DESCRIPTION

LIGHT EMITTING DEVICE, RESIN PACKAGE, RESIN-MOLDED BODY,
AND METHODS FOR MANUFACTURING LIGHT EMITTING DEVICE,
RESIN PACKAGE AND RESIN-MOLDED BODY
TECHNICAL FIELD

[0001]

The present invention relates to a light emitting device used for light equipment, a display, a backlight of a mobile telephone, a movie lighting auxiliary light source, and other general consumer light sources, and to a method for manufacturing a light emitting device.

BACKGROUND ART

[0002]

A light emitting device using light emitting elements is small, provides good power efficiency, and emits light of bright color. Further, the light emitting elements are semiconductor elements, and therefore there is no concern for blowout. The light emitting elements have characteristics of good initial driving performance and are robust against vibration and repetition of on and off of lighting. The light emitting elements have these good characteristics, and therefore light emitting devices using light emitting elements such as light emitting diodes (LEDs) and laser diodes (LDs) are utilized as various light sources.

[0003]

FIG. 14 is a perspective view illustrating a method for manufacturing a conventional light emitting device. FIG. 15 is a perspective view illustrating an intermediate of the conventional light emitting device. FIG. 16 is a

NICHIA EXHIBIT 2023 Vizio, Inc. v. Nichia Corp.

perspective view illustrating the conventional light emitting device. [0004]

Conventionally, as a method for manufacturing a light emitting device, a method is disclosed for insert-molding a lead frame with a non-translucent, light reflecting white resin, and molding a resin-molded body which has concave cups at predetermined intervals through the lead frame (e.g., refer to Patent Document 1). Although quality of a material of a white resin is not clearly described, as is insertion-molding performed and as is clear from the figures, a general thermoplastic resin is used. As a general thermoplastic resin, for example, a thermoplastic resin such as liquid crystal polymer, PPS (polyphenylene sulfide), and nylon is often used as a light blocking resin-molded body (e.g., refer to Patent Document 2).

[0005]

However, the thermoplastic resin has little adhesion with a lead frame, and the resin part and lead frame are likely to be detached. Further, the thermosetting resin has lower resin fluidity of the resin and therefore is not adequate to mold a resin molded body of a complicated shape, and has little light resistance. In recent years in particular, the output of a light emitting element is remarkably improved and, as the output of a light emitting element is increased, light deterioration of a package made of a thermoplastic resin becomes more distinct.

[0006]

In order to solve the above problems, a light emitting device using a thermosetting resin for a material of a resin molded body is disclosed (e.g., refer to Patent Document 3). FIG. 17 is a perspective view and sectional view

illustrating a conventional light emitting device. FIG. 18 is a schematic sectional view illustrating a method for manufacturing the conventional light emitting device. It is disclosed that, with this light emitting device, metal wires are formed from a metal foil by a common method such as punching or etching and are further arranged in a mold of a predetermined shape, and a thermosetting resin is filled in a mold resin inlet to transfer mold.

[0007]

However, this manufacturing method has difficulty in manufacturing multiple light emitting devices in a short time. Further, there is a problem that a great amount of a resin of a runner part is discarded per one light emitting device.

[8000]

As a different light emitting device and manufacturing method therefor, an optical semiconductor element mounting package substrate which has a light reflecting thermosetting resin composition layer on the wiring substrate, and manufacturing method therefor are disclosed (e.g., refer to Patent Document 4). FIG. 19 is a schematic view illustrating steps of manufacturing a conventional light emitting device. This optical semiconductor element mounting package substrate is manufactured as an optical semiconductor element mounting package substrate of a matrix pattern which has a plurality of concave parts, by attaching a printed wiring board having a flat plate shape to a mold, filling a light reflecting thermosetting resin composition in the mold, and heating and pressuring molding the light reflecting thermosetting resin by means of a transfer molding machine. Further, it is also disclosed that a lead frame is used instead of a printed wiring board.

[0009]

However, these wiring board and lead frame have a flat plate shape and have a small adhering area because a thermosetting resin composition is arranged on this flat shape, and therefore there is a problem that, for example, a lead frame and thermosetting resin composition are likely to be detached upon singulation.

[0010]

Patent Document 1: Japanese Patent Application Laid-Open No. 2007-35794 (paragraph [0033] in particular)

Patent Document 2: Japanese Patent Application Laid-Open No. 11-087780

Patent Document 3: Japanese Patent Application Laid-Open No. 2006-140207 (paragraph [0028] in particular)

Patent Document 4: Japanese Patent Application Laid Open No. 2007-235085

DISCLOSURE OF THE INVENTION

PROBLEMS TO BE SOLVED BY THE INVENTION

[0011]

In view of the above problems, an object of the present invention is to provide a simple and low-cost method for manufacturing, in a short time, multiple light emitting devices which has high adhesion between a lead frame and a thermosetting resin composition.

MEANS FOR SOLVING THE PROBLEMS [0012]

The present invention is earnestly studied and as a result is finally

completed.

[0013]

In this description, terms such as leads, a resin part, and resin package are used for a singulated light emitting device, and terms such as a lead frame and resin-molded body are used in the stage prior to singulation.

[0014]

The present invention relates to a method of manufacturing a light emitting device having a resin package which provides an optical reflectivity equal to or more than 70% at a wavelength between 350 nm and 800 nm after thermal curing, and in which a resin part and a lead are formed in a substantially same plane in an outer side surface. The method comprises: a step of sandwiching a lead frame provided with a notch part, by means of an upper mold and a lower mold; a step of transfer-molding a thermosetting resin containing a light reflecting material in a mold sandwiched by the upper mold and the lower mold to form a resin-molded body in the lead frame; and a step of cutting the resin-molded body and the lead frame along the notch part. With the configuration, the thermosetting resin is filled in the notch parts, and therefore an adhering area between the lead frame and the thermosetting resin becomes large, so that it is possible to improve adhesion between the lead frame and the thermosetting resin. Further, a thermosetting resin having lower viscosity than a thermoplastic resin is used, so that it is possible to fill the thermosetting resin in the notch parts without leaving a gap. Further, it is possible to manufacture multiple light emitting devices at one time and greatly improve productive efficiency. Furthermore, it is possible to reduce runners which are discarded, and provide light emitting devices at low cost.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

