
ZTE/SAMSUNG 1008-0280
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Feature selectors are used when enabling orsetting features, such as remote wakeup,specific to a device,
interface, or endpoint. The values for the feature selectors are given in Table 9-6.

Table 9-6. Standard Feature Selectors

DEVICE_REMOTE_WAKEUP Device

ENDPOINT_HALT Endpoint

If an unsupported orinvalid request is made to a USB device, the device responds by returning STALLin
the Data or Status stage of the request. If the device detects the error in the Setup stage, it is preferred that
the device returns STALLat the earlier of the Data or Status stage. Receipt of an unsupported or invalid
request does NOTcause the optional Halt feature on the contro! pipe to be set. If for any reason, the device
becomes unable to communicate via its Default Control Pipe due to an error condition, the device must be
reset to clear the condition and restart the Default Control Pipe.

9.4.1 Clear Feature

This request is used to clear or disable a specific feature.

 00000000B CLEAR_FEATURE Feature Zero Zero
00000001B Selector Interface

00000010B Endpoint

Feature selector values in w/a/ue must be appropriate to the recipient. Only device feature selector values
may be used whentherecipientis a device, only interface feature selector values may be used whenthe
recipient is an interface, and only endpoint feature selector values may be used whentherecipientis an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for whichrecipients.

A ClearFeature() request that references a feature that cannot be cleared, that does not exist, or that
references an interface or endpoint that does not exist, will cause the device to respond with a Request
Error.

If wLength is non-zero, then the device behavioris not specified.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Addressstate: This request is valid when the deviceis in the Address state; references to interfaces

or to endpoints other than endpoint zero shall cause the device to respond with a
Request Error.

Configured state:|This request is valid when the deviceis in the Configuredstate.

Note: The Test_Modefeature cannot be cleared by the ClearFeature() request.

252

ZTE/SAMSUNG 1008-0280

IPR2018-00110

ZTE/SAMSUNG 1008-0281
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

9.4.2 Get Configuration
This request returns the current device configuration value,

100000008~~|GET_CONFIGURATION pe|zw|ow GantiginationValue

If the returned valueis zero, the device is not configured.

If wValue, wIndex, or wLength are not as specified above, then the device behavioris not specified.

Defaultstate: Device behavior whenthis request is received while the device is in the Default state
is not specified.

Addressstate: The value zero must be returned.

Configured state:|The non-zero bConfigurationValue of the current configuration must be returned.

9.4.3 Get Descriptor

This request retums the specified descriptor if the descriptor exists.

bmRequestType bRequest windex Data

10000000B GET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language ID Length
Descriptor (refer to

Index Section 9.6.7)

The wValue field specifies the descriptor type in the high byte (refer to Table 9-5) and the descriptor index
in the low byte. The descriptor index is used to select a specific descriptor (only for configuration and
string descriptors) when several descriptors of the same type are implemented in a device. For example,a
device can implement several configuration descriptors. For other standard descriptors that can be retrieved
via a GetDescriptor() request, a descriptor index of zero must be used. The range of values used for a
descriptor index is from 0 to one less than the numberofdescriptors of that type implemented by the device.

The w/ndex field specifies the Language ID for string descriptors or is reset to zero for other descriptors.
The wLengthfield specifies the numberofbytes to return. If the descriptor is longer than the wLength field,
only the initial bytes of the descriptor are returned. If the descriptor is shorter than the wLength field, the
device indicates the end of the control transfer by sending a short packet when further data is requested. A
short packet is defined as a packet shorter than the maximum payloadsizeor a zero length data packet(refer
to Chapter5).

The standard request to a device supports three types of descriptors: device (also device_qualifier),
configuration (also other_speed_configuration), and string. A high-speed capable device supports the
device_qualifier descriptor to return information about the device for the speed at whichit is not operating
(including wMaxPacketSize for the default endpoint and the numberofconfigurations for the other speed).
The other_speed_configuration returns information in the same structure as a configuration descriptor, but
for a configuration if the device were operating at the other speed. A request for a configuration descriptor
returns the configuration descriptor, all interface descriptors, and endpoint descriptors for all of the

253

ZTE/SAMSUNG 1008-0281

IPR2018-00110

ZTE/SAMSUNG 1008-0282
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

interfaces in a single request. Thefirst interface descriptor follows the configuration descriptor. The
endpoint descriptors for the first interface follow the first interface descriptor. If there are additional
interfaces, their interface descriptor and endpoint descriptors follow the first interface’s endpoint
descriptors. Class-specific and/or vendor-specific descriptors follow the standard descriptors they extend or
modify.

All devices must provide a device descriptor and at least one configuration descriptor. Ifa device does not
support a requested descriptor, it responds with a Request Error.

Default state: This is a valid request when the device is in the Default state.

Addressstate: This is a valid request when the deviceis in the Addressstate.

Configured state: This is a valid request when the deviceis in the Configuredstate.

9.4.4 Get Interface

This request returns the selected alternate setting for the specified interface.

|bmRequestType||pRequest||wWalue wLength|ata 10000001B GET_INTERFACE Zero Interface Alternate

Setting

Some USBdevices have configurations with interfaces that have mutually exclusive settings. This request
allows the host to determine the currently selected alternate setting.

If wValue or wLength are not as specified above, then the device behavioris not specified.

If the interface specified does not exist, then the device responds with a Request Error.

Default state: Device behavior whenthis request is received while the device is in the Default state
is not specified.

Addressstate: A Request Error responseis given by the device.

Configured state: This is a valid request when the device is in the Configuredstate.

9.4.5 Get Status

This request returns status for the specified recipient.

 10000000B GET_STATUS zero Zero Device,

10000001B Interface Interface, or
10000010B Endpoint Endpoint

Status

The Recipient bits ofthe bmRequestType field specify the desired recipient. The data returnedis the current
status of the specified recipient.

254

ZTE/SAMSUNG 1008-0282

IPR2018-00110

ZTE/SAMSUNG 1008-0283
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

If wValue or wLength are not as specified above, or if w/ndex is non-zero for a device status request, then
the behaviorof the device is not specified.

If an interface or an endpointis specified that does not exist, then the device responds with a Request Error.

Default state: Device behavior when this request is received while the device is in the Default state
is not specified.

Addressstate: If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

Configured state: ‘If an interface or endpoint that does not exist is specified, then the device responds
with a RequestError.

A GetStatus() request to a device returns the information shownin Figure 9-4.

Reserved (Resetto zero) Remote Self
Wakeup Powered

Reserved (Reset to zero)

Figure 9-4, Information Returned by a GetStatus() Request to a Device

The Se/fPoweredfield indicates whether the device is currently self-powered. If DO is reset to zero, the
device is bus-powered. If D0is set to one, the device is self-powered. The Se/fPowered field may not be
changed by the SetFeature() or ClearFeature() requests.

The Remote Wakeup field indicates whether the device is currently enabled to request remote wakeup. The
default mode for devices that support remote wakeupis disabled. If D1 is reset to zero, the ability of the
device to signal remote wakeupis disabled. If D1 is set to one, the ability of the device to signal remote
wakeupis enabled. The Remote Wakeup field can be modified by the SetFeature() and ClearFeature()
requests using the DEVICEREMOTE_WAKEUPfeature selector. This field is reset to zero when the
device is reset.

A GetStatus() request to an interface returns the information shownin Figure 9-5.

aeae
Reserved (Resetto zero)

Reserved (Resetto zero)

Figure 9-5. Information Returned by a GetStatus() Request to an Interface

255

ZTE/SAMSUNG 1008-0283

IPR2018-00110

ZTE/SAMSUNG 1008-0284
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

A GetStatus() request to an endpoint returns the information shownin Figure 9-6.

Reserved (Resetto zero)

Reserved (Resetto zero)
 ee|PeeeeEe

Figure 9-6. Information Returned by a GetStatus() Request to an Endpoint

The Halt feature is required to be implementedforall interrupt and bulk endpoint types. If the endpointis
currently halted, then the Halt feature is set to one. Otherwise, the Halt feature is reset to zero. The Halt
feature may optionally be set with the SetFeatureeENDPOINT_HALT) request. Whenset by the
SetFeature() request, the endpoint exhibits the samestall behavioras if the field had been set by a hardware
condition. Jf the condition causing a halt has been removed, clearing the Halt feature via a
ClearFeature(ENDPOINT_HALT)request results in the endpoint no longer returning a STALL. For
endpoints using data toggle, regardless of whether an endpoint has the Halt featureset, a
ClearFeature(ENDPOINT_HALT)request alwaysresults in the data toggle beingreinitialized to DATAO.
The Halt feature is reset to zero after either a SetConfiguration() or SetInterface() request even if the
requested configuration or interface is the same as the current configuration or interface.

It is neither required nor recommendedthat the Ha/t feature be implemented for the Default Control] Pipe.
However, devices may set the Halt feature ofthe Default Control Pipein order to reflect a functional error
condition. If the feature is set to one, the device will return STALLin the Data and Status stages of each
standard request to the pipe except GetStatus(), SetFeature(), and ClearFeature() requests. The device need
not return STALLfor class-specific and vendor-specific requests.

9.4.6 Set Address

This request sets the device address for all future device accesses.

bmRequestType bRequest wValue|windex|wLength 00000000B SET_ADDRESS Device Zero Zero
Address

The wValue field specifies the device addressto use for all subsequent accesses.

As noted elsewhere, requests actually may result in up to three stages. In thefirst stage, the Setup packetis
sent to the device. In the optional second stage, data is transferred between the host and the device. In the
final stage, status is transferred between the host and the device. The direction of data and status transfer
depends on whetherthe host is sending data to the device or the device is sending data to the host. The
Status stage transfer is always in the opposite direction of the Data stage. If there is no Data stage, the
Status stage is from the device to the host.

Stages after the initial Setup packet assume the same device address as the Setup packet. The USB device
does not changeits device address until after the Status stage of this request is completed successfully. Note
that this is a difference between this request and all other requests. For all other requests, the operation
indicated must be completed before the Status stage.

If the specified device address is greater than 127, or if windex or wLength are non-zero, then the behavior
of the device is not specified.

256

ZTE/SAMSUNG 1008-0284

IPR2018-00110

ZTE/SAMSUNG 1008-0285
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Device response to SetAddress() with a value of 0 is undefined.

Default state: If the address specified is non-zero, then the device shall enter the Addressstate;
otherwise, the device remains in the Default state (this is not an error condition).

Addressstate: If the address specified is zero, then the device shall enter the Default state;
otherwise, the device remains in the Addressstate but uses the newly-specified
address.

Configured state:©Device behavior whenthis request is received while the device is in the Configured
state is not specified.

9.4.7 Set Configuration

This request sets the device configuration.

 00000000B SET_CONFIGURATION|Configuration Value

The lower byte of the w Value field specifies the desired configuration. This configuration value must be
zero or match a configuration value from a configuration descriptor. If the configuration value is zero, the
device is placedin its Address state. The upper byte of the w Value field is reserved.

If windex, wLength, or the upper byte of w Value is non-zero, then the behavior of this request is not
specified.

Default state: Device behavior whenthis request is received while the device is in the Default state
is not specified.

Addressstate: If the specified configuration value is zero, then the device remains in the Address
state. If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device enters the
Configured state. Otherwise, the device responds with a Request Error.

Configured state:_If the specified configuration valueis zero, then the device enters the Addressstate.
If the specified configuration value matches the configuration value from a
configuration descriptor, then that configuration is selected and the device remainsin
the Configured state. Otherwise, the device responds with a Request Error.

9.4.8 Set Descriptor

This requestis optional and may be used to update existing descriptors or new descriptors may be added.

00000000B SET_DESCRIPTOR Descriptor Language ID Descriptor Descriptor
Type and (refer to Length
Descriptor|Section 9.6.7)

Index or zero
257

ZTE/SAMSUNG 1008-0285

IPR2018-00110

ZTE/SAMSUNG 1008-0286
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The wValue field specifies the descriptor type in the high byte (refer to Table 9-5) and the descriptor index
in the low byte. The descriptor index is used to select a specific descriptor (only for configuration and string
descriptors) when several descriptors ofthe same type are implemented in a device. For example, a device
can implement several configuration descriptors. For other standard descriptors that can be set via a
SetDescriptor() request, a descriptor index of zero must be used. The range of values used for a descriptor
index is from 0 to one Jess than the numberof descriptors of that type implemented by the device.

The windex field specifies the Language ID forstring descriptors or is reset to zero for other descriptors.
The wLength field specifies the numberofbytes to transfer from the host to the device.

The only allowed values for descriptor type are device, configuration, and string descriptor types.

If this request is not supported, the device will respond with a Request Error.

Default state: Device behavior when this request is received while the deviceis in the Default state
is not specified.

Addressstate: If supported, this is a valid request when the deviceis in the Address state.

Configured state:_If supported, this is a valid request when the deviceis in the Configured state.

9.4.9 Set Feature

This requestis used to set or enable a specific feature.

00000000B SET_FEATURE Feature Test Selector Zero Zero
00000001B Selector Interface

00000010B Endpoint

Feature selector values in wVa/ue must be appropriate to the recipient. Only device feature selector values
may be used whentherecipientis a device; only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values may be used whenthe recipient is an
endpoint.

Refer to Table 9-6 for a definition of which feature selector values are defined for whichrecipients.

The TEST_MODEfeature is only defined for a devicerecipient (i.e., bnRequestType = 0) and the lower
byte of wIndex must be zero. Setting the TEST_MODEfeature puts the device upstream facing port into
test mode. The device will respond with a requesterror if the request contains an invalid test selector. The
transition to test mode must be complete no later than 3 msafter the completion of the status stage of the
request. The transition to test mode of an upstream facing port must not happen until after the status stage
of the request. The powerto the device must be cycled to exit test mode of an upstream facing port of a
device. See Section 7.1.20 for definitions of each test mode. A device must support the TESTMODE
feature whenin the Default, Address or Configured high-speed devicestates.

A SetFeature() request that references a feature that cannot beset or that does not exist causes a STALLto
be returned in the Status stage of the request.

258

ZTE/SAMSUNG 1008-0286

IPR2018-00110

ZTE/SAMSUNG 1008-0287
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-7. Test Mode Selectors

OOH Reserved

01H Test_J

3H0 Test_SEO_NAK

04H Test_Packet

05H Test_Force_Enable

O6H-3FH Reserved for standard test selectors

3FH-BFH Reserved

COH-FFH Reserved for vendor-specific test modes.

If the feature selector is TESTMODE,then the mostsignificant byte of wJndex is used to specify the
specific test mode. The recipient of a SetFeature(TEST_MODE...) must be the device; i.e., the lower byte
of w/ndex must be zero and the bmRequesitType must be set to zero. The device must have its power cycled
to exit test mode. The valid test mode selectors are listed in Table 9-7. See Section 7.1.20 for more

information about the specific test modes.

If wLength is non-zero, then the behavior of the deviceis not specified.

If an endpointor interface is specified that does not exist, then the device responds with a RequestError.

Default state: A device mustbe able to accept a SetFeature(TEST_MODE, TEST_SELECTOR)
request when in the Default State. Device behavior for other SetFeature requests
while the device is in the Default state is not specified.

Addressstate: If an interface or an endpoint other than endpoint zero is specified, then the device
responds with a Request Error.

Configured state: This is a valid request when the device is in the Configuredstate.

9.4.10 Set Interface

This request allows the host to select an alternate setting for the specified interface.

bmRequestType bRequest wValue|windex|wLength 00000001B SET_INTERFACE Alternate Interface
Setting

Some USB devices have configurations with interfaces that have mutually exclusive settings. This request
allowsthe host to select the desired alternate setting. If a device only supports a default setting for the
specified interface, then a STALL maybe returnedin the Status stage ofthe request. This request cannot be
used to changethe set of configured interfaces (the SetConfiguration() request must be used instead).

If the interface or the alternate setting does not exist, then the device responds with a Request Error. If
wLength is non-zero, then the behavior of the device is not specified.

259

ZTE/SAMSUNG 1008-0287

IPR2018-00110

ZTE/SAMSUNG 1008-0288
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Defaultstate: Device behavior whenthis request is received while the deviceis in the Default state
is not specified.

Addressstate: The device must respond with a Request Error.

Configured state: This is a valid request when the device is in the Configuredstate.

9.4.11 Synch Frame

This requestis used to set and then report an endpoint’s synchronization frame.

10000010B SYNCH_FRAME zero Two Frame
Number

When an endpoint supports isochronoustransfers, the endpoint may also require per-frame transfers to vary
in size according to a specific pattern. The host and the endpoint must agree on which framethe repeating
pattern begins. The numberof the frame in which the pattern began is returned to the host.

If a high-speed device supports the Synch Framerequest, it must internally synchronizeitself to the zeroth
microframe and have a time notion ofclassic frame. Only the frame numberis used to synchronize and
reported by the device endpoint (i.e., no microframe number). The endpoint must synchronize to the zeroth
microframe.

This value is only used for isochronous data transfers using implicit pattern synchronization. IfwValue is
non-zero or wLength is not two, then the behavior of the device is notspecified.

If the specified endpoint does not support this request, then the device will respond with a Request Error.

Default state: Device behavior whenthis request is received while the deviceis in the Default state
is not specified.

Addressstate: The device shall respond with a Request Error.

Configured state: This is a valid request when the deviceis in the Configuredstate.

9.5 Descriptors
USBdevicesreport their attributes using descriptors. A descriptor is a data structure with a defined format.
Each descriptor begins with a byte-wide field that contains the total numberofbytes in the descriptor
followed by a byte-widefield that identifies the descriptor type.

Using descriptors allows concise storage of the attributes ofindividual configurations because each
configuration may reuse descriptors or portions of descriptors from other configurations that have the same
characteristics. In this manner, the descriptors resemble individual data records in a relational database.

Where appropriate, descriptors contain referencesto string descriptors that provide displayable information
describing a descriptor in human-readable form. Theinclusion ofstring descriptors is optional. However,
the reference fields within descriptors are mandatory. If a device does not support string descriptors, string
reference fields must bereset to zero to indicate no string descriptor is available.

If a descriptor returns with a valuein its length field that is less than defined by this specification, the
descriptor is invalid and should be rejected by the host. If the descriptor returns with a value in its length

260

ZTE/SAMSUNG 1008-0288

IPR2018-00110

ZTE/SAMSUNG 1008-0289
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

field that is greater than defined by this specification, the extra bytes are ignored by the host, but the next
descriptor is located using the length returned rather than the length expected.

A device may return class- or vendor-specific descriptors in two ways:

1. Ifthe class or vendor specific descriptors use the same formatas standard descriptors(e.g., start with a
length byte and followed by a type byte), they must be returned interleaved with standard descriptors in
the configuration information returned by a GetDescriptor(Configuration) request. In this case, the
class or vendor-specific descriptors must follow a related standard descriptor they modify or extend.

2. Ifthe class or vendor specific descriptors are independent of configuration information or use a non-
standard format, a GetDescriptor() request specifying the class or vendor specific descriptor type and
index may be used toretrieve the descriptor from the device. A class or vendorspecification will
define the appropriate wayto retrieve these descriptors.

9.6 Standard USB Descriptor Definitions

The standard descriptors defined in this specification may only be modified or extended by revision of the
Universal Serial Bus Specification.

Note: An extension to the USB 1.0 standard endpoint descriptor has been published in Device Class
Specification for Audio Devices Revision 1.0. This is the only extension defined outside USB Specification
that is allowed. Future revisions of the USB Specification that extend the standard endpoint descriptor will
do so as to not conflict with the extension defined in the Audio Device Class Specification Revision 1.0.

9.6.1 Device

A device descriptor describes general information about a USB device. It includes information that applies
globally to the device and all of the device’s configurations. A USB device has only one device descriptor.

A high-speed capable device that has different device information for full-speed and high-speed must also
have a device_qualifier descriptor (see Section 9.6.2).

The DEVICEdescriptor of a high-speed capable device has a version numberof 2.0 (0200H). If the device
is full-speed only or low-speed only, this version numberindicates that it will respond correctly to a request
for the device_qualifier desciptor(i.e., it will respond with a requesterror).

The bcdUSBfield contains a BCD version number. The value ofthe bedUSBfield is OxJJMN for version

JJ.M.N (JJ — major version number, M — minor version number, N — sub-minor version number),e.g.,
version 2.1.3 is represented with value 0x0213 and version 2.0 is represented with a value of 0x0200.

The bNumConfigurations field indicates the number of configurations at the current operating speed.
Configurations for the other operating speed are not included in the count. If there are specific
configurations ofthe device for specific speeds, the bNumConfigurations field only reflects the number of
configurations for a single speed, not the total number of configurations for both speeds.

If the device is operating at high-speed, the bMaxPacketSize0 field must be 64 indicating a 64 byte
maximum packet. High-speed operation does not allow other maximum packetsizes for the control
endpoint (endpoint0).

All USB devices have a Default Control Pipe. The maximum packet size of a device’s Default Control Pipe
is described in the device descriptor. Endpoints specific to a configuration and its interface(s) are described
in the configuration descriptor. A configuration andits interface(s) do not include an endpoint descriptor
for the Default Control Pipe. Other than the maximum packetsize, the characteristics of the Default
Control Pipe are defined by this specification and are the samefor all USB devices.

The bNumConfigurations field identifies the numberofconfigurations the device supports. Table 9-8 shows
the standard device descriptor.

261

ZTE/SAMSUNG 1008-0289

IPR2018-00110

ZTE/SAMSUNG 1008-0290
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-8. Standard Device Descriptor

Description

bLength Number Size of this descriptor in bytes

bDescriptorType Constant DEVICE Descriptor Type

bedUSB USB Specification Release Numberin
Binary-Coded Decimal(i.¢., 2.10 is 210H),.
This field identifies the release of the USB

Specification with which the device andits
descriptors are compliant.

bDeviceClass Class code (assigned by the USB-IF).

If this field is reset to zero, each interface

within a configuration specifies its own
class information and the various

interfaces operate independently.

If this field is set to a value between 1 and

FEH, the device supports different class
specifications on different interfaces and
the interfaces may not operate
independently. This value identifies the
class definition used for the aggregate
interfaces.

If this field is set to FFH, the device class

is vendor-specific.

bDevice SubClass SubClass Subclass code (assigned by the USB-IF).

These codes are qualified by the value of
the bDeviceClassfield.

If the bDeviceClass field is reset to zero,
this field must also be reset to zero.

If the bDeviceClassfield is not set to FFH,

all values are reserved for assignment by
the USB-IF.

262

ZTE/SAMSUNG 1008-0290

IPR2018-00110

ZTE/SAMSUNG 1008-0291
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-8. Standard Device Descriptor (Continued)

Value Description

Protocol Protocol code (assigned by the USB-IF).
These codes are qualified by the value of
the bDeviceClass and the
bDeviceSubClassfields. If a device

supports class-specific protocols on a
device basis as opposed to an interface
basis, this code identifies the protocols
that the device uses as defined by the
specification of the device class.

If this field is reset to zero, the device
does not use class-specific protocols on a
device basis. However, it may use class-
specific protocols on an interface basis.

If this field is set to FFH, the device uses a

vendor-specific protocol on a device basis.

bMaxPacketSizeo Number Maximum packet size for endpoint zero
(only 8, 16, 32, or 64 are valid)

idVendor VendorID (assigned by the USB-IF)

idProduct Product ID (assigned by the manufacturer)

bedDevice Device release numberin binary-coded
decimal

iManufacturer 1 Index Index of string descriptor describing
manufacturer

iProduct 1 Index Index of string descriptor describing
product

iSerialNumber 4 Index of string descriptor describing the
device’s serial number

bNumConfigurations|4|Number|Numberof possible configurations

263

ZTE/SAMSUNG 1008-0291

IPR2018-00110

ZTE/SAMSUNG 1008-0292
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

9.6.2 Device_Qualifier
The device_qualifier descriptor describes information about a high-speed capable device that would
changeif the device were operating at the other speed. For example, if the device is currently operating
at full-speed, the device_qualifier returns information about how it would operate at high-speed and
vice-versa. Table 9-9 showsthe fields of the device_qualifier descriptor.

Table 9-9, Device_Qualifier Descriptor

bLength Number|Size of descriptor

bDescriptorType Constant|Device Qualifier Type

bedUSB BCD USBspecification version number(e.g.,
0200H for V2.00)

bDeviceClass Class Code

bDeviceSubClass SubClass|SubClass Code

bDeviceProtocol Protocol Protocol Code

bMaxPacketSize0 Number|Maximum packetsize for other speed

bNumConfigurations Number|Number of Other-speed Configurations

bReserved Zero Reserved for future use, must be zero

The vendor, product, device, manufacturer, product, and serialnumberfields of the standard device
descriptor are not included in this descriptor since that information is constant for a device for all supported
speeds. The version numberfor this descriptor must be at least 2.0 (0200H).

The host accesses this descriptor using the GetDescriptor() request. The descriptor type in the
GetDescriptor() request is set to device_qualifier (see Table 9-5).

If a full-speed only device (with a device descriptor version number equal to 0200H)receives a
GetDescriptor() request for a device_qualifier, it must respond with a request error. The host must not make
a request for an other_speed_configuration descriptor unlessit first successfully retrieves the
device_qualifier descriptor.

9.6.3 Configuration
The configuration descriptor describes information abouta specific device configuration. The descriptor
contains a bConfigurationValue field with a value that, when used as a parameterto the SetConfiguration()
request, causes the device to assume the described configuration.

The descriptor describes the numberofinterfaces provided by the configuration. Each interface may
operate independently. For example, an ISDN device might be configured with two interfaces, each
providing 64 Kb/s bi-directional channels that have separate data sources or sinks on the host. Another
configuration might present the ISDN deviceas a single interface, bonding the two channels into one
128 Kb/s bi-directional channel.

Whenthe host requests the configuration descriptor, all related interface and endpoint descriptors are
returned (refer to Section 9.4.3).

264

ZTE/SAMSUNG 1008-0292

IPR2018-00110

ZTE/SAMSUNG 1008-0293
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

A USBdevice has one or more configuration descriptors. Each configuration has one or more interfaces
and each interface has zero or more endpoints. An endpoint is not shared amonginterfaces within a single
configuration unless the endpointis used by alternate settings of the same interface. Endpoints may be
shared amonginterfacesthat are part of different configurations withoutthis restriction.

Once configured, devices may support limited adjustments to the configuration. Ifa particular interface has
alternate settings, an alternate may be selected after configuration. Table 9-10 shows the standard
configuration descriptor.

Table 9-10. Standard Configuration Descriptor

es
bLength|Number|Size of this descriptor in bytes
bDescriptorType CONFIGURATION Descriptor Type

po

2 wTotalLength 2 Number Total length of data returned for this
configuration. Includes the combined length
of all descriptors (configuration, interface,
endpoint, and class- or vendor-specific)
returned for this configuration.

4 bNuminterfaces 4 Numberof interfaces supported bythis
configuration

_ |
1

5

SetConfiguration() requestto select this
configuration

iConfiguration Index Index of string descriptor describing this
configuration

bConfiguration Value|Value to use as an argumentto the

265

ZTE/SAMSUNG 1008-0293

IPR2018-00110

ZTE/SAMSUNG 1008-0294
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-10. Standard Configuration Descriptor (Continued)

[owerae[oe]vee|omen
¢ bmAttributes 1 Bitmap Configuration characteristics

D?: Reserved (set to one)
D6: Self-powered
D5: Remote Wakeup
D4...0: Reserved (reset to zero)

D7 is reserved and mustbe set to onefor
historical reasons.

A device configuration that uses power from
the bus and a local source reports a non-zero
value in bMaxPowerto indicate the amount of

bus power required and sets D6. The actual
powersource at runtime may be determined
using the GetStatus(DEVICE) request(see
Section 9.4.5).

If a device configuration supports remote
wakeup,D5is set to one.

4 mA Maximum power consumption of the USB
device from the busin this specific
configuration when the device is fully
operational. Expressed in 2 mA units
(i.e., 50 = 100 mA).

Note: A device configuration reports whether
the configuration is bus-powered orself-
powered. Device status reports whetherthe
device is currently self-powered. Ifa device is
disconnected from its external power source,it
updates device status to indicate thatit is no
longer self-powered.

A device may not increase its power draw
from the bus, whenit losesits external power
source, beyond the amount reportedbyits
configuration.

lf a device can continue to operate when
disconnected from its external power source,it
continues to do so. If the device cannot

continue to operate,it fails operations it can
no longer support. The USB System Software
may determine the causeofthe failure by
checking the status and noting the loss of the
device's powersource.

9.6.4 Other_Speed_Configuration
The otherspeedconfiguration descriptor shown in Table 9-11 describes a configuration of a high-
speed capable deviceif it were operating at its other possible speed. The structure of the
other_speed_configuration is identical to a configuration descriptor.

 bMaxPower

266

ZTE/SAMSUNG 1008-0294

IPR2018-00110

ZTE/SAMSUNG 1008-0295
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-11. Other_Speed_Configuration Descriptor

}Offset|Field=Size|Value Description
bLength Number|Size of descriptor

bDescriptorType Constant|Other_speed_Configuration Type

wTotalLength Number|Total length of data returned

bNumInterfaces Number|Numberof interfaces supported by this speed
configuration

bConfigurationValue Number Value to use to select configuration

iConfiguration Index of string descriptor

bmAttributes Sameas Configuration descriptor

bMaxPower Same as Configuration descriptor

The host accesses this descriptor using the GetDescriptor() request. The descriptortype in the
GetDescriptor() request is set to other_speed_configuration (see Table 9-5).

9.6.5 Interface

The interface descriptor describesa specific interface within a configuration. A configuration provides one
or more interfaces, each with zero or more endpoint descriptors describing a unique set of endpoints within
the configuration. When a configuration supports more than one interface, the endpoint descriptors for a
particular interface follow the interface descriptor in the data returned by the GetConfiguration() request.
An interface descriptor is always returnedas part of a configuration descriptor, Interface descriptors cannot
be directly accessed with a GetDescriptor() or SetDescriptor() request.

An interface may includealternate settings that allow the endpoints and/ortheir characteristics to be varied
after the device has been configured. The default setting for an interface is always alternate setting zero.
The SetInterface() request is used to select an alternate setting or to return to the default setting. The
GetInterface() request returns the selected alternatesetting.

Alternate settings allow a portion of the device configuration to be varied while other interfaces remain in
operation. If a configuration has alternate settings for one or more ofits interfaces, a separate interface
descriptor and its associated endpoints are included for each setting.

If a device configuration supported a single interface with two alternate settings, the configuration
descriptor would be followed by an interface descriptor with the bInterfaceNumberand bAlternateSetting
fields set to zero and then the endpoint descriptors for that setting, followed by another interface descriptor
and its associated endpoint descriptors. The second interface descriptor’s b/nterfaceNumberfield would
also beset to zero, but the bA/ternateSeiting field ofthe second interface descriptor would be set to one.

If an interface uses only endpoint zero, no endpoint descriptors follow the interface descriptor. In this case,
the bNumEndpoints field mustbe set to zero.

Aninterface descriptor never includes endpoint zero in the numberofendpoints. Table 9-12 shows the
standard interface descriptor.

267

ZTE/SAMSUNG 1008-0295

IPR2018-00110

ZTE/SAMSUNG 1008-0296
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-12. Standard Interface Descriptor

re
bLength Size of this descriptor in bytes

bDescriptorType INTERFACE Descriptor Type

binterfaceNumber Number Numberofthis interface. Zero-based

value identifying the index in the array of
concurrentinterfaces supported bythis
configuration.

binterfaceClass

bAlternateSetting 1 Number Value usedto select this alternate setting
for the interface identified in the prior field

bNumEnapoints 1 Number Numberof endpoints used bythis
interface (excluding endpoint zero). If this
value is zero, this interface only uses the
Default Control Pipe.

Class Class code (assigned by the USB-IF).

A value of zero is reserved for future
standardization.

If this field is set to FFH, the interface

class is vendor-specific.

All other values are reserved for

assignment by the USB-IF.

6 bInterfaceSubClass 4 SubClass Subclass code (assigned by the USB-IF).
These codes are qualified by the value of
the b/nterfaceClassfield.

If the 5/nterfaceClassfield is reset to zero,
this field must also be reset to zero.

If the binterfaceClassfield is not set to

FFH,all values are reserved for
assignmentby the USB-IF.

268

ZTE/SAMSUNG 1008-0296

IPR2018-00110

ZTE/SAMSUNG 1008-0297
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-12. Standard Interface Descriptor (Continued)

binterfaceProtoco!l

eeese[wm[en
Protocol code (assigned by the USB).
These codes are qualified by the value of
the binterfaceClass and the
binterfaceSubClassfields. If an interface

supports class-specific requests, this code
identifies the protocols that the device
uses as defined by the specification of the
device class.

If this field is reset to zero, the device
does not use a class-specific protocol on
this interface.

If this field is set to FFH, the device uses

a vendor-specific protocol for this
interface.

9.6.6 Endpoint

Protocol

ilnterface Index

Index of string descriptor describing this
interface

Each endpoint used for an interface has its own descriptor. This descriptor contains the information
required by the host to determine the bandwidth requirements of each endpoint. An endpoint descriptoris
always returned as part of the configuration information returned by a GetDescriptor(Configuration)
request. An endpoint descriptor cannot be directly accessed with a GetDescriptor() or SetDescriptor()
request. There is never an endpoint descriptor for endpoint zero. Table 9-13 showsthe standard endpoint
descriptor.

Table 9-13. Standard Endpoint Descriptor

jortset|Field|size|Vaue|___Deseripion
|0|vengh___|1|number|sizoottisdesciptorinbytes
|1|poeseriptortye|1|constant|ENDPOINTDescripiorType bEndpointAddress The address of the endpoint on the USB device

described by this descriptor. The addressis
encodedasfollows:

Bit 3...0: The endpoint number
Bit 6...4: Reserved, reset to zero

Bit 7: Direction, ignored for
control endpoints

0 = OUT endpoint
41 = IN endpoint

269

ZTE/SAMSUNG 1008-0297

IPR2018-00110

ZTE/SAMSUNG 1008-0298
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-13. Standard Endpoint Descriptor (Continued)

foftset|Field|Size|value|___—Description

bmAttributes Bitmap This field describes the endpoints attributes whenit Is

configured using the bConfigurationValue.

Bits 1..0: Transfer Type
00 = Control
01 = Isochronous

10 = Bulk

11 = Interrupt

If not an isochronous endpoint, bits 5..2 are reserved
and must be setto zero. If isochronous, they are
defined as follows:

Bits 3..2: Synchronization Type

00 = No Synchronization
01 = Asynchronous
10 = Adaptive
41 = Synchronous

Bits 5..4: Usage Type

00 = Data endpoint
01 = Feedback endpoint
10 = Implicit feedback Data endpoint
11 = Reserved

Refer to Chapter 5 for more information.

All other bits are reserved and must beresetto zero.

Reserved bits must be ignored by the host.

270

ZTE/SAMSUNG 1008-0298

IPR2018-00110

ZTE/SAMSUNG 1008-0299
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 9-13. Standard Endpoint Descriptor (Continued)

me[row[oe[wee[i
wMaxPacketSize Number|Maximum packetsize this endpoint is capable of

sending or receiving whenthis configurationis
selected.

; For isochronous endpoints, this value is used to
reserve the bustime in the schedule, required for the
per-(micro)frame data payloads. The pipe may, on an
ongoing basis, actually use less bandwidth than that
reserved. The device reports, if necessary, the actual
bandwidth used via its normal, non-USB defined
mechanisms.

Forall endpoints, bits 10..0 specify the maximum
packetsize (in bytes).

For high-speed isochronousandinterrupt endpoints:

Bits 12..11 specify the numberof additional transaction
opportunities per microframe:

00 = None(1 transaction per microframe)
01 = 1 additional (2 per microframe)
10 = 2 additional (3 per microframe)
11 = Reserved

Bits 15..13 are reserved and mustbesetto zero.

Refer to Chapter 5 for more information. binterval Number|Interval for polling endpoint for data transfers.
Expressed in frames or microframes depending on the
device operating speed(i.e., either 1 millisecond or
125 us units).

For full-/high-speed isochronous endpoints,this value
must be in the range from 1 to 16. The bi/nterval value
is used as the exponentfor a 2°"""" value: e.g., a
binterval of 4 means a period of 8 (2°").

Forfull-/low-speed interrupt endpoints, the value of
this field may be from 1 to 255.

For high-speedinterrupt endpoints, the b/nterval value
is used as the exponentfor a 2°" value; e.g., a
binterval of 4 means a period of 8 (2*"). This value
must be from 1 to 16.

For high-speed bulk/control OUT endpoints, the
binterval must specify the maximum NAKrate of the
endpoint. A value of 0 indicates the endpoint never
NAKs. Other values indicate at most 1 NAK each
binterval number of microframes. This value must be

in the range from 0 to 255.

See Chapter 5 description of periods for more detail.

The bmAttributes field provides information about the endpoint’s Transfer Type(bits 1..0) and
Synchronization Type(bits 3..2). In addition, the Usage Typebit (bits 5..4) indicate whetherthisis an
endpoint used for normaldata transfers (bits 5..4=00B), whetherit is used to convey explicit feedback
information for one or more data endpoints(bits 5..4=01B) or whetherit is a data endpoint that also serves

271

ZTE/SAMSUNG 1008-0299

IPR2018-00110

ZTE/SAMSUNG 1008-0300
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

as an implicit feedback endpoint for one or more data endpoints (bits 5..4=10B). Bits 5..2 are only
meaningful for isochronous endpoints and mustbereset to zero forall other transfer types.

If the endpointis used as an explicit feedback endpoint (bits 5..4=01B), then the Transfer Type mustbe set
to isochronous (bits1..0 = 01B) and the Synchronization Type must be set to No Synchronization
(bits 3..2=00B).

A feedback endpoint(explicit or implicit) needs to be associated with one (or more) isochronousdata
endpoints to which it provides feedback service. The association is based on endpoint number matching. A
feedback endpoint always has the opposite direction from the data endpoint(s) it services. If multiple data
endpoints are to be serviced by the same feedback endpoint, the data endpoints must have ascending
ordered—butnot necessarily consecutive-endpoint numbers. Thefirst data endpoint and the feedback
endpoint must have the same endpoint number(and opposite direction). This ensures that a data endpoint
can uniquely identify its feedback endpoint by searching for the first feedback endpoint that has an endpoint
numberequalor less than its own endpoint number.

Example: Consider the extreme case wherethere is a need for five groups of OUT asynchronous
isochronous endpoints and at the same time four groups of IN adaptive isochronous endpoints. Each group
needs a separate feedback endpoint and the groups are composed as shownin Figure 9-7.

Nr of OUT Nr of IN

Endpoints Endpoints

Figure 9-7. Example of Feedback Endpoint Numbers

The endpoint numberscan be intertwined as illustrated in Figure 9-8.

J 2 4 5 OUT3

OL AL I@OLALHG Lethe ey Le

C) ae he) ls hee Le|ee [||

1 2 3 4 IN

[Data Endpoint C) Feedback Endpoint
Figure 9-8. Example of Feedback Endpoint Relationships

 cmt

272

ZTE/SAMSUNG 1008-0300

IPR2018-00110

ZTE/SAMSUNG 1008-0301
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

High-speed isochronousandinterrupt endpoints use bits 12..11 of wAfaxPacketSize to specify multiple
transactions for each microframe specified by b/nterval. If bits 12..11 of wMaxPacketSize are zero, the
maximum packet size for the endpoint can be any allowed value (as defined in Chapter 5). If bits 12..11 of
wMaxPacketSize are not zero (0), the allowed values for wMfaxPacketSize bits 10..0 are limited as shownin
Table 9-14.

Table 9-14. Allowed wMaxPacketSize Values for Different Numbers of Transactions per Microframe

wMaxPacketSize wMaxPacketSize
bits 12..11 bits 10..0 Values

Allowed

1— 1024

513 — 1024

10 | 683 — 1024
N/A; reserved

For high-speed bulk and contro] OUT endpoints, the b/ntervalfield is only used for compliance purposes;
the host controlleris not required to change its behavior based on the valuein this field.

9.6.7 String

String descriptors are optional. As noted previously, if a device does not support string descriptors,all
references to string descriptors within device, configuration, and interface descriptors must be reset to zero.

String descriptors use UNICODE encodings as defined by The Unicode Standard, Worldwide Character
Encoding, Version 3.0, The Unicode Consortium, Addison-Wesley Publishing Company, Reading,
Massachusetts (URL: http://www.unicode.com). The strings in a USB device may support multiple
languages. When requesting a string descriptor, the requester specifies the desired language using a sixteen-
bit language ID (LANGID)defined by the USB-IF. Thelist of currently defined USB LANGIDscan be
found at http://www.usb.org/developers/docs.html. String index zero forall languages returnsa string
descriptor that contains an array of two-byte LANGID codes supported by the device. Table 9-15 shows the
LANGID code array. A USB device may omit all string descriptors. USB devices that omit all string
descriptors must not return an array of LANGID codes.

The array of LANGID codes is not NULL-terminated. The size of the array (in bytes) is computed by
subtracting two from the valueofthe first byte of the descriptor.

Table 9-15. String Descriptor Zero, Specifying Languages Supported by the Device

[ore]raw|oie|vane[_oeeiion
lo bLength fue|Size of this descriptor in bytes

bDescriptorType STRING Descriptor Type

ee
273

ZTE/SAMSUNG 1008-0301

IPR2018-00110

ZTE/SAMSUNG 1008-0302
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The UNICODEstring descriptor (shown in Table 9-16) is not NULL-terminated. Thestring lengthis
computed by subtracting two from the value ofthe first byte of the descriptor.

Table 9-16. UNICODE String Descriptor

[ome[wos|see[vane|men
|0|bLength Size of this descriptor in bytes

bDescriptorType STRING Descriptor Type

bString FON|Number UNICODEencodedstring

9.7 Device Class Definitions

All devices must support the requests and descriptor definitions described in this chapter. Most devices
provide additional requests and, possibly, descriptors for device-specific extensions. In addition, devices
may provide extended services that are commonto a group of devices. In order to define a class of devices,
the following information must be provided to completely define the appearance and behaviorof the device
class.

9.7.1 Descriptors

If the class requires any specific definition ofthe standard descriptors, the class definition must include
those requirements as part of the class definition. In addition, if the class defines a standard extended set of
descriptors, they must also be fully defined in the class definition. Any extended descriptor definitions must
follow the approach used for standard descriptors; for example,all descriptors must begin with a length
field.

9.7.2 Interface(s) and Endpoint Usage

Whena class of devices is standardized, the interfaces used by the devices, including how endpoints are
used, must be included in the device class definition. Devices may further extend a class definition with
proprietary features as long as they meet the base definition ofthe class.

9.7.3 Requests

All of the requests specific to the class must be defined.

274

ZTE/SAMSUNG 1008-0302

IPR2018-00110

ZTE/SAMSUNG 1008-0303
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Chapter 10
USB Host: Hardware and Software

The USB interconnect supports datatraffic between a host and a USB device. This chapter describes the
host interfaces necessary to facilitate USB communication between a softwareclient, resident on the host,
and a function implemented on a device. The implementation described in this chapter is not required.
This implementation is provided as an exampletoillustrate the host system behavior expected by a USB
device. A host system may providea different host software implementation as long as a USB device
experiences the samehost behavior.

10.1 Overview of the USB Host

10.1.1 Overview

The basic flow and interrelationships of the USB communications model are shownin Figure 10-1.

Host Interconnect Device

| | !

USB System crooner "|usedevice|
USB Bus USB Bus
Interface Interface

> cts! communications flow

Logical communications flow

Figure 10-1. Interlayer Communications Model

The host and the device are dividedinto the distinct layers depicted in Figure 10-1. Vertical arrows
indicate the actual communication on the host. The correspondinginterfaces on the device are
implementation-specific. All communications between the host and device ultimately occur on the
physical USB wire. However, there are logical host-device interfaces between each horizontal layer,
These communications, between client software resident on the host and the function provided by the
device, are typified by a contract based on the needsofthe application currently using the device and the
capabilities provided by the device.

This client-function interaction creates the requirementsforall of the underlying layers and their interfaces.

275

ZTE/SAMSUNG 1008-0303

IPR2018-00110

ZTE/SAMSUNG 1008-0304
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

This chapter describes this model from the point ofview ofthe host andits layers. Figure 10-2 illustrates,
based on the overall view introduced in Chapter 5, the host’s view of its communication with the device.

Host Interconnect

' '

Client

managesinterfaces

Pipe Bundle
to an interface

USBDriver

Default Pipe

to Endpoint Zero

 USB System
manages pipes

HW-Defined

Host

Controller Hc-
Defined

USB Wire

 USB Bus

interface

Pipe: Represents connection
abstraction between two horizontal

layers

Interprocess Communication
Figure 10-2. Host Communications

276

ZTE/SAMSUNG 1008-0304

IPR2018-00110

ZTE/SAMSUNG 1008-0305
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

There is only one host for each USB. The majorlayers of a host consist of the following:

e USBbusinterface

e USB System

e Client

The USBbusinterface handles interactionsfor the electrical and protocol layers (refer to Chapter 7 and
Chapter 8). From the interconnect point of view, a similar USB businterface is provided by both the USB
device and the host, as exemplified by the Serial Interface Engine (SIE). On the host, however, the USB
bus interface has additional responsibilities due to the unique role of the host on the USB andis
implemented as the Host Controller. The Host Controller has an integrated root hub providing attachment
points to the USB wire.

The USB System uses the Host Controller to manage data transfers between the host and USB devices.
The interface between the USB System and the Host Controller is dependent on the hardware definition of
the Host Controller. The USB System,in concert with the Host Controller, performs the translation
between the client’s view of data transfers and the USB transactions appearing on the interconnect. This
includes the addition of any USB feature support such as protocol wrappers. The USB Systemis also
responsible for managing USB resources, such as bandwidth and bus power,so that client access to the
USBispossible.

The USBSystem hasthree basic components:

e Host Controller Driver

e USB Driver

e Host Software

The Host Controller Driver (HCD) exists to more easily map the various Host Controller implementations
into the USB System,such that a client can interact with its device without knowing to which Host
Controller the device is connected. The USB Driver (USBD)providesthe basic host interface (USBDI) for
clients to USB devices. The interface between the HCD and the USBDis knownas the Host Controller

Driver Interface (HCDI). This interface is never available directly to clients and thus is not defined by the
USBSpecification. A particular HCDI is, however, defined by each operating system that supports various
Host Controller implementations.

The USBDprovides data transfer mechanismsin the form of I/O Request Packets (IRPs), which consist of
a request to transport data across a specific pipe. In addition to providing data transfer mechanisms,the
USBDis responsible for presenting to its clients an abstraction of a USB device that can be manipulated for
configuration and state management. Aspart of this abstraction, the USBD ownsthe default pipe (see
Chapter 5 and Chapter 9) through which all USB devices are accessed for the purposes of standard USB
control. This default pipe represents a logical communication between the USBD andtheabstraction of a
USBdevice as shown in Figure 10-2.

In some operating systems, additional non-USB System Software is available that provides configuration
and loading mechanismsto device drivers. In such operating systems, the device driver shall use the
provided interfaces instead of directly accessing the USBDI mechanisms.

The client layer describesall the software entities that are responsible for directly interacting with USB
devices. When each deviceis attached to the system, these clients might interact directly with the
peripheral hardware. The shared characteristics of the USB place USB System Software betweenthe client
andits device; that is, a client cannot directly access the device’s hardware.

277

ZTE/SAMSUNG 1008-0305

IPR2018-00110

ZTE/SAMSUNG 1008-0306
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Overall, the host layers provide the following capabilities:

e Detecting the attachment and removal of USB devices

e Managing USBstandard control flow between the host and USB devices

e Managing data flow between the host and USB devices

e Collecting status and activity statistics

e Controlling the electrical interface between the Host Controller and USB devices, including the
provision ofa limited amount of power

The following sections describe these responsibilities and the requirements placed on the USBDIin greater
detail. The actual interfaces used for a specific combination of host platform and operating system are
described in the appropriate operating system environment guide.

All hubs (see Chapter 11) report internal status changes and their port change status via the status change
pipe. This includes a notification of when a USB device is attached to or removed from oneoftheir ports.
A USBDclient generically known as the hub driverreceives these notifications as ownerof the hub’s
Status Change pipe. For device attachments, the hub driverthen initiates the device configuration process,
In some systems, this hub driver is a part of the host software provided by the operating system for
managing devices.

10.1.2 Control Mechanisms

Control information may be passed between the host and a USB device using in-band or out-of-band
signaling. In-band signaling mixes control information with data in a pipe outside the awarenessofthe
host. Out-of-band signaling places control information in a separate pipe.

There is a messagepipe called the default pipe for each attached USB device. This logical association
between a host and a USBdeviceis used for USB standard control flow such as device enumeration and

configuration. The default pipe provides a standard interface to all USB devices. The default pipe may
also be used for device-specific communications, as mediated by the USBD,which ownsthe default pipes
of all of the USB devices.

A particular USB device may allow the use of additional message pipes to transfer device-specific control
information. These pipes use the same communications protocolas the default pipe, but the information
transferred is specific to the USB device andis not standardized by the USB Specification.

The USBDsupports the sharing of the default pipe, which it owns and uses, withits clients. It also
provides access to any other control pipes associated with the device.

10.1.3 Data Flow

The Host Controller is responsible for transferring streams of data between the host and USB devices.
These data transfers are treated as a continuous stream of bytes. The USB supports four basic types of data
transfers:

e Control transfers

e Isochronoustransfers

e Interrupt transfers

¢ Bulk transfers

For additional information on transfer types, refer to Chapter 5.

Each device presents one or moreinterfaces that a client may use to communicate with the device. Each
interface is composed of zero or morepipes that individually transfer data between the client and a
particular endpoint on the device. The USBDestablishes interfaces and pipesat the explicit request ofthe
Host Software. The Host Controller provides service based on parameters provided by the Host Software
whenthe configuration request is made.

278

ZTE/SAMSUNG 1008-0306

IPR2018-00110

ZTE/SAMSUNG 1008-0307
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

A pipe has several characteristics based on the delivery requirements ofthe data to betransferred.
Examples of these characteristics include the following:

e The rate at which data needs to be transferred

e Whetherdata is provided at a steady rate or sporadically

e How long data may be delayed before delivery

e Whetherthe loss of data being transferred is catastrophic

A USB device endpoint describes the characteristics required for a specific pipe. Endpoints are described
as part of a USB device’s characterization information. For additional details, refer to Chapter 9.

10.1.4 Collecting Status and Activity Statistics
AS acommon communicantfor all control and data transfers between the host and USB devices, the USB

System and the Host Controller are well-positioned to track status and activity information. Such
information is provided upon request to the Host Software, allowing that software to manage status and
activity information. This specification does not identify any specific information that should be tracked or
require any particular format for reporting activity and status information.

10.1.5 Electrical Interface Considerations

The host provides power to USB devices attached to the root hub. The amount of powerprovided by a port
is specified in Chapter7.

10.2 Host Controller Requirements
In all implementations, Host Controllers perform the same basic duties with regard to the USB andits
attached devices. These basic duties are described below.

The Host Controller has requirements from both the host and the USB. Thefollowing is a brief overview
ofthe functionality provided. Each capability is discussed in detail in subsequent sections.

State Handling As a componentofthe host, the Host Controller reports and manages
its states.

Serializer/Deserializer For data transmitted from the host, the Host Controller converts
protocol and data information fromits native formatto a bit stream
transmitted on the USB. For data being received into the host, the
reverse operation is performed.

(micro)frame Generation The Host Controller produces SOF tokensat a period of 1 ms when.
operating with full-speed devices, and at a period of 125 us when
operating with high-speed devices.

Data Processing The Host Controller processes requests for data transmission to and
from the host.

Protocol Engine The Host Controller supports the protocol specified by the USB.

Transmission Error All Host Controllers exhibit the same behavior when detecting and
Handling reacting to the defined error categories.

Remote Wakeup All Host Controllers must havethe ability to place the businto the
Suspendedstate and to respond to bus wakeup events.

279

ZTE/SAMSUNG 1008-0307

IPR2018-00110

ZTE/SAMSUNG 1008-0308
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Root Hub The root hub provides standard hub function to link the Host
Controller to one or more USBports.

Host System Interface Provides a high-speed data path between the Host Controller and host
system.

The following sections present a more detailed discussion of the required capabilities of the Host
Controller.

10.2.1 State Handling
The Host Controller has a series of states that the USB System manages. Additionally, the Host Controller
provides the interface to the following two areas of USB-relevantstate:

e State change propagation

* Root hub

The root hub presents to the hub driver the same standard states as other USB devices. The Host Controller
supports these states and their transitions for the hub. For detailed discussions of USBstates, including
their interrelations and transitions, refer to Chapter 9.

The overall state of the Host Controller is inextricably linked with that of the root hub and ofthe overall
USB. Any Host Controller state changesthat are visible to attached devices must be reflected in the
corresponding device state change information such that the resulting Host Controller and device states are
consistent.

USB devices request a wakeup through the use of resumesignaling (refer to Chapter 7). The Host
Controller must notify the rest of the host of a resume event through a mechanism or mechanismsspecific
to that system’s implementation. The Host Controller itself may cause a resume event through the same
signaling method.

10.2.2 Serializer/Deserializer

The actual transmission of data across the physical USB takesplaces asa serial bit stream. A Serial
Interface Engine (SIE), whether implemented as part of the host or a USB device, handles the serialization
and deserialization of USB transmissions. Onthe host, this SIE is part of the Host Controller.

10.2.3 Frame and Microframe Generation

It is the Host Controller’s responsibility to partition USB time into quantities called “frames” when
operating with full-speed devices, and "microframes" when operating with high-speed devices. Frames and
microframes are created by the Host Controller through issuing Start-of-Frame (SOF) tokens as shown in
Figure 10-3. The SOFtokenis the first transmission in the (micro)frame period. Host controllers operating
with high-speed devices generate SOF tokens at 125 us intervals. Host controllers operating with full-
speed devices generate SOF tokensat 1.00 ms intervals. After issuing an SOF token, the Host Controlleris
free to transmit othertransactions for the remainder of the (micro)frame period. When the Host Controller
is in its normal operating state, SOF tokens must be continuously generated at appropriate periodicrate,
regardless of other bus activity or lack thereof. If the Host Controller enters a state where it is not
providing poweron the bus, it must not generate SOFs. When the Host Controller is not generating SOFs,
it may enter a power-reducedstate.

280

ZTE/SAMSUNG 1008-0308

IPR2018-00110

ZTE/SAMSUNG 1008-0309
IPR2018-00110

10.

10.

Universal Serial Bus Specification Revision 2.0

ra (micro)frame N-1 >< (micro)irame N (micro)frame N+1
SOF

EOFInterval (micro)frame N-1) EOF Interval (micro}frame N) EOF Interval (micro}frame N+1)

Figure 10-3. Frame and Microframe Creation

The SOF token holds the highest priority access to the bus. Babble circuitry in hubselectrically isolates
any active transmitters during the End-of-microframe or End-of-Frame (EOF)interval, providing anidle
bus for the SOF transmission.

The Host Controller maintains the current (micro)frame numberthat may be read by the USB System.

The following apply to the current (micro)frame number maintained by the host:

e Used to uniquely identify one (micro)frame from another

e Incremented at the end of every (micro)frame period

e Valid through the subsequent (micro)frame

Host controllers operating with full-speed devices maintain a current frame number(at least 11 bits) that
increments ata 1 ms period. The host transmits the lower 11 bits of the current frame number in each SOF
token transmission.

Host controllers operating with high-speed devices maintain a current microframe number(at least 14 bits)
that increments at a 125 us period. The host transmits bits 3 through 13 of the current microframe number
in each SOFtoken transmission. This results in the same SOF packet value being transmitted for eight
consecutive microframes before the SOF packet value increments.

Whenrequested from the Host Controller, the current (micro)frame numberis the (micro)frame numberin
existence at the time the request was fulfilled. The current (micro)frame numberas returned by the host
(Host Controller or HCD)is at least 32 bits, although the Host Controlleritself is not required to maintain
more than 11 bits when operating with full-speed devices or 14 bits when operating with high-speed
devices.

The Host Controller shall cease transmission during the EOF interval. When the EOFinterval begins, any
transactions scheduled specifically for the (micro)frame that has just passed are retired. If the Host
Controller is executing a transaction at the time the EOFinterval is encountered, the Host Controller
terminates the transaction.

2.4 Data Processing
The Host Controller is responsible for receiving data from the USB System and sendingit to the USB and
for receiving data from the USB andsendingit to the USB System. The particular format used for the data
communications between the USB System and the Host Controller is implementation specific, within the
rules for transfer behavior described in Chapter5.

2.5 Protocol Engine
The Host Controller manages the USB protocollevel interface. It inserts the appropriate protocol
information for outgoing transmissions. It also strips and interprets, as appropriate, the incoming protocol
information.

281

ZTE/SAMSUNG 1008-0309

IPR2018-00110

ZTE/SAMSUNG 1008-0310
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.2.6 Transmission Error Handling
The Host Controller must be capable of detecting the following transmission error conditions, which are
defined from the host’s point of view:

e Timeout conditions after a host-transmitted token or packet. These errors occur when the addressed
endpoint is unresponsive or whenthestructure of the transmission is so badly damaged that the
targeted endpoint does not recognize it.

e Data errors resulting in missing or invalid transmissions:

— The Host Controller is unable to completely send or receive a packet for host specific reasons, for
example, a transmission extending beyond EOFora lack of resources available to the Host
Controller.

— Aninvalid CRCfield on a received data packet.

e Protocolerrors:

— An invalid handshake PID, such as a malformed or inappropriate handshake

— A false EOP

— A bit stuffing error

For each bulk, control, and interrupt transaction, the host must maintain an error counttally. Errors result
from the conditions described above, not as a result of an endpoint NAKing a request. This valuereflects
the numberoftimes the transaction has encountered a transmission error. It is recommendedthat the error

count not be incremented when there wasan error due to host specific reasons (buffer underrun or overrun),
and that whenevera transaction does not encounter a transmission error, the error countis reset to zero.

If the error count for a given transaction reaches three, the host retires the transfer. Whena transferis
retired due to excessive errors, the last error type must be indicated. Isochronoustransactions are attempted
only once, regardless of outcome, and, therefore, no error count is maintained forthis type.

10.2.7 Remote Wakeup
If USB System wishes to place the bus in the Suspendedstate, it commands the Host Controllerto stop all
bustraffic, including SOFs. This causes all USB devices to enter the Suspendedstate. In this state, the
USB System may enable the Host Controller to respond to bus wakeup events. This allows the Host
Controller to respond to bus wakeupsignaling to restart the host system.

10.2.8 Root Hub

The root hub provides the connection between the Host Controller and one or more USB ports. Theroot
hub provides the same functionality for dealing with USB topology as other hubs (see Chapter 11), except
that the hardware and software interface between the root hub and the Host Controlleris defined by the
specific hardware implementation.

10.2.8.1 Port Resets

Section 7.1.7.5 describes the requirements of a hub to ensureall upstream resume attempts are
overpowered with a long reset downstream. Root hubs must provide an aggregatereset period ofat least
50 ms. If the reset duration is controlled in hardware and the hardware timer is <S0 ms, the USB System
can issue several consecutive resets to accumulate the specified reset duration as described in
Section 7.1.7.5.

282

ZTE/SAMSUNG 1008-0310

IPR2018-00110

ZTE/SAMSUNG 1008-0311
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.2.9 Host System Interface
The Host Controller provides a high-speed bus-mastering interface to and from main system memory. The
physical transfer between memory and the USB wire is performed automatically by the Host Controller.
When data buffers need to be filled or emptied, the Host Controller informs the USB System.

10.3 Overview of Software Mechanisms

The HCD and the USBDpresent software interfaces based on different levels of abstraction. They are,
however, expected to operate together in a specified mannerto satisfy the overall requirements of the USB
System (see Figure 10-2). The requirements for the USB System are expressed primarily as requirements
for the USBDI. The division of duties between the USBD and the HCDis not defined. However, the one
requirement of the HCDI that must be metis that it supports, in the specified operating system context,
multiple Host Controller implementations.

The HCDprovides an abstraction of the Host Controller and an abstraction of the Host Controller’s view of
data transfer across the USB. The USBD provides an abstraction of the USB device and ofthe data
transfers betweenthe client of the USBD andthe function on the USB device. Overall, the USB System
acts as a facilitator for transmitting data between the client and the function and as a control point for the
USB-specific interfaces of the USB device. Aspart of facilitating data transfer, the USB System provides
buffer management capabilities and allows the synchronization of the data transmittal to the needs of the
client and the function.

The specific requirements for the USBDIare describedlater in this chapter. The exact functions that fulfill
these requirements are described in the relevant operating system environment guide for the HCDI and the
USBDI. The procedures involved in accomplishing data transfers via the USBDI are described in the
following sections.

10.3.1 Device Configuration
Different operating system environments perform device configuration using different software
components and different sequences of events. The USB System does not assumea specific operating
system method. However, there are some basic requirements that must be fulfilled by any USB System
implementation. In some operating systems, existing host software provides these requirements. In others,
the USB System provides the capabilities.

The USB System assumesa specialized client of the USBD,called a hub driver, that acts as a
clearinghouse for the addition and removal of devices from a particular hub. Once the hub driver receives
such notifications, it will employ additional host software and other USBDclients, in an operating system
specific manner, to recognize and configure the device. This model, shown in Figure 10-4,is the basis of
the following discussion.

283

ZTE/SAMSUNG 1008-031 1

IPR2018-00110

ZTE/SAMSUNG 1008-0312
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Device
Driver
 easeTPETRETEE

<4—p~ Configuration

Control

<> Optional
Configuration
Control

Figure 10-4. Configuration Interactions

Whena deviceis attached, the hub driver receives a notification from the hub detecting the change. The
hub driver, using the information provided by the hub, requests a device identifier from the USBD. The
USBDinturn sets up the default pipe for that device and returns a device identifier to the hub driver.

The device is now ready to be configured for use. For each device, there are three configurations that must
be complete before that device is ready for use:

1. Device Configuration: This includessetting up all of the device’s USB parameters andallocating all
USB host resources thatare visible to the device. This is accomplished by setting the configuration
value on the device. A limited set of configuration changes, suchas alternate settings, is allowed
without totally reconfiguring the device. Once the device is configured,it is, from its point of view,
ready for use.

2. USB Configuration: In order to actually create a USBD pipe ready for use by a client, additional USB
information, not visible to the device, must be specified by the client. This information, knownas the
Policy for the pipe, describes how the client will use the pipe. This includes such itemsas the
maximum amount of data the client will transfer with one IRP, the maximum service interval the client
will use, the client’s notification identification, and so on.

3. Function Configuration: Once configuration types] and 2 have been accomplished, the pipeis
completely ready for use from the USB’s point of view. However, additional vendor- or class-specific
setup may be required before the client can actually use the pipe. This configuration is a private matter
between the device and the client and is not standardized by the USBD.

284

ZTE/SAMSUNG 1008-0312

IPR2018-00110

ZTE/SAMSUNG 1008-0313
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The following paragraphs describe the device and USB configuration requirements.

The responsible configuring software performs the actual device configuration. Depending on the
particular operating system implementation, the software responsible for configuration can include the
following:

e The hubdriver

® Other host software

e A device driver

The configuring softwarefirst reads the device descriptor, then requests the description for each possible
configuration. It may use the information providedto load a particular client, such as a device driver,
whichinitially interacts with the device. The configuring software, perhaps with input from that device
driver, chooses a configuration for the device. Setting the device configuration sets up all ofthe endpoints
on the device and returns a collection of interfaces to be used for data transfer by USBD clients. Each
interface is a collection of pipes ownedbya single client.

This initial configuration uses the default settings for interfaces and the default bandwidth for each
endpoint. A USBD implementation mayadditionally allow the client to specify alternate interfaces when
selecting the initial configuration. The USB System will verify that the resources required for the support
of the endpointare available and,if so, will allocate the bandwidth required. Refer to Section 10.3.2 for a
discussion of resource management.

The device is now configured,but the created pipes are not yet ready for use. The USB configurationis
accomplished whentheclientinitializes each pipe by setting a Policy to specify how it will interact with
the pipe. Amongthe information specified is the client’s maximum service interval and notification
information. Amongthe actions taken by the USB System,as a result of setting the Policy, is determining
the amount of buffer working space required beyond the data buffer space provided by the client. Thesize
of the buffers required is based upon the usage chosen by the client and upon the per-transfer needs of the
USB System.

The client receives notifications when IRPs complete, successfully or due to errors. The client may also
wake up independently of USBnotification to check the status of pending IRPs.

The client may also choose to make configuration modifications, such as enabling an alternate setting for
an interface or changing the bandwidth allocated to a particular pipe. In order to perform these changes,
the interface or pipe, respectively, mustbe idle.

10.3.2 Resource Management
Whenevera pipe is setup by the USBDfor a given endpoint, the USB System must determineifit can
support the pipe. The USB System makesthis determination based on the requirementsstated in the
endpoint descriptor. One of the endpoint requirements, which must be supportedin orderto create a pipe
for an endpoint, is the bandwidth necessary for that endpoint’s transfers. There are two stages to check for
available bandwidth. First the maximum execution time for a transaction is calculated. Then the

(micro)frame schedule is consulted to determineif the indicated transaction will fit.

The allocation of the guaranteed bandwidth for isochronous and interrupt pipes, and the determination of
whethera particular control or bulk transaction will fit into a given (micro)frame, can be determined by a
software heuristic in the USB System. If the actual transaction execution time in the Host Controller
exceeds the heuristically determined value, the Host Controller is responsible for ensuring that
(micro)frameintegrity is maintained (refer to Section 10.2.3). The following discussion describes the
requirements for the USB System heuristic.

285

ZTE/SAMSUNG 1008-0313

IPR2018-00110

ZTE/SAMSUNG 1008-0314
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

In order to determine if bandwidth can beallocated, or if a transaction can befit into a particular
(micro)frame, the maximum transaction execution time must be calculated. The calculation of the
maximum transaction execution time requires that the following information be provided: (Note that an
agent other than the client may provide someofthis information.)

e Numberof data bytes (wAaxPacketSize) to be transmitted.

e Transfer type.

e Depth in the topology. If less precision is allowed, the maximum topology depth may be assumed.

This calculation must include the bit transmission time, the signal propagation delay through the topology,
and any implementation-specific delays, such as preparation or recovery time required by the Host
Controller itself. Refer to Chapter 5 for examples of formulas that can be used for such calculations.

10.3.3 Data Transfers

Thebasis for all client-function communication is the interface: a bundle of related pipes associated with a
particular USB device.

Exactly one client on the host managesa given interface. The client initializes each pipe of an interface by
setting the Policy for that pipe. This includes the maximum amountofdata to be transmitted per IRP and
the maximum service interval for the pipe. A service intervalis stated in milliseconds and describes the
interval over which an IRP’s data will be transmitted for an isochronous pipe. It describes the polling
interval for an interrupt pipe. The client is notified when a specified request is completed. The client
managesthe size of each IRP suchthatits duty cycle and latency constraints are maintained. Additional
Policy information includes the notification information fortheclient.

The client provides the buffer space required to hold the transmitted data. The USB System usesthe Policy
to determine the additional working spaceit will require.

The client viewsits data as a contiguousserial stream, which it manages in a similar mannerto those
streams provided overother types of bus technologies. Internally, the USB System may, depending on its
own Policy and any Host Controller constraints, break the client request down into smaller requests to be
sent across the USB. However, two requirements must be met whenever the USB System choosesto
undertake such division:

e The division of the data stream into smaller chunksis not visible to the client.

e USB samples are notsplit across bus transactions.

Whenaclient wishesto transfer data, it will send an IRP to the USBD. Dependingonthedirection of data
transfer, a full or empty data buffer will be provided. When the request is complete (successfully or due to
an error condition), the IRP andits status is returned to the client. Where relevant, this status is also
provided on a per-transaction basis.

10.3.4 CommonData Definitions

In order to allow the client to receive request results as directly as possible from its device,it is desirable to
minimize the amount of processing and copying required between the device and the client. To facilitate
this, some control aspects of the IRP are standardized suchthat different layers in the stack may directly
use the information provided by the client. The particular format for this data is dependent on the
actualization of the USBDIin the operating system. Some data elements mayin factnot be directly visible
to the client at all but are generated as a result of the client request.

286

ZTE/SAMSUNG 1008-0314

IPR2018-00110

ZTE/SAMSUNG 1008-0315
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The following data elements define the relevant information for a request:

e Identification of the pipe associated with the request. Identifying this pipe also describes information
such as transfer type for this request.

* Notification identification for the particular client.

e Location and length of data buffer that is to be transmitted or received.

e Completion status for the request. Both the summary status and, as required, detailed per-transaction
status must be provided.

® Location and length ofworking space. This is implementation-dependent.

The actual mechanisms used to communicate requests to the USBDare operating system-specific.
However, beyond the requirements stated above for what request-related information must be available,
there are also requirements on how requests will be processed. The basic requirements are described in
Chapter 5. Additionally, the USBD provides a mechanism to designate a group of isochronous IRPs for
whichthe transmissionof the first transaction of each IRP will occur in the same (micro)frame. The USBD
also provides a mechanism for designating an uninterruptable set of vendor- or class-specific requests to a
default pipe. No other requests to that default pipe, including standard, class, or vendor request may be
inserted in the execution flow for such an uninterruptable set. If any request in this setfails, the entire set is
retired.

10.4 Host Controller Driver

The Host Controller Driver (HCD)is an abstraction of Host Controller hardware and the Host Controller’s
view of data transmission over the USB. The HCD] meets the following requirements:

e Provides an abstraction of the Host Controller hardware.

e Provides an abstraction for data transfers by the Host Controller across the USB interconnect.

e Provides an abstraction for the allocation (and de-allocation) of Host Controller resources to support
guaranteed service to USB devices.

* Presents the root hub and its behavior according to the hubclass definition. This includes supporting
the root hub such that the hub driver interacts with the root hub exactly as it would for any hub. In
particular, even though a root hub can be implemented in a combination of hardware and software, the
root hub respondsinitially to the default device address (from a client perspective), returns descriptor
information, supports havingits device address set, and supports the other hub class requests.
However, bus transactions may or may not need to be generated to accomplish this behavior given the
close integration possible between the Host Controller and the root hub.

The HCDprovides a software interface (HCDI)that implements the required abstractions. The function of
the HCDisto provide an abstraction, which hides the details of the Host Controller hardware. Below the
Host Controller hardwareis the physical USB andall the attached USB devices.

The HCDis the lowesttier in the USB software stack. The HCD hasonly oneclient: the Universal Serial
Bus Driver (USBD). The USBD mapsrequests from many clients to the appropriate HCD. A given HCD
may manage many Host Controllers.

The HCDIis not directly accessible from a client. Therefore, the specific interface requirements for the
HCDIare not discussed here.

10.5 Universal Serial Bus Driver

The USBDprovidesa collection of mechanismsthat operating system components, typically device
drivers, use to access USB devices. The only access toa USB device is that provided by the USBD. The
USBD implementations are operating system-specific. The mechanisms provided by the USBD are
implemented, using as appropriate and augmenting as necessary, the mechanisms provided by the operating
system environment in which the USB runs. The following discussion centers on the basic capabilities

287

ZTE/SAMSUNG 1008-0315

IPR2018-00110

ZTE/SAMSUNG 1008-0316
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

required for all USBD implementations. For specifics of the USBD operation within a specific
environment, see the relevant operating system environmentguide for the USBD.Asingle instance of the
USBDdirects accesses to one or more HCDsthatin turn connect to one or more Host Controllers. If

allowed, how USBDinstancing is managed is dependent upon the operating system environment.
However, from the client’s point of view, the USBD with which the client communicates managesall of
the attached USB devices.

10.5.1 USBD Overview

Clients of USBD direct commandsto devices or move streams of data to or from pipes. The USBD
presents two groups of software mechanismsto clients: command mechanisms and pipe mechanisms.

Command mechanismsallow clients to configure and control USBDoperation as well as to configure and
generically control a USB device. In particular, command mechanismsprovideall access to the device’s
default pipe.

Pipe mechanisms allow a USBDclient to manage device specific data and control transfers. Pipe
mechanismsdonotallow a client to directly address the device’s default pipe.

Figure 10-5 presents an overview of the USBDstructure.

 Stream

Pipe
Access

Configuration Management DeviceData Access BusandDevice Management PowerControl

CommandInterfaces

Services

Host Host

Controller Controller

Driver Driver

USB Host |)|USB Host
||Controller
| SEsController d

Figure 10-5. Universal Serial Bus Driver Structure

10.5.1.1 USBDInitialization

Specific USBDinitialization is operating system-dependent. Whena particular USB managed by USBDis
initialized, the management information for that USBis also created. Part of this management information
is the default address device and its default pipe used to communicate to a newly reset device.

Whena deviceis attached to a USB,it responds to a special address knownasthe default address (refer to
Chapter 9) until its unique address is assigned by the bus enumerator. In order for the USB System to
interact with the new device, the default device address and the device’s default pipe must be available to
the hub driver when a device is attached. During device initialization, the default address is changed to a
unique address.

288

ZTE/SAMSUNG 1008-0316

IPR2018-00110

ZTE/SAMSUNG 1008-0317
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.1.2 USBD Pipe Usage
Pipes are the method by which a device endpointis associated with a Host Software entity. Pipes are
ownedby exactly one such entity on the host. Although the basic conceptofa pipe is the same no matter
whothe owner, somedistinction of capabilities provided to the USBD client occurs between two groups of
pipes:

e Default pipes, which are owned and managed by the USBD

e All other pipes, which are owned and managedbyclients of the USBD

Default pipes are neverdirectly accessed by clients, although they are often used to fulfill some part of
client requests relayed via command mechanisms.

10.5.1.2.1 Default Pipes

The USBDis responsible for allocating and managing appropriate buffering to support transfers on the
default pipe that are notdirectly visible to the client such as setting a device address. For those transfers
that are directly visible to the client, such as sending vendor and class commandsorreading a device
descriptor, the client must provide the required buffering.

10.5.1.2.2 Client Pipes
Any pipe not owned and managed by the USBD can be owned and managed by a USBDclient. From the
USBDviewpoint, a single client ownsthe pipe. In fact, a cooperative group of clients can managethe pipe,
provided they behave as a single coordinated entity when usingthe pipe.

The client is responsible for providing the amountof buffering it needsto service the data transfer rate of
the pipe within a service interval attainable by the client. Additional buffering requirements for working
space are specified by the USB System.

10.5.1.3 USBD Service Capabilities
The USBDprovides services in the following categories:

e Configuration via command mechanisms

e Transfer services via both commandand pipe mechanisms

e Eventnotification

e Status reporting and error recovery

10.5.2 USBD Command Mechanism Requirements
USBD command mechanismsallow a client generic access to a USB device. Generally, these commands
allow the client to make read or write accesses to one of potentially several device data and control spaces.
The client providesaslittle as a device identifier and the relevant data or empty bufferpointer.

USBD commandtransfers do not require that the USB device be configured. Many ofthe device
configuration facilities provided by the USBD are commandtransfers.

Following are the specific requirements on the command mechanismsprovided.

10.5.2.1 Interface State Control

USBDclients must be able to set a specified interface to any settable pipe state. Setting an interface state
results in all of the pipes in that interface moving to that state. Additionally, all of the pipes in an interface
maybereset or aborted.

289

ZTE/SAMSUNG 1008-0317

IPR2018-00110

ZTE/SAMSUNG 1008-0318
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.2.2 Pipe State Control
USBDpipestate has two components:

« Hoststatus

e Reflected endpoint status

Wheneverthe pipe status is reported, the value for both components will be identified. The pipe status
reflected from the endpointis the result ofthe endpoint being in a particular state. The USBDclient
managesthe pipe state as reported by the USBD. Forany pipestate reflected from the endpoint, the client
must also interact with the endpoint to changethestate.

A USBDpipeis in exactly one of the following states:

e Active: The pipe’s Policy has been set and the pipeis able to transmit data. The client can query as to
whether any IRPs are outstanding for a particular pipe. Pipes for which there are no outstanding IRPs
are still considered to be in the Active state as long as they are able to accept new IRPs.

e Halted: An error has occurred on the pipe. This state may also be a reflection ofthe corresponding
Halted endpoint on the device.

A pipe and endpoint are considered active when the device is configured and the pipe and/or endpointis
not stalled. Clients may manipulate pipe state in the following ways:

e Aborting a Pipe: All ofthe IRPs scheduled for a pipe are retired immediately and returned to the client
with a status indicating they have been aborted. Neither the host state nor the reflected endpointstate
ofthe pipe is affected.

e Resetting a Pipe: The pipe’s IRPs are aborted. The hoststate is moved to Active. Ifthe reflected
endpointstate needs to be changed, that must be commandedexplicitly by the USBDclient.

e Clearing a Halted pipe: The pipe'sstate is cleared from Halted to Active.

e Halting a Pipe: The pipe's state is set to Halted.

10.5.2.3 Getting Descriptors
The USBDImustprovide a mechanism toretrieve standard device, configuration, and string descriptors, as
well as any class- or vendor-specific descriptors.

10.5.2.4 Getting Current Configuration Settings
The USBDI mustprovideafacility to return, for any specified device, the current configuration descriptor.
If the device is not configured, no configuration descriptor is returned. This action is equivalentto
returning the configuration descriptor for the current configuration by requesting the specific configuration
descriptor. It does not, however, require the client to know the identifier for the current configuration.
This will return all of the configuration information, including the following:

e All ofthe configuration descriptor information as stored on the device, including all ofthe alternate
settingsforall of the interfaces

e Indicators for which ofthe alternate settings for interfaces are active

e Pipe handles for endpoints in the active alternate settings for interfaces

e Actual wMaxPacketSize values for endpoints in the active alternate settings for interfaces

Additionally, for any specified pipe, the USBDI must provide a facility to return the wMaxPacketSize that
is currently being used bythepipe.

290

ZTE/SAMSUNG 1008-0318

IPR2018-00110

ZTE/SAMSUNG 1008-0319
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.2.5 Adding Devices
The USBDI must provide a mechanism for the hub driver to inform USBD ofthe addition of a new device
to a specified USB andto retrieve the USBD ID of the new USB device. The USBDtasks include
assigning the device address and preparing the device’s default pipe for use.

10.5.2.6 Removing Devices
The USBDI must providea facility for the hub driver to inform the USBDthat a specific device has been
removed,

10.5.2.7 Managing Status
The USBDI must provide a mechanism for obtaining and clearing device-based status on a device,
interface, or pipe basis.

10.5.2.8 Sending Class Commands
This USBDI mechanismis used byaclient, typically a class-specific or adaptive driver, to send one or
more Class-specific commandsto a device.

10.5.2.9 Sending Vendor Commands
This USBDI mechanism is used by a client to send one or more vendor-specific commandsto a device.

10.5.2.10 Establishing Alternate Settings
The USBDI must provide a mechanism to changethe alternatesetting for a specified interface. As a result,
the pipe handles for the previous setting are released and new pipe handlesfor the interface are returned.
Forthis request to succeed,the interface mustbe idle; i.e., no data buffers may be queued for any pipes in
the interface.

10.5.2.11 Establishing a Configuration
Configuring software requests a configuration by passing a buffer containing the configuration information
to the USBD. The USBDrequests resources for the endpoints in the configuration, andifall resource
requests succeed, the USBDsets the device configuration and returns interface handles with corresponding
pipe handlesforall of the active endpoints. The default values are used forall alternate settings for
interfaces.

Note: The interface implementing the configuration may require specific alternate settings to be identified.

10.5.2.12 Setting Descriptors
For devices supporting this behavior, the USBDI allows existing descriptors to be updated or new
descriptors to be added.

10.5.3 USBD Pipe Mechanisms
This part of the USBDIoffers clients the highest-speed, lowest overhead data transfer services possible.
Higher performanceis achieved by shifting some pipe managementresponsibilities from the USBDto the
client. As a result, the pipe mechanismsare implemented at a more primitive level than the data transfer
services provided by the USBD command mechanisms. Pipe mechanismsdonot allow accessto a device’s
default pipe.

USBDpipetransfers are available only after both the device and USB configuration have completed
successfully. At the time the device is configured, the USBD requests the resources required to support all

291

ZTE/SAMSUNG 1008-0319

IPR2018-00110

ZTE/SAMSUNG 1008-0320
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

device pipes in the configuration. Clients are allowed to modify the configuration, constrained by whether
the specified interface orpipeis idle.

Clients provide full buffers to outgoing pipes and retrieve transfer status information following the
completion of a request. The transfer status returned for an outgoing pipe allowsthe client to determine the
successorfailure of the transfer.

Clients provide empty buffers to incomingpipes andretrieve thefilled buffers and transfer status
information from incoming pipes following the completion of a request. The transfer status returned for an
incoming pipe allowsa client to determine the amount and the quality ofthe data received.

10.5.3.1 Supported Pipe Types
The four types of pipes supported, based on the four transfer types, are described in the following sections.

10.5.3.1.1 Isochronous Data Transfers

Each buffer queued for an isochronouspipe is required to be viewable as a stream of samples. As with all
pipe transfers, the client establishes a Policy for using this isochronouspipe, including the relevant service
interval for this client. Lost or missing bytes, which are detected on input, and transmission problems,
which are noted on output, are indicatedto the client.

The client queuesafirst buffer, starting the pipe streaming service. To maintain the continuous streaming
transfer model usedin all isochronoustransfers, the client queues an additional buffer before the current
bufferis retired.

The USBDis required to be able to provide a sample stream view ofthe client’s data stream. In other
words, using the client’s specified method of synchronization, the precise packetization ofthe data is
hidden from the client. Additionally, a given transaction is always contained completely within someclient
data buffer.

For an output pipe, the client provides a buffer of data. The USBDallocates the data across the
(micro)frames for the service period using the client’s chosen method of synchronization.

For an input pipe, the client must provide an empty buffer large enough to hold the maximum number of
bytes the client’s device will deliver in the service period. Where missing or invalid bytes are indicated,
the USBD mayleave the space that the bytes would have occupied in place in the buffer and identify the
error. One of the consequences of using no synchronization methodis that this reserved space is assumed
to be the maximum packet size. The buffer-retired notification occurs when the IRP completes. Note that
the input buffer need not be full when returned to the client.

The USBD may optionally provide additional views of isochronous data streams. The USBD is also
required to be able to provide a packet stream view ofthe client’s data stream.

10.5.3.1.2 Interrupt Transfers
The Interrupt out transfer originates in the client of the USBD andis delivered to the USB device. The
Interrupt in transfer originates in a USB device andis delivered to a client of the USBD. The USB System
guaranteesthat the transfers meet the maximum latency specified by the USB endpoint descriptor.

The client queues a buffer large enoughto hold the interrupttransfer data (typically a single USB
transaction). When al] of the data is transferred, or if the error threshold is exceeded, the IRP is returned to
the client.

10.5.3.1.3 Bulk Transfers

Bulk transfers may originate either from the device or the client. No periodicity or guaranteed latency is
assumed. Whenallof the datais transferred, or if the error threshold is exceeded, the [RP is returned to the
client.

292

ZTE/SAMSUNG 1008-0320

IPR2018-00110

ZTE/SAMSUNG 1008-0321
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.3.1.4 Control Transfers

All messagepipes transfer data in both directions. In all cases, the client outputs a setup stage to the device
endpoint. The optional data stage may beeither input or output and the final status is always logically
presented to the host. For details of the defined message protocol, refer to Chapter8.

Theclient prepares a buffer specifying the commandphase and any optional data or empty buffer space.
Theclient receives a buffer-retired notification when all phases of the control transfer are complete, or an
errornotification, if the transfer is aborted due to transmissionerror.

10.5.3.2 USBD Pipe Mechanism Requirements
The following pipe mechanismsare provided.

10.5.3.2.1 Aborting IRPs

The USBDI must allow IRPsfor a particular pipe to be aborted.

10.5.3.2.2 Managing Pipe Policy
The USBDI mustallow a client to set and clear the Policy for an individual pipe or for an entire interface.
Any IRPs madebytheclient prior to successfully setting a Policy are rejected by the USBD.

10.5.3.2.3 Queuing IRPs
The USBDImustallow clients to queue IRPs for a given pipe. When IRPsare returnedto the client, the
request status is also returned. A mechanism is provided by the USBDto identify a group of isochronous
IRPs whosefirst transactions will all occur in the same (micro)frame.

10.5.4 Managing the USB via the USBD Mechanisms
Using the provided USBD mechanisms,the following general capabilities are supported by any USB
System.

10.5.4.1 Configuration Services
Configuration services operate on a per-device basis. The configuring softwaretells the USBD when to
perform device configuration. A hub driver has a special role in device management and providesat least
the following capabilities:

e Device attach/detach recognition, driven by an interrupt pipe owned by the hub driver

e Device reset, accomplished by the hub driver by resetting the hub port upstream of the device

e Tells the USBDto perform device address assignment

e Powercontrol

The USBDIadditionally provides the following configuration facilities, which may be used by the hub
driver or other configuring software available on the host:

e Device identification and access to configuration information (via access to descriptors on the device)

e Device configuration via command mechanisms

Whenthe hub driver informs the USBDofa device attachment, the USBD establishes the default pipe for
the new device. |

293

ZTE/SAMSUNG 1008-0321

IPR2018-00110

ZTE/SAMSUNG 1008-0322
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.5.4.1.1 Configuration Management
Configuration managementservices are provided primarily as a set of specific interface commandsthat
generate USBtransactions on the default pipe. The notable exceptionis the use of an additional interrupt
pipe that delivers hub status directly to the hub driver.

Every hub initiates an interrupt transfer whenthere is a change in the state of one of the hub ports.
Generally, the port state change will be the connection or removal of a downstream USB device. (Refer to
Chapter 11 for more information.)

10.5.4.1.2 Initial Device Configuration

The device configuration process begins when a hubreports, via its status change pipe, the connection of a
new USB device.

Configuration managementservices allow configuring software to select a USB device configuration from
the set of configurations listed in the device. The USBDverifies that adequate poweris available and the
data transfer rates given for all endpoints in the configuration do not exceed the capabilities of the USB
with the current schedule before setting the device configuration.

10.5.4.1.3 Modifying a Device Configuration
Configuration managementservices allow configuring software to replace a USB device configuration with
another configuration from the set of configurations listed in the device. The operation succeedsif
adequate poweris available and the data transfer rates given forall endpoints in the new configuration fit
within the capabilities of the USB with the current schedule. Ifthe new configurationis rejected, the
previous configuration remains.

Configuration management services allow configuring software to return a USB device to a Not
Configuredstate.

10.5.4.1.4 Device Removal

Error recovery and/or device removal processing begins when a hub reports via its status change pipe that
the USB device has been removed.

10.5.4.2 Power Control

There are two cooperating levels of power management for the USB: bus and device level management.
This specification provides mechanisms for managing power on the USB bus. Device classes may define
class-specific powercontrol capabilities.

All USB devices must support the Suspendedstate (refer to Chapter 9). The device is placed into the
Suspendedstate via control of the hub port to which the device is attached. Normal device operation ceases
in the Suspend State; however, if the device is capable of wakeup signaling and the device is enabled for
remote wakeup, it may generate resume signaling in response to external events.

The power management system maytransition a device to the Suspended state or power-off the device in
order to control and conserve power. The USB provides neither requirements nor commandsfor the device
state to be saved and restored acrossthese transitions. Device classes may define class-specific devicestate
save-and-restore capabilities.

The USB System coordinates the interaction between device powerstates and the Suspendedstate.

It is recommended that while a device is not being used by the system (i.e., no transactions are being
transmitted to or from the device besides SOF tokens), the device be suspended as soon as possible by
selectively suspending the port to which the device is attached. Suspending inactive devices reduces
reliability issues due to high currents passing through a transceiver operating in high-speed modein the
presence ofshort circuit conditions described in Section 7.1.1. Some of these short circuit conditions are
not detectable in the absence oftransactions to the device. Suspending the unused device will place the

294

ZTE/SAMSUNG 1008-0322

IPR2018-00110

ZTE/SAMSUNG 1008-0323
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

transceiver interface into full-speed mode which hasa greaterreliability in the presence of short circuit
conditions.

10.5.4.3 Event Notifications

USBDclients receive several kinds of event notifications through a numberofsources:

e Completion of an action initiated byaclient.

e Interrupt transfers over stream pipes can deliver notice of device events directly to USBDclients. For
example, hubs use an interrupt pipe to deliver events corresponding to changes in hubstatus.

e Event data can be embedded by devicesin streams.

e Standard device interface commands, device class commands, vendor-specific commands, and even
general control transfers over message pipes can all be used to pol] devices for event conditions.

10.5.4.4 Status Reporting and Error Recovery Services
The command and pipe mechanisms both provide status reporting on individual requests as they are
invoked and completed.

Additionally, USB device status is available to USBDclients using the command mechanisms.

The USBDprovides clients with pipe error recovery mechanismsby allowing pipesto be reset or aborted.

10.5.4.5 Managing Remote Wakeup Devices
The USB System can minimize the resume power consumption of a suspended USBtree. Thisis
accomplished by explicitly enabling devices capable of resume signaling and controlling propagation of
resumesignaling via selectively suspending and/or disabling hub ports between the device and the nearest
self-powered, awake hub.

In someerror-recovery scenarios, the USB System will need to re-enumerate sub-trees. The sub-tree may
be partially or completely suspended. During error-recovery, the USB System must avoid contention
between a device issuing resumesignaling and simultaneously driving reset down the port. Avoidanceis
accomplished via managementofthe devices’ remote wakeupfeature and the hubs’ port features. The
rules are as follows:

e Issue a SetDeviceFeature(DEVICE_REMOTE_WAKEUP)requestto the leaf device, only just prior to
selectively suspending any port between where the device is connected and the rootport (via a
SetPortFeature(PORT_SUSPEND)request).

e Do not reset a suspended port that has had a device enabled for remote wakeup without first enabling
that port.

e Verify that after a remote wakeup, the devices in the subtree affected by the remote wakeuparestill
present. This will typically be done as part of determining which potential remote wakeup device was
the source of the wakeup. This should be done to ensure that a suspended deviceis not disconnected
(and possibly reconnected)or reset (e.g., by noise) during a suspend/resumeprocess.

10.5.5 Passing USB Preboot Control to the Operating System
A single software driver owns the Host Controller. If the host system implements USB services before the
operating system loads, the Host Controller must provide a mechanism that disables access by the preboot
software and allows the operating system to gain contro]. Preboot USB configuration is not passed to the
operating system. Once the operating system gains control, it is responsible to fully configure the bus. If
the operating system provides a mechanism to pass control back to the preboot environment, the bus will be
in an unknownstate. The preboot software should treat this event as a powerup.

295

ZTE/SAMSUNG 1008-0323

IPR2018-00110

ZTE/SAMSUNG 1008-0324
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

10.6 Operating System Environment Guides
As noted previously, the actual interfaces between the USB System and host softwareare specific to the host
platform and operating system. A companion specificationis required for each combination of platform and
operating system with USB support. These specifications describe the specific interfaces used to integrate the
USBinto the host. Each operating system provider for the USB System identifies a compatible Universal USB
Specification revision.

296

ZTE/SAMSUNG 1008-0324

IPR2018-00110

ZTE/SAMSUNG 1008-0325
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Chapter 11
Hub Specification

This chapter describes the architectural requirements for the USB hub. It contains a descriptionofthe three
principal sub-blocks: the Hub Repeater, the Hub Controller, and the Transaction Translator. The chapter
also describes the hub’s operation for error recovery, reset, and suspend/resume. The second halfof the
chapter defines hub request behavior and hub descriptors.

The hub specification supplies sufficient additional information to permit an implementer to design a hub
that conformsto the USBspecification.

11.1 Overview

Hubsprovide theelectrical interface between USB devices and the host. Hubs are directly responsible for
supporting manyofthe attributes that make USBuserfriendly and hide its complexity from the user. Listed
below are the major aspects of USB functionality that hubs must support:

* Connectivity behavior

* Power management

e Device connect/disconnect detection

e Bus fault detection and recovery

e High-, full-, and low-speed device support

A hub consists ofthree components: the Hub Repeater, the Hub Controller, and the Transaction Translator.
The Hub Repeateris responsible for connectivity setup and tear-down. It also supports exception handling,
such as bus fault detection and recovery and connect/disconnect detect. The Hub Controller provides the
mechanism for host-to-hub communication. Hub-specific status and control commands permit the host to
configure a hub and to monitor and controlits individual downstream facing ports. The Transaction
Translator respondsto high-speed split transactions and translates them to full-/low-speed transactions with
full-/low-speed devices attached on downstream facing ports.

11.1.1 Hub Architecture

Figure 11-1 shows a hub andthelocations ofits upstream and downstream facing ports. A hub consists of a
Hub Repeater section, a Hub Controller section, and a Transaction Translator section. The hub must
operate at high-speed whenits upstream facing port is connected at high-speed. The hub must operate at
full-speed whenits upstream facing port is connected at full-speed.

The Hub Repeater is responsible for managing connectivity between upstream and downstream facing ports
which are operating at the same speed. The Hub Repeater supports full-/low-speed connectivity and high-
speed connectivity. The Hub Controller provides status and control and permits host access to the hub. The
Transaction Translator takes high-speed split transactions and translates them tofull-/low-speed transactions
whenthe hubis operating at high-speed andhasfull-/low-speed devices attached. The operating speed ofa
device attached on a downstream facing port determines whether the Routing Logic connects a port to the
Transaction Translator or hub repeater sections.

297

ZTE/SAMSUNG 1008-0325

IPR2018-00110

ZTE/SAMSUNG 1008-0326
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Port 0

Upstream Facing Port Upstream Facing Port State Machines

Hub Hub State Hub
Repeater| Machines Controlle

Downstream

Facing Port
State Machine(s)

Port 1 Port 2 Port N

Downstream Facing Ports

Figure 11-1. Hub Architecture

Whena hub’s upstream facingport is attached to an electrical environment that is operating at full-/low-
speed, the hub’s high-speed functionality is disallowed. This means that the hub will only operateatfull-
/low-speed andthe transaction translator and high-speed repeater will not operate. In this electrical
environment, the hub repeater must operate as a full-/low-speed repeater and the routing logic connects
ports to the hub repeater.

Whenthe hub upstream facingport is attached to an electrical environment thatis operating at high-speed,
the full-/low-speed hub repeateris not operational. In this electrical environment when a high-speed device
is attached on downstream facing port, the routing logic will connect the port to the hub repeater and the
hub repeater must operate as a high-speed repeater. In this case, when a full-/low-speed deviceis attached
on a downstream facing port, the routing logic must connectthe port to the transaction translator.

11.1.2 Hub Connectivity

Hubsexhibit different connectivity behavior depending on whether they are propagating packettraffic, or
resume signaling, or are in the Idle state.

11.1.2.1 Packet Signaling Connectivity

The Hub Repeater contains one port that must always connect in the upstream direction (referred to as the
upstream facing port) and one or more downstream facing ports. Upstream connectivity is defined as being
towards the host, and downstream connectivity is defined as being towards a device. Figure]1-2 shows the
packet signaling connectivity behavior for hubs in the upstream and downstream directions, A hub also has
an Idle state, during which the hub makes no connectivity. Whenin the Idle state, all of the hub’s ports are
in the receive mode waiting for the start of the next packet.

298

ZTE/SAMSUNG 1008-0326

IPR2018-00110

ZTE/SAMSUNG 1008-0327
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

UpstreamPort

Downstream Upstream Idle
Connectivity Connectivity (No Connectivity)

[| Enabled Port
[><] Port not Enabled

Figure 11-2. Hub Signaling Connectivity

If a downstream facing port is enabled(i.e., in a state where it can propagate signaling through the hub), and
the hub detects the start of a packet on that port, connectivity is established in an upstream direction to the
upstream facing port ofthat hub, but not to any other downstream facing ports. This means that when a
device or a hub transmits a packet upstream, only those hubs in line between the transmitting device and the
host will see the packet. Refer to Section 11.8.3 for optional behavior when a hub detects simultaneous
upstream signaling on more than oneport.

In the downstream direction, hubs operate in a broadcast mode. When a hub detects the start of a packet on
its upstream facing port,it establishes connectivity to all enabled downstream facing ports. Ifa port is not
enabled, it does not propagate packet signaling downstream.

11.1.2.2 Resume Connectivity
Hubsexhibit different connectivity behaviors for upstream- and downstream-directed resumesignaling. A
hubthat is suspended reflects resume signaling from its upstream facing port to all of its enabled
downstream facing ports. Figure 11-3 illustrates hub upstream and downstream resume connectivity.

[] Enabled Port

De) sees
Port

4 Enabled orSuspended
Port

Downstream Connectivity ‘signaing

Upstream Connectivity

Figure 11-3. Resume Connectivity

299

ZTE/SAMSUNG 1008-0327

IPR2018-00110

ZTE/SAMSUNG 1008-0328
IPR2018-00110

11

11

11

300

Universal Serial Bus Specification Revision 2.0

If a hub is suspended and detects resume signaling from a selectively suspended or an enabled downstream
facing port, the hub reflects that signaling upstream and to all of its enabled downstream facing ports,
including the port that initiated the resume sequence. Resumesignalingis not reflected to disabled or
suspended ports. A detailed discussion of resume connectivity appears in Section 11.9.

-1.2.3 Hub Fault Recovery Mechanisms
Hubsare the essential USB componentfor establishing connectivity between the host and other devices. It
is vital that any connectivity faults, especially those that might result in a deadlock, be detected and
prevented from occurring. Hubs need to handle connectivity faults only when they are in the repeater mode.

Hubs mustalso be able to detect and recover from lost or corrupted packets that are addressed to the Hub
Controller. Because the Hub Controller is, in fact, another USB device, it must adhere to the same timeout
rules as other USB devices, as described in Chapter 8.

.2 Hub Frame/Microframe Timer

Each hubhas a (micro)frame timer whose timing is derived from the hub’s local clock and is synchronized
to the host (micro)frame period by the host-generated Start-of-(micro)frame (SOF). The (micro)frame
timer provides timing references that are used to allow the hubto detect a babbling device and preventthe
hub from being disabled by the upstream hub. The hub (micro)frame timer musttrack the host
(micro)frame period and be capable of remaining synchronized with the host even if two consecutive SOF
tokens are missed by the hub.

The (micro)frame timer mustlock to the host’s (micro)frame timing for worst case clock accuracies and
timing offsets between the host and hub. There are specific requirements for hubs whentheir upstream
facing port is operating at high-speed and full-speed.

.2.1 High-speed Microframe Timer Range
The range for a microframe timer must be from 59904 to 60096 high-speedbits.

The nominal microframeinterval is 60000 high-speed bit times. The hub microframetimerrange specified
above is 60000 +/- 96 high-speedbit times in order to accommodate host accuracy, hub accuracy, repeater
jittter, and hub quantization. The +/-96 full-speedbit time variation is calculated in Table 11-2.

Table 11-1. High-speed Microframe Timer Range Contributions

Source of Variation|Variation (ppm) Variation (bits) Over
One MicroframeInterval

Host accuracy +/- 30

 Hub accuracy

Hostjitter

 Four hubsin series

upstream of hub; 0 to 5
bits ofjitter per hub

Hub chainjitter

Bits need to roundtotal

variation to multiple of 16

Quantization

ZTE/SAMSUNG 1008-0328

IPR2018-00110

ZTE/SAMSUNG 1008-0329
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.2.2 Full-speed Frame Timer Range

The range of the frame timer must be from 11958 to 12042 full-speedbits.

The nominal frame interval is 12000 full-speed bit times. The hub frame timer range specified aboveis
12000 +/- 42 full-speed bit times in order to accommodate host accuracy and hub accuracy. The +/-42 full-
speed bit time variation is calculated in Table 11-2.

Table 11-2. Full-speed Frame Timer Range Contributions

Source of Variation|Variation (ppm) Variation (bits) Over Comment
One FrameInterval

Hub accuracy +/- 3000 +/-6 bits due to hub
accuracy (500 ppm)

+/-30 bits due to 1.x

parent hub accuracy
(2500 ppm)

11.2.3 Frame/Microframe Timer Synchronization
A hub’s (micro)frame timeris clocked by the hub’s clock source and is synchronized to SOF packets that
are derived from the host’s (micro)frame timer. After a reset or resume, the hub’s (micro)frame timer is not
synchronized. Wheneverthe hub receives two consecutive SOF packets, its (micro)frame timer must be
synchronized. Synchronized is synonymous with lock(ed). An example for a method of constructing a
timer that properly synchronizes is as follows.

11.2.3.1 Example (Micro)frame Timer Synchronization Method
The hub maintains three timer values: (micro)frame timer (down counter), current (micro)frame (up

counter), and next (micro)frame(register). After a reset or resume,a flagis set to indicate that the
(micro)frametimeris not synchronized.

Whenthefirst SOF token is detected, the current (micro)frame timer resets and starts counting once per hub
bit time. On the next SOP,if the timer has not rolled over, the value in the current (micro)frametimeris
loaded into the next (micro)frame register and into the (micro)frame timer. The current (micro)frame timer
is reset to zero and continues to count and the flagis set to indicate that the (micro)frametimeris locked.
The (micro)frame timerrolls over when the count exceeds 60096 for high-speed or 12042 for full-speed (a
test at 65535 for high-speed or 16383 for full-speed is adequate). If the current (micro)frame timer has
rolled-over, then an SOF was missed and the (micro)frame timer and next (micro)frame valuesare not
loaded. When an SOFis missed, the flag indicating that the timer is not synchronized remainsset.

Wheneverthe (micro)frame timer counts downto zero, the current value of the next (micro)frameregister is
loaded into the (micro)frame timer. When an SOFis detected, and the current (micro)frame timer has not
rolled over, the value of the current (micro)frame timeris loaded into the (micro)frame timer and the next
(micro)frame registers. The current (micro)frametimeris then reset to zero and continues to count. If the
current (micro)frametimerhas rolled over, then the value in the next (micro)frameregister is loaded into
the (micro)frame timer. This process can cause the (micro)frametimerto be updated twicein a single
(micro)frame: once when the (micro)frame timer reaches zero and once when the SOFis detected.

301

ZTE/SAMSUNG 1008-0329

IPR2018-00110

ZTE/SAMSUNG 1008-0330
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.2.3.2 EOF Advancement

302

The hub must advance its EOF points based on its SOF decode timein order to ensure that in the tiered
topology, hubs farther away from the host will always have later EOF points than hubs nearerto the host.
The magnitude of advance is implementation-dependent; the possible range of advanceis derived below.

The synchronization circuit described above depends on successfully decoding an SOF packetidentifier
(PID). This meansthat the (micro)frame timer will be synchronizedto a timethat is later than the
synchronization point in the SOF packet: later by at least 40 bit times for high-speed or 16 bit times for full-
speed. Each implementation also takes some time to react to the SOF decodeandset the appropriate
timer/counter values. This reaction time is implementation-dependent but is assumedto be less than 192 bit
times for high-speed and fourbit timesfor full-speed. Subsequent sections describe the actions that are
controlled by the (micro)frame timer. These actions are defined at the EOF1, EOF2, and EOF. EOF1 and
EOF? are defined in later sections. These sections assume that the hub’s (micro)frametimer will count to
zero at the end of the (micro)frame (EOF). The circuitry described above will have the (micro)frame timer
counting to zero after 40 to 192 for high-speed bit times or 16-20 full-speed bit timesafter the start of a
(micro)frame (or end of previous (micro)frame). The timings andbit offsets in the later sections must be
advanced to accountfor this delay (i.e., add 40-192 for high-speed or 16-20 bit times for full-speed to the
EOF1 and EOF2 points).

Advancing the EOFpoints by the processing delay ensures that the spread between the EOFsis only due to
the propagation delay. For example, for high-speed, the maximum spread between 2 EOFpoints anywhere
on the USBisless than 216 bits (144+ 72). 144 bit times are due to 36 bit times of max latency through
4 repeaters. 72 bit times are due to five maximum cable and interconnect delays of 30 ns each. As can be
seen in Figure 11-4 without EOF advancement, a hub with a larger tier number could have an EOFoccuring
earlier than a hub with a smaller tier number. In Figure 11-5 with EOF advancementensuresthatin the
tiered topology, hubs with larger tier numbers always have later EOF points than hubs with smallertier
numbers. Note: 13 bit times in the figures is an example maximum cable delay (approximately 30 ns).

Time

Tier|

3+192 bits delay
Tier N

v

Tier 13+13+36+40 bits delay
Depth Tier N+1

Figure 11-4. Example High-speed EOF Offsets Due to Propagation Delay Without EOF
Advancement

Tier 1

Tier N

Tier N+1

Figure 11-5. Example High-speed EOF Offsets Due to Propagation Delay With EOF Advancement

ZTE/SAMSUNG 1008-0330

IPR2018-00110

ZTE/SAMSUNG 1008-0331
IPR2018-00110

11.

11

Universal Serial Bus Specification Revision 2.0

2.3.3 Effect of Synchronization on Repeater Behavior
The (micro)frame timer provides an indication to the hub Repeater state machine that the (micro)frame
timer has synchronized to SOFandthat the (micro)frame timer is capable of generating the EOF] and
EOF?timing points. This signal is importantafter a global resume becauseofthe possibility that a full-
‘low-speed device may have been detached, and a low-/full-speed device attached while the host was
generating a long resume(several seconds) and the disconnect cannot be detected. The new devicewill bias
D+ and D- to appearlike a K on the hub which would then be treated as an SOP and,unless inhibited, this
SOP would propagate though the resumed hubs. Since the hubs would not have seen any SOFsatthis point,
the hubs would not be synchronized and, thus, unable to generate the EOF] and EOF2 timing points. The
only recovery from this would be for the host to reset and re-enumerate the section of the bus containing the
changed device. This scenario is prevented by inhibiting any downstream facing port from establishing
connectivity until the hub is locked after a resume.

.2.4 Microframe Jitter Related to Frame Jitter

The period between the SOFs from the Transaction Translator must not vary by more than +/- 42 ns. The
microframe timer count must be used by the Transaction Translator to generate SOFs to full-speed devices
(and keepalives to low-speed devices) connectedto it.

The SOFreceived at the upstream facing port of the hub is repeated with a local clock. The frequency of
this clock may be a divided version ofthe bit rate. This could result in a quantization error and microframe-
to-microframejitter. The microframe-to-microframejitter of a hub repeater must be between 0 and5bit
times. This meansthat the latency through the repeater of consecutive SOFs mustdiffer by less than 5 bits.
A hub mayregister the SOF for internal use, e.g., microframe synchronization. This requires SOF PID
detection. The circuitry used for internal registering of the SOF must haveajitter whichis less than or
equal to 16 bits. This means that the microframe timer count values between consecutive equally spaced
SOFs must differ by less than or equal to 16 bits. The host controller frequency may drift over the period of
a microframeresulting in microframeperiod jitter. The host controller sourcejitter for SOFs must be less
than 4 bits. This means that the consecutive periods between SOFs mustdiffer by less than 4 bits. These
requirements ensure that the microframeperiod at the end offive hub tiers will have a jitter of less than
40 bits (4 from host controller + 4*5 from hub repeaters + 16 from the internal SOFregistering). This
meansthat the consecutive periods between SOFs as measured at any microframe timer will differ by less
than 40 bits (83.3 ns at 480 Mbs). This is less than the +/- 42 ns variation allowed.

11.2.5 EOF1 and EOF2 Timing Points
The EOF1 and EOF2are timing points that are derived from the hub’s (micro)frame timer. Table 11-3
specifies the required host and hub EOFtiming points for high-speed and full-speed operation.

Table 11-3. Hub and Host EOF1/EOF2 Timing Points

Bit Times Before EOF Bit Times Before EOF

for High-speed for Full-speed
Notes

End-of-(micro)frame point #4

These timing points are used to ensure that devices and hubsdonotinterfere with the proper transmission of
the SOFpacket from the host. These timing points have meaning only when the (micro)frame timer has
been synchronized to the SOF.

The host and hub (micro)frame markers, while all synchronized to the host’s SOF, are subject to certain
skewsthat dictate the placement of the EOF points. Figure 11-6 illustrates EOF2 timing point for high-

303

ZTE/SAMSUNG 1008-0331

IPR2018-00110

ZTE/SAMSUNG 1008-0332
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

speed operation. Figure 11-7 illustrates the EOF] high-speed timing point. The numbersin the figures are
in high-speed bit times.

ae|THe

EOF! EQF=0+. tier m |
tier depth EOF2=64 | quantization=16

iCtier n
skew=38

Figure 11-6. High-speed EOF2 Timing Point

EOF2 EQF~0iS A, tier 0
2» “SSQF propagation=216

 | time

EOF 1=560

EOP propagation=216 + “/”
quiescent time = 8

—————-
tier depth

tier 5

skew=38

Figure 11-7. High-speed EOF1 Timing Point

At the EOF2 point, any port that has upstream connectivity will be disabled as a babbler. Hubs operating as
a full-/low-speed repeater prevent becoming disabled by sending an end of packet to the upstream hub
before that hub reaches its EOF2 point(i.e., at EOF1).

Figure 11-8 illustrates EOF timing points for full-/low-speed repeater operation.

EOF1 EOF2

Bit times oF

=tttttttt
50 40 30 20 10 0

- EOF1 range —| t- EOF2 range —
Figure 11-8. Full-speed EOF TimingPoints

The hub operating asa full-/low-speed repeater is permitted to send the EOP if upstream connectivity is not
established at EOF1 time. A full-speed repeater must send the EOP if connectivity is established from any
downstream facing port at the EOF point.

A high-speed repeater must tear down upstream connectivity at the EOF] point.

A high-speed repeater must tear down connectivity after the bus returnsto the Idle state and the Elasticity
buffer is emptied (as described in Section 11.7.2) rather than on decoding an EOPpattern as in full-/low-
speed. Therefore, abrupt end ofsignaling (i.e, without a high-speed EOP) may cause malformed packets,
and this must not affect repeater operation. The host controller design must be capable of processing such
packets correctly.

304

ZTE/SAMSUNG 1008-0332

IPR2018-00110

ZTE/SAMSUNG 1008-0333
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.2.5.1 High-speed EOF1 and EOF2 Timing Points
The EOF2 pointis 64 bit times before EOF as shownin Figure 11-6, and the EOF] pointis 560 bit times
before EOF as shownin Figure 11-7.

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or
between hubs. This timing skew represents the difference between different microframetimers ondifferent
hubs and the host. The total accumulated skew can be as muchas 38 bit times. This is composed of +2bit
times of (micro)frame host source jitter and 0 to 36 bit times of repeaterjitter as derived earlier. This skew
timing affects the placement of the EOF] and EOF2 points.

Note: The hub skew timing assumesthat the microframeinterval will not be changed bythe hostafter the
microframe timers have synchronized.

EOFskew can be from —2 to + 38 bits, so all EOFs are within 256 bits (216 bits of EOF propagation delay +
40 bits of EOF skew)of each other.

Note: The EOF2point is based on 16 bit times for quantization + 38 bit times of skew; therefore, the EOF2
point needsto located at least 54 bit times before EOF. The EOF2 pointis set at 64 bit times to allow
babble detection to be done with a divided (by 16) version of the bit clock. An upstream-directed packet
ending before EOF1 must reach every upstream hub/host before it gets to its EOF2 point. This is achieved
if the EOF1pointis located at Jeast 544 bits before any upstream EOF (64 bits of EOF2 offset + 216 bits of
EOPpropagation delay + 8 bits of idle time + 216 bits of SOF propagation delay + 38 bits of EOF] skew +
2 bits of EOF2 skew). The EOF1pointis set at 560 bit times to allow using a divided (by 16) version of the
bit clock.

11.2.5.2 Full-speed EOF1 and EOF2 Timing Points
Whenthe hub operates as a full-/low-speed repeater, the EOF] pointis 10 bit times before EOF and EOF1
is 32 bit times before EOF as shownin Figure 11-8.

The EOF?pointis defined to occur at least onebit time before the first bit of the SYNC for an SOP. The
period allowed for an EOPis four full-speed bit times (the upstream facing port on a hubis always full-
speed).

Although the hub is synchronized to the SOF, timing skew can accumulate between the host and a hub or
between hubs. This timing skew represents the difference between different frame timers on different hubs
and the host. The total accumulated skew can beas large as +9 bit times. This is composed of +1bit times

per frame of quantization error and +1 bit per frame of wander. The quantization error occurs when the hub
times the interval between SOFs andarrives at a value that is off by a fraction of a bit time but, due to
quantization, is rounded to a full bit. Frame wander occurs when the host's frame timer is adjusted by the
USB System Softwareso that the value sampled by the hub in a previous framediffers from the frame
interval being used by the host. (Note: Such adjustment was permitted in the USB 1.0 and 1.1 specification
but is no longer permitted.) These values accumulate over multiple frames because SOF packets can be lost
and the hub cannot resynchronize its frame timer. This specification allows for the loss of two consecutive
SOFs. Duringthis interval, the quantization error accumulates to +3 bit times, and the wander accumulates
to +]1+2+3 =+6fora total of +9 bit times of accumulated skew in three frames. This skew timing affects
the placement of the EOF] and EOF2pointsas follows.

A hub must reach its EOF2 pointone bit time before the end of the frame. In orderto ensurethis, a 9-bit
time guard-band must be added so that the EOF2 point is set to occur when the hub's local frame timer
reaches 10. A hub must complete its EOP before the hub to whichit is attached reaches its EOF2 point. A
hub may reach its EOF2 point nine bit times before bit time 10 (at bit time 19 before the SOF). To ensure
that the EOP is completed bybit time 19, it must start before bit time 23. To ensure that the hubstarts at bit
time 23 with respect to another hub, a hub mustset its EOF! point nine bit times ahead ofbit time 23 (at bit
time 32). Ifa hubsetsits timer to generate an EOPatbit time 32, that EOP may start as much as9 bit times
early (at bit time 41).

305

ZTE/SAMSUNG 1008-0333

IPR2018-00110

ZTE/SAMSUNG 1008-0334
IPR2018-00110

15

Universal Serial Bus Specification Revision 2.0

3 Host Behavior at End-of-Frame

It is the responsibility of the USB host controller (the host) to not provoke a response from a device if the
response would cause the device to be sending a packet at the EOF2 point. Furthermore, because a hub will
terminate an upstream directed packet when the hub reaches its EOF] point, the host should not start a
transaction if a response from the device (data or handshake) would be pendingor in process when a hub
reaches its EOF1 point. The implications of these limitations are described in the following sections.

Note: The above requirements can be metif the host controller ensuresthat the last transaction will
complete by its EOF1. The time consumedbya transaction (and consequently the latest start time ofthe
transaction) can be evaluated by accumulating the various delay componentsin the transaction. The packet
lengths should includeall fields and account for bit-stuffing overhead as described in Chapter 7 and
Chapter 8. Formulae for calculating transaction times are located in Section $.11.3.

In defining the timing points below,the last bit interval in a (micro)frameis designated as bit time zero. Bit
times in a (micro)frame that occur before the last have values that increase the further they are from bit time
zero (earlier bit times have higher numbers). Thesebit time designations are used for convenience only and
are not intended to imply a particular implementation. The only requirement of an implementation is that
the relative time relationships be preserved.

Host controllers issuing high-speed transactions on a high-speed bus must meet the above requirements.
Host controllers issuing full-/low-speed transactions on a full-/low-speed bus mayalso use the following
three behaviors near EOF.

11.3.1 Full-/low-speed Latest Host Packet
Hubsare allowed to send an EOPontheir upstream facing ports at the EOF1 pointif there is no
downstream-directedtraffic in progress at that time. To prevent potential contention, the host is not allowed
to start a packet if connectivity will not be established onall connections before a hub reaches its EOF]
point. This meansthat the host mustnotstart a packet after bit time 42.

Note: Although there is as much as a six-bit time delay between the time the host starts a packet andall
connections are established, this time need not be added to the packet start time as this phase delay exists for
the SOF packet as well, causing all hub frame timers to be phase delayed with respect to the host by the
propagation delay. There is only one bit time of phase delay between any two adjacent hubs and this has
been accounted for in the skew calculations.

11.3.2 Full-/low-speed Packet Nullification

11

306

If a device is sending a packet (data or handshake) when a hubin the device’s upstream path reachesits
EOF! point, the hub will send a full-speed EOP. Any packet thatis truncated by a hub mustbe discarded.

A host implementation may discard any packet that is being received at bit time 41. Alternatively, a host
implementation may attempt to maximize busutilization by accepting a packet if the packet is predicted to
start at or before bit time 41.

.3.3 Full-/low-speed Transaction Completion Prediction
A device can send two types of packets: data and handshake. A handshake packetis always exactly 16 bit
times long (sync byte plus PID byte.) The time from the end of a packet from the host until the first bit of
the handshake must be seen atthe host is 17 bit times. This gives a total allocation of 35 bit times from the
end of data packet from the root (start of EOP)until it is predicted that the handshake will be completed
(start of EOP) from the device. Therefore, if the host is sending a data packet for which the device can
return a handshake (anything other than an isochronous packet), then if the host completes the data packet
and starts sending EOP before bit time 76, then the host can predict that the device will complete the
handshakeandstart the EOP for the handshake onor before bit time 41. For a low-speed device, the 36 bit
times from start of EOP from root to start of EOP from the device are low-speed bit times, which convert 1

ZTE/SAMSUNG 1008-0334

IPR2018-00110

ZTE/SAMSUNG 1008-0335
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

to 8 into full-speed bit times. Therefore, if the host completes the low-speed data packet by bit time 329,
then the low-speed device can be predicted to complete the handshakebeforebit time 41.

Note: If the host cannot accept a full-speed EOP as a valid end of a low-speed packet, then the low-speed
EOP will need to complete before bit time 41, which will add 13 full-speed bit times to the low-speed
handshaketime.

As the host approachesthe end ofthe frame, it must ensure that it does not require a device to send a
handshake if that handshake cannot be completed beforebit time 41. The host expects to receive a
handshakeafter any valid, non-isochronous data packet. Therefore, if the host is sending a non-isochronous
data packet when it reachesbit time 76 (329 for low-speed), then the host should start an abnormal
termination sequence to ensure that the device will not try to respond. This abnormal termination sequence
consists of 7 consecutive (non-bitstuffed) bits of | followed by an EOP. The abnormal termination
sequence is sent at the speed ofthe current packet. Note: Theintent of this sequenceis to force a
bitstuffing violation (and possibly othererrors) at the receiver.

If the host is preparing to send an IN token, it may not send the tokenifthe predicted packet from the device
would not complete by bit time 41. The maximum valid length of the response from the device is known by
the host and shouldbeused in the prediction calculation. For a full-speed packet, the maximum interval
betweenthe start ofthe IN token andthe end of a data packetis:

token_length + (packet_length + header + CRC) * 7/6 + 18

Where token_lengthis 34 bit times, packet_length is the maximum numberofdata bits in the packet,
headeris eightbits of sync and eight bits of PID, and CRCis 16 bits. The 7/6 multiplier accounts for the
absolute worst case bit-stuff on the packet, and the 18 extra bits allow for worst case turn-around delay. For
a low-speed device, the samecalculation applies, but the result must be multiplied by 8 to convert to full-
speed bit times, and an additional 20 full-speed bit times must be added to account for the low-speed prefix.
This gives the maximum numberofbit times between thestart of the [IN token and the end ofthe data
packet, so the token cannot be sentif this numberofbit times does not exist before the earliest EOF! point
(bit time 41). (For example, take the results ofthe above calculation and add 41. If the numberofbitsleft
in the frameis less than this value, the token may not besent.)

Thehost is allowed to use a more conservative algorithm than the one given abovefor deciding whether or
not to start a transaction. The calculation might also include the time required for the host to send the
handshake when oneis required, as there is no benefit in starting a transfer if the handshake cannot be
completed.

11.4 Internal Port

Theinternal port is the connection between the Hub Controller and the Hub Repeater. Besides conveying
the serial data to/from the Hub Controller, the internal port is the source of certain resumesignals.
Figure 11-9 illustrates the internal port state machine; Table 11-4 defines the internal port signals and
events.

307

ZTE/SAMSUNG 1008-0335

IPR2018-00110

ZTE/SAMSUNG 1008-0336
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Inactive

| = Lagical NOT

Rx_Suspend

Suspend Delay

Resume_Event

Figure 11-9. Internal Port State Machine

Table 11-4. Internal Port Signal/Event Definitions

Signal/Event Name|Event/Signal Description
Source

Internal Endoftimed interval

Rx_Suspend Receiver Receiveris in the Suspend state
Hub Controller A resume condition exists in the Hub Controller

11.4.1 Inactive

This state is entered wheneverthe Receiveris not in the Suspendstate.

11.4.2 Suspend Delay

This state is entered from the Inactive state when the Receivertransitions to the Suspendstate.

This is a timed state with a 2 msinterval.

11.4.3 Full Suspend (Fsus)

This state is entered when the Suspend Delay interval expires.

11.4.4 Generate Resume (GResume)
This state is entered from the Fsus state when a resume condition exists in the Hub Controller. A resume

condition exists if the CPORTSUSPEND bitis set in any port, or if the hub is enabled as a wakeup source
and any bit is set in a Port Changefield or the Hub Changefield (as described in Figures 11-22 and 11-20,
respectively),

In this state, the internal port generates signaling to emulate an SOP_FD to the Hub Repeater.

308

ZTE/SAMSUNG 1008-0336

IPR2018-00110

ZTE/SAMSUNG 1008-0337
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5 Downstream Facing Ports
The following sections provide a functional description of a state machine that exhibits the correct behavior
for a downstream facing port.

Figure 11-10 is an illustration of the downstream facing port state machine. The events and signals are
defined in Table 11-5. Each ofthe states is described in Section 11.5.1. In the diagram below, someofthe
entry conditions into states are shown withoutorigin. These conditions have multiple origin states and the
individual transitions lines are not shownso that the diagram can be simplified. The description ofthe
entered state indicates from whichstates the transition is applicable.

Note: For the root hub,the signals from the upstream facing port state machines are implementation
dependent.

309

ZTE/SAMSUNG 1008-0337

IPR2018-00110

ZTE/SAMSUNG 1008-0338
IPR2018-00110

ClearPortFeature(PORT_POWER) #

ClearPortFeature(PORT_ENABLE)

EO!

Universal Serial Bus Specification Revision 2.0

* u
Logical OR

Logical AND

Logical NOT

Configuration = 0

n

"Not
Configured

SetConfiguration(non-zero)

SetConfiguration(non-zero) #
Power_Source_Off#Over-current

SetPortFeature(PORT_POWER)

Disabled

Resetting

Disconnect_Detect

SetPortFeature(PORT_RESET)

Rx_Suspend & (SEO # kK)

 Rx_Resume

Te
Rptr_ExitWFEOPFU

Suspended

(!Rx_Suspend & PK) #
ClearPortFeature(PORT_SUSPEND

Eo!

=

Rptr_EnterWFEOPFU

SetPortFeature(PORT_SUSPEND)

 Rx_Suspend & (SEO # K)

Rptr_Exit_VWFEOPFU

\(PK#PS)&EOI

Port Outputs in States

The hub is not configured.
Powered_off: Port requires explicit
requestto transition.

Disconnected: Port does not propagate
anytraffic in either direction. All ports
are HiZ. Port is timing length of J/K
(2.5uS to 2mS).

Disabled: Port cannot propagate any
traffic. All ports are HiZ.

Resetting: Drive SEO through the port for
10ms.

Enabled: Port can propagate both
upstream and downstream traffic.

Transmit: Port propagates downstream
directed traffic,

Suspended: No traffic is propagated
downstream or upstream.

Resuming: Drive 'K’ for 20mS.

TransmitR: Port propagates downstream
directed resumesignaling.

RestartS and Restart_E: Port enters one of
these states to wait through timing
iintervals or for clocks to restart. Delay
interval is implementation dependent.

State machine exports:
TmeRWU signal
(/TrueRWU"indicates signalis
generated on transition from state)

Figure 11-10. Downstream Facing Hub Port State Machine

ZTE/SAMSUNG 1008-0338

IPR2018-00110

ZTE/SAMSUNG 1008-0339
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 11-5. Downstream Facing Port Signal/Event Definitions

Signal/Event Name|Event/Signal|Description
Source

Power_source_off Implementation-|Power to the port not available due to over-current or
dependent termination of source power(e.g., external power

removed)

Over-current Hub Controller Over-current condition exists on the hub or the port

Internal End of a timedinterval or sequenceEO!

osernaoees[rons[omoessamonen|
Hub Controller Low-speed device attachedto this port

PS Internal SEOlasting for at least TDDIS

K Internal 'K’ received on port

Upstream Receiver in Resumestate

Upstream Receiver in Suspendstate

Rptr_Enter_WFEOPFU|Hub Repeater Hub Repeater enters the WFEOPFUstate

jPoteror|Intemal Error condition detected (see Section 11.8.1)
SetTest Hub Controller Logical OR of SetPortFeature(Test_SEO_NAk),

SetPortFeature(Test_J), SetPortFeature(Test_k),
SetPortFeature(Test_PRBS),
SetPortFeature(Test_Force_Enable)

Configuration = 0 Hub Controller Hub controller's configuration value is zero

311

ZTE/SAMSUNG 1008-0339

IPR2018-00110

ZTE/SAMSUNG 1008-0340
IPR2018-00110

11.

41;

11.

11

Universal Serial Bus Specification Revision 2.0

5.1 Downstream Facing Port State Descriptions

5.1.1 Not Configured

A port transitions to and remains in this state wheneverthe value of the hub configuration is zero. While the
port is in this state, the hub will drive an SEO ontheport (this behavior is optional on root hubs). No other
active signaling takes place on the port whenitis in this state.

5.1.2 Powered-off

Thisstate is supported for all hubs.

A port transitions to this state in any of the followingsituations:

e From any state except Not Configured when the hub receives a ClearPortFeature(PORTPOWER)
requestfor this port

« From any state when the hub receives a SetConfiguration() request with a configuration value other
than zero

e From any state except Not Configured when poweris lost to the port or an over-current condition exists

A port will enter this state due to an over-current condition on anotherport if that over-current condition
may have caused the powersuppliedto this port to drop below specified limits for port power (see
Section 7.2.1.2.1 and Section 7.2.4.1).

If a hub was configured while the hub was self-powered, and then if external poweris lost, the hub must
place all ports in the Powered-off state. If the hub is configured while bus powered, then the hub need not
changeport status if the hub switched to externally applied power. However,if external poweris
subsequently lost, the hub must place ports in the Powered-off state.

In this state, the port’s differential and single-ended transmitters and receivers are disabled.

Control of powerto the port is covered in Section 11.11.

5.1.3 Disconnected

A port transitions to this state in any of the followingsituations:

e From the Powered-off state when the hub receives a SetPortFeature(PORT_POWER)request

e From any state except the Not Configured and Powered-off states when the port’s disconnecttimertimes
out

e From the Restart_S or Restart_E state at the end ofthe restart interval

In the Disconnectedstate, the port’s differential transmitter and receiver are disabled and only connection
detection is possible.

This is a timed state. While in this state, the timer is reset as long as the port’s signal lines are in the SEO or
SEI state. If another signaling state is detected, the timer starts. Unless the hub is suspended with clocks
stopped,this timer's duration is 2.5 Lis to 2 ms.

If the hub is suspended with its remote wakeup feature enabled, then onatransition to any state other than
the SEO state or SE] state on a Disconnectedport, the hub will start its clocks and time this event. The hub
mustbe ableto start its clocks and time this event within 12 msof the transition. If a hub does not haveits

remote wakeup feature enabled, then transitions on a port that is in the Disconnected state are ignored until
the hub is resumed.

ZTE/SAMSUNG 1008-0340

IPR2018-00110

ZTE/SAMSUNG 1008-0341
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5.1.4 Disabled

A port transitions to this state in any of the following situations:

e From the Disconnected state when the timer expires indicating a connection is detected on the port

e From any but the Powered-off, Disconnected, or Not Configured states on receipt of a
ClearPortFeature(PORT_ENABLE)request

e From the Enabled state when an error condition is detected on the port

A port in the Disabled state will not propagate signaling in either the upstream or the downstream direction.
Whilein this state, the duration of any SEO received ontheport is timed. Ifthe port is using high-speed
terminations whenit enters this state, it switches to full-speed terminations. The port must not perform
normal disconnect detection until at least 4 ms after enteringthis state.

11.5.1.5 Resetting
Unlessit is in the Powered-off or Disconnectedstates, a port transitions to the Resetting state upon receipt
of a SetPortFeature(PORT_RESET) request. The hub drives SEO onthe port during this timedinterval.
The duration of the Resetting state is nominally 10 ms to 20 ms (10 msis preferred).

A hubin high-speed operation will use the high-speed terminations ofthe port when in this state.

11.5.1.6 Enabled

A port transitions to this state in any of the following situations:

e Atthe end of the Resetting state

e From the Transmit state or the TransmitR state when the Hub Repeater exits the WFEOPFUstate

e From the Suspendedstate ifthe upstream Receiveris in the Suspend state when a ‘K’is detected on the
port

e At the end ofthe SendEORstate

e From the Restart_E state when a persistent K or persistent SEO has not been seen within 900 its of
entering that state

While in this state, the output of the port’s differential receiver is available to the Hub Repeater so that
appropriate signaling transitions can establish upstream connectivity.

A port whichis using high-speed terminationsin this state switches to full-speed terminations on
Rx_Suspend(i.e., when the hub is suspended). The port must not perform normal disconnect detection until
at least 1 ms after Rx_Suspend becomesactive.

11.5.1.7 Transmit

This state is entered from the Enabledstate on the transition of the Hub Repeater to the WFEOPFUstate.
While in this state, the port will transmit the data that is received on the upstream facing port.

For a low-speed port, this state is entered from the Enabledstate ifa full-speed PRE PID is received on the
upstream facing port. While in this state, the port will retransmit the data that is received on the upstream
facing port (after proper inversion).

In high-speed,this state is used for testing for disconnect at the port. The disconnect detection circuit is
enabled after 32 bits of the same signaling level (‘J’ or ‘K’) have been transmitted downtheport.

Note: Because of the timing skew in the repeater path to the downstream facing ports, all downstream
facing ports may not be enabled for disconnect detection at the same instantin time.

313

ZTE/SAMSUNG 1008-0341

IPR2018-00110

ZTE/SAMSUNG 1008-0342
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5.1.8 TransmitR

11

11

314

This state is entered in either of the followingsituations:

e From the Enabledstate if the upstream Receiveris in the Resumestate

e From the Restart_S or Restart_E state if a PK is detected on theport

Wheninthis state, the port repeats the resume ‘K’at the upstream facing port to the downstream facing
port. Depending on the speed of the port, two behaviors are possible on the K->SEO0transition at the
upstream facing port at the end of the resume.

e Upstream facing port high-speed and downstream facing port full-/low-speed: After the K->SE0
transition, the port drives SEO for 16 to 18 full-speed bit times followed by driving J for at least one
full-speed bit time. Note: The timer in the Resumestate of the upstream port receiver state machine
which generates EOITR can beusedto time this requirement at the downstream facing port(s). The
pullup resistor and the latency of the Transaction Translator(TT)results in this Idle state being
maintained forat least one low-speed bit time ensuring that a device sees the same end of resume
behavior below the TT as it would below a USB 1.x hub.

e Upstream facing port and downstream facing port are the same speed: port continues to repeat the
signaling which follows the K->SEO0transition.

A port operating in high-speed reverts to its high-speed terminations within 18 full-speed bit times after the
K->SEO0transition as described in Section 7.1.7.7.

.5.1.9 Suspended

A port enters the Suspendedstate:

e From the Enabled state whenit receives a SetPortFeature(PORTSUSPEND)request

e From the Restart_S state when a persistent K or persistent SEO has not been seen within 900 us of
entering that state ,

While a port is in the Suspendedstate, the port's differential transmitter is disabled. A high-speed port
reverts from high-speed to full-speed terminations but its speed status continues to be high-speed. The port
must not perform normal disconnect detection until at least 4 ms after enteringthis state.

An implementation must have a K/SEO‘noise’ filter for a port that is in the suspendedstate. Thisfilter can
time the length of K/SEO0 and,if the length of the K/SEO is shorter than TDDIS,the port must remainin this
state. If the hub is suspended with its clocks stopped, a transition to K/SEO on a suspended port must cause
the port to immediately transition to the Restart_Sstate.

5.1.10 Resuming
A port enters this state from the Suspendedstate in either of the following situations:

e Ifa'K'is detected on the port and persists for at least 2.5 j1s and the Receiveris not in the Suspended
state. The transition from the Suspended state must happen within 900 Ls ofthe J->K transition.

e When a ClearPortFeature(PORTSUSPEND)request is received.

This is a timed state with a nominal duration of 20 ms(the interval may be longer underthe conditions
described in the note below). While in this state, the hub drives a 'K'on the port.

Note: A single timer is allowed to be used to time both the Resetting interval and the Resuming interval and
that timer may be shared among multiple ports. When shared, the timeris reset when a port enters the
Resumingstate or the Resetting state. If shared, it may not be shared among morethanten ports as the
cumulative delay could exceed the amount of time required to replace a device and a disconnect could be
missed.

ZTE/SAMSUNG 1008-0342

IPR2018-00110

ZTE/SAMSUNG 1008-0343
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5.1.11 SendEOR

This state is entered from the Resumingstate ifthe 20 ms timer expires. It is also entered from the Enabled
state when an SOF(or other FS token) is received and a low-speed deviceis attached to this port.

This is a timed state which lasts for three low-speed bit times.

In this state, if the port is high-speed it will drive the bus to the Idle state for three low-speed bit times and
then exit from this state to the Enabled state. It must also revert to its high-speed terminations within
18 full-speed bit times after the K->SEOtransition as described in Section 7.1.7.7.

If the port is full-speed or low-speed, the port must drive two low-speedbit times of SEO followed by one
low-speed bit time of Idle state and then exit from this state to the Enabledstate.

Since the driven SEO period should be offixed length, the SendEORtimer, if shared, should not be reset. If
the hub implementation shares the SendEORtimingcircuits between ports, then for a port with a low-speed
device attached, the Resumingstate should not end until an SOF (orother FS token) has been received (see
Section 11.8.4.1 for Keep-alive generation rules).

11.5.1.12 Restart_S
A port enters the Restart_S state from the Suspended state when an SEOor‘K’is seen at the port and the
Receiveris in the Suspendedstate.

In this state, the port continuously monitors the bus state. If the bus is in the ‘K’ state for at least TDDIS,the
port sets the C_PORT_SUSPENDbit, exits to the TransmitR, and generates a signal to the repeater called
‘TrueRWU’. If the busis in the ‘SEO’ state for at least TDDIS,the port exits to the Disconnectedstate.
Either of these transitions must happen within 900 ps after entering the Restart_S state; otherwise, the port
musttransition back to the Suspendedstate.

11.5.1.13 Restart_E

A port enters the Restart_E state from the Enabled state when an ‘SEO’ or‘K’ is seen at the port and the
Receiver is in the Suspended state.

In this state, the port continuously monitorsthe busstate. If the busis in the ‘K’state for at least TDDIS,the
port exits to the TransmitR state and generates a signal to the repeater called ‘TrueRWU’.If the busis in the
‘SEO’ state for at least TDDIS,the port exits to the Disconnected state. Either of these transitions must
happen within 900 us after entering the Restart_E state; otherwise the port musttransition back to the
Enabled state.

11.5.1.14 Testing
A port transitionsto this state from any state when the port sees SetTest.

While in this state, the port executes the host command as decoded by the hub controller. If the command
was a SetPortFeature(PORT_TEST, Test_Force_Enable), the port supports packet connectivity in the
downstream direction in a manneridentical to that whenthe port is in the Enabledstate.

11.5.2 Disconnect Detect Timer

11.5.2.1 High-speed Disconnect Detection
High-speed disconnect detection is described in Section 7.1.7.3.

315

ZTE/SAMSUNG 1008-0343

IPR2018-00110

ZTE/SAMSUNG 1008-0344
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.5.2.2 Full-/low-speed Disconnect Detection

Eachport is required to have a timer used for detecting disconnect whena full-/low-speed device is attached
to the port. This timer is used to constantly monitor the port’s single-ended receivers to detect a disconnect
event. The reason for constant monitoringis that a noise event on the bus can cause the attached device to
detect a reset condition on the bus after 2.5 us of SEO or SE] on the bus. If the hub doesnot place theport in
the disconnect state before the deviceresets, then the device can be at the Default Address state with the port
enabled. This can cause systemserrors that are very difficult to isolate and correct.

This timer must be reset whenever the D+ and D-lines on the port are not in the SEO or SE] state or when
the port is not in the Enabled, Suspended, Disabled, Restart-E, or Restart_S states. This timer must be reset
for 4ms upon entry to the Suspended and Disabled states. This timer times an interval TDDIS. The range of
TDDISis 2.0 [ts to 2.5 as defined in Table 7-13. Whenthis timer expires, it generates the
Disconnect_Detect signal to the port state machine.

This timer can also be usedforfiltering the K/SEO signal in the Suspended, Restart_E, or Restart_S states as
described in Section 11.5.1.

11.5.3 Port Indicator

Each downstream facing port of a hub can support an optionalstatus indicator. The presenceofindicators
for downstream facing ports is specified by bit 7 of the wHubCharacteristics field of the hub class
descriptor. Each port’s indicator must be located in a position that obviously associates the indicator with
the port. The indicator provides two colors: green and amber. This can be implementedas physically one
LED with two color capability or two separate LEDs. A combination of hardware and software controlis
used to inform the user of the current status of the port or the device attached to the port and to guide the
user through problem resolution. Colors and blinking are used to provide informationto theuser.

An external hub must automatically control the color of the indicator as specified in Figure 11-11.
Automatic port indicator setting support for root hubs may be implemented with either hardware or
software. The port indicator color selector value is zero (indicating automatic control) when the hub
transitions to the configured device state. When the hub is suspended or not configured, port indicators
must beoff.

Table 11-6 identifies the mapping ofcolor to port state when the port indicators are automatically
controlled.

Table 11-6. Automatic Port State to Port Indicator Color Mapping

Power Downstream Facing Hub Port State
Switching

Powered-off Disconnected, Disabled, Not|Enabled, Suspended,
Configured, Resetting, Transmit, or Resuming,
Testing TransmitR SendEOR,

Restart_E, or
Restart_S

Off or amberif due
to an over-current

condition

Off or amberif due to an over-
current condition

316

ZTE/SAMSUNG 1008-0344

IPR2018-00110

ZTE/SAMSUNG 1008-0345
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Automatic

Mode NN
Enabled or Transmit or TransmitR

SetPortFeature

(PORT_INDICATOR,
indicator selector != 0)

! (Enabled or Transmit or TransmitR)
and PORT_OVER_CURRENT!= 1

 PORT_OVER_CURRENT= |

NPORT_OVER_CURRENT= 1
SetPortFeature

(PORT_INDICATOR,
indicatorselector = 0)

 SetPortFeature

WN (PORT_POWER)SS

NOF
Figure 11-11. Port Indicator State Diagram

In Manual Modethecolor ofa port indicator (Amber, Green, or Off) is set by a system software USB Hub
class request. In Automatic Modethe color ofa port indicator is set by the port state information.

Table 11-7 defines port state as understood bythe user.

Table 11-7. Port Indicator Color Definitions

a
Not operational

Error condition

Green Fully operational

Blinking Software attention

Off/Green

Blinking Hardwareattention

Off/Amber

Blinking Reserved

Green/Amber

Notethat the indicators reflect the status of the port, not necessarily the device attachedto it. Blinking of
the indicator is used to draw the user’s attentionto the port, irrespectiveofits color.

317

ZTE/SAMSUNG 1008-0345

IPR2018-00110

ZTE/SAMSUNG 1008-0346
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Port indicators allow control by software. Host software forces the state of the indicator to draw attention to
the port or to indicate the current state ofthe port.

See Section 11.24.2.7.1.10 for the specification of indicator requests.

11.5.3.1 Labeling
USBsystem software uses port numbersto reference an individual port with a ClearPortFeature or
SetPortFeature request. If a vendor provides a labeling to identify individual downstream facing ports, then
each port connector must be labeled with their respective port number.

11.6 Upstream Facing Port
The upstream facing port has four components: transmitter, transmitter state machine, receiver, and receiver
state machine. The transmitter and its state machine are the Transmitter, while the receiver andits state
machine are the Receiver. The Transmitter and Receiver operate in high-speed and full-speed depending on
the current hub configuration.

11.6.1 Full-speed
Both the transmitter and receiver have differential and single-ended components. Thedifferential
transmitter and receiver can send/receive ‘J’ or K’ to/from the bus while the single-ended components are
used to send/receive SEO, suspend, and resumesignaling. The single-ended componentsare also used to
receive SE1. In this section, whenit is necessary to differentiate the signals sent/received by the differential
componentofthe transmitter/receiver from those of the single-ended components, DJ and DK will be used
to denote the differential signal, while SJ, SK, SEO, and SE] will be used for the single-endedsignals.

When the Hub Repeater has connectivity in the upstream direction, the transmitter must not send or
propagate SE] signaling. Instead, the SE] must be propagated as a DJ.

11.6.2 High-speed
Both the transmitter and receiver have differential components only. These signals are called HJ and HK.
The HS_Idle stateis the idle state of the bus in high-speed.

It is assumed that the differential transmitter and receiver are turned off during suspend to minimize power
consumption. The single-ended componentsare left on at all times, as they will take minimal power.

11.6.3 Receiver

Thereceiver state machineis responsible for monitoring the signaling state of the upstream connection to
detect long-term signaling events such as bus reset, resume, and suspend. This state machine details the
operation of the device state diagram shownin Figure 9-1 in the Default, Address, Configured, and
Suspended state. The Suspend, Resume, and ReceivingSE0states are only used whenthe upstream facing
port is operating in full-speed mode with full-speed terminations. The ReceivingIS, ReceivingHJ, and
ReceivingHKstates are only used when the upstream facing port is operating in high-speed mode with high-
speed terminations; so these states are categorized as the HS (high-speed) states, andall other states are
categorized as nonHSin the description below.

318

ZTE/SAMSUNG 1008-0346

IPR2018-00110

ZTE/SAMSUNG 1008-0347
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Figure 11-12 illustrates the state transition diagram.

Tx_active
State Machine Exports:

Rx_Bus_Reset(Bus_Reset)
Rx_Suspend(Suspend)
Rx_Resume(Resume)
EOITR

 a
er

U

= Logical OR
& = Logical AND
! = Logical NOT

ReceivingSEO |______»|

Bus Reset |

HS &EOR

EO! & !HS_Idle

EO! & HS_Idle

Figure 11-12. Upstream Facing Port Receiver State Machine

Table 11-8 defines the signals and events referencedin the figures.

319

ZTE/SAMSUNG 1008-0347

IPR2018-00110

ZTE/SAMSUNG 1008-0348
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 11-8. Upstream Facing Port Receiver Signal/Event Definitions

Signal/Event Event/Signal Description
Name Source

HS Internal Port is operating in high-speed

Tx_active Transmitter Transmitter in the Active state

J Internal Receiving a ‘J' (IDLE) or an ‘SE1’ on the upstream facing port

HJ Internal Receiving an HJ on the upstream facing port

Internal Endoftimed interval

Internal Generated 24 full-speed bit times after the K->SEOtransition
at the end of resume

HK, K Internal Receiving an HK,'K' on the upstream facing port

Tx_resume Transmitter Transmitter is in the Sresumestate

HS_lIdle Internal Receiving an Idle state on the high-speed upstream facing
port

Internal Receiving an SEO onthefull-speed upstream facing port

Internal Endof Reset signaling from upstream

Implementation-|Power_On_Reset
dependent

11.6.3.1 ReceivinglS

This state is entered

e From the ReceivingHJ or ReceivingHK state when a SEOis seen at the port andthe port is in high-
speed operation

e From the Resumestate when a EOITR is seen andthe port is in high-speed operation

e From the BusReset state at the End of Reset signaling from upstream whenthe port is in high-speed
operation

This is a timed state with an interval of 3 ms. The timeris reset each timethis state is entered.

11.6.3.2 ReceivingHJ
This state is entered from an HSstate when a HJis seen on the bus.

11.6.3.3 ReceivingJ
This state is entered from a nonHSstate except the Suspendstate if the receiver detects an SJ (or Idle) or
SE1 condition on the bus or while the Transmitter is in the Activestate.

This is a timed state with an interval of 3 ms. The timeris reset each timethis state is entered.

The timer only advancesif the Transmitteris in the Inactive state.

320

ZTE/SAMSUNG 1008-0348

IPR2018-00110

ZTE/SAMSUNG 1008-0349
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.6.3.4 Suspend
This state is entered when:

e The 3 mstimer expires in the Receiving]

e The 3 ms timerexpires in the ReceivinglS state and the port has removedits high-speed
terminations and connected its D+ pull-up resistor and the resulting bus state is not SEO.

Whenthe Receiver enters this state, the Hub Controller starts a 2 ms timer. If that timer expires while the
Receiveris still in this state, then the Hub Controller is suspended. When the Hub Controlleris suspended,
it may generate resume signaling.

11.6.3.5 ReceivingHK
This state is entered from an HS state when a HK is seen on the bus.

11.6.3.6 ReceivingK
This state is entered from any nonHSstate except the Resumestate when the receiver detects an SK
condition on the bus and the Hub Repeateris in the WFSOP or WFSOPFUstate.

This is a timed state with a duration of 2.5 tls to 100 ls. The timeris reset each timethis state starts.

11.6.3.7 Resume

This state is entered:

e From the ReceivingK state when the timer expires

e« From the Suspendstate while the Transmitter is in the Sresumestate orif thereis a transition to the
K state on the upstream facing port

If the hub enters this state whenits timing referenceis not available, the hub may remainin this state until
the hub’s timing reference becomesstable (timing references muststabilize in less than 10 ms). If this state
is being held pending stabilization of the hub’s clock, the Receiver must provide a K to the repeater for
propagation to the downstream facing ports. When clocksare stable, the Receiver must repeat the incoming
signals.

Note: Hub timing references will be stable in less than 10 ms since reset requirements already specify that
they be stable in less than 10 ms and a hub must support reset from suspend.

11.6.3.8 ReceivingSE0O

This state is entered from any nonHSstate except Bus_Reset when the receiver detects an SEO condition
and the Hub Repeateris in the WFSOP or WFSOPFUstate.

This is a timed state. The minimum intervalfor this state is 2.5 us. The maximum dependson the hub but
this interval must timeout early enough such that if the width of the SEO on the upstream facingport is only
10 ms, the Receiver will enter the Bus_Reset state with sufficient time remaining in the 10 ms interval for
the hub to complete its reset processing. Furthermore, if the hub is suspended whenthe Receiverenters this
state, the hub must be ableto start its clocks, time this interval, and completeits reset (chirp) protocol and
processing in the Bus_Reset state within 10 ms. It is preferred that this interval be as long as possible given
the constraints listed here. This will provide for the maximum immunity to noise on the upstream facing
port and reducethe probability that the device will reset in the presence of noise before the upstream hub
disables the port.

Thetimeris reset each time this state starts.

321

ZTE/SAMSUNG 1008-0349

IPR2018-00110

ZTE/SAMSUNG 1008-0350
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.6.3.9 Bus_Reset
This state is entered:

e From the ReceivingSEO state when the timer expires. As long as the port continues to receive SEO, the
Receiver will remain in this state.

e This state is also entered while power-on-reset (POR)is being generated by the hub’s localcircuitry.
The state machine cannotexit this state while PORis active.

e The 3 mstimer expires in the ReceivingIS state and the port has removedits high-speed terminations
and connected its D+ pull-up resistor and the resulting busstate is still SEO.

In this state, a high-speed capable port will implementthe chirp signaling, handshake, and timing protocol
as described in Section 7.1.7.5.

11.6.4 Transmitter

This state machine is used to monitor the upstream facing port while the Hub Repeater has connectivity in
the upstream direction. The purpose of this monitoringactivity is to prevent propagation of erroneous
indications in the upstream direction. In particular, this machine prevents babble and disconnect events on
the downstream facing ports of this hub from propagating and causing this hub to be disabled or
disconnected by the hub to which it is attached. Figure 11-13 is the transmitter state transition diagram.
Table 11-9 defines the signals and events referenced in Figure 11-13.

Rx_Bus_Reset

Inactive

WFEOP & !Rx_Suspend

State Machine Exports:

Tx_Active(Active)
Tx_Resume(Sresume)

HS&(EOF 1#
HEOP)
EOF1&!HS

 SEQsent

EOF1&!HS

= Logical OR

& = Logical AND

! = Logical NOT

GEOPTU

Figure 11-13, Upstream Facing Port Transmitter State Machine

Rx_Suspend &
Rptr_WFEOP

322

ZTE/SAMSUNG 1008-0350

IPR2018-00110

ZTE/SAMSUNG 1008-0351
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 11-9. Upstream Facing Port Transmit Signal/Event Definitions

Signal/Event Event/Signal Description
Name Source

Rx_Bus_Reset Receiver

Receiveris in the Bus_Resetstate

Hub (micro)frame time has reached the EOF1 point oris
between EOF1 and the end of the (micro)frame

J Internal

Rptr_WFEOP Hub Repeater

K

Transmitter transitions to sending a ‘J’ and transmits a ‘J’
 EOF1 (micro)frame

Timer

Hub Repeateris in the WFOEPstate

Internal Transmitter transmits a 'K’

 SEOsent Internal At least one bit time of SEO has been sent through the

transmitter

 Rx_Suspend Receiver Receiveris in Suspend state

 Repeater Completion of packet transmission in upstream direction

Internal Upstream facing port is operating as high-speed port

Internal End oftimed interval

11.6.4.1 Inactive

This state is entered at the end of the SendJ state or while the Receiver is in the Bus_Reset state. This state
is also entered at the end of the Sresumestate. While the transmitteris in this state, both the differential and

single-ended transmit circuits are disabled andplaced in their high-impedancestate.

Whenport is operating as a high-speed port, this state is entered from the Active state at EOF1or after an
HEOPfrom downstream.

11.6.4.2 Active

This state is entered from the Inactive state when the Hub Repeatertransitions to the WFEOPstate. This
state is entered from the RepeatingSEOstate if the first transition after the SEO is not to the J state. In this
state, the data from a downstream facing port is repeated and transmitted on the upstream facing port.

11.6.4.3 RepeatingSE0
The port enters this state from the Active state when onebit time of SEO has been sent on the upstream
facing port. While in this state, the transmitteris still active and downstream signaling is repeated on the
port. This is a timed state with a duration of 23 full-speed bit times.

11.6.4.4 SendJ

The port enters this state from the RepeatingSE0state if either the bit timer reaches 23 or the repeated
signaling changes from SEO to 'J' or ‘SE1’. This state is also entered at the end of the GEOPTU state. This
state lasts for one full-speed bit time. During this state, the hub drives an SJ on the port.

323

ZTE/SAMSUNG 1008-0351

IPR2018-00110

ZTE/SAMSUNG 1008-0352
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.6.4.5 Generate End of Packet Towards Upstream Port (GEOPTU)
Theport enters this state from the Active or RepeatingSEOstate if the frame timer reaches the EOF1 point.

In this state, the port transmits SEO for twofull-speedbit times.

11.6.4.6 Send Resume (Sresume)

Theport enters this state from the Inactive state if the Receiver is in the Suspend state and the Hub Repeater
transitions to the WFEOPstate. This indicates that a downstream device(or the port to the Hub Controller)
has generated resumesignaling causing upstream connectivity to be established.

Onentering this state, the hub will restart clocks if they had been turned off during the Suspendstate.
While in this state, the Transmitter will drive a K’ on the upstream facing port. While the Transmitteris in
this state, the Receiver is held in the Resumestate. While the Receiveris in the Resumestate,all
downstream facing ports that are in the Enabledstate are placed in the TransmitR state and the resume on
this port is transmitted to those downstream facing ports.

Theport stays in this state for at least 1 ms but for no more than 15 ms.

11.7 Hub Repeater
The Hub Repeater provides the following functions:

e Sets up and tears down connectivity on packet boundaries

e Ensures orderly entry into and out of the Suspendstate, including proper handling of remote wakeups

11.7.1 High-speed Packet Connectivity

High-speed packet repeaters must reclock the packets in both directions. Reclocking meansthat the
repeater extracts the data from the received stream and retransmits the stream using its own local clock.
This is necessary in order to keep the jitter seen at a receiver within acceptable limits (see Chapter 7 for
definition and limits on jitter).

Reclocking creates several requirements which can be best understood with the example repeater signal path
shownin Figure 11-14.

= sales Port Selectorstate= machine
Xmt_stream

| aenvey ElasticityRev_stream Buffer

Rev_Clk

Xmt_Clk

Figure 11-14. Example Hub Repeater Organization

324

ZTE/SAMSUNG 1008-0352

IPR2018-00110

ZTE/SAMSUNG 1008-0353
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.7.1.1 Squelch Circuit

Because of squelch detection, the initial bits of the SYNC field may not be seen in the rest of the repeater.
At most, 4 bits of the SYNCfield may besacrificed in the entire repeater path.

The squelch circuit may take at most 4 bit times to disable the repeater after the busreturnsto the Idle state.
This results in bits being addedafter the end of the packet. This is also known as EOPdribble and up to
4 random bits may get added after the packet by the entire repeater path.

11.7.1.2 Data Recovery Unit
The data recovery unit extracts the receive clock and receive data from this stream. Note that this is a
conceptual model only; actual implementations (e.g., DLL) may achieve the reclocking by the local clock
without separation of the receive clock and data.

11.7.1.3 Elasticity Buffer
Thehalf-depth of the elasticity buffer in the repeater must be at least 12 bits.

The total latency of a packet through a repeater mustbe less than 36bit times. This includes the latency
through theelasticity buffer.

Theelasticity buffer is used to handle the difference in frequency between the receive clock and the local
clock and worksas follows. Theelasticity buffer is primed (filled with at least 12 bits) by the receive clock
before the data is clocked outofit by the transmit clock. If the transmit clock is faster than the receive
clock, the buffer will get emptied more quickly than it gets filled. If the transmit clock is slower, the buffer
will get emptied slowerthanit gets filled. Ifthe half-depth of the buffer is chosen to be equal to the
maximum difference in clock rate over the length of a packet, bits will not be lost or added to the packet.
The half-depth is calculated as follows.

The clock tolerance allowed is 500 ppm. This takes into account the effect of voltage, temperature, aging,
etc. So the received clock and the local clock could be different by 1000 ppm. The longest packet has a
data payload of 1 Kbytes. The maximum length of a packet is computed by adding the length ofall the
fields and assuming maximum bit-stuffing. This maximum length is 9644 bits (9624bits of packet + 20bits
of EOP dribble). This means that whenthe repeater is clocking out a packet with its local clock, it could get
ahead oforfall behind the receive clock by 9.644 bits (1000 ppm*9644). This calculation yields 10 bits.
The half-depth of the elasticity buffer in the repeater must be at least 12 bits to provide system timing
margin.

11.7.1.4 High-Speed Port Selector State Machine
This state machine is used to establish connectivity on a valid packet and to keep the repeater from
establishing connectivity from a port which is seeing noise. This state machine must implement the
behavior shownin Figure 11-15. (Note: This state machine may be implemented on a per-port or per-hub
basis.)

325

ZTE/SAMSUNG 1008-0353

IPR2018-00110

ZTE/SAMSUNG 1008-0354
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Rx_Bus_Reset
EBEmptied

Inactive Enable Transmit

 Squelch&EO!&!SORP

EOI&SORP

ISquelch&EOI&!SORP

 Squelch ! = Logical NOT

Kar eace &=Logical ANDot Packet
#=Logical OR

Figure 11-15. High-speed Port Selector State Machine

Table 11-10. High-speed Port Selector Signal/Event Definitions

Signal/Event Name|Event/Signal Description
Source

Rx_Bus_Reset Internal Receiveris in the Bus_resetstate.

EBEmptied Internal All bits accumulated in the elasticity buffer have been
transmitted.

Internal Endofinterval of time neededfor priming elasticity buffer

Squelch Internal Busis in squelch state

SORP Internal Start Of Repeating Pattern; a ‘JKJK’ or ‘KJKJ’ pattern has
been seenin datain elasticity buffer.

11.7.1.4.1 Inactive

This state is entered

e From the Enable Transmit state whenall the bits accumulated in the elasticity buffer have been

transmitted

e From the Primingstate if squelch is seen andthe elasticity buffer is primed without a SORP being seen

e From the Not Packet state when the squelch circuit indicates a squelch state on the port

« From on any state on RxBusReset

11.7.1.4.2 Priming
This state is entered from the Inactive state when the squelchcircuit indicates that valid signal levels have
been observedat the port. This is a timed state and the primingintervalis the time needed for the
implementation tofill the elasticity buffer with at least 12 bits.

326

ZTE/SAMSUNG 1008-0354

IPR2018-00110

ZTE/SAMSUNG 1008-0355
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.7.1.4.3 Enable Transmit

This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed and the
bits in the elasticity buffer include the SORP pattern.

In this state, the state machine generates a signal “start of high-speed packet” (SOHP)to the repeater state
machine whichallows the repeater to establish connectivity from this port to the upstream facing port (or
downstream facingports).

11.7.1.4.4 Not Packet

This state is entered from the Priming state when the Elasticity buffer priming interval has elapsed, and the
bits in the elasticity buffer do not include the SORP pattern, and the squelchsignal is not active.

11.7.2 Hub Repeater State Machine
The Hub repeater state machine in Figure 11-16 showsthe states and transitions needed to implement the
Hub Repeater. Table 11-11 defines the Hub Repeater signals and events. The following sections describe
the states and the transitions.

11.7.2.1 High-speed Repeater Operation

Connectivity is setup on SOHP and torn down on HEOP. (HEOPis either the EBemptied signal from the
port selector state machine ‘OR’ the EOI signal which causesthe transition out ofthe SendEORstate in
downstream facing port state machine.) Several of the state transitions below will occur when the HEOPis
seen. Whensucha transition is indicated, the transition does not occur until after the hub has repeated the
last bit in the elasticity buffer. Someofthe transitions are triggered by an SOHP. Transitions of this type
occur as soon as the hub detects the SOHP from the port selector state machine ensuring that a valid packet
start has been seen.

11.7.2.2 Full-/low-speed Repeater Operation
Connectivity is setup on SOP and torn down on EOP. Severalofthe state transitions below will occur when
the EOP is seen. When sucha transition is indicated, the transition does not occuruntil after the hub has
repeated the SEO-to-'J' transition and has driven 'J' for at least onebit time(bit time is determined by the
speed ofthe port.) Some ofthe transitions are triggered by an SOP. Transitions of this type occur as soon
as the hub detects the 'J'-to-'K' transition, ensuring that the initial edge of the SYNCfield is preserved.

327

ZTE/SAMSUNG 1008-0355

IPR2018-00110

ZTE/SAMSUNG 1008-0356
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.7.2.3 Repeater State Machine

328

|wrsorr| |wesorru|

UEOP& !Lock

 Rx_!a|WeEoPrU

—ot|wesor|

EOF2|wreor|

 UEOP & Lock

Rx_Suspend

State Machine Exports:

Rptr_WFEOP(WFEOP)
Rptr_WFSOPFU(WFSOPFU)
Rptr_Enter_WFEOPFU
Rptr_ExitWFEOPFU

= Logical OR

& = Logical AND

! = Logical NOT

Figure 11-16. Hub Repeater State Machine

ZTE/SAMSUNG 1008-0356

IPR2018-00110

ZTE/SAMSUNG 1008-0357
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 11-11. Hub Repeater Signal/Event Definitions

Signal/Event Event/Signal Description
Name Source

Rx_Bus_Reset|Receiver Receiveris in the Bus_Reset state

Three sources of HEOP:

Internal (Port selector,|EBEmptied signal from port selector state machine OR

Downstream port, transition at EO! from SendEORstate in downstream facing
port state machine OR

Upstream port
receiver) EOITR from upstream facing port receiver state machine

intemal|(HEOP)EOP received from the upstream facing port
|Generated whenthe Transmitter enters the (Inactive) SendJstate

(Micro)frame Timer (micro)frame timer is at the EOF2 point or between EOF2

and End-of-(micro)frame

(Micro)frame Timer (micro)frame timeris locked

Rx_Suspend Receiver Receiveris in the Suspend state

(Micro)frame Timer (micro)frame timer is at the EOF1 point or between EOF 1
and End-of-(micro)frame

Rx_Resume Receiver Receiveris in the Resume state

SOP_FD (SOHP)SOPreceived from downstream facing port or Hub
Controller. Generated (after SOHPidentified) on the
transition from the Idle to K state on a port.

SOP_FU Internal (SOHP)SOPreceived from upstream facing port.
Generated (after SOHPidentified) on the transition from the
Idle to K state on the upstream facing port.

11.7.3 Wait for Start of Packet from Upstream Port (WFSOPFU)

This state is entered in either of the followingsituations:

e From any other state when the upstream Receiveris in the BusReset state

e From the WFSOPstate if the (micro)frame timeris at or has passed the EOF] point

e From the WFEOPstate at the EOF2 point

e From the WFEOPFUif the (micro)frametimer is not synchronized (locked) when an (HEOP)EOPis
received on the upstream facing port

In this state, the hub is waiting for an (SOHP)SOPonthe upstream facing port, and transitions on
downstream facing ports are ignored by the Hub Repeater. While the Hub Repeateris in this state,
connectivity is not established.

329

ZTE/SAMSUNG 1008-0357

IPR2018-00110

ZTE/SAMSUNG 1008-0358
IPR2018-00110

11

11

11.

11

11

330

Universal Serial Bus Specification Revision 2.0

This state is used during the End-of-(micro)frame (past the EOF1 point) to ensure that the hub will be able
to receive the SOF whenitis sent by the host.

.7.4 Wait for End of Packet from Upstream Port (WFEOPFU)

The hub entersthis state if the hub is in the WFSOP or WFSOPFUstate and an (SOHP)SOPis detected on
the upstream facing port. The hub alsoentersthis state from the WFSOP, WFSOPFU, or WFEOPstates
whenthe Receiver enters the Resumestate.

While in this state, connectivity is established from the upstream facingport to all enabled downstream
facing ports. Downstream facing ports that are in the Enabled state are placed in the Transmit state on the
transition to this state.

.7.5 Wait for Start of Packet (WFSOP)
This state is entered in any ofthe following situations:

* From the WFEOPstate when an (HEOP)EOPis detected from the downstream facing port

® From the WFEOPFUstate ifthe (micro)frame timer is synchronized (locked) when an (HEOP)EOPis
received from upstream

e From the WFSOPFU or WFEOPFUstates when the upstream Receiver transitions to the Suspendstate

A hubin this state is waiting for an (SOHP)SOPon the upstream facing port or any downstream facing port
that is in the Enabled state. While the Hub Repeateris in this state, connectivity is not established.

7.6 Wait for End of Packet (WFEOP)
This state is entered from the WFSOPstate when an (SOHP)SOPis received from a downstream facing
port in the Enabledstate.

In this state, the hub has connectivity established in the upstream direction and the signaling received on an
enabled downstream facing port is repeated and driven on the upstream facing port. The upstream
Transmitter is placed in the Active state on the transition tothis state.

If the Hub Repeateris in this state when the EOF2pointis reached, the downstream facing port for which
connectivity is established is disabled as a babbleport.

Note: The full-speed Transmitter will send an EOP at EOF1, but the Repeater staysin this state until the
device sends an (HEOP)EOPor the EOF2pointis reached.

.8 Bus State Evaluation

A hub is required to evaluate the state of the connection on a port in order to make appropriate port state
transitions. This section describes the appropriate times and meansfor several of these evaluations.

.8.1 Port Error

A Port Error can occur on a downstream facing port that is in the Enabled state. A Port Error condition
exists when:

e The hubis in the WFEOPstate with connectivity established upstream from the port when the
(micro)frame timer reaches the EOF2point.

e« Atthe EOF2 point, the Hub Repeateris in the WFSOPFUstate, and there is other than Idle state on the
port.

ZTE/SAMSUNG 1008-0358

IPR2018-00110

ZTE/SAMSUNG 1008-0359
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

If upstream-directed connectivity is established when the (micro)frame timer reaches the EOF] point, the
upstream Transmitter will (return to Inactive state) generate a full-speed EOP to prevent the hub from being
disabled by the upstream hub. The connected port is then disabled if it has not ended the packet and
returned to the Idle state before the (micro)frame timer reaches the EOF2 point.

11.8.2 Speed Detection
At the end ofreset, the busis in the Idle state for the speed recorded in the port status register. Speed
detection is described in Section 7.1.7.5.

If the device connectedat the downstream facingport is high-speed, the repeater (rather than the
Transaction Translator) is used to signal between this port and the upstream facingport.

Due to connect andstart-up transients, the hub may notbeableto reliably determine the speed ofthe device
until the transients have ended. The USB System Software is required to "debounce" the connection and
provide a delay between the time a connection is detected and the device is used (see Section 7.1.7.3). At
the end of the debounceinterval, the device is expected to have placed its upstream facing port in the Idle
state and be able to react to reset signaling. The USB System Software must send a
SetPortFeature(PORT_RESET)request to the port to enable the port and makethe attached device ready for
use,

The downstream facing port monitors the state of the D+ and D- lines to determineifthe connected device
is low-speed. If so, the PORT_LOW_SPEEDstatusbit is set to one to indicate a low-speed device. If not,
the PORT_LOW_SPEEDstatusbit is set to zero to indicate a full-/high-speed device. Upon exit from the
reset process, the hub must set the PORT_HIGH_SPEEDstatusbit according to the detected speed. The
downstream facing port performs the required reset processing as defined in Section 7.1.7.5. At the end of
the Resetting state, the hub will return the busto the Idle state that is appropriate for the speed ofthe
attached device and transition to the Enabledstate.

11.8.3 Collision

If the Hub Repeateris in the WFEOPstate and an (SOHP)SOPis detected on another enabled port, a
Collision condition exists. There are two allowed behaviors for the hub in this instance. In either case,
connectivity teardown at EOF] and babble detection at EOF2is required.

Thefirst, and preferred, behavioris to ‘garble’ the messageso that the host can detect the problem. The hub
garbles the message by transmitting a (‘J’ or) 'K' on the upstream facing port. This (‘J’ or) 'K' should persist
until packet traffic from all downstream facing ports ends. The hub should use the last (‘J’ or ‘K’) EOP to
terminate the garbled packet. Babble detection is enabled during this garbled message.

A second behavior is to block the second packet and, whenthefirst message ends, return the hubto the
WFSOPFU or WFSOPstate as appropriate. If the second stream is still active, the hub may reestablish
connectivity upstream. This methodis not preferred, as it does not convey the problem to the host.
Additionally, if the second stream causesthe hubto reestablish upstream connectivity as the hostis trying to
establish downstream connectivity, additional packets can be lost and the host cannot properly associate the
problem.

Note: In high-speed repeaters, use of the SOHPto detect collisions would need replication of the datapath
shownin Figure 11-14 at every port. The unsquelch signalat a port can be used instead of the SOHP to
detectcollisions; in this case, the second behavior (blocking) described above mustbe used.

11.8.4 Low-speed Port Behavior
Whena hubis configured for full-/low-speed operation, low-speed data is sent or received through the hub’s
upstream facing port at full-speed signaling even though the bit times are low-speed.

Full-speed signaling must not be transmitted to low-speed ports.

331

ZTE/SAMSUNG 1008-0359

IPR2018-00110

ZTE/SAMSUNG 1008-0360
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

If a port is detected to be attached to a low-speed device, the hub port’s output buffers are configured to
operate at the slow slew rate (75-300 ns), and the port will not propagate downstream-directed packets
unless they are prefaced with a PRE PID. When a PRE PIDisreceived, the ‘J’ state must be driven on
enabled low-speed ports within four bit times of receiving the last bit of the PRE PID.

Low-speed data follows the PID andis propagated to both low- and full-speed devices. Hubs continue to
propagate downstream signaling to all enabled ports until a downstream EOPis detected, at which timeall
output drivers are turnedoff.

Full-speed devices will not misinterpret low-speed traffic because no low-speed data pattern can generate a
valid full-speed PID.

When a low-speed device transmits, it does not preface its data packet with a PRE PID. Hubswill
propagate upstream-directed packets of full-/low-speed using full-speed signaling polarity and edgerates.

For both upstream and downstream low-speed data, the hub is responsible for inverting the polarity ofthe
data before transmitting to/from a low-speed port.

Although a low-speed device will send a low-speed EOPto properly terminate a packet, a hub may truncate
a low-speed packet at the EOF] point with a full-speed EOP. Thus, hubs must alwaysbeable to tear down
connectivity in response to a full-speed EOP regardless of the data rate of the packet.

Becauseofthe slow transitions on low-speed ports, when the D+ and D-signallines are switching between
the 'J' and 'K', they may both be below 2.0 V for a period of timethat is longer than a full-speed bit time. A
hub mustensurethat these slow transitions do not result in termination of connectivity and must not result in
an SEO being sent upstream.

11.8.4.1 Low-speed Keep-alive

All hub ports to which low-speed devices are connected must generate a low-speed keep-alive strobe,
generated at the beginning ofthe frame, which consists of a valid low-speed EOP (described in
Section 7.1.13.2). The strobe must be generated at least once in each frame in which an SOFis received.
This strobe is used to prevent low-speed devices from suspendingif there is no other low-speed traffic on the
bus. The hub can generate the keep-alive on any valid full-speed token packet. The following rules for
generation of a low-speed keep-alive must be adhered to:

e A keep-alive must minimally be derived from each SOF. It is recommendedthat a keep-alive be
generated on any valid full-speed token.

« The keep-alive muststart by the eighth bit after the PID ofthe full-speed token.

11.9 Suspend and Resume

Hubs must support suspend and resume both as a USB device andin terms of propagating suspend and
resume signaling. Hubs support both global and selective suspend and resume. Global andselective
suspend are defined in Section 7.1.7.6. Global suspend/resumerefers to the entire bus being suspended or
resumed without affecting any hub’s downstream facing port states; selective suspend/resumerefers to a
downstream facing port of a hub being suspended or resumed withoutaffecting the hub state. Global
suspend/resume is implemented through the root port(s) at the host. Selective suspend/resumeis
implemented via requests to a hub. Device-initiated resume is called remote-wakeup(see Section 7.1.7.7).

If the hub upstream facingport is in (high-speed) full-speed, the required behavioris the sameas that for a
function with upstream facing port in (high-speed) full-speed and is described in Chapter 7.

When a downstream facing port operating at high-speed goes into the Suspendedstate, it switchesto full-
speed terminations but continues to have high-speed port status. In response to a remote wakeup or
selective resume, this port will drive full-speed ‘K’ throughout its Resuming state. The requirements and
timings are the sameas for full-speed ports and described below. At the endofthis signaling, the bus will

332

ZTE/SAMSUNG 1008-0360

IPR2018-00110

ZTE/SAMSUNG 1008-0361
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

be returned to the high-speed Idle state (using the SendEORstate). After this, the port will return to the
Enabled state. The high-speed status of the port is maintained throughout the suspend-resumecycle.

Figure 11-17 and Figure 11-18 show thetiming relationships for an example remote-wakeup sequence.
This example illustrates a device initiating resume signaling through a suspended hub (‘B’) to an awake hub
(‘A’). Hub ‘A’ in this example times and completes the resume sequence and is the "Controlling Hub".
The timings and events are defined in Section 7.1.7.7.

Fulllow speed Bus driving
Full/low speed Busdriving —
repeat

oo---== Full/low speed BusIdle or
Everything driven at other endbelow Hub ‘A’ ‘ :

i oy 5 in Suspend _.eee High speedidle stateontrolling Hu state
(orun) : i ; Controlling Hub Drives Resume (DS) ; Controlling Hub

20ms (nominal) sends EOR ending* resume Controlling Hub sSSeeet<
suspended DS Idle (‘J"):
Pore uariaiatreaaca — ee asi i i i ;

: > Lg Controlling Hub Reflects ResumeHub a (DS) 900)1s
Upstream i 3 iPort : i Hub ‘B' generates

i EOP ending resume

Idle (‘J")Enabled DS

~ Hub Ports. t
: Hub‘B'Drives Reslime (US and DS)
; fe.g., 1Dms]

i i i i i
Device ; i i i i i
Hub Port oe i@}— Hub‘8’ Reflects Resume (US and DS) i

i i 900s i
Device feo

AT A idle (‘J")Seabee reonoee jepdew sickens
Reni > i i ~<—- Device Drives Resumei i i i i e.g,, 10ms] :
Wakeup foi fr: tyi fs: tei f] tsi

Figure 11-17. Example Remote-wakeup Resume Signaling With Full-/low-speed Device

333

ZTE/SAMSUNG 1008-0361

IPR2018-00110

ZTE/SAMSUNG 1008-0362
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Full/low speed Bus driving
Full/low speed Bus driving —
repeat
Full/low speed BusIdle or

CO cores ‘a! driven at other end
c ene Ar in Suspend High speedidle stateontrolling Hub tat ;

(9) stare : ; ; Controlling Hub Drives Resume (DS) ; Controlling Hub
: i > 20ms (nominal) << sends EOR ending

ControllingHub=------foneah — ‘ teeyme
suspended DS Idle (W): i E REnuINNSs ; idlePort : : : i

; pi « Conkssttng Hub Reflects ResumeHub i i (DS) 900u5
A sUpstream i iPort i

Enabled DS Idle (J): idle
“Knupports9------smelt ' :

i i i - Hub ‘B’ Drives Resiime (US and DS)

poor ot i | [e.g., 1pms]
I i i i i i
| Device ii Hub Port ol He ‘B’ Reflects Resunie (US and DS)' : s00us

oer Device Sia=SeerSeieee4 5idle Device ee > i i <0fedis Drives Resumei i i ; i e.g., 10ms.
Wakeup ti ty tel ga fan ts!

Figure 11-18. Example Remote-wakeup ResumeSignaling With High-speed Device

Hereis an explanation of what happensat each t,:

Suspended device initiates remote-wakeup by driving a K’on the data lines.

Suspended hub‘B’ detects the ‘K’ on its downstream facing port and wakes up enough within 900 Lis
to filter and then reflect the resume upstream and downthroughall enabled ports.

Hub‘A’ is not suspended (implicationis that the port at which ‘B’is attachedis selectively
suspended), detects the ‘K’ on the selectively suspended port where ‘B’is attached, andfilters and
then reflects the resume signal back to ‘B’ within 900 us.

t, Device ceases driving ‘K’ upstream.

Hub‘B’ceases driving ‘K’ upstream and downall enabled ports and begins repeating upstream
signaling to all enabled downstream facing ports.

Hub‘A’ completes resume sequence, after appropriate timing interval, by driving a speed-appropriate
end of resume downstream. (End of resumewill be an Idle state for a high-speed device or a low-
speed EOPfora full-/low-speed device.)

The hubreflection time is much smaller than the minimum duration a USB device will drive resume

upstream. This relationship guarantees that resume will be propagated upstream and downstream without
any gaps.

11.10 Hub Reset Behavior

Reset signaling to a hub is defined only in the downstream direction, whichis at the hub's upstream facing
port. Reset signaling required of the hub is described in Section 7.1.7.5.

A suspended hub must interpret the start of reset as a wakeup event; it must be awake and have completed
its reset sequence by the end ofreset signaling.

334

ZTE/SAMSUNG 1008-0362

IPR2018-00110

ZTE/SAMSUNG 1008-0363
IPR2018-00110

11

11

Universal Serial Bus Specification Revision 2.0

After completion ofthe reset sequence, a hub is in the followingstate:

e Hub Controller default addressis 0.

* Hubstatus changebits are set to zero.

e Hub Repeateris in the WFSOPFUstate.

e Transmitter is in the Inactivestate.

e Downstream facing ports are in the Not Configured state and SEO driven on all downstream facing
ports.

-11 Hub Port Power Control

Self-powered hubs may have powerswitches that control delivery of power downstream facing ports butit
is not required. Bus-powered hubs are required to have power switches. A hub with power switches can
switch powerto all ports as a group/gang,to each port individually, or have an arbitrary numberofgangs of
one or moreports.

A hubindicates whether ornot it supports power switching by the setting ofthe Logical Power Switching
Modefield in wHubCharacteristics. If a hub supports per-port power switching, then the powerto a port is
turned on when a SetPortFeature(PORT_POWER)requestis received for the port. Port poweris turned off
when theport is in the Powered-off or Not Configured states. If a hub supports ganged powerswitching,
then the powerto all ports in a gang is turned on when any port in a gang receives a
SetPortFeature(PORT_POWER) request. The powerto a gang is not turned off unlessall ports in a gang
are in the Powered-off or Not Configured states. Note, the power to a port is not turned on by a
SetPortFeature(PORT_POWER)if both C_HUB_LOCALPOWERand Local PowerStatus (in
wHubStatus) are set to 1B at the time when the requestis executed and the PORT_POWERfeature would
be turned on.

Although a self-powered hubis not required to implement powerswitching, the hub must support the
Powered-off state for all ports. Additionally, the hub must implement the PortPwrCtr/Mask (all bits set to
1B) even though the hub has no powerswitches that can be controlled by the USB System Software.

Note: To ensure compatibility with previous versions of USB Software, hubs must implement the Logical
Power Switching Modefield in wHubCharacteristics. This is because some versions of SW will not use the
SetPortFeature() request if the hub indicates in wHubCharacteristics that the port does not support port
powerswitching. Otherwise, the Logical Power Switching Modefield in wHubCharacteristics would have
becomeredundantas of this version ofthe specification.

Thesetting of the Logical Power Switching Mode for hubs with no power switches shouldreflect the
mannerin which over-current is reported. For example, if the hub reports over-current conditions on a per-
port basis, then the Logical Power Switching Mode shouldbe set to indicate that power switchingis
controlled on a per-port basis.

For a hub with no powerswitches, bPwrOn2PwrGood must beset to zero.

.11.1 Multiple Gangs
A hub may implement any numberofpower and/or over-current gangs. A hub that implements more than
one over-current and/or power switching gang must set both the Logical Power Switching Mode and the
Over-current Reporting Modeto indicate that power switching and over-current reporting are on a per port
basis (these fields are in wHubCharacteristics). A\so, all bits in PortPwrCtr/Mask must be set to 1B.

Whenan over-current condition occurs on an over-current protection device, the over-currentis signaled on
all ports that are protected by that device. When the over-currentis signaled,all the ports in the group are
placed in the Powered-off state, and the C_PORT_OVER-CURRENTfieldis set to 1B on all the ports.
Whenport status is read from any-port in the group, the PORT_OVER-CURRENTfield will be set to 1B as

335

ZTE/SAMSUNG 1008-0363

IPR2018-00110

ZTE/SAMSUNG 1008-0364
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

long as the over-current condition exists. The C_LPORT_OVER-CURRENTfield must be cleared in each
port individually.

When multiple ports share a power switch, setting PORT_POWERonanyport in the group will cause the
powerto all ports in the group to turn on. It will not, however, cause the other ports in that group to leave
the Powered-off state. Whenall the ports in a group are in the Powered-off state or the hubis not
configured, the powerto the ports is tumed off.

If a hub implements both power switching and over-current, it is not necessary for the over-current groups
to be the same as the power switching groups.

If an over-current condition occurs and powerswitches are present, then all power switches associated with
an over-current protection circuit must be turned off. If multiple over-current protection devices are
associated with a single power switch then that switch will be tumed offwhen any of the over-current
protectioncircuits indicates an over-current condition.

11.12 Hub Controller

The Hub Controller is logically organized as shownin Figure 11-19.

UPSTREAM CONNECTION

ENDPOINT0:

Configuration
Information

Status Change
Endpoint

 Port 2 Port 3

Figure 11-19. Example Hub Controller Organization

11.12.1 Endpoint Organization
The Hub Class defines one additional endpoint beyond Default Control Pipe, which is required for all hubs:
the Status Change endpoint. The host system receives port and hub status changenotifications through the
Status Change endpoint. The Status Change endpoint is an interrupt endpoint. If no huborport status
changebits are set, then the hub returns an NAK whenthe Status Change endpoint is polled. Whena status
changebit is set, the hub responds with data, as shown in Section 11.12.4, indicating the entity (hub or port)
with a changebit set. The USB System Software can use this data to determine which status registers to
access in order to determine the exact cause of the status changeinterrupt.

336

ZTE/SAMSUNG 1008-0364

IPR2018-00110

ZTE/SAMSUNG 1008-0365
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.12.2 Hub Information Architecture and Operation
Figure 11-20 shows howstatus, status change, and control information relate to device states. Hub
descriptors and Hub/Port Status and Control are accessible through the Default Control Pipe. The Hub
descriptors may be read at any time. When a hub detects a change on a port or whenthe hub changesits
ownstate, the Status Change endpoint transfers data to the host in the form specified in Section 11.12.4.

Huborport status changebits can be set because of hardware or Software events. Whenset, these bits
remainset until cleared directly by the USB System Software through a ClearPortFeature() request or by a
hub reset. While a changebitis set, the hub continues to report a status change whenpolleduntil all change
bits have been cleared by the USB System Software.

3 Status Information
ig (static) Hardware Events —
2
22oS

z a
8 Change Information
+ (due to hardware
2 events)

Change Device
State

ControlInformation
(change device state) Control

Figure 11-20. Relationship of Status, Status Change, and Control Information to Device States

Device Control

The USB System Softwareuses the interrupt pipe associated with the Status Change endpointto detect
changesin hub andport status.

11.12.3 Port Change Information Processing

Hubsreport a port’s status through port commands onaper-port basis. The USB System Software
acknowledges a port change by clearing the changestate correspondingto the status change reported by the
hub. The acknowledgmentclears the changestate for that port so future data transfers to the Status Change
endpoint do not report the previous event. This allows the process to repeat for further changes (see
Figure 11-21).

337

ZTE/SAMSUNG 1008-0365

IPR2018-00110

ZTE/SAMSUNG 1008-0366
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

System Software requests Interrupt Pipe notification for Status Change Information

Hub NAKs

status change
IN token

Yes

Interrupt Pipe returns Hub and Port Status Change Bitmap

Interrupt Pipe notification retired

System Software reads Hubor Port status (for affected ports)

Yes

 Change Data

Available ?

Any Changed * Accumulate change information
State? « System Software clears

corresponding changestate

No

System Software processes accumulated change information

Re-initialize Interrupt Pipe for Status Change endpoint

Return to

beginning

Figure 11-21. Port Status Handling Method

11.12.4 Hub and Port Status Change Bitmap
The Hub and Port Status Change Bitmap, shownin Figure 11-22, indicates whether the hub or a port has
experienced a status change. This bitmap also indicates which port(s) has had a change in status. The hub
returns this value on the Status Change endpoint. Hubsreport this value in byte-increments. Thatis, ifa
hub has six ports, it returns a byte quantity, and reports a zero in the invalid port numberfield locations.
The USB System Software is aware of the numberof ports on a hub (this is reported in the hub descriptor)
and decodes the Hub and Port Status Change Bitmap accordingly. The hub reports any changes in hub
status in bit zero of the Hub and Port Status Change Bitmap.

The Hub and Port Status Change Bitmap size varies from a minimum size of one byte. Hubs report only as
manybits as there are ports on the hub,subject to the byte-granularity requirement(i.e., round up to the
nearest byte).

338

ZTE/SAMSUNG 1008-0366

IPR2018-00110

ZTE/SAMSUNG 1008-0367
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

onnnelas

Port N change detected

Port 2 change detected
Port 1 change detected

Hub change detected

Figure 11-22. Hub and Port Status Change Bitmap

Any time the Status Change endpoint is polled by the host controller and any of the Status Changedbits are
non-zero, the Hub and Port Status Change Bitmapis returned. Figure 11-23 shows an example creation
mechanism for hub and port changebits.

Por-Port Logic

Logical OR

Change
nformation

Change
Detect Logia

— -<
Se
|

N

Figure 11-23. Example Hub and Port Change Bit Sampling

11.12.5 Over-current Reporting and Recovery
USB devices must be designed to meet applicable safety standards. Usually, this will mean that a self-
powered hub implementcurrent limiting on its downstream facing ports. If an over-current condition
occurs, it causes a status and state change in one or more ports. This change is reported to the USB System
Software so that it can take corrective action.

A hub maybe designedto report over-currentas either a port or a hub event. The hub descriptorfield
wHubCharacteristics is used to indicate the reporting capabilities of a particular hub (see Section 11.23.2).
The over-current status bit in the hub orport status field indicates the state ofthe over-current detection
whenthe status is returned. The over-current status changebit in the Hub or Port Changefield indicates if
the over-current status has changed.

Whena hub experiences an over-current condition, it must place all affected ports in the Powered-offstate.
If a hub has per-port power switching and per-port current limiting, an over-current on one port maystill

339

ZTE/SAMSUNG 1008-0367

IPR2018-00110

ZTE/SAMSUNG 1008-0368
IPR2018-00110

11

11

340

Universal Serial Bus Specification Revision 2.0

cause the poweron anotherport to fall below specified minimums. In this case, the affected port is placed
in the Powered-off state and CPORT_OVER_CURRENTissetforthe port, but
PORT_OVER_CURRENTisnotset. If the hub has over-current detection on a hub basis, then an over-
current condition on the hub will cause all ports to enter the Powered-off state. However,in this case,
neither CPORT_OVER_CURRENTnor PORT_OVER_CURRENTisset for the affected ports.

Host recovery actions for an over-current event should include the following:

1. Host gets change notification from hub with over-current event.

2. Host extracts appropriate hub or port change information (depending on the information in the
change bitmap).

3. Host waits for over-current status bit to be cleared to 0.

4. Host cycles poweronto all of the necessary ports (e.g., issues a SetPortFeature(PORTPOWER)
request for each port).

5. Host re-enumerates all affected ports.

-12.6 Enumeration Handling
The hub device class commandsare used to manipulate its downstream facing port state. When a device is
attached, the device attach event is detected by the hub and reported onthe status changeinterrupt. The host
will accept the status change report and request a SetPortFeature(PORT_RESET)on the port. Aspart of the
bus reset sequence, a speed detect is performed by the hub’s port hardware.

The Get_Status(PORT) request invoked by the host will return a “not PORT_LOW_SPEEDand
PORT_HIGH_SPEED”indication for a downstream facing port operating at high-speed. The
Get_Status(PORT)will report “PORT_LOW_SPEED”for a downstream facing port operating at low-
speed. The Get_Status(PORT)will report “not PORT_LOW_SPEEDand not PORT_HIGH_SPEED”for a
downstream facing port operating at full-speed.

Whenthe device is detached from the port, the port reports the status change throughthe status change
endpoint and the port will be reconnected to the high-speed repeater. Then the process is ready to be
repeated on the next device attach detect.

-13 Hub Configuration
Hubsare configured through the standard USB device configuration commands. A hubthatis not
configured behaveslike any other device that is not configured with respect to power requirements and
addressing. If a hub implements power switching, no poweris provided to the downstream facing ports
while the hubis not configured. Configuring a hub enables the Status Change endpoint. The USB System
Software may then issue commandsto the hub to switch port power on and off at appropriate times.

The USB System Software examines hub descriptor information to determine the hub’s characteristics. By
examining the hub’s characteristics, the USB System Software ensures that illegal power topologiesare not
allowed by not powering on the hub’sports if doing so would violate the USB power topology. The device
status and configuration information can be used to determine whether the hub should be used as a bus or
self-powered device. Table 11-12 summarizes the information and howit can be used to determine the
current power requirements of the hub.

ZTE/SAMSUNG 1008-0368

IPR2018-00110

ZTE/SAMSUNG 1008-0369
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Table 11-12. Hub Power Operating Mode Summary

Configuration Descriptor Hub
bmAttributes|Device Status Explanation

MaxPower|(Self Powered)|(Self Power)

N/A

This is an illegal set of information.

N/A

A device whichis only self-powered, but does
not have local power cannot connect to the bus
and communicate.

0 Self-powered only hub and local power supply is

good. Hubstatus also indicates local power
good, see Section 11.16.2.5. Hub functionality is
valid anywhere depth restriction is not violated.

Bus-powered only hub. Downstream facing
ports may not be poweredunless allowed in
current topology. Hub device status reporting
Self Powered is meaningless in combination of a
zeroed bmAitributes. Self-Powered.

This hub is capable of both self- and bus-
powered operating modes. It is currently only
available as a bus-powered hub.

This hub is capable of both self- and bus-
powered operating modes. It is currently
available as a self-powered hub.

A self-powered hub hasa local power supply, but may optionally draw oneunit load from its upstream
connection. This allowsthe interface to function when local poweris not available (see Section 7.2.1.2).
Whenlocal poweris removed(either a hub-wide over-current condition or local supplyis off), a hub ofthis
type remains in the Configured state but transitions all ports (whether removable or non-removable)to the
Powered-off state. While local poweris off, all port status and change information read as zero andall
SetPortFeature() requests are ignored (requestis treated as a no-operation). The hub will use the Status
Change endpoint to notify the USB System Software of the hub event (see Section 11.24.2.6 for details on
hubstatus).

The MaxPowerfield in the configuration descriptor is used to report to the system the maximum powerthe
hub will draw from VBUS whenthe configuration is selected. For bus-powered hubs, the reported value
must not include the power for any of external downstream facing ports. The external devices attaching to
the hub will report their individual power requirements.

A compound device may powerboth the hub electronics and the permanently attached devices from VBUS.
The entire load may be reported in the hubs’ configuration descriptor with the permanently attached devices
each reporting self-powered, with zero MaxPowerin their respective configuration descriptors.

341

ZTE/SAMSUNG 1008-0369

IPR2018-00110

ZTE/SAMSUNG 1008-0370
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.14 Transaction Translator

A hubhasa special responsibility whenit is operating in high-speed and hasfull-/low-speed devices
connected on downstream facing ports. In this case, the hub must isolate the high-speed signaling
environment from the full-/low-speed signaling environment. This function is performed by the Transaction
Translator (TT) portion of the hub.

This section defines the required behavior of the transaction translator.

11.14.1 Overview

Figure 11-24 shows an overview of the Transaction Translator. The TT is responsible for participating in
high-speedsplit transactions on the high-speedbusvia its upstream facing port and issuing corresponding
full-/low-speed transactions on its downstream facing ports that are operating at full-/low-speed. The TT
acts as a high-speed function on the high-speed bus and performstherole of a host controllerfor its
downstream facing ports that are operating at full-/low-speed. The TT includes a high-speed handlerto deal
with high-speed transactions. The TT also includesafull-/low-speed handler that performstherole of a
host controller on the downstream facing ports that are operating at full-/low-speed.

Isoch/Int||Isoch/Int ||B/C|B/C

Start-split||Comp.-split]|n/Out{in/Out
Full/Low Speed Bus

Figure 11-24. Transaction Translator Overview

The TT has buffers (shownin gray in the figure) to hold transactions that are in progress and tracksthe state
of each buffered transaction as it is processed by the TT. The buffers provide the connection between the
high-speed and full-/low-speed handlers. The state tracking the TT does for each transaction depends on the
specific USBtransfer type of the transaction(i.e., bulk, control, interrupt, isochronous). The high-speed
handler accepts high-speedstart-split transactions or responds to high-speed complete-split transactions.
The high-speed handlerplacesthe start-split transactions in local buffers for the full-/low-speed handler’s
use.

The buffered start-split transactions provide the full-/low-speed handler with the information that allowsit
to issue correspondingfull-/low-speed transactionsto full-/low-speed devices attached on downstream
facing ports. The full-/low-speed handler buffers the results of these full-/low-speed transactions so that
they can be returned with a corresponding complete-split transaction on the high-speed bus.

The general conversion between full-/low-speed transactions and the corresponding high-speed split
transaction protocol is described in Section 8.4.2. More details about the specific transfer types for split
transactions are describedlater in this chapter.

342

ZTE/SAMSUNG 1008-0370

IPR2018-00110

ZTE/SAMSUNG 1008-0371
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The high-speed handler of the TT operates independently of the full-/low-speed handler. Both handlers use
the local transaction buffers to exchange information where required.

Figure 11-25. Periodic and Non-periodic Buffer Sections of TT

The TT has two buffer and state tracking sections (shownin gray in Figure 11-24 and Figure 11-25):
periodic (for isochronous/interrupt full-/low-speed transactions) and non-periodic (for bulk/control full-
/low-speed transactions). The requirements on the TT for these two buffer and state tracking sections are
different. Each will be described in turn later in this chapter.

11.14.1.1 Data Handling Between High-speed and Full-/low-speed
The host converts transfer requests involving a full-/low-speed device into corresponding high-speedsplit
transactions to the TT to which the deviceis attached.

Low-speed Preamble(PRE)packets are never used on the high-speed busto indicate a low-speed
transaction. Instead, a low-speed transaction is encodedin thesplit transaction token.

The host can havea single schedule ofthe transactions that need to be issued to devices. This single
schedule can be used to hold both high-speed transactions and high-speed split transactions used for
communicating with full-/low-speed devices.

11.14.1.2 Host Controller and TT Split Transactions
The host controller uses the split transaction protocol for initiating full-/low-speed transactions via the TT
and then determining the completion status of the full-/low-speed transaction. This approach allowsthe
host controller to start a full-/low-speed transaction and then continue with other high-speed transactions
while avoiding having to wait for the slower transaction to proceed/completeat its speed. A high-speed
split transaction has twoparts: a start-split and a complete-split. Split transactions are only used between
the host controller and a hub. No other high-/full-Aow-speed devices ever participate in split transactions.

Whenthe host controller sends a start-split transaction at high-speed, the split transaction is addressed to the
TT for that device. That TT will accept the transaction and bufferit locally. The high-speed handler
responds with an appropriate handshake to inform the host controller that the transaction has been accepted.
Notall split transactions have a handshake phaseto thestart-split. The start-split transactions are kept
temporarily in a TT transaction buffer.

The full-/low-speed handler processesstart-split periodic transactions stored in the periodic transaction
buffer (in order) as the downstream full-/low-speed busis ready for the “next” transaction. The full-/low-
speed handler accepts any result information from the downstream bus (in response to the full-/low-speed
transaction) and accumulatesit in a local buffer for later transmission to the host controller.

At an appropriate future time, the host controller sends a high-speed complete-split transaction to retrieve
the status/data/result for appropriate full-/low-speed transactions. The high-speed handler checks this high-
speed complete-split transaction with the responseat the head of the appropriate local transaction buffer and
responds accordingly. The specific split transaction sequences are defined for each USBtransfer type in
later sections.

343

ZTE/SAMSUNG 1008-0371

IPR2018-00110

ZTE/SAMSUNG 1008-0372
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.14.1.3 Multiple Transaction Translators

A hub has two choices for organizing transaction translators (TTs). A hub can have one TT forall
downstream facing ports that have full-/low-speed devices attached or the hub can have one TT for each
downstream facing port. The hub mustreport its organization in the hub class descriptor.

11.14.2 Transaction Translator Scheduling

Asthe high-speed handler accepts start-splits, the full-/low-speed transaction information and data for
OUTsorthe transaction information for INs accumulate in buffers awaiting their service on the downstream
bus. The host managesthe periodic TT transaction buffers differently than the non-periodic transaction
buffers.

11.14.2.1 TT lsochronous/Interrupt (Periodic) Transaction Buffering
Periodic transactions havestrict timing requirements to meet on a full-/low-speed bus (as defined by the
specific endpoint and transfer type). Therefore, transactions must move across the high-speed bus, through
the TT, across the full-/low-speed bus, back through the TT, and onto the high-speed busin a timely
fashion. An overview of the microframepipeline of buffering in the TT is shown in Figure 11-26. A
transaction beginsas a start-split on the high-speed bus, is accepted by the high-speed handler, andis stored
in the start-split transaction buffer. The full-/low-speed handler uses the next start-split transaction at the
head of the start-split transaction buffer whenit is time to issue the next periodic full-/low-speed transaction
on the downstream bus. Theresults ofthe transaction are accumulated in the complete-split transaction
buffer. The TT responds to a complete-split from the host and extracts the appropriate response from the
complete-split transaction buffer. This completes the flow for a periodic transaction through the TT. This
is called the periodic transaction pipeline.

High Speed Start-Split High Speed Complete-Split

Figure 11-26. TT MicroframePipeline for Periodic Split Transactions

The TT implements a traditional pipeline of transactions with its periodic transaction buffers. Thereis
separate buffer space forstart-splits and complete-splits. The host is responsibleforfilling the start-split
transaction buffer and draining the complete-split transaction buffer. The host software managesthe host
controller to cause high-speedsplit transactions at the correct times to avoid over/under runs in the TT
periodic transaction buffers. The host controller sends data “just in time” for full-/low-speed OUTs and
retrieves response data from full-/low-speed INs to ensure that the periodic transaction buffer space required
in the TT is the minimum possible. See Section 11.18 for more detailed information.

USBstrictly defines the timing requirements of periodic transactions and the isochronoustransport
capabilities of the high-speed and full-/low-speed buses. This allows the host to accurately predict when

344

ZTE/SAMSUNG 1008-0372

IPR2018-00110

ZTE/SAMSUNG 1008-0373
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

data for periodic transactions must be moved on boththefull-/low-speed and high-speed buses, whenevera
client requests a data transfer with a full-/low-speed periodic endpoint. Therefore, the host can “pipeline”
data to/from the TT so that it moves in a timely mannerwithits target endpoint. Once the configuration of
a full-/low-speed device with periodic endpointsis set, the host streams data to/from the TT to keep the
device’s endpoints operating normally.

11.14.2.2 TT Bulk/Control (Non-Periodic) Transaction Buffering

Non-periodic transactions have no timing requirements, but the TT supports the maximum full-/low-speed
throughput allowed. A TT provides a few transaction buffers for bulk/control full-/low-speed transactions.
The host and TT use simple flow control (NAK) mechanisms to managethe bulk/control non-periodic
transaction buffers. The host issues a start-split transaction, and if there is available buffer space, the TT
accepts the transaction. Thefull-/low-speed handler uses the buffered information to issue the downstream
full-/low-speed transaction and then uses the same buffer to hold any results (e.g., handshake or data or
timeout). The buffer is then emptied with a corresponding high-speed complete-split and the process
continues. Figure 11-27 shows an example overview of a TT that has two bulk/control buffers.

High SpeedStart-/Complete-Split

Full/Low Speed Transaction

Figure 11-27. TT Nonperiodic Buffering

11.14.2.3 Full-/low-speed Handler Transaction Scheduling
Thefull-/low-speed handler uses a simple, scheduled priority scheme to service pending transactions on the
downstream bus. Wheneverthe full-/low-speed handler finishes a transaction on the downstream bus,it
takes the next start-split transaction from thestart-split periodic transaction buffer (if any). If there are no
available start-split periodic transactionsin the buffer, the full-/low-speed handler may attempt a
bulk/control transaction. If there are start-split transactions pending in the bulk/control buffer(s) and thereis
sufficient time left in the full-/low-speed 1 ms frame to complete the transaction, the full-/low-speed handler
issues one of the bulk/control transactions (in round robin order). Figure 11-28 shows pseudo codefor the
full-/low-speed handlerstart-split transaction scheduling algorithm.

The TT also sequences the transaction pipeline based on the high-speed microframe timerto ensure that it
does notstart full-/low-speed periodic transactions too early or too late. The “Advance_pipeline” procedure
in the pseudo code is used to keep the TT advancing the microframe “pipeline”. This procedure is described
in more detail later in Figure 11-67.

345

ZTE/SAMSUNG 1008-0373

IPR2018-00110

ZTE/SAMSUNG 1008-0374
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

While (1) loop
While (not end of microframe) loop

-- process next start-split transaction
If available periodic start-split transaction then

Process next full-/low-speed periodic transaction
Else if (available bulk/control transaction) and

(fits in full-/low-speed 1 ms frame) then
Process one transaction

End if
End loop

Advance_Pipeline(); -- see description in Figure 11-67 (below)
End loop

Figure 11-28. Example Full-/low-speed Handler Scheduling for Start-splits

Asdescribed earlier in this chapter, the TT derives the downstream bus’s 1 ms SOFtimer from the high-
speed 125 us microframe. This meansthat the host and the TT have the same | msframetimeforall TTs.
Giventhestrict relationship between frames and the zeroth microframe, there is no need to have any
explicit timing information carried in the periodic split transactions sent to the TT. See Section 11.18 for
more information.

11.15 Split Transaction Notation Information

The following sections describe the details of the transaction phases and flow sequencesofsplit transactions
for the different USB transfer types: bulk/control, interrupt, and isochronous. Each description also shows
detailed example host and TT state machines to achieve the required transaction definitions. The diagrams
should not be taken as a required implementation, but to specify the required behavior. Appendix A
includes example high-speed andfull-speed transaction sequences with different results to clarify the
relationships between the host controller, the TT, and a full-speed endpoint.

Low-speed is not discussed in detail since beyond the handling of the PRE packet (whichis defined in
Chapter 8), there are no packet sequencing differences between low- and full-speed.

For each data transfer direction, reference figures also show the possible flow sequencesfor the start-split
and the complete-split portion of each split transaction transfer type.

The transitions on the flow sequence figures have Jabels that correspondto the transitions in the host and TT
state machines, These labels are also included in the examples in Appendix A. The three character labels
are of the form: <S|C><T|D|H|E><number-.§indicates that this is a start-split label. C indicates
that this is a complete-split label. T indicates token phase; D indicates data phase; H indicates handshake
phase;E indicates an error case. The numbersimply distinguishes different labels of the same case/phase in
the samesplit transaction part.

The flow sequence figures further identify the visibility of transitions according to the legend in
Figure 11-29. The flow sequencesalso include some indication of states required in the host or TT or
actions taken. The legend shownin Figure 11-29 indicates how these are identified.

Bold indicates host action

Italics indicate <hub status> or <hub action>

Both visible

Hub visible dadsULRaRROeanTRS

Host visible —-—-—-—-—-—-—-—-—

Figure 11-29, Flow Sequence Legend

Figure 11-30 shows the legend for the state machine diagrams. A circle with a three line border indicates a
reference to another(hierarchical) state machine. A circle with a two line border indicatesaninitial state.
A circle with a single line borderis a simplestate.

346

ZTE/SAMSUNG 1008-0374

IPR2018-00110

ZTE/SAMSUNG 1008-0375
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

A diamond(joint) is used to join several transitions to a commonpoint. A joint allows a single input
transition with multiple output transitions or multiple input transitions and a single output transition. All
conditions on the transitions of a path involving a joint must be true for the path to be taken. A path is
simply a sequenceoftransitions involving one or morejoints.

A transition is labeled with a block with a line in the middle separating the (upper) condition and the (lower)
actions. The condition is required to betrue to take the transition. The actions are performedif the
transition is taken. The syntax for actions and conditions is VHDL. A circle includes a namein bold and
optionally one or moreactions that are performed uponentry to thestate.

- Contains other state machines

- Initial state of a state machine
- State in a state machine

So op - Entry and exit of state machine

- Joint used to connecttransitions

Condition 4 nl
~Kefons - Transition: taken when condition

is true and performsactions
Figure 11-30. Legend for State Machines

The descriptions of the split transactions for the four transfer types refer to the status ofthe full-/low-speed
transaction on the bus downstream of the TT. This status is used by the high-speed handler to determineits
response to a complete-split transaction, The status is only visible within a TT implementation andis used
in the specification purely for ease of explanation. The defined status valuesare:

* Ready — Thetransaction has completed on the downstream facing full-/low-speed bus with the result
as follows:

e Ready/NAK — A NAKhandshake wasreceived.

* Ready /trans_err— Thefull-/low-speed transaction experienceda errorin the transaction.
Possible errors are: PID to PID_invert bits check failure, CRC5 check failure, incorrect PID,
timeout, CRC16 check failure, incorrect packet length, bitstuffing error, false EOP.

e® Ready /ACK — An ACK handshake was received.

e Ready /Stall - A STALL handshake wasreceived.

® Ready /Data—A data packet was received and the CRC checkpassed. (bulk/control IN).

347

ZTE/SAMSUNG 1008-0375

IPR2018-00110

ZTE/SAMSUNG 1008-0376
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

e Ready /lastdata— A data packet was finished being received. (isochronous/interrupt IN).

e Ready /moredata— A data packet was being received when the microframe timer occurred
(isochronous/interrupt IN).

e Old—A complete-split has been received by the high-speed handlerfor a transaction that previously
had a “ready” status. The possible status results are the same as for the Ready status. This is the
initial state for a buffer before it has been used for a transaction.

e Pending — The transaction is waiting to be completed on the downstream facing full-/low-speed bus.

The figures use “old/x” and “ready/x” to indicate any ofthe old or ready status respectively.

Thesplit transaction state machines in the remainderof this chapter are presented in the context of
Figure 11-31. The host controller state machinesare located in the host controller. The host controller
causes packets to be issued downstream (labeled as HSD1) and it receives upstream packets (labeled as
HSU2).

Thetransaction translator state machines are located in the TT. The TT causes packetsto be issued
upstream (labeled as HSU1) andit receives downstream packets (labeled as HSD2).

The host controller has commandsthattell it what split transaction to issue next for an endpoint. The host
controller tracks transactions for several endpoints. The TT hasstate in buffers that track transactions for
several endpoints.

Appendix B includes some declarations that were used in constructing the state machines and may be useful
in understanding additionaldetails ofthe state machines. There are several pseudo-code procedures and
functions for conditions and actions. Simple descriptions of them are also included in Appendix B.

Transaction

Results

Transaction

Commands
Host

Controller

 Downstream Upstream

High speed Bus High speed Bus

Hub

Transaction

Translator

 Bulk/Ctrl Buffers Periodic Pipeline Buffers

Figure 11-31. State Machine Context Overview

ZTE/SAMSUNG 1008-0376

IPR2018-00110

ZTE/SAMSUNG 1008-0377
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16 CommonSplit Transaction State Machines

There are several state machines commontoallthe specific split transaction types. These state machines
are usedin the host controller and transaction translator to determine the specific split transaction type (e.g.,
interrupt OUTstart-split vs. bulk IN complete-split). An overview of the host controller state machine
hierarchy is shown in Figure 11-32. The overview ofthe transaction translator state machine hierarchy is
shownin Figure 11-33. Each of the labeled boxesin the figures show anindividual state machine. Boxes
contained in another box indicate a state machine contained within another state machine. All the state

machines except the lowest level ones are shownin the remaining figures in this section. The lowest level
state machines are shownin later sections describing the specific split transaction type.

HC_Dostart HC_Do_complete

HCDoIsochISS HC_Do_IsochICS

HC_DoIntISS HC Do IntICS

HC_Do BISS

HCDoIsochOSS HC_Do_BICS

HCDoIntOSs HC_DoIntOCs

HC_DoBOSS HC_DoBOCS

Figure 11-32. Host Controller Split Transaction State Machine Hierarchy Overview

349

ZTE/SAMSUNG 1008-0377

IPR2018-00110

ZTE/SAMSUNG 1008-0378
IPR2018-00110

Universal Seria] Bus Specification Revision 2.0

TTProcess_packet

TTDostart TTDo_complete

TT_IsochSS TT_IsochICS

| TT_DoIsochISS |

TT_IntSS TT_IntCs
| TT_Do_IntOSS | | TT_Do_IntOCSs |
[TT_Do_Intiss |

TTBulkSS TTBulkCs
| TT_DoBOSS | | TfDoBOCS |

Figure 11-33. Transaction Translator State Machine Hierarchy Overview

11.16.1 Host Controller State Machine

Architecture Declarations

PackageList

jeee std_logic_1164
ieee numeric_std
usb2statemachines behav_package
ieee std_logic_arith

Concurrent Statements
Figure 11-34. Host Controller

350

ZTE/SAMSUNG 1008-0378

IPR2018-00110

ZTE/SAMSUNG 1008-0379
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.1.1 HC_Process_command State Machine

HC_cmd.cmd = SOF
_Issue_packet(HSD1, SOF);

HC_Process_command |

Figure 11-35. HC_ProcessCommand

351

ZTE/SAMSUNG 1008-0379

IPR2018-00110

ZTE/SAMSUNG 1008-0380
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.1.1.1 HC_Do_start State Machine

-HC_cmd.ep_type=isochronous

~HC_cmd.ep_type = bulk or
HC_cmd.ep_type = control

HC_cmd.direction = out_dir

-HC_cemd.ep_type = isochronous

: = bulk or
~HC_cmd.ep_type=control

HC_Do_Start

Figure 11-36. HC_Do_Start

352

ZTE/SAMSUNG 1008-0380

IPR2018-00110

ZTE/SAMSUNG 1008-0381
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.1.1.2 HC_Do_complete State Machine

HC_cmd.ep_type = isochronous

 HC_cmd.ep_type = bulk or
» HC_cmd.ep_type = control

-HC_cmd.direction = in_dir

-HC_cmd.direction=out_dir

HC_Do_complete

Figure 11-37. HC_Do_Complete

353

ZTE/SAMSUNG 1008-0381

IPR2018-00110

ZTE/SAMSUNG 1008-0382
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2 Transaction Translator State Machine

Architecture Declarations

Package List

ieee std_logic_1164
ieee numeric_std
usb2statemachines behav_package

‘Packet_ready(HSD2)
Save (HSD2, split);

Figure 11-38. Transaction Translator

354

ZTE/SAMSUNG 1008-0382

IPR2018-00110

ZTE/SAMSUNG 1008-0383
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2.1 TT_Process_packet State Machine

| split.PID /= SSPLIT and split.PID /= CSPLIT

sei/cel

-HSD2.PID=SSPLIT or

-HSD2.PID=CSPLIT
Save(HSD2,split):

-HSD2.PID = SOF

not SS_Buff.isochO or
(SS_Buff.isochO and
SS_Buff.saw_split)

- §S_Buff.isochO and
not SS_Buff.saw_split

Down_error;

SD2.PID /= SSPLIT and
SD2.PID /= CSPLIT and

TT_Process_Packet

Figure 11-39. TT_Process_Packet

355

ZTE/SAMSUNG 1008-0383

IPR2018-00110

ZTE/SAMSUNG 1008-0384
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2.1.1 TT_Do_Start State Machine

_ Split.ep_type = isochronous

split-ep_type = interrupt

_ Split-ep_type = bulk or
“split.ep_type = control

TT_Do_Start

Figure 11-40. TT_Do_Start

356

ZTE/SAMSUNG 1008-0384

IPR2018-00110

ZTE/SAMSUNG 1008-0385
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2.1.2 TT_Do_Complete State Machine

split.ep_type = interrupt

splitep_type=bulkor |
splitep_type=control

TT_Do_complete

Figure 11-41. TT_Do_Complete

11.16.2.1.3 TT_BulkSS State Machine

_(token.PID /= tokenOUT and
‘token.PID /= tokenSETUP and
_token.PID /= tokenIN)or
_token.timeout

ioken.PID = tokenIN

_token.PID = tokenOUTor
_token.PID = tokenSETUP

TT_BulkSs

Figure 11-42. TT_BulkSS

357

ZTE/SAMSUNG 1008-0385

IPR2018-00110

ZTE/SAMSUNG 1008-0386
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2.1.4 TT_BulkCS State Machine

: (token.PID /= tokenOUT and
_token.PID /= tokenSETUP and

: token.PID /= tokenIN) or
' token.timeout

token.PID = tokenOUTor
token.PID = tokenSETUP

token.PID=tokenIN
 TT_Bulkcs

Figure 11-43. TT_BulkCS

11.16.2.1.5 TT_IntSS State Machine

: (token.PID /= tokenOUT and
 token.PID /= tokenIN)or
; token.timeout

“token.PID = tokenIN

“token.PID = tokenOUT

 [TTintss

Figure 11-44. TT_IntSS

358

ZTE/SAMSUNG 1008-0386

IPR2018-00110

ZTE/SAMSUNG 1008-0387
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.16.2.1.6 TT_IntCS State Machine

_ (token.PID /= tokenIN and
: token.PID /= tokenOUT) or
: token.timeout

Figure 11-45, TT_IntCS

11.16.2.1.7 TT_lsochSS State Machine

“(token.PID/=tokenIN and
_token.PID /= takenOUT) or
_token.timeout

Figure 11-46. TT_IsochSS

359

ZTE/SAMSUNG 1008-0387

IPR2018-00110

ZTE/SAMSUNG 1008-0388
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

11.17 Bulk/Control Transaction Translation Overview

1%.

360

Each TT musthaveat least two bulk/control transaction buffers. Each buffer holds the informationfor a

start- or complete-split transaction and represents a single full-/low-speed transaction that is awaiting (or has
completed) transfer on the downstream bus. The buffer is used to hold the transaction information from the
start-split (and data for an OUT) and then the handshake/result of the full-/low-speed transaction (and data
for an IN). This buffer is filled and emptied bysplit transactions from the high-speed bus via the high-speed
handler. The buffer is also updated by the full-/low-speed handler while the transaction is in progress on the
downstream bus.

The high-speed handler must accept a start-split transaction from the host controller for a bulk/control
endpoint wheneverthe high-speed handler has appropriate space in a bulk/control buffer.

The host controller attempts a start-split transaction accordingto its bulk/control high-speed transaction
schedule. As soon as the high-speed handler responds to a complete-split transaction with the results from
the corresponding buffer, the next start-split for some (possibly other) full-/low-speed endpoint can be saved
in the buffer.

There is no methodto control the start-split transaction accepted next by the high-speed handler.
Sequencing ofstart-split transactions is simply determined by available TT buffer space and the current
state of the host controller schedule (e.g., which start-split transaction is next that the host controllertries as
a normalpart of processing high-speed transactions).

The host controller does not need to segregate split transaction bulk (or control) transactions from high-
speed bulk (control) transactions when building its schedule. The host controller is required to track
whethera transaction is a normal high-speed transaction or a high-speedsplit transaction.

The following sections describe the details of the transaction phases, flow sequences, and state machinesfor
split transactions used to support full-/low-speed bulk and control OUTand IN transactions. There are only
minor differences between bulk and controlsplit transactions. In the figures, some areas are shaded to
indicate that they do not apply for control transactions.

17.1 Bulk/Control Split Transaction Sequences

The state machine figures show thetransitions required for high-speed split transactions for full-/low-speed
bulk/controltransfer types for a single endpoint. These figures must not be interpreted as showing any
particular specific timing. They define the required sequencing behaviorofdifferent packets of a
bulk/control split transaction. In particular, other high-speed orsplit transactions for other endpoints occur
before or after these split transaction sequences.

Figure 11-47 shows a sample codealgorithm that describes the behaviorofthe transitions labeled with
Is_new_SS, Is_old_SS and Is_no_space shownin thefigures for both bulk/control IN and OUTstart-split
transactions buffered in the TT for any endpoint. This algorithm ensures that the TT only buffers a single
bulk/control split transaction for any endpoint. The complete-split protocol definition requires an endpoint
has only a single result buffered in the TT at any time. Note that the “buffer match”testis different for bulk
and contro] endpoints. A buffer matchtest for a bulk transaction must include the direction of the
transaction in the test since bulk endpoints are unidirectional. A control transaction must not use direction
as part of the matchtest.

ZTE/SAMSUNG 1008-0388

IPR2018-00110

ZTE/SAMSUNG 1008-0389
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

procedure Compare_buffs IS
variable match: boolean:=FALSE;

begin

-- Is_new_SS is true when BC_buff.status == NEW_SS
-- Is_old_SS is true when BC_buff.status == OLD_SS
-- Is_no_space is true when BC_buff.status == NO_SPACE

-- Assume nospace and intialize index to 0.
BC_buff.status := NO_SPACE;
BC_buff.index := 0;

FOR i IN 0 to num_buffs-1 LOOP
IF NOT match THEN

-- Re-use buffer with same Device Address/End point.
IF (token.endpt = cam(i).store.endpt AND

token.dev_addr = cam(i).store.dev_addr AND
({token.direction = cam(i).store.direction AND

split.eptype /= CONTROL) OR
split.eptype = CONTROL)) THEN

-- If The buffer is already pending/ready this must be a retry.
IF (cam(i).match,state = READY OR cam(i).match.state = PENDING) THEN

BC_buff.status := OLD_SS;ELSE

BC_buff.status := NEW_SS;
END IF;
BC_buff.index := i;
match := TRUE;

-- Otherwise use the buffer if it’s old.
ELSIF (cam(i).match.state = OLD) THEN

BC_buff.status := NEW_SS;
BC_buff.index := i;

END IF;
END IF;

END LOOP;

end Comparebuffs;

Figure 11-47. Sample Algorithm for Compare_buffs

Figure 11-48 shows the sequence of packetsfora start-split transaction for the full-/low-speed bulk OUT
transfer type. The block labeled SSPLITrepresents a split transaction token packet as described in
Chapter 8. It is followed by an OUTtoken packet (or SETUP token packetfor a control setup transaction).
If the high-speed handler times out after the SSPLIT or OUTtoken packets, and does not receive the
following OUT/SETUP or DATA0/1 packets, it will not respond with a handshakeasindicated by the
dotted line transitions labeled “sel”or “se2”. This causes the host to subsequently see a transaction error
(timeout) (labeled “se2” and indicated with a dashedline). If the high-speed handler receives the DATAO/1
packetandit fails the CRC check,it takes the transition “se2” which causes the host to timeout and follow
the “se2”transition.

361

ZTE/SAMSUNG 1008-0389

IPR2018-00110

ZTE/SAMSUNG 1008-0390
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Start split

st]

2
Compare_buffs
ehi
SS IsoldSS Is_no_space

Ts wie i

acent dati | | Trans_err
sh2 sh3 se

ACK NAK Ine ¢rr
count

| | [7...)00: |

| | | |se4: se5
v v v

Goto Retry iferr_count<3 if err_count >=3
comp.split start split retry start split endpoint halt

Figure 11-48. Bulk/Control OUT Start-split Transaction Sequence

The host must keepretrying the start-split for this endpointuntil the err_count reachesthree for this
endpoint before continuing on to someotherstart-split for this endpoint. However, the host can issue other
start-splits for other endpoints before it retries the start-split for this endpoint. The err_countis used to
count how manyerrors have been experienced during attempts to issue a particular transaction for a
particular endpoint.

If there is no spacein the transaction buffers to hold the start-split, the high-speed handler responds with a
NAK via transition “sh3”. This will cause the host to retry this start-split at some future time based onits
normal schedule. The host does not increase its err_count fora NAK handshake response. Oncethe host
has received a NAKresponsetoastart-split, it can skip other start-splits for this TT for bulk/control
endpoints until it finishes a bulk/contro] complete-split.

If there is buffer space for the start-split, the high-speed handler takes transition “sh1” and responds with an
ACK. Thistells the host it must try a complete-split the next time it attempts to process a transaction for
this full-/low-speed endpoint. After receiving an ACK handshake, the host must not issue a furtherstart-
split for this endpoint until the corresponding complete-split has been completed.

If the high-speed handler already hasastart-split for this full-/low-speed endpoint pendingor ready,it
follows transition “sh2” and also responds with an ACK,but ignores the data. This handles the case where

362

ZTE/SAMSUNG 1008-0390

IPR2018-00110

ZTE/SAMSUNG 1008-0391
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

an ACK handshake was smashed and missed by the host controller and now the host controller is retrying
the start-split; e.g., a high-speed handler transition of “sh1” but a host transition of “se2”.

In the host controller error cases, the host controller implements the “three strikes and you’re out”
mechanism. Thatis, it increments an error count (err_count) and,ifthe count is less thanthree (transition
“se4”), it will retry the transaction. Ifthe err_countis greater or equal to three (transition “se5”), the host
controller does endpoint halt processing and doesnotretry the transaction. If for some reason, a host
memory or non-USBbusdelay (e.g.,a system memory “hold off”) occurs that causes the transaction to not
be completed normally, the err_count must not be incremented. Whenevera transaction completes
normally, the err_countis reset to zero.

The high-speed handler in the TT has no immediate knowledge of what the host sees, so the “se2”, “se4”,
and “se5”transitions show only hostvisibility.

This packet flow sequence showingthe interactions between the host and hubis also represented by host
and high-speed handler state machine diagrams in the next section. Those state machine diagramsuse the
samelabels to correlate transitions between the two representationsof the split transaction rules.

Figure 11-49 shows the corresponding flow sequence for the complete-split transaction for the full-/low-
speed bulk/control OUTtransfer type. The notation “ready/x”or “old/x” indicates that the transaction status
ofthe split transaction is any of the ready orold states. After a full-/low-speed transaction is run on the
downstream bus, the transaction status is updated to reflect the result of the transaction. The possible result
status is: nak, stall, ack. The “x” means any of the NAK, ACK, STALLfull-/low-speed transaction status
results. Each status result reflects the handshake response from the full-/low-speed transaction.

Complete split

ctl

ct2 Not applicable
cel for control-setup

 NoYsa"ananaimae= olae "Hans

en match |neles old/stall oldfack oldinak i
cedon Oe ch4farIne err|NYET|[STALL]|ACK||NAK|ie

i~—Sti“‘is~=S!
ced

| i ieee i¥ v v Vv iferr_count<3 |
Retry - Endpoint Gotonext Retry — retry immed. cau!
SOMES SO halt cmd start splitCOmP- split

if err_count >= 3

|Host|(F) endpoint halt
Figure 11-49. Bulk/Control OUT Complete-split Transaction Sequence

363

ZTE/SAMSUNG 1008-0391

IPR2018-00110

ZTE/SAMSUNG 1008-0392
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Thereis no timeout responsestatus for a transaction becausethe full-/low-speed handler must perform a
local retry of a full-/low-speed bulk or control transaction that experiences a transaction error. It locally
implementsa “three strikes and you’re out” retry mechanism. This meansthat the full-/low-speed
transaction will resolve to one of a NAK, STALL or ACK handshakeresults. If the transaction experiences
a transaction errorthree times, the full-/low-speed handler will reflect this as a stall status result. The full-
/low-speed handler mustnot do a local retry ofthe transaction in response to an ACK, NAK, or STALL
handshake.

Start split

stl

SSPLIT
Pl eeTOSITcsserasae:

sel

Compare_buffs

Is_newSS Is_old_SS Is_no_space
Accept:data Trpadeer

shL, sh2 sh3, !
Ind err

ACK NAK count
sed

[gee1
Vv Vv ser j

Go to Retry if err_count <3

)ey

if err_count >= 3
endpoint halt

|

|
|

comp.split start split retry start split |
|
|
|

Figure 11-50. Bulk/Control IN Start-split Transaction Sequence

If the high-speed handler receives the complete-split token packet (and the token packet) whilethe full-
/low-speed transaction has not been completed(e.g., the transactionstatus is “pending”), the high-speed
handler responds with a NYET handshake. This causesthe host to retry the complete-split for this endpoint
some time in the future.

If the high-speed handler receives a complete-split token packet (and the token packet) and finds no local
buffer with a corresponding transaction, the TT responds with a STALLto indicate a protocol violation.

Oncethe full-/low-speed handler has finished a full-/low-speed transaction, it changes the transactionstatus
from pending to ready and savesthe transaction result. This allows the high-speed handler to respond to the
complete-split transaction with something besides NYET. Oncethe high-speed handler has seen a

364

ZTE/SAMSUNG 1008-0392

IPR2018-00110

ZTE/SAMSUNG 1008-0393
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

complete-split, it changes the transaction status from ready/x to old/x. This allows the high-speed handlerto
reuseits local buffer for some other bulk/control transaction after this complete-split is finished.

If the host times out the transaction or does not receive a valid handshake,it immediately retries the
complete-split before going on to any other bulk/control transactions for this TT. The normal“three strikes”
mechanism applies here also for the host; i.e., the err_countis incremented. If for some reason, a host
memory or non-USBbusdelay (e.g., a system memory “hold off’) occurs that causes the transaction to not
be completed normally, the err_count must not be incremented.

Complete split

i akeorrolde0orpending:

Frans,err if status:=ready/x=>status=old/x
old/ack 5cess

old/data oldnak old/stall | ~ pending
cdl ch3. ces: ch

DATAO/I|pera(a) at|STALL]|NYET|Trans|jerr
| wes diate oe

ceél ¥ start split halt comp.split
| ce2 Trayserrnojtranserr|bq - ndt trans_err and

Inc err and -
.nt Maley. Je Datax toggle

! toggle HC.Acegept_data
rae—-4 i
4a 4 4 i

iferr_count>=3 iferr_count<3 Retry Goto next
endpoint halt retry immed.__start split cmd

comp.split

Figure 11-51. Bulk/Control IN Complete-split Transaction Sequence

If the host receives a STALL handshake, it performs endpoint halt processing and will not issue any more
split transactions for this full-/low-speed endpointuntil the halt condition is removed.

If the host receives an ACK,it records the results of the full-/low-speed transaction and advancesto the next
split transaction for this endpoint. The next transaction will be issued at sometimein the future according
to normal schedulingrules.

365

ZTE/SAMSUNG 1008-0393

IPR2018-00110

ZTE/SAMSUNG 1008-0394
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

If the host receives a NAK,it will retry the start-split transaction for this endpoint at some timein the future
according to normal scheduling rules. The host must not incrementthe err_countin this case.

The host must keep retrying the current start-split until the err_count reaches three for this endpoint before
proceedingto the next split transaction for this endpoint. However, the host can issue otherstart-splits for
other endpoints beforeit retries the start-split for this endpoint.

After the host receives a NAK, ACK, or STALL handshake in response to a complete-split transaction,it
may subsequently issue a start-split transaction for the same endpoint. The host may chooseto instead issue
a start-split transaction for a different endpoint that is not awaiting a complete-split response.

The shaded case shownin the figure indicates that a control setup transaction should never encounter a
NAKresponsesince that is not allowed for full-/low-speed transactions.

Figure 11-50 and Figure 11-51 show the corresponding flow sequences for bulk/control IN split
transactions.

11.17.2 Bulk/Control Split Transaction State Machines
The host and TT state machines for bulk/contro] IN and OUTsplit transactions are shownin the following
figures. The transitions for these state machines are labeled the sameas in the flow sequencefigures.

HC_cmd.ep_type = control and
HC_cmd.setup

Issue_packet(HSD1, SSPLIT);

RespondHC(Do_complete);
HC_cmd.ep_type = bulk or
(HC_cmd.ep_type = control and

_ not HC_cmd.setup)

Issue_packet(

SEse HSU2.PID = NAK
RespondHC(Do_start);

ErrorCount < 3

| RespondHC(Do_start);' Issue_packet(Secadciuelicaickeesseeh
HSD1, tokenOUT); — frre hse

HSU2.PID /= NAK) or
HSU2.timeout

ErrorCount >= 3

RespondHC(Do_halt);

HC_Do_BOSS

Figure 11-52. Bulk/Control OUT Start-split Transaction Host State Machine

366

ZTE/SAMSUNG 1008-0394

IPR2018-00110

ZTE/SAMSUNG 1008-0395
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

HSU2.PID = NYET

Et etn —————
HC_cmd.ep_type = control and : Respondhit(De_complete);

: HC_emd.setup
i Issue_packet(HSD1, CSPLIT); t pipstines beesninsejaniaaesnsasmmenntecaumuiseibsasshiimandiniasniinabsimmed kami i

: HC_cmd.ep_type = bulk or
_ (HC_cmd.ep_type= contro! and
_ NOT HC_cmd.setup)

Issue_packet(HSD1, CSPLIT);

HSU2,PID = ACK

_RespondHC(Do_next_cmd);

ErrorCount < 3

_ RespondHC(Do_complete_immediate);

_ (HSU2.PID /= NYET and
_HSU2.PID /= STALL and
_HSU2.PID /= ACK and

_HSU2.PID /= NAK)or
» HSU2.timeout

ErrorCount >= 3
- RespondHC(Do_halt);

HC_DO_BOCS

Figure 11-53. Bulk/Control OUT Complete-split Transaction Host State Machine

367

ZTE/SAMSUNG 1008-0395

IPR2018-00110

ZTE/SAMSUNG 1008-0396
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

~HSD2.PID /= DATAx or
HSD2.timeout or i
HSD2.CRC16 = bad i

Is_new_SS(BC_buff)

 : Is_old_SS(BC_buff)
"Issue_packet(HSU1, ACK);

_ Is_no_space(BC_buff)

-Issue_packet(HSU1, NAK);

 TT_Do_BOSS

Figure 11-54, Bulk/Control OUT Start-split Transaction TT State Machine

- BC_Buff.match.down_result = r_nak

Issue_packet(HSU1, NAK);

‘C_buff.match.state = pending

Issue_packet(HSU1, NYET);

TT_Do_BOCS

Figure 11-55. Bulk/Control OUT Complete-split Transaction TT State Machine

368

ZTE/SAMSUNG 1008-0396

IPR2018-00110

ZTE/SAMSUNG 1008-0397
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

“Issue_packet(HSD1, SPLIT);

HSU2.PID=NAK

dHC(Do_starty

i HSU2.PID = ACK

RespondHC(Do_complete);

se4 i ErrorCount < 3

_ RespondHC(Do_start);

/(HSU2,PID /= ACKand

_ HSU2.timeout ErrorCount >= 3

HC_Do_BISS

Figure 11-56. Bulk/Control IN Start-split Transaction Host State Machine

i HSU2.PID if NAK) or SANSAtnaAOEaE

RespondHC(Do_halt);

369

ZTE/SAMSUNG 1008-0397

IPR2018-00110

ZTE/SAMSUNG 1008-0398
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

 "HSU2.x/=HC_omd.toggle

_ RespondHC(Do_start);

SU2.x = HC_cmd.toggle

HC_Accept_data;

 ErrorCount >= 3

_ RespondHC(Do_halt);

ErrorCount < 3

_RespondHC(Do_complete_immediate);

_(HSU2.PID /= DATAx and
_HSU2.PID /= NAK and
_HSU2.PID /= NYET and

_HSU2.PID /= STALL) or
 HSU2.timeout

HSU2.PID=STALL |

HSU2.PID = NAK

HSU2.PID = NYET

RespondHC(Do_complete);

HC_Do_BICS

Figure 11-57. Bulk/Control IN Complete-split Transaction Host State Machine

370

ZTE/SAMSUNG 1008-0398

IPR2018-00110

ZTE/SAMSUNG 1008-0399
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

i Is_no_space(BC_buff)
_Issue_packet(HSU1, NAK);

Is_new_SS(BC_buff)

Accept_data; i
_Issue_packet(HSU1, ACK);

TT_Do_BISS

Figure 11-58. Bulk/Control IN Start-split Transaction TT State Machine

_BC_buff.matchstate = no_match [WeePereyeustat),

 | Match_split_state;

BC_buff.match.down_result = r_data

Issue_packet(HSU1, DATAx);

BC_buff.match.down_result = r_nak

Issue_packet(HSU1, NAK);

2 BC_buff.match.state = ready |
_ BC_buff.match.state := old;

TT_Do_BICS

Figure 11-59. Bulk/Control IN Complete-split Transaction TT State Machine

11.17.3 Bulk/Control Sequencing
Oncethe high-speed handler has received a start-split for an endpoint and saved it in a local buffer, it
responds with an ACKsplit transaction handshake. This tells the host controller to do a complete-split
transaction next time this endpointis polled.

371

ZTE/SAMSUNG 1008-0399

IPR2018-00110

ZTE/SAMSUNG 1008-0400
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

As soon aspossible (subject to scheduling rules described previously), the full-/low-speed handler issues the
full-/low-speed transaction and saves the handshakestatus (for OUT)or data/handshakestatus (for IN) in
the same buffer.

Sometime later (according to the host controller schedule), this endpoint will be polled for the complete-
split transaction. The high-speed handler responds to the complete-split to return the full-/low-speed
endpointstatusfor this transaction (as recordedin the buffer). If the host controller polls for the complete-
split transaction for this endpoint before the full-/low-speed handler has finished processing this transaction
on the downstream bus, the high-speed handler responds with a NYET handshake. This tells the host
controller that the transaction is not yet complete. In this case, the host controller will retry the complete-
split again at somelater time.

Whenthefull-/low-speed handler finally finishes the full-/low-speed transaction,it saves the data/status in
the buffer to be ready for the next host controller complete-split transaction for this endpoint. When the
host sends the complete-split, the high-speed handler responds with the indicated data/status as recorded in
the buffer. The buffer transaction status is updated from ready to old so the high-speed handleris ready for
either a retry or a newstart-split transaction for this (or someother) full-/low-speed endpoint.

If there is an error on the complete-split transaction, the host controller will retry the complete-split
transaction for this bulk/control endpoint “immediately” before proceeding to some other bulk/controlsplit
transaction. The host controller may issue other periodic split transactions or other non-split transactions
before doing this complete-split transaction retry.

If there is a bulk/control transaction in progress on the downstream facing bus when the EOFtime occurs,
the TT must adhereto the definition in Section 11.3 for its behavior on the downstream facing bus. This
will cause an increase in the error count for this transaction. The normalretry rules will determineifthe
transaction will be retried or not on the downstream facing bus.

11.17.4 Bulk/Control Buffering Requirements

The TT mustprovideat least two transactions of non-periodic buffering to allow the TT to deliver
maximum full-/low-speed throughput on a downstream bus whenthe high-speed busisidle.

As the high-speed bus becomesbusier, the throughput possible on downstream full-/low-speed buses will
decrease.

A TT mayprovide more than twotransactions of non-periodic buffering and this can improve throughput
for downstream buses for specific combinations of device configurations.

11.17.5 Other Bulk/Control Details

When a bulk/control split transaction fails, it can leave the associated TT transaction buffer in a busy
(ready/x) state. This buffer state will not allow the buffer to be reused for other bulk/controlsplit
transactions. Therefore, as part of endpoint halt processing for full-/low-speed endpoints connected via a
TT, the host software must use the Clear_TT_Buffer request to the TT to ensure that the buffer is not in the
busystate.

Appendix A shows examples of packet sequencesfor full-/low-speed bulk/control transactions and their
relationship with start-splits and complete-splits in various normal anderror conditions.

11.18 Periodic Split Transaction Pipelining and Buffer Management
There are requirements on the behaviorof the host and the TT to ensure that the microframepipeline
correctly sequences full-/low-speed isochronous/interrupt transactions on downstream facing full-/low-
speed buses. The host must determine the microframes in whichastart-split and complete-split transaction
must be issued on high-speed to correctly sequence a correspondingfull-/low-speed transaction on the
downstream facing bus. Thisis called “scheduling”thesplit transactions.

372

ZTE/SAMSUNG 1008-0400

IPR2018-00110

ZTE/SAMSUNG 1008-0401
IPR2018-00110

11

11

Universal Serial Bus Specification Revision 2.0

In the following descriptions, the 8 microframes within each full-speed (1 ms.) frame are referred to as
microframe Y,, Y,, Y,, .-., Y;. This notation meansthat the first microframeof eachfull-speed frameis
labeled Y,. The second microframeis labeled Y,, etc. The last microframe of each full-speed frameis
labeled Y,. The labels repeat for each full-speed frame.

This section describes details of the microframepipelinethat affect both full-speed isochronousand full-
/low-speedinterrupt transactions. Then the split transaction rules for interrupt and isochronous are
described.

Bulk/control transactions are not scheduled with this mechanism. They are handled as described in the
previous section.

-18.1 Best Case Full-Speed Budget
A microframeoftime allows at most 187.5 raw bytes of signaling on a full-speed bus. In order to estimate
whenfull-/low-speed transactions appear on a downstream bus, the host must calculate a best case full-
speed budget. This budget tracks in which microframesa full-/low-speed transaction appears. The best case
full-speed budget assumesthat 188 full-speed bytes occur in each microframe. Figure 11-60 shows how a
1 ms frame subdivided into microframes of budget time. This estimate assumesthat nobit stuffing occurs
to lengthen the time required to movetransactions overthe bus.

The maximum numberofbytes in a 1 ms frameis calculatedas:

1157 maximum_periodic_bytes_per_frame = 12 Mb/s * 1 ms/ 8 bits_per_byte *

6 data_bits / 7 bit-stuffed_data_bits * 90% maximum_periodic_data_per_frame

Microframes

¥; y;
Max wire time

Best case wire budget
1157 bytes w/ no
bitstuffing

Figure 11-60. Best Case Budgeted Full-speed Wire Time With No Bit Stuffing

-18.2 TT Microframe Pipeline
The TT implements a microframepipeline ofsplit transactions in support ofa full-/low-speed bus. Start-
split transactions are scheduled a microframe before the earliest time that their corresponding full-/low-
speed transaction is expected to start. Complete-split transactions are scheduled in microframesthat the
full-/low-speed transaction can finish.

Whena full-/low-speed device is attached to the bus and configured, the host assigns some time on the
full-/low-speed bus at some budgeted time, based on the endpoint requirements of the configured device.

The effects of bit stuffing can delay whenthe full-/low-speed transaction actually runs. Theresults of other
previousfull-/low-speed transactions can cause the transaction to run earlier or later on the full-/low-speed
bus.

The host always uses the maximum data payloadsize for a full-/low-speed endpoint in doing its budgeting.
It does not attempt to schedule the actual data payloads that may be used in specific transactionsto full-
/low-speed endpoints. The host must include the maximum duration interpacket gap, bus turnaroundtimes,
and “TT think time”. The TT requires some time to proceed to the next full-/low-speed transaction. This
time is called the “TT think time” andis specified in the hub descriptor field wHubCharacteristics bit 5 and
6.

373

ZTE/SAMSUNG 1008-0401

; IPR2018-00110

ZTE/SAMSUNG 1008-0402
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

#1: A fulllow-speed transaction
budgeted to run here on the classic bus....

i (Y-1), i Y 4 Y, i Y; j Y;
i i Coo | :

Best case budget Sees=e. to. :
fen, Reet, ot

eee eee:

i
i
t
£
t
:

; en : >: HS - : :HS Compiets-enlis : :
‘ Start-split ‘ ! :

#2: ...has a HS start-split scheduled #3: ...has 3 HS complete-split transactions
in this microframeand... scheduled in the possible microframes

for this fulllow-speed transaction

Figure 11-61. Scheduling of TT Microframe Pipeline

Figure 11-61 shows an example of a new endpoint that is assigned someportion ofa full-/low-speed frame
and whereits start- and complete-splits are generally scheduled. The act of assigning someportion ofthe
full-/low-speed frameto a particular transaction is called determining the budgetfor the transaction. More
precise rules for scheduling and budgeting are presented later. The start-split for this example transactionis
scheduled in microframe Y-1,, the transaction is budgeted to run in microframe Y,, and complete-splits are
scheduled for microframes Y,, Y,, and Y,. Section 11.18.4 describes the scheduling rules more completely.

The host must determine precisely when start- and complete- splits are scheduled to avoid overruns or
underrunsin the periodic transaction buffers provided by the TT.

11.18.3 Generation of Full-speed Frames

The TT must generate SOFs on the full-speed bus to establish the 1 ms frame clock within the definedjitter
tolerances for full-speed devices. The TT has its own frameclock that is synchronized to the microframe
SOFs on the high-speed bus. The SOFthat reflects a change in the frame numberit carries is identified as
the zeroth microframe SOF. The zeroth high-speed microframe SOFcorrespondsto the full-speed SOF on
the TT’s downstream facing bus. The TT must adhereto all timing/jitter requirements of a host controller
related to frames as defined in other parts ofthis specification.

The TT must stop issuing full-speed SOFsafter it detects 250 us of high-speed idle. This is required to
ensurethat the full-/low-speed downstream facing bus enters suspend no more than 250 usafter the high-
speed busenters suspend.

The TT must generate a full-speed SOF on the downstream facing bus based onits frame timer. The
generation of the full-speed SOF must occur within +/-3 full-speed bit time from the occurrenceof the
zeroth high-speed SOF. See Section 11.22.1 for more information about TT SOFgeneration.

11.18.4 Host Split Transaction Scheduling Requirements

Scheduling of split transactions is done by the host (typically in software) based on a best-case estimate of
how the full-/low-speed transactions can be run on the downstream facing bus. This best-case estimateis
called the best case budget. The hostis free to issue the split transactions anytime within the scheduled
microframe,but each split transaction must be issued sometime within the scheduled microframe. This
description of the scheduling requirements applies to the split transactions for a single full-/low-speed
transactionat a time.

1, The host must never schedule a start-split in microframe Y,. Some error conditions may result in the
host controller erroneously issuing a start-split in this microframe. The TT responseto this start-split is
undefined.

374

ZTE/SAMSUNG 1008-0402

IPR2018-00110

ZTE/SAMSUNG 1008-0403
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

2. The host must computethe start-split schedule by determining the best case budgetfor the transaction
and:

a. For isochronous OUTfull-speed transactions, for each microframe in which the transaction is
budgeted, the host must schedule a 188 (or the remaining data size) data byte start-split transaction.
The start-split transaction must be scheduled in the microframe before the data is budgeted to begin
on the full-speed bus. Thestart-split transactions must use the beginning/middle/end/all split
transaction token encodings corresponding to the piece of the full-speed data that is being sent on
the high-speed bus. For example, if only a single start-split is required, an “‘all” encodingis used.
If multiple start-splits are required, a “beginning” encodingis used forthe first start-split and an
“end” encodingis used for the final start-split. If there are more than twostart-splits required, the
additional start-splits that are not the first or Jast use a “middle” encoding. A zero Jength full-speed
data payload must only be scheduled with an “all” start-split. A start-split transaction for a
beginning, middle, or end start-split must always have a non-zero length data payload.
Figure 11-62 shows an example of an isochronous OUTthat would appear to have budgeted a zero
length data payload in a start-split (end). This example instead must be scheduled witha start-
split(all) transaction.

lsoch OUTtransaction with 187 data

bytes has 196 byte budget.
Transaction budgeted for Y1 and Y2.

t

j (Y-1), Y, ¥3 Be ¥; Ye : Ne ¥;

HS SS-all_ |
: Start-split : i i }

Schedule SS-all with 187 data bytes, not SS-begin(187 data) and SS-end (0 data).

An Isoch OUTonly ever has zero length data in SS-all.

Figure 11-62. Isochronous OUT Example That Avoids a Start-split-end With Zero Data

b. For isochronous IN and interrupt IN/OUTfull-/low-speed transactions, a single start-split must be
scheduled in the microframebefore the transaction is budgeted to start on the full-/low-speed bus.

3. The host never schedules more than one complete-split in any microframe for the samefull-/low-speed
transaction.

a. For isochronous OUTfull-speed transactions, the host must never schedule a complete-split. The
TT response to a complete-split for an isochronous OUTis undefined.

b. Forinterrupt IN/OUTfull-/low-speed transactions, the host must schedule a complete-split
transaction in each of the two microframes following the first microframe in whichthefull-/low-
speed transaction is budgeted. An additional complete-split must also be scheduled in the third
following microframe unless the full-/low-speed transaction was budgeted to start in microframe
Y,. Figure 11-63 shows an example with only two complete-splits.

375

ZTE/SAMSUNG 1008-0403

IPR2018-00110

ZTE/SAMSUNG 1008-0404
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

#1: A full/llow-speed transaction
budgeted to run here on the classic bus,...

 Yo » Y, » YY, i Ys s OY, Ys Y, (Y+t), =
Previouslybudgetedtransactions Steeles,

Best case budget : 4 : Lette ‘: f i i a3 ‘« >» :
: : : HS ‘HS Complete-splits ‘
i : i 1 : Start-split ; : ‘

#2: ...has a HS start-split scheduled
in this microframeand...

#3: ...has 2 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speedtransaction

Figure 11-63. End of Frame TT Pipeline Scheduling Example

c. For isochronous IN full-speed transactions, for each microframe in which the full-speed transaction
is budgeted, a complete-split must be scheduled for each following microframe. Also, determine
the last microframe in which a complete-split is scheduled, call it L. If L is less than Y,, schedule
additional complete-splits in microframe L+1 and L+2.

If L is equal to Y,, schedule one complete-split in microframe Y,. Also, schedule one complete-
split in microframe Y, of the next frame, unlessthe full-speed transaction was budgeted tostart in
microframeY,.

If L is equal to Y,, schedule one complete-split in microframe Y, of the next frame, unless the full-
speed transaction was budgetedto start in microframe Y,. Figure 11-64 and Figure 11-65 show
examples of the cases for L= Y, and L=Y,.

376

ZTE/SAMSUNG 1008-0404

IPR2018-00110

ZTE/SAMSUNG 1008-0405
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

cha dnermaei Microframe with: ow-speed transaction ;
budgeted to run here ontheclassic bus,... last complete-split

\ from budget (L)

feFiehae,eresoereematioensSoro » Y, | (ety
Previously budgeted transactions : :

Bestcase budget : : “te, :
| . ee:
i ‘HS

Start-split

#2: ...has a HS start-split scheduled
in this microframe and...

#3: ...has 4 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-64. Isochronous IN Complete-split Schedule Example at L=Y,

et Afallh edt ‘i MicroframewithAfull/low-speed transaction :
budgeted to run here ontheclassic bus,... last complete-split

from budget(L)

Yo i Y, a Y; A Y, Y, i (Y+1),
ce __ Previously budgetedtransactions “7

aeae estan ! | a“ 3 A f me a 7 3
‘HS : HS:Complete-splits “Extra
‘Start-split : ‘complete-split

 #2: ..has a HS start-split scheduled
in this microframeand...

#3: ...has 4 HS complete-split transactions
scheduled in the possible microframes
for this full/low-speed transaction

Figure 11-65. Isochronous IN Complete-split Schedule Example at L=Y,

4. The host must never issue more than 16 start-splits in any high-speed microframefor any TT.

5. The host must only issue a split transaction in the microframe in which it was scheduled.

6. As precisely identified in the flow sequence and state machinefigures, the host controller must
immediately retry a complete-split after a high-speed transaction error (“trans_err’’).

377

ZTE/SAMSUNG 1008-0405

IPR2018-00110

ZTE/SAMSUNG 1008-0406
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

The “pattern”of split transactions scheduled for a full-/low-speed transaction can be computed once when
each endpoint is configured. Then the pattern does not change unless some change occursto the collection
of currently configured full-/low-speed endpoints attached via a TT.

Finally, for all periodic endpoints that have split transactions scheduled within a particular microframe,the
host must issue complete-split transactions in the samerelative order as the correspondingstart-split
transactions were issued.

11.18.5 TT Response Generation
The approachusedforfull-speed isochronous INs and interrupt INs/OUTsensuresthat there is always an
opportunity for the TT to return data/results wheneverit has something to return from the full-/low-speed
transaction. Then wheneverthe full-/low-speed handlerstarts the full-/low-speed transaction,it simply
accumulates the results in each microframe andthen returns it in response to a complete-split from the host.
The TT acts similar to an isochronous device in that it uses the microframe boundary to "carve up"the full-
/low-speed data to be returned to the host. The TT does not do any computation on how muchdata to return
at what time. In response to the "next" high-speed complete-split, the TT simply returns the endpointdatait
has received from the full-/low-speed bus in a microframe.

Wheneverthe TT has data to return in response to a complete-split for an interrupt full-/low-speed or
isochronousfull-speed transaction, it uses either a DATAO/1 or MDATAforthe data packet PID.

If the full-/low-speed handler completes the full-/low-speed isochronous/interrupt IN transaction during a
microframe with a valid CRC16,it uses the DATAO/1 PID for the data packet of the complete-split
transaction. This indicates that this is the last data ofthe full-/low-speed transaction. A DATAOPIDis
always used for isochronoustransactions. For interrupt transactions, a DATAO/1 PID is used corresponding
to the full-/low-speed data packet PID received.

If the full-/low-speed handler completes the full-/low-speed isochronous/interrupt IN transaction during a
microframe with a bad CRC 16,it uses the ERR response to the complete-split transaction and does not
return the data received from the full-/low-speed device.

If the TT is still receiving data on the downstream facing bus at the microframe boundary, the TT will
respond with either an MDATAPID or a NYETforthe corresponding complete-split. If the TT has
received more than two bytes of the data field of the full-/low-speed data packet, it will respond with an
MDATAPID. Further, the data packet that will be returned in the complete-split must contain the data
received from the full-/low-speed device minus the last two bytes. The last two bytes must not be included
since they could be the CRC16 field, but the TT will not know this until the next microfrane. The CRC16
field received from the full-/low-speed device is never returned in a complete-split data packet for
isochronous/interrupttransactions. If less than three data bytes of the full-/low-speed data packet have been
received at the end of a microframe, the TT must respond with a NYETto the corresponding high-speed
complete-split. Both of these responses indicate to the host that more data is being received and another
complete-split transaction is required.

Whenthe host controller receives a DATAO/1 PID for interrupt or isochronous IN complete-splits (and
ACK, NAK, STALL, ERR for interrupt IN/OUT complete-splits), it stops issuing any remaining complete-
splits that might be scheduled for that endpoint for this full-/low-speed transaction.

If the TT has notstarted the full-/low-speed transaction when it receives a complete-split, the TT will not
find an entry in the complete-split pipeline stage. When this happens, the protocol state machines show that
the TT responds with a NYET(e.g., the “no match” case). This NYETresponsetells the host that there are
no results available currently, but the host should continue with other scheduled split transactions for this
endpoint in subsequent microframes.

In general, there will be two (or more) complete-split transactions scheduled for a periodic endpoint.
However, for interrupt endpoints, the maximum size ofthe full-/low-speed transaction guaranteesthat it can
never require more than two complete-split transactions. Two complete-split transactions are only required
whenthe transaction spans a microframe boundary. In cases where the full-/low-speed transaction actually

378

ZTE/SAMSUNG 1008-0406

IPR2018-00110

ZTE/SAMSUNG 1008-0407
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

starts and completes in the same microframe, only a single complete-split will return data; any other earlier
complete-splits will have a NYETresponse.

For isochronous IN transactions, more complete-split transactions may be scheduled based on the length of
the full-speed transaction. A full-speed isochronousIN transaction can be up to 1023 data bytes, which can
require portions of up to 8 microframes of time on the downstream facing bus (with the worst alignmentin
the frame and worstcase bit stuffing). Such a maximum sized full-speed transaction can require
8 complete-split transactions. If the device generates less data, the host will stop issuing complete-splits
after the one that returns the final data from the device for a frame.

11.18.6 TT Periodic Transaction Handling Requirements
The TT has two methodsit must use to react to timing related events that affect the microframepipeline:
currenttransaction abort and freeing pendingstart-splits. These methods must be used to managethe
microframepipeline.

The TT must also react (as described in Section 11.22.1) when its microframe or frame timer loses
synchronization with the high-speed bus.

The TT mustnot issue too many full-/low-speed transactions in any microframe.

Eachofthese requirements are described below.

11.18.6.1 Abort of Current Transaction

Whena current transaction is in progress on the downstream facing bus andit is no longer appropriate for
the TT to continue the transaction, the transaction is “aborted.”

The TT full-/low-speed handler must abort the current full-/low-speed transaction:

1. Forall periodic transaction types,if the full-speed frame EOFtime occurs

2. Ifthe transaction is an interrupt transaction andthe start-split for the transaction was received in some
microframe(cal] it X) and the TT microframe timer indicates the X+4 microframe

Note that no additional abort handling is required for isochronous transactions besides the generic IN/OUT
handling described below. Abort has different processing requirements with regards to the downstream
facing bus for IN and OUTtransactions. For any type of transaction, the TT must not generate a complete-
split response for an aborted transaction;e.g., no entry is made in the complete-split pipeline stage for an
aborted transaction.

1. Atthe time the TT decides to abort an IN transaction, the TT must not issue the handshake packet for
the transaction if the handshake has not already been started on the downstream facing bus. The TT
may choose to not issue the IN token packet, if possible. If the transaction is in the data phase(e.g., in
the middle of the target device generated DATApacket), the TT simply awaits the completion ofthat
packet and ignores any data received and must not respond with a full-/low-speed handshake. The TT
must not makean entry in the complete-split pipeline stage. This processing will cause a NYET
response to the corresponding complete-split on the high-speed bus.

2. Atthe time the TT decides to abort an OUTtransaction, the TT may chooseto not issue the TOKEN or
DATApackets, if possible. Ifthe TT is in the middle of the DATA packet, it must stop issuing data
bytes as soon as possible and force a bit-stuffing error on the downstream facing bus. In any case, the
TT must not make an entry in the complete-split pipeline stage. This processing will cause a NYET
response to the corresponding complete-split on the high-speed bus.

11.18.6.2 Free of Pending Start-splits
A start-split can be buffered in the start-split pipeline stage that is no longer appropriate to causeafull-/low-
speed transaction on the downstream facing bus. Suchastart-split transaction mustbe “freed”from the

- 379

ZTE/SAMSUNG 1008-0407

IPR2018-00110

ZTE/SAMSUNG 1008-0408
IPR2018-00110

11

11

Universal Serial Bus Specification Revision 2.0

start-split pipeline stage. This means thestart-split is simply ignored by the TT and the TT must respond to
a corresponding complete-split with a NYET. For example, no entry is made in the complete-split pipeline
stage for the freed start-split.

A Start-split in the start-split pipeline must be freed:

1. Ifthe full-speed frame EOF time occurs, exceptforstart-splits received in (Y-1),

2. Ifthe start-split transaction was received in some microframe(call it X) and the TT microframe
timer indicates the X+4 microframe

If the TT receives a periodic start-split transaction in microframe Y,, its behavior is undefined. This is a
host schedulingerror.

-18.6.3 Maximum Full-/low-speed Transactions per Microframe
The TT must not start a full-/low-speed transaction unless it has space available in the complete-split
pipeline stage to hold theresults of the transaction. If there is not enough space, the TT must waitto issue
the transaction until there is enough space. The maximum numberofnormally operating full-speed
transactions that can ever be completed in a microframeis 16.

-18.7 TT Transaction Tracking

Figure 11-66 shows the TT microframepipeline of transactions. The 8 high-speed microframesthat
composea full-/low-speed frame are labeled with Y, through Y, assuming the microframetimer has
occurredat the point in time shownbythe arrow (e.g., time “NOW”).

As shownin the figure, a start-split high-speed transaction that the high-speed handler receivesin
microframeY, (e.g., a start-split “B”) can run on the full-/low-speed bus during microframe times Y, or Y,
or Y,. This variation in starting on the full-/low-speed bus is due to bit stuffing and bulk/control
reclamation that can occuron the full-/low-speed bus. Oncethe full-/low-speed transaction finishes,its
complete-split transactions (if they are required) will run on the high-speed bus during microframes Y,, Y,,
or Y,. ' t 1 t 1 t 1t 1 ' t 1 t 1t i ' t 1 t 1

Yo ' ¥, ' Y; {Ys 1; Yq { Ys | ¥¢ { Yr
t I 1 | { I {' 1 1 t 1 1 1J t t t 1 1 t

Start-splits B ' c ' D E ' F i G I None, | A”
FS/LS transaction] A ' AB ! ABC | BCD | CDE | DEF } ERG! RG
Complete-splits FG’ ' A ! AB ;: ABC ! Bc.D ! G DE ¢ D,E,F | E.F,G

t ! ! ! ! i h
NOW-4 NOW-3 NOW-2 NOW-1 NOW

Figure 11-66. MicroframePipeline

When the microframetimer indicates a new microframe, the high-speed handler must markanystart-splits
in the start-split pipeline stage it received in the previous microframe as “pending”so that they can be
processed on the full-/low-speed bus as appropriate. This prevents the full-/low-speed transactions from
running on the downstream bustoo early.

At the beginning of each microframe(call it “NOW”), the high-speed handler mustfree (as defined in
Section 11.18.6.2) any start-split transactions from the start-split pipeline stage that are still pending from
microframe NOW-4(orearlier) and ignore them. Ifthe transaction is in progress on the downstream facing
bus, the transaction must be aborted (with full-/low-speed methods as defined in Chapter 8). This is
described in more detail in the previous sections. This ensures that even if the full-/low-speed bus has
encountered a babble condition on the bus (or other delay condition), the TT keeps its periodic transaction
pipeline running on time (e.g., transactions do not run too late). This also ensures that whenthe last
scheduled complete-split transaction is received by the TT, the full-/low-speed transaction has been
completed (either successfully or by being aborted).

380

ZTE/SAMSUNG 1008-0408

IPR2018-00110

ZTE/SAMSUNG 1008-0409
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Finally, at the beginning of each microframe, the high-speed handler must change any complete-split
transaction responsesin the complete-split pipeline stage from microframe NOW-2 to thefree state so that
their space can be reused for responses in this microframe.

This algorithm is shownin pseudo code in Figure 11-67. This pseudo-code correspondsto the
Advance_pipeline procedure identified previously.

-- Clean up start-split state in case full-/low-speed bus fell behind
while start-splits in pending state received by TT before microframe-4 loop

Free start-split entry
End loop

-- Clean up complete-split pipeline in case no complete-splits were received
While complete-split transaction states from (microframe-2) loop

Free complete-split response transaction entry
End loop

-- Enable full-/low-speed transactions received in previous microframe
While start-split transactions from (previous_microframe) loop

Set start-split entry to pending status
End loop

Figure 11-67. Advance_Pipeline Pseudocode

11.18.8 TT Complete-split Transaction State Searching
A host must issue complete-split transactions in a microframefora set offull-/low-speed endpoints in the
samerelative order as the start-splits were issued in a microframe for this TT. However, errors onstart- or
complete-splits can cause the high-speed handler to receive a complete-split transaction that does not
“match” the expected next transaction according to the TT’s transaction pipeline.

The TT has a pipeline of complete-split transaction state that it is expecting to use to respond to complete-
split transactions. Normally the host will issue the complete-split that the high-speed handleris expecting
next and the complete-split will correspond to the entry at the front of the complete-split pipeline.

However, when errors occur, the complete-split transaction that the high-speed handler receives might not
match the entry at the front of the complete-split pipeline. This can happen for example, whenastart-split
is damaged on the high-speed bus and the high-speed handler does not receive it successfully. Or the high-
speed handler might have a match, but the matching entry is located after the state for other expected
complete-splits that the high-speed handler did not receive (due to complete-split errors on the high-speed
bus).

The high-speed handler must respond to a complete-split transaction with the results of a full-/low-speed
transaction that it has completed. This means that the high-speed handler must search to find the correct
state tracking entry amongseveral possible complete-split response entries. This searching takes time. The
high-speed handler only needs to search the complete-split responses accumulated during the previous
microframe. There only needs to be at most 1 microframe of complete-split response entries; the
microframe of responsesthat have already been accumulated and are awaiting to be returned via high-speed
complete-splits.

The split transaction protocol is defined to allow the high-speed handlerto timeout the first high-speed
complete-split transaction while it is searching for the correct response. This allows the high-speed handler
time to complete its search and respondcorrectly to the next (retried) complete-split.

The following interrupt and isochronous flow sequence figures show these cases with the transitions labeled
“Search not complete in time” and “Nosplit response found”.

The high-speed handler matches the complete-split transaction with the correct entry in the complete-split
pipeline stage and advancesthe pipeline appropriately. There are five cases the TT must handle correctly:

1. If the high-speed complete-split token and first entry of the complete-split pipeline match, the high-speed
handler responds with the indicated data/status. This case occurs the first time the TT receives a
complete-split.

381

ZTE/SAMSUNG 1008-0409

IPR2018-00110

ZTE/SAMSUNG 1008-0410
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

2. Same as above, but this is a retry of a complete-split that the TT has already received due to the host
controller not receiving the (previous) response information.

3. If the complete-split transaction matches some other entry in the complete-split pipeline besidesthefirst,
the high-speed handler advances the complete-split pipeline (e.g., frees response information for previous
complete-split entries) and responds with the information for the matching entry. This case can happen
due to normal or missed previous complete-split transactions. An example abnormal case could bethat
the host controller was unsuccessful in issuing a complete-split transaction to the high-speed handler and
has done endpointhalt processing for that endpoint. This means the next complete-split will not match
the first entry of the complete-split pipeline stage.

4. The high-speed handler can also receive a complete-split before it has started a full-/low-speed
transaction.If there is not an entry in the complete-split pipeline, the high-speed handler responds with a
NYEThandshaketo inform the hostthat it has no status information. Whenthe host issues the last

scheduled complete-split for this endpoint for this frame, it must interpret the NYETas an error
condition. This stimulates the normal “three strikes” error handling. If there have been more than three
errors, the host halts this endpoint. If there have been less than three errors, the host continues processing
the scheduled transactions of this endpoint(e.g., a start-split will be issued as the next transaction for this
endpointat the next scheduled time for this endpoint). Note that a NYET responseis possible in this case
due to a transaction error on the start-split or a host (or TT) schedulingerror.

5. The high-speed handler can timeoutits first high-speed complete-split transaction while it is searching the
complete-split pipeline stage for a matching entry. However, the high-speed handler must respond
correctly to the subsequent complete-split transaction. Ifthe high-speed handler did not respond correctly
for an interrupt IN after it had acknowledged the full-/low-speed transaction, the endpoint software and
the device would lose data synchronization and morecatastrophic errors could occur.

The host controller must issue the complete-split transactions in the samerelative order as the original
correspondingstart-split transactions.

11.19 Approximate TT Buffer Space Required

A transaction translator requires buffer and state tracking space for its periodic and non-periodic portions.

The TT microframepipeline requires less than:

e 752 data bytesfor the start-split stage

e 2x 188 data bytes for the complete-split stage

e 16x 4x transaction status (<4 bytes for each transaction) for start-split stage

e 16x 2x transaction status (<4 bytes for each transaction) for complete-split stage

There are, at most, 4 microframes of buffering required for the start-split stage of the pipeline and, at most,
2 microframes of buffering for the complete-split stage of the pipeline. There are, at most, 16 full-speed
(minimum sized) transactions possible in any microframe.

The non-periodic portion of the TT requires atleast:

* 2x (64 data +4 transaction status) bytes

Different implementations may require more or less buffering and state tracking space.

11.20 Interrupt Transaction Translation Overview

The flow sequence and state machine figures show the transitions required for high-speed split transactions
for full-/low-speed interrupt transfer types for a single endpoint. These figures mustnot be interpreted as
showing any particular specific timing. In particular, high-speed or full-/low-speed transactions for other
endpoints may occurbefore or after these split transactions. Specific details are described as appropriate.

382

ZTE/SAMSUNG 1008-0410

IPR2018-00110

ZTE/SAMSUNG 1008-0411
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

In contrast to bulk/control processing, the full-/low-speed handler must not do local retry processing on the
full-/low-speed busin responseto a transaction error for full-/low-speed interrupt transactions.

11.20.1 Interrupt Split Transaction Sequences
Theinterrupt IN and OUT flow sequencefigures use the same notation and have descriptions similarto the
bulk/controlfigures.

In contrast to bulk/control processing, the full-speed handler must not do local retry processing on the full-
speed busin responseto a transaction errors (including timeout) ofan interrupt transaction.

Start split

stl

SSPLIT
st Secasiasiesatit lajiaalsasbursessnpayabivacenaiiaioaabeatsery

 Trans_err
sel

DATAO/1

not trans_err, Tirans_err
Data_into_SS_pipe |

se2:
v

shl
Vv

comp.split

Figure 11-68. Interrupt OUT Start-split Transaction Sequence

383

ZTE/SAMSUNG 1008-0411

IPR2018-00110

ZTE/SAMSUNG 1008-0412
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Completesplit

ct]

Fastmatch

[ecscinaniicasiteeMeTROLOTETINEosaassrrscannsitcntiaattssti |
sonoNo.splitresponsefoundnny |

oldstall oldjack oldinak old/trans..err | Tranerr
i

||STALL]|ACK||NAK||ERR||NYET
— Inc err

| | | Last Not lastv v v cod 7 "na countEndpoint Gotonext Retry Lis Next i
halt emd start split Inc err comp.split |

count |
| |

5 Pon, pos
cet} ce4j ced Re

| if err_count <3
iferr_count<3 | ! retry immed.
retry start split |! i comp.split

. v
if err_count >= 3
endpoint halt

Figure 11-69. Interrupt OUT Complete-split Transaction Sequence

384

ZTE/SAMSUNG 1008-0412

IPR2018-00110

ZTE/SAMSUNG 1008-0413
IPR2018-00110

Universal Serial Bus Specification Revision 2.0

Start split

i

Data_into_SS_pipe
v

Go to

comp.split

Figure 11-70. Interrupt IN Start-split Transaction Sequence

Complete split

| Search not

complete in time

old/mbredata sl old/nak oa olid/trans_errTransnar en(upara

Y._.—.-, i goi! Trans_ not franserr nity eadtokit |Oe* Naijast
err chy ‘ start split halt WY chéy

cel; | nnnne1 T Next| | BCAcctdata! ti ti Ine err .| Trans O°! nor | edunt comp.split| | Next com !~ trang_err,—trang_err, ;
(ce itd= Datdx= ~—Datdx/= PA,
jl pu cei ce |
iq--¥.-.-- toggle toggle ced i
t : ; Vv i

Ineearhl ch7 ché | if err_count <3 |
een cel v Retry retry start split |v Gotonextcmd_gtart split col

if err_count >=3 iferr_count<3 HCAcceptdata HCreject data ’ _
endpointhalt retry immed. ~ if err_count >= 3

comp.split endpoint halt

Figure 11-71. Interrupt IN Complete-split Transaction Sequence

385

ZTE/SAMSUNG 1008-0413

IPR2018-00110

