
ZTE/SAMSUNG 1008-0280
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Feature selectors are used when enabling or setting features, such as remote wakeup, specific to a device,
interface, or endpoint. The values for the feature selectors are given in Table 9-6.

Table 9-6. Standard Feature Selectors

Feature Selector Recipient Value

DEVICE_REMOTE_WAKEUP Device 1

ENDPOINT _HALT Endpoint 0

TEST_MODE Device 2

If an unsupported or invalid request is made to a USB device, the device responds by returning ST ALL in
the Data or Status stage of the request. If the device detects the error in the Setup stage, it is preferred that
the device returns ST ALL at the earlier of the Data or Status stage. Receipt of an unsupported or invalid
request does NOT cause the optional Halt feature on the control pipe to be set. If for any reason, the device
becomes unable to communicate via its Default Control Pipe due to an error condition, the device must be
reset to clear the condition and restart the Default Control Pipe.

9.4.1 Clear Feature
This request is used to clear or disable a specific feature.

bmRequestType bRequest wValue wlndex wLength Data

252

000000008 CLEAR_FEATURE Feature Zero Zero None
000000018 Selector Interface
000000108 Endpoint

Feature selector values in wValue must be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device, only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients.

A ClearFeature() request that references a feature that cannot be cleared, that does not exist, or that
references an interface or endpoint that does not exist, will cause the device to respond with a Request
Error.

If wLength is non-zero, then the device behavior is not specified.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

This request is valid when the device is in the Address state; references to interfaces
or to endpoints other than endpoint zero shall cause the device to respond with a
Request Error.

This request is valid when the device is in the Configured state.

Note: The Test_ Mode feature cannot be cleared by the ClearFeature() request.

ZTE/SAMSUNG 1008-0281
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

9.4.2 Get Configuration
This request returns the current device configuration value.

bmRequestType bRequest wValue wlndex wLength Data

100000008 GET _CONFIGURATION Zero Zero One Configuration
Value

If the returned value is zero, the device is not configured.

lfwValue, wfndex, or wLength are not as specified above, then the device behavior is not specified.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified .

The value zero must be returned.

The non-zero bConfigurationValue of the current configuration must be returned.

9.4.3 Get Descriptor
This request returns the specified descriptor ifthe descriptor exists.

bmRequestType bRequest wValue wind ex wLength Data

100000008 GET _DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language ID Length
Descriptor (refer to

Index Section 9.6.7)

The wValue field specifies the descriptor type in the high byte (refer to Table 9-5) and the descriptor index
in the low byte. The descriptor index is used to select a specific descriptor (only for configuration and
string descriptors) when several descriptors of the same type are implemented in a device. For example, a
device can implement several configuration descriptors. For other standard descriptors that can be retrieved
via a GetDescriptor() request, a descriptor index of zero must be used. The range of values used for a
descriptor index is from 0 to one less than the number of descriptors of that type implemented by the device.

The wfndex field specifies the Language ID for string descriptors or is reset to zero for other descriptors.
The wlength field specifies the number of bytes to return. lf the descriptor is longer than the wlength field,
only the initial bytes of the descriptor are returned. If the descriptor is shorter than the wLength field, the
device indicates the end of the control transfer by sending a short packet when further data is requested. A
short packet is defined as a packet shorter than the maximum payload size or a zero length data packet (refer
to Chapter 5).

T he standard request to a device supports three types of descriptors: device (also device_ qualifier),
configuration (also other_speed_configuration), and string. A high-speed capable device supports the
device_qualifier descriptor to return information about the device for the speed at which it is not operating
(including wMaxPacketSize for the default endpoint and the number of configurations for the other speed).
The other_speed_configuration returns information in the same structure as a configuration descriptor, but
for a configuration if the device were operating at the other speed. A request for a configuration descriptor
returns the configuration descriptor, all interface descriptors, and endpoint descriptors for all of the

253

ZTE/SAMSUNG 1008-0282
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

interfaces in a single request. The first interface descriptor follows the configuration descriptor. The
endpoint descriptors for the first interface follow the first interface descriptor. If there are additional
interfaces, their interface descriptor and endpoint descriptors follow the first interface's endpoint
descriptors. Class-specific and/or vendor-specific descriptors follow the standard descriptors they extend or
modify.

All devices must provide a device descriptor and at least one configuration descriptor. If a device does not
support a requested descriptor, it responds with a Request Error.

Default state: This is a valid request when the device is in the Default state.

Address state: This is a valid request when the device is in the Address state.

Configured state: This is a valid request when the device is in the Configured state.

9.4.4 Get Interface
This request returns the selected alternate setting for the specified interface.

bmRequestType bRequest wValue wlndex wlength Data

100000018 GET_INTERFACE Zero Interface One Alternate
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to determine the currently selected alternate setting.

If w Value or wLength are not as specified above, then the device behavior is not specified.

lfthe interface specified does not exist, then the device responds with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Address state: A Request Error response is given by the device.

Configured state: This is a valid request when the device is in the Configured state.

9.4.5 Get Status
This request returns status for the specified recipient.

bmRequestType bRequest wValue wlndex wlength Data

254

100000008 GET_STATUS Zero Zero Two Device,
100000018 Interface Interface, or
100000108 Endpoint Endpoint

Status

The Recipient bits of the bmRequestType field specify the desired recipient. The data returned is the current
status of the specified recipient.

ZTE/SAMSUNG 1008-0283
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

IfwValue or wlength are not as specified above, or ifwlndex is non-zero for a device status request, then
the behavior of the device is not specified.

If an interface or an endpoint is specified that does not exist, then the device responds with a Request Error.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

[fan interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

lf an interface or endpoint that does not exist is specified, then the device responds
with a Request Error.

A GetStatus() request to a device returns the information shown in Figure 9-4.

07 I 0 6 I 05 I 04 I 03 I 0 2 0 1 DO

Reserved (Reset to zero) Remote Self
Wakeup Powered

01 5 I 014 I 013 I 012 I 0 11 I 010 09 08

Reserved (Reset to zero)

Figure 9-4. Information Returned by a GetStatusO Request to a Device

The Self Powered field indicates whether the device is currently self-powered. If DO is reset to zero, the
device is bus-powered. IfDO is set to one, the device is self-powered. The Self Powered field may not be
changed by the SetFeature() or ClearFeature() requests.

The Remote Wakeup field indicates whether the device is currently enabled to request remote wakeup. The
default mode for devices that support remote wakeup is disabled. IfDl is reset to zero, the ability of the
device to signal remote wakeup is disabled. If D 1 is set to one, the abi lity of the device to signal remote
wakeup is enabled. The Remote Wakeup field can be modified by the SetFeature() and ClearFeature()
requests using the DEVICE_ REMOTE_ WAKEUP feature selector. This field is reset to zero when the
device is reset.

A GetStatus() request to an interface returns the information shown in Figure 9-5.

0 7 06 05 04 03 02 01 DO

Reserved (Reset to zero)

015 0 14 013 0 12 011 010 0 9 0 8

Reserved (Reset to zero)

Figure 9-5. Information Returned by a GetStatus() Request to an Interface

255

ZTE/SAMSUNG 1008-0284
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

A GetStatus() request to an endpoint returns the information shown in Figure 9-6.

D7 06 D5 D4 D3 D2 D1 DO

Reserved (Reset to zero) Halt

D15 D14 D13 D12 D11 D10 D9 DB

Reserved (Reset to zero)

Figure 9-6. Information Returned by a GetStatusO Request to an Endpoint

The Halt feature is required to be implemented for all interrupt and bulk endpoint types. If the endpoint is
currently halted, then the Halt feature is set to one. Otherwise, the Halt feature is reset to zero. The Halt
feature may optionally be set with the Setfeature(ENDPOINT _HALT) request. When set by the
SetFeature() request, the endpoint exhibits the same stall behavior as ifthe field had been set by a hardware
condition. If the condition causing a halt has been removed, clearing the Halt feature via a
ClearFeature(ENDPOINT _HALT) request results in the endpoint no longer returning a STALL. For
endpoints using data toggle, regardless of whether an endpoint has the Halt feature set, a
ClearFeature(ENDPOINT_HALT) request always results in the data toggle being reinitialized to DATAO.
The Halt feature is reset to zero after either a SetConfiguration() or SetJnterface() request even ifthe
requested configuration or interface is the same as the current configuration or interface.

It is neither required nor recommended that the Halt feature be implemented for the Default Control Pipe.
However, devices may set the Halt feature of the Default Control Pipe in order to reflect a functional error
condition. If the feature is set to one, the device will return STALL in the Data and Status stages of each
standard request to the pipe except GetStatus(), SetFeature{), and ClearFeature() requests. The device need
not return ST ALL for class-specific and vendor-specific requests.

9.4.6 Set Address
This request sets the device address for all future device accesses.

bmRequestType bRequest wValue wlndex wLength Data

256

000000008 SET_ADDRESS Device Zero Zero None
Address

The wValue field specifies the device address to use for all subsequent accesses.

As noted elsewhere, requests actually may result in up to three stages. In the first stage, the Setup packet is
sent to the device. In the optional second stage, data is transferred between the host and the device. In the
final stage, status is transferred between the host and the device. The direction of data and status transfer
depends on whether the host is sending data to the device or the device is sending data to the host. The
Status stage transfer is always in the opposite direction of the Data stage. Ifthere is no Data stage, the
Status stage is from the device to the host.

Stages after the initial Setup packet assume the same device address as the Setup packet. The USB device
does not change its device address until after the Status stage of this request is completed successfully. Note
that this is a difference between this request and all other requests. For all other requests, the operation
indicated must be completed before the Status stage.

If the specified device address is greater than 127, or ifwlndex or wLength are non-zero, then the behavior
of the device is not specified.

ZTE/SAMSUNG 1008-0285
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Device response to SetAddressO with a value of 0 is undefined.

Default state:

Address state:

Configured state:

If the address specified is non-zero, then the device shall enter the Address state;
otherwise, the device remains in the Default state (this is not an error condition).

If the address specified is zero, then the device shall enter the Default state;
otherwise, the device remains in the Address state but uses the newly-specified
address.

Device behavior when this request is received while the device is in the Configured
state is not specified.

9.4.7 Set Configuration
This request sets the device configuration.

bmRequestType bRequest wValue wlndex wlength Data

000000008 SET_ CONFIGURATION Configuration Value Zero Zero None

The lower byte of the wValue field specifies the desired configuration. This configuration value must be
zero or match a configuration value from a configuration descriptor. If the configuration value is zero, the
device is placed in its Address state. The upper byte of the wValue field is reserved.

Ifwlndex, wlength, or the upper byte ofwValue is non-zero, then the behavior of this request is not
specified.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

If the specified configuration value is zero, then the device remains in the Address
state. If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device enters the
Configured state. Otherwise, the device responds with a Request Error.

If the specified configuration value is zero, then the device enters the Address state.
If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device remains in
the Configured state. Otherwise, the device responds with a Request Error.

9.4.8 Set Descriptor
This request is optional and may be used to update existing descriptors or new descriptors may be added.

bmRequestType bRequest wValue wlndex wlength Data

000000008 SET _DESCRIPTOR Descriptor Language ID Descriptor Descriptor
Type and (refer to Length
Descriptor Section 9.6.7)

Index or zero

257

ZTE/SAMSUNG 1008-0286
IPR2018-00111

Universal Serial Hus Specification Revision 2.0

The wValue field specifies the descriptor type in the high byte (refer to Table 9-5) and the descriptor index
in the low byte. The descriptor index is used to select a specific descriptor (only for configuration and string
descriptors) when several descriptors of the same type are implemented in a device. For example, a device
can implement several configuration descriptors. For other standard descriptors that can be set via a
SetDescriptorQ request, a descriptor index of zero must be used. The range of values used for a descriptor
index is from 0 to one less than the number of descriptors of that type implemented by the device.

The wlndex field specifies the Language ID for string descriptors or is reset to zero for other descriptors.
The wLength field specifies the number of bytes to transfer from the host to the device.

The only allowed values for descriptor type are device, configuration, and string descriptor types.

If this request is not supported, the device will respond with a Request Error.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

If supported, this is a valid request when the device is in the Address state.

If supported, this is a valid request when the device is in the Configured state.

9.4.9 Set Feature
This request is used to set or enable a specific feature.

bmRequestType bRequest wValue wlndex wLength Data

258

000000008 SET_FEATURE Feature Test Selector Zero Zero None
000000018 Selector Interface
000000108 Endpoint

Feature selector values in wValue must be appropriate to the recipient. Only device feature selector values
may be used when the recipient is a device; only interface featu re selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used when the recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for which recipients.

The TEST_MODE feature is only defined for a device recipient (i.e., bmRequestType = 0) and the lower
byte ofwlndex must be zero. Setting the TEST_MODE feature puts the device upstream facing port into
test mode. The device will respond with a request error if the request contains an invalid test selector. The
transition to test mode must be complete no later than 3 ms after the completion of the status stage of the
request. The transition to test mode of an upstream facing port must not happen until after the status stage
of the request. The power to the device must be cycled to exit test mode of an upstream facing port of a
device. See Section 7.1.20 for definitions of each test mode. A device must support the TEST_MODE
feature when in the Default, Address or Configured high-speed device states.

A SetFeatureO request that references a feature that cannot be set or that does not exist causes a ST ALL to
be returned in the Status stage of the request.

ZTE/SAMSUNG 1008-0287
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Table 9-7. Test Mode Selectors

Value Description

OOH Reserved

01H Test_J

02H Test_K

03H Test_SEO_NAK

04H Test_Packet

05H Test_Force_Enable

06H-3FH Reserved for standard test selectors

3FH-BFH Reserved

COH-FFH Reserved for vendor-specific test modes.

If the feature selector is TEST_MODE, then the most significant byte of wlndex is used to specify the
specific test mode. The recipient of a Setfeature(TEST_MODE .. .) must be the device; i.e., the lower byte
of wfndex must be zero and the bmRequestType must be set to zero. The device must have its power cycled
to exit test mode. The valid test mode selectors are listed in Table 9-7. See Section 7.1.20 for more
information about the specific test modes.

If wLength is non-zero, then the behavior of the device is not specified.

If an endpoint or interface is specified that does not exist, then the device responds with a Request Error.

Default state: A device must be able to accept a SetFeature(TEST_MODE, TEST_SELECTOR)
request when in the Default State. Device behavior for other SetFeature requests
while the device is in the Default state is not specified.

Address state: If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

Configured state: This is a valid request when the device is in the Configured state.

9.4.10 Set Interface
This request allows the host to select an alternate setting for the specified interface.

bmRequestType bRequest wValue wlndex wlength Data

000000018 SET_INTERFACE Alternate Interface Zero None
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to select the desired alternate setting. If a device only supports a default setting for the
specified interface, then a STALL may be returned in the Status stage of the request. This request cannot be
used to change the set of configured interfaces (the SetConfiguration() request must be used instead).

If the interface or the alternate setting does not exist, then the device responds with a Request Error. If
wLength is non-zero, then the behavior of the device is not specified.

259

ZTE/SAMSUNG 1008-0288
IPR2018-00111

Default state:

Address state:

Configured state:

Universal Serial Bus Specification Revision 2.0

Device behavior when this request is received while the device is in the Default state
is not specified.

The device must respond with a Request Error.

This is a valid request when the device is in the Configured state.

9.4.11 Synch Frame
This request is used to set and then report an endpoint' s synchronization frame.

bmRequestType bRequest wValue wlndex wlength Data

100000108 SYNCH_FRAME Zero Endpoint Two Frame
Number

When an endpoint supports isochronous transfers, the endpoint may also require per-frame transfers to vary
in size according to a specific pattern. The host and the endpoint must agree on which frame the repeating
pattern begins. The number of the frame in which the pattern began is returned to the host.

If a high-speed device supports the Synch Frame request, it must internally synchronize itself to the zeroth
microframe and have a time notion of classic frame. Only the frame number is used to synchronize and
reported by the device endpoint (i.e., no microframe number). The endpoint must synchronize to the zeroth
microframe.

This value is only used for isochronous data transfers using implicit pattern synchronization. IfwValue is
non-zero or wLength is not two, then the behavior of the device is not specified.

If the specified endpoint does not support this request, then the device will respond with a Request Error.

Default state:

Address state:

Configured state:

Device behavior when this request is received while the device is in the Default state
is not specified.

The device shall respond with a Request Error.

This is a valid request when the device is in the Configured state.

9.5 Descriptors

260

USB devices report their attributes using descriptors. A descriptor is a data structure with a defined format.
Each descriptor begins with a byte-wide field that contains the total number of bytes in the descriptor
followed by a byte-wide field that identifies the descriptor type.

Using descriptors allows concise storage of the attributes of individual configurations because each
configuration may reuse descriptors or portions of descriptors from other configurations that have the same
characteristics. In this manner, the descriptors resemble individual data records in a relational database.

Where appropriate, descriptors contain references to string descriptors that provide displayable information
describing a descriptor in human-readable form. The inclusion of string descriptors is optional. However,
the reference fields within descriptors are mandatory. If a device does not support string descriptors, string
reference fields must be reset to zero to indicate no string descriptor is available.

If a descriptor returns with a value in its length field that is less than defined by this specification, the
descriptor is invalid and should be rejected by the host. If the descriptor returns with a value in its length

ZTE/SAMSUNG 1008-0289
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

field that is greater than defined by this specification, the extra bytes are ignored by the host, but the next
descriptor is located using the length returned rather than the length expected.

A device may return class- or vendor-specific descriptors in two ways:

1. If the class or vendor specific descriptors use the same fonnat as standard descriptors (e.g., start with a
length byte and followed by a type byte), they must be returned interleaved with standard descriptors in
the configuration information returned by a GetDescriptor(Configuration) request. In this case, the
class or vendor-specific descriptors must follow a related standard descriptor they modify or extend.

2. If the class or vendor specific descriptors are independent of configuration information or use a non
standard format, a GetDescriptor() request specifying the class or vendor specific descriptor type and
index may be used to retrieve the descriptor from the device. A class or vendor specification will
define the appropriate way to retrieve these descriptors.

9.6 Standard USB Descriptor Definitions
The standard descriptors defined in this specification may only be modified or extended by revision of the
Universal Serial Bus Specification.

Note: An extension to the USB 1.0 standard endpoint descriptor has been published in Device Class
Specification for Audio Devices Revision 1.0. This is the only extension defined outside USB Specification
that is allowed. Future revisions of the USB Specification that extend the standard endpoint descriptor will
do so as to not conflict with the extension defined in the Audio Device Class Specification Revision 1.0.

9.6.1 Device
A device descriptor describes general information about a USB device. It includes information that applies
globally to the device and all of the device's configurations. A USB device has only one device descriptor.

A high-speed capable device that has different device information for full-speed and high-speed must also
have a device_qualifier descriptor (see Section 9.6.2).

The DEVICE descriptor of a high-speed capable device has a version number of2.0 (0200H). If the device
is full-speed only or low-speed only, this version number indicates that it will respond correctly to a request
for the device_qualifier desciptor (i.e., it will respond with a request error).

The bcdUSB field contains a BCD version number. The value of the bcdUSB field is OxJJMN for version
JJ.M .N (JJ - major version number, M - minor version number, N - sub-minor version number), e.g.,
version 2.1.3 is represented with value Ox0213 and version 2.0 is represented with a value of Ox0200.

The bNumConfigurations field indicates the number of configurations at the current operating speed.
Configurations for the other operating speed are not included in the count. If there are specific
configurations of the device for specific speeds, the bNumConfigurations field only reflects the number of
configurations for a single speed, not the total number of configurations for both speeds.

If the device is operating at high-speed, the bMaxPacketSizeO field must be 64 indicating a 64 byte
maximum packet. High-speed operation does not allow other maximum packet sizes for the control
endpoint (endpoint 0).

All USB devices have a Default Control Pipe. The maximum packet size of a device's Default Control Pipe
is described in the device descriptor. Endpoints specific to a configuration and its interface(s) are described
in the configuration descriptor. A configuration and its interface(s) do not include an endpoint descriptor
for the Default Control Pipe. Other than the maximum packet size, the characteristics of the Default
Control Pipe are defined by this specification and are the same for all USB devices.

The bNumConfigurations field identifies the number of configurations the device supports. Table 9-8 shows
the standard device descriptor.

261

ZTE/SAMSUNG 1008-0290
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Table 9-8. Standard Device Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant DEVICE Descriptor Type

2 bcdUSB 2 BCD USB Specification Release Number in
Binary-Coded Decimal (i.e .. 2.10 is 21 OH).
This field identifies the release of the USB
Specification with which the device and its
descriptors are compliant.

4 bOeviceC!ass 1 Class Class code (assigned by the USB-IF).

If this field is reset to zero, each interface
within a configuration specifies its own
class information and the various
interfaces operate independently.

If this field is set to a value between 1 and
FEH, the device supports different class
specifications on different interfaces and
the interfaces may not operate
independently. This value identifies the
class definition used for the aggregate
interfaces.

If this field is set to FFH, the device class
is vendor-specific.

5 bDeviceSubClass 1 Subclass Subclass code (assigned by the USB-IF).

These codes are qualified by the value of
the bDeviceClass field.

If the bDeviceClass field is reset to zero,
this field must also be reset to zero.

If the bOeviceClass field is not set to FFH,
all values are reserved for assignment by
the USB-IF.

262

ZTE/SAMSUNG 1008-0291
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Table 9-8. Standard Device Descriptor (Continued)

Offset Field Size Value Description

6 bDeviceProtoco/ 1 Protocol Protocol code (assigned by the USB-IF).
These codes are qualified by the value of
the bDeviceC/ass and the
bDeviceSubClass fields. If a device
supports class-specific protocols on a
device basis as opposed to an interface
basis, this code identifies the protocols
that the device uses as defined by the
specification of the device class.

If this field is reset to zero, the device
does not use class-specific protocols on a
device basis. However, it may use class-
specific protocols on an interface basis.

If this field is set to FFH, the device uses a
vendor-specific protocol on a device basis.

7 bMaxPacketSizeO 1 Number Maximum packet size for endpoint zero
(only 8, 16, 32, or 64 are valid)

8 idVendor 2 ID Vendor ID (assigned by the USS-IF)

10 idProduct 2 ID Product ID (assigned by the manufacturer)

12 bcdDevice 2 BCD Device release number in binary-coded
decimal

14 iManufacturer 1 Index Index of string descriptor describing
manufacturer

15 iProduct 1 Index Index of string descriptor describing
product

16 iSeria/Number 1 Index Index of string descriptor describing the
device's serial number

17 bNumConfigurations 1 Number Number of possible configurations

263

ZTE/SAMSUNG 1008-0292
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

9.6.2 Device_Qualifier
The device_qualifier descriptor describes information about a high-speed capable device that would
change if the device were operating at the other speed. For example, if the device is currently operating
at full-speed, the device_qualifier returns information about how it would operate at high-speed and
vice-versa. Table 9-9 shows the fields of the device_qualifier descriptor.

Table 9-9. Device_ Qualifier Descriptor

Offset Fie ld Size Value Description

0 bLength 1 Number Size of descriptor

1 bDescriptorType 1 Constant Device Qualifier Type

2 bcdUSB 2 BCD USB specification version number (e.g.,
0200H for V2.00)

4 bDeviceC/ass 1 Class Class Code

5 bDeviceSubClass 1 Subclass Subclass Code

6 bDeviceProtoco/ 1 Protocol Protocol Code

7 bMaxPacketSizeO 1 Number Maximum packet size for other speed

8 bNumContigurations 1 Number Number of Other-speed Configurations

9 bReserved 1 Zero Reserved for future use, must be zero

The vendor, product, device, manufacturer, product, and serialnumber fields of the standard device
descriptor are not included in this descriptor since that information is constant for a device for all supported
speeds. The version number for this descriptor must be at least 2.0 (0200H).

The host accesses this descriptor using the GetDescriptor() request. The descriptor type in the
GetDescriptor() request is set to device_qualifier (see Table 9-5).

If a full-speed only device (with a device descriptor version number equal to 0200H) receives a
GetDescriptor() request for a device_qualifier, it must respond with a request error. The host must not make
a request for an other _speed_ configuration descriptor unless it first successfully retrieves the
device_qualifier descriptor.

9.6.3 Configuration

264

The configuration descriptor describes information about a specific device configuration. The descriptor
contains a bConfigurationValue field with a value that, when used as a parameter to the SetConfiguration()
request, causes the device to assume the described configuration.

The descriptor describes the number of interfaces provided by the configuration. Each interface may
operate independently. For example, an ISDN device might be configured with two interfaces, each
providing 64 Kb/s bi-directional channels that have separate data sources or sinks on the host. Another
configuration might present the ISDN device as a single interface, bonding the two channels into one
128 Kb/s bi-directional channel.

When the host requests the configuration descriptor, all related interface and endpoint descriptors are
returned (refer to Section 9.4.3).

ZTE/SAMSUNG 1008-0293
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

A USB device has one or more configuration descriptors. Each configuration has one or more interfaces
and each interface has zero or more endpoints. An endpoint is not shared among interfaces within a single
configuration unless the endpoint is used by alternate settings of the same interface. Endpoints may be
shared among interfaces that are part of different configurations without this restriction.

Once configured, devices may support limited adjustments to the configuration. If a particular interface has
alternate settings, an alternate may be selected after configuration. Table 9-10 shows the standard
configuration descriptor.

Table 9-10. Standard Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant CONFIGURATION Descriptor Type

2 wTota/Length 2 Number Total length of data returned for this
configuration. Includes the combined length
of all descriptors (configuration, interface,
endpoint, and class- or vendor-specific)
returned for this configuration.

4 bNumlnterfaces 1 Number Number of interfaces supported by this
configuration

5 bConfigurationVa/ue 1 Number Value to use as an argument to the
SetConfiguration() request to select this
configuration

6 iConfiguration 1 Index Index of string descriptor describing this
configuration

265

ZTE/SAMSUNG 1008-0294
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Table 9-10. Standard Configuration Descriptor (Continued)

Offset Field Size Value Description

7 bmAttributes 1 Bitmap Configuration characteristics

07: Reserved (set to one)
06: Self-powered
05: Remote Wakeup
04 ... 0: Reserved (reset to zero)

07 is reserved and must be set to one for
historical reasons.

A device configuration that uses power from
the bus and a local source reports a non-zero
value in bMaxPower to indicate the amount of
bus power required and sets 06. The actual
power source at runtime may be determined
using the GetStatus(DEVICE) request (see
Section 9.4.5).

If a device configuration supports remote
wakeup, 05 is set to one.

8 bMaxPower 1 mA Maximum power consumption of the USB
device from the bus in this specific
configuration when the device is fully
operational. Expressed in 2 mA units
(i.e., 50 = 100 mA).

Note: A device configuration reports whether
the configuration is bus-powered or self-
powered. Device status reports whether the
device is currently self-powered. If a device is
disconnected from its external power source, it
updates device status to indicate that it is no
longer self-powered.

A device may not increase its power draw
from the bus, when it loses its external power
source, beyond the amount reported by its
configuration.

If a device can continue to operate when
disconnected from its external power source, it
continues to do so. If the device cannot
continue to operate, it fails operations it can
no longer support. The USB System Software
may determine the cause of the failure by
checking the status and noting the loss of the
device's power source.

9.6.4 Other_Speed_Configuration

266

The other _speed_ configuration descriptor shown in Table 9-11 describes a configuration of a high
speed capable device if it were operating at its other possible speed. The structure of the
other_speed_configuration is identical to a configuration descriptor.

ZTE/SAMSUNG 1008-0295
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Table 9-11. Other_Speed_Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of descriptor

1 bDescriptorType 1 Constant Other_speed_Configuration Type

2 wTota/Length 2 Number Total length of data returned

4 bNum/nterfaces 1 Number Number of interfaces supported by this speed
configuration

5 bConfigurationVa/ue 1 Number Value to use to select configuration

6 iConfiguration 1 Index Index of string descriptor

7 bmAttributes 1 Bitmap Same as Configuration descriptor

8 bMaxPower 1 mA Same as Configuration descriptor

The host accesses this descriptor using the GetDescriptor() request. The descriptor type in the
GetDescriptor() request is set to other_speed_configuration (see Table 9-5).

9.6.5 Interface
The interface descriptor describes a specific interface within a configuration. A configuration provides one
or more interfaces, each with zero or more endpoint descriptors describing a unique set of endpoints within
the configuration. When a configuration supports more than one interface, the endpoint descriptors for a
particular interface follow the interface descriptor in the data returned by the GetConfiguration() request.
An interface descriptor is always returned as part of a configuration descriptor. Interface descriptors cannot
be directly accessed with a GetDescriptor() or SetDescriptor() request.

An interface may include alternate settings that allow the endpoints and/or their characteristics to be varied
after the device has been configured. The default setting for an interface is always alternate setting zero.
The Setlnterface() request is used to select an alternate setting or to return to the default setting. The
Getlnterface() request returns the selected alternate setting.

Alternate settings allow a portion of the device configuration to be varied while other interfaces remain in
operation. If a configuration has aJternate settings for one or more of its interfaces, a separate interface
descriptor and its associated endpoints are included for each setting.

If a device configuration supported a single interface with two alternate settings, the configuration
descriptor would be followed by an interface descriptor with the blnte1faceNumber and bAlternateSetting
fields set to zero and then the endpoint descriptors for that setting, followed by another interface descriptor
and its associated endpoint descriptors. The second interface descriptor's blnte1faceNumber fie ld would
also be set to zero, but the bA/ternateSetting field of the second interface descriptor would be set to one.

If an interface uses only endpoint zero, no endpoint descriptors follow the interface descriptor. In this case,
the bNumEndpoints field must be set to zero.

An interface descriptor never includes endpoint zero in the number of endpoints. Table 9-12 shows the
standard interface descriptor.

267

ZTE/SAMSUNG 1008-0296
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Table 9-12. Standard Interface Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant INTERFACE Descriptor Type

2 blnterfaceNumber 1 Number Number of this interface. Zero-based
value identifying the index in the array of
concurrent interfaces supported by this
configuration.

3 bAlternateSetting 1 Number Value used to select this alternate setting
for the interface identified in the prior field

4 bNumEndpoints 1 Number Number of endpoints used by this
interface (excluding endpoint zero). If this
value is zero, this interface only uses the
Default Control Pipe.

5 blnterfaceClass 1 Class Class code (assigned by the USB-IF).

A value of zero is reserved for future
standardization.

If this field is set to FFH, the interface
class is vendor-specific.

All other values are reserved for
assignment by the USB-IF.

6 blnterfaceSubClass 1 SubClass Subclass code (assigned by the USB-IF).
These codes are qualified by the value of
the blnterfaceCfass field.

If the blnterfaceC!ass field is reset to zero.
this field must also be reset to zero.

If the blnterfaceClass field is not set to
FFH, all values are reserved for
assignment by the USB-IF.

268

ZTE/SAMSUNG 1008-0297
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Table 9-12. Standard Interface Descriptor (Continued)

Offset Field Size Value Description

7 blnterfaceProtoco/ 1 Protocol Protocol code (assigned by the USB).
These codes are qualified by the value of
the blnterfaceClass and the
blnterfaceSubClass fields. If an interface
supports class-specific requests, this code
identifies the protocols that the device
uses as defined by the specification of the
device class.

If this field is reset to zero, the device
does not use a class-specific protocol on
this interface.

If this field is set to FFH, the device uses
a vendor-specific protocol for this
interface.

8 ilnterface 1 Index Index of string descriptor describing this
interface

9.6.6 Endpoint
Each endpoint used for an interface has its own descriptor. This descriptor contains the information
required by the host to determine the bandwidth requirements of each endpoint. An endpoint descriptor is
always returned as part of the configuration information returned by a GetDescriptor(Configuration)
request. An endpoint descriptor cannot be directly accessed with a GetDescriptor() or SetDescriptor()
request. There is never an endpoint descriptor for endpoint zero. Table 9-13 shows the standard endpoint
descriptor.

Table 9-13. Standard Endpoint Descriptor

Offset Field Size Value Description

0 bLenath 1 Number Size of this descriptor in bytes

1 bDescriotorTvoe 1 Constant ENDPOINT Descriptor Type

2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB device
described by this descriptor. The address is
encoded as follows:

Bit 3 ... 0: The endpoint number
Bit 6 .. .4: Reserved, reset to zero
Bit 7: Direction, ignored for

control endpoints
0 = OUT endpoint
1 =IN endpoint

269

ZTE/SAMSUNG 1008-0298
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Table 9-13. Standard Endpoint Descriptor (Continued)

Offset Fie ld S ize Value Descriptio n

3 bmAttributes 1 Bitmap This field describes the endpoint's attributes when it is
configured using the bConfigurationValue.

Bits 1 .. 0: Transfer Type
00 =Control
01 = Isochronous
10 =Bulk
11 = Interrupt

If not an isochronous endpoint, bits 5 .. 2 are reserved
and must be set to zero. If isochronous, they are
defined as follows:

Bits 3 .. 2: Synchronization Type

00 = No Synchronization
01 = Asynchronous
10 =Adaptive
11 = Synchronous

Bits 5 . .4: Usage Type

00 = Data endpoint
01 = Feedback endpoint
10 =Implicit feedback Data endpoint
11 = Reserved

Refer to Chapter 5 for more information.

All other bits are reserved and must be reset to zero.
Reserved bits must be iQnored bv the host.

270

ZTE/SAMSUNG 1008-0299
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Table 9-13. Standard Endpoint Descriptor (Continued)

Offset Field Size Value Description

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is capable of
sending or receiving when this configuration is
selected.

For isochronous endpoints, this value is used to
reserve the bus time in the schedule, required for the
per-(micro)frame data payloads. The pipe may, on an
ongoing basis, actually use less bandwidth than that
reserved. The device reports, if necessary, the actual
bandwidth used via its normal, non-USB defined
mechanisms.

For all endpoints, bits 10 .. 0 specify the maximum
packet size (in bytes).

For high-speed isochronous and interrupt endpoints:

Bits 12 .. 11 specify the number of additional transaction
opportunities per microframe:

00 = None (1 transaction per microframe)
01 = 1 additional (2 per microframe)
10 = 2 additional (3 per microframe)
11 = Reserved

Bits 15 .. 13 are reserved and must be set to zero.

Refer to Chapter 5 for more information.

6 blnterval 1 Number Interval for polling endpoint for data transfers.
Expressed in frames or microframes depending on the
device operating speed (i.e., either 1 millisecond or
125 µs units).

For full-thigh-speed isochronous endpoints, this value
must be in the range from 1 to 16. The blnterval value
is used as the exponent for a 2""'"""'' value; e.g., a
blnterval of 4 means a period of 8 c2•·1

) .

For full-flow-speed interrupt endpoints, the value of
this field may be from 1 to 255.

For high-speed interrupt endpoints, the blnterval value
is used as the exponent for a 2bl"'""''" value; e.g., a
blnterval of 4 means a period of 8 (2 .. 1) . This value
must be from 1 to 16.

For high-speed bulk/control OUT endpoints, the
blnterval must specify the maximum NAK rate of the
endpoint. A value of O indicates the endpoint never
NAKs. Other values indicate at most 1 NAK each
blnterval number of micro frames. This value must be
in the range from 0 to 255.

See Chapter 5 description of periods for more detail.

The bmAttributes field provides information about the endpoint's Transfer Type (bits 1 .. 0) and
Synchronization Type (bits 3 .. 2). In addition, the Usage Type bit (bits 5..4) indicate whether this is an
endpoint used for normal data transfers (bits 5 .. 4=00B), whether it is used to convey explicit feedback
infom1ation for one or more data endpoints (bits 5 . .4=01B) or whether it is a data endpoint that also serves

271

ZTE/SAMSUNG 1008-0300
IPR2018-00111

272

Universal Serial Bus Specification Revision 2.0

as an implicit feedback endpoint for one or more data endpoints (bits 5.A:=IOB). Bits 5 .. 2 are only
meaningful for isochronous endpoints and must be reset to zero for all other transfer types.

If the endpoint is used as an explicit feedback endpoint (bits 5 . .4=01B), then the Transfer Type must be set
to isochronous (bitsl..O = OlB) and the Synchronization Type must be set to No Synchronization
(bits 3 .. 2=00B).

A feedback endpoint (explicit or implicit) needs to be associated with one (or more) isochronous data
endpoints to which it provides feedback service. The association is based on endpoint number matching. A
feedback endpoint always has the opposite direction from the data endpoint(s) it services. If multiple data
endpoints are to be serviced by the same feedback endpoint, the data endpoints must have ascending
ordered-but not necessarily consecutive-endpoint numbers. The first data endpoint and the feedback
endpoint must have the same endpoint number (and opposite direction). This ensures that a data endpoint
can uniquely identify its feedback endpoint by searching for the first feedback endpoint that has an endpoint
number equal or less than its own endpoint number.

Example: Consider the extreme case where there is a need for five groups of OUT asynchronous
isochronous endpoints and at the same time four groups of IN adaptive isochronous endpoints. Each group
needs a separate fe.edback endpoint and the groups are composed as shown in Figure 9-7.

OUT NrofOUT IN Nr of IN
Group Endpoints Group Endpoints

1 1 6 1

2 2 7 2

3 2 8 3

4 3 9 4

5 3

Figure 9-7. Example of Feedback Endpoint Numbers

The endpoint numbers can be intertwined as illustrated in Figure 9-8.

2 3 4 5 OUT

2 3 4 IN

D Data Endpoint 0 Feedback Endpoint

Figure 9-8. Example ofFeedback Endpoint Relationships

ZTE/SAMSUNG 1008-0301
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

High-speed isochronous and interrupt endpoints use bits 12 . .11 ofwMaxPacketSize to specify multiple
transactions for each microframe specified by blnterval. If bits 12 .. 11 ofwMaxPacketSize are zero, the
maximum packet size for the endpoint can be any allowed value (as defined in Chapter 5). If bits 12 .. 11 of
wMaxPacketSize are not zero (0), the allowed values for wMaxPacketSize bits 10 .. 0 are limited as shown in
Table 9-14.

Table 9-14. Allowed wMaxPacketSize Values for Different Numbers of Transactions per Microframe

wMaxPacketSize wMaxPacketSize
bits 12 .. 11 bits 10 .. 0 Values

Allowed

00 1 -1024

01 513 -1024

IO 683 - 1024

11 NI A; reserved

For high-speed bulk and control OUT endpoints, the blnterval field is only used for compliance purposes;
the host controller is not required to change its behavior based on the value in this field.

9.6. 7 String
String descriptors are optional. As noted previously, if a device does not support string descriptors, all
references to string descriptors within device, configuration, and interface descriptors must be reset to zero.

String descriptors use UNlCODE encodings as defined by The Unicode Standard, Worldwide Character
Encoding, Version 3.0, The Unicode Consortium, Addison-Wesley Publishing Company, Reading,
Massachusetts (URL: http://www.unicode.com). The strings in a USB device may support multiple
languages. When requesting a string descriptor, the requester specifies the desired language using a sixteen
bit language lD (LANGlD) defined by the USB-IF. The list of currently defined USB LANGIDs can be
found at http://www.usb.org/developers/docs.html. String index zero for all languages returns a string
descriptor that contains an array of two-byte LANGlD codes supported by the device. Table 9-15 shows the
LANGlD code array. A USB device may omit all string descriptors. USB devices that omit all string
descriptors must not return an array of LANGID codes.

The array ofLANGlD codes is not NULL-terminated. The size of the array (in bytes) is computed by
subtracting two from the value of the first byte of the descriptor.

Table 9-15. String Descriptor Zero, Specifying Languages Supported by the Device

Offset Field Size Value Description

0 bLength 1 N+2 Size of this descriptor in bytes

1 bDescriptorType 1 Constant STRING Descriptor Type

2 wLANGID{O] 2 Number LANGID code zero

...

N wLANGID{x] 2 Number LANGID codex

273

ZTE/SAMSUNG 1008-0302
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

The UNICODE string descriptor (shown in Table 9-16) is not NULL-terminated. The string length is
computed by subtracting two from the value of the first byte of the descriptor.

Table 9-16. UNICODE String Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes

1 bDescriptorType 1 Constant STRING Descriptor Type

2 bString N Number UNICODE encoded string

9.7 Device Class Definitions
All devices must support the requests and descriptor definitions described in this chapter. Most devices
provide additional requests and, possibly, descriptors for device-specific extensions. In addition, devices
may provide extended services that are common to a group of devices. In order to define a class of devices,
the following information must be provided to completely define the appearance and behavior of the device
class.

9.7.1 Descriptors
If the class requires any specific definition of the standard descriptors, the class definition must include
those requirements as part of the class definition. In addition, ifthe class defines a standard extended set of
descriptors, they must also be fully defined in the class definition. Any extended descriptor definitions must
follow the approach used for standard descriptors; for example, all descriptors must begin with a length
field.

9.7.2 lnterface(s) and Endpoint Usage
When a class of devices is standardized, the interfaces used by the devices, including how endpoints are
used, must be included in the device class definition. Devices may further extend a class definition with
proprietary features as long as they meet the base definition of the class.

9.7.3 Requests
All of the requests specific to the class must be defined.

274

ZTE/SAMSUNG 1008-0303
IPR2018-00111

Universal Serial Bus Specification Revision 2.0

Chapter 10
USB Host: Hardware and Software

The USB interconnect supports data traffic between a host and a USB device. This chapter describes the
host interfaces necessary to facilitate USB communication between a software client, resident on the host,
and a function implemented on a device. The implementation described in this chapter is not required.
This implementation is provided as an example to illustrate the host system behavior expected by a USB
device. A host system may provide a different host software implementation as long as a USB device
experiences the same host behavior.

10.1 Overview of the USB Host

10.1.1 Overview
The basic flow and interrelationships of the USB communications model are shown in Figure 10- 1.

Host

i
Client

USB Bus
Interface

Interconnect

i
~~~-w:~~~~> 

Device 

i 
Function 

USB Bus 
Interface 

Actual communications flow 

·<"4}.~~:~.::.:::::.'.::$> Logical communications flow 

Figure 10-1. Interlayer Communications Model 

The host and the device are divided into the distinct layers depicted in Figure I 0-1. Vertical arrows 
indicate the actual communication on the host. The corresponding interfaces on the device are 
implementation-specific. All communications between the host and device ultimately occur on the 
physical USB wire. However, there are logical host-device interfaces between each horizontal layer. 
These communications, between client software resident on the host and the function provided by the 
device, are typified by a contract based on the needs of the application currently using the device and the 
capabilities provided by the device. 

This client-function interaction creates the requirements for all of the underlying layers and their interfaces. 

275 



ZTE/SAMSUNG 1008-0304 
IPR2018-00111

276 

Universal Serial Bus Specification Revision 2.0 

This chapter describes this model from the point of view of the host and its layers. Figure l 0-2 illustrates, 
based on the overall view introduced in Chapter 5, the host's view of its communication with the device. 

Host Interconnect 

Client 

manages interfaces 

Pipe Bundle 

to an interface 

IRPs Configuration 

USB Driver 

, . I 

HC Driver 
Default Pipe 

IV 
Host 

Controller 

USB Bus 
Interface 

USB System 
manages pipes 

to Endpoint Zero 

..,,·r>a HC- SIE 
Defined 

USB Wire 

Pipe: Represents connection 
abstraction between two horizontal 
layers 

i Interprocess Communication 

Figure 10-2. Host Communications 

r 



ZTE/SAMSUNG 1008-0305 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

There is only one host for each USB. The major layers of a host consist of the following: 

• USB bus interface 

• USB System 

• Client 

The USB bus interface handles interactions for the electrical and protocol layers (refer to Chapter 7 and 
Chapter 8). From the interconnect point of view, a similar USB bus interface is provided by both the USB 
device and the host, as exemplified by the Serial Interface Engine (SIE). On the host, however, the USB 
bus interface has additional responsibilities due to the unique role of the host on the USB and is 
implemented as the Host Controller. The Host Controller has an integrated root hub providing attachment 
points to the USB wire. 

The USB System uses the Host Controller to manage data transfers between the host and USB devices. 
The interface between the USB System and the Host Controller is dependent on the hardware definition of 
the Host Controller. The USB System, in concert with the Host Controller, performs the translation 
between the client's view of data transfers and the USB transactions appearing on the interconnect. This 
includes the addition of any USB feature support such as protocol wrappers. The USB System is also 
responsible for managing USB resources, such as bandwidth and bus power, so that client access to the 
USB is possible. 

The USB System has three basic components: 

• Host Controller Driver 

• USB Driver 

• Host Software 

The Host Controller Driver (HCD) exists to more easily map the various Host Controller implementations 
into the tJSB System, such that a client can interact with its device without knowing to which Host 
Controller the device is connected. The USB Driver (USBD) provides the basic host interface (USBDI) for 
clients to USB devices. The interface between the HCD and the USBD is known as the Host Controller 
Driver Interface (HCDI). This interface is never available directly to clients and thus is not defined by the 
USB Specification. A particular HCDI is, however, defined by each operating system that supports various 
Host Controller implementations. 

The USBD provides data transfer mechanisms in the form ofl/O Request Packets (lRPs), which consist of 
a request to transport data across a specific pipe. Jn addition to providing data transfer mechanisms, the 
USBD is responsible for presenting to its clients an abstraction of a USB device that can be manipulated for 
configuration and state management. As part of this abstraction, the USBD owns the default pipe (see 
Chapter 5 and Chapter 9) through which all USB devices are accessed for the purposes of standard USB 
control. This default pipe represents a logical communication between the USBD and the abstraction ofa 
USB device as shown in Figure 10-2. 

In some operating systems, additional non-USB System Software is available that provides configuration 
and loading mechanisms to device drivers. In such operating systems, the device driver shall use the 
provided interfaces instead of directly accessing the USBDI mechanisms. 

The client layer describes all the software entities that are responsible for directly interacting with USB 
devices. When each device is attached to the system, these clients might interact directly with the 
peripheral hardware. The shared characteristics of the USB place USB System Software between the client 
and its device; that is, a client cannot directly access the device's hardware. 

277 



ZTE/SAMSUNG 1008-0306 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Overall, the host layers provide the following capabilities: 

• Detecting the attachment and removal of USB devices 

• Managing USB standard control flow between the host and USB devices 

• Managing data flow between the host and USB devices 

• Collecting status and activity statistics 

• Controlling the electrical interface between the Host Controller and USB devices, including the 
provision of a limited amount of power 

The following sections describe these responsibilities and the requirements placed on the USBDI in greater 
detail. The actual interfaces used for a specific combination of host platform and operating system are 
described in the appropriate operating system environment guide. 

All hubs (see Chapter 11 ) report internal status changes and their port change status via the status change 
pipe. This includes a notification of when a USB device is attached to or removed from one of their ports. 
A USBD client generically known as the hub driver receives these notifications as owner of the hub's 
Status Change pipe. For device attachments, the hub driver then initiates the device configuration process. 
In some systems, this hub driver is a part of the host software provided by the operating system for 
managing devices. 

10.1.2 Control Mechanisms 
Control information may be passed between the host and a USB device using in-band or out-of-band 
signaling. In-band signaling mixes control information with data in a pipe outside the awareness of the 
host. Out-of-band signaling places control information in a separate pipe. 

There is a message pipe called the default pipe for each attached USB device. This logical association 
between a host and a USB device is used for USB standard control flow such as device enumeration and 
configuration. The default pipe provides a standard interface to all USB devices. The default pipe may 
also be used for device-specific communications, as mediated by the USBD, which owns the default pipes 
of all of the USB devices. 

A particular USB device may allow the use of additional message pipes to transfer device-specific control 
information. These pipes use the same communications protocol as the default pipe, but the information 
transferred is specific to the USB device and is not standardized by the USB Specification. 

The USBD supports the sharing of the default pipe, which it owns and uses, with its clients. It also 
provides access to any other control pipes associated with the device. 

10.1.3 Data Flow 

278 

The Host Controller is responsible for transferring streams of data between the host and USB devices. 
These data transfers are treated as a cont inuous stream of bytes. The USB supports four basic types of data 
transfers: 

• Control transfers 

• Isochronous transfers 

• Interrupt transfers 

• Bulk transfers 

For additional information on transfer types, refer to Chapter 5. 

Each device presents one or more interfaces that a client may use to communicate with the device. Each 
interface is composed of zero or more pipes that individually transfer data between the client and a 
particular endpoint on the device. The USBD establishes interfaces and pipes at the explicit request of the 
Host Software. The Host Controller provides service based on parameters provided by the Host Software 
when the configuration request is made. 



ZTE/SAMSUNG 1008-0307 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

A pipe has several characteristics based on the delivery requirements of the data to be transferred. 
Examples of these characteristics include the following: 

• The rate at which data needs to be transferred 

• Whether data is provided at a steady rate or sporadically 

• How long data may be delayed before delivery 

• Whether the loss of data being transferred is catastrophic 

A USB device endpoint describes the characteristics required for a specific pipe. Endpoints are described 
as part of a USB device's characterization information. For additional details, refer to Chapter 9. 

10.1.4 Collecting Status and Activity Statistics 
As a common communicant for all control and data transfers between the host and USB devices, the USB 
System and the Host Controller are well-positioned to track status and activity information. Such 
information is provided upon request to the Host Software, allowing that software to manage status and 
activity information. This specification does not identify any specific information that should be tracked or 
require any particular format for reporting activity and status information. 

10.1.5 Electrical Interface Considerations 
The host provides power to USB devices attached to the root hub. The amount of power provided by a port 
is specified in Chapter 7. 

10.2 Host Controller Requirements 
In all implementations, Host Controllers perform the same basic duties with regard to the USB and its 
attached devices. These basic duties are described below. 

The Host Control ler has requirements from both the host and the USB. The following is a brief overview 
of the functionality provided. Each capability is discussed in detail in subsequent sections. 

State Handling 

Serializer/Deserializer 

(micro)frame Generation 

Data Processing 

Protocol Engine 

Transmission Error 
Handling 

Remote Wakeup 

As a component of the host, the Host Controller reports and manages 
its states. 

For data transmitted from the host, the Host Controller converts 
protocol and data information from its native format to a bit stream 
transm itted on the USB. For data being received into the host, the 
reverse operation is performed. 

The Host Controller produces SOF tokens at a period of I ms when 
operating with fu ll-speed devices, and at a period of 125 µs when 
operating with high-speed devices. 

The Host Controller processes requests for data transmission to and 
from the host. 

The Host Controller supports the protocol specified by the USB. 

All Host Controllers exhibit the same behavior when detecting and 
reacting to the defined error categories. 

All Host Controllers must have the ability to place the bus into the 
Suspended state and to respond to bus wakeup events. 

279 



ZTE/SAMSUNG 1008-0308 
IPR2018-00111

Root Hub 

Host System Interface 

Universal Serial Bus Specification Revision 2.0 

The root hub provides standard hub function to link the Host 
Controller to one or more USB ports. 

Provides a high-speed data path between the Host Controller and host 
system. 

The following sections present a more detailed discussion of the required capabilities of the Host 
Controller. 

10.2.1 State Handling 
The Host Controller has a series of states that the USB System manages. Additionally, the Host Controller 
provides the interface to the following two areas ofUSB-relevant state: 

• State change propagation 

• Root hub 

The root hub presents to the hub driver the same standard states as other USB devices. The Host Controller 
supports these states and their transitions for the hub. For detailed discussions ofUSB states, including 
their interrelations and transitions, refer to Chapter 9. 

The overall state of the Host Controller is inextricably linked with that of the root hub and of the overall 
USB. Any Host Controller state changes that are visible to attached devices must be reflected in the 
corresponding device state change information such that the resulting Host Controller and device states are 
consistent. 

USB devices request a wakeup through the use of resume signaling (refer to Chapter 7). The Host 
Controller must notify the rest of the host of a resume event through a mechanism or mechanisms specific 
to that system's implementation. The Host Controller itself may cause a resume event through the same 
signaling method. 

10.2.2 Serializer/Deserializer 
The actual transmission of data across the physical USB takes places as a serial bit stream. A Serial 
Interface Engine (SIE), whether implemented as part of the host or a USB device, handles the serialization 
and deserialization of USB transmissions. On the host, this SIB is part of the Host Controller. 

10.2.3 Frame and Microframe Generation 

280 

It is the Host Controller's responsibility to partition USB time into quantities called "frames" when 
operating with full-speed devices, and "microframes" when operating with high-speed devices. Frames and 
microframes are created by the Host Controller through issuing Start-of-Frame (SOF) tokens as shown in 
Figure I 0-3. The SOF token is the first transmission in the (micro )frame period. Host controllers operating 
with high-speed devices generate SOF tokens at 125 µs intervals. Host controllers operating with fuJl
speed devices generate SOF tokens at 1.00 ms intervals. After issuing an SOF token, the Host Controller is 
free to transmit other transactions for the remainder of the (micro)frame period. When the Host Controller 
is in its normal operating state, SOF tokens must be continuously generated at appropriate periodic rate, 
regardless of other bus activity or lack thereof. If the Host Controller enters a state where it is not 
providing power on the bus, it must not generate SOFs. When the Host Controller is not generating SOFs, 
it may enter a power-reduced state. 



ZTE/SAMSUNG 1008-0309 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

(micro)frame N (micro)frame N+1 

~B ~El 1sOFl 
EOF lntefi(-m-icro-)-fra_m_e _N--1) _ _J_....,. __ ~-EO-F~lnl:,:~,(-m-icro_)_fra_m_e_N)-_J__.,.. __ ~E-O_F_ln~terv~micro)frameN•1) j .......... El 
(micro )frame N-1 

Figure 10-3. Frame and Microframe Creation 

The SOF token holds the highest priority access to the bus. Babble circuitry in hubs electrically isolates 
any active transmitters during the End-of-microframe or End-of-Frame (EOF) interval, providing an idle 
bus for the SOF transmission. 

The Host Controller maintains the current (micro)frame number that may be read by the USB System. 

The following apply to the current (micro)frame number maintained by the host: 

• Used to uniquely identify one (micro)frame from another 

• Incremented at the end of every (micro )frame period 

• Valid through the subsequent (micro)frame 

Host controllers operating with full-speed devices maintain a current frame number (at least 11 bits) that 
increments at a 1 ms period. The host transmits the lower 11 bits of the current frame number in each SOF 
token transmission. 

Host controllers operating with high-speed devices maintain a current microframe number (at least 14 bits) 
that increments at a 125 µs period. The host transmits bits 3 through I 3 of the current microframe number 
in each SOF token transmission. This results in the same SOF packet value being transmitted for eight 
consecutive microframes before the SOF packet value increments. 

When requested from the Host Controller, the current (micro)frame number is the (micro)frame number in 
existence at the time the request was fulfilled. The current (micro)frame number as returned by the host 
(Host Controller or HCD) is at least 32 bits, although the Host Controller itself is not required to maintain 
more than 11 bits when operating with full-speed devices or 14 bits when operating with high-speed 
devices. 

The Host Controller shall cease transmission during the EOF interval. When the EOF interval begins, any 
transactions scheduled specifically for the (micro )frame that has just passed are retired. If the Host 
Controller is executing a transaction at the time the EOF interval is encountered, the Host Controller 
terminates the transaction. 

10.2.4 Data Processing 
The Host Controller is responsible for receiving data from the USB System and sending it to the USB and 
for receiving data from the USB and sending it to the USB System. The particular format used for the data 
communications between the USB System and the Host Controller is implementation specific, within the 
rules for transfer behavior described in Chapter 5. 

10.2.5 Protocol Engine 
The Host Controller manages the USB protocol level interface. It inserts the appropriate protocol 
information for outgoing transmissions. It also strips and interprets, as appropriate, the incoming protocol 
information. 

281 



ZTE/SAMSUNG 1008-0310 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

10.2.6 Transmission Error Handling 
The Host Controller must be capable of detecting the following transmission error conditions, which are 
defined from the host 's point of view: 

• Timeout conditions after a host-transmitted token or packet. These errors occur when the addressed 
endpoint is unresponsive or when the structure of the transmission is so badly damaged that the 
targeted endpoint does not recognize it. 

• Data errors resulting in missing or invalid transmissions: 

The Host Controller is unable to completely send or receive a packet for host specific reasons, for 
example, a transmission extending beyond EOF or a lack of resources available to the Host 
Controller. 

An invalid CRC field on a received data packet. 

• Protocol errors: 

An invalid handshake PID, such as a malformed or inappropriate handshake 

A falseEOP 

A bit stuffing error 

For each bulk, control, and interrupt transaction, the host must maintain an error count tally. Errors result 
from the conditions described above, not as a result of an endpoint NAKing a request. This value reflects 
the number of times the transaction has encountered a transmission error. It is recommended that the error 
count not be incremented when there was an error due to host specific reasons (buffer underrun or overrun), 
and that whenever a transaction does not encounter a transmission error, the error count is reset to zero. 

If the error count for a given transaction reaches three, the host retires the transfer. When a transfer is 
retired due to excessive errors, the last error type must be indicated. Isochronous transactions are attempted 
only once, regardless of outcome, and, therefore, no error count is maintained for this type. 

10.2.7 Remote Wakeup 
If USB System wishes to place the bus in the Suspended state, it commands the Host Controller to stop all 
bus traffic, including SOFs. This causes all USB devices to enter the Suspended state. In this state, the 
USB System may enable the Host Controller to respond to bus wakeup events. This allows the Host 
Controller to respond to bus wakeup signaling to restart the host system. 

10.2.8 Root Hub 
The root hub provides the connection between the Host Controller and one or more USB ports. The root 
hub provides the same functionality for dealing with USB topology as other hubs (see Chapter 11 ), except 
that the hardware and software interface between the root hub and the Host Controller is defined by the 
specific hardware implementation. 

10.2.8.1 Port Resets 

282 

Section 7.1.7.5 describes the requirements of a hub to ensure all upstream resume attempts are 
overpowered with a long reset downstream. Root hubs must provide an aggregate reset period of at least 
50 ms. If the reset duration is controlled in hardware and the hardware timer is <50 ms, the USB System 
can issue several consecutive resets to accumulate the specified reset duration as described in 
Section 7 .1. 7.5. 



ZTE/SAMSUNG 1008-0311 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

10.2.9 Host System Interface 
The Host Controller provides a high-speed bus-mastering interface to and from main system memory. The 
physical transfer between memory and the USB wire is performed automatically by the Host Controller. 
When data buffers need to be filled or emptied, the Host Controller informs the USB System. 

10.3 Overview of Software Mechanisms 
The HCD and the·USBD present software interfaces based on different levels of abstraction. They are, 
however, expected to operate together in a specified manner to satisfy the overall requirements of the USB 
System (see Figure 10-2). The requirements for the USB System are expressed primarily as requirements 
for the USBDT. The division of duties between the USBD and the HCD is not defined. However, the one 
requirement of the HCDI that must be met is that it supports, in the specified operating system context, 
multiple Host Controller implementations. 

The BCD provides an abstraction of the Host Controller and an abstraction of the Host Controller's view of 
data transfer across the USB. The USBD provides an abstraction of the USB device and of the data 
transfers between the client of the USBD and the function on the USB device. Overall, the USB System 
acts as a facilitator for transmitting data between the client and the function and as a control point for the 
USB-specific interfaces of the USB device. As part of faci litating data transfer, the USB System provides 
buffer management capabilities and allows the synchronization of the data transmittal to the needs of the 
client and the function. 

The specific requirements for the USBDI are described later in this chapter. The exact functions that fulfill 
these requirements are described in the relevant operating system environment guide for the HCDI and the 
USBDl. The procedures involved in accomplishing data transfers via the USBDI are described in the 
following sections. 

10.3.1 Device Configuration 
Different operating system environments perform device configuration using different software 
components and different sequences of events. The USB System does not assume a specific operating 
system method. However, there are some basic requirements that must be fulfilled by any USB System 
implementation. Jn some operating systems, existing host software provides these requirements. In others, 
the USB System provides the capabilities. 

The USB System assumes a specialized client of the USBD, called a hub driver, that acts as a 
clearinghouse for the addition and removal of devices from a particular hub. Once the hub driver receives 
such notifications, it will employ additional host software and other USBD clients, in an operating system 
specific manner, to recognize and configure the device. This model, shown in Figure 10-4, is the basis of 
the following discussion. 

283 



ZTE/SAMSUNG 1008-0312 
IPR2018-00111

284 

Universal Serial Bus Specification Revision 2.0 

OP.tional 
Com~onent' 

~ Configuration 
Control 

+-~ Optional 
Configuration 
Control 

Device 
Driver 

USBD 

HCD 

Hub 
Driver 

Figure 10-4. Configuration Interactions 

When a device is attached, the hub driver receives a notification from the hub detecting the change. The 
hub driver, using the information provided by the hub, requests a device identifier from the USBD. The 
USBD in tum sets up the default pipe for that device and returns a device identifier to the hub driver. 

The device is now ready to be configured for use. For each device, there are three configurations that must 
be complete before that device is ready for use: 

1. Device Configuration: This includes setting up all of the device's USB parameters and allocating all 
USB host resources that are visible to the device. This is accomplished by setting the configuration 
value on the device. A limited set of configuration changes, such as alternate settings, is allowed 
without totally reconfiguring the device. Once the device is configured, it is, from its point of view, 
ready for use. 

2. USB Configuration: In order to actually create a USBD pipe ready for use by a client, additional USB 
information, not visible to the device, must be specified by the client. This information, known as the 
Policy for the pipe, describes how the client will use the pipe. This includes such items as the 
maximum amount of data the client will transfer with one IRP, the maximum service interval the client 
will use, the client's notification identification, and so on. 

3. Function Configuration: Once configuration types 1 and 2 have been accomplished, the pipe is 
completely ready for use from the USB 's point of view. However, additional vendor- or class-specific 
setup may be required before the client can actually use the pipe. This configuration is a private matter 
between the device and the client and is not standardized by the USBD. 



ZTE/SAMSUNG 1008-0313 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

The following paragraphs describe the device and USB configuration requirements. 

The responsible configuring software performs the actual device configuration. Depending on the 
particular operating system implementation, the software responsible for configuration can include the 
following: 

• The hub driver 

• Other host software 

• A device driver 

The configuring software first reads the device descriptor, then requests the description for each possible 
configuration. It may use the information provided to load a particular client, such as a device driver, 
which initially interacts with the device. The configuring software, perhaps with input from that device 
driver, chooses a configuration for the device. Setting the device configuration sets up all of the endpoints 
on the device and returns a collection of interfaces to be used for data transfer by USBD clients. Each 
interface is a collection of pipes owned by a single client. 

This initial configuration uses the default settings for interfaces and the default bandwidth for each 
endpoint. A USBD implementation may additionally allow the client to specify alternate interfaces when 
selecting the initial configuration. The USB System will verify that the resources required for the support 
of the endpoint are available and, if so, will allocate the bandwidth required. Refer to Section 10.3.2 for a 
discussion of resource management. 

The device is now configured, but the created pipes are not yet ready for use. The USB configuration is 
accomplished when the client initializes each pipe by setting a Policy to specify how it will interact with 
the pipe. Among the information specified is the client's maximum service interval and notification 
information. Among the actions taken by the USB System, as a result of setting the Policy, is determining 
the amount of buffer working space required beyond the data buffer space provided by the client. The size 
of the buffers required is based upon the usage chosen by the client and upon the per-transfer needs of the 
USB System. 

The client receives notifications when lRPs complete, successfully or due to errors. The client may also 
wake up independently of USB notification to check the status of pending IRPs. 

The client may also choose to make configuration modifications, such as enabling an alternate setting for 
an interface or changing the bandwidth allocated to a particular pipe. In order to perform these changes, 
the interface or pipe, respectively, must be idle. 

10.3.2 Resource Management 
Whenever a pipe is setup by the VSBD for a given endpoint, the USB System must determine if it can 
support the pipe. The USB System makes this determination based on the requirements stated in the 
endpoint descriptor. One of the endpoint requirements, which must be supported in order to create a pipe 
for an endpoint, is the bandwidth necessary for that endpoint's transfers. There are two stages to check for 
available bandwidth. First the maximum execution time for a transaction is calculated. Then the 
(micro)frame schedule is consulted to determine ifthe indicated transaction will fit. 

The allocation of the guaranteed bandwidth for isochronous and interrupt pipes, and the determination of 
whether a particular control or bulk transaction will fit into a given (micro)frame, can be determined by a 
software heuristic in the USB System. If the actual transaction execution time in the Host Controller 
exceeds the heuristically determined value, the Host Controller is responsible for ensuring that 
(micro )frame integrity is maintained (refer to Section 10.2.3). The following discussion describes the 
requirements for the USB System heuristic. 

285 



ZTE/SAMSUNG 1008-0314 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

In order to detennine if bandwidth can be allocated, or if a transaction can be fit into a particular 
(micro)frame, the maximum transaction execution time must be calculated. The calculation of the 
maximum transaction execution time requires that the following information be provided: (Note that an 
agent other than the client may provide some of this information.) 

• Number of data bytes (wMaxPacketSize) to be transmitted. 

• Transfer type. 

• Depth in the topology. If less precision is allowed, the maximum topology depth may be assumed. 

This calculation must include the bit transmission time, the signal propagation delay through the topology, 
and any implementation-specific delays, such as preparation or recovery time required by the Host 
Controller itself. Refer to Chapter 5 for examples of fonnu las that can be used for such calculations. 

10.3.3 Data Transfers 
The basis for all client-function communication is the interface: a bundle of related pipes associated with a 
particular USB device. 

Exactly one client on the host manages a given interface. The client initializes each pipe of an interface by 
setting the Policy for that pipe. This includes the maximum amount of data to be transmitted per IRP and 
the maximum service interval for the pipe. A service interval is stated in milliseconds and describes the 
interval over which an IRP's data will be transmitted for an isochronous pipe. It describes the polling 
interval for an interrupt pipe. The client is notified when a specified request is completed. The client 
manages the size of each IRP such that its duty cycle and latency constraints are maintained. Additional 
Policy information includes the notification information for the client. 

The client provides the buffer space required to hold the transmitted data. The USB System uses the Policy 
to determine the additional working space it will require. 

The client views its data as a contiguous serial stream, which it manages in a similar manner to those 
streams provided over other types of bus technologies. Internally, the USB System may, depending on its 
own Policy and any Host Controller constraints, break the client request down into smaller requests to be 
sent across the USB. However, two requirements must be met whenever the USB System chooses to 
undertake such division: 

• The division of the data stream into smaller chunks is not visible to the client. 

• USB samples are not split across bus transactions. 

When a client wishes to transfer data, it will send an IRP to the USBD. Depending on the direction of data 
transfer, a full or empty data buffer will be provided. When the request is complete (successfully or due to 
an error condition), the IRP and its status is returned to the client. Where relevant, this status is also 
provided on a per-transaction basis. 

10.3.4 Common Data Definitions 

286 

In order to allow the client to receive request results as directly as possible from its device, it is desirable to 
minimize the amount of processing and copying required between the device and the client. To facilitate 
this, some control aspects of the IRP are standardized such that different layers in the stack may directly 
use the information provided by the client. The particular format for this data is dependent on the 
actualization of the USBDI in the operating system. Some data elements may in fact not be directly visible 
to the client at all but are generated as a result of the client request. 



ZTE/SAMSUNG 1008-0315 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

The following data elements define the relevant information for a request: 

• Identification of the pipe associated with the request. Identifying this pipe also describes information 
such as transfer type for this request. 

• Notification identification for the particular client. 

• Location and length of data buffer that is to be transmitted or received. 

• Completion status for the request. Both the summary status and, as required, detailed per-transaction 
status must be provided. 

• Location and length of working space. This is implementation-dependent. 

The actual mechanisms used to communicate requests to the USBD are operating system-specific. 
However, beyond the requirements stated above for what request-related information must be available, 
there are also requirements on how requests will be processed. The basic requirements are described in 
Chapter 5. Additionally, the USBD provides a mechanism to designate a group of isochronous IRPs for 
which the transmission of the first transaction of each lRP will occur in the same (micro)frame. The USBD 
also provides a mechanism for designating an uninterruptable set of vendor- or class-specific requests to a 
default pipe. No other requests to that default pipe, including standard, class, or vendor request may be 
inserted in the execution flow for such an uninterruptable set. If any request in this set fails, the entire set is 
retired. 

10.4 Host Controller Driver 
The Host Controller Driver (HCD) is an abstraction of Host Controller hardware and the Host Controller's 
view of data transmission over the USB. The HCDl meets the following requirements: 

• Provides an abstraction of the Host Controller hardware. 

• Provides an abstraction for data transfers by the Host Controller across the USB interconnect. 

• Provides an abstraction for the allocation (and de-allocation) of Host Controller resources to support 
guaranteed service to USB devices. 

• Presents the root hub and its behavior according to the hub class definition. This includes supporting 
the root hub such that the hub driver interacts with the root hub exactly as it would for any hub. In 
particular, even though a root hub can be implemented in a combination of hardware and software, the 
root hub responds initially to the default device address (from a client perspective), returns descriptor 
information, supports having its device address set, and supports the other hub class requests. 
However, bus transactions may or may not need to be generated to accomplish this behavior given the 
close integration possible between the Host Controller and the root hub. 

The HCD provides a software interface (HCDJ) that implements the required abstractions. The function of 
the HCD is to provide an abstraction, which hides the details of the Host Controller hardware. Below the 
Host Controller hardware is the physical USB and all the attached USB devices. 

The HCD is the lowest tier in the USB software stack. The HCD has only one client: the Universal Serial 
Bus Driver (USBD). The USBD maps requests from many clients to the appropriate HCD. A given HCD 
may manage many Host Controllers. 

The HCDI is not directly accessible from a client. Therefore, the specific interface requirements for the 
HCDI are not discussed here. 

10.5 Universal Serial Bus Driver 
The USBD provides a collection of mechanisms that operating system components, typically device 
drivers, use to access USB devices. The only access to a USB device is that provided by the USBD. The 
USBD implementations are operating system-specific. The mechanisms provided by the USBD are 
implemented, using as appropriate and augmenting as necessary, the mechanisms provided by the operating 
system environment in which the USB runs. The following discussion centers on the basic capabilities 

287 



ZTE/SAMSUNG 1008-0316 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

required for all USBD implementations. For specifics of the USBD operation within a specific 
environment, see the relevant operating system environment guide for the USBD. A single instance of the 
USBD directs accesses to one or more HCDs that in turn connect to one or more Host Controllers. If 
allowed, how USBD instancing is managed is dependent upon the operating system environment. 
However, from the client's point of view, the USBD with which the client communicates manages all of 
the attached USB devices. 

10.5.1 USBD Overview 
Clients of USBD direct commands to devices or move streams of data to or from pipes. The USBD 
presents two groups of software mechanisms to clients: command mechanisms and pipe mechanisms. 

Command mechanisms allow clients to configure and control USBD operation as well as to configure and 
generically control a USB device. In particular, command mechanisms provide all access to the device's 
default pipe. 

Pipe mechanisms allow a USBD client to manage device specific data and control transfers. Pipe 
mechanisms do not allow a client to directly address the device's default pipe. 

Figure 10-5 presents an overview of the USBD structure. 

Message 
and 

Stream 
Pipe 

Access 

Services 

Host 
Controller 

Driver 

USB Host 

e -c 
0 
0 

Host 
Controller 

Figure 10-5. Universal Serial Bus Driver Structure 

10.5.1.1 USBD Initialization 

288 

Specific USBD initialization is operating system-dependent. When a particular USB managed by USBD is 
initialized, the management information for that USB is also created. Part of this management information 
is the default address device and its default pipe used to communicate to a newly reset device. 

When a device is attached to a USB, it responds to a special address known as the default address (refer to 
Chapter 9) until its unique address is assigned by the bus enumerator. In order for the USB System to 
interact with the new device, the default device address and the device's default pipe must be available to 
the hub driver when a device is attached. During device initialization, the default address is changed to a 
unique address. 



ZTE/SAMSUNG 1008-0317 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

10.5.1.2 USBD Pipe Usage 
Pipes are the method by which a device endpoint is associated with a Host Software entity. Pipes are 
owned by exactly one such entity on the host. Although the basic concept of a pipe is the same no matter 
who the owner, some distinction of capabilities ·provided to the USBD client occurs between two groups of 
pipes: 

• Default pipes, which are owned and managed by the USBD 

• All other pipes, which are owned and managed by clients of the USBD 

Default pipes are never directly accessed by clients, although they are often used to fulfill some part of 
client requests relayed via command mechanisms. 

10.5.1.2.1 Default Pipes 
The USBD is responsible for allocating and managing appropriate buffering to support transfers on the 
default pipe that are not directly visible to the client such as setting a device address. For those transfers 
that are directly visible to the client, such as sending vendor and class commands or reading a device 
descriptor, the client must provide the required buffering. 

10.5.1.2.2 Client Pipes 
Any pipe not owned and managed by the USBD can be owned and managed by a USBD client. From the 
USBD viewpoint, a single client owns the pipe. In fact, a cooperative group of clients can manage the pipe, 
provided they behave as a single coordinated entity when using the pipe. 

The client is responsible for providing the amount of buffering it needs to service the data transfer rate of 
the pipe within a service interval attainable by the client. Additional buffering requirements for working 
space are specified by the USB System. 

10.5.1.3 USBD Service Capabilities 
The USBD provides services in the following categories: 

• Configuration via command mechanisms 

• Transfer services via both command and pipe mechanisms 

• Event notification 

• Status reporting and error recovery 

10.5.2 USBD Command Mechanism Requirements 
USBD command mechanisms allow a client generic access to a USB device. Generally, these commands 
allow the client to make read or write accesses to one of potentially several device data and control spaces. 
The client provides as little as a device identifier and the relevant data or empty buffer pointer. 

USBD command transfers do not require that the USB device be configured. Many of the device 
configuration facil ities provided by the USBD are command transfers. 

Following are the specific requirements on the command mechanisms provided. 

10.5.2.1 Interface State Control 
USBD clients must be able to set a specified interface to any settable pipe state. Setting an interface state 
results in all of the pipes in that interface moving to that state. Additionally, all of the pipes in an interface 
may be reset or aborted. 

289 



ZTE/SAMSUNG 1008-0318 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

10.5.2.2 Pipe State Control 
USBD pipe state has two components: 

• Host status 

• Reflected endpoint status 

Whenever the pipe status is reported, the value for both components will be identified. The pipe status 
reflected from the endpoint is the result of the endpoint being in a particular state. The USBD client 
manages the pipe state as reported by the USBD. For any pipe state reflected from the endpoint, the client 
must also interact with the endpoint to change the state. 

A USBD pipe is in exactly one of the following states: 

• Active: The pipe's Policy has been set and the pipe is able to transmit data. The client can query as to 
whether any IRPs are outstanding for a particular pipe. Pipes for which there are no outstanding IRPs 
are still considered to be in the Active state as long as they are able to accept new IRPs. 

• Halted: An error has occurred on the pipe. This state may also be a reflection of the corresponding 
Halted endpoint on the device. 

A pipe and endpoint are considered active when the device is configured and the pipe and/or endpoint is 
not stalled. Clients may manipulate pipe state in the following ways: 

• Aborting a Pipe: All of the IRPs scheduled for a pipe are retired immediately and returned to the client 
with a status indicating they have been aborted. Neither the host state nor the reflected endpoint state 
of the pipe is affected. 

• Resetting a Pipe: The pipe's IRPs are aborted. The host state is moved to Active. lfthe reflected 
endpoint state needs to be changed, that must be commanded explicitly by the USBD client. 

• Clearing a Halted pipe: The pipe's state is cleared from Halted to Active. 

• Halting a Pipe: The pipe's state is set to Halted. 

10.5.2.3 Getting Descriptors 
The USBDI must provide a mechanism to retrieve standard device, configuration, and string descriptors, as 
well as any class- or vendor-specific descriptors. 

10.5.2.4 Getting Current Configuration Settings 

290 

The USBDI must provide a facility to return, for any specified device, the current configuration descriptor. 
If the device is not configured, no configuration descriptor is returned. This action is equivalent to 
returning the configuration descriptor for the current configuration by requesting the specific configuration 
descriptor. It does not, however, require the client to know the identifier for the current configuration. 
This will return all of the configuration information, including the following: 

• All of the configuration descriptor information as stored on the device, including all of the alternate 
settings for all of the interfaces 

• Indicators for which of the alternate settings for interfaces are active 

• Pipe handles for endpoints in the active alternate settings for interfaces 

• Actual wMaxPacketSize values for endpoints in the active alternate settings for interfaces 

Additionally, for any specified pipe, the USBDI must provide a facility to return the wMaxPacketSize that 
is currently being used by the pipe. 



ZTE/SAMSUNG 1008-0319 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

10.5.2.5 Adding Devices 
The USBDI must provide a mechanism for the hub driver to infonn USBD of the addition of a new device 
to a specified USB and to retrieve the USBD ID of the new USB device. The USBD tasks include 
assigning the device address and preparing the device's default pipe for use. 

10.5.2.6 Removing Devices 
The USBDI must provide a facility for the hub driver to inform the USBD that a specific device has been 
removed. 

10.5.2.7 Managing Status 
The USBDI must provide a mechanism for obtaining and clearing device-based status on a device, 
interface, or pipe basis. 

10.5.2.8 Sending Class Commands 
This USBDI mechanism is used by a client, typically a class-specific or adaptive driver, to send one or 
more class-specific commands to a device. 

10.5.2.9 Sending Vendor Commands 
This USBDI mechanism is used by a client to send one or more vendor-specific commands to a device. 

10.5.2.1 O Establishing Alternate Settings 
The USBDI must provide a mechanism to change the alternate setting for a specified interface. As a result, 
the pipe handles for the previous setting are released and new pipe handles for the interface are returned. 
For this request to succeed, the interface must be idle; i.e., no data buffers may be queued for any pipes in 
the interface. 

10.5.2.11 Establishing a Configuration 
Configuring software requests a configuration by passing a buffer containing the configuration information 
to the USBD. The USBD requests resources for the endpoints in the configuration, and if all resource 
requests succeed, the USBD sets the device configuration and returns interface handles with corresponding 
pipe handles for all of the active endpoints. The default values are used for all alternate settings for 
interfaces. 

Note: The interface implementing the configuration may require specific alternate settings to be identified. 

10.5.2.12 Setting Descriptors 
For devices supporting this behavior, the USBDI allows existing descriptors to be updated or new 
descriptors to be added. 

10.5.3 USBD Pipe Mechanisms 
This part of the USBDI offers clients the highest-speed, lowest overhead data transfer services possible. 
Higher performance is achieved by shifting some pipe management responsibilities from the USBD to the 
client. As a result, the pipe mechanisms are implemented at a more primitive level than the data transfer 
services provided by the USBD command mechanisms. Pipe mechanisms do not allow access to a device' s 
default pipe. 

USBD pipe transfers are available only after both the device and USB configuration have completed 
successfully. At the time the device is configured, the USBD requests the resources required to support all 

291 



ZTE/SAMSUNG 1008-0320 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

device pipes in the configuration. Clients are allowed to modify the configuration, constrained by whether 
the specified interface or pipe is idle. 

Clients provide full buffers to outgoing pipes and retrieve transfer status information following the 
completion of a request. The transfer status returned for an outgoing pipe allows the cl ient to determine the 
success or failure of the transfer. 

Clients provide empty buffers to incoming pipes and retrieve the filled buffers and transfer status 
information from incoming pipes following the completion of a request. The transfer status returned for an 
incoming pipe allows a client to determine the amount and the quality of the data received. 

10.5.3.1 Supported Pipe Types 
The four types of pipes supported, based on the four transfer types, are described in the following sections. 

10.5.3.1.1 Isochronous Data Transfers 
Each buffer queued for an isochronous pipe is required to be viewable as a stream of samples. As with all 
pipe transfers, the client establishes a Policy for using this isochronous pipe, including the relevant service 
interval for this client. Lost or missing bytes, which are detected on input, and transmission problems, 
which are noted on output, are indicated to the client. 

The client queues a first buffer, starting the pipe streaming service. To maintain the continuous streaming 
transfer model used in all isochronous transfers, the client queues an additional buffer before the current 
buffer is retired. 

The USBD is required to be able to provide a sample stream view of the client's data stream. In other 
words, using the client's specified method of synchronization, the precise packetization of the data is 
hidden from the client. Additionally, a given transaction is always contained completely within some client 
data buffer. 

For an output pipe, the client provides a buffer of data. The USBD allocates the data across the 
(micro )frames for the service period using the client' s chosen method of synchronization. 

For an input pipe, the client must provide an empty buffer large enough to hold the maximum number of 
bytes the client's device will deliver in the service period. Where missing or invalid bytes are indicated, 
the USBD may leave the space that the bytes would have occupied in place in the buffer and identify the 
error. One of the consequences of using no synchronization method is that this reserved space is assumed 
to be the maximum packet size. The buffer-retired notification occurs when the IRP completes. Note that 
the input buffer need not be full when returned to the client. 

The USBD may optionally provide additional views of isochronous data streams. The USBD is also 
required to be able to provide a packet stream view of the client's data stream. 

10.5.3.1.2 Interrupt Transfers 
The Interrupt out transfer originates in the client of the USBD and is delivered to the USB device. The 
Interrupt in transfer originates in a USB device and is delivered to a client of the USBD. The USB System 
guarantees that the transfers meet the maximum latency specified by the USB endpoint descriptor. 

The client queues a buffer large enough to hold the interrupt transfer data (typically a single USB 
transaction). When all of the data is transferred, or ifthe error threshold is exceeded, the JRP is returned to 
the client. 

10.5.3.1 .3 Bulk Transfers 

292 

Bulk transfers may originate either from the device or the client. No periodicity or guaranteed latency is 
assumed. When all of the data is transferred, or if the error threshold is exceeded, the .IRP is returned to the 
client. 



ZTE/SAMSUNG 1008-0321 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

10.5.3.1.4 Control Transfers 
All message pipes transfer data in both directions. In all cases, the client outputs a setup stage to the device 
endpoint. The optional data stage may be either input or output and the final status is always logically 
presented to the host. For details of the defined message protocol, refer to Chapter 8. 

The client prepares a buffer specifying the command phase and any optional data or empty buffer space. 
The client receives a buffer-retired notification when all phases of the control transfer are complete, or an 
error notification, ifthe transfer is aborted due to transmission error. 

10.5.3.2 USBD Pipe Mechanism Requirements 
The following pipe mechanisms are provided. 

10.5.3.2.1 Aborting IRPs 
The USBDI must allow lRPs for a particular pipe to be aborted. 

10.5.3.2.2 Managing Pipe Policy 
The USBDI must allow a client to set and clear the Policy for an individual pipe or for an entire interface. 
Any lRPs made by the client prior to successfully setting a Policy are rejected by the USBD. 

10.5.3.2.3 Queuing IRPs 
The USBDJ must allow clients to queue IRPs for a given pipe. When IRPs are returned to the client, the 
request status is also returned. A mechanism is provided by the USBD to identify a group of isochronous 
lRPs whose first transactions will all occur in the same (micro)frame. 

10.5.4 Managing the USB via the USBD Mechanisms 
Using the provided USBD mechanisms, the following general capabilities are supported by any USB 
System. 

10.5.4.1 Configuration Services 
Configuration services operate on a per-device basis. The configuring software tells the USBD when to 
perform device configuration. A hub driver has a special role in device management and provides at least 
the following capabi lities: 

• Device attach/detach recognition, driven by an interrupt pipe owned by the hub driver 

• Device reset, accomplished by the hub driver by resetting the hub port upstream of the device 

• Tells the USBD to perform device address assignment 

• Power control 

The USBDI additionally provides the following configuration facilities, which may be used by the hub 
driver or other configuring software available on the host: 

• Device identification and access to configuration information (via access to descriptors on the device) 

• Device configuration via command mechanisms 

When the hub driver informs the USBD of a device attachment, the USBD establishes the default pipe for 
the new device. 

293 



ZTE/SAMSUNG 1008-0322 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

10.5.4.1.1 Configuration Management 
Configuration management services are provided primarily as a set of specific interface commands that 
generate USB transactions on the default pipe. The notable exception is the use of an additional interrupt 
pipe that delivers hub status directly to the hub driver. 

Every hub initiates an interrupt transfer when there is a change in the state of one of the hub ports. 
Generally, the port state change will be the connection or removal of a downstream USB device. (Refer to 
Chapter 11 for more information.) 

10.5.4.1 .2 Initial Device Configuration 
The device configuration process begins when a hub reports, via its status change pipe, the connection of a 
new USB device. 

Configuration management services allow configuring software to select a USB device configuration from 
the set of configurations listed in the device. The USBD verifies that adequate power is available and the 
data transfer rates given for all endpoints in the configuration do not exceed the capabilities of the USB 
with the current schedule before setting the device configuration. 

10.5.4.1.3 Modifying a Device Configuration 
Configuration management services allow configuring software to replace a USB device configuration with 
another configuration from the set of configurations listed in the device. The operation succeeds if 
adequate power is available and the data transfer rates given for all endpoints in the new configuration fit 
within the capabilities of the USB with the current schedule. If the new configuration is rejected, the 
previous configuration remains. 

Configuration management services allow configuring software to return a USB device to a Not 
Configured state. 

10.5.4.1.4 Device Removal 
Error recovery and/or device removal processing begins when a hub reports via its status change pipe that 
the USB device has been removed. 

10.5.4.2 Power Control 

294 

There are two cooperating levels of power management for the USB: bus and device level management. 
This specification provides mechanisms for managing power on the USB bus. Device classes may define 
class-specific power control capabilities. 

All USB devices must support the Suspended state (refer to Chapter 9). The device is placed into the 
Suspended state via control of the hub port to which the device is attached. Normal device operation ceases 
in the Suspend State; however, ifthe device is capable of wakeup signaling and the device is enabled for 
remote wakeup, it may generate resume signaling in response to external events. 

The power management system may transition a device to the Suspended state or power-off the device in 
order to control and conserve power. The USB provides neither requirements nor commands for the device 
state to be saved and restored across these transitions. Device classes may define class-specific device state 
save-and-restore capabilities. 

The USB System coordinates the interaction between device power states and the Suspended state. 

It is recommended that while a device is not being used by the system (i.e., no transactions are being 
transmitted to or from the device besides SOF tokens), the device be suspended as soon as possible by 
selectively suspending the port to which the device is attached. Suspending inactive devices reduces 
reliability issues due to high currents passing through a transceiver operating in high-speed mode in the 
presence of short circuit conditions described in Section 7.1.1. Some of these short circuit conditions are 
not detectable in the absence of transactions to the device. Suspending the unused device will place the 



ZTE/SAMSUNG 1008-0323 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

transceiver interface into full-speed mode which has a greater reliability in the presence of short circuit 
conditions. 

10.5.4.3 Event Notifications 
USBD clients receive several kinds of event notifications through a number of sources: 

• Completion of an action initiated by a client. 

• Interrupt transfers over stream pipes can deliver notice of device events directly to USBD clients. For 
example, hubs use an interrupt pipe to deliver events corresponding to changes in hub status. 

• Event data can be embedded by devices in streams. 

9 Standard device interface commands, device class commands, vendor-specific commands, and even 
general control transfers over message pipes can all be used to poll devices for event conditions. 

10.5.4.4 Status Reporting and Error Recovery Services 
The command and pipe mechanisms both provide status reporting on individual requests as they are 
invoked and completed. 

Additionally, USB device status is available to USBD clients using the command mechanisms. 

The USBD provides clients with pipe error recovery mechanisms by allowing pipes to be reset or aborted. 

10.5.4.5 Managing Remote Wakeup Devices 
The USB System can minimize the resume power consumption of a suspended USB tree. This is 
accomplished by explicitly enabling devices capable ofresume signaling and controlling propagation of 
resume signaling via selectively suspending and/or disabling hub ports between the device and the nearest 
self-powered, awake hub. 

Jn some error-recovery scenarios, the USB System will need to re-enumerate sub-trees. The sub-tree may 
be partially or completely suspended. During error-recovery, the USB System must avoid contention 
between a device issuing resume signaling and simultaneously driving reset down the port. Avoidance is 
accomplished via management of the devices' remote wakeup feature and the hubs' port features. The 
rules are as follows: 

• Issue a SetDeviceFeature(DEVICE_REMOTE_ WAKEUP) request to the leaf device, only just prior to 
selectively suspending any port between where the device is connected and the root port (via a 
SetPortFeature(PORT _SUSPEND) request). 

• Do not reset a suspended port that has had a device enabled for remote wakeup without fi rst enabling 
that port. 

• Verify that after a remote wakeup, the devices in the subtree affected by the remote wakeup are sti ll 
present. This will typically be done as part of determining which potential remote wakeup device was 
the source of the wakeup. This should be done to ensure that a suspended device is not disconnected 
(and possibly reconnected) or reset (e.g., by noise) during a suspend/resume process. 

10.5.5 Passing USB Preboot Control to the Operating System 
A single software driver owns the Host Controller. If the host system implements USB services before the 
operating system loads, the Host Controller must provide a mechanism that disables access by the preboot 
software and allows the operating system to gain control. Preboot USB configuration is not passed to the 
operating system. Once the operating system gains control, it is responsible to fully configure the bus. If 
the operating system provides a mechanism to pass control back to the preboot environment, the bus will be 
in an unknown state. The preboot software should treat this event as a powerup. 

295 



ZTE/SAMSUNG 1008-0324 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

10.6 Operating System Environment Guides 
As noted previously, the actual interfaces between the USB System and host software are specific to the host 
platform and operating system. A companion specification is required for each combination of platform and 
operating system with USB support. These specifications describe the specific interfaces used to integrate the 
USB into the host. Each operating system provider for the USB System identifies a compatible Universal USB 
Specification revision. 

296 



ZTE/SAMSUNG 1008-0325 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Chapter 11 
Hub Specification 

This chapter describes the architectural requirements for the USB hub. It contains a description of the three 
principal sub-blocks: the Hub Repeater, the Hub Controller, and the Transaction Translator. The chapter 
also describes the hub's operation for error recovery, reset, and suspend/resume. The second half of the 
chapter defines hub request behavior and hub descriptors. 

The hub specification supplies sufficient additional information to permit an implementer to design a hub 
that conforms to the USB specification. 

11.1 Overview 
Hubs provide the electrical interface between USB devices and the host. Hubs are directly responsible for 
supporting many of the attributes that make USB user friendly and hide its complexity from the user. Listed 
below are the major aspects ofUSB functionality that hubs must support: 

• Connectivity behavior 

• Power management 

• Device connect/disconnect detection 

• Bus fault detection and recovery 

• High-, full-, and low-speed device support 

A hub consists of three components: the Hub Repeater, the Hub Controller, and the Transaction Translator. 
The Hub Repeater is responsible for connectivity setup and tear-down. It also supports exception handling, 
such as bus fault detection and recovery and connect/disconnect detect. The Hub Controller provides the 
mechanism for host-to-hub communication. Hub-specific status and control commands permit the host to 
configure a hub and to monitor and control its individual downstream facing ports. The Transaction 
Translator responds to high-speed split transactions and translates them to full-flow-speed transactions with 
full-/low-speed devices attached on downstream facing ports. 

11.1.1 Hub Architecture 
Figure 11-1 shows a hub and the locations of its upstream and downstream facing ports. A hub consists of a 
Hub Repeater section, a Hub Controller section, and a Transaction Translator section. The hub must 
operate at high-speed when its upstream facing port is connected at high-speed. The hub must operate at 
full-speed when its upstream facing port is connected at full-speed. 

The Hub Repeater is responsible for managing connectivity between upstream and downstream facing ports 
which are operating at the same speed. The Hub Repeater supports full-/low-speed connectivity and high
speed connectivity. The Hub Controller provides status and control and permits host access to the hub. The 
Transaction Translator takes high-speed split transactions and translates them to full-/low-speed transactions 
when the hub is operating at high-speed and has full-flow-speed devices attached. The operating speed of a 
device attached on a downstream facing port determines whether the Routing Logic connects a port to the 
Transaction Translator or hub repeater sections. 

297 



ZTE/SAMSUNG 1008-0326 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Upstream Facing Port State Machines 

Transaction - Hub ! 
Translator Repeater I 

Hub State 
Machines 

......... ~~~~~~~~---' 

·· .. ··············RoY.tingj Logic 
.......... ! 

Port 1 Port2 
Downstream Facing Ports 

Hub 
Controlle 

PortN 

Figure 11-1. Hub Architecture 

Downstream 
Facing Port 
State Machine(s) 

When a hub's upstream fac ing port is attached to an electrical environment that is operating at full-/low
speed, the hub's high-speed functionality is disallowed. This means that the hub will only operate at full
/ low-speed and the transaction translator and high-speed repeater will not operate. In this electrical 
environment, the hub repeater must operate as a full-/low-speed repeater and the routing logic connects 
ports to the hub repeater. 

When the hub upstream facing port is attached to an electrical environment that is operating at high-speed, 
the full-/low-speed hub repeater is not operational. In this electrical environment when a high-speed device 
is attached on downstream facing port, the routing logic will connect the port to the hub repeater and the 
hub repeater must operate as a high-speed repeater. In this case, when a full-/low-speed device is attached 
on a downstream facing port, the routing logic must connect the port to the transaction translator. 

11.1.2 Hub Connectivity 
Hubs exhibit different connectivity behavior depending on whether they are propagating packet traffic, or 
resume signaling, or are in the Idle state. 

11.1.2.1 Packet Signaling Connectivity 

298 

The Hub Repeater contains one port that must always connect in the upstream direction (referred to as the 
upstream facing port) and one or more downstream facing ports. Upstream connectivity is defined as being 
towards the host, and downstream connectivity is defined as being towards a device. Figure I 1-2 shows the 
packet signaling connectivity behavior for hubs in the upstream and downstream directions. A hub also has 
an Idle state, during which the hub makes no connectivity. When in the Idle state, all of the hub's ports are 
in the receive mode waiting for the start of the next packet. 



ZTE/SAMSUNG 1008-0327 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

own stream 
Ports 

Upstream 
Port 

Downstream 
Connectivity 

D Enabled Port 

IZJ Port not Enabled 

Upstream 
Connectivity 

Figure 11-2. Hub Signaling Connectivity 

Idle 
(No Connectivity) 

If a downstream facing port is enabled (i.e., in a state where it can propagate signaling through the hub), and 
the hub detects the start of a packet on that port, connectivity is established in an upstream direction to the 
upstream facing port of that hub, but not to any other downstream facing ports. This means that when a 
device or a hub transmits a packet upstream, only those hubs in line between the transmitting device and the 
host will see the packet. Refer to Section 11.8.3 for optional behavior when a hub detects simultaneous 
upstream signaling on more than one port. 

In the downstream direction, hubs operate in a broadcast mode. When a hub detects the start of a packet on 
its upstream facing port, it establishes connectivity to all enabled downstream facing ports. If a port is not 
enabled, it does not propagate packet signaling downstream. 

11.1.2.2 Resume Connectivity 
Hubs exhibit different connectivity behaviors for upstream- and downstream-directed resume signaling. A 
hub that is suspended reflects resume signaling from its upstream facing port to all of its enabled 
downstream facing ports. Figure 11-3 illustrates hub upstream and downstream resume connectivity. 

Dov.nstream 
Ports 

Downstream Connectivity 

Upstream 
Port 

Souc~ of res.UTe 
aigl.lirQ 

Upstream Connectivity 

Figure 11-3. Resume Connectivity 

D 
IZJ 

Enabled Port 

Disabled or 
Suspended 
Port 

Enabled or 
Suspended 
Port 

299 



ZTE/SAMSUNG 1008-0328 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

If a hub is suspended and detects resume signaling from a selectively suspended or an enabled downstream 
facing port, the hub reflects that signaling upstream and to all of its enabled downstream facing ports, 
including the port that initiated the resume sequence. Resume signaling is not reflected to disabled or 
suspended ports. A detailed discussion of resume connectivity appears in Section 11.9. 

11.1.2.3 Hub Fault Recovery Mechanisms 
Hubs are the essential USB component for establishing connectivity between the host and other devices. It 
is vital that any connectivity faults, especially those that might result in a deadlock, be detected and 
prevented from occurring. Hubs need to handle connectivity faults only when they are in the repeater mode. 

Hubs must also be able to detect and recover from lost or corrupted packets that are addressed to the Hub 
Controller. Because the Hub Controller is, in fact, another USB device, it must adhere to the same timeout 
rules as other USB devices, as described in Chapter 8. 

11.2 Hub Frame/Microframe Timer 
Each hub has a (micro)frame timer whose timing is derived from the hub's local clock and is synchronized 
to the host (micro)frame period by the host-generated Start-of-(micro)frame (SOF). The (micro)frame 
timer provides timing references that are used to allow the hub to detect a babbling device and prevent the 
hub from being disabled by the upstream hub. The hub (micro)frame timer must track the host 
(micro)frame period and be capable ofremaining synchronized with the host even if two consecutive SOF 
tokens are missed by the hub. 

The (micro)frame timer must lock to the host's (micro)frame timing for worst case clock accuracies and 
timing offsets between the host and hub. There are specific requirements for hubs when their upstream 
facing port is operating at high-speed and full-speed. 

11.2.1 High-speed Microframe Timer Range 

300 

The range for a microframe timer must be from 59904 to 60096 high-speed bits. 

The nominal microframe interval is 60000 high-speed bit times. The hub microframe timer range specified 
above is 60000 +/- 96 high-speed bit times in order to accommodate host accuracy, hub accuracy, repeater 
jittter, and hub quantization. The +/-96 full-speed bit time variation is calculated in Table I 1-2. 

Table 11-1. High-speed Microframe Timer Range Contributions 

Source of Variation Variation (ppm) Variation (bits) Over Comment 
One Microframe Interval 

Host accuracy +/- 500 +/- 30 

Hub accuracy +/- 500 +/- 30 

Host jitter +/- 2 

Hub chain jitter +/- 20 four hubs in series 
upstream of hub; 0 to 5 
bits of jitter per hub 

Quantization +/-14 Bits need to round total 
variation to multiple of 16 



ZTE/SAMSUNG 1008-0329 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.2.2 Full-speed Frame Timer Range 
The range of the frame timer must be from 11958 to 12042 full-speed bits. 

The nominal frame interval is 12000 fu ll-speed bit times. The hub frame timer range specified above is 
12000 +/- 42 full-speed bit times in order to accommodate host accuracy and hub accuracy. The +/-42 full
s peed bit time variation is calculated in Table 11-2. 

Table 11-2. Full-speed Frame Timer Range Contributions 

Source of Variation Variation (ppm) Variation (bits) Over Comment 
One Frame Interval 

Host accuracy +/- 500 +/- 6 

Hub accuracy +/- 3000 +/- 36 +/-6 bits due to hub 
accuracy (500 ppm) 

+/-30 bits due to 1.x 
parent hub accuracy 
(2500 ppm) 

11.2.3 Frame/Microframe Timer Synchronization 
A hub's (micro)frame timer is clocked by the hub's clock source and is synchronized to SOF packets that 
are derived from the host's (micro)frame timer. After a reset or resume, the hub's (micro)frame timer is not 
synchronized. Whenever the hub receives two consecutive SOF packets, its (micro)frame timer must be 
synchronized. Synchronized is synonymous with lock( ed). An example for a method of constructing a 
timer that properly synchronizes is as follows. 

11.2.3.1 Example (Micro)frame Timer Synchronization Method 
The hub maintains three timer values: (micro)frame timer (down counter), current (micro)frame (up 

counter), and next (micro)frame (register). After a reset or resume, a flag is set to indicate that the 
(micro)frame timer is not synchronized. 

When the first SOF token is detected, the current (micro)frame timer resets and starts counting once per hub 
bit time. On the next SOF, if the timer has not rolled over, the value in the current (micro)frame timer is 
loaded into the next (micro)frame register and into the (micro)frame timer. The current (micro)frame timer 
is reset to zero and continues to count and the flag is set to indicate that the (micro)frame timer is locked. 
The (micro)frame timer rolls over when the count exceeds 60096 for high-speed or 12042 for full-speed (a 
test at 65535 for high-speed or 16383 for full-speed is adequate). If the current (micro)frame timer has 
rolled·over, then an SOF was missed and the (micro)frame timer and next (micro)frame values are not 
loaded. When an SOF is missed, the flag indicating that the timer is not synchronized remains set. 

Whenever the (micro)frame timer counts down to zero, the current value of the next (micro)frame register is 
loaded into the (micro)frame timer. When an SOF is detected, and the current (micro)frame timer has not 
rolled over, the value of the current (micro)frame timer is loaded into the (micro)frame timer and the next 
(micro)frame registers. The current (micro)frame timer is then reset to zero and continues to count. If the 
current (micro)frarne timer has rolled over, then the value in the next (micro)frame register is loaded into 
the (micro)frame timer. This process can cause the (micro)frame timer to be updated twice in a single 
(micro)frame: once when the (micro)frame timer reaches zero and once when the SOF is detected. 

301 



ZTE/SAMSUNG 1008-0330 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.2.3.2 EOF Advancement 

302 

The hub must advance its EOF points based on its SOF decode time in order to ensure that in the tiered 
topology, hubs farther away from the host will always have later EOF points than hubs nearer to the host. 
The magnitude of advance is implementation-dependent; the possible range of advance is derived below. 

The synchronization circuit described above depends on successfully decoding an SOF packet identifier 
(PID). This means that the (micro)frame timer will be synchronized to a time that is later than the 
synchronization point in the SOF packet: later by at least 40 bit times for high-speed or I 6 bit times for full
speed. Each implementation also takes some time to react to the SOF decode and set the appropriate 
timer/counter values. This reaction time is implementation-dependent but is assumed to be less than 192 bit 
times for high-speed and four bit times for full-speed. Subsequent sections describe the actions that are 
controlled by the (micro )frame timer. These actions are defined at the EOFl, EOF2, and EOF. EOFl and 
EOF2 are defined in later sections. These sections assume that the hub's (micro)frame timer will count to 
zero at the end of the (micro)frame (EOF). The circuitry described above will have the (micro)frame timer 
counting to zero after 40 to 192 for high-speed bit times or 16-20 full-speed bit times after the start of a 
(micro )frame (or end of previous (micro )frame). The timings and bit offsets in the later sections must be 
advanced to account for this delay (i.e., add 40-192 for high-speed or 16-20 bit times for full-speed to the 
EOFl and EOF2 points). 

Advancing the EOF points by the processing delay ensures that the spread between the EOFs is only due to 
the propagation delay. For example, for high-speed, the maximum spread between 2 EOF points anywhere 
on the USB is less than 216 bits (144 + 72). 144 bit times are due to 36 bit times of max latency through 
4 repeaters. 72 bit times are due to five maxjmum cable and interconnect delays of 30 ns each. As can be 
seen in Figure 11-4 without EOF advancement, a hub with a larger tier number could have an EOF occuring 
earlier than a hub with a smaller tier number. fn Figure I 1-5 with EOF advancement ensures that in the 
tiered topology, hubs with larger tier numbers always have later EOF points than hubs with smaller tier 
numbers. Note: 13 bit times in the figures is an example maximum cable delay (approximately 30 ns). 

Time 
[ .. ······-- ··-- -... 
f 

1 
• 

.... 
Tier 
Depth 

Tier l 

3+ 192 bits delay 
TierN 

Tier N+l 

Figure 11-4. Example High-speed EOF Offsets Due to Propagation Delay Without EOF 
Advancement 

Time r-:_·-··-... __ 

T 
Tier 
Depth 

13+ 13+ 36 bits delay 

Tier 1 

TierN 

TierN+ I 

Figure 11-5. Example High-speed EOF Offsets Due to Propagation Delay With EOF Advancement 



ZTE/SAMSUNG 1008-0331 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11 .2.3.3 Effect of Synchronization on Repeater Behavior 
The (micro)frame timer provides an indication to the hub Repeater state machine that the (micro)frame 
timer has synchronized to SOF and that the (micro)frame timer is capable of generating the EOFI and 
EOF2 timing points. This signal is important after a global resume because of the possibility that a full
/ low-speed device may have been detached, and a low-/full-speed device attached while the host was 
generating a long resume (several seconds) and the disconnect cannot be detected. The new device will bias 
D+ and D- to appear like a K on the hub which would then be treated as an SOP and, unless inhibited, this 
SOP would propagate though the resumed hubs. Since the hubs would not have seen any SOFs at this point, 
the hubs would not be synchronized and, thus, unable to generate the EOFI and EOF2 timing points. The 
only recovery from this would be for the host to reset and re-enumerate the section of the bus containing the 
changed device. This scenario is prevented by inhibiting any downstream facing port from establishing 
connectivity until the hub is locked after a resume. 

11.2.4 Microframe Jitter Related to Frame Jitter 
The period between the SOFs from the Transaction Translator must not vary by more than +/- 42 ns. The 
microframe timer count must be used by the Transaction Translator to generate SOFs to full-speed devices 
(and keepalives to low-speed devices) connected to it. 

The SOF received at the upstream facing port of the hub is repeated with a local clock. The frequency of 
this clock may be a divided version of the bit rate. This could result in a quantization error and microframe
to-microframe jitter. The microframe-to-microframe jitter of a hub repeater must be between 0 and 5 bit 
times. This means that the latency through the repeater of consecutive SOFs must differ by less than 5 bits. 
A hub may register the SOF for internal use, e.g., microframe synchronization. This requires SOF PID 
detection. The circuitry used for internal registering of the SOF must have a jitter which is less than or 
equal to 16 bits. This means that the microframe timer count values between consecutive equally spaced 
SOFs must differ by less than or equal to 16 bits. The host controller frequency may drift over the period of 
a microframe resulting in microframe period jitter. The host controller source jitter for SOFs must be less 
than 4 bits. This means that the consecutive periods between SOFs must differ by less than 4 bits. These 
requirements ensure that the microframe period at the end of five hub tiers will have a jitter of less than 
40 bits (4 from host controller+ 4*5 from hub repeaters+ 16 from the internal SOF registering). This 
means that the consecutive periods between SOFs as measured at any microframe timer will differ by less 
than 40 bits (83.3 ns at 480 Mbs). This is less than the+/- 42 ns variation allowed. 

11.2.5 EOF1 and EOF2 Timing Points 
The EOFI and EOF2 are timing points that are derived from the hub's (micro)frame timer. Table 11-3 
specifies the required host and hub EOF timing points for high-speed and full-speed operation. 

Table 11-3. Hub and Host EOF1/EOF2 Timing Points 

Bit Times Before EOF Bit Times Before EOF 
for High-speed for Full-speed 

Label Notes 

EOF1 560 32 End-of-(micro)frame point #1 

EOF2 64 10 End-of-(micro)frame point #2 

These timing points are used to ensure that devices and hubs do not interfere with the proper transmission of 
the SOF packet from the host. These liming points have meaning only when the (microlfi-ame timer has 
been synchronized to the SOF 

The host and hub (micro)frame markers, while all synchronized to the host's SOF, are subject to certain 
skews that dictate the placement of the EOF points. Figure 11-6 illustrates EOF2 timing point for high-

303 



ZTE/SAMSUNG 1008-0332 
IPR2018-00111

• 

304 

Universal Serial Bus Specification Revision 2.0 

speed operation. Figure I I-7 illustrates the EOFI high-speed timing point. The numbers in the figures are 
in high-speed bit times. 

ime 

~~-E~f-F_1~~~~~~--+-~-E~9F=O 
tier m 

" tier depth EOF2=64 I 

tier n 

Figure 11-6. High-speed EOF2 Timing Point 

time 

EOF1=560 

tier depth 
EOP propagation=2 I 6 + 
quiescent time= 8 A 

quantization= 16 

w~1 
skew=38 

I I tier5 

skew=38 

Figure 11-7. High-speed EOFl Timing Point 

At the EOF2 point, any port that has upstream connectivity will be disabled as a babbler. Hubs operating as 
a full-flow-speed repeater prevent becoming disabled by sending an end of packet to the upstream hub 
before that hub reaches its EOF2 point (i.e., at EOFI ). 

Figure 11-8 illustrates EOF timing points for full-flow-speed repeater operation. 

EOF1 EOF2 

Bit times i i SOF 

~ I I I 
50 40 30 f- EOF1 range ---1 

20 10 r EOF2 range -1 
0 

Figure 11-8. Full-speed EOF Timing Points 

The hub operating as a full-flow-speed repeater is permitted to send the EOP if upstream connectivity is not 
established at EOF1 time. A full-speed repeater must send the EOP if connectivity is established from any 
downstream facing port at the EOFI point. 

A high-speed repeater must tear down upstream connectivity at the EOFI point. 

A high-speed repeater must tear down connectivity after the bus returns to the Idle state and the Elasticity 
buffer is emptied (as described in Section 11.7.2) rather than on decoding an EOP pattern as in full-/low
speed. Therefore, abrupt end of signaling (i.e, without a high-speed EOP) may cause malformed packets, 
and this must not affect repeater operation. The host controller design must be capable of processing such 
packets correctly. 



ZTE/SAMSUNG 1008-0333 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11 .2.5.1 High-speed EOF1 and EOF2 Timing Points 
The EOF2 point is 64 bit times before EOF as shown in Figure I 1-6, and the EOFI point is 560 bit times 
before EOF as shown in Figure I 1-7. 

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or 
between hubs. This timing skew represents the difference between different microframe timers on different 
hubs and the host. The total accumulated skew can be as much as 38 bit times. This is composed of±2 bit 
times of (micro )frame host source jitter and 0 to 36 bit times of repeater jitter as derived earlier. This skew 
timing affects the placement of the EOFI and EOF2 points. 

Note: The hub skew timing assumes that the microframe interval will not be changed by the host after the 
microframe timers have synchronized. 

EOF skew can be from - 2 to + 38 bits, so all EOFs are within 256 bits (216 bits ofEOF propagation delay + 
40 bits of EOF skew) of each other. 

Note: The EOF2 point is based on I 6 bit times for quantization + 38 bit times of skew; therefore, the EOF2 
point needs to located at least 54 bit times before EOF. The EOF2 point is set at 64 bit times to allow 
babble detection to be done with a divided (by 16) version of the bit clock. An upstream-directed packet 
ending before EOFI must reach every upstream hub/host before it gets to its EOF2 point. This is achieved 
ifthe EOFl point is located at least 544 bits before any upstream EOF (64 bits ofEOF2 offset+ 216 bits of 
EOP propagation delay + 8 bits of idle time + 216 bits ofSOF propagation delay+ 38 bits ofEOFI skew + 
2 bits of EOF2 skew). The EOFl point is set at 560 bit times to allow using a divided (by 16) version of the 
bit clock. 

11.2.5.2 Full-speed EOF1 and EOF2 Timing Points 
When the hub operates as a full-flow-speed repeater, the EOFJ point is 10 bit times before EOF and EOFI 
is 32 bit times before EOF as shown in Figure I 1-8. 

The EOF2 point is defined to occur at least one bit time before the first bit of the SYNC for an SOP. The 
period allowed for an EOP is four full-speed bit times (the upstream facing port on a hub is always full
speed). 

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or 
between hubs. This timing skew represents the differe.nce between different frame timers on different hubs 
and the host. The total accumulated skew can be as large as ±9 bit times. This is composed of± l bit times 
per frame of quantization error and ±1 bit per frame of wander. The quantization error occurs when the hub 
times the interval between SOFs and arrives at a value that is off by a fraction of a bit time but, due to 
quantization, is rounded to a full bit. Frame wander occurs when the host's frame timer is adjusted by the 
USB System Software so that the value sampled by the hub in a previous frame differs from the frame 
interval being used by the host. (Note: Such adjustment was permitted in the USB 1.0 and I. I specification 
but is no longer permitted.) These values accumulate over multiple frames because SOF packets can be lost 
and the hub cannot resynchronize its frame timer. This specification allows for the loss of two consecutive 
SOFs. During this interval, the quantization error accumulates to ±3 bit times, and the wander accumulates 
to± I ± 2 ± 3 = ±6 for a total of ±9 bit times of accumulated skew in three frames. This skew timing affects 
the placement of the EOFI and EOF2 points as follows. 

A hub must reach its EOF2 point one bit time before the end of the frame. In order to ensure this, a 9-bit 
time guard-band must be added so that the EOF2 point is set to occur when the hub's local frame timer 
reaches 10. A hub must complete its EOP before the hub to which it is attached reaches its EOF2 point. A 
hub may reach its EOF2 point nine bit times before bit time 10 (at bit time I 9 before the SOF). To ensure 
that the EOP is completed by bit time 19, it must start before bit time 23. To ensure that the hub starts at bit 
time 23 with respect to another hub, a hub must set its EOFJ point nine bit times ahead of bit time 23 (at bit 
time 32). If a hub sets its timer to generate an EOP at bit time 32, that EOP may start as much as 9 bit times 
early (at bit time 41 ). 

305 



ZTE/SAMSUNG 1008-0334 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.3 Host Behavior at End-of-Frame 
It is the responsibility of the USB host controller (the host) to not provoke a response from a device ifthe 
response would cause the device to be sending a packet at the EOF2 point. Furthermore, because a hub will 
terminate an upstream directed packet when the hub reaches its EOFI point, the host should not start a 
transaction if a response from the device (data or handshake) would be pending or in process when a hub 
reaches its EOFl point. The implications of these limitations are described in the following sections. 

Note: The above requirements can be met if the host controller ensures that the last transaction will 
complete by its EOFl. The time consumed by a transaction (and consequently the latest start time of the 
transaction) can be evaluated by accumulating the various delay components in the transaction. The packet 
lengths should include all fields and account for bit-stuffing overhead as described in Chapter 7 and 
Chapter 8. Formulae for calculating transaction times are located in Section 5.11.3. 

In defining the timing points below, the last bit interval in a (micro)frame is designated as bit time zero. Bit 
times in a (micro )frame that occur before the last have values that increase the further they are from bit time 
zero (earlier bit times have higher numbers). These bit time designations are used for convenience only and 
are not intended to imply a particular implementation. The only requirement of an implementation is that 
the relative time relationships be preserved. 

Host controllers issuing high-speed transactions on a high-speed bus must meet the above requirements. 
Host controllers issuing full-/low-speed transactions on a full-/low-speed bus may also use the following 
three behaviors near EOF. 

11.3.1 Full-flow-speed Latest Host Packet 
Hubs are allowed to send an EOP on their upstream facing ports at the EOFI point ifthere is no 
downstream-directed traffic in progress at that time. To prevent potential contention, the host is not allowed 
to start a packet if connectivity will not be established on all connections before a hub reaches its EOFl 
point. This means that the host must not start a packet after bit time 42. 

Note: Although there is as much as a six-bit time delay between the time the host starts a packet and all 
connections are established, this time need not be added to the packet start time as this phase delay exists for 
the SOF packet as well, causing all hub frame timers to be phase delayed with respect to the host by the 
propagation delay. There is only one bit time of phase delay between any two adjacent hubs and this has 
been accounted for in the skew calculations. 

11.3.2 Full-flow-speed Packet Nullification 
If a device is sending a packet (data or handshake) when a hub in the device's upstream path reaches its 
EOFl point, the hub will send a full-speed EOP. Any packet that is truncated by a hub must be discarded. 

A host implementation may discard any packet that is being received at bit time 41. Alternatively, a host 
implementation may attempt to maximize bus utilization by accepting a packet ifthe packet is predicted to 
start at or before bit time 41. 

11.3.3 Full-flow-speed Transaction Completion Prediction 

306 

A device can send two types of packets: data and handshake. A handshake packet is always exactly 16 bit 
times long (sync byte plus Pill byte.) The time from the end of a packet from the host until the first bit of 
the handshake must be seen at the host is 17 bit times. This gives a total allocation of 35 bit times from the 
end of data packet from the root (start ofEOP) until it is predicted that the handshake will be completed 
(start of EOP) from the device. Therefore, ifthe host is sending a data packet for which the device can 
return a handshake (anything other than an isochronous packet), then if the host completes the data packet 
and starts sending EOP before bit time 76, then the host can predict that the device will complete the 
handshake and start the EOP for the handshake on or before bit time 41. For a low-speed device, the 36 bit 
times from start ofEOP from root to start o.f EOP from the device are low-speed bit times, which convert 1 



ZTE/SAMSUNG 1008-0335 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

to 8 into full-speed bit times. Therefore, ifthe host completes the low-speed data packet by bit time 329, 
then the low-speed device can be predicted to complete the handshake before bit time 41. 

Note: If the host cannot accept a full-speed EOP as a valid end of a low-speed packet, then the low-speed 
EOP will need to complete before bit time 41, which will add 13 full-speed bit times to the low-speed 
handshake time. 

As the host approaches the end of the frame, it must ensure that it does not require a device to send a 
handshake if that handshake cannot be completed before bit time 41. The host expects to receive a 
handshake after any valid, non-isochronous data packet. Therefore, ifthe host is sending a non-isochronous 
data packet when it reaches bit time 76 (329 for low-speed), then the host should start an abnormal 
termination sequence to ensure that the device wiJI not try to respond. This abnormal termination sequence 
consists of7 consecutive (non-bitstuffed) bits of I followed by an EOP. The abnormal termination 
sequence is sent at the speed of the current packet. Note: The intent of this sequence is to force a 
bitstuffing violation (and possibly other errors) at the receiver. 

lfthe host is preparing to send an IN token, it may not send the token ifthe predicted packet from the device 
would not complete by bit time 41. The maximum valid length of the response from the device is known by 
the host and should be used in the prediction calculation. For a full-speed packet, the maximum interval 
between the start of the IN token and the end of a data packet is: 

token_length + (packet_Iength +header+ CRC) * 116 + 18 

Where token _length is 34 bit times, packet _length is the maximum number of data bits in the packet, 
header is eight bits of sync and eight bits of PID, and CRC is 16 bits. The 7/6 multiplier accounts for the 
absolute worst case bit-stuff on the packet, and the 18 extra bits allow for worst case tum-around delay. For 
a low-speed device, the same calculation applies, but the result must be multiplied by 8 to convert to full
speed bit times, and an additional 20 full-speed bit times must be added to account for the low-speed prefix. 
This gives the maximum number of bit times between the start of the £N token and the end of the data 
packet, so the token cannot be sent if this number of bit times does not exist before the earliest EOFl point 
(bit time 41 ). (For example, take the results of the above calculation and add 41. If the number of bits left 
in the frame is less than this value, the token may not be sent.) 

The host is allowed to use a more conservative algorithm than the one given above for deciding whether or 
not to start a transaction. The calculation might also include the time required for the host to send the 
handshake when one is required, as there is no benefit in starting a transfer ifthe handshake cannot be 
completed. 

11 .4 Internal Port 
The internal port is the connection between the Hub Controller and the Hub Repeater. Besides conveying 
the serial data to/from the Hub Controller, the internal port is the source of certain resume signals. 
Figure 11-9 illustrates the internal port state machine; Table 11-4 defines the internal port signals and 
events. 

307 



ZTE/SAMSUNG 1008-0336 
IPR2018-00111

Universal Ser ial Bus Specification Revision 2.0 

!Rx Sus end 
Inactive 

! = Logical NOT 

Rx_ Suspend 

Suspend Delay 

EOI 

Fsus 

Resume_Event 

GResume 

Figure 11-9. Internal Port State Machine 

Table 11-4. Internal Port Signal/Event Definitions 

Signal/Event Name Event/Signal Description 
Source 

EOI Internal End of timed interval 

Rx_ Suspend Receiver Receiver is in the Suspend state 

Resume_Event Hub Controller A resume condition exists in the Hub Controller 

11.4.1 Inactive 
This state is entered whenever the Receiver is not in the Suspend state. 

11.4.2 Suspend Delay 
This state is entered from the Inactive state when the Receiver transitions to the Suspend state. 

This is a timed state with a 2 ms interval. 

11 .4.3 Full Suspend (Fsus) 
This state is entered when the Suspend Delay interval expires. 

11.4.4 Generate Resume (GResume) 

308 

This state is entered from the Fsus state when a resume condition exists in the Hub Controller. A resume 
condition exists ifthe c_pORT_SUSPEND bit is set in any port, or ifthe hub is enabled as a wakeup source 
and any bit is set in a Port Change field or the Hub Change field (as described in Figures 11 -22 and 11-20, 
respectively). 

In this state, the internal port generates signaling to emulate an SOP _FD to the Hub Repeater. 



ZTE/SAMSUNG 1008-0337 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.5 Downstream Facing Ports 
The following sections provide a functional description of a state machine that exhibits the correct behavior 
for a downstream facing port. 

Figure 11-10 is an illustration of the downstream facing port state machine. The events and signals are 
defined in Table 11-5. Each of the states is described in Section 11.5.1. In the diagram below, some of the 
entry conditions into states are shown without origin. These conditions have multiple origin states and the 
individual transitions lines are not shown so that the diagram can be simplified. The description of the 
entered state indicates from which states the transition is applicable. 

Note: For the root hub, the signals from the upstream facing port state machines are implementation 
dependent. 

309 



ZTE/SAMSUNG 1008-0338 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

SetTest 

Configuration = 0 

ClearPortFeature(PORT _POWER)# 
SetConfiguration(non-zero) # 

Power Source Off# 
O~r-current 

Disconnect_ Detect 

ClearPortFeature(PORT _ENABLE) 

Disabled 

SetPortFeature(PORT _RESET) -----. 

~ Resetting 

EOI 

Rx_ Suspend & (SEO# K) 

Rptr_ Enter_WFEOPFU 

Rx_Suspend & {SEO# K) 

{IRx_Suspend & PK) # 
ClearPortFeature(PORT_SUSPENO 

Resuming 

EOI 

SendEOR 

# = Logical OR 

& = Logical AND 

I = Logical NOT 

SetConfiguration(non-zero) 

SetPortFeature(PORT _POWER) 

EOI 

Rptr_Exit_WFEOPFU 

EOI 

!(PK#PS)&EOI 

PKfTrueRWU 

PS 

l(PK#PS)&EOI 

PKfTrueRWU 

PS 

Port Outputs in States 

The hub is not configured. 

Powered_ off: Port requires explicit 
request to transition. 

Disconnected: Port does not propagate 
any traffic in either direction. All ports 
are HiZ. Port is timing length of J/K 
{2.SµS to 2mS). 

Disabled: Port cannot propagate any 
traffic. All ports are HiZ. 

Resetting: Drive SEO through the port for 
10mS. 

Enabled: Port can propagate both 
upstream and downstream traffic. 

Transmit: Port propagates downstream 
directed traffic. 

Suspended: No traffic is propagated 
downstream or upstream. 

[ Resuming: Drive 'K' for 20mS. 

TransmitR: Port propagates downstream 
directed resume signaling. 

Restarts and Restart_E: Port enters one of 
these states to wait through timing 
iintervals or for clocks to restart. Delay 
iinterval is implementation dependent. 

-
State machine exports: 
TrueRWU signal 
("frrueRWU" indicates signal is 
generated on transition from state) 

Figure 11-10. Downstream Facing Hub Port State Machine 

310 



ZTE/SAMSUNG 1008-0339 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Table 11-S. Downstream Facing Port Signal/Event Definitions 

Signal/Event Name Event/Signal Description 
Source 

Power_source_off Implementation- Power to the port not available due to over-current or 
dependent termination of source power (e.g., external power 

removed) 

Over-current Hub Controller Over-current condition exists on the hub or the port 

EOI Internal End of a timed interval or sequence 

SEO Internal SEO received on port 

Disconnect_ Detect Internal Disconnect seen at port 

LS Hub Controller Low-speed device attached to this port 

SOF Hub Controller SOF token received 

TrueRWU Internal K lasting for at least TDDIS (see Table 7-13) 

PK Internal K lasting for at least TDDIS 

PS Internal SEO lasting for at least TDDIS 

K Internal 'K' received on port 

Rx_ Resume Receiver Upstream Receiver in Resume state 

Rx_ Suspend Receiver Upstream Receiver in Suspend state 

Rptr _Exit_ WFEOPFU Hub Repeater Hub Repeater exits the WFEOPFU state 

Rptr _Enter_ WFEOPFU Hub Repeater Hub Repeater enters the WFEOPFU state 

Port_ Error Internal Error condition detected (see Section 11 .8.1) 

SetTest Hub Controller Logical OR of SetPortFeature(Test_SEO_NAK), 
SetPortFeature(Test_J), SetPortFeature(Test_K), 
SetPortFeature(Test_PRBS), 
SetPortF eature(T est_Force _Enable) 

Configuration = 0 Hub Controller Hub controller's configuration value is zero 

311 



ZTE/SAMSUNG 1008-0340 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.5.1 Downstream Facing Port State Descriptions 

11.5.1.1 Not Configured 
A port transitions to and remains in this state whenever the value of the hub configuration is zero. While the 
port is in this state, the hub will drive an SEO on the port (this behavior is optional on root hubs). No other 
active signaling takes place on the port when it is in this state. 

11.5.1.2 Powered-off 
This state is supported for all hubs. 

A port transitions to this state in any of the following situations: 

• From any state except Not Configured when the hub receives a ClearPortFeature(PORT_POWER) 
request for this port 

• From any state when the hub receives a SetConfiguration() request with a configuration value other 
than zero 

• From any state except Not Configured when power is lost to the port or an over-current condition exists 

A port will enter this state due to an over-current condition on another port ifthat over-current condition 
may have caused the power supplied to this port to drop below specified limits for port power (see 
Section 7.2. l.2. l and Section 7.2.4.1 ). 

If a hub was configured while the hub was self-powered, and then if external power is lost, the hub must 
place all ports in the Powered-off state. lf the hub is configured while bus powered, then the hub need not 
change port status if the hub switched to e>d:emally applied power. However, if external power is 
subsequently lost, the hub must place ports in the Powered-off state. 

In this state, the port's differential and single-ended transmitters and receivers are disabled. 

Control of power to the port is covered in Section 11. l l . 

11.5.1.3 Disconnected 

312 

A port transitions to this state in any of the following situations: 

• From the Powered-off state when the hub receives a SetPortFeature(PORT _POWER) request 

• From any state except the Not Configured and Powered-off states when the port's disconnect timer times 
out 

• From the Restart_S or Restart_E state at the end of the restart interval 

Jn the Disconnected state, the port's differential transmitter and receiver are disabled and only connection 
detection is possible. 

This is a timed state. While in this state, the timer is reset as long as the port's signal lines are in the SEO or 
SEl state. If another signaling state is detected, the timer starts. Unless the hub is suspended with clocks 
stopped, this timer's duration is 2.5 µs to 2 ms. 

If the hub is suspended with its remote wakeup feature enabled, then on a transition to any state other than 
the SEO state or SE I state on a Disconnected port, the hub will start its clocks and time this event. The hub 
must be able to start its clocks and time this event within 12 ms of the transition. If a hub does not have its 
remote wakeup feature enabled, then transitions on a port that is in the Disconnected state are ignored until 
the hub is resumed. 



ZTE/SAMSUNG 1008-0341 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.5.1.4 Disabled 
A port transitions to this state in any of the following situations: 

• From the Disconnected state when the timer expires indicating a connection is detected on the port 

• From any but the Powered-off, Disconnected, or Not Configured states on receipt of a 
ClearPortFeature(PORT _ENABLE) request 

• From the Enabled state when an error condition is detected on the port 

A port in the Disabled state will not propagate signaling in either the upstream or the downstream direction. 
While in this state, the duration of any SEO received on the port is timed. If the port is using high-speed 
terminations when it enters this state, it switches to full-speed tenninations. The port must not perform 
normal disconnect detection until at least 4 ms after entering this state. 

11.5.1.5 Resetting 
Unless it is in the Powered-off or Disconnected states, a port transitions to the Resetting state upon receipt 
of a SetPortFeature(PORT _RESET) request. The hub drives SEO on the port during thjs timed interval. 
The duration of the Resetting state is nominally 10 ms to 20 ms (10 ms is preferred). 

A hub in high-speed operation will use the high-speed tenninations of the port when in this state. 

11.5.1.6 Enabled 
A port transitions to this state in any of the following situations: 

• At the end of the Resetting state 

• From the Transmit state or the TransmitR state when the Hub Repeater exits the WFEOPFU state 

• From the Suspended state ifthe upstream Receiver is in the Suspend state when a 'K' is detected on the 
port 

• At the end of the SendEOR state 

• From the Restart_E state when a persistent Kor persistent SEO has not been seen within 900 µs of 
entering that state 

While in this state, the output of the port's differential receiver is available to the Hub Repeater so that 
appropriate signaling transitions can establish upstream connectivity. 

A port which is using high-speed terminations in this state switches to full-speed terminations on 
Rx_Suspend (i.e., when the hub is suspended). The port must not perform normal disconnect detection until 
at least l ms after Rx_ Suspend becomes active. 

11.5.1.7 Transmit 
This state is entered from the Enabled state on the transition of the Hub Repeater to the WFEOPFU state. 
While in this state, the port will transmit the data that is received on the upstream facing port. 

For a low-speed port, this state is entered from the Enabled state if a full-speed PRE PID is received on the 
upstream facing port. While in this state, the port will retransmit the data that is received on the upstream 
facing port (after proper inversion). 

In high-speed, this state is used for testing for disconnect at the port. The disconnect detection circuit is 
enabled after 32 bits of the same signaling level (' J' or 'K' ) have been transmitted down the port. 

Note: Because of the timing skew in the repeater path to the downstream facing ports, all downstream 
facing ports may not be enabled for disconnect detection at the same instant in time. 

313 



ZTE/SAMSUNG 1008-0342 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.5.1.8 TransmitR 
This state is entered in either of the following situations: 

• From the Enabled state ifthe upstream Receiver is in the Resume state 

• From the Restart_S or Restart_E state if a PK is detected on the port 

When in this state, the port repeats the resume 'K' at the upstream facing port to the downstream facing 
port. Depending on the speed of the port, twb behaviors are possible on the K->SEO transition at the 
upstream facing port at the end of the resume. 

• Upstream facing port high-speed and downstream facing port full-flow-speed: After the K->SEO 
transition, the port drives SEO for 16 to 18 full-speed bit times followed by driving J for at least one 
full-speed bit time. Note: The timer in the Resume state of the upstream port receiver state machine 
which generates EOITR can be used to time this requirement at the downstream facing port(s). The 
pullup resistor and the latency of the Transaction Translator(TT) results in this Idle state being 
maintained for at least one low-speed bit time ensuring that a device sees the same end of resume 
behavior below the TT as it would below a USB 1.x hub. 

• Upstream facing port and downstream facing port are the same speed: port continues to repeat the 
signaling which follows the K->SEO transition. 

A port operating in high-speed reverts to its high-speed terminations within 18 full-speed bit times after the 
K->SEO transition as described in Section 7.1.7.7. 

11.5.1.9 Suspended 
A port enters the Suspended state: 

• From the Enabled state when it receives a SetPortFeature(PORT_SUSPEND) request 

• From the Restart_S state when a persistent Kor persistent SEO has not been seen within 900 µs of 
entering that state 

While a port is in the Suspended state, the port's differential transmitter is disabled. A high-speed port 
reverts from high-speed to full-speed terminations but its speed status continues to be high-speed. The port 
must not perform normal disconnect detection until at least 4 ms after entering this state. 

An implementation must have a K/SEO 'noise' filter for a port that is in the suspended state. This filter can 
time the length of K/SEO and, if the length of the K/SEO is shorter than TD DIS, the port must remain in this 
state. If the hub is suspended with its clocks stopped, a transition to K/SEO on a suspended port must cause 
the port to immediately transition to the Restart_S state. 

11.5.1.10 Resuming 

314 

A port enters this state from the Suspended state in either of the following situations: 

• If a 'K' is detected on the port and persists for at least 2.5 µs and the Receiver is not in the Suspended 
state. The transition from the Suspended state must happen within 900 µs of the J->K transition. 

• When a ClearPortFeature(PORT_SUSPEND) request is received. 

This is a timed state with a nominal duration of20 ms (the interval may be longer under the conditions 
described in the note below). While in this state, the hub drives a 'K' on the port. 

Note: A single timer is allowed to be used to time both the Resetting interval and the Resuming interval and 
that timer may be shared among multiple ports. When shared, the timer is reset when a port enters the 
Resuming state or the Resetting state. If shared, it may not be shared among more than ten ports as the 
cumulative delay could exceed the amount of time required to replace a device and a disconnect could be 
missed. 



ZTE/SAMSUNG 1008-0343 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.5.1.11 SendEOR 
This state is entered from the Resuming state if the 20 ms timer expires. It is also entered from the Enabled 
state when an SOF (or other FS token) is received and a low-speed device is attached to this port. 

This is a timed state which lasts for three low-speed bit times. 

In this state, ifthe port is high-speed it will drive the bus to the Idle state for three low-speed bit times and 
then exit from this state to the Enabled state. It must also revert to its high-speed terminations within 
18 full-speed bit times after the K->SEO transition as described in Section 7.1.7.7. 

If the port is full-speed or low-speed, the port must drive two low-speed bit times of SEO followed by one 
low-speed bit time of Idle state and then exit from this state to the Enabled state. 

Since the driven SEO period should be of fixed length, the SendEOR timer, if shared, should not be reset. 1f 
the hub implementation shares the SendEOR timing circuits between ports, then for a port with a low-speed 
device attached, the Resuming state should not end until an SOF (or other FS token) has been received (see 
Section 11.8.4. l for Keep-alive generation rules). 

11.5.1.12 Restart_S 
A port enters the Restart_S state from the Suspended state when an SEO or 'K ' is seen at the port and the 
Receiver is in the Suspended state. 

In this state, the port continuously monitors the bus state. If the bus is in the ' K' state for at least TDDIS, the 
port sets the C_PORT_SUSPEND bit, exits to the TransmitR, and generates a signal to the repeater called 
'TrueRWU'. If the bus is in the ' SEO' state for at least TDDIS, the port exits to the Disconnected state. 
Either of these transitions must happen within 900 µs after entering the Restart_S state; otherwise, the port 
must transition back to the Suspended state. 

11.5.1.13 Restart_E 
A port enters the Restart_E state from the Enabled state when an 'SEO' or 'K' is seen at the port and the 
Receiver is in the Suspended state. 

In this state, the port continuously monitors the bus state. If the bus is in the ' K ' state for at least TDDIS, the 
port exits to the TransmitR state and generates a signal to the repeater called 'TrueRWU' . If the bus is in the 
' SEO' state for at least TD DIS, the port exits to the Disconnected state. Either of these transitions must 
happen within 900 µs after entering the Restart_E state; otherwise the port must transition back to the 
Enabled state. 

11.5.1.14 Testing 
A port transitions to this state from any state when the port sees SetTest. 

While in this state, the port executes the host command as decoded by the hub controller. If the command 
was a SetPortFeature{PORT_ TEST, Test_Force_Enable), the port supports packet connectivity in the 
downstream direction in a manner identical to that when the port is in the Enabled state. 

11.5.2 Disconnect Detect Timer 

11.5.2.1 High-speed Disconnect Detection 
High-speed disconnect detection is described in Section 7.1.7.3. 

315 



ZTE/SAMSUNG 1008-0344 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.5.2.2 Full-flow-speed Disconnect Detection 
Each port is required to have a timer used for detecting disconnect when a full-/low-speed device is attached 
to the port. This timer is used to constantly monitor the port's single-ended receivers to detect a disconnect 
event. The reason for constant monitoring is that a noise event on the bus can cause the attached device to 
detect a reset condition on the bus after 2.5 µs of SEO or SEl on the bus. If the hub does not place the port in 
the disconnect state before the device resets, then the device can be at the Default Address state with the port 
enabled. This can cause systems errors that are very difficult to isolate and correct. 

This timer must be reset whenever the D+ and D- lines on the port are not in the SEO or SEl state or when 
the port is not in the Enabled, Suspended, Disabled, Restart-E, or Restart_S states. This timer must be reset 
for 4ms upon entry to the Suspended and Disabled states. This timer times an interval TDDIS. The range of 
TDDIS is 2.0 µs to 2.5 as defined in Table 7-13. When this timer expires, it generates the 
Disconnect_ Detect signal to the port state machine. 

This timer can also be used for filtering the K/SEO signal in the Suspended, Restart_E, or Restart_S states as 
described in Section 11.5.1. 

11.5.3 Port Indicator 

316 

Each downstream facing port of a hub can support an optional status indicator. The presence of indicators 
for downstream facing ports is specified by bit 7 of the wHubCharacteristics field of the hub class 
descriptor. Each port 's indicator must be located in a position that obviously associates the indicator with 
the port. The indicator provides two colors: green and amber. This can be implemented as physically one 
LED with two color capability or two separate LEDs. A combination of hardware and software control is 
used to inform the user of the current status of the port or the device attached to the port and to guide the 
user through problem resolution. Colors and blinking are used to provide information to the user. 

An external hub must automatically control the color of the indicator as specified in Figure 11-11. 
Automatic port indicator setting support for root hubs may be implemented with either hardware or 
software. The port indicator color selector value is zero (indicating automatic control) when the hub 
transitions to the configured device state. When the hub is suspended or not configured, port indicators 
must be off. 

Table 11-6 identifies the mapping of color to port state when the port indicators are automatically 
controlled. 

Table 11-6. Automatic Port State to Port Indicator Color Mapping 

Power Downstream Facing Hub Port State 
Switching 

Powered-off Disconnected, Disabled, Not Enabled, Suspended, 
Configured, Resetting, Transmit, or Resuming, 
Testing TransmitR SendEOR, 

Restart_E, or 
Restart_S 

With Off or amber if due Off Green Off 
to an over-current 
condition 

Without Off Off or amber if due to an over- Green Off 
current condition 



ZTE/SAMSUNG 1008-0345 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Automatic 
Mode 

SetPortFeature 
(PORT _INDICATOR, 
indicator selector != 0) 

SetPortFeature 
(PORT_INDICATOR, 
indicator_selector = 0) 

Figure 11-11. Port Indicator State Diagram 

Jn Manual Mode the color of a port indicator (Amber, Green, or Off) is set by a system software USB Hub 
class request. In Automatic Mode the color of a port indicator is set by the port state information. 

Table 11-7 defines port state as understood by the user. 

Table 11-7. Port Indicator Color Definitions 

Color Definition 

Off Not operational 

Amber Error condition 

Green Fully operational 

Blinking Software attention 

Off/Green 

Blinking Hardware attention 

Off/Amber 

Blinking Reserved 

Green/Amber 

Note that the indicators reflect the status of the port, not necessarily the device attached to it. Blinking of 
the indicator is used to draw the user's attention to the port, irrespective of its color. 

317 



ZTE/SAMSUNG 1008-0346 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Port indicators allow control by software. Host software forces the state of the indicator to draw attention to 
the port or to indicate the current state of the port. 

See Section 11.24.2.7 .1.10 for the specification of indicator requests. 

11 .5.3.1 Labeling 
USB system software uses port numbers to reference an individual port with a ClearPortFeature or 
SetPortFeature request. If a vendor provides a labeling to identify individual downstream facing ports, then 
each port connector must be labeled with their respective port number. 

11 .6 Upstream Facing Port 
The upstream facing port has four components: transmitter, transmitter state machine, receiver, and receiver 
state machine. The transmitter and its state machine are the Transmitter, while the receiver and its state 
machine are the Receiver. The Transmitter and Receiver operate in high-speed and full-speed depending on 
the current hub configuration. 

11.6.1 Full-speed 
Both the transmitter and receiver have differential and single-ended components. The differential 
transmitter and receiver can send/receive 'J' or 'K 'to/from the bus while the single-ended components are 
used to send/receive SEO, suspend, and resume signaling. The single-ended components are also used to 
receive SEl. In this section, when it is necessary to differentiate the signals sent/received by the differential 
component of the transmitter/receiver from those of the single-ended components, DJ and DK will be used 
to denote the differential signal, while SJ, SK, SEO, and SEJ will be used for the single-ended signals. 

When the Hub Repeater has connectivity in the upstream direction, the transmitter must not send or 
propagate SEI signaling. Instead, the SEI must be propagated as a DJ. 

11.6.2 High-speed 
Both the transmitter and receiver have differential components only. These signals are called HJ and HK. 
The HS_Idle state is the idle state of the bus in high-speed. 

It is assumed that the differential transmitter and receiver are turned off during suspend to minimize power 
consumption. The single-ended components are left on at all times, as they will take minimal power. 

11.6.3 Receiver 

318 

The receiver state machine is responsible for monitoring the signaling state of the upstream connection to 
detect long-term signaling events such as bus reset, resume, and suspend. This state machine details the 
operation of the device state diagram shown in Figure 9-1 in the Default, Address, Configured, and 
Suspended state. The Suspend, Resume, and ReceivingSEO states are only used when the upstream facing 
port is operating in full-speed mode with full-speed terminations. The ReceivingIS, ReceivingHJ, and 
ReceivingHK states are only used when the upstream facing port is operating in high-speed mode with high
speed terminations; so these states are categorized as the HS (high-speed) states, and all other states are 
categorized as nonHS in the description below. 



ZTE/SAMSUNG 1008-0347 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

.Figure 11-12 illustrates the state transition diagram. 

Tx_active 
HJ J 

Receiving HJ ReceivingJ 

HK Suspend 
K 

EOI 

HS_ldle 
HS &EOR 

EOI & !HS_ldle 

State Machine Exports: 

Rx_Bus _ Reset(Bus _Reset) 
Rx_Suspend(Suspend) 
Rx_Resume(Resume) 
EOITR 

# = logical OR 
& = logical AND 
! = logical NOT 

EOI & HS_ldle 

Figure 11-12. Upstream Facing Port Receiver State Machine 

Table 11-8 defines the signals and events referenced in the figures . 

319 



ZTE/SAMSUNG 1008-0348 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Table 11-8. Upstream Facing Port Receiver Signal/Event Definitions 

Signal/Event Event/Signal Description 
Name Source 

HS Internal Port is operating in high-speed 

Tx_active Transmitter Transmitter in the Active state 

J Internal Receiving a 'J' (IDLE) or an 'SE1' on the upstream facing port 

HJ Internal Receiving an HJ on the upstream facing port 

EOI Internal End of timed interval 

EOITR Internal Generated 24 full-speed bit times after the K->SEO transition 
at the end of resume 

HK, K Internal Receiving an HK, 'K' on the upstream facing port 

Tx_resume Transmitter Transmitter is in the Sresume state 

HS_ldle Internal Receiving an Idle state on the high-speed upstream facing 
port 

SEO Internal Receiving an SEO on the full-speed upstream facing port 

EOR Internal End of Reset signaling from upstream 

POR Implementation- Power_On_Reset 
dependent 

11.6.3.1 ReceivinglS 
This state is entered 

• From the ReceivingHJ or ReceivingHK state when a SEO is seen at the port and the port is in high

speed operation 

• From the Resume state when a EOlTR is seen and the port is in high-speed operation 

• From the Bus Reset state at the End of Reset signaling from upstream when the port is in high-speed 
operation 

This is a timed state with an interval of 3 ms. The timer is reset each time this state is entered. 

11.6.3.2 ReceivingHJ 
This state is entered from an HS state when a HJ is seen on the bus. 

11.6.3.3 ReceivingJ 

320 

This state is entered from a nonHS state except the Suspend state ifthe receiver detects an SJ (or Idle) or 
SEl condition on the bus or while the Transmitter is in the Active state. 

This is a timed state with an interval of 3 ms. The timer is reset each time this state is entered. 

The timer only advances ifthe Transmitter is in the Inactive state. 



ZTE/SAMSUNG 1008-0349 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.6.3.4 Suspend 
This state is entered when: 

• The 3 ms timer expires in the ReceivingJ 

• The 3 ms timer expires in the ReceivingIS state and the port has removed its high-speed 
terminations and connected its D+ pull-up resistor and the resulting bus state is not SEO. 

When the Receiver enters this state, the Hub Controller starts a 2 ms timer. If that timer expires while the 
Receiver is still in this state, then the Hub Controller is suspended. When the Hub Controller is suspended, 
it may generate resume signaling. 

11.6.3.5 ReceivingHK 
This state is entered from an HS state when a HK is seen on the bus. 

11.6.3.6 ReceivingK 
This state is entered from any nonHS state except the Resume state when the receiver detects an SK 
condition on the bus and the Hub Repeater is in the WFSOP or WFSOPFU state. 

This is a timed state with a duration of2.5 µs to 100 µs. The timer is reset each time this state starts. 

11 .6.3.7 Resume 
This state is entered: 

• From the ReceivingK state when the timer expires 

• From the Suspend state while the Transmitter is in the Sresume state or if there is a transition to the 
K state on the upstream facing port 

If the hub enters this state when its timing reference is not available, the hub may remain in this state until 
the hub's timing reference becomes stable (timing references must stabilize in less than IO ms). If this state 
is being held pending stabilization of the hub's clock, the Receiver must provide a K to the repeater for 
propagation to the downstream facing ports. When clocks are stable, the Receiver must repeat the incoming 
signals. 

Note: Hub timing references will be stable in less than 10 ms since reset requirements already specify that 
they be stable in less than I 0 ms and a hub must support reset from suspend. 

11.6.3.8 ReceivingSEO 
This state is entered from any nonHS state except Bus_Reset when the receiver detects an SEO condition 
and the Hub Repeater is in the WFSOP or WFSOPFU state. 

This is a timed state. The minimum interval for this state is 2.5 µs. The maximum depends on the hub but 
this interval must timeout early enough such that ifthe width of the SEO on the upstream facing port is only 
I 0 ms, the Receiver will enter the Bus_ Reset state with sufficient time remaining in the 10 ms interval for 
the hub to complete its reset processing. Furthermore, if the hub is suspended when the Receiver enters this 
state, the hub must be able to start its clocks, time this interval, and complete its reset (chirp) protocol and 
processing in the Bus_Reset state within l 0 ms. lt is preferred that this interval be as long as possible given 
the constraints listed here. This will provide for the maximum immunity to noise on the upstream facing 
port and reduce the probability that the device will reset in the presence of noise before the upstream hub 
disables the port. 

The timer is reset each time this state starts. 

321 



ZTE/SAMSUNG 1008-0350 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.6.3.9 Bus_Reset 
This state is entered: 

• From the ReceivingSEO state when the timer expires. As long as the port continues to receive SEO, the 
Receiver will remain in this state. 

• This state is also entered while power-on-reset (POR) is being generated by the hub's local circuitry. 
The state machine cannot exit this state while POR is active. 

• The 3 ms timer expires in the ReceivingIS state and the port has removed its high-speed terminations 
and connected its D+ pull-up resistor and the resulting bus state is still SEO. 

In this state, a high-speed capable port will implement the chirp signaling, handshake, and timing protocol 
as described in Section 7.1.7.5. 

11.6.4 Transmitter 

322 

This state machine is used to monitor the upstream facing port while the Hub Repeater has connectivity in 
the upstream direction. The purpose of this monitoring activity is to prevent propagation of erroneous 
indications in the upstream direction. In particular, this machine prevents babble and disconnect events on 
the downstream facing ports of this hub from propagating and causing this hub to be disabled or 
disconnected by the hub to which it is attached. Figure 11-13 is the transmitter state transition diagram. 
Table 11-9 defines the signals and events referenced in Figure I 1- I 3. 

HS&(EOF1# 
HEOP) 

Rx_Bu _Reset 

Inactive 

WFEOP & !Rx_Suspend 

EOF1 &!HS .----<--A-c ...... ti_v_e--..,.1-----~ 

Rx_Suspend & 
Rptr_WFEOP 

GEOPTU 

Sresume 
EOI 

State Machine Exports: 

Tx_Active(Active) 
Tx_Resume(Sresume) 

#=Logical OR 

& = Logical AND 

! = Logical NOT 

Figure 11-13. Upstream Facing Port Transmitter State Machine 



ZTE/SAMSUNG 1008-0351 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Table 11-9. Upstream Facing Port Transmit SignaVEvent Definitions 

Signal/Event Event/Signal Description 
Name Source 

Rx_Bus_Reset Receiver Receiver is in the Bus_Reset state 

EOF1 (micro)frame Hub (micro)frame time has reached the EOF1 point or is 
Timer between EOF1 and the end of the (micro)frame 

J Internal Transmitter transitions to sending a 'J' and transmits a 'J' 

Rptr_WFEOP Hub Repeater Hub Repeater is in the WFOEP state 

K Internal Transmitter transmits a 'K' 

SEOsent Internal At least one bit time of SEO has been sent through the 
transmitter 

Rx_ Suspend Receiver Receiver is in Suspend state 

HEOP Repeater Completion of packet transmission in upstream direction 

HS Internal Upstream facing port is operating as high-speed port 

EOI Internal End of timed interval 

11 .6.4.1 Inactive 
This state is entered at the end of the SendJ state or while the Receiver is in the Bus_Reset state. This state 
is also entered at the end of the Sresume state. While the transmitter is in this state, both the differential and 
single-ended transmit circuits are disabled and placed in their high-impedance state. 

When port is operating as a high-speed port, this state is entered from the Active state at EOF l or after an 
HEOP from downstream. 

11.6.4.2 Active 
This state is entered from the Inactive state when the Hub Repeater transitions to the WFEOP state. This 
state is entered from the RepeatingSEO state ifthe first transition after the SEO is not to the J state. In this 
state, the data from a downstream facing port is repeated and transmitted on the upstream facing port. 

11.6.4.3 RepeatingSEO 
The port enters this state from the Active state when one bit time of SEO has been sent on the upstream 
facing port. While in this state, the transmitter is still active and downstream signaling is repeated on the 
port. This is a timed state with a duration of23 full-speed bit times. 

11.6.4.4 SendJ 
The port enters this state from the RepeatingSEO state if either the bit timer reaches 23 or the repeated 
signaling changes from SEO to 'J' or 'SE!'. This state is also entered at the end of the GEOPTU state. This 
state lasts for one full-speed bit time. During this state, the hub drives an SJ on the port. 

323 



ZTE/SAMSUNG 1008-0352 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.6.4.5 Generate End of Packet Towards Upstream Port (GEOPTU) 
The port enters this state from the Active or RepeatingSEO state if the frame timer reaches the EOFl point. 

In this state, the port transmits SEO for two full-speed bit times. 

11.6.4.6 Send Resume (Sresume) 
The port enters this state from the Inactive state if the Receiver is in the Suspend state and the Hub Repeater 
transitions to the WFEOP state. This indicates that a downstream device (or the port to the Hub Controller) 
has generated resume signaling causing upstream connectivity to be established. 

On entering this state, the hub will restart clocks if they had been turned off during the Suspend state. 
While in this state, the Transmitter will drive a 'K' on the upstream facing port. While the Transmitter is in 
this state, the Receiver is held in the Resume state. While the Receiver is in the Resume state, all 
downstream facing ports that are in the Enabled state are placed in the TransmitR state and the resume on 
this port is transmitted to those downstream facing ports. 

The port stays in this state for at least I ms but for no more than 15 ms. 

11 . 7 Hub Repeater 
The Hub Repeater provides the following functions: 

• Sets up and tears down connectivity on packet boundaries 

• Ensures orderly entry into and out of the Suspend state, including proper handling of remote wakeups 

11.7.1 High-speed Packet Connectivity 

324 

High-speed packet repeaters must reclock the packets in both directions. Reclocking means that the 
repeater extracts the data from the received stream and retransmits the stream using its own local clock. 
This is necessary in order to keep the jitter seen at a receiver within acceptable limits (see Chapter 7 for 
definition and limits on jitter). 

Reclocking creates several requirements which can be best understood with the example repeater signal path 
shown in Figure 11-14. 

Squelch 
Port Selector state 

machine 

~---- Data 

>--------.i Recovery 
Rev stream 

Rev Clk 

Elasticity 
Buffer 

Xmt Clk 

Figure 11-14. Example Hub Repeater Organization 

Xmt stream 



ZTE/SAMSUNG 1008-0353 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.7.1.1 Squelch Circuit 
Because of squelch detection, the initial bits of the SYNC field may not be seen in the rest of the repeater. 
At most, 4 bits of the SYNC field may be sacrificed in the entire repeater path. 

The squelch circuit may take at most 4 bit times to disable the repeater after the bus returns to the Idle state. 
This results in bits being added after the end of the packet. This is also known as EOP dribble and up to 
4 random bits may get added after the packet by the entire repeater path. 

11.7.1.2 Data Recovery Unit 
The data recovery unit extracts the receive clock and receive data from this stream. Note that this is a 
conceptual model only; actual implementations (e.g., DLL) may achieve the reclocking by the local clock 
without separation of the receive clock and data. 

11.7.1.3 Elasticity Buffer 
The half-depth of the elasticity buffer in the repeater must be at least 12 bits. 

The total latency of a packet through a repeater must be less than 36 bit times. This includes the latency 
through the elasticity buffer. 

The elasticity buffer is used to handle the difference in frequency between the receive clock and the local 
clock and works as follows. The elasticity buffer is primed (filled with at least 12 bits) by the receive clock 
before the data is clocked out of it by the transmit clock. If the transmit clock is faster than the receive 
clock, the buffer will get emptied more quickly than it gets filled. ff the transmit clock is slower, the buffer 
will get emptied slower than it gets filled. If the half-depth of the buffer is chosen to be equal to the 
maximum difference in clock rate over the length of a packet, bits will not be lost or added to the packet. 
The half-depth is calculated as follows. 

The clock tolerance allowed is 500 ppm. This takes into account the effect of voltage, temperature, aging, 
etc. So the received clock and the local clock could be different by I 000 ppm. The longest packet has a 
data payload of I Kbytes. The maximum length of a packet is computed by adding the length of all the 
fields and assuming maximum bit-stuffing. This maximum length is 9644 bits (9624 bits of packet + 20 bits 
ofEOP dribble). This means that when the repeater is clocking out a packet with its local clock, it could get 
ahead ofor fall behind the receive clock by 9.644 bits (1000 ppm*9644). This calculation yields 10 bits. 
The half-depth of the elasticity buffer in the repeater must be at least 12 bits to provide system timing 
margin. 

11.7.1.4 High-Speed Port Selector State Machine 
This state machine is used to establish connectivity on a valid packet and to keep the repeater from 
establishing connectivity from a port which is seeing noise. This state machine must implement the 
behavior shown in Figure 11-15. (Note: This state machine may be implemented on a per-port or per-hub 
basis.) 

325 



ZTE/SAMSUNG 1008-0354 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Rx_Bus_Reset 

... I 
EBEmptieu 

Inactive ~ 

.... ~ Enable Transmit 

!Squelch 
H. 

Squelch&EOI& !SORP v 
~ 

Priming ~ 

EOl&SORP 

!Squelch&EOl&!SORP 

Squelch ., , ! = Logical NOT 

~ &=Logical AND 
.... Not Packet 

#=Logical OR 

Figure 11-15. High-speed Port Selector State Machine 

Table 11-10. High-speed Port Selector Signal/Event Definitions 

Signal/Event Name Event/Signal Description 
Source 

Rx_Bus_Reset Internal Receiver is in the Bus_reset state. 

EB Emptied Internal All bits accumulated in the elasticity buffer have been 
transmitted. 

EOI Internal End of interval of time needed for priming elasticity buffer 

Squelch Internal Bus is in squelch state 

SORP Internal Start Of Repeating Pattern; a 'JKJK' or 'KJKJ' pattern has 
been seen in data in elasticity buffer. 

11.7.1.4.1 Inactive 
This state is entered 

• From the Enable Transmit state when all the bits accumulated in the elasticity buffer have been 
transmitted 

• From the Priming state if squelch is seen and the elasticity buffer is primed without a SORP being seen 

• From the Not Packet state when the squelch circuit indicates a squelch state on the port 

• From on any state on Rx_Bus_Reset 

11.7.1.4.2 Priming 

326 

This state is entered from the Inactive state when the squelch circuit indicates that valid signal levels have 
been observed at the port. This is a timed state and the priming interval is the time needed for the 
implementation to fill the elasticity buffer with at least 12 bits. 



ZTE/SAMSUNG 1008-0355 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.7.1 .4.3 Enable Transmit 
This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed and the 
bits in the elasticity buffer include the SORP pattern. 

1n this state, the state machine generates a signal "start of high-speed packet" (SOHP) to the repeater state 
machine which allows the repeater to establish connectivity from this port to the upstream facing port (or 
downstream facing ports). 

11.7.1.4.4 Not Packet 
This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed, and the 
bits in the elasticity buffer do not include the SORP pattern, and the squelch signal is not active. 

11.7.2 Hub Repeater State Machine 
The Hub repeater state machine in Figure 11-16 shows the states and transitions needed to implement the 
Hub Repeater. Table 11-11 defines the Hub Repeater signals and events. The following sections describe 
the states and the transitions. 

11.7.2.1 High-speed Repeater Operation 
Connectivity is setup on SOHP and torn down on HEOP. (HEOP is either the EBemptied signal from the 
port selector state machine 'OR' the EOI signal which causes the transition out of the SendEOR state in 
downstream facing port state machine.) Several of the state transitions below will occur when the HEOP is 
seen. When such a transition is indicated, the transition does not occur until after the hub has repeated the 
last bit in the elasticity buffer. Some of the transitions are triggered by an SOHP. Transitions of this type 
occur as soon as the hub detects the SOHP from the port selector state machine ensuring that a valid packet 
start has been seen. 

11 . 7 .2.2 Full-/low-speed Repeater Operation 
Connectivity is setup on SOP and torn down on EOP. Several of the state transitions below will occur when 
the EOP is seen. When such a transition is indicated, the transition does not occur until after the hub has 
repeated the SEO-to-'J' transition and has driven 'J' for at least one bit time (bit time is determined by the 
speed of the port.) Some of the transitions are triggered by an SOP. Transitions of this type occur as soon 
as the hub detects the 'J'-to-'K' transition, ensuring that the initial edge of the SYNC field is preserved. 

327 



ZTE/SAMSUNG 1008-0356 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11. 7 .2.3 Repeater State Machine 

328 

R B x_ us_Reset . ~ ... WFSOPFU .... 
~ . State Machine Exports: 

.... ... ... 
SOP_FU UEOP & !Lock 

Rptr _WFEOP(WFEOP) 
Rptr_WFSOPFU(WFSOPFU) 
Rptr_Enter_WFEOPFU 
Rptr_Exit_WFEOPFU 

Rx_Resume . .. 

SOP_FU 

... 
1 .... ..... 

DEOP 

. .... 

1r 
. 

WFEOPFU ... 

... 
UEOP & Lock 

1 r 
~ Rx_Suspend 

.... 
WFSOP EOF1 

... 
SOP_FD 

1 Ir 

WFEOP 
EOF2 

~ ... 

. ... 

#=Logical OR 

& = Logical AND 

! = Logical NOT 

Figure 11-16. Hub Repeater State Machine 



ZTE/SAMSUNG 1008-0357 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

T able 11-11. Hub Repeater Signal/Event Definitions 

Signal/Event Event/Signal Descript ion 
Name Source 

Rx_Bus_Reset Receiver Receiver is in the Bus_Reset state 

HEOP Three sources of HEOP: 

Internal (Port selector, EBEmptied signal from port selector state machine OR 

Downstream port, transition at EOI from SendEOR state in downstream facing 
port state machine OR 

Upstream port 
receiver) EOITR from upstream facing port receiver state machine 

UEOP Internal (HEOP)EOP received from the upstream facing port 

DEOP Internal Generated when the Transmitter enters the (Inactive) SendJ 
state 

EOF1 (Micro)frame Timer (micro)frame timer is at the EOF1 point or between EOF1 
and End-of-(micro)frame 

EOF2 (Micro)frame Timer (micro)frame timer is at the EOF2 point or between EOF2 
and End-of-( micro )frame 

Lock (Micro)frame Timer (micro)frame timer is locked 

Rx_ Suspend Receiver Receiver is in the Suspend state 

Rx_Resume Receiver Receiver is in the Resume state 

SOP_FD Internal (SOHP)SOP received from downstream facing port or Hub 
Controller. Generated (after SOHP identified) on the 
transition from the Idle to K state on a port. 

SOP_FU Internal (SOHP)SOP received from upstream facing port. 
Generated (after SOHP identified) on the transition from the 
Idle to K state on the upstream facing port. 

11.7.3 Wait for Start of Packet from Upstream Port (WFSOPFU) 
This state is entered in either of the following situations: 

• From any other state when the upstream Receiver is in the Bus_Reset state 

• From the WFSOP state if the (micro)frame timer is at or has passed the EOFl point 

• From the WFEOP state at the EOF2 point 

• From the WFEOPFU if the (micro)frame timer is not synchronized (locked) when an (HEOP)EOP is 
received on the upstream facing port 

1n this state, the hub is waiting for an (SOHP)SOP on the upstream facing port, and transitions on 
downstream facing ports are ignored by the Hub Repeater. While the Hub Repeater is in this state, 
connectivity is not established. 

329 



ZTE/SAMSUNG 1008-0358 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

This state is used during the End-of-(micro)frame (past the EOFI point) to ensure that the hub will be able 
to receive the SOF when it is sent by the host. 

11. 7 .4 Wait for End of Packet from Upstream Port (WFEOPFU) 
The hub enters this state if the hub is in the WFSOP or WFSOPFU state and an (SOHP)SOP is detected on 
the upstream facing port. The hub also enters this state from the WFSOP, WFSOPFU, or WFEOP states 
when the Receiver enters the Resume state. 

While in this state, connectivity is established from the upstream facing port to all enabled downstream 
facing ports. Downstream facing ports that are in the Enabled state are placed in the Transmit state on the 
transition to this state. 

11.7.5 Wait for Start of Packet (WFSOP) 
This state is entered in any of the following situations: 

• From the WFEOP state when an (HEOP)EOP is detected from the downstream facing port 

• From the WFEOPFU state if the (micro)frame timer is synchronized (locked) when an (HEOP)EOP is 
received from upstream 

• From the WFSOPFU or WFEOPFU states when the upstream Receiver transitions to the Suspend state 

A hub in this state is waiting for an (SOHP)SOP on the upstream facing port or any downstream facing port 
that is in the Enabled state. While the Hub Repeater is in this state, connectivity is not established. 

11.7.6 Wait for End of Packet (WFEOP) 
This state is entered from the WFSOP state when an (SOHP)SOP is received from a downstream facing 
port in the Enabled state. 

Jn this state, the hub has connectivity established in the upstream direction and the signaling received on an 
enabled downstream facing port is repeated and driven on the upstream facing port. The upstream 
Transmitter is placed in the Active state on the transition to this state. 

lfthe Hub Repeater is in this state when the EOF2 point is reached, the downstream facing port for which 
connectivity is established is disabled as a babble port. 

Note: The full-speed Transmitter will send an EOP at EOFl , but the Repeater stays in this state unti l the 
device sends an (HEOP)EOP or the EOF2 point is reached. 

11.8 Bus State Evaluation 
A hub is required to evaluate the state of the connection on a port in order to make appropriate port state 
transitions. This section describes the appropriate times and means for several of these evaluations. 

11.8.1 Port Error 

330 

A Port Error can occur on a downstream facing port that is in the Enabled state. A Port Error condition 
exists when: 

• The hub is in the WFEOP state with connectivity established upstream from the port when the 
(micro )frame timer reaches the EOF2 point. 

• At the EOF2 point, the Hub Repeater is in the WFSOPFU state, and there is other than Idle state on the 
port. 



ZTE/SAMSUNG 1008-0359 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

If upstream-directed connectivity is established when the (micro)frame timer reaches the EOFI point, the 
upstream Transmitter will (return to Inactive state) generate a full-speed EOP to prevent the hub from being 
disabled by the upstream hub. The connected port is then disabled if it has not ended the packet and 
returned to the Idle state before the (micro)frame timer reaches the EOF2 point. 

11.8.2 Speed Detection 
At the end of reset, the bus is in the Idle state for the speed recorded in the port status register. Speed 
detection is described in Section 7.1. 7.5. 

If the device connected at the downstream facing port is high-speed, the repeater (rather than the 
Transaction Translator) is used to signal between this port and the upstream facing port. 

Due to connect and start-up transients, the hub may not be able to reliably determine the speed of the device 
until the transients have ended. The USB System Software is required to "debounce" the connection and 
provide a delay between the time a connection is detected and the device is used (see Section 7.1.7.3). At 
the end of the debounce interval, the device is expected to have placed its upstream facing port in the Idle 
state and be able to react to reset signaling. The USB System Software must send a 
SetPortFeature(PORT_RESET) request to the port to enable the port and make the attached device ready for 
use. 

The downstream facing port monitors the state of the D+ and D- lines to detem1ine ifthe connected device 
is low-speed. If so, the PORT_ LOW _SPEED status bit is set to one to indicate a low-speed device. If not, 
the PORT _LOW _SPEED status bit is set to zero to indicate a full-/high-speed device. Upon exit from the 
reset process, the hub must set the PORT_HIGH_SPEED status bit according to the detected speed. The 
downstream facing port performs the required reset processing as defined in Section 7. I. 7.5. At the end of 
the Resetting state, the hub will return the bus to the Idle state that is appropriate for the speed of the 
attached device and transition to the Enabled state. 

11.8.3 Collision 
If the Hub Repeater is in the WFEOP state and an (SOHP)SOP is detected on another enabled port, a 
Collision condition exists. There are two allowed behaviors for the hub in this instance. In either case, 
connectivity teardown at EOFl and babble detection at EOF2 is required. 

The first, and preferred, behavior is to 'garble' the message so that the host can detect the problem. The hub 
garbles the message by transmitting a ('J' or) 'K' on the upstream facing port. This ('J' or) 'K' should persist 
until packet traffic from all downstream facing ports ends. The hub should use the last( ' J' or 'K') EOP to 
terminate the garbled packet. Babble detection is enabled during this garbled message. 

A second behavior is to block the second packet and, when the first message ends, return the hub to the 
WFSOPFU or WFSOP state as appropriate. lfthe second stream is still active, the hub may reestablish 
connectivity upstream. This method is not preferred, as it does not convey the problem to the host. 
Additionally, if the second stream causes the hub to reestablish upstream connectivity as the host is trying to 
establish downstream connectivity, additional packets can be lost and the host cannot properly associate the 
problem. 

Note: In high-speed repeaters, use of the SOHP to detect collisions would need replication of the datapath 
shown in Figure 11-14 at every port. The unsquelch signal at a port can be used instead of the SOHP to 
detect collisions; in this case, the second behavior (blocking) described above must be used. 

11.8.4 Low-speed Port Behavior 
When a hub is configured for full-/low-speed operation, low-speed data is sent or received through the hub's 
upstream facing port at full-speed signaling even though the bit times are low-speed. 

Full-speed signaling must not be transmitted to low-speed ports. 

331 



ZTE/SAMSUNG 1008-0360 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

If a port is detected to be attached to a low-speed device, the hub port 's output buffers are configured to 
operate at the slow slew rate (75-300 ns), and the port will not propagate downstream-directed packets 
unless they are prefaced with a PRE PID. When a PRE PID is received, the 'J' state must be driven on 
enabled low-speed ports within four bit times of receiving the last bit of the PRE PID. 

Low-speed data follows the PID and is propagated to both low- and full-speed devices. Hubs continue to 
propagate downstream signaling to all enabled ports until a downstream EOP is detected, at which time all 
output drivers are turned off. 

Full-speed devices will not misinterpret low-speed traffic because no low-speed data pattern can generate a 
valid full-speed PID. 

When a low-speed device transmits, it does not preface its data packet with a PRE PID. Hubs will 
propagate upstream-directed packets of full-flow-speed using full-speed signaling polarity and edge rates. 

For both upstream and downstream low-speed data, the hub is responsible for inverting the polarity of the 
data before transmitting to/from a low-speed port. 

Although a low-speed device will send a low-speed EOP to properly terminate a packet, a hub may truncate 
a low-speed packet at the EOFl point with a full-speed EOP. Thus, hubs must always be able to tear down 
connectivity in response to a full-speed EOP regardless of the data rate of the packet. 

Because of the slow transitions on low-speed ports, when the D+ and D- signal lines are switching between 
the 'J' and 'K', they may both be below 2.0 V for a period of time that is longer than a full-speed bit time. A 
hub must ensure that these slow transitions do not result in termination of connectivity and must not result in 
an SEO being sent upstream. 

11 .8.4.1 Low-speed Keep-alive 
All hub ports to which low-speed devices are connected must generate a low-speed keep-alive strobe, 
generated at the beginning of the frame, which consists of a val id low-speed EOP (described in 
Section 7.1.13 .2). The strobe must be generated at least once in each frame in which an SOF is received. 
This strobe is used to prevent low-speed devices from suspending if there is no other low-speed traffic on the 
bus. The hub can generate the keep-alive on any valid full-speed token packet. The following rules for 
generation of a low-speed keep-alive must be adhered to: 

• A keep-alive must minimally be derived from each SOF. It is recommended that a keep-alive be 
generated on any valid full-speed token. 

• The keep-alive must start by the eighth bit after the PID of the full-speed token. 

11 .9 Suspend and Resume 

332 

Hubs must support suspend and resume both as a USB device and in terms of propagating suspend and 
resume signaling. Hubs support both global and selective suspend and resume. Global and selective 
suspend are defined in Section 7.1. 7.6. Global suspend/resume refers to the entire bus being suspended or 
resumed without affecting any hub's downstream facing port states; selective suspend/resume refers to a 
downstream facing port of a hub being suspended or resumed without affecting the hub state. Global 
suspend/resume is implemented through the root port(s) at the host. Selective suspend/resume is 
implemented via requests to a hub. Device-initiated resume is called remote-wakeup (see Section 7.1.7.7). 

If the hub upstream facing port is in (high-speed) full-speed, the required behavior is the same as that for a 
function with upstream facing port in (high-speed) full-speed and is described in Chapter 7. 

When a downstream facing port operating at high-speed goes into the Suspended state, it switches to full
speed terminations but continues to have high-speed port status. In response to a remote wakeup or 
selective resume, this port will drive full-speed ' K' throughout its Resuming state. The requirements and 
timings are the same as for full-speed ports and described below. At the end of this signaling, the bus will 



ZTE/SAMSUNG 1008-0361 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

be returned to the high-speed Idle state (using the SendEOR state). After this, the port will return to the 
Enabled state. The high-speed status of the port is maintained throughout the suspend-resume cycle. 

F igure 11-17 and Figure I 1-18 show the timing relationships for an example remote-wakeup sequence. 
This example illustrates a device initiating resume signaling through a suspended hub ( 'B') to an awake hub 
(' A'). Hub ' A' in this example times and completes the resume sequence and is the "Controlling Hub". 
The timings and events are defined in Section 7.1.7.7. 

~ Contr olling Hub 
suspended OS 
Port 

Everything 
below Hub 'A' 
In Suspend 
state 

FulUlow speed Bus driving 
Full/low speed Bus driving -
repeat 
Full/low speed Bus Idle or 
driven at other end 

- ·-·-· High speed idle state 

C t II. H b O • R (OS) . ~ Controlling Hub --....i,·, on ro mg u nves esume . 
-,...; 20ms (nominal) ~ sends EOR ending 

. · ,__· ----i'---;'--------i: resume 
-~~e-(~J-:-;;,; ---~.· .•. ---~ ResumeK, 'K'I i, ~ 

Ji ~ ·---i~le ------1---i--- l--......;.i-......;.!-------4-, '-

I -.J ~ Con;rolling
1 
Hub Reflects Resume t 

i ! (OS) 900µs Hub 
Upstream 
Port 

! ! _j Hub 'B' generates 
i / I EOP ending resume 

-~~e-(~J~J1_! __ _ V, Resu~.· e ('K') l·-···--···· .. ··-·--····· ........ .............. l ~;.)-
fii-. --+---_,_--;'. ....................................................... LL.J.=·.-' 

------.,-~ I i..- Hub 'B' Drives Res~me (US and OS) 

+ l HL 'B' Reflects 1sume (US and D~:·g., 
1

pms] 

i i 900µs 

1.!1~(·~·1-] Resu~e ('Ki) j ---r---------------1 {id~;rJ'l 
; ! : 1 ---r---------------1.l-.~ .. - -

oevice -.J l i + Qovice Drives Resume i 
Remote i l • • [e.g., 1oms) ' 
Wakeup tol t1 ~ 11i t, 1 t, j ta i 

""- Enabled OS 

~""'M 

1 1 Device 
I I Hub Port 
I I 

Device 

Device 

Figure 11-17. Example Remote-wakeup Resume Signaling With Full-/low-speed Device 

333 



ZTE/SAMSUNG 1008-0362 
IPR2018-00111

~ Controlling Hub 
suspended OS 
Port 

Hub 
Upstream 
Port 

'Enabled OS 

~ """m 

1 1 Device 
I I Hub Port 
I I 

Universal Serial Bus Specification Revision 2.0 

Everything 
below Hub 'A' 
in Suspend 
state 

Full/low speed Bus driving 
Full/low speed Bus driving -
repeat 
FulUlow speed Bus Idle or 
driven at other end 

-·-·-· High speed idle state 

Controlling Hub Drives Resume (OS) . ~ Controlling Hub 
, ~ 20ms (nominal) + sends EOR ending 

. ! . ; : i. · resume 

-~~e-(~J7ii---T--~ Resume~'K') I U idle 

------1---1--- ~ l ! i ·- ·-· 
i ~ ~Controlling Hub Reflects Resume .i,'',,_' ! (OS) 900µs 

' ' 
: ~ 

-~~e-(~J7)1---~ Resu~e ('K') '·::·:~:~:~~.:.~:::::.::~:~~::~:~ ..• ~~.:.::l ___ .~~e 
------~-~.. i .. ,;,· ~ Hub 'B' Drives Res~me (US and OS) 

: ce.g., 1rms1 

~HLb 'B' ReJects Resume (US and OS) j_' 

' 900µs 

~Device 
...-----'-"---. l~l~~·~·~j Resu~e ('Ki) ___ t~~~~~~~~~~~~~~i idle 

Device~! ! j ~.· o.1 
evice Drives Resume !.

1 
Remote --,.."] ! ,....--
Wakeu i . i i ! {e.g., 10ms] ~ 

P to! tr! tzi to ! l, i t,; 

Device 

Figure 11-18. Example Remote-wakeup Resume Signaling With High-speed Device 

Here is an explanation of what happens at each t,,: 

t
0 

Suspended device initiates remote-wakeup by driving a K' on the data lines. 

t, Suspended hub ' B' detects the 'K' on its downstream facing port and wakes up enough within 900 µs 
to filter and then reflect the resume upstream and down through all enabled ports. 

t
1 

Hub 'A' is not suspended (implication is that the port at which 'B' is attached is selectively 
suspended), detects the 'K' on the selectively suspended port where 'B' is attached, and filters and 
then reflects the resume signal back to 'B' within 900 µs. 

t, Device ceases driving ' K' upstream. 

t, Hub 'B' ceases driving 'K' upstream and down all enabled ports and begins repeating upstream 
signaling to all enabled downstream facing ports. 

ts Hub 'A' completes resume sequence, after appropriate timing interval, by driving a speed-appropriate 
end of resume downstream. (End ofresume will be an Idle state for a high-speed device or a low
speed EOP for a full-/low-speed device.) 

The hub reflection time is much smaller than the minimum duration a USB device will drive resume 
upstream. This relationship guarantees that resume will be propagated upstream and downstream without 
any gaps. 

11.1 O Hub Reset Behavior 

334 

Reset signaling to a hub is defined only in the downstream direction, which is at the hub's upstream facing 
port. Reset signaling required of the hub is described in Section 7.1.7 .5. 

A suspended hub must interpret the start of reset as a wakeup event; it must be awake and have completed 
its reset sequence by the end of reset signaling. 



ZTE/SAMSUNG 1008-0363 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

After completion of the reset sequence, a hub is in the following state: 

• Hub Controller default address is 0. 

• Hub status change bits are set to zero. 

• Hub Repeater is in the WFSOPFU state. 

• Transmitter is in the Inactive state. 

• Downstream facing ports are in the Not Configured state and SEO driven on all downstream facing 
ports. 

11.11 Hub Port Power Control 
Self-powered hubs may have power switches that control delivery of power downstream facing ports but it 
is not required. Bus-powered hubs are required to have power switches. A hub with power switches can 
switch power to all ports as a group/gang, to each port individually, or have an arbitrary number of gangs of 
one or more ports. 

A hub indicates whether or not it supports power switching by the setting of the Logical Power Switching 
Mode field in wHubCharacteristics. If a hub supports per-port power switching, then the power to a port is 
turned on when a SetPortFeature(PORT_POWER) request is received for the port. Port power is turned off 
when the port is in the Powered-off or Not Configured states. If a hub supports ganged power switching, 
then the power to all ports in a gang is turned on when any port in a gang receives a 
SetPortFeature(PORT _POWER) request. The power to a gang is not turned off unless all ports in a gang 
are in the Powered-off or Not Configured states. Note, the power to a port is not turned on by a 
SetPortFeature(PORT_POWER) if both C_HUB_LOCAL_POWER and Local Power Status (in 
wHubStatus) are set to lB at the time when the request is executed and the PORT _POWER feature would 
be turned on. 

Although a self-powered hub is not required to implement power switching, the hub must support the 
Powered-off state for all ports. Additionally, the hub must implement the PortPwrCtr!Mask (all bits set to 
l B) even though the hub has no power switches that can be controlled by the USB System Software. 

Note: To ensure compatibility with previous versions ofUSB Software, hubs must implement the Logical 
Power Switching Mode field in wHubCharacteristics. This is because some versions of SW will not use the 
SetPortFeature() request if the hub indicates in wHubCharacteristics that the port does not support port 
power switching. Otherwise, the Logical Power Switching Mode field in wHubCharacteristics would have 
become redundant as of this version of the specification. 

The setting of the Logical Power Switching Mode for hubs with no power switches should reflect the 
manner in which over-current is reported. For example, ifthe hub reports over-current conditions on a per
port basis, then the Logical Power Switching Mode should be set to indicate that power switching is 
controlled on a per-port basis. 

For a hub with no power switches, bPwrOn2PwrGood must be set to zero. 

11.11.1 Multiple Gangs 
A hub may implement any number of power and/or over-current gangs. A hub that implements more than 
one over-current and/or power switching gang must set both the Logical Power Switching Mode and the 
Over-current Reporting Mode to indicate that power switching and over-current reporting are on a per port 
basis (these fields are in wHubCharacteristics). Also, all bits in PortPwrCtr!Mask must be set to I B. 

When an over-current condition occurs on an over-current protection device, the over-current is signaled on 
all ports that are protected by that device. When the over-current is signaled, all the ports in the group are 
placed in the Powered-off state, and the C_PORT_OVER-CURRENT field is set to IB on all the ports. 
When port status is read from any. port in the group, the PORT_ OVER-CURRENT field will be set to 1B as 

335 



ZTE/SAMSUNG 1008-0364 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

long as the over-current condition exists. The C_PORT_OVER-CURRENT field must be cleared in each 
port individually. 

When multiple ports share a power switch, setting PORT_POWER on any port in the group will cause the 
power to all ports in the group to tum on. It will not, however, cause the other ports in that group to leave 
the Powered-off state. When all the ports in a group are in the Powered-off state or the hub is not 
configured, the power to the ports is turned off. 

If a hub implements both power switching and over-current, it is not necessary for the over-current groups 
to be the same as the power switching groups. 

If an over-current condition occurs and power switches are present, then all power switches associated with 
an over-current protection circuit must be turned off. If multiple over-current protection devices are 
associated with a single power switch then that switch will be turned off when any of the over-current 
protection circuits indicates an over-current condition. 

11.12 Hub Controller 
The Hub Controller is logically organized as shown in Figure 11-19. 

Port 1 

UPSTREAM ONNECTION 

Status Change 
Endpoint 

Port 2 

ENDPOINTO: 
Configuration 
Information 

Port 3 

Port N 

Figure 11-19. Example Hub Controller Organization 

11.12.1 Endpoint Organization 

336 

The Hub Class defines one additional endpoint beyond Default Control Pipe, which is required for all hubs: 
the Status Change endpoint. The host system receives port and hub status change notifications through the 
Status Change endpoint. The Status Change endpoint is an interrupt endpoint. If no hub or port status 
change bits are set, then the hub returns an NAK when the Status Change endpoint is polled. When a status 
change bit is set, the hub responds with data, as shown in Section 11.12.4, indicating the entity (hub or port) 
with a change bit set. The USB System Software can use this data to determine which status registers to 
access in order to determine the exact cause of the status change interrupt. 



ZTE/SAMSUNG 1008-0365 
IPR2018-00111

Universal Ser ial Bus Specification Revision 2.0 

11 .12.2 Hub Information Architecture and Operation 
Figure 11-20 shows how status, status change, and control information relate to device states. Hub 
descriptors and Hub/Port Status and Control are accessible through the Default Control Pipe. The Hub 
descriptors may be read at any time. When a hub detects a change on a port or when the hub changes its 
own state, the Status Change endpoint transfers data to the host in the form specified in Section 11.12.4. 

Hub or port status change bits can be set because of hardware or Software events. When set, these bits 
remain set until cleared directly by the USB System Software through a ClearPortFeatureQ request or by a 
hub reset. While a change bit is set, the hub continues to report a status change when polled until all change 
bits have been cleared by the USB System Software. 

Ol 

~'C' 
Q) Q) 
.... > cu ·c 
~o 
0 

CJ) 

u; 
0 
J: 

Device Control 

Status Information 
(static) 

Change Information 
(due to hardware 

events) 

Control Information 
(change device state) 

Hardware Events -

Figure 11-20. Relationship of Status, Status Change, and Cont rol Information to Device States 

The USB System Software uses the interrupt pipe associated with the Status Change endpoint to detect 
changes in hub and port status. 

11 .12.3 Port Change Information Processing 

Hubs report a port's status through port commands on a per-port basis. The USB System Software 
acknowledges a port change by clearing the change state corresponding to the status change reported by the 
hub. The acknowledgment clears the change state for that port so future data transfers to the Status Change 
endpoint do not report the previous event. This allows the process to repeat for further changes (see 
Figure 11-21). 

337 



ZTE/SAMSUNG 1008-0366 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Begin 

System Software requests Interrupt Pipe notification for Status Change Information 

Hub NAKs 
status change 

IN token 

No 

Interrupt Pipe returns Hub and Port Status Change Bitmap 

Interrupt Pipe notification retired 

System Software reads Hub or Port status (for affected ports) 

Yes 
• Accumulate change information 
• System Software clears 

corresponding change state 

System Software processes accumulated change information 

Re-initialize Interrupt Pipe for Status Change endpoint 

Return to 
beginning 

Figure 11-21. Port Status Handling Method 

11.12.4 Hub and Port Status Change Bitmap 

338 

The Hub and Port Status Change Bitmap, shown in Figure 11-22, indicates whether the hub or a port has 
experienced a status change. This bitmap also indicates which port(s) has had a change in status. The hub 
returns this value on the Status Change endpoint. Hubs report this value in byte-increments. That is, if a 
hub has six ports, it returns a byte quantity, and reports a zero in the invalid port number field locations. 
The USB System Software is aware of the number of ports on a hub (this is reported in the hub descriptor) 
and decodes the Hub and Port Status Change Bitmap accordingly. The hub reports any changes in hub 
status in bit zero of the Hub and Port Status Change Bitmap. 

The Hub and Port Status Change Bitmap size varies from a minimum size of one byte. Hubs report only as 
many bits as there are ports on the hub, subject to the byte-granularity requirement (i.e., round up to the 
nearest byte). 



ZTE/SAMSUNG 1008-0367 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

II 

I N I I-·-·-·-·-·---·-·-·-·-·-·-·-·--·-·-·-·-';---·-·-·-·-·-·--·-·-·-·-·-·-·-·--·- I 2 I , I 0 I 
Port N change detected ill 

I 

~ 

Pon 2 change detected 
Pon 1 change detected ~ 

Hub change detected 

Figure 11-22. Hub and Port Status Change Bitmap 

Any time the Status Change endpoint is polled by the host controller and any of the Status Changed bits are 
non-zero, the Hub and Port Status Change Bitmap is returned. Figure 11-23 shows an example creation 
mechanism for hub and port change bits. 

Por-Pon Lo le 

PortN 
Logical OR 

Change Change 
Detect Logir+--....i Information 

Hub and Pon Status Change Bitmap I I 
N 

Figure 11-23. Example Hub and Port Change Bit Sampling 

11.12.5 Over-current Reporting and Recovery 
USB devices must be designed to meet applicable safety standards. Usually, this will mean that a self
powered hub implement current limiting on its downstream facing ports. If an over-current condition 
occurs, it causes a status and state change in one or more ports. This change is reported to the USB System 
Software so that it can take corrective action. 

A hub may be designed to report over-current as either a port or a hub event. The hub descriptor field 
wHubCharacteristics is used to indicate the reporting capabilities of a particular hub (see Section 11.23.2). 
The over-current status bit in the hub or port status field indicates the state of the over-current detection 
when the status is returned. The over-current status change bit in the Hub or Port Change field indicates if 
the over-current status has changed. 

When a hub experiences an over-current condition, it must place all affected ports in the Powered-off state. 
If a hub has per-port power switching and per-port current limiting, an over-current on one port may still 

339 



ZTE/SAMSUNG 1008-0368 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

cause the power on another port to fall below specified minimums. In this case, the affected port is placed 
in the Powered-off state and C _PORT_ OVER_ CURRENT is set for the port, but 
PORT_OVER_CURRENT is not set. If the hub has over-current detection on a hub basis, then an over
current condition on the hub will cause all ports to enter the Powered-off state. However, in this case, 
neither C_PORT_OVER_CURRENT nor PORT_OVER_CURRENT is set for the affected ports. 

Host recovery actions for an over-current event should include the following: 

I. Host gets change notification from hub with over-current event. 

2. Host extracts appropriate hub or port change information (depending on the information in the 
change bitmap). 

3. Host waits for over-current status bit to be cleared to 0. 

4. Host cycles power on to all of the necessary ports (e.g., issues a SetPortFeature(PORT _POWER) 
request for each port). 

5. Host re-enumerates all affected ports. 

11.12.6 Enumeration Handling 
The hub device class commands are used to manipulate its downstream facing port state. When a device is 
attached, the device attach event is detected by the hub and reported on the status change interrupt. The host 
will accept the status change report and request a SetPortFeature(PORT_RESET) on the port. As part of the 
bus reset sequence, a speed detect is performed by the hub's port hardware. 

The Get_Status(PORT) request invoked by the host will return a "not PORT_LOW _SPEED and 
PORT_HIGH_SPEED" indication for a downstream facing port operating at high-speed. The 
Get_ Status(POR T) will report "PORT_ LOW_ SPEED" for a downstream facing port operating at low~ 
speed. The Get_Status(PORT) will report "not PORT_LOW_SPEED and not PORT_HIGH_SPEED" for a 
downstream facing port operating at full-speed. 

When the device is detached from the port, the port reports the status change through the status change 
endpoint and the port will be reconnected to the high-speed repeater. Then the process is ready to be 
repeated on the next device attach detect. 

11.13 Hub Configuration 

340 

Hubs are configured through the standard USB device configuration commands. A hub that is not 
configured behaves like any other device that is not configured with respect to power requirements and 
addressing. lf a hub implements power switching, no power is provided to the downstream facing ports 
while the hub is not configured. Configuring a hub enables the Status Change endpoint. The USB System 
Software may then issue commands to the hub to switch port power on and off at appropriate times. 

The USB System Software examines hub descriptor information to determine the hub's characteristics. By 
examining the hub's characteristics, the USB System Software ensures that illegal power topologies are not 
allowed by not powering on the hub's ports if doing so would violate the USB power topology. The device 
status and configuration information can be used to determine whether the hub should be used as a bus or 
self-powered device. Table 11-12 summarizes the information and how it can be used to determine the 
current power requirements of the hub. 



ZTE/SAMSUNG 1008-0369 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Table 11-12. Hub Power Operating Mode Summary 

Configuration Descriptor Hub 

bmAttributes Device Status Explanation 

MaxPower (Self Powered) (Self Power) 

0 0 NIA NIA 
This is an illegal set of information. 

0 1 0 NIA 
A device which is only self-powered, but does 
not have local power cannot connect to the bus 
and communicate. 

0 1 1 Self-powered only hub and local power supply is 
good. Hub status also indicates local power 
good, see Section 11.16.2.5. Hub functionality is 
valid anywhere depth restriction is not violated. 

>0 0 NIA Bus-powered only hub. Downstream facing 
ports may not be powered unless allowed in 
current topology. Hub device status reporting 
Self Powered is meaningless in combination of a 
zeroed bmAttributes.Self-Powered. 

>0 1 0 This hub is capable of both self- and bus-
powered operating modes. It is currently only 
available as a bus-powered hub. 

>0 1 1 This hub is capable of both self- and bus-
powered operating modes. It is currently 
available as a self-powered hub. 

A self-powered hub has a local power supply, but may optionally draw one unit load from its upstream 
connection. This allows the interface to function when local power is not available (see Section 7.2.1.2). 
When local power is removed (either a hub-wide over-current condition or local supply is oft), a hub of this 
type remains in the Configured state but transitions all ports (whether removable or non-removable) to the 
Powered-off state. While local power is off, all port status and change information read as zero and all 
SetPortfeature() requests are ignored (request is treated as a no-operation). The hub will use the Status 
Change endpoint to notify the USB System Software of the hub event (see Section 11.24.2.6 for details on 
hub status). 

The MaxPower field in the configuration descriptor is used to report to the system the maximum power the 
hub will draw from Vsus when the configuration is selected. For bus-powered hubs, the reported value 
must not include the power for any of external downstream facing ports. The external devices attaching to 
the hub will report their individual power requirements. 

A compound device may power both the hub electronics and the permanently attached devices from YBUS. 

The entire load may be reported in the hubs' configuration descriptor with the permanently attached devices 
each reporting self-powered, with zero MaxPower in their respective configuration descriptors. 

341 



ZTE/SAMSUNG 1008-0370 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.14 Transaction Translator 
A hub has a special responsibility when it is operating in high-speed and has full-flow-speed devices 
connected on downstream facing ports. In this case, the hub must isolate the high-speed signaling 
environment from the full-flow-speed signaling environment. This function is performed by the Transaction 
Translator (TT) portion of the hub. 

This section defines the required behavior of the transaction translator. 

11 .14.1 Overview 

342 

Figure 11-24 shows an overview of the Transaction Translator. The TT is responsible for participating in 
high-speed split transactions on the high-speed bus via its upstream facing port and issuing corresponding 
full-flow-speed transactions on its downstream facing ports that are operating at full-flow-speed. The TT 
acts as a high-speed function on the high-speed bus and performs the role of a host controller for its 
downstream facing ports that are operating at full-flow-speed. The TT includes a high-speed handler to deal 
with high-speed transactions. The TT also includes a full-flow-speed handler that performs the role of a 
host controller on the downstream facing ports that are operating at full-flow-speed. 

High Speed Bus 

Full/Low Speed Bus 

Figure 11-24. Transaction Translator Overview 

The TT has buffers (shown in gray in the figure) to hold transactions that are in progress and tracks the state 
of each buffered transaction as it is processed by the TT. The buffers provide the connection between the 
high-speed and full-flow-speed handlers. The state tracking the TT does for each transaction depends on the 
specific USB transfer type of the transaction (i.e., bulk, control, interrupt, isochronous). The high-speed 
handler accepts high-speed start-split transactions or responds to high-speed complete-split transactions. 
The high-speed handler places the start-split transactions in local buffers for the full-flow-speed handler's 
use. 

The buffered start-split transactions provide the full-flow-speed handler with the information that allows it 
to issue corresponding full-flow-speed transactions to full-flow-speed devices attached on downstream 
facing ports. The full-flow-speed handler buffers the results of these full-flow-speed transactions so that 
they can be returned with a corresponding complete-split transaction on the high-speed bus. 

The general conversion between full-flow-speed transactions and the corresponding high-speed split 
transaction protocol is described in Section 8.4.2. More details about the specific transfer types for split 
transactions are described later in this chapter. 



ZTE/SAMSUNG 1008-0371 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

The high-speed handler of the TT operates independently of the full-flow-speed handler. Both handlers use 
the local transaction buffers to exchange infonnation where required. 

ransact1on rans ator 

Figure 11-25. Periodic and Non-periodic Buffer Sections of TT 

The TT has two buffer and state tracking sections (shown in gray in Figure 11-24 and Figure 11-25): 
periodic (for isochronous/interrupt full-flow-speed transactions) and non-periodic (for bulk/control full
/low-speed transactions). The requirements on the TT for these two buffer and state tracking sections are 
different. Each will be described in turn later in this chapter. 

11.14.1.1 Data Handling Between High-speed and Full-flow-speed 
The host converts transfer requests involving a full-flow-speed device into corresponding high-speed split 
transactions to the TT to which the device is attached. 

Low-speed Preamble(PRE) packets are never used on the high-speed bus to indicate a low-speed 
transaction. Instead, a low-speed transaction is encoded in the split transaction token. 

The host can have a single schedule of the transactions that need to be issued to devices. This single 
schedule can be used to hold both high-speed transactions and high-speed split transactions used for 
communicating with full-flow-speed devices. 

11.14.1.2 Host Controller and TT Split Transactions 
The host controller uses the split transaction protocol for initiating full-flow-speed transactions via the TT 
and then determining the completion status of the full-flow-speed transaction. This approach allows the 
host controller to start a full-flow-speed transaction and then continue with other high-speed transactions 
while avoiding having to wait for the slower transaction to proceed/complete at its speed. A high-speed 
split transaction has two parts: a start-split and a complete-split. Split transactions are only used between 
the host controller and a hub. No other high-/full-/low-speed devices ever participate in split transactions. 

When the host controller sends a start-split transaction at high-speed, the split transaction is addressed to the 
TT for that device. That TT will accept the transaction and buffer it locally. The high-speed handler 
responds with an appropriate handshake to infonn the host controller that the transaction has been accepted. 
Not all split transactions have a handshake phase to the start-split. The start-split transactions are kept 
temporarily in a TT transaction buffer. 

The full-flow-speed handler processes start-split periodic transactions stored in the periodic transaction 
buffer (in order) as the downstream full-/low-speed bus is ready for the "next" transaction. The full-/low
speed handler accepts any result information from the downstream bus (in response to the full-/low-speed 
transaction) and accumulates it in a local buffer for later transmission to the host controller. 

At an appropriate future time, the host controller sends a high-speed complete-split transaction to retrieve 
the status/data/result for appropriate full-flow-speed transactions. The high-speed handler checks this high
speed complete-split transaction with the response at the head of the appropriate local transaction buffer and 
responds accordingly. The specific split transaction sequences are defined for each USB transfer type in 
later sections. 

343 



ZTE/SAMSUNG 1008-0372 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11 .14.1.3 Multiple Transaction Translators 
A hub has two choices for organizing transaction translators (TTs). A hub can have one IT for all 
downstream facing ports that have full-/ low-speed devices attached or the hub can have one TT for each 
downstream facing port. The hub must report its organization in the hub class descriptor. 

11.14.2 Transaction Translator Scheduling 
As the high-speed handler accepts start-splits, the full-/low-speed transaction information and data for 
OUTs or the .transaction information for INs accumulate in buffers awaiting their service on the downstream 
bus. The host manages the periodic TT transaction buffers differently than the non-periodic transaction 
buffers. 

11 .14.2.1 TT Isochronous/Interrupt (Periodic) Transaction Buffering 

344 

Periodic transactions have strict timing requirements to meet on a full-flow-speed bus (as defined by the 
specific endpoint and transfer type). Therefore, transactions must move across the high-speed bus, through 
the TT, across the full-flow-speed bus, back through the TT, and onto the high-speed bus in a timely 
fashion. An overview of the microframe pipeline of buffering in the TT is shown in Figure 11-26. A 
transaction begins as a start-split on the high-speed bus, is accepted by the high-speed handler, and is stored 
in the start-split transaction buffer. The full-/low-speed handler uses the next start-split transaction at the 
head of the start-split transaction buffer when it is time to issue the next periodic full-/low-speed transaction 
on the downstream bus. The results of the transaction are accumulated in the complete-split transaction 
buffer. The IT responds to a complete-split from the host and extracts the appropriate response from the 
complete-split transaction buffer. This completes the flow for a periodic transaction through the TT. This 
is called the periodic transaction pipeline. 

High Speed Start-Split High Speed Complete-Split 

TT 

Figure 11-26. IT Microframe Pipeline for Periodic Split Transactions 

The TT implements a traditional pipeline of transactions with its periodic transaction buffers. There is 
separate buffer space for start-splits and complete-splits. The host is responsible for filling the start-split 
transaction buffer and draining the complete-split transaction buffer. The host software manages the host 
controller to cause high-speed split transactions at the correct times to avoid over/under runs in the TT 
periodic transaction buffers. The host controller sends data "just in time" for full-flow-speed OUTs and 
retrieves response data from full-flow-speed lNs to ensure that the periodic transaction buffer space required 
in the TT is the minimum possible. See Section 11.18 for more detailed information. 

USB strictly defines the timing requirements of periodic transactions and the isochronous transport 
capabilities of the high-speed and full-flow-speed buses. This allows the host to accurately predict when 



ZTE/SAMSUNG 1008-0373 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

data for periodic transactions must be moved on both the full-flow-speed and high-speed buses, whenever a 
client requests a data transfer with a fu ll-flow-speed periodic endpoint. Therefore, the host can "pipeline" 
data to/from the TT so that it moves in a timely manner with its target endpoint. Once the configuration of 
a fu ll-flow-speed device with periodic endpoints is set, the host streams data to/from the TT to keep the 
device's endpoints operating normally. 

11.14.2.2 TT Bulk/Control (Non-Periodic) Transaction Buffering 
Non-periodic transactions have no timing requirements, but the TT supports the maximum fu ll-flow-speed 
throughput allowed. A TT provides a few transaction buffers for bulk/control full-flow-speed transactions. 
The host and TT use simple flow control (NAK) mechanisms to manage the bulk/control non-periodic 
transaction buffers. The host issues a start-split transaction, and ifthere is available buffer space, the TT 
accepts the transaction. The fu ll-flow-speed handler uses the buffered information to issue the downstream 
fu ll-flow-speed transaction and then uses the same buffer to hold any results (e.g., handshake or data or 
timeout). The buffer is then emptied with a corresponding high-speed complete-split and the process 
continues. Figure 11-27 shows an example overview of a TT that has two bulk/control buffers. 

High Speed Start-/Complete-Split 

TT 

Full/Low Speed Transaction 
Figure 11-27. TT Nonperiodic Buffering 

11.14.2.3 Full-flow-speed Handler Transaction Scheduling 
The full-flow-speed handler uses a simple, scheduled priority scheme to service pending transactions on the 
downstream bus. Whenever the fu ll-flow-speed handler finishes a transaction on the downstream bus, it 
takes the next start-split transaction from the start-split periodic transaction buffer (if any). If there are no 
available start-split periodic transactions in the buffer, the full-flow-speed handler may attempt a 
bulk/control transaction. If there are start-split transactions pending in the bulk/control buffer(s) and there is 
sufficient time left in the full-flow-speed I ms frame to complete the transaction, the full-flow-speed handler 
issues one of the bulk/control transactions (in round robin order). Figure 11-28 shows pseudo code for the 
full-flow-speed handler start-split transaction scheduling algorithm. 

The TT also sequences the transaction pipeline based on the high-speed microframe timer to ensure that it 
does not start full-flow-speed periodic transactions too early or too late. The "Advance_pipeline" procedure 
in the pseudo code is used to keep the TT advancing the microframe "pipeline". This procedure is described 
in more detail later in Figure 11-67. 

345 



ZTE/SAMSUNG 1008-0374 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

While (1) loop 
While (not end of microframe) l oop 

-- process next start-split transaction 
If available periodic start-split transaction then 

Process next full - /low- speed periodic transaction 
Else if (available bulk/control transaction) and 

(fits in full-/low-speed 1 ms frame) then 
Process one transaction 

End i f 
End loop 

Advance Pipeline (); -- see description in Figure ll - 67(below) 
End loop -

Figure 11-28. Example Full-flow-speed Handler Scheduling for Start-splits 

As described earlier in this chapter, the TT derives the downstream bus's I ms SOF timer from the high
speed 125 µs microframe. This means that the host and the TT have the same I ms frame time for all TTs. 
Given the strict relationship between frames and the zeroth microframe, there is no need to have any 
explicit timing information carried in the periodic split transactions sent to the TT. See Section 11.18 for 
more information. 

11 .15 Split Transaction Notation Information 

346 

The following sections describe the detai Is of the transaction phases and flow sequences of split transactions 
for the different USB transfer types: bulk/control, interrupt, and isochronous. Each description also shows 
detailed example host and TT state machines to achieve the required transaction definitions. The diagrams 
should not be taken as a required implementation, but to specify the required behavior. Appendix A 
includes example high-speed and full-speed transaction sequences with different results to clarify the 
relationships between the host controller, the TT, and a full-speed endpoint. 

Low-speed is not discussed in detail since beyond the handling of the PRE packet (which is defined in 
Chapter 8), there are no packet sequencing differences between low- and full-speed. 

For each data transfer direction, reference figures also show the possible flow sequences for the start-split 
and the complete-split portion of each split transaction transfer type. 

The transitions on the flow sequence figures have labels that correspond to the transitions in the host and TT 
state machines. These labels are also included in the examples in Appendix A. The three character labels 
are of the form: <SIC>< T I DI H I E ><number>. S indicates that this is a start-split label. C indicates 
that this is a complete-split label. T indicates token phase; D indicates data phase; H indicates handshake 
phase; E indicates an error case. Tbe number simply distinguishes different labels of the same case/phase in 
the same split transaction part. 

The flow sequence figures further identify the visibility of transitions according to the legend in 
Figure 11-29. The flow sequences also include some indication of states required in the host or TT or 
actions taken. The legend shown in Figure 11-29 indicates how these are identified. 

Bold indicates host action 
Italics indicate <hub status> or <hub action> 

Both visible 
Hub visible 
Host visible 

Figure 11-29. Flow Sequence Legend 

Figure 11 -30 shows the legend for the state machine diagrams. A circle with a three line border indicates a 
reference to another (hierarchical) state machine. A circle with a two line border indicates an initial state. 
A circle with a single line border is a simple state. 



ZTE/SAMSUNG 1008-0375 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

A diamond Uoint) is used to join several transitions to a common point. A joint allows a single input 
transition with multiple output transitions or multiple input transitions and a single output transition. All 
conditions on the transitions of a path involving a joint must be true for the path to be taken. A path is 
simply a sequence of transitions involving one or more joints. 

A transition is labeled with a block with a line in the middle separating the (upper) condition and the (lower) 
actions. The condition is required to be true to take the transition. The actions are performed if the 
transition is taken. The syntax for actions and conditions is VHDL. A circle includes a name in bold and 
optionally one or more actions that are performed upon entry to the state. 

8 
D---+ -.c> 

~ 

~ Condition 
Actions ~ 

- Contains other state machines 

- Initial state of a state machine 

- State in a state machine 

- Entry and exit of state machine 

- Joint used to connect transitions 

- Transition: taken when condition 
is true and performs actions 

Figure J J-30. Legend for State Machines 

The descriptions of the split transactions for the four transfer types refer to the status of the full-flow-speed 
transaction on the bus downstream of the TT. This status is used by the high-speed handler to determine its 
response to a complete-split transaction. The status is only visible within a TT implementation and is used 
in the specification purely for ease of explanation. The defined status values are: 

• Ready - The transaction has completed on the downstream facing full-/low-speed bus with the result 
as follows: 

• Ready/NAK - A NAK handshake was received. 

• Ready /trans_ err - The full-/low-speed transaction experienced a error in the transaction. 
Possible errors are: PID to PID_invert bits check failure, CRC5 check failure, incorrect Pill, 
timeout, CRC16 check failure, incorrect packet length, bitstuffing error, false EOP. 

• Ready /ACK - An ACK handshake was received. 

• Ready /Stall - A STALL handshake was received. 

• Ready /Data - A data packet was received and the CRC check passed. (bulk/control IN). 

347 



ZTE/SAMSUNG 1008-0376 
IPR2018-00111

348 

Universal Serial Bus Specification Revision 2.0 

• Ready /lastdata - A data packet was finished being received. (isochronous/interrupt IN). 

• Ready /moredata - A data packet was being received when the microframe timer occurred 
(isochronous/interrupt IN). 

• Old - A complete-split has been received by the high-speed handler for a transaction that previously 
had a "ready" status. The possible status results are the same as for the Ready status. This is the 
initial state for a buffer before it has been used for a transaction. 

• Pending - The transaction is waiting to be completed on the downstream facing full-flow-speed bus. 

The figures use "old/x" and "ready/x" to indicate any of the old or ready status respectively. 

The split transaction state machines in the remainder of this chapter are presented in the context of 
Figure 11-31. The host controller state machines are located in the host controller. The host controller 
causes packets to be issued downstream (labeled as HSD 1) and it receives upstream packets (labeled as 
HSU2). 

The transaction translator state machines are located in the TT. The TT causes packets to be issued 
upstream (labeled as HSUl) and it receives downstream packets (labeled as HSD2). 

The host controller has commands that te ll it what split transaction to issue next for an endpoint. The host 
controller tracks transactions for several endpoints. The TT has state in buffers that track transactions for 
several endpoints. 

Appendix B includes some declarations that were used in constructing the state machines and may be useful 
in understanding additional details of the state machines. There are several pseudo-code procedures and 
functions for conditions and actions. Simple descriptions of them are also included in Appendix B. 

Transaction 
Commands 

Downstream 
Hi h s eed Bus 

Transaction 
Results 

Bulk/Ctr! Buffers Periodic Pipeline Buffers 

Host 
Controller 

Hub 
Transaction 
Translator 

Figure 11-31. State Machine Context Overview 



ZTE/SAMSUNG 1008-0377 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.16 Common Split Transaction State Machines 
There are several state machines common to all the specific split transaction types. These state machines 
are used in the host controller and transaction translator to determine the specific split transaction type (e.g., 
interrupt OUT start-split vs. bulk IN complete-split). An overview of the host controller state machine 
hierarchy is shown in Figure 11-32. The overview of the transaction translator state machine hierarchy is 
shown in Figure 11-33. Each of the labeled boxes in the figures show an individual state machine. Boxes 
contained in another box indicate a state machine contained within another state machine. All the state 
machines except the lowest level ones are shown in the remaining figures in this section. The lowest level 
state machines are shown in later sections describing the specific split transaction type. 

HC Do start - -

I HC_Do_IsochISS 

HC Do IntISS 

HC Do BISS 

HC Do IsochOSS 

HC Do IntOSS 

HC Do BOSS 

HC_Do_complete 

I HC_Do_IsochICS 

HC Do IntICS 
I HC_Data_or_timeout I 

I HC_Do_BICS 

j HC_Do_IntOCS 

J HC_Do_BOCS 

Figure 11-32. Host Controller Split Transaction State Machine Hierarchy Overview 

349 



ZTE/SAMSUNG 1008-0378 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

TT _Process _packet 

TT Do start TT_ Do_ complete 
- -

TT IsochSS I TT_IsochICS I -
J IT Do IsochOSS I 
J IT Do IsochlSS I 
TT IntSS TT IntCS 

- -

J IT Do IntOSS I I IT Do IntOCS I 
I IT Do_IntISS I I IT_Do_IntICS I 
TT BulkSS TT BulkCS 

- -

J IT Do BOSS I J IT Do BOCS I 
J TI Do BISS I J IT Do BICS I 

Figure 11-33. Transaction Translator State Machine Hierarchy Overview 

11.16.1 Host Controller State Machine 

Architecture Declarations 

Package List 

ieee std_logie_1164 
leee numeric_ std 
usb2statemachines behav_paci<age 
ieee std_logic_arith 

Concurrent Statements 

Figure 11-34. Host Controller 

350 



ZTE/SAMSUNG 1008-0379 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11 .16.1.1 HC_Process_command State Machine 
( .......... -..... -... ·-···············"·· .. ·····"········ ............................ . 

HC_cmd.cmd = SOF 

lssue_packet(HSD1, SOF); 

, ___ _L_i 
! Update_Command(HC_done); ! 

I HC_cmd.cmd = complete_split , 
i.-·········--··•·H•- ·······-·····---·••o+OO+O•OO•o••·---····-······-··--·······-·····-········j 

HC_cmd.cmd = nonsplit 

HC _Process_command 

Figure 11-35. HC_Process_Command 

351 



ZTE/SAMSUNG 1008-0380 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.16.1.1.1 HC_Do_start State Machine 

HC_cmd.direction = in_dir 

,----.. ·---· -----·----------· 
i HC7"~~d .. ~ir~=~~~n ~.~~~~!! ... -.; 

352 

HC_cmd.ep_type =bulk or 
HC_cmd.ep_type =control 

HC_Do_Start 

Figure 11-36. HC_Do_Start 



ZTE/SAMSUNG 1008-0381 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.16.1.1.2 HC_Oo_complete State Machine 

..... , .............. ,_ .................... -..•.... , .. _,,, , __ ,._ ......... -... , _ ,, , , __ ,, 
& HC_cmd.ep_type =interrupt 

~ ..... :.· ...•. : ...... : ..... :.: .•.. : ... · ...... · .. :.::: .•.. · .. : .. -· 

! HC_cmd.direction = out_dir 

I HC_cmd.ep_type = bulk or 

l .. ~9.:.:~~-~.::~=~~=·-~-~~.~'.r.~.~········· 

j HC_ cmd.ep_type =isochronous . .. . - ... . . 

• HC_cmd.ep_type = bulk or 
I HC_cmd.ep_type =control 
; .............. "''''"'' ''''""'''"' ___ ,., ......... _ .. ,. ~, ........................ . 

HC_Do_complete 

Figure 11-37. HC_Do_Complete 

353 



ZTE/SAMSUNG 1008-0382 
IPR2018-00111

Universal Serial Bus Specifi cation Revision 2.0 

11 .16.2 Transaction Translator State Machine 

Architecture Declarations 

Package List 

ieee std_logic_ 1164 
ieee numeric_std 
usb2S1atemachines behav _package 

i Packet_ready(HSD2) 

! Save (HSD2, split); , 
L.----····-············--··--····-······-·· ....... - .... ~ 

Figure 11-38. T ransaction Translator 

354 



ZTE/SAMSUNG 1008-0383 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11 .16.2.1 TT _Process_packet State Machine 

split.PIO /= SSPLIT and split.PIO /= CSPLIT 

Get_ token 
Wait_for _packet( 

HS02, ITG); 

st2/ct2 

r HS02.PIO = SSP'LiT .. or 
1 HS02.PIO = CSPLIT 

Save(HS02, split); 

HS02.PIO = SOF 

split.PIO = CSPLIT 

not SS_Buff.isochO or 
(SS_Buff.isochO and 
SS_Buff.saw_split) 

SS_Buff.isochO and 
not SS_Buff.saw_split I 

Oown_error; 

1

1 

SS_Buff.isochO <=false; 
··················-········-····-········· .. ······ .. --. .. ................ ·--···--··.! 

I"" ......................................................................... .. 

i HS02.PIO /= SSPLIT and 
l HS02.PIO /= CSPLIT and 

HS02.PIO /= SOF 
I ....... - ----·-·- ··- -·----·-""" 

I TI _Process Packet 

Figure 11-39. TI _Process_Packet 

355 



ZTE/SAMSUNG 1008-0384 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.16.2.1.1 TT_Do_Start State Machine 

356 

lrr_oo_Start 

Figure 11-40. TT_Do_Start 



ZTE/SAMSUNG 1008-0385 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.16.2.1.2 TT_Do_Complete State Machine 

split.ep_type = isochronous 
.. ........................... : ... ·:-. .......... :·:··· .............. - ... ; 

ep_type = interrupt 
- ... . . 

.. ~·;ii~.~;~~;;·~ .. ~~lk·~;""""'l 
split.ep_type = control 

n _oo_complete 

Figure 11-41. IT_Do_Complete 

11.16.2.1 .3 TT _BulkSS State Machine 

! (token.PIO/= tokenOUT and 
! token.PIO /= tokenSETUP and 
i token.PIO/= tokenlN) or 
! token.timeout 

token.PIO = tokenOUT or 
token.PIO = tokenSETUP 

TT_BulkSS 

Figure 11-42. TT_BulkSS 

357 



ZTE/SAMSUNG 1008-0386 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.16.2.1.4 TT _BulkCS State Machine 
:'' ....................................................................................... ~ 
! (token.PIO/= tokenOUT and 
i token.PIO/= tokenSETUP and 
: token.PIO/= tokenlN) or 
i token.timeout 

token.PIO = tokenOUT or 
token.PIO= tokenSETUP 

token.PIO= tokenlN 

n _BulkCS 

Figure 11-43. IT_BulkCS 

11.16.2.1.5 TI_ lntSS State Machine 

358 

, ...................................... -............................................. ~.) 
l (token.PIO/= tokenOUT and ' 
i token.PIO/= tokenlN) or 
i token.timeout . 
i. ...... --.---·· ·· ···· ~-· ·······-···-··-· ········· ·· --····---········ ·· j 

...................................... _ ..................... -.. ·: _._,___ __ 
token.PIO = tokenlN 

r-····· ········~- ..................................................... ~ 

i token.PIO = tokenOUT 
......................... ~·--··· .. ~·-""""'-""""""--

TI_lntSS 

Figure 11-44. IT_IntSS 



ZTE/SAMSUNG 1008-0387 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.16.2.1.6 TT_lntCS State Machine 

token.PIO = tokenOUT 

TT_lntCS 

Figure 11-45. IT_JntCS 

11.16.2.1 . 7 TT _lsochSS State Machine 

(token.PIO I= tokenlN and 
token.PIO I= tokenOUT) or 
token.timeout 

token.PIO= tokenOUT 

I TI lsochSS I 
Figure 11-46. IT _JsochSS 

359 



ZTE/SAMSUNG 1008-0388 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

11.17 Bulk/Control Transaction Translation Overview 
Each TT must have at least two bulk/control transaction buffers. Each buffer holds the information for a 
start- or complete-split transaction and represents a single full-flow-speed transaction that is awaiting (or has 
completed) transfer on the downstream bus. The buffer is used to hold the transaction information from the 
start-split (and data for an OUT) and then the handshake/result of the full-/low-speed transaction (and data 
for an IN). This buffer is filled and emptied by split transactions from the high-speed bus via the high-speed 
handler. The buffer is also updated by the full-flow-speed handler while the transaction is in progress on the 
downstream bus. 

The high-speed handler must accept a start-split transaction from the host controller for a bulk/control 
endpoint whenever the high-speed handler has appropriate space in a bulk/control buffer. 

The host controller attempts a start-split transaction according to its bulk/control high-speed transaction 
schedule. As soon as the high-speed handler responds to a complete-split transaction with the results from 
the corresponding buffer, the next start-split for some (possibly other) full-/low-speed endpoint can be saved 
in the buffer. 

There is no method to control the start-split transaction accepted next by the high-speed handler. 
Sequencing of start-split transactions is simply determined by available IT buffer space and the current 
state of the host controller schedule (e.g., which start-split transaction is next that the host controller tries as 
a normal part of processing high-speed transactions). 

The host controller does not need to segregate split transaction bulk (or control) transactions from high
speed bulk (control) transactions when building its schedule. The host controller is required to track 
whether a transaction is a normal high-speed transaction or a high-speed split transaction. 

The following sections describe the details of the transaction phases, flow sequences, and state machines for 
split transactions used to support full-/low-speed bulk and control OUT and IN transactions. There are only 
minor differences between bulk and control split transactions. In the figures, some areas are shaded to 
indicate that they do not apply for control transactions. 

11.17 .1 Bulk/Control Split Transaction Sequences 

360 

The state machine figures show the transitions required for high-speed split transactions for full-/low-speed 
bulk/control transfer types for a single endpoint. These figures must not be interpreted as showing any 
particular specific timing. They define the required sequencing behavior of different packets of a 
bulk/control split transaction. In particular, other high-speed or split transactions for other endpoints occur 
before or after these split transaction sequences. 

Figure 11-47 shows a sample code algorithm that describes the behavior of the transitions labeled with 
Js_new _SS, ls_old_SS and ls_no_space shown in the figures for both bulk/control IN and OUT start-split 
transactions buffered in the TT for any endpoint. This algorithm ensures that the TT only buffers a single 
bulk/control split transaction for any endpoint. The complete-split protocol definition requires an endpoint 
has only a single result buffered in the TT at any time. Note that the "buffer match" test is different for bulk 
and control endpoints. A buffer match test for a bulk transaction must include the direction of the 
transaction in the test since bulk endpoints are unidirectional. A control transaction must not use direction 
as part of the match test. 



ZTE/SAMSUNG 1008-0389 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

procedure Compare_buffs IS 
variable match:boolean:=FALSE; 

begin 

Is new SS i s true when BC buff.status ==NEW SS 
Is-old- SS is true when BC-buff.status ==OLD-SS 
Is:no_space is true when BC_buff.status == NO_ SPACE 

-- Assume nospace and intial ize index to o. 
BC buff.status :=NO SPACE; 
BC-buff .index := O;-

FOR i IN 0 to num buffs-1 LOOP 
IF NOT match THEN 

Re-use buffer with same Device Address/End point. 
IF (token.endpt = cam(i) .store.endpt AND 

token.dev addr = cam(i) .store .dev addr AND 
((token.direction= cam(i) .store.direction AND 

split.ep type /= CONTROL) OR 
split.ep_type =CONTROL)) THEN 

If The buffer is already pending/ready this must be a retry. 
IF (cam(i).match.state =READY OR cam(i) .match.state= PENDING) THEN 

BC buff.status := OLD SS; 
ELSE - -

BC buff.status := NEW_SS; 
END IFi 
BC buff.index := i; 
match : = TRUE; 

-- Otherwise use the buffer i f it's old. 
ELSIF (cam(i) .match.state = OLD) THEN 

BC buff.status :=NEW SS; 
BC-buff.index . - i; -

END IF; 
END IF; 

END LOOP; 

end Compare_buffs; 

Figure 11-47. Sample Algorithm for Compare_buffs 

Figure 11-48 shows the sequence of packets for a start-split transaction for the full-flow-speed bulk OUT 
transfer type. The block labeled SSPLlT represents a split transaction token packet as described in 
Chapter 8. It is followed by an OUT token packet (or SETUP token packet for a control setup transaction). 
lfthe high-speed handler times out after the SSPLIT or OUT token packets, and does not receive the 
following OUT/SETUP or DA TAO/I packets, it will not respond with a handshake as indicated by the 
dotted line transitions labeled "sel" or "se2". This causes the host to subsequently see a transaction error 
(timeout) (labeled "se2" and indicated with a dashed line). If the high-speed handler receives the DATAO/J 
packet and it fails the CRC check, it takes the transition "se2" which causes the host to timeout and follow 
the "se2" transition. 

361 



ZTE/SAMSUNG 1008-0390 
IPR2018-00111

362 

Universal Serial Bus Specification Revision 2.0 

Start split 

stl 

SSPLIT 
Trans err st2 ......................................................... - ........................................................ . 

i 

OUT/SETUP 
Trans err .................................................. - ........................................................... : 

sdl 

DA~AO/l sell 
Com/ipre _buffs I 

! ........................................... 1 ................................................... ! ............................................................. r 
ls_newLSS Is olq_SS Js_nolspace 
Acceptidata I l T~ans err 

I -

( 
sh 11 sh'.i. sh31 

y A~K y ) (N~K] 
I I 

se2! 
I 
I 

Inc 'rr 
count 

,----•----------, . . 
I I 

• • se4! seS! 
T T 

Go to 
comp. split 

Retry if err_count < 3 if err count>= 3 
start split retry start split endpoint halt 

Figure 11-48. Bulk/Control OUT Start-split Transaction Sequence 

The host must keep retrying the start-split for this endpoint until the err_count reaches three for this 
endpoint before continuing on to some other start-split for this endpoint. However, the host can issue other 
start-splits for other endpoints before it retries the start-split for this endpoint. The err_ count is used to 
count how many errors have been experienced during attempts to issue a particular transaction for a 
partfoular endpoint. 

Ifthere is no space in the transaction buffers to hold the start-split, the high-speed handler responds with a 
NAK via transition "sh3". This will cause the host to retry this start-split at some future time based on its 
normal schedule. The host does not increase its err_count for a NAK handshake response. Once the host 
has received a NAK response to a start-split, it can skip other start-splits for this TT for bulk/control 
endpoints until it finishes a bulk/control complete-split. 

Ifthere is buffer space for the start-split, the high-speed handler takes transition "sh I" and responds with an 
ACK. This tells the host it must try a complete-split the next time it attempts to process a transaction for 
this full-/low-speed endpoint. After receiving an ACK handshake, the host must not issue a further start
split for this endpoint until the corresponding complete-split has been completed. 

If the high-speed handler already has a start-split for this full-/low-speed endpoint pending or ready, it 
follows transition "sh2" and also responds with an ACK, but ignores the data. This handles the case where 



ZTE/SAMSUNG 1008-0391 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

an ACK handshake was smashed and missed by the host controller and now the host controller is retrying 
the start-split; e.g., a high-speed handler transition of "sh l" but a host transition of"se2". 

ln the host controller error cases, the host controller implements the "three strikes and you' re out" 
mechanism. That is, it increments an error count (err_count) and, if the count is less than three (transition 
"se4"), it will retry the transaction. If the err_ count is greater or equal to three (transition "se5" ), the host 
controller does endpoint halt processing and does not retry the transaction. If for some reason, a host 
memory or non-USB bus delay (e.g.,a system memory "hold off') occurs that causes the transaction to not 
be completed normally, the err_count must not be incremented. Whenever a transaction completes 
norm ally, the err_ count is reset to zero. 

The high-speed handler in the TT has no immediate knowledge of what the host sees, so the "se2", "se4", 
and "se5" transitions show only host visibility. 

This packet flow sequence showing the interactions between the host and hub is also represented by host 
and high-speed handler state machine diagrams in the next section. Those state machine diagrams use the 
same labels to correlate transitions between the two representations of the split transaction rules. 

Figure 11-49 shows the corresponding flow sequence for the complete-split transaction for the full-/ low
speed bulk/control OUT transfer type. The notation "ready/x" or "old/x" indicates that the transaction status 
of the split transaction is any of the ready or old states. After a full-flow-speed transaction is run on the 
downstream bus, the transaction status is updated to reflect the result of the transaction. The possible result 
status is: nak, stall , ack. The ''x" means any of the NAK, ACK, STALL full-flow-speed transaction status 
results. Each status result reflects the handshake response from the full-/low-speed transaction. 

Complete split 

CSPLIT. 
Trans err ................. -......................... ~ ......................... - ........................................................................................ 1 ct2 

OUT/SETUP eel , 
~ ................................................................................................................................................................... i 

Matqh_split_state i 

:Not applicable 
for control,..sefup . / 

1-~:~'!&ff;;~;~~;;,;;;;;; i> status ~ oldlx Ttans_err 
, ........ _ ........... -........... . .............. - ...... _ ............... !'................................... i 
! match 1 1 l l . j 

pe~ing j old{stall oldf ack ,old{ndk i 

[ ;~~T] cr:;~L] [ c;~K] C§cei~;~----, 
i i i · .. i . , cei_ ! 
i I I · 1 ·/ T I 
• • • t · · if err_count < 3 l 

Retry Endpoint Go to next Retry . · retry immed. ce4. 
comp. split halt cmd start split .comp. split t 

if err count>= 3 
endpoint halt 

Figure 11-49. Bulk/Control OUT Complete-split Transaction Sequence 

363 



ZTE/SAMSUNG 1008-0392 
IPR2018-00111

364 

Universal Serial Bus Specification Revision 2.0 

There is no timeout response status for a transaction because the full-/low-speed handler must perform a 
local retry of a full-/low-speed bulk or control transaction that experiences a transaction error. It locally 
implements a "three strikes and you're out" retry mechanjsm. This means that the full-/low-speed 
transaction wi II resolve to one of a NAK, STALL or ACK handshake results. If the transaction experiences 
a transaction error three times, the full-/low-speed handler will reflect this as a stall status result. The full
/ low-speed handler must not do a local retry of the transaction in response to an ACK, NAK, or STALL 
handshake. 

Start split 

stl 

SSPLIT . 

Is newt SS 
Accept~data 

Is old_SS 

sht shZ 
y y 

[ ACK l 
I 
I 

! .. 
Goto 
comp. split 

Is_ no -~pace 

sh3t 

[N~K] 
I 
I .. 

Retry 
start split 

Tdns err 
I -
i 
I 

In~err 
co Jot 

I 

se4! 
~-·-·-·1 

se1 
if err count < 3 
retry start split 

se~ 

if err count >= 3 
endpoint halt 

Figure 11-50. Bulk/Control IN Start-split Transaction Sequence 

If the high-speed handler receives the complete-split token packet (and the token packet) while the full
/low-speed transaction has not been completed (e.g., the transaction status is "pending"), the high-speed 
handler responds with a NYET handshake. This causes the host to retry the complete-split for this endpoint 
some time in the future. 

If the high-speed handler receives a complete-split token packet (and the token packet) and finds no local 
buffer with a corresponding transaction, the TT responds with a ST ALL to indicate a protocol violation. 

Once the full-flow-speed handler has finished a full-/low-speed transaction, it changes the transaction status 
from pending to ready and saves the transaction result. This allows the high-speed handler to respond to the 
complete-split transaction with something besides NYET. Once the high-speed handler has seen a 



ZTE/SAMSUNG 1008-0393 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

complete-split, it changes the transaction status from ready/x to old/x. This allows the high-speed handler to 
reuse its local buffer for some other bulk/control transaction after this complete-split is finished. 

If the host times out the transaction or does not receive a valid handshake, it immediately retries the 
complete-split before going on to any other bulk/control transactions for this TT. The normal "three strikes" 
mechanism applies here also for the host; i.e., the err_ count is incremented. If for some reason, a host 
memory or non-USB bus delay (e.g., a system memory "hold off') occurs tbat causes the transaction to not 
be completed normally, the err_count must not be incremented. 

Complete split 

ct! 

CSP LIT 

r---- ----~-ct2 

, Matc~_split _state 

ce 1 r···························-·············1 .... !!.Q ... ~.q.t.£~ .................................................................... ; 
Transl err ready{x or oldlx or pending j 

t- If statut.'.'.'.'. .. !.~~4>::'(~ ... '.'.'.'..?'. .. §{q.~~~ .. :z;f :-~"-..... 1 ............. / .............. !. 
old/1ata old/1tak old(stall ! pen4mg 

cd ll ch2 chJ. ce5~ ch 1! 

1 

[DA~O!I] [ N1K l ( ;T1L: l [:~ET l 
Trans-terr 1 + + + 

I ! Retry Endpoint Retry 

ce~ ~--------;~~!_~~1-~--~~~~ comp. split 
L ce2 Trans err no~ trans err jt t d !""'11--- -----::r - . - no rans err an 

I c!. and I -
n err i _ D11tax = toggle 
co~nt Dafax /- i 

. tog~le HC_Acfept_data 

cef _y:~~{ ch{ chi I Host I ~ 
if err count >= 3 
endpoint halt 

if err count < 3 Retry 
retry immed. start split 
comp. split 

Go to next 
cmd 

Figure 11-51. Bulk/Control IN Complete-split Transaction Sequence 

If the host receives a ST ALL handshake, it performs endpoint halt processing and will not issue any more 
split transactions for this full-flow-speed endpoint until the halt condition is removed. 

If the host receives an ACK, it records the results of the full-flow-speed transaction and advances to the next 
split transaction for this endpoint. The next transaction will be issued at some time in the future according 
to normal scheduling rules. 

365 



ZTE/SAMSUNG 1008-0394 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

If the host receives a NAK, it will retry the start-split transaction for this endpoint at some time in the future 
according to normal scheduling rules. The host must not increment the err_count in this case. 

The host must keep retrying the current start-split until the err_ count reaches three for this endpoint before 
proceeding to the next split transaction for this endpoint. However, the host can issue other start-splits for 
other endpoints before it retries the start-split for this endpoint. 

After the host receives a NAK., ACK, or STALL handshake in response to a complete-split transaction, it 
may subsequently issue a start-split transaction for the same endpoint. The host may choose to instead issue 
a start-split transaction for a different endpoint that is not awaiting a complete-split response. 

The shaded case shown in the figure indicates that a control setup transaction should never encounter a 
NAK response since that is not allowed for full-/low-speed transactions. 

Figure 11-50 and Figure 11-51 show the corresponding flow sequences for bulk/control lN split 
transactions. 

11.17.2 Bulk/Control Split Transaction State Machines 
The host and TT state machines for bulk/control lN and OUT split transactions are shown in the following 
figures. The transitions for these state machines are labeled the same as in the flow sequence figures. 

HC_cmd.ep_type"' control and i 
HC_cmd.setup l 
lssue_packet(HSD1. SSPLIT); i 

f'~~~~~~ :-~~~;~~·~- ~·-~~;·~·::;~::: ::::::: ::::: .. :~~ ..................................................................... . 
i (HC_cmd.ep_type =control and 
! not HC_cmd.setup) 
! ~~-=-~~~'--~~~~ 

Issue _packet( 
HSD1 , SSPLIT); 

; lssue_packet( 
HSD1 , tokenOUT); 

········· · ·····~-··-··· ·····--······· ·· ···-····-··· ·······' 

HSU2.PID :: ACK 

i RespondHC(Do_complete); 

HSU2.PID = NAK 

RespondHC(Do_start); 

................. ~:;~;c~~~~"~";""""""'"''' "l 
Respo~~~~.(Do_start); _ ... l 

(HSU2.PID /::ACK and 
HSU2.PID /= NAK) or 
HSU2.timeout 

ErrorCount >= 3 

RespondHC(Do_halt); 

HC_Do_BOSS 

Figure 11-52. Bulk/Control OUT Start-split Transaction Host State Machine 

366 



ZTE/SAMSUNG 1008-0395 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

--···-··· .. ·····--'"'' ·-· 
HSU2.PID = NYET i 

ct 1 ·-····--····-···········--··········-················-············-······-····················; 

L
. HC_cmd.ep_type =control and , 
' HC_cmd.setup ' 

lssue_packet(HSD1 , CSPLIT); 

r~c~~·~d~~p_type = buik:·~>····-~·····, . . 

! (HC_cmd.ep_type= control and 
! NOT HC_cmd.setup) 

""••-•••• •••- •·----•••·•"'"''""''' ________ ,,,_,,,., .................. ,.,,,., ........ : RespondHC(Do_complete); 

~··· ····-·· ··--···-··-··"··· ····-·--·-········---··-·· ....... ! 
j HSU2.PID = STALL 

! RespondHC(Do_halt) ; 
'·-····················-········--············--- ................... .; 

! lssue_packel(HSD 1, CSPLIT); , 
!.. .... ,_,, •. ~.·····-····-·-·· ..................................................................... J 

HSU2.PID =ACK 

! lssue_packet(HSD1, tokenSETUP); 
~ ................................................................ 7·····-·····--

ErrorCount < 3 

ci2 

\\\ 
RespondHC(Do_complete_immediate); 

lssue_packet(HSD1, tokenOUT); 

(HSU2.PID /= NYET and 
HSU2.PID /=STALL and 
HSU2.PID /=ACK and 
HSU2.PID /= NAK) or 
HSU2.timeout 

HC_DO_BOCS 

ce 

ErrorCount >= 3 

: RespondHC(Do_halt); 

ce4 

Figure 11-53. Bulk/Control OUT Complete-split Transact ion Host State Machine 

367 



ZTE/SAMSUNG 1008-0396 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

TT_Do_BOSS 

se1 

... ~.S~;~~j·~·;: ·D~~;~ .. ~~-·-· .. ·1 

HSD2.timeout or 
HSD2.CRC16 = bad 

·-··· j 

s111 ls_new_SS(BC_buff) 
'----- Accept_ data; 

lssue_packet(HSU1 , ACK); 

ls_old_SS(BC_buff) 

lssue_packet(HSU1 , ACK); 

ls_ no_ space(BC _buff) 

i lssue_packet(HSU1 , NAK); 

Figure 11-54. Bulk/Control OUT Start-split Transaction TT State Machine 

I BC_Buff.match.state =ready 

I BC_Buff.match.state :=old; 

i BC_Buff.match.state = no_match 
lssue_packet(HSU1, STALL); 

BC_Buff.match.down_result = r_stall 

ch3 

ch4 

BC_Buff.match.down_result = r_ack 

lssue_packet(HSU1, ACK); 

: BC_Buff.match.down_result = r_nak 

lssue_packet(HSU1 , NAK); 

m · . • .--ch_1__,! BC_buff.match.state =pending 

! lssue_packet(HSU1 , NYET); 
! ----- . -----·-·-- -- -···-·_J 

n_oo_BOCS 

Figure 11-55. Bulk/Control OUT Complete-split Transaction TT State Machine 

368 



ZTE/SAMSUNG 1008-0397 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

~ 
["': ..................... , .. _,, .......................... _ .............................................. i ............... \ st1 

! lssue_packet(HSD1, SSPUT); 
HSU2.PID = NAK 

RespondHC(Do_start); 
; ............ ~ . .............................................................. , ............... ; 

sh 

f' .......... - .................... ··---···· ............................................................... ! sh1/sh2 r·---- ... ··-·········· -... .............. ,.,.,_ .. , .. ·-····-··-··-····-
HSU2.PID =ACK i 1ssue_packet(HSD1, tokenlN); 

........... _ ........ ---··-·· ..... _ ... ;:-~~~~~:-~~:-~~::~:.:.~-~~-:~-~:.::~::L .......... , 
I Packet_ready(HSU2) I 

i --------------a...I" I RespondHC(Do_complete); 
"-···-·····---··-········--···-····· ....................... _ .......... -....................... : 

.. _ ,_,.,. ... _ •... _ .•... ___ . , .. ,._. ---···----·· ··-··--·-~ 

:···--······----· ···· ·~·--· ········· --······ ····-···· ·- · 

l (HSU2.PID /=ACK and 
I HSU2.PID /= NAK) or I HSU2.timeout 

HC_Do_BISS 

ErrorCount < 3 

RespondHC(Do_start); 

,. ............................................... J ............................... .. 

ErrorCount >= 3 

RespondHC(Do_halt); 

se3 

Figure 11-56. Bulk/Control IN Start-split Transaction Host State Machine 

369 



ZTE/SAMSUNG 1008-0398 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

HSU2.CRC16•ok '~-"""" 1 HSU2.x /= HC_cmd.toggle 

RespondHC(Do_start); 
' ;; HSU2.x = HC crnd.toggle '-------·----.--· 

~ct1 
! __________ _ 

j l~sue_~acket(HSD1 ~ CS.PUT); 

HSU2.PID = DATAx 

lssue_packet(HSD1 , tokenlN); 

BICS_walt_response 

Wait_for _packet( 
HSU2, ITG); 

HC_Accept_data; 
-------

RespondHC(Do_next_cmd); 
ce3 J---------:·-.. ·---......................... _,_ .. , _______ . ___ .... . 

ErrorCount >= 3 

RespondHC(Do_halt); 

ErrorCount < 3 
i RespondHC(Do_complete_immediate); 
I 

· (HSU2.PID /= DATAx and • 
' HSU2.PID /= NAK and 
i HSU2.PID /= NYET and 
. HSU2.PID /=STALL) or 
' HSU2.timeout 

HC_Do_BICS 

HSU2.PID =STALL 

RespondHC(Do_halt) ; 

HSU2.PID = NYET 

Respond HC(Do _complete); 

Figure 11-57. Bulk/Control IN Complete-split Transaction Host State Machine 

370 



ZTE/SAMSUNG 1008-0399 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

ls_no_space(BC_buff) 

' lssue_packet(HSU 1, NAK); 

ls_new_SS(BC_buff) 
sh1 

1----- Accept_data; 
lssue_packet(HSU1, ACK); 

sh2 

r-·-1;~7cijS(s~~~tt) -1 
[ lssue_packet(HSU1, ACK); I 
.... ·---····--···-·· ··· ···· .. • • ....... - •••••• ~. • ................... ·~·-. ..... 1 

IT_Do_BISS 

Figure 11-58. Bulk/Control IN Start-split Transaction 1T State Machine 

BC_buff.matcl'l.state = no_match 

~-- _--_-
l Match_split_state; 

TT _BICS_match 

ce5 

I BC buff.match.state = ready 
1 

I BC_buff.match.state :=old; · 
l.. .. ·- ----· ·-·· ... - _________ _j 

>------, lssue_packet(HSU1, STALL); 

i BC_buff.matcl'l.down_result = r_stall or 
' BC_buff.match.down_result = r_ack 

l 
J 

~-------

cd1 

BC_buff.match.down_result = r_data 

lssue_packet(HSU1, DATAx); 

BC_buff.match.down_result = r_nak 

lssue_packet(HSU1, NAK); 

i BC_buff.match.state =old 
.. .... 

· BC_buff.match.state =pending I 

lssue_packet(HSU 1, NYET); J 
IT_Do_BICS 

Figure 11-59. Bulk/Control IN Complete-split Transaction lT State Machine 

11 .17.3 Bulk/Control Sequencing 
Once the high-speed handler has received a start-split for an endpoint and saved it in a local buffer, it 
responds with an ACK split transaction handshake. This tells the host controller to do a complete-split 
transaction next time this endpoint is polled. 

371 



ZTE/SAMSUNG 1008-0400 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

As soon as possible (subject to scheduling rules described previously), the full-/low-speed handler issues the 
full-/low-speed transaction and saves the handshake status (for OUT) or data/handshake status (for IN) in 
the same buffer. 

Some time later (according to the host controller schedule), this endpoint will be polled for the complete
split transaction. The high-speed handler responds to the complete-split to return the full-/low-speed 
endpoint status for this transaction (as recorded in the buffer). If the host controller polls for the complete
split transaction for this endpoint before the full-flow-speed handler has finished processing this transaction 
on the downstream bus, the high-speed handler responds with a NYET handshake. This tells the host 
controller that the transaction is not yet complete. ln this case, the host controller will retry the complete
split again at some later time. 

When the full-flow-speed handler finally finishes the full-flow-speed transaction, it saves the data/status in 
the buffer to be ready for the next host controller complete-split transaction for this endpoint. When the 
host sends the complete-split, the high-speed handler responds with the indicated data/status as recorded in 
the buffer. The buffer transaction status is updated from ready to old so the high-speed handler is ready for 
either a retry or a new start-split transaction for this (or some other) full-flow-speed endpoint. 

If there is an error on the complete-split transaction, the host controller will retry the complete-split 
transaction for this bulk/control endpoint "immediately" before proceeding to some other bulk/control split 
transaction. Tbe bost controller may issue other periodic split transactions or other non-split transactions 
before doing this complete-split transaction retry. 

If there is a bulk/control transaction in progress on the downstream facing bus when the EOF time occurs, 
the TT must adhere to the definition in Section 11.3 for its behavior on the downstream facing bus. This 
will cause an increase in the error count for this transaction. The normal retry rules will determine if the 
transaction will be retried or not on the downstream facing bus. 

11.17 .4 Bulk/Control Buffering Requirements 
The TT must provide at least two transactions of non-periodic buffering to allow the TT to deliver 
maximum full-flow-speed throughput on a downstream bus when the high-speed bus is idle. 

As the high-speed bus becomes busier, the throughput possible on downstream full-/low-speed buses will 
decrease. 

A TT may provide more than two transactions of non-periodic buffering and this can improve throughput 
for downstream buses for specific combinations of device configurations. 

11.17.5 Other Bulk/Control Details 
When a bulk/control split transaction fails, it can leave the associated TT transaction buffer in a busy 
(ready/x) state. This buffer state will not allow the buffer to be reused for other bulk/control split 
transactions. Therefore, as part of endpoint halt processing for full-/low-speed endpoints connected via a 
TT, the host software must use the Clear_TT_Buffer request to the TT to ensure that the buffer is not in the 
busy state. 

Appendix A shows examples of packet sequences for full-/low-speed bulk/control transactions and their 
relationship with start-splits and complete-splits in various normal and error conditions. 

11 .18 Periodic Split Transaction Pipelining and Buffer Management 

372 

There are requirements on the behavior of the host and the TT to ensure that the micro frame pipeline 
correctly sequences full-flow-speed isochronous/interrupt transactions on downstream facing full-/Jow
speed buses. The host must determine the microframes in which a start-split and complete-split transaction 
must be issued on high-speed to correctly sequence a corresponding full-flow-speed transaction on the 
downstream facing bus. This is called "scheduling" the split transactions. 



ZTE/SAMSUNG 1008-0401 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

In the following descriptions, the 8 microframes within each full-speed (1 ms.) frame are referred to as 
microframe Y0 , YI' Y2, •• • , Y,. This notation means that the first microframe of each full-speed frame is 
labeled Y0• The second microframe is labeled Yi> etc. The last microframe of each fu ll-speed frame is 
labeled Y,. The labels repeat for each full-speed frame. 

This section describes details of the microframe pipeline that affect both full-speed isochronous and full
/low-speed interrupt transactions. Then the split transaction rules for interrupt and isochronous are 
described. 

Bulk/control transactions are not scheduled with this mechanism. They are handled as described in the 
previous section. 

11.18.1 Best Case Full-Speed Budget 
A microframe of time allows at most 187.5 raw bytes of signaling on a full-speed bus. In order to estimate 
when full-flow-speed transactions appear on a downstream bus, the host must calculate a best case full
speed budget. This budget tracks in which microframes a full-/low-speed transaction appears. The best case 
full-speed budget assumes that 188 full-speed bytes occur in each microframe. Figure 11-60 shows how a 
1 ms frame subdivided into microframes of budget time. This estimate assumes that no bit stuffing occurs 
to lengthen the time required to move transactions over the bus. 

The maximum number of bytes in a 1 ms frame is calculated as: 

1157 maximum_periodic_bytes_per_frame = 12 Mb/s * 1msI8 bits_per_byte * 
6 data_bits I 7 bit-stuffed_data_bits * 90% maximum_periodic_data_per_frame 

Microfr mes 
Y, 

Max wire time 

Best case wire budget 
1157 bytes w/ no ,_. """""""'":....:...-+"'-""'=.-:;,,..~"'-'-'==""'""=..;..;.;..;=+.-:~""""""""~ ....... ""'""':;;....;i.!""' 
bitstuffing 

Figure 11-60. Best Case Budgeted Full-speed Wire Time With No Bit Stuffing 

11.18.2 TT Microframe Pipeline 
The TT implements a microframe pipeline of split transactions in support of a full-flow-speed bus. Start
split transactions are scheduled a microframe before the earliest time that their corresponding full-/low
speed transaction is expected to start. Complete-split transactions are scheduled in microframes that the 
full-flow-speed transaction can finish. 

When a full-/low-speed device is attached to the bus and configured, the host assigns some time on the 
full-flow-speed bus at some budgeted time, based on the endpoint requirements of the configured device. 

The effects of bit stuffing can delay when the full-flow-speed transaction actually runs. The results of other 
previous full-flow-speed transactions can cause the transaction to run earlier or later on the full-flow-speed 
bus. 

The host always uses the maximum data payload size for a full-flow-speed endpoint in doing its budgeting. 
It does not attempt to schedule the actual data payloads that may be used in specific transactions to full
/low-speed endpoints. The host must include the maximum duration interpacket gap, bus turnaround times, 
and "TT think time". The TT requires some time to proceed to the next full-flow-speed transaction. This 
time is called the "TT think time" and is specified in the hub descriptor field wHubCharacteristics bit 5 and 
6. 

373 



ZTE/SAMSUNG 1008-0402 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

#1: A full/low·speed transaction 
budgeted to run here on the classic bus, ... 

~ 
Best ~ase ~:·;:7et I ·- ·· ~),,,, .. ~: 1 y

2 

: 

t i· ~· •• •• ·"' ~-•• ··-.::::····~ ······ t 

Y, y~ 

I •• ·f I 4 .... , .. ......... : ... 
I £•' ~ ! I , ! -

HS 1 1 HS Complet~·sphts 

7rt-split j ' 

#2: ... has a HS start·split scheduled 
in this microframe and ... 

#3: ... has 3 HS complete-split transactions 
scheduled in the possible microframes 
for this full/low-speed transaction 

Figure 11-61. Scheduling of IT Microframe Pipeline 

Figure 11-61 shows an example of a new endpoint that is assigned some portion of a full-flow-speed frame 
and where its start- and complete-splits are generally scheduled. The act of assigning some portion of the 
full-flow-speed frame to a particular transaction is called determining the budget for the transaction. More 
precise rules for scheduling and budgeting are presented later. The start-split for this example transaction is 
scheduled in microframe Y-1,, the transaction is budgeted to run in microframe Y0, and complete-splits are 
scheduled for microframes Y,, Y2, and Y3• Section 11.18.4 describes the scheduling rules more completely. 

The host must determine precisely when start- and complete- splits are scheduled to avoid overruns or 
underruns in the periodic transaction buffers provided by the TT. 

11.18.3 Generation of Full-speed Frames 
The TT must generate SOFs on the full-speed bus to establish the I ms frame clock within the defined jitter 
tolerances for full-speed devices. The TT has its own frame clock that is synchronized to the microframe 
SOFs on the high-speed bus. The SOF that reflects a change in the frame number it carries is identified as 
the zeroth microframe SOF. The zeroth high-speed microframe SOF corresponds to the full-speed SOF on 
the TT's downstream facing bus. The TT must adhere to all timing/jitter requirements of a host controller 
related to frames as defined in other parts of this specification. 

The TT must stop issuing full-speed SOFs after it detects 250 µs of high-speed idle. This is required to 
ensure that the full-flow-speed downstream facing bus enters suspend no more than 250 µs after the high
speed bus enters suspend. 

The TT must generate a full-speed SOF on the downstream facing bus based on its frame timer. The 
generation of the full-speed SOF must occur within +/-3 full-speed bit time from the occurrence of the 
zeroth high-speed SOF. See Section 11.22. l for more information about TT SOF generation. 

11.18.4 Host Split Transaction Scheduling Requirements 

374 

Scheduling of split transactions is done by the host (typically in software) based on a best-case estimate of 
how the full-flow-speed transactions can be run on the downstream facing bus. This best-case estimate is 
called the best case budget. The host is free to issue the split transactions anytime within the scheduled 
microframe, but each split transaction must be issued sometime within the scheduled microframe. This 
description of the scheduling requirements applies to the split transactions for a single full-flow-speed 
transaction at a time. 

I. The host must never schedule a start-split in microframe YG. Some error conditions may result in the 
host controller erroneously issuing a start-split in this microframe. The TT response to this start-split is 
undefined. 



ZTE/SAMSUNG 1008-0403 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

2. The host must compute the start-split schedule by determining the best case budget for the transaction 
and: 

a. For isochronous OUT full-speed transactions, for each microframe in which the transaction is 
budgeted, the host must schedule a 188 (or the remaining data size) data byte start-split transaction. 
The start-split transaction must be scheduled in the microframe before the data is budgeted to begin 
on the full-speed bus. The start-split transactions must use the beginning/middle/end/all split 
transaction token encodings corresponding to the piece of the full-speed data that is being sent on 
the high-speed bus. For example, if only a single start-split is required, an "all" encoding is used. 
If multiple start-splits are required, a "beginning" encoding is used for the first start-split and an 
"end" encoding is used for the final start-split. Tfthere are more than two start-splits required, the 
additional start-splits that are not the first or last use a "middle" encoding. A zero length full-speed 
data payload must only be scheduled with an "all" start-split. A start-split transaction for a 
beginning, middle, or end start-split must always have a non-zero length data payload. 
Figure 11-62 shows an example of an isochronous OUT that would appear to have budgeted a zero 
length data payload in a start-split (end). This example instead must be scheduled with a start
split(all) transaction. 

lsoch OUT transaction with 187 data 
bytes has 196 byte budget. 
Transaction budgeted for Y1 and Y2. 

, (Y-1), Y, \ Y, , 

Best ~ase budget · .. :,. _ · •• :-~iij 
: •• I I 
1 HS SS-all 1 1 
f I I 
1 Start-split 1 1 
I I I 

v, v. 

Schedule SS-all with 187 data bytes, not SS·begin(187 data) and SS-end (0 data). 

An lsoch OUT only ever has zero length data in SS-all. 

Y, 

Figure 11-62. Isochronous OUT Example That Avoids a Start-split-end With Zero Data 

b. For isochronous IN and interrupt IN/OUT full-flow-speed transactions, a single start-split must be 
scheduled in the microframe before the transaction is budgeted to start on the full-flow-speed bus. 

3. The host never schedules more than one complete-split in any microframe for the same full-flow-speed 
transaction. 

a. For isochronous OUT full-speed transactions, the host must never schedule a complete-split. The 
TT response to a complete-split for an isochronous OUT is undefined. 

b. For interrupt JN/OUT full-flow-speed transactions, the host must schedule a complete-split 
transaction in each of the two microframes following the first microframe in which the full-/ low
speed transaction is budgeted. An additional complete-split must also be scheduled in the third 
following microframe unless the full-flow-speed transaction was budgeted to start in microframe 
Y6• Figure 11-63 shows an example with only two complete-splits. 

375 



ZTE/SAMSUNG 1008-0404 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

#1: A full/low-speed transaction 
budgeted to run here on the classic bus, ... 

\ 
I Y2 I y) Y, Y, l A 

•• ~ ' t: • \ t . . ,_ t 
(Y+1)0 

Bes~· case· buti9ef 
! I 

.P.~~y_io11~_1y .~!!.d~~-t~c! .trnn~!~.~iq!l_s .~>>:- J::.:::t············.,_' ... 
: : l • I ~ , -

376 

l l i i HS 1 >HS Complete-splits 
' ! t ~ : 

~Start-split 1 

#2: ... has a HS start-split scheduled 
in this microframe and ... 

#3: ... has 2 HS complete-split transactions 
scheduled in the possible microframes 
for this full/low-speed transaction 

Figure 11-63. End of Frame TT Pipeline Scheduling Example 

c. For isochronous IN full-speed transactions, for each microframe in which the full-speed transaction 
is budgeted, a complete-split must be scheduled for each following microframe. Also, detennine 
the last microframe in which a complete-split is scheduled, call it L. IfL is less than Y

6
, schedule 

additional complete-splits in microframe L+ 1 and L+2. 

IfL is equal to Y~, schedule one complete-split in microframe Y,. Also, schedule one complete
split in microframe Y

0 
of the next frame, unless the full-speed transaction was budgeted to start in 

microframe Y
0

• 

IfL is equal to Y
1

, schedule one complete-split in microframe Y
0 
of the next frame, unless the full

speed transaction was budgeted to start in microframe Y
0

• F igure 11-64 and Figure 11-65 show 
examples of the cases for L= Y

6 
and L=Y,. 



ZTE/SAMSUNG 1008-0405 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Microframe with 
#1: A full/low-speed transaction • 
budgeted to run here on the classic bus,... last complete-split 

~ from budget (L) 

,----A--, ~ 
Yo I Y1 l Y2 Y3 l Y, Ys I y 6 [, .... --- ·----Previ~u~ii budg~t~it trans~~iio~i ...... _ ··· ....... ,"_"'J'I" ___ .. : 

Bes'_l. case budge# 1

1 
~ ···t., 

I ' .,_... ~ ·· ...... 
1 { I I ' , 
~ tHS HS Complete-splits ,"Extra" complete-splits 

! :start-split : - I I 

#2: ... has a HS start-split scheduled 
in this microframe and ... 

#3: ... has 4 HS complete-split transactions 
scheduled in the possible microframes 
for this full/low-speed transaction 

Figure 11-64. Isochronous IN Complete-split Schedule Example at L=Y, 

#1: A full/low-speed transaction 
budgeted to run here on the classic bus, ... 

~ 

Microframe with 
last complete-split 
from budget (L) 

~ 
(Y+1)0 

I 
I 
I 

t Extra" : 
plete·split 

#3: ... has 4 HS complete-split transactions 
scheduled in the possible microframes 
for this full/low-speed transaction 

Figure 11-65. Isochronous IN Complete-split Schedule Example at L=Y, 

4. The host must never issue more than 16 start-splits in any high-speed microframe for any IT. 

5. The host must only issue a split transaction in the microframe in which it was scheduled. 

6. As precisely identified in the flow sequence and state machine figures, the host controller must 
immediately retry a complete-split after a high-speed transaction error ("trans_err"). 

I 

377 



ZTE/SAMSUNG 1008-0406 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

The "pattern" of split transactions scheduled for a ful!-/low-speed transaction can be computed once when 
each endpoint is configured. Then the pattern does not change unless some change occurs to the collection 
of currently configured full-/low-speed endpoints attached via a TT. 

Finally, for all periodic endpoints that have split transactions scheduled within a particular microframe, the 
host must issue complete-split transactions in the same relative order as the corresponding start-split 
transactions were issued. 

11.18.5 TT Response Generation 

378 

The approach used for full-speed isochronous INs and interrupt INs/OUTs ensures that there is always an 
opportunity for the TT to return data/results whenever it has something to return from the full-/low-speed 
transaction. Then whenever the full-/low-speed handler starts the full-/low-speed transaction, it simply 
accumulates the results in each microframe and then returns it in response to a complete-split from the host. 
The TT acts similar to an isochronous device in that it uses the microframe boundary to "carve up" the full
/low-speed data to be returned to the host. The TT does not do any computation on how much data to return 
at what time. In response to the "next" high-speed complete-split, the TT simply returns the endpoint data it 
has received from the full-/low-speed bus in a microframe. 

Whenever the TT has data to return in response to a complete-split for an interrupt full-/low-speed or 
isochronous full-speed transaction, it uses either a DATA0/1 or MDATA for the data packet PID. 

If the full-/low-speed handler completes the full-/low-speed isochronous/interrupt IN transaction during a 
micro frame with a valid CR Cl 6, it uses the DAT A0/1 PlD for the data packet of the complete-split 
transaction. This indicates that this is the last data of the full-/low-speed transaction. A DAT AO PID is 
always used for isochronous transactions. For interrupt transactions, a DAT AO/I PID is used corresponding 
to the full-/low-speed data packet PID received. 

Jf the full-/Jow-speed handler completes the full-/low-speed isochronous/interrupt IN transaction during a 
microframe with a bad CRCI6, it uses the ERR response to the complete-split transaction and does not 
return the data received from the full-/low-speed device. 

If the TT is still receiving data on the downstream facing bus at the microframe boundary, the TT will 
respond with either an MD A TA PID or a NYET for the corresponding complete-split. If the TT has 
received more than two bytes of the data field of the full-flow-speed data packet, it will respond with an 
MDATA PID. Further, the data packet that will be returned in the complete-split must contain the data 
received from the full-flow-speed device minus the last two bytes. The last two bytes must not be included 
since they could be the CRC16 field, but the TT will not know this until the next microframe. The CRC16 
field received from the full-/low-speed device is never returned in a complete-split data packet for 
isochronous/interrupt transactions. If less than three data bytes of the full-/low-speed data packet have been 
received at the end of a microframe, the TT must respond with a NYET to the corresponding high-speed 
complete-split. Both of these responses indicate to the host that more data is being received and another 
complete-split transaction is required. 

When the host controller receives a DATA0/1 PID for interrupt or isochronous IN complete-splits (and 
ACK, NAK, STALL, ERR for interrupt IN/OUT complete-splits), it stops issuing any remaining complete
splits that might be scheduled for that endpoint for this full-/low-speed transaction. 

If the TT has not started the full-/low-speed transaction when it receives a complete-split, the TT will not 
find an entry in the complete-split pipeline stage. When this happens, the protocol state machines show that 
the TT responds with a NYET (e.g., the " no match" case). This NYET response tells the host that there are 
no results available currently, but the host should continue with other scheduled split transactions for this 
endpoint in subsequent microframes. 

In general, there will be two (or more) complete-split transactions scheduled for a periodic endpoint. 
However, for interrupt endpoints, the maximum size of the full-/ low-speed transaction guarantees that it can 
never require more than two complete-split transactions. Two complete-split transactions are only required 
when the transaction spans a microframe boundary. Jn cases where the full-/low-speed transaction actually 



ZTE/SAMSUNG 1008-0407 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

starts and completes in the same microframe, only a single complete-split will return data; any other earlier 
complete-splits will have a NYET response. 

For isochronous IN transactions, more complete-split transactions may be scheduled based on the length of 
the full-speed transaction. A full-speed isochronous IN transaction can be up to I 023 data bytes, which can 
require portions of up to 8 microframes of time on the downstream facing bus (with the worst alignment in 
the frame and worst case bit stuffing). Such a maximum sized full-speed transaction can require 
8 complete-split transactions. If the device generates less data, the host will stop issuing complete-splits 
after the one that returns the final data from the device for a frame. 

11.18.6 TT Periodic Transaction Handling Requirements 
The TT has two methods it must use to react to timing related events that affect the microframe pipeline: 
current transaction abort and freeing pending start-splits. These methods must be used to manage the 
microframe pipeline. 

The TT must also react (as described in Section 11 .22.1) when its microframe or frame timer loses 
synchronization with the high-speed bus. 

The IT must not issue too many full-flow-speed transactions in any microframe. 

Each of these requirements are described below. 

11.18.6.1 Abort of Current Transaction 
When a current transaction is in progress on the downstream facing bus and it is no longer appropriate for 
the TT to continue the transaction, the transaction is "aborted." 

The TT full-/Jow-speed handler must abort the current full-flow-speed transaction: 

I. For all periodic transaction types, if the full-speed frame EOF time occurs 

2. If the transaction is an interrupt transaction and the start-split for the transaction was received in some 
microframe (call it X) and the TT microframe timer indicates the X+4 microframe 

Note that no additional abort handling is required for isochronous transactions besides the generic IN/OUT 
handling described below. Abort has different processing requirements with regards to the downstream 
facing bus for IN and OUT transactions. For any type of transaction, the TT must not generate a complete
split response for an aborted transaction; e.g., no entry is made in the complete-split pipeline stage for an 
aborted transaction. 

1. At the time the IT decides to abort an IN transaction, the TT must not issue the handshake packet for 
the transaction if the handshake has not already been started on the downstream facing bus. The TT 
may choose to not issue the IN token packet, if possible. If the transaction is in the data phase (e.g., in 
the middle of the target device generated DATA packet), the TT simply awaits the completion of that 
packet and ignores any data received and must not respond with a full-flow-speed handshake. The IT 
must not make an entry in the complete-split pipeline stage. This processing will cause a NYET 
response to the corresponding complete-split on the high-speed bus. 

2. At the time the TT decides to abort an OUT transaction, the TT may choose to not issue the TOKEN or 
DATA packets, if possible. If the TT is in the middle of the DA TA packet, it must stop issuing data 
bytes as soon as possible and force a bit-stuffing error on the downstream facing bus. In any case, the 
TT must not make an entry in the complete-split pipeline stage. This processing will cause a NYET 
response to the corresponding complete-split on the high-speed bus. 

11.18.6.2 Free of Pending Start-splits 
A start-split can be buffered in the start-split pipeline stage that is no longer appropriate to cause a full-/low
speed transaction on the downstream facing bus. Such a start-split transaction must be "freed" from the 

379 



ZTE/SAMSUNG 1008-0408 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

start-split pipeline stage. This means the start-split is simply ignored by the TT and the TT must respond to 
a corresponding complete-split with a NYET. For example, no entry is made in the complete-split pipeline 
stage for the freed start-split. 

A start-split in the start-split pipeline must be freed: 

1. lfthe full-speed frame EOF time occurs, except for start-splits received in (Y-1 ), 

2. lf the start-spl it transaction was received in some microframe (call it X) and the TT microframe 
timer indicates the X +4 microframe 

If the TT receives a periodic start-split transaction in microframe Y 6, its behavior is undefined. This is a 
host scheduling error. 

11.18.6.3 Maximum Full-flow-speed Transactions per Microframe 
The TT must not start a full-/low-speed transaction unless it has space available in the complete-split 
pipeline stage to hold the results of the transaction. If there is not enough space, the TT must wait to issue 
the transaction until there is enough space. The maximum number of normally operating full-speed 
transactions that can ever be completed in a microframe is 16. 

11.18.7 TT Transaction Tracking 
Figure 11-66 shows the TT microframe pipeline of transactions. The 8 high-speed microframes that 
compose a full-flow-speed frame are labeled with Y0 through Y, assuming the microframe timer has 
occurred at the point in time shown by the arrow (e.g., time "NOW"). 

As shown in the figure, a start-split high-speed transaction that the high-speed handler receives in 
microframe Y0 (e.g., a start-split "B") can run on the full-/low-speed bus during microframe times Y, or Y1 
or Y,. This variation in starting on the ful l-/low-speed bus is due to bit stuffing and bulk/control 
reclamation that can occur on the full-flow-speed bus. Once the full-flow-speed transaction finishes, its 
complete-split transactions (if they are required) will run on the high-speed bus during microframes Y

2
, Y

3
, 

orY4• 

Yo Y, Y2 Y3 v. Ys YG l Y, 

Stan-splits B c 0 E F G None, i A"' I 
I FSJLS transaction A A, B A, B.C B,C,D C,O,E D,E,F E, F.G : F, G 

Complete-splits F',G' A A. B A, B, C B.C. 0 C,D,E D, E,F I E. F, G 

~ 

380 

NOW-4 NOW-3 NOW-2 NOW-I NOW 

Figure 11-66. Micr oframe P ipeline 

When the microframe timer indicates a new microframe, the high-speed handler must mark any start-splits 
in the start-split pipeline stage it received in the previous microframe as "pending" so that they can be 
processed on the fu ll-/low-speed bus as appropriate. This prevents the full-flow-speed transactions from 
running on the downstream bus too early. 

At the beginning of each microframe (call it "NOW"), the high-speed handler must free (as defined in 
Section 11.18.6.2) any start-split transactions from the start-split pipeline stage that are still pending from 
microframe NOW-4 (or earlier) and ignore them. If the transaction is in progress on the downstream facing 
bus, the transaction must be aborted (with full-/low-speed methods as defined in Chapter 8). This is 
described in more detail in the previous sections. This ensures that even ifthe full-flow-speed bus has 
encountered a babble condition on the bus (or other delay condition), the TT keeps its periodic transaction 
pipeline running on time (e.g., transactions do not run too late). This also ensures that when the last 
scheduled complete-split transaction is received by the TT, the full-flow-speed transaction has been 
completed (either successfully or by being aborted). 



ZTE/SAMSUNG 1008-0409 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Finally, at the beginning of each microframe, the high-speed handler must change any complete-split 
transaction responses in the complete-split pipeline stage from microframe NOW-2 to the free state so that 
their space can be reused for responses in this microframe. 

This algorithm is shown in pseudo code in Figure 11-67. This pseudo-code corresponds to the 
Advance_pipeline procedure identified previously. 

-- Clean up start-split state in case full -/low-speed bus fell behind 
while start-splits in pending state received by TT before microframe-4 loop 

Free start-split entry 
End loop 

-- Clean up complete-split pipeline in case no complete-splits were received 
While complete-split transaction states from (microframe-2) l oop 

Free complete-split response transaction entry 
End loop 

-- Enable full-/low-speed transactions received in previous microframe 
While start-split transactions from (previous microframe) loop 

Set start-split entry to pending status -
End loop 

Figure 11-67. Advance_ Pipeline Pseudocode 

11.18.8 TT Complete-split Transaction State Searching 
A host must issue complete-split transactions in a microframe for a set of full-/low-speed endpoints in the 
same relative order as the start-splits were issued in a microframe for this TT. However, errors on start- or 
complete-splits can cause the high-speed handler to receive a complete-split transaction that does not 
"match" the expected next transaction according to the TT's transaction pipeline. 

The TT has a pipeline of complete-split transaction state that it is expecting to use to respond to complete
split transactions. Normally the host will issue the complete-split that the high-speed handler is expecting 
next and the complete-split will correspond to the entry at the front of the complete-split pipeline. 

However, when errors occur, the complete-split transaction that the high-speed handler receives might not 
match the entry at the front of the complete-split pipeline. This can happen for example, when a start-split 
is damaged on the high-speed bus and the high-speed handler does not receive it successfully. Or the high
speed handler might have a match, but the matching entry is located after the state for other expected 
complete-splits that the high-speed handler did not receive (due to complete-split errors on the high-speed 
bus). 

The high-speed handler must respond to a complete-split transaction with the results of a full-/low-speed 
transaction that it has completed. This means that the high-speed handler must search to find the correct 
state tracking entry among several possible complete-split response entries. This searching takes time. The 
high-speed handler only needs to search the complete-split responses accumulated during the previous 
microframe. There only needs to be at most 1 microframe of complete-split response entries; the 
microframe of responses that have already been accumulated and are awaiting to be returned via high-speed 
complete-splits. 

The split transaction protocol is de.fined to allow the high-speed handler to timeout the first high-speed 
complete-split transaction while it is searching for the correct response. This allows the high-speed handler 
time to complete its search and respond correctly to the next (retried) complete-split. 

The following interrupt and isochronous flow sequence figures show these cases with the transitions labeled 
"Search not complete in time" and "No split response found". 

The high-speed handler matches the complete-split transaction with the correct entry in the complete-split 
pipeline stage and advances the pipeline appropriately. There are five cases the TT must handle correctly: 

1. If the high-speed complete-split token and first entry of the complete-split pipeline match, the high-speed 
handler responds with the indicated data/status. This case occurs the first time the TT receives a 
complete-split. 

381 



ZTE/SAMSUNG 1008-0410 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

2. Same as above, but this is a retry of a complete-split that the TT has already received due to the host 
controller not receiving the (previous) response information. 

3. If the complete-split transaction matches some other entry in the complete-split pipeline besides the first, 
the high-speed handler advances the complete-split pipeline (e.g., frees response information for previous 
complete-split entries) and responds with the information forthe matching entry. This case can happen 
due to normal or missed previous complete-split transactions. An example abnom1al case could be that 
the host controller was unsuccessful in issuing a complete-spli t transaction to the high-speed handler and 
has done endpoint halt processing for that endpoint. This means the next complete-split will not match 
the first entry of the complete-split pipeline stage. 

4. The high-speed handler can also receive a complete-split before it has started a full-/low-speed 
transaction. If there is not an entry in the complete-split pipeline, the high-speed handler responds with a 
NYET handshake to inform the host that it has no status information. When the host issues the last 
scheduled complete-split for this endpoint for this frame, it must interpret the NYET as an error 
condition. This stimulates the normal "three strikes" error handling. If there have been more than three 
errors, the host halts this endpoint. If there have been less than three errors, the host continues processing 
the scheduled transactions of this endpoint (e.g., a start-split will be issued as the next transaction for this 
endpoint at the next scheduled time for this endpoint). Note that a NYET response is possible in this case 
due to a transaction error on the start-split or a host {or TT) scheduling error. 

5. The high-speed handler can timeout its first high-speed complete-split transaction while it is searching the 
complete-split pipeline stage for a matching entry. However, the high-speed handler must respond 
correctly to the subsequent complete-split transaction. If the high-speed handler did not respond correctly 
for an interrupt IN after it had acknowledged the full-/low-speed transaction, the endpoint software and 
the device would lose data synchronization and more catastrophic errors could occur. 

The host controller must issue the complete-split transactions in the same relative order as the original 
corresponding start-split transactions. 

11 .19 Approximate TT Buffer Space Required 
A transaction translator requires buffer and state tracking space for its periodic and non-periodic portions. 

The TT microframe pipeline requires less than: 

• 752 data bytes for the start-split stage 

• 2x 188 data bytes for the complete-split stage 

• !6x 4x transaction status {<4 bytes for each transaction) for start-split stage 

• 16x 2x transaction status (<4 bytes for each transaction) for complete-split stage 

There are, at most, 4 microframes of buffering required for the start-split stage of the pipeline and, at most, 
2 microframes of buffering for the complete-split stage of the pipeline. There are, at most, 16 full-speed 
(minimum sized) transactions possible in any microframe. 

The non-periodic portion of the TT requires at least: 

• 2x (64 data + 4 transaction status) bytes 

Different implementations may require more or less buffering and state tracking space. 

11.20 Interrupt Transaction Translation Overview 

382 

The flow sequence and state machine figures show the transitions required for high-speed split transactions 
for full-flow-speed interrupt transfer types for a single endpoint. These figures must not be interpreted as 
showing any particular specific timing. In particular, high-speed or full-flow-speed transactions for other 
endpoints may occur before or after these split transactions. Specific details are described as appropriate. 



ZTE/SAMSUNG 1008-0411 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

In contrast to bulk/control processing, the full-/Jow-speed handler must not do local retry processing on the 
full-flow-speed bus in response to a transaction error for full-flow-speed interrupt transactions. 

11 .20.1 Interrupt Split Transaction Sequences 
The interrupt IN and OUT flow sequence figures use the same notation and have descriptions similar to the 
bulk/control figures. 

In contrast to bulk/control processing, the full-speed handler must not do local retry processing on the full
speed bus in response to a transaction errors (including timeout) of an interrupt transaction. 

Start split 

stl 

SSPLIT 

DATAO/l sell 

not tra~;=~·;;:·····························T;~*-err 
Data _ipto _SS _pipe I 

j se2l 

shll 
T 

Go to 
comp. split 

T 

Figure 11-68. Interrupt OUT Start-split Transaction Sequence 

383 



ZTE/SAMSUNG 1008-0412 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Complete split 

CSP LIT 
ct2 ....................................................................................... !.'...C!.1:.!§_~.'...'... ......................................................................................................... ., 

OUT .· I,,_ 

Fast~ match 
t... ......................................... §~q!.:~.~ .. !.?.<?..tE.q,_~P.!..~t~ .. !.!.!..P~.~ ......................................................................................... , 

[:::~~ ~!~~:~~~~~~~q~~ : :~~=~:~ I I 
i i i i 

olcifstall oldf ack ol<Jfnak oldl4;ans err Tran~_err 

ch I ~ ch2 ~ ch3 i ch4 l ch5 ~ ce I I 

[ srjLL J [ A~K ] [ ~K ] [ E; ] [ N~ET] I 
. . . . . I l ! l r·-·Y.·-·-1 I~c err 

I ! La~t Not Jast ctjunt 
• • • cet ce?j_ ch6T ! 

Endpoint Go to next Retry }·-·-·-T Next 1 
halt cmd start split In~ err comp. split i 

co~nt i 
I I 
L r ·- ·-·-·-· 
i ·-·-·-·~l 

5
i ce<i 

3' ce-ri ce . ..-
ce~ j : if err_count < 3 

if err_ count< 3 i j retry immed. 
retry start split ~ ~ comp. split 

if err count>= 3 
endpoint halt 

Figure 11-69. Interrupt OUT Complete-split Transaction Sequence 

384 



ZTE/SAMSUNG 1008-0413 
IPR2018-00111

Universal Serial Bus Specification Revision 2.0 

Start split 

Trans err 
...... _ ....... --·--·---·-·--, -

i 
I 

Data into SS_pipe 
- .-

Go to 
comp. split 

sell ... 

Figure 11-70. Interrupt IN Start-split Transaction Sequence 

Complete split 

ctl 

Trans err CSPLJT r-···-········ ........................... - ...... - ........................... ct2 

' 
r 

IN 
i Fast hiatch i Search not -, 
i complete in time ! . r .......................................... ................................ l ................... -........................ ----···-····-.. fi.q__s.P..f.!.~!..:~~9.!.!!![0. . .1!.!!.1.. .. _ ... _ ................... I 

i ! l oldlmF~d~~~ ......... ;/d/~~;~d~;~----·~·/d/,}~k-··· .. ·-.............. ~.i;;J;;~ll ..................... ~ffrJJtrans _err · 

Trans_ ~rr cdZ cd 1! ch Il chi ch~ ch4 I 
/ lMD~rA ) [DA~A0~1) [ N~K l [s~ALL] [ E~ l [ N~T l 
i ri.·-·-·-1 i -+ -+ i s-·-·!'..·-·-1 l Tr~ns_ noqrans_err l Retry Endpoint ! c!3a!t NotJast 
• erri ch~ · start split halt .l • ch6w 

eel! i l "1·-· ·-·-·-·-·-·1 ~---r-·-·..Y Next 
! i HC_Acc'rpt_data . not 

1
• not 

1
• 11'c err 

! i T Tra+s- c~unt comp. split 
! ce4I. Next comp. err .

1 
tran~_err, tran~_err, ce~! 

I s Dat:h = Dadx /= .c, j i plit ce5i i _i r ·-·- -·-·-·-·1 
i+-·Y·-·-·- ·-·-·-·-·-·-·_j toggfe tog~e ce~ j 

Inc err count i ch8 i T I 
r~·-·-·-·-·-·-·i ch7 j l' if err count< 3 j 

ce~ eel T Retry retry -;tart split i 
Go to next cmd start split ce~ 

if err count>= 3 if err count< 3 HC A t d t " _ ccep _ a a HC_reject_data 
endpoint halt retry immed. 

comp. split 
if err count>= 3 
endpoint halt 

Figure 11-71. Interrupt IN Complete-split Transaction Sequence 

385 


