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Vapour,
pressure p

Liquid
or solid

6.3 The vapour pressure of a liquid or
solid is the pressure exerted by the
vapourin equilibrium with the condensed
phase.

 
(a) (b) (c)

6.4 (a) A liquid in equilibrium with its
vapour. (b) Whenaliquid is heated in a
sealed container, the density of the
vapour phase increases and that of the
liquid decreasesslightly. (The decrease in
quantity of liquid is a result of
vaporization.) (c) There comes a stage at
which the two densities are equal and the
interface between the fluids disappears.
This occurs at the critical temperature.

The container needs to be strong: the
critical temperature of water is 374°C and
the vapour pressure is then 218 atm.

6.1 Phase boundaries 185

6.1 Phase boundaries

Consider a sample of a pure substance in a closed vessel of constant
volume. The pressure of a vapour in equilibrium with its condensed
phase at a specified temperature is called the vapour pressure of the
substance at that temperature (Fig. 6.3). Hence, as anticipated above,
the phase boundaries between the liquid and the vapour and between the
solid and the vapour show how the vapour pressures of the two
condensed phases vary with temperature. The vapour pressure of a
substance increases with temperature because, at higher temperatures,
the molecules can escape more readily from the attractive interactions
that bind them to their neighbours in the condensed phase.

Critical points and boiling points
The behaviour of a liquid heated in an open vessel differs from that of a
liquid in a sealed vessel. In an open vessel, the liquid vaporizes from its
surface as it is heated. At the temperature at which its vapour pressure
would be equal to the external pressure, vaporization can occur through-
out the bulk of the liquid and the vapour can expand freely into the
surroundings. The condition of free vaporization throughout the liquid is
called boiling. The temperature at which the vapour pressure of a liquid
is equal to the external pressure is called the boiling temperatureat that
pressure. Note that a liquid does not suddenly start to form a vapour at
its boiling temperature, for even at lower temperatures there is an
equilibrium between the liquid and its vapour: at the boiling point the
vapour pressure is great enough to drive back the atmosphere and
vaporization can occur freely. For the special case of an external pressure
of 1 atm, the boiling temperature is called the normalboiling point 7,.
With the replacement of 1 atm by 1 bar as standard pressure, there is
some advantage in modifying the definition so that the transition
temperature refers to that pressure; the term standard boiling point
is then used. Because 1 bar is slightly less than latm (1.00 bar=
0.987 atm), the standard boiling pointof a liquid is slightly lower than its
normal boiling point. The normal boiling point of water is 100.0°C; its
standard boiling point is 99.6°C.

When a liquid is heated in a sealed vessel, boiling does not occur.
Instead, the temperature, vapour pressure, and the density of the vapour
rise continuously (Fig. 6.4). At the same time, the density of the liquid
decreases as a result of its expansion. There comes a stage at which the
density of the vapour is equal to that of the remaining liquid and the
surface between the two phases disappears. The temperature at which
the surface disappears is the critical temperature T. (which wefirst
encountered in Section 1.4). The corresponding vapour pressure is the
critical pressure p.. At and above this temperature a single uniform
phasefills the container and an interface no longer exists. That is, above
the critical temperature the liquid phase of the substance does not exist.

Melting points and triple points
The temperature at which, under a specified pressure, liquid and solid
coexist in equilibrium is called the melting temperature. Because a

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

wts
copyright

https://www.docketalarm.com/

