Disclosure of Application No.	Disclosure of US Patent No. 5,850,484
08/411,369 (Ex. 1016)	(Ex. 1007)
"Text and Image Sharpening of JPEG	"Text and Image Sharpening of JPEG
Compressed Images in the Frequency	Compressed Images in the Frequency
Domain." Ex. 1016, p. 4, lines 5–6.	Domain." Ex. 1007, at Title.
"Figure 1 shows a block diagram of a	"FIG. 1 shows a block diagram of a
typical implementation of the JPEG	typical implementation of the JPEG
compression standard. The block	compression standard. The block
diagram will be referred to as a	diagram will be referred to as a
compression engine. The compression	compression engine. The compression
engine 10 operates on source image	engine 10 operates on source image
a given color space such as CIELAP	a given color space such as CIELAP
The source image data has a certain	The source image data has a certain
resolution which is determined by how	resolution which is determined by how
the image was captured. Each	the image was captured. Each
individual datum of the source image	individual datum of the source image
data represents an image pixel. The	data represents an image pixel. The
pixel further has a depth which is	pixel further has a depth which is
determined by the number of bits used	determined by the number of bits used
to represent the image pixel.	to represent the image pixel.
The course image data is typically	The source image date is typically
formatted as a restor stream of data	formatted as a raster stream of data
The compression technique, however	The compression technique, however
requires the data to be represented in	requires the data to be represented in
blocks. These blocks represent a two-	blocks. These blocks represent a two-
dimensional portion of the source image	dimensional portion of the source image
data. The JPEG standard uses 8x8	data. The JPEG standard uses 8x8
blocks of data. Therefore, a raster-to-	blocks of data. Therefore, a raster-to-
block translation unit 12 translates the	block translation unit 12 translates the
raster source image data into 8x8 blocks	raster source image data into 8x8 blocks
of source image data. The source image	of source image data. The source image
data is also shifted from unsigned	data is also shifted from unsigned
integers to signed integers to put them	integers to signed integers to put them
into the proper format for the next stage	into the proper format for the next stage
in the compression process. These 8x8	in the compression process. These 8x8
blocks are then forwarded to a discrete	blocks are then forwarded to a discrete
cosine transformer 16 via bus 14.	cosine transformer 16 via bus 14.

Disclosure of Application No.	Disclosure of US Patent No. 5,850,484
08/411,369 (Ex. 1016)	(Ex. 1007)
The discrete cosine transformer 16 converts the source image data into transformed image data using the discrete cosine transform (DCT). The DCT, as is known in the art of image processing, decomposes the 8x8 block of source image data into 64 DCT elements or coefficients, each of which corresponds to a respective DCT basis vector. These basis vectors are unique 2-dimensional (2D) 'spatial waveforms,' which are the fundamental units in the DCT space. These basis vectors can be intuitively thought to represent unique images, wherein any source image can be decomposed into a weighted sum of these unique images. The discrete cosine transformer uses the forward discrete cosine (FDCT) function as shown below, hence the name.	The discrete cosine transformer 16 converts the source image data into transformed image data using the discrete cosine transform (DCT). The DCT, as is known in the art of image processing, decomposes the 8x8 block of source image data into 64 DCT elements or coefficients, each of which corresponds to a respective DCT basis vector. These basis vectors are unique 2-dimensional (2D) 'spatial waveforms,' which are the fundamental units in the DCT space. These basis vectors can be intuitively thought to represent unique images, wherein any source image can be 5 decomposed into a weighted sum of these unique images. The discrete cosine transformer uses the forward discrete cosine (FDCT) function as shown below, hence the name.
$Y[k,1] = \frac{1}{4}C(k) \bullet C(1) \left[\sum_{x=0}^{7} \sum_{y=0}^{7} S(x,y) \bullet \cos \frac{(2x+1)k\pi}{16} \cos \frac{(2y+1)l\pi}{16} \right]$ where: C(k), C(1) = 1/\sqrt{2} for k, l = 0; and C(k), C(1) = 1 otherwise	$Y[k,l] = \frac{1}{4} C(k) \cdot C(l) \left[\sum_{x=0}^{7} \sum_{y=0}^{7} S(x,y) \cdot \cos \frac{(2x+1)k\pi}{16} \cos \frac{(2y+1)l\pi}{16} \right]$ where: C(k), C(l)=1/\sqrt{2} for k,l=0; and C(k), C(l)=1 otherwise
The output transformer 16 is an 8x8 block of DCT elements or coefficients, corresponding to the DCT basis vectors	The output of the transformer 16 is an 8x8 block of DCT elements or coefficients, corresponding to the DCT

corresponding to the DCT basis vectors. This block of transformed image data is then forwarded to a quantizer 20 over a bus 18. The quantizer 20 quantizes the 64 DCT elements using a 64-element quantization table 24, which must be

DOCKE

RM

Δ

Find authenticated court documents without watermarks at docketalarm.com.

Disclosure of Application No.	Disclosure of US Patent No. 5,850,484
08/411,369 (Ex. 1016)	(Ex. 1007)
specified as an input to the compression	specified as an input to the compression
engine 10. Each element of the	engine 10. Each element of the
quantization table is an integer value	quantization table is an integer value
from one to 255, which specifies the	from one to 255, which specifies the
stepsize of the quantizer for the	stepsize of the quantizer for the
corresponding DCT coefficient. The	corresponding DCT coefficient. The
purpose of quantization is to achieve the	purpose of quantization is to achieve the
maximum amount of compression by	maximum amount of compression by
representing DCT coefficients with no	representing DCT coefficients with no
greater precision than is necessary to	greater precision than is necessary to
achieve the desired image quality.	achieve the desired image quality.
Quantization is a many-to-one mapping	Quantization is a many-to-one mapping
and, therefore, is fundamentally lossy.	and, therefore, is fundamentally lossy.
As mentioned above, quantization tables	As mentioned above, quantization tables
have been designed which limit the	have been designed which limit the
lossiness to imperceptible aspects of the	lossiness to imperceptible aspects of the
image so that the reproduced image is	image so that the reproduced image is
not perceptually different from the	not perceptually different from the
source image.	source image.
The quantizer 20 performs a simple division operation between each DCT coefficient and the corresponding quantization table element. The lossiness occurs because the quantizer 20 disregards any fractional remainder. Thus, the quanitzation function can be represented as shown in Equation 2 below.	The quantizer 20 performs a simple division operation between each DCT coefficient and the corresponding quantization table element. The lossiness occurs because the quantizer 20 disregards any fractional remainder. Thus, the quantization function can be represented as shown in Equation 2 below.
$Y_{Q}[k,l] = \text{Integer Round} \left(\frac{Y[k,l]}{O[k,l]}\right)$	$Y_{Q}[k,l] = \text{Integer Round} \left(\frac{Y[k,l]}{O[k,l]}\right)$
where $Y(k,l)$ represents the (k,l) -th DCT	where $Y(k,l)$ represents the (k,l) -th DCT
element and $Q(k,l)$ represents the	element and $Q(k,l)$ represents the
corresponding quantization table	corresponding quantization table
element.	element.

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Disclosure of Application No.	Disclosure of US Patent No. 5,850,484
08/411,369 (Ex. 1016)	(Ex. 1007)
To reconstruct the source image, this step is reversed, with the quantization table element being multiplied by the corresponding quantized DCT coefficient. The inverse quantization step can be represented by the following expression:	To reconstruct the source image, this step is reversed, with the quantization table element being multiplied by the corresponding quantized DCT coefficient. The inverse quantization step can be represented by the following expression:
$Y'[k, 1] = Y_Q[k, 1] Q_E[k, 1].$	$Y[k,l]=Y_Q[k,l] Q_E[k,l].$
As should be apparent, the fractional part discarded during the quantization step is not restored. Thus, this information is lost forever. Because of the potential impact on the image quality of the quantization step, considerable effort has gone into designing the quantization tables. These efforts are described further below following a discussion of the final step in the JPEG compression technique." Ex. 1016, at p. 4, line 32 – p. 7, line 15.	As should be apparent, the fractional part discarded during the quantization step is not restored. Thus, this information is lost forever. Because of the potential impact on the image quality of the quantization step, considerable effort has gone into designing the quantization tables. These efforts are described further below following a discussion of the final step in the JPEG compression technique." Ex. 1007, at 1:40-2:60.
"These limitations significantly degrade text in color images because sharp edges are very important for reading efficiency." Ex. 1016, p. 10, lines 28- 29.	"These limitations significantly degrade text in color images because sharp edges are very important for reading efficiency." Ex. 1007, at 4:44-46.
"Accordingly, the need remains for a computationally efficient method for improving the visual quality of images, and in particular text, in scanned images." Ex. 1016, p. 11, lines 16-18.	"Accordingly, the need remains for a computationally efficient method for improving the visual quality of images, and in particular text, in scanned images." Ex. 1007, at 4:65-67.

Disclosure of Application No.	Disclosure of US Patent No. 5,850,484
08/411 369 (Fx 1016)	(Fx 1007)
"For edge sharpening in the frequency	"For edge sharpening in the frequency
domain, the full image is first	domain, the full image is first
transformed into the frequency domain	transformed into the frequency domain
using the Fast Fourier Transform (FFT)	using the Fast Fourier Transform (FFT)
or the Discrete Fourier Transform	or the Discrete Fourier Transform
(DFT), low frequency components are	(DFT), low frequency components are
dropped, and then the image is	dropped, and then the image is
transformed back into the time domain."	transformed back into the time domain."
Ex. 1016, p. 11, lines 9–14.	Ex. 1007, at 4:56–61.
"In general, compression and	"In general, compression and
decompression are performed in	decompression are performed in
conformance with the JPEG standard."	conformance with the JPEG standard."
Ex. 1016, p. 11, lines 24–25.	Ex. 1007, 5:5–7.
"By using the scaling matrix S, the	"By using the scaling matrix S, the
high-frequency components of the DCT	high-frequency components of the DCT
elements can be 'enhanced' without any	elements can be 'enhanced' without any
additional computational requirements."	additional computational requirements."
Ex. 1016, p. 12, lines 9–11.	Ex. 1007, 5:20–22.
"The scanned image, although it can be	"The scanned image, although it can be
any image, in the preferred embodiment	any image, in the preferred embodiment
is a printed version of the reference	is a printed version of the reference
image. Thus, the variance of the scanned	image. Thus, the variance of the scanned
image represents the energy or	image represents the energy or
frequency composition of the reference	frequency composition of the reference
image but which is compromised by the	image but which is compromised by the
inherent limitations of the scanner. The	inherent limitations of the scanner. The
scaling matrix, therefore, boosts the	scaling matrix, therefore, boosts the
frequency components that are	frequency components that are
compromised by the scanning process.	compromised by the scanning process.
A preferred embodiment of the	A preferred embodiment of the
invention is described herein in the	invention is described herein in the
context of a color facsimile (fax)	context of a color facsimile (fax)
machine. The color fax machine	machine. The color fax machine
includes a scanner for rendering a color	includes a scanner for rendering a color
image into color source image data that	image into color source image data that
represents the color image, a	represents the color image, a

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

