-based server. A control provides services by providing an implementation of the IDi spat ch

interface. Once implemented, a control becomes an Automation server.

A control’s Automation interface is one of its most important features. The control standards provide a

number of standard properties and methods. lNhen designing a control, you will typically spend much of

your time working with properties and methods. Let’s look at the different types implemented by ActiveX
controls.

Preperties

A control property is basically a characteristic of the control. Examples include color, height, font, and so on.

In a software component sense, the properties of a control enable a developer to affect the appearance and

behavior of a control. In most cases, a property maps to a C++ class member variable that maintains the

value of a property.

Control developers can implement custom properties that are specific to the control being developed

(such as ”Count”) as well as use the stock properties provided by the ActiveX control standard. Certain

properties may be valid only during the execution or run—time phase of a container. An example is a prop—

erty that contains the number of elements in a listbox or one that contains the HWND of the control. During

the design phase, this property has no meaning to the control user. It is useful only during the execution of

the application. Other properties may be read-only at run time or even write-only at design time.

gtmdrd Itfiflii Stark Preparfi'es
The ActiveX Control standard provides a set of standard properties that should be used instead of imple-

menting custom properties for similar functionality. This arrangement provides a standard or uniform inter-

face for the component user. All ActiveX controls that expose a particular functionality will use the same

NFLE 1009 - Page 17

NFLE 1009 - Page 18

wwwz

property name. Examples include BackColor, Caption, and hWnd. These are properties that almost all

visual ActiveX controls should provide. Table 7.3 lists the standard properties currently defined by the stan—

dard. We will also use the term stock properties, which are ActiveX control standard properties whose

implementation is provided by MFC.

Table 7.3 Standard Control Properties

Property Purge

Appearance‘ Appearance of the control (e.g., 3-D).

Autosize lt TRUE, the control should size to fit within its container.

BackColor‘ The background color of the control.

BorderStyle‘ The style of the control’s border. A short that currently supports only two values A zero indicates no

border, and 1 indicates to draw a normal, single-line border around the control. More styles may be
defined in the future.

BorderColor The color of the border around the control.

Borderwidth The width of the border around the control.

DrawMode The mode of drawing used by the control.

Drawstyle The style of drawing used by the control.

Drawwidth The width of the pen used For drawing.

FillColor The fill color.

Fillstyle The style of the fill color.

Font‘ The font used for any text inthe control.

ForeColor‘ The color of any text or graphics within the control.

Enabled’ TRUE indicates that the control can accept input.

hWnd‘ The hWnd of the control’s window.

Tabs top indicates whether the control should participate in the tab stop scheme.

Text‘, Caption‘

BorderVis ible

A BSTR that indicates the caption or text of the control. Both properties are implemented with the

same internal methods. Only one of the two may be used.

Show the border.

‘ Indicates stock implementation provided by MFC

Ambient Preperties
The definition of ambient is ”surrounding or encircling,” and this precisely describes the relationship
between ActiveX control containers and the ActiveX controls contained therein. The ActiveX control stan—

dard defines a set of ambient properties that are read—only characteristics of the control container. These

characteristics define the ambiance surrounding each of the controls. A good example is the container’s

ambient font. To provide a uniform visual interface to the application user, the container may define an

NFLE 1009 - Page 18

NFLE 1009 - Page 19

ActiveX Controls e 3G9.Wawm«m.wwwy”wwwmmwww,mwvmmam—WMWMMMWMMWWMNW WNWWMWWHWNW

ambient font that each control should consider using. If a control in the container uses a font to display text

information, it would be nice if it would use the font that all the other controls are using.

Ambient properties are also useful from a development perspective. The developer can quickly change

the ambient property of a container and affect all the controls within it. Instead of changing the property for

every control, the developer has to change it only at the container level.

Ambient properties are provided by the default IDispatch of the client site provided to a control by a
control container. When a control is loaded, MFC calls QueryInterface for the default IDi spatch on its

client site. To retrieve an ambient property, the control calls IDi spatch: :Invoke with the DISPID of the

ambient property. These are standard, known DISPIDs, so there is no need to use
IDi spatch: :GetIDsOfNames beforehand.

Not all ambient properties pertain directly to the GUI aspects of a container and its controls. Other

properties are used by the container to indicate its current state to the enclosed controls. The UserMode

ambient property is used to indicate the state of the container. Is it currently in design, run, or debug mode?

The DisplayName property conveys to the control its external name used by the container. The correct use

of ambient properties is important to the development of ActiveX controls, and we will cover each one in

detail in later chapters. The ambient properties are shown in Table 7.4.

Table 7.4 Ambient Properties

W

BackColor Background color of the control. OLE__COLOR COleControl: :AmbientBackColor

DisplayName The name of the control as given by the container. This name should be used when the control needs

to display information to the user. CString COleControl: :AmbientDisplayName

Font The recommended font for the control. LPFONTDISP COleControl: :AmbientFont

ForeColor Foreground color for text. OLE__COLOR COleControl: :AmbientForeColor

LocaleID The container's locale lD. LCID COleControl: :AmbientLocaleID

MessageReflect if this property is TRUE, the container supports reflecting messages back to the control. BOOL
COleControl: :ContainerReflectsMessages

ScaleUni ts A string name for the container’s coordinate units (such as ”twips" or ”cm”). CString
COleControl: :AmbientScaleUnits -

TextAlign indicates how the control should justify any textual information. 0 = numbers to the right, text to the

left, i = left justify, 2 = center justify, 3 = right justify, 4 = fill justify. short
COleControl: :AmbientTextAlign

UserMode Returns TRUE if the container is in run mode; otherwise, the container is in design mode. BOOL
COleControl: :AmbientUserMode

UIDead The UIDead property indicates to the control that it should not accept or act on any user input

directed to the control. Containers may use this property to indicate to the control that it is in design

mode or that it is running, but the developer has interrupted processing during debugging. BOOL
COleControl: :AmbientUIDead

NFLE 1009 - Page 19

NFLE 1009 - Page 20

3E6 é CHAPTER 7

Table 7.4 Ambient Properties (continued)

Property Purpose? MFG Method to Access

ShowGrabHandles if TRUE, the control should show grab handles when Ul-active. BOOL
COleControl: :AmbientShowGrabI-Iandles

ShowHatching If TRUE, the control should show diagonal hatch marks around itself when Ul-active. BOOL
COleControl: :AmbientShowHatching

Di splayAsDe fault The container sets this property to TRUE for a button style control when it becomes the default button

within the container. This occurs when the user tabs to the specific control or the control is actually the
default button on the form, and the focus is on a nonbutton control. The button should indicate that it

is the default button by thickening its border.

SupportsMnemonics if TRUE, the container supports the use of mnemonics within controls.

Autoclip if TRUE, the container automatically clips any portion of the control’s rectangle that should not be dis-

played. lf FALSE, the control should honor the clipping rectangle passed to it in
IOleInPlaceObj ect’s SetObj ectRects method.

 ieeéeeé e’e e s

In Chapter 6, we discussed Automation methods. ActiveX control methods are basically the same and are

implemented via the IDispatCh interface. One of the new features of ActiveX controls (in contrast to Visual

Basic custom controls) is the ability they give you to implement custom methods. These methods allow the

control user to call specific functionality within the control. This is no different from our Automation server

examples of Chapter 6.

The ActiveX control standard currently provides two standard methods that should be implemented in

your control if it supports the behavior (Table 7.5). The Refresh method causes an immediate redraw of the
control, and the DoClick method causes the control to fire the standard Click event. (We’ll cover events in a

moment.) Implementing these methods requires just two mouse clicks, and we will do so in the controls that

we develop.

Table 7.5 Standard Control Methods

Method Purpose7MFC Method

Refresh Redraw the control. COleCOntrOl: :OnRefresh

DoClick Generate a Click event. COleControl: :OnDoClick

NFLE 1009 - Page 20

NFLE 1009 - Page 21

fl ActiveX Controls 4? 33 E

Propeety ?
Controls that support the concept of properties should also provide support for property pages. ActiveX

controls need a standard way to Visually present their properties to the user of the control (the visual devel—

oper). The ActiveX control standard added property page technology as part of its implementation. Each con—
trol has associated with it one or more property pages that allow Visual manipulation of its properties. As its

property values change, the control is notified and can act on the request.

A property page is similar (visually) to a single tab of the tabbed dialog boxes that have become popular

in Windows applications. Tabbed dialog boxes allow presentation of large amounts of data within a small

space and allow the grouping of related application features within a tab. A dialog box containing multiple
tabs is similar to a Windows 95 property sheet.

Windows 95 uses property sheets throughout its new interface. Property sheets are part of the

Windows 95 API and are one of the new common controls. Windows 95 has added many new full—featured

common controls, and we will use one of them to build an ActiveX control in a later chapter.

OLE property pages are different from the Windows 95 common control and provide additional capa—

bilities. Each OLE property page is itself a component, or COM object, as we will see. Currentiy there are

three stock property pages that ActiveX controls can use: Font, Color, and Picture. They provide stan-

dard implementations for properties that many controls will use. A control developer can also provide one

or more custom property pages for a control.

The control container is responsible for managing the design and run—time environment of which many

controls may be a part. Implementing each control’s property pages as distinct COM objects allows the con—

tainer to invoke or instantiate the pages independent of the control. This is important, because the user may

choose multiple controls, either of the same or of different types, and may want to modify the properties that

are common to the selected controls. It is the responsibility of the container to filter through the property

pages and display only those that are common among the selected controls. Once this is done, the property

page component is responsible for notifying its respective control. In other words, the container knows

when to display a control’s property pages (at the request of a user) and is responsible for querying each

selected control to obtain its respective property pages. The container then assembles them into a property

sheet that frames the property pages. Once this property sheet is complete, the user can modify and apply

the changes to the underlying controls. As this occurs, the property page communicates directly with the

control, requiring no help from the container (Figure 7.5).

NFLE 1009 - Page 21

NFLE 1009 - Page 22

3‘5 2 6 CHAPTER 7

Figure 7.5 Control property sheet.

The container creates the property sheet frame that contains the OK, Cancel, Apply, and Help buttons. The

property pages within this frame are individual COM objects and are manipulated by the container using

Automation. These capabilities are provided by new OLE interfaces specified in the ActiveX control stan—

dard, although they can be used outside ActiveX controls. Let’s briefly look at each one.

EgpetiinmpertyPuges
The ISpecifyPropertyPages interface is implemented by the control. It provides a way for the container

to query the control for its list of property pages. ISpecifyPropertyPages has only one method:

GetPages. The GetPages method is called by the container. The container provides a pointer to a CAUUID

structure that returns a counted array of CLSIDs. This enumerates all the property page CLSIDs used by the

control. The container uses these CLSIDS with a COM function, typically CoCreateInstance, to instanti-

ate the page objects.

typedef struct tagCAUUID

(

ULONG cElems;

GUID FAR* pElems;

) CAUUID;

// ISpecifyPropertyPages

BEGIN_INTERFACE_PART(SpecifyPropertyPages, ISpecifyPropertyPages)

INIT_INTERFACE_PART(COleControl, SpecifyPropertyPages)

NFLE 1009 - Page 22

NFLE 1009 - Page 23

ActiveX Controls e 3 T 3

STDMETHOD(GetPages) (CAUUID FAR") ;

END_INTERFACE_PART (SpecifyPropertyPages)

IPropertyPageSite
IPropertyPageSite facilitates communication between the property page component and the property

sheet frame as implemented by the container. An IPropertyPagesite pointer is provided to each prop-

erty page after it has been instantiated through IPropertyPage: :SetPageSite. The OnstatusChange

method is used by the property page to indicate to the frame that one or more properties have been modi-

fied. The frame then enables the Apply button.

The GetLocaleID method is used by the property page to retrieve the appropriate language identifier

from the property frame. The GetPageContainer method currently has no defined behavior but may be

used in the future to obtain an interface on the property sheet frame itself. The Trans lateAccelerator

method helps in the management of accelerator keys used by the property pages.

IPropertyPageE
The IPropertyPage2 interface is implemented by each property page component and provides the con—

tainer with methods to get the size of as well as move, create, destroy, activate, and deactivate the compo—

nent’s property page window. The container creates a frame for each property page and uses these methods

to manage the display of the property sheet. This arrangement allows the property sheet to appear and

behave as if driven by one application, when, in fact, a property sheet comprises individual components

housed within a frame window created by the container. Each method is detailed in Table 7.6.

Table 7.6 IPropertyPage2 Methods

Methods Purpose/MFC Method

SetPagesite Initializes the property page by providing a pointer to the IPropertyPagesite.
COlePropertyPage: :OnSetPageSite

Activate Causes creation of the dialog box based on the property page dialog resource specified by the control

developer.

Deactivate Destroys the dialog window created by the preceding method.

GetPage Info Returns to the property frame a PROPPAGEINFO structure that contains the title, size, and help inlor'

mation tor the property page.

SetObjects Passes to the property page a list of IDispatch interfaces For each of the controls that will be attected

by changes made via the property page.

Show Called by the Frame with a nCmdShow parameterl This usually either shows or hides the property page

window. MFC passes the nCmdshow parameter to the ShowWindow method.

Move Called by the frame to move the property page window. An LPRECT structure is provided and is

passed to the MoveWindow method by MFC.

NFLE 1009 - Page 23

NFLE 1009 - Page 24

Eilfi é CHAPTER 7

Table 7.6 IPropertyPage2 Methods (continued)

Methods Purpose7MFC Method

IsPageDirty Called by the frame to determine whether the Apply button should be enabled.

Apply The Apply button was pressed, and all changes need to be propagated to all the affected

controls. MFC calls the DoDataExchange method implemented in the property sheet.

Help The Help button on the frame was pressed. MFC calls the property page's OnHelp

method. The default implementation does nothing.

TranslateAccelerator The frame passes keystrokes to the page so that it can act on the message. MFC passes the

keystroke to PreTranslateMes sage if it is not intercepted by the property page.

Edi tProperty Called by the frame with the DISPID of the property that is requesting edit. The default

MFC implementation, OnEditProperty, does nothing.

 re ertg .. eaesteeee
A control that provides property support through the IDi spatch and property page interfaces may also

want to support persistence of those properties. Not all properties require persistence, but from a user's per—

spective, persistence of properties makes development of applications easier.

During the container’s design phase (when building an application using a visual tool), the developer

typically modifies various properties of a control. To save the resulting state of the control’s properties, the

development tool and its containers ask each control to save the state of its properties. This process, called

serialization, provides persistence of a control’s state. Persistence allows a control to have a unique initial

state, set during the design phase, when loaded and activated within a container. The IPersistStorage

and IPersistStreamInit interfaces provide this capability.

IPersistStorage is supported by OLE compound document containers. IPersistStorage

accesses OLE’s structured storage technology, which provides a hierarchical storage mechanism above the

operating system's file system. OLE embedded servers implement this interface so that the container can ask

each embedded object to serialize itself within the container’s structured storage file. For compound docu-

ment objects, this requires the storage of a large and complex set of data (such as a Word document or an

Excel spreadsheet). This interface provides more functionality (and therefore larger files) than is usually

required for lighter weight ActiveX control objects.

The IPersistStreamInit interface was added with the ActiveX control specification and provides a

simpler, stream—based approach to serialization. ActiveX control containers typically support this interface

in addition to IPersistStorage. To support embedding within both container types, controls should

implement both interfaces.

Another persistence interface, IPersistPropertyBag, was added by the Controls 96 specification.

IPersistPropertyBag and the container—side interface, IProper tyBag, provide an efficient method of

saving and loading text-based properties. The control implements IPersistPropertyBag, through which

the container calls Load and Save, thereby notifying the control to either initialize itself or save its property

NFLE 1009 - Page 24

NFLE 1009 - Page 25

ActiveX Controls a 3'3 5.iWKMNWMmmww..aWWWHWMNmm.W...WWW.,.WWWWMW~ WWWWMW WWWMNWMWWWNWWMWWWMWWWwwwwmmwwy M MW W.WMWNMNwwMWWWWWWWWW W. W mmMM/m

values. It does this through the IPropertyBag: :Read and IPropertyBag: :Write methods provided

by the container. The property bag persistence mechanism is very effective in a Web-based environment,
where a control’s property information may be stored within the HTML document.

A control should support as many of these persistence interfaces as possible to provide the most flexi—

bility to the container. Likewise, a container should support as many as possible. The more persistence inter—

faces are implemented, the greater the chance that a container and control will work together efficiently.

 iaaaaeta a geeta asa mega agate
A major improvement provided by the ActiveX control architecture is the addition of an outgoing event

mechanism. In Chapter 6, we described Automation as a primarily one-way technique of communicating

(programmatically) with another component. This technique was sufficient for using or driving components
or applications, but it does not provide the robust feedback needed when multiple components are interact—

ing or when a higher—level entity is used to tie controls together.

Events provide a way for a control to notify its container that something is about to occur or has

occurred. The container typically provides a way for a user to perform certain actions whenever it is. notified

of these events. There is no requirement that the container actually implement or perform any actions when

it receives control event notifications. As we described earlier, a container is usually a part of a larger devel—

opment environment in which there is either an interpreted script-like language (such as Visual Basic) or a

compiled language such as Visual C++. This language is used to perform programmatic actions when a con-
trol fires an event.

Event communication between COM-based components is a major addition to the technology and is

used extensively by ActiveX controls. The technology is termed connectable objects, because it provides true

peer-to—peer communication between cooperating components. Events are implemented within ActiveX

controls using the IDispatch interface and the connectable objects interfaces: IConnectionPoint and
IConnectionPointContainer.

ActiveX controls implement the IConnectionPointContainer interface to indicate to the container

that they support one or more outgoing (or event) interfaces. These outgoing interfaces allow the control to

invoke Automation methods within the container. The IConnectionPointContainer interface provides
a mechanism to establish this link.

The IConnectionPointContainer interface contains two methods. EnumConnectionPoints pro—

vides a way for the container to iterate through all the connection points within the control. The

FindConnectionPoint method uses an interface ID (11D) to identify the specific interface that a container

is looking for. Each of these methods provides a way to obtain pointers to the IConnectionPoint inter-
face.

IConnectionPoint is also implemented by the control, but not as part of its main interface. (It’s not

available via Querylnterface.) IConnectionPoint is implemented on a different object and is used to

set up the outgoing connection with the container.

IConnectionPoint provides five methods, but we’ll discuss only two of them. The other methods

provide more functionality than we need for our purposes. The Advise method is used by the container to

NFLE 1009 - Page 25

NFLE 1009 - Page 26

are a CHAPTER: 7

establish a connection with the control. The container passes an interface pointer to one of its interfaces to

the control. (For events, this interface is an IDispatch.) The control then calls methods implemented by the

container by calling through this interface. The Unadvise method is used to terminate this connection. This

process is fairly complex, but Table 77 details the use of these interfaces to set up event notification between

the control and its container. The interface that we are setting up is a pointer to the container’s implementa—

tion of our control’s event set. The Automation methods are specified by the control but implemented in the
container.

Table 7.7 Event Set IDispatch Setup

Container Control

Inserts and loads the control. Contains the definition of the event IDispatch.

Upon load, it queries for the control’s type information. Returns the type information for the control. This is a binary

The control must provide a primary event set IDispatCh: version of the definitions from the .ODL file. The control

pPCI = QueryInt erface(IProvideClassInfo [x]) should implement IProvideClassInfoZ, because it

pPCI—>GetClassInfo () makes it easier for the container to determine the “D of the
control’s default event set.

From the type information, determine the “D for the default
event set. For our example, we will use IID__EventSet.

If the control implements IProvideClassInfoZ,
the container can call GetGUID with the

GUIDKIND__DEFAULT_SOURCE_IID parameter to quickly
determine the event set MD.

Get the IConnectionPointContainer interface: Return its IConnectionPointContainer implementation.
pICPC = QueryInterface

(IConnec tionPointContainer)

Get the ConnectionPoint interface for the default event set: Return an IConnectionPoint pointer for the specified llD.
pICP : pICPC—>FindConnectionPoint

(IID_EventSet)

The container must now implement the event set as on Set an internal pointer equal to the container’s (event)

automation interface. it then calls through the IDispatch implementation:

connection point to set the control’s pointer to the

container’s implementation of the event IDispatch:
pICP—>Advise(pEventDispatch)

m_pEventDispatch = pEventDispatch

When the control fires an event, it does something like this:
m_pEventDispatch—>Invoke(myDispID. . .)

The control knows the DISPID as well as all the parameters and

types, because it defines them.

NFLE 1009 - Page 26

NFLE 1009 - Page 27

ActiveX Controls f? 3 T?

A control’s methods provide a way for the container to perform actions within the control. Control events

provide a way for the control to perform actions within the container. As we’ve discussed, controls are
Automation servers that expose their methods and properties using the IDispatch interface. This arrange-

ment allows client to obtain the control's IDispatch and then the DISPIDs of each method and property

(using IDispatch: :GetIDsOfNames). The client can then call these methods within the control using
IDispatch: :Invoke.

Control events are implemented in a similar way except in reverse. As you add events to a control, it

builds code that will call an Automation method for each event with its parameters. The definition of this

interface is provided to the container (via IProvideClassInfo [x]) as the control is being loaded. The
new IProvideClassInfoZ interface adds the GetGUID method to make it easier for the container to find

the correct event set. By passing the deuidKind parameter of DEFAULT_SOURCE_I ID, the control returns
the default event HD.

The container then implements the IDi spatch interface based on the type information provided by the

control. The IDispatch pointer is then returned to the control through the IConnectionPoint: :Advise

method. Later, when a control needs to fire an event, it calls through this IDispatch: :Invoke with the
DISPID of the event method. (The control knows the DISPID because it defined it, so there is no need to call

GetIDsOfNames.) This call invokes the method within the container (i.e., the event fires).

gtentlerd Events

To present a uniform event set for users of ActiveX controls, the ActiveX control standard currently provides

nine standard events that can be used to develop an ActiveX control. These events are ones that visual con-

trols usually provide to notify the control user When they occur. They are listed in Table 7.8. The only one

that requires more explanation, in this short overview, is the stock Error event, which provides a simple

mechanism to report errors that occur within your control. You should follow specific rules when using the

Error event, and we will cover them in one of our example controls. As with the standard properties, the

events implemented by MFC are called stock events.

Table 7.8 Standard Events

Event Purpose75fack MFG Function

Click Fired by a BUTTONUP event tor any of the mouse buttons COleControl: :FireClick

Dblclick Fired by a BUTTONDBLCLK message. COleControl: :FireDblClick

Error Fired by the control when an error occurs. COleControl: :FireError

KeyDown Fired by the WM_SYSKEYDOWN or WM__KEYDOWN message. COleControl : :FireKeyDown

KeyPress Fired by the WMWCHAR message. COleControl: :FireKeyPress

KeyUp Fired by the WM_SYSKEYUP or WM_KEYUP message. COleControl: :FireKeyUp

MouseDown Fired by the BUTTONDOWN event. COleControl : :FireMouseDown

MouseMove Fired by the WMwMOUSEMOVE message, ColeControl : :FireMouseMove

MouseUp Fired by the BUTTONUP event. ColeControl: :FireMouseUp

NFLE 1009 - Page 27

NFLE 1009 - Page 28

3E8 e CHAPTER 7

Custom Events

MFC allows you to define custom events for your controls. The return values and parameters are the same

as those for Automation methods. The primary difference between stock and custom events is that MFC

provides an implementation for each stock event that automatically fires when the event occurs. For custom

events, the developer must implement the code that fires the event.

 eyeireéée @EE Eng
ActiveX controls are typically visual components that provide some kind of interaction with the control

user. If a control needs to process keystrokes, it should implement the IOleControl interface. It contains

four methods, of which two are specific to keystroke processing.

GetControlInfo fills in a caller-supplied CONTROLINFO structure. This structure defines the key-

board mnemonics implemented in the control and contains a dwFlags variable that describes how the con-

trol will behave if the user presses the Esc or Return key when the control is U1~active.

The container calls OnMnemonic when a keystroke matches one in the control’s mnemonic table set by

a previous GetControlInfo call. A button control can handle accelerators and other button—type details by

using these two methods and the OLEMISC__ACTSLIKEBUTTON flag. The container should also expose the

D i sp 1 ayAs De f aul t ambient property and provide an implementation of the

IOleControlSite: :TranslateAccelerator method. A control has first crack at keystrokes when it’s

UI—active, but it can call this method if it does not use the message:

interface IOleControl : IUnknown

{

HRESULT GetControlInfo(CONTROLINFO *pCtrlInfo);

HRESULT OnMnemonic<LPMSG pMsg);

HRESULT OnAmbientPropertyChange(DISPID dispID);

HRESULT> FreezeEvents(BOOL fFreeze);
l

typedef struct tagCONTROLINFO

{

ULONG Cb;

HACCEL hAccel;

USHORT cAccel;

DWORD dwFlags;

} CONTROLINFO;

The other two methods of IOleControl are important for most controls. The container calls

OnAmbientPropertyChanged to inform the control that one or more ambient properties have changed.

The only parameter is the DISPID of the property that changed. If more than one property changed,

DISPID_UNKNOWN is passed to the control.

NFLE 1009 - Page 28

NFLE 1009 - Page 29

ActiveX Controls a. 3 'E Q

FreezeEvents is called by the container to freeze and unfreeze the control’s event mechanism. If

FreezeEvents passes TRUE, the container will ignore any events fired by the control until the container

unfreezes the control by calling this method with a FALSE parameter. Some containers may, for example,

want to freeze events while the other controls in the container are still being initialized.

gentrei Centanmem

The ActiveX control architecture allows a control to contain other ActiveX controls without making the par-

ent control implement all the required container-side interfaces. The controls are ”contained” in the usual

Windows sense of parent and child windows and not in the compound document sense. To support simple

control containment, the container must implement the IsimpleFramesite interface. The control must

call the methods when processing its window messages. Here’s the definition for ISimpleFrameSi te:

interface ISimpleFrameSite : public IUnknown

{

PreMessageFilter(HWND hwnd, UINT msg, WPARAM wp, LPARAM 1p,

LRESULT FAR" lleesult, DWORD FAR* lpdwCOOkie);

PostMessageFilterU—IWND hwnd, UINT msg, WPARAM wp, LPARAM 1p,

LRESULT FAR* lleesult, DWORD dwCOOkie);

)

To support simple frame containment, a control must do all of the following:

1. It must call the container’s PreMessageFilter method before processing any window messages

and must call the container’s PostMessageFilter method after processing the message. The mes~

sage should not be processed if the PreMessageFi lter returns s_FALSE.

2. The control must be implemented as an in-process server.

3. The control should set the OLEMI SC~SIMPLEFRAME flag.

4. The control must properly handle painting of subclassed controls. This requires treating the wParam

in the WM__PAINT message as the handle to a device context.

MFC and Aetivefii Certtmés

Visual C++ and the MFC libraries provide a feature—rich environment for implementing and using ActiveX

controls. Most of the functionality is contained in two MFC classes: CO leContro l and

COlePropertyPage. We’ll cover both classes in detail in the next few chapters. However, I’d like to briefly

discuss COleControl in the context of all the interfaces we’ve described in this chapter

The base COleControl class implements 22 COM—based interfaces. The default behavior of

COleControl is full featured. It provides all the functionality described in the ”Control Functional

NFLE 1009 - Page 29

NFLE 1009 - Page 30

323 «5 CHAPTER 7

Categories” section and supports nearly all the new features described in the Controls 96 specification as

well as those discussed in ActiveX Controls—{OM Objects for the Internet. This means that, by default, any

controls you build with MFC must always carry arotmd this‘weight even if the functionality isn’t used. This

isn’t necessarily bad, because using tools such as MFC is a trade-off. There are, however, other alternatives

for developing controls.

The ActiveX SDK gives you a lightweight control framework that provides a small subset of MFC’s con-

trol functionality. For developers who want to build small, efficient controls, this tool gets them started. It

does require a good understanding of the implementation of ActiveX controls.

Visual C++ also provides an tool that makes it easy to create basic ActiveX controls. ControlWizard is

very similar to AppWizard. It provides a skeletal control project based on answers to a few questions.

ControlWizard allows a developer to write his or her first control in a matter of minutes.

 Eggssaé saw as see Sessesé gee

Along with the specification of ActiveX controls, Microsoft’s tools have provided various levels of develop-

ment support. The following sections provide a brief look into the history of Microsoft’s support for control

development within Visual C++.

Visual C++ Versiea 2.0 (MM 3.0}

Visual C++ version 2.0 (32-bit), released in the fall of 1994, was the first version to provide support for build—

ing ActiveX controls using MFC. The CD—ROM contained the Control Development Kit (CDK), a separately

installable set of components. They included a modified version of ClassWizard and a new control—based

AppWizard called, appropriately, ControlWizard, that made it easy to build a ”shell” control with the

desired base functionality.

The CDK contained two new MFC classes—COleControl and COlePropertyPage—that provided

most of the CDK functionality. The CDK also included a subset of the other MFC classes to use in building

controls. The important point about the version 2.x releases is this: using Visual C++ version 2.x, you could

only build ActiveX controls; you could not actually use them within Visual C++. There were several ActiveX

control hosting environments (such as Visual Basic and Visual FoxPro), but you could not host controls

within Visual C++ dialogs or views. This capability would have to wait until version 4.0 and higher.

The latest 16-bit version of Visual C++ (version 1.51) was also provided on the CD-ROM. A 16~bit ver—

sion of the CDK was provided that was installed separately. Control projects that were initially started using

the 32—bit version of ControlWizard would easily move between the two environments: Visual C++ 2.0 and

Visual C++ 1.51. This arrangement made it simple to target both 16—bit and 32-bit platforms.

NFLE 1009 - Page 30

NFLE 1009 - Page 31

ActiveX Controls 6 32E
memmmwmwwmwmwm(waWMWVMNmWWWWmmm

Vi§tfilfi C++ Versiea Z'i (WC iii

Visual C++ version 2.1, released in early 1995, basically fixed some of bugs in the previous version CDK that

made it difficult to build usable controls. Version 2.1 was a very stable release and made it rather easy to

build effective ActiveX controls. Visual Basic 4.0, which was a great ActiveX control container, had been out

for a few months, and most development tool vendors were hard at work to provide tools to facilitate the

use and development of ActiveX controls. This support made developing ActiveX controls a worthwhile
endeavor.

The latest 16-bit version of Visual C++, version 1.52b, was also shipped on the CD-ROM. The CDK was

updated with minor fixes.

Visuui £44m Version 2.2 Wig 1%

Visual C++ version 2.2 was released in the summer of 1995. It added a few new features and bug fixes for

the CDK. It shipped with version 1.52c of the 16~bit Visual C++ environment, which is basically the same

version available today (September 1996).

Vsiitii C++ Version 4.@ iiiii 4%)

Visual C++ version 4.0, a major release (October 1995), added significant features for ActiveX control devel-

opers and users. Visual C++ now provided control hosting capabilities, making it easy to incorporate

ActiveX controls within Visual C++ dialog boxes. ActiveX controls could be created dynamically and added

to MFC~based views. Finally, all the features of ActiveX controls could be used by Visual C++ developers.

As part of the major 4.0 release, the earlier CDK was integrated within the rest of MFC. The full comple-

ment of MFC classes could now be used within ActiveX controls. ActiveX controls became simply MFC~

based DLLs. They were no different from any other MFC-based COM server.

However, Version 4.0 removed some of the previous functionality. ControlWizard lost the ability to

import a VBX header definition and build a skeleton project. Also, ControlWizard no longer would generate

both 16—bit and 32—bit projects, so multiplatform support became harder to manage. These changes were nec-

essary because parallel upgrades to the 16-bit compiler were discontinued. The 16-bit version (1.52c)

shipped with Visual C++ 2.2 was the last upgrade to the 16-bit version of Visual C++. The primary focus

was now 32-bit development.

Visuui C++ Version 4.1 mm 4.ii

Visual C++ version 4.1 added little, except for bug fixes, that was specific to ActiveX control development.

An example and Tech Note (65) were added that showed how to convert an MFC-based Automation server

to support both the IDispatch interface and a custom interface, thereby providing dual interface support.

NFLE 1009 - Page 31

NFLE 1009 - Page 32

£33..--jFHAPTER 7WMWWN. momma”,,..~_.~,,,MW M, WM V WWW. wows...WWWWWM.Mmawyw, ,.WWW-“w.“mwwmwmmwwww,WW.Wma.“WaMWWKWMWHMMWM”WNW/Nt- W...VMW.. fl

Visual €++ Versiam} 4.2 mm 4.2)

Visual C++ version 4.2 added support for many of the enhancements outlinedin the OLE Controls 96 speci~
fication. These features include windowless controls, flicker~free controls, nonrectangular controls, and other

control optimizations. Internet-based enhancements were also added. CAsyncMoni kerFi l e,

CDataPathProperty, and other classes were added to support this new Internet functionality.

As this book was going to press, Microsoft released the beta of Visual Basic 5.0 Control Creation
Edition. You can now use Visual Basic to develop ActiveX controls. The Control Creation Edition is
free, so you should definitely download it and give it a try. For details, check out my web site at
http://www.WidgetWare.com.

 Win32 versas Winl 6 {antral levelapmeat

The last version of Visual C++ to make it easy to move between 16-bit and 32-bit platforms was version 2.2.

The 32—bit version also came with the 16—bit Visual C++ version 1.52c. If you built your controls initially with

version 22, they could easily be moved back and forth between version 2.2 and version 1.52c. However,

these versions lack some of the important new ActiveX features. If you need to support both platforms, you

basically have three choices. You can use the older versions of Visual C++ and place a few ttifdef WIN32

lines around the bit—specific code. Another good alternative is to use the non-MFC control framework pro—

vided with the ActiveX SDK, which we’ll discuss in Chapter 12. The third option is to write your own frame-

work. Right now, I think the best option is to use the non—MFC framework from the ActiveX SDK.

 assess a ésatmés

The control container is responsible for and manages the control’s site, or location. There is information

about the control that only the container knows. Examples include the control’s position within the con-

tainer and the control’s external name. The control user may wish to modify these values. The best way to

present this information to the user would be to secretly add these container-specific properties to each con—

trol within the container, giving the user a seamless property interface. Each control would have a top,

left, and name property. To provide this capability, a container needs a way to “wrap” a control and aug-

ment its property list. OLE aggregation makes this task easy.

The ActiveX control standard describes an extended control that is created by the container and is aggre—

gated with the original control (Figure 7.6). The container-specific properties, or extended properties, are

implemented by the container in the aggregate object. Containers may also want to implement container—

wide properties that, if modified, affect all the controls Within the container. An example is the extended

visible property. If the container's visible property is FALSE, it would indicate that each control within

the container is not visible. Extended controls make this easy. Although the extended control can hide the

implementation of properties for a given control if necessary, the standard recommends that control devel-

opers not use the extended control properties that are currently defined. These properties are listed in Table

7.9. Although the standard does not specify any extended methods or events, a container could add them

using the extended control.

NFLE 1009 - Page 32

NFLE 1009 - Page 33

ActiveX Controls Q 7323

Figure 7.6 Extended control.

Table 7.9 Extended Control Properties

Type7Name Purpose

BSTR Name The name given to the control by the user.

BOOL Visible The visibility ot the control.

IDispatch Parent An IDispatch tor the container's extended properties.

BOOL Cancel Is the control the detault Cancel button tor the container?

BOOL Default Is the control the Default button tor the container?

 is? negates
Just like all the OLE components we’ve studied so far, ActiveX controls require specific entries in the system

Registry. These entries describe attributes of the control that potential containers will use when loading it. Each

of the following entries is a subkey under the control’s CLSID. Each control typically has a Prong registered

that points back to the specific CLSID, as do all the components that we developed in previous chapters.

{antral

The Control entry indicates that the component is an ActiveX control. This entry allows containers to eas-

ily identify the ActiveX controls available on the system by searching through the Registry looking only for

CLSIDs with a Control subkey. There is no value for the control entry. Its existence is all that is required.

NFLE 1009 - Page 33

NFLE 1009 - Page 34

324 9 CHAPTER 7

inprargervergfi
This entry indicates that the control is a 32~bit in-process server. We used this subkey for the in—process

servers that we developed in earlier chapters. The only difference is that the filename of an ActiveX control

has an extension of OCX. The OCX extension isn't a requirement—16-bit MFC leaves it as DLL—but use of it

is recommended so that it is easy to distinguish between a DLL and a control. Here’s the entry for the con~

trol that we will develop in Chapter 8.

InprocServer32 = c: \postit\obj c132 \postit . ocx

Inseriable

The Insertable entry indicates that the component can be embedded within a compound document con—

tainer. This is the entry used by compound document servers such as Visio, Word, and Excel. Compound

document containers populate the Insert Object dialog box by spinning through the Registry looking for the

Insertable key. ActiveX controls should add this subkey only if they can provide functionality when

embedded Within a compound document container. Because ActiveX controls are a superset of visual

servers, they can always be inserted within a compound document container, and this is one way to test the

robustness of your controls.

ifiisrgtltus

The MiscStatus entry specifies various options of interest to the control container. These values can be

queried before the control is loaded, and in some cases they indicate to the container how the control should

be loaded. The value for this entry is an integer equivalent of a bit mask value composed of optional

OLEMISC_* flags. Many of these values were added with the ActiveX control specification and so are spe-

cific primarily to ActiveX controls. Table 7.10 details OLEMI SC bits of interest to control developers.

Table 7.10 Control OLEMISC Status Bits

Name Purpose

ACTIVATEWHENVISIBLE This bit is set to indicate that the control prefers to be active when visible. This option

can be expensive when there are a large number of controls. The Controls 96 specifi-

cation makes it possible for controls to perform most functions even when not active.

This flag should be set so that the control will work in containers that do not support the

new specification.

IGNOREACTIVATEWHENVISIBLE Added by the Controls 96 specification. if a control supports the new optimized control

behavior, it should set this flag to inform new containers that they can safely use the

Controls 96 specification enhancements.

NFLE 1009 - Page 34

NFLE 1009 - Page 35

ActivEX Controls «e» 325

Table 7.I 0 Control OLEMISC Status Bits (continued)

Name Purpose

INVISIBLEATRUNTIME Indicates that the control should be visible only during the design phase. When running, the con-

trol should not be visible. Any control that provides only nonvisual services will fit in this category.

ALWAYSRUN The control should always be running. Controls such as those that are invisible at run time may

need to set this bit to ensure that they are loaded and running at all times. In this way, their
events can be communicated to the container.

ACTSLIKEBUTTON The control is a button and so should behave differently if the container indicates to the control
that it should act as a default button.

ACTSLIKELABEL The container should treat this control like a static label. For example, the container should

always set focus to the next control in the tab order.

NOUIACTIVE Indicates that the control does not support Ul activation. The control may still be in-pIace acti-
vated, but it does not have a UI-active state.

ALIGNABLE Indicates that the container should provide a way to align the control in various ways, usually

along a side or the top of the container.

IMEMODE Indicates that the control understands the input method editor mode, which is used for localiza-
tion and internationalization within controls.

SIMPLEFRAME The control uses the ISimpleFrameSite interface (if supported by the container).
IsimpleFrameSite allows a control to contain instances of other controls. This is similar to

group box Functionality.

SETCLIENTSITEFIRST A control sets this bit to request that the container set up the controI’s site before the control is

constructed. In this way, the control can use information from the client site (particularly ambient

properties) during loading.

Preglfi
The value of the Prong entry is set to the current, version-specific Prong for the control. This is no differ—

ent from the entries for our components in earlier chapters.

 TQQLEBCEH‘IIi'mgfiZ
The ToolbarBitmap32 entry value specifies the filename and resource ID of the bitmap used for the tool—

bar of the container. MFC stores the control’s bitmap within the OCX file’s resources, so a typical entry looks
like this:

ToolbarBitmap32 : c:\postit\objd32\postit.ocx, l

NFLE 1009 - Page 35

NFLE 1009 - Page 36

326 aCHAPTER 7

Typeiaia
The TypeLib entry value specifies the GUID of the type library for the control. The container uses this
GUID to look up the location of the type library. The type libraries installed on the system are listed as sub-

keys under the TypeLib key in the Registry. The type library information for the control is in the resources
of the OCX file, so the path and filename are the same as the InprocServer32 entry.

Versien

The value of this subkey indicates the current version of the control.

 as meat ate

As we discussed earlier, the ActiveX Controls 96 specification requires that ActiveX controls support the

concept of component categories. The control Registry entries that we just discussed are still useful and nec-

essary for support of containers that have not moved to the new specification. However, as a control devel-

oper you should also provide component category support for your controls. First, let’s take a look at what

component categories are.

Why Campsites? Categaries?
Early in the days of ActiveX controls, a few Registry entries were all that were needed to specify the func~

tionality of a control. The Control Registry key indicated the existence of a control, and the Insertable

key indicated whether the control could function as a simple OLE embedded visual server. Today, however,

the fmetional capabilities of all COM—based components (especially controls) continues to expand rapidly.

A more efficient and useful mechanism for categorizing the capabilities of these objects is needed.

Today, my NT machine has several hundred COM-based components installed. My Registry is filled

with CLSIDs and ProgIDs of these components, and there are only a few ways to distinguish the differences

in capabilities between these objects. Only a few Registry entries indicate their purpose. Wouldn’t it be great

if I could sift through these components and get a specific view of the functionality of each one? That’s

where the new component categories specification comes in. Thanks to component categories, the OLE-

VIEW utility now shows me a more understandable view of the components on my system (see Figure 7.7).

NFLE 1009 - Page 36

NFLE 1009 - Page 37

ActiveX Controls ¢ 327W MN K, WWMWWHWWWMMWMMWHMMWWMWIMWWM,WWWWM“swamwwflwwmmflxw,”WWW-wwwwsmwwmmw WCWMWNNWV w

T-x at Active Script'ng Engine
fit Attive Scripting Engme with Falsing
{Q Automation Ubiect:
@ Controls
@1 Controls safety initiatizabte tram persist

,. [é] Contluls that are Internet aware
Eh] Controls that are safely :cIipteble
Qfl DocumentUbiect:

tfl @ Embeddable Ubiects
@ OLEVieweIlnterfaoeVieweI:
@ DLEVEewer tnteItaoeVieweIs
fig] DLEVieweI lntertace Viewer:
LE] Support initialize via PersislPIopertyBa

{g é: DLE 100mm:
[+1 ? CUM Library Ubiecls
1?) Q An Ubiects
LE Application IDs

L 33 Type Libraries
, [Eiffl lntertaces

Component Categon
{CIDEBEA57ZEAA-1 1CFA229UDAAUUSDT352} [409]: SuppoI
{UDEBEASBZBAA1 1 EF-A229OMAOGBDBSZ} [403}:sContIol
{4DFESEDB-Z-‘i38‘11EF-ABDB-030035F12502) [409) = Embedd

DldKey = Insertabte
~ {4UFCBEDA‘243841|2F~ASDB-DBUUBBF12502} HUS] 1: Controls

UldKey = Control
{40FCSEDS-243B-t1CFAA3DB-USDU35F12502)[4031: Automat

>DtdKey = Programmable
~ (4UFEEED6-243S‘11EF-A3DB-O30038F12502) [408] = Docume

DldKey : 00:0 biect
{4DFCBEDS~243€e11CF-A3‘D B AUBDUZEFI 2502} [409] s _Printab

DtdKey = Printable
{E4454FBZF827-11CE‘SDSSIOBOUS‘6F12502) [403] = ULEViewer
{73748140977011EF-SFA‘Et-UOAAUUECIJZC‘U

403 x Controls that are solely scriptabte
~ {73743142877‘011CF-9FA9400M008C42C41

Figure 7.7 OLEVIEW with component categories.

The @911.

Categories are identified using a category ID. A CATID is another name for the 128-bit GUID used

throughout COM. Along with the CATID there is a locale ID, which is specified by a string of hexadeci—

mal digits and a human-readable string. The known CATIDs are stored in the Registry under the

HKEY_CLASSES_ROOT\Component Categories key. Figure 7.8 shows some of the Registry entries

under this key.

~.COMCTL_SborCtrl.1
L. COMCTLTreeCtrtt
—-- comtile
-3 Component Categories

-CJ{ODE85A57-2BAA—I1CF-A229-00AA0030 <
LCI‘EUDESBASB-ZEAA11CF-A228nnAAunsofix
—C~: {40FCBED32438—11CFA3DB-DBDU3EF12’Q

LC) OldKey

(No Name) : REG_SZ : Control

2438-11CF-A3DEFUBUDBEF12

 - + {4UFC5EDS~243H-11CF~A3DB-UBUU3EF12
“El {4UFCBEDS-243B‘11CF-A3DB-UBUU3EF12
".{4UFCBEDQ-2438-11CF'A3DB'UBUU3BF12
—C]{54454F32-F827'11CE-9059'089038F125E
—--{73?4B14U977011CF9FA9-UUAAUUEC‘lc
'i-{7374B142'977C11CFQFA9UUAAUUBC‘R 1
“C3 {713095391H983211CF9FA9-UUAAUUBC‘l‘ /’
"Cl{7DD95802—-933211CF—9FA9UUAAUUEC4 4
*C] {FUB7A1A1H9847H11CFBFZU--UUBU§F2CD1 7 i
“1:1{FUB7A1A2—9847-11CF—BFEUUUBUEFZCDt i-r

—i ControlDocument ’

Figure 7.8 Category IDsIn the Registry
NFLE 1009- Page 37

NFLE 1009 - Page 38

$28 é CHAPTER 7

The old Registry entries that were previously used to categorize components are supported for backward

compatibility. As you can see in Figure 7.8, some Registry entries have an OldKey entry, which provides a

way to map the older Registry mechanism to the new component categories one. Table 7.11 lists the CATIDs

associated with the old Registry entries.

Table 7.l 1 Category IDs for Old Registry Entries

ola Registry Entry camp Symbol GUID W
from CQMCATJH

Control CATID_Control AOFCéED4~2438vl lcF-A3DB—080036F12502

Insertable CATID_Insert able 40FC6ED3-2A38-l lct-A3DB‘080036F12502

Programmable CATID_Programmable 40FC6ED5«2438~1 lct-A3DB-080036F12502

DocObj ect CATID__Docobj ect 40FC6ED8-2438—l lcF-A3DB-O80036Fl 2502

Printable CATID_Print able 40FC6ED9—2A38-1 lct-A3DB—080036F12502

Categatlziag Yam“ iaatrals
You categorize a control in two ways: first, by the control’s capabilities and, second, by the capabilities

required by its potential container. Two new Registry entries are used to communicate this information. The

Implemented Categories entry lists those category capabilities that your control provides, and the

Required Categories entry lists those categories that your control requires from a container. These sub-

keys are added below the CLSID of a control. Here’s an example:

HKEY_CLASSES_ROOT\CLSID\ {12345678~. . .}

; CATID for “Insertable”

\Implemented Categories\(4OFC6ED3-2438—llcf—A3DB—080036F12502}

; CATID for “Control”

\Implemented Categories\{40FC6ED4-2438~llcf—A3DB—080036F12502)

;The CATID for an internet aware control

\Implemented Categories\{...CATID_InternetAware...}

;Our control requires ISimpleFrame support

\Required Categories\{...CATIDWSimpleFrameControl...)

Currently, the component categories specification describes a few standard categories. Additional categories

will be added as the technologies require them. For example, the ActiveX scripting model uses two compo-
nent categories to indicate scripting support within controls. Table 7.12 shows some of the defined categories

as of this writing.

NFLE 1009 - Page 38

NFLE 1009 - Page 39

ActiveX Controls 9 352.?

Table 7.l 2 ActiveX Component Categories

CA‘EID Symgol from CQMCATH Pmmse

cATID_PersistsToMoniker, Used by Internet-aware controls to indicate which persistence methods

CATID_PersistsToStreamInit, they support. These can be used to indicate that an interface is required

CATID_PerSistsToStream, if the control supports only one persistence method.
CATID_Pers istsToStorage,

CATID_PersistsToMemory,

CATID_PersistsToFile,

CATID_PersistsToPropertyBag

CATIDflsimpleFrameControl The control implements or requires the container to provide

ISimpleFrameSite interface support.

CATID__PropertyNotifyControl The control supports simple data binding.

CATID_WindowlessObj ect The control implements the new windowless Feature of the Controls 96

specification.

CATID~InternetAware The control implements or requires some of the Internet-specific function-

ality, in particular the new persistence mechanisms for Web-based con~
trols.

CATID_VBFormat, CATID_VBGetControl The control uses one or both of these Visual Basic-specific interfaces.

CATID_VBDataBound The control supports the advanced data binding interfaces.

As part of the ActiveX SDK, Microsoft provides the component categories specification. It describes how to

implement component categories within your COM-based components and provides (guess what?) two

new interface definitions to help with the management of component categories: ICatRegister and

ICatInformation. An implementation of these interfaces is provided by a new DLL that is part of the

ActiveX SDK. It is called the Component Categories Manager.

The €®iflp®fii®tfii Citegeries Manager
To make it somewhat easy to add component category support to your ActiveX controls, Microsoft provides

the Component Categories Manager (CCM). This simple in—process server implements the ICatRegister

and ICatInformation interfaces. Component categories are defined Registry entries, and the CCM pro-

vides a simple way to maintaining these entries within the Registry. To create an instance of the CCM, you

use the COM CoCreateInstance method and pass the defined CCM CLSID:
CLSID_S tdComponentCategoriesMgr.

léetRegster
The ICatRegister interface provides methods for registering and unregistering specific component cate—

gories. Here’s its definition:

NFLE 1009 - Page 39

NFLE 1009 - Page 40

303

interface ICatRegister : IUnknown

(

l;

There are six registration methods, three of which are used to reverse the registration process. The unregister

methods do the opposite of the register methods, so we’ll cover only the three registration methods.

HRESULT RegisterCategories(

ULONG cCategories,

CATEGORYINFO rgCategoryInfo[]);

HRESULT UnRegisterCategories(

ULONG cCategories,

CATID rgcatid[]);

HRESULT RegisterClassImplCategories(

REFCLSID rclsid,

ULONG cCategories,

CA"ID rgcatidil);

HRESUL" UnRegisterClassImplCategories(

REFCLSID rclsid,

ULONG cCategories,

CA"ID rgcatid[]);

HRESULr1 RegisterClassReqCategories(

REFCLSID rclsid,

ULONG cCategories,

CA"ID rgcatidfl);

HRESUL" UnRegisterClassReqCategories(

>REFCLSID rclsid,

ULONG cCategories,

CATID rgcatid[l);

RegisterCategory takes the count and an array of CATEGORYINFO entries and ensures that they are

registered on the system as valid component categories. This means placing them below the

HKEY_CLASSES_ROOT\Component Categories entry. In most cases, the category will already be in the

Registry, but it doesn’t hurt to make sure. Here’s the definition of the CATEGORYINFO structure and some

simple code that shows how to use the RegisterCategory method:

typedef struct tagCATEGORYINFO

{

CATID catid;

LCID lcid;

OLECHAR szDescription[128];

} CATEGORYINFO;

NFLE 1009 - Page 40

NFLE 1009 - Page 41

ActiveX Controls é 33:3EWMWNWWW MNWWWWNWMWflWMVWNMWWWWWWWAWMWMWWWWWWMWWAW‘WW

#include “comcat.h”

HRESULT CreateComponentCategory(CATID catid, WCHAR* catDescription)

{

ICatRegister* pcr = NULL ;

HRESULT hr = S_OK ;

// Create an instance of the category manager.

hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,

NULL,

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**)&pcr);

if (FAILED(hr))

return hr;

CATEGORYINFO catinfo;

catinfo.catid = catid;

// English locale ID in hex

catinfo.lcid : 0x0409;

// Make sure the description isn’t too big.

int len = wcslen(catDescription);

if (len>127)

len = 127;

wcsncpy(catinfo.szDescription, catDescription, len);

catinfo.szDescription[len] = ‘\0';

hr = pcr—>RegisterCategories(l, &catinfo);

pcr—>Release();

return hr;

}

The preceding code creates an instance of the Component Category Manager using its defined CLSID,

CLSIDMStdComponentCategoriesMgr, while asking for the ICatRegister interface. If everything

works, a CATEGORYINFO structure is populated with the information provided by the caller, and the

RegisterCategory method is called. However, we haven’t yet added anything for a specific component.

To add the \Implemented Categories Registry entries for a control, we use the RegisterClassI

mplCategories method. It takes three parameters: the CLSID of the control, a count of the number of

CATIDs, and an array of CATIDs to place under the \Implemented Categories key. Here’s some code

to mark a control as implementing the Control category.

ICatRegister* pcr = NULL ;

HRESULT hr = S_OK ;

NFLE 1009 - Page 41

NFLE 1009 - Page 42

§32 «e» CHAPTER 7

// Create an instance of the category manager.

hr : CoCreateInstance(CLSIDWStdComponentCategoriesMgr,
NULL,

CLSCTX,INPROC_SERVER,

IID_ICatRegister,

(void**)&pcr);

if (SUCCEEDED(hr))

f

// Register that we support the “Control” category

CATID rgcatid[l];

rgcatid[0] = CATID_Control;

hr = pcr—>RegisterClassImplCategories(Clsid, l, rgCatid);

l

if (per 1: NULL)

pcr—>Release();

To add \Category Required entries for a control, you use the RegisterClassReqCategories

method. It takes the same parameters as RegisterClassImplCategories, and the example code is

nearly identical to the preceding code, so there’s no need to demonstrate it. You would register required cat—

egories only if your control required some specific container capability such as ISimpleFrameSite sup-
port.

The Container and Control Guidelines document requires that a control support both registering and

unregistering of categories. The other three methods take the same parameters but reverse the registration

process. If you provide component category registration for your controls you must also support unregister-

ing them. All the controls that we will develop will provide this support.

ICItfirmformatioa

The ICatInformation interface provides methods that enumerate over the available categories on the sys~

tem, get the description associated with a given CATID, retrieve a list of components that support a set of

categories, and determine whether a specific class supports or requires a specific category. Two methods

return enumerators for the implemented and required categories for a specific component. Here’s the defini-
tion of ICatInformation:

interface ICatInformation : IUnknown

{

HRESULT EnumCategories(

LCID lcid,

IEnumCATEGORYINFO** ppenumCategoryInfo);

HRESULT GetCategoryDesC(

NFLE 1009 - Page 42

NFLE 1009 - Page 43

momma. Adivex ContrOlS ‘9 333

REFCATID rcatid,

LCID lcid,

OLECHAR* ppszDesc);

HRESULT EnumClassesOfCategories<

ULONG cImplemented,

CATID rgcatidImpl[],

ULONG CRequired,

CATID rgcatidReq[]

IEnumCLSID** ppenumClsid);

HRESULT IsClassOfCategories(

REFCLSID rclsid,

ULONG cImplemented,

CATID rgcatidlmpl[]

ULONG cRequired,

CATID rgcatidReq[]);

HRESULT EnumImplCategoriesOfClass(

REFCLSID rclsid,

IEnumCATID** ppenumCatid);

HRESULT EnumReqCategoriesOfClass(

REFCLSID rclsid,

IEnumCATID** ppenumCatid);

);

The ICatInformation interface isn't really needed by a control, but containers use it extensively within

their Insert Control dialog boxes. The categories provide a useful mechanism to filter the components availv

able on the system. The container user is presented with an effective way of determining which component

provides the needed capabilities

gag ma???
In this chapter we’ve described the technology used to implement ActiveX controls. The ActiveX control

standard provides a solid foundation on which to build software components. ActiveX controls provide

Automation properties, methods, and events. They also allow implementation of the visual aspect of a com-

ponent. There are three basic types of ActiveX controls: graphical controls, controls subclassed from existing
windows controls, and nonvisual controls.

ActiveX controls use much of the existing technology provided by OLE, including the OLE document

standard and the interfaces used to implement in—place—capable embedded servers. ActiveX controls must

reside within a container application in order to be used. To support embedding and activation within a

container, controls must implement a number of COM-based interfaces

NFLE 1009 - Page 43

NFLE 1009 - Page 44

33a é CHAPTER 7

Although compound document containers typically support the embedding of ActiveX controls, their

purpose is different from that of typical ActiveX control containers. Compound document containers sup-

port the embedding of large applications that provide significant functionality and are used in the process of

document creation. Control containers support the embedding of smaller components that are tied together

to form applications. Typically, a control container exists within a visually oriented development environ—

ment or tool. A good example is Visual Basic. Another example of an ActiveX control container is

Microsoft’s Internet Explorer.

Initially, it was necessary for ActiveX controls to implement a large number of COM-based interfaces.

However, with the introduction of the OLE Controls 96 specification and the Control and Container Guidelines

2.0, ActiveX controls can now implement only those interfaces whose functionality they use. The OLE

Controls 96 specification also provides a number of enhancements that make controls more efficient.

ActiveX controls that provide a visual representation should implement a number of compound docu-

ment interfaces. ActiveX controls implement properties, methods, and events based on the Automation and

connectable objects standards. Events provide an additional capability within ActiveX controls and allow

the container to tie programmatic actions to a control's events.

Control containers can provide the control with information about its surrounding environment

through ambient properties. Ambient properties allow controls to adapt their appearance and some behav-

iors to those of the container. Control containers can also implement an extended control that aggregates

with a control to present additional properties to the control user. This approach provides a uniform, con-

tainer—specific property set for all controls within the container. The container also provides the control with

a way of serializing its properties. In this way, the control can be destroyed and re—created while maintain—

ing its characteristics.

Controls allow modification of their properties through custom and stock property pages. Property

pages are independent COM objects that are typically instantiated by the control’s container. Visual C++

provides a number of classes and tools that make the development of ActiveX controls easier.

ControlWizard initially builds a skeletal control project with a great deal of basic functionality.

An extended control is provided by the container. It aggregates with the control and exposes additional

properties and events implemented by the container. For COM to identify controls, specific Registry entries

are defined by the standard. Recently, because the simple Registry entries do not provide a granular enough

indication of a component’s requirements and capabilities, the concept of a component category was add to

the COM specification.

NFLE 1009 - Page 44

NFLE 1009 - Page 45

A Simple Control

To help you get to know Visual C++ and ControlWizard and learn how MFC implements ActiveX controls,

in this chapter we’ll develop a fairly simple control. The control provides functionality. similar to that of the
Windows label control. Our sample contains text that you can modify (during design time and run time),

and it has attributes such as font and color and events such as Click. As we develop this control, we will

delve into the details of ControlWizard and the source code it produces for us. We will then augment the

generated source to include stock and custom properties, stock and custom methods, stock and custom

events, and ambient properties. When we are finished with this chapter, you should have a solid grounding

in ActiveX controls. Each of the remaining chapters will focus on developing specific control types. Our pur-

pose here is to introduce many of the topics that we will investigate thoroughly in later chapters.

 . est aetmé

Our first control is a simple visual implementation of the ubiquitous Post-it note. We will implement as

many of the stock properties, methods, and events as we can, showing how each one is used within a con-

trol. We will also build a custom property page and use two of the stock property pages provided by MFC.

Using the POSTIT control, we will also investigate MFC's implementation of ActiveX controls so that we can

do more neat things in the chapters to come. To give you an idea of where we are going, Figure 8.1 shows

the POSTIT control and its property pages within a container.

335

NFLE 1009 - Page 45

NFLE 1009 - Page 46

336 a CHAPTER 8

Figure 8.1 The POSTlT control and its property pages.

ControlWizard is similar to AppWizard in that it generates the project files for a skeletal control based on

the options you choose. After you use ControlWizard to generate the initial files for a control, you will not

use it again on that specific project. Instead, you will use ClassWizard to add features to your control, just as

we have in the past with projects created by AppWizard. To summarize, in Visual C++ you use AppWizard

or ControlWizard to initially generate a project. After that, you use ClassWizard to manage the addition of

features to the project.

Start Visual C++ and create a new project. Select OLE ControlWizard from the New Project Workspace

dialog box. Select a root directory for the project and name the project POSTIT. Your dialog box should like

the one shown in Figure 8.2.

Click the Create button to create the project. In the next dialog box, Step 1 of 2, set the Runtime

license check box to Yes, please to indicate that we want to use this feature in the POSTlT project. Take

the defaults on the other two options. Click Next after ensuring that your dialog box looks similar to the

one in Figure 8.3.

The second ControlWizard dialog box allows you to choose various options for your control. For our

fist project, we’ll Choose Activates when visible, Available in ”Insert Obj ect” dialog, and Has an ”About”

box. Let’s take a look at the possible options in Figure 8.4.

NFLE 1009 - Page 46

NFLE 1009 - Page 47

A Simple Control % 337

Figure 8.2 New Proiect dialog box.

{L3239flr.2.~:txt-:M
Figure 8.3 OLE ControiWizard Step i of 2.

NFLE 1009 - Page 47

NFLE 1009 - Page 48

338 9 CHAPTER 8

Figure 8.4 OLE ControlWizard Step 2 of 2.

Activate Wheat Visible

For most controls, you should check the Activate when visible flag. This adds the OLEMISC_ACTIVATE~

WHENVISIBLE flag to the MiscStatus entry within the Registry. By setting this flag, you indicate to the

container that you want the control to be active, which means that you have a true hWnd whenever the con-

trol is Visible within the container. Containers need not support this flag, but if they don't, they won’t be

very good control containers (and so won’t last very long).

Emisilile It Rumime

Certain controls do not require a Visible representation at run time. These controls are typically called nonvi-

sual controls. MFC includes an example, THVIE, that needs to be visible only during the design process. If

you check this option, ControlWizard will not create a window for your control, and you will need to imple—

ment only the design-time drawing functions within the framework. We will develop a nonvisual control
later in the book.

 file it ”Insert @biett” Billeg
As we’ve discussed, a control is identified in the Registry by the existence of a Control subkey below its

CLSID entry. If you check this option, ControlWizard will also register the control with the Insertable

subkey. This option will allow the control to be accessed from applications as if it were a compound docu—

ment server. If you want to try your control in a noncontrol container, go ahead and check this option. It’s

easy to change later.

NFLE 1009 - Page 48

NFLE 1009 - Page 49

A Simple Control ¢~ 339~MW A

this Em ”About” Box

Choosing this option will provide a custom method, AboutBox, a dialog resource, and the code to invoke

the About box dialog for your control. Most containers provide a way for this method to be invoked during

design mode so that the control user can obtain version information.

Acts as Simple Frame {antral

If you select this option, ControlWizard will set the OLEMISC_SIMPLEFRAME flag. This option is typically
used for controls that group other controls and treat them all as one tab stop. The simple frame control acts

as the parent window of a group of contained, or child, controls. The Windows group box is an example of
this kind of control.

Width Window {tugs ii flirty, Should This Control gebtllss?
One of the quickest and most effective ways to develop an ActiveX control is to subclass the functionality of

an existing Windows control. Much of the functionality will already be provided by the Windows control. It

is then relatively easy to augment this basic behavior. This option allows you to select the control that you

will subclass. We will cover this option in another chapter.

Advanced. . .

The Advanced button opens a dialog box that contains a number of new options. The optimization options

presented in this dialog box are part of the OLE Controls 96 specification that we discussed in Chapter 7. It

will take some time for most control containers to support these options, but we should try to use them if

possible. For our first control, we won’t use any of these special options (Figure 8.5).

Figure 8.5 Advanced ActiveX features.

NFLE 1009 - Page 49

NFLE 1009 - Page 50

mo a CHAPTER 8 .

WINDOWLESS ACTIVATION

If your control does not require a window to provide its services, you should check this option. A control

typically needs a window to call many of the Windows API functions. However, the container can provide a

window handle to facilitate making function calls within your control. Using a window will increase the

memory requirements of your control and will also require additional load time when instantiated by a con—

tainer. If you choose windowless activation, the Unclipped device context and Flicker-free activation

options will be disabled. They relate only to controls with windows.

UNCLIPPED DEVICE CONTEXT

The container passes controls a device context on which to draw. The container may set up a clipping region

to ensure that the control does not draw outside its boundaries. By checking this option, you inform the con—

tainer that your control is well behaved and will not draw outside its client rectangle. The container can then

act more efficiently by not setting up a clipping context to pass to the control.

FUCKER-FREE ACTIVATION

If your control represents itself the same way when in the active and inactive states, this option will help
eliminate flicker when the control is switched between states.

MOUSE POINTER NOTIEICATIONS WHEN INACTIVE

This option provides an implementation of the IPointerInactive interface. Your control will receive

mouse move messages when in the inactive state.

OPTIMIZED DRAWING CODE

If you click this option, the control will indicate that it can take advantage of the new OLE Controls 96 opti~

mized drawing options. However, the container must support the new optimizations.

LOADS PROPERTIES ASYNCHRONOUSLY

As an enhancement to support low-bandwidth environments such as the Internet, ActiveX controls can have

some of their persistent properties loaded asynchronously. For example, a control may have a property that

is a GIF file, which may take some time to load over the Internet. This option allows the control to load the

image in the background. We’ll use this option in Chapter 12.

Edit Names...

The Edit Names dialog box, shown in Figure 8.6, allows you to change the names of your C++ classes, their

filenames, and so on. The most important items here are the Type ID, which is the Prong for our control,

and the Type Name, which the container uses when referring to the control. ControlWizard produces two

main classes for your control’s implementation: the control class and the property page class.

NFLE 1009 - Page 50

NFLE 1009 - Page 51

AWSimplerControl 6 3&- 'E

Figure 8.6 Edit Names dialog box.

Click OK in the Edit Names dialog box and then Finish in the OLE ControlWizard Step 2 of 2 dialog box.

The final dialog box is shown in Figure 8.7. Click OK, and ControlWizard will generate the control's project

files. Then go ahead and compile and link the project.

Figure 8.7 New Project Information dialog box.

NFLE 1009 - Page 51

NFLE 1009 - Page 52

@42 4%» CHAPTER 8
WWWWWMW»,Wwwmfi"WWW/WMWWWMNWMWMWW,WW

 ieeare engage ' géées

Just like AppWizard, ControlWizard generates all the files needed for a typical ActiveX control project.

Table 8.1 describes the files generated by ControlWizard.

Table 8.l ControlWizard-Generated Files

File Purpose

ReadMe.txt A file containing information about the proiect. It details the files created and their purpose.

Postit.cpp, Postit.h CWinApp-derived class that provides the default MFC DLL implementation.

PoslitCtl.cpp, PostitCtHi Contains the declaration and implementation of the control obiect. This is a class derived from
COleControl.

Postithg.cpp, Postithg.h Contains the declaration and implementation of the control’s property page component. As we

described in Chapter 7, a property page is itself a COM object.

Postit.odl An ODL file that contains the type information for our control.

PostitCtl.bmp Bitmap for your control that the container can use on its toolbar, and elsewhere.

Postit.ico This is the icon used in the About box for our control.

Postit.mak The project’s make file.

Postit.def The Windows definition file for our control. This file exports the four functions (such as

DllRegisterServer) that we need as a COM in-process server.

Postit.rc, Resource.h Resource file containing our About box dialog, a default property page dialog definition, and

the string table for our control.

PosfitJic A default license file for our new control.

StdAfx.cpp, StdAfx.h Standard MFC include and implementation files. These files provide support for the MFC classes.

Before we start adding functionality to the POSTIT control, let’s take a detailed look at the source code that

ControlWizard generated for us. As we do this, we’ll also review the new MFC control classes.

 i eieeareé e rage

COleControlModule is derived from CWinApp. CWinApp provides the framework for a basic Windows appli-

cation for both DLL and EXE implementations, as we’ve seen in previous chapters. The POSTIT.H file inherits

all the functionality of CWinApp and overrides only the InitInstance and ExitInstance methods. The

only interesting thing in this file is the declarations of the version number variables that are available in all your

control modules. These variables are useful for maintaining different versions of your controls.

// postit.h -. main header file for POSTIT.DLL

#if tdefined(_AFXCTL_H__)

#error include ‘afxctl.h’ before including this file

NFLE 1009 - Page 52

NFLE 1009 - Page 53

A Simple yControl/Wjé‘jwf343M ,WVWWWNMWMRWWMywmgwwwmww.wmmwwax»,mmmmwm WMWWMlmW.cM.w/wwwm,wmww.cwsaWWNWW~ NW.MW..,_..MM a,

#endif

éinClUde “resource.h” // main symbols

///

// cpostitApp : See postit.cpp for implementation,

class CPostitApp : public COleControlModule

{

public:
BOOL InitInstance();

int EXitInstance();

);

extern const GUID CDECL _tlid;

extern const WORD wwVerMajor;

extern const WORD _wVerMinor;

The POSTIT.CPP file, which implements the CPostitApp class, is a little more interesting. This file con-

tains the exported DLL functions that support programmatic registration of the control within the Registry.

As we learned in Chapter 5, COM recommends that the DllRegisterServer function be implemented

within in-process server applications to provide easy registration of components. The ActiveX control stan—

dard goes one step further and recommends the use of another function, DllUnregisterServer, that

makes it easy to remove all your component-specific information from the Registry. This is a great idea. If

applications don’t provide an easy removal mechanism, the Registry can easily become cluttered with appli—

cations and components that you’ve previously removed.

I imagine that luture versions ol Visual C++ will also handle the steps necessary to register a con~
trol's component categories. The 4.x versions, however, do not. Later in this chapter we will add
component category support to our control. The Dl 1Register* lunctions provide a perlect place to
perform this task.

Two functions are missing from POSTIT.CPP that are important to our COM-based implementation. As

you may recall, COM—based components implemented in DLLs must export two functions:

DllGetClassObject and DllCanUnloadNow. in Chapter 5, we implemented them in our main

CWinApp—derived class file, SERVERCPP. Where are they? MFC has once again encapsulated some of the

complexity for us. These required entry points are provided by an MFC DLL. The code is in OLEEXP.CPP:

//////////////////////////////

// DllGetClassObject
extern “C"

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)

{

AFXWMANAGE_STATE(AfXGetStaticModuleState(ll;

return AfXDllGetClassObject(rclsid, riid, ppv);

NFLE 1009 - Page 53

NFLE 1009 - Page 54

34¢ a CHAPTER 8

)

/////////////////////////////

// DllCanUnloadNow

extern “C”

STDAPI DllCanUnloadNow(void)

(

AFXMMANAGE_STATE(AfXGetStatiCModuleState());

return AfxDllCanUnloadNow();

)

As we described in Chapter 5, the MFC-provided AfxDllGetClassObject looks through a list of

COleObjectFactory objects within the DLL. Once the object is found, it constructs an instance of the

object and returns the IClassFactory interface. So don’t worry, they’re still there. They’ve just been hid-

den for our convenience. We'll cover the AFX_MANAGE_STATE call shortly.

// postit.cpp : Implementation of CPostitApp and DLL registration.

#include “stdafx.h"

#include “postit.h”

#ifdef ”DEBUG

#undef THIS_FILE

static char BASED_CODE THIS__FILE[] = __FILE__;
#endif

CPostitApp NEAR theApp;

const GUID CDECL BASED“CODE Htlid =

{ Oxbbf8b099, 0Xbe9e, Oxllce, (Oxa4, 0X3c, Oxac, Oxe7, Oxlf, 0X16, Oxdb, 0x7f } };

const WORD _wVerMajor 1;

const WORD ,wVerMinor = 0;

//

// CPostitApp: InitInstance ~ DLL initialization

BOOL CPostitApp::InitInstance()

{

BOOL bInit = COleControlModule::InitInstance();

if (bInit)

{

// TODO: Add your own module initialization code here.

NFLE 1009 - Page 54

NFLE 1009 - Page 55

ASImP'e Control 3333

return bInit;

)

//

// CPostitApp :ExitInstance — DLL termination

int CPostitApp :ExitInstance()

{

// TODO: Add your own module termination code here.

return COleControlModule::ExitInstanCe();

}

///

// DllRegisterServer — Adds entries to the system registry

STDAPI DllRegisterServer(void)

{

AFX_MANAGE%STATE(_afooduleAddrThis);

if (EAfxOleRegisterTypeLib(AfoetInstanceHandle()I ~tlid))

return ResultFromScode(SELFREG_E_TYPELIB);

if (lCOleObjectFactoryEx::UpdateRegistryAll(TRUE))

return ResultFromSCode(SELFREG_E_CLASS);

return NOERROR;

)

///

// DllUnregisterServer — Removes entries from the system registry

STDAPI DllUnregisterServer(void)

{

AFX‘MANAGE_STATE(_afooduleAddrThis);

if (lAfxOleUnregisterTypeLib(_tlid))

return ResultFromScode(SELFREGwEwTYPELIB);

if (lCOleObjectFactoryEx::UpdateRegistryAll(FALSE))

return ResultFromScode(SELFREG_E_CLASS);

return NOERROR;

}

Theeareafayiwnmthatwermedtocoverh1POSTFLCPP.TheDllRegisterServerand

DllUnregisterServerfuncfionsfinficafltheAFXwMANAG~_STAT~Inacnxsoletslookatfi.

NFLE 1009 - Page 55

NFLE 1009 - Page 56

343-6 e CHAPTER 8

AFKJflAtfiAGEjm‘iE

Even though ActiveX controls are small components, they depend heavily on many aspects of the MFC

libraries. To maintain a small size, controls use the shared library (DLL) implementation of MFC. Because

the MFC code can be shared among all the control, this saves a great deal of code space when an application

uses many controls in its implementation.

MFC, when implemented in a DLL, needs to keep track of various internal variables and states that

pertain to its internal implementation This state information must be maintained for every module (such

as a DLL) that accesses the MFC DLLs. When the MFC DLLs (such as MFC40.DLL) are being used by a

number of user DLLs, the MFC internal state data must reflect the process that is currently using MFC.
That’s what AFX_MANAGE_STATE is for. It ensures that the internal state of MFC is set to reflect that of the

calling module. Your control functions must follow three rules to make sure that the MFC state informa~
tion is correct:

- If the function is exported or exposed externally, you must call the AFX_MANAGE_STATE macro

before anything else in the function. This is exemplified by the DllRegisterServer call.

0 If your control contains another window's control as a child window, your control should call

AFX_MANAGE_STATE when processing any messages for the child window.

9 If the function is a member of a COM interface, it should use the METHOD_MANAGE_STATE macro.

egeetro

The COleControl class provides the bulk of the MFC implementation. COleControl is derived from

MFC’s CWnd class, which encapsulates the functionality of a window. As you can imagine, there is tremen-

dous functionality in the CWnd class, and we will focus on methods of this class in the remaining chapters as

we develop various types of ActiveX controls. Our purpose now is to understand a little about
COleControl.

COleControl contains more than 100 methods, and this number doesn’t include the hundreds that are

inherited from the parent CWnd class. Table 8.2 describes some of the more important methods of

COleControl. The methods deal with control initialization, persistence, ambient properties, events, stock

properties, data binding, and drawing They are documented completely in MFC’s on-line help.

Table 8.2 important COleControl Members

Method Purpose

SetInitialsize Sets the initial size of the control, specified in device units (pixels). This method is usually

called in your control's constructor.

SetModifiedFlag Indicates that a persistent property within the control has been changed.

ExchangeExtent Serializes the size of the control.

NFLE 1009 - Page 56

NFLE 1009 - Page 57

. .Afimple-99“*r9!..i.;3@7NWWmWswmwmmww,WWWWcm.cMme“WWW..WW,W/MW.mwmwmmw.»momMMHWMMU“WWWWWWw,Am... , WWW c

Table 8.2 important COleControl Members (continued)

Method Purpose

ExchangeVers ion Serializes the control’s current version. The _wVerMinor and __wVerMaj or variables

are provided by Control Wizard, and can be used to identity the current version ot the
control.

ExchangeStockProperties Serializes all of the control's detined stock properties.

DoPropertyExchange Called to save or restore the persistent properties ot the control.

OnReset Resets the control’s properties to their initial state,

InvalidateControl Forces a redraw ot the control.

Trans lateColor Converts an OLEWCOLOR value into a COLORREF value.

ThrowError Throws an error from within a control. Used to communicate a Failure during the execu-

tion ot code outside a method or property handler tunction.

AmbientBackColor, Returns the current value ot the named ambient property.
AmbientForeColor,

AmbientUserMode,

AmbientUIDead, etc.

Fireclick, FireDblClick, Fires the specitic stock event.
FireMouseDown, etc.

FireEvent: [Name] Fires a custom event.

GetBackColor, SetBackColor Gets or sets the stock BackColor property.

SetFont Sets the stock tont.

SelectStockFont Selects the stock tont into the current device context.

GetHwnd Returns the HWND ot the control’s window or NULL.

GetTeXt, InternalGetText, Gets or sets the Text or Caption stoci< property. InternalGetText should be

SetText used internally by the control's methods.

DoSuperclassPaint Called in OnDraw to paint a control that has subclassed a Windows control.

OnDraw Called by the Framework to render the control on the passed DC.

OnDrawMetafile Called by the Framework when it wants a metatile representation ot the control. This will

typically occur when printing or in design or nonuser mode and the control doesn’t have
a valid HWND.

OnAmbientPropertyChange Called when a container’s ambient property or properties have changed.

OnTextChanged Called when the stock Text or Caption property has changed.

OnSetExtent Called when the container has changed the control’s extents.

NFLE 1009 - Page 57

NFLE 1009 - Page 58

,;,3;:§§lfi$HAPTER 8

POSTITCTLH and POSTITCTL.CPP implement our control’s COleControl—derived class:

CPostitCtrl. Let’s take a look at what we initially get from ControlWizard. (I haven’t included every-

thing—just the items that are interesting.)

// PostitCtl.h : Declaration of the CPostitCtrl ActiveX control class.

///

// CPostitCtrl : See PostitCtl.cpp for implementation.

class CPostitCtrl : public COleControl

{

DECLAREflDYNCREATE(CPostitCtrl)

// Overrides

// ClassWizard generated virtual function overrides

//((AFX_VIRTUAL(CPostitCtrl)

public:

virtual void OnDraw(CDC* pdc, const CRect& chounds, const CRect& rcInvalid);

virtual void DoPropExchange(CPropExchange* pPX);

virtual void OnResetState();

virtual DWORD GetControlFlags();

//})AFX_VIRTUAL

// Implementation

protected:

~CPostitCtrl();

BEGIN_OLEFACTORY(CPostitCtrl) // Class factory and guid

virtual BOOL VerifyUserLicense();

virtual BOOL GetLicenseKey(DWORD, BSTR FAR*);

END_OLEFACTORY(CPostitCtrl)

DECLARE_OLETYPELIB(CPostitCtrl) // GetTypeInfo

DECLARE_PROPPAGEIDS(CPostitCtrl) // Property page IDs

DECLARE_OLECTLTYPE(CPostitCtrl)) // Type name and misc status

// Message maps, etc.

l;

I’ve left out all the message maps, dispatch maps, event maps, and so on. We will cover them a little later.
What’s left are the four default overrides: OnDraw, DoPropExchange, OnReset, and GetControlFlags.

These are the only methods that are required to be implemented by the new control, but to make a control

do much of anything we'll have to override a few more.

NFLE 1009 - Page 58

NFLE 1009 - Page 59

A Simple Control @1349

The BEGIN_OLEFACTORY and ENDWOLEFACTORY macro pair provides our control with the licens-

ing capability that we chose in ControlWizard. This macro pair provides the declaration of the addi-

tional methods in the IClassFactory2 interface that we discussed in Chapter 7. Because we chose the

licensing option, we are required to implement the VerifyLicenseKey and GetLicenseKey meth-
ods in our .CPP file.

The DECLARE_OLETYPELIB macro provides a static method that will return a pointer to the control's

type library information. The DECLAREwPROPPAGEIDS macro sets up a static function that will return an

array of CLSle for the property pages defined for the control. These CLSle will be defined later in POS-

TITCTL.CPP. The DECLARE_OLECTLTYPE macro provides two static functions for our class that let us

access the ID of the type library within the resource file and return the OLEMISC status bits used by the
control.

Now let’s go through what ControlWizard generated for us in POSTITCTL.CPP. We will skip the mes-

sage, dispatch, and event maps, but we will get to them shortly.

// PostitCtl.Cpp : Implementation of the CPostitCtrl ActiveX control class.

///

// Initialize class factory and guid

IMPLEMENT_OLECREATE_EX(CPostitCtrl, “POSTIT.POStitCtrl.lH

Oxbbf8b096, Oxbe9e, Oxllce, Oxa4, 0x3c, Oxac, Oxe7, Oxlf, 0x16, Oxdb, 0x7f)

This macro implements our class factory functions and should look similar to what we covered in earlier

chapters. The following code declares the Prong for the control and initializes the class factory for our con—

trol. The implementation for ActiveX controls tacks on some additional functionality. The _EX adds an over—
ride of a virtual method to return the CLSID of the control,

///

// Type library ID and version

IMPLEMENT_OLETYPELIE(CPostitCtrl, wtlid, _wVerMajor, _wVerMinor)

///

// Interface IDs

const IID BASED_CODE IIDMDPostit =

{ Oxbbf8b097, Oxbe9e, Oxllce, { Oxa4, 0x3c, Oxac, Oxe7, Oxlf, 0X16, Oxdb, Ox7f l);

const IID BASED_CODE IIDyDPOStitEVEntS =

l Oxbbf8b098, Oxbe9e, Oxllcel { Oxa4, 0x3c, Oxac, Oxe7, Oxlf, 0x16, Oxdb, Ox7f) l;

The IMPLEMENT_OLETYPELIB macro defines the static class methods that load the type library from the

control’s resources and return it to the caller. The interface ID definitions are for the control’s (incoming)

method and property IDispatch implementation and for the (outgoing) event IDispatch interface. These
IDs are also declared in the control’s ODL file.

NFLE 1009 - Page 59

NFLE 1009 - Page 60

359 «5» CHAPTER 8
WNWWMWWNWWWMWMWWW a»MWWWWW/WWWMWWW.W”WWMMM.MWMWWWWWNWWWWWMWM.

// Primary dispatch interface for CPostitCtrl

[uuid(BBF8B097~BE9E—llCE—A43C-ACE71F16DB7F),

helpstring(“Dispatch interface for Postit Control"), hidden]

dispinterface _DPostit

// Event dispatch interface for CPostitCtrl

[uuid(BBF8B098-BE9E~llCE—A43C-ACE7lFlSDB7F),

helpstring(“Event interface for Postit Control”)]

dispinterface ~DPostitEvents

Tliese IIDs provide a way for the container to specify a specific interface within the control after it gets the

control’s type information through the IProvideClassInfo interface.

///

// Control type information

static const DWORD BASED,CODE _deostitOleMisc =

OLEMISC~ACTIVATEWHENVISIBLE [

OLEMISCMSETCLIENTSITEFIRST I

OLEMISC_INSIDEOUT |

OLEMISC_CANTLINKINSIDE I
OLEMISC_RECOMPOSEONRESIZE;

IMPLEMENT_OLECTLTYPE(CPOStitCtrl, IDS_POSTIT, _deostitOleMisc)

#define IMPLEMENT_OLECTLTYPE(classgname, idsUserTypeName, dwOleMisc) \

UINT classwname::GetUserTypeNameID() { return idsUserTypeName; } \

DWORD class_name::GetMiscStatus() { return dwOleMisc;)

When we used ControlWizard to create our control, we answered various questions concerning the behav—
ior of the control. ControlWizard used our answers to initialize the deostitOleMisc variable. This infor—

mation is provided to the container through the control’s IOleObj ect: :GetMiscStatus method. The

framework calls the virtual class methods implemented by the IMPT. *M*NT_OT.F‘CTT-TYPF‘ macro.

€eetre§ gage séeg
ActiveX controls are small software components that must be distributed along with the applications devel~

oped using them. Commercial developers need ways to ensure that these components are licensed so that

users won’t be tempted to copy the components from machine to machine without paying for their use.

Licensing is similar to copy protection but works a little differently. The distribution of the component with

an application that uses it should be easy: just distribute the appropriate .OCX files that the application

depends on. This is fine, but the developer or marketer of the ActiveX control will normally allow distribu—

tion of the control only for use as a run-time component. Instead of providing two different OCX files, the

NFLE 1009 - Page 60

NFLE 1009 - Page 61

A Simple Control <9‘35 'fi”WimeWWWMWWW WWM,W,WM WWWWMWMWWM.l.A.WW.muummwmwwwmmfifimwmrmwfwWmmw MM ammwvwwwwwx-.

same OCX handles both environments. The design—time capabilities of a component are reserved for those

who purchase it for use in the development of specific applications; users shouldn’t be allowed to distribute

a design—time—capable OCX.

The ActiveX control standard provides a way to add licensing capability to a control. This is an optional

feature that commercial developers will use, but it can also be used for internally developed components.

An additional interface was added to the OLE specification to provide this control licensing facility.

The IClassFactory2 interface was added to provide licensing support for ActiveX controls. Three

additional methods were added: RequestLicKey, GetLicInfo, and CreateInstanceLic. During the

development cycle using an ActiveX container—based tool, the Ge tLicInfo method ensures that the con—

trol can be used during the design process. When the tool is building a distributable version of the appli-

cation that uses the contr01, a call is made to RequestLicKey, which returns an implementation—defined

key that is stored within the application. Later, after the application and the run-time version of the con—
trol are installed on a user’s machine, the application will pass the stored key to CreateInstanceLic
when an instance of the control is created.

The new methods provided in IClassFactoryZ only specify a licensing APl; they do not specify how

the licensing should be implemented. The keys that are passed back and forth between the container and the

control can be as simple as a text string or as complex as using a secure encryption method that requires a

licensing server. The MFC implementation provides a simple default method that depends on the existence

of a .LIC file and a text string contained within it. The MFC implementation can be extended, as always, if

you require a more stringent licensing model. Control licensing support through the IClassFactoryZ

interface is provided by MFC with an enhancement of the COleObj ectFactory class.

(GlefibiectfucioryEx
The BEGINfiOLEFACTORY macro added a nested class to CPostitCtrl called CPostitCtrlFactory.

ControlWizard provides the implementation of the UpdateRegistry method that either registers or

unregisters the control’s entries within the Registry with the help of the AfXOle* Registry functions. Each of

the parameters supplies the information to store within the Registry. I’ve commented each parameter with

its matching Registry entry.

///

// CPostitCtrl::CPostitCtrlFactory::UpdateRegistry -

// Adds or removes system registry entries for CPostitCtrl

BOOL CPostitCtrl::CPostitCtrlFactory::UpdateRegistry(BOOL bRegister)

{

// TODO: Verify that your control follows apartment—model threading rules.

// Refer to MFC TechNote 64 for more information.

// If your control does not conform to the apartment-model rules, then

// you must modify the code below, changing the 6th parameter from

// afoegInsertable I afoegApartmentThreading to afoegInsertable.

if (bRegister)

NFLE 1009 - Page 61

NFLE 1009 - Page 62

gag 43> CHAPTER 8

return AfxOleRegisterControlClass(
AfoetInstanceHandle(),

m_clsid, // CLSID

mmlpszProgID, // ProgID

IDSWPOSTIT, // Textual control name

IDB_POSTIT, // ToolboxBitmap32

// Threading model used by the control

afoegInsertable | anRegApartmentThreading,

,deostitOleMisc, // MiscStatus

_tlid, // TypeLib

_wVerMajor,

_wVerMinor); // Combined to create version
else

return AfxOleUnregisterClass(m_clsid, mwlpszProgID);

}

The following two methods provide the default MFC implementation of the control licensing feature. This is

a fairly simple implementation, but it can be easily enhanced by replacing the Afx functions with ones of

' your own‘ The default implementation creates a .LIC file with the name of your control project (such as

POSTITLIC) that contains a copyright in the initial line and then a paragraph about ”severe criminal pun—

ishment" and so on. The two methods that ControlWizard implemented are methods of the
IClassFactory2 interface.

///

// Licensing strings

static const TCHAR BASEDgCODE _szLicFileName[] = _T(“POSTIT.LIC”);

static const TCHAR BASED_CODE _szLicString[] = _T(“Copyright (c) 1996 “);

///

// CPostitCtrl::CPostitCtrlFactory::VerifyUserLicense —

// Checks for existence of a user license

BOOL CPostitCtrl :CPostitCtrlFactory::VerifyUserLicense()

{

return AfoerifyLicFile(AfoetInstanceHandle(), ,szLicFileName,

_szLicString);

}

///

// CPostitCtrl::CPostitCtrlFactory::GetLicenseKey —

// Returns a run—time licensing key

BOOL CPostitCtrl::CPostitCtrlFactory::GetLicenseKey(DWORD dwReserved,

BSTR FAR* pbstrKey)

NFLE 1009 - Page 62

NFLE 1009 - Page 63

‘ A Simple C0ntr°l...:§§53« WWNWWWWW.mmWWWNMWMMMMWMWWNWHM."WWW”..MWWMAWW s.VM/NWWWNHWV,M,WMM momma”. .uwmmmmwwmw WNW-mm .

if (pbstrKey 2: NULL)
return FALSE;

*pbstrKey = SysAllocString(_szLicString);

return (*pbstrKey != NULL);

}

When the control is inserted into a container during design mode, the container calls VerifyUserLicense.

As you can see, VerifyUserLicense calls the helper function, AfoerifyLicFile, which checks for the
instance of the .LIC file in the same directory as the control’s DLL. Once the file is found, the text of the first

line in the file is compared with the text in _szLicString. If any of these functions fail, the function

returns FALSE, indicating that the control is not licensed. A nonzero return indicates that the control is
licensed.

Later, the container (or tool) user creates a distributable version of an application that contains the con-

trol. The container calls GetLicenseKey to obtain a key from the control; the key is stored along with the

application distribution files (including the .OCX file). After installation, when the application is executed
(in user mode), the container calls VerifyLicens eKey with its saved internal key. The control verifies that

this key is valid and returns TRUE if the key is valid and FALSE otherwise.

ControlWizard did not provide us with a version of VerifyLicenseKey. Its base implementation

calls GetLicenseKey and compares the return with that provided by the container. To provide a more

secure approach, you would need to override and implement your own VerifyLicenseKey method as

well as modify GetLicenseKey and VerifyUserLicense. When overriding these functions, you must

use multiple scope operators because your COleObjectFactoryEx—derived class is nested within the

COleControLderived class. Useful methods provided by C01 eobj eCtFaCtoryEX are listed in Table 8.3.

Table 8.3 Useful COleObj ectFactoryEx Methods

Method Purpose

UpdateRegistry(BOOL) If the parameter is TRUE, the Registry is updated with the control’s information. If

FALSE, all control-specific information is removed from the Registry.

GetLicenseKey(DWORD, BSTR *) The container calls this function to retrieve a unique key to store with the distributed

application. When the application is run, the container calls VerifyLicenseKey
to ensure that the control is licensed.

VerifyLicenseKey(BSTR) Called by the container cluring run-time mode to ensure that the control is licensed.

VerifyUserLicense (void) Called by the container to verify the use of the control in a design-time mocle.

That sums up the basic functionality provided by the ControlWizard-generated files, except for the property

page files, which we’ll cover shortly. Now let's add some real functionality to the POSTIT control.

Starting with Visual C++ version 4.0, the IClassFactory2 interface functionality was moved into
the COleObj ectFactory class. However, ControlWizard still generates code that expects the exis-
tence of the COleObj ectFactoryEx class. MFC solves this dilemma by doing this:
#define COleObjectFactoryEx COleObjectFactory

NFLE 1009 - Page 63

NFLE 1009 - Page 64

§§iji£HAPTER .5
m WWV,.. NWWNW anew,a.ix.mm(WNW.WWWWWMWMNMM”Wt“.,WAWAMW/MNMM“MirwwmcwmwmMWWMMWMWMWMKMNWW.WWWVW

$eaaegaag adage ieaemé
The container provides a control site in which the control renders itself. There are various conditions under

which the container will request that the control draw itself: when the control is created, when the control is

hidden by another window and then uncovered, when the container switches from design mode to user

mode, and so on. The default MFC implementation calls COleControl: :OnDraw for all these actions. It is

our job, as implementors of the control, to render the control whenever OnDraw is called. There are other

COleControl methods that pertain to drawing, and we will cover them in later chapters.

Following is the default implementation from POSTITCTL.CPP. ControlWizard provides a default ren-

dering that fills the background of the control and then draws an ellipse.

///

// CPostitCtrl::OnDraw — Drawing function

void CPostitCtr1::OnDraw(CDC* pdc, const CRect& chounds, const CRect& rcInvalid)

{

// TODO: Replace the following code with your own drawing code.

pdc~>FillRect(chounds, CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));

pdc—>Ellipse(chounds);

}

The OnDraw method has three parameters. The first parameter is a pointer to an MFC CDC object, which

encapsulates a Windows device context. We’ll cover the details of device contexts and the methods provided

by the CDC class in Chapter 9. For now, a device context is an area of the screen that has default brushes, pens,

colors, and fonts that are used when drawing the control.

The second parameter, chounds, is an instance of MFC’s CRect class that contains the bounding rec~

tangle of our control within the container. The third parameter provides a hint as to what part of chounds

has changed. This information can be used to update only a part of your control if it requires a lot of inten-

sive drawing. We’ll use the first two parameters in this chapter.

When our control is constructed, MFC sets its initial size to 50 by 100 device units (or pixels). To over—

ride this default, we call COleControl: :SetInitialSize in the control's constructor. A square of 200

pixels is fine for our POSTIT control, so add the following code to the constructor:

///

// CPostitCtrl :CPostitCtrl — Constructor

CPostitCtrl::CPostitCtrl()

(

InitializeIIDs(&IID_DPostit, &IID_DPostitEvents);

// TODO: Initialize your control’s instance data here.

SetInitialSize(200, 200);

NFLE 1009 - Page 64

NFLE 1009 - Page 65

A Simple Control ¢ 355
WWWWWNMWWMWVWWWNWAWWMWWMWWWWWKW WNW—”WM.” fimwwmmlmW

When the control is initially created, the container will provide a control site of 200 by 200 units. Add the fol-

lowing code to draw the control into the device context provided:

///

// CPostitCtrl: OnDraw — Drawing function

void CPostitCtrl::OnDraw(CDC* pdc, const CRect& chounds, const CRect& rcInvalid)

{

// Create a yellow brush for the background of the control

;n_gBrush karush; _ ,
i-karush.CreateSolidBrush(RGB(Oxff, Oxff, 0x00 n,-

‘ // Fill the background with BaCkColor

iiipdc->FillRect(chounds, &karush_);

if // Draw the text

pdc—>SetBkMode(TmGSPAREm),

!/ Set the text color’to black
' pdc~>SetTextColor(RGB(0x00, 0x00, 0x00 H;

// Draw some text

H. pdC->DrawText(“This is a simple POSTIT control”.

—1, CRect(chounds),

DT_LEFT l DT_WORDBREAK) ,-

)

To draw our simple control, we create a yellow brush. We then fill the control’s bounding rectangle with this

background brush. To provide a little functionality, we next draw some text in the control using DrawText.

Prior to that, we set the drawing mode to TRANSPARENT and set the text color to black. DrawText does

much of the drawing work for us; it will automatically word—wrap and left-justify our text within the bound-

ing rectangle. Compile and link the project, and we’ll do a little testing.

 egésterieg t e ieetreé
Before we can do anything with the control, we need to register it in the Windows Registry just as we regis-

ter all other COM-based components. The default behavior of Visual C++ is to register the control after

every build. A Custom Build option in Project/Settings calls REGSVR32 with the path and filename of your

control. REGSVR32 calls DllRegisterServer, which updates the Registry with the control information. If

you get tired of this action being performed by Visual C++ after every build, remove the lines in the Custom

Build section in Project/Settings. Later, if you need to register the control, you can use the Tools/Register

Control option.

NFLE 1009 - Page 65

NFLE 1009 - Page 66

§§j6;_-f?i§“AFTER 8 .

Teeeeag e e eeteei
MFC provides a rudimentary testing facility for the controls that you create. 1 say ”rudimentary” because it

doesn’t provide all the features of a commercial control container such as Visual Basic 4.0. The primary defi-

ciency of MFC is that it lacks an easy-to-use scripting language to manipulate a control’s methods and

events. Its method of allowing the user to modify the container’s ambient properties and the control’s stock

properties is also lacking, but the Test Container allows us to test basic control functionality. Later in this

chapter we will look at the features provided by commercial control containers.

The Test Container can be started from the Visual C++ environment by selecting Test Container from

the Tools menu. Start it and insert the POSTIT control using the Edit/Insert OLE Control menu item. You

should see something like the screen in Figure 8.8.

Figure 8.8 Control inserted into the Test Container,

If you get an error such as ”Unable to lnsert Control” when attempting to insert the control into the
Test Container, it probably indicates that the .LIC file isn’t in the same directory as the .OCX iile.

g Visual C++ initially places the .LiC File into the main proiect path but creates the debug version of
\i' EV the .OCX File in the \PROJNAME\DEBUG directory. To quickly get around this problem, copy the

PROJNAME.LIC file, which in our case is POSTIT.LIC, to the DEBUG directory.

Go ahead and play around with the control. When you move and resize the control, the container calls the

OnDraw method and the control is completely redrawn. Notice that as you resize the control, the text within

it word-wraps. You can do these things with the control only when it is outlined with a hatched border. This

indicates that the control is Ul—active, which is similar to a typical window getting focus. Only one control

within a container can be Ul—active at a given time. Try this by inserting a few more copies of the POSTIT

NFLE 1009 - Page 66

NFLE 1009 - Page 67

A Simple Control a 357mew

control. (Click the toolbar button marked OCX. That’s the default toolbar bitmap provided by MFC for our

control, but we will change it to something more representative in a moment.)

After inserting a few more copies of the control, you can single—click on a control to make it UI—active.

When you do so, any other control that is UI—active will go to the active state and lose its hatched border.

This Single~clicl< activation indicates that the control is an OLE inside—out object. This differs from older visual

servers, where you were required to double-click.

 i? itmap
The default toolbar bitmap contains the text “OCX.” Let’s change this to something that better represents our

control’s purpose. Within Visual C++, change to the resource View, open the Bitmap folder, and double-click on

the IDB_POSTIT bitmap. Edit the bitmap to resemble a yellow notepad, as we’ve done in Figure 8.9.

ShhgTaHe
Vembn

void CPastitC
CDC*

{ // Create
CBrush ka
karush.Cr

Registering OLE control...
ReaSvr32: Di edisterS ve

Figure 8.9 Editing the controi’s bitmap.

Save the changes. The next time we test the control, we’ll have a nice toolbar button representation. Our con~

trol still doesn’t do much, so let’s add the stock properties provided by MFC.

 tag gteeéé re egress
As detailed in Chapter 7, the ActiveX control standard specifies 17 standard properties that controls may

typically implement. These standard properties provide generic functionality and provide a way to present

a uniform set of properties that most controls will typically implement. MFC currently supplies stock imple-

NFLE 1009 - Page 67

NFLE 1009 - Page 68

353tCHAPTER 8..

mentations for nine of these standard properties. We’ll add eight of them to our POSTIT control. Most of the

stock properties affect the appearance of the control.

Control properties are implemented using automation (IDispatch). Each control has an IDispatch

interface for its stock and custom properties and its methods. To implement them for our control, we’ll use

ClassWizard just as we did in Chapter 6. Fire up ClassWizard and go to the OLE Automation tab. Make

sure the Class Name is CPostitCtrl, and click the Add Properties button. You will get a dialog box like

the one in Figure 8.10.

Figure 3.10 Adding stock properties with ClossWizord.

Add every stock property available except Caption and ReadyState. The Caption and Text properties

use the same internal implementation. The only difference is the external name of the property. Controls

should use the Caption property to represent small amounts of textual information that typically does not

change during run time. Buttons, labels, and the like typically use the Caption property. Controls (such as

a multiline edit field) that have a lot of text that will be modified at run time should use the Text property.

We’re implementing a control that may contain a lot of textual information, so we will expose the Text

property. After adding eight of the stock properties, the OLE Automation tab should look like Figure 8.11.

The stock properties are implemented with get and set functions. Each stock property has a Get and a

Set method within COleControl that allow these properties to be modified externally, usually via the con-

tainer’s property interface or your control’s custom property pages. The only current exception is Hw-nd. It

has only a Get method for obvious reasons. Whenever a stock property is modified flirough its Set method,

the Set method will call an OnPropertyChanged method, where “Property” is the actual name of the

property (such as OnBackColorChanged). The default implementation calls InvalidateControl, forc~

ing a redraw of the control. You can easily modify this behavior by overriding any of the

OnPropertyChanged methods within your control class.

NFLE 1009 - Page 68

NFLE 1009 - Page 69

A Simple Control 6* “$59WWMMW»

Figure 8.1 1 Stock properties added by ClossWizord.

Most of the stock properties affect the look of a control: its background and foreground color, the font, the

caption, and so on. Next, we’ll modify our control’s OnDraw method to use these stock properties when

drawing. The following sections deal with each stock property and how it is used when you’re drawing a

control. The last section provides the complete source for OnDraw, so don’t worry about typing in until
we’re finished.

Appearance
The stock appearance property provides the control developer with a standard property that controls the

appearance of a control. MFC’s current implementation provides just two different options: draw the control

using 3-D or not. The implementation uses the Win32 Windows style, WS_EX_CLIENTEDGE, to control the

3~D style.

 wIleififlfil

The BackColor property can be used to specify the background of a control. The background typically cov-

ers the entire area of a control; the salient features of a control are drawn on top of the background. Our con-

trol currently creates a yellow background and fills the control with it. By implementing the stock

BackColor property, we make it easy for the control user to modify this attribute. To draw the control

using the BackColor property, use the COleControl: :GetBackColor method:

// Get the stock BackColor

CBrush karush;

karush.CreateSolidBrush(TranslateColor(GetBackColor() H;

NFLE 1009 - Page 69

NFLE 1009 - Page 70

eee fry/CHAPTERS

GetBackColor retrieves the current value of the BackColor property. The default value of the

BackColor property is the ambient property of the container. If the user does not select a specific back

ground color, the container’s background color will be used. The COleControl: :TranslateColor

method converts an OLE_COLOR type into the COLORREF type needed by the CDC Class methods.

Feteéeéer

The stock ForeColor property can be used in various ways. Controls that contain text typically use this

color for the text. This doesn’t have to be the case. If the control contains many items that you want the user

to be able to customize via a color property, you can choose whatever attribute you feel indicates the fore-

ground color of your control. If you need additional color properties, it is easy to define custom properties

for this puipose. We will do this in Chapter 9. ForeColor is similar to the BackColor property in that it

defaults to the ambient property of the container if not explicitly set. Here’s the new code for the text in the
POSTIT control:

// Set the text color to the stock ForeColor

pdC—>SetBkMOdE(TRANSPARENT);

pdc—>SetTextColor(TranslateColor(GetForeColor()));

If you need to set a stock property programmatically, based on some internal state change or event, Set

functions are available for most of the stock properties. In this case, it is SetForeColor.

iapfiian @5‘ Text
As we've discussed, the Caption and Text properties are basically the same. The internal methods to

manipulate them are GetText, SetText, and InternalGetText. The InternalGetText method

should be used to get the text within your control class. It returns a CString reference instead of an

automation BSTR. To draw our text, we need only Change one parameter of the Draw‘I‘ext method. It now

calls InternalGetText to obtain the value of the Text property:

// Draw the text

pdc—>DrawText(InternalGetTeXt(),

—l, CRect(chounds),

DT'LEFT | DT_WORDBREAK),-

getderSter
The stock BorderStyle property affects the drawing of the border around the control. The current MFC

implementation provides only two settings. A zero indicates no border, and a value of 1 denotes drawing of

a border around the control. The COleControl class supports both settings, so we don’t have to modify our

drawing code to support this property,

NFLE 1009 - Page 70

NFLE 1009 - Page 71

A Simplegontrol ‘% 3%?

Feat

The stock Font property provides an easy way to expose a font property for your control. If your control

uses text in its representation or in any way needs a font, the stock font property makes this easy to man—

age. COleControl provides a method, SelectStockFont, for selecting the stock font into the current
device context (DC). The stock font initially contains the ambient font of the container. You can easily

change its value with COleControl : : SetFont, or the user can change it through the container’s prop-

erty browser, which will call OnSetFont. The default implementation of OnSetFont updates the stock
font and invalidates the control. This is fine for most situations. The following code illustrates how to use

SelectStockFont in your OnDraw code:

CFont* pOldFont = SelectStockFont(pdc);

// Use the font

// Restore the old font back into the DC

pdc->Select0bject(pOldFont);

This example also demonstrates how the Drawing Optimization option can make a control more efficient. If

drawing optimization is supported by a container, there is no need to select the old font back into the device

context, thus saving a little time. We’ll cover this in more detail in Chapter 9.

mel

The stock Hwnd property is a read—only property that exposes the HWND (handle of the window) of the con-

trol. This property should also be a run-time—only property, because some containers may not create a win—

dow for your control when the container is in design mode. The Hwnd property wouldn’t have much use at

design time any way, because it is typically used at run time to allow the container’s scripting language to

directly access, and thus provide, a way to send Windows messages directly to a control's Hwnd. I expect

that most containers will not expose this property during the design phase. A control developer need not do

anything to handle this stock property; COleControl handles it completely.

Enubfied

The stock Enabled property is used to indicate, using either TRUE or FALSE, whether a control is enabled.

The Windows operating system provides an API function, Enabl eWindow, that controls the behavior and

appearance of a standard window. When a window is enabled, it functions normally. When a window is not

enabled, or is disabled, it does not accept user input and typically changes its appearance as an indication to

the user. An example is the standard Windows checkbox control. When it is disabled, the checkbox and the

text associated with it are ”grayed out” to indicate that it does not accept input.

We’ll change the background style of our control to use a diagonal hatching to indicate that it is dis-

abled. We will check the Enabled property before drawing the background of our control:

NFLE 1009 - Page 71

NFLE 1009 - Page 72

3&2 6 CHAPTER 8

// Create a brush using the stock BackColor

CBrush karush;

// If the control is enabled use a solid brush

// otherwise use a hatched brush to indicate the disabled state

if (GetEnabled())

karush.CreateSolidBrush(TranslateColor(GetBackColor()));

else

karush.CreateHatchBrush(HS_DIAGCROSS, TranslateColor< GetBackColor()));

// Fill the background with BackColor

pdc—>FillRect(chounds, &karush);

Not much is new here except that we’ve added the check of the Enabled property and have created a

hatched brush to fill the control’s background.

As promised, here’s the complete OnDraw method with the new code that uses the stock properties:

///

// CPostitCtrl :OnDraw — Drawing function

void CPostitCtrl::OnDraw(CDC* pdc, const CRect& chounds, const CRect& rcInvalid)

{

// Create a brush with the stock BackColor

CBrush karush;

if (GetEnabled())

karush.CreateSolidBrush(TranslateColor(GetBackColor()));

else

karush.CreateHatChBrush(HS_DIAGCROSS, TranslateColor(GetBackColor()));

// Fill the background with BackColor

pdc~>FillRect(chounds, &karush);

pdc—>SetBkMode(TRANSPARENT);

// Set the text color to the ForeColor

// If the control is disabled, draw the

// text in the background color

if (GetEnabled()

pdc—>SetTextColor(TranslateColor(GetForeColor()));
else

pdc—>SetTextColor(TranslateColor(GetBackColor()));

ii Select the font. SelectStockFont

// is a method of COleControl that uses the stock

// font property for the control

NFLE 1009 - Page 72

NFLE 1009 - Page 73

A 5' pie Control at 3&3a! ”Mo.W.WMMmw.MMWWWWWWWWWWWMAwxwmwmmWWWyummmmWMWWWWWWMWM..,,.~,M,,,.,W.,...,,WMWMM WNVWMW/WWWWWMWWW

_ CFont* pOldFont = SelectStockFont(pdc);

T“ I] Get the text and draw it

:i'pdc—>DrawText(InternalGetText(),
, -l, CRect(chounds),

DT_LEFT I DT__WORDBREAK) ;

~1i/ Restore the old font of the DC

1, pdc—>Select0bject(poldFont);

)

Add the preceding code to POSTITCTL.CPP and compile and link the project.

When you add or remove a property, method, or event to a control, you must update the type
library before attempting to build the project. The 16-bit version of Visual C++ requires that you
explicitly make the type library apart from the build, so be sure to do this first.

 “testes greets ’ are estates its e Test geeeaéeee

Now that we’ve added support for the stock properties and have modified the OnDraw code to use them, we

should give them a try. The Test Container works fine for testing these changes. The stock properties ini—

tially default to the ambient properties of the container. Start the Test Container and select the Edit/Ambient

properties menu item. Set the BackColor and ForeColor properties to gray and red. Now insert a POS-

TIT control. The control will use the ambient colors when rendering itself. It’s hard to determine whether the

ForeColor property worked, because we haven’t specified the text for the control, but this is easy to do.

To access the properties for a specific control in the container, make sure the control is UI-active by sin-

gle-clicking on it. Then invoke the View/Properties menu item. This pops up a modeless Properties dialog

box that allows you to modify the stock properties that we added. This isn’t the actual property page created

for your control; instead, it’s the container’s property browser. We’ll define and use our own property pages

in a moment. As you modify these properties and apply them to the control, it will redraw the control using
the new values.

Add some text to the control using the Text property, and change the background and foreground col-

ors. Set the Borderstyle property to 1, and a border will be drawn around the control. Set the Enabled

property to zero and watch what happens. There are many things you can do with this control even with

just the stock properties. Play with the control until you are comfortable with what’s going on in the code.

Next, we will add a custom property page to our control.

{OePrapertytge
Property pages provide a way for a control to graphically present custom and stock properties to the control

user. The user can then modify the properties and apply the changes to the control. This manipulation usu-

ally is done when the user configures the control during the container’s design phase.

NFLE 1009 - Page 73

NFLE 1009 - Page 74

3&4: ¢ CHAPTER 8

MFC provides the COlePropertyPage class to make it easy to implement property pages for your

control. The container usually provides a way for the control user to modify stock properties, which are

known to exist within most controls. But some containers, such as Visual C++’s Resource editor do not sup-

ply this capability, so it is important to provide an interface to all the properties used in your control. This is

easy to do by implementing a combination of custom and stock property pages for your control. Let’s take a

quick look at the COlePropertyPage class and the initial files produced by ControlWizard.

Each property page is itself a COM-based component with a CLSID. This arrangement makes it easy for

the container to load and activate a control’s property page without bothering the control. When a control is

initially loaded, the container retrieves a list of the property page CLSIDs that should be invoked for the con-

trol. When the user wants to modify a control’s properties, the container instantiates each property page and

frames it to create a property sheet. We discussed this in Chapter 7. The important thing to understand is

that each property page is a distinct COM—based component object. The COlePropertyPage class does
almost all the work for us. Here’s the initial POSTITPPG.H file:

// Postithg.h : Declaration of the CPostitPropPage property page class.

//

// CPostitPropPage : See Postithg.cpp for implementation.

class CPostitPropPage 2 public COlePropertyPage

(

DECLARE_DYNCREATE (CPOStitPrOpPage)

DECLARE_OLECREATE_EX(CPostitPropPage)

// Constructor

public:

CPostitPropPage () ;

// Dialog Data

//{{AFX_DATA(CPostitPropPage)

enum { IDD = IDD_PROPPAGE_POSTIT };

/ / } }AFX_DATA

// Implementation

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

// Message maps

protected:

//l{AFX_MSG(CPostitPropPage)

// NOTE - Classwizard will add and remove member functions here.

// DO NOT EDIT what you see in these blocks of generated code !

//l)AFX_MSG

DECLARE_MESSAGE_MAP ()

NFLE 1009 - Page 74

NFLE 1009 - Page 75

 le Contr l ®WM36§we».WWWWMWWMWAWW,MMWW,WWWW WWWWMMNWNWWWWHWWWWWWWM. m. ~WWMWWMM

There's nothing special here except the enum { IDD_PROPPAGE_POSTIT } and the DoDataExchange

declaration. The enum value contains the dialog resource for the property page. We’ll modify this dialog box

in the next section. The DoDataExchange method provides an easy mechanism for moving data between

controls Within a dialog box and class member variables.

COlePropertyPage derives from CDialog, which derives from CCdearget, so we have COM sup-

port built into our new class. And the DECLARE_OLECREATE_EX macro provides a class factory for our
property page. All the pieces are there for making this class a COM-based component:

// Postithg.cpp : Implementation of the CPostitPropPage property page class.

IMPLEMENT_DYNCREATE(CPostitPropPage, COlePropertyPage)

///

// Initialize class factory and guid

IMPLEMENT_OLECREATE_EX(CPostitPropPage, “POSTIT.PostitPropPage.l”

0xbbf8b09a, 0xbe9e, Oxllce, 0xa4, 0x3c, Oxac, 0xe7, Oxlf, 0x16, 0xdb, 0x7f)

///

// CPostitPropPage::CPostitPropPageFactory::UpdateRegistry —

// Adds or removes system registry entries for CPostitPropPage

BOOL CPostitPropPage::CPostitPropPageFactory::UpdateRegistry(BOOL bRegister)

{

if (bRegister)

return AfxOleRegisterPropertyPageClass(AfoetInstanceHandle(),

m_Clsid, IDS’POSTIT_PPG);
else

return AfxOleUnregisterClass(m_clsid, NULL);

)

///

// CPostitPropPage::CPostitPropPage - Constructor

CPostitPropPage::CPostitPropPage()

COlePropertyPage(IDD, IDS,POSTIT_PPG_CAPTION)

//((AFX_DATA_INIT(CPostitPropPage)

//})AFX_DATA_INIT

)

///

// CPostitPropPage::DoDataExchange — Moves data between page and properties

NFLE 1009 - Page 75

NFLE 1009 - Page 76

gas a CHAPTER 8

void CPostitPropPage: :DoDataExchange(CDataExchange* pDX)

{

// ({AFX_DATA_MAP (CPos titPropPage)

//) lAFX_DATA_MAP

DDP_PostProcessing (pDX) ;

l

POSTITPPG.CPP looks very similar to POSTITCTL.CPP. The IMPLEMENT_OLECREATE_EX macro con-

tains the Prong and CLSID for our property page and the UpdateRegi 5 try method. The

DoDataExchange method is implemented but currently doesn’t do anything. We will add to and discuss it

in the next section. Table 8.4 provides a list of useful COlePropertyPage methods.

Table 8.4 Useful COlePropertyPage Methods

Method Purpose

COlePropertyPage The constructor takes the ID of a dialog resource and an ID of a string resource for the caption of the

page.

IsModified Indicates whether the user has modified any items on the property page.

SetModifiedFlag Indicates that an item on the page has been moditied.

OnHelp Called when the user presses the help key on the property sheet, when the page is the current tab.

OnInitDialog Called when the property page is initialized.

OnEditProperty Called when the user edits a specific property on the page.

OnSetPageSite Called when the container loads the page to display it within its property page frame.

ControlWizard provides us with a custom property page that we can use to let control users modify our

control’s stock or custom properties. The COlePropertyPage class is derived from CDialog and uses a

dialog resource to describe its appearance. We need to add a custom property that allows toggling the use of

the container’s ambient properties. To add this property to the resources tab, click the Dialog folder and then

double-click the IDD_PROPPAGEMPOSTIT dialog resource. Add a checkbox with the text Use Ambients

and with an ID of IDCwUSEAMBIENTS. While you're at it, add a checkbox for our stock Enabled

(IDC_ENABLED) and BorderStyle (IDC_BORDER) properties and a multiline edit field (IDC_TEXT)

for our Text property. See Figure 8.12.

We now need to create the custom Us eAmbients property. Using ClassWizard, select the OLE

Automation tab, add a property of type BOOL using Get/Set methods, and call it UseAmbients. Now add

the following code to POSTITCTLH and POSTITCTL.CPP. It adds a member variable to our control class

for maintaining the UseAmbients property. We also call InvalidateControl to force a redraw when the

property changes.

NFLE 1009 - Page 76

NFLE 1009 - Page 77

A Simple Conirol $2» $67

Figure 8.12 Editing the custom property page dialog resource.

// PostitCtl.h

class CPostitCtrl : public COleControl

{

DECLARE_DYNCREATE (CPOS ti tCtrl)

// Implementation members

BOOL m_bUseAmbients;

L

// PostitCtl cpp

CPostitCtrl::CPostitCtrlO

{

InitializeIIDs(&IID_DPostit, &IID_DPostitEvents);

// TODO: Initialize your control's instance data here.

m.bUseAmbients = FALSE;

SetInitialSize(200, 200);

}

///

// CPostitCtrl message handlers

NFLE 1009 - Page 77

NFLE 1009 - Page 78

see e CHAPTER 8

BOOL CPostitCtrl::GetUseAmbients()

{

// TODO: Add your property handler here

return m_bUseAmbients;

)

void CPostitCtrl::SetUseAmbients(BOOL bNewValue)

{

// TODO: Add your property handler here

m_bUseAmbients ‘ bNewValue;
I

SetModifiedFlag();

// Redraw the control

InvalidateControl();

// Update any property browser

BoundPropertyChanged(dispidUseAmbients);

l

The call to BoundPropertyChanged is an important one. It notifies any associated object, usually the con—

tainer, that a property has changed within the control. It does this through the IPropertyNotifySink

interface. For example, this one call will ensure that Visual Basic’s property browser will always be in sync

with both the control and the control’s custom property pages.

For our custom property page to access our custom property, we must create a variable for it in the
CPostitPropPage class. Start ClassWizard and select the Member Variables tab. From the Class Name

dropdown, select CPostitPropPage. Click the Add Variable button and add a variable for the IDC_USE-

AMBIENTS checkbox. When adding the variable, be sure to type the name of the associated property

(within the control) in the Optional OLE Property Name field. Adding a property name here forces the

property to be retrieved from the control. It adds a DDP_Check entry for the property. In a moment you will

see exactly what this does. The dialog box is shown in Figure 8.13.

While you’re at it, go ahead and add member variables for the other three stock properties that we

placed on the custom property page. When adding these variables, be sure to select the correct stock prop—

erty name from the Optional OLE Property Name field. The Text property is shown being added in Figure
8.14.

NFLE 1009 - Page 78

NFLE 1009 - Page 79

A Simple Control ¢ 369.. wWewWWWMWMMVWWM/WWAW;WW,.WVWMWWNMMWWmwwwwowmww AWN/MW,,\.»M-WWWWWWWN W4”

Figure 3.13 Adding a member variable tor the UseAmbients properly.

Figure 8.14 Adding a member variable tor the stock text property.

The value of m_bUseAInbients is modified when the property page user changes the value of its checkbox.

This is done using the normal dialog data exchange macros. ClassWizard adds the following highlighted
code to the CPostitPropPage class:

NFLE 1009 - Page 79

NFLE 1009 - Page 80

3?0 6 CHAPTER 8

// Postithg.h

class CPostitPropPage : public COlePropertyPage

{

// Dialog Data

//{{AFX_DATA(CPostitPropPage)

enum { IDD = IDD_PROPPAGE_POSTIT };

BOOL mwbEnabled;

CString m_strText;

BOOL m_bBorderStyle;

BOOL m_bUseAmbients;

//}}AFXHDATA,..

};

// Postithg.cpp

///

// CPostitPropPage: CPostitPropPage - Constructor

CPostitPropPage::CPostitPropPage()

COlePropertyPage<IDD, IDS_POSTIT_PPG_CAPTION)

//{{AFXWDATA_INIT(CPostitPropPage)

m_bEnabled = FALSE;

m_strText = _T(“”);

mgbBorderStyle = FALSE;
m_bUseAmbients = FALSE;

//}}AFX_DATA_INIT

)

///

// CPostitPropPage: DoDataExchange - Moves data between page and properties

void CPostitPropPage::DoDataExchange(CDataExchange* pDX)

(

//({AFX_DATA_MAP(CPostitPropPage)

DDP_Check(pDX, IDC_ENABLED, m_bEnabled, _T(“Enabled”));

DDX_CheCk(pDX, IDC_ENABLED, m_bEnabled);

DDP_Text(pDX, IDC,TEXT, m_strTeXt, _T(“Text”));

'DDX_Text(pDX; IDC_TEXT, mastrText);

DDPpCheck(pDX, IDC_BORDER, mbiorderStyle, ~T(“BorderStyle”));

DDX_Check(pDX, IDC_BORDER, m_bBorderStyle);

DDP~Check(pDX, IDC_USEAMBIENTS, m_bUseAmbients, .T(“UseAmbients”));

NFLE 1009 - Page 80

NFLE 1009 - Page 81

\ A Simple Controlwe 3???WMWWMMWUMW «MWNWNWWNWthWWMWMvmxmfl/WWMMW,MwwmwwawwWNWW~,.,WWW...W MMWWMWWWW WW,WchmmMMWNW4,, WmiMM/WMW W n . maniac...“

 sDX,Check(pDX, IDCflUSEAMBlENTS, meUseAmbients);

N) }AFX_DATA_MAP
DDPflPostProcessing(pDX);

}

The DoDataExchange method moves property values between the dialog controls, identified with their

IDs, and the member variables of the CPostitProgPage class. The direction of the transfer, either from the

member variables to the dialog controls or from the dialog controls to the member variables, is indicated by

the m_bSaveAndValidate member of the CDataExchange class. FALSE indicates a transfer to the con-
trols.

The DDX functions actually exchange the dialog data. The DDP functions were added for controls and

extend MFC’s data exchange mechanism to support synchronization of properties across automation—based

components. The DDP functions use automation to either get or set the control’s property values. The fourth

parameter of the DDP function is the name of the automation property that is being affected.

When the container loads a control’s property page, DoDataExchange is called with the

m_bSaveAndValidate flag set to FALSE to indicate that the dialog’s controls should be loaded. Each DDP

function, as it is encountered, uses IDispatch: :Invoke to obtain the associated property value from the

control; in other words, the control’s GetProperty method is called. The Invoke may be preceded by a

call to IDi spatch: :GetIDsOfNames if the property does not have a standard DISPID (e.g., stock proper—

ties). The control’s property value is then stored in the property page object’s member variable (such as

m_bUseAmbients). Next, the DDX method is called to transfer the property value to the dialog control.

This process is repeated for each DDP/DDX pair. Once this process is finished, the property page is dis-

played.

When the user modifies a property value and clicks the property sheet’s Apply or OK button, the
reverse occurs. DoDataExchange is called with m_bSaveAndValidate set to TRUE. This time the DDP

functions update an internal map of the property values, and the Invoke call is deferred until the

DDP_PostProcessing method is called. This is because the appropriate value hasn’t yet been transferred

from the dialog control to the property page member via the DDX function. Once the transfer has occurred,

the DDP_PostProcessing method updates each property that was changed via the property sheet by call-

ing the control’s appropriate Set function using IDi spatch: : Invoke.

The DDP functions currently support most of the automation types. Depending on the property type,

you use the appropriate DDP function. For example, if your property is stored in a short, you could use the

DDP_CBIndex to map the value of the property to a position within a combo box. We will do this in a later

chapter. The various DDP functions are as follows:

DDP_TeXt(CDataExchange*pDX, int id, BYTE& member, LPCTSTR pszPropName);

DDP_Text(CDataExchange*pDX, int id, int& member, LPCTSTR pszPropName);

DDP_Text(CDataExchange*pDX, int id, UINT& member, LPCTSTR pszPropName);

DDP_Text(CDataExchange*pDX, int id, long& member, LPCTSTR pszPropName);

DDP_Text(CDataExchange*pDX, int id, DWORD& member, LPCTSTR pszPropName);

DDP_Text(CDataExchange*pDX, int id, float& member, LPCTSTR pszPropName);

DDP_Text(CDataExchange*pDX, int id, double& member, LPCTSTR pszPropName);

NFLE 1009 - Page 81

NFLE 1009 - Page 82

372 s CHAPTER 8 Q

DDP_Text(CDataExchange*pDX, int id, CString& member, LPCTSTR pszPropName);

DDP~Check(CDataExchange*pDX, int id, int& member, LPCTSTR pszPropName);

DDP_Radio(CDataExChange*pDX, int id, int& member, LPCTSTR pszPropName);

DDP_LBString(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName);

DDP_LBStringExact(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName);

DDP_LBIndex(CDataExchange* pDX, int id, int& member, LPCTSTR pszPropName);

DDPHCBString(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName);

DDP_CBStringExact(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName);

DDP_CBIndex(CDataExchange* pDX, int id, int& member, LPCTSTR pszPropName);

MFC provides three stock property pages that you can use to allow users to modify your control’s proper»

ties. The three property pages provide support for your color, font, and picture type properties. We will use

the color and font property pages to allow the user to modify our control’s stock BackColor, ForeColor,

and Font properties. As mentioned previously, containers normally provide an effective way of modifying

standard (and often custom) properties, but to build a control that is useful in all control containers, we need

to provide an interface for all the properties of our control. The stock property pages give us an easy way to

provide a standard interface to Color, Font, and Picture property types.

The three stock property pages are identified by their CLSIDs. To use them within your control, you

add them using the PROPPAGEID macro. This technique adds the CLSIDs to the array of property page

CLSIDs that is maintained by the control. When the container invokes the property sheet for the control, it

determines which pages to load by asking for this array.

Add the following code to POSTITCTL.CPP. Be sure to change the page count in the BEGIN_PROP—
PAGEIDS macro from 1 to 3.

// TODO: Add more property pages as needed. Remember to increase the count!

BEGIN_PROPPAGEIDS (CPostitCtrl , 3)

PROPPAGEID(CPostitPropPage::guid)

PROPPAGEID(CLSlD_CColorPropPage)

PROPPAGEID (CLSID_CFontPr0pPagLe),
END_PROPPAGEIDS (CPostitCtrl)

By adding two lines of code, we provide a nice way for the control user to modify the Font, BackColor,

and ForeColor properties. The standard property pages determine which properties to display within

their dropdowns by iterating through all your control’s properties. If the supported property type is found,

the property page adds it to its list. To add a custom color property to your control—say HeadingColor—

use ClassWizard to add a property of type OLE_COLOR. When the standard property sheet is loaded, it will

include your new custom property.

NFLE 1009 - Page 82

NFLE 1009 - Page 83

Aélee'e Camel figfl
Earlier, we added a custom property, UseAmbients, that allows the control user to indicate whether the

control should use the ambient properties provided by the container or the ones specified by the user. We

need to modify our drawing code to check the Us eAmbients property to determine which property set to

use. The new OnDraw code is as follows:

///

;/ CPostitCtrl::OnDraw — Drawing function

void CPostitCtrl::OnDraw(CDC* pdc, const CRect& chounds, const CRect& rcInvalid)

{

CBrush karush;

// Use a local color reference for increased efficiency

‘COLDRREF chack;

COLORREF chore;

// Use the container's properties if the UseAmbients

// property is true

_, if (mubUseAmbients)

I {
‘ ‘ chack = TranslateColor(AmbientBackColor());

chore = TranslateColor(AmbientForeColor());
I1

 i'else

figxi
chack = TranslateColor(GetBackColor());

chore = TranslateColor(GetForeColor(} };

}

if (GetEnabled())

karush.CreateSolidBrush(chack);
else

karush.CreateHatchBrush(HS_DIAGCROSS, chore);

// Fill the background with BackColor

pdc~>FillRect< chounds, &karush);

pdc—>SetBkMode(TRANSPARENT);

// Set the text color to the ForeColor

// If the control is disabled, draw the

// text in the background color

'if (GetEnabledl))

NFLE 1009 - Page 83

NFLE 1009 - Page 84

375» § CHAPTEngWWW MW WWmwm/Nmswfifiw ”WWW “WW“, WW WWWWWWW WW.- .slwwwswwwmww,W..WWMmNWWWWMWWNWVMWNWWO «WLMWWW

‘ pdc—>SetTextColor(chore);
else

pdc—>SetTe:§<tColor(chack);
// Select the font

CFont* pOldFont;

if (m_bUseAmbients)

{

CFontHolder font(&m_xFontNotification);

// Get the ambient font’s lDispatch

LPFONTDISP lpFontDisp = AmbientFont();

// If the container doesn’t have an ambient font

// use the stock font instead

if (lpFontDisp == NULL)

pOldFont = SelectStockFont(pdc);
else

i

// Initialize the CFontHolder with the

// ambient font dispatch

font.InitializeFont(NULL, lpFontDisp);

pOldFont = SelectFontObject(pdc, font);

// Release the font dispatch

lpFontDisp—>Release();

}

else

pOldFont = SelectStockFont< pdc);

// Get the text and draw it

pdc~>DrawText(InternalGetTextl),

—l, CRect(chounds),

DT_LEFT | DT_WORDBREAK),~

// Restore the old font of the DC

pdc~>SeleCt0bjeCt(pOldFont);
l

The font selection code needs a little more explanation. To effectively handle changing to and from the ambi—

ent Font property, we use the CFontHolder class. We’ll cover that in the next section. Before we do that,

though, we need to add one more method to our control.

Whenever the container’s ambient properties change and the m_UseAmbients flag is TRUE, we need to

redraw the control. The COleControl : :OnAmbientPropertyChange method is called when any of the

NFLE 1009 - Page 84

NFLE 1009 - Page 85

A Simple Control «a» 375WWWMIW . _ . . , . _

container’s ambient properties changes. First, we override this method in POSTITCTLH, and then we add

the implementation code to POSTITCTL.CPP. You can initially override a method by clicking the Messages

drodeWD when editing POSTITCT.CPP. Scroll down to OnAmbientPropertyChange and select it. It
will be added to both the .H and the .CPP files.

class CPostitCtrl : public COleControl

(

// Overrides

// Override OnAmbientPropertyChange

virtual Void OnAmbientPropertyChange(DISPID);

l;

// PostitCtl.cpp

void CPostitCtrl::OnAmbientPropertyChange(DISPID dispid)

i

// TODO: Add your specialized code here and/or call the base class

 "If! If the user does not want ambients just return

iif (mwaseAmbients == FALSE)

return;

'f/ Redraw the control

if 1nvalidateControl(};

COleControl::OnAmbientPropertyChange(dispid);

l

OnAmbientPropertyChange provides the DISPID of the specific ambient that changed. If more than one

property has changed, this function passes DISPIDWUNKNOWN. We don’t really care which ambient changes,

so in all cases we call InvalidateControl, which forces a redraw. If the UseAmbients property is

FALSE, there is no need to deal with ambients and we just return.

 fieet e3 ee

The CFontHolder class encapsulates a Windows font object. It contains an implementation of the COM

IFont and IFontDisp interfaces that provides methods for communicating font information and font

property changes among COM~based components.

We use the CFontHolder class to obtain the ambient Font property. The following code is from
OnDraw:

NFLE 1009 - Page 85

NFLE 1009 - Page 86

Syé 4%» CHAPTER 8

if (m_bUseAmbients)

{

CFontHolder font(&m_xFontNotification);

// Get the ambient font’s IDispatch

LPFONTDISP lpFontDisp = AmbientFont();

// If the container doesn’t have an ambient font

// use the stock font instead

if (lpFontDisp == NULL)

pOldFont SelectStockFont(pdc);
II

else

(

// Initialize the CFontHolder with the

// ambient font dispatch

font.InitializeFont(NULL, lpFontDisp);

pOldFont = SelectFontObject(pdc, font);

// Release the font IDispatch

lpFontDisp—>Release();

)

The constructor for the CFontHolder class requires a pointer to an IPropertyNoti fys ink interface. The

COleControl class contains a protected member, m_xFontNotification, that implements an

IPropertyNotifyS ink interface for the handling of ambient fonts. We use this member to construct an
instance of CFontHolder. After construction, CFontHolder must be initialized with a call to the
InitializeFont method.

InitializeFont takes two parameters: a pointer to a FontDesc structure that specifies the font’s

characteristics, and a pointer to the ambient font’s IDispatch. Only one of the two parameters is required,

and in our case we need only a pointer to the ambient font’s IDispatch. We’re in luck—the AmbientFont

method returns an LPFONTDIspwso we pass it to InitializeFont. This action creates a valid

CFontHolder object that we then pass to COleControl : :SelectFontObj ect. This function selects the

ambient font into the device context. If any of this fails, we use the stock font provided by MFC.

 Tesfiag ism ease? i asses
We can use the Test Container to test the addition of ambient property support to our control. Start the Test

Container and from the Edit menu choose Set Ambient Properties. Before inserting the control, change the

ForeColor, BackColor, and Font ambient properties from their default values. Now insert the control.

When the control first loads, it will use the ambient properties of the container even though the initial value

NFLE 1009 - Page 86

NFLE 1009 - Page 87

 -.,,,,é_.§imple.Control r 377

of the UseAmbients property is FALSE. Remember, the initial value of stock properties defaults to the

ambient values of the container. Now, invoke the property sheet for the control by selecting Postit Control

Object/Properties from the Edit menu. This action will bring up the custom and two stock property pages
that we added to the control. Add some text for the control, check the UseAmbients checkbox, and modify

the colors and font. Now click the Apply button. Only the text that you entered will change the appearance

of the control. To use the new values for the stock properties, we need to “turn of " the use of ambient prop-

erties. Do this and press the Apply button. The control will now use the values of the stock properties.

The Apply button calls IDispatch: : Invoke with the DISPID of the changed property. This calls the

specific property’s Set method (such as SetUseAmbients) with the new property value. After updating
the property value within the control, the Set method will typically call InvalidateControl, which will
force a redraw of the control.

Continue to play with the UseAmbients as well as all the other stock and ambient properties. Try out

the Enabled and BorderStyle properties, too. This experimentation should give you a good sense of

what goes on as various properties are changed and what effects they have on the underlying control. But

remember that what we are doing with the Test Container is simulating the use of the control in design

mode. The behavior is quite different during run mode. During design mode, much of the state, or appear—

ance, of the control is configured, and during run time, methods and events do much of the real work.

% aéé a §€§§§é Egress

Now let’s add a stock event to the POSTIT control. As we’ve discussed, a control event provides a way for

the control to communicate events such as mouse clicks, internal state changes, and so on to the user of the

control. Events are communicated through the container, which normally provides a scripting language that

makes it easy to harness these events for useful purposes.

Adding events is as easy as adding a method or property. Invoke ClassWizard and choose the OLE
Events tab. Now click Add Event and choose the Click stock event. Click the OK button, and ClassWizard

will add an entry to our dispatch map and our control’s ODL file to indicate that we support the Click

event. Figure 8.15 shows the Add Event dialog box.

The stock events, with the exception of the Error event, are automatically fired by MFC. By clicking a

few buttons we have added an event that will fire each time the user clicks the mouse anywhere within the
control. Here’s the code added to POSTITCTL.CPP and the definition added to POSTIT.ODL.

NFLE 1009 - Page 87

NFLE 1009 - Page 88

378 6 CHAPTER 8

Figure 8.15 Add Event dialog box.

// PostitCtl.cpp

///

// Event map

BEGIN_EVENT_MAP(CPostitCtrl, COleControl)

//{{AFX__EVENT_MAP (CPostitCtrl)

L ‘ EVENT_STOCK_CLICK ()
//))AFX_EVENT_MAP

ENDWEVENT~MAP ()

// postit odl

// Event dispatch interface for CPostitCtrl

[uuid(BBFBBOB8—BE9E—llCE—A43C—ACE7lFlGDB7F),

helpstring(“Event interface for Postit Control”) }

dispinterface _DPostitEvents

{

properties:

// Event interface has no properties

methods:

// NOTE - ClassWizard will maintain event information here.

// Use extreme caution when editing this section.

NFLE 1009 - Page 88

NFLE 1009 - Page 89

A Simple Conjrol .379MMflMWW/nww«w m m W , . mxmwwawwm , .KMMHWNMWWW MW WWW. W WMWWW ,,

//{{AFX_ODL‘EVENT (CPostitCtrl)

[id(DISPID_CLICK)3 void click();

/ /) }AFX__ODL_EVENT

);

Event maps are very similar to dispatch maps. Event maps define a table of DISPIDs and their associated

member functions. The primary difference is how they are used within a control. As we discussed in

Chapter 7, the container will retrieve the control's event IDi spatch definition and implement it within the
container. The control will then use IDispatch: :Invoke to fire its events as they occur. This is easy for

the control to do, because the DISPIDs are already known.

As we covered in Chapter 7, the ActiveX standard provides two stock methods that controls should imple—

ment if it’s appropriate. The two methods—Refresh and DoClick—really pertain only to visual controls,

so you typically won’t implement them in nonvisual controls. The Refresh method might be used for cer—

tain nonvisual controls, such as a database or data-feed control in which the concept of refreshing is rele-
vant.

It is easy to provide these two methods for your control. Start ClassWizard, go to the OLE Automation

tab, and click the Add Method button. There are two methods present in the External Name field: Refresh

and DoClick. Add each of these by clicking OK. That’s all there is to it. The default implementation for

Refresh is to invalidate the control, forcing a redraw. The default implementation of DoClick is to call the

OnClick method, which in turn fires the stock Click event. This arrangement is just fine for our simple

control. We will test this behavior later using a commercial container.

To provide a little functionality for our POSTIT control user, we’ll add two custom methods. These methods

will allow the control user to set a timer within the control that will go off after a predetermined time inter-

val. Control users can employ this behavior any way they choose, and I'll demonstrate a simple use when

building an application with the control later.
Start ClassWizard and add a method to CPostitCtl called SetAlarmTime. This method takes one

parameter, a short. SetAlarmTime returns a BOOL to report the success or failure of the method call. Next,

add another method and call it StopAlarm. This method returns void and takes no parameters. Next, edit

POSTITCTL.CPP and add the following code to the methods provided by ClassWizard:

:Lfdefine TIMER_ID 100

BOOL CPostitCtrl::SetAlarmTime(short sSeconds)

(

// TODO: Add your dispatch handler code here

NFLE 1009 - Page 89

NFLE 1009 - Page 90

gee fiNCHAPTER 8 ..,,.WWN,,.»,M...M W rm.W.NWWWWWMWKLWKWWWWWMM.WM

// Set the timer, return TRUE on success, FALSE on error

if (GetHwnd())

return SetTimer(TIMER_ID, sSeconds * 1000, NULL);
else

return FALSE;

l

void CPostitCtrl::StopAlann0

{

// TODO: Add your dispatch handler code here

KillTimer(TIMER_ID);

}

Our custom methods provide a way for the control user, during run time, to set an alarm that will fire after

the indicated number of seconds has elapsed. The SetAlarmTime method first checks to ensure that our
control has a valid window handle and then calls the CWnd: :SetTimer method with the number of sec-

onds provided. We multiply this value by 1000, because SetTimer expects the time in milliseconds.

The StopAlarm method destroys the timer by calling CWnd: :KillTimer. After setting the timer, the

control user may decide to cancel it later. The Windows timer mechanism will post a WMMTIMER message

after the time period has elapsed. To trap this message, we use ClassWizard to add the WM__TIMER message

to our message map. Then ClassWizard adds an OnTimer method to POSTITCTL.CPP, as shown next. I

won’t go through each step, because you should be familiar with ClassWizard by now.

// PostitCtl.cpp

void CPostitCtrl :OnTimer(UINT nIDEvent)

{

// TODO: Add your message handler code here and/or call default

COleControl::OnTimer(nIDEvent);

}

We now need to add an event so that we can notify the control user when the timer fires.

 gag; éeg a. geese sees
Custom events provide a way to inform users that something happened within the control. In our case, this

event is the expiration of the timer. Adding a custom event is only slightly different from adding a stock

event as we did previously. From ClassWizard’s OLE Events tab, add an event with an external name of

AlarmFired, and leave the default internal name, FireAlarmFired. Include a long parameter and call it

nTimerID. This parameter will report to the user the ID of the timer that expired. This value isn’t useful in

our case, but if we wanted to let users maintain multiple timers, it would allow users to identify the specific

timer that fired. We would need only add another parameter, for a unique timer ID, to both the
SetAlarmTime and StopAlarm methods. I’ll leave this as an exercise.

NFLE 1009 - Page 90

NFLE 1009 - Page 91

 Mm“ WKMHMWW...”iNWMMW,WW/,W.W.

When the control receives the WM_TIMER message, it will fire the event using our internal method:

FireAlarmFired. Once we fire the alarm event, we need to kill the timer so that it won’t continue to fire.

Add the following code to the OnTimer method in POSTITCTL.CPP:

void CPostitCtrl::OnTimer(UINT nIDEvent)

f

// TODO: Add your message handler code here and/or call default

,(nIDEvent == TIMER_ID)

TL FireAlarmFired(nIDEvent);

;/ Cancel the alarm

KillTimer(TIMER_ID);

COleControl::OnTimer(nIDEvent)7

geséaééaéa ' aéae r

When a user places a control on a container and sets the properties so that the control behaves in the

expected manner, the settings should persist. The container is responsible for causing the control to persist

between design mode and run time, but the control must decide which properties it wants to persist to the

container. This process is called serialization, and MFC provides the DoPropEXchange method for this pur—

pose. Here's the default implementation provided by ClassWizard:

///

// CPostitCtrl: DoPropExchange — Persistence support

void CPostitCtrl::DoPropExchange(CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG<MwVerMinor, _wVerMajor));

COleControl::DoPropExchange(pPX);

// TODO: Call PX_ functions for each persistent custom property.

l

The default implementation serializes all the stock properties that you have defined for your control. It is

your responsibility to serialize any custom properties that you have added—in our case, the UseAmbients

property. Its type is BOOL, so we use the function PX_Bool. The PX* functions are listed in Table 8.5. The

first parameter is a pointer to the property exchange object, the second parameter is the name of the prop-

erty as you would like it stored, and the third parameter is a reference to the property itself. An optional

fourth parameter can be used to set the default value for the property. By providing default parameters for

the properties, the control will have an initial state when inserted into a container. Complex property types

(such as font) require additional parameters, which are shown in Table 8.5. The table does not show the

first three parameters, because they are always the same.

NFLE 1009 - Page 91

NFLE 1009 - Page 92

332 (s cHArfjeR 8 /

///

// CPostitCtrl::DoPropExchange — Persistence support

void CPostitCtrl: :DoPropExchangetCPropExchange* pPX)

{

ExchangeVersiontpPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange (pPX) ;

// TODO: Call PX_ functions for each persistent custom property.

PX__Eool(pPX, _T(“UseAmbients”), mabUseAmbients, FALSE);

Table 8.5 DoPropExchange Functions

Functionh'gpe Purpose

3XuBlobt HGuOBALsc) Serializes an object in a binary Format.

3X_Bool t BOOL&) Serializes the property as a Boolean.

3X~_Color(O,JE_COLOR&) Serializes the property as an OLE_COLOR type.

3X_Currency(CY&) Serializes the property as a currency data type.

PX_Double (double&) Serializes the property as type double,

3X__Font: (CFontHolders, Serializes the property as a Font. This tunction takes a Few more parameters than
const FONTDESC FAR*, the others.
.JPFONTDISP)

3X__Float(floats) Serializes the property as a float.
3X_IUnknown

(LPU'NKNOWN&, REFI ID) Serializes the IUnknown pointer.

3)LLong(long&) Serializes the property as type long.

3X_ULong(ULONG&) Serializes the property as type unsigned long.

PX_Picture

(CPictureHolder&) Serializes a picture property.

PX__Short (short&) Serializes the property as type short.

PX_UShort (USHORT&) Serializes the property as type unsigned short.

PX_String(CString&) Serializes the property as type CString.

When the container serializes its contents, it calls each control and asks it for its property information. The

container then uses its own technique of serializing the property information, usually in some form of file.

Visual Basic serializes property information in a textual format that is easy to understand, so the following

listing shows our control after it has been serialized within a Visual Basic form. This example illustrates only

property—set persistence and not the more elaborate binary persistence that can be used by a control.

NFLE 1009 - Page 92

NFLE 1009 - Page 93

A Simple Control a 383w «WanamwwmmmWWWWMWWWAH W - ”wwmmmwwmawrymmeMMWW/MmWMWMMWWWWMwwwww.w NawwmmmwwwWWW“. ,_ 4., MW ,. “my...”

Begin PostitLib.Postit Postitl
Height = 3135

Left = 480

TabIndex = 0

Top : 240

width : 2895

fiversion : 65536

flextentx = 5106

_extenty : 5530

_stockprops : 125
text 2 “Meet Nicole for lunch at 11:30 at Fiddler’s.”

forecolor = 255

backcolor : 65535

BeginProperty font {FB8F0823—0164—10lB—84ED—08002B2EC713}

name = “Monotype Corsiva”
charset = 0

weight = 400
size = 12

underline = 0 ‘False

italic = -1 ‘True

strikethrough = 0 ‘False

EndProperty

borderstyle = —1

useambients = 0 ‘False

End

We can learn a little about What the container is doing by inspecting its serialization file. You might notice

that not all of our properties are listed, in particular the Enabled property. If a property’s value is the

same as its default value, as specified in the DoPropertyExchange PX_ functions, there is no need to

store the property value. When the container loads a control, it first sets the control’s property values to

the defaults provided in DoPropertyExchange. It then loads the properties from persistent storage,

which overlays only those property values that differ from their default values. This arrangement saves

space in the persistent file. '

 ?eaa§aga a éaaé eataa aa eaéiaaaaiaea
One important aspect of developing ActiveX controls is that you should strive to make them work in all

available containers. Because the ActiveX control standard is open and leaves certain aspects of its imple—

mentation up to the implementor, there will be differences in the containers provided by various tool ven—

dors. One thing is certain: there Will be many products that Will support ActiveX controls. As I write this,

NFLE 1009 - Page 93

NFLE 1009 - Page 94

384/} CHAPTER 8

many vendors have stated publicly that their tools will support ActiveX controls, For commercial control

developers, this is wonderful news. The more containers that support ActiveX controls, the more customers

there are for useful and unique controls. But the one container that will set the standard for the others is

Visual Basic. Why? Visual Basic has a very large installed base and so immediately (via upgrades) will

become the most ubiquitous, and standard-setting, container.

What I’m getting at is this: to really test your controls, you should test them in as many containers as

you can. Containers typically exist within the context of a development tool. Each tool has different goals, so

it is important to test in these divergent environments. The controls in this book have been tested with the

Test Container, Visual Basic 4.0, Visual C++ 4.2, and Internet Explorer 3.0.

Figure 8.16 shows our POSTTT control within a Visual Basic 4.0 form. As you can see, from the proper-
ties window, Visual Basic has added several new properties to our control. Most containers will provide

additional properties in this manner using the extended control method that was described in Chapter 7.

Many control properties can be managed only by the container (via an extended control). Only the container

knows the position of the control within the container, so it adds the Top, Left, Height, and Width prop-

erties. It also adds other properties that it can easily manage, such as Visible, TabStop, and Index. The

Index property is used for control arrays, which provide dynamic creation of controls at run time. The con—

tainer, again, is best equipped to handle this situation.

WWI ,
[CVEFDWl,.. ., .., ,.. ,_
Amarance _ i1 ,_ , ,,
9.5??quth N @HODOUFFFF%_.,,_,.,,,,_

WSW .
,aglcon
nga’gMVode

may
rifle , ,, ,

Why ThisHeipiD

Figure 8.16 POSTIT control in 0 Visual Basic form.

One thing that the Test Container lacks is a robust way to test our control’s methods and events. So we’ll

develop a simple Visual Basic program to exercise the control. I expect the scripting syntax and techruques

to be fairly similar among various control container tools. So although the code here is specific to Visual

Basic, it should easily translate to other control environments.

Our simple application is composed of two forms (containers) and a few ActiveX controls. It provides a

means to set up an event that will act as a reminder. When the event occurs, a dialog box will pop up and

NFLE 1009 - Page 94

NFLE 1009 - Page 95

W A Simple Control 3385

inform the user with the reminder. I won’t go through the steps needed to build the application. You can run

it yourself With either Visual Basic 4.0 or a 32-bit version of DISPTEST. I’ll just show you the two forms and
the seven lines of code that tie everything together. The two forms are shown in Figure 8.17.

Meet Nicole at Fiddler's for lunch at 11:30.
eat Nicole at Fiddler’s for lunch a

1:30.

Figure 8.17 Visual Basic application.

When the application runs, the Main form is shown. The user enters the text for the reminder along with the

number of minutes. Then the user clicks OK and the following code executes:

Private Sub cmeK_Click()

‘Extract the alarm time and multiply by 60

‘to get the number of seconds

nAlarm : txtTime * 60

‘Call the SetAlarmTime method.

frmRem.Postitl.SetAlarmTime nAlarm

‘Set the text in postit Control on the Reminder form
frmRem.Postitl.Text = txtTeXt

‘Hide the Reminder form

frmRem.Hide

End Sub

Private Sub cdeancel_CliCk(l

‘Stop the timer

frmRem.Postitl‘StopAlarm
End Sub

NFLE 1009 - Page 95

NFLE 1009 - Page 96

336 e CHAPTER 3)w .mw-MWWMM .WWNWWmthWMWWWM/AWW my.MKWWW,WWAWWMWWMW“NamywwmwminmwwNMMMWAW”WWMMMWWK.WWWMmm.WNWWMMWWWMMWWMWWM

The code is pretty self—explanatory. We call our POSTIT custom method, SetAlarmTime, with the number

of seconds and also set the stock Text property with the text that the user entered. We then ensure that the

Reminder form is hidden from view. This code sets everything up. If the user clicks the Cancel Alarm but-
ton, we call the stopAlarm method. Now let’s look at the code in the Reminder form.

Private Sub Postitl_AlarmFired(ByVal lAlarmID As Long)

‘The alarm fired, make sure the Reminder form is visible

frmRem.Show

End Sub

Private Sub Postitl_Click()

Unload Me

End Sub

There are two events that we added to our control. The stock Click event, which is fired whenever the user

clicks the mouse anywhere within the control, unloads the form. This makes it easy for the application user

to discard the reminder after it is no longer needed. Our custom event, AlarmFired, displays the Reminder

form along with the POSTIT control and the contained text of the reminder. Not bad for just seven lines of

code (not counting the comments).

The visual developer doesn’t usually use many of the methods and events that are provided by the con-

trol. In that case, the event just fires and does nothing, but it is always there ready for the developer to

employ if needed.

This isn't the most robust or useful application, but remember its purpose is purely didactic. The impor-

tant thing is that we have tied a few different components together with the Visual Basic language. Most of

the work is performed in each control. Visual Basic is just the glue, wiring, or breadboard—however you

want to think about it—that ties these discrete components together.

We could easily have developed this simple little application with Visual Basic’s label and timer con—

trols instead of our POSTIT control, but we wouldn’t have learned anything.

get

As we discussed in Chapter 7, the OLE Control 96 specification requires that controls provide component

category support in their implementation. Our control doesn’t have any special requirements, and it is

rather simple to add component category support. POSTITCTL.CPP currently does the following when the
D1 lRegisterServer function is called:

//

// CPostitCtrl::CPostitCtrlFactory::UpdateRegistry -

// Adds or removes system registry entries for CPostitCtrl

//

BOOL CPostitCtrl::CPostitCtrlFactory::UpdateRegistry(BOOL bRegister)

{

NFLE 1009 - Page 96

NFLE 1009 - Page 97

A Simple Control ¢ 337WWWWWMMMWWWMWMMWWWNMWWWMWMW W «WWAVMWWANMWM WMWWWyNWW/M W,WMW,:..»\W. MW,WmH/Wm,,.mWWWWMWMWAMWNWWWVWWWMW

if (bRegister)

return AfxOleRegisterControlClass(

AfoetInstanceHandle(),

m_clsid,

m_lpszProgID,

IDS_POSTIT,

IDB_POSTIT,

afoegInsertable | afoegApartmentThreading,
_deostitOleMisc,

_tlid,

_wVerMajor,

_wVerMinor);
else

return AfxOleUnregisterClass(m_clsid, m_lpszProgID);

}

As the comments indicate, AfXOleRegisterControlClass updates the system registry with all the con-
trol-specific information. These entries, such as Control, TypeLib, and InProcServer3 2, were described

in Chapter 7. COM-based servers must also provide a function to remove a server’s Registry entries. MFC

maps our control’s DllUnregisterServer call to the preceding function, which then calls

AfxOleUnregisterClass to remove the entries. Everything works as planned. Now, however, we need

to also provide component category support. Add the following code to POSTITCTL.CPP:

// PostitCtl.cpp

#include <comcat.h>

HRESULT CreateComponentCategorY(CATID catid, WCHAR* catDescription)

I.

” gICatRegister* pcr = NULL ;

' HRESULT hr = S_DK ;

_f // Create an instance of the category manager.
,1 hrr= CoCreateInstance(CLSID_StdComponentCategoriesMgr,

NULL,

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

,y (void**)&pcr);

“ ‘ if (FAILED(hr))
return hr;

NFLE 1009 - Page 97

NFLE 1009 - Page 98

ass a CHAPTER a

CATEGORYINFO catinfo;

catinfo.catid = catid;

// English locale ID in hex

catinfo.lcid : 0x0409;

int len : wcslen(catDescription);

wcsncpy(catinfo.szDescription, catDescription, len);

catinfo.szDescriptionilen] : ‘\O’;

hr = pcr—>RegisterCategories(l, &catinfo);

pcr§>Release();

return hr;

}

This code, from Chapter 7, takes a category ID and a description and makes sure the entry exists in the

”Component Categories” section of the Registry. We need to make sure that the entry is there before we flag

our control. Once we ensure that the category exists, we update our control’s Registry entries with the

“Implemented Categories” keys. Here’s some general code to do this:

HRESULT RegisterCLSIDInCategory(REFCLSID clsid, CATID catid)

C

-ICatRegister* pcr = NULL ;
HRESULT‘hr = S_OK ;

// Create an instance of the category manager.

hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,
NULL,

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**)&pcr);

if (SUCCEEDED (hr))

{

CATID rgcatid[l];

rgcatid[0} = catid;

hr = pcr—>RegisterClassImplCategories(clsid, l, rgcatid);
i

if (pcr != NULL)

pcr—>Release();

return hr;

HRESULT UnregisterCLSIDInCategory(REFCLSID clsid, CATID catid)

C

NFLE 1009 - Page 98

NFLE 1009 - Page 99

A Simple Control fw389

ICatRegister* pcr : NULL ;

HRESULT hr = SgOK ;

U ;/ Create an instance of the category manager.

hr : CoCreateInstance< CLSID_StdComponentCategoriesMgr,

NULL,

CLSCTX_INPROC_SERVER,

IlDfiiCatRegister,
(void**)&pcr);

if (SUCCEEDED(hr))

i

I CATID rgcatidil};
rgcatidfO} = catid;

hr = pcr->UnRegisterClassImplCategories(clsid, l, rgcatid):
1I

if (pcr != NULL)

pCr->Release();

return hr;

1}

Both of the preceding functions take a CLSID and a CATID and update the associated Registry entries. In

one case the entries are added, and in the other the entries are removed. All this is easy, because the compo-

nent category manager does most of the work. After we add these three support functions, the code addi-

tions for UpdateRegistry are straightforward:

//

// CPostitCtrl::CPostitCtrlFactory::UpdateRegistry —

// Adds or removes system registry entries for CPostitCtrl

//

BOOL CPostitCtrl::CPostitCtrlFactory::UpdateRegistry(BOOL bRegister)

{

if (bRegister)

(

CreateComponentCategory(CATID_Control,

L"Controls"-);

RegisterCLSIDInCategory(m_clsid,

CATIDHControl);

return AfxOleRegisterControlClass(

AfoetInstanceHandle(L

m_clsid,

m_lpszProgID,

IDSQPOSTIT,

NFLE 1009 - Page 99

NFLE 1009 - Page 100

390 9 CHAPTER 8

IDBflPOSTIT,

afoegInsertable I afoegApartmentThreading,
_deostitOleMisc,

_tlid,

_wVerMajor,

MwVerMinor) ;

1

else

{

UnregisterCLSIDInCategory(m_cls id,

CATIDfiControl) ;

return AfxOleUnregisterClass (m_clsid, m_lpszProgID) ;

1

After we link and register the control, the new ”Implemented Categories” entry will be placed in the

Registry. Figure 8.18 shows the Registry entries for our POSTIT control.

*E}{B7711240-A700~1lCE’83FD-02BOBC3ECUBA}
—-{B7711241-A700-11CE-83FD-0250303E000A}
--{BBDZZZ70-0C24~10lB'AEBD-040210009402}
“E’EBBFBBUQB-BEQE'HCE-A43C-ACE71F1BDE7'F}

G Control
3 Implemented Cateqories
" CRUDEBBASHBAA-t10F-A229~00AA00307352}
“CJ{40FCBED4-2438-11CF-A3DB-080035F12502}
*CI{7DD§5801~9832-11CF—9FA9-00AAOUBC42C4}
‘- C]{?DD95802'9882-110F-9FA9-00AA00504204}

CI lnprooSeNerBZ
CI lnsertable

MiscStatus
CI ProgtD
r: ToolboxElitmap32
CI TypeLib
D Version

*-{BBFBBUEA-BE9E-11CE-A43C-ACE71F1BDE7F}
BBFA854A-0FOF~11DU-AB33-DCF8E3000000}

{BD11A280’2E73-11CF‘EBCF-00AAO0A74DAF}
{BOB4B380-8CZA2-10B

Figure 8.18 Component categories tor our control.

The control has three other component categories registered. These categories make it easier to embed the

control in Internet Explorer. We’ll cover this in more detail in Chapter 12‘ For now, here’s the additional

code to support Internet Explorer:

#include <obj safe . h>

// Add to UpdateRegistry function

NFLE 1009 - Page 100

NFLE 1009 - Page 101

createComponentCategory(CATID_SafeForInitialiZing,

L”Controls safely initializable from persistent data”);

RegisterCLSIDInCategory(m_clsid,
CATID_SafeForInitialiZing);

CreateComponentCategory(CATID_SafeForScripting,
L”Controls that are safely scriptable”);

RegisterCLSIDInCategory< m_clsid,
CATID_SafeForScripting);

createComponentCategory(CATID-PersistsToPropertyBag,

L"Support initialize via PersistPropertyBag");

RegisterCLSIDInCategory(mwclsid,

CATID_PersistsToPropertyBag);

The component category symbols and .LlB Files are part of the ActiveX SDK. It you're using Visual
C++ 4.x, you will need to install the ActiveX SDK to compile and link the examples. It you don't
install the SDK, you can just remove the references to COMCAT.H. However, by the time you read
this, the later versions of Visual C++ (5.x) will have intrinsic support For component categories.
Check out my Web site For the most recent examples and details on newer versions of Visual C++.

 -e-agg%§'s e iaataaé
Visual C++ makes it fairly easy to debug DLL applications. To step through the code for the POSTIT control,

we need only set a break-point on the lines we want to debug and press F5. This action brings up a dialog

box. In Executable for Debug Session, enter the path and filename for the Test Container (or any other con-

tainer). On my machine, it would be c:\msdev\bin\tstcon32.exe. After clicking OK, you will get a dialog

box complaining that TSTCON32.EXE doesn’t contain any debug information and asking whether it’s OK

to continue. It is. This will bring up the Test Container. You can then insert your control into the container,

and you will eventually break on your break-points.

If you make a mistake typing in the debug executable filename, you can access it from the

Build/Settings/Debug tab. The first entry field, Executable for debug session, contains the path to the exe-
cutable.

gs $3?
We’ve covered a lot of material in this chapter, so let’s summarize the topics. Visual C++ and MFC include a

number of classes and tools to help in the creation of ActiveX controls. Visual C++ includes a code genera—

tion tool called ControlWizard that is similar to AppWizard. ControlWizard builds an ActiveX control pro—

ject based on answers you supply to various questions. ControlWizard generates the initial control code, and

ClassWizard is used thereafter to make additional changes.

NFLE 1009 - Page 101

NFLE 1009 - Page 102

3%.? 9 CHAPTER 8

A few MFC classes are used exclusively for ActiveX control development. COleControlModule pro—

vides the application—level class for a control’s DLL implementation. This class provides the COM-specific

external functions, DllRegisterServer and DllUnregisterServer. MFC also provides an additional

COM~based interface, IClassFactoryZ, that provides component licensing methods. This interface is

implemented within MFC with the COleClassFactoryEx class and provides a default licensing model for
controls.

The COleControl class is derived from CWnd and contains hundreds of methods. It provides the bulk

of the ActiveX control functionality. One of the most important methods in COleControl is OnDraw, which

is called by the container whenever the control requires rendering within its site. Many of the control devel-

opment details are handled in OnDraw. Other important COl eContro 1 methods include
SetInitialSize, OnAmbientPropertyChange, and DoDataExchange.

The ActiveX control standard defines stock properties and methods that control developers should use

if appropriate for the control’s implementation. We added all of them to our control and explored each one.

Font properties require the use of MFC’s CFontHolder class. This class provides methods to manage OLE’s

font manipulation interfaces, which allow efficient management of fonts between COM-based components.

ActiveX controls depend on the services of another COM-based component, the property page.

Property pages provide a uniform interface to the control’s custom and stock properties. Each property page

is a distinct component that is used by both the container and the control. The container loads the property

pages for a control and frames them within a property sheet. When a user modifies a control’s property, the

property page, using automation, modifies the property within the control.

Ambient properties are read—only properties exposed by the container. They provide information about

the container’s environment to the control. There are ambient properties for the container’s visual state, such

as Color and Font, as well as ambients that indicate the current mode of the container. These latter proper-

ties indicate whether the container is currently in design phase, run mode, or debug mode. This state is

important to the control, because its behavior changes depending on the container’s state.

Methods and events allow the control user to use the control’s functionality as well as to be notified of

changes that occur within the control. This two-way conununication is an important attribute of controls.

The ActiveX control standard defines several standard events, and the stock implementations of these events

are provided by the MFC.

Serialization of a control’s properties enables the container to maintain the state of a control between the

design phase and the running phase. Serialization also provides a way for the control to recognize previous

versions of itself and to adjust the loading of properties accordingly. The container is responsible for the rep—

resentation of the control’s property information (when you’re using propertyvset persistence) and ensures

that it will be provided to the control in a uniform way.

Controls are COM~based in~process servers and must be added to the system Registry before being

used. Visual C++ has a menu item, Register Control, that performs this task. You should also register your

control using the new Component Categories specified by the OLE Controls 96 specification. MFC doesn’t

currently provide this registration by default, but it is easy to do using the provided component categories

manager component. ‘

Testing of controls is performed with either the Test Container or with any commercially available con—

tainer (such as Visual Basic or Internet Explorer). The debugging of controls is similar to debugging other

COM—based in‘process servers.

NFLE 1009 - Page 102

NFLE 1009 - Page 103

In this chapter, we’ll concentrate on controls that display information. Most ActiveX controls have a graphi-

cal element. We’ll focus on what is required to produce a control that draws efficiently and provides a useful
representation in the various environments it may encounter. We will also review the MFC classes and tech—

niques that we will use when drawing the ActiveX control.

 iéefia fifii?

Our example control for this chapter is a clock. I know there are hundreds of clock variations available for

Windows, but by implementing a clock we'll learn how to effectively draw ActiveX controls. Figure 9.1

shows the completed clock control within a container.

393

NFLE 1009 - Page 103

NFLE 1009 - Page 104

3§4% CHAPTER Q

£9 ngzmée: 1:19:33)

ID \2ED\example.\chap9\htm‘stest. mm
 ~wvwmymwm<WM-W*

Explerer

Figure 9.1 The clock control.

We’ll use ControlWizard to create the project. We discussed how to use ControlWizard in Chapter 8, so we

won’t spend much time on it here. Start Visual C++ and use ControlWizard to build a control project with

the name CLOCK. Choose the following options:

- In the Step 1 of 2 dialog box, take the defaults of N0 License, Yes, comments, and No help files.

' In Step 2 of 2, take the defaults.

Click Finish and create the control. After the project is created, use ClassWizard to add the following stock
properties through the OLE Automation tab:

3

9
Appearance
BackColor

ForeColor

Hwnd

BorderStyle

NFLE 1009 - Page 104

NFLE 1009 - Page 105

Graphical Controls % 3?5WWWWMKMW/WWNWWWMWMmwvm.w~»m«emwwwwwwmmmww..m/M”wwwmwwwmmwaMWNWWwwwmmmflwwmwfl W.,WW,way/MW“smwwwmmwwmnmw.

0 Enabled

9 Font

Our clock doesn’t have a caption or any text, so you might wonder why we need the Font property. You’ll

see in a moment. We will use it to draw the control’s ambient display name during the container’s design

phase.

 its ‘3 éiassas
Before we jump into the drawing code, let’s review some of the techniques used to draw graphics in the

Windows operating system. We touched on this in Chapter 8, and I’d like to expound on it a little more

before we go further. We’ll explore drawing by looking at the classes within MFC that encapsulate the

Windows graphical drawing API functions.

The €D€ {Elsa

Displaying information within the Windows environment requires the use of the graphical device interface

(GDI) functions. GDl provides a device-independent interface to manipulate the devices (such as your Video

card, monitor, and printer) connected to your computer. Manufacturers provide device drivers for their par—

ticular hardware, and we developers use the Windows GDI API to manipulate these devices.

Most of the GDI functions work with or need a device context (DC), which provides the connection

between your program and the device the DC represents. A device context is usually an area on the screen

or printer but may also represent a memory construct called a metafile, which we will discuss in a moment. A
device context maintains a set of attributes that affect the behavior of the various GDI functions on the DC.

Example DC attributes include its default brush, pen, font, background color, and text drawing modes.

The MFC CDC class encapsulates a Windows device context and provides methods to manipulate it.

Most of the method names are identical to those of the Windows GDI API, so if you have worked with them

before, there shouldn’t be much to learn. As we saw in Chapter 8, the COleControl: :OnDraw method

receives a CDC pointer in which to render the control.

The majority of the methods in the CDC class are for modifying the attributes of a device context or for

actually drawing on the device context. We can’t cover them all, but we’ll cover some of the important ones

that you will use when drawing your controls. Table 9.1 lists some of the useful members of the CDC class.

To get a quick listing of them all from within Visual C++, position the cursor on the text CDC and press F1.

NFLE 1009 - Page 105

NFLE 1009 - Page 106

396 e CHAPTER 9WMMMWWWWMWWMLWMWWWWMWWWWM

Table 9.] Useful CDC Methods

Method Purpose

FillRect (CRect , CBrush*) Fills the area indicated by the CRect parameter with the brush provided.

Ellipse(LPRECT) Draws an ellipse in the rectangle provided. The default pen, fill mode, and brush are
used.

Rectangle(CRect) Draws a rectangle with the default pen, fill mode, and brush.

MoveTo(POINT) Moves to the point provided.

LineTo(POINT) Draws a line from the current position to the point provided using the default pen.

Selectobj ect (CBrush*), Selects the GDI obiect into the device context and returns a pointer to the previously

Selectobject(CPen*) , selected object. This obiect should be selected back into the DC when you’re finished.
Selectobj ect(CFont*)

SelectStockObj ect (int) Selects a system-provided GDI object into the device context. Examples include:
WHITE_BRUSH,BLACK_PEN,

SYSTEM_FONT, and so on.

SetBkColor(COLORREF) Sets the background color of the device context.

SetBkMode(int) Sets the background fill behavior.

SetTextColor(COLORREF) Sets the color of the text for the device context.

TextOut(. . .), Draws text on the device context
ExtTextOut(. . .),

DrawText(. . .)

SetTextAlign(UINT) Sets the defaultalignment for text output.

CreateCompatibleDC (CDC*) Creates a memory DC with the characteristics of the DC provided.

SaveDC () Saves the state of the device context. This includes all the attributes of the DC

(brushes, pens, and so on). The method returns an integer identifying the saved DC.

This value is later passed to the Res toreDC method.

RestoreDC (int) Restores that state of a device context previously saved with the SaveDC method. An

integer identifying the saved DC is required.

SetMappingMode(int) Sets the mapping mode for the device context.

GetDeviceCaps (int) Returns various characteristics of the DC. An example is the logical size of a device

unit or pixel.

The DC provided to the OnDraw method is set up by the container, and we cannot make any assumptions

about its current attribute set. We must ensure that the DC is set up the way we need it to draw our control.

Here are some example CDC methods as they might be used in your control's OnDraw method:

pdC—>SetBkModE(TRANSPARENT)i

pdc->SetTextColor(TranslateColor(AmbientForeColor()));

CBrush karush(TranslateColor(GetBackColor())l;

NFLE 1009 - Page 106

NFLE 1009 - Page 107

Graphical Controlsy e» 3??

WWWWMMflWWWMNMWWWMwmammwwmmewym,"

CBruSh* pOldBrush = (CBrush*) pdc—>Select0bject(&karush);

CPen* pOldPen = (CPen*) pdc->SelectStockObject(BLACK_PEN L

pdc~>SetTextAlign(TA_CENTER | TA_TOP);

pdc~>Ellipse(LPCRECT(chounds));

pdc->ExtTextOut(chounds.left, chounds.top, ETO_CLIPPED, chounds,
strCaption, strCaption.GetLength(), NULL);

SelectObject(pOldBrush);

SelectObject(pOldPen);

The first five methods set up attributes of the device context. We set the background mode to

TRANSPARENT, which indicates that the background will not be redrawn the next time that we use a draw-

ing function. We then set the default text color for drawing text. An instance of a CBrush object is created
and initialized to the stock background color. The COleControl: :TranslateColor method is used to

convert a color value from the OLE_COLOR type to the COLORREF type expected by the CDC method. We
then use SelectObj ect to select the new brush into the device context. We save the old brush so that we

can restore it later.

The GDI provides a number of stock objects that are available for the developer to use. The
SelectStockObj ect: method selects a system-provided GDI object into the device context. A BLACK_PEN

and the control's BackColor property will be used when we use the drawing functions. Next, we set the

alignment method for text drawing using SetTextAlign. These five methods modify the DC and provide

the default behavior for the drawing methods.

‘The Ellipse method draws a bounding ellipse inside the rectangle provided. When it draws the
ellipse, the device context’s attributes are used. ExtTextOut also uses the attributes of the DC when draw-

ing the text. By setting the attributes in the DC, we need not provide a bunch of parameters to the various

drawing functions that we use, because they are maintained within the DC itself.

When we’re finished drawing, we restore the DC’s brush and pen to what they were before we started.

We do this because the karush instance was created on the stack and so will go out of scope when the func—

tion exits. If we do not select the 01d brush back into the DC, the DC will be left using an invalid GDI object.

Some of the GDI functions that modify a DC’s attributes require the creation of a GDI object to provide

as a parameter. When you create the object, it is important to restore the old object and to delete the GDI

object when you’re finished using it. The C++ language makes it easy to handle this situation. When creating

a new GDI object (such as brush, pen, or font), you should create it using the stack as we did in the preced-

ing example for the karush object. When the instance is created on the stack, the compiler will ensure that

it is cleaned up when it goes out of scope. The destructor is called, and the GDI object is deleted. Each of

MFC’s GDI object classes behaves this way.

Creation and destruction of drawing objects every time a control draws can be very expensive. The OLE

Control 94 specification, however, required the control to maintain, and thus reset, the state of the device

context provided by the container. This meant that the control had to restore the DC to its original state after

each call to OnDraw. The OLE Controls 96 specification allows the control and container to coordinate their

efforts when drawing. If they both support optimized drawing, the control need not reset the DC every time.

NFLE 1009 - Page 107

NFLE 1009 - Page 108

398' sACI-lAPVTER 9

This arrangement makes the drawing process more efficient. When we initially built the clock project, we

checked the Optimize drawing option. We’ll make use of this option later in this chapter.

lite Crush Class

The CBrush class provides methods for creating, destroying, and using a Windows GDI brush object.

Brushes are used to fill regions with a particular color. Each device context has a default brush that is used to

fill the background when using various GDI functions (or CDC methods).

// Create a brush on the stack and initialize it

// to the control's current background color

// When karush goes out of scope its destructor will

// free the GDI resource

CBrush karush(TranslateColor(GetBackColor() l);

// Create a bright red brush from the heap

// You must delete the brush to free up its resources

CBrush* pBrush = new CBrush(RGB(OxFF, 0x00, 0x00));

// Use the brush...

delete pBrush;

// Create a blue hatched brush

CBrush hatchedBrush(HS_CROSS, RGB(0x00, 0x00, OXFF);

In the preceding examples, we used the RG3 macro to provide the CBrush constructor with a specific color.

The RG3 macro constructs a Windows COLORREF value by combining the three parameters. Each parameter

specifies the intensity of each specific color—red, green, or blue—in the resulting combined color. Following

are example colors that you can produce with the macro. If the device context in which you are selecting the

color does not support the particular hue, it will do its best to match the color using a dithering algorithm.

RGB(0x00, 0x00, 0x00) // Black

RGB(OXFF, OxFF, OXFF) // White

RGB(OXFF, 0x00, 0x00) // Red

RGB(OXCO, OXCO, OXCO) // Light Gray

RGB(OXFF, OXFF, 0) // Yellow

The {Peer Class

The CPen class encapsulates a GDI pen object and provides a convenient method of selecting pens for use

within a device context. Pens can be solid, dashed, dot, or even null. Solid pens also support a parameter

that allows the pen to be sized. The size is specified in pixels. Here are some example uses of CPen:

NFLE 1009 - Page 108

NFLE 1009 - Page 109

Graphical Controls e 399”M“ “ W~/IWWW‘WWM,WWWWW.MWWWWWMAW/,WZNWMW/Wywwmwzmm.mem,NMWWNWWWWWWWWW»

// Create a solid blue pen 2 pixels wide

CPen penBlue(PS_SOLID, 2, RGB(0x00, 0X00, OXFF));

// Create a dashed black pen 1 pixel wide
CPen pen;

pen.CreatePen(PS_DASHED, 1, RGB(OXFF, OXFF, OXFF));

// Create a Null pen

CPen penNULL< PS_NULL, l, 0)

The pen and brush objects provide a null implementation. You can select a null brush into a device context
to ensure that the bounding area of a CDC method will be treated as TRANSPARENT. A null pen can be

selected into a device context so that no border will be drawn when using the various CDC methods (such as
Ellipse).

The Eton? {Bass

The CFont class encapsulates a Windows font object. The constructor creates an uninitialized font object

that must then be initialized using either the CreateFont or the CreateFontIndirect method. We
haven’t encountered the need to create a font for our controls to use—we’ve been using the stock font prop-

erty—but we have used the CFont class to create a pointer to save the old font when we select our stock font
into the DC.

// Select the stock font and save the old one

CFont* pOldFont = SelectStockFont(pdc);

// Set up the text drawing modes in the DC

pdc—>SetBkMode(TRANSPARENT);

pdc—>SetTeXtAlign(TA_LEFT | TA_TOP) ;

// Do something with the font

// Draw the text in the upper left corner

pdc—>ExtTextOut(chounds.left, chounds.top, ETO_CLIPPED,

chounds, strName, strName.GetLength(), NULL);

// Restore the old font

if (pOldFont)

pdc—>Select0bject(pOldFont);

 “the iflifi'mp flags
The CBitmap class is similar to the CFont class in that its constructor creates an uninitialized bitmap object

that must be initialized later using one of various class methods. LoadBitmap loads a bitmap from an appli-

NFLE 1009 - Page 109

NFLE 1009 - Page 110

ass a CHAPTER 9W MV_WMMW,.WMWWMWWWNWWMWWWWWWWWWWWWKWWWW

cation’s resource file. LoadOEMBitmap loads one of the standard, Windows—provided bitmaps, which

include checkboxes, arrows, checks, and so on. The method of interest in this chapter is
CreateCompatibleBitmap. We will use this method later when we create an off—screen DC to remOVe
flicker from our clock control.

Our clock uses an analog representation, so we initially need to draw a circle to outline the clock’s face. This

is easy. We just use the CDC:Ellipse method. The following code creates a brush using the stock back-

ground color and selects it into the DC. It then creates a solid black pen and selects it into the DC. We then

fill the bounding rectangle with the background color and draw the ellipse using the coordinates of the

bounding rectangle.

CBrush karush(TranslateColor(GetBackColor()));

CBrush* pOldBrush = pdc—>Select0bject(&karush);

int iPenWidth = 1;

CPen penBlack(PS_SOLID, iPenWidth, RGB(0x00, 0x00, 0x00));

CPen* pOldPen = pdc~>SelectObject(&penBlack);

pdc->FillRect(chounds, &karush);

pdc—>Ellipse(LPCRECT(chounds));

The sections that follow describe the process of drawing the clock. Each section has a snippet of code to illus~

trate the concepts. At the end, I’ll present the complete source for the OnDraw method. So if you’re typing

along, go ahead and add the source that is highlighted, but wait until later to add the source for OnDraw.

We want our clock to be round, so we set its initial size to 200 by 200 pixels in the control’s constructor.

Later we will add code to ensure that our clock's bounding rectangle is always square.

CClockCtrl::CClockCtrl()

(

InitializeIIDs(&IID_DClock, &IID_DClockEvents);

// TODO: Initialize your control’s instance data here.

_ SetInitialSize(200' ,, 200)‘,- “
}

Next we need to draw tick marks for the minutes (or seconds) and the hours. This is a little more compli-

cated, and we need to use a little trigonometry.

«wing the Tick Marks @5‘ {ulculming the ”flick fink Points
We need to draw tick marks for the second as well as the hour positions on the clock. The hour ticks will be

slightly larger than the seconds’ ticks. We won’t spend much time on the algorithms that we’re using to

NFLE 1009 - Page 110

NFLE 1009 - Page 111

Graphical Controls % $93WWWMWW/WWWWm-~WM~WW~mwww~w WWW

draw the clock. I’ll provide a quick overview and an illustration so that you can delve into it if you want to.

Figure 9.2 shows a diagram of our control. The outer circle outlines the face of the clock. The inner circle
shoWS how we will calculate and draw the tick marks. By drawing a line connecting the two circles, we will

create a ”tick." The trick, then, is to calculate the points on the two circles and then connect them.

(-100,100) (100,100)

This tick mark is

produced by
connecfingthe
points between
the two circles.

(-100,-100) (100, -100)

Figure 9.2 Drawing the clock.

To get the points on both Circles, we use the cosine and sine functions provided in MATH.H. The cos and

sin functions take an angle in radians as their parameter, and we all remember that 27: radians equals a full

circle (rightl). MATH.H doesn’t provide a symbol for 7:, so we need the following #defines for our calcula-
tions.

#define PI 3.141592654

#define START__ANGLE (.5 * PI)

Pi to nine digits is just fine. START_ANGLE equates to n/2 radians (90 degrees), which is the 12:00 position

on our clock. We store the tick points in an array, and by starting our calculations at 7t/2 radians, we ensure

that our array’s zero index value will be at the 12:00 position. In other words, array position 10 is equal to 10

minutes after the hour, and so on. To calculate the point on the circle, we use the usual trig functions. The

equations are shown next, first in their mathematical form and then in C++ (@ = theta).

// to get the x coordinate

cosine@ = x / r or x - cosine@ * r

x = cos(angle) * r

// To get the y coordinate

sine@=y/r0Ry=sine@*r

y = sin(angle) * r

NFLE 1009 - Page 111

NFLE 1009 - Page 112

452 9 CHAPTER 9

rrBeands Upper left isn’t at $0, G)
Our calculations are a little more complicated than this, because the chounds parameter provided to

OnDraw by the container need not, and probably will not, provide the upper left coordinates as (0,0). If you

assume otherwise, you’ll probably end up drawing in the container's client area, outside the control’s rectan~

gle. For performance reasons, most containers will not provide a clipping region for your control. A clipping

region provided by the container would ensure that, even if your control tried to draw outside the con~

tainer’s boundaries, the clipping region would clip it. Most containers do not provide clipping regions, so

you need to be careful not to draw outside the bounding rectangle provided by the container. This relation—

ship between the container’s client area and the control’s site is shown in Figure 9.3.

(0,0)

Figure 9.3 Container and control coordinates.

Drl'wrag tire Clark fiends
Drawing the hands for our clock is easy once we understand how to draw the ticks. We again use an imagi~

nary circle that is inscribed within the outer circle. The length of each hand is determined by the radius of
the smaller circle. The hour hand will be one~half the size of the outer circle, so we divide the outer circle

radius by 2. The minute and second hands are the same length and are slightly smaller than the circle used

to draw the hour tick marks. Although the minute and second hands are the same length, we will draw
them with different thicknesses.

To make drawing the hands fast, we will maintain an array of points within our control class. This array

is calculated along with the tick marks array. In our initial implementation, we calculate these points every

time we draw the control. This requirement is very expensive, but we will eliminate it in a moment.

NFLE 1009 - Page 112

NFLE 1009 - Page 113

Gra hicczl Controls e 493

Here’s the code that handles the ticks and the size and placement of our clock’s hands. This code calcu-

lates all possible tick and hand positions and stores them in an array. OnDraw then uses the calculated point

arrays later to do the drawing. This technique makes the drawing code fairly easy to Lmderstand.

// ClockCtl.CPP - : Implementation of the CClockCtrl OLE control class.

#include “stdafx h"

#include “Clock.h“

#include “ClockCtl.h”

#include “Clockag.h"

éinclude <math.h>

#ifdef _DEBUG

édefine PI 3.141592654

itdefine START_ANGLE (.5 * PI)

yoid CClockCtrl::CalcTicksAndHands(CDC *pdc, const CRect& chounds)

it ,
int nRadius = chounds.Width() / 2;

: double r23, r2y, rlx, rly;

// Calculate the size of the hour and

// minute tick marks. We use a simple

// scaling method to determine the sizes.

short sHourTickLen = chounds.Width() / 20 + 2;

short sMinuteTickLen = rchunds.Width() / 40 + l;

// Calculate the minute and second hand arrays

double angle = START“ANGLE;

// The inscribing circle must be slightly smaller than the HourTick

// circle so that we won’t “hit" it. We subtract an additional 2 pixels

// to ensure this.

// The radius of the circle for the minute and second hand coordinates

int r2 = nRadius — sHourTickLen « 2;

// Work ourselves around the circle in 60 unit increments

// The radian angle changes within the loop
// r3 is the size of the hour hand. Half the radius

int r3 = nRadius / 2;

for (int i = 0; i < 60; i++)

{

r2x = cos(angle) * r2 + chounds.left;

NFLE 1009 - Page 113

NFLE 1009 - Page 114

4@@ e CHAPTER 9

i/ The direction of the Y axis is reversed

// when using the MM_TEXT mapping mode. The Y

// axis increases as you move DOWN instead of up.

I/ We reverse the direction by negating the sin
r2y = “sin(angle 3 * r2 + choundsptop;

m_MinSecHands[i].x = short(r2x);

m_MinsecHands[i].y = short(r2y);

// Calculate size of hour hand

r2x = cos(angle) * r3 + rchunds.left;

r2y = ~sin(angle) * r3 + chounds.top;

// Store the hour ticks in an array

m_HourHands[iI.x = short(r2x);

m,Hou:Hands{i].y ? short(r2y);

angle -= (2 * PI) / 60;

} .

// Calculate the tick arrays _ _
If Calculate the small ticks for each minute

angle =‘ START_ANGLE; _
r21: nRadius'- sMinuteTickLen;

I int r1 = nRadius;~ ‘ I

for (i i 0; i < 60; i++)

{ ,
rlx : cos(angle) * r1 + chounds.1eft;

rly = ~sin(angle) * :1 + chounds.top;

rZX = cos(angle) ? r2 + chounds.left;

r2y = -sin(angle) * :2 + chounds.top;

'f/ Each tick is composed of two points

1/ store them in a 2x60 array of points

m_MinuteTicks[0][i].x :~short(rlx);

m_MinuteTicks[0][i].y = short(rly);

m;MinuteTicks[l][i3.x = short(r2x);

m_MinuteTicks[l][i1.y : short(rgy‘);

// Get the_next radian angle

angle —= (2 * Pl) / 60;
}

/I Calculate the hour ticks

NFLE 1009 - Page 114

NFLE 1009 - Page 115

Graphicai Controls a @G5WWW/M.-WWM.WMWWM W MW,WWWWW.WMMNWWMNW,«WWW»MWMMWWWAWWWMWWWVWWMWMWWrr-WW,WWWWWMNWWWWW erwuwmw”WWMWWMWWMWWAWNMM

angle = STARTVANC-LE;

*3 r2 = nRadius ~ sHourTickLen;

 V’for(i=0;i<l2;i++)

f/ Get the point on the outer Circle

rlx = cos(angle) * rl + chounds.left;

rly = —sin(angle) * r1, + roBounds.top; ,
H Get the point on the iimer (smaller) circlen
rax = cos(angle 1 * r2 +‘chounds.leftf

r2y = —sin(angle) * r2 + chounds.top;

// Each tick is composed of two points-

// store them in a 2X12 array of points,"
m.HourTicks[O][i].x : shorti rlx);

m_HourTicks[0}[i].‘ = short< rlY) ;;. (

mWHourTicks[l][i].A = short(r2x);
(

m_HourTicks[1][i].y = short rZy);

angle «2 (2 * PI) / 12;

Drawiag the {Emits WE: Marks and ti aids
Once we’ve calculated everything and stored it in the member arrays, the drawing is straightforward. Here

is the code to draw the tick marks. We iterate through our two-dimensional array and use the MoveTo and

LineTo drawing primitives.

// Draw the minute/second ticks

for (int i = O; i < 60; i++)

{

pdc—>MoveTo(nLMinuteTicks[0][i]);

pdc—>LineTo(m_MinuteTicks[l][i]);

)

// Draw the hour ticks

// with a larger pen

CPen penBlk(PS_SOLID, 2, RGB(0x00, 0x00, 0x00));

pdc—>Select0bject(&penhlk);
for (i = 0; i < 12; i++)

{

pdc~>MoveTo(m_HourTicks[0][i]);

pdc—>LineTo(m_HourTicks[l]{i]);

NFLE 1009 - Page 115

NFLE 1009 - Page 116

40é é CHAPTER 9

Drawing each of the hands is only slightly more complicated. We use the time—minute, hour, or second~—as

an offset within the appropriate array. The drawing of each hand is very similar, so I’ve shown only the

hour hand code. The only tricky part is calculating the array offset for the hour.

// Use the foreground color for the clock hands

// Draw the hour hand

int iPenWidth = l;

CPen penHour(PSwSOLID, iPenWidth + 3, TranslateColor(GetForeColor()));

pdc->Select0bject(&penHour);

// Move to the center of the bounding rectangle

pdc->MoveTo(ptCenter);

// An hour spans 5 minute ticks plus the number of minutes divided

// by 12. This provides the gradual movement of the hour hand.

int wHourTick = (m_wHour * 5) + (int) (m_wMinute / l2);

// Draw from the center to the array point

pdc—>LineTo(HLHourHands[wHourTick]);

Getting tire €oa‘rent’r Time
To have an accurate clock, we need to get the time from the operating system. MFC provides a CTime class

that also isolates the platform differences in time functions. So we can write the GetTime function like this:

void CClockCtrl::GetTime()

f

CTime time = CTime::GetCurrentTime();

m_wHour = time.GetHour();

if (mwwHour >= 12)

meHour -= 12;

m_wMinute = time.GetMinute();

m_wSecond : time.GetSecond();

l

Before we see the complete OnDraw source, there is one more thing that we need to cover: Windows map-

ping modes. V

Mapping Modes
Figure 9.2 depicts the Cartesian coordinate system that we’ve all used, but the device context that we get

from the container won’t provide us with such a coordinate system. We must create it ourselves. To do so,

we need a quick review of Windows’ mapping modes. For a more detailed treatment, see Programming

Windows 3.1, Third Edition, by Charles Petzold (Microsoft Press), and the Win32 SDK documentation.

NFLE 1009 - Page 116

NFLE 1009 - Page 117

Graphical Controls e» 497

A mapping mode is another attribute of the device context. To understand mapping modes, you must

first understand the difference between logical coordinates and device coordinates. Device coordinates are

described in terms of pixels, a unit whose size is dependent on the type of display you are using. If you spec~

ify an area of 320 by 240 pixels (or device units) and if the program is running on a VGA monitor (640x480),
the area will cover one quarter of the screen (half the width and half the height). The true size of a pixel is

dependent on the underlying hardware. If you want a control whose size is always 1 inch by 1 inch, you

must use logical coordinates, and one of Windows’ physical unit mapping modes.

Windows’ eight mapping modes are listed in Table 92. Each mapping mode creates a logical space that

is mapped to the physical space of the display or printer.

Table 9.2 Windows Mapping Modes

Mapping Mode Description

MM__TEXT Maps one logical unit to one device unit or pixel. The positive y‘axis extends downward.

MtLHIMETRIC Maps one logical unit to 0.0] millimeters. The positive y-axis extends upward.

MM_LOMETRIC Maps one logical unit to 0.l millimeters. The positive y-axis extends upward.

MM~HIENGLISH Maps one logical unit to 0.00l inches. The positive y-axis extends upward.

MM_LOENGLISH Maps one logical unit to 0.01 inches. The positive y‘axis extends upward.

MM_TWIPS Maps one logical unit to one twentieth of a point, or l/l 440 inches. The positive y-axis extends

upward.

MILANISOTROPIC Maps a logical unit to an arbitrary physical unit specified by the developer. Both the x-axis and the

y-axis can be arbitrarily scaled. This allows stretching of the coordinate system.

MILISOTROPIC Maps a logical unit to an arbitrary physical unit specified by the developer. The X‘OXlS and y-axis
maintain a l-to-l ratio.

The easiest mapping mode to work with is MM__TEXT. In this mapping mode, device coordinates and logical

coordinates are the same. To put it another way, the logical coordinates map directly to pixels. In MIvI_TEXT,

the upper left corner is point (0,0); Y increases as you move down, and X increases as you move across the

screen. The initial view of a DC with an MM_TEXT mapping mode is depicted in Figure 9.4.

The initial setup of our device context will be like Figure 9.4. This is just one quadrant of the Cartesian

coordinate system. We need to adjust the coordinate system so that it reflects what we used back when we

were learning trig. We adjust the coordinate system by changing the mapping of the logical coordinates to

device coordinates with the CDC method SetWindowOrg. SetWindowOrg changes the mapping of logical

coordinates to device coordinates. Initially, logical point (0,0) maps to device point (0,0). Device point (0,0) is

always the upper left corner of the device. To change the coordinate system for our logical points, we use

SetWindowOrg, which takes as a parameter a logical point. After the call, the logical point provided will

map to the device point (0,0). This technique changes our logical coordinate system to that of Figure 9.5.

NFLE 1009 - Page 117

NFLE 1009 - Page 118

4% e CHAPTER 9

M

x-axis increases

y-axis increases

Figure 9.4 Default MM_TEXT settings.

Figure 9.5 New logical coordinates.

This system is slightly different from the coordinate system we’re used to. As you can see, the y—axis

increases as you move down the axis instead of when moving up. This isn’t a serious problem; we just

adjust the calculation of the Y point when calculating the arrays for the clock’s ticks and hands. The follow-

ing code, from Cal CTi cksAndHands, illustrates this change:

NFLE 1009 - Page 118

NFLE 1009 - Page 119

// Work ourselves around the circle in 60 unit increments

// The radian angle changes within the loop

// r3 is the size of the hour hand. Half the radius

int r3 - nRadius / 2;

for (int i = 0; i < 60; i++)

C

r2x = cos(angle) * r2 + chounds.left;

y// The direction of the Y axis is reversed
// when Using the IvfivLTEXT mapping mode. The Y

// axis increases as you move DOWN instead of up.

i// we reverse the direction by negating the sin

r2y = ~sin(angle) * r2 + chounds.top;

m_MinSecHands[i].x 2 short(r2x);
m_MinSecHands[i].y = short(r2y);

// Calculate size of hour hand

r2x = cos(angle) * r3 + chounds.left;

r2y = ~sin(angle) * r3 4 chounds.top;

// Store the hour ticks in an array

m_HourHands[i].x = short(r2x);

m_HourHands[i].y = short(r2y);

angle —= (2 * PI) / 60;

l

Graphical Controls «e 439

Once we have the device context set to a coordinate system that maps the logical coordinates to what we

expect, the calculation of the drawing points is relatively easy. The following code sets up a logical coordi—

nate system like that in Figure 9.5:

// Set the coordinate system so that the point

// (chounds.left, chounds.top) is in the

// center of the control’s bounding rectangle

pdc—>SetWindowOrg(~(nRadius * 2) / 2, —(nRadius * 2) / 2);

POINT ptCenter;

ptCenter.x = chounds.left;

ptCenter.y : chounds.top;

NFLE 1009 - Page 119

NFLE 1009 - Page 120

439 e CHAPTER 9

gee e raw eegee

I promised the complete OnDraw source, and here it is. It uses the other functions that we’ve investigated:

Cal cTicksAndHands and GetTime. The source that needs to be added to CLOCKCTLH is also provided.

// Clockctl.h

class CClockCtrl : public COleControl

{

DECLARE_DYNCREATE (CClockCtrl)

// Implementation

protected:

~CClockCtrl();

void GetTime();

void CalcTicksAndHands(CDC*, const CRect&);

WORD m_wHour;

WORD anMinute;

WORD m_wSecond;

POINT m_HourHands[60];
POINT m_MinSecHands[60];

POINT m_MinuteTicks[2]£60];

POINT mHHourTicks[2][l2];

};

// clockctl.cpp

void CClockCtrl::OnDraw(CDC* pdc, const CRect& chounds, const CRect& rcInvalid)

(

p // Create a brush for the background

CBrush karush(TranslateColor(GetBackColor()));

CBrush* pOldBrush = pdc—>SelectObject(akarush);

// Select a solid black pen 1 pixel wide

CPen penBlack(PS_SOLID, 1, RGB(0x00, 0x00, 0x00));

CPen* pOldPen : pdc->Select0bject(&penBlack);

pdc—>FillRect(chounds, &karush);

// draw the face of the clock

pdc->Ellipse(LPCRECT(chounds));

int nRadius = chounds.Width() / 2;

NFLE 1009 - Page 120

NFLE 1009 - Page 121

Graphical Controls e 4? EWVWMM.M¢MWMWWM tMflcwwrwmvw.MW._.NWwWWNW/WWWNWM lMam,W,WWWWNWM«Dewar/WW» WWWNWMWWWWW. wwww/m W WWMMWWermMMM w mm W WWW

// Calculate the tick and hand arrays

CalcTicksAndHands(pdc, chounds);

// Set the coordinate system so that the point 0.0 is in the

” ,// center of the control’s bounding rectangle (square)
pdc->Setwindow0rg(~(nRadius * 2) / 2, ~(nRadius * 2) / 2);

POINT ptCenter;

L ptCenter.x = chounds.left;

ptCenter.y = chounds.top;

// Draw the minutefsecond ticks
for (int i = 0; i < 60; i++)

{

pdc—>MoveTo(m_MinuteTicks[0][i]);

_ pdc—>LineTo(m_MinuteTicks[l](i})7

/ }

// Draw the hour ticks

// with a larger pen

CPen penBlk(PS_SOLID, 2, RGB(0x00, 0x00, 0x00));

pdc~>SelectObject(&penBlk);

for (i = O; i < 12; i++)

{

pdc—>MoveTo(mmHourTicks[0][i]);

pdc->LineTo(m_HourTicks[l][i]);

}

// Get the current time

GetTime();

// Use the foreground color for the clock hands

// Draw the hour hand

int iPenWidth = l;

CPen penHour(PS_SOLID, iPenWidth + 3, TranslateColor(CetForeColor()));
pdc—>Select0bject(apenHour);

pdc—>MoveTo(ptCenter);

int wHourTick = (m_wHour * 5) + (int) (m‘wMinute / 12);

pdc—>LineT0(m_HourHands[wHourTick]);

// Draw the minute hand

CPen penMin(PS_SOLID, iPenWidth + 2, TranslateColor(GetForeColor()));

pdc—>Select0bject(&penMin);

NFLE 1009 - Page 121

NFLE 1009 - Page 122

4‘3 2 e CHAPTER 9

pdc—>MoveTo(ptCenter);

pdc'>LineTo(m*MinSecHands[m_wMinute]);

// Draw the second hand

CPen penSecond(PS_SOLID. iPenWidth, TranslateColorl GetForeColor()));

pdc—>Select0bject(&pen8econd);
pdc->MoveTo(ptCenter);

pdc~>LineTo(mWMinSecHands[m_wSecond] };

// Restore the device context

pdc—>Select0bject(pOldBrush);

pdc->Selectobject(pOldPen);

}

. We’ve covered almost everything in the source. As you can see, we use several different pen sizes when we
draw the clock’s outline, tick marks, and hands. We use the ForeC 01 or for the hand color but have hard

coded a black pen for the clock’s outline and tick marks. A nice exercise would be to provide a custom color

property to allow the user to change these. The CLOCK project on the accompanying CD—ROM provides
this feature (and others).

 Lie. ee. e; e e eeée eeee gee e
To make our clock tick, we’ll implement a timer that will fire every second. This is similar to what we did in

Chapter 8, but we now want the timer to fire continually. Use ClassWizard to add a WM_TIMER handler to

the CClockCtrl class and add the following code:

void CClockCtrl::OnTimer(UINT nIDEvent)

(

InvalidateControl();

COleControl::OnTimerlnIDEvent);

Use of the WM_TIMER message requires a true HWND tor our clock control. A window tor a control
, isn’t created unless the container activates the control. ControlWizard set the OLEMISC_ACTIVATE—

WHENVISIBLE tlag tor our control, so control containers should provide this functionality.
0 rt

Whenever the timer fires, we call COleControl: :InvalidateControl, forcing a redraw. You should

use this method instead of directly calling the OnDraw method, primarily because you don’t know which

DC to pass to it.

We need to add StartTimer and StopTimer methods to the class just as we did in Chapter 8. Add

the declarations to CLOCKCTLH and then add the following code to CLOCKCTL.CPP:

NFLE 1009 - Page 122

NFLE 1009 - Page 123

Graphical Controls g 4? 3WWWWWMWWWWMWnW/WWWWWWWM«*7.meWWWWNWWWWWWWWMWWWNWKMwMW/flMMMWMW...“ WVW.,,M.WW/MWW

”Fine TIMER_ID 100

CClockCtrl::StartTimer()

t‘Tim’ertTIMEILID, 1000, NULL l7 _

ceiockctri‘: {Stepwimeti l"
ill‘fiméfi mmgm) ;

We want the clock to run only when the container is in run mode and the control is enabled. To ensure this,

we check the AmbientUs erMode and Enabled properties at various places within the control.

When and where should we start the timer? A logical choice might be when the Us erMode ambient

property changes. A new value of TRUE would signal a StartTimer, and a value of FALSE would cause a

call to StopTimer. Code such as the following would take care of this. We also check to make sure that the
control is enabled.

void CClockCtrl::OnAmbientPropertyChange(DISPID dispid)

t

if (dispid == DISPID_AMBIENT_USERMODE H dispid == DISPID_UNKNOWN)
i

if (AmbientUserMode() && GetEnabled())

StartTimer();

else

StopTimer();

}

The problem is that I’ve tried the preceding code with many containers, and it doesn’t work. Apparently the

containers don’t call the IOleControl: :OnAmbientPropertyChange method when switching from

design mode to run mode. (Some of the samples included with Visual C++ use this method, but don’t be

fooled. It doesn’t work.) The ActiveX control standard is still young, and it doesn't specify the exact behavior
of containers. There are still areas that need a more solid definition.

This code doesn’t work because a control’s instance is usually deleted and re—created when a container

goes from run mode to design mode, and the ambient property has no chance to change. This is an attribute

of the container and so may vary. The previous method will work for containers that maintain the instance

of a control when switching between design mode and run mode, so we should include it in our control’s
code.

If a control's instance is deleted and re-created when the container switches modes, we are assured that

the control's HWND will also be deleted and re-created. To trap this event and possibly start the timer, we

override COleControl: : OnCreat e. Using ClassWizard, add a handler for the WM~CREATE message. Then

add the following code:

NFLE 1009 - Page 123

NFLE 1009 - Page 124

mngHAPTERf’MWWMWWWWWWWW

int CClockCtrl::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

if (COleControl :OnCreate(lpCreateStruct) == -1)

return ~l;

if (AmbientUserMode() && GetEnabled())

StartTimert);

return 0;

The preceding code is again dependent on the creation of a window for the control. As discussed in
the previous note, a container that honors the OLEMISC_ACTIVEWHENVISIBLE Hog will provide on
HWND tor the control. in our case, we need the actual window only at run time.

NOTE

This code works in all the containers that I’ve tested. When the control’s HWND is created, we check the

Us erMode and Enabled properties. If they are both TRUE, we start the timer. To be safe, you could imple»

ment both methods described previously and use a Boolean flag such as m_bTimerStarted to ensure that

you don’t start the timer twice if both events occur.

To ensure that the timer is stopped when the control is destroyed, we trap the WM_DESTROY message

that is generated by Windows whenever a window is destroyed. Use ClassWizard to trap WM_DESTROY and

add the following code:

void CClockCtrl::OnDestroy()

{

COleControl::OnDestroy();

StopTimer();

)

We also start and stop the timer when the control’s Enabled property is changed at run time. The following
code from CLOCKCTL.CPP, handles this situation. You must also add the declaration to CLOCKCTLH.

void CClockCtrl::OnEnabledChanged()

{

// Only start the timer if in run mode

if (AmbientUserMode())

i

// Only start the timer if the control is enabled

if (GetEnabled())

StartTimer();
else

StopTimer();

NFLE 1009 - Page 124

NFLE 1009 - Page 125

Graphical Confto's rem

Ambiemtulbead

There is one other place where we need to shut down the clock. A container actually has three modes of

operation. The AmbientUserMode property handles the first two: design mode and run mode. The third
mode occurs when a development tool that uses ActiveX control containers runs in debug mode. When

debugging, the tool user may be single-stepping through its (usually) interpreted language. During this
time, it is recommended that controls disable any user input and basically act as if they have been disabled.

The AmbientUIDead method provides a way to check the container’s state. To provide support for this
mode as well as the others we’ve discussed, the OnAmbientPropertyChange method looks like this:

void CClockCtrl: :OnAmbientPropertyChange(DISPID dispid)

(

if (dispid == DISPID,AMBIENT_USERMODE [|

dispid :2 DISPIDwAMBIENT‘UIDEAD [[
dispid == DISPID_UNKNOWN)

, t

if (AmbientUserMode() && GetEnabléd() && 1AmbientUIDead())

StartTimer();

else

stopTimer();

}

‘else

i " 1 H, Just redraw the control,

 ,InvalidateControl-();=

}

In Visual Basic when you press Ctrl-Break, the OnAmbientPropertyChange method is called with a

DISPID of DISPID_AMBIENT_UIDEAD. The AmbientUIDead method returns TRUE and we stop the timer.

When the user presses F5 to run, the method is called again, AmbientUIDead returns FALSE, and we
restart the timer.

 ”Easing t e as
We’ve added quite a bit of code, so let’s give the clock a test. Compile and link the project and insert it into

the Test Container. There isn’t much you can do with the clock except let it run (Figure 9.6). You can change

the background and foreground colors and so on, but we’ve done that before. Let’s add some more features.

NFLE 1009 - Page 125

NFLE 1009 - Page 126

4F 6 4% CHAPTER 9

Figure 9.6 Clock control in the Test Container.

Restricting the Size or Shape at the Control
To simplify the drawing of our clock, we’ll ensure that the area bounding the control is square. This is easy

to do. When the user of the control (usually in design mode) attempts to change its size or extents, the con-

tainer will notify the control through the COleControl: :OnSetExtent method. OnSetExtent receives

the new extents for the control. The control can leave the new extents as they are, or it can change them to
whatever it wants.

For our purposes, we require only that the resulting area be square. First we override OnSetEXtent in

our control’s class, and then we ensure that the returned SI ZEL structure contains a square extent. The

SIZEL structure contains a width (ex) and height (cy) of type long:

typedef struct tagSIZE

(

LONG cx;

LONG cy;

) SIZE, *PSIZE, *LPSIZE;

typedef SIZE SIZEL;

typedef SIZE *PSIZEL, *LPSIZEL;

Add the following code to CLOCKCTLH and CLOCKCTL.CPP:

NFLE 1009 - Page 126

NFLE 1009 - Page 127

Graphical Controls \ e 4? 7WMWWWWNWMWMWVMMNWVWMWW.WWHWMWNWMWWWMMWMAMMWMMMWLWNWLWWN W»MY.WMwWNWMMWLWWWWWWWMWWNMMNM WWW”

// clockctl.h : Declaration of the CClockCtrl OLE control class.

class CClockCtrl : public COleControl

{

// Overrides

>_ virtual BOOL CClockCtrl::OnSetExtent(LPSIZEL lpSizeL);

l;

// clockctl.cpp

BQQLyCClockCtrl::OnsetExtent(LPSIZEL lpSizeL)

5

i-L// Make sure the extent is a square

VV/f Use the smaller of the sizes for the square

 if (lpsizeL—>cy <= lpSizeL->cx)

lpSizeL—>cx_= lpSizeL—>cy;

eelse

, lpSizeL~>cy = lpSizeL->cx;

__T// Call the parent implementation

J7'return COleControl::OnSetExtent(lpSizeL);
}.. L

Most of OLE uses HIMETRIC units for all its sizes and measurements. The SIZEL structure provides the

new extents in HIMETRIC units. If your control uses some other unit, you must convert it to HIMETRIC

before modifying the SIZEL structure. In our case, we don’t care about the size. We just want it to be square,

so we take the smaller of the two sizes and assign that value to the other.

Elllwltiiig HEEEMEIRIQ limits
If you want your control to be a certain size, you may need to convert the device units into HIMETRIC units.

Here’s how to do it. If we wanted our clock to always be 200 by 200 pixels in size, basically not allowing the

user to resize the control, we would convert our units (pixels) to HIMETRIC units and return this value in

the SIZEL structure. We could do something like this:

#define HIMETRIC_PER_INCH 2540 // HIMETRIC units per inch

BOOL CClockCtrl::OnSetExtent< LPSIZEL lpSizeL)

(

CDC cdc;

cdc.CreateC0mpatibleDC(NULL);

NFLE 1009 - Page 127

NFLE 1009 - Page 128

4' 3 3 .t-.,f?;.£ljf:PTER.,9

// One way to do it

long lpx : cdc GetDeviceCaps(LOGPIXELSX);

lpSizeL—>CX = MulDiV(200, HIMETRIC_PER_INCH, le);

long lpy = Cdc GetDeviceCaps(LOGPIXELSY);

lpSizeL—>cy : MulDiV(200, HIMETRIC_PER_INCH, lpy);

// Another, easier way to do it

CSize size(200, 200);

// Convert the device units to HIMETRIC units

CdC.DPtOHIMETRIC(&size);

lpSizeL—>cx = size.cx;

lpSizeL—>cy = size.cy;

// Call the parent implementation

return COleControl::OnSetExtent(lpSizeL);

l

The preceding code creates a CDC object and then calls CreateCompatibleDC. By passing NULL as the

parameter, we get a DC that is compatible with the main display. We then call GetDeviceCaps to deter—

mine the number of logical pixels per inch for the display. We use the Windows Mul Div function to multi—

ply HIMETRIC_PER__INCH by 200 and then divide the result by the logical pixels. This calculation gives us

the number of HIMETRIC units equal to 200 logical pixels. We do this for both the width (cx) and height

(cy). The result is stored in the SIZZEL structure, which is passed to the parent’s method. This approach

ensures that our clock control will always be 200 by 200 logical pixels. I’ve also shown another way to do it

using the CDC: :DPtoHIMETRIC method. I included the first method to show you how to get device capa-

bilities using GetDeviceCaps.

If, on the other hand, we want our clock to always be 1 inch by 1 inch independent of the display, the
OnSetExtent method could be coded like this:

#define HIMETRIC_PER_INCH 2540 // HIMETRIC units per inch

BOOL CClockCtrl::OnSetExtent(LPSIZEL lpSizeL)

i

// Set the SIZEL structure to he a l—inch square

lpSizeL~>cx = lpSizeL—>cy = HIMETRIC_PER_INCH;

// Call the parent implementation

return COleControl::OnSetExtent(lpSizeL);

l

The OnSetExtent code is easy, because the SIZEL structure is in logical HIMETRIC units. The

Set Initialsi ze call in the contr

expects its dimensions in pixels:

CClockCtrl::CClockCtrlH

{

ol’s constructor would be a just little more complicated, because it

NFLE 1009 - Page 128

NFLE 1009 - Page 129

Graphical Controls © 439

InitializeIIDs(&IID_DClock, &IID_DClockEvents);

// TODO: Initialize your control’s instance data here.

CDC cdc;

cdc.CreateCompatibleDC(NULL);

int ex = cdc.GetDeviceCaps(LOGPIXELSX);

int cy = cdc GetDeviceCaps(LOGPIXELSY);

// Set the initial control size to a one~inch square

SetInitialSize< cx, cy);

l

This code is similar to what we did earlier. We create a CDC object that is compatible with the display, and

we use the GetDeviceCaps method to get the logical number of pixels per inch. We then use the result to

set the initial size of our control. The actual size of the control will always be physically 1 inch by 1 inch

regardless of the resolution of the display device.

 image iaatmi géieiéee

As you’ve probably noticed, the clock ”flickers" every time the control is redrawn. The redraw occurs 60

times per minute, and the flicker is annoying. You would have a rough time selling such a control, with its

unprofessional appearance. The solution to the flicker problem is to use an ”off-screen" device context.

We’re familiar with the purpose of a device context. Our control currently draws into the device context

provided by the container. It draws directly on the display screen (or printer), and as the control is redrawn

each second, this drawing process can be "seen.” This redraw causes the flicker. To eliminate the problem

and also to simplify the drawing code, we will draw first into a memory device context. Then we will bit-blt

the contents of the memory DC to the screen DC. The speed and directness of the bit~blt transfer will elimi—

nate any discernible flicker.

Using a memory DC also makes the drawing more efficient. We will call the Cal cHandsAndTicks

method only when the size of the control changes. Resizing occurs infrequently anyway, and we shouldn’t

be calculating the arrays every time we draw the control. We will also eliminate the need for the array calcu-

lation routine to adjust its points when the chounds upper left comer is not (0,0).

First, we’ll add three members to the control class: a CBitmap pointer to hold a bitmap compatible with

the control, a CSize member to keep track of the control’s current size, and a Boolean switch to indicate

whether the control’s size has changed:

// clockctl.h

// Implementation

protected:

~CClockCtrl();

NFLE 1009 - Page 129

NFLE 1009 - Page 130

£20 é CHAPTER 9

BOOL mflbResize;

CBitrnap"r m_pBitmap;

CSize m_sizeControl;

};

// clock.cpp

///

// CClockCtrl::CClockCtrl — Constructor

CClockCtrl::CClockCtrl()

{

m_bReSize = TRUE;

m_pBitmap = NULL;

_ m_sizeControl.cy = m_sizeControl.cx = 0;
l

///

// CClockCtrl::~CClockCtrl — Destructor

CClockCtrl::~CClockCtrl()

(

// delete the bitmap for the control

delete m_pBitmap;

l

Next, we move the clock drawing code to another method, Drawclock. This new method does not use the

rcInval id parameter and can also assume that the chounds parameter will have an upper left corner of

(0,0). We can assume this because we ensure it when we create the memory device context and pass it to the
DrawClock method. There is now a check of the mwbResize member variable to determine whether the

control’s size has changed. We recalculate the clock’s tick marks and hand arrays only when the control is

resized. The resize event is caught in the new OnDraw code that we will discuss in a moment.

void CClockCtrl::DrawClock(CDC *pdc, const CRect& chounds)

i

// Make sure that we don’t get an invalid chounds

// It should now always have an upper left of 0,0
ASSERT(chounds.left ==);

ASSERT(chounds.top ==);

// Our center will now always be 0,0 after the
// SetWindowOrg call

CPoint ptCenter(0, 0);

NFLE 1009 - Page 130

NFLE 1009 - Page 131

Graphical Controls e 4&2?

H
//ptCenter.x rchunds.left;

ll
//ptCenter.y chounds.top;

GetTime();

If Only recalc the arrays when the control’s size changes

if (m_bResize)

{

anResize = FALSE;

CalcTicksAndHands(pdc, chounds);

l

When we call the CalcTicksAndHands method in DrawClock, we know that the upper left corner of

chounds is (0,0), so we can simplify the code in CalcTicksAndHands by removing the addition of
chounds . left and chounds . top in our calculations:

#define PI 3.141592654

#define START_ANGLE (.5 * PI)

void CClockCtrl::CalcTicksAndHands(CDC *pdc, const CRect& chounds)

i

// Calculate the hand arrays

double angle = START_ANGLE;

double r2x, r2y, rlx, rly;

int r2 : nRadius — sHourTickLen ~ 2;

// r3 is the hour hand, half the radius

int r3 nRadius / 2;
II

for (int i = 0; i < 60;,i++)

l

// chounds.left is always zero now

f/ r2x = cos(angle) * r2 + chounds.left;

1! r2y : ~sin(angle) * r2 + chounds.top;

r2x = cos(angle) * r2;

r2y = —sin(angle) * r2;

m_MinSecHands[i}.x (short) r2x;

m_MinSecHands{i].y
it

(short) r2y;

// Calculate size of hour hand

/f r2x = cos(angle) * r3‘+ chounds.left;

// r2y = —sin(angle) * r3 + chounds.top;
r2x = cos(angle) * r3;

r2y = -sin(angle) * r3;

NFLE 1009 - Page 131

NFLE 1009 - Page 132

@22 e CHAPTER 9

m_HourHands[i}.x
ll

(short) r2x;

m_HourHands[i}.y (short) r2y;

angle -= (2 * PI) / 60;

}

Then we change the OnDraw code to look like this:

Void CClockCtrl::OnDraw(CDC* pdc, const CRect& chounds, const CRect& rcInvalid)

{

// Our memory DC

CDC chem;

-// Initialize our memory DC to the characteristics

// of the DC provided by the container,
chem.CreateCompatibleDC(pdc);

// If the bounding rectangle has changed

// We need to re—create our bitmap and

// recalculate the clock’s ticks and hands

if (m_sizeControl l: chounds.Size())

{

‘ f/ Save the new size of the control

f;m_sizeControl = chounds.Size();

,//_Thie flag ie_nsed by the control drawing

// routine t6 determine if it should recale-y
‘ /7 the clock’s ticks, hands, etc.,'

m_bResize : TRUE;

// delete any existing bitmap and create
/{ a new one,y

if (m_pBitmap)

I delete m_pBitmap;

manitmap.= new CBitmap;

/f Create a bitmap compatible with the current
// DC provided by the container

m_pBitmap~>CreateCompatibleBitmap(pdc,

chounds.Width(),

chounds.Height());

NFLE 1009 - Page 132

NFLE 1009 - Page 133

h' czl Controls at» 4-23

// Select the compatible bitmap into our

.// memory DC and save the old bitmap.

CBitmap* pOldBitmap = chem.SelectObject(m_pBitmap);

// Create a bounding rectangle with upper left corner of 0,0

CRect rcDrawEounds(0, 0, chounds.Width(), rchunds.Height),);

// Save the memory DC’S state

y,‘// so that DrawClock can modify it
‘ int iSavedDC = chem.SaveDC();

// Draw the clock into our memory DC

‘ DrawClock(&chem, rcDrawBounds);
// Restore the DC

chem.RestoreDC(iSavedDC);

’// BitBlt the memory DC representation

// into the actual screen DC

pdc~>BitBlt(chounds.left,

L rCBounds.top,

rchunds.Width(),

chounds.Height(),
&chem,

0,

0.

SRCCOPY) ;

// Restore the old bitmap, it will be

,// destroyed when the memory DC goes

// out of scope.

chem.SelectObject(pOldBitmap);

)

I’ve commented the code, so I’ll just hit the high points here. On entry to OnDraw, we create an instance of

the CDC class to use as our memory-based DC. By calling CreateCompatibleDC, we initialize the DC to be

compatible with the DC provided by the container. The initial DC returned by CreateCompatibleDC can—

not be used until it is initialized with an appropriate bitmap for the control (which we will do in a moment).

When we’re using an off—screen (or memory) DC, the drawing of the control (using various CDC methods)

modifies 0r ”draws into” the bitmap of the DC. Later, the CDC: :BitBlt method will copy this bitmap into

the screen (or printer) device context.

Next, we determine whether the control’s size has changed. If it has, we set the m_bResize variable to

TRUE to indicate to DrawClock that it needs to recalculate the arrays of clock ticks and hand points. We

then save the new size of the control so that we won’t execute this code unless the control’s size changes

again.

NFLE 1009 - Page 133

NFLE 1009 - Page 134

424 9 CHAPTER 9

Each time the size of the control changes, we re—create our CBitmap instance. As described previously,

the rendering of the control in the memory DC occurs in the bitmap of the DC. We need to ensure that the

bitmap is of the proper size and color depth of the container-provided DC. First, we delete any existing
instance of the bitmap and create another CBitmap instance. The next call, CreateCompatibleBitmap,

creates a bitmap for our memory DC that is compatible with the DC provided by the container. (It has the

same color depth and so on.) All this occurs only if the user has resized the control during the design phase.

At run time, this code is executed only once: when the control is initially created.

Once we have a compatible memory DC and a bitmap that will support the rendering of our control,

we use the SelectObj ect method to select the bitmap into the memory DC. Next, we create a temporary

CRect object with the extents of the control. We also ensure that the upper left coordinates are (0,0). This

approach makes the drawing code in DrawClock and CachandsAndTicks less complicated. We save the

state of the DC and call DrawClock with the memory DC and the CRect object. DrawClock renders

directly into the memory DC (modifying its bitmap). DrawClock behaves as if it were drawing with a

screen-based DC. When DrawClock returns, the memory DC’s state is restored and the memory DC (basi—

cally its bitmap) is copied to the screen DC using the Bi tBlt method. The first four parameters of Bi tBlt

specify the location and size of the transfer within the destination DC (the screen). We use the chounds left

and top values as the starting location of the destination and use the Width and Height methods to indi—

cate the size of the destination rectangle. The fifth parameter is the source DC (our memory DC). The next

two parameters provide the upper left starting points of the source DC. Because our memory DC’s bounds

start at (0,0), we specify 0,0 as the starting coordinates of the source DC. We’re finished. The clock is drawn

without any noticeable flicker. All that is left is the cleanup step of selecting the previous bitmap back into

our memory DC. If we forget this step, m_pBitmap, the compatible bitmap that we are maintaining for our
control, would be deleted.

tclwulid

The rcInvalid parameter passed to OnDraw is provided by the container, and it indicates the area of the

control’s image that needs to be rendered. In many cases this parameter will contain the same coordinates

that are provided by chounds, but when the container determines that only a portion of the control needs

to be rendered, rcInvalid will contain only the invalid region of the control. Use of the re Inval id para-

meter can provide an alternative way of optimizing drawing of your controls, and you may not need to add

the complexity of using a memory~based device context as discussed previously. We can also use it with our
memory-based DC approach by copying only the area of the control that the container indicates is invalid.

We do this by changing the parameters of the BitBlt call in the OnDraw method:

void CClockCtrl: :OnDraw(CDC* pdc, const CRect& chounds, const CRect& rcInvalid)
(

H: BitElt the memory DC representation

,/_/ into the actual screen DC '
 V ‘ // By using the rcInVal'id rectangle "

// We may only copy a partial image of the;

NFLE 1009 - Page 134

NFLE 1009 - Page 135

Graphical Controls e Q25:WWWHWWWWWWMWMVWWWAWMWWMWMM

“ y // clock. This will improve, performance

Lpdc~>BitBlt(rcInvalid.left, L

' rcinvalidtop,

TiremvaiidLWidthn ,

- Igeiriva‘lidflei’ght ()7,
- _‘ moment,“ "
rcInvalld left I — .reéaunas . left, L f"

. rolnvalid.topr~ chounds.top,

f VSRCCOPY,) ;,

// Restore the old bitmap, it will be

// destroyed when the memory DC goes

// out of scope.

chem.SelectObject(pOldBitmap);

}

We use the rcInval id rectangle instead of the chounds rectangle we used previously. Using this tech-

nique, the size of the destination area may be different from the size of the bitmap in our memory—based DC.

We adjust the source DC coordinates by subtracting the left and top bounding points from the left and top

rcInval id points. This technique ensures that the source starting corner maps to the rcInvalid—based

destination corner. Using this approach, we bit-blt only the area of the control that needs to be repainted.

There is one problem with the memory-based DC approach to drawing controls. Under certain condi-

tions, a control’s container may request that the control render itself into a metafile device context. As you’ll

see in a moment, some of the preceding techniques won’t work when we’re drawing into a metafile DC.

That’s the reason we separated the drawing code for the clock.

 etafiee

A metafile is a recording of a series of GDI function calls that can be stored in memory or on disk. These

metafiles can be ”replayed” to reproduce a copy of the original image. Some containers may use a metafile

to represent the visual portion of a control. Control containers typically do this only during the design

phase, and most containers that I’ve used employ the metafile representation only when printing an image

of the control. Because of the difficulties of rendering to metafiles, I imagine that most control containers will

provide a true screen device context during both design mode and run mode and require the control to pro~

vide a metafile representation only when printing.

A metafile representation of a visual server’s image is used extensively by OLE compound document

containers. This arrangement allows the container to display an image without activating the visual editing

server. For large visual editing server applications (such as Excel), this is appropriate, but ActiveX controls

are much smaller and expect to be active whenever they are visible. This means that they will have an HWND

and device context and do not need to provide a metafile representation. But with a little forethought in the

design of your controls, it is not difficult to provide a good metafile representation of your control.

NFLE 1009 - Page 135

NFLE 1009 - Page 136

426 e» CHAPTER 9meWWMWWAWWMWMWWWAM”AVA AWN, A» mow-AWN M._,,_A,,__,_.W Maw...” A NM ...AA ,. c .,,..,.\.,A,.,M.,WA.. WW WW,A._.NA,__,A, W WV WAWNWWWMWWAMWWWMWM.

@aDrawMetaiifie

COleControl provides a method, OnDrawMetafile, that is called explicitly when the container requires a

metafile representation. The default implementation calls the conti‘ol’s OnDraw method. We’ve added some

CDC methods that are not supported in metafiles, so we need to override OnDrawMetaf ile for our control.

All the code in the OnDraw method deals with setting up and drawing into a memory DC, and the drawing

code is in DrawClock. In our OnDrawMetafile method, we pass the provided metafile DC to our
DrawClock method:

class CClockCtrl : public COleControl

{

// Overrides

virtual void OnDrawMetafile(CDC* pdc, const CRect& chounds);

);

void CClockCtrlE:OnDrawMetafile(CDC* pdc, const CRect& chounds)

(_

‘ ASSERT< chounds.left ==);
ASSERT(chounds.top 2: 0);

DrawClock(pdc, chounds);

} ,

The metafile DC’s upper left corner will always be (0,0). This is important, because we changed our

DrawClock method to require an upper left corner of (0,0). To test this assertion, I’ve added two ASSERT

macros that check the coordinates to ensure that they are always (0,0).

Metafile Restrictiem

Metafile device contexts have a few restrictions. Because metafile DCs are not associated with a true device

(such as the display), certain DC-related functions will not work properly when used with a metafile DC.

The CDC methods that should not be used when you’re drawing into a metafile DC can be described as

groups of functions that act specifically on a device (Table 9.3). The physical device context is not known

when you’re drawing into the metafile DC.

NFLE 1009 - Page 136

NFLE 1009 - Page 137

Graphical Controls 4% $27MWWWWWWMW,M”Mmmmm,mmfiwfiMWWWMNwwmuwsmwwWMNWWNWMWWWWWM

Table 9.3 CDC Methods that Shouldn’t Be Used with Metatiles

Method Group Exam_p_le Methods

Methods that retrieve data From the physical device. GetDeviceCaps, GetTextColor, GetTextMetrics,

This includes most Get* and Enum* methods. EnumFonts, EnumObj ects, DPtoLP, LPtoDP, etc.

Methods that appear to be GDI Functions but in reality DrawText, TabbedTextOut, InvertRect, DrawIcon,

are implemented by other parts of the Windows DrawFocusRect, FrameRect, Graystring, etc.

operating system.

Methods that expect the device context to be SaveDC, Res toreDC, CreateCompatibleDC,

associated with a physical device. CreateCompatibleBitmap, etc.

You can use most of these methods when drawing in a metafile DC, but they will have no effect when the

metafile is subsequently played. The main reason we separated the OnDraw and Drawclock code is that we

wanted to place the code that is not supported by metafiles (all the code needed to draw in an off—screen DC)

in a separate routine. The drawing code that works within metafiles is placed in the DrawClock routine.

When the container needs a metafile representation and therefore calls OnDrawMetaf ile, we pass the DC
to the DrawClock routine.

Win32 Enhanced Metuiiles

The Win32 API removes the metafile restrictions by providing a new metafile format called enhanced

metafiles. If the container provides an enhanced metafile DC, enhanced metafiles remove the problem of hav—

ing two different drawing routines for your controls.

In most cases, the container passes the metafile DC to your control in the OnDrawMetafile method

and so is responsible for providing you with either a standard or an enhanced metafile DC. I expect that 32-

bit containers will use the enhanced version of metafiles, because it makes development of the control’s code
easier.

The container can also request a metafile (CF_METAFILEPICT) through the IDataObj ect : :GetData

interface method. In this case, MFC creates an instance of the CMetafileDC class and passes this device

context to your control’s OnDrawMetafile method. The metafile is recorded and passed back to the con—

tainer as an actual metafile. The container can then play the metafile within whatever device context it
chooses.

If your control will be used only in 32-bit environments and you know that the containers that will be

used for your control all provide enhanced metafile support, you can probably get away with only one

drawing routine. Unfortunately, most control developers do not have this luxury. To be safe, you should

probably separate the drawing code that is dependent on a nonmetafile representation as we did with the
clock control.

NFLE 1009 - Page 137

NFLE 1009 - Page 138

9323 e CHAPTER 9

 Tesséng the em
The best way to test whether your control can draw its metafile representation properly is to use the Test

Container. With your control UI-active, select the Edit/Draw Metafile option. The Test Container will pass

your control’s OnDrawMetaf ile a metafile DC and will display the result in a window (Figure 9.7).

Figure 9.7 Test Contoiner’s display of the metotile DC.

 . rawifig the iomroi In ,t esign ode
When the container is in design mode, some controls display their name somewhere within their bounding

rectangle. The container may provide an ambient property, Di spl ayName, that controls can display when

they draw themselves in design mode. The following code, when added to our control’s Drawclock

method, will provide this ability (Figure 9.8).

void CClockCtrl: :DrawClock(CDC *pdc, const CRect& chounds)

(

' 7/,Ifithe container _is_in deSign mode '

if ,'(1 AmbientUserMode u ;

L1/[Get the display name from the container

,_ , ,; CString swam = AmbiéntnisplayNamem

// If it is empty, supply a default name

NFLE 1009 - Page 138

NFLE 1009 - Page 139

WW9 aphiccll Con’rrols ® 429

if (strNama.IsEmpty())

I Sthame = “Clock”;

;/{:s§t the téxt éolor to the foregrdundwcolor\
Hipdé SSegfexthlor(TranslateColor(GétForeColor()));

/”‘Seiegt_theflstéck fdnt and saVe‘the'oldybne’
CFéfiH bdldFonté SeléétStOCKFonU pas) ,- '

*7/ Sét up the text drawing modes in thé DC

_ _‘ pdc—zs‘etekModa TRANSPARENT) ; _

”npdg—éSetTextAligm VTAfiLEFT’I TA__TOP),-

// Draw the text in the upper left corner

“TpdC—>ExtTéxtQut('chounds.left, chounds.top, ETOMCLIPPED,
‘ I ‘ rCBOunds, stiName, strName.GetLength()l NULL);

// Restore the old font
niff‘xpoldE'Qntfl): .__- “ , _ ,

pdé->Sele¢thject(pOldFont);

Figure 9.8 Clock control in design mode.

NFLE 1009 - Page 139

NFLE 1009 - Page 140

430 a CHAPTER 9

Hiding Properties .
We added the stock Font property so that we could use it when drawing the control's name in design

mode. Our clock doesn't need or use the font for anything else, so there is no need to expose the property for

the control user to modify. The Object Description Language hidden keyword provides a way to hide prop-

erties. Container applications and visual tools should check for this attribute and should not display it to the

user. We modify our control’s ODL file and add the hidden attribute to our stock Font property as follows:

// Clock.odl : type library source for OLE Custom Control project.

// Primary dispatch interface for CClockCtrl

dispinterface _DClock

{

properties:

// NOTE — Classwizard will maintain property information here.

// Use extreme caution when editing this section.

// ({AFX_ODL__PROP (CClockCtrl)

[id(DISPID_APPEARANCE), bindable, requestedit] short Appearance;

[id(DISPID_BACKCOLOR), bindable, requestedit] 0LE_c0LOR BackColor;

[id(DISPID~BORDERSTYLE), bindable, requestedit] short Borderstyle;

[id(DISPID_ENABLED), bindable, requestedit] boolean Enabled;

[id(DISPID_FORECOLOR), bindable, requestedit] OLE_COLOR ForeColor;

[id(DISPID._FONT), bindable, hidden] IFontfiisp” Font;

[id(DISPID_HWND)] OLE_HANDLE hWnd; i

//))AFX_ODL_PROP

)

Adding the hidden attribute will make the font property inaccessible from tools such as Visual Basic. We

don’t have to do this, but if we don’t, the existence of a font property on a control that doesn’t display any

text at run time may be confusing for the control user. In a later chapter we will discuss other ways to hide

properties from the container’s browser. We also shouldn’t provide a way to modify the Font property

from the control’s custom property page.

We could also have used the ambient font property provided by the container when drawing the
clock’s design time representation in our clock example. Instead, we added a hidden font property
to introduce this concept of a hidden property.

NFLE 1009 - Page 140

NFLE 1009 - Page 141

Graphical CWWWWWWWWWWWWWMmenWMWW...Wmmflww.m,wwmm.way/m.”WWWW/“WWW..mwwmmwxwmma trpls 9 43 E

"E“ e geeeaihaage Eveat
To add functionality to our control, let’s add a custom event. Using ClassWizard, add an event called

SecondChange. Then, whenever the control’s timer message fires, we should also fire the SecondChange
event:

void CClockCtrl::OnTimer(UINT nIDEvent)

(

-. FireSecondChange();

InvalidateControl();

COleControl::OnTimer(nIDEvent);

l

We’ll use this event in the next example to update an external field.

T e ate are set?
A control user might also want to obtain the time of day from the control. This is easy to do and will provide

an opportunity to use the Automation DATE data type. Invoke ClassWizard and add a custom property with

a name of Date. Specify a data type of DATE, use the Get/ Set implementation method, and clear out the

Set method. We will not allow the user to ”set” the date property, although it might be a neat feature to
add.

After adding the new property, add the following code to the implementation method:

DATE CClockCtrl :GetDate()

(

COleDateTime timeNow;

timeNow = COl eDateTime: :GetCurrentTime () ;

return (DATE) timeNow;

 tei’ime

The COleDate’I‘ime class encapsulates the Automation DATE data type. A DATE is an eight—byte floating-

point value that indicates both the date and the time. The floating—point value can specify any date and time

from January 1, 100, to December 31, 9999, with a resolution of about one millisecond. The integer value of

the number specifies the date, and the fractional portion specifies the time. The date December 30, 1899, at

midnight is represented as 0.0. Table 9.4 gives other examples.

NFLE 1009 - Page 141

NFLE 1009 - Page 142

432 é» CHAPTER 9

Table 9.4 Example DATE Values

Date Numeric Representation

December 30, 1899, midnight 0.00

January 1, 1900, midnight 2.00

January 1, 1900, 6 AM 225

January 1, 1900, noon 250

January 4, 1900, 9 PM 5.875

December 29, 1899, midnight —1.00

December 18, 1899, noon ~12.50

The DATE type is supported natively by Visual Basic and Visual C++ (through the COleDateTime class)

and most other Automation—compatible tools. The COleDateTime class has several useful methods. You’ve

seen one, GetCurrentTime, and we’ll use another one in the next example.

We haven’t discussed how to build the clock control's property pages, because nothing special is required

that we haven’t already covered. The custom property page needs the stock properties that we’ve added to

the clock control, with the exception of the Font property discussed previously. The property page for the

clock control on the accompanying CD-ROM is shown in Figure 9.9.

Figure 9.9 Property pages for the clock control.

NFLE 1009 - Page 142

NFLE 1009 - Page 143

Graphical Conflgls @- 433

The control on the accompanying CD-ROM has additional capabilities beyond those described in this chap~

ter. Included are additional color properties for specifying the colors of the clock face, outline, and ticks, and

properties that modify the sizing of the control during the design phase.

 K Centmi ieneaieer guppert
Visual C++ version 4.0 and higher supports the use of ActiveX controls within MFC-based applications. This

major enhancement to Visual C++ allows C++ developers to take full advantage of this new component

technology. With a couple of keystrokes, we can now use ActiveX controls on MFC dialog boxes and views.

The MFC development team added support for control containment by adding functionality to the

CWnd class. The new CWnd Class is actually a complete ActiveX control container.

The (Wnd Class

The CWnd class maintains an embedded instance of the COleControlContainer and C01 eC ontrolsite

classes. These two classes implement the interfaces necessary for the CWnd object to act as an ActiveX control

container. However, the classes are not documented because they are only used internally by MFC.

COleControlContainer implements the IOleInPlaceFrame and IOleContainer interfaces. One

of the characteristics of a control container is that it can contain any number of embedded objects (controls).

To handle this, COleControlContainer maintains a list of C01 eControl Si te objects.

COleControlSite implements the interfaces necessary to manage the specific embedded object site.

Examples of these interfaces include IOleClientSite, IOleInPlaceSite, IOleControlSite, and the

ambient property IDispatch interface.

Table 9.5 lists some of the new CWnd methods that pertain specifically to ActiveX control containment.

Table 9.5 New CWnd Methods

Method Purpose

CreateControl Lets you dynamically create an instance of an ActiveX control.

GetControlUnknown Returns the IUnknown of any associated control.

InvokeHelper Calls an automation method on the control.

GetProperty, SetProperty Gets or sets the specified property value in the control.

OnAmbientPrOperty Called by MFC to get the specified ambient property value. The control can override this

method and set its own ambient properties.

m_pCtrlCont An embedded instance of the COleControlContainer class.

m_pCtrlSite An embedded instance of the COleControlsite class. This class gives the control access

to its site interfaces. if the value of this member is NULL, then the obiect is not an ActiveX
control.

NFLE 1009 - Page 143

NFLE 1009 - Page 144

434 4 CHAPTER 9

 @§%

To fully understand what’s going on when we’re using Visual C++ as a control container, let’s build a sim~

ple application that uses the new CLOCK control. Start Visual C++ and create a new project with the follow—

ing characteristics:

- MFC AppWizard (exe): Name the project Contain.

' MFC AppWizard Step 1: Choose a Dialog based application.

- MFC AppWizard Step 2 of 4: Take the defaults, but ensure that OLE Control support is included

0 MFC AppWizard Step 3 of 4: Take the defaults.

0 MFC AppWizard Step 4 of 4: Take the defaults.

Click Finish and create the project.

Clicking the OLE Control support checkbox adds a call to AfxEnableControlContainer to the

Ini tInstance call of our application:

// Contain.cpp

BOOL CContainApp::InitInstance()

(

AfxEnableControlContainer();

l

This call initializes the global instance of the COchanager class. COchanager manages the ActiveX con

trols within the application. It routes control events, creates and destroys the COleControlContainer and

COleControlSite instances, and generally controls everything about contained ActiveX controls. As with

the other new container classes, COchanager isn’t documented. If you’re curious, you can take a look at

the OCCCONT.CPP, OCCSITE.CPP, and OCCMGR.CPP files in the \MSDEV\MFC\SRC directory.

Once we have control support for our application, all we have to do next is to start the Component

Gallery Insert/Component and insert the control that we want to use. For our example, we’ll use the

CLOCK control that we developed in this chapter. Component Gallery will display a list of all the controls

registered on your system. Figure 9.10 shows the Component Gallery dialog box just before insertion of the
CLOCK control.

NFLE 1009 - Page 144

NFLE 1009 - Page 145

ngphicol Controls «3» 435

ButtonCtl Calendar Cb Control Chart F><
Control

Circ3 Control ClkCtl Ubiect

Figure 9.10 Inserting the clock control with Component Gallery.

Select the CLOCK control and click the Insert button. A dialog box confirms that you want to generate the

indicated Classes. Control containment in Visual C++ uses the static Automation wrappering technique that

we used in Chapter 6. When you insert the control into our project, Component Gallery will create two new

classes, create appropriate header and implementation files, and insert the files into the project. The Confirm

Classes dialog box is shown in Figure 9.11.

siesl mt] be generated
tidg‘o adage-mam “
ttributes. " ‘ '

The“: checked gigs
7 gtt‘cefl *control. ‘
ibioifése or act: it

2.2 vi
- @CUIeFont

 .Cla Essie L 'y 3535:1553:
cot-Jo}: owed

radars. g. ,_ « ‘
f Clockh

‘ '_mplementationifilei

, ’lClookcpp _

Figure 9.] 1 Adding the Clock control wrapper classes.

NFLE 1009 - Page 145

NFLE 1009 - Page 146

see e CHAPTER 93

Here's a quick look at the two new classes:

// Clock h

// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by

// Microsoft Visual C++, your modifications will be overwritten.

// Dispatch interfaces referenced by this interface

class COleFont;

///////////////////////////////////

// CClock wrapper class

///////////////////////////////////

class CClock : public CWnd

(

protected:

DECLARE_DYNCREATE(CClock)

public:

CLSID const& GetClsid()

(

static CLSID const clsid =

{ OxccS7abb4,

Oxad4e,

Oxllce,

{ Oxb4, Ox4b, 0x8, 0x0, Ox5a, 0x56, 0x47, 0x18 });

return clsid;

}

virtual BOOL Create(LPCTSTR lpszClassName,

LPCTSTR lpszWindowName, DWORD detyle,

const RECT& rect,

CWnd* pParenthd, UINT nID,

CCreateContext* pContext = NULL)

return CreateControl(GetClsid(),

lpszWindowName,

detyle,

rect,

pParenthd,

nID);

NFLE 1009 - Page 146

NFLE 1009 - Page 147

‘ Graphical Controls «a 43?

BOOL Create(LPCTSTR lpszWindowName, DWORD detyle,

const RECT& rect, CWnd* pParenthd, UINT nID,

CFile* pPersist = NULL, BOOL bStorage = FALSE,

BSTR bstrLicKey = NULL)

{ return CreateControl(GetClsid(L

lpszWindowName,

detyle,

rect,

pParenthd,

nID,

pPersist,

bStorage,

bstrLicKey);

// Attributes

public:

short GetAppearance();

void SetAppearance(short);

OLE_COLOR GetBackColor();

void SetBackColor(OLE_COLOR);

short GetBorderStyle();

void SetBorderStyle(short);

BOOL GetEnabled();

void SetEnabled(BOOL);

COleFont GetFont () ;

void SetFont(LPDISPATCH);

OLE_COLOR GetForeColor();

void SetForeColor(OLE_COLOR);

OLE_HANDLE GetHWnd();

void SetHWnd(OLE_HANDLE);

unsigned long GetFaceColor();

void SetFaceColor(unsigned long);

unsigned long GetTickColor();

void SetTickColor<unsigned long);

BOOL GetAllowResize();

void SetAllowResize<BOOL);

// Operations

public:

void AboutBox();

);

NFLE 1009 - Page 147

NFLE 1009 - Page 148

43g e CHAPTER 9

Here’s the definition for the CClock wrapper class. It provides dynamic creation methods (such as Create)

and Automation wrapper functions for each of the control’s properties and methods. Here’s the FONT.H
file:

// Font.h

/////////////////////////////

// COleFont wrapper class

/////////////////////////////

class COleFont : public COleDispatchDriver

{

public:

COleFont() () // Calls COleDispatchDriver default constructor

COleFontlLPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) ()

COleFont(const COleFont& dispatchSrc) : COleDispatchDriver(dispatchSrc) ()

// Attributes

public:

CString GetName();

void SetName(LPCTSTR);

CY Getsize();

void Setsize(const CY&);

BOOL GetBOld() ;

void SetBold(BOOL);

BOOL GetItalic();

void SetItalic(BOOL);

BOOL GetUnderline();

void SetUnderline<BOOL);

BOOL GetStrikethrough();

void SetStrikethrough(BOOL);

short GetWeight();

void SetWeight(short);
short GetCharset();

void SetCharsetlshort);

// Operations

public:

);

The COleFont class provides an Automation interface around the OLE font object. OLE provides an IFont

interface so that fonts can be marshaled across processes. A similar interface is provided for picture objects

with the COlePicture object. The implementation files use the Automation property and method manipu—

NFLE 1009 - Page 148

NFLE 1009 - Page 149

Graphical Controls «s 439

lation methods of the coleDispatchDriver class to provide access to the clock’s properties and methods.

Here’s a part of CLOCK.CPP:

// Clock.cpp

// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by

// Microsoft Visual C++, your modifications will be overwritten.

#include “stdafx.h”

#include “clock.h”

// Dispatch interfaces referenced by this interface
#include “Font.h”

IMPLEMENT_DYNCREATE(CClOCk, CWnd)

///

// CClock properties

short CClock::GetAppearance()

(

short result;

GetProperty(DISPID_APPEARANCE, VT_IZ, (void*)&result);

return result;

void CClock::SetAppearance(short propVal)

{

SetProperty(DISPID_APPEARANCE, VT_IZ, propVal);

OLE_COLOR CClock::GetBackColor()

{

OLE_COLOR result;

GetProperty(DISPID_BACKCOLOR, VT_I4, (void*)&result);

return result;

void CClock::SetBackColor(OLE_COLOR propVal)

(

SetProperty(DISPID_BACKCOLOR, VT_I4, propVal);

COleFont CClock::GetFont()

{

NFLE 1009 - Page 149

NFLE 1009 - Page 150

449 e CHAPTER 9

LPDISPATCH pDispatCh;

GetProperty(DISPID_FONT, VT_DISPATCH, (void*)&pDispatch);

return COleFont(pDispatch);
l

void CClock::SetFontlLPDISPATCH propVal)

(

SetProperty(DISPID_FONT, VT_DISPATCH, propVal);

//////////////////////////

// CClock operations

//////////////////////////

void CCloCk::AboutBoX()

{

InvokeHelper(Oxfffffdd8, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);

l

With the addition of the clock control to our project, it can now be used in the resource editor. Open up the

application’s main dialog resource, IDD_CONTAIN_DIALOG, make the dialog box a bit larger, and place an

instance of the CLOCK control on the dialog box by dragging it from the control pallette and dropping it on

the dialog. Give it an ID of IDC_CLOCK. Also, place an entry field below the clock and give it an ID of

IDC_TIME. This is shown in Figure 9.12.

Figure 9.12 Placing the clock control on the dialog box.

NFLE 1009 - Page 150

NFLE 1009 - Page 151

”Grglphical Controls e 443

Now start ClassWizard and add Member Variables for the two controls on our dialog box. Use member

names of m_Clock and m_’I‘ime. Be sure to add the members using the Control category; the default cate—

gory is Value.

MFC provides two ways to create controls: statically and dynamically. Here, we’re creating the control

statically at design time. The control properties will be stored in the .RC file, and the control will be created

(deserialized) and displayed when the application is executed. Dynamic creation of controls is also sup—

ported in MFC, and we'll do that in a moment. We haven’t yet written a line of code, but we can build the

project and have a functional application. Figure 9.13 displays the new application.

Figure 9.13 The initial application.

Events

To see how MFC supports control event handling, let’s perform an action when the clock’s Secondchange

event fires. Using ClassWizard go to the Message Maps tab and select the clock's ID, IDC_CLOCK; the tab

will list one ”message” in the Messages listbox. Click Add Function and add the OnSecondChangeClock

method to the CONTAINDLG.CPP file. This is shown in Figure 9.14.

NFLE 1009 - Page 151

NFLE 1009 - Page 152

442 e CHAPTER 9

Figure 9.14 Adding an event method.

ClassWizard adds an event handler for the SecondChange event. When the SecondChange event fires, the

OnSecondChange method will be called. Add the highlighted code:

BEGIN_EVENTSINK_MAP(CContainDlg, CDialog)

// ((AFX_EVENTSINK_MAP (CContainDlg)

ON_EVENT(CContainDlg, IDC_CLOCK, l, OnSecondChangeCloCk, VTS_NONE)

/ /))AFX_EVENTSINK_MAP

END_EVENTSINK_MAP ()

void CContainDlg::OnSecondChangeClock()

{

COleDateTime date = melock.GetDate();

i ymgTime,SetWindowText(date.Format(“%c”)l;
}

Whenever the control fires the SecondChange event, we get the current date using the Date property and

assign it to an instance of the COleDateTime class that we studied earlier. We then use the Format method

to get a string representation of the time that we can use to update the text in the edit window.

How does the SecondChange event find its way to the OnSecondChangeClock method? As with

most other things in MFC, there’s an event map that manages and routes events. An event map is almost

identical to the dispatch maps we discussed in Chapter 6. MFC’s CCdearget class has a large number of

mapping capabilities. MFC's message maps, interface maps, dispatch maps, and event maps are all handled

in much the same way. The macros set up several static class and data members that allow mapping of mes—

NFLE 1009 - Page 152

NFLE 1009 - Page 153

Graphical Controls a 4-43

sages, events, and so on to the appropriate C++ method. In the case of contained control events, the instance

of the COchanager class handles looking up events in the event map and calling the right method.

Dynamic Creation
MFC also supports dynamic creation of controls. In the preceding scenario, we embedded an instance of a

control, which was serialized and stored in the project's resource file. In this section, we'll dynamically cre-

ate two controls and position them on the dialog box at run time; first, another instance of the Clock control

and then an instance of the Postit control from Chapter 8.

When we inserted the Clock control into the CONTAIN project, it created a wrapper class for the con-

trol. This arrangement made it easy for us to access the properties and methods specific to the Clock control.

The wrapper class contains a Create function that simplifies calling the inherited CWnd: :CreateControl
method. Here’s a look from CLOCK.H:

CLSID const& GetClsid()

(

static CLSID const clsid =

{ 0xcc57abb4,

0xad4e,

Oxllce,

(0xb4, 0x4b, 0x8, 0x0, OxSa, 0x56, 0x47, 0x18));

return clsid;

)

virtual BOOL Create(LPCTSTR lpszClassName,

LPCTSTR lpszWindowName, DWORD detyle,
const RECT& rect,

CWnd* pParenthd, UINT nID,

CCreateContext* pContext : NULL)

return CreateControl(GetClsid(),

lpszWindowName,

dwstyle,

rect,

pParenthd,

nID);

}

virtual BOOL Create(LPCTSTR lpszWindowName,

DWORD detyle,

const RECT& rect,

CWnd* pParenthd, UINT nID,

NFLE 1009 - Page 153

NFLE 1009 - Page 154

gas. «a CHAPTER 9

CFile* pPersist = NULL,

BOOL bStorage = FALSE,

BSTR bstrLicKey = NULL)

return CreateControl(GetClsid(),

lpszWindowName,

detyle,

rect,

pParenthd,

nID,

pPersist,

bStorage,

bstrLicKey);

)

Because the wrapper class knows the CLSID of the control, the Create method provides a shorthand way

of calling CreateControl. The best place to create a control for a dialog box is in the handler for the

WM_INI'I‘DIALOG message. OnInitDialog is called before the dialog box is displayed. We add a member

variable to the dialog class to hold the new clock instance and then create the control:

//

// ContainDlg h : header file
//

class CContainDlg : public CDialog

(

// Implementation

protected:

HICON m_hIcon;

,Cc,1,o_c,k*, , mepClock:

l;

//

// ContainDlg.cpp

///

BOOL CContainDlg::OnInitDialog()

l

CDialog::OnInitDialog();

NFLE 1009 - Page 154

NFLE 1009 - Page 155

WmmsmmmNWWMWWNW.Wmmmwmwmmwwcwscmm—WMWWWNMM Graphical Controls *9 44-5

// TODO: Add extra initialization here

3-: :m_pClocl-:s_=iynew CClock;

return TRUE;

)

y_m_~_pClock->Create(,0, wsj/Ismss,

mQClockéSSe_tAppearance(_ L1,;) ; ‘

 'CRe'cti 200, 25, 275", 100); -

this, _, __

,,100*);,

// make: the dynamic iclock look-a little different g1 *i

3m_pClock—->iSetFacerlOr(RGB(~ 0, 255,, .0 1)),_;,', _
'mjcmckosiawickmiou RGB(0,7255, 0'»); 1'

// return TRUE unless you set the focus to a control

We create an instance of the wrapper class, assign it to our member variable, and then call Create. Create

is similar to CreateControl, and the details of each parameter are described in Table 9.6. Once the control

is created, we modify some of its properties by calling the wrapper class methods. Here we’ve set the

appearance to 3~D and have set the tick and face color to green. '

Table 9.6 CreateControl Parameters

Parameter Description

CLSlD or Prong CreateControl is overloaded to take either the CLSID or Prong oi the control to create. in our exam-

ple, the wrapper class passes the CLSID For us.

lpSzWindowName The name of the window. For controls, this text will be used to set the Caption or Text property of the
control.

detyles Any initial window styles For the control. The most common is WSWVISIBLE. Others that can be used For
ActiveX controls are WS__BORDER, WSWDISABLE, WS_GROUP, and WS_TABSTOP.

Rect The control's size and position. The rectangle coordinates indicate the left, top, right, and bottom extents

(e.g., CRect(left , top, right , bottom))

Parent The parent window of the control. This must be supplied. In our case, the dialog window (this) is the
parent.

nld The ID for the control.

pPersist A pointer to a CFile obiect that contains the persistent state of the control. Because the control was created

dynamically, we must provide the location and value of the control’s persistent data. IF they aren't pro-

vided, the control will be created without any persistence information.

bstorage Indicates whether the pPersist parameter is stored as IStream or IStorage data.

bStrLicKey License key intormation. It the control requires a license, the key is provided here,

NFLE 1009 - Page 155

NFLE 1009 - Page 156

eemgH/APTER 9

There are a few drawbacks in creating controls dynamically. First, they won’t, by default, have any persis-

tent data. Unless we fill out the pPersist parameter, the control will be created as is. We could provide

persistence support, but this would require a mechanism for storing the data prior to the control’s creation.

That mechanism, however, is the responsibility of control containers. If you need to implement a full

ActiveX control container, MFC provides a great place to start.

Another problem is that the dynamic approach makes it harder to tie the control’s events to a specific

handler. If you know which events you want to handle, you can write the handler and then manually enter

the events in the event map. To do this for our dynamic clock control, we create a new handler function,

OnSecondChangeDyn, and manually add it to the event map:

//

// ContainDlg.h : header file

//

class CContainDlg : public CDialog

{

// Generated message map functions

//{{AFX_MSG(CContainDlg)

virtual BOOL OnInitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM lParam);

afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDragIcon();

afx_msg void OnSecondChangeClock();

DECLARE_EVENTSINK_MAP ()

/ /))AFXJ/ISG

afx_msg void OnSecondChangeClockDyn();
DECLARE_MESSAGE_MAP ()

l;

//

// ContainDlg.cpp

//

NFLE 1009 - Page 156

NFLE 1009 - Page 157

 Graphical Controls e 4-47

BEGIN.EVENTSINK_MAP(CContainDlg, CDialog)

// { {AFX_EVENTSINK_MAP (CContainDlg)

oNflEVENT(CContainDlg, IDCaCLOCK, l, OnSecondChangeClock, VTS_NONE)

//))AFXMEVENTSINKJ’LAP

ON_EVENT(CContainDlg, 100, l , OnSecondChangeClockDyn, VTS_NONE)

ENDflEVENTS INK__MAP <)

§ d CContainDlg::OnSecondChangeClockDyn()

_COléDateTime date = m_pClock->GetDate();

ngEditDyn.SetWindowTextl date.Format(“%X”));

You must place the ON__EVENT macro outside ClassWizard’s area, or ClassWizard will get confused. In the

preceding example, we’ve also added a second entry field to the dialog box to hold the time from our
dynamically created control.

MFC allows you to create any control dynamically, even without the wrapper class generated by the

Component Gallery. To demonstrate this, let’s place an instance of the Postit control from Chapter 8 on our

dialog box at run time. The only control—specific information required is the CLSID or Prong of the control.

When generating a control, ControlWizard creates a default Prong of ”Project.ProjectCtrl.l.” So our Postit’s

Prong is ”Postit.PostitCtrl.1.” That’s all we need to create an instance and add it to our dialog box. Here’s
thecodeforOnInitDialog

//

// ContainDlg.h : header file

//

class CContainDlg : public CDialog

(

// Implementation

protected:

HICON m_hIcon;

CClock* m_pClock;

CWndf m_pPostit;

NFLE 1009 - Page 157

NFLE 1009 - Page 158

448 ‘9 CHAPTER 9WWWWWWNWWW/iWWNWWWW/WWWWIMMWWWMMAWWWMHMWWWW.W“Wm”MMWWWWWWMWWM

l;

//

// ContainDlg.cpp
///

BOOL CContainDlg::OnInitDialog()

(

CDialog::OnInitDialog();

// Make the dynamic clock look a little different

m_pClock—>SetAppearance(1);

, 255, 0));

, 255, 0 l);

m_pClock->SetFaceColor(RGB(0

m_pClock—>SetTickColor(RGB(0

m_pPostit = new CWnd;

m_pPostit—~>CreateControl(“Bo'stit.Post1tCtrl 1"-
“A dynamically cre— iced POSTIT controlf",

_WS_iVISIBLE, _ ‘

CRect(,30'013 75,1537
- this, fly, 7 H ‘7
,101‘l7 -

// Set some of the Stock properties 5

m_pPostit->SetProperty(DISPID_APPSARAHCE, VT_I2 1);
KCOLOR VTI4, RGB(255. 255, 255)>; ,

 m_pPostit—>SetProperty(DISPIILE"

: return TRUE; // return TRUE rhnless you set the focus to a bonfirkol: S
i) _ _

In this case, we’ve added a CWnd* member variable to maintain the control instance. We create a new CWnd

object and call the CreateControl method, passing in the Prong of the control to create. For ActiveX con-

trols, the lpszWindowName parameter is used to set the control’s caption or text property. The other para~

meters include the size and position of the control within the dialog box, the parent window (this), and the
ID of the control.

NFLE 1009 - Page 158

NFLE 1009 - Page 159

Graphical Controls s 4&9

Because we don’t have a wrapper class for this control, we must use the basic control manipulation

methods supplied by CWnd. We set the Appearance property to 3-D and set the background color to white

using SetProperty.

When creating controls dynamically, we are responsible for destroying them when the application

Shuts dOWn. In dialog-based applications, it’s best to do this in the dialog’s Destroywindow method.

Override it in the CContainDlg class and add the following code:

BOOL CContainDlg: :DestroyWindow ()

l

/ / J Destroy; our dynamic contrbls
 , mCl/OVCk—westroywindom) ;

delete mfpclock;

mfiPoStiLt—>Destroywindowt)*:
- delet6‘m_pPCstit;’ * L

return CDialog: :DestroyWindow() ;

}

Now build the project. When we’re finished, we get an application that looks like Figure 9.15.

Figure 9.15 CONTAIN dialog box with a” of the controls.

NFLE 1009 - Page 159

NFLE 1009 - Page 160

gas as?
In this chapter we covered the graphical drawing classes provided by MFC. These classes~CBrush, CPen,

and so on—encapsulate the Windows graphical device interface API functions. They provide a layer above
the GUI and make it a little easier to work with the GDI.

We also described how to build a clock control that uses many of the MFC drawing classes. When ren-

dering your controls, remember that the chounds parameter provided to the OnDraw method typically

does not provide an upper left corner of (0,0). Your control’s drawing code must be adjusted to account for

this, or you may inadvertently draw on the container’s client area. Another important item to remember is

that the device context provided to your control by the container is in an undefined state, and you must set

it up the way you need it before rendering your control.

We briefly discussed the Windows mapping modes and the differences between logical and device

coordinates. We used the MM__TEX'I‘ mapping mode when drawing our clock control, because it is the easiest

to understand initially. The coordinate system for the control’s rendering area is an attribute of the device

context and can be changed.

The size of device units, or pixels, is dependent on the hardware device on which your control is ren-

dered. You specify the initial size of your control in device units in the control’s constructor using the

SetInitialSize method. You can control the size and shape of your control by overriding the

COleControl: :OnSetExent method and modifying the extents of the control in the provided SIZEL

structure. The SIZEL structure’s extent sizes are in HIMETRIC units, and we discussed ways to convert
between device units and HIMETRIC units.

The container uses the ambient property UIDead to notify the control that it is in some sort of debug

mode and so the control should not allow user input.

Controls that often draw and update their appearance may need to use an off-screen or memory device

context to eliminate flicker. Because the clock control redraws itself every second, we modified it to use a

memory DC. Containers may require that the control render itself into a metafile device context at various

times, such as when you’re printing an image of the control. We briefly discussed metafiles and the restric—

tions to follow when you draw into a metafile DC. COleControl : :OnDrawMetafile is called whenever

the container requests a metafile representation.

NFLE 1009 - Page 160

NFLE 1009 - Page 161

Graphical Controls <$> 45EWWWMWMMWKMMVWWWMW.mmmWMWMWWMM”W1.“W...”WNW/«WWWMWaWMWWWN/mM Mm”

If you need to use a property within your control but do not want to expose it to visual tool users, you

can mark the property as hidden in the control’s ODL file. This indicates to property browsers that the prop-

erty should not be displayed.

Finally, we looked at using ActiveX controls in Visual C++ applications. In MFC version 4.0, the CWnd

class was enhanced to provide ActiveX container support. Several methods, such as CreateControl,

SetProperty, and OnAmbientProperty, were added to make if easy to manage ActiveX controls within

MFC applications. Other useful, but undocumented, classes (such as COleContainer) were also added.

MFC provides a great deal of support for embedding ActiveX controls in dialogs as well as in view-derived

classes. Controls can be placed on dialogs at design time or created and placed dynamically at run time.

NFLE 1009 - Page 161

NFLE 1009 - Page 162

WaWM/gmyfixwmwmymxwmfimmwwmkafitWWWWWMWWT “WW” . , ,

In this chapter, we’ll look at the details of developing ActiveX controls by subclassing existing Windows

standard (non~ActiveX) controls. Subclassing is an effective way of reusing existing control functionality

within Windows. By subclassing an existing control, you automatically gain its capabilities. lwas tempted to

say you ”inherit” capability from the control, but subclassing a control is different from deriving a new class
based on another class (as in C++).

The Windows operating system provides many controls, and there are even more now that Windows

95 provides additional full~featured common controls. Examples of common controls include the Rich Text

Format (RTF) control and the tree—list view control. In this chapter we will cover the basics of subclassing,

and some of the issues involved, by subclassing a Windows EDIT control and one of the Windows 95 com—

mon controls. Understanding the basics of this control will allow you to subclass the other controls as well.

a a s iafiamé

In the SDK/C world of Windows development, subclassing a standard control is a conunon occurrence. It is

similar to object-oriented inheritance in that you acquire the features of the control and are able to augment

only those capabilities that you need to. If the control already provides exactly the feature you need, you just

pass the message (method) to the original implementation. One major difference is that Windows subclass—

ing can be performed only on an instance of a control. Inheritance in C++ is done using classes and not
instances of the classes.

You subclass a control because you want to provide functionality that is similar to that already pro-

vided by a standard control. An edit field that accepts only numbers, a listbox that contains icons and text, a

3-D static field—the possibilities are endless. When you subclass an existing control, much of the drawing

code and control structures are already implemented for you. However, this is not the case when you imple—

Q53

NFLE 1009 - Page 162

NFLE 1009 - Page 163

ass. a CHAPTERVLQW

ment an owner—draw control. Owner-draw controls provide an effective way to represent information in a
familiar Windows format (such as a listbox).

A simple Windows control (such as EDIT) is actually just a window. All controls have a window proce-

dure that processes messages sent to the window. Standard windows, such as the EDIT control, have a win-

dow procedure that is part of the Windows operating system. Although we don’t have access to the source

code for the window procedure, the design of Windows makes it easy to subclass, and use the features of, an

existing window.

A window is subclassed by replacing its default window procedure with one written by the developer.

The new window procedure modifies the behavior of the window by discarding messages intended for the

original window procedure, performing some additional actions and forwarding the message, or modifying

the contents of the message and passing it on. To remind you what it looks like in C, the following code

demonstrates this technique. It subclasses an EDIT control window and allows the entry only of uppercase

alpha characters.

WNDPROC panriginalEditProcedure;

// Create an EDIT window

HWND hwndEdit = CreateWindowEx(“EDIT”, ...);

// Subclass the window by setting the address of its window

// procedure to that of the new subclass procedure. Save the old procedure’s

// address so we can call it too.

panriginalEditProcedure = SetWindowLong(hwndEdit,

GWL__WNDPROC ,

(LONG) SubclassEditProcedure);

// Subclass procedure. All messages are now processed first by

// this procedure

LRESULT APIENTRY SubclassEditProcedure(HWND hwnd,

UNIT uMsg,

WPARAM wParam,

LPARAM lParam)

switch(uMsg)

(

case WM_CHAR:

// If it’s an alpha Character make it uppercase

if (isalpha(wParam))

wParam = toupper(wParam);

// otherwise ignore the Character
else

return 0;

NFLE 1009 - Page 163

NFLE 1009 - Page 164

Subclassing Windows Controls s 455WMWWWNWWWWWW.W,W,WwthmWCWWWWMaWWWWWWWWMWMWNWMWM”WWWMMWMMWWWN WWWWWWWHWWMWMW

break;

case default:

break;

)

return Ca11WindowProc(panriginalEditProcedure, hwnd, uMsg, wParam, lParam);

}

If an existing Windows control provides a capability that you need within your control and if there are no

special requirements that preclude your use of the control, you should probably subclass it. If not, as in the
clock example of Chapter 9, you can always implement all the functionality and drawing yourself.

It was in Chapter 6 that we last saw the Expression class, and I promised you then that we would see it

one more time. In this chapter, our goal is to encapsulate the functionality of the Expression component in

an ActiveX control. We’ll subclass the Windows Edit control and enhance it to provide numeric expression

evaluation. This arrangement will make it easy for the user of a visual tool (such as Visual Basic) to drag-

and~drop the control in a container and instantly gain expression evaluation capabilities.

 Creatsg e is .. ssgess
Use AppWizard to build a ControlWizard-based project with the name EEdit. Follow these steps to specify

each of ControlWizard’s options:

- In the OLE Control Wizard Step 1 of 2 dialog box, take the defaults No runtime license, Yes, com-

ments, and No help files.

a In OLE Control Wizard Step 2 of 2, take the defaults Activate when visible and Has “About” box.

From the Which window class, if any, should this control subclass? dropdown, choose the EDIT
control.

0 Click Finish and create the control project.

There is an option that you use when creating an ActiveX control that subclasses an existing Windows con-

trol. When you subclass an existing Windows control, ControlWizard adds the needed code. Figure 10.1

shows the Control Options dialog box.

NFLE 1009 - Page 164

NFLE 1009 - Page 165

456 a CHAPTER lOy”a...“ me.wmmmwmWWMa-WWWWMWAWW wvwmwMW”WMMKMWWWMAWWWWMWNW,MMWWWWWWWWWWflMWW”MW/"wwwnwsmnmwm'

Figure 10.1 Subclass Windows control option.

ControlWizard allows you to choose to subclass any of the standard Windows controls listed in Table 10.1.

ControlWizard also allows you to subclass any of the new Windows 95 common controls. Later in this chap-

ter, we will look at subclassing other Windows controls, including the new Windows 95 common controls.

Table 101 Standard Windows Controls

Win ows C ass NIme In Use $tIn Ir Eontral

Button BUTTON: a Windows push button.

Static STATIC: provides the ability to display text in various ways.

Edit EDIT: provides either a single-line entry field or a multiline entry field that has useful editor~lil<e
features.

Listbox LISTBOX: a standard Windows listbox. Listbox controls can operate in different modes (multise‘

lect, single select, and so on). To modify the mode of a listbox, appropriate style bits are

applied during creation.

Combo box COMBOBOX: a standard Windows combo box. It also supports various modes by specifying

different style bits during creation,

Scroll bar SCROLLBAR: the horizontal and vertical scroll bars that you use in most Windows applications,

After the project is created, start ClassWizard and add the following stock properties through the OLE

Automation tab as we did in Chapter 9. When developing a Visual control, you will almost always use at

least some of the stock properties.

NFLE 1009 - Page 165

NFLE 1009 - Page 166

Subclassing Windows Controls + 457 WWwW‘WWWW

a Appearance

. BackColor

- ForeColor

° hWnd

*9 BorderStyle

. Enabled

- Text

0 Font

Because we’re using the stock font and color properties, go ahead and add the stock font and color property

pages. Here’s the new code needed for EEDITCTL.CPP:

// TODO: Add more property pages as needed. Remember to increase the count!

 ' _,INJROPPAGEiDSICEEditCtrl. ,3): ,
PROPPAGEID (CEEditPropPage: :guid)

PROPPAGEIDlCESiD_CCo_iorPropl-’age) L
éRoBPAGEID (cLsrn,cFontpropPage)

END_PROPPAGEIDS (CEEditCtrl)

Compile and link the project, register the control, and insert it into a container. Right away you will see that

the control provides significant functionality. You can type text directly into the control, and you can even

change the font that it uses. It’s a basic Windows edit control, but not everything works yet (from an ActiveX

control perspective). Try changing the background and foreground color properties of the control. No luck?

In the remaining sections, we’ll solve this problem and add functionality in the process.

 Code as? by iofitsoé “salad
In Chapter 8 we went through the code generated by ControlWizard. When we chose to subclass a

Windows control, ControlWizard generated some additional code. In particular, it automatically provided

an override of COleControl : : PreCreateWindow. The following code is from EEDITCTL.CPP:

/////////////////////H//

// CEEditCtrl::PreCreatewindow — Modify parameters for CreatewindowEx

BOOL CEEditCtrl::PreCreateWindow(CREATESTRUCT& cs)

(

cs.lpszC1ass _T(“EDIT”);

return COleControl::PreCreateWindow(cs);

NFLE 1009 - Page 166

NFLE 1009 - Page 167

@158 a» CHAPTER 10WflmsmwmwwwmsiWWWMWMW/fl”WWW/WWW WWWWW.WMWMMMMWWWWWTWNMW.“WWWWWWKWWWW/M.AMcNamara,w.N.Was/WMMMWWWWWMWWMAWM-

This method provides most of what is required to subclass an existing control. The PreCreateWindow

method is called just before the creation of the (OLE) control’s window. A reference to the window's CRE~

ATESTRUCT is passed to allow you to modify the parameters used in the creation of the window. As you can
see, ControlWizard added a line that sets the window class to EDIT. When PreCreateWindow retums, the

framework will use the CreateWindowEx function to create an instance of the new EDIT window (or con~

trol) using the parameters of the CREATESTRUCT structure. The members of CREATESTRUCT are parameters
of the CreatewindowEx function.

typedef struct tagCREATESTRUCT {

LPVOID lpCreateParams;

HANDLE hInstance;

HMENU hMenu;

HWND hwndParent;

int . cy;
int cx;

int y;

int x;

LONG style;

LPCSTR lpszName;

LPCSTR lpszClass;

DWORD dwExStyle;

} CREATESTRUCT;

When you’re subclassing a control, MFC needs to keep track of the original window procedure so that you

can call it to pass messages through. For subclassed controls, ControlWizard adds a function to your con-

trol’s implementation file that indicates to the framework that the control has been subclassed. It's called
IsSubclassedControl:

///

// CEEditCtrl::IsSubclassedControl - This is a subclassed control

BOOL CEEditCtrl :IsSubclassedControl()

(

return TRUE;

It is no longer necessary to override GetSuperWndProcAddr in controls that subclass Windows con-
trols. The CWnd class now does this automatically for each control class. Versions of MFC prior to
4.0 required this override in the COleControl-clerivecl class.

The OnDraw code provided by ControlWizard is also different when you subclass a control. It contains only
a call to COleControl: :DoSuperclassPaint:

NFLE 1009 - Page 167

NFLE 1009 - Page 168

Subclassing Windows Controls ‘fifi-S‘?MWMWWWWWWmmwwrmmMM

///

// CEEditCtrl::OnDraw ~ Drawing function

void CEEditCtrl::OnDraw(CDC* pdc,

const CRect& chounds,

const CRect& rcInvalid)

DoSuperclassPaint(pdc, chounds);

)

DoSuperClassPaint sets up the device context and sends a WM_PAINT message to the default window

procedure for the subclassed control, as shown next. If you look closely at the following code, you’ll see that
the framework sends the WM_PRINT message instead of WM_PAINT when running on Windows 95 and
Windows NT version 4.x:

void COleControl::DoSuperclassPaint(CDC* pDC, const CRect& chounds)

(

if (m_hWnd == NULL)

CreateWindowForSubclassedControl();

if (mahWnd != NULL)

(

CRect rcClient;

GetClientRect(&rcClient);

if (rcClient.Size() != chounds.Size())

{

pDC—>SetMapMode(MM_ANISOTROPIC);

pDC—>SetWindowExt(rcClient.right, rcClient.bottom);

pDC—>SetViewportExt(chounds.Size());

)

pDC—>SetWindowOrg(0, 0);

pDC—>Setviewport0rg(chounds.left, chounds.top);

BOOL bWin4 = afxData.bWin4;

_AfoillPSOnStack();

::CallWindowProc(

*GetSuperWndProcAddr(),

m_hWnd, (bWin4 ? WM_PRINT : WM_PAINT),

(WPARAM)(pDC—>m_hDC),

(LPARAM)(bWin4 ? PRF_CHILDREN I PRF_CLIENT : 0));

NFLE 1009 - Page 168

NFLE 1009 - Page 169

gee «s» CHAPTER 10

This technique works fine when the control is in the running state, but it doesn’t provide a good representa-

tion when the container requests a metafile representation or when the container is in design mode. We will

discuss this problem in more detail in a later section.

Selecting the subclass option also provides a default reflected message OCM_COMMAND handler to our

control code. We will look at this message handler in detail later when we discuss a subclassed control’s
reflector window.

The standard EDIT control provided by Windows has a great deal of built—in functionality. It can function as

a single-line entry field that supports copy, cut, and paste (via the clipboard) or as a multiline edit control

that provides many of the features of an editor. Much of the functionality of the Windows Notepad utility is

provided via an EDIT control.

A standard control’s functionality is defined by the messages it sends and receives. Table 10.2 shows

some of the messages handled by the EDIT control. This information is available for all the standard controls

and the Windows 95 common controls via on—line help or in the Win32 SDK manuals. Our focus is on the

EDIT control, but the techniques we will use are also applicable to the others.

Table 10.2 Useful EDlT Control Messages

Message Purpose

EM_GETuIMITTEXT (Win32) Returns the current text limit.

EM_GET,JINE Retrieves a line of text from the control.

EM_GET.JINECOUNT Returns the number of lines of text in the control.

EM_GETSEL Returns the currently selected text.

EM_REPJACESEL Replaces the selected text with the provided text.

EM_LINELENGTH Returns the length of the line specified.

EM_SETJIMITTEXT (Win32), Sets the maximum number of characters that can be entered into the edit control.

EM_LIMITTEXT (Win16)

EM_SETREADONLY Sets the control’s read-only mode. No input is accepted from the user.

EM_SETSEL Selects a range of characters in the control.

EN_CHANGE Sent to the parent when the control identifies that the control’s content has changed.

EN_KILLFOCUS Sent to the parent when the control loses focus.

EN__MAXTEXT Sent to the parent when the number of characters trying to be inserted is larger than the maxi-
mum text limit.

EN_SETFOCUS Sent to the parent when the control gains focus.

NFLE 1009 - Page 169

NFLE 1009 - Page 170

Subclassing Windows Controls e 46?WWWWWWMMW

Table 10.2 Useful EDIT Control Messages (continued)WWW

Messgge PUI‘Pfie

EN_UPDATE Sent to the parent when the contents of the control are about to be changed. The ENMCHANGE
event is sent otter the change has occurred.

MLCONMAND Sent to the parent window with one of the control's notification messages encoded in the
WPARAM parameter.

waCOPY Copies the contents of the control to the clipboard with the CF__TEX'I‘ Format.

wM_CTLCOLOREDIT (Win32), Sent to the parent by the control to allow the parent window to select the color ot the control

WMWCTLCOLOR (Win16) when it is to be drawn.

WM__PASTE Pastes the contents of the clipboard into the control.

The messages prefixed with EN_ are called notification messages. These messages are sent from the control to

its parent and are used to notify the parent of events or changes within the control. For example, the

EN_CHANGE notification message is sent to the parent window when text within the edit control is modified.

The EM; messages are sent to the control to force it to change its state or to set various characteristics of

the control. For example, the EM_SETLIMITTEXT message sets the maximum number of characters that the

control will accept. To find out the current text limit, you send the EM_GETLIMITTEXT message.

it
NOTE

The EM_GETLIMITTEXT and EM_SETLIMITTEXT messages are provided only in Win32. The Winl 6
implementation provides only the EM__LIMITTEXT message and so gives you no way to retrieve the
LIMITTEXT value of an edit control.

The standard controls also support various standard window messages, such as WM*COPY and WM_PASTE,

which copy and paste text in the control to the clipboard. The WM_CTLCOLOR message is important for stan~

dard controls, because it plays a role in the drawing and coloring of the control. The WM_COMMAND message

is used to pass the EN_ notification messages to the control’s parent. The EN_ notification messages are

passed as parameters of a WM_COIvflVIAND message. We will cover these messages in more detail later as we
use them within our ActiveX control.

 indaw Etgle Sits
Each of the standard Windows controls has various style bits that affect the controls’ behavior or appearance.

Depending on your requirements, you specify style bits by ORing them with the style member of the CRE—

ATESTRUCT in the PreCreatewindow method of your control. Each control has both general (e.g.,

WM_BORDER) and specific (e.g., ES_LEFT) style bits. We’re focusing on the EDIT control here, so I’ve listed

the EDIT control—specific style bits in Table 10.3.

NFLE 1009 - Page 170

NFLE 1009 - Page 171

462 eKCHAPTER lO

Table lO.3 EDIT Control Style Bits

EDIT Control Syle Purgpse

EvaULTILINE Indicates that the window will support the control's multiline features.

ES_LEFT" Left—justify the text in the control.

ES__RIGHT‘ Right-iustify the text in the control.

ES_CENTER' Center the text in the control.

ES_LOWERCASE As text is entered in the control, make it all lowercase.

ES_UPPERCASE As text is entered in the control, make it all uppercase.

ES_AUTOHSCROLL if this bit is set, the control will allow the text to scroll when the number of characters in the edit

control exceeds the number that can be displayed. if this flag is not set, the entry field will allow

only a fixed number of characters.

ES_AUTOVSCROLL‘ If set, will allow the text to scroll vertically when used with a multiline entry field.

ES_NOHIDESEL When set, the text that is selected will continue to show selected when the control loses focus.

ES_READONLY The entry field is read-only. No text can be entered.

ES_PASSWORD All characters entered will display as asterisks.

ES~WANTRETURN‘ A carriage return will be inserted when the user presses the Enter key in a multiline edit field.

* indicates multiline feature only

Eheagirtg Wiudew’s Styie its betere Winders: {reheat
One of the style bits that would be useful for our control is ES_AUTOHSCROLL. If we set this style bit, the text

will scroll left if the user types in a text string that is larger than the entry field. If this flag is not set, the con

trol will beep and will not allow any input if the text cannot be displayed completely within the entry field.

To support this ability, we add the ES_AUTOHSCROLL flag to the CREATES’I‘RUCT style field in the
PreCreateWindow method:

///////H//

// CEEditCtrl: :PreCreatewindow — Modify parameters for CreateWindowEx

BOOL CEEditCtrl: :PreCreateWindow(CREATESTRUCTS: cs)

(

cs.lpszClass = _T(“EDIT”);

cs . style | = ES__AUTOHSCROLL;
return COleControl: :PreCreatewindow(cs) ,-

NFLE 1009 - Page 171

NFLE 1009 - Page 172

Subclassing Windows Controls s» 43-63

Changing a Wimclew’s Styie Bits It Rtfii’fi time
You can also change some style bits after a window has been created. To change the style bits of a created

Window, you use the GetWindowLong and SetWindowLong functions. The style bits of a window are

stored in a DWORD that is part of every window structure. The following code shows how to change a win-

dow’s style bit after it has been created:

void SetSomeProperty(BOOL bNewValue)

t

// Get the current style bits

DWORD detyle ::GetWindowLong(GetSafeHwnd(), GWL_STYLE);

// If the user turned on the property

if (m_bProperty)

{

de tyle |= WS_WINDOWSTYLEBIT;
l

// Turn off the style bit
else

{

detyle &= ~WS_WINDOWSTYLEBIT;

l

// Update the style for the window

::SetWindowLong(GetSafeHwnd(), GWL_STYLE, detyle);

Oleéomtrelszfietreteéentrolwmdow

Most of the style bits that are specific to a standard control cannot be changed unless you destroy and re—cre-

ate the window. COleControl provides a function, RecreateControlWindow, that makes this easy.

As part of our EEdit implementation, we decided that the ES_AUTOHSCROLL flag would provide addi—

tional functionality. For instructional purposes, we’ll allow the control user to either enable or disable the

AUTOHSCROLL functionality. We’ll add a property that can be changed during the design phase and at run

time. Run-time support will require that we destroy and re—create the window.

Using ClassWizard, add an AutoScroll property of type BOOL with Get and Set methods as the

implementation of the EEdit control. We also need a member variable—call it m_bAutoScroll——t0 store

the property’s value. The default value will be TRUE, because we want the AUTOHSCROLL capability enabled

by default. Add the new member variable to EEDITCTL.H and add the following code for

DoPropExchange, PreCreateWindow, and the Get and Set methods for the new property to EED-
ITCTL.CPP:

NFLE 1009 - Page 172

NFLE 1009 - Page 173

flfifi Q CHAPTER 10

// EEditctl.h

class CEEditCtrl : public COleControl

{

// Implementation

protected:

~CEEditCtrl();

‘y BOOL‘ mfbAutoScroll;y ”ly“

);

// EEditCtl.cpp

CEEditCtrl::CEEditCtrl()

{

InitializeIIDs(&IID~DEedit, &IID_DEeditEvents);

// TODO: Initialize your control’s instance data here.

m_bAutoScroll ; TRUE; ,_. 1 . _,., \,w_w,_ .

///

// CEEditCtrl::DoPropExchange — Persistence support

void CEEditCtrl::DoPropExchange(CPropExchange* pPX)

(

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl::DoPropExchange(pPX);

// TODO: Call PX_ functions for each persistent custom property.

_ // Store/retrieye the Autoscr6l17property_value7fik‘V
I //-Tfie-default is TRUE” f7

PX;Boc1(-ppx; fAutoSérollij“m;b§utOScrcllgiTRUE_);“:"*"“ -*

)

///

// CEEditCtrl::PreCreatewindow — Modify parameters for CreatewindowEx

BOOL CEEditCtrl::PreCreatewindow(CREATESTRUCT& cs)

{

cs.lpszClass = _T(“EDIT”);

NFLE 1009 - Page 173

NFLE 1009 - Page 174

Subclassing Windows Controls e 4&5/ MW"WW4WM”WWWNMWW”MWWW.mmmmwwtwwwwmwmmmmWWWmy...»mumWWWWMWMWMMWWMMWWWWWMWM.

if (m4bAutoScroll)

cs . style | = ES_AUTOHSCROLL ,-
return COleControl::PreCreateWindow(cs);

l

BOOL CEEditCtrl::GetAutoScroll()

(

return m;bAutoScroll;
}

void CEEditCtrl: :SetAutoScroll(BOOL bNewValue)

i

\ m_bAutosoroll = bitewvalue;

1 -,if (AmbientUserModef))

i , RecreateControlWindoM);

SettiodifiedFlag(‘);
}

We now check and set the appropriate style bits before the creation of the window in PreCreateWindow‘

Because the control’s window is nonexistent or will be destroyed and re-created when the user switches to

run mode, the PreCreateWindow method will handle design-time modification of the property.

When the ActiveX control is operating at run time, the user can now modify the AUTOHSCROLL behav—
ior at run time with a call similar to this:

‘Turn autoscroll off

EEditl.AutoScroll = False

This code will call SetAutoScroll, which sets the new value of m_bAutoScroll to FALSE and calls

RecreateControlWindow. RecreateControlWindow calls PreCreateWindow, and the window is cre-

ated without the ES_AUTOHSCROLL bit. The framework maintains the state of the control throughout this

process. A side effect is that the user may see the control quickly disappear and reappear as it is destroyed
and re—created.

The COleControl class maintains only the ”text” of our EEdit window. Other Windows control state
information, such as the m_sMaxLength property (which we will cover next), is not maintained dur-
ing the call l0 RecreateControlWindow. We can manage this by maintaining the MaxLength
value within our control’s class and resetting the value When the WM_CREATE message is received for
the newly re-created window. Other subclassed controls, such as listboxes, also require that you
maintain certain control state information it you use the RecreateControlWindow method.

Go ahead and compile and link the project and insert the control into your favorite container (not the Test

Container). Add a few of the EEdit controls and change their AutoScroll properties during the design

phase and during run time to get a sense of exactly what is going on.

NFLE 1009 - Page 174

NFLE 1009 - Page 175

see «6» CHAPTER 10wrWWWMWMWMWW—WMWWWWWWWWWMMWWWW.MW

 igsg isssrs shavésr essagss
You can also modify the behavior a standard Windows control by sending it messages that are defined by

the control. The standard EDIT control allows you to limit the number of characters that can be entered into

the entry field. You do this by sending it an EM__SETLIMITTEXT message. The control must exist before you

send it the message, so modifying a control’s behavior in this manner requires a different approach from
that used above.

Add a new property to the control—call it m__sMaxLength—of type short. The control must have a

valid HWND before we can initialize the control with the property value. The best time to initialize this value

is when the control’s window is initially created. Right after a window is created, it receives the WM_CREATE

message. Open ClassWizard and add a handler for the WM_CREATE message. We will use this event to set

the MaxLength for the control. Add the following highlighted code:

// eeditct1.h

class CEEditCtrl : public COleControl

{

// Implementation

protected:

~CEEditCtrl();

BOOL m_bAutoScroll;

short , mustlaxLength ;y

l;

// EEditctl.cpp

CEEditCtrl::CEEditCtr1()

{

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents);

// TODO: Initialize your control’s instance data here.

m_bAutoScroll = TRUE;

anMaxLength = 0;'

void CEEditCtrl::DoPropExchange(CPropExchange* pPX)

(

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl::DoPropExchange(pPX);

// TODO: Call PX_ functions for each persistent custom propertyi

NFLE 1009 - Page 175

NFLE 1009 - Page 176

Subclassing WindOWS Controls e 467WMMNWMMWWM MWMMMMMNMWmWWWMMMMMMWMMMMMMMMNM,.«MMWM”WM,.MM.«WWWM»MM,NMMWMWMWMWMMMMMMWM M MW,WM MMWWNWWMMWMMMMs”.W,MMMMMMWM

pxflBool< pPX, “AutoScroll”, m_bAutoScroll, TRUE);

PX,Sh0rt(pPX, “MaxLength”, m“SMaxLength, 0);

éifdef _WIN32

fidefine LIMITMSG EM_SETLIMITTEXT

fielse

#define LIMITMSG EMfiLIIViI'ITEXI‘

int CEEditCtrl::OnCreate(LPCREATESTRUCT lpCreateStruct)

l

if (COleControl::OnCreate<lpCreateStruct) == ~l)

return ~l;

" if (m_sMaxLength)

'SendMessage(LIMITMSG, m_sMaxLength, 0);

return 0;

)

short CEEditCtrl::GetMaxLength()

l

H return mwsMaxLength;

l

void CEEditCtrl::SetMaxLength(short nNewValue)

(

m_sMaXLength : nNewValue;

if (AmbientUserMode())

(

if (m_sMaxLength)

SendMessage(LIMITMSG, mflsMaxLength,L0);
else

SendMessage(LIMITMSG, 32000, 0);

}

SetModifiedFlag();

}

There are differences between the Win16 and Win32 implementations of the WM_LIMIT message, so we use

the _WIN32 symbol to isolate the differences between the platforms. Once that is done, the implementation

of the new property is easy. When the control’s window is created, we check the value of the property. If it is
nonzero, we use the SendMessage method to modify the behavior of the control. If the control user wants

NFLE 1009 - Page 176

NFLE 1009 - Page 177

eee «e CHAPTER 710 .WMWWWWMWWMMWWW MWMWWWHWWWWWWwmtmeWWwwwmmwwmm

to change the MaxLength of the control at run time, the SetMaxLength method handles this. If

m_sMaxLength is set to zero, a limit of 32000 is sent to the control, effectively allowing unlimited text entry,

eeeee Ee eessiee geeeiaéiieies wéeh Aetéeex

ieeEree

When we last used the Expression class in Chapter 6, we provided an automation interface so that its

capabilities could be used from non-C++ languages. By developing an ActiveX control implementation, we

are making the Expression component’s functionality more accessible to developers who use visual tools.

We also provide a feedback, or event, mechanism so that the tool user can easily tie additional actions to the
control's features.

ééeieg ehe Seeek Eveets
Because our EEdit control is primarily a visual one, it should provide the stock MFC events. Using

ClassWizard, add the following stock events to the CEEdi tCtrl class:

0 Click

- DblClick

° KeyDown

*3 KeyUp

- KeyPress
- MouseDown

° MouseUp
° MouseMove

Adding these stock events provides the control user with the ability to perform actions when one of the

events is fired by the default implementation of COleControl. We didn’t add any code at all, but the con-

trol user can now add behavior based on the user clicking or double-clicking within the edit field.

 metee eeee essages
, Standard Windows controls are usually associated with a parent window. That’s one of the reasons that

they’re called child windows. In most cases, the parent window is a Windows dialog box. The dialog win—
dow acts a lot like an ActiveX control container, because it coordinates the behavior of its child windows. It

NFLE 1009 - Page 177

NFLE 1009 - Page 178

.5 b lasers Windwafi 2* ,WNWMWM

ContrOIs the tabbing order of the controls, notifies them of changes in the environment, and accepts mes~

sages, or notifications, from the child controls when something occurs. ‘

When a control is subclassed for use within an ActiveX control, this dialog—based environment does not

necessarily exist. ActiveX controls have their own techniques of interacting with the container. The container

and controls work together to establish the tabbing order, ambient properties provide a way for the control

to retrieve information from the container, and the control can fire events to notify the container of internal

changes. The functionality is similar to that in a parent/ child window environment, but the implementation

is quite different. Instead of Window messages going back and forth, we use automation.

What I’m getting at is this; there is no parent window for the subclassed controls to post and receive the

Windows messages that define their behavior. To solve this problem, the ActiveX control standard describes

a reflector window. The reflector window is created by the COleControl implementation, but a reflector

window can instead be provided by the container. The container technique would reduce overhead, because

it could use only one window that could act as the parent for all contained ActiveX controls that use sub—

classing. If the control container provides this feature, it must set the MessageReflect ambient property to

TRUE. If the container does not support message reflection, the framework will create its own reflector win-

dow for each ActiveX control that subclasses a Windows control. This is done by the COleControl base
class.

The purpose of the reflector window is to reflect back to the ActiveX control certain Windows messages

that would otherwise go to the parent (Figure 10.2). A control notification message such as BN_CLICKED,

EN_CHANGED, and so on will be reflected back to the ActiveX control so that it can be implemented as an

OLE event. For example, the WMWCTLCOLOR message is sent to the parent to get information about how the

child window should paint itself but instead is now reflected back to the ActiveX control for handling. The

ActiveX control can then get the container’s ambient color properties and paint itself appropriately. Table

10.4 shows the messages that are reflected back to the ActiveX control.

Parent window

messages
WM_COMMAND

WM_CTLCOLOR, etc.

Reflector Window
or

Container Implementation

Messages
reflected back
to the control

Figure 10.2 A control’s reflector window.

NFLE 1009 - Page 178

NFLE 1009 - Page 179

470 a CHAPTER 10WMMWWWMWMMMWWMAWWWWWWHWMMMNWMW.WWu M,,«MM/W.WMWNwMMMWWWMWWWWWWWWM

Table 10.4 Windows Messages Reflected Back to an ActiveX Control

Message tram Control Message Reflected Bad? to Control

WM_COMMAND OCM_COMMAND

WM_CTLCOLOR (Winl 6) OCM_CTLCOLOR

WM_CT,4COLOREDIT (Win32) OCM_CTLCOLOREDIT

WM_CT,4COVJORBTN (Win32) OCM_CT,4COLORBTN

WM~CTLCOVJORDLG (Win32) OCM_CT,4CO,JORDLG

WM__CTLCO,_.ORLISTBOX (Win32) OCM_CT,4CO,JORLISTBOX

WM_CT,4COLORMSGBOX (Win32) OCM_CTLCOLORMSGBOX

WM_CT,4CO,JORSCROLLBAR (Win32) OCM_CT,4COLORSCROLLBAR

WM,_CT,_.COVJORSTATIC (Win32) OCM”CT,4COLORSTATIC

WM__DRAWITEM OCM_DRAWITEM

WM_MEASUREITEM OCM_MEASUREITEM

WM_DELETEITEM OCM_DELETEITEM

WM_VKEYTOITEM OCM~VKEYTOITEM

WM_CHARTOITEM OCM_CHARTOITEM

WM_COMPAREITEM OCM_COMPAREITEM

WM__HSCROVJL OCM__HSCROVJL

WM_VSCRO,_.L OCM_VSCRO,_.L

WM_PARENTNOTIFY OCM_PARENTNOTIFY

By default, COleControl does nothing with the messages that are reflected back to the control. To fire an

event or in any way act on one of the reflected messages, you must add it to your control’s message map and

provide a message handler. The code initially provided by ControlWizard adds support for the OCM__COM—

MAND message by adding it to your message map and providing a default method that does nothing. Here is
the code from EEDITCTL.CPP:

NFLE 1009 - Page 179

NFLE 1009 - Page 180

[Subclovssing Windows Controls r? Q?'E_ ”WWWWWW,MWWMWWW4WWmWWW WWWWWW

// EEditctl.cpp

BEGIN_MESSAGE_MAP(CEEditCtrl, COleControl)

//{{AFX_MSG_MAP (CEEditCtrl)

ON__MESSAGE (OCM_COMMAND, OnOcmCommand)

//))AFX_MSG__MAP

ON__OLEVERB (AFX_IDS_VERB_EDIT , OnEdi t)

ON___OLEVERB (AFXMIDS_VERB_PROPERTIES , OnProperties)

END_MESSAGE_MAP ()

///

// CEEditCtrl::OnOcmCommand - Handle command messages

LRESULT CEEditCtrl::OnOcmCommand(WPARAM wParam, LPARAM lParam)

{

#ifdef _WIN32

WORD wNotifyCode
H

HIWORD(wParam);

#else

WORD wNotifyCode
ll

HIWORD(lParam);

#endif

// TODO: Switch on wNotifyCode here.

return 0;

)

ControlWizard provides a default handler for the OCM_COMMAND message, because you typically fire events

when your control receives notification messages. For example, when subclassing a BUTTON control, you

will trap the BNwCLICKED message and fire the stock Click event.

 meeesng a Sestmégs eaten essages
For our EEdit control, we will process the EN_CHANGED notification message and fire an event that notifies

the control user that text in the edit control has changed. First, using ClassWizard, add a custom event called

FireChange. The event requires no parameters. Figure 10.3 shows the addition of the custom event.

NFLE 1009 - Page 180

NFLE 1009 - Page 181

are a CHAPTER 10

Figure 10.3 Adding c1 custom event.

Once the event is added, we need to fire it when appropriate. The EEdit control sends a notification message

to its parent, which is reflected back to the ActiveX control via the OCM"COMMAND message handler. This

message handler calls the OnOcmCommand method with the parameters of the notification message. We

check the notify code of the message, and, if it is EN_CHANGE, we fire the change event. Add the following
code to EEDITCTL.CPP:

///

// CEEditCtrl::OnOcmCommand - Handle command messages

LRESULT CEEditCtrl::OnOcmCommand(WPARAM wParam, LPARAM lParam)

(

#ifdef _WIN32

WORD wNotifyCode HIWORD(wParam);
#else

WORD wNotifyCode = HIWORD(lParam);
#endif

// TODO: Switch on wNotifyCode here.

switch(wNotifyCode)

(

case EN;CHANGE:

FireChange();

break;

}

return 0;

NFLE 1009 - Page 181

NFLE 1009 - Page 182

As you can see, the code generated by ControlWizard takes care of breaking out the notification parameter
from either the wParam or the lParam depending on the platform we are compiling for. We are interested

only in the EN__CHANGE notification, so we add a switch statement to identify it and to fire the custom
event that We added earlier. Rather painless, isn’t it? Setting the colors of a subclassed control is slightly
more involved.

§et§§§ag a e iséees e? a gseeéasse imieeé
When you subclass a control, it’s important to get the colors to draw correctly. We’ve briefly discussed the

wM__CTLCOLOR message, which a standard control sends to its parent when it needs to draw itself. The

wM_CTLCOLOR message contains the DC of the child control, so when the parent receives the message it sets

the attributes of the provided DC to those appropriate for the drawing of the child window. The return

value of WM_CTLCOLOR is a handle to the brush that is used for the control’s background color.

This sounds great, but who is the parent? As we’ve discussed, the parent of a subclassed control will be

the control’s reflector window. Depending on the environment in which the control is running, the frame-

work may provide the reflector window, or the container may provide a similar mechanism. In both cases,

the control itself becomes the ”parent” of the subclassed control. By using the reflected message handler for
the OCM_CTLCOLOR message, we provide ourselves with the brushes for coloring the control.

ClassWizard doesn’t currently let you add reflected message handlers. You must add them yourself,

but it’s easy‘ ControlWizard initially added a handler for our notification messages, so we add another line

with the new handler. Add the following highlighted code to EEDITCTLCPP:

///

// Message map

//

BEGINWMESSAGEwMAP(CEEditCtrl, COleCOntrOl)

//{{AFX_MSG_MAP(CEEditCtr1)

ON_MESSAGE(OCM_COMMAND, OnOcmCommand)

ON_MESSAGE(OCM_CTLCOLOREDIT, OnOcmCthOlor)

//}}AFX_MSG_MAP

ON“OLEVERB(AFX_IDS_VERB_EDIT, OnEdit)

ON_OLEVERB(AFX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP()

Notice that we added a handler for an OCM_CTLCOLOREDIT message and not one for OCMWCTLCOLOR. We’ll

get to that in a moment. Next, we need to add the declaration for OnOcmCtholor to EEDITCTL.H and

then implement it in EEDITCTLCPP:

// EEditCtl.h

class CEEditCtrl : public COleControl

NFLE 1009 - Page 182

NFLE 1009 - Page 183

@174?- é CHAPTER 110

// Implementation

protected:

~9CEEditCtrl();

BOOL m_bAutoScroll;

short m_sMaxLength;

CBrush* m_pBackBrUsh;r

// Subclassed control support

BOOL PreCreateWindow(CREATESTRUCT& cs);

BOOL IsSubclassedControl();

LRESULT OnOcmCommand(WPARAM wParam, LPARAM lParam);

, LRESULT OnOcmCtholor(WPARAM wParam, mama lParam);

};

// EEditctl.cpp

CEEditCtrl::CEEditCtrl()

(

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents);

// TODO: Initialize your control’s instance data here.

5’Lm_pBackBrush : NULL;
m_bAutoScroll = TRUE;

m_sMaxLength = 0;

LRESULT CEEditCtrl::OnOcmCtholor(WPARAM wParam, LPARAM lParam)

l

L if (m_pBaCkBrush == NULL)

m_pBackBrush = new CBrush(TranslateColor(GetBackColor()));

CDC* pdc = CDC::FromHandle((HDC) wParam);

* pdo¥>SetBkMOde(TRANSPARENT);
‘pdo->SetBkColor(TranslateColor(GetBackColor()));

pdCa>SetTextColor(TranslateColor(GetFQreColor()));

L V.HBRUSH far* hbr = (HBRUSH far*) m_pBackBrush—>GetSafeHandle();

Lreturn ((DWORD) hbr);
} ,

NFLE 1009 - Page 183

NFLE 1009 - Page 184

Subclassing Windows Controls 6 475wawmwwfln

The code in OnOcmCtholor is what you would typically see in the parent (such as a dialog box) of many

child controls. When the message is received, we set the background mode and color and the text color just

as we would in a normal OnDraw method. The tricky part involves the handling of the background color
brush.

When processing the WM_CTLCOLOR message, we return either a handle to a valid brush or NULL. If

NULL is returned, the default system background color is used. We need to return a handle to a brush that is

the current background color, so to process this message we need to maintain an instance of the CBrush

class with the current background color of our control. We need a CBrush pointer member in our control

class, and we call it m_pBackBrush. We also need to be notified when the BackColor property is changed

so that we can update our brush with the new color. Override the OnBackColor method by declaring it in

EEDITCTL.H and add the following implementation code. You can also add it through ClassWizard.

class CEEditCtrl : public COleControl

{

// Overrides

virtual void OnBackColorChanged();

// Implementation

protected:

~CEEditCtrl () ;

CBrush* m_pBackBrush;

l;

// eeditctl Cpp

void CEEditCtrl::OnBackColorChanged()

if

:_.de1ete mupBackBrush; , _ _
_m__pBackBr_ush = new CBrush(TranslateColor(Get’BackColorU H;

If InvalidateControl(); L,
)

Whenever the user changes the BackColor property, we delete the old brush and create a new one with the

new color. We also need to ensure that the brush is deleted when a control’s instance is destroyed. Add the

following code to the control’s destructor:

CEEditCtrl: :~CEEditCtrl ()

{

// TODO: Clean up your control’s instance data here.

delete m_pBackBrush;

NFLE 1009 - Page 184

NFLE 1009 - Page 185

£76 e CHAPTER lO. WWWNWWWWNMWWWWWQWMMMWWWW.W«WMMMMW,AWWMAWM~.WWA.W“W”WWWWWWNWw

WMfiTtCGiQR It‘lil Win32

The WM_CTLCOLOR message is used only in Win16. Here is its definition:

WM_CTLCOLOR

hchhild = (HDC) wParam; // DC of the Child window

hwndChild = (HWND) LOWORD(lParam); // hwnd of the Child window

nCtlType = (int) HIWORD(lParam); // type of the control

The nCtlType parameter contains the control type: CTLCOLOR_BTN, CTLCOLOR_DLG, CTLCOLOR_EDIT,

and so on. When Microsoft moved the Windows messages from Winlé to WinBZ, the WM_CTLCOLOR meS-

sage was one that did not make the transition. In Win16, WM_CTLCOLOR’s wParam, a WORD, contained the

child’s 16-bit device context, and the lParam, a DWORD, contained both the child window’s HWND (16 bits)

and the child control type (16 bits).

In Win32, the size of a HANDLE went from 16 bits to 32 bits, so the HWND and HDC parameters increased

to 32 bits. Although the wParam and lParam parameters in WinBZ are both 32-bit, this did not leave room

for the control type to be passed within the message. To rectify this, the WM_CTLCOLOR message was broken

into seven different messages (one for each control type) in Win32.

This arrangement isn’t really a big problem, and MFC does a pretty good job of hiding these differences

within the framework. The only exception occurs when we handle the reflected window messages using the
OCM__* macros.

Because of the differences between the Win16 and Win32 implementations of the reflected message

macros (OCM__*), we would like to code the message map as follows: ‘

///H

// Message map

//

BEGIN_MESSAGE_MAP(CEEditCtrl, COleControl)

//{ {AFX_MSG_MAP (CEEditCtrl)

ON_MESSAGE(OCM_COMMAND, OnOCmCommand)

#ifdef JSiNBZ ‘ , I f , ,

ommssads (OCM_CTLCOL0REDIT, ‘ enocmcktlc‘o'io‘r) ' ”
#else'_ , a;

_ ON_MESSAGE(0C1414CTLCGLOR, yonocmcucdlor)‘ ‘
gendif '

// })AFXWMSG_MAP

ON_OLEVERB (AFX_I DS_VERB~EDIT, OnEdi t)

ON__OLEVERB (AFX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP()

NFLE 1009 - Page 185

NFLE 1009 - Page 186

Subclassing Windows Controls 9 477W mWW.WwuwwmwMMNWMWWVWWWW,MWWWMWimmmmmm M

But ClassWizard parses the message map without any C++ preprocessing, so this code won’t work. one
way to overcome this problem is to #undefine the OCM_CTLCOLOREDIT symbol under Win16 and rede-

fine it to OCM_CTLCOLOR. This technique allows us to use one source file for both platforms.

///

// Message map

//

cause of the differences between the Win16and
, WMCTLCQLOR message,. we need to mod1 y the 1,,
duefor the OCHCTLCOLOPEuIT symbol under Wln16

BEGIN_MESSAGE_MAP(CEEditCtrl, COleControl)

//((AFX_MSG~MAP(CEEditCtrl)

ON_MESSAGE(OCM_COMMAND, OnOcmCommand)

ON_MESSAGE(OCM_CTLCOLOREDIT, OnOcmCtholor)

//}}AFX_MSG_MAP

ON_OLEVERB(AFX_IDS_VERB_EDIT, OnEdit)

ON_OLEVERB(AFX_IDS_VERB_PROPERTIES, OnPrOperties)

END_MESSAGE_MAP()

We’ve made quite a few modifications to our control, so let’s go ahead and compile, link, and test the control

within a container. Figure 10.4 shows a simple Visual Basic application that uses the control. When you

modify the control's stock color properties, it will affect the control’s run~time representation. But it doesn’t

draw right when you’re in design mode. What's going on?

Figure 10.4 EEdif control on a Visual Basic Form.

NFLE 1009 - Page 186

NFLE 1009 - Page 187

@735 if CHAEIE'? 10

 e52 geeseeé gag egassEe

The major problem with subclassing windows is that you must provide some form of representation during
the container’s design phase. The DoSuperclassPaint method doesn’t do a very good job of drawing the

control without a true window and without the reflector window that is needed to process the WMWCTL~

COLOR messages. Another problem is that DoSuperclassPaint may not work at all for containers that

require a metafile representation of the control. What can we do?

For one thing, the design-phase representation of a control is not nearly as important as its representa—

tion at run time. In Visual Basic 3.0, a listbox was represented as a rectangle with its name in the upper left

corner in the design phase. That was it. Because of the various requirements of control containers, it is prob»

ably best to render the design—time representation of your subclassed control yourself. It can be as simple or

as complex as you would like, but don’t let the problem of a design-phase representation stop you from

gaining the advantages of subclassing an existing Windows control.

As we discussed in Chapter 9, it is important to provide a drawing routine that will work with a

metafile device context. When drawing a subclassed control, as a metafile or in the design phase, I’ve taken

the following approach. Develop a drawing routine that best represents the control. Typical controls will

provide the name of the control in the upper left corner during the design phase, just as we did with the

clock control in Chapter 9. Represent the control with a shape that is representative of its size and location.

Use as many of the stock and custom properties as possible when drawing the control. This includes the

color, font, and border properties

Using this approach, here are the OnDrawMetaf ile and OnDraw methods for our EEdit control:

void CEEditCtrl::OnDrawMetafile(CDC* pdc, const CRect& chounds)

(

DrawDesign(pdc, chounds);

l

void CEEditCtrl::OnDraw(

CDC* pdc, const CRect& chounds, const CRect& rcInvalid)

// If the container is in design mode

// Draw the design representation

if (! AmbientUserMode())

DrawDesign(pdc, chounds);

else ‘

DoSuperclassPaint(pdc, chounds);

)

As you can see, if the container is asking for a metafile representation or it is in design mode, we call a new

method, DrawDesign. When the control is running, the DoSuperclassPaint method draws the control

its native way: by processing the WM_CTLCOLOR* messages and so on. The only purpose of the

NFLE 1009 - Page 187

NFLE 1009 - Page 188

Subclassing Windows Controls f? 4-7?WfiMwe/Mwm _ _. _ we“ . r M W, M _ r (p . MM _ ”Mme.WWW.WNMKWVMW»MWWWNW ”WM “mpww WM MW: new w,

DrawDesign method is to provide a good representation of the control the rest of the time (either during

design or when it is being printed by the container). This approach is fairly straightforward:

fiéid'CEEditCtrl::DrawDesign(CDC* pdc, const CRect& chounds)

' CBrush bkErush(TranslateColor(GetBackColor() l);

pdc->FillRect(chounds, &karush);

7/ Get the stock “text” property value

i QCString strName : InternalGetText();

:_// Set the textcolor to the foreground color
. pdc—>SetTextColor(TranslateColor(GetForeColor() l);

// Select the stock font and save the old one

: CFont* poldFont = SelectStockFont(pdc);

_ // Set up the text drawing modes in the DC
~pdc->SetBkMode(TRANSPARENT);

f- pdc—>SetTextAlign(TAflLEFT l TA_TOP) ;

// Draw the text in the upper left corner

L”:pdc—>ExtTeXtOut(rchunds.left + 1, chounds.top + 1, ETO~CLIPPED,

, chound , strName, strName.GetLength(), NULL);

 gf.f/ Restore the old font.

nif (pOldFont) ,

~y‘pdc%>_SelectObjeot(pOldFont);
}_

This code is similar to the drawing code that you’ve seen before. The only thing is the use of the

InternalGetText method to get the text to draw in the control. The value of the Text property is initially

set in the control’s OnResetState method, which is called when a control is placed within a container for

the first time. This is a good spot to initialize our default Text property to the ambient Di splayName prop-

erty:

///

// CEEditCtrl::OnResetState — Reset control to default state

void CEEditCtrl::OnResetState()

(

COleControl::OnResetState(); // Resets defaults found in DoPropExchange

// TODO: Reset any other control state here.

SetText(AmbientDisplayName());

NFLE 1009 - Page 188

NFLE 1009 - Page 189

Q8® <9 CHAPTER 10

The preceding code sets the initial value of the control's Text property to the ambient DisplayName prop-

erty provided by the container. Many controls that expose the Text property default its value in this way,

For our purposes here, though, a default value of EEditl for a control that accepts only numeric expres»

sions doesn’t make sense. A more appropriate default value would be zero (I just wanted to show you how
to do it).

///

// CEEditCtrl::OnResetState ~ Reset control to default state

void CEEditCtrl::OnResetState()

{

COleControl::OnResetStatE(); // Resets defaults found in DoPropExchange

// TODO: Reset any other control state here.

SetText(“U”);

gases for few isetaeégs grates

When your control is initially placed in a container, COleControl: :OnResetState is called. This

method, in turn, calls your control’s OnPropertyExchange method with IsLoading () set to TRUE. The

CPropExchange: :IsLoading method indicates the direction of the property exchange. When it is TRUE,

the container is loading the properties; when it is FALSE, the properties are being saved. Because this is the

first time that the control has been loaded by the container and because there is no persistent data that has

been previously stored, the default values of the PX_ functions are used.

If you haven’t provided default values for your PX_ functions, garbage will be returned for each of your

properties. It is important to either set the default values of your control’s properties by providing the

defaults in the PX_ functions or set them in the OnResetState method. Use the following guidelines for

help in determining where you should initialize data used in your control.

is the {murals {anstrucmr

Control instance data that is used internally by the control and isn’t directly exposed (for example, by a

property) should be initialized here.

In tire Eastml’s BaPmperiyExchlnge Elflethad
As I mentioned earlier, you can provide a default value for your control’s properties as the last parameter of

the CPropertyExchange PX_* functions. Here is an example from the AutoScroll property that we
added earlier:

NFLE 1009 - Page 189

NFLE 1009 - Page 190

Subclassing Windows Controls t 43?WWwNWMWWWWWWWWWKMWWW WWWWWMWWWN

///

// CEEditCtrl :DoPropExchange — Persistence support

void CEEditCtrl::DoPropExchange(CPropExchange* pPX)

l

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl::DoPropExchange(pPX);

// TODO: Call PX_ functions for each persistent custom property.

f Storefretrieve the Autoscroll property value 5%}; H

nitrite detailing-mos ,_ ‘ , ‘ _ _ ‘_ _

EX’JBooM pPX, “AutoScrollf’r, m_bAutoScroll,_ TRUE,); ‘
}

There’s another good reason to provide default values for your control’s properties here. If the property’s

value is the default value, there will be no need to store it when serializing the control’s state. This technique

may save storage space in the container’s persistence file.

in the {owners @nResetStufie Method

You can also initialize your control’s properties in the OnResetState method. This is a good place to pro-

vide defaults for stock properties that are different from those provided by the

COleControl : :DoPropExchange (pPX) method. COleControl provides the default values for the stock

properties, but you can override them when the control is initially loaded by changing their values in

OnResetState after it has called COleControl; :OnResetState. For example, if you want your control

to default to having a border, you can set its value in OnResetState as follows:

///

// CEEditCtrl::OnResetState — Reset control to default state

void CEEditCtrl: OnResetState()

{

COleControl::OnResetState(); // Resets defaults found in DoPropExchange

// TODD: Reset any other control state here.

// Turn off any border and make the control 3D

m_sBorderStyle = 0;

m~sAppearance : l;
)

You could also use the SetBorderStyle method to set the initial border style, but in this case it’s rather

expensive. SetBorderStyle calls RecreateControlWindow to destroy and re-create our control’s win-

dow, because the WS_BORDER style can be set only before the window is created. The same goes for the

appearance style.

NFLE 1009 - Page 190

NFLE 1009 - Page 191

482 é CHAPTER 10
 WNW.

OnResetState is called before your control’s window is created, so this is an effective way of initializ-

ing your control properties that can’t be effectively defaulted using the default values in the PX_ functions of
DoPropertyExchange, as described earlier.

E

is " E: e a: ressées gseesesa is?
We’re halfway through the chapter, and we haven’t discussed the addition of the Expression class. The

addition of expression evaluation is fairly trivial compared with what we’ve done to get the EEdit control to

behave in a civilized manner. Before we begin using the Expression class, be sure to copy the EXPRESSH

and EXPRESS.CPP files from the Chapter 2 directory on the accompanying CD-ROM and then insert the

.CPP file to the project. Also, add the include to the top of EEDITCTL.CPP.

Our goal is to provide an entry field that accepts only a simple algebraic expression. This includes dig-

its, operators, and the parenthesis characters. The user will enter an expression into the entry field, and the

expression will be evaluated when the control loses focus.

To add this functionality, we need to add message handlers for the appropriate control messages:

WM_KILLFOCUS and WM_CHAR. Using ClassWizard, add handlers for these two messages and add the fol-

lowing code to the OnKillFocus method:

// EEditCtl.cpp : Implementation of the CEEditCtrl OLE control class.

#include “stdafx.h"

#include “EEdit.h”

#include “EEditCtl.h“

#include “EEdithg.h”

#include “Express.h“

#ifdef _DEBUG

#define new DEBUG_NEW

///

// CEEditCtrl message handlers

void CEEditCtrl::OnKillFocus(CWnd* pNeand)

{

COleControl::OnKillFocus(pNeand);

if (AmbientUserModeH :2 FALSE [1 AmbientUIDeadH)
return;

// Get the value of the “text" property and

// use it to construct our expression object

Expression exp(InternalGetText(), TRUE);

NFLE 1009 - Page 191

NFLE 1009 - Page 192

Subclassing Windows Controls ‘$> 483m WWWMmmwmmmuwrwwnWMMMWWWWWWMMWWMWWNWWWWWWWNWMWW

g_if (exp.Validate() == FALSE)
{

SetFocus () ;

j-uyelse
,_ {

‘ ‘ char szTempiiza];

ilong lResult : exp.Evaluate();
sprintf(szTemp, “%ld”, 1Result);

// Set. the new value of the “text” property
‘ // This will also update the edit control

_ SetTexu szTemp);
l

Whenever the application user tabs out of the Edit control or clicks on another control, it receives a

WM_KILLFOCUS message. We first check to make sure that we are not in design mode and that the container

has not set the ambient UIDead property. Next, we retrieve the text from the control using the

GetWindowText method. Using the entered text, we construct an instance of our Expression class. If the

expression is invalid, we call the SetFocus method; otherwise, we evaluate the expression and place the

result into the control using the SetwindowText method.

By returning focus to the control when an invalid expression is entered, we require users to always

enter a valid expression. Users cannot tab to a different control within the application or even exit the appli-

cation without entering a valid expression. This type of validation is called field-level validation and may not

be the behavior we want. Using the SetFocus method within a focus handler such as OnKillFocus is not

recommended. We'll provide alternative solutions in a moment.

One thing that we can do to help ensure that the application user enters a valid expression is to disallow

the entry of invalid (expression) characters. We trap the WM_CHAR message for this reason. By subclassing

the Edit control, we have an opportunity to inspect and possibly ignore any message destined for the con-

trol. We allow the majority of the messages to pass through to the original window procedure. The excep-

tions are WM_KILLFOCUS and WMwCHAR. We intercepted the kill focus message to perform some action, but

we intercept the WM_CHAR message to filter, or remove, certain characters that are entered by the user. Add

the following code:

void CEEditCtrl::OnChar(UINT nChar, UINT nReant, UINT nFlags)

{

if (‘ AmbientUsefModeU == FALSE 1| AmbientUIDeadU ‘) ,

return;

if (isdigit(nChar) If IsOperator(nChar) [I nChar ==" ‘ il nChar == ‘\b’)
{

COleControl::OnChar(nChar, nReant, nFlags);

NFLE 1009 - Page 192

NFLE 1009 - Page 193

4M 6 gy/HAPTER 10

l

#ifdef _WIN32
else

::Beep(100, 100);

#endif

}

#define LEFT_PAREN ‘(‘

#define RIGHT_PAREN ‘i'

#define MULTIPLY ‘* '

#define SUBTRACT u’

#define PLUS ‘+'

#define DIVIDE ‘/’

static BOOL IsOperator(UINT nChar)

{

switch(nChar)

(

case LEFT_PAREN:

case RIGHT_PAREN:

case MULTIPLY:

case SUBTRACT:

case PLUS:

case DIVIDE:

return TRUE;

l

return FALSE;

1

Again we check the Us erMode and UIDead ambients and return if the container is in a state in which we

should not process messages. If it is not, we check to see whether the character entered is either a digit, an

operator, a space, or the backspace character. If it is not one of these, we use the WinSZ Beep function to

inform the user that the character cannot be entered into the entry field. If the character is valid, we pass it to

the edit control and it is processed normally.

 eta ee at“: ease Eeeaé Eatery eta Etéee
Whenever you are validating the entry within an edit field, things get a little tricky. When the user enters an

invalid expression in our control, what should we do? Here are some of the options:

NFLE 1009 - Page 193

NFLE 1009 - Page 194

Subclassing Windows Controls a» 435WWMWMWNNWMWM‘.WWW/WWW ”WWWmnwwnwmmmWWWWMMM WMWWWWMWWMWWMWWM. WWW/A W WWwwwwwmwwmwwsmwmwmww

9 Set focus back to the control. This technique ensures that a valid expression is entered by not allow-

ing the user to tab out of the control. ‘

0 Display a message box with a warning message that the expression is invalid. Either continue or set
focus back to the control.

9 Leave the invalid expression in the control, but fire an event that allows users to perform their own
action.

0 Replace the invalid expression with a textual error message and continue or set focus back to the
control.

One of our goals as control developers is to give the control user flexible options for using the control. So

let’s add a property, called ValidateAction, whose value will determine our action when an invalid

expression is entered. We will provide the control user with the first three options described earlier. Using

ClassWizard, add the ValidateAction property; its type is short. Be sure to use the Get/Set—style of

implementation. The three possible values of the property will be handled with an C++ enumerated type

structure as follows. Add the following enumerated type to EEDIT.H so that we can use it in the property

page and control files.

typedef enum

i{

ActionSetFocus 0,
ll

ActionMsgBox 2 l,
2H

ActionEvent

} enumAction;

Our new OnKi llFocus code now checks for the value of the ValidateAction property and acts accord-

ingly. Depending on the value of ValidateAction, we either return focus to the control, pop up a message

box to indicate an error, or fire the Expressionlnvalid event. The following code provides this imple-
mentation:

// eeditctl.h

class CEEditCtrl : public COleControl

{

// Implementation

protected:

~CEEditCtrl();

BOOL m_bAutoScroll;

short m_sMaxLength;

CBrush* m_pBackBrush;

short m_sVa1idateAction;

void DrawDesign(CDC*, const CRect&);

NFLE 1009 - Page 194

NFLE 1009 - Page 195

486 Q CHAPTER 10

DECLARE_OLECREATE_EX(CEEditCtrl) // Class factory and guid

DECLARE_OLETYPELIB (CEEditCtrl) // GetTypeInfo

};

// eeditctl.cpp

CEEditCtrl::CEEditCtrlU

(

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents);

// TODO: Initialize your control’s instance data here.

m_pBackBrush = NULL;

m_bAutoScroll = TRUE;

L m;sMaxLength : 0;

m_sValidateAction = short(ActionSetFocus);

void CEEditCtrl::DoPropExchange(CPropExchange* pPX)

(

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl::DoPropExchange(pPX);

// TODO: Call PX_ functions for each persistent custom property.

PX_Bool(pPX, “AutoScroll”, m_bAutoScroll, TRUE);

PX_Short(pPX, “MaxLength”, m_sMaxLength, O);

LF?X,Sh§# . #331,,”‘fVa¥idai‘e,3¢tif,ofifei'ifi45Va1iéateléCti‘9hé short}?AstiéfiSeEFéws n *

void CEEditCtrl::OnKillFocus(CWnd* pNeand)

{

COleControl::OnKillFocus(pNeand);

if (AmbientUserMode() 2: FALSE {I AmbientUIDead())
return;

// Get the value of the “text” property and

// use it to construct our expression object

Expression exp(GetInternalText(), TRUE);

if (exp.Validate() :2 FALSE)

{

NFLE 1009 - Page 195

NFLE 1009 - Page 196

§chlossing Windows Controls «s @37Maw.”MMWWMMWNW».MW,WWWWAWMWMwW/MNWwwxwrww WW»WMM,M~WNmm.e,W.uw/flnwwflwwwwy(NM/WWMMWWWWM. «MWWMMWWM

switch(m_sValidateAction)

(

case ActionSetFocus:

// You cannot get out of this without

// fixing the expression. Including out oi the

// application!

SetFocus();

breakf
case ActionMsgBox:

// Maybe use a Validate on LostFocus property

// or instead fire an “Invalid Expression” event

Afoessageon(“Error in Expression, please IE*enter”, MB_OK);

break;

case ActionEvent:

rFireExpressionInvalid();

break;

}

else

(

char szTemp[128];

long lResult = exp.Evaluate();

sprintf(szTemp, “%ld”, lResult); ’

// Set the new value of the “text” property

// This will also update the edit control

SetText(szTemp);

short CEEditCtrl::GetValidateAction()

(

return mflsValidateAction;

void CEEditCtrl::SetValidateAction(short nNewValue)

{

m_sValidateAction = nNewValue;/

BoundPropertyChanged(dispidValidateAction);
SetModifiedFlag();

NFLE 1009 - Page 196

NFLE 1009 - Page 197

433 . 9 CHAPTER 10

We haven’t yet added the ExpressionInval id event, so go ahead and use ClassWizard to add this event‘
It passes no parameters. Its only purpose is to notify the control user that an invalid expression was entered,

Eaameratiag Praperi‘y Wises
So far, the properties we have used in our controls have been either textual (BSTR), Boolean (BOOL), or one

of the other OLE supported types (such as OLE_COLOR). Textual property values are easily presented to the

control user for modification, as are the stock and Boolean types. Most container applications provide sup-

port for your properties if they are represented by one of the standard automation types.

But what do you do if you need to represent a property value as a short internally and want to pro-

vide a range of values to the control user? For our Val idateAction property, using the methods that

we’ve investigated so far, the user would be required to enter either a 0, 1, or 2 value to indicate the appro-

priate validate action. There is no way of ensuring that the user won’t enter 195. MFC provides a mechanism

for enumerating property values to ensure that only valid property values are entered. This method is sup-

ported by the COlePropertyPage DDX and DDP functions, but you must do some of the work yourself.

First, you add a property of type short. Then you edit your control’s ODL file and create an enumer-

ated type that enumerates all the possible values of the property. Here’s how to do this for our new

Val idateAction property in EEDIT.ODL. I’ve also added an enumerated property for the stock

BorderStyle and Appearance properties.

// EEdit.odl : type library source for OLE Custom Control project.

// This file will be processed by the Make Type Library (mktyplib) tool to

// produce the type library (eedit.tlb) that will become a resource in

// eedit.ocx.

#include <olectl.h>

[uuid(D5F64C96—D2Fl~11CE—869D—08005A564718), version(l.0),

helpstring(“Eedit OLE Custom Control module”), control]

library EEditLib

(

importlib(STDOLE_TLB);

importlib(STDTYPE_TLB);

typedef enum

(

[helpstring(“Flat")] Flat 2 O,

[helpstring(“3D")] ThreeD = l

} enumAppearance;

typedef enum

(

NFLE 1009 - Page 197

NFLE 1009 - Page 198

Subclassing Windows Controls ¢ 4-89MWW»W~MWMMWW~WWWWWMWWMWWWWM “WWW-“WW tom-“ma » l WM ”Wmmfimwiwww «WWW/MW,WMmwwmcW,M.M“-WMWWWNWAMWWWM,m ”WWW/N

_ [helpstring(“None”)] NOne = 0,

_ [helpstring(“single")] Single = l

} enumBorderStyle;
itypedef enum

2i

[helpstring(“Set‘E‘ocus”)] SetFocus = CI,

[helpstring(“DisplayfisgBox”)] DisplayMsgBox = l,
[helpstring(“FireEvent”)] FireEvent = 2

} enumValidateAction;

// Primary dispatch interface for CEEditCtrl

[uuid(D5F64C94-D2Fl—llCE-869D—08005A564718)

helpstring(“Dispatch interface for Eedit Control”), hidden]

dispinterface _DEedit

{

properties:

// NO"E — ClassWizard will maintain property information here.

// Use extreme caution when editing this section.
// ((A=?(__ODL__PROP (CEEdi tCtrl)

id(DISPID_APPEARANCE), bindable, requestedit} enumAppearance Appearance;

id(D SPID_BACKCOLOR), bindable, requestedit] OLE_COLOR BackColor;

id(DISPID_BORDERSTYLE), bindable, requestedit] enumBorderStyle Borderstyle;

id(D SPID_ENABLED), bindable, requestedit] boolean Enabled;

id(D SPID_FONT), bindable] IFontDisp* Font;

id(DISPID_FORECOLOR), bindable, requestedit] OLEWCOLOR ForeColor;

id(D SPID_HWND)] OLE_HANDLE herCl,‘

id(D SPID_TEXT), bindable, requestedit] BSTR Text;

id(l)] enumValidateAction ValidateAction;

idl2)] short MaxLength;

id(3)] boolean AutoScroll;

/ /) }AFX_ODLVPROP

.l;

The ODL enum keyword is similar to the one used with C and C++ except that each value can have associ—

ated with it additional attributes. For our purposes, the he lpstring attribute provides a way to associate a

textual description with the property value. Good property browsers will query these values from the con-

trol (from its type information) and display them to the control user when selecting a value for an enumer~

ated property. Figure 10.5 shows our ValidateAction property and its enumerated types in Visual Basic’s

properties window. .

NFLE 1009 - Page 198

NFLE 1009 - Page 199

4@§ a CHAPTER 10

l

§[Cu:tom} ,Appearance
Magma , ; ,_
BackColor , i&H8UDOOOOF&
BordelStyle ,, 0 - None
Draglcon ,. [None], 1 ,
DragMode , , {UvManuarl _ ,.
Enabled :True
Fm, , ,_,IFom
Height _ _ E255 > ,
HelpEontextlD ,0 ,

{Index '
Len , i2130 _ ,
MaxLenglh 30

”lame , EEdiU
lTablndex, , , 076,5909 _ Tm

Tag
Text

i Whalsl'hisHelplD
width.

Figure 10.5 ValidateAction property and its enumerated types.

We also need to provide this enumerated property functionality in our control’s custom property page.
We’ll do that next.

€27 ®

eat? a. es wage
As we discussed in Chapter 8, not all development environments that support ActiveX controls will provide

a nice property browser. We need to provide, via our control’s custom and stock property pages, the neces—

sary interface to allow a user to change all our control's properties. The ActiveX control standard specifies

that property pages for controls can be either 250x62 dialog units (DLU) or 250x110 DLUs in size. The

default size provided by Visual C++ is the smaller: 250x62 DLUs. For the EEdit control, we need to increase

the size of our custom property page to 250x110 by modifying it in the Visual C++ dialog editor. Double-

click on EEDIT.RC and change the size of the control’s IDD_PROPPAGE_EEDIT dialog to 250x110 DLUs.

Next, add the following controls to the dialog for our stock and custom properties:

a IDC_ENABLED: checkbox

- IDC_APPEARANCE: droplist combo box

9 IDC_BORDERSTYLE: droplist combo box

- IDCWTEXT: multiline edit field

- IDC_VALIDATEACTION: droplist combo box

. IDC_MAXLENGTH: single-line edit field

a IDC_AUTOSCROLL:checkbox

NFLE 1009 - Page 199

NFLE 1009 - Page 200

Subclassmgw'ndows Sienji‘rels t 4%

Figure 10.6 Editing the custom property page

We now need a way to list the enumerated property values that we defined in our ODL file. Because we

used droplist combo boxes, this is easy. When editing the styles of the droplist combo boxes, you can enter

the default items that will be displayed when the dialog box is loaded. All we need to do is to list the enu—

merated values in the same order that they are declared. In other words, the item number within the combo

box should equate to the associated property value. Figure 10.7 shows the values as entered for Our

ValidateAction property.

Figure 10.7 Setting the combo box list voiues.

You should also do this for the IDC__30RDERSTYLE combo box. Now that we have the enumerated types

defined in the dialog box, we need to ensure that the value is properly transferred to and from the control

when the property is being edited via the property page.

NFLE 1009 - Page 200

NFLE 1009 - Page 201

4% e CHAPTER 10..

ClassWizard will do all this for you. On the Member Variables tab, for each control add an appropriate

member variable. Use the Value category and be sure to enter the name of the property in the Optional OLE
property name file. This is shown in Figure 10.8.

Figure 10.8 Adding member variables for the property page.

The following highlighted code shows the changes that ClassWizard makes to EEDITPPG.H and EED-
ITPPG.CPP.

// EEditppg.h

//

// CEEditPropPage : See eeditppg.cpp for implementation.

class CEEditPropPage : public COlePropertyPage

{

// Dialog Data

// { {AFX_DATA(CEEdi tPropPage)

enum (IDD = IDD_PROPPAGE_EEDIT);

int m_sAppearance;

EOOL m_bAutoScroll;

int m_sBorderStyle;

EOQL m_bEnabled;

int m_sMaxLength;

CString m‘strText;

int m_sValidateAction;

NFLE 1009 - Page 201

NFLE 1009 - Page 202

Subclassing Windows Controls a» @@3”,WwwmeWW,‘WW,,WWMWMMWWWWMW:mwwmmmwwwwmWawmrmwWW“WWMW«mmgmww~ WWHMWNWMNWWWW

/ / })AFX_DATA

// Implementation

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

);

///

// CEEditPropPage::CEEditPropPage — Constructor

CEEditPropPage::CEEditPropPage()

COlePropertyPage (IDD , IDS_EEDIT_PPG_CAPTION)

// ({AFX_DATA_INIT (CEEditPropPage)

m_sAppearance - ?l{

m_bAutoScroll = FALSE;

m_sBorderStyle $:-l;

m_bEnabled = FALSE;

m_sMaxLength :00;0_
m_strText = _T(“5); ‘L

-1;
,m_sValidateAction

//})AFX_DATA_INIT)

///

// CEEditPropPage::DoDataExchange — Moves data between page and properties

void CEEditPropPage::DoDataExchange(CDataExchange* pDX)

(

//{(AFX~DATA_MAP(CEEditPropPage)

DDP_CBIndek(pDX, IDchPPEARANCE, m_sAppearance,r_T(“Appearance”));

DDx_CBIndex (pr, IDC_APPEARANCE, mMsAppearance) ;
DDPMCheCkmDX, IDC__AUTOSCROLL, m_bAutOSCroll, _T(“AutOSCroll"));

DDX_Check{pDX, IDC_AUTOSCROLL, m,bAutoScroll);
DDP_CBIndex(pDX, IDC_BOEDERSTYLE, m_sBorderStyle, _E(“BorderStyle”));

DDX__CBIndex(pDX, IDC_BORDERSTYLE, m_sBorderStyle) ;'
DDP‘ChechDX, IDCENABLED, m_bEnabled, _T(“Enabled”));

DDX_Check(pDX, IDC_ENABLED, m__-bEnabled), _

DDP_Te}'ft(pDX, IDCJfiAXLENGTH, m_sHaXLength, __T(“MaXLength”));
DDX_TeXt(pDX,.IDC_MAXLENGTH, m‘sMaxLength); I L
DDV_MinM_aXInt (pr, _ m_sMaXLength, 0, ,32000), ;

LDDP_Text(pDX, IDC_TEXT, mwstr'l‘ext, __T(“Text”));
DDXwText(pDX, IDC_TEXT, m_strText);

NFLE 1009 - Page 202

NFLE 1009 - Page 203

4%. a CHAPTER i0

DDP_CBIndex(pDX, IDC‘VALIDATEACTION, m_sValidateAction, _T(“ValidateAction”));

DDX_CBIndex(pDX, IDC_VALIDATEACTION, m_sValidateAction);

//))AFXJATLMAP

DDP_PostProcessing(pDX);

1

Most of this code should look familiar. The only new items are the DDP_CBIndex, DDX_CBIndex, and

DDV_MinMaxInt functions in the DoDataExchange method. The DDP_CBIndex function transfers (either

to or from) the value of the property page’s m_sValidateAction variable to the ValidateAction prop-

erty in the control. DDX_CBIndex uses the value to set or get the index of the combo box to that of the enu-

merated property value. These functions make it easy to handle enumerated properties as strings in the

property page and as shorts in the control. The DDV_MinMaxInt function restricts the values that can be

entered into the MaxValue property’s entry field. Figure 10.9 shows the finished page.

Figure 10.9 Finished EEdit property page.

 séaa a e iaatraé

With our new EEdit control, it is easy to write an application that provides similar fLuictionality as that of the

application we built with Visual C++ in Chapter 3. Using Visual Basic, we can create a similar application

with almost zero lines of code. On the accompanying CD-ROM, an application is provided that allows you

to test the various configurations of the EEdit control. Figure 10.10 shows the test application.

NFLE 1009 - Page 203

NFLE 1009 - Page 204

~SulochISsing Windows Controls § (IQ-g5

Figure 10.10 Test application

 ea. gag igeege geeeeeés egae Em age was @E’é as;
Drawing your controls with the 3—D look of Windows 95 is fairly easy. When drawing the control during the

design phase, you can use the Win32 DrawEdge function. For our EEdit control, the addition of the follow-

ing code to the DrawDesign method will draw a 3—D edge around the control during the design phase:

#ifdef _WIN32

::DrawEdge(pdc—>GetSafeHdc(),

CRECT<chounds),

EDGE_SUNKEN,

BF_RECT | BFwADJUST),-
#endif

If you want your control to have a 3-D appearance at run time (and if it’s a control that has a window),

include the new WS_EX_CLIENTEDGE extended Windows style bit in the PreCreateWindow method. This

bit is recognized only in Windows 95 and Windows NT 4.0. If you’re developing windowless controls, the

DrawEdge function makes it easy to draw 3~D—style images during the design phase and at run time.

///

// CEEditCtrl::PreCreateWindow — Modify parameters for CreateWindowEx

BOOL CEEditCtrl::PreCreateWindow(CREATESTRUCT& cs)

(

NFLE 1009 - Page 204

NFLE 1009 - Page 205

age e CHAPTER 10,m.a WM w,...an/MM~WWMWWWW WW" MWKWMAWM{MMMMWWMW WWWWWMWMWNMWWMM.mmmwmmwWWWMWMMMMA WWW‘WWWW .WKWWwwmwaw.WNHMNHWWWWMM

cs.lpszClass = _T(“EDIT”);

cs . style 3: ES_AUTOHSCROLL ;

// Add 3—D support under Windows 95

cs . dwExStyle l = ws_Ex_CLIENTEDGE}
return COleControl::PreCreateWindow(cs);

}

If you need 3—D support on other platforms, the easiest way to add it is to use the standard 3—D support

DLLs (such as CTL3DV2.DLL and CTL3D32.DLL). This technique is described in detail in the Microsoft

Developer Network article ”Adding 3-D Effects to Controls." You should also read MFC Tech Notes 51 and

52, because you should not add 3—D effects to controls when running on operating systems that already pr0~

vide this functionality (such as Windows 95 and Windows NT 4.0).

Visual C++ versions 4.0 and higher handle drawing 3-D controls with the new Appearance prop-
erty. it checks the version of the operating system and uses the appropriate method, either

7% WS_EX_CLIENTEDIT or DrawEdge, to provide 3'D support.

 Eneeéaseie

Subclassing the new Windows 95 common controls is just a little more involved that what we’ve done here

with the Windows standard controls. The primary trick is to know the Windows class names for the new

common controls. As we discussed previously, ControlWizard modifies the CREATESTRUCT class in the

PreCreatewindow method. A list of control names and functionality is provided in Table 105. You can

obtain additional information by studying the COMMCTRLH and RICHEDITH files.

BOOL CYourCtrl::PreCreateWindow(CREATESTRUCT& cs)

i

cs.1pszclass
H

_T(“SysTreeView32”);

return COleControl::PreCreateWindow(cs);

NFLE 1009 - Page 205

NFLE 1009 - Page 206

 ,Subcla sing Windows(Controls/Mf/ 4??

Table 10.5 Windows 95 Common Controls

gammon Control Name Windows Class

Toolbar: A standard toolbar control. Provides tooltip support, dockability,

and automatic sizing.

Tooltips: A control that makes it easy ot implement tooltips not only For your

toolbar but also For all the controls in your application.

Status bar: A control that provides status intormation. The status bar also
acts as a progress indicator.

Progress: A simple progress c‘ontrol. Used to display the progress of a

lengthy process.

Track bar: Another name For a slider control. UpDown:

The UpDown control is similar to a spin button control. It's basically an

entry Field with up and down buttons.

Header: An easier way to do headings For lists of items. A much better way

than using tabs in a listbox.

List view: An icon~container—lil<e control that supports drag-and-drop.

Tree view: Provides a hierarchical and graphical view ot your data.
Rich text edit: A control that is similar to the standard EDIT control but

provides RTF Functionality.

HotKey: Allows a user to enter a hot-key by typing it on the keyboard

(e.g., Ctrl+5hiH+X).

Tab: Provides the strip ot tabs at the top ot a standard tabbed

dialog, but doesn't provide help with the page'switching, and so on.

Animate: A control that plays simple AV| tiles.

Name to Subclass

Toolbarwindow32

tooltips_class3 2

msctls_statusbar32

msctls_progress3 2

msc tls_trackbar3 2

msc tl s__updown3 2

SysHeader3 2

SysListView32

SysTreeView3 2
RICHEDIT OF RiChEditZ 0A

msctl s__hotkey3 2

SysTabControl3 2

SysAnimate3 2

a eiasséa r e iiree igteer iaairei

To demonstrate how to subclass one of the new Windows 95 common controls, we’ll subclass the tree View

control. It provides a hierarchical View of whatever the control user wants to provide. An example of a tree

View control is the Project Workspace viewer of Visual C++’s Developer Studio. The class, file, and resource
views all use the tree View control.

Our implementation won’t have all the features of the tree view ActiveX control that comes with Visual

Basic, but it will demonstrate all the techniques to create such a control. It won’t be hard to add more func-

tionality to our basic control. You should be comfortable with ControlWizard by now, so create a new con—

trol project with the following characteristics:

NFLE 1009 - Page 206

NFLE 1009 - Page 207

498 e CHAPTER 10

' Name the project TreeV.

0 Take the default options, but be sure to subclass the tree view control. The class name is

SysTreeView32.

- Add the Appearance, Enabled, Font, and hWnd stock properties through ClassWizard.

MFC provides classes that make it a bit easier to access the functionality of the Windows 95 common con-

trols. Instead of remembering all the Windows messages (such as TVMwlNSERTITEM), you can use a method

within the class (such as InsertItem). In the EEdit example, we used CWnd: :SendMessage with the win—

dow messages to affect the behavior of the EDIT control. In this example, we’ll use MFC’s CTreeCtrl class.

Using the MFC Ceatml {leases
Using MFC classes sounds like a perfect solution. However, Visual C++ doesn’t make it as easy as it should

be. First, the project created with ControlWizard doesn’t include the common control header file, so we must

add it before we get started. Edit STDAFX.H and include AFXCMN.H:

// stdafx.h : include file for standard system include files,

// or project—specific include files that are used frequently,

// but are changed infrequently

#define VC_EXTRALEAN // Exclude rarely used stuff from Windows headers

#include <afxctl.h> // MFC support for OLE Controls

// Add common control support
#include <afxcmn.h>

// Delete the two includes below if you do not wish to use the MFC

// database classes

#ifndef _UNICODE

#include <afxdb h> // MFC database classes

#include <afxdao.h> // MFC DAO database classes

#endif //_UNICODE

Second, using the MFC control class within COleControl isn’t straightforward. When you’re subclassing a

control within COleControl, the HWND of the COleControl-derived class is actually the HWND of the sub-
classed control. In our case, this is the HWND of the tree View control. However, COleControl does not con—

tain the tree view—specific methods, so we can’t directly use them. We could do something sneaky like this:

hItem = ((CTreeCtrl*) this)—>Insertltem(&tvStruct);

Casting the COleControl-derived class to the appropriate control class works, but only because we’re

lucky. It works because the CTreeCtrl implementation uses C++ inline methods. If MFC ever changes its

implementation to use standard C++ methods instead of inline, the preceding code will cause run—time pro—

NFLE 1009 - Page 207

NFLE 1009 - Page 208

WWWwwwwWm“a...mWWMW-.WWWVWWW,.M Subclqssing Windows Controls é”???

tection faults. If casting is the only way to solve a problem, you should question whether there’s something

wrong with the approach. There usually is. We need another technique.

The best solution I’ve found is to add a CTreeCtrl member to our CTreeVCtrl class. Then, if we can

somehow attach our subclassed HWND to this new member, everything will work great. There’s just one

problem: MFC maintains a list of HWNDs that are attached to CWnd—derived objects. The HWND for our control
was added to the list when the CTreeVCtrl instance was created. We, therefore, can’t do this:

int CTreeVCtrl::OnCreate(LPCREATESTRUCT lpCreateStruct)

(

if (COleControl::OnCreate(lpCreateStruct) 2: —1)

return —1;

// TODO: Add your specialized creation code here

dereeCtrl.Attach(this);

}

Because the map already contains the HWND of the control, this code will cause an ASSERT. Here’s the best

workaround I can find. First, add a handler for the WM_CREATE method. Then add the following code to
TREEVCTL.H and TREEVCTL.CI’P:

//

// TreeVCtl.h : Declaration of the CTreeVCtrl OLE control class.

//

class CTreeVCtrl : public COleControl

{

// Implementation

protected:

~CTreeVCtrl();

CTreeCtrl m_TreeCtrl;

);

//

// TreeVCtl.cpp

//

CTreeVCtrl::~CTreeVCtrl()

l

// TODO: Clean up your control's instance data here.

m_TreeCtrl.mthnd = O;

NFLE 1009 - Page 208

NFLE 1009 - Page 209

593$ tCHAPTER 1 Q

int CTreeVCtrl::OnCreate(LPCREATESTRUCT lpCreateStruct)

i

if (COleControl::OnCreate(lpCreateStruct) == —1)

return —1;

// TODO: Add your specialized creation code here

m_TreeCtrl.m_hWnd = m_hWnd;

return 0;

I

We add an instance of CTreeCtrl, but we don’t use the Attach or Create method to create the window.

Instead, we assign the HWND of the COleControl—derived class to the m__hWnd member of our CTreeCtrl

instance. This works just fine. However, we must ensure that the control won’t be destroyed twice, so we set

the m_hWnd member to zero in the control’s destructor. Now that we’ve fixed that problem, we can start

adding some functionality through our new CTreeCtrl member.

We won’t spend much time on the specifics of the tree View control. You can read the MFC documenta-

tion for the details. Instead, we’ll focus on the issues of subclassing as we build the control. A tree view con-

trol needs an image list. An image list is a new Windows 95 common control that maintains a list of images,

either bitmaps or icons. Each item in the tree View is typically associated with one of the images maintained
in the list View.

The accompanying CD-ROM contains the six .ICO files that we’ll use in our control. You need to add

these to your project with the IDs listed in Table 106. You can quickly do this through Developer Studio’s

Insert/Resource/Import menu item. Be sure to add the icons in the order shown in Table 10.6. The image list

insertion code requires that the icon IDs are consecutive.

Table 10.6 .ICO Files in the Tree View Control

Resource Symgefi Fiien-me

IDI__AUTHOR AUTHOR] .ICO

IDI_AUTHOR2 AUTHORZJCO

IDI_NOTE NOTEJCO

IDI_BOOKS BOOKSJCO

IDI_BOOK BOOKJCO

IDI_CARDFILE CARDFILEJCO

We need an instance of MFC’s image list control, CImageList, within our CTreeVCtrl class. We fill the

image list with our icons and then pass the list to the tree View control. The following code demonstrates
this:

NFLE 1009 - Page 209

NFLE 1009 - Page 210

Subclassing Windows Con’rrols Q SQ?

//

// TreeVCtl.h : Declaration of the CTreeVCtrl OLE control class.

//

class CTreeVCtrl : public COleControl

{

// Implementation

protected:
~CTreeVCtrl();

CTreeCtrl mwTreeCtrl;

CImageList m_ImageList;

void CreatelmageList();

};

//

// TreeVCtl.cpp : Implementation of the CTreeVCtrl OLE control class.

//

void CTreeVCtrl::CreateImageList()

{‘

, memageList.Create(32, 32, FALSE, 6, 0),~

{I Set the background mask color to white'

m~ImageList.SetBkColor(RGB(255,‘ 255, 255 H;

for(int i = 0; i < 6; i++)

i {
HICON hIcon = ::LoadIcon(AfoetResourceHandle(),

MAKEINTRESOURCE(IDIQAUTHDR + i));

m_ImageList.Add(hICon);
}

ASSERT(m_ImageList.GetImageCo’untU == 6);

// Set the image list for the tree

m_TreeCtrl.SetImageList(&m_ImageList, TVSILflNORMAL);

} i '

int CTreeVCtrl::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

NFLE 1009 - Page 210

NFLE 1009 - Page 211

SS2 «e Chi/AFTER l0

if (COleControl::OnCreate(lpCreateStruct) == ~l)

return —1;

// TODO: Add your specialized creation code here

// Set up the HWND for our embedded CTreeCtrl instance

m_TreeCtrl.m_hWnd = m_hWnd;

CreateImageList();

return 0;

)

In the preceding code, we create an instance of the image list control, setting the image size to 32x32 pixels.

We specify that no mask will be used and indicate that the initial size of the list is six images. The call to

CImageList : : SetBkColor sets the background color of the images to white, which is the color I used for

the background of the images. Next, we loop through and load the six icons and add each one to the image

list. Finally, we associate the image list with the tree View control.

Our simple tree View control has only four custom properties. Using ClassWizard, add the following

custom properties. Use the Get and Set implementation tecluiique and add the appropriate implementa-
tion variables to TREEVCTL.H.

' HasLines: Boolean, m_bHasLines

‘3 HasLinesAtRoot: Boolean, m_bHasLinesAtRoot

9 HasButtons: Boolean, m_bHasBut tons

° IndentSize: long, m_l Indent S i z e

Here’s the code from TREEVCTL.Hz

H
// TreeVCtl.h : Declaration of the CTreeVCtrl OLE control class.

//

class CTreeVCtrl : public COleControl

(

DECLARE_DYNCREATE (CTreeVCtrl)

// Implementation

protected:

~CTreeVCtrl();

CTreeCtrl m_TreeCtrl;

CImageList m_ImageList;

NFLE 1009 - Page 211

NFLE 1009 - Page 212

SUbClGSSIng Windows Controls $ 5&3

CreateImageList();

mullndentsize;

ymflbHa‘SLines; m_bHasButtons ,-
In‘bHasLinesAtRoot;

l;

When we initially created the control with ControlWizard, it added the following code:

BOOL CTreeVCtrl::PreCreateWindow(CREATESTRUCT& cs)

(

cs.lpszClass = _T(“SysTreeView32”);

return COleControl::PreCreateWindow(cs);

)

As you may recall- from the EEdit example, we can set up any additional window styles here in

PreCreateWindow. There are several styles specific to the tree View control, and I’ve listed them in Table

10.7. To start, we’ll use the TVS_LINESATROOT, TVSWHASBUTTONS, and TVS_HASLINES styles, which map

directly to three of the properties we added.

BOOL CTreeVCtrl::PreCreateWindow(CREATESTRUCT& cs)

{

if (m_bHasLinesAtRoot)

cs . style I = TVS_LINESATROOT ;
if (m_bHasButtons)

cs . style I = TVS_HASBUTTONS ;
if (meHasLines)

cs . style I: TVSNHASLINES;

cs.lpszClass 2 _T(“SysTreeView32“);

return COleControl::PreCreateWindow(cs);

NFLE 1009 - Page 212

NFLE 1009 - Page 213

555 e» CHAPTER 10

Table 10.7 Styles of the Tree View Control

Style Description

"‘VS_HASLINES Display lines linking children to their parents.

r‘VSHLINESATROOT Display lines attached to the root item.

TVS_HASBUTTONS Show plus sign ”buttons” to expand and contract the hierarchy.

r‘VS_EDITLABELS Allow the User to edit the text associated with each item in the control.

r‘VS_SHOWSELALWAYS Show the selected item even alter the control loses focus.

r‘VS_DISABLEDRAGDROP DBaHebeanfiagnoMkafions

We set the appropriate window styles based on the value of our properties. The default value for each prop

erty is TRUE. Here’s the code needed to make the property values persistent. The PX function for the

Indentsi ze property is also provided. ’

void CTreeVCtrl: :DoPropExchange(CPropExchange* pPX)

{

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange (pPX) ;

// TODO: Call PX_ functions for each persistent custom property.

PX_Bool(pPK, “EN “HasLines”), m__bHasLines, TRUE);

PXMBOOH pPX, _T(“HasLLinesAtRoot”), m_bHasLinesAtRoot, TRUE) ;

Px‘BooM pPX, _T(“HasButtons”), m_bHasButtons, TR '") ;
PX_Long(pPX, _T(“indentsize” t, m_1lndentsize, 0);

l

The newer Windows 95 controls support changing styles at run time using the SetWindowLong API func-

tion. For each of our ”Has” properties, we’ll use this function to update the control at run time. It’s simple.

Here’s the code for the HasLines property:

BOOL CTreeVCtrl: :GetHasLines ()

(

return mflbHasLines;

)

void CTreeVCtrl: :SetHasLineslBOOL bNewValue)

(

if (GetSafeHwndO == 0)

return;

mwbHasLines = bNewValue; ,

DWORD dwstyle = :zGetWindowLongl m_hWnd, GWL__STYLE);

NFLE 1009 - Page 213

NFLE 1009 - Page 214

WW,aWW...W...W..WmammarWWWWW,.WWW/WWW SUbFIOSSing Windows Controls -+ 505 -

a: if (! m,bHasLines)‘

f ' detyle a: ~Tvs_}LASLINEs;

i. :zSetWindoqungl m_hWnd, GWL__STYLE, dwstyle);

 else [- ,

: awStj/le _ 1 = ‘TvswaAsmms; ' _

~‘-'Settqindowrong('m_hw:ad, causing, dwstyle);

,1, l‘iEi’o'rce“ a redraw and update any browser

,r-Settdodikfi/edi’lagl); ‘ ‘ ‘

*BoundPropertyctiangeM dispidfiasbines) ;

When the property is updated, we first make sure that we can get a valid HWND. If we can’t get an HWND,

we’re probably in design mode, which isn’t a problem. Then we use the GetWindowLong function to

retrieve the existing window style bits. We check the new value of the property and either turn on or turn off

the TVS_HASLINES style. Next, we invalidate the control to force a repaint and call

BoundPropertyChanged to update any attached browsers. This same approach is used for each of the

”Has” properties. With a few Copy/Paste commands, you should have the other methods working in no

time. The Indentsi ze property isn’t much different:

void CTreeVCtrl: :SetIndentSize(long nNewValue)

{

if '(TeetSafeHwnal-y == 0 1 ‘

' return}

:_ mJIndentSize _= nNewValue; _ I,

ymmTrEeCtrLSetIndentl m_lIndentSize) ;

5‘ U ifFoche a‘redravi and, update any browser
'setaodifiédplagu ;_ ‘ ‘

, BoundPronertyChangedl dispidIndentSize) ;

5

Instead of setting window style bits, we call the SetIndent method of CTreeCtrl to set the new indent

value. Now the control user can change the style of our tree control at both design time and run time.

Because the new controls support changing these styles at run time, there’s no need to worry about saving

the state of the control, calling RecreateControl, and then restoring the earlier state. This approach

makes changing styles much more efficient.

NFLE 1009 - Page 214

NFLE 1009 - Page 215

see a CHAPTER 10

To finish the control, let’s add s0me items to the tree view. Typically, you would expose a method from

the control that would allow the control user to add items to the view, but for our example we'll add them
within the control. First, we need an AddItem method:

HTREEITEM CTreeVCtrl::AddItem(~HTREEITEM hParent,
HTREEITEM hAfter,

LPSTR szText,

int image,

int iSelImage)

‘_,HTREEITEM hltem;

,TVLINSERTSTRUCT tvStruct;

tVstru'ct.item.mask = TVIF_TEXT 1 TVIFMIMAGE l TVIF__SELECTEDIMAGE;
tvStruCt . hParent = hParent;

tvStruct.hInsertAfter = hAfter;

tvstruct . item. iImage = image;

tvstruct . item. iSelectedImage = iSelImage;

rtvStruct.item.pszText = szTeXt;

'tvstructgitem,CChTextMax = strlen(_szText);

hItemr: m,TreeCtr1.InsertItem(&tVStruct);

Lreturn(hItem);
)

This method takes as a parameter the parent item, the item after which it should be inserted, the text associ—

ated with the item, the nonselected image, and finally the image to use when the item is selected. The imple-

mentation is straightforward. We fill out the tree view TV_INSERTSTRUCT structure and call the

InsertItem method. This action adds the specific item to the tree view.

Earlier, we added the item icons to the project and inserted them into an image list control. Whenever

we add an item, we provide the index value of the image that we want associated with that particular item.

This is tricky, because when a resource is added by Visual C++, it assigns the ID. I've added an enumerated

type to the CTreeVCtrl class to ease the task of managing the IDs:

//

// TreeVCtl.h : Declaration of the CTreeVCtrl OLE control class.

//

class CTreeVCtrl : public COleControl

f

// Constructor

public:

CTreeVCtrl();

NFLE 1009 - Page 215

NFLE 1009 - Page 216

Subclassing Windows gontrols ‘9 5&7”was“ WWWNWWWWWMWH WWWWWWWWWMWW”WWW/Mme.”«Wefltmmwwmw,MWWMMWMWWMMM WNWMWWNMVWM W,.WWW,W.WW V .v. W... v WW WWVWWM W ”M”.

enum

ICONWAUTHOR,

ICON_AUTHOR2,

ICONQNOTE,

ICON_BOOKS,

ICON_EOOK,

ICON_CARDFILE,

l;

l;

The next method inserts a series of items into the control using the AddItem method. For each item that we

insert, we provide the following:

0 A handle to the parent item or zero if there isn't one.

. A handle to the item to insert before. In our case, we use the TVI_SORT symbol, which indicates that

the control should just sort the items. ’

° The text to display for the item.

0 An index into the image list control specifying the image to associate with the item.

0 An index into the image list control specifying the image to use when the item is selected.

?}////////////////////

ff Add some test items

 ;;////////////////////

$001. CTreeVCtrl: :TestItems ()
{

HTREEITEM hParent, hChildl, hchildz;

 // Insert the root object

hParent = AddItem(O, TVI_SORT,

“Authors”, ICON_CARDFILE,

ICON_CARDFILE) ,-

// Insert the authors, their books, and magazines

hChildl = AddItem(hParent, TVI_SORT,

“Charles Petzold”, ICON_AUTHOR,

ICON_AUTHOR2);

hChild2 = AddItem(hChildl, TVI_SORT,

“Books“, ICON_EOOKS, ICON_BOOKS);

NFLE 1009 - Page 216

NFLE 1009 - Page 217

5&8 § CHAPTER 10

AddItem(hChile, TVIMSORT,

“Programing Windows 3.1, Third Edition",

ICONwBOOK, ICON_BOOK);

AddItem(hChildE, TVI'SORT,

“Programming The OSfZL Presentation Manager”)
ICON;BOOK, ICON_BOOK);

Addltem(hChildl, TVI_50RT,

“Articles", ICON_N0TE,-IC0N;NorE-);

Add:tem(hPareht, TVI,SORT;hChildl =

' “Mark Nelson”, ICON.AUTHOR,

:cox_AUTHoR2);
hChild2 : AddItem(hChildl, TVI_SORT,

“Books”, ICON_BOOKS, :CON_BOOKS);

AddItem(hChild2, TVIWSORT, L
“C++ Programmers Guide to the STL", _

ICON_BOOK, ICON;BOOK); {
AddItem(hChildl, TVI-SORT,

“Articles”, ICON_NOTE, ICON;NOTE);

AddItem hParent, TVI_SORT,hChildl =

“Jeffrey Richter”, ICON_AUTHOR,

ICON;AUTH0R2_);3 ' ,

hChile = Aciditém heh‘iiai, l'IVI,S:_dRT€1 __
“Books”, rcog;eooas;11coN_BQOKs);

AddItem(hChile, TV:_50RT,_7 _: "ZL _ '
“windows ‘31 l: A Developer’s Guide" ,
ICONgBOOK, ICON;BOOK);

AddItem(hchildl, TVI_SORT,

“Articles”, ICON_NOTE, ICON_NOTE)f

return TRUE;

1

Once you've added these methods, build the project and insert it into your favorite container. You should

see something like Figure 10.11.

NFLE 1009 - Page 217

NFLE 1009 - Page 218

Subclgssing Windows Controls $509

Figure 10.] 1 Our subclassed tree view control.

§ e messy age
Adding the code for the property page is easy, and we’ve done it several times before. Take a look at Figure

10.12 and build one similar to that. Actually, there isn't any code to write. ClassWizard does everything for

you. However, you need toadd the enumerated properties for the appearance property to CTREEVDDL in

order make your property page more robust. You may also want to add component category support so that

you can embed the control in Internet Explorer. All this is implemented in the example control on the

accompanying CD-ROM.

Figure 10.12 Our tree view control’s property sheet.

NFLE 1009 - Page 218

NFLE 1009 - Page 219

,5 3.9-3:..CEHAPTER 10 .

get at“?
Our focus in this chapter was on the subclassing of standard controls provided by the Windows operating

system. Subclassing is an effective way of reusing existing functionality provided by standard controls.

Reuse by subclassing works by intercepting messages meant for the original window procedure of the stan-

dard control and then either discarding or modifying the messages. This is a common technique for devel—

oping applications in C using the Windows SDK.

Windows provides six standard controls and Windows 95 provides an additional 10 common controls, all
of which can be subclassed. To subclass a control, we override the COleControl: :PreCreateWindow

method and modify the CREATESTRUCT with the class name of the control being subclassed. We can make

additional modifications to the control in the PreCreateWindow method. A control’s style bits affect the behav-

ior of the control. Certain style bits can be set only before the creation of the control window, and others can be

modified after the window is created. We looked at both types. COleControl : :RecreateControlWindow

provides an easy way to modify style bits that can be set only before the window is created.

Subclassed controls expect to have a parent window that helps in the management of the child control’s

environment. ActiveX controls do not have a parent window, because they are stand-alone windows inserted

within a container. The ActiveX control standard specifies the need for a reflector window to reflect messages

intended for the parent window back to the child window. In this regard, the child window acts also as its par—

ent and so is in control of all its messages. One set of messages sent by a subclassed control is its notification

messages, which signify that events have occurred. When a notification message is reflected back to the control,

it fires an OLE event to alert the control user. Handling the coloring of the control also requires working with

reflected messages, particularly the WM_CTLCOLOR* messages. These messages, normally sent to a parent dialog

window, contain instructions on the colors to use for painting the child control. By responding to the reflected

WM_CTLCOLOR* messages, an ActiveX control tells itself how it should be colored.

One of the problems of control subclassing is the difficulty of providing a good design-phase represen—

tation of the control. With a little thought, you can handle this problem. In many situations, a control’s

design—phase representation is not nearly as important as its run~time representation. You may also need to

provide your own metafile representation of the control.

The best way to set default values for your control’s property values is to provide a default value to the

property exchange functions in the DoPropertyExchange method. In some cases, you may also have to
set default values in the control’s OnResetState method.

After you have subclassed a standard control, it is easy to intercept messages using the MFC message

map functionality. To intercept a message, use ClassWizard to add a handler for the message. Then discard,

handle, or modify the message in the handler code.

You can enumerate property values for property browsers by adding an enumerated type with the

associated helpstrings to your control’s .ODL file. To add support for enumerated properties in your

control’s custom property page, use a droplist combo box that is prefilled with the textual representation of

the enumerated property. The DDP__CBIndeX function makes it easy to convert and transfer the property
values to and from the control.

Property pages can be one of two sizes: either 250x62 or 250x110 dialog units (DLUs). You can use the

DrawEdge function, the WS_EX_CLIENTEDGE window style, and MFC’s stock Appearance property to

provide a 3-D appearance for your controls.

Using MFC’s Windows 95 control classes within your own controls is fairly easy to do. By subclassing

the new common controls, you can quickly take advantage of the features provided by these controls.

NFLE 1009 - Page 219

NFLE 1009 - Page 220

 ~ ., «WWWMmeWWWMWWWWWeWMWW

 Wiw

We’ve covered two of the three broad types of ActiveX controls: graphical controls and controls (that sub’

class existing Windows controls. In this chapter we will investigate the design and use of nonvisual ActiveX

controls, which provide their functionality without providing a visual element.

To illustrate how easy it is to build a simple client/server application with ActiveX controls, we will

develop a control that provides Win32 named pipes services, allowing a visual tool user to create applica—

tions using Win32 named pipes. The details of interacting with the API functions will be contained within

the ActiveX control, and the control user will need just a handful of properties and methods to build appli—

cations using named pipes.

 sais e? ssséssaé isssrsés

The goals of a nonvisual control are similar to those that we’ve described for components in general. The

goal is to build controls that encapsulate the complexity of a problem and expose a more user-friendly way

of interacting with that problem. We demonstrated this in the first half of the book by converting the

Expression C++ class to an automation component. By exposing only four expression methods, we made

it easy for a component user to harness the expression evaluation capabilities of our C++ class. In Chapter

10, we converted the Expression component to work as an ActiveX control. We could also convert the

Expression component to a nonvisual control, but let’s do something a little more interesting.

 ésEZ

The example control we’ll develop uses the Win32 pipes API. Pipes provide a way for processes to share

information easily. Inter-process communication with pipes can be used between processes on a single, local

5% E

NFLE 1009 - Page 220

NFLE 1009 - Page 221

s i s s CHAPTER} 1x.” w WNW/m. WWWWWWMwanmsWMwhww. v s.»”NWWWW.WWWW»WWAWW.NWMWWW/"WVWMWNNWWWWMWwww.‘mums». .W «mum .,.WMWMAWWMMMVMWWEWWWP,

machine or between processes that are on separate, or remote, machines. We’ll briefly cover the features of

wm32 pipes. For a more detailed look at pipes and other interprocess communication and networking tech-

niques available under wm32, see Mark Andrews’s book, C++ Windows NT Programming (second edition,
M&T Books, 1996).

Two fundamental pipe types are supported by Win32. Anonymous pipes provide only one-way commw

nication between processes, do not support network communication, and are typically used by processes

that have a parent-child relationship. Named pipes allow both one-way and two—way communication

between processes and support communication between processes on local and networked machines. Our

example control will use named pipes.

Names Pipes
Named pipes provide client/server—style communication techniques. The server process initially creates a

named pipe by calling the CreateNamedPipe function. This action creates a named pipe instance with a

unique name and allows client processes that know the name of the pipe to connect to, and begin conversing

with, the server process. The client process uses either the CreateFile or the Cal lNamedPipe function to

connect to the pipe created by the server process. Many pipe—based applications support the connection of

multiple client processes to a single server process, the typical configuration of client/ server applications.

For our example control, the server will allow a connection only from one client process at a time.

Message iypes
Named pipes support two different message-processing models. A message between processes can be han—

dled as a byte stream or as message unit. The various pipe APl functions take parameters that specify the

read and write mode for the specified pipe. For our purposes, we will use the message—based mode of opera-

tion for our pipe control. Data sent via the WriteFile function will be sent and read as a unit by both the

server and the client processes. This is the most effective method of sending messages that have an inherent

structure. The byte stream mode is useful for passing unstructured data between processes.

Asynchrenews vetsss Symisremus E/Q
Named pipes support two methods of performing I/O. Asynchronous I/O allows the process to start a read

or write operation and then to continue with other tasks. When the read or write operation completes, the

process is notified, usually via a semaphore, that the operation has completed. The process can then obtain

and use the data from the read operation or free the data used in the write operation. Asynchronous opera-

tion requires the use of threads under Win32. Supporting multiple threads in an ActiveX control is beyond

the scope of this book, so we will use a hybrid approach for our control.

Synchronous operation is easier to understand and is how we typically develop programs. When we

make a function call, the program waits until the function operation is completed before returning. This is

the single—thread~of~execution model that we use when we develop most programs. To provide support for

NFLE 1009 - Page 221

NFLE 1009 - Page 222

Nonvisual Controls 9 5T 3

pipes in our control, we’ll simulate the existence of a thread for our server’s pipe. We will use a Windows
timer and the PeekNamedPipe function to simulate this process.

Pipe times
Pipe names must be unique to distinguish them from other named pipes in the system. They do not have to
be unique networkwide, because pipe names are qualified with the server’s name in a networked environ~

ment. Pipe names are not case-sensitive and can be as many as 256 characters in length. Here is the format of

a pipe name:

\\servernarne\pipe\ this . is . a .pipe . name

The first part of the pipe name is the network name of the server’s machine. On Windows NT and Windows

95, the name of a networked machine begins with ”\\” followed by the machine’s name. The ”\pipe” part

of the name is required and specifies the global area for pipe names on the machine being addressed.

Finally, the text following ”\pipe\” gives the unique name of the specific pipe: ”this.is.a.pipe.name.”

A fully qualified pipe name for a pipe on a local machine is as follows:

\\ . \pipe\this . is .a.pipe.name

The single dot (”.”) is shorthand for the local machine name. When you’re developing applications that use

pipes for local machine interprocess communication, this is all that is required. This approach is much better

than hard coding the local machine’s name, because it will change as you move your applications to other

machines. Table 11.1 lists the named pipe functions that we will use in our PIPE control.

Table l l .l Win32 Named Pipe APl Functions

Function Purpose

CreateNamedPipe Used by the server process to create an instance of a named pipe. The name of the pipe is

provided as a parameter. Clients cannot connect to a named pipe until it has been explicitly

created by the server process.

CreateFile Used by client processes to connect to a named pipe. The pipe name passed may contain a

network pathname allowing the intermachine communication.

ConnectNamedPipe Used by the server process to wait for a client process to connect to the pipe.

Cal lNamedPipe This function is a helper function for client processes. It encapsulates multiple calls into one. It

connects to a pipe, waiting if necessary, and then writes to and reads from the pipe. It then

closes the pipe.

WaitNamedPipe Used by the client to wait for an instance of the pipe to become available. The wait time can
be infinite or the default value used in the CreateNamedPipe function.

DisconnectNamedPipe Closes the server end of the pipe. If a client is still connected to the pipe, an error will occur

when it next accesses the pipe.

NFLE 1009 - Page 222

NFLE 1009 - Page 223

5” t CHfiETEBJ I

Table l l.l Win32 Named Pipe AP] Functions (continued)

Function Purpose

PeekNamedPipe Copies data from a pipe without actually removing it and also returns information about the
pipe.

ReadFile Reads data from a pipe.

WriteFile Writes data to a pipe.

CloseHandle Closes a pipe handle, which closes the pipe.

 iseafitéeg tfie gee iaeteet reggae:
Start Visual C++ and ControlWizard and create a new control project. Call it Pipe and use these options:

0 In the Step 1 of 2 dialog box, take the defaults of No License, Yes, comments, and No help files.

0 In Step 2 of 2, take all the defaults except one. Be sure to check the Invisible at runtime option.
' Click Finish and create the control.

The only new item that we checked is the Invisible at runtime option. This option adds the

OLEMISCnlNVISIBLEATRUNTIME flag to the control’s MiscStatus flags stored in the Registry. This flag

tells the container that the control will be Visible only during the design phase.

 gassing tiae isssstaet
All that's needed during the design phase is a simple representation of the control. It’s easy for the control

user to select the control by clicking on its representation, gaining access to the control’s properties, events,

and methods. Add the following code to the PIPECTL.CPP file. We set the initial size of the control and ini—

tialize the pipe’s handle in the control’s constructor.

///

// CPipeCtrl::CPipeCtrl ~ Constructor

CPipeCtrl::CPipeCtrlH

i

InitializeIIDs(&IID_DPipe, &IID_DPipeEvents);

// Set the control’s initial size

SetInitialSize(28, 26);

)

///

NFLE 1009 - Page 223

NFLE 1009 - Page 224

Nonvisuol Controls ¢ 5'5 5

// CPipeCtrl::OnDraw ~ Drawing function

void CPipeCtrl::OnDraw(

CDC* pdc, const CRect& chounds, const CRect& rcInvalid)

CBitmap bitmap;

BITMAP bmp;

CPictureHolder picHolder;
CRect rcSchounds;

bitmap.LoadBitmap(IDBMPIPE);

bitmap.GetObject(sizeof(BITMAP)L &bmp);
rcSchounds.right = bmp.bmwidth;

rcSrchunds.bottom = bmp.bmHeight;

#ifdef _wm32
:2DrawEdge(pdc->GetSafeHdc(),

CRect(chounds),

EDGE_RAISED,

BF_RECT t BF_ADJUST) ;
#endif

picHolder.CreateFromBitmap((HBITMAP)bitmap.m‘hObject, NULL, FALSE);

picHolder.Render(pdc, chounds, rcSchounds);

The preceding technique could be made more etticient by maintaining an instance ot the control’s
bitmap in our class and using the Bit—Blt tunctions, as we did in Chapter 9, but I’m using this
method tor two reasons. First, it introduces you to the CPiCtureHolder class. Second, the render-
ing ot a nonvisual control occurs only during the design phase (hopetully a small percentage at its
litetime), so its rendering doesn’t really require the techniques used in Chapter 9.

We discussed in Chapter 10 most of what is shown here, With the exception of the CPictureHolder class

that we will discuss in a moment. To provide a design—phase representation of the control, we use the con-

trol’s tool palette bitmap image. We use the CBitmap: :LoadBitmap method to load the bitmap from the

control’s resource file. The GetObj ect method retrieves information about a GUI object, and we use it to fill
this BITMAP structure:

typedef struct tagBITMAP (

LONG meype; f

LONG bmWidth;

LONG bmHeight;

LONG bmWidthBytes;

WORD melanes;

NFLE 1009 - Page 224

NFLE 1009 - Page 225

§ 1 @ t CHAPTERHLL“WWW W”WWWWMMW,NHNHW/"WWmWWWM ,WWWWWWKWWMWVMWPWKMWMMWWWWWWNWWW

WORD meitsPixel;

LPVOID mei ts;

) BITMAP;

We then draw a 3—D border around the control using the DrawEdge function. The 4 DG *__RAISh.D flag draws

the control as a raised button on the container. Next, we get the true size of the bitmap and store it in

rcSchounds. Using our instance of CPictureHolder, we use its CreateFromBitmap method to initial-

ize the picture object with our control’s bitmap. We then render the control into the container’s device con-

text using the Render method. Figure 11.1 shows the PIPE control in the Test Container. You will need to

modify the control’s tool palette image in the PIPERC file.

Elle Edit {flew quons fielp

ewes rag

#5=
*4

Figure 'I 1.1 The pipe control in the Test Container.

{Pitturettelder

The CPictureHolder class provides methods that make it easy to manipulate and display bitmaps, icons,

and metafiles. It supplies an implementation of the OLE IPicture interface that provides a uniform way of

working with picture type objects‘

A CPictureHolder instance must be initialized to empty using the CreateEmpty method or using

one of the three picture type initialization methods: CreateFromBitmap, CreateFromIcon, or

CreateFromMetaf ile. Once initialized, the item can be rendered into a DC by using the Render method.

The CPictureHolder class can be used to provide Picture properties for your controls. When

you’re adding a property with ClassWizard, one of the automation property types is LPPICTUREDISP. This

property allows you to include in your control an instance of CPictureHolder that can be easily modified

NFLE 1009 - Page 225

NFLE 1009 - Page 226

Nonvisucil Controls 9 5'? ?“MW M WMWNWMMWflmwyw-«N.WWWMMWWMNWMMM.Myflmmkwmwrmwrm ”Wm/mm.0..»myWMw.MWMM,MVMMWMMMMMMMMV WWWAWNMWHNWM, WWW,

by the control user. Visual C++ also provides a stock property page, PROPPAGEID<
cLSIDflCPicturePrOpPage) , that you can use in controls that use Picture properties.

GagetEatefit

Although the preceding code allows rendering of our control’s bitmap to various sizes, expanding a bitmap

image doesn’t always produce a nice representation of the original bitmap. We’ll override the

OnSetExtent method, as we did in previous chapters, to fix the size of the control’s representation. Not all

containers will honor the return of OnSetExtent, but the preceding rendering code handles the situation in

which the control user may size the control larger than we would like; it renders the image correctly, only

larger. Add the following code for the OnSetExtent method. We’ll cover the changes to PIPECTL.H

shortly.

// pipectl.cpp

BOOL CPipeCtrl::OnSetExtent(LPSIZEL lpSizeL)

t
CDC cdc;

ch.CreateCompatibleDC(NULL);

CSize size(28, 26);

cdc.DPtoHIMETRIC(&size);

lpSizeL->cx = size.cx;

lpSizeL~>cy = size.cy;

// Call the parent implementation

return COleControl::OnSetExtent(lpSizeL);

 etéag a e tee gaseséesaééay
The next few sections describe the various properties, methods, and events that we will add to the PIPE con«

trol’s implementation. To give you an idea of what you will see, we'll take a look at what we need to add to

PIPECTL.H. This will be quicker than showing a snippet of the .H file every time we need to add a new

member variable or overriding prototype, and you’ll get a quick introduction to what we'll be doing.

Following are the pertinent sections of PIPECTL.H:

// pipectl.h : Declaration of the CPipeCtrl OLE control class.

///

// CPipeCtrl : See pipectl.cpp for implementation‘

class CPipeCtrl : public COleControl

NFLE 1009 - Page 226

NFLE 1009 - Page 227

75? 8 ¢ CHAPTER 11

DECLARE_DYNCREATE(CPipeCtrl)

// Constructor

public:

CPipeCtrl();

// Overrides

Virtual EOOL OnSetExtent(LPSIZEL lpSizeL);

virtual void OnSetClientSite();

virtual void OnFreezeEvents(BOOL bFreeze);

// Implementation

protected:

~CPipeCtrl();

void StartTimer();

void StopTimer();

BOOL CreatePipe();

void ClosePipe();

void ReadPipE();

HANDLE m_hPipe;

CString m_strPipeName;

short m_sPipeType;

int m_iFreeze;

CString m_strError;

);

// PipeCtrl.cpp

CPipeCtrl::CPipeCtrlH

{

InitializeIIDs(&IID_DPipe, &IID_DPipeEvents);

// Set the control’s initial size

SetInitialSize(28, 26);

m~hPipe = O;

m_iFreeze : O;

NFLE 1009 - Page 227

NFLE 1009 - Page 228

Nonv'sucul CMWMNWMWMWMWWNMV..WMWWW,..,mWWMWW”WWW...a.”0%”meWMMmeN/stdww & WWW“ W WWW—”Mm, trols ® 539

We override the OnSetClientsite method to create a window for our control, The OnFreezeEvents

method provides indications from the container about whether the control Should fire events. We already
covered why we override OnSetExtent. '

The member methods—StartTimer, StopTimer, CreatePipe, ClosePipe, and ReadPipe—are

helper functions used by the control’s exposed methods. m_hPipe is a handle to the pipe instance for the

control. m_strPipeName, m__sPipeType, and m_str3rror are variables for properties exposed by the
control, and m_iFreeze holds the current state of the container’s Freeze state. All these will be discussed
in more detail as we build the control.

 tag a e m eaaéea
Our PIPE control requires only three properties. We don't need any of the MFC stock properties, because

they are used primarily by visually oriented controls. Using ClassWizard, add the three properties discussed

next. The first, ErrorMsg, contains a text string of any errors that occur during processing. The second,

PipeName, contains the name of the pipe. The third, PipeType, indicates the mode of the control. Our con~

trol will have two general modes of operation, as indicated by the PipeType property. Each instance of the

control will operate as either a pipe server or a pipe client process. V

Errarffisg

The ErrorMsg property, type BSTR, is used to report to the user of the control a text error message. The

property is read-only, because it can only be queried and cannot be Set. The property is meaningful only

during the run phase of the container and so is also considered a run—time—only property.

To make a property read-only when using ClassWizard, you must choose the Get/Set method of imple-

mentation (which we always do) and then clear out the Set Function entry field. ClassWizard will add the

address of the SetNotSupported function in the dispatch map:

///

// Dispatch map

BEGINNDISPATCH_MAP(CPipeCtrl, COleControl)

//{ (AFXMDISPATCI'LMAP (CPipeCtrl)

DISP_PRDPERTY-EX(CPipeCtrl, “ErrorHsg”, GetErrorMsg, SetNotSupported, VT_BSTR)

END_DI S PATCH_MAP ()

The CO 1 eC on C r0 1: : S e tNo t Suppo r t ed method is actually a helper function for the
COleControl : :ThrowError method, which we will discuss in more detail later. The SetNotSupported

method is implemented like this:

void COleControl::SetNotSupported()

(

NFLE 1009 - Page 228

NFLE 1009 - Page 229

5250 a CHAPTER 1 1
MOW WWW»:.WrwmwWMWWWNWWWWWWWHWWMWWWWMW*W«WKWW/W~W

ThrowError(CTL~E_SETNOTSUPPORTED, AFX_IDP~E_SETNOTSUPPORTED);

}

This code reports the error to the container using the automation exception mechanism. You can also use

SetNotSupported to provide a run—time—only implementation of a property:

void CYourControl::SetAProperty(short sNewValue)

(

// If not running report an error

if (! AmbientUserMode())

l

// Throw the CTL_E_SETNOTSUPPORTED error

SetNotSupported();

}

// Go ahead and set the property value

)

In a previous chapter we discussed the use of the ODL hidden keyword as a way of hiding properties from

property browsers. Another method is to check the Us erMode of the container and, if it is not in run mode,

disallow the getting of a property’s value. As we described earlier, the ErrorMsg property should not be

displayed during the design phase and is valid only during run time. The code for our GetErrorMsg

method uses the GetNotSupported method to enforce this requirement:

BSTR CPipeCtrl::GetErrorMsg()

{

// Most containers that provide propertybrowsersiag; VB)

// will trap this exception and will not diSplay the property

// in the property browser. This is just what we want.
// If we're not in run mode don't allow ’anydnetoyget the:

// property’s value. , L , ,
if (AmbientUserMode() == FALSE)

GetNotSupported();

return m_strError.AllocSysString();

l

GetNotSupported is implemented just like the SetNotSupported method. It throws a CTL__E_GETNOT~

SUPPORTED exception.

NFLE 1009 - Page 229

NFLE 1009 - Page 230

Nonvisucal Controls e 52?MWWWWWWWMKMwwwmaMm‘WwMWN,WMM,WWMWWW "WWNWWWK «,WMW,MWMW a. M

tipefleme

The PipeName property is of type BSTR and contains the fully qualified pipe name that the control uses
when creating or connecting to a pipe instance. It is the responsibility of the control user to provide the con-
1101 with a valid pipe name. We could easily add rudimentary syntactic checking (such as ensuring the exis—
tence of ”\pipe\” in the name), but I’ll leave that as an exercise.

BSTR CPipeCtrl::GetPipeName()

(

{7_return m_strPipeName.AllocSysStringl);

)

void CPipeCtrl::SetPipeName(LPCTSTR lpszNewValue)

{

_', _// If the pipename is modified during run time

ig‘// it will only take effect the next time that either

H‘ [i a server calls tCreate" or a client calls “Connect”

m_StrPipetlame = lpszNewValue;

_, ‘ BoundPropertyChariged(dispidPipeName);
SetModifiedFlag();

tipelype
The PipeType property indicates the current mode of operation for the control. Its type is short but can

contain only two values: zero and 1. As we did in Chapter 10, we need to set up an enumerated type in

PIPEODL and modify the property’s type so that we can present a nice interface for containers whose prop-

erty browsers support enumerated property types.

// pipectl.cpp

short CPipeCtrl::GetPipeType()

(

return m_sPipeType;
)

void CPipeCtrl::SetPipeType(short nNewValue)

{

Ll/ Don’t allow setting of the property at run time

// ThiS'iSn’t absolutely'necessarg, but ‘it's an example

I; // of a property that cannot be modifiEd when running.

NFLE 1009 - Page 230

NFLE 1009 - Page 231

.522 f CHAPTER 1.1

// If you were to allow modification of the control’s mode

// during run time, we would have to ensure that any active

// pipe connections were cleaned up, and so on.

if (AmbientUserMode())

ThrowError(CTL_E_SETNOTSUPPORTEDATRUNTIME,

“You can't change the PipeType property at runtime”);

m~sPipeType = nNewValue;

BoundPropertyChanged(dispidPipeType);

SetModifiedFlag();

}

// pipe.odl

typedef enum

{

[helpstring(“Serer”)] Server

IIH i—‘O[helpstring(“Client”)] Client

) enumPipeType;

[uuid(96612B01—D79F—llCE—86A3~08005A564718)

helpstring(“Dispatch interface for Pipe Control”), hidden }

dispinterface ”DPipe

(

properties:

// NOTE — ClassWizard will maintain property information here.

// Use extreme caution when editing this section.

//{{AFX.ODL_PROP (CPipeCtrl)

[id(l)] BSTR PipeName;

[id(2)] enumPipeType PipeType;

[id(3)] BSTR ErrorMsg;

//}}AFX~ODL"PROP

l;

For containers that don’t provide a nice interface to a control’s properties, we need to provide one of our

own Via the control’s custom property page. Just as we did in Chapter 10, we’ll use a dropdown combo box

to present the PipeType enumerated options in the control’s custom property page. A simple entry field

will suffice for the PipeName property.

The following code shows the additions to the property page implementation files. It’s best to add these

using ClassWizard, but you can add individually if you want to. We’ve also added an enumerated type to

I’IPE.H so that we can use it throughout the project.

NFLE 1009 - Page 231

NFLE 1009 - Page 232

NOHV'SUG'COWO'S i523

// pipe h

#include “resource h” // main symbols

typedef enum

{

TypeServer = O,

TypeClient = 1

} enumPipeType;

// pipeppg h

///

// CPipePropPage: CPipePropPage — Constructor

CPipePropPage::CPipePropPage()

COlePropertyPage<IDD, IDS_PIPE_PPG~CAPTION)

//({AFX_DATA_INIT(CPipePropPage)

//))AFX_DATA‘INIT

).

// pipectl h

///

// CPipePropPage :DoDataExchange — Moves data between page and properties

void CPipePropPage::DoDataExchange(CDataExchange* pDX)

{

//({AFX_DATA_MAP(CPipePropPage)

//})AFX_DATA_MAP

DDP_PostProcessing(pDX);

}

NFLE 1009 - Page 232

NFLE 1009 - Page 233

524 e CHAPTER pl 1

We need not include the ErrorMsg property on our control’s custom property page, because it is a run-

time—only property and does not need to be accessed during the design process (Figure 11.2).

Figure 'I 1.2 The pipe control’s custom property page.

Whenever you add properties to your controls, you should also ensure that they have default values and are

serialized using the DoPropExchange method in the control’s implementation file In our case, this is
PIPECTL.CPP:

///

// CPipeCtrl::DoPropExChange — Persistence support

void CPipeCtrl::DoPropExchange(CPropExchange* pPX)

i

ExchangeVersion(pPX, MAKELONG<wwVerMinor, MwVerMajor));

COleControl::DoPropExchangelpPX);

// TODO: Call PXw functions for each persistent custom property.

// Default to “TypeServer”

PX_Short(pPX, “PipeType”, m_sPipeType, TypeServer);

// Provide a default pipe name
PX_String(pPX, “PipeName”, m_strPipeName, “\\\\.\\pipe\\OCX.PIPE”);

)

Again, because our ErrorMsg property is needed only at run time and has no default value or any persis-
tent state, there is no need to serialize it.

NFLE 1009 - Page 233

NFLE 1009 - Page 234

Nonvisuol Controls e 525

Because our PIPE control doesn't have a visual element, most (if not all) of its functionality is provided

through the methods that it exposes to the control user. One of our goals is to hide the complexity of the

underlying API calls by doing much of the work within the control and exposing only a small number of

abstracted, high—level methods.

Our control’s PipeType property indicates whether it should act as a pipe server or a pipe client. To

make this interface easy to use, we provide methods that are specific to the mode of the control. If the con-

trol is configured to act as a server, the user must use the server~specific methods, and if it is configured as a

pipe client, the user must use the client—specific set of methods. The five PIPE methods—«two for a server
instance and three fora client instance—are listed in Table 11.2.

Table l l .2 PIPE Control Methods

Metfiomfipplicasie Mode Purpose

Create (Sewer) The Create method is used by a pipe server to create an instance of a pipe. The

name of the pipe is provided by the PipeName property. Only one instance of a

pipe is supported per control.

Destroy (Server) The Destroy method is used by a pipe server to destroy the previous instance of a

pipe.

Connect (Client) The Connect method is used by a pipe client to connect to a server’s pipe instance.

The name of the pipe to connect to is provided by the PipeName property.

Disconnect (Client) The Disconnect method is used by a pipe client to disconnect from a server’s

pipe instance.

Write (Client) The Write method is used by a pipe client to send data to a server's pipe instance.

A Write is not valid until the client has successfully connected to a server's pipe via
the Connect method.

Using ClassWizard, add the five methods listed in Table 11.2 to the PIPE control. All the methods return

BOOL, and only the Write method requires a parameter. Write sends a message to the pipe server and

takes a parameter of type LPCTSTR. After you have added the methods, add the implementation code
described in the next few sections.

ireate

The Create method creates an instance of a pipe. A pipe control that is configured to behave as a server

uses this method to create a pipe that can be accessed by a client process. The name of the pipe is provided

by the PipeName property Orfly one instance of a pipe is supported per control. The following code imple—ments the Create method.

NFLE 1009 - Page 234

NFLE 1009 - Page 235

52% «a CHAPTER 1 l}

BOOL CPipeCtrl :Create()

(

// Clear any error message

mnstrError.Empty();

// Make sure we’re the right type

if (m_sPipeType != TypeServer)

[

m_strError‘: “‘Create' should not be called from a pipe Client”;

return FALSE;

// We've already create a pipe instance

if (m_hPipe)

m_strError : “A Pipe has already been created, use ‘Destroy', and try again”;
return FALSE;

// If CreatePipe fails, it will set

// the ErrorMsg property, so all we have

// to do is return FALSE indicating the error _

if (CreatePipe() == FALSE)

return FALSE;

// Start a timer to check for connections

// and writes to the pipe
StartTimer();

_ return TRUE;
l

The Create method first clears the ErrorMsg string. As you will see, we do this at the beginning of all the

automation methods of our control. This technique ensures that the error string is cleared every time the
user calls a method within the control. All our methods return a BOOL that indicates the success or failure of

the method. If the method returns FALSE, the control user should check or display the ErrorMsg property,

which will contain the specific error. The following Visual Basic code illustrates the error checking technique
that should be used:

If Not Pipe.Create Then

MsgBox Pipe ErrorMsg
End If

After initializing the error string, we check to ensure that the PipeType property is consistent with the

method being called. We also will do this in all the subsequent methods that we discuss. If that check suc—

NFLE 1009 - Page 235

NFLE 1009 - Page 236

 oi Controls e 527

ceeds, we check to see whether we already have a valid pipe handle. If we do, we again return FALSE along

with an appropriate error message.

Finally, we get to some functionality. We call the CreatePipe helper method that we will discuss in a

moment. If it is successful, we start a timer that we will use to periodically check the pipe for both connec—
tions and data. We will also discuss this timer in a later section.

Destrey

The Destroy method is used by a pipe server to destroy the previous instance of a pipe. A control config-

ured as a server typically calls this method before shutting down.

BOOL CPipeCtrl::Destroy()

{

lf Clear any error message

m_strError.Empty();

// Make sure we're the right type

if (m_sPipeType 2: TypeServer)

{

m_strError = “‘Destroy’ should not be called from a pipe Client”;

return FALSE;

}

ClosePipeC);

StopTimer();

return TRUE;

)

The Destroy method contains mostly error-checking code, which we’ve discussed previously. If all goes

well, we use the ClosePipe helper method and stop the timer. The Create and Destroy methods pro-
vide the interface for a control configured to act as a server. The next three methods are specific to a control

that is configured as a pipe client.

Conner?

The Connect method is used by a pipe client to connect to a server’s pipe instance. The name of the pipe to

connect to is provided by the PipeName property.

BOOL CPipeCtrl::Connect()

{

// Clear any error message

m_strError.Empty();

NFLE 1009 - Page 236

NFLE 1009 - Page 237

5233 e CHAPTER 1 1

// Make sure we're the right type

if (m_sPipeType l: TypeClient)

mustrError = “‘Connect’ should not be called with type set to pipe Server“;

return FALSE;

if (m~hPipe)

{

m_strError = “A pipe is already Connected";

return FALSE;

}

// Attempt a connect to the server’s pipe

mfihPipe = ::CreateFile(LPCTSTR(m_strPipeName),

GENERICHWRITE,

0,

NULL,

OPEN_EXISTING,

FILE_FLAG_WRITE_THROUGH,

NULL);

// An error returns INVALID,HANDLE_VALUE

if (m_hPipe == INVALID_HANDLE_VALUE)

{

DWORD dwError = ::GetLastError();

switch< dwError)

(

case ERROR_FILE_NOT_FOUND:

m_strError.Formatl

“Unable to open the specified pipe %s. Error is FILE_NOT_FOUND",

LPCTSTR(m_strPipeName));

break;

default:

m_strError,Format(

“Unknown Error trying to open the specified pipe %5. LastError is %d",

LPCTSTR(m_strPipeName),

dwError);

break;

NFLE 1009 - Page 237

NFLE 1009 - Page 238

«Mmtwwmwwwmwfimmewm..WWW/MflHWMWVWVMW, VW,WM/WMWW,,W VMNvMWNWW$W,W/WMKN N OnVi s U 0 ‘ COnfro l s $ 529

l

// Reset the pipe handle to zero

m_hPipe = 0;

// Indicate an error occurred

return FALSE;

I, // Success

return TRUE;

}

Almost all the code is for error checking. The real work occurs in the CreateFile function call. See the

Win32 help file for specifics concerning the parameters of the CreateFile function. If CreateFile suc-

ceeds, we have a valid connection between a server’s pipe instance and our client control.

fiisrefimeti

The Disconnect method is used by a pipe client to disconnect from a server control’s pipe instance. As
mentioned previously, the client control can maintain only one connection to a pipe at a time and must dis-

connect before attempting to connect to another pipe instance.

BOOL CPipeCtrl::DisconnectU

(

H Clear any error message

m_strError.Empty();

// flake sure we’re the right type

if. (m_sPipeType El: Typeclient) L L
:- { _

‘ ‘ mstrEr'ror- : y“‘Disconnect' should not be called from a pipeServer";
return FALSE; .IJ _

1.1 Close‘the pipe J

ClosePipei) ; L

return TRUE;

NFLE 1009 - Page 238

NFLE 1009 - Page 239

53% r CHAPTEBWJJ,

This code contains the usual error checking and finally a call to the helper function, ClosePipe, which does

all the work. For a client control, ClosePipe calls CloseHandle with the pipe’s handle.

erte

The Write method is used by a pipe client to send data to a server’s pipe instance. A Write is not valid

until the client has successfully connected to a server’s pipe Via the Connect method.

BOOL CPipeCtrl :Write(LPCTSTR Message)
l

// Clear any error message

m~strError.Empty();

// Make sure we’re the right type

if (m_sPipeType != TypeClient)

(

mastrError = “‘Write’ should not be called from a pipe Server”;

return FALSE;

// Make sure we have a valid pipe

if (m_hPipe == 0)

(

m_strError = “Pipe is not ‘Connected’”;
return FALSE;

// Number of bytes written to the pipe

DWORD deritten;

// Write to the pipe

BOOL bRet = :zWriteFile(m_hPipe,

Message,

strlen(Message),

&deritten,

NULL);

// A FALSE return indicates an error

if (! bRet)

l

// Get the error number and fire the error event

DWORD dwError = ::GetLastError();

m_strError.Format(“Unable to write to pipe. LastError = %d",

NFLE 1009 - Page 239

NFLE 1009 - Page 240

WNonViSUC‘I Controls 53%

dwError);

// Close the pipe

ClosePipe();

return FALSE;

}

_ return TRUE;
)

Again, this code is mostly error checking followed by the work. The WriteFile function takes the data

passed through the LPCTSTR Message parameter and writes to the pipe. If an error occurs during the

write, indicated by a FALSE return, we build an error message and assign it to the ErrorMsg property. We

then close the pipe and return FALSE. If all goes well, we return TRUE, indicating success.

Helper methods
The preceding automation methods depend on a few internal helper functions. The CreatePipe and
ClosePipe methods are described next.

The CreatePipe method is called by the 'control's Create method and also from the OnTimer

method that we will discuss in a moment. CreatePipe calls the named pipe API function

CreateNamedPipe with parameters that are appropriate for single pipe instance server. Parameters of note

include PI PE_TYPE_MESSAGE, which indicates that the pipe will treat the data exchanges as type messages,

and PIPE_ACCESSWINBOUND, which indicates that the pipe will only be receiving messages from client

processes and will not transfer any data to the client.

If m_hPipe contains the symbol INVALID_HANDLE_VALUE, indicating an error, the Win32

GetLastError function is called to retrieve the specific error that occurred. This return value, along with a

textual error message, is later passed to the container via our FirePipeError event.

BOOL CPipeCtrl::CreatePipe()

it

a // Create an instance of a named pipe

// Use the name provided by the control user

m_hPipe _= ::CreateNamedPipe(LPCTSTR(m_strPipeName),
PIPE.ACCESS_INBOUND | FILEAFLAG_OVERLAPPED,

PIPE_WAIT l, PIPEJYPLMESSAGEW PIPE__READMODE_MESSAGE,
1,

BUFFER__SI ZE,

BUFFER__SIZE,

100,

NULL);

NFLE 1009 - Page 240

NFLE 1009 - Page 241

$32‘$CHAWER11

// Check for an error return‘

if (m_hPipe == LIIWALIDJIANDLTLVPLUE)

_ { , L _

L char szTemp[1281;sg L _ _
_' DWORDL award: é :EGetLastError () ;

lisprint£(‘SZTempi “Unable to_CreatePipe_LescError = %d\n”,ydafirroral; ~ 5 “

L // Set the error property
m_strError_= szTemp;

 _ "LhPipe '= L'

f/fiReiurn*angerror“*'

returnLPALSE;J
} :

L!/LSuCCessL
_return TRUE;

) _ , ,

The ClosePipe method is called by many methods, including those that support the server and those that

support the client. If the pipe handle is valid, ClosePipe checks the mode of the control, and if the control

is acting as a server, it disconnects any clients from the pipe. Independent of the control’s mode, ClosePipe

then closes the pipe handle. It completes its function by setting the m_hPipe member to zero.

Void LCPipeCtrLlLLi :Closei’ipe (3

{

// Close the‘pipe if there is_a valid handle 1
"ii:(La;hPi§éii’ L L L ' L L

{- _ :

‘VXZ DiSConnect if WeLare'a_servef,
L if- (L mwssipeiyp - ===T§fpleServer ,)

L t{Disconnectfiamedéipe(‘n_hPiper);f ,'~
LlL::Ciosefiandiei'm;h9ipe);L LL L L

‘mehPine {ogf : '
} ' ' L

) ,

We also need two events for our PIPE control. One event reports that a control, acting as a server, has

received data from a client. The other is used to report pipe—specific errors to the control user. Using

NFLE 1009 - Page 241

NFLE 1009 - Page 242

Nonvisual Controls @ 533(WWMWWMW.N,.MWMMWMMW.MAWVW.WW.mW.mmw.wwmymmmamnwym.ww. WHMWW.Wflmmwwwwwflw mmwwmnwmww wmimwi.

ClassWizard, add two events. The first, MessageReceived, passes a BSTR parameter to the container. The

second, PipeError, passes both a long and a BSTR parameter;

Messegefleteivetfi
The MessageReceived event is used to communicate the reception of a message from a client (control)

process. The MessageReceived event is sent only to an instance of a control that is acting as a pipe server.
A control configured as a pipe client uses the Write method to send data, and when the data is received by

the server, it is passed on via the MessageRecieved event. You will see how MessageReceived is used
in a moment, when we discuss the ReadPipe method.

firearm
The PipeError event provides a way of reporting errors that occur outside the scope of a control’s automa~

tion methods. In a moment, when we discuss control error handling, you will see that there is a certain pro—

tocol that must be followed when you’re handling errors within your control. The PipeError event passes

the result of the Win32 GetLas tError function along with a text description of the error.

Visual C++ also provides the stock Error event, which can be used to communicate error information
back to the container.

§reer§ng treats
ActiveX control containers may not always be in a state that allows them to receive events from controls.

When the container is initially loading its contained controls, when the container is re—creating and destroy~

ing control instances, or when the container is processing an event from another control, it may not be able

to handle the firing of multiple simultaneous events.

The ActiveX control standard provides an interface method, IOleControl : :FreezeEvents, that the

container can use to notify the control when it should and should not fire events. This method is mapped to

the COleControl : :OnFreezeEvents method for your controls to use. The default implementation pro—

vided by COleControl does nothing. The OnFreezeEvents method passes a boolean parameter that

indicates whether the control should fire events. If the parameter is TRUE, the control should not fire events,

and if it is FALSE, the control can process events normally.

This sounds fine, but what should a control do if it needs to fire an event and the container won’t let it?

The control can do one of three things. It can fire the event normally (and the container will ignore it), it can

throw the event away by not firing it, or it can queue the event using an internal mechanism and fire it later,

when the container again allows the firing of events. The first two methods—firing or throwing the event

away—are simple to do. The third method isn’t hard to implement but requires that you maintain a list of

events along with any contextual information needed to fire the event later. Some controls may even require

a priority queuing mechanism that maintains synchronization of the control’s events. We will use the second

NFLE 1009 - Page 242

NFLE 1009 - Page 243

53% t CHAPTER 1 1MN,...MW.WWWM.WW WNWW... aWWWWW WWW,wmmmmwwfltWWNWWMWWMWHW.“WW mmmwmwwflw,WWMWWWMWWWWMWHWNtwwmww»wwwmmfiwwmmwwmmwww

method. If the container indicates that the control should not fire events and if the control has an event to

fire, it will ignore the event and continue processing.

First, we override the OnFreezeEvents method. Then we maintain the state of the container’s

FreezeEvent flag. This isn't difficult. Add the following code to PIPECTL.CPP:

void CPipeCtrl::OnFreezeEvents(BOOL bFreeze)

{

if (bFreeze)

m_iFreeze++;
else

mfiiFreeze—;

)

Whenever the container changes the FreezeEvent state, we either increment or decrement the value of a

member variable in our control’s implementation class. We must maintain a count of the OnFreezeEvents
calls, because the container can nest FreezeEvents calls.

Now, when we need to fire an event, we check our member variable to determine whether the event

can be fired. It looks something like this:

// Fire the MessageReceived event

// If the container says it’s OK

if (m_iFreeze =:)

FireMessageReceived(szBuffer);

You could queue events within your controls using something similar to this. This method requires a class

that contains the type and state of a given event. The control class also maintains a list of these event

instances using the MFC CObList class:

void CYourCtrl::OnFreezeEvents(BOOL bFreeze)

i

if (bFreeze)

m_iFreeze++;
else

m_iFreeze~;

// If events allowed

if (m_iFreeze == 0)

i

// Check the queue

POSITION pos = m~EventList.GetHeadPosition();

while(pos)

{

CEvent* pEvent = (CEvent*) m_EventList.GetNext(pos);

NFLE 1009 - Page 243

NFLE 1009 - Page 244

Nonvisual Controls (e 535

pEvent—>Fire();

void CYourControl::SomeMethod()

(

// If we can’t fire the event, queue it

if (m_iFreeze)

i

// Build event object

// and add it to the tail of the event list

CEvent* pEvent = new CEvent(type);

m_EventList.AddTail(pEvent);

l

else

FireEvent(...);

}

The complexity is in the design of the CEvent class, ensuring that the events still have meaning after the

code that would have fired them has already executed.

 in a E” er te e gage the tge
Applications that use Win32 pipes to provide client/server services typically implement the server side

using multiple threads. The named pipes API makes it easy for a server process to provide a thread for each

client that connects to an instance of a pipe. As I mentioned earlier, it is beyond the scope of this chapter to

investigate the complexities of implementing an ActiveX control that uses multiple threads. Without the

ability to start a thread for each client connection, we must limit to one the number of client connections for

each instance of the control. We also must simulate the existence of an executing thread for the server side of

the pipe. We simulate this thread with the help of a timer message.

Using ClassWizard, add a handler for the WM_TIMER message and add methods to PIPECTL.H and

PIPECTLCPP to support the starting and stopping of the timer. This code is identical to that used in the
CLOCK control of Chapter 9.

// pipectl h

// Implementation

protected:

~CPipeCtrl();

NFLE 1009 - Page 244

NFLE 1009 - Page 245

53% ¢ CHAPTER 1 l

void StartTimer();

void StopTimer();

// pipectl.cpp

#define TIMER_ID 100

void CPipeCtrl::StartTimer()

LI

SetTimér(TIMER_ID, 200, NULL _);
}

void CPipeCtrl:zStopTimer()

,{ V

‘ KillTimer< TIMER_ID) ;

i

As you can see from the preceding timer code, we fire the timer every 200 milliseconds. Every time the timer

fires, we check the status of the pipe using the PeekNamedPipe function. Add the following code to the

.OnT imer message handler:

// pipectl.cpp

void CPipeCtrl::OnTimer(UINT nIDEvent)

{

if (m‘hPipe)

{ _

EOOL beet;

13mm: amiable; _ _y

// Peek, the pipe to determine if there L
// is any data in the pipe. Also, we can.k
/,’ determine ii a client ~is,__connected to_____

X/ the pipe by the retuen code from PeekNamed?ipé
bReti= :zPeekNémedPipM m_hPipe,

NULLP

NULL,

NULL,

&c‘1wAvailable,

NULL d;

, if (1 bRet)

(_

DWORD dwError =' :zGetLastEicror()_;

NFLE 1009 - Page 245

NFLE 1009 - Page 246

// Depending on the error do different things

// These error codes are defined in WINERROR.H

Eswitchl dWEEEOr)

E,E//ETh1eteEror ihdicaEeS-thet there is

// no client connected to the pipe

__// so ignore it, and continue

EEcaseERRORBEDEIEE. '
E breek

,//Thiserror occursEwhen a client

E/Ed1scoflnects from thepipe. We close

current instance of the p1pe

_ /*an reEcreatea newfine.
E '1"?¢aseERRORBROKENEiEE E

EClosePlpe() _ ,
7Eif(CreateP1pe() SE FALSE)

1 -{

J/ EErroE during create, shut dam
StopTlmer() ‘Q if (m iFreeze ==E 5)

 EE FirePip eErEor(dwErEor,

EEE’VUEEIfE weEget an erEor thatE we Edon' t expect
“Ewe cloee the pipe, stop the t1meE, and _

report the error. ThisE Estops us from

gettinginto an endlEees timer lOop

StopTwmer(),

ClosePipE(h

E,if(m';EiFreeEeE ==‘E’)5

;fE1 break,*

43} . ,

- gei‘sé
E{;’E

_‘// If‘there is data in the pipe

NonVIsucdmCanrYo/lme9 537

EEr_ “Unable to Create a new Pipe after a client disconnect")f

FlrePlpePEro*(dwError, “Unknown error in"PeekNamedPipe’");

NFLE 1009 - Page 246

NFLE 1009 - Page 247

538 a CHAPTER 1 lWWWWMWMMW.WWW..WWW.WWWWWWXM«Wdywmmmww..WKMWWWW,WW~MWWWWWMWWWWMMX m, WWW

,' i/ call the" read function ”

LifL(devailable)

.h_ Read?ipe();

l

The preceding code executes only when the control is acting as a pipe server. It.continually checks the status

of the server’s pipe using the PeekNamedPipe function. The return code of PeekNamedPipe indicates

whether a client process is connected to the pipe. If there is a valid connection, we check the devailable

flag, and, if there is data available in the pipe, we call the ReadPipe function.

If we encounter an error while processing the WM_TIMER message, we fire the PipeError event. We

use an event because when processing the WM__TIMER message, we are not executing in the context of an

automation method or property. The control user has not actually made a synchronous call to the control, so

there is no other way to report an error except to fire an event. We will discuss this further in a moment. As

you can see, if the container is not accepting events, we continue with the normal processing of the method.

If PeekNamedPipe returns successfully and if the devailable parameter indicates that there is data

in the pipe, the ReadPipe helper method is called:

#define BUFFER;stZE 512- L

901a LCLELipeCLtrl; :Re’aampeo _L

,._Lc:har _szLBuifer[BUFFER_SIZLE + 11;
unsigned long' ulRead;L LL LL
LL//_Read;t;_he*pipe L L

3 ‘_,jbRet_, ,=_‘ ' V;ReadFLile(-m__hPipLeL,
L,S;Buffer,g~‘Lu

BUFFER;SizE,-
, Eculeead, L

“ , LNULL);

L IL! A TRUE LreturnLLinLdicatesL success

5 __i_: (,bRet-L)’ L

‘L// ulRead contains the number of bytes in
‘// the pipe message._ L L L L

L if (‘ulReadL) i ‘ L

t L _

szBuffLermiReadl = ‘\O'L;

// Fire the MessageRLeceived event
// If the container says it’s OK

NFLE 1009 - Page 247

NFLE 1009 - Page 248

Nonvisuol Controls 6 539

if (m_iFreeze ==)

FireMessageReceived(szBuffer);

l

i/ A FALSE return indicates failure

else

i .

// Use the :2GetLastError function to get
// the actual error number

DWORD dwError = ::GetLastError();

// Pass back the error number and a message to the container

if (m_iFreeze ==)

FirePipeError(dwError, “Error while reading the pipe");

ClosePipe();

i

The ReadPipe code is straightforward. It is called only when PeekNamedPipe has indicated that‘ there is

data to read from the pipe. ReadPipe uses the Win32 ReadFile function, and, if the return is successful,
ReadPipe zero terminates the buffer. If the container allows events, ReadPipe calls the

MessageReceived event with the data read from the pipe. If an error occurs, ReadPipe gets the error

number and passes it along with a text message to the container via the PipeError event.

Certain nonvisual controls need the services of a true HWND when working as an ActiveX control. In this

case, you need to explicitly create a window for your control.

invisible Controls That Require ti WEEtEiQW
Our PIPE control needs the services of a window. The default implementation provided by ControlWizard

does not create a window for the control. This is appropriate, because we told ControlWizard that our con-

trol would be invisible at run time so there is no apparent need for a window. Still, there are reasons to have

a window for a control. Our reason is that we want to use a window to handle the WM_T IMER message.

If your nonvisual control needs the services of a window when loaded and running in a container, the

COleControl : :RecreateContro lWindow method will create a default window for your control when

called. To ensure that the control’s window is created as soon as possible, the best place to put this is the
COleControl : :OnSetClientSite method. OnSetClientSite is called as the container loads the con~

trol within the container. It is a good place to initially create the default window. We need a true HWND only

when the container is in run mode, so we check the ambient property UserMode before calling
RecreateControlWindow.

// This ensures that our control has a valid HWND

// as soon as it is placed on a container at run time

NFLE 1009 - Page 248

NFLE 1009 - Page 249

 we a CHAPTER 1 1”WNWNMMWMWWWVWW “MamaWthmymmm“WWWWMWWWWWKWWMWMMWWWWWMWW.mam/wwwwwmmwiww

void CPipeCtrl::OnSetClientSite()

{

if (mienwse'risodeo >1
RecreateControlwindow()§_V

 easing Errers in iestrss
There are three basic ways to handle errors that occur in your controls. The first is the typical procedural

way that we are all familiar with: a return value from your class methods. The second method is to use the

automation exception mechanism. This technique is useful in automation properties, because the value

returned from a property method is the value of the property and you can’t return an ”error.” The third

approach uses an event to communicate the error to the container. This technique should be used when the

container is not executing in the context of your control’s methods or properties (it's doing something else).

The automation methods and properties that are exposed by our control are called synchronously by

the container. When you’re using a scripting language such as Visual Basic, a method call like the following

one does not return until the method is complete:

‘ Call the pipe control’s Create method

If Not Pipel.Create then

MsgBox Pipel.ErrorMsg
End If

The preceding code executes synchronously, so the most effective and efficient way of reporting errors is to

return a value from the call, as we have done. This is the preferred method of reporting errors when you're

using automation methods In this case, the error is encountered while executing code within the control,

and the container code (such as Visual Basic) is waiting on the return from the automation call.

Automation properties return the value of the property, so the preceding method of returning an error

value won’t work. Get / Set methods are typically used to implement the assignment and retrieval of a con-

trol’s properties, and automation provides an exception mechanism to report error conditions to the con-

tainer. We have used this technique in most of the controls we have developed. The SetNotSupported

method is an example of the use of this exception mechanism. It uses the COleControl: :ThrowError

method and is similar to the C++ method of handling exceptions. For example, a run—time property uses the

automation exception mechanism to inform the container that the property can be accessed only at run time.

The following code illustrates this technique:

void CPipeCtrl::SetPipeType(short nNewValue)

l

// Don’t allow setting of the property at run time

// This isn’t absolutely necessary, but it’s an example

// of a property that cannot be modified when running.

// If you were to allow modification of the control’s mode

NFLE 1009 - Page 249

NFLE 1009 - Page 250

Nonvisual Controls a 5%]V j.WWW/wwwlmvwmwmammwmiK.M.mewuwmmmwwyyW,“WWWWWWWiWWM.M...WWW,MVWI‘WWMMMM,‘MWWWWWWNMMMWW (MM,

// during run time, we would have to ensure that any active

// pipe connections were cleaned up, and so on.

if (AmbientUserMode())

ThrowError(CTL__E_SETNOTSUPPORTEDATRUNTIME, “

“You can't change the PipeType property at runtime”);

m_sPipeType = nNewValue;

SetModifiedFlag();

l

The SetPipeType method returns a void, but we are still able to communicate to the container that the

property cannot be modified during run time. This technique of using an automation exception to communi-
cate with the container can be used only when the control is executing in the context of an automation prop-

erty or method.

There are times, however, when an error may occur in your control’s code when the container is not

waiting for a return from an automation call. For example, the OnTimer method in our PIPE control exe—

cutes every 200 milliseconds and is never explicitly called by the container. In this case, errors that occur can—

not be reported using the techniques described earlier. Instead, an event must be used.

The event technique should be used in any control code that is executed outside an automation method

or property. In this case, the automation content is not present, and the ThrowError method will not work

properly. Instead, your control should fire an event to inform the container that an error has occurred. We

used this technique in our OnTimer and ReadPipe methods, because they execute asynchronously and are

never called directly by the container. Here’s a snippet of the code:

void CPipeCtrl::ReadPipe()

{

// A TRUE return indicates success

if (bRet)

(

l

// A FALSE return indicates failure

else

i

// Use the :zGetLastError function to get

// the actual error number

DWORD dwError = ::GetLastError();

// Pass back the error number and a message to the container

if (m_iFrEeze ==) i I L

FirePipeError(dwError, “Error while reading the pipe");

HyClosePipe();

NFLE 1009 - Page 250

NFLE 1009 - Page 251

542 a CHAPTER 1 1KWWWW/r ” /,”W”W\-MWNWWO.Mm_rtmwmwmwflww.WWWM’..WMMW«MWWW,MMWWWMWWMWWWWWMWWMANWVWMWWMWthMWmem—W‘r
This code informs the container of the problem by firing the PipeError event with the error information.

The automation exception mechanism is used to implement run—time—only, read-only, and design-
time—only properties.

Quwi‘imeefinly Preperties
Run—time—only properties are those properties that can be accessed and modified only when the container is

in run mode. An example of this type is the ErrorMsg property that is used in our PIPE control. To enforce

the use of the property only at run time, we used the SetNotSupported and GetNotSupported methods.

Each of these methods uses COleControl: :ThrowError to notify the container that the property cannot

be accessed at various times. Here is the code for the ErrorMsg property:

BSTR CPipeCtrl :GetErrorMsg()

f

// Most containers that provide property browsers (e g., VB)

// will trap this exception and will not display the property

// in the property browser. This is just what we want.

// If we're not in run mode don’t allow anyone to get the

// property’s value.

if (AmbientUserMode() :2 FALSE)

GetNotSupported();

return m_strError.AllocSysString();

)

If the container is not in run mode, we throw the CTL_E_GETNOTSUPPORTED exception. To enforce run—

time—only setting of a property, you would do this:

void CYourControl::SetAProperty(short sNewValue)

{

// If not running report an error

if (E AmbientUserMode())

i

// Throw the CTL_E~SETNOTSUPPORTED error

SetNotSupported();

}

// Go ahead and set the property value

NFLE 1009 - Page 251

NFLE 1009 - Page 252

Nonvisuol Controls s 543

MWWWMVWW WWMMMWMW”NMWM.WW

@esiga-me—Galy Preperties

To implement properties that can be modified only du1ing the container’s design phase, vou would do the
opposite of what we'Ve just discussed. There are a number of standard error messages that can be thrown
from within your control's code. Two of them are specific to not allowing the modification of properties at
run time:

void CYourControl::SetAProperty(short sNewValue)

(

// If not design phase report an error

if (AmbientUserMode())

{

ThrowErrOr(CTL_E_SETNOTSUPPORTEDATRUNTIME,

“Property cannot be set at runtime”);

l

// Go ahead and set the property value

sProperty = sNewValue;

}

short CYourControl::GetAProperty()

{

// If not design report an error

if (AmbientUserMode())

{

ThrowErrOr(CTL_E~GETNOTSUPPORTEDATRUNTIME,

“Get not allowed at runtime");

l

// Go ahead and return the property value

return sProperty;

l

Containers can look for these specific exceptions and report them consistently.

 sag the ieesreé
To test the controls, let's develop a Visual Basic application that uses our new PIPE control. Actually, we’ll

develop three application. The first one will demonstrate how to use the PIPE control by using two instances

of the control within one application. The next example will contain two Visual Basic applications: one that

will act as the server application and another that will act as the client. These applications can be run on sep—
arate machines in a networked environment.

NFLE 1009 - Page 252

NFLE 1009 - Page 253

SQQ é QHAPTER l l

WWWWMMWMWH m “WWW mmMAMMMNWNWWAYflWWWN»W.W«~MWMMWM,WMWWMWM»WWWM”MMWWWVWWMWW.WWMMMHW

Figure 11.3 shows our first application, a Visual Basic form that contains two instances of the PIPE COn-

trol. One of the controls acts as a pipe server, and the other acts as a pipe client. This application shows how

easy it is to use the PIPE control and provides a simple way to test the control. This application basically
talks to itself.

Figure l 1.3 Visual Basic form with two instances of the PIPE control.

The PIPE control instances can’t be seen on the form—~they are invisible at run time—but they provide the

majority of the functionality of the application. First, the Create button is clicked to create an instance of the

server pipe, and then the Connect button is clicked to connect the client pipe control to the server’s instance.

You can then enter text in the entry field and send it to the server’s pipe. As the server receives messages

from the client, it logs them in the listbox. Here is the Visual Basic source code for the complete application,
all of about 30 lines of code:

Private Sub cdeonnect_Click()

If Not ClientPipe.Connect Then

MsgBox ClientPipe.ErrorMsg
End If

End Sub

Private Sub cdereatewclick()

If Not ServerPipe.Create Then

MsgBox ServerPipe.ErrorMsg
End If

End Sub

Private Sub cmdDisconnect_Click()

NFLE 1009 - Page 253

NFLE 1009 - Page 254

Nonvisuoll Controls e 545

If Not ClientPipe Disconnect Then

MsgBox ServerPipe.ErrorMsg
End If

End Sub

Private Sub cmdSend_Click()

If Not ClientPipe.Write(Textl) Then

MsgBox ClientPipe ErrorMsg
End If

End Sub

Private Sub Destroy_Click()

If Not ServerPipe Destroy Then

MsgBox ServerPipe.ErrorMsg
End If

End Sub

Private Sub ServerPipe_PipeError(ByVal dwError As Long, ByVal szError As String)

MsgBox “Error occurred “ & dwError & “ “ & szError

End Sub

Private Sub ClientPipe_PipeError(ByVal dwError As Long, ByVal szError As String)

MsgBox “Error occurred “ & dwError & “ “ & szError
End Sub

Private Sub ServerPipewMessageReceived(ByVal szMessage As String)

List1.AddItem szMessage
End Sub

The next application contains two Visual Basic executables that run on separate machines in a networked

environment. It is similar to the previous application but allows communication to occur across machines.

Figure 11.4 shows the server application.

NFLE 1009 - Page 254

NFLE 1009 - Page 255

\\.\pipe'\E|E><2.Pl PE

i Tom, from twa_win35
_ i Torn, from twa_winElE
' Hi Torn, from twa_win€|5

i Torn, from twa__win35

Figure l 1.4 The server application.

The only difference is that you are allowed to modify the PipeName property before you create the pipe

instance. As you can see, the PipeName contains a local pipe filename. The messages received are from an

instance of the client application running on another machine (Figure 11.5).

Figure l 1.5 Message received from another machine.

The combined number of Visual Basic lines of code is again around 30. By encapsulating the Wi1132 API calls

and providing an easy—to—use interface to our ActiveX control, we have made it easy for a visual tool user to

develop useful applications. That is the goal of building software components: provide robust functionality

that is easy to use.

NFLE 1009 - Page 255

NFLE 1009 - Page 256

Nonvisual Controls a W547

get at“?

Nonvisual controls provide functionality by exposing properties and methods that supply an abstraction of

a more complex technology. Uses for nonvisual controls are numerous: wrapping a C++ class to provide its

functions to a visual tool user, abstracting a group of operating system functions, or providing an easy-to-

use interface for business-specific problem. In these examples, nonvisual controls can make it easy for a
visual tool user to gain access to functionality.

Win32 named pipes provide a way to test this theory. They supply a mechanism for communication

between processes on local and remote machines. Named pipes can be used to implement basic client/ sever

techniques between processes.

Nonvisual controls require the developer to provide a design—phase—only representation of the control,

because it will not be visible when the container is in run mode. An easy way to represent a nonvisual con~

trol at design time is to use its toolbar bitmap image. The CPictureHolder class provides a way to allow

the bitmap to be manipulated.

An ActiveX control container can inform its contained controls that they either can or cannot fire events.

There are various reasons that a container may disable the firing of a control’s events, and it is important

that the control honor this request. COleControl provides a method, OnFreezeEvents, that is called

whenever the container requests a change in the FreezeEvents status. A simple way to implement this

behavior in your controls is to maintain a flag that mirrors the setting of the last OnFreezeEvents call.

Whenever your control needs to fire an event, you should check this flag. If it is TRUE, the simplest thing to

do is to not fire the event, effectively throwing the event away. A more sophisticated method would be to
save the events and fire them later.

Nonvisual controls are instantiated without a true window. If your control requires the use of a win-

dow, you can call the COleControl: :RecreateControlWindow method. The best time to do this is

when the control is initially placed within a container. The OnSetClientsite method is called when this
occurs.

There are three ways to handle errors in your control code. For automation methods and properties,

you should use a standard return value if possible. You can also use the COleControl: :ThrowError

method to cause an automation exception. This technique is used to implement the SetNotSupported and

GetNotSupported methods that are used to implement run-time—only, read—only, and design—time—only

properties. The ThrowError method should be used only within an automation method. When errors

occur in your control outside an automation call, you must use an event to communicate the problem to the

container. MFC provides a stock error event for this case.

NFLE 1009 - Page 256

NFLE 1009 - Page 257

mWWWWMW/flwmxmymm:mwfimmWWWmm~m ,,

re Controls er-eta

ActiveX controls can be used as is in webwstyle applications. In most cases, this means applicationsIHTML-

based Web pages) that use a Web browser. However, several new ActiveX specifications provide additional

techniques that can be used to make ActiveX controls more Internet—aware. In this chapter, we will explain

these new techniques, build a control that uses them, and discuss some of the tools that can be used to build
and test Internet-aware ActiveX controls.

 as re Essegflaesw tease imireés?

Internet-aware controls differ only slightly from the controls we’ve developed. Internet-aware controls are

concerned with two additional issues: lack of bandwidth and the need for security. The ActiveX SDK

includes new technologies that enable controls to operate effectively in low—bandwidth environments and

provides security techniques to help with the management of component software in the Internet (or

intranet) environment.

The issue of bandwidth is addressed with a new URL and Asynchronous Moniker specification, which

allows a control to handle large property values (such as an image) more efficiently. Asynchronous monikers

provide a mechanism for the control to download large amounts of property information asynchronously.

Before the asynchronous moniker specification, the container was forced to wait while a control’s properties

were loaded. In a low—bandwidth environment, such as the Internet, this wait is not acceptable.

ActiveX controls have full access to the machine on which they are executing. In an Internet—type envi—

ronment, where controls are part of Web documents, a number of security issues arise. The new component

download specification allows transparent download and registration of controls to machines browsing

Web documents. In this environment, security issues must be addressed. ActiveX provides several tech—

niques to make ActiveX components secure and safe in Internet-type environments.

549

NFLE 1009 - Page 257

NFLE 1009 - Page 258

55% s CHAPTER 12 a w.wwwww,wwwnWSmW/MVWMW

This chapter contains many new terms that you may not be familiar with. Internet—based technologies are

becoming important in all aspects of development. Even if you don’t write Web—based software, it is radi-

cally changing the tools you use. Microsoft is rapidly changing the focus of its commercial software, operat-

ing systems, and development tools to make use of Web-based technologies. What follows is a quick intro-

duction to some of the terms that we will encounter. This book is about component software development,

so it is impossible to cover all the technologies that are used in Web—based environments. Several books are

listed in the Bibliography for those who need information on technologies such as HTML, Java, HTTP, and

so on. The following definitions will help introduce you to these technologies.

WW.

Hypertext Markup Language (HTML) is the language of the Web environment. The development of HTML

along with a standard protocol (HTTP) to transport HTML documents is the primary reason for the tremen—

dous growth of the Web. HTML makes it easy to describe static documents for publishing in Web—based
environments.

A Web page begins as an ASCII-based HTML document. The document describes its contents using

various elements. An element is demarcated with a set of tags, usually a begin-tag and an end—tag. Here’s an

example:

<P>This sentence is centered.</P>

Here we have an example of the paragraph element. Its begin tag is <P> and its end tag is < / P>. An element

can also have zero or more attributes that modify the effect of an element. Here’s an example of the ALIGN

attribute in our paragraph example:

<P ALIGN = CENTER>This sentence is centered.</P>

One of the most important elements in HTML is the anchor. An anchor supplies a jumping point, or go to,

within a Web page, thus providing its hypertext capabilities. The anchor element is specified with the

<A>< / A> tag pair. Here’s an example:

Click here to go to CNN

As you can imagine, there are a large number elements specified by HTML. We’re just taking a quick look.
Here’s a minimal HTML version 3.2 document:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2//EN”>
<HTML>

<HEAD>

<TITLE>A Minimal Web Page</TITLE>
</HEAD>

<BODY>

</BODY>

</HTML>

NFLE 1009 - Page 258

NFLE 1009 - Page 259

Internet-Aware Controls 9 55%

The primary purpose of HTML is to specify text- and i1nage~based documents in a machine- and display—
independent way. HTML describes the formatting characteristics of a docLunent. Later, we'll take a look at

the OBJECT element, which allows the embedding of ActiveX controls. By adding ActiveX controls to
HTML documents, you add dynamic capabilities to Web documents.

VBStript
VBScript is a subset of both Visual Basic and Visual Basic for Applications. Visual Basic is a full implementation

of the language and is integrated into a full-featured development environment. Visual Basic for Applications is

a subset of Visual Basic that is used as the macro language for many of Microsoft's high-end applications.

VBScript is a subset that removes any commands (such as CreateObj ect, FileCopy, and Open) that provide
unsecure access to the local machine.

VBScript is used to add logic to HTML~based documents. To do this, however, the logic must be tied to

a component such as an ActiveX control. Internet Explorer provides an object model that allows a VBScript

developer to access most brOWSer functionality. For example, here’s a quick VBScript program that displays

information about the viewing browser. This program is quite different from a static HTML document,

because it is actually executed each time it is viewed. The HTML code is generated and interpreted dynami~

cally.

<!DOCTYPE HTML PUBLIC “—//W3C//DTD HTML 3‘2//EN”>

<HTML>

<HEAD>

<TITLE>Our First Script</TITLE>

<SCRIPT LANGUAGE=”VBSCript”>
<!—

document.write “<CENTER>"

document.write “<H2>” & “Here's some information about your browser” & “</H2>"

document.write “Name: “ & Window.NaVigator.AppName & “
”

document.write “Version: “ & Window.Navigator.AppVersion & “
"

document.write “Code name: “ & Window.Navigator.AppCodeName & “
"

document.write “User agent: “ & Window.Navigator.UserAgent

document.write “</CENTER>”

document.close
—>

</SCRIPT>

< /HEAD>

<BODY>

</BODY>

</HTML>

NFLE 1009 - Page 259

NFLE 1009 - Page 260

552 a» CHAPTER 12

um

A uniform resource locator (URL) specifies the exact location of a resource within a Web—based environ.

ment. It comprises four parts: the specific protocol of accessing the resource (such as HTTP), the address of
the machine that contains the resource (such as www.microsoft.com), the resource location on the machine

(usually a filename), and any parameters that should be passed to the resource. Here are some typical URLs;

 MMWWWWAMWWWMWWKWW“WWWWWWMWW

http://www.sky.net/~toma/faq.htm

mailto:toma@sky.net

news://msnews.microsoft.news

A URL is an important and powerful attribute of Web-based environments. It specifies everything that a

browser needs to work with the given resource: the encoded data type and the exact, unique location in a
network of several million machines.

Eats

ActiveX controls are important to Microsoft’s Web—based software strategy. Microsoft’s Web browser,

Internet Explorer, is a capable ActiveX control container. By allowing the embedding of controls, a browser

can now provide access to all the capabilities of the local machine. This feature, complete access to the Win32

API, is what makes the use of ActiveX controls so compelling in Web—based applications.

Building Web-based applications by embedding controls and connecting them with a script language

such as VBScript is similar to building other, non—Web applications. By moving its Visual Basic and ActiveX

technologies to the Web, Microsoft has made it easy for developers to leverage their existing expertise.

We’ve already written a few Visual Basic applications that use ActiveX controls, and writing a browser»

based application using VBScript and ActiveX controls is only slightly different.

 Ea imieasti . geets gag” , term:
The primary ActiveX SDK document that describes the requirements for providing Internet-aware support

for ActiveX controls is titled OLE Controls/COM Objects for the Internet. Most of this document has been incor—

porated into the ActiveX SDK on—line help. It provides a good comprehensive view of the new technologies

that make COM objects, specifically ActiveX controls, useful in low—bandwidth environments. The next few

sections describe these new techniques.

The Qbiett Elemerat
The HTML standard provides a special element for embedding object instances within HTML-based pages.

It is used to embed images, documents, applets, and, in our case, ActiveX controls. Here’s the OBJECT ele~

ment for the control that we will develop later in this chapter:

<OBJECT ID=”AsynCl” WIDTH=280 HEIGHT=324

NFLE 1009 - Page 260

NFLE 1009 - Page 261

Internet—Aware Controls a 553WWWWWWHMWIMMMWWWMAW WW.WWWM

CLASSID="CLSID:0C7B4FD3-l3Cl—llD0—A644—B4C6CE000000”

CODEBASE:"http: //www. sky . net/~toma/Async . ocx">

<PARAM NAME=”_~Version” VALUE:"65536”>

<PARAM NAME=”_ExtentX” VALUE=”7403">

<PARAM NAME=”_EXtentY" VALUE=” 8567”>

<PARAM NAME=”_StockProps” VALUE="173”>
<PARAM NAME=”BaCkColor” VALUE="16777215">

<PARAM NAME: "Appearance ” VALUE: " 1 ” >

<PARAM NAME=”TextPath” VALUE="http://www.sky.net/~toma/log”>

</OBJECT>

The OBJECT element has several important attributes. The ID attribute is used to specify a name for the

embedded object. This name is useful when you’re using VBScript to access the component programmati-

cally. The WIDTH and HEIGHT attributes specify the extents of the object.

The next attribute, CLS ID, is used by the container (browser) to instantiate a local copy of the embed-

ded ActiveX control. (The control may not reside on the local machine, and this is a problem that the specifi-
cation solves. We’ll discuss this detail in a moment.) All the container must do is call CoCreateIns tance

with the provided CLSID. After the control is created, the container passes the control its persistent data pro—

vided by the PARAM elements.

The PARAM element is valid only within an OBJECT element. Its purpose is to store property values of

the embedded object. The NAME attribute provides the property name, and the VALUE attribute provides any

value. The TYPE attribute, which isn’t shown in our example, indicates the specific Internet media type for

the given property.

You should recognize the BackColor and Appearance pr0pertles from our previous examples. There

are several properties that we have not discussed. Properties prefixed with an underscore are internal prop—

erties maintained by MFC. For example, the _StockProps entry is a bit mask that specifies which of MFC’s

stock properties are used by the control. The TextPath property is a new one. It’s actually a new property

type, a data path, defined for Intemet—aware controls. We’ll discuss this new property type in detail shortly.

Remember, an ActiveX browser is just an ActiveX control container, and the OBJECT element provides

a standard way of serializing the state of an embedded control. If you compare how Visual Basic saves the

state of a form (.FRM) to the attributes in the OBJECT element, you’ll see that they are very similar.

 Persistent Caniml

When a control is instantiated by a container, the container provides an interface (such as

IPersistPropertyBag) to the control through which it can load its persistent properties. In most cases,

this property data is small: a font, a color, or a small string. Each property value is usually less than 100

bytes. In our case, the control is embedded within a Web page, and this property data is stored (and
retrieved) via the PARAM element.

This arrangement works fine for most cases, but what if we have a very large property value, such as a

2—MB GIF or BMP image? Should we encode and store the BMP data in-line (via the PARAM element) in the

NFLE 1009 - Page 261

NFLE 1009 - Page 262

554 6 CHAPTER 12WWWWWMMW.Mumwwtgwwsmmwmfimwmmwmmm“

HTML document? We could, but loading the document in a low-bandwidth environment would be excruci~

ating, especially given the fact that a control’s properties are loaded synchronously. The browser would be

virtually locked while the 2MB+ HTML page was downloaded.

In other cases, a control’s persistent data cannot, by definition, be stored locally in the HTML document,

If a control provides streaming video or audio, the data is real-time and can be supplied only after instantia-

tion by the container. In addition, it must be processed asynchronously or it will never work. A major addi— I

tion to the ActiveX control architecture is support for these large property values through the new data path

property.

Pete Patti Preperties
The data path property is a new property type added by the COM Objects for the Internet specification. A

data path property is simple: it is a simple BSTR that contains a link (such as a URL) to the property data.

Instead of embedding the data for the property within the HTML document, you store a link to the data.

This technique isn’t new. The concept of maintaining links to document data began with OLE version 1.0.

Now, this concept has become important to Web‘based documents. Figure 12.1 illustrates how a control’s

small and large properties are stored within a document.

HTML Document Large Property Values

W .m[(BLOBs)

_, i

i Control
Small Property

Small Properly

Small Property
L__

lw

URL

l Momkers

Data Path
Properly Ml

ll
3
i

l

l
l

Data Path ‘
Pro a _

4:1L l’_ , a;

memmvi

Figure 12.1 Data pot'n properties and links.

Data path properties enable a control to store property data independently of the control itself. This is an

important new capability. For example, if you write a control that retrieves and displays a weather map, the

Weather map image can be accessed through a data path property. When the control is placed in a Web

page, only a link, via a URL, is needed. As the weather map is updated throughout the day, updating the

NFLE 1009 - Page 262

NFLE 1009 - Page 263

,lnternet-Aware Controls s 555

image is as easy as changing the file specified in the control’s data path property (a URL). The local control

can then periodically refresh the image.

There are four key points to remember when you’re working with data path properties:

0 They enable progressive rendering of images. Asynchronous downloading allows the container to

load and instantiate several controls at the same time. This capability is important in the Web envi-
ronment.

0 The control is ultimately responsible for the format of the downloaded data.

6 The container, in most cases, tells the control where to retrieve the data. URLs can be specified rela—

tive to the container’s location, so in many cases only the container can produce the absolute URL.

0 Data path properties provide a mechanism to stream continuous data (such as audio data) to a con—
trol.

As is usually the case, we’ll see that MFC makes it easy to implement data path properties in a control.

menilzers

A moniker, in COM at least, is an object that names or identifies a particular instance of a COM object. In

Chapter 4, we discussed how to create generic instances of COM objects using the CoCreateInstance

function. CoCreateInstance concerns itself with the creation of an object type but not a specific instance

of that object. Monikers provide a way to create a specific instance of an object.

Monikers are themselves COM objects. However, they are small and encapsulate only the data neces-

sary to re-create an instance'of the object from some storage mechanism independent of the moniker. In our

example of an ActiveX control, a specific control instance embedded within a Web document is identified

with a moniker. The moniker encapsulates the CLSID of the control and how and where the control’s persis-

tent data is stored. In other words, the container identifies a particular embedded control via a moniker. The

container and controls also identify data path properties using monikers.

The act of instantiating, initializing, and returning an interface pointer to the object named by a moniker

is called binding. Instantiating and initializing an object that contains a large amount of data (such as an

object that manipulates images) can take a significant amount of time, especially in a low-bandwidth envi—

ronment. In this environment we need a new type of moniker.

Asynthmmus Manilzers
Before the release of the ActiveX specification, binding an object through its moniker occurred synchro—

nously. The Internet’s low-bandwidth environment, however, required the ability for this process to occur

asynchronously. Instantiating a large object across a 14,400~baud line can take some time. Asynchronous

monikers allow the container to instantiate a control, synchronously initialize the control with any small

local properties, and then permit asynchronous loading of the control’s large properties.

NFLE 1009 - Page 263

NFLE 1009 - Page 264

556 6 CHAPTER 12WMy,rm.xWWWWMWWWWVMNWVWWWMWWWWWWW

Asynchronous monikers, through the IBindStatusCallback interface, also allow a control and con.

tainer to communicate the progress of an asynchronous download. This technique enables the container to

display an indication to the user of how much of the data has been received.

URE. Emitters

Currently, the only implementation of an asynchronous moniker is the URL moniker. A URL moniker is

named with a URL and is used to instantiate and retrieve the data stored outside the control’s small proper-

ties. Typically, a COM object and its persistent data are stored together locally. In the case of data path prop-
erties, the data is stored somewhere across the network.

A new COM API, CreateURLMoniker, takes a URL string and returns an IMoniker interface pointer.

Because URLs can be specified relative to the current default location of the container, it is preferable that the

container create the moniker and pass it to the control. However, if the control is executing in a container

that does not support data path properties, it can do the work itself by using the new
MkParseDisplayNameEx function.

the Reudygtte Preperty and tire @ndedyStdteChlnge Event
With the addition of data path properties, a control will now be active and running before all its properties

are initialized. For this reason, a new standard property, Readystate, and a standard event,
OnReadyStateChange, were added.

If a control depends on data contained in its data path properties, it may not be ready to interact with a

user or with the container. The Readystate property, whose potential values are listed in Table 12.1, is

used by the control user and the container to determine the readiness state of a control. The

OnReadystateChange event is fired by the control to inform both the control user and the container of any

change in its readiness state. A new return code, E_PENDING, has also been added to the control specifica-

tion. A control can return E_PENDING in those methods that depend on properties that have not finished

loading. For example, if the control cannot properly render its content, it may return E_PENDING from

OnDraw. However, this behavior will be correctly interpreted only by those containers that support the new
Internet-aware control standards.

Table 12.] Control Readiness States

Control State Description

READYSTATE_UNINITIALI ZED Default state after instantiation 0t control by the container.

READYS"A"E_LOADING Control is loading its local and asynchronous properties.

READYSTA"E_LOADED Control is now initialized. All its local, synchronous properties have Finished loading.

READYS"A"E_INTE_RACTIVE The control supports user interaction, but some asynchronous data is still loading.

READysr‘Ar‘EKCOMPLETE Control has loaded all its asynchronous property data and is ready to interact fully with
the user.

NFLE 1009 - Page 264

NFLE 1009 - Page 265

lnternet-Aware Controls $ 557rWWVMWWNMWWWWWWWNWWWWWiMW “www.mvwwwmmw W.WWWWW«W..WWW Nv/WMWWWM

 assent ategeeies
We discussed component categories in detail in Chapter 7. Component categories provide a way for a COM

object to describe the functionality it supports and the functionality it requires of its container. Several com-

ponent categories are specific to Internet—aware controls. Each is listed in Table 12.2. Two of the component

categories—CATID_Saf eForScript ing and CATID_SafeForIni t i a1 i z ing—indicate a control’s

safety level when executing within a browser environment.

Table 12.2 Internet-Specific Component Categories

CATID fiymBol from CGMCATH Purgose

CATID_PersistsToMoniker,

CATID_PersistsToStreamInit,

CATID_PersistsToStream,

Used by Internet-aware controls to indicate which persistence methods

they support. These can be used to indicate that an interface is required

if the control supports only one persistence method.
CATIDMPersistsToStorage,

CATID_PersistsToMemory,

CATID_Persi stsToFi le,

CATID__Persi stsToPropertyBag

CATID_RequiresDataPathHost The control expects help From the container with its data path properties.

The container must support IBindHost.

CATID_InternetAware The control implements or requires some of the lnternet-speciiic Function-

ality, in particular the new persistence mechanisms For Web-based con—

trols. The control also handles large property values with the new data

path property type. This includes support for asynchronous downloads.

CATID_SafeForScripting The control is safe for use within scripting environments.

CATID_SafeForInitializing The control can saiely be initialized.

Mil Persistsi’e*

If a control supports only one of the persistent interfaces, it should indicate so by registering the correct

CATID_PersistsTo* component category in the Required Categories section. Controls developed

with MFC’s COleControl class support the majority of these persistence interfaces and do not need to

specify this category.

 €ATED_RequiresDutP titties?
A data path property can contain either a relative or an absolute URL. It is desirable for a control’s container

to help manage a control’s data path properties by creating the appropriate URL moniker and passing the

bind context to the control. New control containers such as Internet Explorer support this capability.
However, older containers such as Visual Basic 4.0 do not.

NFLE 1009 - Page 265

NFLE 1009 - Page 266

553 e CHAPTER 12WWWWWWWWWWMWW WWMWMMMWW.MMWWWMWNy/,NM.W.WWHWWWW”w“mamaMNyWMMMWWNWWNAWMWwwwwwmmym

A control can actually create a URL moniker and download the remote data without the help of the

container as long as the specified URL is absolute. If the URL is specified relative to the path maintained by
the container, however, the moniker creation will fail because the control does not have the complete URL.

The RequiresDataPathHost category is used by those controls that require a container to help with

the moniker creation and asynchronous downloading of data path properties. If a control requires this sup-

port, it should register this category under the Required Categories section. We will do this for our

example control later. I

QATHDJnternetflware

A control that is Internet—aware implements its large properties with data path properties and also handles

downloading these properties asynchronously. The control also uses the ReadyState property and its asso-
ciated OnReadyStateChange event so that the control user and container can determine the readiness state

of the control. Our example control does this, so we will register this component category.

€fl?fl®_§u°fe$sr§trigitfig
ActiveX controls have complete access to the machine on which they are executing and potentially can harm

the local system or expose capabilities that allow the control user to cause harm. Within Web browsers, such

as Internet Explorer, a control’s capabilities can be used by the scripting language of the browser (such as

VBScript). The control may be safe when executing under normal circumstances, but what about when the

control’s capabilities are used by an untrustworthy or malicious script?

For example, suppose you develop a control that exposes a Createobj ect function that allows a

script writer to create instances of Automation objects within VBScript. The control is not safe. It would be

easy for someone to use the Createobj ect method to instantiate an external application (such as Microsoft

Word) and use it to delete local files, install a virus, and so on.

If your control in any way exposes functionality that can be used by a malicious script to harm the local

system, it is not safe for scripting. If the control does not expose potentially malicious functionality, it can

register the SafeForScripting component category or implement the Iobj ectSafety interface within

the control. If a control is safe for scripting, it can be used within ActiveX browsers with their security level

set to high.

MFIDfiIierrlafitilizifig
In a browser environment, a control can also cause damage to a local system if the data it downloads is from

a malicious or untrustworthy source. When the control is instantiated on the local machine, the container

provides an IPersist* interface to initialize any persistent data. Because the data’s location is provided by

the script writer, the data is also a potential security problem. If a control’s persistent data, even when com-

ing from an unknown source, cannot harm the local machine, it can indicate that it is safe for initializing by

registering the SafeForInitializing component category or by implementing the Iobj ectSafety
interface.

NFLE 1009 - Page 266

NFLE 1009 - Page 267

WWWWW Internet-Aware Controls «e 55%

IObjectSafety : public IUnknown

(

public :

virtual HRESULT GetInterfaceSafetyOptions(REFIID, DWORD, DWORD)
H 0

virtual HRESULT SetInterfaceSafetyOptions(REFIID, DWORD, DWORD)
ll 0

l;

 fie peneee were a
ActiveX specifies a new component download service that provides a platform~independent way of trans-

porting COM-based components to a user’s local machine. As part of the download, the service will also

verify the integrity of the component and, once it’s downloaded, will register it on the local machine. For our

purposes in this chapter, a COM—based component is an ActiveX control and its dependencies (such as

DLLs). However, the component download specification provides the ability to download any COM-based

component.

Downloading and installing software on a user’s machine should not be taken lightly. Security is an

important part of the component download service. Before downloading a component, the service uses the

code signing and certificate mechanisms provided by the WinVerifyTrust service, which we will discuss in

more detail shortly.

When Internet Explorer or another ActiveX-compliant control container encounters the OBJECT ele-

ment with a CLSID attribute, it attempts to locate and instantiate the object using the new COM API func-

tion CoGetClassObjectFromURL. If COM cannot instantiate the component on the local machine, it

searches for the component package file specified in the OBJECT element’s CODEBASE attribute. The location

of the component package can be specified in the CODEBASE value, but the local machine’s Internet search

path (if defined) is ultimately used to locate the component package.

If the component is found, it is downloaded and verified as safe using the WinVerifyTrust service. If all

goes well, the control is registered on the local machine. After registration, the component is instantiated and

the requested interface is returned to the client, and finally we see the control within the browser.

A component may require the downloading of multiple files to the local machine. An ActiveX control

developed with MFC will require the MFC run-time DLLs. ActiveX provides three techniques for packaging

a component file and its dependencies. You can specify the actual executable (such as POSTITDCX), or you

can specify a Windows .CAB file or a standalone .INF file. Each one has certain advantages.

A Single Perteble Executable
This is the simplest way to specify the downloading of a component. You need only specify the URL to the

executable in the CODEBASE attribute of the OBJECT element. Here’s an example for the Asynccontrol that

we will develop at the end of this chapter:

NFLE 1009 - Page 267

NFLE 1009 - Page 268

569 + CHAPTER 12 WWW

<OBJECT ID="ASynCl” WIDTH=291 HEIGHT=303
CLASSID=”CLSID:0C7B4FD3—l3Cl—llD0-A644—B4C6CE000000”

, ‘ "IWI'éfikyshét,/+t_¢:iel/AS¥NC+90%”?'.
<PARAM NAME=”_VersiOn” VALUE="65536”>

<PARAM NAME=”_ExtentX" VALUE="7694”>

<PARAM NAME=”_ExtentY” VALUE=”7985”>

<PARAM NAME="_StockProps” VALUE=”165”>

<PARAM NAME=”BackColor” VALUE=”16777215”>

<PARAM NAME=”Appearance” VALUE=”1”>

<PARAM NAME=”TextPath" VALUE=”http://www.sky.net/~toma/log">

< /OBJECT>

Because Internet Explorer installs all the MFC DLLs that a control depends on, you can be fairly certain that

the MFC DLLs that your control needs will already exist on the target machine. If you specify the explicit

location of your OCX file, lntemet Explorer will download it and register it on the local machine.

By using the single portable executable (PE) mechanism for component download, you lose some capa-

bilit'ies provided by the following two methods. First, you can specify only one file. If your control depends

on DLLs that will not always exist on the target machine, you will need to use one of the other methods.

Also, the file cannot take advantage of compression, and platform—independent download is not supported.

A CAI File

Using a .CAB file lets you package multiple files for download to the target machine. The format of a .CAB

file is specified using Lempel—Ziv compression, which allows for quicker downloads. To compress files and

store them in a .CAB file, you can use the DIANTZ.EXE utility provided with the ActiveX SDK.

The primary reason for using a .CAB file is to save download time by packaging multiple files in a com-

pressed format. You still need an .INF file to actually install the components on the target machine. Here’s a

sample .INF file that uses a .CAB file:

; ASYNC.INF — Demonstrates CAB file support through INF

[Add.Code]

ASYNC.OCX=ASYNC.OCX

MFC42.DLL=MFC42.DLL

lASYNC.OCXl

file=httpz//www.sky.net/~toma/ASYNC.CAB

Clsid=(0C7B4FD3-l3Cl—llD0—A644-B4C6CE000000)

FileVersion=1,0,0,0

[MFC4Z.DLL]

NFLE 1009 - Page 268

NFLE 1009 - Page 269

Internet—Aware Controls 6» 563

file=http://WWw.sky.net/~toma/ASYNC.CAB

FileVersion=4,2,0,0

The preceding example illustrates storing two files—ASYNC.OCX and MFC42.DLL——in the ASYNC.CAB

file. The ASYNCJNF file is specified in the CODEBASE attribute:

<OBJECT ID=”Asyncl” WIDTH=291 HEIGHT=303
CLASSID=”CLSID:0C7B4FD3~13Cl—llD0-A644-B4C6CEOO0000”

CODEBASE=”http: //www . sky.net/~‘t‘oma/ASYNC. INF”> ‘

(pm memeaiom “wettest—336:» " "
<PARAM NAME=”_ExtentX” VALUE:”7694”>

ASYNCJNF is downloaded first, and then ASYNC.CAB is downloaded and the components are installed
on the local machine. '

A Stand-Alone liaF File

In the previous example, we used an .INF file to install the components. By using a stand-alone .INF file,

you gain cross-platform capabilities. You specify an .INF file in the CODEBASE attribute as shown previ-

ously, but you add platform—specific entries to the file. After the browser downloads the .INF file, it down-

loads the platform—specific binaries based on the options provided in the .INF file. Here’s an example:

; Sample ASYNC.INF for ASYNC.OCX where multiple platforms are supported

{Add.Code]

ASYNC.OCX=ASYNC.OCX

[ASYNC.OCX]

file—win—x86=http://www.sky.net/~toma/x86/ASYNC.OCX

file—win—mips=http://www.sky.net/~toma/mips/ASYNC.OCX

file—win~alpha=http://www.sky.net/~toma/alpha/ASYNC.OCX

Clsid={OC7B4FD3~13Cl—llD0—A644—B4C6CE000000l

FileVersion=1,0,0,0

Only the target machine knows its platform. After downloading the .INF file, it can download the platform-

specific binary. For more information regarding component download, check out the ActiveX SDK.

internei‘ Search Path

Even though the CODEBASE attribute specifies the location of a component, there is another step involved.

When CoGetClas sObj ectFromURL determines that the component must be downloaded before instantia-

NFLE 1009 - Page 269

NFLE 1009 - Page 270

sea e CHAPTER 12

tion, it first searches the Internet search path (ISP). A machine’s Internet search path is located in the

Registry under the HKEY_LOCAL_MACHINE key.

HKEY_LOCAL_MACHINE\Software\Microsoft\windows

\CurrentVersion\InternetSettings\CodeBaseSearchPath

First searching the ISP makes available additional administration options to the local machine administra-

tors. In local area or intranet environments, the ISP can be used to specify the location of an object store

server, where most components can be found. Using this technique, components can be located and down-

loaded without specification of the CODEBASE attribute. This behavior can also be used to disallow the

downloading of components from unknown or untrusted servers.

The search path takes this form:

<URLl>;<URL2>;CODEBASE; <URL3> . . .

The position of the CODEBASE keyword within the ISP affects how components are located. The component

download service searches the ISP in the order specified. If CODEBASE is not specified in the ISP, code will

not be downloaded from sources other than those explicitly indicated in the ISP. This approach is helpful in

those environments where additional security is needed.

fictive Centre anti Eeenelty
In the previous section we discussed how controls are located, downloaded to the local machine, and exe~

cuted. In such an environment, security is of major concern. An ActiveX control has full access to the Win32

API. This arrangement provides the highest degree of functionality for control writers, but it also creates a

potential security problem. Java takes the sandbox approach of not allowing direct access to the local hard-

ware. This technique helps with security, but it reduces functionality significantly. To maintain a high level

of functionality, Microsoft uses the new WinVerifyTrust service to protect local machines from malicious

components.

Microsoft’s approach to security in the Web environment is like that used in software retail channels.

There is no guarantee that the software you buy from a local retailer is benign. There is no guarantee, but

there is significant trust. When you purchase a software package from a vendor, such as Microsoft, you

know where the software came from, and you’re pretty confident that it will not harm your machine.

Microsoft has taken the steps to set up such an environment of trust on the Web by providing technolo-

gies that ensure the authenticity and integrity of a component. A component is marked with a digital signa-

ture based on Microsoft’s Authenticode technology. The component’s signature is then maintained and veri-

fied by a trusted authority.

D'Igiti Sigmmtes
To ensure authenticity and integrity, each component is marked using a public~private key mechanism. This

digital signature, which you can view as a complex checksum, is attached to a component. If the component is

compromised in any way, the digital signature will become invalid.

NFLE 1009 - Page 270

NFLE 1009 - Page 271

lnternet~Aware Controls é 5&3

Cede Sigmg
To sign your components using Authenticode so that they can be trusted in the Internet environment, you

must register and obtain a certificate from one of the certification authorities such as VeriSign or GTE. After

receiving your certificate, you can use the MAKECERT, SIGNCODE, and CHKTRUST utilities provided

with the ActiveX SDK to sign your controls.

Internet Explerer Seturéty levels
Internet Explorer will not download components that have not been properly signed. Internet Explorer

allows the user to specify the security level. If the security level is set to high, your controls must be signed

(if they do not already reside on the local machine) and they must be safe for scripting and safe for initializ-

ing (Figure 12.2). Your control specifies these characteristics through the component categories that we dis-
cussed earlier.

Figure 12.2 Internet Explorer security levels.

theinr‘ag {artiiirute
Individual software developers can obtain certificates for $20 per year through VeriSign. The charge for soft-

ware development companies is $400 per year. VeriSign can be reached at www.verisign.com.

NFLE 1009 - Page 271

NFLE 1009 - Page 272

sea a CHAPTER 12

fig Eupport for internetmaware is res
Selecting the Load properties asynchronously option in ControlWizard does three things. ControlWizard

adds the stock Readystate property to your control, implements the Readystatechange event for you,

and initializes the ready state of your control to READYSTATE_LOADING in the control’s constructor. This

setup sets up your control to use MFC’s support for data path properties

ReudyStute Support
COleControl contains a member, m_lReadyState, that maintains the current ready state of your control.

By default, this member is set to READYSTATEWCOMPLETE. In our case, we indicated that our control loads

properties asynchronously, so AppWizard set our control’s state initially to READYSTATE_INITIALI ZED.

We’re now responsible for updating the readiness state of our control as it moves through its various states.

MFC provides three new methods pertaining to Readys tate and asynchronous download support.

COleControl: :GetReadyState returns the current state of the control. Because the control’s state

can be modified through the asynchronous arrival of data, you should check the current state of the control

when performing operations that depend on the existence of certain property data. For example, if your con-

trol downloads and displays an image, you may want to check the current ready state in your OnDraw code.

You use the InternalSetReadyState method to update the current readiness state of the control.

You will typically call this method in the asynchronous download code, as you’ll see in a moment. The Load

method is used to force downloading of an asynchronous property. The Load method takes as a parameter

the URL for the property.

(DutuPuthProperty
The CDataPathProperty class is derived from MFC’s new asynchronous moniker class:

CAsyncMonikerFile. The CDataPathProperty class is specifically used for ActiveX controls to encap~

sulate the asynchronous download process. Most of the functionality is provided by CAsynMonikerFi 1e,

and the control developer need only implement the OnDataAvailable method. Table 12.3 details some of

the important CDataPathProperty members.

Table 12.3 CDataPathProperty Members

MemEer Desc_ription

CDataPathProperty(pControl) , The constructor takes an optional pointer to the associated control. If you do

not provide the control instance in the constructor, you must later call

SetControl to set up the association.

SetControl (pControl) Associates a control with the data path instance.

Open< szPath, pControl) Opens a File (usually specified as a URL) For asynchronous downloading.

SetPath(szPath) / GetPath() Sets or gets the path, usually a URL.

NFLE 1009 - Page 272

NFLE 1009 - Page 273

Internet-Aware Controls 9 5&5, “WMWMW,WWMMW _ w...

Table l2.3 CDataPathPrope-rty Members (continued)

Memger Description

coleControl* GetControl () Returns the ActiveX control instance associated with the data path property.

ResetData () Notifies the container that the data associated with this property is no longer

valid. The default behavior is to restart the download process.

Se ientm

To demonstrate some of the techniques discussed in this chapter, let’s build a simple Internet~aware control.

The control subclasses the RichEdit common control. It uses the ES_MULTILINE style so that it can dis-

play a large amount of data. The control will retrieve and display the contents of any data specified via its

data path property. The data is downloaded asynchronously using the new data path property and MFC’s

CDataPathProperty class. It also demonstrates the use of the new ReadyState property and
OnReadyS tateChange event.

Create the demo Fregect
Use AppWizard to build a ControlWizard-based project with the name Async. Follow these steps to specify
each of ControlWizard’s options:

0 In the OLE Control Wizard Step 1 of 2 dialog box, take the defaults of No runtime license, Yes, com-

ments, and No help files.

- In OLE Control Wizard Step 2 of 2, take the defaults of Activate when visible and Has ”About” box.

From the Which window class, if any, should this control subclass? dropdown, choose the EDIT
control.

' In OLE Control Wizard Step 2 of 2, click the Advanced button and enable the Loads Properties

Asynchronously option.

9 Click Finish and create the control project.

9 Using ClassWizard, add the following four stock properties: Appearance, BorderStyle, BackColor,
and Font.

. Add the stock color and font property pages to the control.

”Fire RichEdit Control

In Chapter 10, we focused on useful techniques for subclassing existing Windows controls. Toward the end

of the chapter we also discussed subclassing the new Windows 95 common controls. ControlWizard lets you

NFLE 1009 - Page 273

NFLE 1009 - Page 274

566 é CHAPTER 12 ,

subclass most of them, but conspicuously absent from the list is the new RichEdit control. In our example,

We’ll use this new control, but a few additional steps are required to get everything to work. We’ll cover this
first.

The RichEdit control is a big improvement over the basic EDIT control. RichEdit provides an edit—type

control with complete font, paragraph, bullet, text color, and embedded OLE object support. Using RichEdit

you can implement a good editor without much effort. Actually, Microsoft did——WordPad uses the RichEdit
control. It’s also written in MFC, and the source is included on the Visual C++ CD-ROM.

To subclass the RichEdit control, we first fix the code added by ClassWizard:

BOOL CAsyncCtrl::PreCreateWindow(CREATESTRUCT& cs)

return COleControl::PreCreateWindow(cs);

l

You’ve seen this before. We change the window class name and set the appropriate styles for our control. To

use the RichEdit control, you must load the RICHED32 DLL. You might expect MFC’s call to

InitCommonControls to do this, but there must be some reason that it doesn’t. This extra step is probably

why Microsoft omitted the RichEdit control from the subclass window option, but it’s easy, so let’s do it.
Here’s the code to add to ASYNCCTL.H and ASYNCCTL.CPP:

// AsynCCtl.h

/////////////////

// CAsyncCtrl : See AsyncCtl.cpp for implementation.

/////////////////

class CAsyncCtrl : public COleControl

(

// Implementation

protected:

~CAsynCCtrl();

)7

// AsynCCtl.cpp

NFLE 1009 - Page 274

NFLE 1009 - Page 275

 Internet-Aware Co t

9M557

CAsyncCtrl::CAsyncCtrlH

(

InitializeIIDs(&IID_DAsync, &IID.DAsyncEvents);

m_lReadyState = READYSTATEwLOADING;

// TODO: Call InternalSetReadyState when the readystate changes.

// TODO: Initialize your control’s instance data here.

m_hRTF
H

, LoadLibrary(“RICHED32.DLL”);
l

CAsyncCtrl::~CAsyncCtrl()

(

// Release the richedit dll

if (m~hRTF)

{

EreeLibrary(mmhRTF);
mNhRTF = 0;

}

Once we’ve finished that, we can focus on making this control Internet-aware. Our control is fairly simple.

To demonstrate how to use a data path property, our control will download and display a remote file whose

filename is specified using a URL. The file can be big or small. Either way, the data will be downloaded

asynchronously and eventually displayed within the RichEdit control.

Implementing ca 3m: Path Property
Using ClassWizard, add a data path property to the control. The type is BSTR. Name it TextPath and use the

Get/ Set method of implementation. The implementation of a data path property requires you to derive a

class from CDataPathProperty and implement the OnDataAvailable method. You must then contain

an instance of this class within your COleControl—derived class. First, we create the class.

Using ClassWizard, click Add Class, and add the CAsyncText class. Be sure to derive it from

CDataPathProperty. You should specify the files as ASYNCTXT.H and ASYNCTXT.CPP. We will need

two member variables to manage the downloading, so let’s add them next:

//

// Asyncht.h : header file
//

class CAsyncText : public CDataPathProperty
{

DECLARE_DYNAMIC (CAsyncText)

NFLE 1009 - Page 275

NFLE 1009 - Page 276

56% e CHAPTER 12

// Attributes

public:

// Operations

public:

CAsyncText(COleControl* pControl = NULL);

virtual ~CAsyncText();

// Implementation

protected:

CString mgstrText;

'_'DWORD m_dwReadBefore;

);

Next, we embed an instance of the new class within the COleControl—derived class (CAsyncText) and

associate the two instances by passing a pointer to the control class to our CDataPathProperty~derived

member. We then use the CAsyncText instance in the Get and Set methods for our TextPath property:

//

// AsyncCtl.h
//

class CAsyncCtrl : public COleControl

(

DECLAREWDYNCREATE (CAsyncCtrl)

// Implementation

protected:

~CAsyncCtrl();

CAsyncText m_ddeext;

HINSTANCE m_hRTF ;

//

// AsyncCtl.cpp

//

#include “Async.h”

// Include our new CDataPathProperty—derived class

#include “Asyncht.h”
#include “AsyncCtl.h”

#include “Asynchg.h”

NFLE 1009 - Page 276

NFLE 1009 - Page 277

 Internet-AwareWCMon’rrols a 569

CAsyncCtrl::CAsyncCtrlU

(

InitializeIIDs(&IID_DAsync, &IID_DAsyncEvents);

m_lReadyState : READYSTATE*LOADING;

// TODO: Call InternalSetReadyState when the readystate changes.

// TODO: Initialize your control's instance data here.

// Associate our control with our CDataPathProperty member

;‘j_m;ddeent,SetControl(.thisy)ty_ ,
m_hRTF = LoadLibrary(“RICHED32.DLL”);

BSTR CAsyncCtrl::GetTextPath()

{

String strResult :,m__ddp’l‘ext .GetPathU ;

'iretfi¥nastrfiesult:Alléesysstringi)I‘,1},
}

void CAsyncCtrl::SetTextPath(LPCTSTR lpszNewValue)

{

7‘fP°?d(,1PSZN¢WV?1u¢' m_ddPText)2
SetModifiedFlag(); I”

l

The CAsyncText class will manage the downloading of the asynchronous data. We expose the Get/Set

methods for the TextPath property, which sets and retrieves the path property of CAsyncText. When the

control is instantiated, the smaller, synchronous properties are loaded first. Once they are loaded, the con-

tainer creates an asynchronous moniker with the URL specified through the TextPath property and passes
the data to the CAsyncText member. To retrieve the data and store it within our control, we override the

CDataPathProperty: :OnDataAvailable method. Do this with ClassWizard and then add the follow—

ing code:

void CAsyncGetText::OnDataAvailable(DWORD deize, DWORD bschlag)

{

// TODO: Add your specialized code here and/or call the base class

V " if (’bscfiFlag a:'BscamRsTDATANOTIFICATION) ‘

'7 m“ dwReadgefore 77’ 0}
'GetCo‘ntr‘oil 5Lanterhalséme‘adystatel‘ anADYSTArEmoADmG 3 _, i_

NFLE 1009 - Page 277

NFLE 1009 - Page 278

579i QHAPTER 1,2 WWW”,WM,._.s_e_me/NMW WWWWWWWNVWNWWMWW»WM”WNWWWWWMWWW

if (deize)

(

DWORD derriving = dwsize — m_dwReadBefore;

if

f

< derriving > 0)

int nLen = m_strText.GetLength();

LPTSTR psz : mustrText.GetBuffer(nLen + derriving);

Read(psz + nLen, derriving);

m_strText.ReleaseBuffer(nLen + derriving);

m_dwReadBefore = deize;

if (GetControl()—>GetReadyState() < READYSTATE_INTERACTIVE)

{

GetControl()—>SetText(m_strText);

GetControl()—>InternalSetReadyState(READYSTATE_INTERACTIVE);

_\J

l

// Tell the control and the container that

// all of the data is here.

if (bsCfFlag & BSCFWLASTDATANOTIFICATION)

C

GetControl()—>SetText(m_strText);

GetControl()—>InternalSetReadyState(READYSTATE,COMPLETE);

)

CDataPathProperty::OnDataAvailable(deize, bschlag);

l

Here’s where most of the work gets done. OnDataAvailable is called periodically as data arrives from the

remote system. OnDataAvailable signals the arrival. You then read the data using Read, which is inher—
ited from CFile.

The data will arrive in chunks, and the preceding code manages the arrival and storage of the data. The

first parameter contains the number of bytes that have been received, including the count of the data cur-

rently in the buffer. The second parameter specifies one of three potential states of the download.

BSCF_FIRSTDATANOTIFICATION indicates that this is the first piece of data, BSCFJNTERMEDIARYNOTI -
FICATI ON indicates that we’re in the middle of the transfer, and BSCF_LASTDATANOTIFICATI ON tells us
that the transfer is finished.

NFLE 1009 - Page 278

NFLE 1009 - Page 279

lntemetflwars Centre's/r.-._i§7 i

When we’re notified that the transfer is starting, we set the m_strText member to null, set the byte

counter to zero, and inform the container that the control is in the loading state. Then, as the data arrives, we

calculate its size and call the Read method, storing the data in the rLstrText buffer.

If this is our first time through and if we have some data, we call SetText, which is a method in our

control that places the data in the RichEdit control. This approach quickly provides some data for the user to

view. By setting the control’s ready state to interactive, we indicate that the control can handle keystrokes.

When all the data has been received, as indicated by the LASTDATANOTIFICATION flag, we update the

RichEdit control with all the text and notify the container that the control has completed downloading and is

fully operational.

There are a few miscellaneous functions that I’ve not shown you yet. First, we have a method to set the

text in the RichEdit control. I’ve also implemented the BackColor property for our control. Setting colors

for some of the newer common controls is different from what we did in Chapter 10. The RichEdit control

uses a message to set its color, so we override OnSetBackColor and send the new color to the control. We

need to set the color right after the control is created, so we trap the WM_'CR<AT< message and set the color

there, too. Here are the required methods:

void CAsyncCtr1::SetText(CString& str)

{

SetWindowText(str);

InvalidateControl();

}

void CAsyncCtrlz:OnBackColorChanged()

{

// If we're running, set the background color

if (AmbientUserMode())

{

SendMessage(EMHSETBKGNDCOLOR,

FALSE,

TranslateColor(GetBackColor()));

}

COleControl::OnBackColorChanged();

}

int CAsyncCtrlz:OnCreate(LPCREATESTRUCT lpCreateStruct)

{

if (COleControl::OnCreate(lpCreateStruct) == —1)

return —1;

// Set the background color of the edit control

SendMessage(EM_SETBKGNDCOLOR,

FALSE,

TranslateColor(GetBackColor()));

return 0; NFLE 1009 - Page 279

NFLE 1009 - Page 280

572 e CHAPTER} 2

Drawing the Camel
We also need to modify the control’s OnDraw code to draw a simple design—phase representation, as we’ve

done in earlier chapters:

void CAsyncCtrl::OnDraw(

CDC* pdc, const CRect& chounds, const CRect& rcInvalid)

‘// If the Container.is in design-mode

// Draw the design representation

‘ if (! AmbientUserMode())

‘fLDraWDesighKLpdc; chouhds);

1,;elsei” I l ‘
DoSuperclassPaint(pdc, chounds);

}

yoid_CASyn¢Ctrlj=DrawDesign< CDC? pdo,_cOnst CRect& rchunds)

i 1‘ , H,. , _, _ _ _
é-f“¢3ruthkarush(TranelateColor(GetBackColor()));

(lode-?FillRect(lchounde, &karush)r

L‘CString strName = AmbientDispleyfiame()7

.f/ Set the textcolor to the foreground color

_ pdc~>SetTextColor(TranslateColor(GetForeColor()));

3/] select the stock font and_seve the old one
' CFontt poldEont :_Select$tockFont(pdc);

77 set ub the text drawing modes in the DC
‘ pfic->SetBkMode(_TRANSPARENT);

pdc->SetTextAlign(TA_LEFT l TAw‘I‘OP) ,~

L/l Draw the text in the upper left corner
~pdc~>ExtTextOut(chounds.1eft + l, chounds.top + l, ETO_CLIPPED,

I choundsL strName, strName.GetLength(), NULL);

'// Restore the old font

' if (pOldFont) '

pdc—>Select0bject(pOldFont);

NFLE 1009 - Page 280

NFLE 1009 - Page 281

lnfernef—Aware Controls» ¢ 573

More {meanest Q tegeres

There are several component categories that pertain to Internet-aware controls. We discussed them previ-

ously in the ”Component Categories" sections of this chapter. All that remains is to write the code to mark

our control as being Internet-aware, safe for scripting, and safe for initializing. We developed code in

Chapter 7 that makes it easy to register control-implemented control categories. However, we also need to

mark our control as requiring the RequiresDataPathHost category. Our control requires the services of

the container to initiate the download of the TextPath property.

You should recall that a control can specify its component categories under two different subkeys:

Implemented and Required. All our controls so far have added categories under the Implemented sub—

key. We now need to add a category under the required section. Here is the new code:

a’RESULr RegisterCLSIDInReqoat‘egory (" REFCLSID clsid, CATID *catid:)5. " ~

'IcatRegisterk pcr‘ =_ NULL L;
‘LHLR’ESLULT hr =’ s_or<_ ;. ‘

‘// Create an inStance of the category manager.
Lhr = CoCreateIhsfiancet CLSIb;StdComponentCategoriesMgr,LL

CLSCTX4INPROCmSERVER, L

IIDJCatRegister, L
_ (void**)&pcr);

if (succssogmhrn

{ , _ _

,’ CATID madam ;,
rgcatidtoi '= Lcatid; , _ , ,

'lhrfs-pore>RegisterclaSSReqCategories(clsid.’1,lrQCatidf)fij5_
, ,)_ a

 if y“({ pc‘r’ L: NULL)'

‘J-_*pcr4>RéleaSEKl;'

[return‘hr;”,‘

HREsULT UnregisterCLSIDInReqCategory(- REFCLSID, clsid‘,’ CATID batid) ' '

HICatRegister*7pcr;=,NULLs:

i HRESULT hr _= s_dK~ ;' *‘

,// Create an inétance of the cafiegory-manager.ekfdh

' hr = CoCreateinstanéét CLSIDfStdComponentCategoriéSngL

NFLE 1009 - Page 281

NFLE 1009 - Page 282

fiififi CHAPTER 12

NULL ,

CLSCTX_INPROC-SERVER ,

IID~ICatRegister,

(Void**)&pcr);

if (SUCCEEDED(hr)) '
{

CATID rgcatidfl];

rgcatid[0] = catid;

hr = per->UnRegisterClassReqCategories(Clsid, l, rgcatid);
}

if (pcr != NULL)

pcr->Release();

return hr;

}

This code is similar to the RegisterCLSIDInCategory that we’ve used before. The only difference is that

we call ICatRegister: :RegisterClassReqCategories. Using the functions that we developed previ—

ously plus the preceding two functions, we can now code our update Registry function:

/////////////////////////

// CAsyncCtrl::CAsynCCtrlFactory::UpdateRegistry —

// Adds or removes system Registry entries for CAsynCCtrl
/////////////////////////

BOOL CAsyncCtrl::CAsyncCtrlFactory::UpdateRegistry(BOOL bRegister)

{

if (bRegister)

{

CreateComponentCategory(CATID_Control,

L”Controls”);

RegisterCLSIDInCategory(m_clsid.

L L CATID_Control);

CreateComponentCategory(CATID_SafeForInitializing,

L”Controls safely initializable from persistent data”);

RegisterCLSIDInCategory(m_clsid,

CATID_SafeF0rInitialiZing);

CreateComponentCategory(CATID_SafeForScripting,

L”Controls that are safely scriptable");

RegisterCLSIDInCategory(m_clsid,

CATID_SafeForScripting);y

NFLE 1009 - Page 282

NFLE 1009 - Page 283

)

CreateComponentCategory(CATID_PersistsTQPerertyBag,

RegisterCLSIDInCategory(m_clsidl

CATID_PersiStsToPropertyBag)}

CreateCDmponentCategory(CATID_RequiresDataPathHost,

L”Requires Data Path Host");

RegisterCLSIDInReqCategory(m_¢lsid, L
CATID_RequiresDataPathHost);

CreateComponentCategory(CATID_InternetAware,

L”Internet—Aware”);

RegisterCLSIDInCategory(m_clsid,

CATID_InternetAware);

return AfxOleRegisterControlClass(

AfoetInstanceHandle(),

myclsid,

m_lpszProgID,

IDS~ASYNC ,

IDB__ASYNC ,

afoegApartmentThreading,

_desyncOleMisc,

_tlid.

wwVerMajor,

_wVerMinor);

else

{

JnregisterCLSIDInCategory(m_clsid,

CATID_Control);

JnregisterCLSIDInCategory(m_clsid,

CATID,SafeForInitializing);

JnregisterCLSIDInCategory(m_clsid, _

' CATID_SafeF0rScripting);
JnregisterCLSIDInCategory(m_clsid,

CATID‘PersistsToPrOpertyBag);

JnregisterCLSIDInCategory(m,clsid, ' ' '

CATID_InternetAware);

JnregisterCLSIDInReqCategory(m_Clsid,

CATID_RequiresDataPathHost.);

return AfxOleUnregisterClass(m_clsid, m_lpSzProgID);

L”Support initialize via PersistPropertyBag“ };

Internet-Aware Controls ¢ 575

NFLE 1009 - Page 283

NFLE 1009 - Page 284

576 <9 CHAPTER 12

Build the project, and let’s test our new Internet—aware control using ActiveX Control Pad and Internet

Explorer.

§esting the iantreé
The best way to test the control is to embed it in a Web page and set the TextPath property to point to a

large file on a remote system. If you want, you can point it to http:/ /www.sky.net/~toma/log, which is a

text file that logs the hits to my Web site. The quickest way to build a test Web page is to use Microsoft's
ActiveX Control Pad.

ActiveX Control Pad

Microsoft’s ActiveX Control Pad utility makes it easy to add ActiveX controls to HTML—based Web pages. It

allows you to build simple Web pages, embed ActiveX controls, and add code to tie everything together
with VBScript.

We’ll test the functionality of our Async control by developing a simple Web page. Start ActiveX

Control Pad and perform the following steps. Figure 12.3 shows the control within ActiveX Control Pad.

1. Using Edit/Insert ActiveX Control, insert an instance of our new Async control.

2. Set the BackColor to white using the property editor, and set the TextPath property to point to a

URL of your choice.

Figure 12.3 Inserting the Async control with ActiveX Control Pad.

NFLE 1009 - Page 284

NFLE 1009 - Page 285

lnternet-Aware Controls e 577

When you close the control edit window, Control Pad will insert the OBJECT element code into the new

HTML document. When you’re finished, you should have something like this in the editor:

<HTML>

<HEAD>

<TITLE>New Page</TITLE>

</HEAD>

<BODY>

<OBJECT ID=”ASyncl" WIDTH:324 HEIGHT=335
CLASSID=”CLSID:0C7B4FD3—l3Cl-llDO—A644—B4C6CE000000">

<PARAM NAME=”_VerSi0n” VALUE=”65536”>

<PARAM NAME=”_EXtentX” VALUE=”8573”>

<PARAM NAME=”_EXtentY” VALUE=”8855”>

<PARAM NAME=”_St0CkPrOps” VALUE=”165”>
<PARAM NAME=”BaCkColor” VALUE="16777215”>

<PARAM NAME="Appearance” VALUE="1”>

<PARAM NAME=”TextPath” VALUE=”http://www.sky.net/~toma/log">

</OBJECT>

</BODY>

</HTML>

This HTML code defines a basic Web page with an embedded instance of our control. Let’s make it a bit

more intelligent. Using Control Pad, add two listbox controls. A number of basic controls come with Internet

Explorer. They are listed under the Microsoft Forms°* controls. Insert one control before the definition of the

Async control and; one after the definition. Then use Control Pad to add some VBScript code to the Web
page. Select Tools/Script Wizard to bring up Script Wizard.

Script Wizard is easy to use. Select the control or window that you want to add code to and start typing

the code. We need to add code to the Window OnLoad event, the ListBoxl Change event, and our Async

control’s ReadystateChange event. Figure 12.4 shows how to add the OnLoad event code with Script
Wizard.

NFLE 1009 - Page 285

NFLE 1009 - Page 286

$78 Mg-IAPTER l 2

Q GlobaWariable:
@ LislBoxt
lg. Lilelox2
{3, Procedure:

, Ij window

LlucBoxl. deIcem' i .nec/Artoma/I‘Enqrhcm”,
L13:Bux1.AddIIzem . nec/~toma/taqauto.hcm"
LiscBux1.P.ddIcem . net/~cama/taqgenmcm”
ListBo>:1.AddILem . .nen/Mznma/faqgenz.hcm"
Lizcfioxlikddltem nec/~cuma/taqsub.hcm"

Figure 12.4 Adding VBScript with Script Wizard.

Following is the complete code for our simple example. Notice that we’re using a table to house our embed-

ded controls. The HTML specification does not provide a good method of aligning embedded controls,

applets, or even images For our example, we’re using a table to align the controls, but a better solution

might be to use Microsoft's HTML Layout control. It provides complete 2-D layout capabilities similar to

those you have when laying out a Windows dialog box or Visual Basic form.

<HTML>

<HEAD>

<TITLE>New Page</TITLE>

</HEAD>

<BODY>

<CENTER>

<Hl>0ur Async Control in Internet Explorerl</Hl>
</CENTER>

<SCRIPT LANGUAGE=”VBScript">
<1—

Sub window_onLoad()

ListBoxl.AddItem “http://www.sky.net/~toma/faq.htm"

ListBox1.AddItem “http://www.sky.net/~toma/faqauto.htm”

ListBoxl.AddItem “http://www.sky.net/~toma/faqgen.htm”

ListBoxl.AddItem “http://www.sky.net/~toma/faqgen2.htm"

ListBoxl.AddItem “http://www.sky.net/~toma/faqsub.htm"
end sub

NFLE 1009 - Page 286

NFLE 1009 - Page 287

/lnfernetAyw/thrggonfrols $ 5??

</SCRIPT>

<SCRIPT LANGUAGE:”VBScript”>
<!—

Sub ListBoxl_Change()

Asyncl.TextPath = ListBoxl.TeXt
end sub
—>

</SCRIPT>

<TABLE CELLPADDING = 10>

<TR>‘
<TD>

<OBJECT ID=”LiStBOXl” WIDTH=199 HEIGHT=264

CLASSID=”CLSID:8BD21D20-EC42—llCE-BEOD-OOAA006002F3”>

<PARAM NAME=”ScrOllBarS” VALUE=”3”>

<PARAM NAME=”DiSplayStyle” VALUE="2”>

<PARAM NAME="Size” VALUE=”5239;6984">

<PARAM NAME=”MatChEntry" VALUE=”0”>

<PARAM NAME=”FontCharSet” VALUE=”0”>

<PARAM NAME:"FontPitchAndFamily" VALUE:”2”>
</OBJECT>

<TD>

<SCRIPT LANGUAGE=”VBScript”>
<!—

Sub Asyncl_ReadyStateChange(NewState)
Select Case NewState

Case 0

ListBox2.AddItem “Initialized”

Case 1

ListBoX2.AddItem “Loaded"

Case 2

ListBox2.AddItem “Loading"

Case 3

ListBox2.AddItem “Interactive”

Case 4

ListBox2.AddItem “Complete”
End Select

end sub
—>

NFLE 1009 - Page 287

NFLE 1009 - Page 288

gig é CHAPTER 12

</SCRIPT>

<OBJECT ID=”Asyncl" WIDTH=291 HEIGHT=303
CLASSID=”CLSID:0C7B4FD3—l3Cl—11D0-A644~B4C6CE000000”>

<PARAM NAME="_Version" VALUE=”65536”>

<PARAM NAME=”_ExtentX” VALUE=”7694”>

<PARAM NAME=”_ExtentY" VALUE="7985">

<PARAM NAME=”_StOckProps” VALUE=”165”>
<PARAM NAME=“BackColor” VALUE=”16777215”>

<PARAM NAME:”Appearance” VALUE="1”>

<PARAM NAME=”TextPath" VALUE="http://www.sky.net/~toma/log">

</OBJECT>

<TR>“§S:‘VUVLL“‘

<OBJECT ID=”LiStBbX2” WibTH=227 HEIGHT=95
CLASSID="CLSID:8BD2lD20-EC42—llCE—9EOD-00AA006002F3”>

<PARAM NAME=”BackColor” VALUE=”16777215">

<PARAM NAME=”ForeColor” VALUE=”255”>

<PARAM NAM3="ScrollBars” VALUE=”3">

<PARAM NAME=”DisplayStyle” VALUE=”2”>

<PARAM NAME=”Size” VALUE="5979;2512”>

<PARAM NAM3="MatchEntry" VALUE=”0”>
<PARAM NAME=”FontCharSet” VALUE=”0”>

<PARAM NAME:”FontPitchAndFamily” VALUE=”2">
</OBJECT>

g/TPBLD
</BODY>

</HTML>

After adding all the code, save the HTML document and fire up Internet Explorer. You should see some-

thing like Figure 12.5.

NFLE 1009 - Page 288

NFLE 1009 - Page 289

Internet-Aware Controls e 583

bitty/[mm sky ["leth on Sep 218 as us cm 1566
fitbjmsygjlmwo wwserType Momma UbfiaGotd (\‘WQS, I)
w; /W 3‘; mum/1W2 amme H05! rbellml mudlcon ComW ,lw..kw,~.mwumfl emote Addr use 202 137 73

an Sep 21917 53 CDT 1%IDWSEI Type Manila/2 U (compatible, MSIEemote H05! 43 dillatfi (x dlalqccess all
emote Addr, 1998913443
on Sap 21517 55 cm 19%
me, Type Mazltlafl a (compatible MSIEemote Host 43 dalias-3 u dialaccess an
emote Add! 193 83134 43
on Sep 216 45 57 CDT19§8

Figure 12.5 The Async control in Internet Explorer.

Notice the progress indicator in the lower right-hand corner‘ In Figure 12.5, the control is downloading a

very large (>500 KB) file. The progress functionality of asynchronous property download provides this feed—
back to the container.

 Etta , estate Seetreé Esamewer

The ActiveX SDK includes an ActiveX control framework (also known as BaseCtl). This framework is some—

times called the Light Weight Control Framework, because its purpose is to allow the developer to build small

ActiveX controls. The framework isn’t currently supported by Microsoft but is provided for those developers

who have a solid understanding of ActiveX controls and don’t want the overhead of MFC when developing

their controls. For more information on developing controls using this framework, visit my Web site.

 gas as?
Internet—aware controls differ only slightly from the controls developed in previous chapters. Internet-aware

controls are concerned with two additional issues: low bandwidth and security. The ActiveX SDK provides

new technologies that enable controls to operate effectively in low- bandwidth environments and supports

security techniques to help with the management of component software in the an Internet (or intranet)
environment.

HTML is the language of the Web, and a few HTML elements are useful for ActiveX controls. VBScript

is Microsoft’s Visual Basic implementation for browser environments. ActiveX browsers, such as Internet

NFLE 1009 - Page 289

NFLE 1009 - Page 290

582 é CHAPTER 12

Explorer, are ActiveX control containers. A control is embedded within a Web page using the HTML
OBJECT element.

Nearly all of the new technologies that allow controls to operate in the low—bandwidth Internet environ-

ment are outlined in the OLE controls/COM objects for the Internet specification. The primary new addition

for controls is the concept of a data path property. Data path properties use URL monikers to enable asyn-

chronous downloading of a large property value such as an image. During the download process, the con-

trol indicates its state through the new ReadyState property and OnReadyStateChange event.

A number of new component categories were added specifically for Internet~aware controls. A few of

them are required for controls to operate safely within the Web environment. When browsing Web pages, a

user may not have the embedded ActiveX controls on his or her local machine. In this case, the new compo-

nent download specification enables a browser to locate, download, register, and execute the component on
the local machine.

ActiveX controls have full access to the machine on which they are executing. In an Internet-type envi—

ronrnent, where controls are part of Web documents, there are a number of security issues. The new compo—

nent download specification allows transparent download and registration of controls to machines browsing

Web documents. Microsoft has specified a mechanism for ensuring the authenticity and integrity of compo—

nents in the Web environment. As a software developer, you must register for this service in order to digi-

tally sign your components.

MFC provides support for the new Internet-aware control techniques. The new CDataPathProperty

Class makes it easy to provide asynchronous property download support to your controls. Testing your

Internet-aware controls is easy using Microsoft’s ActiveX Control Pad.

NFLE 1009 - Page 290

NFLE 1009 - Page 291

WWW“WWW

As developers, we sometimes spend hours, even days, trying to determine how to implement a particular

feature of our software or to fix a bizarre bug. The software development universe is expanding so fast that
it requires long days and nights of study and research just to stay current. That’s why collaboration among

developers is important. Internet newsgroups, forums, list servers, and FAQs all help increase our produc«

tivity. Instead of knocking your head against the wall for two days, you can find an answer, usually with

sample code, that will allow you to implement a feature in much less time. It all comes down to collabora-

tion and the management of information. That’s what makes the Internet, as embodied in the Web, an

important tool for software developers.

I know—you’re probably skeptical of all the hype. A year ago, so was I. But after using the Web and

building my own Web site, I really believe that it is changing the way we develop software and will also

change the way we conduct day-to—day business.

My Web site is devoted to ActiveX development, particularly controls, and contains an ActiveX control

FAQ that I maintain. This chapter will answer a few of the most frequently asked questions concerning

ActiveX controls. Along the way, I will provide an explanation of what is going on under the hood in hopes

of providing you with additional insight into the development of ActiveX controls.

As part of this chapter I’ve developed a control that demonstrates the techniques that we will discuss. It

even has an appropriate name: FAQQCX. The control doesn’t do anything, but it demonstrates several

techniques that you should find useful when developing your own controls.

All the questions are answered in the context of using the Microsoft Foundation Class libraries. A part

of Visual C++, the MFC framework makes it rather easy to develop ActiveX controls. However, using MFC

533

NFLE 1009 - Page 291

NFLE 1009 - Page 292

534 a CHAPTER 13

can sometimes obscure the Luiderstanding you need to solve some of the problems you’ll encounter during

development. The sample control was developed with Visual C++ version 4.1.

How do i restrict or change the size of my control?

This question, and its variations, is the most frequently asked ActiveX control question. I see this question

posted regularly to one of the OLE, ActiveX, or control‘based newsgroups, so let’s address it right away.

Regular windows are typically sized using the various Windows API functions (such as SetWindowPos).

You can restrict the size of a window by trapping the WM_WINDOWPOSCHANGING message and modifying
the WINDOWPOS structure.

ActiveX controls, however, differ from regular windows, because they provide their functionality only

when contained within an ActiveX control container. The container endows ActiveX controls with signifi-

cantly more capabilities than regular windows have, but this power comes at a cost. To reside within an

OLE container, a control must implement several COM~based interfaces. If the control wants to muck with

its environment (of which size is an attribute), it must negotiate these changes with its container.

The container provides the control with an area in which to work, and the control must respect this

area. Changes to the control’s size must be negotiated with the container. The MFC COleControl class pro—

vides four methods to facilitate control sizing: Se t Ini t ialS i z e, Se tContro 1 Si 2 e,
OnSetObj ectRects, and OnSetExtent.

Developers face two common situations in which control sizing is an issue. First, you may want to

restrict your control’s size (or its extents) so that users cannot produce an invalid condition during the

design phase. You might, for example, have an analog clock that should always be square or a fixed-size

icon that serves as the control’s representation (typically for a nonvisual control such as a timer). Second, as

the control’s developer you may need to affect its size based on one of its properties. An example would be

an image control that needs to size dynamically based on the extents of the image. We’ll cover both scenar-
ios.

Nonvisual controls typically display a small bitmap during the design phase, often the toolbar bitmap

that the control provides to containers that support it. The bitmap image is a set size, and there is no need for

the user to size the control, but the container provides sizing handles by default. To restrict the size of the

bitmap image, we need to do two things. First, we set the initial size of the control to its static size using the

COleControl : : Setlnitialsize method. This code should be placed in your control’s constructor:

//

// CFAQCtr1::CFAQCtr1 ~ Constructor

CFAQCtrl: :CFAQCtrl ()

(

InitializeIIDs(&IID_DFAQ, &IID_DFAQEvents);

SetInitialSizel 28, 28)7

)

Set Initialsize takes as a parameter the size of the control in pixels. It converts the unit to HIMETRIC

(OLE’s favorite) and sets the extents maintained within COleControl. This technique takes care of the ini-

NFLE 1009 - Page 292

NFLE 1009 - Page 293

ActiveX Control Frequently Asked Questions m 535

tial size of the control when it is created, but how do we stop the user from sizing the control during the

design phase? To do this, we need to understand how the control and its container interact.

The container provides a control with its site, or location within the container. The container is responsi-

ble for allowing the user to size the control’s site and will inform the control of its new size. If a control, an

in~place OLE server, wants to be informed about these size changes, it sets the OLEMISC_R ~ COMPOS ~ ONR ~ —

SIZE bit in its MiscStatus flags. For AppWizard-generated controls, MFC turns this bit on by default and

delivers it to the container via its implementation of IOleObj ect: :GetMiscStatus. If this bit is set, the

container will notify the control of any change in size by calling the IOleObj ect : : SetExtent method.

COM~based interfaces are just declarations; you must provide the implementation. MFC supplies a

default implementation for all the interfaces required of an ActiveX control. The default implementation of

IOleObj ect: :SetExtent resizes the control. Actually, it does a bit more—because various things must

occur depending on the state of the control—but first it gives us an opportunity to augment the default

implementation by calling COleControl : :OnSetExtent. We can override OnSetExtent and do one of

two things. We can return FALSE, which tells the container that the control cannot be resized, or we can

modify the extents passed via the SIZEL structure and return TRUE. For our purposes, we want to disallow_‘

any sizing of our iconic representation, so we return FALSE;

BOOL CFAQCtrl::OnSetExtent(LPSIZEL lpSizeL)

{

return FALSE;

l

That’s all there is to it—just two new lines of code to implement a control of fixed size.

As I mentioned, we can also modify the extents in the SI ZEL structure. One option available in the FAQ

control is to ensure that the control is always square. To do this, we need only pick one of the extents and

assign it to the other:

BOOL CFAQCtrl::OnSetExtent(LPSIZEL lpSizeL)

i

// Make sure the control is a square.

// Use the smaller of the extents for the sides.

if (lpSizeL—>cy <= lpSizeL->cx)

lpSizeL—>cx = lpSizeL->cy;
else

ll
lpSizeL—>cy lpSizeL—>cx;

return COleControl::OnSetExtent(lpSizeL);

}

This is easy, too, but you must remember one thing. The extents provided in the SIZEL structure are in

HIMETRIC units. If you are working in something other than HIMETRIC, such as pixels (device units), you

will need to convert the unit. The following code ensures that a control’s size is always 200x200 pixels:

NFLE 1009 - Page 293

NFLE 1009 - Page 294

see a CHAPTER 13

BOOL CFAQCtrl::OnSetExtent(LPSIZEL lpSizeL)

i

// Ensure that the control is always sized

// at 200x200 pixels. Get a DC and convert

// the pixels to HIMETRIC.

CDC cdc;

cdc.CreateCompatibleDC(NULL);

lpSizeL—>cx = lpSizeL—>cy = 200;

cdc.DPtoHIMETRIC(lpSizeL);

return COleControl::OnSetExtent(lpSizeL);

l

This method isn’t the most efficient way of doing the conversion. A faster implementation, one that does not

require a DC, is left as an exercise for the reader.

We understand how to handle situations in which the user or container is manipulating the size of the

control, but what about when you need to change the control’s extents from within the control? It's easy.
MFC provides another size—related method: SetControlSize. The FAQ control demonstrates all these siz—

ing scenarios. It has a property, Controlsize, that allows you to change its sizing behavior and its size. I

won’t spend much time on the control—you can experiment with it yourself—but you need just a bit of

understanding for this section. Controlsize is a dynamic enumerated property (we’ll discuss this in a
moment) that provides the user with a list of potential control sizes, one of which is "Draw Iconic.”

Whenever this property is set, the control must negotiate its new size with the container by calling
COleControl::SetControlSize

void CFAQCtrl::SetControlsize(short nNewValue)

{

POSITION pos = mmlstsizes.GetHeadPosition();

while(pos)

(

CCtrlSize* psize = (CCtrlSize*) m_lstsizes.GetNext(pos);

if (nNewValue == pSize—>m_sCookie)

{

m_pControlSize : pSize;

// SetControlsize forces a redraw so no need

// to call SetModifiedFlag or InvalidateControl.

COleControl::SetControlSize(pSize->m_sizeCtrl.cx,

pSize—>m,sizeCtrl.cy);

BoundPropertyChanged(dispidControlsize);

break;

NFLE 1009 - Page 294

NFLE 1009 - Page 295

 J ActiveX Control Freq A k d Qufifleskti

COleControl : :SetControlSize does different things depending on the in—place state of the control If

the control is in-place active, SetControlSize calls OnPosRectChange through its IOleInPlaceSite

interface, which is implemented by the container. This call informs the container of the new extents, and the

container has an opportunity to accept, ignore, or modify the new extents. The container informs the control

of any modifications by calling IOleInPlaceObject: :SetObj ectRects. You can act on this call by

overriding COleControl: :OnSetObj ectRects. This negotiation takes place when your control is in—

place active, which typically means at run time, although some containers (such as Delphi) in-place activate

controls while in design mode.

During the design phase, a call to SetControlSize resizes the window through OnSetEXtent, which

changes COleControl-maintained extents. OnSetExtent also calls COleControl: :InvalidateControl,

which informs the container, through IAdviseSink: :OnViewChanged, that the view of the control has

changed. The container then calls IOleObj ect: :GetExtent to obtain the control’s new size and finally forces

the control to redraw through IViewObj ect: :Draw. Whew! I told you that functionality comes with a price,

and it’s more than just processing time; it is also this complexity thing. That’s why frameworks are so popular.

They shield us (a little) from this complexity.

That should cover sizing of your controls. Ihaven’t talked about changing the coordinates of a control,

but this question comes up much less frequently because the default implementation works fine. Seldom

does the control implementation need to manipulate its position within the container. If you need to,
though, take a look at COleControl : :SetRectInContainer.

One other thing. The behavior I've discussed depends on a solid container implementation. Without it,

the sizing scenarios will not work as desired. Both the container and the control must work together. If one

of them does not follow the standard, all bets are off. Of course, your control should do its best when it

encounters hostile environments. I've tested these techniques with various containers. Visual Basic and

Visual C++ support them all; Delphi and Visual FoxPro still need some work. Let’s get to some more ques—
tions.

Can I access my control from its property page?

This question is posed in different ways, all of them concerned primarily with how to obtain better, more

direct communication with a control from its property page. MFC’s DDP function mechanism is limited. The

DDP functions allow communication only of a small number of automation types. That's it. When you’re

developing even modestly complex controls, the DDP functions don’t provide enough (direct) communica-
tion with the control.

An ActiveX control and each of its property pages are implemented as separate COM objects. Property

pages can be instantiated independently of any associated control. For this reason, property pages use

automation to communicate with controls, most often to get and set property values. This design allows a

container to associate a property page with multiple controls. A user can select two or more controls, and the

container will intersect their properties and show only those pages included in this intersection. This

arrangement allows a control user to quickly set a specific property (say, the font) of a group of controls.

MFCvprovided DDP functions, which use automation, do not always provide enough flexibility to

effectively manipulate a control’s properties. As we’ll see in the next question, it would be nice if we could

access the associated control instance within the property page. Well, MFC makes this access rather easy.

NFLE 1009 - Page 295

NFLE 1009 - Page 296

588 s CHAPTER 13

When the container constructs a property sheet by assembling the control's various property pages, the

container provides each page instance with a list of control instances that should be affected. This informa—

tion is provided through IPropertyPage: :SetObj ec ts. Upon construction of a property page, an array

of IUnknown pointers is provided to the property page. The property page’s implementation of

SetObj ects will typically call QueryInterface for the IDispatch pointers of any associated controls.

The property page can then easily get and set a control’s properties through this interface.

MFC’s COlePropertyPage: :GetObjectArray method makes it easy to access a property page’s

array of IDispatch pointers. Once you have this pointer, you can use CCdearget: :FromIDi spatch to

obtain the actual COleControl~derived instance of your control. FromIDispatch checks to ensure that

the IDispatch Vtable pointer that you provide is the same as MFC's IDispatch implementation. In other

words, this technique will work only if your control was written using MFC’s CCdearget—based classes

(such as COleControl). This technique also requires MFC version 4.0 and above.

Enough talk. Let’s see some code:

LPDISPATCH CFAQPropPage :GetControlDispatch()

(

// Get the property page’s IDispatch array

ULONG ulObjects;

LPDISPATCH* lpObjectArray = GetObjectArray(&ulObjects);

ASSERT(lpObjectArray 1: NULL);

// I'm assuming there is but one control, ours

// This is a pretty straightforward assumption

// Most containers don’t even support multi-control

// selection of custom property pages.

// Return the dispatch

return(lpObjectArray[0]);

l

The preceding code retrieves the IDispatch pointer of our control by returning the first element of the

page’s object array, We make the assumption that this is our control’s IDispatch, and today this is a fairly

easy assumption to make. With just this information, we can now directly interact with our control but only

through its IDispatch. The following code sets the Filename property of our FAQ control:

void CFAQPropPage::SetControlFilename(const CString& strFilename)

f

// Needed for Unicode conversion functions

USES_CONVERSION;

// Get the dispatch of the control

LPDISPATCH lpdispControl = GetControlDispatch();

// Update the control here using automation calls

COleDispatchDriver PropDispDriver;

NFLE 1009 - Page 296

NFLE 1009 - Page 297

ActiveX Control Frequently Asked Questions e» .589

DISPID deispID;

// Get a Unicode string

LPCOLESTR lpOleStr = T2COLE(“Filename”);

if (SUCCEEDED(lpdispControl—>GetIDsOfNames(IID_NULL,

(LPOLESTR*) &lpOl eStr,

l, O, &deispID)))

PropDispDriver.AttachDispatch(lpdispControl, FALSE);

PropDispDriver.SetProperty(deispID, VT_BSTR, strFilename);

PropDispDriver.DetachDispatch();

}

The preceding code could probably use a little explanation. USES_CONVERSION is a macro provided in

AFXPRIVH that facilitates the conversion of ANSI strings to Unicode strings. In MFC versions before 4.0,

ANSI—to—Unicode string translation was provided by default. In MFC versions 4.0 and higher, you must do

the conversions yourself. All Win32 OLE calls expect Unicode strings. T2COLE converts an ANSI string to a

const Unicode string. For additional details, check out AFXPRIVH and MFC Tech Note 59: ”Using MFC
MBCS/Unicode Conversion Macros.” The rest of the code retrieves the IDispatch of our control and

attaches it to an instance of COleDispatchDriver. This makes it easier to use the IDispatch methods.

The preceding steps mimic how the standard DDP functions update and retrieve property values from
a control. The DDP functions use the COlePropertyPage: :SetPropText methods. Several

SetPropText methods are implemented within COlePrOpertyPage. Each one is overloaded to take a dif—

ferent property type. The SetPropText methods aren’t documented, but by using them we can shorten the

preceding code to this:

void CFAQPropPage::SetControlFilename(CString& strFilename)

{

SetPropText(“Filename”, strFilename);

l

If you need to access only the automation properties or methods of your control, the preceding techniques

will work fine. However, if you need to access non-automation aspects of your control or would rather use

straight C++ bindings (it’s faster), you can do this:

CFAQCtrl* CFAQPropPage::GetControlInstance()

f

LPDISPATCH lpdispControl = GetControlDispatch();

ASSERT(lpdispControl !: NULL);

return (CFAQCtrl*) CCdearget::FromIDispatch(lpdispControl);

NFLE 1009 - Page 297

NFLE 1009 - Page 298

see t CHAPTER 13

The FromIDispatch method of CCdearget allows you to retrieve the C++ instance associated with an

IDispatch pointer. This technique requires that your property page and control implementation use MFC,

but it works. Another requirement is that the COM object be implemented in—process. ActiveX controls are

always implemented as in~process servers—l haven’t yet found an exception—so this requirement isn’t a

problem.

By retrieving the instance of our control, we can do just about anything with our control within the

property page. In the answer to the next question, we will use this new flexibility to manipulate an array of

properties.

How can I implement a property array?

Why, you ask, would I want to access my control instance from its property page? There are a few reasons.

One is that the DDP functions provided by MFC don’t always give us the functionality we need, especially

when it comes to property arrays. A good example of a property array, or parameterized property, is a list—

box control that allows the user to prefill the listbox, during the design phase, with strings. This list of strings

can be manipulated via one property name and index (the parameter) like this:

Dim str as String

str = Listbox.List(1

Here, List is a property array that holds the strings contained within the listbox. The DDP functions do not

allow you to get and set property values stored within arrays, so we must do something else. We communi-

cate with our control directly using the technique described in the previous section:

void CFAQPropPage :DoDataExchange(CDataExchange* pDX)

{

// Set or retrieve the string list

// from the control instance

if (pDX—>m_bSaveAndValidate)

UpdateList();
else

RetrieveList();

DDP_PostProcessing(pDX);

l

Within our property page implementation, whenever DoDataExchange is called we check the state of the

data transfer. If the page is updating the control’s properties, as indicated by m_bSaveAndValidate, we

update an associated list within the control. When we’re retrieving the control’s properties, the reverse

occurs. The code for each method retrieves the control instance and either queries or updates a multiline edit

field within the property page:

//

NFLE 1009 - Page 298

NFLE 1009 - Page 299

ActiveX Control Frequently Asked Questions <9 59?

// Spin through the multiline edit box and update the control's list
//

void CFAQPropPage: UpdateList()

{

CStringList strList;

CEdit* pEdit = (CEdit*) GetDlgItem(IDC_PROPERTYLIST);

// Get the number of lines

int nLines = pEdit—>GetLineCount();

for (int line = 0; line < nLines; line++)

{

char szLine[128];
H

int nCount pEdit—>GetLine(line, szLine, sizeof(szLine) — l);

// GetLine doesn’t null terminate

szLine[nCount] = ‘\O’;

if (nCount)

strList.AddTail(szLine);

// Get the control instance

CFAQCtrl* pFAQCtrl = GetControlInstance();

// Pass the list to the control

pFAQCtrl—>SetPropertyArray(strList);

//

// Get the property array list from the control
//

void CFAQPropPage: RetrieveList()

(

CStringList strList;

CEdit* pEdit = (CEdit*) GetDlgItem(IDC_PROPERTYLIST);

// Clear any existing data in the edit box

pEdit->SetSel(O, —l);

pEdit—>ReplaceSel(“”);

// Get the control instance

CFAQCtrl* pFAQCtrl = GetControlInstance();

// Get the list from the control

pFAQCtrl—>GetPropertyArray(strList);

NFLE 1009 - Page 299

NFLE 1009 - Page 300

gag a CHAPTER 13

// Fill the entry box

POSITION pos = strList.GetHeadPosition();

while(pos)

i

// Add a CR/LF pair when inserting into the
// multiline EDIT.

CString str = strList.GetNext(pos) + “\r\n”;

pEdit—>ReplaceSel(str);

l

// Clear any selection

pEdit—>SetSel(—l, 0);

)

Within the property page, a CStringList instance is maintained that contains a list of strings for the

droplist. A private method within the COleControl-derived class, which takes a CStringList reference,

is used to pass the data to the control instance. Most of the preceding code deals with getting the control’s

instance and is described in the property page section. The important part is that we’re not using the

DDX/DDP functions but instead are doing the work ourselves. A similar approach is needed within the
control too:

//////////////

// Property array implementation

//////////////

void CFAQCtrl::GetPropertyArray(CStringList& rList)

{

rList.RemoveAll();

POSITION pos = mwlstStrings.GetHeadPosition();

while(pos)

(

rList.AddTail(m_lstStrings.GetNext(pos));

l

void CFAQCtrl::SetPropertyArray(CStringList& rList)

(

m_lstStrings.RemoveAll();

POSITION pos = rList.GetHeadPosition();

while(pos)

{

m_lstStrings AddTail(rList.GetNext(pos));

NFLE 1009 - Page 300

NFLE 1009 - Page 301

ActiveX Control Frequently Asked Questions e 593

l

These methods are called from within the property page to update the control’s string list member. Now we

can maintain a property array both within the control and within the property page.

But that’s only half the problem. Another FAQ is, ”How can I serialize (or persist) a property array?”

This isn’t a straightforward question. The default control persistence (PX) functions don't handle property

arrays either, so we do something similar to our property page solution. Again, we check the direction of the

property exchange in our control's DoPropExchange method and call the appropriate internal method:

void CFAQCtrl::DoPropExchange(CPropExchange* pPX)

l

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl::DoPropExchange(pPX);

// SaVe or restore the list of strings

if (pPX—>IsLoading())

LoadPropArray(pPX);
else

SavePropArray(pPX);

}

void CFAQCtrl: LoadPropArray(CPropExchange* pPX)

l

// Make sure the list is empty

m_lstStrings.RemoveAll();

// Get the size of the list

short sListSize;

PX_Short(pPX, “ListSize”, sListSize, O);

// Read in the list

CString strPropName;

CString strValue;

for(int i = O; i < sListSize; i++)

l

strPropName Format(“%s%d”, “List”, i);

PX_String(pPX, strPropName, strValue, “”);

m_lstStrings AddTail(strValue);

l

void CFAQCtrl::SavePropArray(CPropExchange* pPX)

f

short sListSize : m_lstStrings.GetCount();

NFLE 1009 - Page 301

NFLE 1009 - Page 302

591%,? CHAPTER 13

// Write out the list size

PX‘Short(pPX, “Listsize”, sListSize);

// write out the strings

inti=O;

CString strPropName;

CString strValue;

POSITION pos = m_lstStrings.GetHeadPosition();

while(pos)

(

strPropName Format(“%s%d”, “List”, i++);

strValue = m_lstStrings GetNext(pos);

PX_String(pPX, strPropName, strValue);

l

The trick here is to generate appropriate property names and store the strings there. The PX function prop-

erty name parameter need not be a valid property name for your control; any value will do. I’ve added a

Listsize property name and ListO through Listn property names to store any number of strings that

the user may enter during the design phase.

I’ll be the first to admit that this method may not be the most efficient way to do this, but it works. A

better solution would probably be to use the PX_Blob function and store the strings in a binary format, an

approach that would require less storage. This technique adds some complexity though, because MFC—

based classes cannot be directly serialized using PX_Blob.

How can I provide a list of valid options for my properties?

Many control properties have a valid range of values. The default ClassWizard implementation does not

provide a range limit for your properties. The primary technique of ensuring valid values for your control’s

properties is to use enumerated properties, which provide a way to prevent entry of invalid property values as

well as providing a more user—friendly representation. Figure 13.1 is the property page of our FAQ control

with three enumerated properties You should also recognize the multiline entry field from the previous dis-
cus51on.

NFLE 1009 - Page 302

NFLE 1009 - Page 303

Figure 13.] FAQ control property’ page.

There are two ways of implementing enumerated properties: statically and dynamically. Static enumerated

properties are the easiest to implement and should be sufficient for most control properties. The control

developer basically hard codes the potential property values with the control’s type information via the

.ODL file. The enumerated type’s HelpString parameters can be queried by property browsers via the

ITypeInfo interface. You define an enumerated type and then change your property definition to use the

enumerated type instead of the default short value. Here's a simple definition for the stock Model prop—

erty from FAQ.ODL:

//

// FAQ . ODL

//

[uuid(D09D85l0—B240~llCF—A58E—0000837E3100), version(l.0)

helpstring(“FAQ ActiveX control module"), control]

library FAQLib

(

importlib (STDOLE_TLB) ;

importlib (STDTYPE_TLB) ,-

' typedef enum

{
H

[helpstring(“Festiva”)] Festiva ,0,
{helpstring(“Escort”)] Escort = l

[helpstring(“Tempo”)] Tempo = 2

NFLE 1009 - Page 303

NFLE 1009 - Page 304

see «9 CHAPTER 13

[helpstring(“Probe”)] Probe = 3

[helpstring(“Taurus”)] Taurus = 4

) enumModel;

// Primary dispatch interface for CFAQCtrl

[uuid(D09D85ll—B240—11CF~A58E-0000837E3100)

helpstring(“Dispatch interface for FAQ Control”), hidden]

dispinterface WDFAQ

(

properties:

// NOTE ~ Classwizard will maintain property information here.

// Use extreme caution when editing this section.

//{ {AFX__ODLMPROP (CFAQCtrl)

[id(l)] short Controlsize;

[id(2)] BSTR Filename;

[id(3)] enumModel Model;
/ / } lAFX_ODL_PROP

l

In property browsers (such as Visual Basic, Visual C++, and Delphi) that support this technique, only the

five enumerated options are shown. The user is able to choose only from this list. You should also use these

options in your control’s custom property page. (Remember, not all tools provide property browsers, and

that’s one reason for custom property pages.) You can add the enumerated options using the
DD]? /DDX_CBIndeX functions within the DoDataExchange method:

void CFAQPropPage::DoDataExchange(CDataExchange* pDX)

{

//({AFXHDATA_MAP(CFAQPropPage)

DDP_CBIndeX(pDX, IDCflMODEL, “LsModel, _T(“Model”));

DDX_CBIndex(pDX, IDC_MODEL, mstodel);

/ / })AFX_DATA_MAP

DDP_PostProcessing(pDX);
l

There are two techniques you can use to initialize the combo box with the valid strings. First, you can over-

ride OnInitDialog and add the strings there. Second, you can enter the strings within the Developer

Studio resource editor at design time. Combo boxes with the droplist style allow the entry of a default list of

strings. To keep things nice, you may also want to add an enum to your control class and use it in your con—

trol code. The sample control demonstrates all these techniques.

NFLE 1009 - Page 304

NFLE 1009 - Page 305

ActiveX Control Frequently Asked Questions e 59?

BOOL CFAQPropPage::OnInitDialog()

l

COlePropertyPage::OnInitDialog();

// Here’s one way to populate the static enumerated

// property combo box. The other is to add the strings

// in the resource editor.

CComboBox* and : (CComboBox*) GetDlgItem(IDC_MODEL);

and—>AddString(“Festiva”);

and—>AddString(“Escort”);

and—>AddString(“Tempo");

and—>AddString(“Probe”);

and—>AddString(“Taurus");

return TRUE; // return TRUE unless you set the focus to a control

// EXCEPTION: OCX Property Pages should return FALSE

}

class CFAQCtrl : public COleControl

(

// Enumerated property members

short m_sModel;
enum

{

Festiva = 0,

Escort = 1,

Tempo
II N

Probe
|| LA)

Taurus = 4

i;

l;

You can also provide enumerated property values dynamically. This approach is a little more complicated

and is best used when the enumerated values can change or are dependent on other properties Within your

control, or when a targeted container (or tool) does not support static enumerated properties.

For controls to provide dynamic enumerated properties, they must implement the

IPerPropertyBrowsing interface. MFC’s COleControl class provides a default implementation and

allows your derived-control class to~ augment this implementation via the OnGetPredefinedStrings,
OnGetPredefinedValue, and OnGetDisplayString methods.

NFLE 1009 - Page 305

NFLE 1009 - Page 306

593 «3? CHAPTER 13

We will look at the implementation first from the control side and later from the property page side. To

provide dynamic enumerated properties, the three IPerPropertyBrowsing methods must be imple—

mented Within your control’s class. For demonstration purposes, the FAQ control enumerates its

Cont rolsize property dynamically. What follows will describe what is required to implement

ControlSiZe as a dynamic enumerated property. The following definition describes a small CCtrlSize

class. Each CCtrlSi ze instance contains a single Controlsize property definition.

// Controlsize dynamic property support class

class CCtrlSize : public CObject

{

public:

CCtrlSize(CSize, short, CString);

CCtrlSize();

public:

CSize m~sizeCtrl;

short m_sCookie;

CString m_strDisplayString;

l;

The control maintains a linked list of valid ControlSize values. The potential property values are dynamic

and can be added to this list throughout the lifetime of the control. The control instance also maintains a

pointer into the linked list that identifies the current value of the property. This makes it easy to obtain the

value in the various control methods. Here’s a snippet from FAQCTL.H:

class CFAQCtrl : public COleControl

{

// Dynamic enumerated property overrides

virtual BOOL OnGetPredefinedStrings< DISPID dispid,

CStringArray* pStringArray,

CDWordArray* pCookieArray);

virtual BOOL OnGetPredefinedValue(DISPID dispid,

DWORD dwCookie,

VARIANT FAR* lpvarOut);

virtual BOOL OnGetDisplayString(DISPID dispid,

CString& strValue);

CCtrlSize* m_pControlSize;

CObList m_lstSizes;
enum

{

NFLE 1009 - Page 306

NFLE 1009 - Page 307

ActiveX Control Frefluently Asked Questions «e 59?

IconicCookie = 0,

SmallCookie = l,

MediumCookie = 2,

LargeCookie = 3,

XLargeCookie = 4

l;

i;

There are the overrides, a CCtrlSize pointer to maintain the current value, and a CObList to maintain a

list of valid values. When the control is constructed, this list is initialized with potential values.

CFAQCtrl: :CFAQCtrl ()

(

// Build a list of valid control sizes

CCtrlSize* pSize;

pSize = new CCtrlSize(CSize(28, 28),

IconicCookie,

“ Draw Iconic”);

m_lstSizes.AddTail(pSize);

// Default is to draw iconic

m_pControlSize = pSize;

pSize = new CCtrlSize(CSize(100, 100),

SmallCookie,

“100 x 100”);

m_lstSizes.AddTail(pSize);

pSize = new CCtrlSize(CSize(200, 200),

MediumCookie,

“200 x 200”);

m_lstSizes.AddTail(pSize);

il
pSize new CCtrlSize(CSize(300, 300),

LargeCookie,

“300 x 300”)7

m_lstSizes.AddTail(pSize);

pSize = new CCtrlSize(CSize(400, 400),

XLargeCookie,

“400 x 400”);

m_lstSizes.AddTail(pSize);

NFLE 1009 - Page 307

NFLE 1009 - Page 308

@@® a CHAPTER 13

The default property setting is to “Draw Iconic,” but it is reset if a different persistent value has been set for
the control. Also, COleControl: :SetControlSize is called after the correct Controlsize value is

obtained, so you must be careful when using dynamic properties. If you set a persistent value, you must

ensure that the value is there when you’re constructing the control later or that you provide an effective
default mechanism for the value.

void CFAQCtrl::DoPropExchange(CPropExchange* pPX)

(

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl::DoPropExchange(pPX);

// If loading the property, find the correct entry in the list

// and initialize the current property value

if (pPX—>IsLoading())

f

// Get the cookie value and find the appropriate entry in the list

m_pControlSize = 0;

short sCookie;

PX_Short(pPX, _T(“ControlSize”), sCookie, IconicCookie);

POSITION pos = m_lstSizes.GetHeadPosition();

while(pos)
(

CCtrlSize* pSize = (CCtrlSize*) m_lstSizes.GetNext(pos);

if (short(sCookie) == pSize—>m_sCookie)

{

m_pControlSize = pSize;

break;

)

ASSERT(m_pControlSize != 0);

// When loading the size property, update the control's size

COleControl::SetControlSize(m_pControlSize—>mflsizeCtrl.cx,

m_pControlSize—>m_sizeCtrl.cy);
)

else

{

ASSERT(m_pControlSize != 0)7

// Save cookie value of the dynamic ControlSize property

PX_Short(pPX, _T(“ControlSize”),

NFLE 1009 - Page 308

NFLE 1009 - Page 309

AtveX pontol FrequeyntlAsked uetis g? 60%

m_pControlSize—>m_sCookie,

IconicCookie);

1

Now that we understand the internal management of the potential property values, let’s implement the enu-

merated property methods. The OnGetPredifinedStrings method is called by the container, via

IPerPropertyBrowsing: :GetPredefinedStrings, to get a list of potential property values. The

DISPID of the specific property is provided along with a pointer to a string array and a DWORD array. If the

container is asking for our Controlsize property, we fill both lists with values from our CCtrlSize list

and return TRUE. A TRUE return indicates that the arrays have been filled with values. The cookie array

allows the container to later ask for the specific property value associated with the cookie. In our case, the

cookie is the position of the value within the list. Later, this approach will make it easier to implement our

custom property page, because we will use the cookie as an index into our combo box:

BOOL CFAQCtrl::OnGetPredefinedStrings(DISPID dispid,

CStringArray* pStringArray,

CDWordArray* pCookieArray)

if (dispid == dispidControlSize)

(

POSITION pos = m_lstSizes.GetHeadPosition();

while(pos)

(

CCtrlSize* pSize = (CCtrlSize*) m_lstSizes.GetNext(pos);

pStringArray—>Add(pSize—>m_strDisplayString);

pCookieArray—>Add(pSize—>m_sCookie);

}

return TRUE;

}

// If it’s not ours, let our parent handle the request

return COleControl::OnGetPredefinedStrings(dispid,

pStringArray,

pCookieArray);

l

If a user now selects a specific property value string, the container will ask for its associated value.

OnGetPredefinedValue, via IPerPropertyBrowsing: :GetPredefinedValue, provides the DISPID

and cookie for the requested value and a VARIANT for the return. All we have to do now is to spin through

our list, match the cookies, and return the property value. In our case, the cookie value is the same as the

property value, so we fill out the VARIANT and return TRUE, indicating that the value was found.

NFLE 1009 - Page 309

NFLE 1009 - Page 310

682 f CHAPTEI: 13

BOOL CFAQCtrl::OnGetPredefinedValue(DISPID dispid,

DWORD dwCookie,

VARIANT FAR* lpvarOut)

if (dispid == dispidControlSize)

{

POSITION pos m_lstsizes GetHeadPosition();

while(pos)

(

CCtrlSize* psize = (CCtrlSize*) m_lstSizes.GetNext(pos);

if (short(dwCookie) := pSize—>m.sCookie)

(

VariantInit(lpvarOut);

1pvarOut->vt = VT_12;

lpvarOut->iVal = short(dwCookie);

return TRUE;

)

// Call the parent implementation

return COleControl::OnGetPredefinedValue(dispid, dwCookie, lpvarOut);

)

OnGetDisplayString returns the current ”string” setting for the DISPID provided. This method is called

by the container whenever it needs to update its display. Here is its implementation:

BOOL CFAQCtrl::OnGetDisplayString(DISPID dispid, CString& strValue)

i

if (dispid 2: dispidControlsize)

{

// This should never happen, we’re just being safe.

if (m_pControlSize == 0)

“Unknown”;strValue

else

strValue = m_pControlSize—>m_strDisplayString;

return TRUE;

)

That finishes the control-side implementation. Now let’s move on to our custom property page. In our solu-

tion for static enumerated properties, we used a combo box filled with strings that we defined when compil-

ing the control, or we added them during initialization of the dialog box. For dynamic properties, we need to

NFLE 1009 - Page 310

NFLE 1009 - Page 311

7 7 AC'VXe CmrFequeO'rnfiy Asked Quesiosn 603

retrieve the possible values from the control at run time. Thanks to the previous discussions, we should be

able to do this rather easily. The cookie that we used to identify a specific property value can also be used to

indicate the property’s index within our combo box. So, within our property page, we will use the technique

that a typical property browser would use to retrieve the property’s potential values:

void CFAQPropPage::GetControlSizeStringsU

C

// Get the dispatch of the control

LPDISPATCH lpdispControl = GetControlDispatch();

// Using IDispatch, query for IPerPropertyBrowsing

LPPERPROPERTYBROWSING lpBrOWse;

HRESULT hr = lpdispControl—>QueryInterface(IIDMIPerPropertyBrowsing,

(LPVOID*) &lpBrowse);

if (SUCCEEDED(hr L

{

CALPOLESTR castr;

CADWORD cadw;

// Get the property strings associated with our

// ControlSize property. This also returns an array

// of “cookies,” but we don’t actually need them.

hr = lpBrowse—>GetPredefinedStrings(CFAQCtrl::dispidControlSize,

&castr,

&cadw);

if (SUCCEEDED(hr))

l

//

// Move the strings to our combo box

//

CComboBox* and = (CComboBox*) GetDlgItem(IDC_CONTROLSIZE);

for (ULONG i = 0; i < castr.cElems; i++)

l

// Must include AFXPRIV.H

USES_CONVERSION;

// WZA converts the OLE (Unicode) string to ANSI

and—>AddString(W2A(castr.pElems[i]))7

l

//

// Free any memory allocated by the server

//

NFLE 1009 - Page 311

NFLE 1009 - Page 312

§®4 «e CHAPTER 13

CoTaskMemFree((void *)cadw.pElems);

for (i = O; i < castr.cElems; i++)

CoTaskMemFree((void *)castr.pElems(i]);

CoTaskMemFree((void *)castr.pElems);

}

// We're finished so release IPerPropertyBrowsing

lpBrowse—>Release();

)

We get our control’s IDispatch and query through it for IPerPropertyBrowsing. We then call

GetPredefinedStrings to get our array of strings and cookies. Next, we iterate over this array and popu~

late our combo box. That’s all there is to it. The standard PXwCBIndex function handles updating the c0n~

trol when the user changes a property value. There are some tricky parts. You must deallocate the arrays

using COM functions, but once you’ve done it (and you’ve now done it once), you’ve done it a hundred
times.

How can I set up a custom property dialog box and access it from Visual Basic’s

browser using the ”...” option?

When developing custom property pages for your controls, you can manipulate and validate those values

entered by the control user. However, most visual tools (such as Visual Basic and Delphi) provide their own

property browsers. The default behavior of these browsers allows the control user to enter property values

that are limited only by the range of the property’s intrinsic type. For example, if you have a property that is

of type short, the user can enter any value that is within the range of a short. What do you do if you need

to provide more stringent property validation? What if you would like to provide a more user-friendly inter-

face that helps the user select the correct property value? One solution, as we discussed earlier, is to provide

enumerated properties, but what if the values can’t be enumerated? One example of a property that is diffi-

cult to enumerate is a filename. To provide a nice, user-friendly interface for these types of properties, you

must implement per~property browsing.

From a user perspective, per—property browsing enables modification, via a control—specific property

page, of a property from within a tool’s browser. In Visual Basic and Visual C++, this additional capability is

identified by the appearance of ellipses (”...”) beside the property. When the ellipses button is clicked, a con—

trol-specific property sheet is displayed. This approach allows custom property manipulation within any

tool that supports per—property browsing.

The IPerPropertyBrowsing interface that we described earlier is used to implement per-property

browsing—specifically, through an implementation of the MapPropertyTo Page method.

MapPropertyToPage does basically what it says. The browser passes the DISPID of a specific property,

and, if the control wants to provide per-property browsing, it returns the CLSID of the supporting property
page.

NFLE 1009 - Page 312

NFLE 1009 - Page 313

ActiveX Control Frequently Asked Questions «9* 605

To demonstrate per—property browsing, let’s implement a custom property page for the Filename
property of our FAQ control. The Filename property doesn’t do much; it has the usual Get/ Set methods

and a PX__String function for persistence, but that’s it. We’ll use it to demonstrate per~property browsing
and to answer another FAQ that I often get: ”How can I pop up a standard file dialog box from within the
property browser?”

I’ve added a second custom property page to the control (the process for doing this is described in the
MFC documentation) and have provided an entry field for the filename. We have placed a button on the
page to invoke a standard file dialog box (Figure 13.2).

Figure 13.2 Filenome property page.

The ellipses button invokes a standard file dialog box that allows the user to browse for a specific filename:

void CFAQPropPage2::OnSearch()

{

CString strExt : “All files (*.*) l *.* ll";

CFileDialog fileDialog< TRUE,
“it *u- I

NULL,

OFN_SHAREAWARE l OFN_LONGNAMES,
strExt,

this) ;

fileDialog.m_ofn.nFilterIndex : O;

fileDialog.m_ofn.lpstrTitle = “FAQ Filename Dialog”;

NFLE 1009 - Page 313

NFLE 1009 - Page 314

é©é é CHAPTER 13

fileDialog.m~ofn.lpstrFile = m_strFilename.GetBuffer(_MAX_PATH);

BOOL bResult = fileDialOg.DOModal() == IDOK ? TRUE : FALSE;

m_strFilename.ReleaseBuffer();

if (bResult == IDOK)

(

CWnd* and = GetDlgItem(IDC_FILENAME);

and—>SetWindowText(m_strFilename);

SetControlStatus(IDC_FILENAME, TRUE);

}

We invoke a modal file dialog box and allow the user to choose a filename. When OK is pressed, we update

the filename entry field and call COlePrOpertyPage: :SetControlStatus, which marks the property as

“dirty” and enables the Apply button on the property sheet. Now everything is handled just like any other

property in a custom property page. When OK or Apply is pressed, the DDP fmetion is used to update the

property within the control instance.

To enable per~property browsing, we override the default implementation of OnMapPropertyToPage.

When a well—behaved property browser enables editing for a specific property, it calls

IPerPrOpertyBrowsing: :MapPropertyToPage to see whether the control supports per-property

browsing. If per-property browsing is supported, the GUID of the associated property page is returned.

When a container calls MapPropertyToPage, COleControl gives the control a chance to handle the

method through OnMapPropertyTOPage. The DISPID of the specific property is provided. Here's our

implementation from the FAQ control:

//

// Support for VB’s “..." browser option. Displays a specific

// property page based on the provided dispid. In our case we

// will pop up our “Filename” property page.
//

BOOL CFAQCtrl::OnMapPropertyToPage(DISPID dispid, LPCLSID lpclsid, BOOL* pbPageOptional

(

// Return our custom “Filename” property page if
// the client asks for it.

if (dispid == dispidFilename)
{

*lpclsid = CFAQPropPageZ: guid;

*pbPageOptional = FALSE;

return TRUE;

}

return COleControl::OnMapPropertyToPage(dispid, lpclsid, pbPageOptional);

NFLE 1009 - Page 314

NFLE 1009 - Page 315

ActiveX Control Frequently Asked Questions e $37

In Visual Basic, when the user clicks on the button, Visual Basic calls MapPropertyToPage to get the

GUTD of the associated property page. If one is provided, the container builds a property frame with the spe-

cific property page. This technique allows control—specific editing outside a control’s custom property pages.

The pbPageOptional flag indicates to the property browser whether or not the property can be edited

outside its property page. Our filename property can be edited within an external browser, so we set the flag
to TRUE.

The three other IPerPropertyBrowsing methods that we used earlier to implement dynamic enu-

merated properties are not needed here. It’s not possible for us to enumerate all the valid filenames,

although we could check the filename for syntactic validity. Oh well, yet another exercise for the reader.

When I change a property’s value through its property page, the tool’s property

browser isn’t updated. Why not?

You’ve already seen code from the FAQ sample that answers this question. If you want your design-time prop

erty changes via your control’s property pages to immediately update an external property browser (such as

Visual Basic or Delphi), you need only call the BoundPropertyChanged method after setting the new value:

void CYourCtrl::SetSomeProperty(short nNewValue)

(

m_sSomeProperty : nNewValue;

// Update the property browser

BoundPropertyChanged(dispidSomeProperty);

SetModifiedFlag();

)

BoundPropertyChanged informs the browser, Via IPropertyNotifySink: :OnChanged, that a con-

trol’s property value has changed. The browser then retrieves the new value through the control's

IDispatch. The parameter provides the dispatch ID of the property that changed. DISPID_UNKNOWN can

be used to force an update of all known properties.

Why can’t I set the colors on my subclassed BUTTON control?

Button controls do not pay attention to the reflected OCM__CTLCOLORBTN message. If you want to create a

button control that provides custom color capabilities, you will have to use an owner—draw control.

How can I provide Fl support for my properties within Visual Basic’s property
browser?

To add support for F1 help within various browsers, you need to modify your control’s .ODL file. The mode

ifications specify the help context IDs for your control’s properties, methods, and events. The steps and key-

words required to modify the .ODL file are explained in Microsoft Knowledge Base article Q130275.

NFLE 1009 - Page 315

NFLE 1009 - Page 316

é®8 a CHAPTER 13

How do I add support for the Help button in my property page?

First you need to create a .HLP file for your properties. Then for each of your custom property pages, add a

call to SetHelpInfo in the constructor of your property page class. You must provide a short comment for

tooltip support, the filename of your .HLP file, and the help context ID to be passed during the WinHelp

call. The default implementation of the Help button calls winHelp with the parameters provided via

SetHelpInfo. If necessary, you can change this default behavior by overriding and implementing the
COlePropertyPage::OnHelpIndhod

How do I return an array of items from my control?

To return an array of items, you can use an automation safe array. There isn’t room to discuss all the features

of safe arrays here, so I’ll briefly cover how to use them in an automation method. A tremendous amount of

documentation comes with Visual C++ that covers the various safe array APIs and so on.

Add a method to your control that takes a VARIANT pointer as a parameter. A variant is a generic data

type that can hold values or pointers to other, more specific automation types. One of the data types that can

be contained within a variant is a safe array. You can have an array of shorts, longs, BSTRs, Dates, and so

on. In the method, allocate a SAFEARRAY, allocate space for the items, and then populate the array with

these values. Then initialize the VARIANT structure. The following code creates a SAFEARRAY of BSTR ele-

ments. As with all automation data, the server allocates the storage, and the client (for example, Visual Basic)

is responsible for the deallocation.

void CMyControl::GetArray(VARIANT FAR* pVariant)
i

// Get the number of items
I!

int nCount GetCount();

// Create a safe array of type BSTR

// cElements of the first item indicates the size of the array

SAFEARRAYBOUND saBound[1];

SAFEARRAY* pSA;

saBoundiO].cElements = nCount;

saBound[O].lLbound = O;

pSA = SafeArrayCreate(VT_BSTR, 1, saBound);

for(long i = 0; i < nCount; i++)

(

BSTR bstr;

// Get the next item, create a BSTR, and

// stuff it in the array. GetItem returns a CString.

bstr = GetItem(i).AllocSysString();

NFLE 1009 - Page 316

NFLE 1009 - Page 317

ActiveX Control Frequently AskedQuestions $Wé$9

SafeArrayPutElement(pSA, &i, bstr);

::SysFreeString(bstr);

l

// Init the variant

VariantInit(pVariant);

// Specify its type and value

pVariant—>vt VT_ARRAY | VT_BSTR;
ll

pVariant->parray = pSA;

l

The Visual Basic code to access the elements of the array would look something like this:

Dim t As Variant

Dim i as Integer

MyControll.GetArray t

0 To MyControll.Count — l
t!

For i

ListBox.AddItem t(i

Next i

How can I communicate with other controls in the container?

To communicate with other ActiveX controls within a container, use the IOleI temContainer : : Enum

Objects method. COleControl provides a method, Ge tCl ients ite, that provides access to the

IOleClientsite interface. Through this method you can get a pointer to the IOleItemContainer interface.

Once you have a pointer to this interface, you can enumerate over the contained controls:

void CMthrl::EnumControls()

{

LPOLECONTAINER pContainer = NULL;

// Get a pointer to the IOleItemContainer interface

HRESULT hr = GetClientSite()—>GetContainer(&pContainer);

if (SUCCEEDED(hr))

l

// Types of objects to enum

DWORD dwFlags = OLECONTF_ONLYIFRUNNING |

OLECONTF_EMBEDDINGS 1
OLECONTF_ONLYUSER;

LPENUMUNKNOWN pEnumUnknown = NULL;

hr = pContainer—>Enum0bjects(dwFlags, &pEnumUnknown);

NFLE 1009 - Page 317

NFLE 1009 - Page 318

é'flG 4% CHAPTER 13

if (SUCCEEDED(hr))

{

LPUNKNOWN pNextControl = NULL;

// Loop through the controls

while(SUCCEEDED(hr) && pEnumUnknown—>Next(1, &pNextControl, NULL) =: S_OK)

{

LPDISPATCH pDispatch = NULL;

// Get the IDispatch of the control

hr = pNextControl—>QueryInterface(IID_IDispatch, (LPVOID*) &pDispatch);

if (SUCCEEDED(hr))

{

COleDispatchDriver PropDispDriver;

DISPID deispID;

// Use automation to access various properties and methods

USES_CONVERSION;

LPCOLESTR lpOleStr = T2COLE(“SomeProperty”);

if (SUCCEEDED(pDispatch—>GetIDsOfNames(IID_NULL,

(LPOLESTR*)&lpOleStr, 1, 0, &deispID)))

PropDispDriver AttachDispatch(pDispatch, FALSE);

UINT uiCount;

PropDispDriver.GetProperty(deispID, VT_I4, &uiCount);

PropDispDriver.DetachDispatch();

pNextControl—>Release();

)

pEnumUnknown->Release();

)

The preceding example demonstrates how to access the IDispatch of all the controls within the container.

There are many other things you could do. To identify the controls you’re looking for, you could implement

a custom interface within the (target) control and then call QueryInterface to find it. You could also look

for a specific CLSID of a control after retn'eving the IOleObj ect interface. You should be able to do almost

anything once you’ve found the control you’re looking for.

NFLE 1009 - Page 318

NFLE 1009 - Page 319

ActiveX Control Frequently Asked Questions e 63 '3

Why does AmbientUserMocle always return True?

You’re probably checking the value of AmbientUserMode in your control’s constructor, destructor, or

OnSetClientSite method. The value of AmbientUserMode is always TRUE if the control hasn't yet set

up its ambient IDispatch connection to its container. You won’t get a valid return from

AmbientUserMode in either the constructor or destructor of your control, but you can in

OnSetClientSite if you first ensure that the ambient IDispatch has been set up. The following code

demonstrates how to check AmbientUserMode during the call to OnSetClientsite:

// Ensure the control has a valid HWND as soon as it

// is placed on the container

void CYourCtrl ;0nSetClientSite()

{

// We only need the window at run time

// Only call recreate when there is a valid ambient dispatch

if (m_ambientDispDriver.m_lpDispatch && AmbientUserMode())
RecreateControlwindow();

)

The m__ambientDispDriver member of COleControl maintains the ambient dispatch of the container.

Only if m_lpDispatch is valid is there an appropriate connection to the container, thus allowing retrieval

of ambient properties. The preceding code ensures that RecreateControlWindow is only called once,

when the control is initially created as the container loads the control.

How do I change the actual Name value of my control (VB’s Name property)?

The Name property that Visual Basic uses is the control’s actual coc lass name. To quickly change this

exposed name, modify your control’s coclass interface name. The following example shows where this

name is located in the .ODL file. I’ve changed the name from Ccc to SomethingElse.

// Class information for CCccCtrl

[uuid(3B082A53~6888—1lCF—A4EE—524153480001),

helpstring(“Ccc”), control)

‘Céclass Svmethéngfiléiew
{

[default] dispinterface _DCcc;

[default, source] dispinterface _DCccEvents;

) ;

NFLE 1009 - Page 319

NFLE 1009 - Page 320

em e; CHAPTER 13

I’m having trouble registering my control. What can I do?

The most common problem you’ll encounter when attempting to register a control is the absence of DLLs

that the control depends on (such as MFC40.DLL). If you’re still having problems after ensuring that the

right DLLs are installed, you can simulate what REGSVR32.EXE does with the following code. This tech-

nique allows you to trace through and see exactly where things are going awry.

//

// RegisterServer takes as a parameter the

// explicit path and filename of the OLE

// server that you want to register.

// E.g., c:\winnt\system32\clock.ocx

// This function loads the DLL/OCX and calls

// the DllRegisterServer function.

//

DWORD RegisterServer(char* szPath)

{

HINSTANCE hInstance ::LoadLibrary(szPath);

if (== hInstance)

i

return ::GetLastError();

l

typedef void (FAR PASCAL *REGSERVER)(VOid);

REGSERVER RegServer =

(REGSERVER) ::GetProcAddress(hInstance,

__T(“DllRegisterServer”));

if (0 == RegServer)

{

:zFreeLibrary(hInstance);

return ::GetLastError();

}

RegServer();

::FreeLibrary(hInstance);

return 0;

)

Can I create an instance of my control with Visual Basic’s CreateObiect function?

I’ve included this question because it was asked four times in a matter of days. It’s also nice to know that

you can use your ActiveX controls as automation servers if necessary. The main attraction of this approach is

NFLE 1009 - Page 320

NFLE 1009 - Page 321

ActiveX Control Frequently Asked Questions a @‘E 3

that it provides dynamic creation of the control. Using most tools, your control must be placed on a form

during the design phase. If you use Visual Basic’s CreateObj ect function, there are no design-time depen-

dencies within your Visual Basic project. This flexibility, however, comes with a significant cost. Using your

control as an automation server will negate two of the most important features of ActiveX controls: events

and persistence.

Visual Basic’s CreateObj ect function creates an instance of an automation server. It uses the standard

COM APIs to create the instance and then query for the server’s IDispatch. ActiveX controls are automa—

tion servers. However, they also implement a number of other COM~based interfaces and expect to be active

within a container. The primary difference between a standard automation server and an ActiveX control is

that the control natively supports events and provides a persistence mechanism for its properties (through
its container).

By default, a control expects to have a control site containing various interfaces, but CreateObj ect

cannot provide them. COleControl does, however, provide a way for a control to behave as just an

automation server; you need only override COleControl: :IsInvokeAllowed and return TRUE. This

technique allows you to use CreateObj ect on your control, although you must be sure that everything

will still work without any persistence or event support. You can check for this condition by testing the state

of the m__bInitiali zed flag. If it is FALSE, the control has not been initialized via the standard container

persistence mechanism. The following code allows your control to behave as an automation server and

exposes a property, IsControl, that indicates its state:

BOOL CFAQCtrl: IsInvokeAllowed(DISPID dispid)

(

return TRUE;

l

BOOL CFAQCtrl::GetIsControlD

{

// If in design mode don’t display the property

// in the property browser. Throw the

// CTLuEWGETNOTSUPPORTED exception instead.

if (! AmbientUserMode())

{

GetNotSupported();

l

// m_bInitialized indicates whether the container's

// persistence mechanism was used to load the control.

// If it is FALSE, we are acting as an automation server.

return m_bInitialized;

)

Once you’ve set up your control to work as an automation server, you need to instantiate it. By default,

ControlWizard creates a ProgTD for controls as PROJECT . PROJECTCtrl . 1. This is specified in the IMPLE—

NFLE 1009 - Page 321

NFLE 1009 - Page 322

:614 t CHAPTER 13

MENT__OLECREATE_EX macro, so it’s easy to change. To create an instance of your control in Visual Basic,

you would do something like this:

Dim objFAQCtrl as Object

Set objFAQCtrl = CreateObject(“FAQ.FAQCtrl.1")

‘ Do something with the control instance

objFAQCtrl.IsControl

‘ Now release it

Set objFAQCtrl = Nothing

 @EE §§§Wfiée§

If you have other ActiveX control questions, be sure to check out the FAQ I maintain at

http:/ /www.sky.net/ ~toma/faq.htm. If the answer isn’t there, send your question to me at toma@sky.net

or tom@widgetware.com. I’ll do my best to answer it in a timely manner. I also encourage you to contribute

any specific issues that you’ve encountered or special tricks that you’ve learned while grappling with

ActiveX control development. As product development timelines continue to shrink and the technologies

that we use become more complex, we must do what we can to maintain our productivity.

NFLE 1009 - Page 322

NFLE 1009 - Page 323

The CD—ROM contains the source code for all the example programs discussed in the book. The structure of

the CD-ROM is illustrated in Figure A.1. I have not included a setup program to copy the files from the CD—

ROM; a simple XCOPY command will allow you to select those items that you are interested in. For exam-

ple, to copy the complete CD-ROM contents to your hard drive, create a directory (e.g., XBOOK), and issue

the following XCOPY command. Of course, you will have to substitute your actual hard drive and CD—ROM
device letter.

c: \Xbook\XCOPY d: * . * /s

This will create the directory structure shown in Figure A.1 under your XBOOK directory. The contents of

each directory are detailed here.

 \ (Root)

\Win16 \Misc ‘ \www I \examplei

v e a [m\chap2 \chap2

\Wilkins... 1 ,mm

\chaps i \chap3 l
\MuIti

\chap11 \chap12

\chap12 \chap13

Figure A.l CD-ROM hierarchy.

@‘E 5 NFLE 1009 - Page 323

NFLE 1009 - Page 324

em a AEEENDIX A

i in i é fiirecsery
I’ve included the source files and projects from the first edition of the book for those interested in developing

16~bit ActiveX controls. Each chapter directory contains a Visual C++ version 1.52b make file for the exam-

ple projects and controls.

iEsa pies airectary
The \examples subdirectories contain all the Visual C++ project files for the example programs. Table A.1

details the contents of each directory.

Table A.l \Example Directory Contents

Path Description

\examples\chap2\express

\examples\chap3

\examples\chap4\sewer

\examples\chap4\client

\examples\chap5\sewer

\examples\chap5\client

\examples\chap6\Autosvr

\examples\chap6\sewer

\examples\chap6\client

\examples\chap6\VcC|ient

\examples\chap6\vbc|ient

\examples\chap6\vbdriver

\examples\chap8\postit

\examples\chap8\vb

\examples\chap9\clock

\examples\chap9\contain

\examples\chapl O\eedit

\examples\chapl O\vb

\examples\chapi O\treev

\examples\chapl l\pipe

Contains the initial EXPRESS.H and EXPRESS.CPP tiles. The make tile included here works with

Visual C++ and is built as a Win32 console application.

Visual C++ project tiles tor the Chapter 3 project.

Visual C++ project tiles tor the Chapter A SERVER project,

Visual C++ project tiles tor the Chapter A CLIENT project.

Visual C++ project tiles tor the Chapter 5 SERVER project.

Visual C++ project tiles tor the Chapter 5 CLIENT project.

The project tiles tor the MFC-based automation sewer we developed in Chapter 6.

The project tiles tor the non-MFC automation sewer.

The project tiles tor the non-MFC automation client.

MFC-based automation client.

Visual Basic automation client example. This Visual Basic example uses the non-MFC automa-
tion sewer.

Visual Basic automation client driver example. This Visual Basic example demonstrates access-

ing the MFC-based local sewer.

Visual C++ project tiles tor the POSTlT control.

Project tiles tor the Visual Basic example program that uses the POSTIT control.

Visual C++ project tiles tor the analog CLOCK control.

Visual C++ project tiles tor the CONTAlN container example.

Visual C++ project tiles tor the EEDIT control.

Visual Basic project that uses the EEDIT control.

Visual C++ project tiles tor the TREEV control.

Visual C++ project tiles tor the PlPE control.

NFLE 1009 - Page 324

NFLE 1009 - Page 325

CD-ROM Instructions ¢ 6'? 7

Table A.l \Example Directory Contents (continued)

Put Description

\examples\chapl l\vb Proiect tiles For the three Visual Basic example programs that use the PIPE control.

\examples\chapl 2\async Visual C++ project tiles For the ASYNC control.

\examples\chap12\htm HTML tiles using the sample control.

\examples\chapl 3\FAQ Visual C++ proiect tiles for the FAQ control.

 Eisectery
The \W directory contains an HTML—based page that contain references to ActiveX resources on the

Web. Just load up the DEFAULTHTM file in your browser.

“Misc Diseases?!
The \misc directory contains additional sample control source not directly discussed in the text. For starters,

there is great example of a control acting as a container for other controls in the \Misc\Will<ins hierarchy.

Bob Wilkins (bob@havana.demon.co.uk) developed this example, and it demonstrates several useful tech-

niques for embedding controls within another control. For the latest information on this example, check out

his Web site at: http: / /www.netlinl<.co.uk/users/havana/projectshtml.

The \Multi directory contains a control that demonstrates embedding multiple Windows controls
within one ActiveX control.

Table A2 \Misc Directory Contents

Put DescriEtion

\Misc\Will<ins\xwdcell, The XWDCELL directory contains Bob’s cell control. The XWDGRID directory contains the grid

\Misc\Will<ins\xwdgrid, control that is actually a control container that contains a number of XWDCELL controls.

\Misc\Will<ins\vbtest The VBTEST directory contains a Visual Basic executable that implements a crossword puzzle.

\Misc\Multi A simple control that demonstrates how to embed multiple Windows controls within one ActiveX
control. The control contains a multiline EDIT control and a BUTTON control.

NFLE 1009 - Page 325

NFLE 1009 - Page 326

Wammvwzmww WMVAWWWW’X¢Wwwmwfw“m"Wilt/Wm;/wwmmw”WWNMWWAMW'WWSWSKVM””‘7

 eeiye g sees a atiaea

The ActiveX SDK contains several documents that are instrumental to understanding ActiveX control and

related technologies. Following is a list of the major documents:

OLE Controls/COM Objectsfor the Internet

Internet Component Download Specification

Asynchronous Moniker Specification

Component Categories Specification

OLE Controls 96 Specification

OLE Control and Container Guidelines Version 2.0

URL Monikers Specification

ActiveX SDK On-line Help

: 9

ea a; sessions

Armstrong, Tom, ”Frequently Asked Questions—With Answers—«About ActiveX Controls,”

Component Builder, (July and August 1996).

Andrews, Mark, C++ Windows NT Programming, New York, NY: M&T Books, 1994.

Blaszczak, Mike, ”Implementing OLE Control Containers with MFC and the OLE Control

Developer’s Kit,” Microsoft Systems journal (April 1995).

Blaszczak, Mike, MFC 4 Programming with Visual C++, Chicago, IL: Wrox Press Ltd., 1996.

61 9

NFLE 1009 - Page 326

NFLE 1009 - Page 327

629 ”a, APPENDIX B ~ mm . W .

Brockschmidt, Kraig, Inside OLE, second edition, Redmond, WA: Microsoft Press, 1995.

Brockschmidt, Kraig, ”OLE Integration Technologies,” Dr. Dobb’s Special Report: The Interoperable

Objects Revolution (Winter 1994/1995).

Cargill, Torn, C++ Programming Style, Reading, MA: Addison—Wesley, 1992.

Chappell, David, Understanding ActiveX and OLE, Redmond, WA: Microsoft Press, 1996.

Cilwa, Paul, and Duntemann, Jeff, Windows Programming Power with Custom Controls, Scottsdale, AZ:

The Coriolis Group, 1994.

DiLascia, Paul, ”OLE Made Almost Easy: Creating Containers and Servers Using MFC 2.5,” Microsoft

Systems journal (April 1994).

Eckel, Bruce, C++ Inside 8 Out, Berkeley, CA: Osborne McGraW-Hill, 1993.

Entsminger, Gary, The Tao of Objects, New York, NY: M&T Books, 1990.

Goodman, Kevin]., Windows NT: A Developer’s Guide, New York, NY: M&T Books, 1994.

Harris, Lawrence, Teach Yourself OLE Programming in 21 Days, Indianapolis IN: Sams Publishing,
1995.

Helman, Paul, and Veroff, Robert, Intermediate Problem Solving and Data Structures, Menlo Park, CA:

The Benjamin/Cummings Publishing Company, Inc., 1986.

Kruglinski, David]., Inside Visual C++, second edition, Redmond, WA: Microsoft Press, 1994.

Lang, Eric, ”Building Component Software with Visual C++ and the OLE Control Developer’s Kit,”

Microsoft Systems journal (September 1994).

Meyers, Scott, Efi‘ective C++, Reading, MA: Addison—Wesley, 1992.

Microsoft Developer Network (MSDN) CD-ROM, Redmond, WA: Microsoft, 1995.

The MSDN CD-ROM is produced every quarter and distributed to MSDN members. It contains a

tremendous amount (600 MB) of developer—oriented material: white papers, complete books, numer~

ous program examples, back issues of MS], and so on. Every serious WindOWs developers should

subscribe to this service. Following are some example items:

NFLE 1009 - Page 327

NFLE 1009 - Page 328

Bibliography é é? l

OLE Control Developer’s Kit: User’s Guide & Reference, Redmond, WA: Microsoft Press, 1994.

OLE Programmer’s Reference Volume One, Redmond, WA: Microsoft Press, 1996.

OLE Automation Programmer’s Reference Volume Two, Redmond, WA: Microsoft Press, 1996.

Petzold, Charles, Programming Windows 3.1, third edition, Redmond, WA: Microsoft Press, 1992.

Prosise, Jeff, ”Wake Up and Smell the MFC: Using the Visual C++ Classes and Application

Framework,” Microsoft Systems journal (June 1995).

Richter, Jeffrey M., Windows 3.1: A Developer’s Guide, New York, NY: M&T Books, 1992.

Williams, Sara, and Kindel, Charlie, ”The Component Object Model,” Dr Dobb’s Special Report: The

Interoperable Objects Revolution (Winter 1994/1995).

NFLE 1009 - Page 328

NFLE 1009 - Page 329

/Automation switch, 268
__stdcall, 160
abstract class, C++, 40, 115
ActiveX, 188—189

compared to OLE, 1, 12, 113, 151, 187-
189

compared to COM, 187-189
ActiveX Automation. See Automation

ActiveX Control Pad, 576—581
ActiveX Controls, xxv, 291-334

and component categories. See
component categories

adding custom events, 380-381
adding custom methods, 379-380
adding stock events, 377-379
adding stock methods, 379
adding stock properties, 357-363
and Automation, 294, 307-310

as software components, 294
debugging, 391
drawing, 354-355
drawing in design-mode, 514-516
error handling, 540-542
events, 315-318

custom, 318, 380—381

freezing, 319, 533-535
maps, 379, 442
standard, 317
stock, 377

functional categories, 305-319
interfaces, 298—299, 306-319
Internet-aware, 294, 305, 549-582

licensing, 350-353
methods, 310-311

Refresh, 310, 379
DoClick, 310, 379

properties, 307-310
ambient, 298, 308-309, 373—377

data path, 554, 567-571
design-time-only, 543
enumerating values, 488-490
extended, 323

read-only, 519
run—time-only, 542
persistence, 314—315
serializing, 381-383
standard, 307-308
stock, 307-308

Appearance, 359
BackColor, 308, 359

BorderStyle, 308, 360
Caption, 308, 358, 360
Enabled, 308, 361
Font, 308
ForeColor, 308, 360
Hwnd, 308, 361

ReadyState, 556
Text, 308, 358, 360

property pages, 311-314, 490-494
modifying custom, 366-372, 490-494
stock, 372

property sheets, 311
reflected window messages, 468-471
registering, 355
registry entries, 323-326
serialization, 381

subclassing. See subclassing Windows
controls

testing,
ambient properties, 376-377
in the Test Container, 356, 363, 428

metafile representation, 425-428
toolbar bitmap, modification, 357
Wes, 294

ActiveX Scripting, 188
AddRef. See IUnknownzzAddRef

AFX_MANAGE_STATE macro, 344-346

623

AFXCMNH, 498
AfxDllCanUnloadNow, 219

AfxDllGetClassObject, 218, 344
AFXOLEH, 180
AfxOlelnit, 196

AfxOleLockApp, 207
AfxOleUnlockApp, 207
AFXPRIVH, 171—175, 589

AfoegisterControlClass, 387
AfonregisterControlClass, 387
AfoerifyLicFile, 353
AFXWINH, 200

aggregation. See Component Object Model,
the ambient properties. See ControlContainers and ActiveX Controls

applets, 6, 14—15
application frameworks, 6, 78-79
application generators, 80
applications as components, 10—13
AppWizard. See Visual C++
ASSERT macro, 109
ASSERTJ’OINTER macro, 109
ASSERT_KINDOF macro, 109

asynchronous monikers‘ See monikers.
Automation, xxv, 12, 221-289

(See also IDispatch)
and inheritance, 266

automating an MFC application, 279—287
controllers, 222, 245

data types, 228-230
properties and methods, 226, 230
standard application properties, 287
wrapping C++ classes with, 256-262

B

Beep, 484
BEGIN_1NTERFACE_MAP macro, 203
BEGIN,INTERFACE_PART macro, 202
BEGIN_MESAGE_MAP macro, 103

NFLE 1009 - Page 329

NFLE 1009 - Page 330

924. 4 INDEX

BEGIN_OLEFACTORY macro, 349, 351
BEGIN_PROPPAGEIDS macro, 372

binary standard, 4, 7-8, 56, 114, 145, 187
Binding

in Automation, 222—223, 271-273

late vs. early in C++, 38, 41
BITMAP structure, 515
black box, xxiv
BN_CLICKED, 101—104, 282, 469-471

Browser. Sec Internet Explorer
BSTR, 161, 171, 240

C

C++, the language, 17-76
and application frameworks, 78-79
and interface implementations, 127—132
and reuse, 3, 9, 17, 54-56

and software complexity, xxiii, 6
class composition, 31, 45—47, 71—73

class nesting, 133—137, 202—208
classes, 18-20

abstract, 40, 115
static members, 26, 51-54

constructors, 20—23

copy constructors, 50
destructors, 24-26
inheritance, 3, 26-31, 55

multiple, 44-45
when to use, 30-31

interface vs. implementation, 56-57
keywords,

const, 47
friend, 130

private, 19-20, 31—34
protected, 19—20, 31-34
public, 19—20, 31—34
static, 26, 51-54
this, 49, 127, 136

mangling 3, 6-8, 37
methods, 19
offsetof macro, 135-137, 204

operators

assignment, 50
delete, 23-24

multiple scoping, 135
new, 23-24

overloading, 51
overloading, 36-38
overriding, 34-36
problems with, 6—7

references, 47
structures, 20
virhial functions, 38-41

in COM, 114-121

pure, 40, 1 15
Vtable, 41-43, 115

CAB files, 560—561

CAsyncMonikerFile, 564
CATEGORYINFO structure, 330-331
CATlD, 327
CATlD_Control, 328

CATlD_DocObject, 328
CATlD_lnsertable, 328

CATlD_InternetAware, 329, 557-558
CATlDfiPersists”, 329, 557
CATlD_Printable, 328

CATlD_Programmable, 328
CATlD_PropertyNotifyControl, 329
CATlD_RequiresDataPathHost, 557, 573
CATlD_SafeForlnitialiZing, 557-559
CATlD_SafeForScripting, 557—558
CATlD_SimpleFrameControl, 329
CATlD_VBDataBound, 329
CATlD_VBFormat, 329
CATlD_VBGetControl, 329

CATID__WindowlessObject, 329
CAUUID structure, 312

CBitmap, 399, 419, 515
CBitmap::CreateCompatibleBitmap, 400
CBitrnap::GetObject, 515
CBi’tmapzzLoadBitmap, 515
CBrush, 397-398, 475
CComboBox, 194

CCdearget, 104, 197-210, 256-266
CCdearget::EnabIeAutomation, 263-266
CCdearget::External“ methods, 205
CCdearget::FromlDispatch, 588, 590
CCdearget::lnternal“ methods, 205
CCdearget::OnFinalRelease, 207
CCmdTarget::MemberIDFromName, 265
CDataPathProperty, 564, 567-571
CDataPathProperty::OnDataAvailable, 564,

569-571

CDC, 354, 395—398, 423-425
CDC::BitBlt, 423-425

CDC::CreateCompatibleDC, 418, 423-424
CDC::DPtoHlMETRIC, 418
CDC::DrawText, 355, 360

CDC::Ellipse, 397, 400
CDC::ExtTextOut, 397
CDC::FillRect, 355

CDC::GetDeviceCaps, 418—419
CDC::LineTo, 405
CDC::MoveTo, 405

CDC::SelectObject, 397
CDC::SelectStockObject, 397
CDC::SetBkMode, 355

CDC::SetTextAlign, 397
CDC::SetTextColor, 355

CDC::SetWindowOrg, 407
CDialog, 192, 246, 365
CDialog::DoModal, 195
CDialog::OnlnitDialog, 194, 248, 444, 596
CDocTernplate, 85, 91
CDocument, 85-89, 280

CDocument::UpdateAllViews, 285
CF_METAFILEPICT, 427
CFile, 53-54, 570
CFont, 399
CFontHolder, 374
CFontHolder::lnitializeFont, 376
CFormView, 84-86, 97, 177, 279

CFormView::OnlnitialUpdate, 90, 99
CFrameWnd, 85, 90

ClmageList, 500
CImageList::SetBkColor, 502
class identifier (CLSID), 137, 214, 553
ClassWizard, See Visual C++

clipping region, Windows, 402
CListBox, 30
CloseHandle, 532

CLSIDFromProgID, 139, 192
CMainFrame, 90
CMainFrame::l’reCreateWindow, 100
CMetafileDC, 427

CMultiDocTemplate, 91
CObject, 30, 35, 45, 109-111
CObList, 71, 534, 599
CoBuildVersion, 152, 179

COchanager, 434, 443
CoCreateGuid, 138
CoCreatelnstance, 145, 154, 244, 248, 553,

555

CoCreatelnstanceEx, 154

code signing, 563
CODEBASE attribute, 559-562

CoGetClassObject, 144-145, 153, 176, 182,
210, 268

CoGetClassObjectFromURL, 559—562
Colnitialize, 152, 179, 196
COleControl, 319-322, 346-350
COleControl::AmbientBackColor,

COleControl:AmbientDisplayName, 428,

NFLE 1009 - Page 330

NFLE 1009 - Page 331

479

COleControl::AmbientFont,
COleControl::AmbientForeColor,
COleCont'rol::AmbientUIDead, 415
COleControl::AmbientUserMode, 415, 539,

611

COleControl::BoundPropertyChanged, 368,607

COleControl::DoPropExchange, 348, 381—
383, 480—481, 504, 524, 593

COleControl::DoSuperc1assPaint, 458—459,478

COleControl::GetBackColor, 359
COleControl::GetClientSite, 609

COleControl::GetNotSupported, 520, 542
COleCont'rol::GetReadyState, 564
COleControlzzGetText, 360

COleControl:zInternalSetReadyState, 564
COleControl::InternalGetText, 360, 480
COleControlzzlnvalidateControl, 358, 366,
375

ColeControl::IsInvokeAllowed, 613
ColeCont'rol::IsSubclassedControl, 458

COleControlzzOnAmbientPropertyChange,
318, 374-375, 413

COleControl::OnCreate, 413
COleControl::OnDraw, 348, 354-355
COleControl::OnDrawMetafile, 426—428
COleControl::OnFreezeEvents, 519, 533-534

COleControl::OnGetDisplayStrings, 597,601-604

COleControl::OnGetPredefinedStrings, 597,
601-604

COleControl::OnGetPredefinedValue, 597,
601—604

COleControl::OnMapPropertyToPage,604—606

COleControl::OnResetState, 348, 479481
COleControl::OnSetClientSite, 519, 539, 611
COleControl::OnSetExtent, 416-419, 517,
584

COleControlz:OnSetFont, 360-361

COleControl::OnSetObjectRects, 584, 587
COleControl::PreCreateWindoW, 457,

461-465, 495-496, 566
COleControl::RecreateControlWindow,

463—465, 505, 539, 611

COleControl::SelectFontObject, 376
COleControl::SelectStockFont, 361
COleControl::SetControlSize, 584—586, 600
COleControl::SetInitialSize, 354, 418, 584

COleControl::SetNotSupported, 519, 542
COleControl::SetRectlnContainer, 587
COleControl::ThrowError, 519, 540-543

COleCont'rol::TranslateColor, 360, 397
COleControlContainer, 433
COleConti'olSite, 433—434
COleControlModule, 342-346
COleDataTime, 431—432, 442

COleDispatchDriver, 254, 274-279, 439
COleDispatcllep, 263-265
COleFont, 438

COleObjectFactory, 197, 211—218, 267, 344,
351, 353

COleObjectFactory::Register, 215
COleObjectFactory::RegisterAll, 215, 268
COleObjectFactory::Revoke, 216
COleObjectFactoryzzRevokeAll, 216
COleObjectFactory::UpdateRegistry, 216
COleObjectFactory::UpdateRegistryAll, 216
COleObjECtFactoryEx, 351—353
COleObjectFactoryEx::GetLicenseKey,352-353

COleObjectFactoryEx::VerifyLicenseKey,352-353

COleObjectFactoryExszerifyUserLicense,352—353

COlePicture, 438

COlePropertyPage, 319-322, 363.366, 488,608

COlePropertyPage::DoDataExchange,
365366, 371, 596

COlePropertyPageuGetObjectArray, 588
COlePropertyPage::OnHelp, 608
COlePropertyPage::SetControlStatus, 606
COlePropertyPage::SetPropText, 589
COleTemplateServer, 267
COleVariant, 229
COLORREF, 360, 397

COM. See Component Object Model, the
COMCATH, 391

command messages, 104—105
CommandLinelnfo, 94-95
COMMCTLH, 496

component,
assemblers, 14

based development, 1-15
builders, 14

building with C++, 54-57, 113-114
hardware, xxiii—xxiv
interfaces, 10-11, 114-121
lifetimes, 121
software, xxiii—xxiv
visual vs. non-visual, 223

component categories, 149, 326-333, 343,
386-391

INDEX ¢ @25

component download, 559—562 .
Component Gallery. See Visual C++,
Component Gallery
Component Object Model, the, 113-62,187—190

aggregation, 127, 150, 322
and C++ abstract classes, 115
and C++, 114-117

and C++ class nesting, 133-137, 201—208
and component software, xxiv, 11
and interface implementations, 127-132
and multiple interfaces, 125-137
and Vtables, 114-121
API, 151-156

as a binary standard, 7-11, 114, 187
class factories, 143-145, 210
class identifier (CLSID), 137, 214
client/ server flow, 156-159
containment, 150
custom interface, 149

distributed (DCOM), 148
dual interface, 271-272, 305

GUID. Sec globally unique identifier
housings, 146
11D. See interface identifier

interfaces, 114-125

marshaling, 147-148
standard, 223

reference counting, 121-125, 203
standard interfaces, 117

compound documents. See OLE Documents
connectable objects, 315-318
contract, interface, 57
CONTROLINFO, 318
Control Containers, 297

ambient properties, 305, 309—310
extended controls, 322-323, 384

freezing events, 305, 319, 533-535
history, 299-305
interfaces, 298-299

MFC Support. See Microsoft FoundationClasses

modalities, 297v298

Control, registry entry, 149, 323, 338
control notifications, 102, 461

controlling unknown, 150
ControlWizard, See Visual C++

CoRegisterClassObject, 152, 215
COSERVERINFO structure, 153-155
CoUninitialize, 152, 180, 196
CPen, 398
CPictureHolder, 515—517

NFLE 1009 - Page 331

NFLE 1009 - Page 332

§263 «a» INDEX

CPropExchangezzlsLoading, 480
CREATESTRUCT structure, 458, 462
CreateFile, 512, 528-529

CreateNamedPipe, 512, 531
CreateObject. Sec Visual Basic statements
CreateURLMoniker, 556
CreateWindowEx, 458
CRect, 37, 424

CSingleDocTemplate, 91, 94
CSize, 419

CString, 47—49, 71
CStringttAllocSysString, 251
CStringList, 67, 71-76, 592
CStringStack, 59, 71-76, 171
CTime, 406
CTreeCtrl, 498-509
C:reeC trl::lnsert1tem, 506

CurVer, registry entry, 142

custom controls, xviii
CView, 84, 89, 285286
CViewzzGetDocument, 286

CView::OnUpdate, 285
CWinApp, 85, 91-92, 165, 342
CWinAppzzAddDocTemplate, 94
CWinApp:zEnable3dControls, 93
CWinApp::ExitInstance, 180, 343
CWinAppzzlnitInstance, 92, 166, 179, 215,

218, 267, 342

CWinApp::LoadSthrofileSettings, 93
CWinApp:zProcessShellCommand, 95
CWinApp::Run, 95
CWnd, 30, 101-102, 433-448
CWndzzCreateControl, 433, 443—445

CWndzzGetDlgItem, 108-109
CWnd::GetWindowText, 107-109, 483
CWnd22KillTimer, 380
CWnd::SetFocus, 483

CWnd::SetProperty, 448
CWnd::SendMessage, 467, 498
CWnd::SetTimel‘, 380
CWnd::SetWindowText, 107, 483
CWnd::WindowProc, 104

[II
_DEBUG, 109-110

data path properties, 554, 567671
DDP functions, 371-372, 492-494, 587, 590

DDP_PostProcessing, 371
DDVflMinMaxInt, 494
DDX functions, 371—372, 492—494

DEBUG_NEW, 110

debugging
and in<process servers, 185, 391
and MFC, 109-112
ActiveX controls, 391

DECLAREfiDISPATCI—LMAP, 258, 263
DECLARE_DYNAMIC macro, 110, 212
DECLAREyDYNCREATE macro, 109-111,

212

DECLARE.INTERFACE_MAP macro, 201
DECLARE_MESSAGEwMAP macro, 103
DECLARE_OLECREATE macro, 213
DEC LARE_OLECREATE_EX macro, 365

DECLARE_OLETYPELIB macro, 3492350
DECLAREwPROPPAGEIDS macro, 349

decorating, See C++ mangling
DefWindowProc, 104
DEFINE_GUID macro, 137, 199

delete. Sec C++ operators
DestroyWindow, 248, 448
Developer Studio, 78
development methodologies, 4-6
device context (DC), Windows, 354
device coordinates, 407
device units, 354

dialog units (DLUs), 490
DIANTZEXE, 560

digital signatures, 562—563
DirectX, 113, 189

DisconnectNamedPipe, 532
dispatch map. See Microsoft FoundationClasses

DispatchMessage, 101
DISPPARAMS, 242, 249
DISP_FUNCTION macro, 263
DISP_PROPERTY macro , 263
DISP_PROPERTY_EX macro, 263
DISPID, 224, 234, 249—251, 309
DISPIDfiAMBIEN’LUIDEAD, 415
DISPID_AMBIENT_USERMODE, 415
DISPID_UNKNOWN, 375

dispinterface, 223
DISI’TESTEXE, 243, 385
Distributed COM, 148
DlICanUnloadNow, 155, 167, 343

DllGetClassObject, 155, 166, 176, 182, 210,
343

DllMain, 166

DIIRegisterServer, 216, 343, 355, 386
DllUnregisterServer, 343, 387
document/ view architecture. Sec Microsoft

Foundation Classes

DrawEdge, 495
dual interfaces, COM. See Component
Object Model,

E

encapsulation, 19, 31
enumerated properties, 488-490, 521-522,

594-604

embeddable object, 296
EMHGETLIMITTEXT, 461
EM_SETLIMITTEXT, 461, 466
EN_CHANGE, 461, 469—471
EnableWindow, 361
END_INTERFACE_MAP macro, 204
END_INTERFACE_PART macro, 202
END_MESSAGE_MAP macro, 103
END_OLEFACTORY macro, 349
ES_AUTOHSCROLL, 463
events. See ActiveX Controls

Expression class
accessing with Visual Basic, 243—245
as a C++ class, 19, 57—76

as a COM object, 163, 191
as an ActiveX control, 455

as an Automation component, 231, 255
as an MFC application, 80, 279-287

expression evaluation
infix vs. postfix, 59

extended controls. Sun Control Containers

extern “C”, 8

F
FAILED macro, 162

Feynman, Richard P., 113
flicker-free activation, 302

flicker-free drawing, 302, 419
friend. See C++ keywords
free, 23

function overloading. See overloading
function overriding. See overriding

G
GDI functions. Sec CDC

GetLastError, 531

GetMessage, 101
GetScode, 162

GetWindowLong, 463, 505
globally unique identifier (GUID), 137
GUIDGENEXE, 138

NFLE 1009 - Page 332

NFLE 1009 - Page 333

H

has-a relationships. See C++ class
composition

HIMETRIC units, 303, 417-419, 584—586
HKEY_CLASSES_ROOT, 140, 327
HRESULT, 118, 160—162
HTML, 5, 15, 295, 315, 549-553, 576-580

and ActiveX controls, 551-553

object element, 552, 559, 577

param element, 553

IBindStatusCallback, 556
ICatInformation, 332—333

ICatRegister, 329
IClassFactory, 143, 166, 183, 197, 207, 306
IClassFactory::CreateInstance, 143-145, 183,

207

IClassFactory::Locl<Server, 143-145, 167,
207

IClassFactory2, 306, 349-353
IConnectionPoint, 301, 315—317
IConnectionPointContainer, 301, 315-317

IDataObject, 300, 306, 427
IDispatch, 149, 200, 223-226, 301, 307, 588

and ambient properties, 309
and dual interfaces, 271
and events, 315-318

binding, 222—223, 271-273
MFC implementation, 254—273
non-MFC implementation, 231—243

IDispatch::GetIDsOfNames, 225-226,
236—237, 249, 309, 371

IDispatch::GetTypeInfo, 226, 236
IDispatch::GetTypeInfoCount, 226, 236
IDispatchzzlnvoke, 224—225, 237-243, 250,
309, 371

IFont, 375
IFontHolder, 375
lMoniker, 556
IMPLEMENT_DYNAMIC macro, 110
IMPLEMENT_DYNCREATE macro,

109-111, 214
IMPLEMENT_OLECREATE macro, 212-214
IMPLEMENT_OLECREATE_EX macro,

366, 614
IMPLEMENT_OLETYPELIB macro, 349

in-place activation, 296
in—process server, 146
INF files, 560—561
InitCommonControls, 566

infix, expressions, 57
inheritance and reuse, 2—4, 9, 55
INITGUIDH, 138

InprocServer(32), registry entry, 142, 324
Insertable, registry entry, 142, 149, 324, 338
inside-out object, 296
instance, 20

integrated circuit (IC), xxiii-xxiv
INTERFACE_PART macro, 204
interface contract, 57
interface identifier (IID), 137

interface implementations, 127—132
interface maps, MFC, 201—210
Internet,

and ActiveX controls, xxv, 14—15, 188,
305, 549-582
and MFC, 79, 564

and software development, 1, 14-15
~aware controls, 294, 549-582

Internet Explorer, 13, 295, 305, 509, 549,
563, 581

Internet Search Path, 561-562

IObjectSafety, 558
IOleCache, 307
IOleClientSite, 433, 609
IOleContainer, 433
IOleControl, 300, 318, 533

IOleInPlaceActiveObject, 300, 303, 307
IOleInPlaceFrame, 433

IOleInPlaceObject, 300, 306
IOleInPlaceSite, 302, 433
IOleInPlaceSiteEx, 302
IOleInPlaceSiteWindowless, 303
IOleItelnContainer, 609

IOleObject, 300, 306, 610
IOleObjectzzcetMiscStatus, 350, 585
IOleObjectzzcetExtent, 587
IOleView, 302, 306, 326

IPerPropertyBrowsing, 301, 597-607
IPersistPropertyBag, 303, 314, 553
IPersistStorage, 300, 314
IPersistStream, 300, 314
IPersistStreamInit, 300, 314
IPointerInactive, 302, 340

lPropertyBag, 314
IPropertyNotifySink, 368, 376
IPropertyPage::SetObjects, 588
IPropertyPage2, 301, 313
IPropertyPageSite, 313
IProvideClassInfo, 300, 317, 350
IQuickActivate, 303

INDEX fififii

is-a relationships, 30, 45, 71-73
IsEqualCLSID, 139
IsEquaIGUID, 139
IsEqualIID, 139
ISimpleFrameSite, 319, 332
ISpecifyPropertyPages, 301, 312
IUnknown, 117-137, 150-151, 200

IUnknown::QueryInterface, 117-125
IUnlmown::AddRef, 117-125
IUnknownzzRelease, 117—125

IViewObjectzzDraw, 587
IViewObject2, 300
IViewObjectEx, 302, 303

1
Java, 1—6, 15, 43, 550

L
local servers, 146-148, 266

LocalServer32, registry entry, 142
LRPC, 148

M
Macintosh, 4, 79
malloc, 23

mangling. See C++ mangling
mapping modes, Windows, 406-407
marshaling. See Component Object Model,the

memory management,
in C++, 20-25

metafiIes, 395, 425-428
metafiles, enhanced, 427
METHOD_MANAGE_STATE macro, 346
METHODwPROLOGUE macro, 135-137,
208

MFC - See Microsoft Foundation Class
Libraries

Microsoft Foundation Class Libraries, xxv, 6

ActiveX container support, 433—449
and ActiveX, 187—191
and ActiveX controls, 319-322, 433
and ASSERTs, 109

and class nesting, 125, 133-137, 202
and COM-based interfaces, 125, 187-191

and IDispatch, 254-255, 266-268
and inheritance, 30, 45, 125
and OLE, 187-191

and portability, 4, 79
and Visual C++, 78

application class hierarchy, 31

NFLE 1009 - Page 333

NFLE 1009 - Page 334

628 6 INDEX

as an application framework, 78-79
classes. See ”name" of class

debugging techniques, 24, 109—111
dispatch maps, 255, 262—266
document/view architecture, 81, 86-91,
280-287

drawing classes, 395-400
interface maps, 201-210
message maps, 100~104
window message flow, 105

MIDL.EXE, 150

MiscStatus, registry entry, 324—325
MkParseDisplayNameEx, 556
MKTYPLIBEXE, 150

MM_TEXT, mapping mode, 407
monikers, 555

asynchronous, 549, 555
URL, 556

multiple inheritance
and C++, See C++ inheritance
and COM, 126-127
and MFC, 45

multiple scoping operator, C++, 135
MULTLQI structure, 154

N
named pipes, Win32, 511-513
new. See C++ operators
NotInsertable, registry entry, 142

0

object. See software object
object HTML element. See HTML.
Object Description Language (ODL),

149—150, 268-271, 430, 595, 607, 611

Object Linking and Embedding See OLE
object—oriented languages, xxiv, 5‘6
objectoriented systems, 7
Objective-C, 44
OCM__COMMAND, 470-472
OCM_CTLCOLOR, 473—476
OCM_CTLCOLORBTN, 607
OCX. See ActiveX Controls

ODL. See Object Description Language
offsetof, C macro, 135-137
OLE, 1, 188

compared to ActiveX, 1, 12, 113,
187-191

compared to COM, 113, 187—191
Compound Documents. See OLE

Documents
OLE Automation. See Automation

OLE Control specifications, 78, 299302, 305
OLE Documents, 11, 188, 291-299, 306
OLE_COLOR, 360, 397
OLE2VER.H, 179
OLEVIEW.EXE, 142, 176
Olelnitialize, 196
OLEMISC bits, 306
OLEMISC_ACTIVATEWHENVISIBLE,

338, 412, 414
OLEMISC_AC’ISLIKEBU'ITON, 318
OLEMISC_INVISIBLEATRUNTIME, 514
OLEM1$C_RECOMPOSEONRESIZE, 585
OLEMISC_SIMPLEFRAME, 319, 339

OnReadyStateChange, 556
out-of—process server. See local server
overloading

C++ constructors, 37
C++ functions, 36-38

C++ operators, 51
overriding

C++ functions, 34-36

outside—in object, 296

P
param HTML element. See HTML.
PeekNamedPipe, 536—539
pipes, Win32. See named pipes.
pixels. See device units
polymorphism, xxiv, 38, 115
postfix, expressions, 59
program 1D (ProgID), 139, 142, 214, 447
ProgID, registry entry, 142, 325
ProgIDFromCLSID, 139
property pages. See ActiveX Controls,
property pages.

pThis pointer, 136-137
PURE macro, 160

pure virtual functions. See C++ virtual
functions

PX_” functions, 382-383

Q
QueryInterface. See IUnknown

R
chounds, 354, 402, 420
rcInvalid, 420, 424-425
ReadFile, 538—539
Release. See IUnknown::Release

reference counting. See Component Object
Model, the

reflector window, 469

REGEDITEXE, 140-142, 175
REGSVR32.EXE, 217, 355, 612

registry, the Windows, 139-142, 355
remove procedure calls (RFC), 139, 147
remote server, 146—148
ResultFromScode, 162
reuse, 2—4, 9-10

and is—a relationships, 45, 55, 71-73
and portability, 4
types of, 3
via C++ classes, 54-56
via inheritance, 3

RGB macro, 398
Rich Edit control, 453, 565-567
RICHEDITH, 496
RTF control. See Rich Edit control.

RTTI. See runtime type identification
run-time type identification, 110, 212—213
RUNTIME_CLASS macro, 94, 213

S
SafeArray, 230, 608-609
SCODE. See HRESULT

self registration, 304
serialization. See ActiveX Controls

SetWindowLong, 454, 463, 504
SetWindowPos, 584
SIZEL structure, 416, 585
Smalltalk, 3-6, 43-44, 49

software component (See also component)
and reuse, 3
defined, 9-10

software object, 9
and C++, 18, 114

SOM. See System Object Model
static members. See C++ classes

STDMETHOD macro, 159-161
STDMETHODIMP macro, 159-161

subclassing, Windows controls, 339,453455

problems with, 478
Windows 95, 496-509

SUCCEEDED macro, 162

SysAllocString, 175
SysFreeStiing, 185
System Object Model, 3, 7
SysTreeView32, 498

T
T2COLE macro, 195, 589
T2OLE macro, 171, 248

NFLE 1009 - Page 334

NFLE 1009 - Page 335

Test Container, the, 356, 363, 428

this. See C++ keywords
Tokenizer class, 67-71, 171

ToolBarBitmap32, registry entry, 325
TRACE macro, 109
Tree View control, 497-509
TV_INSERTSTRUCT, 506

TVS_ styles, 503
type information. See Object Description
Language

TypeLib, registry entry, 326
type library. See Object Description
Language

U
UI-active, 295, 356
Unicode, 171-176, 237, 589
UNIX, 4, 79

universally unique identifier (UUID), 137
USES_CONVERSION macro, 175, 248, 589
URL. See uniform resource locator.

uniform resource loca tor (URL), 549
UUIDGENEXE, 138

V
VARIANT, 228-230, 240, 252

VariantChangeType, 241-242
Variantlnit, 240, 251-252

VBScript, 5, 14-15, 305, 551, 576-581
VBX. See Visual Basic custom controls

Verisign, 563
Version, registry entry, 326
virtual functions. See C++ virtual functions

Visual Basic, 139, 146
as a control container, xxiv,
as an automation controller, 222,
243-244, 288

as glue, xxiv
statements and keywords

CreateObject, 139, 227, 244, 289,

558, 612-613
Declare, 8
Me, 49

Nothing, 244
testing ActiveX Controls in, 383-386

Visual Basic custom controls (VBX) , xxiv, 5
Visual C++, xxv, 77—78

a history, 320-322
AppWizard, 80—87

building a Dialog-based EXE, 245,434

building a DLL, 163-164, 231-232
building an MDI EXE, 255-256
building an SDI EXE, 80-84, 177,273-274

generated files, 87
ClassWizard, 99-104

and Automation, 254—262, 273-279,
283

and message maps, 100-104
Component Gallery, 434-441
Developer Studio, 78
editing resources, 97-99, 279-280, 357,
440, 491

ControlWizard, 320, 336-342

generated files, 34?.
options, 336-341

visual editing, 292, 296
visual programming, 5
Vtables,

and message maps, 101—102
and multiple COM interfaces, 125-137
in Automation, 223—224
in C+ +, 41-43
use in COM, 114-121

W
Web, The. See Internet
Win16 vs Win32

ActiveX Control development, 5, 320~322

INDEX 4 $2?

and Visual C++, 77, 320-322

deve10pment, 77, 320-322
DLLs, 166-167
EM_LIMI’I'IEXT, 467

interoperability using COM, 146-148
WM_CTLCOLOR, 461, 476-477

windowless controls, 302

window messages, 102
Windows controls,

EDIT, 460-461
standard, 456
Windows 95, 497

Windows Registry See registry
window style bits, 461-463
WINERRORH, 162, 246

WinHelp, 608
WinMain, 92

WinVerifyTrust, 559
WriteFile, 512, 530-531
WM_CHAR, 482-483
WM_COMMAND, 102
WM_CREATE, 413, 465-466, 499, 571
WM_CTLCOLOR, 469-477
WMADESTROY, 414
WMJNITDIALOG, 193, 444
WM_KILLFOCUS, 482
WM_LBUITONDOWN, 101-104
WM_PAINT, 102, 319, 459
WM_TIMER, 380-381, 412, 535, 538
WS_BORDER, 461, 481
WSwEX_CLIENTEDGE, 359, 495

NFLE 1009 - Page 335

NFLE 1009 - Page 336

About the CD-RGM

With the ever increasing pace of change in the software development industry, there comes the difficulty of

providing samples program that are current as of the latest release of the compiler, SDK, and so on. Luckily,

we now have the Web to make distribution of software rather easy. Please check out my Web site for the

most recent samples at:

http:/ /www.WidgetWare.com

If you need assistance with the samples included on the CD-ROM, or have other questions, check out the

ActiveX control FAQ that I maintain at the URL above. You can contact me with questions and comments

at: tom@WidgetWare.com. I’ll do my best to respond promptly.

Tom Armstrong,

November, 1996

NFLE 1009 - Page 336

NFLE 1009 - Page 337

DESIGNINGAND USING

AGTIVIIX CONTROLS

Master component
automation to transform

any COMiOLE program

into a reusable component
in your project.

- Learn the. MFC application
framework to eliminate

the need to Imild a

foundation for your

projects from scratch

See how the (‘++ language
and the Visual C++

development em’ironment

can be used to effectively

huild software components

Use the CO M to enable

robust component

creation at a system level

Wrap C‘.++ classes with
Automation

Explore the architecture
of a control

' Create each ol‘tlle control

types for desktop and

Internet applications

A ccess FAQs for ma ny
automation and control

development problems

Mfllflmm‘immnfllflm

I’m reading your bookfrom cover to cover currently and I

to say it is exactly what I’ve been lookingfor... I will be

recommending it to all of my colleagues as *the* book to g '

OLE control development, especially ifyoa want to do it via;

MFG. I think that chapters 4 and 5 are worth the price of ill

book alone. Congrats on a great book. inn c.

Microsoft created ActiveX controls as reusable components .'._

can bring Web pages and static programs to life by fusing ne 'h

functions into existing projects. Designing and Using Active 'i‘

Controls teaches you all about component-based developlnefi'

using Visual C++1 the MFC libraries, and the Component 0b
Model.

Learn to build a variety of components from the ground up: = a

simple control, a graphical clock, subclassing standard Windo ='-;__
controls, new Windows 95 common controls. non-visual contr i"

encapsulating the Wil132 Named Pipes AP], and Internet-Aw 1 1'
controls.

The companion CD-ROM includes the source code for all the

example programs in the hook. projects and files for 16-bit A '_-\'. '.

controls. links to Activex resources on the Web, and several 0 i;

useful reusable controls that demonstrate more advanced com: L3 - '-

I In: \nnhl Ito-st. is a software developer and project Icade 'H

DST Systems” Advanced Technologies Group, where he

incorporates ActiveX controls into many programs. He is the.”

author of the acclaimed Designing and Using OLE Custom
Controls {M&T Books, 1995), which served as the foundatio a .-'

this hook. and his Web site (www.WidgctWare.com} is a pop r...

resource about OLE and ActiveX development and Visual nl’:

US $39.95

ISBN 1-553'51ftl—3-B CAN 555.95
H" MM BooksJ A Division oi MlS;Press, Inc.

llllllllllllllllllllllll‘lllllllll l m A Subsidiary of Henry Holt and Company. Inc. .
XOOUZYBF’DD Intermediote.r"AcivonceI:i 115 West lalh Sheet M‘ l-New York, New York 1001 l

- , . ; Cover or! Q “taillightf' I a

thddv' '5 ' 5"! NT Cover design by Gary Szczecitm
NFLE 1009 - Page 337

DESIGNiNG AND USING ACT“.
Used. Very (3°06
502 UTR1992

