
HUAWEI EX. 1015 - 1/393

PROGRAMMER:'S
TECHNICAL

REFERENCE
MS - DOS, IBM ch‘,& COMPATIBLES

get handle attr1butes
I t hand1eattributes ‘_

‘ newattribute Q» make handle

makehandle

1x
4

1: volat1le
a nonvolatile

llity (for aubfuhcti
volatile handles e-uppo

ot latile and non-volat

he page: allocateq
the vol ile attt1bute (d faul

P

, _“_ndlee_ should
3H5 board V111 reta'

lon 02h Can be used t
the non-Volatile attg
y the only attribute
iby the least Signiv

ile Name Functione120

HUAWEI EX. 1015 - 1/393

HUAWEI EX. 1015 - 2/393

THE PROGRAMMER ’S
TECHNICAL ‘

REFERENCE.-

MS-DOS, IBM PC & Compatibles

Dave Williams 7

SIGMA PRESS —- Wilmslow, United Kingdom ’ R

J

41.

HUAWEI EX. 1015 - 2/393

HUAWEI EX. 1015 - 3/393

Copyright ©, D. Williams, 1990

All Rights Reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise, without prior written permission.

First published in 1990 by

Sigma Press, 1 South Oak Lane, Wilmslow, Cheshire SK9 6AR, England.
Reprinted, 1992.

British Library Cataloguing in Publication Data

A CIP catalogue record for this book is available from the British Library.

ISBN: 1-85058—199-1

Typesetting and design by i,

Sigma Hi-Tech Services Ltd

Printed in Malta by

Interprint Ltd. ~ , |

_ Distributed by I

John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, England.

Acknowledgement of copyright names

Within this book, various proprietary trade names and names, as listed below, are.
protected by copyright and are mentioned for descriptive purposes:

UNIX, AT&T, Allied Telephone and Telegraph; AST, RAMpage! AST Corporation;
Atari, ST, Atari Computer; Borland, Turbo C, Turbo Pascal, Turbo Lightning,

Borland; Amiga 2000, Commodore Business Machines; Compaq, Deskpro, Compaq

Computer Corporation; Corona, Cordata, Cordata Computer; IO-Net, Fox Research, . .

Inc.; Smartmodem, Hayes; IBM, PC, Per, PC/XT, PC/AT, XT/286, PS/2, TopView, ;‘
DOS. PC-DOS, Micro Channel 3270 PC, RT PC, Token Ring, IBM Corporation; i
Intel, iAPX286,_ iAPX386, LIM EMS, Communicating Applications Standard, Intel,

Corporation; Logitech, Logimouse, Logitech, Inc.; Microsoft, MS, MS-DOS, 05/2, 3

Xenix, Windows, Windows/286, Windows/386, Microsoft Networks, LIM EMS, XMA, ;
Microsoft Corp.; Mouse Systems, Mouse Systems Corp.; Novell, NetWare,

Novell Corp; Destiew, Quarterdeck Office Systems; ARC, SEAware, Inc.; l
DoubleDOS, Softlogic; TaskView, Sunny Hill Software; Tandy, Tandy Corp.; Zenith. 1
Z-100, Zenith Radio Corporation; ShowPartner, Paintbrush, ZSoft Corporation;

‘LIM 4.0’ and ‘Expanded Memory Specification’ are copyright Lotus Development

Corp, Intel Corp, and Microsoft Corp; ‘EEMS', 'AQA 3.1’ and 'Enhanced Expanded
Memory Specification’ are copyright by Ashton-Tate, Quadram, and AST.Various
other names are trademarks of their respective companiesFull acknowledgment is
hereby made of all such protection.

HUAWEI EX. 1015 - 3/393

HUAWEI EX. 1015 - 4/393

Preface

This book is a technical reference. It is NOT a tutorial. It is intended to replace the various (ex-
pensive) references needed to program for the DOS environment, that stack of magazines
threatening to take over your work area, and those odd tables and charts you can never find
when you need them.

The various Microsoft and IBM publications and references don’t always have the same infor-
mation. This has caused some consternation about the ‘undocumented’ features to be found in

DOS. In general, if a call doesn’t appear in the IBM DOS 'Rechnical Reference it is considered
‘undocumented’ although it may be in common use. .

Microsoft’s offical policy toward DOS has been to put the burden of documenting and suppor-
ting their product to their vendors. Microsoft will not answer any questions concerning DOS di-
rectly since they don’t officially support it. This leaves what information IBM and other OEMs

(DEC, Zenith, et al) have chosen to publish, and the information obtained from programmers
who’ve poked around inside it.

Now that Microsoft is sellingMSDOS 3.3 and 4.0 over the counter they seem to be dragging '
their feet over whether they will have to support the generic version since it doesn’t have an .

OEM name on it anymore. In view of their push to 08/2 (OS/2! Just Say N0!) further support of
DOS seems unlikely.

A project this size takes a LOT of time and effort. I’ve tried to verify as much of the information
I’ve received as I could, but there’s just too much for absolute certainty.

HUAWEI EX. 1015 - 4/393

HUAWEI EX. 1015 - 5/393

HUAWEI EX. 1015 - 5/393

HUAWEI EX. 1015 - 6/393

Contents

Chapter 1: DOS and the IBM PC 1

Chapter2: CPU Port Assignments, System Memory Map, BIOS Data Area,
Interrupts 00h to 09h 10

Chapter 3: The PC ROM BIOS 25

Chapter 4: DOS Interrupts and Function Calls 54

Chapter 5: Interrupts 22h Through 86h 98

Chapter 6: DOS Control Blocks and Work Areas 130

Chapter 7: DOS File Structure 140

Chapter 8: DOS Disk Information 15 1

Chapter 9: Installable Device Drivers 171

Chapter 10: Expanded and Enhanced Expanded Memory Specifications 185

Chapter 11: Conversion Between MSDOS and Foreign Operating Systems 208

Chapter 12: Microsoft Windows A.P.I. . 210

Chapter 13: Network Interfacing 269

Chapter 14: Mouse Programming ' 300

Chapter 15: Register-Level Hardware Access 310

Chapter 16: Video Subsystems and Programming . 3 15

Appendix 1: Keyboard Scan Codes 328

Appendix 2: Standard ASCII Character Codes I 342

Appendix 3: ASCII Control Codes ’ 345

Appendix 4: IBM PC Interrupt Usage 347

AppendixS: List of IBM PC—XT—AT-PS/Z Diagnostic Error Codes 349

Appendix 6: Pinouts For Various Interfaces 358

Appendix 7: ANSI.SYS 370

Bibliography V 374

Index 380

HUAWEI EX. 1015 - 6/393

HUAWEI EX. 1015 - 7/393HUAWEI EX. 1015 - 7/393

HUAWEI EX. 1015 - 8/393

DOS and the IBM PC

Some History

Development of MS-DOS/PCDOS began in October 1980, when IBM began searching the mar—
ket for an operating system for the yet-to-be—introduced IBM PC. Microsoft had no real opera-
ting system to sell, but after some research licensed Seattle Computer Products’ 86-DOS opera-
ting system, which had been written by a man named Tim Paterson earlier in 1980 for use on that

company’s line of 8086, $100 bus micros. 86-DOS (also called QDOS, for Quick and Dirty
Operating System) had been written as more or less a 16-bit version of CP/M, since Digital Re-
search was showing no hurry in introducing CP/M-86.

This code was hurriedly polished up and presented to IBM for evaluation. IBM had originally in-
tended to use Digital Research’s CP/M operating system, which was the industry standard at the
time. Folklore reports everything from obscure legal entanglements to outright snubbing of the
IBM representatives by Digital. Irregardless, IBM found itself left with Microsoft’s offering of
"Microsoft Disk Operating System 1.0". An agreement was reached between the two, and IBM

- agreed to accept 86-DOS as the main operating system for their new PC. Microsoft purchased
all rights to 86—DOS in July 1981, and "IBM PC-DOS 1.0" was ready for the introduction of the
IBM PC in October 1981. IBM subjected the operating system to an extensive quality-assurance
program, reportedly found well over 300 bugs, and decided to rewrite the programs. This is why
PC-DOS is copyrighted by both IBM and Microsoft.

It is sometimes amusing to reflect on the fact that the IBM PC was not originally intended to run
MS-DOS. The target operating system at the end of the development was for a (not yet in exist-
ence) 8086 version of CP/M. On the other hand, when DOS was originally written the IBM PC
did not yet exist! Although PC-DOS was bundled with the computer, Digital Research’s CP/M-
86 would probably have been the main operating system for the PC except for two things — Digi-
tal Research wanted $495 for CP/M—86 (considering PC—DOS was essentially free) and many
software develOpers found it easier to port existing CP/M software to DOS than to the new ver-

sion of CP/M. Several computer magazines claimed that Digital Research aided IBM in writing
DOS 4.0, which was subsequently licensed back to Microsoft, which has dropped further devel-
opment of the operating system to tilt at the windmills of 08/2. OS/Z? Not yet! After using DR-
DOS 3.4 and noting its behaviour, I now tend to seriously doubt Digital had any dealings with
PC—DOS 4.0.

MS-DOS and PC-DOS have been run on more than just the IBM-PC and clones. Some of the
following have been done: ‘

HUAWEI EX. 1015 - 8/393

HUAWEI EX. 1015 - 9/393

2

Hardware PC Emulation:

Commodore Amiga 2000
IBM PC/AT

Atari 400/800

Apple Macintosh
Atari ST

Apple 11

Software PC Emulation:
Atari ST

Apple Macintosh

DOS Emulation:

05/2
QNX
SunOS
Xenix

What is DOS?

The Programmer’s Technical Reference

8088 or A2286D 80286 Bridge Board
80286 AT adapter
Co-Power 88 board
AST80286 board

PC-Ditto Il cartridge
TransPC 8088 board, QuadRam QuadLink

PC-Ditto I
SoftPC

' DOS emulation in "Compatibility Box"
DOS window
DOS window

DOS emulation with DOSMerge

DOS exists as a high-level interface between an application program and the computer. DOS
stands for "Disk Operating System", which reflects the fact that'its main original purpose was to
provide an interface between the computer and its disk drives.

DOS now lets your programs do simple memory management, 1/0 from the system console, and
assorted SyStem tasks (time and date, etc) as well as managing disk operations. Versions 3.1 and
up also incorporate basic networking functions.

With the introduction of installable device drivers and TSR (terminate but stay resident) pro— ;
grams in DOS 2.0, the basic DOS functions may be expanded to cover virtually any scale of oper- i
ations required.

Other Operating Systems

There are a number of compatible replacements for MicroSoft’s MS-DOS. Some are:

Consortium Technologies MultiDOS

Digital Research Concurrent DOS
Digital Research Concurrent DOS 386

(multitasking, multiuser)
(multitasking)
(for 80386 computers)

Digital Research Concurrent DOS XM (multitasking, multiuser)
Digital Research DR-DOS 3.31 and 4.0 (PC-DOS clones)
PC-MOS/386
Wendin-DOS

VM/386

(multitasking, multiuser)
(multitasking, multiuser)
(multitasking) A

Various other operating systems are available for the IBM PC. These include:

Digital Research CP/M-86
Digital Research Concurrent CP/M—86 (multitasking)
Minix (multitasking UNIX workalike)
Pick (database-opera ting system)

HUAWEI EX. 1015 - 9/393

HUAWEI EX. 1015 - 10/393

DOS and the IBMPC 3

QNX (multitasking, multiuser)

UNIX (various systems from IBM itself, Microsoft-SCO, Bell, and various UNIX clones, single
and multi user) (AIX, Xenix, AT&T System V, etc.)

"Shell" programs exist which use DOS only for disk management while they more or less com-
prise a new operating system. These include:

Destiew
Windows
OmniView
GEM

TopView’
- "laskView

Specific Versions of MS/PC-DOS

DOS 1.x is essentially 86-DOS. DOS 2.x kept the multiple file layout (the two hidden files and
COMMANDCOM) but for all practical purposes is an entirely different operating system with
backwards compatibility with 1.x. I seriously doubt there has been much code from 1.x retained

in 2.x. DOS 3.x is merely an enhancement of 2.x; there seems little justification for jumping a
whole version number. DOS 4.0, originating as it did from outside Microsoft, can justify a ver-
sion jump. Unfortunately, 4.x seems to have very little reason to justify its existence - virtually all
of its core features can be found in one version or another of DOS 3.x.

DOS version nomenclature: major.minor.minor. The digit to the left of the decimal point indi-
cates a major DOS version change. 1.0 was the first version. 2.0 added support for subdirec-
tories, 3.0 added support for networking, 4.0 added some minimal support for Lotus-Intel-
Microsoft EMS.

The first minor version indicates customization for a major application. For example, 2.1 for the
Per, 3.3 for the PS/Zs. The second minorversion does not seem to have any particular meaning.

. The main versions ofDOS are:

PC—DOS 1.0 August 1981 original release ,

PC-DOS 1.1 May 1982 bugfix, double sided drive support
MS-DOS 1.25 June 1982 for early compatibles
PC-DOS 2.0 March 1983 for PC/XT, Unix-type subdirectory support
PC-DOS 2.1 October 1983 for Per, bugfixes for 2.0
MS-DOS 2.1 1 October 1983 compatible equivalent to PC-DOS 2.1
PC-DOS 3.0 August 1984 1.2 meg drive for PC/AT, some new system calls
PC-DOS 3.1 November 1984 bugfix for 3.0, implemented network support
MS—DOS 2.25 October 1985 compatible; extended foreign language support
PC-DOS 3.2 December 1985 720k 3.5 inch drive support for Convertible
PC-DOS 3.3 April 1987 for PS/2 series, 1.44 meg, multiple DOS partitions
MS-DOS 3.3 1 November 1987 over-32 meg DOS partitions, new function calls
PC-DOS 4.0 August 1988 minor EMS support, some new function calls
MS-DOS 4.01 January 1989 Microsoft version with some bugfixes

. IBM’s PC-DOS is considered to be the "standard" version of DOS; Microsoft has sold MS-DOS
over the counter only since version 3.2 (previously, Microsoft sold its versions only to OEMs).

HUAWEI EX. 1015 - 10/393

HUAWEI EX. 1015 - 11/393

4 The Programmer’s Technical Reference

Most versions of DOS functionally duplicate the external DOS commands such as DISKCOPY,
etc. Although Microsoft announced that they would sell MS-DOS 4.0 only to OEMs, they ap-
parently changed the policy and are now selling it over the counter.

Some versions of MS—DOS varied from PC-DOS in the available external commands. Some

OEMs only licensed the basic operating system code (the xDOS and xBIO programs, and

COMMANDCOM) from Microsoft, and either wrote the rest themselves or contracted them
from outside software houses like Phoenix. Most of the external programs for DOS 3.x and 4.x
are written in "C" while the 1.x and 2.x utilities were written in assembly language. Other OEMs

required customized versions of DOS for their specific hardware configurations, such as Sanyo
55x and early Tandy computers, which were unable to exchange their DOS with the IBM version.

At least two versions of DOS have been modified to be run entirely out of ROM. The Sharp
PC5000 had MS-DOS 1.25 in ROM, and the Tbshiba 1000 and some Tandy 1000 models have

MS-DOS 2.11 in ROM. Digital Research has also announced its DR—DOS is available in a ROM

version and Award Software is marketing DOS cards to OEMs as a plug-in.

PC-DOS 3.0 was extremely buggy on release. It does not handle the DOS environment correctly

and there are numerous documented problems with the batch file parser. The network support
code is also nonfunctional in this DOS version. It is recommended that users upgrade to at least
version 3.1.

DEC MS-DOS versions 2.11 for the Rainbow had the ANSI.SYS device driver built into the

main code. The Rainbow also used a unique quad density, single-sided floppy drive and its DOS
had special support for it.

IBM had a version 1.85 of PC-DOS in April 1983, after the“ introduction of DOS 2.0. It was evi-
dently for internal use only, supported multiple drive file searches (a primitive form of PATH),
built in MODE commands for screen support, a /P parameter for TYPE for paused screens, an
editable command stack like the public domain DOSEDITCOM utility, and could be set up to
remain completely resident in RAM instead of a resident/transient part like normal DOS. It is a
pity some of the neat enhancements didn’t make it into DOS 2.0. IBM also had an "internal use
only" version 3.4, evidently used while developing DOS 4.0.

Some versions of DOS used in compatibles do not maintain the 1.x, 2.x, numbering system.
Columbia Data Products computers labelled DOS 1.25 as DOS 2.0. Early Compaqs labelled

DOS 2.0 as DOS 1.x. Other versions incorporated special features - Compaq DOS 3.31 and
Wyse DOS 3.21 both support 32-bit file allocation tables in the same fashion as DOS 4.x.

According to PC'Week Magazine, July 4, 1988, Arabic versions of MS-DOS are shipping with a

hardware copy-protection system from Rainbow Technologies. This is similar to the short-lived

system used by AutoCAD 2.52 and a very few other MS-DOS programs, where an adapter block .

is plugged into the parallel port and software makes use of coded bytes within the block. This

type of copy protection has been common on Commodore products for several years, where it is
called a "dongle“.

The AutoCAD dongle was defeated by a small program written within weeks of version 2.52’s
debut. Version 2.62 was released 3 months later, without the dongle. The DOS dongle will, how-
ever, prevent the system from booting at all unless it is found.

This makes the Arabic version ofMS-DOS the first copy-protected operating system, a dubious
distinction at best. The modifications to the operating system to support the dongle are not
known at this time. Frankly, it would seem that burning the operating system into ROMs would
be cheaper and simpler.

HUAWEI EX. 1015 - 11/393

HUAWEI EX. 1015 - 12/393

DOS and the IBMPC , 5

Versions ofDOS sold in Great Britain are either newer than those sold in the US or use a differ-

ent numbering system. DOS 3.4, 4.0, 4.1, 4.2, and 4.3 had been released here between the US re-
leases of3.3 and 4.0.

MicrosOft changed their OEM licensing agreements between DOS versions 2.x and 3.x. OEM
versions of DOS 3.x must maintain certain data areas and undocumented functions in order to

provide compatibility with the networking features of the operating system. For this reason,
resident programs will be much more reliablewhen operating under DOS 3.x.

IBM’s release of DOS 4.0 (and the immediate subsequent release of a bugfix) is a dubious step
"forward". DOS 4.0 is the first version of DOS to come with a warranty; the catch is that IBM
warrants it only for avery slim list of IBM-packaged software. 4.0 has some minor EMS support,
support for large hard disks, and not much else. With its voracious RAM requirements and lack
of compatibility with previous versions of DOS (many major software packages crash under
DOS 4.0), plus the increase in price to a cool $150, there has been no great rush to go to the ne-
west DOS

The Operating System Hierarchy

The Disk Operating System (DOS) and the ROM BIOS serve as an insulating layer between the
application program and the machine, and as a source ofservices to the application program.

As the term ‘system’ might imply, DOS is not one program but a collection of programs de—
signed to work together to allow the user access to programs and data. Thus, DOS consists of
several layers of "control" programs and a set of "utility" programs.

The system hierarchy may be thought of as a tree, with the lowest level being the actual hard-
ware. The 8088 or V20 processor sees the computer’s address space as a ladder two bytes wide
and one million bytes long. Parts of this ladder are in ROM, parts in RAM, and parts are not as-
signed. There are also various "ports" that the processor can use to control devices.

The hardware is normally addressed by the ROM BIOS, which will always know where every-
thing is in its particular system. The chips may usually also be written to directly, by telling the
processor to write to a specific address or port. This sometimes does not work as the chips may
not always be at the same addresses or have the same functions from machine to machine.

DOS Structure

DOS consists of four components:

The boot record

The ROM BIOS interface (IBMBIO.COM or IO.SYS)

The DOS program file (IBMDOS.COM or MS-DOS.SYS)
The command processor (COMMAND.COM or aftermarket replacement)

The Boot Record

The boot record begins on track 0, sector 1, side 0 ofevery diskette formatted by the DOS FOR-

MAT command. The boot record is placed on diskettes to produce an error message if you try to
start up the system with a non-system diskette in drive A. For hard disks, the boot record resides

HUAWEI EX. 1015 - 12/393

HUAWEI EX. 1015 - 13/393

6 The Programmer’s Technical Reference

on the first sector of the DOS partition. All media supported by DOS use one sector for the boot
record. ’

Read only Memory (ROM) BIOS Interface and Extensions

The file IBMBIO.COM or IO.SYS is the interface module to the ROM BIOS. This file provides
a low—level interface to the ROM BIOS device routines and may contain extensions or changes
to the system board ROMs. Some compatibles do not have a ROM BIOS to extend, and load the
entire BIOS from disk (Sanyo 55x, Viasyn machines). Some versions of MS—DOS, such as those
supplied to Tandy, are named IBMBIO.COM but are not IBM files.

These low-level interface routines include the instructions for performing operations such as
displaying information on the screen, reading the keyboard, sending data out to the printer,
operating the disk drives, and so on. It is the operating system’s means of controlling the hard—
ware. IBMBIO.COM contains any modifications or updates to the ROM BIOS that are needed
to correct any bugs or add support for other types of hardware such as new disk drives. By using
IBMBIO.COM to update the ROM BIOS on the fly when the user turns on their computer,
IBM does not need to replace the ROM BIOS chip itself, but makes any corrections through the
cheaper and easier method of modifying the IBMBIO.COM file instead.

IBMBIO.COM also keeps track of hardware operations on an internal stack or "scratch pad"
area for the operating system to save information such as addresses it will need, etc. An example
of the use for this stack can be seen when running a program such as a word processor. If you
have told the word processor to save your letter, it will write the data to your disk. During this
time, if you start typing some more information, the keyboard generates a hardware interrupt.
Since you don’t want the process of writing the information to the disk to be interrupted, DOS
allocates a slot in the stack for the keyboard’s hardware interrupt and when it gets a chance,
(probably after the data has been written to the disk), it can process that interrupt and pick up
the characters you may have been typing. The STACKS= command in DOS 3.2+‘s

CONFIGSYS file controls the number of stack frames available for this purpose.

IBMBIO.COM also reads your CONFIGSYS file and installs any device drivers (i.e.
DEVICE=ANSI.SYS) or configuration commands it may find there.

The DOS Program

The actual DOS program is the file IBMDOS.COM or MS—DOSSYS. It provides a high-level
interface for user (application) programs. This program consists of file management routines,
data blocking/deblocking for the disk routines, and a. variety of built—in functions easily
accessible by user programs. .

When a user program calls these function routines, they accept high-level information by way of
‘ register and control block contents. When a user program calls DOS to perform an operation,

these functions translate the requirement into one or more calls to IBMBIO.COM,
MS-DOS.SYS or system hardware to complete the request.

The Command Interpreter

The command interpreter, COMMANDCOM, is the part you interact with on the command
line. COMMANDCOM has three parts. IBM calls them the "resident portion", the "initializa-
tion portion" and the "transient portion".

HUAWEI EX. 1015 - 13/393

HUAWEI EX. 1015 - 14/393

DOS and the IBM PC 7

IBM’s original documentation spoke of installing alternate command interpreters (programs
other than COMMAND.COM) with the SHELL: statement in CONFIG.SYS. Unfortunately,
IBM chose not to document much of the interaction between IBMDOS.COM and IBM-

BIO.COM. By the time much of the interaction was widely understood, many commercial soft-
ware programs had been written to use peculiarities of COMMAND.COM itself.

Two programs exist that perform as actual "shells" by completely replacing COMMAND.COM
and substituting their oWn command interpreter to use with the hidden DOS files. These are
Command Plus, a commercial package, and the very interesting shareware 4DOS package. Both
supply greatly enhanced batch language and editing capabilities.

Note: DOS 3.3 + checks for the presence of a hard disk, and will default to COMSPEC= C:\. Pre-
- vious versions default to COMSPEC=A:\. Under some DOS versions, if COMMAND.COM is

not immediately available for reloading (i.e., swapping to a floppy with COMMAND.COM on
it) DOS may crash.

Resident Portion

The resident portion resides in memory immediately following IBMDOS.COM and its data

area. This portion contains routines to process interrupts 22h (Terminate Address), 23h (Ctrl—
Break Handler), and 24h (Critical Error Handler), as well as a routine to reload the transient
portion if needed. For DOS 3.x, this portion also contains a routine to load and execute external
commands, such as files with extensions of COM or EXE.

When a program terminates, a checksum is used to determine if the application program over-
laid the transient portion of COMMAND.COM. If so, the resident portion will reload the tran-
sient portion from the area designated by COMSPEC= in the DOS environment. If COM—
MAND.COM cannot be found, the system will halt.

All standard DOS error handling is done within the resident portion of COMMAND.COM.
This includes displaying error messages and interpreting the replies to the "Abort, Retry, Ig-
nore, Fail?" message.

Since the transient portion of COMMAND.COM is so large (containing the internal com-
mands and all those error messages), and it is not needed when the user is running an applica-
tion it can be overlaid that program if that application needs the room. When the application is
through, the resident portion of COMMAND.COM brings the transient portion back into
memory to show the prompt. This is why you will sometimes see the message "Insert disk with
COMMAND.COM". It needs to get the transient portion off the disk since it was overlaid with
the application program.

The initialization portion of COMMAND.COM follows the resident portion and is given con-
trol during the boot-up procedure. This section actually processes the AUTOEXECBAT file. It
also decides where to load the user’s programs when they are executed. Since this code is only
needed during start—up, it is overlaid by the first program which COMMAND.COM loads.
The transient portion is loaded at the high end of memory and it is the command processor it-
self. It interprets whatever the user types in at the keyboard, hence messages such as ‘Bad com-
mand or file name’ for when the user misspells a command. This portion contains all the internal
commands (i.e. COPY, DIR, RENAME, ERASE), the batch file processor (to run .BAT files)
and a routine to load and execute external commands which are either .COM or .EXE files.

The transient portion of COMMAND.COM produces the system prompt, (C), and reads what

HUAWEI EX. 1015 - 14/393

HUAWEI EX. 1015 - 15/393

8 The Programmer’s Technical Reference

the user types in from the keyboard and tries to do something with it. For any .COM or .EXE

files, it builds a command line and issues an EXEC function call to load the program and trans-
fer control to it.

DOS Initialization

The system is initialized by a software reset (Ctrl-Alt-Del), a hardware reset (reset button), or by
turning the computer on. The Intel 80x8x series processors always look for their first instruction
at the end of their address space (OFFFFOh) when powered up or reset. This address contains a
jump to the first instruction for the ROM BIOS.

Built-in ROM programs (Power-On Self-”lbst, or POST, in the IBM) check machine status and
run inspection programs of various sorts. Some machines set up a reserved RAM area with bytes
indicating installed equipment (AT and PCjr).

When the ROM BIOS finds a ROM on an adapter card, it lets that ROM take control of the sys-
tem so that it may perform any set up necessary to use the hardware or software controlled by
that ROM. The ROM BIOS searches absolute addresses OCSOOOh through OEOOOOh in 2K in-
crements in search of a valid ROM. A valid ROM is determined by the first few bytes in the
ROM. The ROM will have the bytes 55h, 0AAh, a length indicator and then the assembly lan-
guage instruction to CALL FAR (to bring in a ‘FAR’ routine). A checksum is done on the ROM
to verify its integrity, then the BIOS performs the CALL FAR to bring in the executable code.
The adapter’s ROM then performs its initialization tasks and hopefully returns control of the
computer back to the ROM BIOS so it can continue with the booting process.

The ROM BIOS routines then look for a disk drive at A: or an option ROM (usually a hard disk)
at absolute address C:800h. If no floppy drive or option ROM is found, the BIOS calls int 19h
(ROM BASIC if it is an IBM) or displays an error message.

If a bootable disk is found, the ROM BIOS loads the first sector of data from the disk and then

- jumps into the RAM location holding that code. This code normally is a routine to load the rest
of the code off the disk, or to ‘boot’ the system.

The following actions occur after a system initialization:

The boot record is read into memory and given control.

2. The boot record then checks the root directory to assure that the first two files are
IBMBIO.COM and IBMDOS.COM. These two files must be the first two files, and they
must be in that order (IBMBIO.COM first, with its sectors in contiguous order).
Note: IBMDOS.COM need not be contiguous in version 3.x+.

3. The boot record loads IBMBIO.COM into memory.

4. The initialization code in IBMBIO.COM loads IBMDOS.COM, determines equipment
status, resets the disk system, initializes the attached devices, sets the system parameters
and loads any installable device drivers according to the CONFIGSYS file in the root
directory (ifpresent), sets the low—numbered interrupt vectors, relocates IBMDOS.COM
downward, and calls the firstbyte of DOS.
Note} CONFIG.SYS may be a hidden file.

5. . DOS initializes its internal working tables, initializes the interrupt vectors for interrupts
20h through 27h, and builds a Program Segment Prefix for COMMANDCOM at the lowest

available segment. For DOS versions 3.10 up, DOS also initializes the vectors for interrupts

HUAWEI EX. 1015 - 15/393

HUAWEI EX. 1015 - 16/393

DOS and the IBM PC > ' 9

OFh through 3Fh. An initialization routine is included in the resident portion and assumes
control during start-up. This routine contains the AUTOEXECBAT file handler and

determines the segment address where user application programs may be loaded. The
initialization routine is then no longer needed and is overlaid by the first program
CONHVIANDCOM loads.

Note: AUTOEXECBAT may be a hidden file.

6. IBMBIO.COM uses the EXEC function call to load and start the top-level command
processor. The default command processor is COMMAND.COM in the root directory of
the boot drive. If COMMANDCOM is in a subdirectory or another command processor is
to be used, it must be specified by a SHELL: statement in the CONFIG.SYS file. A

transient portion is loaded at the high end of memory. This is the command processor itself,
containing all of the internal command processors and the batch file processor. For
DOS 2.x, this portion also contains a routine to load and execute external commands, such

as files with extensions of COM or EXE. This portion of COMMANDCOM also produces
the DOS prompt (such as W), reads the command from the standard input device (usually
the keyboard or a batch file), and executes the command. For external commands, it builds a
command line and issues an EXEC function call to load and transfer control to the

program.

Note 1. COMMANDCOM may be a hidden file.

2. For IBM DOS 2.x, the transient portion of the command processor contains the
EXEC routine that loads and executes external commands. For MS-DOS 2.x+ and

IBM DOS 3.x+, the resident portion of the command processor contains the
EXEC routine.

3. IBMBIO only checks for a file named COMMANDCOM. It will load any file of
that name if no SHELL: command is used.

That pretty much covers the boot-up process. After COMMAND.COM is loaded, it runs the

AUTOEXECBAT file and then the user gets a prompt to begin working.

HUAWEI EX. 1015 - 16/393

HUAWEI EX. 1015 - 17/393

CPU Port Assignments, System
Memory Map, BIOS Data Area,

Interrupts 00h to 09h

Introduction

For consistency in this reference, all locations and offsets are in hexadecimal unless otherwise

specified. All hex numbers are prefaced with a leading zero if they begin with an alphabetic char—
acter, and are terminated with a lowercase H (h). The formats vary according to common usage.

System Memory Map

The IBM PC handles its address space in 64k segments, divided into 16k fractions and then fur-
then as necessary.

start start end

addr. addn addr usage
(dec) (hex)

640k RAM Area

0k start of RAM, first K is interrupt vector table
16k 00000—03FFF PC—O system board RAM ends
32k 04000—07FFF
48k 08000—OBFFF

64k 10000—13FFF PC—l system board RAM ends
80k 14000—17FFF
96k 18000—1BFFF
112k 1C000-1FFFF
128k 20000—23FFF
144k 24000—27FFF
160k ZBOOO—ZBFFF
176k 2C000—2FFFF

192k 30000—33FFF
208k 34000—37FFF
224k 38000—3BFFF
240k 3C000—3FFFF

HUAWEI EX. 1015 - 17/393

HUAWEI EX. 1015 - 18/393

256k
272k
288k
304k

320k
336k
352k
368k

384k
400k
416k'
432k

448k
464k
480k
496k

512k
528k
544k
560k

576k
592k
609k
624k

CPUPorts Assignments, system Memory Data, BIOS Data Area - J I
40000—43FFF
44000-47FFF
48000—4BFFF
4C000—4FFFF

‘50000—53FFF
54000—57FFF
58000-SBFFF
SCOOO-SFFFF

60000-63FFF
64000-67FFF
68000—6BFFF
6C000—6FFFF

70000—73FFF
74000—77FFF
78000-7BFFF
7C000-7FFFF

80000-83FFF
84000—87FFF
88000—88FFF
8C000—8FFFF

90000—93FFF
94000-97FFF
98000—SBFFF
9C000—9FFFF

PC-2 system board RAM ends

the original IBM PC—l BIOS

to 640k (top of RAM addres

A0000 ***** 64k ***** EGA address

640k

656k
672k
688k

A0000—A9580
-AF8CO
-A3FFF

A4000-A7FFF
ABOOO-ABFFF
ACOOO—AFFFF

limited memory to 544k

5 space)

MCGA 320x200 256 colour video buffer
MCGA 640x480 2 colour video buffer

this 64k segment may be used for contiguous DOS
RAM with appropriate hardware and software

B0000 ***** 64k ***** mono and CGA address

704k
720k

736k
756k

BOOOO—B3FFF
B4000—B7FFF

BBOOO—BBFFF
BCOOO-BFFFF

4k monochrome display

16k CGA uses

Per and early Tandy 1000
BIOS revector direct write to the
BB area to the Video Gate Array
and reserved system RAM

C0000 ***** 64k ***V************ expansion ROM
768k
784k

800k

816k

C0000-C3FFF
C4000—C5FFF
C6000—C63FF
C6400—C7FFF
C8000—CBFFF
CAOOO
CCOOO—CDFFF
CEOOO-CFFFF

16k EGA BIQS C000:001E EGA BIOS signature (letters IBM

256 bytes Professional Graphics Display comm. area

16k hard disk controller BIOS, drive 0 default
some 2nd floppy (high density) controller BIOS

8k IBM PC Network NETBIOS

D0000 ***** 64k ***** expansion ROM

832k

848k
864k
880k

D0000—D7FFF
DAOOO

D4000—D7FFF
DBOOO—DBFFF
DCOOO—DFFFF

32k IBM Cluster Adapter
voice communications

E0000 ***** 64k ***** expansion ROM

896k
912k
928k

E0000—E3FFF
E4000-E7FFF
ESOOO-EBFFF

chr first ROM cartridg
address area. '
Common expanded memory
board paging area.

Per second ROM cartidge
address area

HUAWEI EX. 1015 - 18/393

HUAWEI EX. 1015 - 19/393

12 The Programmer’s Technical Reference

944k ECOOO-EFFFF | spare ROM sockets on AT

F0000 ***** 64k ***** system

960k FOOOO—FSFFF reserved by IBM cartridge address
976k F4000— area (chr cartridge

F6000 ROM BASIC Begins BASIC)992k F8000—FBOOO
1008K FCOOO-FFFFF ROM BASIC and original

BIOS (Compatibility BIOS
in PS/2)

1024K FFFFF end of memory (1024k) for 8088 machines

384k 100000—15FFFF 80286/AT extended memory area, le motherboard
15Mb 100000-FFFFFF 80286/AT extended memory address space
15Mb 160000—FDFFFF Micro Channel RAM expansion (15Mb extended memory)
128k FEOOOO-FFFFFF system board ROM (PS/2 Advanced BIOS)

Note that the ROM BIOS has a duplicated address space which causes it to ‘appear’ both at the
end of the 1 megabyte real mode space and at the end of the 16 megabyte protected mode space. ‘
The addresses from OEOOOO to OFFFFF are equal to OFEOOOO to OFFFFFE This is necessary due
to differences in the memory addressing between Real and Protected Modes.

PC Port Assignment

hex address Function ' Models

Per |PC [X‘I‘ |AT)cvcr |M3O |psz0000—000F 8237 DNA controller PC
OOlO-OOlF 8237 DMA controller AT PSZ
0020—0027 8259A interrupt controller
0020—003F 8259A interrupt controller (AT)
0020—0021 Interrupt controller 1, 8259A PC AT PSZ
0040-0043 Programmable timer 8253 PC
0040—0047 Programmable timers P52
0040—005F 8253-5 programmable timers AT

(note: 0041 was memory refresh in PCs. Not used in PS/Z)
0060—0063 Keyboard controller 8255A -PC
0060-006F 8042 keyboard controller - AT
0060 IOSGA keyboard input port PS2
0061 speaker chr PC XT AT CVT
0061 IOSGA speaker control M30 PSZ
0061 On some clones, setting or clearing bit 2 controls Turbo mode
0062 IOSGA configuration control M30 PSZ
0063 SSGA, undocumented PSZ
0064 keyboard auxiliary device PSZ
0065—006A _SSGA, undocumented P52
006B SSGA, RAM enable/remap PSZ
006C—006F SSGA, undocumented PSZ
0070 AT CMOS write internal register
0071 AT CMOS read internal register
0070—0071 CMOS real-time clock, NMI mask P52
0070—007F CMOS real-time clock, NMI mask AT
0074—0076 reserved P32
0800—008F SSGA DMA page registers PSZ
0080—009F DMA page registers, 74L5612 AT
0090 central arbitration control port - (Micro Channel)
0091 card selected feedback (Micro Channel)
0092 system control port A (Micro Channel)
0093 reserved (Micro Channel)
0094‘ system board setup (Micro Channel)
0096 POS ’CD SETUP’ selector (Micro Channel)
OOAO-OOAl Interrupt controller 2, 8259A AT PSZ
OOAO—OOAF IOSGA NMI mask register P52
OOBO—OOBF realtime clock/calendar, (undocumented) P82
OOCO-OODF reserved Per PC XT AT CVT M30

HUAWEI EX. 1015 - 19/393

HUAWEI EX. 1015 - 20/393

OOCO—OODF
OOEO—OOEF
OOFO—OOFF
0100—0101
0102—0107
01F0—01F8
0200-0201
0200—020F
0020-002F
020C-020D
0210—0217
021F
0278-027F.
0278—0273
OZBO—OZDF
02El
023240233

'ozrs—ozrr
03OQ—O3lF
O320—O32F
0348—0357
0360—0367
0368—036F
0378—037F
0378—0373
0380—038F
0380—0389
0390—0393
03A0—O3A9
0380—033F
0334—0335
O3BA
osec—oaar
o3co—03cr
03CO—03DA
osoo—oanr
03F0-03F7
oars-osrr
OGEZ—OGEB
0790—0793
0AE2—0AE3
0390—0393
oanz—osaa
1390—1393
2231
2390—2393
42El
62E1
82E1
A2E1
C2El
EZEl

Abnm:

CPUPorts Assignments, System Memory Data, BIOS Data Area I3
DMA controller 2, 8237A—5

realtime clock/calendar, (undocumented)
PS/Z math coprocessor I/O (Model 50+
PS/2 POS adapter ID response
PS/2 POS adapter configuration responseFixed disk

game—control adapter (joystick)Game controller
IOSGA interrupt function
reserved by IBM
expansion box (PC, XT)
reserved by IBM
Parallel printer port 2
Parallel printer port 3
EGA (alternate)
GPIB (adapter 0)
Data acquisition (adapter 0)
Serial communications (COMZ)
Prototype card
hard disk controller
DCA 3278

PC Network (low address)
PC Network (high address)
Parallel printer port 1
Parallel printer port 2
SDLC, bi—synchronous 2
BSC communications (alternate)
Cluster (adapter 0)
BSC communications (primary)
Monochrome/parallel printer adapter
Video subsystem
Video subsystem
Parallel printer port 1
Enhanced Graphics Adapter
Video subsystem and DAC
CGA, MCGA, VGA adapter control
Floppy disk controller
Serial communications (COMl)
Data acquisition (adapter 1)
Cluster (adapter 1)
Data acquisition (adapter 2)
Cluster (adapter 2)
Data acquisition (adapter 3)
Cluster (adapter 3)
GPIB (adapter 1)
Cluster (adapter 4)
,GPIB (adapter 2)
GPIB (adapter 3)
GPIB (adapter 4)
GPIB (adapter 5)
GPIB (adapter 6)
GPIB (adapter 7)

PC

PC

PC
PC
PC

PC

PC
PC
PC
PC
PC

PC
PC

PC

PC

PC

PC

AT

AT

AT

AT

AT
AT
AT
AT
AT

AT
AT

AT

AT
AT
AT

AT
AT
AT
AT
AT
AT
AT
AT

AT
AT
AT
AT
AT
AT
AT

P52
M30 PSZ

) (diskette Io on chr)
(Micro Channel)
(Micro Channel) P52

P52

P52

P32

P82

P52
P32
P52

P52

P52
P52

1. These are functions common across the IBM range. The Per, PC-A’I} PC Convertible and
PS/2 (both buses) have enhancements. In some cases, the AT and PS/2 series ignore,
duplicate, or reassign ports arbitrarily. Ifyour code incorporates specific port addresses for
video or system board control it would be wise to have your application determine the
machine type and video adapter and address the ports as required.

2. I/O Addresses, hex 000 to OFF, are reserved for the system board I/O. Hex 100 to 3FF are
avaflabkzontheIflDChanneL

3. These are the addresses decoded by the current set of adapter cards. IBM may use any of the
unlisted addresses for future use. / , '

4. SDLC Communication and Secondary Binary Synchronous Communications cannot be
usedtogetherbecausetheirportaddressesoveflap.

5. IOSGA = I/O Support Gate Array; SSGA = System Support Gate Array.

HUAWEI EX. 1015 - 20/393

HUAWEI EX. 1015 - 21/393

14 The Programmer’s Technical Reference

Reserved Memory' Locations
Interrupt Vector Table

000-3FF — 1k DOS interrupt vector table, 4 byte vectors for ints OOh—OFFh.
30:00 used as a stack area during POST and bootstrap routines. This stack

to 3F:FF area may be revectored by an application program.

The BIOS Data Area

addr. size description
40:00 word COMl port address These addresses are zeroed out in the 05/2
40:02 word COMZ port address DOS Compatibility Box if any of the 0S/2
40:04 word COM3 port address COMxx.sYS drivers are loaded.
40:06 word COM4 port address
40:08 word LPTI port address
40:0A word LPT2 port address
40:0C word LPT3 port address
40:0E word LPT4 port address (not valid in PS/Z machines)
40:0E word PS/Z pointer to 1k extended BIOS Data Area at top of RAM
40:10 word equipment flag (see int 11h), bits:

0 0 no floppy drive present
1 if floppy drive present (see bits 6&7)

1 0 no math coprocessor installed
1 . if 80x87 installed (not valid in Per)

2,3 system board RAM (not used on AT or PS/2)
0,0 16k 0,1 32k
1,0 48k 1,1 64k

4,5 initial video mode
0,0 no video adapter
0,1 40column colour (Per default)
1,0 80column colour
1, 1 MDA

6,7 number of diskette drives
0,0 1 drive 0,1 2 drives
1,0 3 drives ' 1,1 4 drives

8 0 DMA present
1 DMA not present (Per, Tandy 1400, Sanyo

55x)
9,A,B number of R8232 serial ports
C game adapter (joystick)

0 no game adapter
1 if game adapter

D serial printer (Per only)
0 no printer
1 serial printer present

E,F number of parallel printers installed
Note The IBM PC and AT store the settings of the system board switches or CMOS

RAM setup information (as obtained by the BIOS in the Power—On Self Test
(POST)) at addresses 40:10h and 40:13h. 00000001b indicates ’on’,00000000b is ’off’.

40:12 byte reserved (PC, AT) number of errors detected by infrared keyboard
link (Per); POST status (Convertible)

40:13 word available memory size in Kbytes (less display RAM in Per)
this is the value returned by int 12h

40:15 word reserved 3
40:17 byte keyboard flag byte 0 (see int 9h)

bit 7 insert mode on 3 alt pressed

6 capslock on 2 ctrl pressed
5 numlock on 1 left shift pressed
4 scrollock on 0 right shift pressed

40:18 byte keyboard flag byte 1 (see int 9h)
' bit 7 insert pressed 3 ctrl—numlock (pause) toggled

6 capslock pressed 2 chr keyboard click active
5 numlock pressed 1 Per ctrl-alt—capslock held
4 scrollock pressed 0

HUAWEI EX. 1015 - 21/393

HUAWEI EX. 1015 - 22/393

CPUPorts Assignments, system Memozy Data, BIOS Data Area 1 5

40:19 byte storage for alternate keypad entry (not normally used)40:1A word pointer to keyboard buffer head character
40:1C word pointer to keyboard buffer tail character

40:1E 32bytes 16 2—byte entries for keyboard circular buffer, read by int 16h
40:3E byte drive seek status - if bit=0, next seek will recalibrate byrepositioning to Track 0.

bit 3 drive D bit 2 drive C
1 drive B 0 drive A

40:3F byte diskette motor status (bit set to indicate condition)
bit 7 write in progress 3 motor on (floppy 3)

6 ' 2 motor on (floppy 2)
5 1 B: motor on (floppy 1)
4 0 A: motor on (floppy 0)40:40 byte motor off counter

starts at 37 and is decremented 1 by each system clock tick.motor is shut off when count = 0.
40:41 byte status of last diskette operation« bit 7 timeout failure

6 seek failure
5 controller failure
4 CRC‘failure

40:42 7 bytes NEC floppy controller chip status
40:49 byte Video Control Data Area 1 from 0040:0049 through 0040:0066

' current CRT mode (hex value)

where:
3 DMA overrun
2 sector not found
1 address not found
0 bad command

00h 40x25 BW (CGA) 01h 40x25 Colour (CGA)
02h 80x25 BW (CGA) 03h 80x25 colour (CGA)
04h 320x200 colour (CGA) 05h 320x200 BW (CGA)
06h 640x200 Bw (CGA) 07h monochrome (MDA)

extended video modes (EGA/MCGA/VGA or other)
08h lores,16 colour
OAh hires,4 colour
OCh med res,16 colour

09h med res,16 colour
OBh n/a
ODh hires,16 colour

OEh hires,4 colour OFh hires,64 colour
40:4A word number of columns on screen, coded as hex number of columns

20 col = 14h (video mode 8, low res 160x200 CGA graphics)4O col = 28h '
80 col = 46h

40:4C word screen buffer length in bytes

- (number of bytes used per screen page, varies with video mode)
40:4E word current screen buffer starting offset (active page)
40:50 8 words cursor position pages 1—8

the first byte of each word gives the column (0-19, 39, or 79); the
second byte gives the row (0—24)

40:60 byte end line for cursor (normally 1)
40:61 byte start line for cursor (normally 0)
40:62 byte current video page being displayed (0—7)
40:63 word base_port address of 6845 CRT controller or equivalent

for active display BB4h=mono, 3D4h=colour
40:65 byte current setting of the CRT mode register
40:66 byte current palette mask setting (CGA)
40:67 5 bytes temporary storage for SS:SP during shutdown (cassette interface)40:6C word timer counter low word
40:6E word timer counter high word
40:69 byte HD_INSTALL (Columbia PCs) (not valid on most clone computers)

bit 0 0 8 inch external floppy drives
1 5.25" external floppy drives

1,2 highest drive address which int 13 will accept (since
the floppy drives are assigned 0—3, subtract 3 to
obtain the number of hard disks installed)

4,5 # of hard disks connected to expansion controller
6,7 # of hard disks on motherboard controller (if bit 6 or

7 = 1, no A: floppy is present and the maximum number
of floppies from int 11 is 3)

40:70 byte 24 hour timer overflow 1 if timer went past midnight it is reset to
0 each time it is read by int 1Ah

40:71 byte BIOS break flag (bit 7 = 1 means break key hit)
40:72 word reset flag Per keeps 1234b here for softboot when a cartridge isinstalled

bits 1234b = soft reset, memory check will be bypassed
4321h = preserve memory (PS/2 other only)
5678h = system suspended (Convertible)

HUAWEI EX. 1015 - 22/393

HUAWEI EX. 1015 - 23/393

16 The Programmer ’s Technical Reference

9ABCh = manufacturing test mode (Convertible)
ABCDh = system POST loop mode (Convertible)

40:74 byte status of la t hard disk operation; chr special disk control
40:75 byte # of hard disks attached (0-2) ; chr special disk control
40:76 byte HD control byte; temp holding area for 6th param table entry
40:77 byte port offset to current hd adapter ; Per special disk control
40:78 4 bytes timeout value for LPT1,LPT2,LPT3,LPT4
40:7C 4 bytes timeout value for COM1,COM2,COM3,COM4 (O-OFFh secs, default 1)
40:80 word pointer to start of circular keyboard buffer, default 03:1E
40:82 word pointer to end of circular keyboard buffer, default 03:3E \
40:84 Video Control Data Area 2, 0040:0084 through 0040:008A
40:84 byte rows on the screen minus 1 (EGA only)
40:84 byte Per interrupt flag; timer channel 0 (used by POST)
40:85 word bytes per character (EGA only)
40:85 2 bytes (Per only) typamatic character to repeat
40:86 2 bytes (chr only) typamatic initial delay
40:87 byte mode options (EGA only)

bit 1 0 EGA is connected to a colour display
1 EGA is monochrome.

bit 3 0 EGA is the active display,
1 'other’ display is active.

mode combinations:
bit 3 Bit 1 Meaning

0 0 BSA is active display and is colour
0 1 BSA is active display and is monochrome
1 0 EGA is not active, a mono card is active
1 1 EGA is not active, a CGA is active

40:87 byte (Per only) current Fn key code
80h bit indicates make/break key code?

40:88 byte feature bit switches (EGA only) 0=on, 1=offbit 3 switch 4
2 switch 3
1 switch 2
0 switch 1

40:88 byte (Per only) special keyboard status byte
bit 7 function flag 3 typamatic (O=enable,1=disable)

6 Fn—B break 2 typamatic speed (0=slow,1=fast)
5 Fn pressed 1 extra delay bef.typamatic (0=enab1e)
4 Fn lock 0 write char, typamatic delay elapsed

40:89 byte Per, current value of 6845 reg 2 (horizontal synch)
used by ctrl—alt—cursor screen positioning routine in ROM

40:8A byte Per CRT/CPU Page Register Image, default 3Fh
40:88 byte last diskette data rate selected

bit 7,6 Starting data transfer rate to use
00 500 kb/sec
01 300 kb/sec
10 250 kb/sec
11 reserved

,4 Last step rate selected
Ending data transfer rate to use
Reserved
Reserved

1 combination floppy/fixed disk controller detected
0 XT floppy only controller (for 360kb drive) detectedData Transfer Rates

OHNWU‘
Kbits/sec Media Drive Sectors/Track

250 360K 360K 9
300 360K 1.2M 9
500 1.2M 1.2M 15
250 720K 720K 9
250 720K 1.4M 9
500 1.4M 1.4M 18

40:8C byte hard disk status returned by controller
40:8D byte hard disk error returned by controller
40:8E byte hard disk interrupt (bit 7=working interrupt)
40:8F byte combo_card — status of drives 0.and 1bit 7 reserved

6 drive type determined for drive 1
5 drive multiple data rate capability for drive 1

0 no multiple data rate
1 multiple data rate

HUAWEI EX. 1015 - 23/393

HUAWEI EX. 1015 - 24/393

CPUPorts Assignments, System Memmy Data, BIOS Data Area I 7

4 1 then drive 1 has 80 tracks
0 then drive 1 has 40 tracks

3 reserved

2 drive type determined for drive 0
1 drive multiple data rate capability for drive 0

0 no multiple data rate
1 multiple data rate

0 1 then drive 0 has 80 tracks
0 then drive 0 has 40 tracks

40:904 bytes media state drive 0, 1, 2, 3
floppy media state

bit7,6 Data—transfer rate
00 - 500 K/sec
01 — 300 K/sec
10 — 250 K/sec
11 - reserved

double stepping required
media/drive determined
reserved

—0 present state
000 360k in 360k unestablished
001 360k in 1.2M unestablished
010 1.2M in 1.2M unestablished
011 360k in 360k established
100 360k in 1.2M established
101 1.2M in 1.2M established
110 reserved
111 none of the above

40:94 2 bytes track currently seeked to drive 0, 1
40:96 byte keyboard flag byte 3 (see int 9h)
40:97 byte keyboard flag byte 2 (see int 9h)
40:98 dword segment:offset pointer to users wait flag
40:9C dword users timeout value in microseconds
40:A0 byte real time clock wait function in use

bits 7 wait time elapsed and posted flag6-1 reserved

0 int 15h, function 86h (WAIT) has occurred
40:A1 byte LAN A DNA channel flags
40:A2 2 bytes status LAN A 0,1
40:A4 dword saved hard disk interrupt vector
40:A8 dword EGA pointer to table of 7 parameters. Format of table:

dword pointer to 1472 byte table containing 64 video parmsdword reserved
dword reserved
dword reserved
dword reserved
dword reserved
dword reserved

NUAU’I

40:B0 2 words international support (Tandy 1000 TX)
40:B4 byte keyboard NMI control flags (Convertible)
40:B4 byte monochrome monitor hookup detect (Tandy 1000 TX)

00h not present OFFh present
40:B5 dword keyboard break pending flags ' (Convertible)
40:35 byte extended equipment detect (5 bits) (Tandy 1000 TX)bit\0 = 0 drive A is 5

1 drive A is 3
1 = 0 drive A is 5

1 drive A is 3

2 = O Tandy 1000 keyboard layout
1 IBM keyboard layout

3 = 0 CPU slow mode
1 CPU fast mode

4 = 0 internal colour video support enabled
1 internal colour video support disabled, external video

enabled (chg from mb’d to expansion card)
5 = 0 no external monochrome video installed

1 external monochrome video installed

40:86 byte extended equipment detect (1 bit) (Tandy 1000 TX)
bit 0 = 0 drive C is 5

1 drive C is 3 .
40:B9 byte,port 60 single byte queue (Convertible)

HUAWEI EX. 1015 - 24/393

HUAWEI EX. 1015 - 25/393

18

40:BA byte
40:BB byte
40:BC byte
40:BD 16bytes
40:CE word
to -04:8F

The Programmer’s Technical Reference

scan code of last key (Convertible)
pointer to NMI buffer head (Convertible)
pointer to NMI buffer tail (Convertible)
NMI scan code buffer (Convertible)
day counter (Convertible and after) Iend of BIOS Data Area

DOS and BASIC Data Areas , i
40:90 —40:EF
04:F0 16bytes
O4:FF
05:00 byte

05:01
05:02—03
05:04 byte

05:05—0E
05:0F
05:10 word
05:12 4 bytes
05:16 4 bytes
05:1A 4 bytes
05:18—1F
05:20—21
05:22-2C

05:30—33
05:34-FF

reserved by IBM
Inter—Application Communications Area (for use by applications
to transfer data or parameters to each other)
DOS print screen status flag

00h not active or successful completion
01h print screen in progress
OFFh error during print screen operation

Used by BASIC
chr POST and diagnostics work area
Single drive mode status byte

00 logical drive A
01 logical drive B

Per POST and diagnostics work area
BASIC: SHELL flag (set to 02h if there is a current SHELL)
BASIC: segment address storage (set with DEF SEG)
BASIC: int 1Ch clock interrupt vector segment:offset storage
BASIC: int 23h ctrl-break interrupt segment:offset storage
BASIC: int 24h disk error int vector segment:offset storage ‘
Used by BASIC for dynamic storage 3
Used by DOS for dynamic storage
Used by DOS for diskette parameter table. See int lEh for values
In DOS 1.0 this is located in the ROM BIOS, but in DOS 1.1 and
subsequently it is a part of DOS located at 05:22. The first byte
(out of eleven) of the Disk Parameter contains the hexadecimalvalue CF in DOS 1.0 and DF in DOS 1.1 and later. DOS 1.0 24ms;
DOS 1.1 26ms

Used by MODE command
Unknown — Reserved for DOS Model and BIOS ID

At absolute addresses:

0008:0047

C000:001E
FOOO:FA6E

F0002FFF5
F000:FFFE

IO.SYS or IBMBIO.COM IRET instruction. This is the dummy routine
that interrupts 01h, 03h, and OFh are initialized to during POST.
EGA BIOS signature (the letters IBM)
table of characters OOh-7Fh used by int 10h video BIOS.
The first 128 characters are stored here and each occupies 8
bytes. The high bit ones are somewhere on the video adapter card.BIOS release date
PC model identification

ROM BIOS

copyright model sub- revision machine)date

09/02/86
01/10/86
01/10/86
05/09/86
01/10/84
06/10/85
11/15/85
04/21/86
02/13/87
02/13/87

byie

FA
FB
FB
FB
FC
FC
FC
FC
FC
FC
FC

model

byte
00 00 PS/Z Model 30 .
o o o 1 XT v l
00 00 XT-Z (early), (640k motherboard
01 XT—Z (revised) (640k motherboard)__ __ AT 1
00 01 AT Model 239 6mHz (6.6 max governor) l
01 00 AT Model 319, 339 8mHz (8.6 max governor)
02 00 XT/286
04 00 PS/Z Model 50
05 00 PS/Z Model 60
00 7531/2 Industrial AT

HUAWEI EX. 1015 - 25/393

HUAWEI EX. 1015 - 26/393

06/01/83
11/08/82
04/24/81
10/19/81
08/16/82
10/27/82

1987
1987

09/13/85

FC
FD
FE
FF
FF
FF
FF
F8
F8
F9
2D
9A

CPUPorts Assignments, System Memory Data, BIOS Data Area
06

01
00

00
00

7552 'Gearbox’
Per
XT, Portable PC, XT/370, 3270PC
PC—O (16k motherboard)
PC-1 (64k motherboard)+
PC, XT, XT/370 (256k motherboard)
PC, XT, XT/37O (256k motherboard)
PS/2 Model 80
PS/Z Model 80 ZOmHz
Convertible
Compaq PC
Compaq Plus

(4.77mHz original)
(XT compatible)

19

The IBM PC System Interrupts (Overview)
The interrupt table is stored in the very lowest location in memory, starting at 0000 :0000h. The
locations are offset from segment 0, i.e. location OOOOh has the address for int 0, etc. The table is
1024 bytes in length and contains 256 four byte vectors from 00h to OFFh. Each address’ location

in memory can be found by multiplying the interrupt number by 4. For example, int 7 could be
found by (7x4=28) or lBh (0000:001Bh).

These interrupt vectors normally point to ROM tables or are taken over by DOS when an appli-
cation is run. Some applications revector these interrupts to their own code to change the way

the system responds to the user. DOS provides int 21h function 25h to change interrupts from a
high level; altering the interrupt vector table directly is not recommended, nor would it really
get you anywhere.

Interrupt Address \

Number (Hex) Type
0 00-03 CPU
1 04—07 CPU
2 08—0B CPU
3 OC—OF CPU
4 10-13 CPU
5 14-17 BIOS
6 18—18 hdw
7 1C-1F hdw
8 20—23 hdw
9 24—27 hdw
A 28—2B hdw
B 2C—2F hdw
C 30—33 hdw
D 34-37 hdw
E 38—3B hdw
F 3C—3F hdw
10 40—43 BIOS
11 44—47 BIOS
12 48—4E BIOS
13 4C-4F BIOS
14 50—53 BIOS
15 54—57 BIOS
16 58-53 BIOS
17 5C-5F BIOS
18 60—63 BIOS
19 64-67 BIOS
1A 68—6B BIOS
1B 6C—6F BIOS
1C 70-73 BIOS
1D 74—77 BIOS
1E 78—7B BIOS
1F 7C—7F BIOS
20 80—83 DOS

Function

Divide by Zero
Single Step
Nonmaskable
Breakpoint
Overflow
Print Screen
Reserved
Reserved

Time of Day
Keyboard
Reserved

Communications (8259)
Communications
Disk
Diskette
Printer
Video
Equipment Check
Memory
Diskette/Disk
Serial Communications
Cassette, System Services
Keyboard
Parallel Printer
ROM BASIC Loader
Bootstrap Loader
Time of Day
Keyboard Break
Timer Tick
Video Initialization
Diskette Parameters
Video Graphics Characters, second set
General Program Termination

HUAWEI EX. 1015 - 26/393

HUAWEI EX. 1015 - 27/393

20 The Programmer’s Technical Reference

21 84—87 DOS DOS Services Function Request
22 88—8B DOS Called Program Termination Address
23 8C-8F DOS Control Break Termination Address
24 90—93 DOS Critical Error Handler
25 94—97 DOS Absolute Disk Read
26 98—98 DOS Absolute Disk Write
27 9C—9F Dos Terminate and Stay Resident

28-3F AO-FF DOS Reserved for DOS
*29h Fast Screen Write

*ZAh Microsoft Networks — Session Layer Interrupt
ZFh Multiplex Interrupt

*30h Far jump instruction for CP/M—style calls
33h Used by Microsoft Mouse Driver

40—43 100—115 BIOS Reserved for BIOS
40h Hard Disk BIOS

41h Hard Disk Parameters (except PC1)
42h Pointer to screen BIOS entry (EGA, VGA, PS/2)
43h Pointer to BSA initialization parameter table

44 116—119 BIOS First 128 Graphics Characters
45—47 120-131 BIOS Reserved for BIOS

45h Reserved by IBM (not initialized)
46h Pointer to hard disk 2 params (AT, PS/Z)
47h Reserved by IBM (not initialized) ‘

48 132—135 BIOS Per Cordless Keyboard Translation
49 136—139 BIOS Per Non—Keyboard Scancode Translation Table

4Ah Real—Time Clock Alarm (Convertible, PS/Z)50—5F l40—17F BIOS Reserved for BIOS

SAh Cluster Adapter BIOS entry address
*SBh IBM (cluster adapter?) é

Sch NETBIOS interface entry port
60-67 180-19F User Program Interrupts (available for general use)60h lo—Net Network

67h Used by LIM & AQA EMS, EEMS
68—7F lAO—lFF Reserved by IBM

6Ch System Resume Vector (Convertible)
6Fh some Novell and IO-Net API functions
70h IRQ 8, Real Time Clock Interrupt (AT, PS/2)
71h IRQ 9, LAN Adapter 1
72h IRQ 10 (AT, XT/286, PS/2) Reserved
73h IRQ 11 (AT, XT/286, PS/2) Reserved
74h IRQ 12 Mouse Interrupt (PS/2)
75h IRQ 13, Coprocessor Error
76h IRQ 14, Hard Disk Controller (AT, PS/2) .
77h IRQ 15 (AT, XT/286, PS/Z) Reserved ‘ E
7Ch IBM REXX88PC command language

80—85 200—217 ROM BASIC

86-FO 218—3C3 Used by BASIC Interpreter when BASIC is running
Fl—FF 3C4—3FF Reserved by IBM

OFlh—OFFh Interprocess Communications Area
*0F8h Set Shell Interrupt (OEM)
*0F9h OEM SHELL service codes

OFAh USART ready (RS—232C)
OFBh USART RS ready (keyboard)

*OFEh used on ’283 & ’386
*OFFh used on ’283 & ’386

* = "undocumented"

The IBM-PC System Interrupts (in detail)

Interrupt 00h Divide by Zero

(0:0000h)

(processor error). Automatically called at end of DIV or IDIV operation that results in error.
Normally set by DOS to display an error message and abort the program. ’

Interrupt 01h Single step

(0:0004h)

HUAWEI EX. 1015 - 27/393

HUAWEI EX. 1015 - 28/393

CPUPorts Assignments, System Memory Data, BIOS Data Area . 2]

Taken after every instruction when CPU ’Itap Flag indicates single-step mode (bit 8 ofFLAGS is
1). This is what makes the ‘T’ command of DEBUG work for single stepping. Is not generated
after MOV to segment register or POP of segment register. (unless you have a very early 8088
with the microcode bug).

Interrupt 02h Non-maskable interrupt

(O: 0008h)
Vector not disabled via CLI. Generated by NMI signal'in hardware. This signal has various uses:

POST parity error: all except Per and Convertible
80x87 coprocessor interrupt: all except Per and Convertible
Keyboard interrupt: Per, Convertible
I/O channel check: Convertible, PS/2 50+
Disk controller power—on request: Convertible
System suspend: Convertible
Realtime clock: Convertible

System watchdog timer: PS/2 50+
Timeout interrupt: PS/Z 50+
DMA timer time-out interrupt: Ps/2 50+
Infrared keyboard link: Per

Interrupt 03h Breakpoint

(0:000Ch)
Taken when CPU executes the 1-byte int 3 (OCCh). Similar to 8080’s

(internal)

RST instruction. Generally used to set breakpoints for DEBUG. Also used by Turbo Pascal ver-
sions 1,2,3 when {$U +} specified

Interrupt 04h Divide overflow

(0:0010h)

Generated by INTO instruction if OF flag is set. If flag isnot set,(internal) INTO is effectively a
NOP. Used to trap any arithmetic errors when program is ready to handle them rather than im-
mediately when they occur.

Interrupt 05h Print Screen

(0:0014h)

Service dumps the screen to the printer. Invoked by int 9 for shifted key 55 (PrtSc). Automat-
ically called by keyboard scan when PrtSc key is pressed. Normally executes a routine to print the
screen, but may call any routine that can safely be executed from inside the keyboard scanner.
Status and result byte are at address 0050:0000. -

(internal) BOUND Check Failed (80286+)
Generated by BOUND instruction when the value to be tested is less than the indicated lower

bound or greater than the indicated upper bound.

entry AH 05h
return absolute address 50:0

00h print screen has not been called, or upon return from a call
there were no errors

01h print screen is already in progress
OFFh error encountered during printing

note 1. Uses BIOS services to read the screen.
2. Output is directed to LPTl.
3. Revectored into GRAPHICS. COM if GRAPHICS. COM is loaded.

Interrupt 06h Reserved by IBM

(0:0018h)

(internal) Undefined Opcode (80286+)

HUAWEI EX. 1015 - 28/393

HUAWEI EX. 1015 - 29/393

22 The Programmer’s Technical Reference

Interrupt 07h Reserved by IBM

(0:00C0h)
(internal) No Math Unit Available (80286+)

Interrupt 08h Timer

(0:0020h)
55ms timer ‘tick’ taken 18.2 times per second. Updates BIOS clock and turns off diskette drive
motors after 2 seconds of inactivity.
(IRQO)
(internal) Double Fault (80286+ protected mode)
Called when multiple exceptions occur on one instruction, or an exception occurs in an excep-
tion handler. If an exception occurs in the double fault handler, the CPU goes into SHUT-
DOWN mode (which circuitry in the PC/AT converts to a reset).

entry AH 08h
return absolute addresses:

40:6C number of interrupts since power on (4 bytes)
40:70 number of days since power on (1 byte)
40:67 day counter on all products after AT
40:40 motor control count - gets decremented and shuts off diskette

motor if zero
note Int lCh is invoked by int 08h as a user interrupt.

(internal) Double Fault (80286+ protected mode)
Called when multiple exceptions occur on one instruction, or an exception occurs in an excep-
tion handler. If an exception occurs in the double fault handler, theCPU goes into SHUT
DOWN mode (which circuitry in the PC/AT converts to a reset).

Interrupt 09h Keyboard

(0:0024h)
Taken whenever a key is pressed or released. This is normally a scan code, but may also be an
ACK or NAK of a command on AT-type keyboards.

(IRQl)
note Stores characters/scan—codes in status at absolute addr. [0040:0017,18]

(internal) Math Unit Protection Fault (80286+ protected mode)
entry AH 09h
return at absolute memory addresses:

40:17 bit
right shift key depressed
left shift key depressed
control key depressed
alt key depressed
ScrollLock state has been toggled
NumLock state has been toggled
CapsLock state has been toggled
insert state is active

40:18
left control key depressed
left alt key depressed
SysReq key depressed
Pause key has been toggled
ScrollLock key is depressed
NumLock key is depressed
CapsLock key is depressed
Insert key is depressed

40:96
last code was the Elh hidden code
last code was the Hon hidden code
right control key down
right alt key down
101 key Enhanced keyboard installed
force NumLock if rd ID & kbx

WOUNHOU‘NQWDwNI—‘OU‘NmWDwNI—‘O
HUAWEI EX. 1015 - 29/393

HUAWEI EX. 1015 - 30/393

CPUPorts Assignments, system Memory Data, BIOS Data Area . 23
last character was first ID character

doing a read ID (must be bit 0)P-(1'40:97
ScrollLock indicator
NumLock indicator
CapsLock indicator
circus system indicator
ACK received
resend received flag

. mode indicator update
‘keyboard transmit error flag

40:1E keyboard buffer (20h bytes)
40:1C buffer tail pointer
40:72 1234h if ctrl-alt—del pressed on keyboard

\IO‘U‘DWNHOU’NO‘
AL scan code

note 1. Int 05h invoked if PrtSc key pressed.
2. Int lBh invoked if Ctrl—Break key sequence pressed.
3. Int 15h, AH=85h invoked on AT and after if SysReq key is pressed.
4. Int 15h, AH=4Fh invoked on machines after AT.
5. Int 16h, BIOS keyboard functions, uses this interrupt.

Interrupt 0Ah EGA Vertical Retrace

(0:0028h) used by EGA vertical retrace
(IRQZ)

Note: The TOPS and PCnet adapters use this IRQ line by default.

(internal) Invalid Task State Segment (80286+ protected mode)

Interrupt 0Bh Communications Controller (serial port) hdw. entry

(0:002Ch) Serial Port 2 (COM2)
(IRQ3) -
Note I. IRQ 3 may be used by SDLC (synchronous data-link control) or bisynchronous

communications cards instead of a serial port.
The TOPS and PCnet adapters use this interrupt request line as an alternate.
On PS/2s, COM2 through COM8 share this interrupt.
On many PCs, COM4 shares this interrupt.
On the Commodore Amiga 2000 with the PC Bridge Board, this interrupt is used for
communiCation between the Amiga system board and the Bridge Board. This was
probably the lowest IRQ level they felt safe using, but limits the A2000’s use of network
cards, etc.

Msww

(internal) Not Present (80286 + protected mode) .
Generated when loading a segment register if the segment descriptor indicates that the segment

is not currently in memory. May be used to implementvirtual memory.

Interrupt 0Ch Communications Controller (serial port) hdw. entry

(0:0030h) Serial Port 1 (COM1) or internal modern in Per or Convertible
(IRQ4)

Note 1. IRQ 4 may be used by SDLC (synchronous data-link control) or bisynchronous

communications cards instead of a serial port.
2. On some PCs, this interrupt is shared by COM3.

3. Tandy computers use IRQ4 instead of IRQS for the hard disk interrupt.

4 Best performance of mice sometimes happens when they are configured for IRQ4
instead of IRQ3, since some mouse drivers may lock system interrupts for long periods.

(internal) Stack Fault (80286+ protected mode)
Generated on stack overflow/underflow. Note that the 80286 will shut down in real mode if

SP =1 before a push.

HUAWEI EX. 1015 - 30/393

HUAWEI EX. 1015 - 31/393

24 The Programmer’s Technical Reference

Interrupt 0Dh Alternate Printer, AT 80287

(0:0034h) used by hard disk on 'IBM and most compatibles, 60 Hz RAM
(IRQS)
refresh, LPTZ on AT, XT/286, and PS/2, dummy CRTvertical retrace on Per

Note: Various ’Iandy 1000 models may use this line for the 60th RAM refresh or as ‘optional
bus interrupt’. '

(internal) General Protection Violation (80286 +)
Called in real mode when an instruction attempts to access a word operand located at offset
OFFFFh or a PUSH MEM or POP MEM instruction contains an invalid bit code in the second

byte.

Interrupt 0Eh Diskette Interrupt

(0:0038h)
- Generated by floppy controller on completion ofan operation
(IRQ6) (sets bit 8 of40:3E)

(internal) Page Fault (80386+ native mode)

Interrupt 0Fh Reserved by IBM

(0:003Ch) IRQ7 used by PPI interrupt (LPTl, LPTZ)
(IRQ7)
Note: Generated by the LPTl printer adapter when printer becomes ready. Many printer adap-
ters do not reliably generate this interrupt.

HUAWEI EX. 1015 - 31/393

HUAWEI EX. 1015 - 32/393

THE PC ROM BIOS

Calling the ROM BIOS
The BIOS services are invoked by placing the number of the desired function in register AH,

subfunction in AL, setting the other registers to any specific requirements of the function, and
invoking any of ints 10h through int 20h.

When the interrupt is called, all register and flag values are pushed into the stack. The interrupt
address contains a pointer intoan absolute address in the ROM BIOS chip address space. This
location maybe further vectored into the IBMBIO.COM (or equivalent) file or user file.

The address vector points to a particular BIOS command handler. The handler pops the register

values, compares them to its list of functions, and executes the function ifvalid. When the func-
tion is complete, it may pass values back to the command handler. The handler will push the
values into the stack and then return control to the calling program.

Most functions will return an error code; some return more information. Details are contained

in the listings for the individual functions.

Register settings listed are the ones used by the BIOS. Some functions will return with garbage

values in unused registers. Do not test for values in unspecified registers; your program may ex-
hibit odd behaviour.

Interrupt 10h Video Service

(0:0040h) The BIOS Video Services may be found in Chapter 16.

(internal) Coprocessor Error (80286+)
Generated by the CPU when the -ERROR pin is asserted by the coprocessor (usually 80x87, but

may be any multimaster CPU or alternate NDP such as Weitek, etc.). AR and clones usually
wire the coprocessor to use IRQI3, but not all get it right.

Interrupt 1 1h Equipment Check

(0:0044h) Reads the BIOS Data Area and returns two bytes of setup info. entry. No parameters
are required
return AX Equipment listing word. Bits are:

0 number of floppy drives
0 no drives

1 bootable (IPL) diskette drive installed

HUAWEI EX. 1015 - 32/393

HUAWEI EX. 1015 - 33/393

26 The Programmer’s Technical Reference

1 math chip
0 no math coprocessor (80x87) present «
1 math coprocessor (80x87) present Q

(Pg/2) 2 0 mouse not installed - i1 mouse installed ,

(pg) 2,3 system board RAM , io,o 16k (PC—0, PC—l) ,
0,1 32k .
1,0 48k i
1,1 64k (PC—2, XT) , .
note 1. not commonly used. Set both bits to 1 5

2. both bits always 1 in AT
4,5 initial video mode

0,0 no video installed (use with dumb terminal)
1 40x25 colour (CGA)
0 80x25 colour (CGA, EGA, PGA, MCGA, VGA)
1 80x25 monochrome (MBA or Hercules, most superhires

i
’ I

i

mono systems) L,‘ Ii
iI

HH0 ~~

of diskette drives (only if bit 0 is 1)
1 drives
2 drives
3 drives
4 drives
DMA present
no DNA (Per, some Tandy 10005, 1400LT)

of R5232 serial ports (0-3) 4none :
1 F
2
3
4 I

no game I/O attached ‘
game I/O attached (default for chr)

accessory installation
no serial accessories installed

Convertible — internal modem installed or Per —
serial printer attached

of parallel printersnone

one (LPTl, PRN)
two (LPTZ)
three (LPT3)

note Models before PS/2 would allow a fourth parallel
printer. Remapping of the BIOS in the PS/Zs does
not allow the use of LPT4.

I: U0H

Hordcza~~~‘
U

oHoHC(n
HE

OF‘P‘O‘DB
9,A,B

-~\\ ~‘\~\

H p. 9| i—‘e

HOMHOHOOOODHOHHOO’J
[11 M

F‘Ho<:: ~~~g H0FIG5
U ('D d

Interrupt 12h Memory Size

(0:0048h) get system memory ll
entry no parameters required. .
return AX number of contiguous 1K RAM blocks available for DOS
Note 1. Thisis the same value stored in absolute address 04:13h..

2. For some early PC models, the amount ofmemory returned by this call is determined by
the settings of the dip Switches on the motherboard and may not reflect all the memory

that is physically present. .
3. For the PC/AT, the value returned 13 the amount offunctional memory found during ,

the power-on self-test, regardless of the memory size configuration information stored ,
in CMOS RAM.

4. The value returned does not reflect any extended memory (above the 1 Mb boundary)
that may be present on 80286 or 80386 machines.

Interrupt 13h Disk Functions . .
(0:0049h) The service calls for BIOS dlSk functlons are located in Chapter 8.

Interrupt 14h Initialize and Access Serial Port For Int 14
(0:0050h) the following status is defined:

HUAWEI EX. 1015 - 33/393

HUAWEI EX. 1015 - 34/393

The PC ROMBIOS

serial status byte:bits

\lmU’Ib‘thP-‘O
delta clear to send
delta data set ready
trailing edge ring detector
delta receive line signal detectclear to send
data set ready
ring indicator
receive line signal detect

line status byte:bits

ter to send or received character on exit, unless otherwise noted.

\lO‘UInwaP-IO
data readyoverrun error

parity error
framing error
break detect

transmit holding register empty
transmit shift register empty

27

time out note: if bit 7 set then other bits are invalid

All routines have AH=function number and DX=RSZ32 card number (0 based). AL=charac-

entry AH 00h Initialize And Access Serial Communications Port
bit pattern: BBBPPSLL
BBB = baud rate: 110, 150, 300, 600, 1200,

' 2400, 4800, 9600
PP = parity: 01 = odd, even
S = stop bits: 0 = 1,
LL = word length: 10 = 7-bits, 8-bits

AL parms for initialization:
bit pattern:
0 word length
1 word length
2 stop bits
3 parity
4 parity
5 baud rate
6 baud rate
7 baud rate
word length 10 7 bits

11 8 bits

stop bits 0 1 stop bit
1 2 stop bits

parity 00 none
01 odd
11 even

baud rate 000 110 baud
001 150 baud
010 300 baud
011 600 baud
100 1200 baud
101 2400 baud
110 4800 baud

111 9600 baud (4800 on Per)
DX port number (0=COM1, 1=COM2, etc.)return AH line status
AL modem status

note To initialize the serial port to 9600 baud on PS/Z machines, seefns 04hand 05h.

Function 01h Send Character in AL to Comm Port
entry AH 01h

AL character ’

DX port number (0 — 3)return AH R5232 status code

bit 0 data ready
1 overrun error
2 parity error
3 framing error

HUAWEI EX. 1015 - 34/393

HUAWEI EX. 1015 - 35/393

28 The Programmer’s Technical Reference

4 break detected

5 transmission buffer register empty
6 transmission shift register empty
7 timeout

AL modem status .
bit ‘j

0 delta clear—to—send 1
1 delta data—set—ready C
2 trailing edge ring detected '
3 change, receive line signal detected
4 clear—to—send ‘
5 data—set—ready
6 ring received
7 receive line signal detected g

Function 02h Wait For A Character From Comm Port DX '
entry AH 02h E

DX port number (0-3) ‘
'return AL character received 3

AH error code (see above)(00h for no error) :

Function 03h Fetch the Status of Comm Port DX (0 or 1)
entry AH 03h

DX port (0—3) i
return AH set bits (01h) indicate comm—line status 1

bit 7 timeout
bit 6 empty transmit shift register
bit 5 empty transmit holding register
bit 4 break detected ('long-space’)
bit 3 framing error
bit 2 parity error
bit 1 overrun error
bit 0 data ready ?

AL set bits indicate modem status

bit 7 received line signal detect }
bit 6 ring indicator
bit 5 data set ready
bit 4 clear to send

bit 3 delta receive line signal detect :bit 2 trailing edge ring detector - i
bit 1 delta data set ready
bit 0 delta clear to send

Function 04h Extended Initialize (Convertible, PS/Z)
entry AH 04h

AL break status j
01h if break E00h if no break

BH parity 2
00h no parity
01h odd parity
02h even parity 1

03h stick parity odd 104h stick parity even
BL number of stop bits

00h one stop bit 1
01h 2 stop bits (1 if 5 bit word length)

CH word length ‘
00h 5 bits
01h 6 bits
02h 7 bits

03h 8 bits 3CL baud rate
00h 110 "

01h 150 i02h 300 ’ '
03h 600
04h 1200 ' l

05h 2400 ' h
06h 4800 107h 9600 ‘

HUAWEI EX. 1015 - 35/393

HUAWEI EX. 1015 - 36/393

return

note

DX
AH
AL

Function 05h
entry

return

AH

AL

BL

DX
AH

BL

bits

08h

The PC ROM BIOS

19200

comm port (0—3)
line control status
modem status

Provides a superset of fn 00h capabilities for PS/2 machines.

Extended Communication Port Control
05h
00h
01h

read modem control register
- write modem control register

modem control register

wal—‘O
5,6,7
port number (0=COM1,

DTR data terminal ready
RTS request to send
outl
out2
loop
reserved

port status (see 00h above)
modem status (see 00h above)
modem control register (see 01h above)

FOSSIL Drivers

Interrupt 14h FOS SIL (Fido/Opus/Seadog Standard Interface Level) drivers
A FOSSIL is a device driver for handling the IBM PC serial communications ports in a standard

fashion from an application (communications) program. A FOSSIL chains into the int 14h
BIOS communications vector and replaces many functions with enhanced routines that may be

easily accessed by an application.

1=COM2, etc.)

29

(Convertible, PS/Z)

For all functions, all registers not specifically containing a function return value must be

preserved across the call.

entry

return
note

entry

return
note

AH
AL

DX
AX
Low-order 5 bits are undefined by FOSSIL 1.0 spec.

AH
AL
DX
AX

00h Set baud rate and parameters
byte
bits 7,6,5 baudrate
000 19200 baud
001 38400 baud
010 300 baud
011 600 baud
100 1200 baud
101 2400 baud
110 4800 baud
111 9600 baud
bits 4,3 parity
00 none
01 odd
10 none
11 even

bit 2 stop bits
0 1 stop bit
1 2 stOp bits
bit 1 char length
0 5 bits plus value
other optional
port number (NOP if DX=00FFh)
status (see fn 03h)

01h Transmit character with wait
ASCII value of character to be sent

port number (NOP if DX=00FFh)
status bits (see function 03h)

1 Character is queued for transmission. If there is room in the
transmitter buffer when this call is made, the character will be stored

HUAWEI EX. 1015 - 36/393

HUAWEI EX. 1015 - 37/393

30 The Programmer’s Technical Reference

and control returned to caller. If the buffer is full, the driver will
wait for room. Use this function with caution when flow control is
enabled.

entry AH 02h FOSSIL: Receive a character with wait
DX port number (0-3) (NOP if Dx=00FFh)

return AH RS—232 status code (see AH=00h above)
AL ASCII value of character received from serial port

note will timeout if DSR is not asserted, even if function 03h returns data
ready.

entry AH 03h FOSSIL: Request status ‘
DX port number (NOP if DX=00FFh) Freturn AX status bit mask ‘

AH bit 0 set RDA input data is available in buffer
1 set OVRN input buffer overrun
2 N/A
3 N/A
4 N/A
5 set THRE room is available in output buffer
6 set TSRE output buffer is empty
7 N/A

AL bit 0 N/A
1 N/A
2 N/A
3 set this bit is always set
4 N/A
5 N/A
6 N/A

7 set DCD carrier detect 1
note Bit 3 of AL is always returned set to enable programs to use it as a)

carrier detect bit on hardwired (null modem) links. . 5

entry AH 04h Initialize FOSSIL driver
BX 4F50h (optional)
DX port number (DX=00FFh special)
ES:CX pointer to “C flag address (optional)

return AX 1954h if successful

BL maximum function number supported (excluding 7Eh—0BFh)
8H revision of FOSSIL supported

note 1. DTR is raised when FOSSIL inits.
2. Existing baudrate is preserved.
3. If BX contains 4F50h, the address specified in ES:CX is that of a ‘C flag

byte in the application program, to be incremented when “G is detected
in the keyboard service routines. This is an optional service and only ‘
need be supported on machines where the keyboard service can't (or i
won’t) perform an int lBh or int 23h when a control—C is entered.

entry AH 05h Deinitialize FOSSIL driver
DX port number (DX=OOFFh special)return none

note 1. DTR is not affected.

2. Disengages driver from comm port. Should be done when operations on the
port are complete.

3. If DX=OOFFh, the initialization that was performed when FOSSIL function
04h with DX=OOFFh should be undone.

entry AH 06h FOSSIL: Raise/lower DTR

AL DTR state to be set
00h lower DTR
01h raise DTR

DX comm port (NOP if DX=OOFFh)
return none
entry AH 07h FOSSIL: Return timer tick parameters
return AH ticks per second on interrupt number shown in AL

AL timer tick interrupt number (not vector!)
DX milliseconds per tick (approximate)

entry AH 08h FOSSIL: Flush output buffer
DX port number (NOP if DX=OOFFh)

return none

HUAWEI EX. 1015 - 37/393

HUAWEI EX. 1015 - 38/393

note
entry

return
note

entry

return
note 1.

entry

return

note

entry

return

note 1.

entry
return

note 1.

entry
return
note

entry

return
note 1.

2.

The PC ROM BIOS 3]
Waits until all output is done.
AH 09h FOSSIL: Purge output buffer
DX port number (NOP if DX=OOFFh)none

Returns to caller immediately.

AH OAh FOSSIL: Purge input buffer
DX port number (NOP if DX=00FFh)none

If any flow control restraint has been employed (dropping RTS or
transmitting XOFF) the port will be ’released’ by doing the reverse,raising RTS or sending XON.
Returns to caller immediately.

AH OBh FOSSIL: Transmit no wait
AL ASCII character value to be sent
DX port number (NOP if DX=00FFh)
AX OOOOh character not accepted

0001h character accepted

This is exactly the same as the ’regular' transmit call except that if
there is no space available in the output buffer a value of zero is
returned in AX, if room is available a value 1 (one) is returned.

AH OCh FOSSIL: Nondestructive Read no Wait
DX port number (NOP if Dx=00FFh)AH character

OFFFFh character not available
Reads async buffer.
Does not remove keycode from buffer.

AH ODh FOSSIL: Keyboard read no wait
AX IBM keyboard scan code or

OFFFFh if no keyboard character available

Use IBM—style function key mapping in the high order byte.
Scan codes for non function keys are not specifically required but may beincluded.
Does not remove keycode from buffer.

AH OEh FOSSIL: Keyboard input with wait
AX IBM keyboard scan code
Returns the next character from the keyboard or waits if nocharacter is available.

AH OFh Enable or Disable flow control
AL bit mask describing requested flow control

bits 0 XON/XOFF on transmit (watch for XOFF while sending)
1 CTS/RTS (CTS on transmit/RTS on receive)2 reserved -

3 XON/XOFF on receive (send XOFF when buffer near full)
4-7 not used, FOSSIL spec calls for setting to 1

DX port number (NOP if DX=00FFh)
none .
Bit 2 is reserved for DSR/DTR, but is not currently supported in anyimplementation.

TRANSMIT flow control allows the other end to restrain the transmitter
when you are overrunning it. RECEIVE flow control tells the FOSSIL to
attempt to do just that if it is being overwhelmed.
Enabling transmit Xon/Xoff will cause the FOSSIL to stop transmitting
upon receiving an Xoff. The FOSSIL will resume transmitting when an Xonis received.

Enabling CTS/RTS will cause the FOSSIL to cease transmitting when CTS is
lowered. Transmission will resume when CTS is raised. The FOSSIL will
drop RTS when the receive buffer reaches a predetermined percentage
full. The FOSSIL will raise RTS when the receive buffer empties below
the predetermined percentage full. The point(s) at which this occurs is
left to the individual FOSSIL implementor.
Enabling receive Xon/Xoff will cause the FOSSIL to send a Xoff when the
receive buffer reaches a pre—determined percentage full. An Xon will be
sent when the receive buffer empties below the predetermined percentage
full. The point(s) at which this occurs is left to the individual FOSSIL
implementor.

HUAWEI EX. 1015 - 38/393

HUAWEI EX. 1015 - 39/393

32 The Programmer’s Technical Reference

6. Applications using this function should set all bits ON in the high
nibble of AL as well. There is a compatible (but not identical) FOSSIL
driver implementation that uses the high nibble as a control mask. If
your application sets the high nibble to all ones, it will always work,
regardless of the method used by any given driver.

entry AH 10h Extended Ctrl-C/Ctrl—K checking and transmit on/off
AL flags bit mask byte (bit set if activated)

bits 0 enable/disable ctrl-C/Ctrl-K checking
1 disable/enable the transmitter
2—7 not used

DX port number (NOP if DX=OOFFh)
return AX status byte

0000b control-C/K has not been received
0001h control—C/K has been received

note This is used primarily for programs that can't trust XON/XOFF at FOSSIL
1e vel (such as BBS software).

entry AH 11h FOSSIL: Set current cursor location.
DH row (line) 0-24DL column 0—79

return none

note 1. This function looks exactly like the int 10h, fn 02h on the IBM PC. The
cursor location is passed in Dx: row in DH and column in DL. This
function treats the screen as a coordinate system whose origin (0,0) is
the upper left hand corner of the screen.

2. Row and column start at 0.

entry AH 12h FOSSIL: Read current cursor location.
return DH row (line)

DL column

note 1. Looks exactly like int 10h/fn 03h in the IBM PC BIOS. The current cursor
location (same coordinate system as function 16h) is passed back in DX.2. Row and column start at 0.

entry AH 13h FOSSIL: Single character ANSI write to screen.
AL value of character to display

return none

note This call might not be reentrant since ANSI processing may be through DOS.

entry AH 14h FOSSIL: Enable or disable watchdog processing
AL, 00h to disable watchdog

01h to enable watchdog
DX port number (NOP if DX=OOFFh)

return none

note 1. This call will cause the FOSSIL to reboot the system if Carrier Detect
for the specified port drops while watchdog is turned.on.

2. The port need not be active for this function to work.

entry AH 15h Write character to screen using BIOS support routines
AL ASCII code of character to displayreturn none

note 1. This function is reentrant.
2. ANSI processing may not be assumed.

entry AH 16h Insert or Delete a function from the timer tick chain

AL 00h to delete a function
01h to add a function ‘

ES:DX address of function
return Ax OOOOh successful

OFFFFh unsuccessful

entry AH 17h FOSSIL: Reboot system
AL boot type i

00h cold boot
01h warm boot

return none

entry AH 18h FOSSIL: Read block
CX maximum number of characters to transfer
DX port number (NOP if DX=00FFh)

HUAWEI EX. 1015 - 39/393

HUAWEI EX. 1015 - 40/393

'reggrnno 1.

entry

return
note

entry

return
note 1.

2.
3.

entry

return

note 1.

entry

return

note 1.

entry

return

The PC ROM BIOS 33

ES:DI pointer to user buffer 5AX number of characters transferred

This function does not wait for more characters to become available if
the value in CX exceeds the number of characters currently stored.
ES:DI are left unchanged by the call; the count of bytes actuallytransferred will be returned in Ax.

AH 19h FOSSIL: Write block
CX maximum number of characters to transfer
DX port number (NOP if DX=00FFh)
ES:DI pointer to user buffer
AX number of characters transfered
ES and DI are not modified by this call.

AH lAh FOSSIL: Break signal begin or and
AL 00h stop sending ’break’

01h start sending ’break'
DX port number (NOP if DX=00FFh)none

Resets all transmit flow control restraints such as an XOFF received fromremote.

Init (fn 04h) or UnInit (fn 05h) will stop an in-progress break.
The application must determine the 'length’ of the break.
AH lBh FOSSIL: Return information about the driver
CX size of user buffer in bytes
DX port number (if DX=00FFh, port data will not be valid)ES:DI pointer to user buffer
Ax number of characters transferred
ES:DI user buffer structure:

00h word size of structure in bytes
02h byte FOSSIL driver version
03h byte revision level of this specific driver
04h dword FAR pointer to ASCII ID string
08h word size of the input buffer in bytes
OAh word number of bytes in input buffer
OCh word size of the output buffer in bytes
OEh word number of bytes in output buffer
10h byte width of screen in characters
11h byte screen height in characters
12h byte actual baud rate, computer to modem (see mask in

function 00h)
The baud rate byte contains the bits that fn 00h would use to set theport to that speed.

The fields related to a particular port (buffer size, space left in the
buffer, baud rate) will be undefined if port=OFFh or an invalid port iscontained in DX. '

. Additional information will always be passed after these, so that the
fields will never change with FOSSIL revision changes.

AH 7Eh FOSSIL: Install an external application function
AL code assigned to external application
ES:DX pointer to entry point
AX 1954h FOSSIL driver present

not 1954h FOSSIL driver not presentBH 00h failed
01h successful

BL code assigned to application (same as input AL)
Application codes 80h—0BFh are supported. Codes 80h—83h are reserved.
An error code of BH=00h with AX=1954h should mean that another external
application has already been installed with the code specified in AL.

. Applications are entered via a FAR call and should make a FAR return.

AH 7Fh FOSSIL: Remove an external application function
AL code assigned to external application
ES:DX pointer to entry pointAX 1954h
BH 00h failed

01h successful

BL code assigned to application (same as input AL)

HUAWEI EX. 1015 - 40/393

HUAWEI EX. 1015 - 41/393

34 The Programmer’s Technical Reference

Interrupt 15h Cassette I/O

(0:0054h)Renamed ‘System Services’ on PS/2 line. Issuing int 15h on an XT may cause a system
crash. On AT and after, interrupts are disabled with CLI when the interrupt service routine is

called, but most ROM versions do not restore interrupts with STI.

Function 00h Turn Cassette Motor On (PC,
entry AH 00h
return CF set on error

AH error code
00h no errors
01h CRC error
02h bad tape signals

no data transitions (chr)
03h no data found on tape

not used (chr)
04h no data

no leader (Per)
80h invalid command
86h no cassette present

not valid in Per
note NOP for systems where cassette not supported.

Function 01h Turn Cassette Motor Off (PC,
entry AH 01h
return CF set on error

AH error code (86h)
note NOP for systems where cassette not supported.

Function 02h Read Blocks From Cassette (PC,
entry AH 02h

CX count of bytes to read
ES:BX segmentzoffset + 1 of last byte read

return CF set on error
AH error code (01h, 02h, 04h, 80h, 86h)

DX count of bytes actually read
ES:BX pointer past last byte written

note 1. NOP for systems where cassette not supported.
2. Cassette operations normally read 256'byte blocks.

Function 03h Write Data Blocks to Cassette (PC,
entry AH 03h

CX count of bytes to write
ES:BX pointer to data buffer

return CF set on error
AH error code (80h, 86h)

CX 00h

ES:BX pointer to last byte written+1
note 1. NOP for systems where cassette not supported.

2. The last block is padded to 256 bytes with zeroes if needed.
3. No errors are returned by this service.

Function OFh ESDI Format Unit Periodic Interrupt
entry AH OFh

AL phase code
00h reserved
01h surface analysis
02h formatting

return CF clear if formatting should continue
set if it should terminate

Per only)

Per only)

Per only)

Per only)

(PS/2 50+)

note 1. Called the BIOS on the ESDI Fixed Disk Drive Adapter/A during a format or
surface analysis operation after each cylinder is completed.

2. This function call can be captured by a program so that it will be
notified as each cylinder is formatted or analyzed. The program can count
interrupts for each phase to determine the current cylinder number.

3. The BIOS defau1t handler for this function returns with CF set.

HUAWEI EX. 1015 - 41/393

HUAWEI EX. 1015 - 42/393

The PC ROM BIOS ’ 35

Function 10h TopView API Function Calls (Topview)entry AH 00h PAUSE Give Up CPU Time
return 00h after other processes run

01h GETMEM allocate ’system’ memory
BX number of bytes to allocate
return ES:DI pointer to a block of memory

02h PUTMEM deallocate 'system' memory
ES:DI pointer to previously allocated blockreturn block freed

03h . PRINTC display character/attribute on screen
BH attribute
BL character
DX segment of object handle for window
note BX=0 does not display anything, it positions thehardware cursor.

04h—O9h unknown
10h unknown

AL 04h thru 12h

return TopView — unimplemented in DV 2.0x pops up
lProgramming error’ window in DV 2.0x11h unknown

12h unknown

13h GETBIT define a 2nd—level interrupt handler
ES:DI pointer to FAR service routine
return BX bit mask indicating which bit was

allocated 0 if no more bits availble
14h FREEBIT undefine a 2nd—level interrupt handler

BX bit mask from int 15/fn1013h
15h SETBIT schedule one or more 2nd—level interrupts

BX bit mask for interrupts to post
return indicated routines will be called at next ???

16h ISOBJ verify object handle
ES:DI possible object handle
return BX —1 if ES:DI is a valid object handle0 if ES:DI is not

17h TopView — unimplemented in DV 2.00
return pops up 'Programming Error' window in DV 2.00

18h LOCATE Find Window at a Given Screen Location
BH column
BL row

ES segment of object handle for ?
, (O = use default)

return ES segment of object handle for window which
is visible at the indicated position19h SOUND Make Tone

BX frequency in Hertz
CX duration in clock ticks (18.2 ticks/sec)
return immediately, tone continues to completion
note If another tone is already playing, the new tone

does not start until completion of the
previous one. In DV 2.00, it is possible to
enqueue about 32 tones before the process is
blocked until a note completes. In DV 2.00, the
lowest tone allowed is 20 Hz

lAh OSTACK Switch to Task’s Internal Stack
return stack switched

lBh BEGINC Begin Critical Region
return task—switching temporarily disabled
note Will not task—switch until End Critical

Region (AH=101Ch) is called
1Ch ENDC End Critical Region '

return task-switching enabled
th STOP STOP TASK

ES segment of object handle for task to be stopped
(= handle of main window for that task)

return indicated task will no longer get CPU time
note At least in DV 2.00, this function is ignored

unless the indicated task is the current task.
lEh START Start Task

ES segment of object handle for task to be started
= handle of main window for that task)

HUAWEI EX. 1015 - 42/393

HUAWEI EX. 1015 - 43/393

36

th

20h

21h

22h

23h

24h

25h

26h—2Ah

2Bh

The Programmer’s Technical Reference

return Indicated task is started up again
DISPEROR Pop-Up Error Window
BX bit fields:

0-12 number of characters to display
13,14 which mouse button may be pressed

to remove window
00 either
01 left
10 right
11 either

15 beep if 1
CH width of error window (0 = default)
CL height of error window (0 = default)
DS:DI pointer to text of message
DX segment of object handle
return BX status:

1 left button pressed
2 right button pressed
27 ESC key pressed

note Window remains on—screen until ESC or indicated
~ mouse button is pressed

TopView — unimplemented in DV 2.0x
return pops up ’Programming Error’ window in DV 2.0x
PGMINT Interrupt Another Task (TopView)
BX segment of object handle for task to interrupt
DX:CX address of FAR routine to jump to next time taskis run

return nothing?
note The current ES, DS, SI, DI, and BP are passed to

the FAR routine
GETVER Get Version
BX 00h

return Bx nonzero, TopView or compatible loaded
BH minor version ’
BL major version

notes TaskView v1.1C returns BX = 0001h
. DESQview v2.0 returns BX = 0A01h

POSWIN Position Window

BX segment of_object handle for parent window within
which to position the window (0 = full screen)

CH # columns to offset from position in DL
CL # rows to offset from position in DL
DL bit flags

0,1 horizontal position
00 current
01 center
10 left

11 right
2,3 vertical position

00 current
01 center
10 top
11 bottom

4 don’t redraw screen if set
5—7 not used

ES segment of object handle for window to be
positioned

return nothing
GETBUF Get Virtual Screen Information

BX segment of object handle for window (0=default)
return CX size of virtual screen in bytes

DL 0 or 1, unknown
ES:DI address of virtual screen

USTACK Switch Back to User's Stack
return stack switched back
note Call only after int 15h, fnlOlAh
Destiew (TopView?) - unimplemented in DV 2.0x
return pops up 'Programming Error’ window in DV 2.0x
POSTTASK Awaken Task

Destiew 2.0 (Top View?)BX segment of object handle for task

HUAWEI EX. 1015 - 43/393

HUAWEI EX. 1015 - 44/393

The PC ROM BIOS 37

return nothing
2Ch Start New Application in New Process

Destiew 2.0 (TopView?)
ES:DI pointer to contents of .PIF/.DVP file
BX size of .PIF/.DVP info
return BX segment of object handle for new task

00h if error
2Dh Keyboard Mouse Control Destiew 2.0+

‘ BL subfunction

00h determine whether using keyboard mouse
01h turn keyboard mouse on
02h turn keyboard mouse off

return (calling BL was 00h)
EL 0 using real mouse

1 using keyboard mouse

Function 11h Topview commands
entry AH 11h

AL various

note In Destiew 2.0x, these function calls are identical to AH=0DEh, so thosebelow.

Function 20h PRINT-COM (DOS internal) (AT, XT—286, PS/Z 50+)
entry AH 20h

AL subfunction

00h unknown (PRINT)
01h unknown (PRINT)
10h sets up SysReq routine on AT, XT/286, PS/2
11h completion of SysReq routine (software only)

note AL=O or 1 sets or resets some flags which affect what PRINT does when it
tries to access the disk.

Function 21h Read Power—On Self Test (POST) Error Log (PS/2 50+)
entry AH 21h

AL 00h read POST log
01h write POST log

BH device ID
BL device error code

return CF set on error
AH status

00h successful read
BX number of POST error codes stored
ES:DI pointer to error log

01h list full
80h invalid command
86h function unsupported

note The log is a series of words, the first byte of which identifies the error
code and the second is the device ID.

Function 40h Read/Modify Profiles (Convertible)
entry AH 40h

AL 00h read system profile in CX,BX
01h write system profile from CX, BX
02h read internal modem profile in BX
03h write internal modem profile from BX

BX profile info
return BX internal modem profile (from 02h)

CX,BX system profile (from 00h)

Function 41h Wait 0n External Event (Convertible)
entry AH 41h

AL condition type
bits 0-2 condition to wait for

0,0,0 any external event
compare and return if equal1

0 compare and return if not equal
1 test and return if not zero
0 test and return if zero

nub) user byte
port address

HUAWEI EX. 1015 - 44/393

HUAWEI EX. 1015 - 45/393

38 The Programmer’s Technical Reference
5-7 reserved

BH condition compare or mask value
condition codes:
00h any external event
01h compare and return if equal
02h compare and return if not equal
03h test and return if not zero
04h test and return if zero

BL timeout value times 55 milliseconds
00h if no time limit

DX I/O port address (if AL bit 4=1)
ES:DI pointer to user byte (if AL bit 4:0)

Function 42h Request System Power Off (Convertible)
entry AH 42h

AL 00h to use system profile
01h to force suspend regardless of profile

return unknown

Function 43h Read System Status (Convertible)
entry AH 43h
return AL status byte

bit 0 LCD detached
1 reserved

2 RSZ32/parallel powered on
3 internal modem powered on
4 power activated by alarm
5 standby power lost
6 external power in use
7 battery low

Function 44h (De)activate Internal Modem Power (Convertible)
entry AH 44h

AL 00h to power off
01h to power on

return unknown

Function 4Fh OS Hook - Keyboard Intercept (except PC, Per, and XT)
entry AH 4Fh

AL scan code, CF set
return AL scan code

CF set processing desired
clear scan code should not be used

note 1. Called by int 9 handler for each keystroke to translate scan codes.
2. An OS or a TSR can capture this function to filter the raw keyboard data

stream. The new handler can substitute a new scan code, return the same
scan code, or return the carry flag clear causing the keystroke to be
discarded. The BIOS default routine simply returns the scan code
unchanged.

3. A program can call Int 15h fn OCOh to determine whether the host
machine’s BIOS supports keyboard intercept.

Function 70h EEROM handler (Tandy 1000HX).
entry AH 00h read from EEROM

BL 00h
01h write to EEROM

BL word number to write (0-15)Dx word value to write

return DX (AH=OOh) word value
CF set on error (system is not a Tandy 1000 EX)

Function 80h OS Hook — Device Open (AT, XT/286, PS/Z)
entry AH 80h

BX device ID
CX process ID

return~ CF set on error
AH status

note 1. Acquires ownership of a logical device for a process.
2. This call, along with fns 81h and 82h, defines a simple protocol that can

be used to arbitrate usage of devices by multiple processes. A
multitasking program manager would be expected to capture int 15h and

HUAWEI EX. 1015 - 45/393

HUAWEI EX. 1015 - 46/393

The PC ROMBIOS ' 39

provide the appropriate service.
3. The default BIOS routine for this function simply returns with CF clearand AH=00h.

Function 81h OS Hook - Device Close (AT, XT/286, PS/Z)entry ‘ AH 81h
BX device ID
CX process ID

return CF set on error
AH status

note 1. Releases ownership of a logical device for a process.
2. A multitasking program manager would be expected to capture int 15h and
. provide the appropriate service.
3. The BIOS default routine for this function simply returns with the CFclear and AH=00h.

Function 82h Program Termination (AT, XT/286, PS/Z)' AH 82h
BX device ID

return CF set on error
AH status

note 1. Closes all logical devices opened with function 80h.
2. A multitasking program manager would be expected to capture int

15h and provide the appropriate service.
3. The BIOS default routine for this function simply returns with CFclear and AH=00h.

Function 83h Event Wait (AT, XT/286, Convertible, PS/Z 50+)entry AH 83h
AL cab to set interval

01h to cancel

CX:DX number of microseconds to wait (granularity is 976 micro seconds)
ES:BX pointer to semaphore flag (bit 7 is set when interval expires)

(pointer is to caller's memory)
return CF set (1) if function already busy
note 1. Requests setting of a semaphore after a specified interval or cancels a

previous request.
2. The calling program is responsible for clearing the semaphore before

requesting this function.
3. The actual duration of an event wait is always an integral multiple of

976 microseconds. The CMOS date/clock chip interrupts are used to
implement this function.

4. Use of this function allows programmed, hardware-independent delays at a
finer resolution than can be obtained through use of the MS—DOS Get Time
function (int 21h/fn 2Ch) which returns time in hundredths of a second.

Function 84h Read Joystick Input Settings (AT, XT/286, PS/Z)entry AH 84h
Dx 00h to read the current switch settings (return in AL)

01h to read the resistive inputsreturn CF set on error
(fn 00h)
AL switch settings (bits 7—4)
(fn 01h)
AX stick A (X) value
BX stick A (Y) value
CX stick B (X) value
DX stick B (Y) value

note 1. An error is returned if DX does not contain a valid subfunction number.”
2. If no game adapter is installed, all returned values are 00h.
3. Using a 250K Ohm joystick, the potentiometer values usually lie within

the range 0—416 (0000h—01A0h).

Function 85h System Request (SysReq) Key Pressed (except PC, Per, XT)
entry AH 85h "

AL 00h key pressed
01h key released

return CF set on error
AH error code

note 1. Called by BIOS keyboard decode routine when the SysReq key is detected.
2. The BIOS handler for this call is a dummy routine that always returns a

HUAWEI EX. 1015 - 46/393

HUAWEI EX. 1015 - 47/393

40 The Programmer’s Technical Reference

success status unless called with an invalid subfunction number in AL.
3. A multitasking program manager would be expected to capture int 15h so

that it can be notified when the user strikes the SysReg key.

Function 86h Delay (except PC, Per, XT)AH 86h
CX,DX number of microseconds to wait

return CF clear after wait elapses
CF set immediately due to error

_ note 1. Suspends the calling program for a specified interval in microseconds.
' 2. The actual duration of the wait is always an integral multiple of 976

microseconds.
-3. Use of this function allows programmed, hardware—independent delays at a

finer resolution than can be obtained through use of the MS—DOS Get Time
function (int 21h fn 2Ch) which returns time in hundredths of a second).

Function 87h Memory Block Move (2—3-486 machines only)AH 87h
CX number of words to move
ES:SI pointer to Global Descriptor Table (GDT)

offset OOh—OFh reserved, set to zero
00h null descriptor
08h uninitialized, will be made into GDT descriptor

th—llh source segment length in bytes (2*CX—1 or greater)
12h—14h 24—bit linear source address
15h access rights byte (always 93h)
16h-17h reserved, set to zero
18h—19h destination segment length in bytes (2*CX-1 or

greater)
lAh—lch 24—bit linear destination address
1Dh access rights byte (always 93h)
lEh—ZFh reserved, set to zero

20h uninitialized, used by BIOS
28h uninitialized, will be made into SS descriptor

return CF set on error
AH status

00h source copied into destination
01h parity error
02h exception interrupt error
03h address line 20 gating failed

note 1. The GDT table is composed of six 8-byte descriptors to be used by the CPU
in protected mode. The four descriptors in offsets ooh—OFh and 20h—2Fh
are filled in by the BIOS before the CPU mode switch.

2. The addresses used in the descriptor table are linear (physical) 24—bit
addresses in the range OOOOOOh—OFFFFFFh — not segments and offsets —
with the least significant byte at the lowest address and the most
significant byte at the highest address.

3. Interrupts are disabled during this call; use may interfere with the
operation of comm programs, network drivers, or other software that
relies on prompt servicing of hardware interrupts.

4. This call is not valid in the 05/2 Compatibility Box.
5. This call will move a memory block from any real or protected mode

address to any other real or protected mode address.

Function 88h Get Extended Memory Size (AT, XT/286, PS/2)
entry AH 88h
return AX number of contiguous 1K blocks of extended memory starting at

address 1024k
note This call will not work in the 05/2 Compatibility Box.

Function 89h Switch Processor to Protected Mode (AT, XT/286, PS/2)
entry AH 89h

BH interrupt number for IRQO, written to ICW2 of 8259 PIC #1
(must be evenly divisible by 8, determines IRQO-IRQ7)

BL interrupt number for IRQ8, written to ICW2 of 8259 PIC #2
(must be evenly divisible by 8, determines IRQ8—IRQlS)

ES:SI pointer to 8—entry Global Descriptor Table for protected mode:
offset 00h null descriptor, initialized to zero

08h GDT descriptor
10h IDT (Interrupt Descriptor Table) descriptor
18h DS, user’s data segment

HUAWEI EX. 1015 - 47/393

HUAWEI EX. 1015 - 48/393

The PC ROMBIOS ' 4]
20h ES, user’s extra segment
28h SS, user’s stack segment
30h CS, user’s code segment
38h uninitialized, used to build descriptor for BIOS

code segment ‘
return CF set on error

AH OFFh error enabling address line 20
CF clear function successful (CPU is in protected mode)

AH 00h
CS - user—defined selector
DS user-defined selector
ES user—defined selector
SS user-defined selector

note The user must initialize the first seven descriptors; the eighth is
filled in by the BIOS to provide addressability for its own execution.
The calling program may modify and use the eighth descriptor for any
purpose after return from this function call.

Function 90h Device Busy Loop (except PC, Per, XT)
entry AH 90h

AL predefined device type code:
00h disk (may timeout)
01h diskette (may timeout)
02h keyboard (no timeout)
03h PS/2 pointing device (may timeout)
80h network

(no timeout)
OFCh hard disk reset (PS/2) (may timeout)
OFDh diskette motor start (may timeout)
OFEh printer (may timeout)

ES:BX pointer to request block for type codes 80h through OFFh
(for network adapters ES:BX is a pointer to network control block)

return CF 1 (set) if wait time satisfied
> 0 (clear) if driver must perform wait

note 1. Used by NETBIOS.
2. Generic type codes‘are allocated as follows:

00h—7Fh non—reentrant devices; OS must arbitrate access serially
reusable devices

80h-OBFh reentrant devices; ES:BX points to a unique control block
OCOh—OFFh wait—only calls, no complementary POST int 15/fn 91h call

3. Invoked by the BIOS disk, printer, network, and keyboard handlers prior
to performing a programmed wait for I/O completion.

4. A multitasking program manager would be expected to capture int 15h/fn
90h so that it can dispatch other tasks while I/O is in progress.

5. The default BIOS routine for this function simply returns with the CF
clear and AH=00h.

Function 91h Device POST . (AT, XT/286, PS/2 50+)
entry AH 91h

AL type code (see AH=90h above)
00h—7Fh serially reusable devices

‘ 80h—OBFh reentrant devices
ES:BX pointer to request block for type codes 80h through OBFh

return AH 00h
note 1. Used by NETBIOS.

2. Invoked by the BIOS disk network, and keyboard handlers to signal that
I/O is complete and/or the device is ready.

3. Predefined device types that may use Device POST are:
con disk (may timeout)
01H floppy disk (may timeout)
02H keyboard (no timeout)
03H PS/Z pointing device (may timeout)
80H network (no timeout)

4. The BIOS printer routine does not invoke this function because printer
output is not interrupt driven.

5. A multitasking program manager would be expected to capture int 15h/fn
91h so that it can be notified when I/O is completed and awaken the
requesting task.

6. The default BIOS routine for this function simply returns with the CF
flag clear and AH=00h.

HUAWEI EX. 1015 - 48/393

HUAWEI EX. 1015 - 49/393

Function OCOh Get system Configuration

42

entry AH
return CF

ES:BX
bytes

note 1. Int 15h is also used for the Multitask Hook on PS/Z machines. No register :

The Programmer’s Technical Reference

(XT after 1/10/86, PC Convertible, XT/286, AT, PS/2)OCOh
set if BIOS doesn’t support call
pointer to ROM system descriptor table
OOh-Olh number of bytes in the following table (norm. 16 bytes) 02h system ID byte; see Chapter 2 for interpretation I
03h secondary ID distinguishes between AT and XT/286, etc. >
04h BIOS revision level, 0 for lst release, 1 for 2nd, etc.
05h feature information byte

bits 7 DMA channel 3 used by hard disk BIOS
6 second 8259 installed (cascaded IRQZ)
5 realtime clock installed
4 kbd intrcpt:int 15h, fn 04h called upon int 09h
3 wait for external event supported (int 15fn41) (

used on Convertible; reserved on PS/Z systems i
2 extended BIOS area allocated at 640k
1 bus is Micro Channel instead of PC 1
0 reserved ‘ }

06h unknown (set to 0) (reserved by IBM) 1
07h unknown (set to 0) (reserved by IBM)
08h unknown (set to 0)
09h unknown (set to 0) (Award copyright here)

settings available yet.
2. The 1/10/86 XT BIOS returns an incorrect value for the feature byte.

Function OClh Return Extended BIOS Data Area Segment Address (PS/2) [
entry AH
return CF

ES

0C1h
set on error

segment of XBIOS data area
note 1. The XBIOS Data Area is allocated at the high end of conventional memory'

during the POST (Power—On—Self—Test) sequence.
21 The word at 0040:0013h (memory size) is updated to reflect the reduced

amount of memory available for DOS and application programs.
3. The lst byte in the XBIOS Data Area is initialized to its length in K.
4. A program can determine whether the XBIOS Data Area exists by using int

15h/fn 0C0h.v

Function 0C2h
entry AH

AL

Pointing Device BIOS Interface (Destiew 2.x) (PS/2)OCZh
00h enable/disable pointing device

BH 00h disable
01h enable

01h reset pointing device
Resets the system's mouse or other pointing device, sets
the sample rate, resolution, and other characteristics
to their default values.
return BH device ID
note 1. After a reset operation, the state of the

pointing device is as follows:
disabled;

sample rate at 100 reports per second;
resolution at 4 counts per millimeter;
scaling at 1 to 1.

2. The data package size is unchanged by this fn.
3. Apps can use the fn 0C2h subfunctions to

initialize the pointing device to other parms,
. then enable the device with fn 00h.

02h set sampling rate
BH 00h 10/second

01h 20/second
02h 40/second
03h 60/second
04h 80/second
05h loo/second (default)
06h ZOO/second

03h set pointing device resolution
8H 00h one count per mm

01h two counts per mm
02h four counts per mm (default)

HUAWEI EX. 1015 - 49/393

HUAWEI EX. 1015 - 50/393

return

note 1.

The PC ROM BIOS 43

03h eight counts per mm
04h get pointing device type

return BH ID code for the mouse or other
pointing device.

05h initialize pointing device interface
Sets the data package size for the system's mouse or
other pointing device, and initializes the resolution,
sampling rate, and scaling to their default values.
BH data package size (1 — 8 bytes)

“note After this operation, the state of the
pointing device is as follows:
disabled;
sample rate at 100 reports per second;
resolution at 4 counts per millimeter;
and scaling at 1 to 1.

06h get status or set scaling factor
Returns the current status of the system’s mouse or other
pointing device or sets the device’s scaling factor.BH 00h return device status

return BL status byte
bits 0 set if right button pressed1 reserved

2 set if left button pressed3 reserved

4 0 1:1 scaling
1 2:1 scaling

5 0 device disabled
1 device enabled

6 O stream mode
1 remote mode

7 reserved "
CL resolution

00h 1 count per millimeter
01h 2 counts per millimeter
02h 4 counts per millimeter
03h 8 counts per millimeter

DL sample rate
OAh 10 reports per second
14h 20 reports per second
28h 40 reports per second
3Ch 60 reports per second
50h 80 reports per second
64h 100 reports per second
0C8h 200 reports per second

01h set scaling at 1:1
02h set scaling at 2:1

07h set pointing device handler address
Notifies BIOS pointing device driver of the address for a
routine to be called each time pointing device data isavailable.
ES:BX address user device handler
return AL 00h

CF set on error
AH Status

00h successful
01h invalid function
02h invalid input
03h interface error
04h need to resend
05h no device handler installed

The values in BB for those functions that take it as input are stored in
different locations for each subfunction.
The user’s handler for pointing device data is entered via a far call
with four parameters on the stack:
SS:SP+0Ah status
SS:SP+08h x coordinate
SS:SP+06h y coordinate
SS:SP+04h z coordinate (always 0)
The handler must exit via a far return without removing the parametersfrom the stack.

The status parameter word passed to the user’s handler is interpreted as

HUAWEI EX. 1015 - 50/393

HUAWEI EX. 1015 - 51/393

The Programmer’s Technical Reference

left button pressed
right button pressed
reserved

sign of x data is negative
sign of y data is negative
x data has overflowed
y data has overflowed
reserved

Function 0C3h Enable/Disable Watchdog Timeout (PS/2 50+)

44

follows:
bits 0

1
2-3
4
5
6
7
8—0Fh

entry AH 0C3h
AL 00h

01h

return CF

disable
enable
BX timer counter

set on error

note) The watchdog timer generates an NMI.

Function 0C4h Programmable Option Select (PS/2 50+)
entry AH 04Ch

AL 00h return base POS register address
01h enable slot

BL slot number
‘ 02h enable adapter

return CF set on error
DX

. base POS register address (if function 00h)
note 1. Returns the base Programmable Option Select register address, enables a

slot for setup, or enables an adapter.
2. Valid on machines with Micro Channel Architecture (MCA) bus only.
3. After a slot is enabled with fn 01h, specific information can be obtained

for the adapter in that slot by performing port input operations:
Port Function
lOOh MCA ID (low byte)
101h MCA ID (high byte)
102h Option Select Byte 1

bit 0 0 if disabled
1 if enabled

103h Option Select Byte 2
104h Option Select Byte 3
105h Option Select Byte 4

bits 6—7 are channel check indicators
106h Subaddress Extension (low byte)
107h Subaddress Extension (high byte)

Function ODEh Destiew Services (Destiew)
entry AH ODEh

AL 00h Get Program Name
return AX offset into DESQVIEW.DVO of current

program’s record:
byte length of name

n bytes name
2 bytes keys to invoke program (second =

00h if only one key used)
word ? (normally 0)
byte end flag: 00h for all but last

entry, which is OFFh
01h Update 'Open Window’ Menureturn none ‘

note Reads DESQVIEW.DVO, disables Open menu if file
not in current directory

02h unimplemented in DV 2.0x .
return nothing (NOP in DV 2.0x)

03h unimplemented in DV 2.0x
return nothing (NOP in DV 2.0x)

04h Get Available Common Memory
return BX bytes of common memory available

CX largest block available
DX total common memory in bytes

05h Get Available Conventional Memory
return BX K of memory available

CX largest block available

HUAWEI EX. 1015 - 51/393

HUAWEI EX. 1015 - 52/393

The PC ROMBIOS ' 45

Dx total conventional memory in K
06h Get Available Expanded Memory

return Bx K of expanded memory available
CX largest block available
DX total expanded memory in K

07h APPNUM Get Current Program’s Number
return AX number of program as it appears

on the ’Switch Windows' menu
08h GET (unknown)

'return Ax 00h unknown
01h unknown

09h unimplemented in DV 2.00
return nothing (NOP in DV 2.00)

OAh DBGPOKE Display Character on Status Line (DV 2.0+)BL character

return character displayed, next call will display
in next position (which wraps back to the start
of the line if off the right edge of screen)

note 1. Displays character on bottom line of *physical*
screen, regardless of current size of window
(even entirely hidden)

2. Does not know about graphics display modes, just
pokes the characters into display memory

OBh APILEVEL Define Minimum API Level Required (DV 2.0+)
BL 'API level. A value higher than 02h pops up ‘You

need a newer version’ error window in DV 2.00.
BH unknown
return AX maximum API level?

och GETMEM Allocate 'System' Memory (DV 2.0+)
Bx number of bytes
return ES:DI pointer to allocated block

ODh PUTMEM Deallocate 'System' Memory (DV 2.0+)
ES:DI pointer to previously allocated block
return nothing

OEh Find Mailbox by Name > (DV 2.0+)
ES:DI pointer to name to find
CX length of name
return BX 00h not found

01h found
DS:SI object handle

OFh Enable Destiew Extensions (DV 2.0+)
return Ax and Ex destroyed (seems to be bug, weren’t

saved & restored)
note 1. Sends a manager stream with opcodes OAEh, OBDh,and OBFh to task's window

2. Enables an additional mouse mode

10h PUSHKEY Put Key Into Keyboard Input Stream (DV 2.0+)BH scan code '
BL character

return BX unknown (sometimes, but not always, same
as BX passed in)

note A later read will get the keystroke as if it had
been typed by the user

11h Enable/Disable Auto Justification of Window (DV 2.0+)
BL 00h viewport will not move automatically

nonzero viewport will move to keep cursor visiblereturn none

12h unknown (DV 2.0+)
BX 00h clear something?

nonzero set something?return none

Interrupt 16h Keyboard I/O

(0:0058h) Access the keyboard. Scancodes are found in Appendix 1. ASCII codes are found in
Appendix 2.

Function 00h Get Keyboard Input - read the next character in keyboard buffer,
if no key ready, wait for one.

entry AH 00h
return AH scan code

HUAWEI EX. 1015 - 52/393

HUAWEI EX. 1015 - 53/393

46 The Programmer’s Technical Reference

AL ASCII character
note Removes keystroke from buffer (destructive read)

Function 01h Check Keystroke Buffer — Do Not Clear
entry AH 01h
return ZF 0 (clear) if character in buffer

1 (set) if no character in buffer
AH scan code of character (if ZF=O)
AL ASCII character if applicable

note Keystroke is not removed from buffer. The same character and scan code
will be returned by the next call to Int 16h/fn 00h.

Function 02h Shift Status — fetch bit flags indicating shift status entry AH 02h
return AL status byte (same as [0040:00171)

bits 7 Insert on
6 CapsLock on~
5 NumLock on
4 ScrollLock on
3 Alt key down
2 Control key down
1 Left shift (left caps—shift key) down

, , 0 Right shift (right caps—shift key) down
note The keyboard flags byte is stored in the BIOS Data Area at 0000:0417h.

Function 03h Keyboard — Set Repeat Rate (Per, AT, XT/286, PS/Z)
entry AH 03h i

AL 00h reset typematic defaults (Per)
01h increase initial delay (Per)
02h decrease repeat rate by 1 (chr)
03h increase both delays by 1/2 (Per) i
04h turn off typematic (Per)
05h set typematic rate (AT, PS/Z) 5

BH ooh—03h for delays of 250ms, 500ms, 750ms, or 1 second
0,0 250ms
0,1 500ms
1,0 750ms
1,1 1 second

BL 00h—1Fh for typematic rates of 30cps down to Zcps
00000 30 01011 10.9 10101 4.5
00001 26.7 01100 10 10110 4.3
00010 24 01101 9.2 10111 4
00011 21.8 01110 8.6 11000 3.7
00100 20 01111 8 11001 3.3
00101 18.5 10000 7.5 11010 3
00110 17.1 10001 6.7 11011 2.7
00111 16 10010 6 11100 2.5
01000 15 10011 5.5 11101 2.3
01001 13.3 10011 5.5 11110 2.1
01010 12 10100 5 11111 2

return nothing
note Subfunction 05h is available on ATS with ROM BIOS dated 11/15/85 and

later, the XT/286, and the PS/2.

Function 04h Keyboard Click Toggle (Per and Convertible)
entry AH 04h -

AL 00h for click off
01h for click on

return nothing

Function 05h Keyboard Buffer Write (AT or PS/Z with enhanced kbd)
(KT/286, PS/Z, AT with ’Enhanced’ keyboard)

entry AH 05hCH scan code
CL ASCII character

return CF set on error
AL 01h if buffer full

note Places a character and scan code in the keyboard type-ahead buffer.

HUAWEI EX. 1015 - 53/393

HUAWEI EX. 1015 - 54/393

Function 10h

entry AH
return AH

AL

The PC ROM BIOS I 47

Get Enhanced Keystroke And Read (F11, F12 Enhanced Keyboard)
(KT/286, PS/2, AT with ’Enhanced' keyboard)10h
scan code
ASCII character if applicable

note 1. Reads a character and scan code from the keyboard type-ahead buffer.
2. Use this function for the enhanced keyboard instead of Int 16h fn 00h. It

allows applications to obtain the scan codes for the additional F11, F12,
and cursor control keys.

Function 11h Check Enhanced Keystroke (F11—F12 on enhanced keyboard)
_ (XT/286, Ps/Z, AT with ’Enhanced' keyboard)

entry AH 11h
return ZF 0 (clear) if key pressed

AH scan code
AL ASCII character if applicable

1 if buffer is empty
note 1. Keystroke is not removed from buffer. The same char and scan code will be

returned by the next call to Int 16h/fn 10h.
2. Use this function for the enhanced keyboard instead of Int 16h/fn 00h. It

allows applications to test for the additional F11, F12, and cursor
control keys.

Function 12h Extended Shift Status (F11, F12 Enhanced keyboard)
entry AH 12h
return AX status word

AL bit 0 right Shift key depressed
1 left Shift key depressed
2 Control key depressed
3 Alt key depressed
4 ScrollLock state active
5 NumLock state active
6 CapsLock state active
7 insert state is active

AH bit 0 left Control key pressed
1 left Alt key depressed
2 right Control key pressed
3 right Alt key depressed
4 Scroll Lock key depressed
5 NumLock key depressed
6 CapsLock key depressed
7 SysReq key depressed

note Use this function for the enhanced keyboard instead of int 16h/fn 02h.

Function 79h pcAnywhere
entry AH 79h pcAnywhere function

AL 00h installation check
return AX OFFFFh installed, otherwise not present

Function 79h pcAnywhere
entry AH 7Bh Enable/Disable OperationAL state

00h disabled
01h enabled

return unknown

Function OEDh Borland Turbo Lightning API (partial)
entry AH OEDh

BH OEDh
BL function

00h installation check
02h pointer to Lightning internal data structure lobyte
03h pointer to Lightning internal data structure hibyte
04h load auxiliary dictionary
06h autoproof mode
OFh get number of substitutions (segment)

DS:DI pointer to string to be processed
return AX error code (unknown)

Function OFOh Set CPU speed (Compaq 386)
entry AH OFOh set speed

HUAWEI EX. 1015 - 54/393

HUAWEI EX. 1015 - 55/393

48 The Programmer’s Technical Reference I . {' AL speed
00h equivalent to 6 mHz 80286 (COMMON)
01h equivalent to 8 mHz 80286 (FAST) _
02h full 16 mHz (HIGH) ‘
03h toggles between 8 mHz-equivalent and speed set by system

board switch (AUTO or HIGH)
04h—07h unknown
08h full 16 mHz except 8 mHz-equivalent during floppy diskaccess

09h specify speed directly
CX speed value, 1 (slowest) to 50 (full), 3 ”=8088

return none?
note Used by Compaq DOS MODE command.

Function OF1h Read Current CPU Speed (Compaq 386)
entry AH OFlh
return AL speed code (see function OFOh above) ‘

if AL=09h, CX=speed code

Function 0F2h Determine Attached Keyboard Type (Compaq 386)
entry AH 0F2h~
return AL type

00h if 11-bit AT keyboard is in use
01h if 9—bit PC keyboard is in use

Interrupt 17h Printer

(0:005Ch) access the parallel printer(s). AH is changed. All other registers left alone.
Function 00h Print Character/send AL to printer Dx (0, 1, or 2)
entry AH 00h

AL ASCII character code
DX printer to be used00h PRN or LPTl

01h LPTZ
02h LPT3

return AH status byte
bits 0 time out

1 unused
2 unused
3 I/O error
4 printer selected
5 out of paper
6 acknowledge
7 not busy

Function 01h Initialize Printer — set init line low, send OCh to printer DX
entry AH 01h '

DX printer port to be initialized (0,1,2)
return status as below

Function 02h Printer Status — read status of printer Dx into AH
entry AH 02h

DX printer port to be used (0,1,2)
return AH status byte _

bits 7 0 printer is busy
1 ready ,

6 ACKnowledge line state
5 out-of—paper line state
4 printer selected line state
3 I/O error
2 unused
1 unused
0 time-out error

Interrupt 18h ROM BASIC
(0:0060h) Execute ROM BASIC at address 0F600h20000h
entry no parameters used
return jumps into ROM BASIC on IBM systems
note 1. Often reboots a compatible.

HUAWEI EX. 1015 - 55/393

HUAWEI EX. 1015 - 56/393

The PC ROM BIOS ’ - 49

2. Used by Turbo C 1.5. 2.0 and later do not use it.
3. 0n IBM systems, this interrupt is called if disk boot failure occurs.

Interrupt 19h Bootstrap Loader / Extended MemoryVDISK ID

(0:0064h)
entry no parameters used
return nothing
note 1. Reads track 0, sector 1 into address 0000hg7C00h, then transfers control

to that address. If no diskette drive available, transfers to ROM—BASIC
via int 18h or displays loader error message.

2. Causes reboot of disk system if invoked while running. (no memory test
performed).

3. If location 0000:0472h does not contain the value 1234b, a memory test
will be performed before reading the boot sector.

4. VDISK from DOS 3.x+ traps this vector to determine when the CPU has
shifted from protected mode to real mode. A detailed discussion can be
found by Ray Duncan in PC Magazine, May 30, 1989.

5. Reportedly, some versions of DOS 2.x and all versions of DOS 3.x+
intercept int 19h in order to restore some interrupt vectors DOS takes
over, in order to put the machine back to a cleaner state for the
reboot, since the POST will not be run on the int 19h. These vectors are
reported to be: 02h, 08h, 09h, OAh, OBh, och, ODh, OEh, 70h, 72h, 73h,
74h, 75h, 76h, and 77h. After restoring these, it restores the original
int 19h vector and calls int 19h.

Interrupt 1Ah Time ofDay

(0:0068h) Access the PC internal clock

Function 00h Read system Timer Tick Counter (except PC)
entry AH 00h
return AL 00h if clock was read or written (via AH=0,1) within the

current 24—hour period.
nonzero midnight was passed since last read

CX:DX tick count (high 16 bits in CX)
note 1. The returned value is the cumulative number of clock ticks since

midnight. There are 18.2 clock ticks per second. When the counter
reaches 1,573,040, it is cleared to zero, and the rollover flag is set.

2. The rollover flag is cleared by this function call, so the flag will only
be returned nonzero once per day.

3. Int 1Ah/fn 01h can be used to set the counter to an arbitrary 32 bit
value.

Function 01h Set Clock Tick Counter Value (except PC)
entry AH 01h

CX:DX high word/low word count of timer ticks
return none

note 1. The clock ticks are incremented by timer interrupt at 18. 2065 times persecond or 54. 9254 milliseconds/count. Therefore:
counts per second 18 (12h)
counts per minute 1092 (444h)
counts per hour 65543 (10011h)
counts per day 1573040 (1800B0h)

2. The counter is zeroed when system is rebooted.
3. Stores a 32—bit value in the clock tick counter.
4. The rollover flag is cleared by this call.

Function 02h Read Real Time Clock Time (AT and after)
entry AH 02h
return CH hours in BCD

CL minutes in BCD
DH seconds in BCD
DL 00h standard time

01h daylight savings time
CF 0 if clock running

' 1 if clock not operating
note Reads the current time from the CMOS time/date chip.

HUAWEI EX. 1015 56/393

HUAWEI EX. 1015 - 57/393

50 The Programmer’s Technical Reference

Function 03h Set Real Time Clock Time (AT and after)
entry AH 03h

CH hours in BCD
CL minutes in BCD
DH seconds in BCD
DL 0 (clear) if standard time

1 (set) if daylight savings time optionreturn none
note Sets the time in the CMOS time/date chip.

Function 04h Read Real Time Clock Date (AT and after)
entry AH 04h
return CH century in BCD (19 or 20)

CL year in BCD
DH month in BCD
DL day in BCD
CF 0 (clear) if clock is running

1 (set) if clock is not operating
note Reads the current date from the CMOS time/date chip.

Function 05h . Set Real Time Clock Date (AT and after)
entry AH 05h

CH century in BCD (19 or 20)
CL year in BCD
DH month in BCD
DL day in BCD

return none
note Sets the date in the CMOS time/date chip.

Function 06h Set Real Time Clock Alarm (AT and after)
entry AH 06h

CH hours in BCD
CL minutes in BCD
DH seconds in BCD

return CF set if alarm already set or clock inoperable
note 1; Sets alarm in the CMOS date/time chip. Int 4Ah occurs at specified alarm

time every 24hrs until reset with Int 1Ah/fn 07h.
2. A side effect of this function is that the clock chip’s interrupt level

(IRQ8) is enabled.
3. only one alarm may be active at any given time.
4. The program using this function must place the address of its interrupt

handler for the alarm in the vector for Int 4Ah.

Function 07h Reset Real Time Clock Alarm (AT and after)
entry AH 07hreturn none

note 1. Cancels any pending alarm request on the CMOS date/time chip.
2. This function does not disable the clock chip’s interrupt level (IRQ8).

Function 08h Set Real Time Clock Activated Power On Mode (Convertible)
entry AH 08h i

CH hours in BCD 1
CL minutes in BCD
DH seconds in BCD

Function 09h Read Real Time Clock Alarm Time and Status
(Convertible and PS/2 Model 30)

entry AH 09h
return CH hours in BCD

CL minutes in BCD
DH seconds in BCD
DL alarm status:

00h if alarm not enabled
01h if alarm enabled but will not power up system
02h if alarm will power up system

Function 0Ah Read System—Timer Day Counter (PS/2)
entry AH 0Ah
return CF set on error

CX count of days since Jan 1,1980
note Returns the contents of the system’s day counter.

HUAWEI EX. 1015 - 57/393

HUAWEI EX. 1015 - 58/393

The PC ROM BIOS ' . 51

Function OBh Set System—Timer Day Counter (pg/2)
entry AH OBh

CX count of days since Jan 1,1980
return CF set on error
note Stores an arbitrary value in the system’s day counter.

Function 80h Set Up Sound Multiplexor (Per) (Tandy 1000?)
entry AH 80h

AL sound source
00h .source is 8253 timer chip, channel 2
01h source is cassette input
02h source is I/O channel 'audio in' line
03h source is TI sound generator chip

return none
note Sets up the source for tones that will appear on the Per’s Audio Out bus

line or RF modulator.

Function lAh Read Time and Date (AT&T 6300)
entry AH OFEh
return Bx days count (1=Jan 1, 1984)

CH hours
CL minutes
DH seconds
DL hundredths

note Day count in BX is unique to AT&T/Olivetti computers.

Interrupt lBh Control-Break

(0:006Ch) This interrupt is called when the keyboard scanner of the IBM machines detects Ctrl

and Break pressed at the same time.
Note 1. If the break occurred while processing an interrupt, one or more end of interrupt

commands must be send to the 8259 Programmable Interrupt Controller.

2. All I/O devices should be reset in case an operation was underway at the time.
3 It is normally pointed to an IRETduring system initialization so that it does nothing,

but some programs change it to return a ctrl-C scan code and thus invoke int 23h.

Interrupt 1Ch Timer Tick

(0:0070h)
Note 1. Taken 18.2065 times per second

2. Normally vectors to dummy IRET unless PRINTCOM has been installed.
3. If an application moves the interrupt pointer, it is the responsibility of that application

to save and restore all registers that may be modified.

Intenupt 1Dh Vector ofV1deo Initialization Parameters

(0: 0074h) This doubleword address points to 3 sets of 16-b-ytes containing data to initialize for
video modes for video modes 0 & 1 (40 column), 2 & 3 (80 column), and 4, 5 & 6 (graphics) on
the Motorola 6845 CRT controller chip.

6845 registers:
R0 horizontal total (horizontal sync in characters)
R1 horizontal displayed (characters per line)
R2 horizontal sync position (move display left or right)
R3 sync width (vertical and horizontal pulse: 4—bits each)
R4 vertical total (total character lines)

'R5 vertical adjust (adjust for 50 or 60 Hz refresh)
R6 vertical displayed (lines of chars displayed)
R7 vertical sync position (lines shifted up or down)
R8 interlace (bits 4 and 5) and skew (bits 6 and 7)
R9 max scan line addr (scan lines per character row)
R10 cursor start (starting scan line of cursor)
R11 cursor stop (ending scan line of cursor)
R12 video memory start address high byte (6-bits)
R13 video memory start address low byte (B—bits)
R14 cursor address high byte (6—bits)

HUAWEI EX. 1015 58/393

HUAWEI EX. 1015 - 59/393

52 The Programmer’s Technical Reference

R15 cursor address low byte (8-bits)

6845 Video Init Tables:
table for modes 0 and 1 \
table for modes 2 and 3 \ each table is 16 bytes long and
table for modes 4,5, and 6 / contains values for 6845 registers
table for mode 7 /
4 words: size of video RAM for modes 0/1, 2/3, 4/5, and 6/7
8 bytes: number of columns in each mode
8 bytes: video controller mode byte for each mode

note 1. There are 4 separate tables, and all 4 must be initialized if all videomodes will be used.

2. The power—on initialization code of the computer points this vector tothe ROM BIOS video routines.
3. IBM recommends that if this table needs to be modified, it should be

copied into RAM and only the necessary changes made.

Interrupt lEh Vector ofDiskette Controller Parameters
(0:0078h) Dword address points to data base table that is used by BIOS. Default location is at
OF00020EFC7h. 1 1-byte table format: bytes:

00h 4—bit step rate, 4—bit head unload time
01h 7—bit head load time, l-bit DMA flag
02h 54.9254 ms counts - delay till motor off (36—38 typ)
03h sector size:

00h 128 bytes
01h 256 bytes
02h 512 bytes
03h 1024 bytes

04h last sector on track (8 or 9 typical)
05h inter—sector gap on read/write (42 typical)
06h data length for DMA transfers (OFFh typical)
07h gap length between sectors for format (80 typical)
08h sector fill byte for format (0F6h typical)
09h head settle time (in milliseconds) (15 to 25 typical)

DOS 1.0 o :
DOS 1.10 o ;
DOS 2.10 15 4
DOS 3.1 1

10h motor start time (in 1/8 second intervals) (2 to 4 typ.)
DOS 2.10 2

note 1. This vector is pointed to the ROM BIOS diskette tables on system
initialization

2. IBM recommends that if this table needs to be modified, it should be
copied into RAM and only the necessary changes made.

Interrupt th Ptr to Graphics Character Extensions (Graphics Set 2)
(0:007Ch) This is the pointer to data used by the ROM video routines to display characters
above ASCII 127 while in CGA medium and high res graphics modes.

Note 1. Doubleword address points to 1K table composed of28 8-byte character definition
bit-patterns. First byte of each entry is top row, last byte is bottom row.

2. The first 128 character patterns are located in system ROM.
3. This vector is set to 000:0 at system initialization.

4 Used by DOS’ external GRAFTABLcommand.

HUAWEI EX. 1015 - 59/393

HUAWEI EX. 1015 - 60/393

 DOS Interrupts and
Function Calls

-

DOS Registers

DOS uses the following registers, pointers, and flags when it executes interrupts and function
calls:

General Registers
register
AX
AH
AL
BX
BH
BL
cx
cu
CL
DX
DH
DL

Segment Registers
register
cs
DS
SS
ES

Index Registers
register
DI
s I

Pointers
register
SP
BP
IP

definition
acCumulator (16
accumulator high-order byte (8
accumulator low order byte (8
base (16
base high—order byte (8
base low-order byte (8
count (16 bit)
count high order byte (8
count low order byte (8
data (16
date high order byte (8
data low order byte (8

definition

code segment (16
' data segment (16

stack segment (16
extra segment (16

definition
destination index (16
source index (16

definition

stack pointer (16
base pointer (16
instruction pointer (16

bit)
bit)
bit)
bit)
bit)
bit)

bit)
bit)
bit)
bit)
bit)

bit)
bit)
bit)
bit)

bit)
bit)

bit)
bit)
bit)

HUAWEI EX. 1015 - 60/393

HUAWEI EX. 1015 - 61/393

54 The Programmer’s Technical Reference

Flags
AF, CF, an, IF, 0F, PF, SF, TF, zr

These registers, pointers, and flags are ‘lowest common denominator’ 8088-8086 CPU oriented.
DOS makes no attempt to use any of the special or enhanced instructions available on the later
CPUs which will execute 8088 code, such as the 80186, 80286, 80386, or NEV V20, V30, V40, or
V50.

DOS Stacks

When DOS takes control after a function call, it switches to an internal stack. Registers which

are not used to return information (other than AX) are preserved. The calling program’s stack
must be large enough to accommodate the interrupt system - at least 128 bytes in addition to
other interrupts.

DOS actually maintains three stacks -

stack 1: 384 bytes (in DOS 3.1)
for functions 00h and for 0Dh and up, and for ints 25h and 26h.

stack 2: 384 bytes (in DOS 3.1)
for function calls 01h through 0Ch.

stack 3: 48 bytes (in DOS 3.1)
for functions 0Dh and above. This stack is the initial stack used by the int 21h handler '
before it decides which of the other two to use. It is also used by function 59h (get I

extended error), and 01h to 0Ch if they are called during an int 24h (critical error) '
handler. Functions 33h (get/set break flag), 50h (set process ID), 51h (get process ID)
and 62h (get PSP address) donot use any DOS stack under DOS 3.x (under 2.x, 50h and
51h use stack number 2).

IBM and Microsoft made a change back in DOS 3.0 or 3.1 to reduce the size of DOS. They re-

duced the space allocated for scratch areas when interrupts are being processed. The default
seems to vary with the DOS version and the machine, but 8 stack frames seems to be common.
That means that if you get more than 8 interrupts at the same time, clock, disk, printer spooler,

keyboard, com port, etc., the system will crash. It happens usually on a network.
STACKS = 16,256 means allow 16 interrupts to interrupt each other and allow 256 bytes for each
for scratch area. Eight is marginal.

DOS 3.2 does some different stack switching than previous versions. The interrupts which are
switched are 02h, 08h, 09h, 0Ah, 0Bh, 0Ch, 0Dh, 0Bh, 70h, 72h, 73h, 74h, 75h, 76h, and 77h.

DOS 3.2 has a special check in the initialization code for a PCjr and don’t enable stack switching
on that machine. DOS 3.3 was changed so that no stack switching occurs on PC, PC—X’I; or the
PC-Portable, and defaults to 9 stacks of 128 bytes in an AT.

DOS Interrupts

Microsoft recommends that a program wishing to examine or set the contents of any interrupt
vector use the DOS function calls 35h and 25h provided for those purposes and avoid refer-

encing the interruptvector locations directly.

HUAWEI EX. 1015 - 61/393

HUAWEI EX. 1015 - 62/393

DOS Interrupts and Funotion Calls 55

DOS reserves interrupt numbers 20h to 3Fh for its own use. This means absolute memory loca-
tions 80h to OFFh are reserved by DOS. The defined interrupts are as follows with all values in
hexadecimal.

DOS Services (quick list)

Interrupt 21h Function Call Request

(0:0084h)

DOS provides a wide variety of function calls for character device I/O, file management, mem-
ory management, date and time functions, execution of other programs, and more. They are

01h
02h
03h
04h
05h
06h
07h
08h
09h
OAh
OBh
OCh
ODh
OEh
OFh
10h
11h
12h
13h
14h
15h
16h
17h
18h*
19h
lAh
lBh
lCh
th*
1Eh*
1Fh*
20h*

. grouped as follows:

call description
00h program terminate
01h—0Ch character device I/O, CP/M
ODh—24h file management, CP/M
25h-26h nondevice functions, CP/M
27h-29h file management, CP/M
2Ah-2Eh nondevice functions, CP/M
2Fh—38h extended functions
39h—3Bh directory group
3Ch—46h extended file management
47h directory group
48h—4Bh extended memory management
54h—57h extended functions
SEh—SFh networking
60h—62h extended functions
63h—66h enhanced foreign language 5

List ofDOS services:
* = undocumented

00h terminate program
get keyboard input
display character to STDIO
get character from STDAUX
output character to STDAUX
output character to STDPRN
direct console I/O — keyboard to SC
get char from std I/O without echo
get char from std I/O without echo,
display a string to STDOUT
buffered keyboard input
check STDIN status
clear keyboard buffer and invoke ke
flush all disk buffers
select disk
open file with File Control Block
close file opened_with File Control
search for first matching file entr
search for next matching file entry
delete file specified by File Contr

compatibility format
compatibility format
compatibility format
compatibility format
compatibility format

upport

reen

checks for ‘C

yboard function

Block
Y

01 Block

sequential read from file specified by File Control Block
sequential write to file specified by File Control Block
find or create firectory entry for
rename file specified by file contrunknown
return current disk drive

set disk transfer area (DTA)
get current disk drive FAT
get disk FAT for any driveunknown
unknown

read DOS disk block, default drive
unknown

file
01 block

rHUAWEI EX. 1015 - 62/393

HUAWEI EX. 1015 - 63/393

56

21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
ZBh
2Ch
2Dh
ZEh
ZFh
30h
31h
32h*
33h
34h*
35h
36h
37h*
38h
39h
3Ah
3Bh
3Ch
3Dh
3Eh
3Fh
40h
41h
42h
43h
44h
45h
46h
47h
48h
49h
4Ah
4Bh
4Ch
4Dh
4Eh
4Fh
50h*
51h*
52h*
53h*
54h
55h*
56h
57h
58h
59h
5Ah
53h
SCh
5Dh*
5Eh*
5Fh*
60h*
61h*
62h
63h*
64h*
65h
66h
67h

The Programmer’s Technical Reference

random read from file specified by FCB
random write to file specified by FCB
return number of records in file specified by FCB
set relative file record size field for file specified by FCB
set interrupt vector
create new Program Segment Prefix (PSP)
random file block read from file specified by FCB
random file block write to file specified by FCB
parse the command line for file name
get the system date
set the system date
get the system time
set the system time
set/clear disk write VERIFY
get the Disk Transfer Address (DTA)
get DOS version number!
TSR, files opened remain open
read Dos Disk Block
get or set Ctrl-Break
INDOS Critical Section Flag
get segment and offset address for an interrupt
get free disk space
get/set option marking character (SWITCHAR)
return country—dependent information
create subdirectory
remove subdirectory
change current directory
create and return file handle
open file and return file handle
close file referenced by file handle
read from file referenced by file handle
write to file referenced by file handle
delete file
move file pointer (move read—write pointer for file)
set/return file attributes
device IOCTL (I/O control) info
duplicate file handle
force a duplicate file handle
get current directory
allocate memory
release allocated memory
modify allocated memory
load or execute a program
terminate prog and return to DOS
get return code of subprocess created by 4Bh
find first matching file
find next matching file
set new current Program Segment Prefix (PSP)
puts current PSP into BX
pointer to the DOS list of lists
translates BPB (Bios Parameter Block, see below)
get disk verification status (VERIFY)
create PSP: similar to function 26h
rename a file

get/set file date and time
get/set allocation strategy
get extended error information
create a unique filename
create a DOS file
lock/unlock file contents
network
network printer
network redirection
parse pathname
unknown

get program segment prefix (PSP)
get lead byte tableunknown

get extended country information
get/set global code page tableset handle count

(DOS 3.x)

(DOS 2.25)

(DOS 3.3)
(DOS 3.3)
(DOS 3.3)

HUAWEI EX. 1015 - 63/393

HUAWEI EX. 1015 - 64/393

DOS Interrupts and Function Calls ' 57

68h commit file ' (DOS 3.3)
69h disk serial number (DOS 4.0)6Ah unknown
68h unknown
6Ch extended open/create (DOS 4.0)

Calling the DOS Services
The D OS services are invoked by placing the number of the desired function in register AH, sub-
function in AL, setting the other registers to any specific requirements of the function, and in-
voking int 21h.

_When the interrupt is called, all register and flag values are pushed into the stack. Int 21h con-

tains a pointer into an absolute address in the IBMDOS.COM file. This address is the main loop
for the DOS command handler. The handler pops the register values, compares them to its list

of functions, and executes the function if valid. When the function is complete, it may pass
values back to the command handler. The handler will push the values into the stack and then
return control to the calling program.

Most functions will return an error code; some return more information. Details are contained

in the listings for the individual functions. Extended error return codes for most functions may
be obtained by calling function 59h.

Register settings listed are the ones used by DOS. Some functions will return with garbage
values in unused registers. Do not test for values in unspecified registers; your program may ex-
hibit odd behaviour.

DS:DX pointers are the data segment register (DS) indexed to the DH and DL registers (DX).
DX always contains the offset address, DS contains the segment address.

The File Control Block services (FCB services) were part of DOS 1.0. Since the release of DOS
2.0, Microsoft has recommended that these services not be used. A set of considerably more en-

hanced services (handle services) were introduced with DOS 2.0. The handle services provide

support for wildcards and subdirectories, and enhanced error detection via function 59h.

The data for the following calls was compiled from various Intel, Microsoft, IBM, and other

publications. There are many subtle differences between MSDOS and PCDOS and between the
individual versions. Differences between the versions are noted as they occur.

There are various ways of calling the DOS functions. For all methods, the function number is

loaded into register AH, subfunctions and/or parameters are loaded into AL or other registers,
and call int 21 by one of the following methods:

A. call interrupt 21h directly (the recommended procedure).

B. perform a long call to offset 50h in the program’s PSP.
1. This method will not work under DOS 1.x.

2. Though recommended by Microsoft for DOS 2.0, this method takes more time and is no
longer recommended.

C. place the function number in CL and perform an intrasegment call to location 05h in the
current code segment. This location contains a long call to the DOS function dispatcher.
1. IBM recommends this method be used only when using existing programs written for

different calling conventions (such as converting CP/M programs). This method should
be avoided unless you have some specific use for it.

2. AX is always destroyed by this method.

HUAWEI EX. 1015 - 64/393

HUAWEI EX. 1015 - 65/393

58 The Programmer’s Technical Reference

3. This method is valid only for functions 00h-24h.

There are also various ways ofexiting from a program. (assuming it is not intended to be a TSR).
All methods except call 4Ch must ensure that the segment register contains the segment address
of the PSP.

A Interrupt 21h, function 4Ch (Tbrminate with Result Code). This is the ‘official’
recommended method of returning to DOS.

B Interrupt 21h, function 00h (Exit Program). This is the early style int 21 function call. It
simply calls int 20h.

C. Interrupt 20h (Exit).
D. A JMP instruction to offset 00h (int 20h vector) in the Program Segment Prefix. This is just

a roundabout method to call int 20h. This method was set up in DOS 1.0 for ease of
conversion for CP/M programs. It is no longer recommended for use.

E. A JMP instruction to offset 05h (int 21 vector) in the Program Segment Prefix, with AH set
to 00h or 4Ch. This is another CP/M type function.

Version Specific Information
Function Calls:

DOS 2.x supports function calls 00h to 57h.

DOS 2.25 is the only version to support function 63h (foreign keyboard)

DOS 3.x has more sophisticated error handling and detection function calls available than
2.x.

DOS 3.0 supports function calls 00h to 5Ch and 62h, including new and changed function
calls for version 3.0:

3Dh Open File
59h Get Extended Error

5Ah Create Thmporary File
5Bh Create New File

5Ch Lock/Unlock File Access

62h Get Program Segment Prefix Address

DOS 3.1 supports function calls 00h to 62h, including the new and
changed function calls for DOS 3.1:
5E00h Get Machine Name

5E02h Set Printer Setup .

5E03h Get Printer Setup I
5F02h Get Redirection List Entry '
5F03h Redirect Device

5F04h Cancel Redirection

DOS 3.2 supports the following new functions: 1

44h extended IOCTL functions i

DOS 3.3 supports the following new functions:
‘ 44h extended IOCTL functions

65h get extended country information (DOS 3.3)
66h get/set global code page table (DOS 3.3)

HUAWEI EX. 1015 - 65/393

HUAWEI EX. 1015 - 66/393

DOS Interrupts and Ffinction-Calls . 59

67h . set handle count (DOS 3.3)
68h commit file (DOS 3.3)

DOS 4.0 supports the following new functions:
' 44h extended IOCTL functions

69h disk serial number

6Ch extended open/create

DOS Services in Detail

Interrupt 20h Terminate Current Program

(0:0080h) Issue int 20h to exit from a program. This vector transfers to the logic in DOS to re-
store the terminate address, the Ctrl-Break address, and the critical error exit address to the

values they had on entry to the program. All the file buffers are flushed and all handles are

closed. You should close all files changed in length (see function calls 10h and 3Eh) before is-
suing this interrupt. If the changed file is not closed, its length, time, and date are not recorded
correctly in the directory.

For a program to pass a completion code or an error code when terminating, it must use either
function call 4Ch ('Rarminate a Process) or 31h (’Ibrminate Process and Stay Resident). These
two methods are preferred over using int 20h and the codes returned by them can be interro-
gated in batch processing.

Important: Before you issue an interrupt 20h, your program must ensure that the CS

register contains the segment of its Program Segment Prefix.

Interrupt 20h DOS - Terminate Program
entry no parameters
return The following vectors are restored from the Program Segment Prefix:

OAh Program Terminate
OEh Control-C
12h Critical Error

note 1. IBM and Microsoft recommend using int 21 Fn 4Ch. Using int 20 is
officially frowned upon since the introduction of DOS 2.0

2. In DOS 3.2 at least, int 20h merely calls int 21h, fn 00h.

INT 21H D OS services

Function (hex)

* Indicates functions not documented in the IBM DOS "Rehnical Reference.

Note: some functions have been documented in other Microsoft or licensed OEM documenta-
tion.

Function 00h Terminate Program
Ends program, updates, FAT, flushes buffers, restores registers

entry AH 00h
CS segment address of PSP

return none
note 1. Program must place the segment address of the PSP control block in CS

before calling this function.
2. The terminate, ctrl—break, and critical error exit addresses (OAh, OEh,

12h) are restored to the values they had on entry to the terminating
program, from the values saved in the program segment prefix at
locations PSP:000Ah, PSP:000Eh, and PSP:0012h.

3. All file buffers are flushed and the handles opened by the process are
closed.

4. Any files that have changed in length and are not closed are not

HUAWEI EX. 1015 - 66/393

HUAWEI EX. 1015 - 67/393

60 . The Programmer’s Technical Reference

recorded properly in the directory.
5. Control transfers to the terminate address.
6. This call performs exactly the same function as int 20h.
7. All memory used by the program is returned to DOS. DOS just goes up the

chain of memory blocks and marks any that are owned by the PSP which is
terminating as free.

8. Files opened with FCBs are not automatically closed.

Function 01h Get Keyboard Input .
Waits for char at STDIN (if necessary), echoes to STDOUT

entry AH 01h
return AL ASCII character from STDIN (8 bits)
note 1. Checks char for Ctrl—C, if char is Ctrl—C, executes int 23h.

2. For function call 06h, extended ASCII codes require two function calls.
The first call returns 00h as an indicator that the next call will be an
extended ASCII code.

3. Input and output are redirectable. If redirected, there is no way todetect EOF.

Function 02h Display Output
Outputs char in DL to STDOUT

entry AH 02h
DL 8 bit data (usually ASCII character)

return none

note 1. If char is 08 (backspace) the cursor is moved 1 char to the left
(nondestructive backspace).

2. If Ctrl—C is detected after input, int 23h is executed.
3. Input and output are redirectable. If redirected, there is no way todetect disk full.

Function 03h Auxiliary Input
Get (or wait until) character from STDAUX .

entry AH 03h {
return AL ASCII char from auxiliary device
note 1. AUX, COM1, COM2 is unbuffered and not interrupt driven

2. This function call does not return status or error codes. For greater
control it is recommended that you use ROM BIOS routine (int 14h) or
write an AUX device driver and use IOCTL. .

3. At startup, PC-DOS initializes the first auxiliary port (COMI) to 2400
baud, no parity, one stop bit, and an 8-bit word. MSDOS may differ.

4. If Ctrl—C is has been entered from STDIN, int 23h is executed.

Function 04h Auxiliary Output

Write character to STDAUX

entry AH 04h
DL ASCII char to send to AUX

return none

note 1. This function call does not return status or error codes. For greater

2.

control it is recommended that you
write an AUX device driver and use
If Ctrl—C is has been entered from

use ROM BIOS routine (int 14h) or
IOCTL.

STDIN, int 23h is executed.
3. Default is COMl unless redirected by DOS.

If the device is busy, this function will wait until it is ready.4.

Function 05h Printer Output
Write character to STDPRN

entry AL 05h
' DL ASCII code for character to send

return none

note 1. If Ctrl—C is has been entered from STDIN, int 23h is executed.
2. Default is PRN or LPTl unless redirected with the MODE command.
3. If the printer is busy, this function will wait until it is ready.

Function 06h
Get character from STDIN;

Direct Console I/O
echo character to STDOUT

entry AH 06h
DL OFFh for console input, or OOh—OFEh for console output

return ZF set no character available
clear character received

AL ASCII code for character
note 1. Extended ASCII codes require two function calls. The first call

HUAWEI EX. 1015 - 67/393

HUAWEI EX. 1015 - 68/393

D0s_ Intenupts and Functions Calls 61

returns 00h to indicate the next call will return an extended code
2. If DL is not OFFh, BL is assumed to have a valid character that is outputto STDOUT.
3. This function does not check for Ctrl—C or Ctrl—PrtSc.
4. Does not echo input to screen.
5. If 1/0 is redirected, EOF or disk full cannot be detected.

Function 07h Direct Console Input Without Echo (does not check BREAK)
Get or wait for char at STDIN, returns char in AL

entry AH 07h
return AL ASCII character from standard input device
note 1. Extended ASCII codes require two function calls. The first call returns

00h to indicate the next call will return an extended code.
2. No checking for Ctrl—C or Ctrl—PrtSc is done.
3. Input is redirectable.

'Function 08h Console Input without Echo (checks BREAK)
Get or Wait for char at STDIN, return char in AL

entry AH 08h
return AL char from standard input device
note 1. Char is checked for Ctrl-C. If Ctrl-C is detected, executes int 23h.

2. For function call 08h, extended ASCII characters require two function
calls. The first call returns 00h to signify an extended ASCII code. Thenext call returns the actual code.

3. Input is redirectable. If redirected, there is no way to check EOF.

Function 09h Print String
Outputs Characters in the Print String to the STDOUT

entry AH 09h
DS:DX pointer to the Character String to be displayedreturn none

note 1. The character string in memory must be terminated by a $ (24h). The S is
not displayed.

2. Output to STDOUT is the same as function call 02h.
3. The s is not displayed but remains in AL forever unless popped.

Function OAh Buffered Keyboard Input
Reads characters from STDIN and places them in the buffer beginning at the
third byte.

entry AH OAh
DS:DX pointer to an input bufferreturn none

note 1. Min buffer size = 1, max = 255.
2. Char is checked for Ctrl—C. If Ctrl—C is detected, executes int 23h.
3. Format of buffer DX:

byte contents

1 Maximum number of chars the buffer will take, including CR. Reading
STDIN and filling the buffer continues until a carriage return (or
ODh) is read. If the buffer fills to one less than the maximum
number the buffer can hold, each additional number read is ignored
and ASCII 7 (BEL) is output to the display until a carriage return
is read. (you must set this value)

2 Actual number of characters received, excluding the carriage
return, which is always the last character (the function sets is
value)

3—n Characters received are placed into the buffer starting here.
Buffer must be at least as long as the number in byte 1.

4. Input is redirectable. If redirected, there is no way to check EOF.
5. The string may be edited with the standard DOS editing commands as it is

being entered.
6. Extended ASCII characters are stored as 2 bytes, the first byte beingzero.

Function OBh Check Standard Input (STDIN) status
Checks for character available at STDIN

entry AH OBh
return AL OFFh if a character is available from STDIN

00h if no character is available from STDIN
note 1. Checks for Ctrl-C. If Ctrl—C is detected, int 23h is executed.

2. Input can be redirected.
3. Checks for character only, it is not read into the application

HUAWEI EX.1015 - 68/393

HUAWEI EX. 1015 - 69/393

62

4. IBM reports that this call does not work properly under the DOSSHELL

Function OCh Clear Keyboard Buffer & Invoke a Keyboard Function (FCB)

entry AH OCh
AL function number (must be 01h, 06h, 07h, 08h, or OAh)

return AL 00h buffer was flushed, no other processing performed

note 1. Forces system to wait until a character is typed.
2. Flushes all type—ahead input, then executes function specified by AL

3. If AL contains a value not in the list above, the keyboard buffer is

Function ODh Disk Reset

entry AH ODh
return none

note 1. Does not close files. Does not update directory entries; files changed

2. Sets DTA address to DS:0080h
3. Should be used before a disk change, Ctrl-C handlers, and to flush the

Function OEh Select Disk

The Programmer’s Technical Reference

program in DOS 4.00 and 4.01. DOSSHELL will return all zeroes. This
function works correctly from the command line or application.

Dumps buffer, executes function in AL (01h, 06h, 07h, 08h, OAh only)

other any other value has no meaning

(by moving it to AH and repeating the int 21 call).

flushed and no other action is taken.

Flushes all currently open file buffers to disk

in size but not closed are not properly recorded in the directory.

buffers to disk.

Sets the drive specified in DL (if valid) as the default drive

entry AL OEh

DL new default drive number (0=A:,1=B:,2=C:,etc.)
return AL total number of logical drives (not necessarily physical)
note 1. For DOS 1.x and 2.x, the minimum value for AL is 2.

2. For DOS 3.x and 4.x, the minimum value for AL is 5. ’ 1
3. The drive number returned is not necessarily a valid drive.
4. For DOS 1.x: 16 logical drives are available, A-P.

For DOS 2.x: 63 logical drives are available. (Letters are only used for
the first 26 drives. If more than 26 logical drives are
used, further drive letters will be other ASCII characters ;
ie {,1, etc. ' 3

For DOS 3.x: 26 logical drives are available, A—Z.
For DOS 4.x: 26 logical drives are available, A-Z.

Function OFh Open Disk File (FCB) g
Searches current directory for specified filename and opens it

entry AH OFh
DS:DX pointer to an unopened FCB

return AL 00h if file found 1
OFFh if file not not found

note 1. If the drive code was 0 (default drive) it is changed to the actual
drive used (1=A:,2=B:,3=C:, etc). This allOWS changing the default
drive without interfering with subsequent operations on this file. -

2. The current block field (FCB bytes C—D, offset OCh) is set to zero.
3. The size of the record to be worked with (FCB bytes E-F, offset OEh) is \

set to the system default of Bob. The size of the file (offset 10h) and
the date (offset 14h) are set from information obtained in the root
directory. You can change the default value for the record size (FCB
bytes E—F) or set the random record size and/or current record field.
Perform these actions after open but before any disk operations.

4. with DOS 3.x the file is opened in compatibility mode (network).
5. Microsoft recommends handle function call 3Dh be used instead.
6. This call is also used by the APPEND command in DOS 3.2+
7. Before performing a sequential disk operation on the file, you must set

the Current Record field (offset 20h). Before performing a random disk
operation on the file, you must set the Relative Record field (offset
21h). If the default record size of 128 bytes is incorrect, set it tothe correct value.

Function 10h Close File (FCB)
Closes a File After a File Write

entry AH 10h
DS:DX pointer to an opened FCB

HUAWEI EX. 1015 - 69/393

HUAWEI EX. 1015 - 70/393

Dos Interrupts and Functions Calls I 63
return AL 00h if the file is found and closed

OFFh if the file is not found in the current directory
note 1. This function call must be done on open files that are no longer needed,

and after file writes to insure all directory information is updated.
‘3 2. If the file is not found in its correct position in the current
fl ‘ directory, it is assumed that the diskette was changed and AL returns

\ OFFh. This error return is reportedly not completely reliable with DOSversion 2.x..

3. If found, the directory is updated to reflect the status in the PCB, the
buffers to that file are flushed, and AL returns 00h.

4. There is a subtle but dangerous bug in this function. If a Close request
is issued using a File Control Block that has not been previously
activated by a successful Open command, the file's length will be
truncated to zero and the clusters previously assigned to the file are
left floating.

1 .Function 11h Search For First Matching Entry (PCB)
3 Searches current disk & directory for first matching filename; entry AH 11h
1 DS:DX pointer to address of PCB
14 return AL 00h successful match

OFFh no matching filename found
note 1. The FCB may contain the wildcard character ? under Dos 2.x, and ? or *under 3.x and 4.x.

2. The original FCB at DS:DX contains information to continue the search
with function 12h, and should not be modified.

3. If a matching filename is found, AL returns con and the locations at the
Disk Transfer Address are set as follows:
a. If the FCB provided for searching was an extended FCB, then the first

byte at the disk transfer address is set to OFFh followed by 5 bytes
of zeros, then the attribute byte from the search FCB, then the
drive number used (1=A, 2=B, etc) then the 32 bytes of the directory
entry. Thus, the disk transfer address contains a valid unopened FCB
with the same search attributes as the search FCB.

b. If the FCB provided for searching was a standard FCB, then the first
byte is set to the drive number used (1=A, 2=b, etc)), and the next
32 bytes contain the matching directory entry. Thus, the disk transfer
address contains a valid unopened normal FCB.

4. If an extended FCB is used, the following search pattern is used:
a. If the FCB attribute byte is zero, only normal file entries are found.

Entries for volume label, subdirectories, hidden or system files, arenot returned.

b. If the attribute byte is set for hidden or system files, or
subdirectory entries, it is to be considered as an inclusive search.
All normal file entries plus all entries matching the specified
attributes are returned. To look at all directory entries except the
volume label, the attribute byte may be set to hidden + system +
directory (all 3 bits on). .

c. If the attribute field is set for the volume label, it is considered
an exclusive search, and ONLY the volume label entry is returned.

, 5. This call is also used by the APPEND command in DOS 3.2+

Function 12h Search For Next Entry Using FCB (FCB)
Search for next matching filename

entry AH 12h

i DS:DX pointer to the unopened FCB specified from the previous Search
1 First (11h) or Search Next (12h)
g return AL 00h if matching filename found
i OFFh if matching filename was not found

note 1. After a matching filename has been found using function call 11h,.
function 12h may be called to find the next match to an ambiguous

request. For DOS 2.x, ?’s are allowed in the filename. For DOS 3.x and
4.x, global (*) filename characters are allowed.

2. The DTA contains info from the previous Search First or Search Next.
. 3. All of the FCB except for the name/extension field is used to keep
! information necessary for continuing the search, so no disk operations
‘ may be performed with this FCB between a previous function 11h or 12hcall and this one.

4. If the file is found, an FCB is created at the DTA address and set up to
open or delete it.

HUAWEI EX. 1015 - 70/393

HUAWEI EX. 1015 - 71/393

64 The Programmer’s Technical Reference

Function 13h Delete File Via FCB (FCB)
Deletes file specified in FCB from current directory

entry AH 13h
DS:DX pointer to address of FCB

return AL 'OOh file deleted
OFFh if file not found or was read—only

note 1. All matching current directory entries are deleted. The global filename
character '?’ is allowed in the filename.

2. will not delete files with read-only attribute set.
3. Close open files before deleting them.
4. Requires Network Access Rights.

Function 14h Sequential Disk File Read (FCB)
Reads record sequentially from disk via PCB

entry AH 14h
DS:DX pointer to an opened FCB

return AL 00h successful read
01h end of file (no data read)
02h Data Transfer Area too small for record size specified or

segment overflow
03h partial record read, EOF found

note 1. The record size is set to the value at offset OEh in the FCB.
2. The record pointed to by the Current Block (offset OCh) and the Current

Record (offset 20h) fields is loaded at the DTA, then the Current Block
and Current Record fields are incremented.

3. The record is read into memory at the current DTA address as specified by
the most recent call to function 1Ah. If the size of the record and
location of the DTA are such that a segment overflow or wraparound would
occur, the error return is set to AL=02h.

4. If a partial record is read at the end of the file, it is passed to the
requested size with zeros and the error return is set to AL=03h.

Function 15h Sequential Disk Write (FCB)
Writes record specified by FCB sequentially to disk

entry AH 15h
DS:DX pointer to address of PCB

return AL 00h successful write
01h diskette full, write cancelled
02h disk transfer area (DTA. too small or segment wrap

note 1. The data to write is obtained from the disk transfer area.
2. The record size is set to the value at offset OEh in the FCB.
3. This service cannot write to files set as read—only.
4. The record pointed to by the Current Block (offset OCh) and the Current

Record (offset 20h) fields is loaded at the DTA, then the Current Block
and Current Record fields are incremented.

5. If the record size is less than a sector, the data in the DTA is written
to a buffer; the buffer is written to disk when it contains a full sector
of data, the file is closed, or a Reset Disk (function ODh) is issued.

6. The record is written to disk at the current DTA address as specified by
the most recent call to function lAh. If the size of the record and
location of the DTA are such that a segment overflow or wraparound would
occur, the error return is set to AL=02h.

Function 16h Create A Disk File (FCB)
Search and open or create directory entry for file

entry AH 16h
DS:DX pointer to an FCB

return AL 00h successful creation
OFFh no room in directory

note 1. If a matching directory entry is found, the file is truncated to zero
bytes. .

2. If there is no matching filename, a filename is created
3. This function calls function OFh (Open File) after creating or truncating

a file.
4. A hidden file can be created by using an extended FCB with the attribute

byte (offset PCB—1) set to 2.

Function 17h Rename File Specified by File Control Block (FCB)
Renames file in current directory

entry AH 17h
DS:DX pointer to an FCB (see note 4)

HUAWEI EX. 1015 - 71/393

HUAWEI EX. 1015 - 72/393

Dos Interrupts and Functions Calls 65

return AL 00h successfully renamed
OFFh file not found or filename already exists

note 1. This service cannot rename read—only files
2. The ‘?' wildcard may be used.

3. If the '7’ wildcard is used in the second filename, the corresponding
letters in the filename of the directory entry are not changed.

4. The FCB must have a drive number, filename, and extension in the usual
position, and a Second filename starting 6 bytes after the first, atoffset 11h.

5. The two filenames cannot have the same name.
6. FCB contains new name starting at byte 17h.

Function 18h Internal to DOS
* Unknown - reportedly not used

entry AH 18h
return AL 00h

Function. 19h Get Current Disk Drive
Return designation of current default disk drive

entry AH 19h
return AL current default drive (0=A, 1=B,etc.)
note Some other DOS functions use 0 for default, 1=A, 2=B, etc.

Function 1Ah Set Disk Transfer Area Address (DTA)
Sets DTA address to the address specified in DS:DX

entry AH lAh
DS:DX pointer to buffer

return none

note 1. The default DTA is 128 bytes at offset 80h in the PSP. DOS uses the DTA
for all file I/O.

2. Registers are unchanged.
3. No error codes are returned.

2. Disk transfers cannot wrap around from the end of the segment to the
beginning or overflow into another segment.

Function 1Bh Get Current Drive File Allocation Table Information
Returns information from the FAT on the current drive

entry AH 1Bh

return AL number of sectors per allocation unit (cluster)
CX number of bytes per sector
DS:BX address of the current drive’s media descriptor byte
DX number of allocation units (clusters) for default drive

note 1. Save DS before calling this function.
2. This call returned a pointer to the FAT in DOS 1.x. Beginning with DOS

2.00, it returns a pointer only to the table's ID byte.
3. IBM recommends programmers avoid this call and use int 25h instead.

Function 1Ch Get File Allocation Table Information for Specific Device
Returns information on specified drive

entry AH lCh

DL drive number (1=A, 2=B, 3=C, etc)
return AL number of sectors per allocation unit (cluster)

DS:BX address of media descriptor byte for drive in DL
CX sector size in bytes
Dx number of allocation units (clusters)note 1. DL = 0 for default.

2. Save DS before calling this function.
3. Format of media—descriptor byte:

bits: 0 0 (clear) not double sided
1 (set) double sided

1 0 (clear) not 8 sector
1 (set) 8 sector

2 0 (clear) nonremovable device
1 (set) removable device

3—7 always set (1)
4. This call returned a pointer to the FAT in DOS 1.x. Beginning with DOS

2.00, it returns a pointer only to the table’s ID byte.
5. IBM recommends programmers avoid this call and use int 25h instead.

Function 1Dh Not Documented by Microsoft
* Unknown — reportedly not used

HUAWEI EX. 1015 - 72/393

HUAWEI EX. 1015 - 73/393

66 ' The Programmer’s Technical Reference

entry AH th
return AL 00h

Function 1Eh Not Documented by Microsoft
* Unknown — reportedly not used

entry AH lEh
return AL 00h
note Apparently does nothing.

Function 1Fh Get Default Drive Parameter Block
* Same as function call 32h (below), except that the table is

accessed from the default drive
entry AH th

other registers unknown
return AL 00h no error

OFFh error

DS:BX pointer to DOS Disk Parameter Block for default drive.
note 1. Unknown vector returned in ES:BX.

2. For DOS 2, 3, 4.x, this just invokes function 32h (undocumented, Read
DOS Disk Block) with DL=0.

Function 20h Unknown
* Internal — does nothing?

entry AH 20h
return AL 00h

Function 21h Random Read from File Specified by File Control Block (FCB)
Reads one record as specified in the FCB into the current DTA.

entry AH 21h
DS:DX address of the opened FCB

return AL 00h successful read operation
01h end of file (EOF), no data read
02h DTA too small for the record size specified
03h end of file (EOF), partial data read

note 1. The current block and current record fields are set to agree with the
random record field. Then the record addressed by these fields is read
into memory at the current Disk Transfer Address.

2. The current file pointers are NOT incremented this function.
3. If the DTA is larger than the file, the file is padded to the requested

length with zeros.

Function 22h Random Write to File Specified by FCB (FCB)
Writes one record as specified in the FCB to the current DTA

entry AH 22h
DS:DX address of the opened FCB

return AL 00h successful write operation
01h disk full; no data written (write was cancelled)
02h DTA too small for the record size specified (write was

cancelled)
note 1. This service cannot write to read—only files.

2. The record pointed to by the Current Block (offset OCh) and the Current
Record (offset 20h) fields is loaded at the DTA, then the Current Block
and Current Record fields are incremented.

3. If the record size is less than a sector, the data in the DTA is written
to a buffer; the buffer is written to disk when it contains a full sector
of data, the file is closed, or a Reset Disk (function ODh) is issued.

_ 4. The current file pointers are NOT incremented this function.
5. The record is written to disk at the current DTA address as specified by

the most recent call to function lAh. If the size of the record and
location of the DTA are such that a segment overflow or wraparound
would occur, the error return is set to AL=02h.

Function 23h Get File Size (FCB)
Searches current subdirectory for matching file, returns size in FCB i

entry AH 23h
DS:DX address of an unopened FCB

return AL 00h file found
OFFh file not found

note 1. Record size field (offset OEh) must be set before invoking this function
2. The disk directory is searched for the matching entry. If a matching

entry is found, the random record field is set to the number of records

HUAWEI EX. 1015 - 73/393

HUAWEI EX. 1015 - 74/393

Dos Interrupts and Functions Calls 67

in the file. If the value of the Record Size field is not an even
divisor of the file size, the value set in the relative record field is
rounded up. This gives a returned value larger than the actual file size

3. This call is used by the APPEND command in DOS 3.2+

Function' 24h Set Relative Record Field (FCB)
Set random record field specified by an FCB

entry AH 24h
DS:DX address of an opened FCB

return Random Record Field of PCB is set to be same as Current Block
and Current Record.

note 1. You must invoke this function before performing random file access.
2. The relative record field of FCB (offset 21h) is set to be same as the

Current Block (offset OCh) and Current Record (offset 20h).3. No error codes are returned.

4. The FCB must already be opened.

Function 25h Set Interrupt Vector
Sets the address of the code D05 is to perform each time the specified
interrupt is invoked.

entry AH 25h
AL int number to reassign the handler to
DS:DX address of new interrupt vectorreturn none

note 1. Registers are unchanged.
2. No error codes are returned.

3. The interrupt vector table for the interrupt number specified in AL is
set to the address contained in DS:DX. Use function 35h (Get Vector) to
get the contents of the interrupt vector and save it for later use.

4. when you use function 25 to set an interrupt vector, DOS 3.2 doesn’t
point the actual interrupt vector to what you requested. Instead, it
sets the interrupt vector to point to a routine inside DOS, which does
this:

1. Save old stack pointer
2. Switch to new stack pointer allocated from DOS’s stack pool
3. Call your routine
4. Restore old stack pointer

The purpose for this was to avoid possible stack overflows when there are
a large number of active interrupts. IBM was concerned (this was an IBM
change, not Microsoft) that on a Token Ring network there would be a lot
of interrupts going on, and applications that hadn’t allocated very much
stack space would get clobbered.

Functidn 26h Create New Program Segment Prefix (PSP)
This service copies the current program—segment prefix to a new memory location
for the creation of a new program or overlay. Once the new PSP is in place, a DOS‘

program can read a DOS COM or over lay file into the memory location immediatelyfollowing the new PSP and pass control to it.
entry AH 26h

DX segment number for the new PSP
return Current PSP is copied to specified segment
note 1. Microsoft recommends you use the newer DOS service 4Bh (EXEC) instead.

2. The entire 100h area at location 0 in the current PSP is copied into
location 0 of the new PSP. The memory size information at location 6 in
the new segment is updated and the current termination, ctrl—break, and
critical error addresses from interrupt vector table entries for ints
22h, 23h, and 24 are saved in the new program segment starting at OAh.
They are restored from this area when the program terminates.

Function 27h Random Block Read From File Specified by FCB
Similar to 21h (Random Read) except allows multiple files to be read.

entry AH 27h
CX number of records to be read
DS:DX address of an opened FCB

return AL 00h successful read
01h end of file, no data read
02h DTA too small for record size specified (read

cancelled)
03h end of file

CX actual number of records read (includes partial if AL=03h)
note 1. The record size is specified in the FCB. The service updates the Current

HUAWEI EX. 1015 74/393

HUAWEI EX. 1015 - 75/393

68 The Programmer’s Technical Reference

Block (offset Och) and Current Record (offset 20h) fields to the nextrecord not read.
2. If CX contained 0 on entry, this is a NOP.
3. If the DTA is larger than the file, the file is padded to the requested

length with zeros.
4. This function assumes that the FCB record size field (OEh) is correctly

set. If not set by the user, the default is 128 bytes.
5. The record is written to disk at the current DTA address as specified by

the most recent call to function 1Ah. If the size of the record and
location of the DTA are such that a segment overflow or wraparound would
occur, the error return is set to AL=02h.

Function 28h Random Block Write to File Specified in FCB
Similar to 27h (Random Write) except allows multiple files to be read.

entry AH 28h
CX number of records to write
DS:DX address of an opened FCB

return AL 00h successful write
01h disk full, no data written
02h DTA too small_for record size specified (write cancelled)

CX number of records written
note 1. The record size is specified in the FCB.

2. This service allocates disk clusters as required.
3. This function assumes that the FCB Record Size field (offset OEh) is

correctly set. If not set by the user, the default is 128 bytes.
4. The record size is specified in the FCB. The service updates the Current

Block (offset Och) and Current Record (offset 20h) fields to the nextrecord not read.
5. The record is written to disk at the current DTA address as specified by

the most recent call to function 1Ah. If the size of the record and
location of the DTA are such that a segment overflow or wraparound would
occur, the error return is set to AL=02h.

6. If called with CX=0, no records are written, but the FCB's File Size
entry (offset lCh) is set to the size specified by the FCB's Relative
Record field (offset 21h).

Function 29h Parse the Command Line for Filename
Parses a text string into the fields of a File Control Block

entry AH 29h
DS:SI pointer to string to parse
ES:DI pointer to memory buffer to fill with unopened FCB
AL bit mask to control parsing

bit 0 0 parsing stops if file separator found
1 causes service to scan past leading chars such as

blanks. Otherwise assumes the filename begins in the
first byte

1 0 drive number in FCB set to default (0) if string
contains no drive number

1 drive number in FCB not changed
2 O filename in FCB set to 8 blanks if no filename no

string
1 filename in FCB not changed if string does not contain

a filename

3 0 extension in FCB set to 3 blanks if no extension in
string

1 extension left unchanged
4—7 must be zero

return AL 00h no wildcards in name or extension
01h wildcards appeared in name or extension
OFFh invalid drive specifier

DS:SI pointer to the first byte after the parsed string
ES:DI pointer to a buffer filled with the unopened FCB

note 1. If the * wildcard characters are found in the command line, this service
will replace all subsequent chars in the FCB with question marks.

2. This service uses the characters as filename separators
DOS 1 ; . , + / [] = " TAB SPACE
DOS 2,3,4 ; . , + = TAB SPACE

3. This service uses the characters
: ; . , + < > | / \ [] = " TAB SPACE
or any control characters as valid filename separators.

4. A filename cannot contain a filename terminator. If one is encountered,

HUAWEI EX. 1015 - 75/393

HUAWEI EX. 1015 - 76/393

DOS Interrupts and Function Calls I 69
all processing stops. The handle functions will allow use of some of
these characters.

I 5. If no valid filename was found on the command line, ES:DI +1 points to a
- blank (ASCII 32).

6. This function cannot be used with filespecs which include a path
7. Parsing is in the form D:FILENAME.EXT. If one is found, a corresponding

unopened FCB is built at ES:DI.

Function 2Ah Get Date _
Returns day of the week, year, month, and date

entry AH 2Ah
return CX year (1980—2099)

DH month (1—12)
DL day (1—31)
AL weekday 00h Sunday

01h Monday
02h Tuesday
03h Wednesday
04h Thursday
05h Friday
06h Saturday

note 1. Date is adjusted automatically if clock rolls over to the next day, and
takes leap years and number of days in each month into account.

2. Although DOS cannot set an invalid date, it can read one, such as
1/32/80, etc.

3. Destiew also accepts CX = 4445h and Dx = 5351h, i.e. ’DESQ’ as valid
4. DOS will accept CH=0 (midnight) as a valid time, but if a file’s time is

set to exactly midnight the time will not be displayed by the DIR command.

3 V Function ZBh Set Date
‘ set current system date

entry AH 23h
; CX year (1980-2099)
1 DH month (1—12)
3 DL day (1—31)
1 return AL 00h no error (valid date)
I OFFh invalid date specified
? note 1. On entry, CX:DX must have a valid date in the same format as returned by1 function call 2Ah.
r 2. DOS 3.3+ also sets CMOS clock.

3. Under the Destiew system shell, this is the DV_GET_VERSION check.
entry AH ZBh

% AL 01h DesQ call
i CX 4445h ’DE’ (invalid date used

DX 5351h ’SQ’ for Destiew ID)
3 return AH major versionAL minor version .

AX OFFh DesQ not installed (DOS error code)
4. For DESQview 2.00+, installation check

' entry AH ZBh
fl AL subfunction (DV v2.00+)
! 01h Get Version
E return BX version (BH = major, BL = minor)
h note Early copies of v2.00 return 0002h.
fl 02h Get Shadow Buffer Info, and Start
F return BH Shadowing rows in shadow buffer
H BL columns in shadow buffer
H Dx segment of shadow buffer
U 04h Get Shadow Buffer Info

1! return BH rows in shadow buffer
H BL columns in shadow buffer
H DX segment of shadow buffer
n 05h Stop Shadowing
1} ex 4445b (’DE’)
; DX 5351h ('SQ’)
‘. return AL OFFh if DESQview not installed

‘ note In DESQview v1.x, there were no subfunctions; this call only
identified whether or not DESQview was loaded.

) i

HUAWEI EX. 1015 - 76/393

HUAWEI EX. 1015 - 77/393

70 The Programmer’s Technical Reference

Function 2Ch Get Time
Get current system time from CLOCKs driver

entry AH 2Ch
return CH hours (0-23)

CL minutes (0-59)
DH seconds (0—59)
DL hundredths of a second (0—99)

note 1. Time is updated every 5/100 second.
2. The date and time are in binary format.

Function 2Dh Set Time
Sets current system time

entry AH 2Dh
CH hours (0—23)
CL minutes (0—59)
DH seconds (0—59)
DL hundredths of seconds (0-99)

return AL 00h if no error
OFFh if bad value sent to routine

note 1. DOS 3.3+ also sets CMOS clock.
2. OK and BK must contain a valid time in binary.

Function 2Eh Set/Reset Verify Switch
Set verify flag

entry AH 2Eh
AL 00 to turn verify off (default)

01 to turn verify on
return none
note 1. This is the call invoked by the DOS VERIFY command.

2. Setting of the verify switch can be obtained by calling call 54h.
3. This call is not supported on network drives.
4. DOS checks this flag each time it accesses a disk.

Function 2Fh Get Disk Transfer Address (DTA)
Returns current disk transfer address used by all DOS read/write operations

entry AH 2Fh
return ES:BX address of DTA
note 1. The DTA is set by function call lAh

2. Default DTA address is a 128 byte buffer at offset 80h in that program’s
Program Segment Prefix.

Function 30h Get DOS Version Number
Return DOS version and/or user number

entry AH 30h
return AH minor version number (i.e., DOS 2.10 returns AX = 0A02h)

AL major version number (0 for DOS 1.x) ’
BH OEM ID number

00h IBM
16h DEC (others not known)

BL:CX 24—bit user serial number
note 1. If AL returns a major version number of zero, the 005 version is below

1.28 for MSDOS and below 2.00 for PCDOS.
2. IBM PC—DOS always returns OOOOh in BX and CK.
3. 05/2 v1.0 Compatibility Box returns a value of 10 for major version.
4. Due to the 08/2 return and the fact that some European versions of DOS

carry higher version numbers than IBM’s DOS, utilities which check for a
DOS version should not abort if a higher version than required is found
unless some specific problems are known.

Function 31h Terminate Process and Stay Resident
KEEP, or TSR

entry AH 31h
AL exit code

Dx program memory requirement in 16 byte paragraphs
return Ax return code (retrievable by function 4Dh)
note 1. Files opened by the application are not closed when this call is made.

2. Memory can be used more efficiently if the block containing the copy of
the DOS environment is deallocated before terminating. This can be done
by loading ES with the segment contained in 2Ch of the PSP and issuing
function call 49h (Free Allocated Memory).

3. Unlike int 27h, more than 64k may be made resident with this call.

HUAWEI EX. 1015 - 77/393

HUAWEI EX. 1015 - 78/393

DOS Interrupts and Function Calls ' 7]

Function 32h Read DOS Disk Block

* Retrieve the pointer to the drive parameter block for a drive
entry

return_

Bytes
00h
01h
02h—03h
04h

05h

06h—O7h
'08h
09h—0Ah
OBh-OCh
ODh—OEh

DOS 2.x
OFh
th—llh
12h—15h
16h
17h

lBh—lBh
lCh
lEh
22h

DOS 3.x
OFh
10h
12h
16h
17h
18h

1Ch
lEh

DOS 4.0
OFh
11h
13h
17h
18h
19h
th
th
note 1.

2.

3.

4.

Function

entry

AH 32h

DL drive (0=default, 1=A:, etc.).
AL 00h if drive is valid

OFFh if drive is not valid
DS:BX pointer to DOS Drive Parameter Table. Format of block:
Type Value
byte Drive: O=A:, l=B:, etc.
byte Unit within device driver (0, l, 2, etc.)
word Bytes per sector
byte largest sector number in cluster (one less than sectors per

cluster)
byte Cluster to sector shift (i.e., how far to shift—left the

bytes/sector to get bytes/cluster)
word Number of reserved (boot) sectors
byte Number of copies of the FAT
word Number of root directory entries
word Sector # of lst data. Should be same as # of sectors/track.
word largest possible cluster number (one more than the number of data

clusters)

only
byte sectors for one copy of the FAT
word First sector of root directory
dword Address of device driver header for this drive
byte Media Descriptor Byte for this drive
byte OFFh indicates block must be rebuilt (DOS 3.x) 00h indicates

block device has been accessed

dword address of next DOS Disk Block (OFFFFh means last in chain)
word starting cluster of current dir (0 = root)
64byts ASCIIZ current directory path string
byte Current Working Directory (2.0 only) (64 bytes)

byte number of sectors in one FAT copy
word first sector of root directory
dword address of device driver for this drive
byte media descriptor byte for medium
byte OFFh = block must be rebuilt, 00h indicates block accessed
dword address of next device block, offset = OFFFFh indicates last word

cluster at which to start search for free space when writing
word 00h, probably unused, values left from before
word OFFFFh indicates block was built

word number of sectors in one FAT copy
word first sector of root directory
dword address of device driver for this drive
byte media descriptor byte for medium
byte OFFh = block must be rebuilt, 00h indicates block accessed
dword address of next device block, offset = OFFFFh indicates last
word cluster at which to start search for free space when writingword unknown

Use [BX+0D] to find no. of clusters (loooh, 16—bit FAT; if not, lZ-bit
(exact dividing line is probably a little below 1000h to allow for bad
sectors, EOF markers, etc.)
Short article by C.Petzold, PC Magazine Vol.5,no.8, and the article
'Finding Disk Parameters’ in the May 1986 issue of PC Tech Journal.
This call is mostly supported in OS/Z 1.0’s DOS Compatibility
Box. The dword at 12h will not return the address of the next
device driver when in the Compatibility Box.
Used by CHKDSK.

33h Control—Break Check
Get or set control—break checking at CON

AH 33h

AL 00h to test for break checking
01h to set break checking

DL 00h to disable break checking
01h to enable break checking

HUAWEI EX. 1015 - 78/393

HUAWEI EX. 1015 - 79/393

72 The Programmer’s Technical Reference

02h internal, called by PRINT.COM (DOS 3.1)
03h unknown
04h unknown
05h boot drive (DOS 4.0+)

return DL break setting (AL=00h)
00h if break=off
01h if break=on

(if AL=05h) boot drive, A=1, B=2, etc)AL OFFh error

Function 34h Return INDOS Flag
* Returns ES:BX pointing to Critical Section Flag, byte indicating whether it

is safe to interrupt DOS.
entry AH 34h
return ES:BX points to 1—byte DOS "critical section flag"

note 1. If byte is 0, it is safe to interrupt DOS. This was mentioned in some
documentation by Microsoft on a TSR standard, and ’PC Magazine’ reports
it functions reliably under DOS versions 2.0 through 3.3. Chris Dunford
(of CED fame) and a number of anonymous messages on the BBSs indicate it
may not be totally reliable.

2. The byte at ES:BX+1 is used by the Print program for this same purpose,
so it’s probably safer to check the WORD at ES:BX.

3. Reportedly, examination of DOS 2.10 code in this area indicates that the
byte immediately following this ‘critical section flag' must be 00h to
permit the PRINT.COM interrupt to be called. For DOS 3.0 and 3.1
(except Compaq DOS 3.0), the byte before the ’critical section flag’
must be zero; for Compaq DOS 3.0, the byte OlAAh before it must be zero.

4. In DOS 3.10 this reportedly changed to word value, with preceding byte.
5. This call is supported in OS/2 1.0’s DOS Compatibility Box
6 Gordon Letwin of Microsoft discussed this call on ARPAnet in 1984. He

stated:

a- this is not supported under any version of the DOS
b. it usually works under DOS 2, but there may be circumstances when it

doesn't (general disclaimer, don’t know of a specific circumstance)
c. it will usually not work under DOS 3 and DOS 3.1; the DOS is

considerably restructured and this flag takes on additional
meanings and uses

d. it will fail catastrophically under DOS 4.0 and forward.
Obviously this information is incorrect since the call works
fine through DOS 3.3. Microsoft glasnost?

Function 35h Get Vector
Get interrupt vector

entry AH 35h
AL interrupt number (hexadecimal)

return ES:BX address of interrupt vector
note Use function call 25h to set the interrupt vectors.

Function 36h Get Disk Free Space
get information on specified drive

entry AH ’ 36h
DL drive number (0=default, 1=A:, 2=B:, etc)

return AX number of sectors per cluster
OFFFFh means drive specified in DL is invalid

BX number of available clusters
CX bytes per sector
DX clusters per drive

note 1. Mult Ax * CX * BX for free space on disk.
2. Mult AX * CX * DX for total disk space.
3. Function 36h returns an incorrect value after an ASSIGN command. Prior to

ASSIGN, the DX register contains O943h on return, which is the free space
in clusters on the HC diskette. After ASSIGN, even with no parameters,
0901h is returned in the DX register; this is an incorrect value.
Similar results occur with DD diskettes on a PC—XT or a PC—AT. This
occurs only when the disk is not the default drive. Results are as
expected when the drive is the default drive. Therefore, the '
circumvention is to make the desired drive the default drive prior to
issuing this function call.

4. Int 21h, function call 36h returns an incorrect value after an ASSIGN
command. Prior to ASSIGN, the DX register contains 0943h on return, which

HUAWEI EX. 1015 - 79/393

HUAWEI EX. 1015 - 80/393

5.

DOS Interrupts and Function Calls ' 73

is the free space in clusters on the HC diskette. After ASSIGN, even
with no parameters, 0901h is returned in the DX register; this is an
incorrect value. Similar results occur with DD diskettes on a PC—XT or
a PC-AT. This occurs only when the disk is not the default drive.
Results are as expected when the drive is the default drive. Therefore,
the circumvention is to make the desired drive the default drive prior
to issuing this function call.
This function supercedes functions lBh and 1Ch.

Function 37h SWITCHAR / AVAILDEV* Ge
entry

t/set option marking character (is usually "/"), and device typeAH ' 37h
AL 00h read switch character (returns current character in DL)

01h set character in DL as new switch character

(DOS 2.x. 02h read device availability (as set by function AL=3)into DL. A 0 means devices that devices must be accessed

in file I/O calls by /dev/device. A non-zero value means
that devices are accessible at every level of the
directory tree (e. g. PRN is the printer and not a file
PRN) .
AL=2 to return flag in DL, AL=3 to set from DL (0
= set,l = not set).

(DOS 2.x) 03h get device availability, where:

return

note 1.
2.

DR»

9.

10.

DL 00h means /dev/ must precede device names
01h means /dev/ need not precede device names

DL switch character (if AL=0 or 1)
device availability flag (if AL=2 or 3)

AL OFFh the value in AL was not in the range 0—3.
Functions 2 & 3 appear not to be implemented for DOS 3.x.
It is documented on page 4.324 of the MS—DOS (version 2) Programmer’s
Utility Pack (Microsoft — published by Zenith).

. Works on all versions of IBM PC—DOS from 2.0 through 3.3.1.
The SWITCHAR is the character used for "switches" in DOS command
arguments (defaults to ’/’, as in "DIR/P"). ’-' is popular to make a
system look more like UNIX; if the SWITCHAR is anything other than ’/’,
then ’/’ may be used instead of '\' for pathnames.
Ignored by XCOPY, PKARC, LIST.
SWITCHAR may not be set to any character used in a filename.
In DOS 3.x you can still read the "AVAILDEV" byte with subfunction 02h
but it always returns OFFh even if you try to change it to 0 with
subfunction 03h.
AVAILDEV=O means that devices must be referenced in an imaginary
subdirectory "\dev" (similar to UNIX’s /dev/*); a filename ’PRN.DAT’ can
be created on disk and manipulated like any other. If AVAILDEV I: 0 then
device names are recognized anywhere (this is the default): ’PRN.DAT' is
synonymous with 'PRN:’.

These functions reportedly are not supported in the same fashion invarious implementations of DOS.
Used by DOS 3. 3 CHKDSK, BASIC, DEBUG.

Function 38h Return Country—Dependent Information

entry

return

(PCDOS 2.0, 2.1, MSDOS 2.00 only)AH 38h
AL function code (must be 0 in DOS 2. x)
DS:DX pointer to 32 byte memory buffer for returned informationCF set on error

AX error code (02h)
BX country code
DS:DX pointer to buffer filled with country information:

bytes 00h,01h date/time format
OOOOh USA standard H:M:S M/D/Y
0001h European standard H:M:S D/M/Y
0002h Japanese standard H: M: s D:M:Y

02h ASCIIZ string currency symbol
03h byte of zeros
04h ASCIIZ string thousands separator
05h byte of zeros
06h ASCIIZ string decimal separator
07h byte of zeros

24 bytes 08h—1Fh reserved

HUAWEI EX. 1015 80/393

HUAWEI EX. 1015 - 81/393

74 The Programmer’s Technical Reference

Function 38h Get Country-Dependent Information
(PCDOS 3.x+, MSDOS 2.o1+)

entry AH 38h
AL function code

00h to get current country information
01h-0FEh country code to get information for, for countries with

codes less than 255
OFFh to get country information for countries with a greaterthan 255

BX 16 bit country code if AL=0FFh
DS:DX pointer to the memory buffer where the data will be returned

DX OFFFFh if setting country code rather than getting info
return CF 0 (clear) function completed

1 (set) error
AX error code

02h invalid country code (no table for it)
(if DX OFFFFh)
BX country code (usually international telephone code)
DS:DX pointer to country data buffer

bytes 0,1 date/time format
0 USA standard H:M:S M/D/Y
1 European standard H:M:S D/M/Y
2 Japanese standard H:M:S D:M:Y

bytes 02h-06h currency symbol null terminated
byte 07h thousands separator null terminated
byte 08h byte of zeros
byte 09h decimal separator null terminated
byte OAh byte of zeros
byte OBh date separator null terminated
byte OCh byte of zeros
byte ODh time separator null terminated
byte OEh byte of zeros
byte OFh currency format byte

bit 0 0 if currency symbol precedes the value
1 if currency symbol is after the value

1 0 no spaces between value and currency symbol
1 one space between value and currency symbol

2 set if currency symbol replaces decimal point
3-7 not defined by Microsoft

byte 10h number of significant decimal digits in currency
(number of places to right of decimal point)

byte 11h time format byte
bit 0 0 12 hour clock

1 24 hour clock
1—7 unknown, probably not used

bytes 12h—15h address of case map routine (FAR CALL, AL = char)
entry AL ASCII code of character to be converted to

uppercase
return AL ASCII code of the uppercase input character

byte 16h data—list separator character
byte 17h zeros
bytes 18h-21h 5 words reserved

note 1. When an alternate keyboard handler is invoked, the keyboard routine is
loaded into user memory starting at the lowest portion of available user
memory. The BIOS interrupt vector that services the keyboard is
redirected to the memory area where the new routine resides. Each new
routine takes up about 1.6K of memory and has lookup tables that return
values unique to each language. (XEYBXX in the DOS book) Once the
keyboard interrupt vector is changed by the DOS keyboard routine, the new
routine services all calls unless the system is returned to the US format
by the ctrl—alt—Fl keystroke combination. This does not change the
interrupt vector back to the BIOS location; it merely passes the table
lookup to the ROM locations.

2. Ctrl—Alt—Fl will only change systems with Us ROMS to the US layout.
Some systems are delivered with non—US keyboard handler routines in ROM

3. Case mapping call: the segment/offset of a FAR procedure that performs
country—specific lower—to—upper case mapping on ASCII characters Bob to 0
OFFh. It is called with the character to be mapped in AL. If there is
an uppercase code for the letter, it is returned in AL, if there is no
code or the function was called with a value of less than 80h AL is
returned unchanged.

HUAWEI EX. 1015 - 81/393

HUAWEI EX. 1015 - 82/393

DOS Interrupts and Function Calls 75

4. This call is fully implemented in Ms—Dos version 2.01 and higher. It is
in version 2.00 but not fully implemented (according to Microsoft).

Function 38h Set Country Dependent Information
entry AH 38h

’ AL code country code to set information for, for countries with
codes less than 255

OFFh to set country information for countries with a code
greater than 255

EX 16 bit country code if AL=0FFh \
DX OFFFFh

return CF clear successful
set if error

AX error code (02h)

Function 39h Create Subdirectory (MKDIR)
' Makes a subdirectory along the indicated path
entry AH 39h

DS:DX address of ASCIIZ pathname string
return flag CF 0 successful

1 error

AX error code if any (03h, 05h)
note 1. The ASCIIZ string may contain drive and subdirectory.

2. Drive may be any valid drive (not necessarily current drive).
3. The pathname cannot exceed 64 characters.

Function 3Ah Remove Subdirectory (RMDIR)
entry AH 3Ah

DS:DX address of ASCIIZ pathname string
return CF clear successful

set Ax error code if any (3, 5, 16)
note 1. The ASCIIZ string may contain drive and subdirectory.

2. Drive may be any valid drive (not necessarily current drive).
3. The pathname cannot exceed 64 characters.

Function 3Bh Change Current Directory (CHDIR)
entry AH 3Bh

DS:DX address of ASCIIZ string
return flag CF 0 successful

1 error

Ax error code if any (03h)
note 1. The pathname cannot exceed 64 characters.

2. The ASCIIZ string may contain drive and subdirectory.
3. Drive may be any valid drive (not necessarily current drive).

Function 3Ch Create A File (CREAT)
Create a file with handle

entry AH 3Ch
CX byte, attributes for file

00h normal
01h ' read only
02h hidden

03h system
DS:DX address of ASCIIZ filename string

return CF 0 successful creation
1 error

AX 16 bit file handle
or error code (03h, 04h, 05h)

note 1. The ASCIIZ string may contain drive and subdirectory.
2. Drive may be any valid drive (not necessarily current drive).
3. If the volume label or subdirectory bits are set in CX, they are ignored
4. The file is opened in read/write mode
5. If the file does not exist, it is created. If one of the same name

exists, it is truncated to a length of 0.
6. Good practice is to attempt to open a file with fn 3Dh and jump to an

error routine if successful, create file if 3Dh fails. That way an
existing file will not be truncated and overwritten

Function 3Dh Open A File
Open disk file with handle

entry AH 3Dh

HUAWEI EX. 1015 - 82/393

HUAWEI EX. 1015 - 83/393

76 The Programmer’s Technical Reference

AL access code byte
(DOS 2.x) bits 0—2 file attribute

000 read only
001 write only
010 read/write

3—7 reserved, should be set to zero
(DOS 3.x) bits 0—2 file attribute

000 read only
001 write only
010 read/write
reserved, should be set to zero

4—6 sharing mode (network)
000 compatibility mode (the way FCBs open files)
001 read/write access denied (exclusive)
010 write access denied
011 read access denied
100 full access permitted

7 inheritance flag
0 file inherited by child process
1 file private to child process

DS:DX address of ASCIIZ pathname string
return CF set on error

AX error code (01h, 02h, 03h, 04h, 05h, och)
AX 16 bit file handle

note 1. Opens any normal, system, or hidden file.
2. Files that end in a colon are not opened.
3. The rear/write pointer is set at the first byte of the file and the

record size of the file is 1 byte (the read/write pointer can be changed
through function call 42h). The returned file handle must be used for
all subsequent input and output to the file.

4. If the file handle was inherited from a parent process or was duplicated
by DUP or FORCEDUP, all sharing and access restrictions are alsoinherited.

5. A file sharing error (error 01h) causes an int 24h to execute with anerror code of 02h.

Function 3Eh Close A File Handle
Close a file and release handle for reuse

entry AH 3Eh
BX file handle

return flag CF 0 successful close
1 error

AX error code if error (06h)
note 1. When executed, the file is closed, the directory is updated, and all

buffers for that file are flushed. If the file was changed, the time and
date stamps are changed to current.

2. If called with the handle OOOOOh, it will close STDIN (normally the
keyboard).

Function 3Fh Read From A File Or Device
Read from file with handle

entry AH ' 3Fh
BX file handle
CX number of bytes to read
DS:DX address of buffer

return flag CF 0 successful read
1 error

AX 0 pointer was already at end of file
or number of bytes read
or error code (05h, 06h)

note 1. This function attempts to transfer the number of bytes specified to a
buffer location. It is not guaranteed that all bytes will be read. If
AX < CX a partial record was read.
If performed from STDIN (file handle 0000), the input can be redirected

2.

3. If used to read the keyboard, it will only read to the first CR.
4. The file pointer is incremented to the last byte read.

Function 40h Write To A File Or Device
Write to file with handle

entry AH 40h
BX file handle

HUAWEI EX. 1015 - 83/393

HUAWEI EX. 1015 - 84/393

return

DOS Inten'upts and Function Calls 2 . 77
CX number of bytes to write
DS:DX address of buffer
flag CF 0 successful write1 error

Ax number of bytes written

note 1.

Function
entry

return

note 1.
2.

Function
entry

return

note 1.

Function
entry

return

or error code (05h, 06h)
This call attempts to transfer the number of bytes indicated in CX from a
buffer to a file. If CX and AX do not match after the write, an error
has taken place; however no error code will be returned for this
problem. This is usually caused by a full disk.
If the write is performed to STDOUT (handle 0001), it may be redirected
To truncate the file at the current position of the file pointer, set the
number of bytes in CX to zero before calling int 21h. The pointer can
be moved to any desired position with function 42h.
This function will not write to a file or device marked read—only.
May also be used to display strings to CON instead of fn 09h. This
function will write CX bytes and stop; fn 09h will continue to write
until a 5 character is found.
This is the call that DOS actually uses to write to the screen in DOS 2.x
and above.

41h Delete A File From A Specified Subdirectory (UNLINK)
AH 41h
DS:DX pointer to ASCIIZ filespec to delete
CF 0 successful

1 error

A error code if any (02h, 05h)
This function will not work on a file marked read-only.
Wildcards are not accepted.

42h Move a File Read/Write Pointer (LSEEK)
AH 42h
AL method code byte

00h offset from beginning of file
01h offset from present location
02h offset from end of file

BX file handle
CX most significant half of offset
DX least significant half of offset
AX low offset of new file pointer
DX high offset of new file pointer
CF 0 successful move

1 error
AX error code (01h, 06h)

If pointer is at end of file, reflects file size in bytes.
The value in DX:AX is the absolute 32 bit byte offset from the beginning
of the file.

43h Get/Set file attributes (CHMOD)
AH 43h
AL 00h get file attributes

01h set file attributes
CX file attributes to set

bit 0 read only
1 hidden file
2 system file
3 volume label
4 subdirectory
5 written since backup (archive bit)
6,7 not used
8 shareable (Novell NetWare)
9,F not used

DS:DX pointer to full ASCIIZ file name
CF set if error

AX error code (01h, 02h, 03h, 05h)
CX file attributes on get

attributes:
01h read only
02h hidden
04h system
OFFh archive

HUAWEI EX. 1015 - 84/393

HUAWEI EX. 1015 - 85/393

note: This call will not change the volume label or directory bits.

78

Function

entry AH
AL

44h

The Programmer’s Technical Reference

I/O Control for Devices (IOCTL)
Get or Set Device Information
44h
00h

01h

note

02h

03h

04h

05h

06h

07h

Get Device Information
BX file or device handle
return DX device info

bit 7 set = character device
bit 0 console input device

1 console output device2 NHL device
3 CLOCKS device
4 device is special
5 binary (raw) mode
6 not E0?

12 network device (DOS 3.x)
14 can process IOCTL control

bit 7 clear
bit 0-5 block device number

6 file has not been written

12 Network device (DOS 3.x)
14 unknown (DOS 3.x)
15 file is remote (DOS 3.x)Set Device Information

BX device handle

DH 0 (DH must be zero for this call)
DL device info to set (bits 0—7 from

function 0)DX bits:

0 1 console input device
1 1 console output device
2 1 null device
3 l clock device
4 1 reserved

5 0 binary mode — don’t check for control chars
1 cooked mode — check for control chars

6 0 EOF — End Of File on input
7 device is character device if set, if not, EOF is

0 if channel has been written, bits 0—5 areblock device number
12 network device

14 1 can process control strings (AL 2—5, can only beread, cannot be
15 n reserved

Read Character Device Control StringBX device handle
CX number of bytes
DS:DX pointer to control string buffer
return AX number of bytes read
Write Device Control StringBx device handle
CX number of bytes to write
DS:DX pointer to buffer
return AX number of bytes written
Read From Block Device (drive number in BL)
BL drive number (O=default)
CX number of bytes to read
DS:DX pointer to buffer
return AX number of bytes read
Write Block Device Control String
BL drive number (O=default)
CX number of bytes to write
DS:DX pointer to buffer
return AX number of bytes transferred
Get Input Handle Status
BX file or device handle

return AL OFFh device ready00h
Get Output Handle Status

strings (subfns 2—5)= file

set)

to read

device not ready

HUAWEI EX. 1015 - 85/393

HUAWEI EX. 1015 - 86/393

DOS Interrupts and Function Calls 1 79

return AL 00h not ready
OFFh ready

note For DOS 2.x, files are always ready for output.
08h Removable Media Bit (DOS 3.x+)

BL drive number (0=default)
return AX 00h device is removable

01h device is nonremovable
OFh invalid drive specification

09h Test whether Local or Network Device (Dos 3.x+)
BL drive number (0=default)
return DX attribute word, bit 12 set if

device is remote

OAh Is Handle in BX Local or Remote? (DOS 3.x+)Bx file handle

return Dx (attribute word) bit 15 set if file is remote
note If file is remote, Novell Advanced NetWare

2.0 returns the number of the file server
on which the handle is located in CX.

OBh Change Sharing Retry Count to DX (Dos 3.x+)
CX delay (default=1)
DX retry count (defau1t=3)

OCh General IOCTL (DOS 3.3 [3.2?]) allows a device
driver to prepare, select, refresh, and query Code PagesBX device handle
CH category code

00h unknown (DOS 3.3)
01h coun: (DOS 3.3)
03h CON (DOS 3.3)05h LPTn:

CL function
45h set iteration count
4Ah select code page
4Ch start code—page preparation
4Dh end code-page preparation
65h get iteration count
6Ah query selected code page
6Bh query prepare list

DS:DX pointer to parameter block. Format:
(for CL=45h) word number of times output is

attempted driver assumes device is busy
(for CL=4Ah,4Dh,6Ah) word length of data

word code page ID
(for CL=4Ch) word flags

word length of remainder of parameter block
word number of code pages following

n words code page 1,...,N
(for CL=6Bh) word length of following data

word number of hardware code pages
n words hardware code pages 1,...,N

word number of prepared code pages
n words prepared code pages 1,...,N

ODh Block Device Request (DOS 3.3+)
BL drive number (0=default)
CH category code

08h disk drive
CL subfunction

40h set device parameters
41h write logical device track
42h format and verify logical device
60h get device parameters
61h read logical device track
62h verify logical device track

DS:DX pointer to parameter block
(for fns 40h, 60h) byte special functions

bit 0 set if fn to use current BPB, clear if
Device BIOS Parameter Block field
contains new default BPB

1 set if function to use track fields

only. Must be clear if CL=60h2 set if all sectors in track same size
(should be set)

HUAWEI EX. 1015 - 86/393

HUAWEI EX. 1015 - 87/393

80 The Programmer’s Technical Reference
3-7 reserved

byte device type
00h 320K/360K disk
01h 1.2M disk
02h 720K disk
03h single—density 8—inch disk
04h double—density 8—inch disk
05h fixed disk
06h tape drive
07h other type of block device

word device attributes
bit 0 set if nonremovable medium

1 set if door lock supported
2-15 reserved

word number of cylinders
byte media type

00h 1.2H disk (default)
01h 320K/360K disk

31 bytes device BPB (see function 53h)
word # of sectors per track (start of track

layout field)
N word pairs: number,size of each sector in track

(for functions 41h, 61h) byte reserved, must be zero
word number of disk head
word number of disk cylinder
word number of first sector to

read/write
word number of sectors

dword transfer address
(for functions 42h, 62h) byte reserved, must be zero

BL
BX
CX
DS:DX
DX

return Ax

CF

Function 45h
entry AH

BX
return CF

word number of disk head
word number of disk cylinder v

note DOS 4.01 seems to ignore the high byte of the
number of directory entries in the BPB for
diskettes.

OEh Get Logical Device Map (DOS 3.2+)
BL drive number (0=defau1t)
return AL=O block device has only one logical drive

assigned 1..n the last letter used to
reference the device (1=A:,etc) (1..26 DOS 3.0+)

OFh Set Logical Device Map (DOS 3.2+)
BL physical drive number (0=defau1t)
note Maps logical drives to physical drives, similar

to DOS's treatment of a single physical
floppy drive as both A: and B:

drive number: O=default, 1=A:, 2=B:, etc.
file handle
number of bytes to read or write
data or buffer
data

number of bytes transferred
or error code (call function 59h for extended error codes)
or status 00h not ready

OFFh ready
set if error

Duplicate a File Handle (DUP)45h

file handle to duplicate
clear AX duplicate handle
set AX error code (04h, 06h)

note 1. If you move the pointed of one handle, the pointer of the other will also
be moved.

2. The handle in Ex must be open.

Function 46h

entry AH
BX
CX

Force Duplicate of a Handle (FORCEDUP or CDUP)
Forces handle in CX to refer to the same file at the same
position as BX
46h
existing file handle
new file handle

HUAWEI EX. 1015 - 87/393

HUAWEI EX. 1015 - 88/393

DOS Interrupts and Function Calls I 8]
return CF. clear both handles now refer to existing fileset error

AX error code (04h, 06h)
note 1. If CX was an open file, it is closed first.

2. If you move the read/write pointer of either file, both will move.
3. The handle in BX must be open.

Function 47h Get Current Directory
Places full pathname of current directory/drive into a buffer

entry AH 47h
DL drive (0=default, 1=A:, etc.)
DS:SI pointer to 64—byte buffer area

return CF clear DS:DI pointer to ASCIIZ pathname of current directory
set AX error code (OFh)

note: String does not begin with a drive identifier or a backslash.

'Function 48h Allocate Memory
Allocates requested number of 16—byte paragraphs of memory

entry AH 48h
BX number of 16-byte paragraphs desired

return CF clear AX segment address of allocated space
BX maximum number paragraphs available

set AX error code (07h, 08h)
note: BX indicates maximum memory availible only if allocation fails.

Function 49h Free Allocated Memory
Frees specified memory blocks

entry AH 49h
ES segment address of area to be freed

return CF clear successful
set AX error code (07h, 09h)

note 1. This call is only valid when freeing memory obtained by function 48h.
2. A program should not try to release memory not belonging to it.

Function 4Ah Modify Allocated Memory Blocks (SETBLOCK)
Expand or shrink memory for a program

entry AH 41m
Bx new size in 16 byte paragraphs
ES segment address of block to change

return CF - clear nothing
set AX error code (07h, 08h, 09h)

or BX max number paragraphs available
note 1. Max number paragraphs availible is returned only if the call fails.

2. Memory can be expanded only if there is memory available.

Function 4Bh Load or Execute a Program (EXEC)
entry AH 4Bh

AL 00h load and execute program. A PSP is built for the
program the ctrl—break and terminate addresses are set tothe new PSP.

*Olh load but don't execute (internal, DOS 3.x & DESQview)
(see note 1)

*02h load but do not execute (internal, DOS 2.x only)
03h load overlay (do not create PSP, do not begin execution)

DS:DX points to the ASCIIZ string with the drive, path, and filename tobe loaded

ES:BX points to a parameter block for the load
(AL=00h) word segment address of environment string to passed

(0=use current)
dword pointer to the command line to be placed atPSP+80h

dword pointer to default FCB to be passed at PSP+5Ch
dword pointer to default FCB to be passed at PSP+6Ch

(*AL=01h) word segment of environment (0 = use current)
dword pointer to command line
dword pointer to FCB 1
dword pointer to FCB 2

(DOS 3.x+) dword will hold SS:SP on return
(DOS 3.x+) dword will hold program entry point (CS:IP) on return

(*AL=02h) word segment of environment (0 = use current)
dword pointer to command line

HUAWEI EX. 1015 - 88/393

HUAWEI EX. 1015 - 89/393

82 The Programmer ’3 Technical Reference

dword pointer to FCB 1
dword pointer to FCB 2

(AL=03h) word segment address where file will be loaded
word relocation factor to be applied to the image

return CF set error
AX error code (01h, 02h, 05h, 08h, OAh, OBh)

CF clear if successful

for fn 00h, process ID set to new program's PSP; get with function62h
for fn 01h and DOS 3.x+ or DESQview, process ID set to program’s

PSP; get with function 62h
for fn 01h and DOS 2.x, new program’s initial stack and entry

point returned in registers
for fn 02h, new program's initial stack and entry point are

returned in the registers
note 1. If you make this call with AL=1 the program will be loaded as if you made

the call with AL=0 except that the program will not be executed.
Additionally, with AL=1 the stack segment and pointer along with the
program’s CS:IP entry point are returned to the program which made the
4B01h call. These values are put in the four words at ES:BX+OEh. on
entry to the call ES:BX points to the environment address, the command
line and the two default FCBs. This form of EXEC is used by DEBUG.COM.

2. Application programs may invoke a secondary copy of the command processor
(normally COMMAND.COM) by using the EXEC function. Your program may pass
a DOS command as a parameter that the secondary command processor will
execute as though it had been entered from the standard input device. The
procedure is: ‘
A. Assure that adequate free memory (17k for 2.x and 3.0, 23k for 3.1 up)

exists to contain the second copy of the command processor and the
command it is to execute. This is accomplished by executing function
call 4Ah to shrink memory allocated to that of your current
requirements. Next, execute function call 48h with BX=0FFFFh. This
returns the amount of memory available.

B. Build a parameter string for the secondary command processor in the
form:

1 byte length of parameter string
xx bytes parameter string
‘1 byte ODh (carriage return)

For example, the assembly language statement below would build the
string to cause execution of the command FOO.EXE:

DB 19,"/c C:FOO",13
C. Use the EXEC function call (4Bh), function value 0 to cause execution

of the secondary copy of the command processor. (The drive,
directory, and name of the command processor can be gotten from the
COMSPEC variable in the DOS environment passed to you at PSP+2Ch.)

D. Remember to set offset 2 of the EXEC control block to point to the
string built above.

3. All open files of a process are duplicated in the newly created process
after an EXEC, except for files originally opened with the inheritance
bit set to 1.

4. The environment is a copy of the original command processor's
environment. Changes to the EXECed environment are not passed back to the
original. The environment is followed by a copy of the DS:DX filename
passed to the child process. A zero value will cause the child process
to inherit the environment of the calling process. The segment address !
of the environment is placed at offset 2Ch of the PSP of the program
being invoked.

5. This function uses the same resident part of COMMAND.COM, but makes a _
duplicate of the transient part. 5

6. How EXEC knows where to return to: Basically the vector for int 22h
holds the terminate address for the current process. when a process
gets started, the previous contents of int 22h get tucked away in the
PSP for that process, then int 22h gets modified. 50 if Process A EXECs
process B, while Process B is running, the vector for int 22h holds the
address to return to in Process A, while the save location in Process
B's PSP holds the address that process A will return to when *it*
terminates. When Process B terminates by one of the usual legal means,
the contents of int 22h are (surmising) shoved onto the stack, the old
terminate vector contents are copied back to int 22h vector from
Process B’s PSP, then a RETF or equivalent is executed to return
control to process A.

HUAWEI EX. 1015 - 89/393

HUAWEI EX. 1015 - 90/393

DOS Interrupts and Functions Calls 3 83

To load an overlay file with 4B: first, don't de-allocate the memory that
the overlay will load into. With the other 43h functions, the opposite
is true——you have to free the memory first, with function 4Ah. Second,
the 'segment address where the file will be loaded’ (first item in the
parameter block for sub—function 03) should be a paragraph boundary
'within your currently—allocated memory. Third, if the procedures within

10.

11.

the overlay are FAR procs (while they execute, CS will be equal to the
segment address of the overlay area), the relocation factor should be
set to zero. 0n the other hand, if the CS register will be different
from the overlay area's segment address, the relocation factor should be
set to represent the difference. You determine where in memory the
overlay file will load by using the segment address mentioned above.
Overlay files are .EXEs (containing header, relocation table, and memory
image).

. When function 00h returns, all registers are changed, including the
stack. You must resore SS, SP, and any other required registers.

. PCDOS EXEC function 3 (overlay) lives in the transient piece of
COMMAND.COM and gets loaded when needed, thus the requirement for enough
free space to load the EXEC loader (about 1.5k). Under MSDOS the EXEC
system call lives in system space.
If you try to overlay an .EXE file with the high/low switch set to load
the in high memory nothing will happen. The high/Low switch is only for
process creation, not for overlays.
DOS 2.x destroys all registers, including SS:SP.

Function 4Ch Terminate a Process (EXIT)

entry

return
note 1.

2.
3.

4.

Quit with ERRORLEVEL exit code
AH 4Ch

AL exit code in AL when called, if any, is passed to next processnone

Control passes to DOS or calling program.
Return code from AL can be retrieved by ERRORLEVEL or function 4Dh.
All files opened by this process are closed, buffers are flushed, and the
disk directory is updated.
Restores: Terminate vector from PSP:000Ah

Ctrl—C vector from PSP:000Eh
Critical Error vector from PSP:0012h

Function 4Dh Get Return Code of a Subprocess (WAIT)
Gets return code from functions 31h and 4Dh (ERRORLEVEL)

entry AH 4Dh
return AL exit code of subprogram (functions 31h or 4Ch)AH circumstance which caused termination

00h normal termination
01h control—break or control—C
02h critical device error

03h terminate and stay resident (function 31h)
note The exit code is only returned once (the first time).

Function 4Eh Find First Matching File (FIND FIRST)
entry AH 4Eh

CX search attributes

DS:DX pointer to ASCIIZ filename (with attributes)
return CF set Ax error code (02h, 12h)

clear data block written at current DTA

format of block is: (info from BIX)
documented by Micro— 00h 1 byte attribute byte of search
soft as ‘reserved for 01h 1 byte drive letter for search
DOS' use on subsquent 02h 11 bytes the search name used
Find Next calls’ och 2 bytes word value of last entry
function 4Fh OFh 4 bytes dword pointer to this DTA

13h 2 bytes word directory start
PC—DOS 3.10 (from INTERRUP.ARC)

00h 1 byte drive letter
Olh—OBh bytes search template
OCh 1 byte search attributes

DOS 2.x (and DOS 3.x except 3.1?)
00h 1 byte search attributes
01h 1 byte drive letter
02h—och bytes search template
ODh—OEh 2 bytes entry count within directory

HUAWEI EX. 1015 - 90/393

HUAWEI EX. 1015 - 91/393

84 The Programmer’s Technical Reference

0Fh—12h 4 bytes reserved
13h-14h 2 bytes cluster number of parent directory

15h 1 byte file attribute
16h 2 bytes file time
18h 2 bytes file date
1Ah 2 bytes low word of file size
1Ch 2 bytes high word of file size
1Eh 13 bytes name and extension of file found, plus

1 byte of Os. All blanks are moved from
the name and extension, and if an
extension is present it is preceded by a
period.

note 1. This function does not support network operations.
2. wildcards are allowed in the filespec.
3. If the attribute is zero, only ordinary files are found. If the volume

label bit is set, only volume labels will be found. Any other attribute
will return that attribute and all normal files together.

4. To look for everything except the volume label, set the hidden, system,
and subdirectory bits all to 1.

Function 4Fh Find Next Matching File (FIND NEXT)
Find next ASCIIZ file

entry' AH 4Fhreturn CF clear data block written at current DTA
set Ax error code (02h, 12h)

note 1. If file found, DTA is formatted as in call 4Eh
2. Volume label searches using 4Eh/4Fh reportedly aren't 100% reliable under

DOS 2.x. The calls sometime report there's a volume label and point to a
garbage DTA, and if the volume label is the only item they often won’t
find it. Most references recommend the use of the older FCB calls for
dealing with the volume labels.

3. This function does not support network operations.
4. Use of this call assumes that the original filespec contained wildcards

Function 50h 'Used Internally by DOS' - Set PSP
* Set new Program Segment Prefix (current Process ID)

entry AH 50h
BX segment address of new PSP

return none - swaps PSPs regarded as current by DOS
note 1. By putting the PSP segment value into BX and issuing call 50h DOS stores

that value into a variable and uses that value whenever a file call is
made.

2. Note that in the PSP (or PDB) is a table of 20 (decimal) open file
handles. The table starts at offset 18h into the PSP. If there is an
OFFh in a byte then that handle is not in use. A number in one of the
bytes is an index into an internal FB table for that handle. For
instance the byte at offset 18h is for handle 0, at offset 19h handle 1,
etc. up to 13h. If the high bit is set then the file associated by the
handle is not shared by child processes EXEC'd with call 4Bh.

3. Function 50h is dangerous in background operations prior to DOS 3.x as it
uses the wrong stack for saving registers (same as functions 0..0Ch in
Dos'2.x)

4. Under DOS 2.x, this function cannot be invoked inside an int 28h handler
without setting the Critical Error flag.

5. Open File information, etc. is stored in the PSP DOS views as current. If
a program (eg. a resident program) creates a need for a second PSP, then
the second PSP should be set as current to make sure DOS closes that as

opposed to the first when the second application finishes.
6. See PC Mag Vol.5, No 9, p.314 for discussion, also used in BCOPY.ASM
7. Used by DOS 3.3 PRINT & DEBUG, Destiew 2.01, Windows 1.03, SYMDEB from

MASM 4.0.

Function 51h "Used Internally by DOS“ - Get Program Segment Prefix
* Returns the PSP address of currently executing program

entry AH 51h
return Bx address of currently executing program

offset
00h 2 bytes program exit point
02h word memory size in paragraphs
04h byte unused (0)

HUAWEI EX. 1015 - 91/393

HUAWEI EX. 1015 - 92/393

AAA—r(DOS hummus and Functions Calls _ ' 85
05h 5 bytes CP/M style entry point (far call to DOS)
OAh word terminate address (old int 22h)
OCh word terminate segment
OEh word break address (old int 23h)
10h word break segment
12h error address (old int 24h)

‘ 14h error segment
1 16h word parent PSP segment
‘ 18h 20 bytes DOS 2.0+ open files, OFFh = unused

2Ch word Dos 2.0+ environment segment
ZEh dword far pointer to process’s SS:SP
32h word DOS 3.x+ max open files
34h DOS 3.x+ open file table address
36h dword DOS 3.x+ open file table segment

! 38h 24 bytes unused by DOS versions before 3.3
1 Sch 3 bytes DOS function dispatcher (FAR routine)

(' 53h 9 bytes unused‘ 55h FCB #1 extension
5Ch 16 bytes FCB #1, filled in from first cmdline argument

1 6Ch 20 bytes FCB #2, filled in from second cmdline argument80h 128 bytes command tail / default DTA buffer
note 1. Used in DOS 2.x, 3.x uses 62h.

j 2. Function 51h is dangerous in background operations prior to DOS 3.x as it
= uses the wrong stack for saving registers (same as functions 0..0Ch in

DOS 2.x)
3. 50h and 51h might be used if you have more than one process in a PC. For

instance if you have a resident program that needs to open a file you
I

’ could first call 51h to save the current ID and then call 50h to set the
(f ID to your PSP.
(4. Under DOS 2.x, this function cannot be invoked inside an int 28h handler
‘ without setting the Critical Error flag.

‘ 5. Used by DOS 3.3 PRINT, DEBUG.\

\
I Function 52h ’Used Internally by DOS’ — IN—VARS

* _ Returns a FAR pointer to a linked list of DOS data variables
‘ entry AH 52h
33 return ES:BX pointer to the DOS list of lists, for disk information. Does not r
1; access the disk, so information in tables might be incorrect if
?j disk has been changed. Returns a pointer to the following array

of longword pointers:

={ Bytes Value Description .
;: (common) —02h word segment of first memory control block available
i‘ through MALLOC
?‘ 00h dword far pointer to first DOS Disk Parameter Block

04h dword far pointer to linked list of DOS open file
tables. (Open File Table List)

; 08h dword far pointer to CLOCK$= device driver, whetherinstallable or resident
och dword far pointer to actual CON: device driver, whether

‘ installable or resident

(DOS 2.x only)
10h word number of logical drives in system
11h word largest logical sector size supported
13h dword far pointer to first disk buffer used by

the logical drives. The size of each
sector buffer is equal to the logical

* sector size plus a 16 byte header.
(Sector Buffer Header) The number of
these buffers is set by CONFIG.SYS.
(Sector Buffer Structure)

17h ——-— beginning (not a pointer. The real
beginning!) of NUL device driver. This
is the first device on DOS’s linked list
of device drivers.

(DOS 3.x+)

10h word largest logical sector sector size
supported (most versions of DOS are
hardcoded to 200h)

12h dword far pointer to sector buffer structure
used by the logical drives. (Sector
Buffer Structure)

HUAWEI EX. 1015 - 92/393

HUAWEI EX. 1015 - 93/393

86

16h

lAh

lEh
20h

21h

22h

The Programmer’s Technical Reference

dword far pointer to drive path and seek
information table. (Drive Path Table)

dword far pointer to a table of FCBs. This
table is only valid if FCBS=xx was used
in CONFIG.SYS

word size of PCB table

byte number of logical drives presently
supported

byte value of LASTDRIVE= in CONFIG.SYS
(default 5)

———— beginning (not a pointer—the real
beginning!) of the NUL device driver.
This is the first device on DOS’s linked
list of device drivers.

note 1. This call is not supported in OS/2 1.0’s DOS Compatibility Box.
2. Used by DOS 4.0 MEH.EXE, DOS 3.3 ASSIGN.COM, PRINT.COM, SUBST.EXE.3. Disk Parameter Block

offset
00h

01h

02h
04h

05h

06h

08h
09h
08h
ODh

OFh
10h
12h
16h
17h

18h

Open File Table
offset
00h

04h

06h

Open File Table
offset
00h
02h
03h
05h
06h

07h

size
byte

byte

word
byte

byte

word

byte
word
word
word

byte
word
dword
byte
byte

dword

size
dword

word

size
word
byte
word
word
dword

dword

description
disk unit number, 0=A, 1=B, etc. If this and the
next byte are OFFh this entry is the end of the
list and is not valid
disk unit number passed to the block device
driver responsible for this logical drive
the drive’s logical sector size in bytes
number of sectors per cluster -1. The number of
sectors per cluster must be a power of 2
allocation shift. The shift value used to calcu
late the number of sectors from the number of
clusters without having to use division. Number
of sectors = number of clusters < allocation
shift.

number of reserved sectors at the beginning of
the logical drive. May contain partition information.
number of FATS. Default 2
number of root directory entries
first sector containing data (disk files)
last cluster number. Number of clusters in data
area +1. If less than OFFGh the FAT uses 12-bit
directory entries, otherwise 16 bit entries
FAT size. Size of one FAT in logical sectors
sector number of first root directory entry
far pointer to the block device driver
media descriptor byte (see Chapter 8)
media flag. If this is 0, the drive has been
accessed. If it is —1 or set to —1 DOS will
rebuild all data structures associated with this
drive on the next access ‘
far pointer to the next Disk Parameter Block

List
description
far pointer to the next table in the list. If the
offset of this pointer is OFFFFh, then the next
table is the final entry and invalid
number of table entries. Each table entry is 53
bytes long. There will be at least one entry in
each table except the terminal entry
beginning of the Open File Table entries (note 5)

Entry (35h bytes long)
description
number of file handles referring to this file
access mode (see function 3Dh)unknown

Device Information Word (see function 44h/00h)
far pointer to device info header if this is a
character device. If block device, this will be
a far pointer to the Disk Parameter Block
pointer to device driver header if character device;
pointer to DOS Device Control Block if block device

HUAWEI EX

.1015 - 93/393

HUAWEI EX. 1015 - 94/393

 Function*

entry

DOS Interrupts and Functions Calls 87

OBh word starting cluster of file
ODh word file time in packed format
OFh word file date in packed format
11h dword file size
15h dword current offset in file
19h word unknown
1Bh word last cluster read

1Dh word number of sector containing directory entry
th byte offset of directory entry within sector (byte offset/32)
20h 11 bytes filename in FCB format (no path, no period, blank padded)
2Bh 6 bytes ' PSP segment of file’s owner
2Dh 3 bytes unknown — normally 0
31h word PSP segment of file's owner
33h—34h word unknown - normally 0

Sector Buffer Header: (DOS 2.x+)
offset size description
00h dword pointer to next disk buffer, OFFFFh if last
04h 4 bytes unknown
08h word logical sector number
10h 2 bytes unknown
12h dword pointer to DOS Device Control Block
Sector Buffer Structure, followed by 512 byte buffer
offset size description
00h dword far pointer to the next sector buffer. Buffers are filled

in the order of their appearance on this linked list.
The last buffer is valid and has the value OFFFFFFFFh

04h byte drive number. This is the drive that the data currently
in the buffer refers to. OFFh if never used.

05h byte data type flags. Bit fields which show the area of the
drive the buffer refers to

bits 1 FAT data
2 subdirectory data
3 file data

5 contents of buffer may be overwritten if set
06h word logical sector number of buffered data ‘
08h word access number

OAh dword far pointer to Disk Parameter Block
OEh word not used, normally 0

Drive Path Table Entry (array, one Slh—byte entry per drive):
offset size description
00h 64 bytes current default ASCIIZ pathname with drive letter, colon,

and leading backslash
44h byte flags byte. All valid entries contain a 40h, last entrycontains 00h
45h dword far pointer to current Disk Parameter Block
49h word current block or track/sector number for this directory.

0 if root dir, _1 if never acCessed
48h dword unknown. Usually -1
4Fh word offset of ’\’ in current path field representing root of

directory of logical drive (2 if not SUBSTed or JOINed,
otherwise number of bytes in SUBST/JOIN path)

53h "Used Internally by DOS" — Translate BPB
Translates BPB (BIOS Parameter Block, see below) into a DOS Disk
Block (see function call 32h).AH 53h

DS:SI pointer to BPB (BIOS Parameter Block) ‘
ES:BP pointer to area for DOS Disk Block

Layout of Disk Block:
bytes value
ooh—01h bytes per sector, get from DDB bytes 02h—03h.
02h sectors per cluster, get from (DDB byte 4) + 1
O3h—O4h reserved sectors, get from DDB bytes 06h—07h
05h number of FATs, get from DDB byte 08h
06h—07h number of root dir entries, get from DDB bytes 09h~0Ah
08h—09h total number of sectors, get from:

((DDB bytes ODh—OEh) - 1) * (sectors per cluster (BPB
byte 2)) + (DDB bytes OBh—Och)

OAh media descriptor byte, get from DDB byte 16h

HUAWEI EX.1015 - 94/393

HUAWEI EX. 1015 - 95/393

88 The Programmer’s Technical Reference ' “OBh-OCh number of sectors per FAT, get from DDB byte OFh
return unknown

Function 54h Get Verify Setting
Get verify flag status

entry AH 54h . Freturn AL 00h if flag off 1
01h if flag on ;

note Flag can be set with function 2Eh. Q

Function 55h ’Used Internally by DOS' — Create ‘Child’ PSP
* Create PSP: similar to function 26h (which creates a new

Program Segment Prefix at segment in DX) except creates a ’child'
PSP rather than copying the existing one.

entry AH 55h
DX segment number at which to create new PSP.

return unknown
note 1. This call is similar to call 26h which creates a PSP except that unlike

call 26h the segment address of the parent process is obtained from the
current process ID rather than from the cs value on the stack (from the
INT 21h call). DX has the new PSP value and SI contains the value to be
placed into PSP:2 (top of memory).

2. Function 55 is merely a substitute for function 26h. It will copy the
current PSP to the segment address DX with the addition that SI is
assumed to hold the new memory top segment. This means that function
26h sets SI to the segment found in the current PSP and then calls
function 55h.

Function 56h Rename a File
entry AH 56h

DS:DX pointer to ASCIIZ old pathname !
ES:DI pointer to ASCIIZ new pathname

return CF clear successful rename
set AX error code (02h, 03h, 05h, 11h)

note 1. Works with files in same logical drive only.
2. Global characters not allowed in filename.
3. The name of a file is its full pathname. The file's full pathname can be

changed, while leaving the actual FILENAME.EXT unchanged. Changing the
pathname allows the file to be ’moved' from subdirectory to subdirectory
on a logical drive without actually copying the file.

4. DOS 3.x allows renaming of directories.

Function 57h Get/Set a File’s Date and Time
Read or modify time and date stamp on a file‘s directory entry entry AH 57h

AL function code
00h Get Date and Time
01h Set Date and Time

CX time to be set ,'
DX date to be set

02h unknown (DOS 4.0+)
03h unknown

04h unknown (DOS 4.0+)
BX file handle

return CF clear CX time of last write (if AL = 0)
DX date of last write (if AL = 0)

set Ax error code (01h, 06h)
note Date/time formats are:

CX bits OBh—OFh hours (0-23) DX bits 09h—0Fh year (relative to1980

OSh-OAh minutes (0—59) 05h—08h month (0—12)
ooh—04h #2 sec. incr. (0—29) ooh-04h day of the month

(0—31) QI

Function 58h Get/Set Allocation strategy (DOS 3.x+)
entry AH 58h

AL 00h Get Current Strategy
01h Set New Current Strategy

BL new strategy if AH=1
00h First Fit — chooses the lowest block in memory which will

fit (this is the default) (use first memory block large

HUAWEI EX. 1015 - 95/393

HUAWEI EX. 1015 - 96/393

DOS Interrupts and Functions Calls ‘ 89

enough)
01h Best Fit — chooses the smallest block which will fill the

request.
02h Last Fit — chooses the highest block which will fit.

return CF clear (0) successful
- set (1) error

AX error code (01h)
AX strategy code (CF=0)

note 1. Documented in Zenith DOS version 3.1, some in Advanced MSDOS.
2. The set subfunction accepts any value in EL; 2 or greater means last fit.

The get subfunction returns the last value set, so programs should check
whether the value is greater than or equal to 2.

Function 59h Get Extended Error Code (DOS 3.x+)
The Get Extended Error function call (59h) is intended to provide a commonset of
error codes and to supply more extensive information about the error to the appli-
.cation. The information returned from function call 59h, in addition to the error
code, is the error class, the locus, and the recommended action. The error class
provides information about the error type (hardware, internal, system, etc.). The
locus provides information about the area involved in the failure (serial device,
block device, network, or memory). The recommended action provides a default ac—
tion for programs that do not understand the specific error code.

Newly written programs should use the extended error support both from interrupt
24h hard error handlers and after any int 21h function calls. FCB function calls
report an error by returning OFFh in AL. Handle function calls report an error by
setting the carry flag and returning the error code in AX. Int 21h handle func—
tion calls for DOS 2.x continue to return error codes 0—18. Int 24h handle func—
tion calls continue to return error codes 0-12. But the application can obtain
any of the error codes used in the extended error codes table by issuing function
call 59h. Handle function calls for DOS 3.x can return any of the error codes.
However, it is recommended that the function call be followed by function call
59h to obtain the error class, the locus, and the recommended action.

The Get Extended Error function (59h) can always be called, regardless of whether
the previous DOS call was old style (error code in AL) or new style (carry bit).
It can also be used inside an int 24h handler. You can either check AL or the
carry bit to see if there was no error, and call function 59h only if there was
an error, or take the simple approach of always calling 59h and letting it tell
you if there was an error or not. When you call function 59h it will return with
AX=0 if the previous DOS call was successful.

entry AH 59h
BX version code (0000 for DOS 3.0 and 3.1)

return Ax extended error code:
01h Invalid function number
02h File not found
03h Path not found

04h Too many open files, no file handles left
05h Access denied
06h Invalid handle
07h Memory control blocks destroyed
08h Insufficient memory
09h Invalid memory block address
OAh Invalid environment
OBh Invalid format
och Invalid access code ‘
ODh Invalid data
OEh Reserved

OFh Invalid drive was specified
10h Attempt to remove the current directory
11h Not same device
12h No more files
13h Attempt to write on write—protected diskette
14h Unknown unit
15h Drive not ready
16h Unknown command
17h Bad CRC check
18h Bad request structure length
19h Seek error

1Ah Unknown media type

HUAWEI EX. 1015 - 96/393

HUAWEI EX. 1015 - 97/393

90

BH

lBh
1Ch
th
lEh
th
20h
21h
22h
23h
24h
25h
26h
27h
28h
29h
2Ah
23h
2Ch
2Dh
2Eh
2Fh
30h
31h
32h

33h
34h
35h
36h
37h
38h
39h
3Ah
3Bh
3Ch
3Dh
3Eh
3Fh
40h
41h
42h
43h
44h
45h
46h
47h
48h

49h
4Ah
4Eh
4Ch
4Dh
4Eh
4Fh
50h
51h
52h
53h
54h
55h
56h
57h
58h

The Programmer’s Technical Reference
Sector not found
Printer out of paper
Write fault
Read fault
General Failure

sharing violation
Lock violation
Invalid disk change
FCB unavailable
Sharing buffer overflow
Reservedu

u
n
u.
n
n
u
u
n
.-

Reserved
Network: request not supported (DOS 3.1 + MS
Networks)
Remote computer not listening
Duplicate name on network
Network: name not found
Network: busy
Network: device no longer exists
NETBIOS command limit exceeded
Network: adapter hardware error
Incorrect response from network
Unexpected network error
Incompatible remote adapter
Print queue full
Not enough space for print file
Print file was deleted
Network: name was deleted
Network: Access denied

Network: device type incorrect
Network: name not found
Network: name limit exceeded
NETBIOS session limit exceeded
Temporarily paused
Network: request not accepted
Print or disk redirection paused (DOS 3.1 + MS
Networks)
Reserved

Reserved
File exists
Reserved

Cannot make directory entry
Fail on interrupt 24h
Too many redirections
Duplicate redirection
Invalid password
Invalid parameter
Network: device fault

class of error:
01h
02h
03h
04h
05h
06h

Out of resource
Temporary situation
Authorization (denied access)Internal
Hardware failure
System failure

HUAWEI EX. 1015 - 97/393

HUAWEI EX. 1015 - 98/393

note 1.

call e
38h
39h
3Ah
3Bh
3Ch
3Dh
3Eh
3Fh
40h

mmmwwwwwm

DOS Intenupts and Function Calls 91

07h Application program error
08h Not found
09h Bad format
OAh Locked

OBh Media error (wrong volume ID, disk failure)
OCh Already exists
ODh Unknown

BL suggested action code:
01h Retry
02h 'Delayed retry
03h Prompt user
04h Abort after cleanup
05h Immediate abort
06h Ignore
07h Retry after user intervention

CH locus (where error occurred):
01h Unknown or not appropriate
02h Block device
03h Network related
04h Serial device
05h Memory related

Not all DOS functions use the carry flag to indicate an error. Carry
should be tested only on those functions which are documented to use it.
None of the DOS functions which existed before 2.0 use the carry
indicator. Many of them use register AL as an error indication instead,
usually by putting OFFh in AL on an error. Most, but not all, the 'newl
(2.x, 3.x) functions do use carry, and most, but not all, of the 'old’
(1.x) functions use AL. “
On return, CL, DI, DS, DX, ES, BP, and SI are destroyed - save before
calling this function if required.
DOS 2.x Error Codes: If you are using function calls 38h-57h with DOS
2.x, to check if an error has occurred, check for the following error
codes in the AX register:
rror code call error code call error code

41h 2,3,5 4Ah 7,8,9
,5 42h 1,6 4Bh 1,2,3,5,8,10,11
,5,15 43h 1,2,3,5 4Eh 2,3,18

44h 1,3,5,6 4Fh 18
,4,5 45h 4,6 56h 2,3,5,17
,3,4,5,12 46h 4,6 57h 1,6

47h 15
,6 48h 7,8

6 49h 7,9I

5. Note that extended error codes 13h through th correspond to error codes
0

Function

entry

return

note 1.

Function
entry

return

note 1.
2.

0h through OCh returned by int 24h.

5Ah Create Temporary File
Create unique filename (for temporary use) (DOS 3.x)AH SAh

DS:DX pointer to ASCIIZ directory pathname ending with a
backslash (\)

CX file attribute
CF clear DS:DX new ASCIIZ pathname

Ax handle
set Ax error code (03h, 05h)

The file created is not truly 'temporary'. It must be removed by the user.
If the filename created already exists in the current directory, this
function will call itself again with another unique filename until a
unique filename is found.
The temporary filename usually consists of mixed letters and numbers. No
file extension appears to be generated.

SBh Create a New File (DOS 3.x+)AH 5Bh

DS:DX pointer to directory ASCIIZ pathname
CX file attribute

CF clear AX file handle \
DS:DX new ASCIIZ pathname

set AX error code (03h, 04h, 05h, 50h)
Unlike function 3Ch, function 53h will fail if the file already exists.
The new file is opened in read/write mode.

HUAWEI EX.1015 - 98/393

HUAWEI EX. 1015 - 99/393

92 The Programmer’s Technical Reference

Function Sch Lock/Unlock File Access (DOS 3.x+)
entry AH Sch

AL 00h To lock file
01h To unlock file

BX file handle
CX:DX starting offset of region to lock
SI:DI size of region to lock

return CF clear successful

set AX error code (01h, 06h, 21h)
note 1. Close all files before exiting or undefined results may occur.2. Programs spawned with EXEC inherit all the parent's file handles but notthe file locks. ‘

Function 5Dh undocumented — Multifunction*

entry

return

note 1.
2.
3.

4.

Function

entry

DOS Internal — partial (DOS 3.x+)AH 5Dh
AL subfunction

00h Indirect Function Call

DS:DX pointer to buffer containing register values AX,
BX, CX, DX, SI, DI, DS, ES for a call to int 21h

return as appropriate for function being called
note Does not check AH. Out of range values will crash

the system.
01h SYNC? (DOS 3.1+)

parameters unknown
note 1. Does something to each disk file in the System

File Table which has been written to.
2. If remote file, calls int 2Fh/fn1107h.
3. Seems to update the time stamp of all open files

which have been written to.
02h—05h Network functions? (DOS 3.1+)

parameters unknown
note Error unless network is loaded.

06h Get Address of Critical Error Flag
return CX unknown value

Dx unknown value
DS:SI pointer to critical error flag

08h (unknown — used by COMMAND.COM)
09h (unknown - used by COMMAND.COM)
OAh Set Error Info (Error, Class, Action, and Locus)

DS:DX address of ll—word error information table
words 0 to 7: values of AX, Bx, CX, DX, SI, DI,

DS, ES that function 59h will
return

words 8 to 10: zero (reserved)CX unknown
DX unknown

DS:SI (for 06h) pointer to critical error flag
This call seems to have many different functions.
Function OAh; DOS 3.1+.
Function 06h; setting CritErr flag allows use of functions SOh/Slh from
int 28h under DOS 2.x by forcing the use of the correct stack.
Functions 07h, 08h, 09h are identical in DOS 3.1 and call int 2Fh fn1125h.

5Eh Network Printer (Partially documented by Microsoft)DOS 3.1+ with Networks software
AH 5Eh
AL 00 Get Machine Name

DS:DX pointer to 16—byte buffer for ASCIIZ name
return CH 0 if name not defined

CL NETBIOS name number if CH 0
DS:DX pointer to identifier if CH 0

note the ASCIIZ name is a 15 byte string padded to
length with zeroes

01 Set Machine Name
DS:DX pointer to ASCIIZ name
CH unknown
CL name number

02 Set Printer Control String
BX redirection list index

CX length of setup string (max 64 bytes)

HUAWEI EX. 1015 - 99/393

HUAWEI EX. 1015 - 100/393

DOS Interrupts and Function Calls 93

DS:SI pointer to string buffer
03 Get Printer Control String

BX redirection list index
ES:DI pointer to string buffer

_ return CX length of setup string (max 64 bytes)return CF clear successful
set error

Ax error code (01h for all listed subfunctions)
note 1. Used in IBM’s G Microsoft's Network programs.

2. Partial documentation in Fall 1985 Byte.
3. These services require that the network software be installed.
4. Partial documentation in Advanced MS-DOS.

5. SHARE must be loaded or results can be unpredictable on 00h, or fail with02h or 03h.

Function 5Fh Network Redirection

‘ (DOS 3.1 + Microsoft Networks)
entry AH 5Fh

AL *OOh Unknown
*Olh Unknown

02h Get Redirection List Entry
Bx redirection list index
DS:SI pointer to 16 byte buffer for local device name
ES:DI pointer to 128 byte buffer for network name
return BH device status flag (bit 0=0 if valid)

(bit 0=1 if invalid)
BL device type

03 printer device
04 drive device

CX stored parameter value (user data)
DS:SI pointer to 16 byte local device

‘ name
ES:DI pointer to 128 byte network name

note DX and BP are destroyed by this call!
03h Redirect Device — Make Assign List Entry

Redirects a workstation drive or device to a server
directory or device.
BL device type

03 printer device
04 file device

CX stored parameter value
DS:SI pointer to ASCIIZ source device name
ES:DI pointer to destination ASCIIZ network path +

ASCIIZ password
04h Cancel Redirection Assignment

DS:SI pointer to ASCIIZ device name or network path tobe cancelled
return CF clear successful

set if error
AX error code

(fn 02h) 01h, 12h
(fn 03h) 01h, 03h, 05h, 08h
(fn 04h) 01h, OFh

note 1. Used in IBM's Network program.
2. Partial documentation in Fall 1985 Byte.
3. These services require that the network software be installed.
4. Partial documentation in Advanced MS—DOS.
5. SHARE must be loaded or the call will fail.
6. The network device name requires a password.

Function 60h undocumented — Parse pathname (DOS 3.x+)
* Perform name processing on a string (internal to DOS)

entry AH 60h
DS:SI pointer to ASCIIZ source string (null terminated)
ES:DI pointer to destination 67 byte (?) ASCIIZ string buffer

return ES:DI buffer filled with qualified name in form (drive):(path)CF 0 no error
1 error

Ax error code (unknown)

note 1. Documented in Zenith 3.05 Tech Ref. .
2. All name processing is performed on the input string: string substitution

HUAWEI EX. 1015 - 100/393

HUAWEI EX. 1015 - 101/393

94

is performed on the components, current drive/directories are prepended,. and

3. Example: If current drive/directory is c:\test,

The Programmer’s Technical Reference

.. are removed.

to c:\test\myfile.x; ..\source\sample.asm is tranlated to c:\source\
sample. asm.

myfile.x is translated

4. It is the caller’s responsibility to make sure DS:SI does not point to a
null string. If it does, SI is incremented, a null byte is stored at
ES:DI, and the routine returns.

5. Used by CHKDSK, at least in DOS 3.3, and DOS 3.x.
6. If path string is on a JOINed drive, the returned name is the one that

would be needed if the drive were not JOINed; similarly for a SUBSTed
drive letter. Because of this, it is possible to get a qualified name
that is not legal with the current combination of SUBSTs and JOINS.

Function 61h* undocumented — (DOS 3.x)
Internal to DOS - parameters not known

entry AH 61h
return AL 0

note Supposedly documented in Zenith DOS 3.05 Tech Ref.

Function 62h
entry AH
return BX

Function 63h

entry AH
AL

return DS:SI.DL

Get Program Segment Prefix (PSP) (DOS 3.x+)62h

segment address of PSP

Get Lead Byte Table (MS—DOS 2.25 only)
Added in DOS 2.25 for additional foreign character set support.
63h
subfunction
00h Get System Lead Byte Table Address
01h Set/Clear Interim Console Flag

DL OOOOh to clear interim console flag
0001b to set interim console flag

02h get interim console flag
pointer to lead byte table (AL = 00h)
interim console flag (AL = 02h)

note 1. Function 63h destroys all registers except SS:SP on return.2

Function 64h

. Not supported in DOS 3.x or 4.x.
3. Note in 63h does not return errors in AL or CF.

Undocumented - Used internally by DOS
entry AH 64h

AL 00h Get (something)
return DL unknown

01h Set (something)
DL unknown
02h Get and set (something)
DL new (something)
return DL old (something)

note DOS 3.2+ internal function of some type? May be a network function.

Function 65h

entry AH
AL

BX
CX
DX
ES:DI

return CF

CX
ES:DI

Get Extended Country Information (DOS 3.3+)
Returns information about the selected country formats,
code pages, and conversion tables65h
info ID code

01h get general internationalization info
02h get pointer to uppercase table
03h unknown

04h get pointer to filename uppercase table
05h unknown
06h get pointer to collating sequence table
07h get pointer to double—byte character set table
code page (—1 = global code page)
size of buffer (=5)
country ID (—1 = current country)
pointer to country information bufferset on error
AX error code (unknown)

otherwise:
size of country information returned
pointer to country information:

HUAWEI EX

.1015 - 101/393

HUAWEI EX. 1015 - 102/393

DOS Interrupts and Function Calls I 95
1 byte info ID

If info ID 1:
dword pointer to information

If info ID = 1:
word size
word country ID
word code page

34 bytes (see function 38h)
If info ID = 2:

dword ~pointer to uppercase table
word table size

128 bytes uppercase equivalents (if any) of chars 80h—OFFh
If info ID = 4:

dword pointer to collating tableword table size
256 bytes values used to sort characters OOh—OFFh

If info ID = 6:

dword pointer to filename uppercase table
word table size

128 bytes uppercase equivalents (if any) of chars 80h—0FFh
If info ID = 7: (DOS 4.0)

unknown

Function 66h Get/Set Global Code Page Table (DOS 3.3+)
Query/reset code page defaults

entry AH 66h .
AL 00h Get Global Code Page

01h Set Global Page
BX active code page
Dx system code page (active page at boot time)return CF clear successful

set AX error code (unknown)
if 00h BX active code page

DX system code page (active page at boot time)
note Bx = active code page: 437 = US, 860 = Portugal, 863 = Canada (French)

865 = Norway/Denmark, 850 = multilingual

Function 67h Set Handle Count (DOS 3.3+)
Supports more than 20 open files per process

entry AH 67h
BX desired number of handles (max 255)

return CF clear if OK
’ CF set if error

AX error code (unknown)
note This function changes the 20-byte handle table pointer in the PSP

to point to a new, larger handle table elsewhere in memory.

Function 68h Commit File (Dos 3.3+)
Write all buffered data to disk

entry AH 68h
BX file handle

return CF set AX error code (unknown)
clear successful

note 1. Faster and more secure method of closing a file in a network than current’ close commands.

2. This is effectively the same as DUPing the handle for a file and then
closing the new one, except that this call won’t fail if the system isout of handles.

3. If Ex 20, no action is taken.

Function 69h Disk Serial Number DOS 4.0+ (US versions)
Handles 'Volume Serial Number’ on disks formatted with 4.0+

entry AH 69h Get Volume Serial Number
DS:DX pointer to table

return DS:DX data table. Format:

word unknown (zeroes on my system.
dword disk serial number (binary)

11 bytes volume label or 'No NAME ’ if none
8 bytes FAT type — string 'FAT12 ' or 'FAT16

note The FAT type field refers to the number of bits per directory entry.

HUAWEI EX. 1015 - 102/393

HUAWEI EX. 1015 - 103/393

96 The Programmer’s Technical Reference ' t 5

Function 6Ah Unknown (DOS 4.0?)

Function 63h Unknown (DOS 4.0?)

Function 6Ch Extended Open/Create DOS 4.0+ (US)
Combines functions available with Open, Create, Create New, and
Commit File

entry AH 6Ch
AL 00h reserved [which means there might be other subfunctions?]
BX mode format OWFO 0000 1855 OAAA

AAA is access code (read, write, read/
write) SSS is sharing mode
I 0 pass handle to child :

1 no inherit [interestingl] ;F 0 use int 24h for errors
1 disable int 24h for all 1/0 on

this handle; use own error routine ‘W 0 no commit
1 . auto commit on all writes ' '

CX create attribute
DL action if file exists/does not exists .

bits 7—4 action if file does not exist I
0000 fail :
0001 create i

3-0 action if file exists 3
0000 fail

0001 open ‘
0010 replace/open

DH 00h '
DS:SI pointer to ASCIIZ file name

return CF set on error
Ax error code (unknown)
clear
AX file handle
CX action taken

01h file opened
02h file created/opened
03h file replaced/opened

Functionit

entry AH
return
note 1.

89h

unknown
Function included in Microsoft C 4.0 startup code MSDOS.INC

2. Debugging shows that the first instruction on entry to DOS compares AH
with 64h (at least in DOS 3.2) and aborts the call if AH 64.

undocumented — DOS_§leep
Not documented by Microsoft
89h

3. Possibly used in European MSDOS 4.0?

Aftermarket Application Installed Function Calls .

Novell Netware 2.11:

Novell no longer recommends the int 21h method for invoking the Netware functions. Int 21h

will be supported indefinitely, but the net API calls for addressing the software through the ;
Multiplex Interrupt (2Fh). You may address the API through int 2Fh in the same manner as int
21h; only the interrupt number is different.

Novell API calls are referenced in Chapter 13. Most functions from 0B6h through 0F9h are pre-

empted by NetWare; if your software uses any of these calls for another purpose it will likely not
run under NetWare.

Note: Novell (and most others’) network software and SoftLogic’s DoubleDOS conflict on the
following int 21h functions OEAh-OEEh. Netware must use int 2Fh functions instead of 21h t
functions ifDoubleDOS will be used on the network.

HUAWEI EX. 1015 - 103/393

HUAWEI EX. 1015 - 104/393

DOS_Inten'upts and Function Calls I 97
Function OEAh DoubleDOS - Turn off task switching
entry AX OEAh
return Task switching turned off.

Function OEBh DoubleDOS — Turn on task switching
entry AH OEBh
return Task switching turned on.

Function OECh DoubleDOS - Get virtual screen address
entry AH OECh
return ES segment of virtual screen
note Screen address can change if task switching is on!

Function OEEh DoubleDOS - Release Timeslice
Give away time to other tasks

entry AH OEEh
‘ AL number of 55ms time slices to give away
return Returns after giving away time slices.

Function OFFh CED (CJ Dunford's DOS macro and command-line editor)CED installable commands

entry AH OFFh
AL 00h Add Installable Command

01h Remove Installable Command
02h Reserved, may be used to test for CED installation

BL mode byte
bit 0 callable from DOS prompt

1 callable from application
2-7 not used in public domain CED

DS:SI pointer to CR—terminated command name
ES:DI pointer to far routine entry point

return CF set on error
AX 01h invalid function

02h command not found (subfunction 1 only)
08h insufficient memory (subfunction 0 only)
OEh bad data (subfunction 0 only)

AH OFFh if CED not installed

HUAWEI EX. 1015 - 104/393

HUAWEI EX. 1015 - 105/393

Interrupts 22h Through 86h
_—____.——_____—_—_—————_._.____.__

Interrupt 22h Terminate Address

(0:0088h)
This interrupt transfers control to the far (dword) address at this interrupt location when an ap—
plication program terminates. The default address for this interrupt is 0:0088h through
0:008Bh. This address is copied into the program’s Program Segment Prefix at bytes OAh
through ODh at the time the segment is created and is restored from the PSP when the program
terminates. The calling program is normally COMMANDCOM or an application. Do not issue
this interrupt directly, as the EXEC function call does this for y0u. If an application spawns a .
child process, it must set the Terminate Address prior to issuing the EXEC function call, other-
wise when the second program terminated it would return to the calling program’s Terminate
Address rather than its own. This address may be set with int 21, function 25h.

Interrupt 23h Ctrl-Break Exit Address

(OzOOSCh)
If the user enters a Ctrl-Break during STDIN, STDOUT, STDPRN, or STDAUX, int 23h is ex-
ecuted. If BREAK is on, int 23h is checked on MOST function calls (notably 06h). If the user

written Ctrl-Break routine saves all registers, it may end with a return-from-interrupt instruc-

tion (IRET) to continue program execution. If the user-written interrupt program returns with
a long return, the carry flag is used to determine whether the program will be aborted. If the
carry flag is set, the program is aborted, otherwise execution continues (as with a return by
IRET). If the user-written Ctrl-Break interrupt uses function calls 09h or OAh, (Display String
or Buffered Keyboard Input) then a three—byte string of O3h-0Dh-0Ah (ETX/CR/LF) is sent to
STDOUT. If execution is continued with an IRET, I/O continues from the start of the line. When

the interrupt occurs, all registers are set to the value they had when the original function call to
DOS was made. There are no restrictions on what the Ctrl-Break handler is allowed to do, in-

cluding DOS function calls, as long as the registers are unchanged ifan IRET is used. If the pro-
gram creates a new segment and loads a second program which itself changes the Ctrl-Break ad—
dress, the termination of the second program and return to the first causes the Ctrl-Break ad-
dress to be restored from the PSP to the value it had before execution of the second program.

Interrupt 24h Critical Error Handler

(0:0090h)
When an unrecoverable I/O error occurs, control is transferred to an error handler in the resi-

dent part of COMMAND.COM with an int 24h. This may be the standard DOS error handler
(Abort, Retry, Ignore?) or a user-written routine.

HUAWEI EX. 1015 - 105/393

HUAWEI EX. 1015 - 106/393

Dos Inten'upts 22/: Through 86h ' . 99

On entry to the error handler, AH will have its bit 7 =0 (high order bit) if the error was a disk
error (probably the most common error), bit 7= 1 ifnot.

BP:SI contains the address of a Device Header Control Block from which additional informa-

tion can be retrieved (see below). The register is set up for a retry operation and an error code is
in the lower halfof the DI register with the upper halfundefined.

The user stack is in effect and contains the following from top to bottom:
1? DOS registers from the issuing int 24h
CS int 241':

'flags
Ax user registers at time of original
Bx int 21h requestCX
SI
DI
BP
DS
ES

IP from original int 21h
,cs from the user to DOS

flags

Tb reroute the critical error handler to a user-written critical error handler, the following should
be done: »

Before an int 24h occurs:

1. The user application initialization code should save the int 24h vector and replace the vector
with one pointing to the user error routine.

When the int 24h occurs: .

2. When the user error routine received control it should push the flag registers onto the stack
and execute a far call to the original int 24h vector saved in step 1.

3. DOS gives the appropriate prompt, and waits for user input (Abort, Retry, Ignore, Fail).
After the user input, DOS returns control to the user error routine instruction following the
far call.

4. The user error routine can now do any tasks necessary. Tb return to the original application at
the point the error occurred, the error routine needs to execute an IRET instruction.

Otherwise, the user error routine should remove the IP, CS, and flag registers from the stack.
Control can then be passed to the desired routine.

Int 24h provides the following values in registers on entry to the interrupt handler:
entry AH status byte (bits)

7 0 disk I/O hard error
1 other error — if block device, bad FAT

- if char device, code in DI
6 unused
5 0 if IGNORE is not allowed

1 if IGNORE is allowed
4 0 if RETRY is not allowed

1 if RETRY is allowed
3 0 if FAIL is not allowed

1 if FAIL is allowed
2 \ disk area of error 00 = DOS area 01 = FAT
1 / 10 = root dir 11 = data area
0 0 if read operation

1 if write operation
AL drive number if AH bit 7 = 1, otherwise undefined

If it is a hard error on disk (AH bit 7:0), register AL contains
the failing drive number (0=A:, 1=B:, etc.).

BP:SI address of a Device Header Control Block for which error
occurred. Block device if high bit of BP:SI+4 = 1

DI (low byte) error code (note: high byte is undefined) error code

HUAWEI EX. 1015 - 106/393

HUAWEI EX. 1015 - 107/393

100 The Programmer’s Technical Reference

description
00h attempt to write on write-protected diskette
01h unknown unit
02h drive not ready
03h unknown command
04h data error (bad CRC)
05h bad request structure length
06h seek error
07h unknown media type
08h sector not found
09h printer out of paper
OAh write fault
OBh read fault
och general failure
OFh invalid disk change (DOS 3.0+)
10h FCB unavailable (DOS 3.0+)
11h sharing buffer overflow (DOS 3.0+)

The handler must return this information:

The registers are set such that if an IRET is executed, DOS responds according to ‘(AL) as fol-
lows: .
AL 00h IGNORE the error

01h RETRY the operation
02h ABORT via int 22h (jump to terminate address)
03h FAIL the system call that is in progress (DOS 3.0+)

note 1. Be careful when choosing to ignore a response because this causes DOS to
believe that an operation has completed successfully when it may not have.

2. If the error was a character device, the contents of AL are invalid.

Other Errors

IfAH bit 7= 1, the error occurred on a character device, or was the result of a bad memory image
of the FAT. The device header passed in BP:SI can be examined to determine which case exists. If
the attribute byte high-order bit indicates a block device, then the error was a bad FAT. Other-
wise, the error is on a character device.

If a character device is involved, the contents ofAL are unpredictable, and the error code is in D1
as above.

1. Before giving this routine control for disk errors, DOS performs several retries. The
number of retries varies according to the DOS version.

2. For disk errors, this exit is taken only for errors occurring during an int 21h function call.
It is not used for errors during an int 25h or 26h.
This routine is entered in a disabled state.

All registers must be preserved.
This interrupt handler should refrain from using DOS function calls. If necessary, it may
use calls 01h through 12h. Use of any other call destroys the DOS stack and leaves DOS
in an unpredictable state.

The interrupt handler must not change the contents of the device header.

If the interrupt handler handles errors itself rather than returning to DOS, it should
restore the application program’s registers from the stack, remove all but the last three

words on the stack, then issue an IRET This will return to the program immediately after
the int 21h that experienced the error. Note that if this is done DOS will be in an unstable
state until a function call higher than 12hIS issued, therefore not recommended

8. For DOS 3.x+, IGNORE requests (AL:0) are converted to FAIL for critical errors that
occur on FAT or DIR sectors.

9. For DOS 3.10 up, IGNORE requests (AL=O) are converted to FAIL requests for
network critical errors (50-79).

MP?)

so

HUAWEI EX. 1015 - 107/393

HUAWEI EX. 1015 - 108/393

DOS Interrupts 22h Through 86h ' g 10]

10. The device header pointed to by BP:SI is as follows:
dword pointer to next device (OFFFFh if last device)

‘ word attributes:
bit 15 1 if character device.

If bit 15 15 1:
bit 0 = 1 if current standard input
bit 1 = 1 if current standard output
bit 2 = 1 if current NULL device
bit 3 = 1 if current CLOCK device

, 0 if block device.

, bit 14 is the IOCTL bit
; word pointer to device driver strategy entry point
1 word pointer to device driver interrupt entry point
1 8 bytes character device named field for block devices. The first byte isthe number of units.

11. To tell if the error occurred on a block or character device, look at bit 1 5 in the attribute

' field (WORD at BP:SI+ 4). .
12. If the name of the character device is desired, look at the eight bytes starting at BP:SI + 10.

Handling of Invalid Responses (DOS 3.0+)

A. If IGNORE (AL: 0) is specified by the user and IGNORE is not allowed (bit 5 =0), make
the response FAIL (AL=3).

B. If RETRY (AL = 1) is specified by the user and RETRY is not allowed (bit 4 =0), make
the response FAIL (AL=3).

C. IfFAIL (AL =3) is specified by the user and FAIL is not allowed (bit 3 =0), make the
response ABORT. (AL: 2) '

Interrupt 25h Absolute Disk Read

Interrupt 26h Absolute Disk Write

(0:0094h, 0:0098h)
These transfer control directly to the device driver. On return, the original flags are still on the

stack (put there by the INT instruction). This is necessary because return information is passed
back in the current flags. r

1 The number of sectors specified is transferred between the given drive and the transfer address.
1 Logical sector numbers are obtained by numbering each sector sequentially starting from track

0, head 0, sector 1 (logical sector 0) and continuing along the same head, then to the next head
until the last sector on the last head of the track is counted. Thus, logical sector 1 is track 0, head

0, sector 2; logical sector 2 is track 0, head 0, sector 3; and so on. Numbering then continues wih
sector 1 on head 0 of the next track. Note that although the sectors are sequentially numbered

(for example, sectors 2 and 3 on track 0 inthe example above), they may not be physically ad-
jacent on disk, due to interleaving. Note that the mapping is different from that used by DOS

1‘ 1.10 for double-sided diskettes.

The request is as follows:

int 25 for Absolute Disk Read, except Compaq DOS 3.31 or DOS 4.0+

; int 26 for Absolute Disk Write over—32Mb partitions
; entry AL drive number (O=A:, 1=B:, etc)‘ CX number of sectors to read (int 25h) or write (int 26h)
j DS:BX disk transfer address buffer (DTA)
i Dx first relative sector to read - beginning logical sector numberV return CF set if error

1 AL error code issued to int 24h in low half of D1AH 01h bad command
02h bad address mark

HUAWEI EX. 1015 - 108/393

HUAWEI EX. 1015 - 109/393

I 02 The Programmer’s Technical Reference

03h write—protected disk
04h requested sector not found
08h DMA failure

10h data error (bad CRC)
20h controller failed
40h seek operation failed
80h attachment failed to respond

note 1. Original flags on stack! Be sure to pop the stack to prevent uncontrolledgrowth.

2. Ints 25 and 26 will try rereading a disk if they get an error the firsttime.

3. All registers except the segment registers are destroyed by these calls

int 25 for Absolute Disk Read, Compaq DOS 3.31 or Dos 4.0+
int 26 for Absolute Disk Write over-32Mb partitions
entry AL drive number (0=A:, 1=B:, etc)CX OFFFFh

DS:BX packet address. Packet format:
dword sector number
word number of sectors to read

dword transfer address
return same as above?

note 1. Original flags on stackl Be sure to pop the stack to prevent uncontrolledgrowth.

2. Partition is potentially 32M (and requires this form of the call) if bit
1 of device attribute word in device driver is set.

Interrupt 27h Terminate And Stay Resident

(0:009Ch) (obsolete)

This vector is used by programs that are to remain resident when COMMANDCOM regainscontrol.

After initializing itself, the program must set DX to its last address plus one relative to the pro-
gram’s initial DS or ES value (the offset at which other programs can be loaded), then execute
interrupt 27h. DOS then considers the program as an extension of itself, so the program is not
overlaid when other programs are executed. This is useful for loading programs such as utilities
and interrupt handlers that must remain resident.

entry CS current program segment
- DX last program byte + 1return none

note 1. This interrupt must not be used by .EXE programs that are loaded into the
high end of memory.

2. This interrupt restores the interrupt 22h, 23h, and 24h vectors in the
same manner as interrupt 20h. Therefore, it cannot be used to install
permanently resident Ctrl—Break or critical error handler routines.

3. The maximum size of memory that can be made resident by this method is64K.

4. Memory can be more efficiently used if the block containing a copy of the
environment is deallocated before terminating. This can be done by
loading ES with the segment contained in 2Ch of the PSP, and issuing
function call 49h (Free Allocated Memory).

5. DOS function call 4Ch allows a program to pass a completion code to DOS,
which can be interpreted with processing (see function call 31h).

6. Terminate and stay resident programs do not close files.
7. Int 21, function 31h is the preferred method to cause a program to remain

resident because this allows return information to be passed and allows
a program larger than 64K to remain resident.

8. It is possible to make an EXE program resident with this call by putting
a 27h in the second byte of the PSP and terminating with a RET FAR.

Interrupt 28h (not documented by Microsoft) .
* DOS Idle Interrupt

Int 28h has been provided by DOS since release 2.0. The int 28h process is similar to the ‘Timer
Tick’ process provided by BIOS via int 1Ch in that it is an ‘outbound’ (from DOS) call which an
application can ‘hook onto’ to get service at a particular entry point. DOS normally only issues

HUAWEI EX. 1015 -

109/393

HUAWEI EX. 1015 - 110/393

DOS Interrupts 22h Through 86h ‘ ' 103

int 28h when it receives a function call (int 21h) from a foreground application with an argument
in the range of0 thru 12 (OCh) in the AH register, orwhen it is idling waiting for keyboard input.
In effect, when DOS issues int 28, it is saying to the background task ‘I’m not doing anything hot
right now, if you can use the time, go ahead’. This means that a foreground application which
doesn’t do many low-number DOS functions can preempt CPU time easily.

When int 28h is being issued it is usually safe to do DOS calls. You won’t get int 28hs if a pro-
gram is running that doesn’t do its keyboard input through DOS. You should rely on the timer
interrupt for these. It is used primarily by the PRINTCOM routines, but any number of other
routines can be chained to it by saving the original vector and calling it with a FAR call (or just
IMPing to it) at the end of the new routine.

. Int 28h is not called at all when any non—trivial foreground task is running. As soon as a fore—
ground program has a file open, int 28h no longer gets called. Could make a good driver for for a
background program thatworks as long as there is nothing else going on in the machine.

DOS uses 3 separate internal stacks: one for calls 01h through OCh; another for calls ODh and
above; and a third for calls 01h through OCh when a Critical Error is in progress. When int 28h is
called, any calls above OCh can be executed without destroying the internal stack used by DOS at
the time.

The byte which is pushed on the stack before an int 28h just indicates which stack area is being
used by the current int 21h call. In DOS 3.1, the code sequence that calls int 28h looks like this:

PUSH ss:[o3o4]
INT 28
POP SS:[0304]

The low-order byte of the word pushed contains 1 if the int 21h call currently in progress is for
services 1 through OCh, and 0 for service 0 and for ODh and up. Assuming that the last DOS call
was not a reentrant one, this tells you which set of DOS services should be safe to call.

entry no parameters available
return none

note 1. The int 28h handler may invoke any int 21h function except functions 00h
through OCh (and SOh/Slh under DOS 2.x unless DOS CritErr flag is set).

2. Apparently int 28h is also called during screen writes.
3. Until some program installs its own routine, this interrupt vector simply

points to an IRET opcode.
4. Supported in OS/Z 1.0's DOS Compatibility Box.
5. It is possible, if you are careful, to enhance the background priority by

providing more int 28h calls than DOS normally would issue.
6. If the InDOS flag is zero on int 28h, then it was called by someone other

than DOS, and the word on the stack should NOT be examined.

Interrupt 29h (not documented by Microsoft)

* Internal - Quick Screen Output

This method is extremely fast (much faster than DOS 21h subfunctions 2 and 9, for example),
and it is portable, even to ‘non-compatible’ MS-DOS computers.

entry AL ASCII value for character to output to screenreturn unknown

note 1. Documented by Digital Research’s DOS Reference as provided with the DECRainbow.

2. If ANSI.SYS is installed, character output is filtered through it.
3. Works on the IBM PC and compatibles, Wang PC, HP-150 and Vectra, DEC

Rainbow, NEC APC, Texas Instruments PC and others. .
4. This interrupt is called from the DOS's output routines if output is

going to a device rather than a file, and the device driver's attribute
word has bit 3 (04h) set to '1'.

HUAWEI EX. 1015 - 110/393

HUAWEI EX. 1015 - 111/393

1 04 The Programmer ’s Technical Reference

5. This call has been tested with MSDOS 2.11, PCDOS 2.1, PCDOS 3.1, PCDOS
3.2, PCDOS 3.3, PCDOS 4.01, and Compaq DOS 3.31.

6. Used in IBMBIO.COM as a vector to int 10, function OEh (write TTY)
followed by an IRET.

7. Most of the fast ANSI device drivers use this interrupt — ZANSI.SYS,
NANSI.SYS, and PCMag‘s ANSI.COM. '

Interrupt 2Ah Microsoft Networks - Session Layer Interrupt
* (not documented by Microsoft) entry AH 00h Check Network BIOS Installed

return AH nonzero if installed
01h Execute NETEIOS Request
02h Set Net Printer Mode

03h Get Shared-Device Status (Check Direct I/O)AL 00h
DS:SI pointer to ASCIIZ disk device name
return CF 0 if allowed

04h Execute NETBIOS
AL 00h for error retry

01h for no retry
ES:BX pointer to network control block
return AX 0000h for no error

AH 01h if error

AL error code (unknown) .
05h Get Network Resource Information 2

AL 00h i
return AX reserved g

BX number of network names E
CX number of commands EDX number of sessions ‘

06h Network Print—Stream Control
note NETBIOS 1.10

07h—19h unknown
20h unknown

note AL=01h intercepted by DESQview 2.0.
80h Begin DOS Critical Section

AL 1 to 6
81h End DOS Critical Section

AL 1 to 6
82h Server Hook

stack AX from call to int 21h
return stack unchanged
note Called by the int 21h function dispatcher in DOS

3.10+ for function 0 and functions greater than
och except 59h.

84h Keyboard Busy Loop
note Similar to DOS's int 28h.

Interrupt 2Bh (not documented by Microsoft)

* Unknown - Internal Routine for DOS (IRET)

Interrupt 2Ch (not documented by Microsoft)

* Unknown — Internal Routine for DOS (IRET)

Interrupt 2Dh (not documented by Microsoft)

* Unknown - Internal Routine for DOS (IRET)

Interrupt 2Eh (undocumented by Microsoft) (DOS 2.0 +)
* Internal Routine for DOS (Alternate EXEC)

This interrupt passes a command line addressed by DS:SI to COMMANDCOM. The command ‘
line must be formatted just like the unformatted parameter area of a Program Segment Prefix. §
That is, the first byte must be a count ofcharacters, and the second and subsequent bytes must be
a command line with parameters, terminated bya carriage return character.

HUAWEI EX. 1015 - 111/393

HUAWEI EX. 1015 - 112/393

Interrupts 2211 Through 86h ‘ 105

When executed, int 2Eh will reload the transient part of the command interpreter if it is not cur-

rently in memory. If called from a program that was called from a batch file, it will abort the
batch file. If executed from a program which has been spawned by the EXEC function, it will
abort the whole chain and probably lock up the computer. Int 2Eh also destroys all registers in-
cluding the stack pointer.

Int 2Eh is called from the transient portion of the program to reset the DOS PSP pointers using
the above Functions #81 & #80, and then reenters the resident program.

When called with a valid command line, the command will be carried out by COMMANDCOM

just as though you had typed it in at the DOS prompt. Note that the count does not include the
carriage return. This is an elegant way to perform a SET from an application program against
"the master environment block for example.

entry DS:sI pointer to an ASCIIZ command line in the form:
count byte
ASCII string
carriage return
null byte

note 1. Destroys all registers including stack pointer.
2. Seems to work OK in both DOS 2.x and 3.x.

. 3. It is reportedly not used by DOS.
4. As far as known, int 2Eh is not used by DOS 3.1, although it was called

by COMMAND.COM of PCDOS 3.0, so it appears to be in 3.1 only for the
sake of compatibility.

Interrupt 2Fh Multiplex Interrupt

Interrupt 2Fh is the multiplex interrupt. A general interface is defined between two processes. It
is up to the specific application using interrupt 2Fh to define specific functions and parameters.

This interrupt is becoming more commonly used as the availible interrupt 21 functions are get—
ting to be in short supply. Int 2Fh doesn’t require any support from DOS itself for it to be used in
application programs. It’s not handled by DOS, but by the programs themselves.

Every multiplex interrupt handler is assigned a specific multiplex number. The multiplex num-
ber is specified in the AH register; the AH value tells which program your request is directed to-
ward. The specific function that the handler is to perform is placed in the AL register. Other par-
ameters are places in the other registers as needed. The handlers are chained into the 2Fh inter-
rupt vector and the multiplex number is checked to see if any other application is using the same
multiplex number. There is no predefined method for assigning a multiplex number to a hand-
ler. You must just pick one. To avoid a conflict if two applications choose the same multiplex
number, the multiplex numbers used by an application should be patchable. In order to check
for a previous installation of the current application, you can search memory for a unique string
included in your program. If the value you wan-ted in AH is taken but you don’t find the string,
then another application has grabbed that location.

Int 2Fh was not documented under DOS 2.x. There is no reason not to use int 2Fh as the multi-

plex interrupt in DOS 2.x. The only problem is that DOS 2.x does not initialize the int 2Fh vec-
tor, so when you try to chain to it like you are supposed to, it will crash. If your program checks
the vector for being zero and initializes it itself or doesn’t chain in that case, it will work for you n
2.x just the same as 3.x.

DOS 3.2 itself contains some int 2Fh handlers - it uses values of 08h, 13h, and OFSh. There may

be more. NLSFUNC from DOS 3.3 up uses part of int 2Fh and so does GRAFTABL.

For int 2Fh calls, register AH identifies which program is to handle the interrupt. AH values

HUAWEI EX. 1015 - 112/393

HUAWEI EX. 1015 - 113/393

OOh-7Fh are reserved for DOS, not that anyone cares much. Values OCOh-OFFh are reserved for
I 06 The Programmer’s Technical Reference ' I
applications. Register AL contains the subfunction code ifused. ‘
Function 00h unknown

Reportedly somehow used by PRINT.COM in DOS 3.3+.

Function 01h PRINT.COM
PC—DOS 3.3’s PRINT.COM hooks the following interrupt vectors:

05h PrintScreen Interrupt
13h BIOS Disk Interrupt i
14h BIOS Serial Communications Interrupt E
15h BIOS ’System Services’ Interrupt
17h BIOS Printer Interrupt
19h Bootstrap Loader Interrupt
1Ch Timer Tick
23h Control-C Terminate Address
24h Critical Error Handler Address
28h DOS Idle Interrupt (undocumented)
2Fh Multiplex Interrupt 1

entry AH 01h
AL 00h PRINT Get Installed State

This call must be defined by all int 2Fh handlers. It is
used by the caller of the handler to determine if the4
handler is present. On entry,

AL=0. On return, AL contains the installed state as follows:
return AL OFFh installed

01h not installed, not OK to install
00h not installed, 0K to install

01h PRINT Submit File
DS:DX pointer to submit packet

format byte level
dword pointer to ASCIIZ filename

return CF set if error
AX error code

note A submit packet contains the level (BYTE) and a pointer
to the ASCIIZ string (DWORD in offsetzsegment form). The
ASCIIZ string must contain the drive, path, and filename
of the file you want to print. The filename cannot
contain global filename characters.

return CF set if error
AX error code

02h PRINT Cancel File

On entry, AL=2 and DS:DX points to the ASCIIZ string for
the print file you want to cancel. Global filename
characters are allowed in the filename.

DS:DX pointer to ASCIIZ file name to cancel (wildcards 0K)
return CE set if errorAX error code

03h PRINT Remove All Files
return CF set if error

AX error code

04h PRINT Hold Queue/Get Status
This call holds the jobs in the print queue so that you
can scan the queue. Issuing any other code releases the
jobs. On entry, AL=4. On return, DX contains the error
count. DS:SI points to the print queue. The printqueue 5
consists of a series of filename entries. Each entry is '
64 bytes long. The first entry in the queue is the file
currently being printed. The end of the queue is marked
by the entry having a null as the first character.

return Dx error count
DS:SI pointer to print queue (null—string

terminated list of 64-byte ASCIIZ filenames)
CF set if error

AX error code

HUAWEI EX. 1015 - 113/393

HUAWEI EX. 1015 - 114/393

Function 05h
'entry AH

Function 06h
entry AH

AL

return (AH=00h)
(AH=01h)

Function ‘ 08h
entry AH

AL

Interrupts 22h Through 86h

01h function invalid
02h file not found
03h path not found
04h too many open files
05h access denied
08h queue full
09h spooler busy
och name too long
OFh drive invalid

05h PRINT restart queue
return CF set if error

AX error code

06h unknown — may be used in Dos 3.3+ PRINT

DOS 3.0+ Critical Error Handler
05h
AL 00h Installation Check

return AL 00h not installed, 0K to
install

01h not installed, not OK to
install

OFFh installed
note This set of functions allows a user program to

partially or completely override the default
critical error handler in COMMAND.COM.

AL xxh Handle Error — nonzero error code in AL (xxh
indicates nonzero extended error code)

return CF clear
ES:DI pointer to ASCIIZ error message

AL ('2)
CF set use default error handler

ASSIGN
06h
00h Installation Check
01h Get Memory Segment
AH nonzero if ASSIGN is installed
ES segment of ASSIGN work area

DRIVER.SYS
08h
00h Installation Check
return AL 00h not installed, OK to install

01h not installed, not OK to install
OFFh installed

01h unknown

other parameters unknown

Function 10h
entry AK

AL
return AL

Function 11h
entry AH

AL

SHARE
10h
00h Installation Check
00h not installed, OK to install
01h not installed, not OK to install
OFFh installed

Multiplex - Network Redirection
11h
00h Installation Check

return AL 00h not installed, 0K to install
01h not installed, not OK to install
OFFh installed

Olh—OSh unknown
06h Close Remote File
07h—0Dh unknown
OEh Do Redirection

stack word function to execute
return CF set on error

OFh Printer Setup
th—lEh unknown

HUAWEI EX

107

.1015 - 114/393

HUAWEI EX. 1015 - 115/393

108

Function
entry AH

AL

12h

lEh

th

The Programmer ’3 Technical Reference
Do Redirection
stack word function to execute
return CF set on error
Printer Setup
stack word function (?)
return CF set on error (?)

20h—26h unknown

Multiplex, DOS 3.x Internal Services
12h
00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

OAh

OBh

OCh

ODh

OEh

OFh

10h

Installation Check
return AL OFFh for compatibility with other int

2Fh functions
Close File (?)
stack word value — unknown
return BX unknown

CX unknown
ES:DI pointer to unknown value

note Can be called only from within DOS.
Get Interrupt Address
stack word vector number
return ES:BX pointer to interrupt vector

stack unchanged
Get DOS Data Segment
return Ds segment of IBMDOS.COM file
Normalize Path Separator
stack word character to normalize
return AL normalized character (forward slash

turned to backslash)
stack unchanged

Output Character
stack word character to output
return stack unchanged
note Can be called only from within DOS.
Invoke Critical Error -
return AL 0-3 for Abort, Retry, Ignore, Fail
note Can be called only from within DOS.
Move Disk Buffer (?)
DS:DI pointer to disk buffer
return buffer moved to end of buffer list
note Can be called only from within DOS.
Decrement Word
ES:DI pointer to word to decrement
return AX new value of word
note Word pointed to by ES:DI decremented,

skipping zero.
unknown

DS:DI pointer to disk buffer(?)
return (?)
note Can be called only from within DOS.
unknown
note Can be called only from within DOS.
unknown

ES:DI pointer to system file table entry (?)
return AX (?)
note Can be called only from within DOS.
unknown
note Can be called only from within DOS.
Get Date and Time
return AX current date in packed format

Dx current time in packed format
note Can be called only from within DOS.
Do Something to All Disk Buffers (?)
return DS:DI pointer to first disk buffer
note Can be called only from within DOS.
unknown

DS:DI pointer to (?)
return DS:DI pointer to (?)
note 1. Can be called only from within DOS.

2. Calls on function 1207h.
Find Dirty Buffer

HUAWEI EX. 1015 - 115/393

HUAWEI EX. 1015 - 116/393

11h

12h

13h

14h

15h

16h

17h

18h

19h

lAh

lBh

lCh

th
lEh

th

Interrupts 22h Through 86h I , 109
DS:DI pointer to first disk buffer
return DS:DI pointer to first disk buffer

which has clean flag clearZF clear if found
. set if not found

Normalize ASCIIZ Filename
DS:SI pointer to ASCIIZ filename to normalize
ES:DI pointer to buffer for normalized filename
return destination buffer filled with uppercase

filename, with slashes turned to backslashes
Get Length of ASCIIZ String
ES:DI pointer to ASCIIZ string
return CX length of string
Uppercase Character
stack word character to convert to uppercase
return AL uppercase character

stack unchanged
Compare FAR Pointers
DS:SI first pointer
ES:DI second pointer
return ZF set if pointers are equal

ZF clear if not equalunknown
DS:DI pointer to disk buffer
stack word (?)
return stack unchanged
note Can be called only from within DOS.
Get Address of System FCB
BX system file table entry number
return ES:DI pointer to system file table entry
Set Default Drive (?)
stack word drive (0=A:, 1=B:, etc)
return DS:SI pointer to drive data block for

specified drive
stack unchanged

note Can be called only from within DOS.
Get Something (?)
return DS:SI pointer to (?)unknown

stack word drive (O=default, 1=A:, etc)
return (?)

stack unchanged
note 1. Can be called only from within DOS.

2. Calls function 1217h.
Get File’s Drive
DS:SI pointer to filename
return AL drive

(O=default, 1=A4, etc, 0FFh=invalid)
Set Something (?)
CL unknown
return AL (?)
note Can be called only from within DOS.
checksum Memory
DS:SI pointer to start of memory to checksum
CX number of bytes
DX initial checksum
return DX checksum

note 1. Can be called only from within DOS.
2. Used to determine when transient portion of

COMMAND.COM has been overlaid by application.unknown

Compare Filenames
DS:SI pointer to first ASCIIZ filename
ES:DI pointer to second ASCIIZ filename
return ZF set if filenames equivalentclear if not
note Used by COPY command.
Build Drive Info Block
stack word drive letter
return ES:DI pointer to drive info block

(will be overwritten by next call)

HUAWEI EX.1015 - 116/393

HUAWEI EX. 1015 - 117/393

I J 0 The Programmer ’3 Technical Reference

stack unchanged
note Can be called only from within DOS.

20h Get System File Table Number
BX file handle

return CF set on error, error code in AL
AL 06h (invalid file handle)

CF clear if successful
byte ES:[DI] system file table entry

number for file handle
21h unknown

DS:SI pointer to (?)
return (?)
note Can be called only from within DOS.

22h unknown

SS:SI pointer to (?)
return nothing(?)
note can be called only from within DOS.

23h Check if Character Device (?)
return DS:SI pointer to device driver with same name

as (?)
note Can be called only from within DOS.

24h Delay
return after delay of (?) ms
note Can be called only from within DOS.

25h Get Length of ASCIIZ String
DS:SI pointer to ASCIIZ string
return CX length of string

Function 14h NLSFUNC.COM
entry AH 14h
other parameters unknown

Function 15h CD—ROM extensions

Microsoft CD—ROM driver versions 1.0 through 2.0 will work only up
to DOS 3.31. DOS 4.0 and up require 2.1 drivers.

entry AH 15h CD—ROM services
AL subfunctions

00h Installation Check
BX 00h
return BX number of CD-ROM drive letters used

CX starting drive letter (0=A:)
note This installation check DOES NOT follow the format

used by other software.

01h Get Drive Device List

ES:BX pointer to buffer to hold drive letter list (5 bytes per
drive letter)

return buffer filled, for each drive letter:
byte subunit number in driver
dword address of device driver header

02h Get Copyright File Name
CX drive number (0=A:)
ES:BX pointer to 38-byte buffer for name of copyright filereturn CF set if drive is not a CD—ROM drive

AX error code (15h)

03h Get Abstract File Name
ES:BX pointer to 38-byte buffer for name of abstract file
CX drive number (0=A:)
return CF set if drive is not a CD—ROM drive

AX error code (15h)

04h Get Bibliographic Doc File Name
CX drive number (0=A:)
ES:BX pointer to 38—byte buffer for name of bibliographicdocumentation file
return CF set if drive is not a CD—ROM drive

Ax error code (15h)

05h Read VTOC (Volume Table of Contents)
CX drive number (0=A:)

HUAWEI EX. 1015 - 117/393

HUAWEI EX. 1015 - 118/393

Intemtpts 22h Through 86h ' - 11]

DX sector index (0=first volume descriptor,
m1=second,...)

ES:BX pointer to 2048—byte buffer
return CF set on error

AX error code (15h, 21h)
CF clear if successful

AX volume descriptor type
(1=standard, 0FFh=terminator, 00h=other)

06h Turn Debugging On
BX debugging function to enable
note Reserved for development.

07h Turn Debugging Off
BX debugging function to disable
note Reserved for development.

08h Absolute Disk Read
CX drive number (0=A:)
DX number of sectors to read
ES:BX pointer to buffer
SI:DI starting sector number
return CF set on error

AL error code (15h, 21h)

09h Absolute Disk Write
CX drive number (0=A:)
DX number of sectors to write
ES:BX pointer to buffer
SI:DI starting sector number
note Corresponds to int 26h and is currently reserved and

nonfunctional.

OAh Reserved by Microsoft

OBh CD—ROM 2.00 - Drive Check
CX drive number (0=A:)
return BX OADADh if MSCDEX.EXE installed

AX 0 if drive not supported
<> 0 if supported

OCh CD—ROM 2.00 — Get MSCDEX.EXE Version
return BH major version

BL minor version
note MSCDEX.EXE versions prior to 1.02 return BX=0.

ODh CD-ROM 2.00 — Get CD-ROM Drive Letters

ES:BX pointer to buffer for drive letter list
(1 byte per drive)

return Buffer filled with drive numbers (0=A:). Each byte
corresponds to the drive in the same position for
function 1501h.

OEh CDROM 2.00 — Get/Set Volume Descriptor Preference
Bx subfunction

00h Get Preference
DX 00h
return Dx preference settings
01h Set Preference
DH volume descriptor preference

1 primary volume descriptor
2 supplementary volume descriptor

DL supplementary volume descriptor preference
1 shift—Kanji

CX drive number (0=A:)
return CF set on error

Ax error code (01h, 15h)

OFh CD—ROM 2.00 — Get Directory Entry
CX drive number (O=A:)
ES:BX pointer to ASCIIZ pathname

HUAWEI EX. 1015 - 118/393

HUAWEI EX. 1015 - 119/393

112

Function

entry AH

43h

, 02h

The Programmer’s Technical Reference
SI:DI
return CF

AX
CF
AX

note
byte
byte
dWOrd
dword
dword
dword

—--High Sierra-—-
6 bytes

byte
byte

——-ISO 9660-——
7 bytes

byte
——-both formats——-

byte
byte
word
word
byte

n bytes
byte

n bytes

Error codes:
01h
15h
21h

Microsoft Extended Memory Specification (XMS)
The XMS version 2.00 for MS—DOS allows Dos programs to utilize
additional memory found in 80286 and 80386
restrictions, XMS adds about 64K to the 640K which DOS programs
can access directly. XMS also provides DOS programs with astandard method

XMS (extended memory) services
Perform a FAR call to the driver entry point with AH set
to the function code
00h Get XMS

return

note 1.
2.

01h Request
DX

return

Release
return

03h
return

note

pointer to 255-byte buffer for directory entry

Directory entry format:

Global Enable A20

set on error
error code
clear if succesful
disk format (0=High Sierra, 1=ISO 9660)

length
length
LBN of
LBN of
length
length

of directory entry
of XAR in LBN’s

data, Intel (little—Endian) format
data, Motorola (big-Endian) format
of file, Intel format
of file, Motorola format

date and time

bit flags
reserved

data and time
bit flags

size
skip factor

volume set sequence number,
volume set sequence number,
length of file name
file name

(optional) padding if filename is odd length
system data

interleave
interleave

Intel format
Motorola format

invalid function
invalid drive
not ready

machines. With some

of storing data in extended memory.

Version Number

AX 16 bit BCD version number (AX=0285h would
be XMS version 2.85)

Bx driver internal revision number
DX 0000h HMA does not exist

0001h HMA exists
No error codes are returned from this function.
DX indicates the presence of EMA, not its
availability.
High Memory Area (1M to 1M + 64K)
HMA memory request in bytes (for TSR or
device drivers)
OFFFFh if application program
AX 0000b failure

0001h success

BL error code (80h, 81h, 90h, 91h, 92h)
High Memory Area '
AX 0000b failure

0001h success

BL error code (80h, 81h, 90h, 93h)

AX OOOOh failure
0001h success

BL error code (80h, 81h, 82h)
Should only be used by programs which have
control of the HMA. The A20 line should be

turned off via Function 04h (Global Disable A20)
before a program releases control of the system.

HUAWEI EX. 1015 - 119/393

HUAWEI EX. 1015 - 120/393

“ Interrupts 22h Through 86h 113

‘ note 1. This function attempts to disable the A20 line.
1 It should only be used by programs which have
1 control of the HMA.

2. The A20 line should be disabled before a program
releases control of the system.

04h Global Disable A20
' return Ax 0000h failure
? 0001h success
j BL error code (80h, 82h, 94h)

05h 'Local Enable A20
return AX 0000b failure

0001h A20 is enabled

BL error code (80h, 81h, 82h)
‘ note This function attempts to enable the A20 line. It
‘ should only be used by programs which need

direct access to extended memory. Programs which
use this function should call Function 06h (Local
Disable A20) before releasing control of the

system.
06h Local disable A20

. return AX OOOOh failure
: 0001h success
; BL error code (80h, 81h, 82h, 94h)
i note This function cancels a previous call to Fn 05h
1 (Local Enable A20). It should only be used by
1 programs which need direct access to extended
3 memory. Previous calls to Fn 05h must be

cancelled before releasing control of the system.07h Query A20
return AX 0000h failure

0001h success (A20 line is
a ' physically enabled)
' - BL error code (00h, 80h, 81h)

08h Query Free Extended Memory
return AX size of largest free extended memory block1 in K

‘ BL error code (80h, 81h, OAOh)
Dx total free extended memory in K

note The 64K HMA is not included in the returned value
even if it is not in use.

09h Allocate Extended Memory Block
Dx Amount of extended memory being requested inK-bytes
return AX 0000h failure

BL error code (80h 81h AOh Alh)0001h success

Dx 16 bit handle for memory block
OAh Free Extended Memory Block ~

DX handle of block to free
return AX 0000h failure

BL error code (80h, 81h,
0A2h, OABh)

0001h success
OBh Move Extended Memory Block

DS:SI pointer to EMM structure

4 bytes number of bytes to move
2 bytes source handle
4 bytes offset into source block
2 bytes destination handle
4 bytes offset into destination block

return Ax ooooh failure

BL error code (80h, 81h, 82h, 0A3h,
0A4h, 0A5h, 0A6h, 0A7h, 0A8h,
0A9h)

0001h success

och Lock Extended Memory Block
DX XMS handle of block to lock
return AX 0000h failure

BL error code (80h, 81h, 0A2h, OACh,
OADh)

1 . 0001h block is successfully locked

HUAWEI EX. 1015 - 120/393

HUAWEI EX. 1015 - 121/393

114

note 1.

2.

3.
4.

The Programmer’s Technical Reference

DX:BX 32-bit linear address of locked block
ODh Unlock Extended Memory Block

DX XMS handle of block to unlock
return Ax OOOOh failure

BL error code (80h, 81h, 0A2h, 0AAh)
0001h success

OEh Get EMB Handle Information
Dx handle for which to get info
return AX OOOOh failure

BL error code (80h, 81h, 0A2h)
0001h success
BH block’s lock count
BL number of free handles left
DX block size in K

note To get the block's base address, use Fn OCh (Lock
Extended Memory Block).

OFh Reallocate Extended Memory Block
Bx New size for the extended memory block in K
Dx Unlocked extended memory block handle to

reallocate
return Ax OOOOh failure

BL error code (80h, 81h,
OAOh, OAlh, 0A2h, 0A3h)

0001h success
10h Request Upper Memory Block (nonEMS memory above 640K)

DX Size of requested memory block in paragraphs
return AX OOOOh failure

BL error code (80h, OBOh, OBlh) V
DX size of largest available block

in paragraphs
0001h success
BX segment address of UMB
DX actual block size in paragraphs

note 1. UMBs are paragraph aligned.
2. To determine the size of the largest available

UMB, attempt to allocate one with a size of
OFFFFh.

11h Release Upper Memory Block
DX segment address of UMB to release
return Ax OOOOh failure

BL error code (80h, 0B2h)
0001h success

UMBs cannot occupy memory addresses that can be banked by EMS 4.0. EMS
4.0 takes precedence over UMBs for physically addressable memory.
Programs should make sure that at least 256 bytes of stack space is
available before calling XMS API functions.
On many machines, toggling the A20 line is a relatively slow operation.
Error codes:

80h Function not implemented
81h VDISK was detected
82h An A20 error occurred
8Eh A general driver error
8Fh Unrecoverable driver error
90h EMA does not exist
91h HMA is already in use
92h DX is less than the /HMAMIN= parameter
93h HMA is not allocated
OAOh All extended memory is allocated
OAlh All available extended memory handles are allocated
0A2h Invalid handle
0A3h Source handle is invalid
0A4h Source offset is invalid
0A5h Destination handle is invalid
0A6h Destination offset is invalid
0A7h Length is invalid
0A8h Move has an invalid overlap
0A9h Parity error occurred
0AAh Block is not locked
OABh Block is locked
OACh Block lock count overflowed

HUAWEI EX. 1015 - 121/393

HUAWEI EX. 1015 - 122/393

OADh
OBOh
OBlh
OBZh

Interrupts 22h Through 86h - 115
Look failed
Only a smaller UMB is available
No UMB’s are available
UMB segment number is invalid

Function 5453h TesSeRact Standard for Ram-Resident Program Communication
entry Ax

CX
bits

Functions:
00h

01h

02h

03h

04h

05h

06h-0Fh
10h

11h

S453h TesSeRact function request
function select word:

0 function 00h (check install - required)
1 function 01h (return userparms - required)
2 function 02h (check hotkey)
3 function 03h (replace int 24h)
4 function 04h (return Data Pointer)
5 function 05h (set extra hotkeys)
6—7 undefined - reserved for future use
8 function 10h (enable TSR)
9 function 11h (disable TSR)
10 function 12h (release TSR from RAM)
11 function 13h (restart TSR)
12 function 14h (get current status)
13 function 15h (set TSR status)
14 function 16h (get popup type)
15 undefined — reserved for future use
16 function 20h (call user procedure)
17 function 21h (stuff keyboard)
18—31 undefined - reserved for future use

Check Install

DS:SI pointer to 8-character blank—padded name
return AX OFFFFh the TSR has already been loaded

Any other value indicates that it is safe to
install this TSR, using the ID number in CXCX TSR ID Number

Return User Parameters
CX TSR ID number

return AX 00h no matching TSR ID Number found
Otherwise,
ES:BX pointer to TsrParms structure (note 3)

Check Hotkey
CL scan code of hot key

return AX OFFFFh hotkey conflicts with TSR already loaded.
Any other value means OK to use hotkey.

Replace Default Interrupt 24h Handler
CX TSR ID number
DS:SI pointer to new routine for int 24h
return AX <>0 unable to install handler (invalid ID

number)
00h successful installation

Return TesSeRact Internal Data Area Pointer
CX TSR ID number

return AX 00h no matching TSR ID Number found.
Otherwise, FAR pointer to Terata structure

ES:BX pointer to TSR's internal data area (note 4)
Set Multiple Hot Keys
CX TSR ID number

DL number of additional hot keys to allocate
DS:SI pointer to table of hot keys

byte hotkey scan code
byte hotkey shift state
byte flag value to pass to TSR (nonzero)

return AX <>0 unable to install hotkeys (invalid ID
number)

00h successful set
not used
Enable TSR
CX TSR ID number

return AX <>0 unable to enable TSR (invalid ID number)00h TSR enabled
Disable TSR
CX TSR ID number
return AX <>0 unable to disable

HUAWEI EX.1015 - 122/393

HUAWEI EX. 1015 - 123/393

J J6 The Programmer’s Technical Reference

12h Release TSR [unload from RAM]
cx TSR ID number
return AX <>0 invalid TSR number
note If any interrupts used by TSR have been grabbed by

another TSR, the TesSeRact routines will wait until it
is safe to remove the indicated TSR from memory. 13h Restart TSR

CX TSR ID number of TSR which was unloaded but is still in
memory

return Ax <>0 unable to restart TSR
(invalid ID #)

00h success
14h Get TSR Status Word

CX TSR ID number

return AX OFFFFh invalid TSR ID Code 1
Any other value is current status flags ‘

Bx bit flags 1
15h Set TSR Status Word {

CX TSR ID number . 3
DX new bit flags
return Ax <>0 unable to set status word

16h Get InDOS State at Popup !
CX TSR ID number . i
return Ax OFFFFh invalid TSR ID Code E

Any other value is current status flags 5
Ex value of INDOS flag E20h Call User Procedure ‘

CX TSR ID number

ES:DI pointer to user—defined data ‘
return Ax <>0 unable to pass pointer (invalid ID #)00h success

21h Stuff Keyboard
CX TSR ID number
DH scan code flag I

00h buffer contains alternating ASCII & scan codes i
<>o buffer contains only ASCII codes ‘

DL speed 1
00h stuff keystrokes only when buffer is empty 1
01h stuff up to four keystrokes per clock tick ‘ 3
02h stuff up to 15 keystrokes per clock tick 3

SI number of keystrokes i
ES:DI pointer to buffer to stuff ;
return Ax OFOFOh user aborted paste with ‘C or “Break j

<>0 unable to stuff buffer (invalid ID #) i
00h Success .

22h — 2Fh reserved

note 1. TesSeRact is based in part on work done by the Ringmaster Development
Team, in efforts to develop a public domain TSR standard.

2. Borland’s THELP.COM popup help system for Turbo Pascal and Turbo C fully ;
supports the TesSeRact API. ‘

3. TsrParms structure: 3
8 bytes blank-padded TSR name :

word TSR ID number

dword bitmap of supported functions
byte scan code of primary hotkey

00h pop up when shift states match
OFFh no popup (if shift state also OFFh)

byte shift state of primary hotkey
OFFh no popup (if scan code also OFFh)

byte number of secondary hotkeys
dword pointer to extra hotkeys set by fn 05h
word current TSR status flags
word PSP segment of TSR

dword DTA for TSR_ _
word default DS for TSR ;

dword stack at popup E
dword stack at background invocation 5

4. TesSeRact TSR Internal Data Area 1
byte revision level of TesSeRact library
byte type of popup in effect
byte int 08h occurred since last invocation

HUAWEI EX. 1015 - 123/393

HUAWEI EX. 1015 - 124/393

[ntemtpts 22h Through 86h

byte int 13h occurred since last invocation
byte active interrupts
byte active soft interrupts
byte DOS major version
byte how long to wait before popping up

‘dword pointer to INDOS flag
dword pointer to DOS critical error flag
word PSP segment of interrupted program
word PSP segment of prog interrupted by INT 28

dword DTA of interrupted program
dword DTA of program interrupted by INT 28

word SS of interrupted program
word SP of interrupted program
word SS of program interrupted by INT 28
word SP of program interrupted by INT 28

dword INT 24 of interrupted program
3 words DOS 3+ extended error info

byte old BREAK setting
byte old VERIFY setting
byte were running MS WORD 4.0 before popup
byte MS WORD 4.0 special popup flag
byte enhanced keyboard call in use
byte delay for MS WORD 4.0

11 times:
dword old interrupt vector
byte interrupt number

dword new interrupt vector

Function 64h SCRNSAV2.COM

entry AH 64h
AL 00h installation check

return AL 00h not installed
OFFh installed

note SCRNSAV2.COM is a screen saver for

Function 7Ah
entry AH

AL
return AL

ES:DI

note 1. Returns

Novell NetWare
7Ah
00h installation check
00h not installed
OFFh installed

117

PS/2's with VGA by Alan Ballard.

pointer to FAR entry point for routines otherwise accessed
through int 21h
address of entry point for IPX and SPX.

2. Parameters are listed under int 21.

Function 087h

entry AHAL

return unknown

Function 088h
entry AH

AL

APPEND
087h
00h APPEND installation check
return AH 0 if installed
01h APPEND - unknown
02h APPEND - version check

Microsoft Networks
O88h
00h network program installation check
return AH 0 if installed

BX installed component flags (test in this order!)
bits 2 messenger .

3 redirector
6 server
7 receiver

'other bits not used, do not test
01h unknown
02h unknown

03h get current POST address
return ES:BX POST address

04h set new POST address
ES:BX new POST address

09h network version check

HUAWEI EX. 1015 - 124/393

HUAWEI EX. 1015 - 125/393

118

Function
entry

return

note

Function
paramete

Function
entry

entry

return

The Programmer’s Technical Reference
0AAh VIDCLOCK.COM

AH 0AAh
AL 00h installation check
AL 00h not installed

OFFh installed
VIDCLOCK.COM is a memory-resident clock by Thomas G. Hanlin III.

OBOh GRAFTABL.COM or DISPLAY.SYS
rs unknown

OBBh Network Functions
AH OBBh
AL 00h net command installation check

01h, 02h unknown
03h get server POST address
04h get server POST address

Function 0D44Dh 4DOS Command Interpreter (COMMAND.COM replacement)
AX 0D44Dh 4DOS installation check
BX 00h

If 4DOS is present in memory the following values will be returned:
AX 44DDh .
BH minor 4DOS version number
BL major 4DOS version number

(same format as DOS int 21h/fn 30)
CX 4DOS PSP segment address
DL 4DOS shell number (0 for the first shell, 1 for the second, etc.;

note 1.

incremented each time a new copy of 4DOS is loaded over a root
copy, either in a different multitasker window or via nested
shells)

If you issue this call with BX 0 you will invoke some other function of
4DOS’s low-memory server, and probably hang the system.
This function is available in swapping mode ONLY. Also note that this
tells you if 4DOS is loaded in memory somewhere - but not whether it is
the parent process of your program. For example if there is a root 4DOS
shell and a secondary copy of COMMAND.COM-this function will still work.
However, you can determine if 4DOS is your parent process by comparing
the value returned in the CX register with the PSP chain pointer at
location 16 in your own PSP.

Function OF7h AUTOPARK.COM (PD TSR hard disk parking utility)
entry

note

Function
entry

AH OF7h
AL 00h installation check

return AL 00h not installed
OFFh installed

01h set parking delay
BX:CX 32 bit count of 55ms timer ticks

AUTOPARK is a TSR HD parker by Alan D. Jones.

Intel Communicating Applications Standard (CAS 1.01A)
AH (default; CAS multiplex number can be user-adjusted)
AL 00h Get Installed State _

' - return AL 00h not installed
01h not installed, not OK to

install
OFFh installed

note No errors are returned.
01h Submit a Task

DS:DX ptr to ASCIIZ path and name of Task Control File
return AX positive event handle or neg. error code
note Files associated with a task must stay in

existence until the task is complete or an error
will result.

02h Abort the Current Event

return Ax event handle of aborted event or negative
error code

note Terminating an event is not instantaneous. It
might take up to 30 seconds.

03h reserved
04h reserved
05h Find First Entry in Queue

HUAWEI EX. 1015 - 125/393

HUAWEI EX. 1015 - 126/393

_ Interrupts 22h Through 8611 I - 119
CX status of the event you are seeking. This value

is compared with the field at offset 2 of the
Control File
0 — event has successfully completed

- event is waiting to be processed
- number has been dialed

connection has been made (sending)
— connection has been made (receiving)
- event was aborted

—1 - chooses an event without regard to status
This value will probably be used most often
other negative values match error codes in Control
File.

DH direction:

0 — Search forward chronologically (from the
first to the last occurring event)

1 - Search backward chronologically (from the
last to the first occurring event)

DL queue to search:
0 — Find first control file in Task Queue
1 — Find first control file in Receive Queue
2 — Find first control file in Log Queue

U‘IwaH
I

return Ax 0, if successful, or negative error code
BX event handle for this file

06h Find Next Entry in Queue
DL queue to search:

0 - Find next control file in Task Queue
4 — Find next control file in Receive

Queue
2 - Find next control file in Log Queue

return AX 0, if successful, or negative error code
BX event handle for this file

07h Open a File
BX event handle
CX receive file number

0 — the Receive Control File
— first received file
— second received file
- third received file
- nth received file

DL queue:
0 - open control file in Task Queue
1 - open control file in Receive Queue or the

received data
file specified in the CX register.

2 — Open control file in Log Queue.

DWNH

return AX 0 if successful, or negative error code
BX DOS file handle for the requested file

08h Delete a File
BX event handle
CX receive file number

0 - delete all files associated with a specific
Receive Control File (including the RCF)

1 - delete first received file associated with
the event handle

2 — delete the second received file associated
with the event handle.

n — delete the nth received file associated with
the event handle

DL queue:
0 — delete control file in Task Queue
1 — delete a file or files associated with an

event in the Receive Queue.
2 — delete control file in Log Queue. It is

strongly recommended that this function NOT
be used to delete individual Log Control
Files to maintain the integrity of the log.

return AX 0 if successful, or negative error code
09h Delete All Files (in a queue)

DL queue:
0 - delete all control files in the Task Queue

HUAWEI EX. 1015 - 126/393

HUAWEI EX. 1015 - 127/393

120 The Programmer’s Technical Reference

1 - delete all control files in the Receive Queue
and all received files ‘

2 - delete all control files in the Log Queue
return AX 0 if successful or negative error code

OAh Get Event Date
BX event handle of event whose date you want to get
DL queue:

0 — task queue
1 — receive queue .
2 - log queue '

return AX 0 if successful or negative error code
CX year (1980-2099)
DH month (1-12)
DL day (1-31)

OBh Set Task Date
BX event handle
CX year (1980—2099)
DH month (1—12)
DL _ day (1—31)
return Ax 0 if successful or negative error code

OCH Get Event Time
Bx event handle
DL queue:

0 — task queue
1 — receive queue
2 — log queue return AX 0 if successful or negative error code
CH hour (0—23)
CL minutes (0—59)
DH seconds (0—59)
DL 0

ODH Set Task Time
BX event handle
CH hour (0—23)
CL minutes (0-59)
DH seconds (0—59)
DL unused
return AK 0 if successful or negative error code

OEH Get External Data Block
DS:DX points to a 256—byte EDB area
return AX 0 if successful or negative error code
note EDB area is filled with the External Data Block

block format: (Values in decimal)
offset Length Description

0 1 CAS major version number
1 1 CAS minor version number

2 68 ASCIIZ path to directory containing
Resident Manager and CAS software.
The path must end with a backslash

70 13 ASCIIZ name of current phonebook (the
CAS subdirectory is assumed)

83 13 AZCIIZ name of current logo file (the
CAS subdirectory is assumed)

96 32 ASCIIZ default sender name

128 21 ASCIIZ CSID (CCITT fax device ID) 1
149 107 Reserved

OFh Get/Set Autoreceive State
DL function code:

0 — get current autoreceive state
1 — set current state to value in DH ,
DH # rings before answer or 0 to disable

return AX current state or negative error code
0 - Autoreceive disabled

positive # - # rings before hdw answers
10h Get Current Event Status

DS:DX pointer to a 444 byte status area
return AX 0 if successful or negative error code

BX number of the current event (AX=0)
11h Get Queue Status

DL queue:
0 - find status of Task Queue

HUAWEI EX. 1015 - 127/393

HUAWEI EX. 1015 - 128/393

Interrupts 22h Through 86h ‘ 12]

1 — find status of Receive Queue
2 — find status of Log Queue

return Ax # changes to queue since Resident Manager
started or negative error code If
changes_exceeds 7FFFH, the count begins
again at 0.

BX current # of Control Files in queue
cx current # of received files

12h Get Hardware Status
/ DS:DX pointer to a 128-byte status area

' return AX 0 if successful, negative if not
DS:DX pointer to filled 128-byte status area

13h Run Diagnostics
DL Mode

0 — report progress of diagnostics
1 — start running diagnostics

return if DL=1, AX=0 or a negative error code.
if DL=0, AX=40h or positive number indicating

diagnostics passed. A negative value
indicates failure and containes the
error code

14h Move Received File
BX event handle
CX receive file number

(must be nonzero to specify a received file)1 - first received file
2 - second received file
3 - third received file
n - nth received file

DS:DX pointer to new ASCIIZ pathname and
filename. This file must not exist already

return AX 0 if successful or negative error code
note The path to the new directory must exist. This

function cannot create directories.
15h Submit a Single File to Send

DS:DX . pointer to variable—length data area
return AX positive event handle or neg. error code
note 1. variable-length data area format:

Offset Length Description
0 1 Transfer type:

0 — 200x200 dpi, facsimile mode
1 — 100x200 dpi, facsimile mode
2 — file transfer mode
3—127 - Reserved.

1 1 Text size (if ASCII file, fax mode)0 - 80-column
1 — 132-column
2—127 - reserved
time to send, in DOS file time format
date to send, in DOS file time format
note: Setting both the time and date
fields to 0 schedules the file to be
sent immediately

6 32 ASCIIZ Destination Name (To: field)
38 80 ASCIIZ pathname of the file to send
118 47 ASCIIZ phone number to call
165 64 ASCIIZ application-specific tag field
229 1 reserved; set to zero
230 1 cover page flag:

0 — don’t send cover page
1 - send cover page
2~127 — Reserved

231 23 reserved; set to zero
254 var ASCIIZ cover text (if offset 230:1)

2. The individual fields have the same meaning as ina Task Control File

3. You must set all fields, except for the
Application—Specific Tag field, before calling
this function. However, you can set the
Destination Name and Cover Text fields to an
empty string 16h-80h Reserved by Intel for future

AN MN

HUAWEI EX. 1015 - 128/393

HUAWEI EX. 1015 - 129/393

122 The Programmer’s Technical Reference

expansion

MSDOS ZFh functions 01h (PRINT), 02h (ASSIGN), 10h (SHARE):
return AX Error

Codes Description
01h invalid function number
02h file not found
03h path not found
04h too many open files
05h access denied
06h invalid handle
08h queue full
09h busy .

OCh name too long ‘OFh invalid drive was specified
CF clear (0) if 0K

set (1) if error — error returned in AX
note 1. The multiplex numbers AH=Oh through AH=7Fh are reserved for DOS.

Applications should use multiplex numbers 80h through OFFh.
2. when in the chain for int 2Fh, if your code calls DOS or if you execute

with interrupts enabled, your code must be reentrant/recursive. .
3. Important! In versions of DOS prior to 3.0, the int 2Fh vector was I

initialized to zero rather than being pointed into the DOS service area. ’
You must initialize this vector manually under DOS 2.x.

Miscellaneous Interrupts - in numeric order

Interrupt 30h FARjump instruction for CP/M-style calls
note The CALL 5 entry point does a FAR jump to here (not a vector!)

Interrupt 31h Unknown

Interrupt 32h Unknown

Interrupt 33h Used by Microsoft Mouse Driver Function Calls

See Chapter 14.

Interrupt 3Fh Overlay Manager Interrupt (Microsoft LINK.EXE)
Default overlay interrupt; may be changed with LINK command line switch.

Interrupt 40h Hard Disk BIOS
Pointer to disk BIOS entry when a hard disk controller is installed. The BIOS routines use int
30h to revector the diskette handler (original int 13h) here so int 40 may be used for hard disk I
control. =

Interrupt 41h Hard Disk Parameters
Pointer to first Hard Disk Parameter Block, normally located in the controller card’s ROM. This - 2,

table may be copied to RAM and changed, and this pointer revectored to the new table.

note 1. XT, AT,XT/2, XT/286, PS/Z except ESDI disks
2. format of parameter table is: 3l

word cylinders
byte heads
word starting reduced write current cylinder (XT only, 0 for others) 1
word starting write pre—comp cylinder 1
byte maximum ECC burst length
byte control byte

bits 0—2 drive option (XT only, 0 for others)
3 set if more than 8 heads
4 always 0
5 set if manufacturer’s defect map on max cylinder+l
6 disable ECC retries

HUAWEI EX. 1015 - 129/393

HUAWEI EX. 1015 - 130/393

Interrupts 22h Through 86h 123
7 disable access retries

byte standard timeout (XT only, 0 for others)
byte formatting timeout (XT only, 0 for others)
byte timeout for checking drive (XT only, 0 for others)

, word landing zone (AT, PS/Z)
byte sectors/track (AT, PS/Z)
byte 0 (zeroes)

3. normally vectored to ROM table when system is initialized.

Interrupt 42h Pointer to screen BIOS entry

EGA,}VGA, PS/2. Relocated (by EGA, etc.) video handler (original int 10h). Revectors int 10
calls to EGA BIOS. Also used by Zenith Z-100

Interrupt 43h Pointer to EGA graphics character table

The POST initializes this vector pointing to the default table located in the EGA ROM BIOS.

(PC-2 and up). Not initialized if EGA not present. This vector was referred to (mistakenly) as
the Video Parameters table in the original EGA BIOS listings.

Interrupt 44h Pointer to graphics character table

(0:0110h) This table contains the dot patterns for the first 128 characters in video modes 4,5, and

6, and all 256 characters in all additional graphics modes. Not initialized if EGA not present.

1. EGA/VGA/CONV/PS - EGA/Per fonts, characters 00h to 7Fh.
2. Novell NetWare - High-Level Language API.
3. This interrupt is not used by some EGA cards.
4. Also used by Zenith Z-100.

Interrupt 45h Reserved by IBM (not initialized)
also used by Zenith Z—lOO

Interrupt 46h Pointer to second hard disk parameter block

AT, XT/286, PS/Z (see int 41h) (except ESDI hard disks) (not initialized unless specific user soft-
ware calls for it)

Interrupt 47h Reserved by IBM (not initialized)

Interrupt 48h Cordless Keyboard Translation

(0:0120h) This vector points to code to translate the cordless keyboard scancodes into normal

83~key values. The translated scancodes are then passed to int 9. (not initialized on PC or AT)
(PCj r, XT [never delive‘redD

Interrupt 49h Non-keyboard Scan Code ’Il'anslation Table Address (Per)

(0:0124h) This interrupt is used for operation of non—keyboard devices on the Per, such as the
Keystronic Numeric Keypad, This interrupt has the address of a table used to translate non-key-
board scancodes (greater than 85 excepting 255). This interrupt can be revectored by a user ap-
plication. IBM recommends that the default table be stored at the beginning of an application
that required revectoring this interrupt, and that the default table be restored when the applica-
tion terminates. (not initialized on PC or AT)

The Per BIOS can interpret scancodes other than those generated by the keyboard to allow for
expansion. The keyboard generates scancodes from 01h to 055h, including OFFh. Any scancodes
above 55h (56h through 7Eh for make codes and 0D6h through OFEh for break codes) are pro-
cessed in the following manner:

1. if the incoming make code falls within the range of the translate table whose address is
pointed to by int 49h, it is translated into the corresponding scancode. Any incoming break

HUAWEI EX. 1015 - 130/393

HUAWEI EX. 1015 - 131/393

124 The Programmer’s Technical Reference

codes above 0D5h are ignored.

2. if the new translated scancode is less than 56h, it is processed by the BIOS as a keyboard
scancode and the same data is placed in the BIOS keyboard buffer.

3. if the translated scancode is higher than 55h or the incoming scancode is outside the range of
the translate table, 40h is added creating a new extended scancode. The extended scancode is

placed in the BIOS keyboard buffer with the character code of 00h (NUL). This utilitizes the
range of 96h through OBEh for scancodes 56h through 7Eh.

The default translate-table maps scancodes 56h through 6Ah to existing keyboard values. Codes
6Bh theough OBEh are mapped (by adding 40h) to extended codes OABh through OFEh since
they are outside the range of the default translate table.

The format of the translate table is:
0 length — the number of nonkeyboard scancodes that are

mapped within the table (from 1 to n)
1 to n word high byte 00h (NUL) byte scancode with low order

byte representing the scancode mapped values relative to
their input values within the range of 56h through 7Eh

With this layout, all keyboard scancodes can be intercepted through int 9h and and non-key-
board scancodes can be intercepted through int 48h.

Interrupt 4Ah Real-Time ClockAlarm (Convertible, PS/2)

(not initialized on PC or AT) Invoked by BIOS when real-time clock alarm occurs.

Interrupts 4Bh-4DhReserved by IBM (not initialized)

Interrupt 4Eh Reserved by IBM (not initialized)
Used instead of int 13h for disk I/O on T1 Professional PC

Interrupt 4Fh Reserved by IBM (not initialized)

Interrupt 50-57 IRQO-IRQ7 Relocation 1

IRQO-IRQ7 relocated by Destiew (normally not initialized)
IRQO-IRQ7 relocated by IBM 3278 Emulation Control Program

Interrupt 58h Reserved by IBM (not initialized)

Interrupt 59h Reserved by IBM (not initialized)

GSS Computer Graphics Interface (GSS*CGI)
entry DS:DX Pointer to block of 5 array pointers
return CF 0

AK ' return code
CF 1
AX error code

note 1. Int 59h is the means by which GSS*CGI language bindings communicate with
GSS*CGI device drivers and the GSS*CGI device driver controller.

2. Also used by the IBM Graphic Development Toolkit

Interrupt 5Ah Reserved by IBM (not initialized)

IBM Cluster Adapter BIOS entry address

Interrupt 5Bh Reserved by IBM (not initialized)

Interrupt 5Ah ClusterAdapter BIOS entry address J

(normally not initialized)

Interrupt 5Bh Reserved by IBM (not initialized)

Used by cluster adapter?

HUAWEI EX. 1015 - 131/393

HUAWEI EX. 1015 - 132/393

Interrupts 22h Through 86h 125

Interrupt 5Ch NETBIOS interface entry port, TOPS

See Chapter 13 ‘

Interrupts 5Dh -5Fh Reserved by IBM (not initialized)

Interrupt 60h-67h User Program Interrupts

(available for general use) Various major programs make standardized use of this group of in-
terrupts. Details of common use follows:

Interrupt 60h 10-Net Network

See Chapter 13.

Interrupt 60h FTP Driver - PC/TCP Packet Driver Specification
See Chapter 13.

Interrupt 67h Used by Lotus-Intel-Microsoft Expanded Memory Specification

and Ashton-Tate/Quadram/AST Enhanced Expanded Memory Specification. See Chapter 10.

Interrupt 68h Not Used (not initialized)
APPC/PC Network Interface. See Chapter 13.

Interrupts 69h -6Bh Not Used (not initialized)

Interrupt 6Ch System Resume Vector (Convertible)

(not initialized on PC) DOS 3.2 Realtime Clock update

Interrupt 6Dh Not Used (not initialized)
Paradise VGA - internal

Interrupt 6Eh Not Used (not initialized)

Interrupt 6Fh 10-NetAPI
See Chapter 13.

Interrupt 70h IRQ 8, Real Time Clock Interrupt (AT, XT/286, PS/2)

Interrupt 71h IRQ 9, Redirected to IRQ 8 (AT, XT/286, PS/2)

LAN Adapter 1 (rerouted to int OAh [IRQZ] by BIOS)

Interrupt 72h IRQ 10 (AT, XT/286, PS/Z) Reserved

Interrupt 73h IRQ 11 (AT, XT/286, PS/2) Reserved

Interrupt 74h IRQ 12 Mouse Interrupt (PS/2)

Interrupt 75h IRQ 13, Coprocessor Error (AT)

BIOS Redirects NDP errors to int 2 (NMI).

Interrupt 76h IRQ 14, Hard Disk Controller (AT, XT/286, PS/2)

Interrupt 77h IRQ 15 (AT, XT/286, PS/2) Reserved

Interrupts 78h-79h Not Used

Interrupt 7Ah Reserved
Novell NetWare - Low-Level API
AutoCAD Device Interface

HUAWEI EX. 1015 - 132/393

HUAWEI EX. 1015 - 133/393

126 The Programmer’s Technical Reference

Interrupt 7Bh-7Eh Not Used by IBM

Interrupt 7Ch REXX-PC API

IBM REXX-PC macro language
entry Ax OOOOh Initialize

DS:SI pointer to null terminated name of program to be executed
EBzBX pointer to null terminated argument string to be passed to the

program
DX:DI pointer to an environment control block in the format:

dword offset in segment to signature string
The segment is that contained in DX and the signature is
the uppercase ASCIIZ string ’REXX'.

dword offset in DX to environment name ASCIIZ string
note: The environment name will be truncated if longer
than 32 characters.

dword offset in Dx to the file extension ASCIIZ string
dword path search — word value of 0 or non-zero.

This controls the searching of the path for commands that
might be REXX programs. 0 means no search made, n—zero
means search first.

dword x'AAAA’
This is a signature that allows REXXPC88 to call your own
defined routine when a command expression needs to be
processed.

DD Segment:offset (standard INTEL format) of environment
work buffer, the first double word of the buffer MUST be
the entry point address of the environment service
routine to be called. The rest of the buffer may be used
in any way you choose and will NOT be examined or
modified by REXXPC88.

return none

note 1. The only way to tell if the program exists and can be executed is by
examining a value returned by the program in the next call described
below. If the program returns an end of program indication and a string
was expected instead, it means that the program was not found or could
not be executed for some reason.

2. All registers except SS and SP are destroyed. The caller must save any
other registers of interest.

Function 01h Interpret REXX Command
This call tells REXXPCBB to interpret the REXXPC88 program until a
value is produced.

entry AX 0001h
return DS:DX points to a result string, terminated by a CR + LF + NULL. The

final result string (which marks the end of the program)
consists of nothing but EOF + NULL. REXXPC88 will continue to
return this 'end of program’ string until reinitialized via an
AX=01h call as described above.

note All registers except SS and SP are destroyed. The caller must save any
other registers of interest.

Function 02h Termination
This call allows resident REXXPC88 extensions to terminate execution of a
REXXPC88 program, typically after detecting an error.

entry AX 0002h
DS:SI points to null terminated string to be displayed as an error

message before terminating the REXXPC88 program.return none

note Terminates the REXXPC88 program and returns control to DOS.

Function 03h Load

This call tells REXXPC88 to look up a program variable and return its
current value (if any).

entry Ax 0003h
DS:SI points to null terminated name of REXXPC88 program variable.
DS:DX points to the null terminated string value of the program

variable. DX is zero if the program variable is currently
undefined. This string is in REXXPCSB'S data area and must be
treated as read—only.

HUAWEI EX. 1015 - 133/393

HUAWEI EX. 1015 - 134/393

Interrupts 22h Through 86h Z27
return none

note 1. All registers except SS and SP are destroyed. The caller must save any
.other registers of interest.

Function 04h Store

’ This call tells REXXPC88 to store a null terminated string as the value
of a program variable.

entry Ax 0004b
DS:SI points to null terminated name of REXXPC88 program variable
ES:BX points-to null terminated string to be assigned to the variablereturn none

note 1. The string is copied into REXXPC88’S data dictionary. If there is
insufficient storage to store the string, REXXPC88 terminates execution
of the program with an error message and returns to DOS.

2. Registers: all registers except SS and SP are destroyed. The caller must
save any other registers of interest.

Function 05h User—Written Extensions
entry AX 0005h

SS:BP points to a C stack frame containing a two—byte pointer to the
null terminated function name, a two—byte integer specifying
the number of arguments, and a two—byte pointer to an array of
pointers (each two bytes) to the arguments (each argument is a
null terminated string).

return DS:SI must point to a null terminated result string. A pointer of NIL
(DS = 0, SI = 0) is reserved by REXXPC88 and indicates that ’no
REXXPC88 extensions answered the function'.

note 1. Registers: all registers except SS, SP, and BP are available for use.
2. Stack: Since the amount of REXXPC88 stack space remaining for growth

can’t be ascertained by the user extension program, the user may wish to
switch to a local stack if he requires more than about 128 bytes of
stack growth.

Function 06h Queue

This call tells REXXPCBB to place data on the data or external interrupt
queue either FIFO or LIFO.

entry AX 06h
BH 00h Internal data queue accessible via PULL and PARSE PULL

01h External interrupt queue accessible via LINEIN(EXQUE)
BL 00h Queue data FIFO on selected queue

01h Queue data LIFO on selected queue
DS:SI points to null terminated string to be queued.

return AX OOOOh Message queued successfully.
0001h No REXXPC88 program running at current time. Message not

queued.
0002h Not enough storage available for message. Message not

queued.
0003h Either BH (queue number) or BL (FIFO/LIFO flag) out of

range. Message not queued.
note 1. For the Internal data queue a string may not exceed 127 characters.

' 2. For the External int. queue a string may not exceed available storage.
3. Registers: all registers except SS and SP are destroyed. The caller must

save any other registers of interest.

Function 07h Check for Loaded Extension

This call provides a way for a REXXPC88 extension to find out if a copy
is already loaded, and to exchange information with a resident version.

entry AX 0007b
SS:BP points to a C stack frame containing a two—byte pointer to the

null terminated name of the REXXPC88 extension.
return If the extension is already loaded, then DS:SI points to an ASCIIZ string

'1', and other registers are used as desired by the extension to
communicate with its non—resident copy. (Generally, this involves
pointing ES:BX to the resident portion's entry point). If the extension
is not yet resident, then DS:SI points to an ASCIIZ '0’.

note Registers: all registers except SS, SP and BP are available for use.

Function 08h Reserved
This call is reserved for communication between REXXSYS.SYS and REXXIBMR.

entry AX 0008b
return none

HUAWEI EX. 1015 - 134/393

HUAWEI EX. 1015 - 135/393

128

entry
return

The Programmer’s Technical Reference
Ax 0008h
none

Function 09h Check for REXX Installed

entry
return

note

This call provides external applications a way to determine if REXXIBMR
is installed.
AX 09h
AX OFFFFh REXXIBMR is not installed
AX 0AAAAh REXXIBMR is installed

It is assumed that your application will inspect the value of the 7Ch
interrupt vector prior to issuing this interrupt. If the vector is
0000:0000 then REXXIBMR is not installed and this function will cause
the system to crash.

Function OAh Uninstall resident version of REXX

entry

return

This call is used to uninstall a resident version.AX OOOAh

BX 0AAAAh ‘Ax OOOOh Resident version uninstalled
OOOlh Resident version cannot uninstall, as one interrupt

vector has been modified by some other program in a non—
conforming manner.

OFFFFh The installed resident version does NOT support
the uninstall request code (i.e., it is pre 0.55 level).

Interrupt 7Fh IBM 8514/A Graphics Adapter API

59 API functions available, parameters unknown.

1.
2.

Used by second copy ofCOMMAND set with SHELL:
Not used by COMMAND /C at DOS prompt

Interrupt 80h-85h Reserved by BASIC
Note

Interrupts 80h through OECh are apparently unused and not initialized in most clone
systems.

Interrupt 86h Int 18 when relocated by NETBIOS

Interrupt 86h-0F0h Used by BASIC when BASIC interpreter is running

Interrupt 0E0h Digital Research CP/M-86 function calls

Interrupt 0E4h Logitech Modula-2 v2.0 Monitor Entry
entry

return

AX 05h monitor entry
06h monitor exit

BX priority
unknown

Interrupt 0EFh_ GEM interface (Digital Research)
entry CX 0473h

DS:DX pointer to GEM parameter block
note no other parameters are known

Interrupt 0F0h unknown

1. Used by secondary copy of COMMAND when SHELL: set
2. Not used by COMMAND /C at DOS prompt

3. Used by BASIC while in interpreter
Interrupts 0F1h-0FFh (absolute addresses 3C4h-3FFh)

Location of Interprocess Communications Area

Interrupt 0F8h Set Shell Interrupt (OEM)

Set OEM handler for int 21h calls from 0F9h through OFFh
entry AH OFBh

DS:DX pointer to handler for Functions 0F9h thru OFFh
note 1. To reset these calls, pass DS and DX with OFFFFh. DOS is set up to allow

ONE handler for all 7 of these calls. Any call to these handlers will

HUAWEI EX. 1015 - 135/393

HUAWEI EX. 1015 - 136/393

Interrupts 22h Through 86h ' 129

result in the carry bit being set and AX will contain 1 if they are not
initialized. The handling routine is passed all registers just as the
user set them. The OEM handler routine should be exited through an IRET.

2. 10 ms interval timer (Tandy?)

Interrupt 0F9h Reserved
First of 8 SHELL service codes, reserved for OEM shell (WINDOW); use like HP Vectra user

interface? '

Interrupt 0FAh USART ready (RS -232C)

Interrupt 0FBh USART RS ready (keyboard)

‘ Interrupt 0FCh Unknown

Interrupt 0FDh reserved for user interrupt

Interrupt 0FEh reserved by IBM

Interrupt OFFh reserved by IBM

HUAWEI EX. 1015 - 136/393

HUAWEI EX. 1015 - 137/393

DOS Control Blocks and Work

Areas

DOS Address Space

Contrary to popular belief, DOS is not limited to 640k ofwork space. This constraint is enforced .
by the mapping of ROM and video RAM into the default 1 megabyte CPU address space. Some '
MSDOS compatible machines, such as the Sanyo 55x series, can have as much as 768k of con—
tiguous DOS workspace with the appropriate option boards. Since DOS has no real memory

management, it cannot deal with a fragmented workspace. Fragmented RAM (such as RAM
mapped into the option ROM address space) can be dealt with as a RAMdisk or other storage
area by using a device driver or other software.

The 80386 CPU and appropriate control software can create a DOS workspace of more than
one megabyte. Certain add-on boards can also add more than a megabyte ofworkspace, but only

for specially written software. Since these are all proprietary schemes, little information is avail-
able at present.

Storage Blocks

A storage block is used by DOS to record the amount and location of allocated memory within

the machine’s address space.

A storage block, a Program Segment Prefix, and an environment area are built by DOS for each

program currently resident in the address space. The storage block is used by DOS to record the
address range of memory allocated to a program. It is used by DOS to find the next available area

to load a program and to determine if there is enough memory to run that porogram. When a
memory area is in use, it is said to be allocated. Then the program ends, or releases memory, it is
said to be deallocated.

A storage block contains a pointer to the Program Segment Prefix associated with each pro-V
gram. This control block is constructed by IBMDOS for the purpose of providing standardized
areas for DOS/program communication. Within the PSP are areas which are used to save inter-

HUAWEI EX. 1015 - 137/393

HUAWEI EX. 1015 - 138/393

DOS Control Blocks and WorkAreas I 131

rupt vectors, pass parameters to the program, record disk directory information, and to buffer

disk reads and writes. This control block is 100h bytes in length and is followed by the program
module loaded by DOS.

The PSP contains a pointer to the environment area for that program. This area contains a copy
of the current DOS SET, PROMPT, COMSPEC, and PATH values as well as any user—set vari-
ables. The program may examine and modify this information as desired.

Each storage block is 10h bytes long, although only 5 bytes are currently used by DOS. The first
byte contains 4Dh (a capital M) to indicate that it contains a pointer to the next storage block. A
5Ah (a capital Z) in the first byte of a storage block indicatres there are no more storage blocks
following this one (it is the end of the chain). The identifier byte is followed by a 2 byte segment

_ number for the associated PSP for that program. The next 2 bytes contain the number of seg-
ments what are allocated to the program. If this is not the last storage block, then another stor-
age block follows the allocated memory area.

When the storage block contains zero for the number of allocated segments, then no storage is
allocated to this block and the next storage block immediately follows this one. This .can happen
when memory is allocated and then deallocated repeatedly.

IBMDOS constructs a storage block and PSP before loading the command interpreter (default
is COMMANDCOM).

If the copy of COMMANDCOM is a secondary copy, it will lack an environment address at
PSP+2Ch.

Disk Transfer Area (DTA)

DOS uses an area in memory to contain the data for all file reads and writes that are performed
with FCB function calls. This are is known as the disk transfer area. This disk transfer area

(DTA) is sometimes called a buffer. It can be located anywhere in the data area ofyour applica-
tion program and should be set by your program.

Only one DTA can be in effect at a time, so your program must tell DOS what memory location
to use before using any disk read or write functions. Use function call 1Ah (Set Disk Transfer
Address) to set the disk transfer address. Use function call 2Fh (Get Disk Transfer Address) to
get the disk transfer address. Once set, DOS continues to use that area for all disk operations
until another function call 1Ah is issued to define a new DTA. When a program is given control
by COMMANDCOM, a default DTA large enough to hold 128 bytes is established at 80h into
the program’s Program Segment Prefix.

For file reads and writes that are performed with the extended function calls, there is no need to
set a DTA address. Instead, specify a buffer address when you issue the read or write call.

Program Segment Prefix

When DOS loads a program, it first sets aside a section of memory for the program called the
program segment, or code segment. Then it constructs a control block called the program seg-
ment prefix, or PSP, in the first 256 (100h) bytes. Usually, the program is loaded directly after the
PSP at 100h.

HUAWEI EX. 1015 - 138/393

HUAWEI EX. 1015 - 139/393

132 The Programmer’s Technical Reference

The PSP contains various information used by DOS to help run the program. The PSP is always
located at offset 0 within the code segment. When a program recieves control certain registers

are set to point to the PSP. For a COM file, all registers are set to point to the beginning of the 1‘
PSP and the program begins at 100h. For the more complex EXE file structures, only DS and ES ;
registers are set to point to the PSP. The linker determines the settings for the CS, IP, SS, and SP 1
registers and may set the starting location in CS:IP to a location other than 100h. :

IBMBIO provides an IRET instruction at absolute address 847h for use as a dummy routine for

interrupts that are not used by DOS. This lets the interruptsdo nothing until their vectors are re-
routed to their appropriate handlers. -

The PSP (with offsets in hexadecimal) is formatted as follows:
(* = undocumented)

PROGRAM SEGMENTPREFIX

offset size C O N T E N T 5

00h 2 bytes int 20h
02h 2 bytes segment address, end of allocation block
04h 1 byte reserved, normally 0
05h 5 bytes FAR call to MSDOS function dispatcher (int 21h)
OAh 4 bytes previous termination handler interrupt vector (int 22h)
OEh 4 bytes previous contents of ctrl-C interrupt vector (int 23h)
12h 4 bytes prev. critical error handler interrupt vector (int 24h)
16h 22 bytes reserved for DOS

* 2 bytes (16) parent process’ PSP
* 20 bytes (18) 'handle table ' used for redirection of files 5

2Ch 2 bytes segment address of the program’s environment block
ZEh 34 bytes reserved, DOS work area

* 4 bytes (2Eh) stores the calling process's stack pointer when switching
to DOS’s internal stack.

* (32h) DOS 3.x max open files
* 2 bytes (3Ah) size of handle table [these functions are in here
* 4 bytes 3Ch) handle table address [but reported addresses vary

50h 3 bytes int 21h, RETF instruction
53h 2 bytes reserved — unused?
55h 7 bytes reserved, or FCB#1 extension
5Ch 16 bytes default unopened File Control Block #1
6Ch 16 bytes default unopened FCB #2 (overlaid if FCB #1 opened)
80h 1 byte parameter length (number of chars entered after filename)
81h ... parameters
OFFh 128 bytes command tail and default Disk Transfer Area (DTA)

1. The first segment of available memory is in segment (paragraph) form. For example, 1000h
would respresent 64k.

2. Offset 2Ch contains the segment address of the environment.

3. Programs must not alter any part of the PSP below offset 5Ch. .

PSP (comments)

offset 00h contains hex bytes ‘CD 20’, the int 20h opcode. A program can end by making a jump

to this location when the CS points to the PSP. For normal cases, int 21h/fn4Ch
should be used.

offset 02h contains the segment-paragraph address of the end ofmemory as reported by DOS.

(which may not be the same as the real end ofRAM). Multiply this number by 10h or
16 to get the amount ofmemory available. ex. 1000hwould be 64k.

HUAWEI EX. 1015 - 139/393

HUAWEI EX. 1015 - 140/393

DOS Control Blocks and WorkAreas 133

offset 04h ‘reserved or used by DOS’ according to Microsoft

offset 05h contains a long call to the DOS function dispatcher. Programs mayjump to this
address instead ofcalling int 21h iftheywish. Used by BASIC and other CPM

object—code translated programs. It is slower than standard int 21h. l

offset 0Ah, 0Eh, 12h

vectors (1P, CS) ‘

offset 16h PSP:16h is the segment address of the invoking program’s PSP, which * will most

often be COMMAND.COM but perhaps may be a secondary nonpermanent
COMMAND or a multitasking shell, etc. At any rate, the resident shellversion of

COMMAND.COM has PSP:16h = PSP, which indicates ‘don’t look any lower in

memory’ for the command interpreter. To find the beginning of the allocation chain,

look backwards through the PSP link addresses until the link address is equal to the
PSP segment address that it resides in. This should be COMMAND.COM. To find
COMMAND.COM’s environment, look at the word stored at offset 0BD3h

(PC-DOS 3.1 only). This is a segment address, so look there at offset 0.

18h handle alias table (networking). Also you can make PRN go to CON, * CON go to
PRN, ERR go to PRN, etc. OFFh = available.

offset 2Ch is the segmentzoffset address of the environment for the program using this

particular PSP. This pointer does not point to COMMAND.COM’s environment

unless it is a second copy of COMMAND.

offset 2Eh the DWORD at PSP + 2Eh is used by DOS to store the calling process’s * stack

pointer when switching to DOS’s own private stack - at the end ofa DOS function
call, SS:SP is restored from this address.

offset 32h, 34h

* table ofnumber of file handles (up to 64k ofhandles!)

offset 40h 2 byte field points to the segment address ofCOMMAND.COM’s PSP in * ‘weird’ _
EXE files produced by Digital Research RASMPC/LINKPC. EXE files created with

these tools can cause all sorts ofproblems with standard MSDOS debugging tools.

offset 50h contains a long call to the DOS int 21 function dispatcher.

offset 5Ch, 65h, 6Ch ‘
contain FCB information for use with FCB function calls. The first FCB may overlay

the second ifit is an extended call; your program should revector these areas to a safe

place ifyou intend to use them.

offset 5Ch 16 bytes first command-line argument (formatted as uppercase 11 character
filename)

offset 6Ch 16 bytes second command-line argument (formatted as uppercase 1 1 character
filename)

HUAWEI EX. 1015 - 140/393

HUAWEI EX. 1015 - 141/393

134 The Programmer’s Technical Reference

offset 7Ch-7Fh

‘reserved or used by DOS’

offset 80h 1 byte number ofbytes in command line argument

offset 80h, 81h

contain the length and value ofparameters passed on the command line.

offset 81h 97 bytes unformatted command line and/or default DTA

offset OFFh contains the DTA

’ The PSP is created by DOS for all programs and contains most of the information you need to
know about a program running. You can change the environment for the current process, how-
ever, but for the parent process, DOS in this case, you need to literally backtrack to DOS or
COMMAND.COM’s PSP. In order to get there you must look at the current PSP. At offset 16h

of the current PSP segment there is a 2 byte segment address to the parent or previous process
PSP. From there you can manipulate the enviroment by looking at offset 2Ch.

Try this under debug and explore the addresses located at these offsets;

offset length description
16h 2 segment address of parent process PSP
2Ch 2 segment address of environment block.

Remember under debug you will have to backtrack two times.

Programs Parentcommand.com none
debug.com command.com
program debug.com

Memory Control Blocks

DOS keeps track of allocated and available memory blocks, and provides fOur function calls for
application programs to communicate their memory needs to DOS. These calls are:

48h ——— allocate memory (MALLOC)
49h ——— free allocated memory
4Ah —-- modify allocated memory blocks (SETBLOCK)
4Bh -—— load or execute program (EXEC)

DOS manages memory as follows:

DOS builds a control block for each block of memory, whether free or allocated. For example, if
a program issues an ‘allocate’ (48h), DOS locates a block of free memory that satisfies the re-
quest, and then ‘carves’ the requested memory out of that block. The requesting program is
passed the location of the first byte of the block that was allocated for it - a memory management
control block, describing the allocated block, has been built for the allocated block and a second

memory management control block describes the amount of space left in the original free block
of memory. When you do a SETBLOCK to shrink an allocated block, DOS builds a memory
management control block for the area being freed and adds it to the chain of contrOl blocks.

Thus, any program that changed memory that is not allocated to it stands a chance of destroying
a DOS memory management control block. This causes unpredictable results that don’t show
up until an activity is performed where DOS uses its chain ofcontrol blocks. The normal result is

HUAWEI EX. 1015 - 141/393

HUAWEI EX. 1015 - 142/393

DOS Control Blocks and WorkAreas ' 135

a memory allocation error, which means a system reset will be required.

When a program (command or application program) is to be loaded, DOS uses the EXEC func-

tion call 4Bh to perform the loading. This is the same function call that is available to applica- .
tions programs for loading other programs. This function call has two options:

Function 00h, to load and execute a program (this is what the command processor uses to load

and execute external commands)

Function 03h, to load an overlay (program) without executing it.

Although both functions perform their loading in the same way (relocation is performed for
EXE files) their handling ofmemory management is different.

FUNCTION 0

For function 0 to load and execute a program, EXEC first allocates the largest available block of
memory (the new program’s PSP will be at offset 0 in that block). Then EXEC loads the pro-
gram. Thus, in most cases, the new program owns all the memory from its PSP to the end of
memory, including memory occupied by the transient parent of COMMAND.COM. If the pro-

gram were to issue its own EXEC function call to load and execute another program, the request

would fail because no available memory exists to load the new program into.

Note For EXE programs, the amount of memory allocated is the size of the program’s

' memory image plus the value in the MAX_ALLOC field of the file’s header (offset OCh,

if that much memory is available. If not, EXEC allocates the size of the program’s

memory image plus the value in the MIN_ALLOC field in the header (offset OAh).

These fields are set by the Linker).

A well-behaved program uses the SETBLOCK function call when it receives control, to shrink
its allocated memory block down to the size it really needs. A COM program should remember
to set up its own stack before doing the SETBLOCK, since it is likely that the default stack sup;
plied by DOS lies in the area of memory being used. This frees unneeded memory, which can be
used for loading other programs.

If the program requires additional memory during processing, it can obtain the memory using
the allocate function call and later free it using the free memory function call.

When a program is loaded using EXEC function call 00h exits, its initial allocation block (the
block beginning with its PSP) is automatically freed before the calling program regains control.

It is the responsibility of all programs to free any memory they allocate before exiting to the call-
ing program.

FUNCTION 3

For function 3, to load an overlay, no PSP is built and EXEC assumes the calling program has al-

ready allocated memory to load the new program into - it will NOT allocate memory for it. Thus

the calling program should either allow for the loading of overlays when it determines the
amount of memory to keep when issuing the SETBLOCK call, or should initially free as much

memory as possible. The calling program should then allocate a block (based on the size of the
program to be loaded) to hold the program that will be loaded using the ‘load overlay’ call. Note
that ‘load overlay’ does not check to see if the calling program actually owns the memory block it
has been instructed to load into - it assumes the calling program has followed the rules. If the
calling program does not own the memory into which the overlay is being loaded, there is a
chance the program being loaded will overlay one of the control blocks that DOS uses to keep

HUAWEI EX. 1015 - 142/393

HUAWEI EX. 1015 - 143/393

136 The Programmer’s Technical Reference

track of memory blocks.

Programs loaded using function 3 should not issue any SETBLOCK calls since they don’t own

the memory they are operating in. (This memory is owned by the calling program.)

Because programs loaded using function 3 are given control directly by (and return contrrol di-
rectly to) the calling program, no memory is automatically freed when the called program exits.
It is up to the calling program to determine the disposition of the memory that had been occu-
pied by the exiting program. Note that if the exiting program had itself allocated any memory, it
is responsible for freeing that memory before exiting.

Memory control blocks, sometimes called ‘arena headers’ after their UNIX counterpart, are 16
bytes long. Only the first 5 bytes are used. 16 bytes areused for the memory control block, which

always starts at a paragraph boundary. When DOS call 48h is made to allocate ‘x’ many para-
graphs of memory, the amount used up is actually one more than the figure in the BX register to

provide space for the associated memory control block. The location of the memory control
block is at the paragraph immediately before the segment value returned in AX by the DOS int
21h/fn 48h call i.e. ((AX-l):0).

MEMORYCONTROLBLOCK
Offset size Function

0 1 byte ASCII M or Z > 1
1—2 2 bytes PSP segment address of program owning this block of memory ‘
3—4 2 bytes Size of next MCB in 16—byte paragraphs
S-F 11 bytes unused

byte 1 will always have the value of4Dh or 5Ah. The value 5Ah (Z) indicates the block is the I 1
last in a chain, all memory above it is unused. 4Dh (M) means that the block is ‘

intermediate in a chain, the memory above it belongs to the next program or to DOS.

bytes 2,3 hold the PSP segment address of the program that owns the corresponding block of

memory. Avalue of0 means the block is free to be claimed, any other value represents
a segment address.

bytes 3, 4 indicate the size in paragraphs of the memory block. Ifyou know the address of the

first block, you can find the next block by adding the length of the memory block plus 1
to the segment address of the control block. Finding the first block can be difficult, as

this varies according to the DOS version and the configuration.

The remaining 11 bytes are not currently used by DOS, and may contain ‘trash’ characters left in
memory from previous applications.

If DOS determines that the allocation chain of memory control blocks has been corrupted, it
will halt the system and display the message ‘Memory Allocation Error’, and the system will halt,
requiring a reboot.

’ Each memory block consists of a signature byte (4Dh or 5Ah) then a word which is the PSP value

of the owner of the block (which allocated it), followed by a word which is the size in paragraphs
of the block. The last block has a signature of 5Ah. All others have 4Dh. If the owner is 0000 then
the block is free.

ate DOS function calls. Accidentally writing over any of the first 5 bytes of a memory control

block can cause a memory allocation error and cause the system to lock up. If the first byte is

I

1

Once a memory control block has been created it should only be manipulated with the appropri— j

overwritten with something other than an ‘M’ or a ‘2’ then DOS will complain with an error re- 1

HUAWEI EX. 1015 - 143/393

HUAWEI EX. 1015 - 144/393

DOS Control Blocks and WorkAreas ' 137

turn code of 7 signifying ‘Memory Control Blocks destroyed’. However, should you change the
ownership or block size bytes, you’ve had it.

When a .COM program is first loaded by DOS and given control, the memory control block im-
mediately preceding the Program Segment Prefix contains the following data:

ID = '2'

Owner = segment address of PSP (= CS register of .COM program)
size = number-of available paragraphs in DOS memory pool

An .EXE file will have the following data in the memory control block for the program (just
prior to the PSP):

ID
Owner
Size

[Ml

segment address of PSP (= Ds register of program)
the number of paragraphs allocated to the program according to
the information in the .EXE program header

"II"

In the case of an .EXE program file the amount of memory allocated depends on the contents of
the program header which informs the DOS loader how much to allocate for each of the seg-
ments in the program. With an .EXE program file there will always be a ‘2’ memory control
block created in memory immediately after the end of the space allocated to the program itself.

One important fact to remember about DOS memory allocation is that blocks of RAM allo-
cated by different calls to DOS function 48H will NOT be contiguous. At the very best, they will
be separated by the 16 bytes of the memory control block, and at worst they could be anywhere in
RAM that DOS manages to find a existing memory control block of sufficient size to accomo-
date the memory request.

DOS treats the memory control blocks as a kind of linked list (term used loosely). It uses the ear-
lier MCBs to find the later ones by calculating the location of the next one from the size of the

prior one. As such, erasing any of the MCB data in the chain of MCBs will upset DOS severely,
as each call for a new memory allocation causes DOS to scan the whole chain of MCBs looking
for a free one that is large enough to fulfill the request.

A separate MCB is created for the DOS environment strings at each program load, so there will
be many copies of the‘environment strewn through memory when you have a lot of memory resi-
dent programs loaded. The memory control blocks for the DOS environment strings are not re-
turned to the DOS memory pool if the program goes resident, asDOS will need to copy this en-
viroment for the next program loaded. -

DOS Program Segment

When you enter an external command or call a program through the EXEC function call, DOS
determines the lowest available address space to use as the start ofavailable memory for the pro-
gram being started. This area is called the Program Segment.

At offset 0 within the program segment, DOS builds the Program Segment Prefix control block.
EXEC loads the program after the Program Segment Prefix (at offset 100h) and gives it control.

The program returns from EXEC by a jump to offset 0 in the Program Segment Prefix, by issuing
an int 20h, or by issuing an int 21h with register AH=00h or 4Ch, or by calling location 50h in
the PSP with AH =00h or 4Ch.

It is the responsibility of all programs to ensure that the CS register contains the segment ad-

HUAWEI EX. 1015 - 144/393

HUAWEI EX. 1015 - 145/393

138 The Programmer’s Technical Reference

dress of the Program Segment Prefix when terminating by any of these methods except call 4Ch.

All of these methods result in returning to the program that issued the EXEC. During this re-

turning process, interrupt vectors 22h, 23h, and 24h (Terminate, Ctrl—Break, and Critical Error
Exit addresses) are restored from the values saved in the PSP of the terminating program. Con-
trol is then given to the terminate address.

When a program receives control, the following conditions are in effect:

For all programs:

1. The segment address of the passed environment is contained at offset 2Ch in the Program
Segment Prefix.

2. The environment is a series of ASCII strings totalling less than 32k bytes in the form:
‘NAME=value’ The default environment is 160 bytes. Each string is a maximum of 127

bytes terminated by a byte of zeroes for a total of 128 bytes, and the entire set of strings is
terminated by another byte of zeroes. Following the byte of zeroes that terminates the set

of environment string is a set of initial arguments passed to a program that contains a word
count followed by an ASCIIZ string. The ASCIIZ string contains the drive, path, and
filenameext of the executable program. Programs may use this area to determine where the

program was loaded from. The environment built by the command processor (and passed
to all programs it invokes) contains a COMSPEC=string at a minimum (the parameter on
COMSPEC is the path used by DOS to locate COMMAND.COM on disk). The last PATH
and PROMPT commands issued will also be in the environment, along with any
environment strings entered through the SET command.

The environment that you are passed is actually a copy of the invoking process’s
environment. If your application terminates and stays resident through int 27h, you should
be aware that the copy of the environment passed to you is static. That is, it will not change
even if subsequent PATH, PROMPT, or SET commands are issued.

The size of the environment may be changed from its default of 160 bytes by using the

SHELL: command in the CONFIG.SYS from in DOS version 3.1 up, or
COMMAND.COM may be patched in earlier versions.

The environment can be used to transfer information between processes or to store strings

for later use by application programs. The environment is always located on a paragraph
boundary. This is its format:

byte ASCIIZ string 1
byte ASCIIZ string 2

byte ASCIIZ string n
byte of zeros (0)

Typically the environment strings have the form:

NAME = VALUE

The length of NAME or VALUE can be anything desired as long as it still fits into the 123 ;
byte space (4 bytes are used by ‘SET ’). Following the byte of zeros in the environment, a - 3

WORD indicates the number of other strings following. 1

If the environment is part of an EXECed command interpreter, it is followed by a copy of :
the DS:DX filename passed to the child process. A zero value causes the newly created .
process to inherit the parent’s environment.

HUAWEI EX. 1015 - 145/393

HUAWEI EX. 1015 - 146/393

DOS Control Blocks and WorkAreas ' I39

3. Offset 05h in the PSP contains code to invoke the DOS function dispatcher. Thus, by
placing the desired function number in AH, a program can issue a long call to PSP +05h to
invoke a DOS function rather than issuing an int 21h.

4. The disk transfer address (DTA) is set to 80h (default DTA in PSP).

5. File Control Blocks 5Ch and 6Ch are formatted from the first two parameters entered when
the command was invoked. Note that ifeither parameter contained a path name, then the
corresponding FCB will contain only a valid drive number. The filename field will not be
valid.

6. An unformatted parameter area at 81h contains all the characters entered after the

command name (including leading and imbedded delimiters), with 80h set to the number of
characters. If the , , or | parameters were entered on the command line,‘ they (and the
filenames associated with them) will not appear in this area, because redirection of
standard input and output is transparent to applications.

(For EXE files only)

7. DS and ES registers are set to point to the PSP.

8. CS, IP, SS, and SP registers are set to the values passed by the linker.

(For COM files only)

9. FOr COM files, offset 6 (one word) contains the number of bytes available in the segment.

10. Register AX reflects the validity of drive specifiers entered with the first two parameters asfollows:

AH=OFFh if the second parameter contained an invalid drive specifier,otherwise AH=00h.

AL=OFFh is the first parameter contained an invalid drive specifier,otherwise AL=00h.

11. All four segment registers contain the segment address of the inital allocation block, that
starts within the PSP control block. All of user memory is allocated to the program. If the
program needs to invoke another program through the EXEC function call (4Bh), it must
first free some memory through the SETBLOCK function call to provide space for the
program being invoked.

12. The Instruction Pointer (IP) is set to 100h.

13. The SP register is set to the end of the program’s segment. The segment size at offset 6 is
rounded down to the paragraph size.

14. A word of zeroes is placed on top of the stack.

HUAWEI EX. 1015 - 146/393

HUAWEI EX. 1015 - 147/393

DOS File Structure

File Management Functions

Use DOS function calls to create, open, close, read, write, rename, find, and erase files. There
are two sets of function calls that DOS provides for support of file management. They are:

* File Control Block function calls (0Fh—24h)
* Handle function calls (39h—69h)

Handle function calls are easier to use and are more powerful than FCB calls. Microsoft recom-
mends that the handle function calls be used when writing new programs. DOS 3.0 up have been
curtailing use of FCB function calls; it is possible that future versions of DOS may not support
FCB function calls.

The following table compares the use of FCB calls to Handle function calls:

FCB Calls Handle Calls

Access files in current Access files in ANY directory
directory only.

Requires the application Does not require use of an FCB.
program to maintain a file Requires a string with the drive,
control block to open, path, and filename to open, create,
create, rename or delete rename, or delete a file. For file

a file. For I/O requests, I/O requests, the application program

the application program must maintain a 16 bit file handle
also needs an FCB that is supplied by DOS.

The only reason an application should use FCB function calls is to maintain the ability to run
under DOS 1.x. To to this, the program may use only function calls 00h-2Eh. Though the FCB

function calls are frowned upon, many of the introductory assembly language programming
texts use the FCB calls as examples.

FCB Function Calls

FCB function calls require the use,pf one File Control Block per open file, which is maintained
by the application program and DOS. The application program supplies a pointer to the FCB

HUAWEI EX. 1015 - 147/393

HUAWEI EX. 1015 - 148/393

DOS File Structure ’ 141

and fills in the appropriate fields required by the specific function call. An FCB function call can

perform file management on any valid drive, but only in the current logged directory. By using
the current block, current record, and record length fields of the FCB, you can perform sequen-
tial I/Oby using the sequential read or write function calls. Random I/O can be performed by
filling in the random record and record length fields.

Several possible uses of FCB type calls are considered programming errors and should not be

done under any circumstances to avoid problems with file sharing and compatibility with later
versions ofDOS.

Some errors are:

, 1. If program uses the same FCB structure to access more than one open file. By opening a
file using an FCB, doing I/O, and then replacing the filename field in the file control block

with a new filename, a program can open a second file using the same FCB. This is invalid
because DOS writes control information about the file into the reserved fields of the FCB.

If the program replaces the filename field with the original filename and then tries to
perform I/O on this file, DOS may become confused because the control information has
been changed. An FCB should never be used to open a second file without closing the one

that is currently open. If more than one File Control Block is to be open concurrently,
separate FCBs should be used.

2. A program should never try to use the reserved fields in the FCB, as the function of the
fields may change with different versions of DOS.

3. A delete or a rename on a file that is currently open is considered an error and should not
be attempted by an application program.

It is also good programming practice to close all files when 1/0 is done. This avoids potential file
sharing problems that require a limit on the number of files concurrently open using FCB func-
tion calls.

Handle Function Calls

The recommended method of file management is by using theextended ‘handle’ set of function

calls. These calls are not restricted to the current directory. Also, the handle calls allow the ap-
plication program to define the type of access that other processes can have concurrently with
the same file if the file is being shared.

To create or open a file, the application supplies a pointer to an ASCIIZ string giving the name

and location of the file. The ASCIIZ string contains an optional drive letter, optional path, man-
datory file specification, and a terminal byte ofIOOh. The following is an example of an ASCIIZ
string:

format: [drive] [path] FILENAME .EXT, 0

in MASM: db 'A: \PATH\FILENAME .EXT’ , 0

If the file is being created, the application program also supplies the attribute of the file. This is a
set ofvalues that defines the file read-only, hidden, system, directory, or volume label.

If the file is being opened, the program can define the sharing and access modes that the file is
opened in. The access mode informs DOS what operations your program will perform on this

HUAWEI EX. 1015 - 148/393

HUAWEI EX. 1015 - 149/393

142 The Programmer’s Technical Reference

file (read-only, write-only, or read/write) The sharing mode controls the type of operations
other processes may perform concurrently on the file. A program can also control if a child pro-
cess inherits the open files of the parent. The sharing mode has meaning only if file sharing is
loaded when the file is opened.

’11) rename or delete a file, the appplication program simply needs to provide a pointer to the
ASCIIZ string containing the name and location of the file and another string with the new
name if the file is being renamed.

The open or create function calls return a 16-bit value referred to as the file handle. Tb do any
1/0 to a file, the program uses the handle to reference the file. Once a file is opened, a program
no longer needs to maintain the ASCIIZ string pointing to the file, nor is there any need to stay
in the same directory. DOS keeps track of the location of the file regardless of what directory is
current.

Sequential I/O can be performed using the handle read (3Fh) or write (40h) function calls. The
offset in the file that 1/0 is performed to is automatically moved to the end ofwhat was just read
or written. If random I/O is desired, the LSEEK (42h) function call can be used to set the offset
into the file where 1/0 is to be performed.

Special File Handles

DOS reserves five special file handles for use by itself and applications programs. They are:

OOOOh STDIN standard input device (input can be redirected)
0001h STDOUT standard output device (output can be redirected)
0002h STDERR standard error output device (output cannot be redirected)

Note: DOS opens STDERR for both writing and reading. Since STDIN
can be redirected, using STDERR to read the keyboard is a re
liable way to ensure that your program is actually reading the
keyboard, if that’s what you want to do.

0004h STDAUX standard auxiliary device
0005b STDPRN standard printer device (PRN, normally LPTl)

These handles are predefined by DOS and can be used by an application program. They do not
need to be opened by a program, although a program can close these handles. STDIN should be
treated as a read—only file, and STDOUT and STDERR should be treated as write-only files.
STDIN and STDOUT can be redirected. All handles inherited by a process can be redirected,
but not at the command line. These handles are very useful for doing I/O to and from the console

device. For example, you could read input from the keyboard using the read (3Fh) function call
and file handle OOOOh (STDIN), and write output to the console screen with the write function
call (40h) and file handle 0001h (STDOUT). If you wanted an output that could not be redi-
rected, you could output it using file handle 0002h (STDERR). This is very useful for error
messages that must be seen by a user.

File handles 0003b (STDAUX) and 0004h (STDPRN) can be both read from and written to.
~ STDAUX is typically a serial device and STDPRN is usually a parallel device.

Raw and Cooked File I/O

Raw and cooked modes originated in the Unix world and were provided with DOS 2.x+. They
apply only to character I/O (including the keyboard, screen, printer and serial ports - but not

HUAWEI EX. 1015 - 149/393

HUAWEI EX. 1015 - 150/393

DOS File Structure ' 143

block devices like disk drives), and only to the ‘new’ 2.x file handle I/O functions (not the old
FCB file I/O functions). Raw mode is called ‘binary’ mode in DOS 3.x+, and cooked mode is

called ‘ASCII’. The common raw-cooked convention is from DOS 2.x and other operating sys-terns.

The five predefined DOS file handles are all devices, so the mode can be changed from raw to
cooked via IOCTL. These handles are in cooked mode when initialized by DOS. Regular file
handles that are not devices are always in raw mode and cannot be changed to cooked mode.

The predefined file handles STDIN (OOOOh) and STDOUT (0001b) and STDERR (0002h) are
all duplicate handles. If the IOCTL function call is used to change the mode of any of these three

handles, the mode of all three handles is changed. For example, if IOCTL was used to change
. STDOUT to raw, then STDIN and STDERR would also be changed to raw mode.

In the default cooked mode, DOS examines the character I/O data stream for certain special
control characters, and takes specific actions if they are found. For example, Ctrl-C is treated as
a Break interrupt, Ctrl-S pauses the screen display, and Ctrl-Z is treated as end-of-file. (If you
try to send Ctrl-Z to a printer through a DOS file handle in cooked mode, DOS closes the

printer file!) Also, input is buffered within DOS until a CR is detected - so you can’t process
each key as it is pressed.

In raw mode, DOS ignores special characters, passing them through without any special pro-
cessing, and does not buffer input lines. So to use file handle I/O and send bit-mapped graphics
to a printer through DOS, or process individual keystrokes immediately, or bypass Ctrl-C
checking, you need to switch the file handle to raw mode. Raw mode is not automatically reset to
cooked mode by DOS when a program terminates, so it is a good idea to reset the file into

cooked mode before your program exits if the system was in cooked mode to begin with. I/O to
files is done in raw mode.

To set a file handle into raw mode or back into cooked mode, use DOS IOCTL (int 21h Fn 44h,
Chapter 4):

1. Get the current mode bits (Subfunction 0).

2. Check that the file is a character file. (If not, exit.)

3. Switch the cooked mode bit to raw or vice versa.

4. Set the mode bits (Subfunction 1).

Microsoft C v4 and later do NOT set raw mode for binary files. When running with the CON
driver set to raw mode (to enhance display speed) programs compiled in MSC will crash the
computer. A letter to Microsoft reporting this odd behaviour got the somewhat bizarre reply
that ‘Microsoft does not support the use of any TSRs’ from their techs. Raw mode is clearly do-
cumented by both IBM and Microsoft, and their own tools should take it into account.

File I/O in Binary . (Raw) Mode

The following is true when a file is read in binary mode:

1. The characters " S (scroll lock), A P (print screen), " C (control break) are not checked for

during the read. Therefore, no printer echo occurs if " S or " P are read.

2. There is no echo to STDOUT(0001h).

HUAWEI EX. 1015 - 150/393

HUAWEI EX. 1015 - 151/393

1 44 The Programmer ’3 Technical Reference

3. Read the number of specified bytes and returns immediately when the last byte is received
or the end of file reached.

4. Allows no editing of the input using the function keys if the input is from STDIN (0000b).

The following is true when a file is written to in binary mode:

1. The characters " S (scroll lock), " P (print screen), " C (control break) are not checked for
during the write. Therefore, no printer echo occurs.

2. There is no echo to STDOUT (0001b).

3. The exact number of bytes specified are written.

4. Does not caret (") control characters. For example, Ctrl-D is sent out as byte 04h instead
of the two bytes " and D.

5. Does not expand tabs into spaces.

File I/O in ASCII (Cooked) Mode

The following is true when a file is read in ASCII mode:

1. Checks for the characters " C, " S, and " P.

2. Returns as many characters as there are in the device input buffer, or the number of
characters requested, whichever is less. If the number of characters requested was less than
the number of characters in the device buffer, then the next read will address the remaining ‘
characters in the buffer.

3. If there are no more bytes remaining in the device input buffer, read a line (terminated by
" M) into the buffer. This line may be edited with the function keys. The characters
returned terminated with a sequence of ODh, OAh (" M, " J) if the number of characters
requested is sufficient to include them. For example, if 5 characters were requested, and
only 3 were entered before the carriage return (ODh or " M) was presented to DOS from
the console device, then the 3 characters entered and ODh and OAh would be returned.

However, if 5 characters were requested and 7 were entered before the carriage return,
only the first 5 characters would be returned. No ODh, OAh sequence would be returned in
this case. If less than the number of characters requested are entered when the carriage
return is received, the characters received and ODh, OAh would be returned. The reason

the OAh (linefeed or " J) is added to the returned characters is to make the devices look
like text files.

4. If a lAh (A Z) is found, the input is terminated at that point. No ODh, OAh (CR,LF)
sequence is added to the string.

5. Echoing is performed.

6. Tabs are expanded.

The following is true when a file is written to in ASCII mode:

1. The characters " S, A P, and " C are checked for during the write operation.

2. Expands tabs to 8-character boundaries and fills with spaces (20h).

HUAWEI EX. 1015 - 151/393

HUAWEI EX. 1015 - 152/393

DOS File Structure ' . 145

3. Carets control chars, for example, " D is written as two bytes, A and D.
4. Bytes are output until the number specified is output or a A Z is encountered. The number

actually output is returned to the user.

Number of Open Files Allowed

The number of files that can be open concurrently is restricted by DOS. This number is deter-

mined by how the file is opened or created (FCB or handle function call) and the number speci—
fied by the FCBS and FILES commands in the CONFIG.SYS file. The number of files allowed

open by FCB function calls and the number of files that can be opened by handle type calls are
. independent ofone another.

Restrictions on FCB Usage

If file sharing is not loaded using the SHARE command, there is no restriction on the number of

files concurrently open using FCB function calls.

However, when file sharing is loaded, the maximum number ofFCBS open is set by the the FCBS
command in the CONFIG.SYS file.

The FCBS command has two values you can specify, ‘m’ and ‘n’. The value for ‘m’ specifies the
number of files that can be opened by FCBS, and the value ’n’ specifies the number of FCBS that
are protected from being closed.

When the maximum number of FCB opens is exceeded, DOS automatically closes the least re—
cently used file. Any attempt to access this file results in an int 24h critical error message ‘FCB
not available’. If this occurs while an application program is running, the value specified for ‘m’
in the FCBS command should be increased.

When DOS determines the least recently used file to close, it does not include the first ‘n’ files
opened, therefore the first ’n’ files are protected from being closed.

Restrictions on Handle Usage

The number of files that can be open simultaneously by all processes is determined by the FILES
command in the CONFIG.SYS file. The number of files a single process can open depends on
the value specified for the FILES command. IfFILES is greater than or equal to 20, a single pro-
cess can open 20 files. If FILES is less than 20, the process can open less than 20 files. This value
includes the three predefined handles STDIN, STDOU'I; and STDERR. This means only 17 ad-
ditional handles can be added. DOS 3.3+ includes a function to use more than 20 files per appli-
cation.

Allocating Space to a File

Files are not necessarily written sequentially on a disk. Space is allocated as needed and the next
location available on the disk is allocated as space for the next file being written. Therefore, if

HUAWEI EX. 1015 - 152/393

HUAWEI EX. 1015 - 153/393

I 46 The Programmer’s Technical Reference

considerable file generation has taken place, newly created files will not be written in sequential
sectors. However, due to the mapping (chaining) of file space via the File Allocation Table

(FAT) and the function calls available, any file may be used in either asequential or random man—
ner.

Space is allocated in increments called clusters. Cluster size varies according to the media type.
An application program should not concern itself with the way that DOS allocates space to a
file. The size ofa cluster is only important in that it determines the smallest amount ofspace that
can be allocated to a file. A disk is considered full when all clusters have been allocated to files.

MSDOS / PCDOS Differences

There is a problem ofcompatibility between MS-DOS and IBM PC-DOS having to do with FCB
Open and Create. The IBM 1.0, 1.1, and 2.0 documentation of OPEN (call OFh) contains the fol-
lowing statement:

‘The current block field (FCB bytes C-D) is set to zero [when an FCB is opened].’

This statement is NOT true of MS-DOS 1.25 or MS-DOS 2.00. The difference is intentional,

and the reason is CP/M 1.4 compatibility. Zeroing that field is not CP/M compatible. Some
CP/M programs will not run when machine translated if that field is zeroed. The reason it is
zeroed in the IBM versions is that IBM specifically requested that it be zeroed. This is the reason
for the complaints from some vendors about the fact that IBM MultiPlan will not run under
MS-DOS. It is probably the reason that some other IBM programs don’t run under MS—DOS.

Note: Do what all MS/PC-DOS systems programs do: Set every single FCB field you want to
use regardless ofwhat the documentation says is initialized.

.COM File Structure

The COM file structure was designed for DOS 1.0 and maximum compatibility with programs

ported from the CP/M operating system. COM files normally comprise one segment only. A
COM file is loaded as a memory image of the disk file and the Instruction Pointer is set to offset

100h within the program.

.EXE File Structure

The EXE file is the native mode for DOS. EXE files may make use of multiple segments for
code, stack, and data. The design of the EXE file reflects the segmented design of the Intel 80x86
CPU architecture. EXE files may be as large as available memory and may make references to

specific segment addresses.

The EXE files produced by the Linker program consist of two parts, control and relocation
information and the load module itself.

The control and relocation information, which is described below, is at the beginning of the file
in an area known as the header. The load module immediately follows the header. The load

module begins in the memory image of the module contructed by the Linker.

HUAWEI EX. 1015 - 153/393

HUAWEI EX. 1015 - 154/393

DOS File Structure 147'

When you are loading a file with the name *.EXE, DOS does NOT assume that it is an EXE for—

mat file. It looks at the first two bytes for a signature (the letters MZ) telling it that it is an EXE
file. If it has the proper signature, then the load proceeds. Otherwise, it presumes the file to be a
.COM format file.

If the file has the EXE signature, then the internal consistency is checked. Pre-2.0 versions of
MSDOS did not check the signature byte for EXE files.

The .EXE format can support programs larger than 64K. It does this by allowing separate seg-
ments to be defined for code, data, and the stack, each ofwhich can be up to 64K long. Programs
in EXE format may contain explicit references to segment addresses. A header in the EXE file
has information for DOS to resolve these references.

Offset Size CONTENTS

00h BYTE 4Dh The Linker's signature to mark the file as a valid .EXE
file (ASCII letters M and Z, for Mark Zbikowski,

01h BYTE SAh one of the major DOS programmers at Microsoft)
02h—03h Length of the image mod 512 (remainder after

WORD dividing the load module image size by 512)
04h—05h WORD Size of the file in 512 byte pages including the header.
06h-07h WORD Number of relocation table items following the header.
08h—09h WORD Size of the header in 16 byte (paragraphs). This is used to

locate the beginning of the load module in the file
OAh—OBh WORD Minimum number of 16 byte paragraphs required above the end of

the loaded program.
OCh—ODh WORD Max number of 16 byte paragraphs required above the end of the

loaded program. If the minimum and maximum number of
paragraphs are both zero, the program will be loaded as high
in memory as possible.

OEh-OFh WORD Displacement in paragraphs of stack segment within load module.
This size must be adjusted by relocation. \

loh—llh WORD Offset to be in SP register when the module is given control
(stack offset)

12h—13h WORD Word Checksum - negative sum of all the words in the file,
ignoring overflow.

14h—15h WORD Offset for the IP register when the module is given control
. (initial instruction pointer)

16h-17h WORD Displacement in paragraphs of code segment within load. module.
This size must be adjusted by relocation. (CS)

18h—19h WORD Displacement in bytes of first relocation item in the file.
lAh—lBh WORD Overlay number (0 for the resident part of the program)

The Relocation Table

The word at 18h locates the first entry in the relocation table. The relocation table is made up of
a variable number of relocation items. The number of items is contained at offset 06h. The relo-

cation item contains two fields - a 2 byte offset value, followed by a 2 byte segment value. These
two fields represent the displacement into the load module before the module is given control.
The process is called relocation and is accomplished as follows:

1. The formatted part of the header is read into memory. Its size is 1Bh.

2. A portion of memory is allocated depending on the size of the load module and the
allocation numbers in offsets OAh and OCh. DOS always tries to allocate OFFFFh
paragraphs. Since this call will always fail, the function returns the amount of free memory.

If this blockxis larger than the minimum specified at offset OAh and the loaded program
size, DOS will allocate the size specified at offset OCh or the largest free memory space,
whichever is less.

HUAWEI EX. 1015 - 154/393

HUAWEI EX. 1015 - 155/393

148 The Programmer’s Technical Reference

3. A Program Segment Prefix is built following the resident portion of the program that is
performing the load operation.

4. The formatted part of the header is read into memory (its size is at offset 08h)

The load module size is determined by subtracting the header size from the file size. Offsets

04h and 08h can be used for this calculation. The actual size is downward adjusted based on
the contents of offset 02h. Note that all files created by the Linker programs prior to
version 1.10 always placed a value of 4 at this location, regardless of the actual program size.
Therefore, Microsoft recommends that this field be ignored if it contains a value of 4. Based

on the setting of the high/low loader switch, an appropriate segment is determined for
loading the load module. This segment is called the start segment.

6. The load module is read into memory beginning at the start segment. The relocation table
is an ordered list of relocation items. The first relocation item is the one that has the lowest
offset in the file.

7. The relocation table items are read into a work area one or more at a time.

Each relocation table item segment value is added to the start segment value. The

calculated segment, in conjunction with the relocation item offset value, points to a word in
the load module to which is added the start segment value. The result is placed back into
the word in the load module.

9. Once all the relocation items have been processed, the SS and SP registers are set from the

values in the header and the start segment value is added to SS. The ES and DS registers
are set to the segment address of the program segment prefix. The start segment value is
added to the header CS register value. The result, along with the header IP value, is used to ,
give the module control.

‘NEW’ .EXE Format (Microsoft.Windows and

OS/2)

The ‘old’ EXE format is documented here. The ‘new’ EXE format puts more information into
the header section and is currently used in applications that run under Microsoft Windows. The
linker that creates these files comes with the Microsoft Windows Software Development Kit and
is called LINK4. If you try to run a Windows-linked program under DOS, you will get the error
message ‘This program requires Microsoft Windows’. The OS/2 1.x file format is essentially the
same as the Windows format.

Standard File Control Block

The standard file control block is defined as follows, with offsets in hex:

FILE CONTROL BLOCK
offset size Function

0 1 byte Drive number. For example:
Before open: 00h = default drive i

01h = drive A:
02h = drive B: etc.

After open: 00h = drive C:
01h = drive A:
02h = drive B: etc.

HUAWEI EX. 1015 - 155/393

HUAWEI EX. 1015 - 156/393

DOS File Structure ' 1 49

An 0 is replaced by the actual drive number during open.
1—8 8 bytes Filename, left justified with blanks.

If a reserved device name is placed here (such as PRN), do not
include the optional colon.

bytes Filename extension, left justified with trailing blanks.
bytes Current block # relative to start of file, starting with 0

(set to 0 by the open function call). A block consists of 128
records, each of the size specified in the logical record size
field. The current block number is used with the current record
field-(below) for sequential reads and writes. '

E-F 2 bytes Logical record size in bytes.
Set to 80h by OPEN function. If this is not correct, you must
set the value because DOS uses it to determine the proper
locations in the file for all disk reads and writes.

0\D
l

U Mt»

10—13 4 bytes File size in bytes.
_ In this field, the first word is the low—order part of the size.

'14—15 2 bytes Date file was created or last updated.
MM/DD/YY are mapped as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

y y y y y y y m m m m d d d d d
where: mm is 1-12

dd is 1-31

yy is 0—119 (1980-2099)
16—17 2 bytes Time file was created or last updated.

These bytes contain the time when the file was created or last
updated.
The time is mapped in the bits as follows:

B Y T E 16h B Y T E 17h
F E D C B A 9 8 7 6 5 4 3 2 1 0
H H H H H M M M M M M D D D D D
binary # hrs 0-23 binary # minutes 0-59 bin. # 2—sec incr
note: The time is stored with the least significant byte first.

bytes Reserved for DOS.
byte Current relative record number

(0—127) within the current block. This field and the Current
Block field at offset och make up the record pointer. This
field is not initialized by the OPEN function call. You must
set this field before doing sequential read—write operations to
the diskette.

21—25 4 bytes Relative Record.
Points to the currently selected record, counting from the
beginning of the file starting with 0. This field is not
initialized by the OPEN system call. You must set this field
before doing a random read or write to the file. If the record
size is less than 64 bytes, both words are used. Otherwise,
only the first 3 bytes are used. Note that if you use the File
Control Block at 5Ch in the program segment, the last byte of
the FCB overlaps the first byte of the unformatted parameterarea.

Note 1. An unopened FCB consists of the FCB prefix (ifused), drive number, and
filenameext properly filled in. An open FCB is one in which the remaining fields
have been filled in by the CREAT or OPEN function calls.

2. Bytes 0-5 and 32-36 must be set by the user program. Bytes 16-31 are set by DOS
and must not be changed by user programs.

18—19
20 His)

3. All word fields are stored with the least significant byte first. For example, a record

length of 128 is stored as 80h at offset 14, and 00h at offset 15.

Extended File Control Block

The extended file control block is used to create or search for files in the disk directory that have

special attributes.
It adds a 7 byte prefix to the FCB, formatted as follows:

HUAWEI EX. 1015 - 156/393

HUAWEI EX. 1015 - 157/393

I50 The Programmer ‘3 Technical Reference

EXTENDED FILE CONTROL BLOCK
Offset Size Function

00h 1 byte Flag byte containing OFFh to indicate an extended FCB
01h 4 bytes Reserved by Microsoft
06h 2 bytes Attribute byte 1

Refer to int 21h/fn11h (search first) for details on using the attribute
bits during directory searches. This function is present to allow
applications to define their own files as hidden (and thereby excluded
from normal directory searches) and to allow selective directory searches

Any reference in the DOS function calls to an FCB, whether opened or unopened, may use
either a normal or extended FCB. If you are using an extended FCB, the appropriate register

should be set to the first byte of the prefix, rather than the drive-number field.

Common practice is to refer to the extended FCB as a negative offset from the first byte of a

standard File Control Block.

HUAWEI EX. 1015 - 157/393

HUAWEI EX. 1015 - 158/393

DOS Disk Information

The DOS Area

All disks and diskettes formatted by DOS are created with a sector size of 512 bytes. The DOS

area (entire area for a diskette, DOS partition for hard disks) is formatted as follows:

DOS AREA

partition table - variable size (hard disk only)
boot record - 1 sector

first copy of the FAT - variable size
second copy of the FAT - same size as first copy
root directory - variable size
data area - variable depending on disk size

The following sections describe each of the allocated areas:

The Boot Record

The boot record resides on track 0, sector 1, side 0 of every diskette formatted by the DOS FOR-

MAT program. For hard disks the boot record resides on the first sector of the DOS partition. It
is put on all disks to provide an error message ifyou try to start up with a nonsystem disk in drive
A:. If the disk is a system disk, the boot record contains a JMP instruction pointing to the first
byte of the operating system.

If the device is IBM compatible, it must be true that the first sector of the first FAT is located at
the same sector for all possible media. This is because the FAT sector is read before the media is
actually determined. The information relating to the BPB for a particular media is kept in the
boot sector for the media. In particular, the format of the boot sector is:

DOS BOOT RECORD

00h 3 bytes JMP to executable code. For DOS 2.x, 3 byte near jump (0E9h).
For DOS 3.x, 2 byte near jump (OEBh) followed by a NOP (90h)

03h 8 bytes optional OEM name and version (such as IBM 2.1)
ODh byte sectors per allocation unit (must be a power of 2)
OEh 2 bytes B reserved sectors (starting at logical sector 0)
10h byte number of FATS

HUAWEI EX. 1015 - 158/393

HUAWEI EX. 1015 - 159/393

J52 The Programmer ’5 Technical Reference

11h 2 bytes maximum number of root directory entries
13h 2 bytes P number of sectors in logical image (total number of sectors in

media, including boot sector directories, etc.). If logical
disk size is greater than 32Mb, this value is O and the actual
size is reported at offset 26h

15h byte B media descriptor byte
16h 2 bytes number of sectors occupied by a single FAT
18b 2 bytes‘ sectors per track
1Ah 2 bytes number of heads
1Ch 2 bytes number of hidden sectors

EXTENDED BOOT RECORD (DOS 4.0+)
lEh 2 bytes number of sectors per track
20h 2 bytes number of heads
22h 2 bytes number of hidden sectors
26h 4 bytes total number of sectors in media (32MB or larger indicated here)
27h byte physical drive number
28h byte reserved
29h byte extended boot record signature
30h 4 bytes volume serial number (assigned with a random function)
34h llbytes volume label
3Fh 8 bytes reserved

The three words at the end return information about the media. The number of heads is useful

for supporting different multihead drives that have the same storage capacity but a different
number ofsurfaces. The number ofhidden sectors is useful for drive partitioning schemes.

DOS 3.2 uses a table called the BIOS Parameter Block (BPB) to determine if a disk has a valid
File Allocation Table. The BPB is located in the first sector ofa floppy disk. Although the BPB is
supposed to be on every formatted floppy disk, some earlier versions of DOS did not create a
BPB and instead assumed that the FAT begins at the second sector of the disk and that the first
FAT byte (Media Descriptor Byte) describes the disk format. .

DOS 3.2 reads in the whole of the BPB and tries to use it - although strangely enough, it seems as
if DOS is prepared to cope with a BPB that is more or less totally blank (it seems to ignore the
descriptor byte and treat it as a DSDD 9-sector disk).

DOS 3.2 determines if a disk has a valid boot sector by examining the first byte of logical sector 0.
If that byte it a jump instruction 0E9h, DOS 3.2 assumes the rest of the sector is a valid boot sec-

tor with a BPB. If the first byte is not 0E9h DOS 3.2 behaves like previous versions, assumes the
boot sector is invalid and uses the first byte of the FAT to determine the media type. If the first
byte on the disk happens to be 0E9h, but the disk does not have a BPB, DOS 3.2 will return a disk
error message.

The real problems occur ifsome of the BPB data is valid and some isn’t. Apparently some OEMs
have assumed that DOS would continue to ignore the formatting data on the disk, and have
failed to write much there during FORMAT except the media descriptor byte (or, worse, have
allowed random junk to be written there). While this error is understandable, and perhaps even
forgivable, it remains their problem, not IBMs, since the BPB area has always been documented
as containing the format information that IBM DOS 3.2 now requires to be there.

The DOS File Allocation Table (FAT)

The File Allocation Table, or FAT, has three main purposes: " f

1. to mark bad sectors on the media

2. to determine which sectors are free for use

HUAWEI EX. 1015 - 159/393

HUAWEI EX. 1015 - 160/393

DOS Disk Information I 153

3. to determine the physical location(s) of a file on the media.

DOS uses one of two different schemes for defining the File Allocation Table:

1. a 12-bit FAT, for DOS 1.x, 2.x, all floppies, and small hard disks

2. a 16-bit FAT, for DOS 3.x+ hard disks from 16.8 to 32Mb

This section explains how DOS uses the FAT to convert the clusters of a file into logical sector
numbers. It is recommended that system utilities use the DOS handle calls rather than interpre-
ting the FAT; particularly since aftermarket disk partitioning or formatting software may have
been used.

The FAT is used by DOS to allocate disk space for files, one cluster at a time. In DOS 4.0, clusters

are referred to as ‘allocation units’. It means the same things; the smallest logical portion of a
drive.

The FAT consists ofa 12 bit entry (1.5 bytes) for each cluster on the disk or a 16 bit (2 bytes) entry
when a hard disk has more than 20740 sectors as is the case with fixed disks larger than 10Mb.

The first two FAT entries map a portion of the directory; these FAT entries contain indicators of
the size and format of the disk. The FAT can be in a 12 or 16 bit format. DOS determines whether

a disk has a 12 or 16 bit FAT by looking at the total number of allocation units on a disk. For all

diskettes and hard disks with DOS partitions less than 20,740 sectors, the FAT uses a 12 bit value
to map a cluster. For larger partitions, DOS uses a 16 bit value.

The second, third, and fourth bit applicable for 16 bit FAT bytes always contains. OFFFFh. The
first byte is used as follows: .

Media Descriptor Byte

MEDIA DESCRIPTOR BYTE

hex meaning normally used
value

00 hard disk 3.3+ extended DOS partition
ED double sided 9 sector 80 track Tandy 2000 720k 5 floppy
F0 double sided 18 sector diskette PS/2 1.44 meg DSHD
F8 hard disk bootable hard disk at C:800
F9 double sided 15 sector diskette AT 1.2 meg DSHD

double sided 9 sector diskette Convertible 720k DSQD
FA IBM Displaywriter System disk 287k
FB IBM Displaywriter System disk 1 meg
FC single sided 9 sector diskette DOS 2.0, 180k SSDD
FD double sided 9 sector diskette DOS 2.0, 360k DSDD
FE single sided 8 sector diskette DOS 1.0, 160k SSDD
FF double sided 8 sector diskette DOS 1.1, 320k SSDD

for 8 inch diskettes:
FD double sided 26 sector diskette IBM 3740 format DSSD
FE single sided 26 sector diskette IBM 3740 format SSSD

double sided 8 sector diskette IBM 3740 format DSDD

The third FAT entry begins mapping the data area (cluster 002).

Note: These values are provided as a reference. Therefore, programs should not make use of
these values.

HUAWEI EX. 1015 - 160/393

HUAWEI EX. 1015 - 161/393

154 The Programmer’s Technical Reference

Each entry contains a hexadecimal character (or 4 for 16 bit FATS). () indicates the high order
four bit value in the case of 16 bit FAT entries. They can be:

(0)000h if the cluster is unused and available

(OF)FF8h - (OF)FFFh to indicate the last cluster ofa file

(X)XXXh any other hexadecimal numbers that are the cluster number of the next
cluster in the file. The cluster number is the first cluster in the file that is

kept in the file’s directory entry.

The values (0F)FFOh - (0F)FF7h are used to indicate reserved clusters. (0F)FF7h indicates a
bad cluster if it is not part of the allocation chain. (0F)FF8h - (0F)FFFh are used as end of file
markers.

The file allocation table always occupies the sector or sectors immediately following the boot
record. If the FAT is larger than 1 sector, the sectors occupy consecutive sector numbers. TWO
copies of the FAT are written, one following the other, for integrity. The FAT is read into one of
the DOS buffers whenever needed (open, allocate more space, etc).

12 Bit File Allocation Table

Obtain the starting cluster of the file from the directory entry.

Now, to locate each subsequent sector of the file: » ' i

1. Multiply the cluster number just used by 1.5 (each FAT entry is 1.5 bytes long).

2. The whole part of the product is offset into the FAT, pointing to the entry that maps the
cluster just used. That entry contains the cluster number of the next cluster in the file.

3. Use a MOV instruction to move the word at the calculated FAT into a register.

4. If the last cluster used was an even number, keep the low order 12 bits of the register,
otherwise, keep the high order 12 bits.

5. If the resultant 12 bits are (OFFSh-OFFFh) no more clusters are in the file. Otherwise, the
next 12 bits contain the cluster number of the next cluster in the file.

"lb convert the cluster to a logical sector number (relative sector, such as that used by int 25h and
26h and DEBUG):

1. Subtract 2 from the cluster number

2. Multiply the result by the number of sectors per cluster.

3. Add the logical sector number of the beginning of the data area.

12-bit FAT if DOS partition is smaller than 32,680 sectors (16.340 MB).

16 Bit File Allocation Table

Obtain the starting cluster of the file from the directory entry. Now to locate each subsequent

HUAWEI EX. 1015 - 161/393

HUAWEI EX. 1015 - 162/393

DOS Disk Information ' 155

cluster of the file:

1. Multiply the cluster number used by 2 (each FAT entry is 2 bytes long).

2. Use the MOV word instruction to move the word at the calculated FAT offset into a register.

3. If the resultant 16 bits are (OFFSh-OFFFFh) no more clusters are in the file. Otherwise,

the 16 bits contain the cluster number of the next cluster in the file.

Compaq DOS makes available a new disk type (6) with 32 bit partition values, allowing 512
megabytes per hard disk (Compaq DOS 3.3.1)

' DOS Disk Directory

The FORMAT'command initially builds the root directory for all disks. Its location (logical sec-

tor number) and the maximum number of entries are available through the device driver inter-
faces.

Since directories other than the root directory are actually files, there is no limit to the number

of entries that they may contain.

A11 directory entries are 32 bytes long, and are in the following format:

offset size DISK DIRECTORY ENTRY

00h 8 bytes Filename
The first byte of the filename indicates the file status.
The file status byte may contain the following values:
00h Directory entry has never been used. This is used to

limit the length of directory searches, for performancereasons.
05h Indicates that the first character of the filename

actually has an OEDh character.
OESh Filename has been used but the file has been erased.
2Eh This entry is for a directory. If the second byte is

also 2Eh, the cluster field contains the cluster number
of this directory's parent directory. (0000b if the
parent directory is the root directory). Otherwise,
bytes OOh-OAh are all spaces and the cluster field
contains the cluster number of the directory.
Any other character is the first character of a
filename. Filenames are left—aligned and if necessary
padded with blanks.

08h 3 bytes Filename extension if any
Three characters, left-aligned and padded with blanks if
necessary. If there is no file extension, this field containsall blanks

OBh 1 byte File attributes
The attribute byte is mapped as follows: \
hex bit meaning
00h (no bits set) normal; can be read or written without

restriction
01h 0 file is marked read—only. An attempt to open the

file for out put using int 21h/fn 3Dh will fail and
an error code will be returned. This value can be
used with other values below.

02h 1 indicates a hidden file. The file is excluded from
normal directory searches.

04h 2 indicates a system file. The file is excluded from
' normal directory searches.
08h 3 indicates that the entry contains the volume label

in the first 11 bytes. The entry has no other usable
information and may exist only in the root directory.

HUAWEI EX. 1015 - 162/393

HUAWEI EX. 1015 - 163/393

J56 The Programmer’s Technical Reference

10h 4 indicates that the file is a subdirectory
20h 5 indicates an archive bit. This bit is set to on

whenever the file is written to and closed. Used byBACKUP and RESTORE.
6 reserved, set to 0
7 reserved, set to 0

note 1. Bits 6 and 7 may be used in 05/2.
note 2. Attributes 08h and 10h cannot be changed using

int21/43h.
note 3. The system files IBMBIO.COM and IBHDOS.COM (or

customized equivalent) are marked as read—only,
hidden, and system files. Files can be marked hidden
when they are created.

note 4. Read—only, hidden, system and archive attributes may
be changed with int21h/fn43h. -

och 10 bytes Reserved by DOS; value unknown
16h 2 bytes File timestamp

These bytes contain the time when the file was created or last
updated. The time is mapped in the bits as follows:

B Y T E 16h B Y T E 17h
F E D C B A 9 8 7 6 5 4 3 2 l 0
H H H H H M M M M M M D D D D D

binary # hrs 0-23 binary # minutes 0-59 bin. # 2—sec incr
note: The time is stored with the least significant byte first.

18h 2 bytes File datestamp
This area contains the date when the file was created or last
updated. The mm/dd/yy are mapped in the bits as follows:

E Y T E 18h B Y T E 19h
F E D C B A 9 8 7 6 5 4 3 2 l 0
Y Y Y Y Y Y Y M M M M D D D D D

0—119 (1980—2099) 1—12 1—31
note: The date is stored with the least significant byte first.

1Ah 2 bytes First file cluster number
* (reserved in DOS 2, documented in DOS 3+)
This area contains the starting cluster number of the first a
cluster in the file. The first cluster for data space on all
fixed disks and floppy disks is always cluster 002. The
cluster number is stored with the least significant byte first.

1Ch 4 bytes File size
This area contains the file size in bytes. The first word 1
contains the low order part of the size. Both words are stored.
with the least significant byte first. ,

The Data Area

Allocation ofspace for a file (in the data area) is done only when needed (it is not pre-allocated).
The space is allocated one cluster (unit allocation) at a time. A cluster is always one or more
consecutive sectornumbers, and all of the clusters in a file are ‘chained’ together in the FAT.

The clusters are arranged on disk to minimize head movement for multisided media. All of the

space on a track (or cylinder) is allocated before moving on to the next track. This is accom-
plished by using the sequential sector numbers on the lowest-numbered head, then all the sector
numbers on the next head, and so on until all sectors of all heads of the track are used. Then the
next sector used will be sector 1 ofhead 0 on the next track.

An interesting innovation that was introduced in MS-DOS 3.0: disk space that is freed by
erasing a file is not re—used immediately, unlike earlier versions of DOS. Instead, free space is
obtained from the area not yet used during the current session, until all of it is used up. Only
then will space that is freed during the current session be re-used.

This feature minimizes fragmentation of files, since never-before-used space is always contigu-
ous. However, once any space has been freed by deleting a file, that advantage vanishes at the

HUAWEI EX. 1015 - 163/393

HUAWEI EX. 1015 - 164/393

DOS Disk Information ' 157

next system boot. The feature also greatly simplifies un-erasing files, provided that the need to
do an un-erase is found during the same session and also provided that the file occupies contigu-
ous clusters.

However, when one is using programs which make extensive use of temporary files, each of
which may be created and erased many times during a session, the feature becomes a nuisance; it
forces the permanent files to move farther and farther into the inner tracks of the disk, thus in-
creasing rather than decreasing the amount of fragmentation which occurs.

The feature is implemented in DOS by means of a single 16-bit ‘last cluster used’ (LCU) pointer
for each physical disk drive; this pointer is a part of the physical drive table maintained by DOS.
At boot time, the LCU pointer is zeroed. Each time another cluster is obtained from the free-

s.pace pool (the FAT), its number is written into the LCU pointer. Each time a fresh cluster is re-

quired, the FAT is searched to locate a free one; in older versions of DOS this search always
began at Cluster 0000, but in 3.x it begins at the cluster pointed to by the LCU pointer.

For hard disks, the size of the file allocation table and directory are determined when FORMAT
initializes it and are based on the size of the DOS partition.

Floppy Disk Types

The following tables give the specifications for floppy disk formats:

IBM PC-DOS disk formats:

of FAT size DIR total
sides sectors (entries) sectors

sectors DIR sectors
/track sectors /cluster

160k 51/4 DOS 1.0 1 8 (40) 1 4 64 1 320 Original PC—O, 16k mbd
320k 51/4 DOS 1.1 2 8 (40) 1 7 112 2 360 PC—l, 64k mbd
180k 5 /4 DOS 2.0 1 9 (40) 2 4 64 1 640 PC—2, 256k mbd
360k 51/4 DOS 2.0 2 9 (40) 2 7 112 2 720 PC/XT
1.2M 51/4 DOS 3.0 2 15 (80) 7 14 224 1 2400 PC/AT, PC/RT, XT/286
720k 31/2 DOS 3.2 2 9 (80) 3 7 112 2 1440 Convertible, PS/2 25+
1.44M 31/2 DOS 3.3 2 18 (80) 9 14 224 1 2880 PS/Z 50+

various MS-DOS disk formats:

200k 51/4 * 1 10 (40)
400k 51/4 * ** 2 10 (40)
800k 51/4 * 2 10 (80)
720k 51/4 0052.11 2 9 (80) 3 7 112 2 1440 Tandy 2000 (discontinued)

* Michtron DS—DOS 2.11 Plus and one version of MS—DOS 3.11 (vendor unknown)
** TallTree JFormat program

720k~ 5 0052.11 1 (80) DEC Rainbow SS/HD (disc.)
720k 5 DOSZ.11 2 variable number of sectors Victor 9000 PC (discont’d)

per track, more sectors on
outer tracks than innertracks.
Special DSDD drive.

Files in the data area are not necessarily written sequentially. The data area space is allocated
one cluster at a time, skipping over clusters already allocated. The first free cluster found is the

next cluster allocated, regardless of its physical location on the disk. This permits the most effi-
cient utilization of disk space because clusters freed by erasing files can be allocated for new

files. Refer back to the description of the DOS FAT in this chapter for more information.

SSDD single sided, double density (160—180k) 51/4

HUAWEI EX. 1015 - 164/393

HUAWEI EX. 1015 - 165/393

158

Much of the trouble with AT 1.2 meg drives has been through the inadvertent use of quad den-
sity disks in the high density drives. The high density disks use a higher-coercivity media than the
quads, and quads are not completely reliable as 1.2Mb. Make sure you have the correct disk for ;
your application.

Hard Disk Layout

The DOS hard disk routines perform the following services:

1.

2.

The Programmer’s Technical Reference

DSDD double sided, double density (320—360k) 51/4 1
DSQD double sided, quad density (720k) 51/4, 31/2DSHD double sided, high density (1.2-1.44M) 5 /4, 3 /2

Allow multiple operating systems to be installed on the hard disk at the same time.

Allow a user-selected operating system to be started from the hard disk.

i. In order to share the hard disk among operating systems, the disk may be logically

divided into 1 to 4 partitions. The space within a given partition is contiguous, and can
be dedicated to a specific operating system. Each operating system may ‘own’ only one
partition in DOS versions 2.0 through 3.2. DOS 3.3 introduced the ‘Extended DOS

Partition’ which allows multiple DOS partitions on the same hard disk. FDISK (or a .

similar program from other DOS vendors) utility allows the user to select the number, 3
type, and size of each partition. The partition information is kept in a partition table i
that is embedded in the master hard disk boot record on the first sector of the disk. The
format of this table varies from version to version of DOS.

ii. An operating system must consider its partition to be the entire disk, and must ensure

that its functions and utilities do not access other partitions on the disk. .

iii. Each partition may contain a boot record on its first sector, and any other programs or
data that you choose, including a different operating system. For example, the DOS
FORMAT command may be used to format and place a copy of DOS in the DOS
partition in the same manner that a diskette is formatted. You can use FDISK to

designate a partition as ‘active’ (bootable). The master hard disk boot record causes
that partition’s boot record to receive control when the system is initialized. Additional
disk partitions could be FORTH, UNIX, Pick, CP/M-86, 08/2, or the UCSD
p—System.

SYSTEM INITIALIZATION

The boot sequence is as follows:

1.
System initialization first attempts to load an operating system from diskette drive A. If the

drive is not ready or a read error occurs, it then attempts to read a master hard disk boot i
record on the first sector of the first hard disk in the system. If unsuccessful, or if no hard

disk is present, it invokes ROM BASIC in an IBM PC or displays a disk error message on ;.
most compatibles.

If initialization is successful, the master hard disk boot record is given control and it 1
examines the partition table embedded within it. If one of the entries indicates an active

(bootable) partition, its boot record is read from the partition’s first sector and given I
control. If none of the partitions is bootable, ROM BASIC is invoked on an IBM PC or a 1

disk error on most compatibles. ’
If any of the boot indicators are invalid, or if more than one indicator is marked as bootable, ,‘

the message ‘INVALID PARTITION TABLE’ is displayed and the system stops. I

l

HUAWEI EX. 1015 - 165/393

HUAWEI EX. 1015 - 166/393

DOS Disk Information " 159

5. If the partition’s boot record cannot be successfully read within five retries due to read
errors, the message ‘ERROR LOADING OPERATING SYSTEM’ appears and the system
stops.

6. If the partition’s boot record does not contain a valid ‘signature’, the message ‘MISSING
OPERATING SYSTEM’ appears, and the system stops.

Note: When changing the size or location of any partition, you must ensure that all existing
data on the disk has been backed up. The partitioning program will destroy the data onthe disk.

System programmers designing a utility to initialize/manage a hard disk must provide the fol-
lowing functions at a minimum:

1. Write the master disk boot record/partition table to the disk’s first sector to initialize it.

2. Perform partitioning of the disk — that is, create or update the partition table information
(all fields for the partition) when the user wishes to create a partition. This may be limited
to creating a partition for only one type of operating system, but must allow reparatitioning
the entire disk, or adding a partition without interfering with existing partitions .
(user’s choice).

3. Provide a means for marking a user-specified partition as bootable and resetting 'the
bootable indicator bytes for all other partitions at the same time.

4. Such utilities should not changeor move any partition information that belongs to another
operating system.

Boot Record/Partition Table

A boot record must be written on the first sector of all hard disks, and must contain the follow-

ing:

1. Code to load and give control to the boot record for one of four possible operating
systems.

2. A partition table at the end of the boot record. Each tableentry is 16 bytes long, and
contains the starting and ending cylinder, sector, and head for each of four possible

partitions, as well as the number of sectors preceding the partition and the number of
sectors occupied by the partition The ‘boot indicator’ byteIS used by the boot record to
determine if one of the partitions contains a loadable operating system. FDISK
initialization utilities mark a user—selected partition as ‘bootable’ by placing a value of 80h
in the corresponding partition’s boot indicator (setting all other partitions’ indicators to O
at the same time). The presence of the 80h tells the standard boot routine to load the sector
whose location is contained in the following three bytes. That sector is the actual boot

record for the selected operating system, and it is responsible for the remainder of the
system’s loading process (as it is from the diskette). All boot records are loaded at absolute
address 0:7C00.

The partition table with its offsets into the boot record is: (except for Wyse DOS 3.2 with 32 bit
allocation table, and DOS 3.3-up)

Offset Partit’n Purpose Head Sector Cylinder
lBEh part 1 begins boot ind H S cyl

HUAWEI EX. 1015 - 166/393

HUAWEI EX. 1015 - 167/393

160 The Programmer’s Technical Reference

1C2h ends syst ind H S cyl
1C6h relative sector low word high word
1CAh # sectors low word high word
lth part 2 begins boot ind H S cyl
1D2h ends syst ind H 5 cyl
1D6h relative sector low word . high word
lDAh # sectors low word high word
lDEh part 3 begins boot ind H 5 cyl
1E2h ends syst ind H S cyl
1E6h relative sector low word high word
lEAh # sectors low word high word ?
lEEh part 4 begins boot ind H S cyl i
1F2h ends syst ind H S cyl .
1F6h relative sector low word high word
lFAh # sectors low word high word
lFEh signature hex 55 hex AA

Boot indicator (boot ind): The boot indicator byte must contain 0 for a non-bootable partition
or 80h for a bootable partition. Only one partition can be marked as bootable at a time.

System Indicator (sys ind): The sys ind field contains an indicator of the operating system that
‘owns’ the partition. IBM PC-DOS can only ‘own’ one partition, though some versions of .
MSDOS allow all four partitions to be used by DOS.

The system indicators are:

System Indicator (sys ind)
00h unknown or unspecified
01h D08 12 bit FAT (DOS 2.x all and 3.x under 10 Mb)
04h DOS 16 bit FAT (DOS 3.0+. Not recognized by 2.x)ODBh DRI Concurrent DOS
OFZh 2nd DOS partition, some 3.2 and all 3.3+

There are bytes for XENIX, and other operating systems. Some manufacturers (such as Zenith,

Wyse, and Tandon) diddle with these system bytes to implement more than one DOS partition
per disk. \

Cylinder (CYL) and Sector (S): The 1 byte fields labelled CYL contain the low order 8 bits of the

cylinder number - the high order 2 bits are in the high order 2 bits of the sector (S) field. This
corresponds with the ROM BIOS interrupt 13h (disk I/O) requirements, to allow for a 10 bit cy-
linder number.

The fields are ordered in such a manner that only two MOV instructions are required to proper-
ly set up the DX and CX registers for a ROM BIOS call to load the appropriate boot record
(hard disk booting is only possible from the first hard disk in the system, where a BIOS drive ’
number of80h corresponds to the boot indicator byte).

A11 partitions are allocated in cylinder multiples and begin on sector 1, head'O, with the excep-
tion that the partition that is allocated at the beginning of the disk starts at sector 2, to account
for the hard disk’s master boot record.

Relative Sector (rel sect): The number of sectors preceding each partition on the disk is kept in
the 4 byte field labelled ‘rel sect’. This value is obtained by counting the sectors beginning with
cylinder 0, sector 1, head 0 of the disk, and incrementing the sector, head, and then track values

up to the beginning of the partition. This, if the disk has 17 sectors per track and 4 heads, and the

second partition begins at cylinder 1, sector 1, head 0, and the partition’s starting relative sector
is 68 (decimal) — there were 17 sectors on each of 4 heads on 1 track allocated ahead of it. The
field is stored with the least significant word first.

Number of sectors (#sects): The number ofsectors allocated to the partition is kept in the ‘# of

HUAWEI EX. 1015 - 167/393

HUAWEI EX. 1015 - 168/393

DOS Disk Information ‘ ~ 161

sects’ field. This is a 4 byte field stored least significant word first.

Signature: The last 2 bytes of the boot record (55AAh) are used as a signature to identify a valid
boot record. Both this record and the partition boot record are required to contain the signatureat offset -1FEh.

Hard Disk Technical Information

Western Digital’s hard disk installation manuals make the claim that MSDOS can support only
2 hard drives. This is entirely false, and their purpose for making the claim is unclear. DOS
merely performs a function call pointed at the hard disk driver, which is normally in one of three
locations; 3 ROM at absolute address C2800, the main BIOS ROM if the machine is an AI; or a
device driver installed through the CONFIGSYS file. TWO hard disk controller cards can nor-
mally not reside in the same machine due to lack of interrupt arbitration. Perstor’s ARLL con-
troller and some cards marketed by Novel] can coexist with other controllers. Perstor’s technical
department has had four controllers and eight hard disks in the same IBM XT functioning con-
currently.

Avalid hard disk has a boot record arranged in the following manner:

DB drive ;-0 or 80h (80h marks a bootable, active partition)DB headl starting heads

Dw trksecl starting track/sector (CX value for INT 13)DB system see below
DB headz
DW trksecZ
DD sectorl
DD sector2

ending head
ending track/sector
absolute # of starting sector
absolute # of last sector

~.~-~.-~.uu
The master disk boot record invokes ROM BASIC if no indicator byte reflects a bootable sys-tem.

When a partition’s boot record is given control, it is passed its partition table entry address in
thelDS:SI registers.

Determining Hard Disk Allocation

DOS determines disk allocation using the following formula:

D * BPD
TS — RS -

BPS
SPF =

BPS * SPC
CF +

BPC
where:

TS total sectors on disk

RS the number of sectors at the beginning of the disk that are reserved
for the boot record. 005 reserves 1 sector.

D The number of directory entries in the root directory.
BPD the number of bytes per directory entry. This is always 32.
BPS the number of bytes per logical sector. Typically 512, but you canspecify a different number with VDISK.
CF The number of FATS per disk. Usually 2. VDISK is 1.
SPF the number of sectors per FAT. Maximum 64.

HUAWEI EX. 1015 - 168/393

HUAWEI EX. 1015 - 169/393

I62 The Programmer’s Technical Reference

SPC The number of sectors per allocation unit.
BPC the number of bytes per FAT entry. BPC is 1.5 for 12 bit FATS. 2 for

16 bit FATS.

Tb calculate the minimum partition size that will force a 16-bit FAT:

cu = (max clusters * 8)/(HEADS * SPT)

where:
CYL number of cylinders on the disk
max clusters 4092 (maximum number of clusters for a 12 bit FAT)
HEADS number of heads on the hard disk
SPT sectors per track (normally 17 on MFM)

DOS 2.0 uses a ‘first fit’ algorithm when allocating file space on the hard disk. Each time an ap-

plication requests disk space, it will scan from the beginning of the FAT until it finds a contigu-
ous piece ofstorage large enough for the file.

DOS 3.0 keeps a pointer into the disk space, and begins its search from the point it last left off.
This pointer is lost when the system is rebooted. This is called the ‘next fit’ algorithm. It is faster
than the first fit and helps minimize fragmentation.

In either case, if the FCB function calls are used instead of the handle function calls, the file will

be broken into pieces starting with the first available space on the disk.

BIOS Disk Routines

Interrupt 13h Disk I/O - access the disk drives (floppy and hard disk)

(0:004Ch) These calls do not try rereading disk if an error is returned

Function 00h Reset - reset the disk controller chip
entry AH 00h V

BL drive (if bit 7 is set both hard disks and floppy disks reset)
OOh—7Fh floppy disk
80h—0FFh hard disk

return AH status (see 01h below)
note 1. Forces controller chip to recalibrate read/write heads.

2. Some systems (Sanyo 55x) this resets all drives.
3. This function should be called after a failed floppy disk Read, Write,

Verify, or Format request before retrying the operation.
4. If called with DL = 80h (i.e., selecting a hard drive), the floppy

controller and then the hard disk controller are reset.
5. Function ODh allows the hard disk controller to be reset without

affecting the floppy controller.

Function 01h Get Status of Disk System
entry AH 01h

DL drive (hard disk if bit 7 set)
OOh-7Fh floppy disk
80h—OFFh hard disk

return AH 00h

AL status of most recent disk operation
00h successful completion, no errors
01h bad command
02h address mark not found
03h tried to write on write—protected disk (floppy only)
04h sector not found

05h reset failed (hard disk)
06h diskette removed or changed (floppy only)
07h bad parameter table (hard disk)
08h DMA overrun (floppy only)
09h attempt to DMA across 64K boundary
OAh bad sector detected (hard disk)
OBh bad track detected (hard disk)
OCh unsupported track or media type not found (floppy disk)

HUAWEI EX. 1015 - 169/393

HUAWEI EX. 1015 - 170/393

DOS Disk Information 1 I63

ODh invalid number of sectors on format (hard disk)
OEh control data address mark detected (hard disk)
OFh DMA arbitration level out of range (hard disk)10h uncorrectable CRC/EEC on read

11h ECC corrected data error (hard disk)20h controller failure
40h seek failed
80h timeout

0AAh drive not ready (hard disk)
OBBh 'undefined error (hard disk)
OCCh write fault (hard disk)
OEOh status error (hard disk)
OFFh sense operation failed (hard disk)

note For hard disks, error code 11h (ECC data error) indicates that a
recoverable error was detected during a preceding int 13h fn 02h

(Read Sector) call.

Function 02h Read Sectors - read one or more sectors from diskette
entry AH 02h

AL number of sectors to read
BX address of buffer (ES=segment)
CH track (cylinder) number (0—39 or 0-79 for floppies)

(for hard disk, bits 8,9 in high bits of CL)
CL sector number (1 to 18, not value checked)
DH head number (0 or 1)
DL drive (0=A, l=B, etc.) (bit 7=0) (drive 0—7)

00h-7Fh floppy disk
80h-FFOh hard disk

ES:BX address to store/fetch data (buffer to fill)
[0000:0078] dword pointer to diskette parametersreturn CF 0 successful

AL number of sectors transferred
1 error

AH status (00h, 02h, 03h, 04h, 08h, 09h, 10h,
OAh, 20h, 40h, 80h)

note 1. Number of sectors begins with 1, not 0.
2. Trying to read zero sectors is considered a programming error; results

are not defined. ,
3. For hard disks, the upper 2 bits of the 10—bit cylinder number are placed

in the upper 2 bits of register CL.
4. For hard disks, error code 11h indicates that a read error occurred that

was corrected by the ECC algorithm; in this case, AL contains the burst
length. The data read is good within the limits of the ECC code. If a
multisector transfer was requested, the operation was terminated after
the sector containing the read error.

5. For floppy drives, an error may result from the drive motor being off at
the time of the request. The BIOS does not automatically wait for the
drive to come up to speed before attempting the read operation. The
calling program should reset the floppy disk system with function 00h
and retry the operation three times before assuming that the errorresults from some other cause.

Function 03h Write Sectors — write from memory to disk
entry AH 03h

AL number of sectors to write (1—8)
CH track number (for hard disk, bits 8,9 in high bits of CL)
CL beginning sector number

(if hard disk, high two bits are high bits of track #)DH head number

DL drive number (0-7)
00h-7Fh floppy disk
80h—FFOh hard disk

ES:BX address of buffer for data
return CF 0 success

AL number of sectors written
1 error

AH status (see 01h above)
note 1. Number of sectors begins with 1, not 0.

2. Trying to write zero sectors is considered a programming error; results
are not defined.

3. For hard disks, the upper 2 bits of the 10—bit cylinder number are placed

HUAWEI EX. 1015 - 170/393

HUAWEI EX. 1015 - 171/393

164 The Programmer’s Technical Reference

in the upper 2 bits of register CL.
4. For floppy drives, an error may result from the drive motor being off at

the time of the request. The BIOS does not automatically wait for the
drive to come up to speed before attempting the read operation. The
calling program should reset the floppy disk system with function 00h
and retry the operation three times before assuming that the error
results from some other cause.

Function 04h Verify — verify that a write operation was successful
entry AH 04h

AL number of sectors to verify (1—8)
CH track number (for hard disk, bits 8,9 in high bits of CL) ,
CL beginning sector number
DH head number

DL drive number (0—7)
DL drive number (0—7)

00h-7Fh floppy disk
80h—FFOh hard disk

ES:BX address of buffer for data
return CF set on error

AH status (see 01h above)
AL number of sectors verified

note 1. With IBM PC, XT, and AT with ROM BIOS earlier than 11/15/85, ES:BX should
point to a valid buffer.

2. For hard disks, the upper 2 bits of the 10—bit cylinder number are placed
in the upper 2 bits of register CL.

3. This function can be used to test whether a readable media is in a floppy
drive. An error may result from the drive motor being off at the time of
the request since the BIOS does not automatically wait for the drive to
come up to speed before attempting the verify operation. The requesting
program should reset the floppy disk system with function 00h and retry
the operation three times before assuming that a readable disk is not
present.

Function 05h Format Track — write sector ID bytes for 1 track (floppy
disk)

entry AH 05h
AL number of sectors to create on this track

interleave (for XT hard disk only)
CH track (or cylinder) number (bits 8,9 in high bits of CL) fCL sector number

DH head number (0, 1)
DL drive number (0—3)

00h—7Fh floppy disk
80h—0FFh hard disk

ES:BX pointer to 4-byte address field (C—H—R-N) (except XT hard
disk)
byte 1 = (C) cylinder or track
byte 2 = (H) head h
byte 3 = (R) sector
byte 4 = (N) bytes/sector (0 = 128, 1 = 256, 2 = 512, 3 =

1024)
return CF set if error occurred

AH status code (see 01h above)
note 1. Not valid for ESDI hard.disks on PS/2. V

2. For floppy disks, the number of sectors per track is taken from the BIOS
floppy disk parameter table whose address is stored in the vector for
int 1Eh.

3. when this function is used for floppies on ATs or the PS/Z, it should be
preceded by a call to int 13h/fn 17h to select the type of media to
format.

4. For hard disks, the upper 2 bits of the 10-bit cylinder number are
placed in the upper 2 bits of CL.

5. 0n the XT/286, AT, and PS/2 hard disks, ES:BX points to a 512—byte buffer
containing byte pairs for each physical disk sector as follows:
Byte Contents ’
0 00h good sector

80h bad sector
1 sector number
For example, to format a track with 17 sectors and an interleave of two,
ES:BX would point to the following 34—byte array at the beginning of a

HUAWEI EX. 1015 - 171/393

HUAWEI EX. 1015 - 172/393

DOS Disk Information ' 165
512—byte buffer:
db 00h, 01h, 00h, OAh, 00h, 02h, 00h, 08h, 00h, 03h, 00h, och
db ooh, 04h, ooh, ODh, 00h, 05h, ooh, oah, 00h, 06h, och, OFh
db 00h, 07h, 00h, l0h, 00h, 08h, 00h, 11h, 00h, 09h

Function 06h Hard Disk — format track and set bad sector flags
(PCZ, PC-XT, and Portable)

entry AH 06h
AL interleave value (XT only)
CH cylinder number (bits 8,9 in high bits of CL)
CL sector number
DH head -
DL drive (80h-0FFh for hard disk)
ES:BX 512 byte format buffer

the first 2*(sectors/track) bytes contain f,n for each sector
f 00h good sector

80h bad sector
n sector number

return CF error
AH status code (see 01h above)

Function 07h Hard Disk — format the drive starting at the desired track
(PC2, PC—XT and Portable)

entry AH 07h
AL interleave value (XT only) (01h-10h)
CH cylinder number (bits 8,9 in high bits of CL) (00h—O3FFh)
CL sector number
DH head number (0—7)
DL drive number (80h-0FFh, 80h=C, 81h=D,...)
ES:BX format buffer, size = 512 bytes

the first 2*(sectors/track) bytes contain f,n for each sector
f 00h good sector

80h bad sector
n sector number

return CF set on error
AH status code (see 01h above)

note Award AT BIOS routines are extended to handle more than 1024 cylinders.
AL number of sectors
CH cylinder number low 8 bits
CL sector number bits 0—5, bits 6—7 are high 2 cylinder bits
DH head number (bits 0-5) bits 6-7 are extended high cyls (1024)
DL drive number (0-1 for diskette, 80h—81h for hard disk)
ES:BX transfer address

Function 08h Read Drive Parameters (except PC, Jr)
entry AH 08h

DL drive number
00h—7Fh floppy disk
BOh—OFFh hard disk

return CF set on error
AH status code (see above)

BL drive type (AT/P52 floppies only)
01h if 360 Kb, 40 track, 5"
02h if 1.2 Mb, 80 track, 5"
03h if 720 Kb, 80 track, 3"
04h if 1.44 Mb, 80 track, 3"

CH low 8 bits of maximum useable value for cylinder number
CL bits 6-7 high—order 2 bits of maximum cylinder number

0—5 maximum sector number
DH maximum usable value for head number
DL number of consecutive acknowledging drives (0—2)
EszDI pointer to drive parameter table

note On the PC and PC/XT, this function is supported on hard disks only.

Function 09h Initialize Two Fixed Disk Base Tables (XT, AT, XT/286, PS/2)
(install nonstandard drive)

entry AH 09h
DL 80h—0FFh hard disk number

return CF set on error
AH status code (see 01h above)
For PC, XT hard disks, the disk parameter block format is:

HUAWEI EX. 1015 - 172/393

HUAWEI EX. 1015 - 173/393

166 The Programmer’s Technical Reference ~ I

ooh-01h maximum number of cylinders
02h maximum number of heads

03h—O4h starting reduced write current cylinder
05h—06h starting write precompensation cylinder
07h maximum ECC burst length 4
08h drive options

bits 7 I disable disk access retries f
6 1 disable ECC retries
3-5 set to 0
0-2 drive option

09h standard timeout value
OAh timeout value for format drive
OBh timeout value for check drive é
OCh-OFh reserved

For AT and PS/2 hard disks:
ooh—01h maximum number of cylinders
02h maximum number of heads
03h-04h reserved

05h—06h starting write precompensation cylinder
07h maximum ECC burst length
08h drive options byte

bits 6—7 nonzero (10, 01, or 11) if retries disabled
5 1 if manufacturer's defect map present at

maximum cylinder + 1
4 not used
3 1 if more than 8 heads j
0-2 not used

09h-03h reserved
OCh-ODh landing zone cylinder
OEh sectors per track
OFh reserved

note 1. For the XT, int 41h must point to the Disk Parameter Block.
2. For the AT and PS/2, Int 41h points to table for drive 0 and Int 46h

points to table for drive 1. .
3. Initializes the hard disk controller for subsequent I/O operations using ‘

the values found in the BIOS disk parameter block(s).
4. This function is supported on hard disks only.

Function OAh Read Long (Hard disk) (XT, AT, XT/286, PS/Z)
entry AH OAh ,

CH cylinder number (bits 8,9 in high bits of CL)
CL sector number (upper 2 bits of cyl # in upper 2 bits of CL)
DH head number
DL drive ID (Boh—OFFh hard disk)
ES:BX pointer to buffer to fill

return CF set on error
AH status code (see 01h above)

AL number of sectors actually transferred
note 1. A ’long' sector includes a 4 byte EEC (Extended Error Correction) code.

2. Used for diagnostics only on PS/2 systems.
3. This function is supported on fixed disks only.
4. Unlike the normal Read Sector (02h) function, ECC errors are not

automatically corrected. Multisector transfers are terminated after any
sector with a read error.

Function OBh Write Long (XT, AT, XT/286, PS/Z)
entry AH OBh

AL number of sectors
CH cylinder (bits 8,9 in high bits of CL)
CL sector number
DH head number
DL drive ID (80h-0FFh hard disk)
ES:BX pointer to buffer containing data

return CF set on error
AH status code (see 01h above)

AL number of sectors actually transferred
note 1. A 'long' sector includes a 4 byte EEC (Extended Error Correction) code.

2. Used for diagnostics only on PS/2 systems.
3. Valid for hard disks only.

HUAWEI EX. 1015 - 173/393

HUAWEI EX. 1015 - 174/393

DOS Disk Information I 167

Function och Seek To Cylinder (except pc, pcjr)
entry AH och

CH lower 8 bits of cylinder
CL upper 2 bits of cylinder in bits 6—7
DH head number

DL drive number (0 or 1) (80h—0FFh for hard disk)
return CF set on error

AH status code (see 01h above)
note 1. Positions heads over a particular cylinder, but does not move anydata.

2. This function is supported on hard disks only.
3. The upper 2 bits of the 10-bit cylinder number are placed in the upper 2

bits of CL.
4. The Read Sector, Read Sector Long, Write Sector, and Write Sector Long

functions include an implied seek operation and need not be preceded by
an explicit call to this function.

Function ODh Alternate Hard Disk Reset (except PC, Per)
entry AH ODh

DL hard drive number (80h—OFFh hard disk)
return CF set on error

AH status code (see 01h above)
note 1. Not for PS/Z ESDI hard disks.

2. Resets the hard disk controller, recalibrates attached drives (moves the
read/write arm to cylinder 0), and prepares for subsequent disk I/O.

3. This function is for hard disks only. It differs from fn 00h by not
resetting the floppy disk controller.

Function OEh Read Sector Buffer (XT, Portable, PS/2)
entry AH OEh

ES:BX pointer to buffer
return CF set on error

AH status code (see 01h above)
AL number of sectors actually transferred

note 1. Transfers controller's sector buffer. No data is read from the drive.
2. Used for diagnostics only on PS/2 systems.
3. This fn is supported by the XT's hard disk adapter only. It is 'not

defined' for hard disk adapters on the AT or PS/Z.

Function OFh Write sector buffer (XT, Portable)
entry AH OFh

ES:BX pointer to buffer
return CF set if error

AH status code (see 01h above)
AL number of sectors actually transferred

note 1. Should be called before formatting to initialize the controller’s sector
buffer.

2. Used for diagnostics only on PS/Z systems.
3. Transfers data from system RAM to the hard disk adapter’s internal sector

buffer.
4. No data is written to the physical disk drive. ‘
5. This fn is for the XT hard disk controller only. It is ’not defined’ for

AT or PS/2 controllers.

Function 10h Test For Drive Ready (XT, AT, XT/286, PS/Z)
entry AH 10h

DL hard drive number 0 or 1 (80h-0FFh)
return CF set on error

AH status code (see 01h above)
note 1. Tests whether the specified hard disk drive is operational and

returns the drive’s status.
2. This function is supported on hard disks only.
3. Perstor and Novell controllers allow more than one hard drive.

Function 11h Recalibrate Drive (XT, AT, XT/286, PS/Z)
entry AH 11h

DL hard drive number (80h—0FFh hard disk)
return CF set on error

AH status code (see 01h above)
note 1. Causes the HD controller to recalibrate itself for the specified drive,

positioning the read/arm to cylinder 0, and returns the drive’s status.
2. This function is for hard disks only.

HUAWEI EX. 1015 - 174/393

HUAWEI EX. 1015 - 175/393

I 68 The Programmer’s Technical Reference

Function 12h Controller RAM Diagnostics (XT, Portable, PS/2)
entry AH 12h
return CF set on error

AH status code (see fn 01h above)
note 1. Used for diagnostics only on PS/Z systems.

2. Makes the hard disk controller carry out a built-in diagnostic test on
its internal sector buffer.

Function 13h Controller Drive Diagnostic (XT, Portable, PS/2)
entry AH 13h
return CF set on error _

AH status code (see 01h above) 5
note 1. Used for diagnostics only on PS/2 systems.

2. Causes HD controller to run internal diagnostic tests of the attached
drive, indicating whether the test was passed by the returned status.

3. This function is supported on XT HDs only.

Function 14h Controller Internal Diagnostic (AT, XT/286)
entry AH 14h
return CF set on error

AH status code (see 01h above)
note 1. OEM is Western Digital 1003-WA2 hard/floppy combination controller in AT

and XT/286.
2. Used for diagnostics only in PS/2 systems.
3. Causes HD controller to do a built—in diagnostic self-test, indicating

whether the test was passed by the returned status.
4 This function is supported on hard disks only.

Function 15h Get Disk Type (except PC and XT)
entry AH 15hDL drive ID

00h—7Fh floppy disk
80h-0FFh fixed disk

return CF set on error
AH error code (see 01h above) y

AH disk type
00h no drive is present
01h diskette, no change detection present
02h diskette, change detection present
03h fixed disk

CX:DX number of 512-byte sectors |
note 1. Returns a code indicating the type of disk referenced by the specified

drive code.
2. This function is not supported on the PC or XT.

Function 16h Get Disk Change Status (diskette) (except PC, XT, & Jr)
entry AH 16h

DL drive to check
return CF set on error 1

AH disk change status
00h no disk change

~01h disk changed
DL drive that had disk change (00h—07Fh floppy disk)

note Returns the status of the change line, indicating whether the disk in the
drive may have been replaced since the last disk access. If this -
function returns with CF set, the disk has not necessarily been changed;
the change line can be activated by simply unlocking and relocking the
disk drive door without removing the floppy disk.

Function 17h Set Disk Type for Format (diskette) (except PC and KT)
entry AH 17h 'AL 00h not used

01h 160, 180, 320, or 360Kb diskette in 360kb drive
02h 360Kb diskette in 1.2Mb drive
03h 1.2Mb diskette in 1.2Mb drive
04h 720Kb diskette in 720Kb drive \

DL drive number (0-7)
return CF set on error

AH status of operation (see 01h above)
note 1. This function is probably enhanced for the PS/Z series to detect 1.44 in1.44 and 720k in 1.44.

HUAWEI EX. 1015 - 175/393

HUAWEI EX. 1015 - 176/393

DOS Disk Information 1 69

2. This function is not supported for floppy disks on the PC or KT.
3. If the change line is active for the specified drive, it is reset.
4. The BIOS sets the data rate for the specified drive and media type. The

rate is 250k/sec for double-density media and SOOk/sec for high density
. media. The proper hardware is required.

Function 18h Set Media Type For Format (diskette) (AT, xmz, XT/286, Ps/Z)
entry AH 18h

CH lower 8 bits of number of tracks

CL high 2 bits of number of tracks (6,7) sectors per track (bits 0—5)
DL drive number (0—7)

return CF clear no errors
AH 00h if requested combination supported

01h if function not available
OCh if not supported or drive type unknown
80h if there is no media in the drive

ES:DI pointer to 11—byte disk parameter table for media type
CF set error code (see 01h above)

note 1. A floppy disk must be present in the drive.
2. This function should be called prior to formatting a disk with Int 13h Fn

05h so the BIOS can set the correct data rate for the media.
3. If the change line is active for the specified drive, it is reset.

Function 19h Park Hard Disk Heads (PS/2)
entry AH 19h

DL drive number (80h—OFFh)
return CF set on error

- AH error code (see fn 01h)
note This function is defined for PS/Z fixed disks only.

Function 1Ah ESDI Hard Disk — Low Level Format (PS/2)
entry AH 1Ah

AL Relative Block Address (RBA) defect table count
0 if no RBA table
0 if RBA table used

CL format modifiers byte
bits 0 ignore primary defect map

1 ignore secondary defect map
2 update secondary defect map
3 perform extended surface analysis
4 generate periodic interrupt
5 reserved - must be 0
6 reserved - must be 0
7 reserved — must be 0

DL drive (BOh—OFFh)
ES:BX pointer to REA defect table

return CF set on error
AH error code (see fn 01h above)

note 1. Initializes disk sector and track address fields on a drive attached to
the IBM 'ESDI Fixed Disk Drive Adapter/A'.

2. If periodic interrupt selected, int 15h/fn OFh is called after each
cylinder is formatted

3. If bit 4 of CL is set, Int 15h, AH=0Fh, AL=phase code after each cylinder
is formatted or analyzed. The phase code is defined as:

O reserved
1 surface analysis
2 formatting

4. If bit 2 of CL is set, the drive’s secondary defect map is updated to
reflect errors found during surface analysis. If both bit 2 and bit 1
are set, the secondary defect map is replaced.

5. For an extended surface analysis, the disk should first be formatted by
calling this function with bit 3 cleared and then analyzed by callingthis function with bit 3 set.

Function 1Bh ESDI Hard Disk — Get Manufacturing Header (PS/2)
entry AH 1Bh

AL number of record
DL drive

ES:BX pointer to buffer for manufacturing header (defect list)
return CF set on error

AH status

HUAWEI EX. 1015 - 176/393

HUAWEI EX. 1015 - 177/393

1 70 The Programmer’s Technical Reference

note Manufacturing header format (Defect Map Record format) can be found in
the 'IBM 70Mb, 115Mb Fixed Disk Drives Technical Reference'.

Function 1Ch ESDI Hard Disk - Get Configuration (PS/2)
entry AH 1Ch

AL OAh Get Device Configuration
DL drive "
ES:BX pointer to buffer for device configuration

(drive physical parameter)
OBh Get Adapter Configuration

ES:BX pointer to buffer for adapter configuration
och Get POS Information

ES:BX pointer to P05 information
OEh Translate REA to ABA .

CH low 8 bits of cylinder number
CL sector number, high two bits of cylinder number

in bits 6 and 7
DH head number
DL drive number
ES:BX pointer to ABA number

return CF set on error 1N
AH status (see 01h)

note 1. Device configuration format can be found in IBM ESDI Fixed Disk Drive
Adapter/A Technical Reference.

2. ABA (absolute block address) format can be found in IBM ESDI Adapter
Technical Reference by using its Device Configuration Status Block.

HUAWEI EX. 1015 - 177/393

HUAWEI EX. 1015 - 178/393

'lnstallable Device Drivers

Device Driver Format

A device driver is a handler for communication between the system software and hardware de-
vices. The motherboard ROM and IBMBIO.COM or IO.SYS files contain the basic drivers for

allowing DOS to talk to the console, disk drives, serial and parallel ports, clock, and other re-
sources.

DOS has five builtin drivers, STDIN, STDOUT, STERR, STDPRN, or STDAUX. An ‘install-

able’ driver may be loaded in the CONFIG.SYS file, and either replace one of the built-in dri-
vers or define a new resource, such as a mouse or expanded memory driver.

The device driver is a COM (memory image) file that contains all of the code needed to control
an add-in device. An EXE file cannot be used since the EXE loader is part of COM-

MAND.COM, which is not present when the device driver is being loaded by IBMBIO.COM or
IO.SYS. The COM file must not load at the usual ORG 100h. Since the driver does not use the

Program Segment Prefix, it is simply loaded without offset, therefore the driver file must have an
origin of 0 (ORG O or no ORG statement). Driver files should not have a declared stack seg-
ment.

DOS can install the device driver anywhere in memory, so care must be taken in any FAR mem-

ory references. You should not expect that your driver will be loaded in the same place every
time.

Types of Devices

There are two types of devices: Character devices and Block devices. Their attributes are as fol-
lows:

Character devices are designed to do serial l/O in a byte—by-byte manner. These devices have
names like CON, AUX, or PRN, and you can open channels (handles or FCBs) to do I/O much
like a disk file. I/O may be in either cooked or raw mode. (see Chapter 7 for discussion of cooked
and raw modes). Because character devices have only one name, they can only support one de-
vice.

HUAWEI EX. 1015 - 178/393

HUAWEI EX. 1015 - 179/393

I 72 The Programmer’s Technical Reference

Block devices are normally implemented as disk drives. They can do random HQ in pieces called
blocks, which are usually the physical sector size of the disk. These devices are not named as
character devices are, and cannot be opened directly. Instead they are accessed by using drive let-
ters such as A, B, C, etc. Block devices can have units within them. In this way, a single block
driver can be responsible for one or more disk drives. For example, the first block device driver
can be reSponsible for drives A, B, C, and D. This means it has four units defined and therefore
takes up four drive letters. The position of the driver in the chain ofall drives determines the way
in which the drive letters correspond, i.e, if a'second block device driver defines three units, then
those units are E, F, and G.

DOS 1.x allows 16 block devices. DOS 2.x allows 63, and DOS 3.x allows 26. It is recommended

that drivers limit themselves to 26 devices for compatibility with DOS 3.x and 4.x. When DOS

2.x passes the Z: drivespec, the drivespecs get a little weird, such as " , [, or #. DOS 3.x+ will re-
turn an error message.

Creating a Device Driver

To create a device driver that DOS can install, you must do the following:

1. Create a memory image (COM) file with a device header at the start of the file.

2. Originate the code (including the device header) at 0, instead of 100h.

3. Set the next device header field. Refer to ‘Pointer to Next Device Header Attribute Field’
for more information.

4. Set the attribute field of the device header. Refer to ‘Attribute Field’ for more information.

5. Set the entry points for the interrupt and strategy routines.

6. Fill in the name/unit field with the name of the character device or the unit numberof the
block device.

DOS always processes installable character device drivers before handling the default devices.
So to install a new CON device, simply name the device CON. Be sure to set the standard input
device and standard output device bits in the attribute field of a new CON device. The scan of the
device list stops on the first match so the installable device driver takes precedence. For in-
stance, installing ANSI.SYS replaces the built-in CON driver. '

DOS doesn’t care about the position of installed character devices versus block devices.

Structure of 3 Device Driver

A device driver consists of three major parts:
a device header

a strategy routine

an interrupt routine

HUAWEI EX. 1015 - 179/393

HUAWEI EX. 1015 - 180/393

_ Installable Device Drivers I - I 73
Device Header

The driver has a special header to identify it as a device and to define the strategy and interrupt
entry points and its various attributes. This header is located at the beginning of the file. It con-
tains a pointer to the next driver in the chain, the attributes of the device, offsets into the strategy
and interrupt routines, and the device ID.

This is the format of the device header:

DEVICE HEADER

Offset Length Description
00h word Pointer to next device header field, offset value

'02h word Pointer to next device header field, segment value04h word Attribute ,
06h word Pointer to device strategy routine (offset only)
08h word Pointer to device interrupt routine (offset only)
OAh 8 bytes Name/Unit field

Pointer to Next Device Header Field

The device header field is a pointer to the device header of the next device driver. It is a double-
word field that is set by DOS at the time the device driver is loaded. The first word is the offset
and the second word is the segment.

If you are loading only one device driver, set the device header field to -1 before loading the de-
vice. Ifyou are loading more thanone device driver, set the first word of the device driver header
to the offset of the next device driver’s header. Set the device driver header field of the last device
driver to -1. *

Attribute Field

The attribute field is a word field used to identify the type of device this driver is responsible for.

This field distinguishes between block and character devices and determines which selected de-
vices are given special treatment. That describes the attributes of the device driver to the system.
The attributes are:

ATTRIBUTE FIELD

word attr. description
bits set

0 not current standard input device
current standard input device
not current standard output device
current standard output device
not current NUL device
current NUL device
not current CLOCK device
current CLOCK device
standard CON I/O routines should be used

. fast screen I/O (int 29h) should be used
5 a 10 ’reserved for DOS' - unknown — should be set to 0

.11_ doesn't support removable media (default for DOS 2.x)
supports removable media (Dos 3.0+ only)

12 ‘reserved for DOS’ — unknown - should be set to 0
13 IBM format (block devices)

nonelBM format (block devices)
output till busy (character devices)
doesn’t support IOCTL
supports IOCTL

l

2

3

4 HOHOHOHOHO
H0

14 P‘OIHP‘O

HUAWEI EX. 1015 - 180/393

HUAWEI EX. 1015 - 181/393

1 74 The Programmer’s Technical Reference

15 0 block device
1 character device

Note: if a bit in the attribute word is defined only for one type of device, a driver for the other

type of device must set that bit to O. '

BIT 1 is the standard input and output bit. It is used for character devices only. Use this bit to
tell DOS ifyour character device driver is the new standard input device or standard

output device.

BIT 2 is the NUL attribute bit. It is used for character devices only. Use it to tell DOS ifyour

character device driver is a NUL device. Although there is a NUL device attribute bit,

you cannot reassign the NUL device or replace it with your own routine. This attribute
exists for DOS so that DOS can tell if the NUL device is being used.

BIT 3 is the clock device bit. It is used for character devices only. Default is 0. You can use it to
tell DOS ifyour character device driver is the new CLOCK device.

BIT 4 is the ‘fast video output’ bit. The default is O, which uses the BIOS for writing to the
screen. When set, this bit uses int 29h for much faster screen updates.

BITS 5-10 reserved for DOS, unknown. Should be set to O.

BIT 11 is the open/close removable media bit. Use it to tell DOS if the device driver
can handle removable media. This bit is valid for‘DOS 3.0+ only. This bit was
reserved in DOS 2.x. Since DOS 2.x does not look at this bit, its use is backward

compatible. ‘

BIT 12 reserved for DOS, unknown. Should be set to 0.

BIT 13 is the non-IBM format bit. When used for block devices it affects the operation of the

BUILD BPB (BIOS parameter block) device call. For character devices it indicates that
the devices implements the OUTPUT UNTIL BUSY device call. '

BIT 14 is the IOCTL bit. It is used for both character and block devices. Use it to tell DOS

whether the device driver can handle control strings through the IOCTL function call

44h. If a device driver cannot process control strings, it should set bit 14 to 0. This way
DOS can return an error if an attempt is made through the IOCTL function call to send
or receive control strings to the device. If a device can process control strings, it should

set bit 14 to 1. This way, DOS makes calls to the IOCTL input and output device
function to send and receive IOCTL strings. The IOCTL functions allow data to be

sent to and from the device without actually doing a n0rmal read or write. In this way,
the device driver can use the data for its own use, (for example, setting a baud rate or

stop bits, changing form lengths, etc.) It is up to the device to interpret the information
that is passed to it, but the information must not be treated as a normal l/O request.

BIT 15 is the device type bit. Use it to tell the system the that driver is a block or character
device.

Pointer to Strategy Routine

This field contains a pointer to ‘devioe strategy’ function in the driver. This function is called

whenever a request is made to the driver, and must store the location of the request header from
DOS. This pointer is a word value, and so must be in the same segment as the device header.

HUAWEI EX. 1015 - 181/393

HUAWEI EX. 1015 - 182/393

, Installable Device Drivers I - I 75

Pointer to Interrupt Routine

This field contains a pointer to the function which activates driver routines to perform the
command in the current request header. This is called by DOS after the call to the strategy
function, and should reset to the request header address stored by ‘strategy’, to allow for the

possibility of interrupts between the two calls. This pointer is a word value, and so must be in the
same segment as the device header. .

Name/Unit Field

This is an 8-byte field that contains the name of a character device or the number of units in a
- block device. For the character names, the name is left-justified and the space is filled to 8 bytes.

For block devices, the number of units can be placed in the first byte. This is optional because
DOS fills in this location with the value returned by the driver’s INIT code. The other 7 bytes of
the block device ID are reserved and should not be used. ‘

Installing Device Drivers

DOS installs new device drivers dynamically at boot time by reading and processing the
DEVICE command in the CONFIGSYS file. For example, if you have written a device driver

called RAMDISK, to install it put this command in the CONFIGSYS file:

DEVICE=[drive][path] RAMDISK [parameters]

DOS makes a FAR call to the device driver at its strategy entry point first, using the request

header to pass information describing what DOS wants the device driver to do.

This strategy routine does not perform the request but rather queues the request or saves a
pointer to the request header. The second entry point is the interrupt routine and is called by
DOS immediately after the strategy routine returns. The interrupt routine is called with no

parameters. Its function is to perform the operation based on the queued request and set up any
return information.

DOS passes the pointer to the request header in ES:BX. This structure consists of a fixed length
header (Request Header) followed by data pertinent to the operation to be performed.

Note: It is the responsibility of the device driver to preserve the machine state. For example,
save all registers on entry and restore them on exit.

The stack used by DOS has enough room on it to save all the registers. If more stack space is
needed, it is the device driver’s responsibility to allocate and maintain another stack.

All calls to execute device drivers are FAR calls. FAR returns should be executed to return to
DOS.

Installing Character Devices
One of the functions defined for each device is INIT. This routine is called only once when the

device is installed and never again. The INIT routine returns the following:

A. A location to the first free byte of memory after the device driver, like a TSR that is stored
in the terminating address field. This way, the initialization code can be used once and then

HUAWEI EX. 1015 - 182/393

HUAWEI EX. 1015 - 183/393

I 76 The Programmer’s Technical Re erence

thrown away to save space.

B. After setting the address field, a character device driver can set the status word and return.

Installing Block Devices

Block devices are installed in the same way as character devices. The difference is that block de-
vices return additional information. Block devices must also return:

A. The number of units in the block device. This number determines the logical names the

devices will have. For example, if the current logical device letter is F at the time of the
install call, and the block device driver INIT routine returns three logical units, the letters
G, H, and I are assigned to the units. The mapping is determined by the position of the
driver in the device list and the number of units in the device. The number of units

returned by INIT overrides the value in the name/unit field of the device header.

B. A pointer to a BPB (BIOS Parameter Block) pointer array. This is a pointer to an array of
‘N’ word pointers there ‘N’ is the number of units defined. These word pointers point to
BPBs. This way, if all of the units are the same, the entire array can point to the same BPB
to save space. The BPB contains information pertinent to the devices such as the sector
size, number of sectors per allocation unit, and so forth. The sector size of the BPB cannot
be greater than the maximum allotted size set at DOS initialization time. This array must be
protected below the free pointer set by the return.

C. The media descriptor byte. This byte is passed to devices so that they know what parameters
DOS is currently using for a particular drive unit. '

Block devices can take several approaches. They can be ‘dumb’ or ‘smart’. A dumb device would
define a unit (and therefore a BPB) for each possible media drive combination. Unit 0=drive
O;single side, unit 1=drive 0;double side, etc. For this approach, the media descriptor bytes
would mean nothing. A smart device would allow multiple media per unit. In this case, the BPB
table returned at INIT must define space large enough to accommodate the largest possible me-
dias supported (sector size in BPB must be as large as maximum sector size DOS is currently
using). Smart drivers will use the media descriptor byte to pass information about what media is
currently in a unit.

Request Header

The request header passes the information describing what DOS wants the device driver to do.

When a valid device driver command code or function is called by your application program,

DOS develops a data structure called the ‘Request Header’ in ES:BX and passes it to the strate-
gy entry point. This structure consists of a 13—byte defined header which may be followed by
other data bytes depending on the function requested. It is the device driver’s responsibility to
preserve the machine state, for example, saving all registers including flags on entry and restor-
ing them on exit. There is enough room on the stack when strategy or interrupt is called to do
about 20 pushes. If more stack is needed, the driver should set aside its own stack space. The
fixed (‘static’) part of the request header is as follows:

REQUEST HEADER

Offset Length Field
00h byte Length in bytes of the request header
01h byte Unit code. Determines subunit to use in block devices

Has no meaning for character devices

HUAWEI EX. 1015 - 183/393

HUAWEI EX. 1015 - 184/393

Installable Device Drivers ' I 77

02h byte Command code03h word Status
05h 8 bytes Reserved for DOS
OCh varies Data appropriate for the operation

Request Header Length Field

The length in bytes of the total request header (0-255) plus any data at the end of the header.

Unit‘ Code Field

The unit code field identifies which unit in a block device driver the request is for. For example,

if a block device driver has three units defined, then the possible values of the unit code field
would be 0, 1, and 2. This field is not valid for character devices.

Command Code Field

The command code invokes a specific device driver function. Functions 0 through 12 are sup-
ported in all device drivers. Functions 13-15 are available only in DOS 3.0 or higher. Some func-
tions are relevant for either character or block devices but not both; nonetheless all functions

must have an executable routine present even if it does nothing but set the done flag in the re—
turn status word in the request header.

The command code field in the request header can have the following values:

code name function
0 INIT initialize driver for later use (used once only)
1 MEDIA CHECK block devices only, NOP for character devices
2 BUILD BPB block devices only, NOP for character devices
3 IOCTL input called only if device has IOCTL bit set
4 INPUT read data
5 NON-DESTRUCTIVE INPUT N0

WAIT character devices only
6 INPUT STATUS‘ character devices only
7 INPUT FLUSH character devices only
8 OUTPUT write data
9 OUTPUT write data with verify
10 OUTPUT STATUS character devices only
11 OUTPUT FLUSH character devices only i
12 IOCTL OUTPUT called only if device has IOCTL bit is set
13 DEVICE OPEN called only if OPEN/CLOSE/RM bit is set
14 DEVICE CLOSE called only if OPEN/CLOSE/RM bit is set
15 REMOVABLE MEDIA only if OPEN/CLOSE/RM bit set & device is block
16 OUTPUT UNTIL BUSY only called if bit 13 is set & device is character

The individual command codes are described later in this chapter.

Status Field

The status word field is zero on entry and is set by the driver interrupt routine on return.

The status field in the request header contains:

DEVICE DRIVER STATUS FIELD
size bit definition
byte 0

1
2

HUAWEI EX. 1015 - 184/393

HUAWEI EX. 1015 - 185/393

1 78 The Programmer ’5 Technical Reference

Error message return code
(with bit 15:1)

DONE
BUSY
Reserved by DOS, unknown

byte "rjmunwvmmxlmmpw
Error

The low 8 bits of the status word define an error message ifbit 15 is set. These errors are:

00h write protect violation 01h unknown unit
02h device not ready 03h unknown command

04h CRC error 05h bad drive request structure length
06h seek error 07h unknown media

08h sector not found 09h printer out ofpaper
OAh write fault 0Bh read fault

OCh general failure 0Dh reserved
0Eh reserved 0Fh invalid disk change

BIT 8 is the done bit. If it is set, it means the operation is complete. The driver sets the bit to 1
when it exits.

BIT 9 is the busy bit. It is only set by status calls and the removable media call.

BITS 10—14 are reserved.

BIT 15 is the error bit. If this bit is set, the low 8 bits of the status word(7-0) indicate the error
code.

Reserved For DOS

Official sources label this area as ‘reserved for DOS’. Another source indicates that this consists

of two double-word (4-byte) pointers to be used to maintain a linked list of request headers for
this device and a list of all current device requests being processed by DOS. This was apparently .
to be used for the undelivered multitasking version of DOS.

Device Driver Functions

All strategy routines are called with ES:BX pointing to the request header. The interrupt rou-

tines get the pointers to the request header from the queue the strategy routines stores them in.
The command code in the request header tells the driver which function to perform.

Note: All DWORD pointers are stored offset first, then segment.

INIT

Command code = 0 (all devices)

HUAWEI EX. 1015 - 185/393

HUAWEI EX. 1015 - 186/393

Installable Device Drivers ' 1 79

Performs all initialization required at DOS boot time to install the
driver and set local driver variables. This function is called onlyonce, when the driver is loaded.

ES:BX pointer to 26-byte request header and data structureFormat-of structure:
offset length field

00h 13 bytes request header

ODh dword number of units (not set by character devices)
11h dword ending address of the driver’s resident code
15h dword pointer to BPB array (not set by character devices)/pointer

to remainder of arguments
19h byte' drive number (DOS 3.0+ only)

When INIT is called, the driver must do the following:

'A. set the number of units (block devices only)

B. set up the pointer to the BPB array (block devices only)

C. perform any initialization code (to modems, printers, etc)

D. set the ending address of the resident program code

E. set the status word in the request header

To obtain information obtained from CONFIG.SYS to a device driver at INIT time, the BPB

pointer field points to a buffer containing the information passed from CONFIG.SYS following
the =. The buffer that DOS passes to the driver at INIT after the file specification contains an
ASCII string for the file OPEN. The ASCII string (ending in Oh) is terminated by a carriage re-
turn (ODh) and linefeed (OAh). If there is no parameter information after the file specification,
the file specification is immediately followed by a linefeed (OAh). This information is read-only
and only system calls Olh-OCh and 30h can be issued by the INIT code of the driver.

The last byte parameter contains the drive letter for the first unit of a block driver. For example,
O=A, 1 = B etc.

If an INIT routine determines that it cannot set up the device and wants to abort without using
any memory, follow this procedure:

A. set the number of units to O

B. set the ending offset address at 0

C. set the ending offset segment address to the code segment (CS)

Note: If there are multiple device drivers in a single memory image file, the ending address
returned by the last INIT called is the one DOS uses. It is recommended that all device

drivers in a single memory image file return the same ending address. '

Media Check

command code = 1 (block devices only)
Checks to see if disk had been changed since last access.

ES:BX pointer to 19-byte request header and data structure
Format of structure:
offset length field
00h 13 bytes request header
ODh byte media descriptor from BPB
OEh byte returned

HUAWEI EX. 1015 - 186/393

HUAWEI EX. 1015 - 187/393

180 ‘ The Programmer’s Technical Reference

OFh dword returns a pointer to the previous volume ID (if bit
11=1 and disk change is returned) (DOS 3.0+)

When the command code field is 1, DOS calls MEDIA CHECK for a drive unit and passes its

current media descriptor byte. See ‘Media Descriptor Byte’ later in this chapter for more infor-
mation about the byte. MEDIA CHECK returns one of the following: ‘

A. media not changed C. not sure

B. media changed D. error code

The driver must perform the following:

A. set the status word in the request header

B. set the return byte
00h don't know if media has been changed
01h media has not been changed
-1 media has been changed

DOS 3.0+: If the driver has set the removable media bit 11 of the device header attribute word

to 1 and the driver returns -1 (media changed), the driver must set the DWORD pointer to the
previous volume identification field. If DOS determines that the media changed is an error,
DOS generates an error OFh (invalid disk change) on behalf of the device. If the driver does not
implement volume identification support, but has bit 11 set to 1, the driver should set a pointer
to the string ‘NO NAME’,O.

Media Descriptor

Currently the media descriptor byte has been defined for a few media types. This byte should be
identical to the media byte if the device has the non-IBM format bit off. These predetermined
values are:

media descriptor byte = 1 l 1 1 1 0 0 0
(numeric order) 7 6 5 4 3 2' 1 0

B IT MEAN ING
0 0 not double sided

1 double sided
1 0 not 8 sector

1 8 sector
2 0 nonremovable

1 REMOVABLE
3-7 »must be set to 1

Build BPB (BIOS Parameter Block)

command code = 2 (block devices only)

ES:BX pointer to 22-byte request header and data structure
Format of structure:

offset length field
00h 13 bytes request header
ODh byte media descriptor from DOS
OEh dword transfer address (buffer address)
12h dword pointer to BPB table

DOS calls BUILD BPB under the following two conditions:

A. If ‘media changed’ is returned.

HUAWEI EX. 1015 - 187/393

HUAWEI EX. 1015 - 188/393

installable Device Drivers ‘ 181

B. If ‘not sure’ is returned. If so, there are no used buffers. Used buffers are buffers with
changed data that have not yet been written to the disk.

The driver must do the following:

A. set the pointer to the BPB.

B. set the status word in the request header.

The driver must determine the correct media type currently in the unit to return the pointer to
the BPB table. The way the buffer is used (pointer passed by DOS) is determined by the
non-IBM format bit in the attribute field of the device header. If bit 13:0 (device is IBM

compatible), the buffer contains the first sector of the FAT (most importantly the FAT ID byte).
The driver must not alter this buffer in this case. If bit 13:1 the buffer is a one sector scratch

area which can be used for anything.

For drivers that support volume identification and disk change, the call should cause a new
volume identification to be read off the disk. This call indicates that the disk has been legally

. Changed.

If the device is IBM compatible, it must be true that the first sector of the first FAT is located at
the same sector for all possible media. This is because the FAT sector is read before the media is
actually determined.

The information relating to the BPB for a particular media is kept in the boot sector for the

media. In particular, the format of the boot sector is:

For DOS 2.x, 3 byte near jump (0E9h). For DOS 3.x+, 2 byte near jump (OEBh) followed by a
NOP (90h)

8 bytes OEM name and version
BYTE . sectors per allocation unit (must be a power of 2)
WORD B reserved sectors (starting at logical sector 0)
BYTE number of FATS
WORD P max number of root directory entries
WORD number of sectors in logical image (total number of sectors in

media, including boot sector directories, etc.)B

BYTE media descriptor
WORD number of sectors occupied by a single FAT
WORD sectors per track '
WORD number of heads
WORD . number of hidden sectors

The three words at the end return'information about the media. The number of heads is useful

for supporting different multihead drives that have the same storage capacity but a different
number ofsurfaces. The number ofhidden sectors is useful for drive partitioning schemes.

INPUT / OUTPUT (IOCTL)
command code = 3 IOCTL Read

4 Read (block or character devices)
8 Write (block or character devices)
9 Write With Verify

12 IOCTL Write

16 Output Until Busy (character devices only)

ES:BX pointer to 24—byte request header and data structure

HUAWEI EX. 1015 - 188/393

HUAWEI EX. 1015 - 189/393

I82 The Programmer’s Technical Reference
Format of structure:
offset length field
00h 13 bytes request header
ODh byte media descriptor byte from BPB
OEh dword transfer address (buffer address)
12h word byte/sector count
14h word starting sector number (block devices) v
16h dword (DOS 3.0+) pointer to the volume ID if error code OFh is

returned ’

The driver must perform the following:

A. set the status word in the request header

B. perform the requested function

C. set the actual number ofsectors or bytes transferred

N0 error checking is performed on an IOCTL I/O call. However, the driver must set the return
sector or byte count to the actual number ofbytes transferred.

Under certain circumstances a block device driver may be asked to do a write operation of 64k
bytes that seems to be a ‘wrap around’ of the transfer address in the BIOS I/O packet. This arises
due to an optimization added to write code in DOS. It will only happen in writes that are within a
sector size of 64k on files that are being extended past the current end of file. It is allowable for
the device driver to ignore the balance of the write that wraps around, if it so chooses. For
example, a write of 10000h bytes worth of sectors with a transfer address of XXX:1 ignores the
last two bytes. A user program can never request an I/O of more than OFFFFh bytes and cannot
wrap around (even to O) in the transfer segment, so in that case the last two bytes can be ignored.

A program that uses DOS function calls can never request an input or output function of more
than OFFFFh bytes, therefore, a wrap around in the transfer (buffer) segment can never occur. It
is for this reason you can ignore bytes that would have wrapped around in the transfer segment.

If the driver returns an error code of OFh (invalid disk change) it must put a DWORD pointer to
an ASCHZ string which is the correct volume ID to ask the user to reinsert the disk.

DOS 3.0+:

The reference count of open files on the field (maintained by the OPEN and CLOSE calls)
allows the driver to determine when to return error OFh. If there are no open files (reference
count=0) and the disk has been changed, the 1/0 is all right, and error OFh is not returned. If
there are open files (reference count 0) and the disk has been changed, an error OFh condition
may eXist.

Nondestructive Input No Wait

command code = 5 (character devices only)
Reads a character from input stream but does not remove it from thebuffer

ES:BX pointer to 14—byte request header and data structureFormat of structure:

offset length field
00h 13 bytes request header
ODh byte read from device

The driver must do the following:

A. return a byte from the device

HUAWEI EX. 1015 - 189/393

HUAWEI EX. 1015 - 190/393

Installable Device Drivers ' 183

B. set the status word in the request header.

If the character device returns busy bit =0 (characters in the buffer), then the next character that
would be read is returned. This character is not removed form the buffer (hence the term nonde-
structive input). This call allows DOS to look ahead one character.

Status

command codes = 6 Input Status (character devices only)
10 Output Status (character devices only)

Check for characters waiting in input buffer

ES:BX pointer to 13-byte request header

This driver must perform the following:

A. perform the requested function

B. set the busy bit

C. set the status word in the request header.

The busy bit is set as follows:

For input on unbuffered character devices: if the busy bit (bit 9) is 1 on return, a write request
would wait for completion of a current request. If the busy bit is 0, there is no current request.

Therefore, a write request would start immediately.

For input on buffered character devices: if the busy bit is 1 on return, a read request does to the
physical device. If the busy bit is 0, there are characters in the device buffer and a read returns
quickly. It also indicates that a user has typed something. DOS assumes all character devices
have a type-ahead input buffer. Devices that do not have this buffer should always return
busy=0 so that DOS does not hang waiting for information to be put in a buffer that does not
exist.

Flush Input Buffers

command code = 7 (character devices only)
Forces all data in buffers to specified device;

ES:BX pointer to 13-byte request header

This call tells the driver to flush (terminate) all pending requests that it has knowledge of. Its

primary use is to flush the input queue on character devices.

The driver must set the status word in the request header upon return.

Flush Output Buffers

kcommand code 11 (character devices only)
Forces all data in buffers to specified device.

ES:BX pointer to 13—byte request header

This call tells the driver to flush all output buffers and discards any pending requests. Its primary
use is to flush the output queue on character devices.

HUAWEI EX. 1015 - 190/393

HUAWEI EX. 1015 - 191/393

I84 The Programmer’s Technical Reference I ‘ 5

The driver must set the status word in the request header upon return.

Open or Close (DOS 3.0+)

command code = 13 Open (block or character devices)
14 Close (block or character devices)

ES:BX pointer to 13-byte static request header

These calls are designed to give the device information about the current file activity on the de-
vice ifbit 11 of the attribute word is set. On block devices, these calls can be used to manage local

buffering. The device can keep a reference count. Every OPEN causes the device to increment
the reference count. Every CLOSE causes the device to decrement the reference count. When

the reference count is 0, if means there are no open files in the device. Therefore, the device
should flush buffers inside the device it has written to because now the user can change the

media on a REMOVABLE media drive. If the media had been changed, it is advisable to reset

the reference count to 0 without flushing the buffers. This can be thought of as ‘last close causes
flush’. These calls are more useful on character devices. The OPEN call can be used to send a de-

vice initialization string. On a printer, this could cause a string to be sent to set the font, page
size, etc. so that the printer would always be in a known state in the I/O stream. Similarly, a
CLOSE call can be used to send a post string (like a form feed) at the end ofan I/O stream. Using
IOCTL to set these pro and post strings provides a flexible mechanism of serial I/O device
stream control.

Since all processes have access to STDIN, STDOUT, STDERR, STDAUX, and STDPRN
(handles 0, 1,2, 3, and 4) the CON, AUX, and PRN devices are always open.

Removable Media (DOS 3.0+)

command code = 15 (block devices only)
This call identifies the media type as removable or nonremovable.

ES:BX pointer to 13-byte static request header

'Ib use this call, set bit 11 (removable media) of the attribute field to 1. Block devices can only
use this call through a subfunction of the IOCTL function call (int 21h fn44h).
This call is useful because it allows a utility to know whether it is dealing with a nonremovable

media drive or with a removable media drive. For example, the FORMAT utility needs to know
whether a drive is removable or nonremovable because it prints different versions of some
prompts.

Note: No error checking is performed. It is assumed that this call always succeeds.

HUAWEI EX. 1015 - 191/393

HUAWEI EX. 1015 - 192/393

1O

Expanded and Enhanced
Expanded Memory Specifications

History

The Lotus/Intel/Microsoft Expanded Memory Manager was originally a Lotus and Intel project
and was announced as version 3.0 in the second quarter of 1985 primarily as a means of running

larger Lotus worksheets by transparently paging unused sections to bank-switched memory.
Shortly afterward Microsoft announced support of the standard and version 3.2 was sub-

sequently released with support for Microsoft Windows. LIM 3.2 supported up to 8 megabytes
of paged memory. The LIM 4.0 supports up to 32 megabytes of paged memory.

Uses of Expanded Memory

The most common use for expanded memory is as a RAMdisk outside of DOS memory. The
Lotus 1-2-3 Release 2 spreadsheet and many of its imitators can use EMS for storing part of the
spreadsheet. AutoCAD, DesignCAD, and some other CAD programs can make use of EMS, as
well as disk caching, etc. The MultiEdit word processor can also use EMS, and it looks like new

applications are slowly starting to join the ranks of EMS-aware software.

The most striking use of expanded memory is Quarterdeck’s Destiew. Destiew and the
AQA EEMS were designed for each other. When EEMS is available, Destiew can manage

multiple DOS partitions as a true multitasking manager. A program running under Destiew
sees EEMS as conventional memory.

DOS and Expanded Memory

DOS 4.0 supports expanded memory for the internal functions of BUFFERS as well as various
external programs (FASTOPEN and VDISK, for example). 4.0 checks for the presence of the
Expanded Memory Manager device driver and passes calls to it like any other application. DOS
4.0 had a number of bugs with its EMS functions (such as not recognizing various non-IBM
EMS managers and performing operations with the EMS board prohibited by the LIM 4.0 spe-

HUAWEI EX. 1015 - 192/393

HUAWEI EX. 1015 - 193/393

I86 ' The Programmer’s Technical Reference

cification it supposedly embraces). DOS 4.01 was quietly released immediately afterward but . ,
still has problems. I have a real IBM 2Mb Expanded Memory Adapter in my AT (at $1395, I may {
have the only one in captivity!). Under DOS 4.01, XMA2EMS.SYS will initialize only 1664k of .
my 2048k. The card passes its own ROM and disk diagnostics perfectly. VDISK will also not ‘
function, aborting with a ‘not enough memory’ error. '

The bug in DOS 4.00 can cause DOS 4.00 to corrupt files or entire directories when running pro- ‘
grams that use expanded memory. The problem arises when using the DOS 4.00 /X option with 1
BUFFERS, FASTOPEN, and VDISK commands. DOS 4.0 makes assumptions that are fun- . 1
damentally inconsistent with standard EMS 4.0 usage. EMS 4.0 contains functions for saving l
and restoring the entire memory mapping context. Programs that need to change the memory 1'
map use these functions to save the current map, map in whatever memory they need, and then
restore the original map. These functions change the entire map, including the pages ofmemory 5
being used by DOS 4.0 /X option. DOS 4.0, however, assumes that the map for its pages NEVER -
get changed. The result is that DOS 4.0 gets confused about which buffers are currently in mem-
ory and corrupts the file data and/or directory data that is buffered.

Since the only really practical use for EMS in DOS 4.0 is in BUFFERS=, and any cache pro- -;
gram (including IBM’s own IBMCACHE) will blow BUFFERS: away, there’s not much rea-
son to worry about DOS 4.0’s supposed EMS functionality.

One very good and one very bad result should come about from DOS 4.0’s EMS support. First,
since IBM now officially recognizes EMS, sells EMS cards, and DOS supports EMS (some-
what), we may see more programs making better use ofEMS hardware.

The bad result is that IBM, for some idiotic reason, chooses to refer to EMS as ‘XMA’. There al-

ready *IS* an XMA standard, which is defined by Microsoft, which uses 80286/80386 extended ,
over—l-megabyte memory in a fashion much like EMS. Unfortunately, the XMA standard is
little—known and I’ve seen advertisements for ‘XMA’ expanded memory adapters (sigh). As if ex-
tended, expanded, enhanced expanded, EMS, EEMS, conventional, HMA, and XMA weren’t
confusing enough already.

What Was That Again?

Conventional Memory: Normal 0-640k address space, 8088 and 286/386 real mode
High Memory: the 384k between the end of640 and the 1 meg limit Of ‘

the 8088 microprocessor g

High Memory Area: (HMA) the first 64k of the over- 1-meg 286/386 address space
Extended Memory: the over-l—meg address space of the 286/386, including

HMA Use ofthis memory is defined by the Microsoft Extended

Memory Specification, or XMA
Expanded Memory: Paged memory swapped in and out ofa predetermined area . I

of the 0- 1meg real mode address area. The current

specifications are LIM 4.1 and AQA EEMS 3.2.
Display Memory: memory between 640k and 1 meg where memory—mapped ;

RAM from video cards is accessed. 3

AST/QuadRAM/Ashton-Tate Enhanced Expanded Memory

Specification ;

The AQA EEMS maintains upward compatibility with the LIM, but is a superset of functions.

HUAWEI EX. 1015 - 193/393

HUAWEI EX. 1015 - 194/393

Expanded and Enhanced Expanded Memory Specifications 187

The AQA EEMS permits its pages to be scattered throughout the unused portion of the ma-
chine’s address space. On August 19, 1987, the new version of the Expanded Memory Specifica-
tion (EMS) was announced by Lotus, Intel and Microsoft. This new version of the specification
includes many features of the Enhanced Expanded Memory Specification (EEMS) originally
developed by AST Research, Quadram and Ashton-Tate, although the three original sponsoring
companies elected not to make the new specification upward compatible with EEMS. AST Re-
search says that they will endorse EMS 4.0 without reservation.

The definitive document for the LIM-EMS is Intel part number 300275—004, August, 1987. The
definitive document for the AQA EEMS standard is AST part number 00048-001 B, June, 1987.

Both of these documents are free for the asking (Intel will even send you a floppy with the latest
drivers). Unfortunately, the Intel documentation makes determining which functions are not
available under LIM 3.x a bit difficult. There are very few LIM 4.0 or EEMS cards in the hands of

users; most hardware is LIM 3.1 or 3.2 spec.

EMS Address Space Map

Mapping of the EMS address space:

1024K

960K

768K

640K

256K

BIOS ROMS

Page Frame

12 16K—Byte
Physical

Pages

24 16K-Byte
Physical
Pages*

//////

//////

//////

LIM EMS through
version 3.2 uses
this area only

32M

Expanded
Memory

Divided into
logical
pages

HUAWEI EX. 1015 - 194/393

HUAWEI EX. 1015 - 195/393

188 The Programmer ’5 Technical Reference

The page frame is located above the 640k system RAM area, anywhere from OAOOOh to OFFFFh.
This area is used by the video adapters, network cards, and add-on ROMs (as in hard disk con-
trollers). The page frames are mapped around areas that are in use.

Writing Programs That Use Expanded Memory

In order to use expanded memory, applications must perform these steps in the following order:

Determine if EMM is installed.

Determine if enough expanded memory pages exist for your application. (Function3)

Allocate expanded memory pages (Functions 4 or 18).

Get the page frame base address (Function 2).

Map in expanded memory pages (Functions 5 or 17).

Read/write/execute data in expanded memory, just as if it were conventional memory.
NQMPS’JNE‘

Return expanded memory pages to expanded memory pool before exiting (Functions 6 or
18).

Programming Guidelines

The following section contains guidelines for programmers writing applications that use EMM. I

1. Do not put a program’s stack in expanded memory.

2. Do not replace interrupt 67h. This is the interrupt vector the EMM uses. Replacing

interrupt 67h could result in disabling the Expanded Memory Manager.

3. Do not map into conventional memory address space your application doesn’t own.
Applications that use the EMM to swap into conventional memory space, must first
allocate this space from the operating system. If the operating system is not aware that a
region of memory it manages is in use, it will think it is available. This could have
disastrous results. EMM should not be used to ‘allocate’ conventional memory. DOS is

the proper manager of conventional memory space. EMM should only be used to swap

data in conventional memory space previously allocated from DOS.

4. Applications that plan on using data aliasing in expanded memory must check for the
presence of expanded memory hardware. Data aliasing occurs when mapping one logical

page into two or more mappable segments. This makes one 16K-byte expanded memory

page appear to be in more than one 16K-byte memory address space. Data aliasing is legal
and sometimes useful for applications. Software-only expanded memory emulators cannot
perform data aliasing. A simple way to distinguish software emulators from actual
expanded memory hardware is to attempt data aliasing and check the results. For example,

map one logical page into four physical pages. Write to physical page 0. Read physical
pages 1-3 to see if the data is there as well. If the data appears in all four physical pages,

then expanded memory hardware is installed in the system, and data aliasing is supported.

5. Applications should always return expanded memory pages to the expanded memory
manager upon termination. These pages will be made available for other applications. If

unneeded pages are not returned to the expanded memory manager, the system could run

HUAWEI EX. 1015 - 195/393

HUAWEI EX. 1015 - 196/393

Expanded and Enhanced Expanded Memory Specificdtions 189

out of expanded memory pagesor expanded memory handles.

6. Thrminate and stay resident programs (TSRs) should always save the state of the map
registers before changing them. Since TSRs may interrupt other programs which may be
using expanded memory, they must not change the state of the page mapping registers
without first saving them. Before exiting, TSRs must restore the state of the map registers.
The following sections describe the three ways to save and restore the state of the map
registers.

i. Save Page Map and Restore Page Map (Functions 8 and 9). This is the simplest of the
three methods. The EMM saves the map register contents in its own data structures —

the application does not need to provide extra storage locations for the mapping
context. The last mapping context to be saved, under a particular handle, will be
restored when a call to Restore Page Map is issued with the same handle. This method

is limited to one mapping context for each handle and saves the context for only LIM
standard 64K-byte page frames.

ii. Get/Set Page Map (Function 15). This method requires the application to allocate
space for the storage array. The EMM saves the mapping context in an array whose
address is passed to the EMM. When restoring the mapping context with this method,
an application passes the address of an array which contains a previously stored
mapping context. This method is preferable if an application needs to do more than
one save before a restore. It provides a mechanism for switching between more than
one mapping context.

iii. Get/Set Partial Page Map (Function 16). This method provides a way for saving a partial
mapping context. It should be used when the application does not need to save the
context of all mappable memory. This function also requires that the storage array be
part of the application’s data.

7. All functions using pointers to data structures must have those data structures in memory

which will not be mapped out. Functions 22 and 23 (Alter Map & Call and Alter Map &
Jump) are the only exceptions.

Page Frames

The bank switched memory chunks are referred to as ‘page frames’. These frame consist of four
16K memory blocks mapped into some of the normally unused system ROM address area,

OCOOOO-OEFFFF. Each 16K page is independent of the other and they can map to discrete or
overlapping areas of the 8 megabyte expanded memory address area. Most cards allow selection
of addresses to prevent conflict with other cards, such as hard disk controllers and other ex—

panded memory boards.

Calling the Manager
Applications programs communicate with the EMM device driver directly via user interrupt
67h. All communication between the application program and the driver by-passes DOS com-

pletely. To call the driver, register AH is loaded with the number of the EMM service requested;
DX is loaded with the file handle; and interrupt 67h is called. ES:DI is used to pass the address of
a buffer or array if needed.

On return AH contains 00h if the c311 was successful or an error code from 80h to 8Fh if unsuc-
cessful.

HUAWEI EX. 1015 - 196/393

HUAWEI EX. 1015 - 197/393

I90 The Programmer’s Technical Reference

Testing For the Presence of the Expanded

Memory Manager

Before an application program can use the Expanded Memory Manager, it must determine
whether the manager is present. The two recommended methods are the ‘open handle’ tech—
nique and the ‘get interrupt vector’ technique. .

The majority of application programs can use either the ‘open handle’ or the ‘get interrupt vec-
tor’ method. However, if your program is a device driver or if it interrupts DOS during file sys-
tem operations, you must use only the ‘get interrupt vector’ method.

Device drivers execute from within DOS and can’t access the DOS file functions; programs that

interrupt DOS during file operations have a similar restriction. During their interrupt process-
ing procedures, they can’t access the DOS file functions because another program may be using
the system. Since the ‘get interrupt vector’ method doesn’t require the DOS file functions, you
must use it for programs of this type.

The ‘Open Handle’ Method

Most application programs can use the DOS ‘Open Handle’ method to test for the presence of
the EMM. Tb use this method, follow these steps in order:

1. Issue an ‘open handle’ command (DOS function 3Dh) in ‘read only’ access mode (register
AL = 0). This function requires your program to point to an ASCII string which contains
the path name of the file or device in which you’re interested (register set DS:DX contains
the pointer). In this case the file is actually the reserved name of the expanded memory
manager.

You should format the ASCII string as follows:

ASCII_device__name DB ’EMMXXXXO’, 0

The ASCII codes for the capital letters EMMXXXXO are terminated by a byte containing a
value of zero.

2. If DOS returns no error code, skip Steps 3 and 4 and go to Step 5. If DOS returns a ‘Tbo
many open files’ error code, go to Step 3. If DOS returns a ‘File/Path not found’ error code,
skip Step 3 and go to Step 4.

3. If DOS returns a "Ibo many open files’ (not enough handles) status code, your program
should invoke the ‘open file’ command before it opens any other files. This will guarantee
that at least one file handle will be available to perform the function without causing this

error. After the program performs the ‘open file’ command, it should perform the test
described in Step 6 and close the ‘file handle’ (DOS function 3Eh). Don’t keep the manager
‘open’ after this status test is performed since ‘manager’ functions are not available through
DOS. Go to Step 6.

4. If DOS returns a ‘File/Path not found", the memory manager is not installed. If your

application requires the memory manager, the user will have to reboot the system with a
disk containing the memory manager and the appropriate CONFIG.SYS file before
proceeding.

HUAWEI EX. 1015 - 197/393

HUAWEI EX. 1015 - 198/393

Expanded and Enhanced Expanded Memory Specifications 19]

5. If DOS doesn’t return an error status code you can assume that either a device with the
name EMMXXXXO is resident in the system, or a file with this name is on disk in the

current disk drive. Go to Step 6.

6. Issue an ‘I/O Control for Devices’ command (DOS function 44h) with a ‘get device
information’ command (register AL = 0). DOS function 44h determines whether

EMMXXXXO is a device or a file. You must use the file handle (register BX) which you
obtained in Step 1 to access the ‘EMM’ device. This function returns the ‘device

information’ in a word (register DX). Go to Step 7.

7. IfDOS returns any error code, you should assume that the memory manager device driver
is not installed. Ifyour application requires the memory manager, the user will have to

reboot the system with a disk containing the memory manager and the appropriate
CONFIG.SYS file before proceeding.

8. If DOS didn’t return an error status, test the contents of bit 7 (counting from 0) of the
‘device information’ word (register DX) the function returned. Go to Step 9.

9. Ifbit 7 of the ‘device information’ word contains a zero, then EMMXXXXO is a file, and the

memory manager device driver is not present. Ifyour application requires the memory
manager, the user will have to reboot the system with a disk containing the memory
manager and the appropriate CONFIG.SYS file before proceeding. If bit 7 contains a one,
then EMMXXXXO is a device. Go to Step 10.

10. Issue an ‘I/O Control for Devices’ command (DOS function 44h) with a ‘get output status’
command (register AL = 7). You must use the file handle you obtained in Step 1 to access
the ‘EMM’ device (register BX). Go to Step 11. ’

11. If the expanded memory device driver is ready, the memory manager passes a status value of
OFFh in register AL. The status value is 00h if the device driver is not ready. If the memory
manager device driver is ‘not ready’ and your application requires its presence, the user will
have to reboot the system with a disk containing the memory manager and the appropriate
CONFIG.SYS file before proceeding. If the memory manager device driver is ‘ready’, go to
Step 12.

12. Issue a ‘Close File Handle’ command (DOS function 3Eh) to close the expanded memory
device driver. You must use the file handle you obtained in Step 1 to close the ‘EMM’
device (register BX).

The ‘Get Interrupt Vector’ technique

Any type ofprogram can use this method to test for the presence of the EMM.

Use this method (not the ‘Open Handle’ method) ifyour program is a device driver or if it inter-
rupts DOS during file system operations.

Follow these steps in order:

1. Issue a ‘get vector’ command (DOS function 35h) to obtain the contents of interrupt vector
array entry number 67h (addresses 0000:019Ch through 0000:019Fh). The memory
manager uses this interrupt vector to perform all manager functions. The offset portion of
this interrupt service routine address is stored in the word located at address 0000:019Ch;
the segment portion is stored in the word located at address 0000:019Eh.

HUAWEI EX. 1015 - 198/393

HUAWEI EX. 1015 - 199/393

192 The Programmer’s Technical Reference

2. ‘ Compare the ‘device name field’ with the contents of the ASCII string which starts at the
address specified by the segment portion of the contents of interrupt vector address 67h
and a fixed offset of OOOAh. If DOS loaded the memory manager at boot time this name
field will have the name of the device in it. Since the memory manager is implemented as a

character device driver, its program origin is OOOOh. Device drivers are required to have a
‘device header’ located at the program origin. Within the ‘device header’ is an 8 byte
‘device name field’. For a character mode device driver this name field is always located at
offset OOOAh within the device header. The device name field contains the name of the
device which DOS uses when it references the device. If the result of the ‘string compare’

in this technique is positive, the memory manager is present.

Terminate and Stay Resident (TSR) Program

Cooperation

In order for TSR’s to cooperate with each other and with other applications, a TSR must only
remap the DOS partition it lives in. This rule applies at all times, even when no expanded mem—
ory is present.

Expanded Memory Services Quick List

\DmxlmU'l-BWNH
new LIM 4.0

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

(40h)
(41h)
(42h)
(43h)
(44h)
(45h)
(46h)
(47h)
(48h)
(49h)
(4Ah)
(48h)
(4Ch)
(4Dh)
(4Eh)

Get Manager Status
Get Page Frame Segment
Get Number of Pages
Get Handle and Allocate Memory
Map Memory
Release Handle and Memory
Get EMM Version
Save Mapping Context
Restore Mapping Context
Reserved
Reserved
Get Number of EMM Handles
Get Pages Owned By Handle
Get Pages for All Handles
Get Or Set Page Map

specification:
(4Fh)
(50h)
(51h)
(52h)
(53h)
(54h)
(55h)
(56h)
(57h)
(58h)
(59h)
(5Ah)
(5Bh)
(5cm
(SDh)
(SEh)
(SFh)
(60h)
(61h)

Get/Set Partial Page Map
Map/Unmap Multiple Pages
Reallocate Pages
Handle Attribute Functions
Get Handle Name
Get Handle Directory
Alter Page Map s Jump
Alter Page Map 8 Call
Move Memory Region
Get Mappable Physical Address Array
Get Expanded Memory Hardware
Allocate Raw Pages
Get Alternate Map Register Set
Prepare Expanded Memory Hardware
Enable OS/E Function Set
Unknown
Unknown

(EEMS) Get Physical window Array
AST Generic Accelerator Card Support

HUAWEI EX. 1015 - 199/393

HUAWEI EX. 1015 - 200/393

Expanded and Enhanced Expanded Memory Specifications ' - I93

Expanded Memory Services
Functions Defined in EMS 3.2 Specification

Interrupt 67h

Function 40h Get Manager Status
LIM Function Call 1 .

Returns a status code indicating whether the memory manager is
present and the hardware is working correctly.

entry’ AH 40h
return AH error status: 00h, 80h, 81h, 84h
note 1. Upward and downward compatible with both EMS and EEMS 3.2.

2. This call can be used only after establishing that the EMS driver is in
fact present

3. Uses register Ax
4. This function doesn't require an EMM handle.

Function 41h Get Page Frame Segment Address
LIM Function Call 2

Obtain segment address of the page frame used by the EMM.
entry AH 41h
return AH error status: 00h, 80h, 81h, 84h

BX page frame segment address (error code 0)
note 1. Upward and downward compatible with both EMS and EEMS 3.2.

2. Uses registers AX & Bx
3. This function doesn't require an EMM handle.
4 The value in BX has no meaning if AH 0.

Function 42h Get Unallocated Page Count
LIM Function Call 3

Obtain total number of logical expanded memory pages present in the
system and the number of those pages not already allocated.

entry AH 42h
return AH error status: 00h, 80h, 81h, 84h

BX 00h All EMS pages in have already been allocated. None are
currently available for expanded memory.

value number of unallocated pages currently available
DX total number of EMS pages

note 1. Upward and downward compatible with both EMS and EEMS 3.2. Note that EMS
and EEMS 3.2 had no mechanism to return the maximum number of handles
that can be allocated by programs. This is handled by the EMS 4.0 new
function 54h/02h.

2. Uses registers AX, BX, DX
3. This function doesn’t require an EMM handle.

Function 43h Get Handle and Allocate Memory
LIM Function Call 4

Notifies the EMM that a program will be using extended memory,
obtains a handle, and allocates a certain number of logical pages
of extended memory to be controlled by that handle

entry AH 43h
BX number of 16k logical pages requested (zero OK)

return AH error status: 00h, 80h, 81h, 84h, 85h, 87h, 88h, 89h
DX unique EMM handle (see note 2)

note 1. Upward compatible with both EMS and EEMS 3.2; EMS and EEMS 3.2 do not
allow the allocation of zero pages (returns error status 89h). EMS 4.0
does allow zero pages to be requested for a handle, allocating pages
later using function 51h

2. Your program must use this EMM handle as a parameter in any function that
requires it. You can use up to 255 handles. The uppermost byte of the
handle will be zero and cannot be used by the application.

3. Regs AX & DX are used

Function 44h Map Memory
LIM Function Call 5

Maps one of the logical pages of expanded memory assigned to a
handle onto one of the four physical pages within the EMM's page
frame.

HUAWEI EX. 1015 - 200/393

HUAWEI EX. 1015 - 201/393

194 The Programmer ’s Technical Reference

entry AH 44h
AL physical page to be mapped (0-3)
BX the logical page to be mapped (zero through [number of pages

allocated to the EMM handle - 1]). If the logical page number is
OFFFFh, the physical page specified in AL will be unmapped (made
inaccessible for reading or writing).

DX the EMM handle your program received from Function 4 (Allocate
Pages).

return AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 8Bh
note 1. downward compatible with both EMS and EEMS 3.2; EMS and EEMS 3.2 do not

support unmap (logical page OFFFFh) capability. Also, EEMS 3.2 specified
there were precisely four physical pages; EMS 4.0 uses the subfunctions
of function 58h to return the permitted number of physical pages. This
incorporates the functionality of function 69h (”function 42") of EEMS.

2. uses register AX

Function 45h Release Handle and Memory
LIM Function Call 6

DeaIlocates the logical pages of expanded memory currently assigned
to a handle and then releases the handle itself.

entry AH 45h
DX handle .

return AH error status: 00h, 80h, 81h, 83h; 84h, 86h
note 1. upward and downward compatible with both EMS and EEMS 3.2.

2. uses register AX
3. when a handle is deallocated, its name is set to all ASCII nulls (binary

zeros).
4. a program must perform this function before it exits to DOS or no other

programs can use these pages or the EMM handle.

Function 46h Get EMM Version
LIM Function Call 7

Returns the version number of the Expanded Memory Manager software.
entry AH 46h
return AH error status: 00h, 80h, 81h, 84h

AL version number byte (if AL=00h)
binary coded decimal (BCD) format if version byte:
high nibble: integer digit of the version number
low nibble : fractional digit of version number
i,e., version 4.0 is represented like this:0100 0000

/ \
4 . 0

note 1. upward and downward compatible with both EMS and EEMS 3.2. It appears
that the intended use for this function is to return the version of the
vendor implementation of the expanded memory manager instead of the
specification version.

2. uses register AX

Function 47h Save Mapping Context
LIM Function Call 8

Save the contents of the expanded memory page—mapping registers on
the expanded memory boards, associating those contents with a
specific EMM handle.

entry AH 47h
DX caller's EMM handle (NOT current EMM handle)

return AH error status: 00h, 80h, 81h, 83h, 84h, 8Ch, 8Dh
note 1. upward and downward compatible with both EMS and EEMS 3.2.

2. This only saves the context saved in EMS 3.2 specification; if a driver,
interrupt routine or TSR needs to do more, functions 4Eh (Page Map
functions) or 4Fh (Partial Page Map functions) should be used.

3. no mention is made about the number of save contexts to provide. AST
recommends in their Rampage AT manual one save context for each handle
plus one per possible interrupt (5 + handles).

4. uses register AX
5. this function saves the state of the map registers for only the 64K page

frame defined in versions 3.x of the LIM. Since all applications written
to LIM versions 3.x require saving the map register state of only this
64K page frame, saving the entire mapping state for a large number of
mappable pages would be inefficient use of memory. Applications that use
a mappable memory region outside the LIM 3.x page frame should use

HUAWEI EX. 1015 - 201/393

HUAWEI EX. 1015 - 202/393

Expanded and Enhanced Expanded Memory Specifications _ I95
functions 15 or 16 to save and restore the state of the map registers.

Function 48h Restore Page Map
LIM Function Call 9

entry

return
note 1.

2.

no:

Restores the contents of all expanded memory hardware page-mapping
registers to the values associated with the given handle by a
previous function 08h (Save Mapping Context).AH 48h

DX caller’s EMM handle (NOT current EMM handle)
AH error status: 00h, 80h, 81h, 83h, 84h, 8Eh
upward and downward compatible with both EMS and EEMS 3. 2.
This only restores the context saved in EMS 3. 2 specification; if a
driver, interrupt routine or TSR needs to do more, functions 4Eh (Page
Map functions) or 4Fh (Partial Page Map functions) should be used.
uses register AX
this function saves the state of the map registers for only the 64K page
frame defined in versions 3.x of the LIM. Since all applications written
to LIM versions 3.x require saving the map register state of only this
64K page frame, saving the entire mapping state for a large number of
mappable pages would be inefficient use of memory. Applications that use
a mappable memory region outside the LIM 3.x page frame should use
functions 15 or 16 to save and restore the state of the map registers.

Function 49h Reserved
LIM Function Call 10

This function was used in EMS 3.0, but was no longer documented in
EMS 3.2. It formerly returned the page mapping register I/O port
array. Use of this function is discouraged, and in EMS 4.0 may
conflict with the use of the new functions 16 through 30 (4Fh through
5Dh) and functions 10 and 11. Functions 10 and 11 are specific to the
hardware on Intel expanded memory boards and may not work correctly
on all vendors' expanded memory boards.

Function 4Ah Reserved
LIM Function Call 11

This function was used in EMS 3.0, but was no longer documented in
EMS 3.2. It was formerly Get Page Translation Array. Use of this
function is discouraged, and in EMS 4.0 may conflict with the use of
the new functions (4Fh through 5Dh).

Function 4Bh Get Number of EMM Handles
LIM Function Call 12

entryreturn

note 1.
2.

The Get Handle Count function returns the number of open EMM handles
(including the operating system handle 0) in the system.AH 4Bh

AH error status: 00h, 80h, 81h, 84h
BX handle count (AH=00h) (including the operating system handle

[0]). max 255.
upward and downward compatible with EMS and EEMS 3. 2.
uses registers AK and Ex

Function 4Ch Get Pages Owned by Handle
LIM Function Call 13

entry

return

note 1.
2.

3.

Returns number of logical expanded memory pages allocated to a
specific EMM handle.

AH 4Ch
DX handle
AH error status: 00h, 80h, 81h, 83h, 84h
BX pages allocated to handle, max 2048 because the EMM

allows a maximum of 2048 pages (32M bytes) of expanded memory.
This function is upward compatible with EMS and EEMS 3.2.
programmers should compare the number returned in Ex with the maximum
number of pages returned by function 42h register Dx, total number of
EMM pages. This should be an UNSIGNED comparison, just in case the spec
writers decide to use 16 bit unsigned numbers (for a maximum space of
one gigabyte) instead of signed numbers (for a maximum space of 512 mega
bytes). Unsigned comparisons will work properly in either case
uses registers AX and BX

Function 4Dh Get Pages for All Handles
LIM Function Call 14

Returns an array containing all active handles and the number of

HUAWEI EX. 1015 202/393

HUAWEI EX. 1015 - 203/393

1 96 The Programmer’s Technical Reference

logical expanded memory pages associated with each handle.
entry AH 4Dh

ES:DI pointer to 1020 byte array to receive information on an array of
structures where a copy of all open EMM handles and the number of
pages allocated to each will be stored.

return AH error status: 00h, 80h, 81h, 84h
Bx number of active handles (1—255); array filled with 2-word en

tries, consisting of a handle and the number of pages allocated
to that handle. (including the operating system handle [0]). BX
cannot be zero because the operating system handle is always
active and cannot be deallocated.

note 1. NOT COMPATIBLE with EMS or EEMS 3.2, since the new special OS handle
0000h is returned as part of the array. Unless benign use of this
information is used (such as displaying the handle and count of pages
associated with the handle) code should be changed to only work with
handles between 01h and FFh and to specifically ignore handle 00h.

2. The array consists of an array of 255 elements. The first word of each
element is the handle number, the second word contains the number of
pages allocated.

3. There are two types of handles, ’standard’ and ’raw’. The specification
does not talk about how this function works when both raw and standard
handles exist in a given system. There is no currently known way to
differentiate between a standard handle and a raw handle in EMS 4.0.

4. uses registers Ax and Ex

Function 4Eh Get or Set Page MapLIM Function Call 15
Gets or sets the contents of the EMS page-mapping registers on the ‘
expanded memory boards. This group of four subfunctions is provided
for context switching required by operating environments and
systems. These functions are upward and downward compatible with
both EMS and EEMS 3.2; in addition, these functions now include the
functionality of EEMS function 6Ah ("function 43") involving all
pages. The size and contents of the map register array will vary
from system to system based on hardware vendor, software vendor, ,
number of boards and the capacity of each board in the system. Note '
the array size can be determined by function 4Eh/03h. Use these
functions (except for 03h) instead of Functions 8 and 9 if you need
to save or restore the mapping context but don’t want (or have) to
use a handle.

00h Get Page Map
This call saves the mapping context for all mappable memory regions
(conventional and expanded) by copying the contents of the mapping
registers from each expanded memory board to a destination array.
The application must pass a pointer to the destination array.

entry AH 4Eh
AL 00h

ES:DI pointer to target array
return AH error status: 00h, 80h, 81h, 84h, 8Fh
note 1. uses register AX

2. does not use an EMM handle

01h Set Page Map
This call the mapping context for all mappable memory regions
(conventional and expanded. by copying the contents of a source
array into the mapping registers on each expanded memory board in
the system. The application must pass a pointer to the source array

entry AH 4Eh
AL 01h

DS:SI pointer to source array
return AH error status: 00h, 80h, 81h, 84h, 8Fh, 0A3h
note 1. uses register AX

2. does not use an EMM handle

02h Get 8 Set Page Map
This call simultaneously saves the current mapping context and
restores a previous mapping context for all mappable memory regions
(both conventional and expanded). It first copies the contents of

HUAWEI EX. 1015 - 203/393

HUAWEI EX. 1015 - 204/393

Expanded and Enhanced expanded Memory Specifications
the mapping
into a dest
of a source
memory boar

entry ‘ AH 4Eh
AL 02h
DS:SI pointer
ES:DI pointer

return AH error st
note uses register Ax

03h Get Size
entry AH 4Eh

AL 03h
return AH error st

AL size in
note 1. this subfunction

2. uses register AX

Functions New

Function 4Eh Get or Set
LIM Function Call 16
entry AH 43h

AL 00h
01h
02h
03h

DS:SI pointer
ES:DI pointer

return AH error st
AL bytes in
ES:DI array of

note. this function we
and should not 0

Function 4Fh Get/Set Par
LIM Function Call 16

These four
by interrup
of function
6Ah (functi
pages could
in this fun
contiguous.
functions 4
use more th

4Fh
subfunct
00h

01h

02h

error st
error st
error st
size of
(call 00
text and
context

return AH

AL
DS:SI

registers from each expanded memory board in the system
ination array. Then the subfunction copies the contents
array into the mapping registers on each of the expandedds.

to source array
to target array
atus: 00h, 80h, 81h, 84h, 8Fh, 0A3h

of Page Map Save Array

atus: 00h, 80h, 81h, 84h, 8Fh
bytes of array
does not require an EMM handle

to EMS 4.0

Page Map

if
if
if

getting mapping registers
setting mapping registers
getting and setting mapping registers at once

if getting size of page-mapping array
to array holding information (AL=01h, 02h)
to array to receive information (AL=00h, 02h)
atus: 00h, 80h, 81h, 84h, SFh, 0A3h
page-mapping array (fn 03h only)
received information (fn 00h, 02h)

5 designed to be used by multitasking operating systems
rdinarily be used by application software.

tial Page Map

subfunctions are provided for context switching required
t routines, operating environments and systems. This set
5 provides extended functionality over the EEMS function
on 43) involving subsets of pages. In EEMS, a subset of
be specified by starting position and number of pages;

ction a list of pages is specified, which need not be
Interrupt routines can use this function in place of

7h and 48h, especially if the interrupt routine wants to
an the standard four physical pages.

ion
get partial page map
DS:SI pointer to structure containing list of segments

whose mapping contexts are to be saved
ES:DI pointer to array to receive page map
set partial page map
DS:SI pointer to structure containing saved partial

page map '
get size of partial page map
BX number of mappable segments in the partial map to

be saved

atus (00h): 00h, 80h, 81h, 84h, 88h, 8Fh, 0A3h
atus (01h): 00h, 80h, 81h, 84h, 8Fh, 0A3h
atus (02h): 00h, 80h, 81h, 84h, 83h, 8Fh
partial page map for subfunction 02h
h) pointer to array containing the partial mapping con

any additional information necessary to restore this
to its original state when the program invokes a Set

HUAWEI EX. 1015 - 204/393

197

HUAWEI EX. 1015 - 205/393

198 The Programmer’s Technical Reference
subfunction.

note uses register AX

Function 50h Map/Unmap Multiple Pages
LIM Function Call 17
entry AH 50h

AL 00h (by physical page)
01h (by segment number)

CX contains the number of entries in the array. For example, if the
array contained four pages to map or unmap, then CX would
contain 4. ‘

Dx handle

DS:SI pointer to an array of structures that contains the information
necessary to map the desired pages.

return AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 88h, 8Fh
note 1. New function permits multiple logical—to-physical assignments to be made

in a single call.(faster than mapping individual pages)
2. The source map array is an array of word pairs. The first word of a pair

contains the logical page to map (OFFFFh if the physical page is to be
totally unmapped) and the second word of a pair contains the physical
page number (subfunction 00h) or the segment selector (subfunction 01h)
of the physical page in which the logical page shall be mapped.

3. A map of available physical pages (by physical page number and segment
selectors) can be obtained using function 58h/00h, Get Mappable Physical
Address Array.

4. uses register Ax
5. Both mapping and unmapping pages can be done simultaneously.
6. If a request to map or unmap zero pages is made, nothing is done and no

error is returned.

7. Pages can be mapped or unmapped using one of two methods. Both methods
produce identical results.
A. A logical page and a physical page at which the logical page is to be

mapped. This method is an extension of Function 5 (Map Handle Page).
B. Specifies both a logical page and a corresponding segment address at

which the logical page is to be mapped. While functionally the same
as the first method, it may be easier to use the actual segment
address of a physical page than to use a number which only
represents its location. The memory manager verifies whether the
specified segment address falls on the boundary of a mappable
physical page. The manager then translates the segment address
passed to it into the necessary internal representation to map the
pages.

Function 51h Reallocate pages
LIM Function Call 18

This function allows an application to change the number of logical
pages allocated to an EMM handle.

entry AH 51h
BX number of pages desired at retur
DX handle

return AH error status: 00h, 80h, 81h, 83h, 84h, 87h, 88h
Bx number of pages now associated with handle

note 1. uses registers AX, EX
2. Logical pages which were originally allocated with Function 4 are called

pages and are 16K bytes long. Logical pages which were allocated with
Function 27 are called raw pages and might not be the same size as pages
allocated with Function 4.

3. If the status returned in Ex is not zero, the value in Ex is equal to the
number of pages allocated to the handle prior to calling this function.
This information can be used to verify that the request generated the
expected results.

Function 52h Get/Set Handle Attributes
LIM Function Call 19
entry AH 52h

AL subfunction
00h get handle attributes
01h set handle attributes

BL new attribute
00h make handle volatile
01h make handle non—volatile

HUAWEI EX. 1015 - 205/393

HUAWEI EX. 1015 - 206/393

Expanded and Enhanced expanded Memory Specifications ' 199
02h get attribute capabilityDX handle

return AH error status: (function 00h) 00h, 80h, 81h, 83h, 84h, 8Fh, 91h
error status: (function 01h) 00h, 80h, 81h, 83h, 84h, 8Fh, 90h,91h

error status: (function 02h) 00h, 80h, 81h, 84h, 8Fh
AL attribute (for subfunction 00h)

00h handle is volatile
01h handle is nonvolatile

AL attribute capability (for subfunction 02h)
00h only volatile handles supported
01h both volatile and non—volatile supported

note 1. uses register AX
2. A volatile handle attribute instructs the memory manager to deallocate

both the handle and the pages allocated to it after a warm boot. If all
handles have the volatile attribute (default) at warm boot the handle
directory will be empty and all expanded memory will be initialized to
zero immediately after a warm boot. ‘

3. If the handle's attribute has been set to non-volatile, the handle, its
name (if it is assigned one), and the contents of the pages allocated
to the handle are all maintained after a warm boot.

4. Most PCs disable RAM refresh signals for a considerable period during a
warm boot. This can corrupt some of the data in memory boards.
Non—volatile handles should not be used unless it is definitely known
that the EMS board will retain proper function through a warm boot.

5. subfunction 02h can be used to determine whether the memory manager cansupport the non—volatile attribute.

6. Currently the only attribute supported is non-volatile handles and pages,
indicated by the least significant bit.

Function 53h Handle Name Functions
LIM Function Call 20

EMS handles may be named. Each name may be any eight characters. At
installation, all handles have their name initialized to ASCII nulls
(binary zeros). There is no restriction on the characters which may
be used in the handle name (ASCII chars 00h through OFFh). A name of
eight nulls (zeroes) is special, and indicates a handle has no name.
Nulls have no special significance, and they can appear in the
middle of a name. The handle name is 64 bits of binary informationto the EMM.

Functions 53h and 54h provide a way of setting and reading the names
associated with a particular handle. Function 53h manipulates names
by number.
When a handle is assigned a name, at least one character in the name
must be a non—null character in order to distinguish it from ahandle without a name.

00h Get Handle Name .

This subfunction gets the eight character name currently assigned toa handle.

The handle name is initialized to ASCII nulls (binary zeros) three
times: when the memory manager is installed, when a handle is
allocated, and when a handle is deallocated.

entry AH 53h
AL 00h
DX handle

ES:DI pointer to 8—byte handle name array into which the name currently
assigned to the handle will be copied.

return AH error status: 00h, 80h, 81h, 83h, 84h, 8Fh
note uses register AX

01h Set Handle Name

This subfunction assigns an eight character name to a handle. A
handle can be renamed at any time by setting the handle’s name to a
new value. When a handle is deallocated, its name is removed (set
to ASCII nulls).

entry AH 53h
AL 01h
DX handle

DS:SI pointer to 8—byte handle name array that is to be assigned to thehandle. The handle name must be padded with nulls lf the name is

HUAWEI EX. 1015 - 206/393

HUAWEI EX. 1015 - 207/393

200 The Programmer ’5 Technical Reference

less than eight characters long.
return AH error status: 00h, 80h, 81h, 83h, 84h, 8Fh, OAlh
note uses register AX

Function 54h Handle Directory Functions
LIM Function Call 21

Function 54h manipulates handles by name. , v

00h Get Handle Directory
Returns an array which contains all active handles and the names
associated with each.

entry AH 54h
AL 00h
ES:DI pointer to 2550 byte target array

return AH error status: 00h, 80h, 81h, 84h, 8Fh
AL number of active handles

note 1. The name array consists of 10 byte entries; each entry has a word
containing the handle number, followed by the eight byte (64 bit) name.
uses register AX '
The number of bytes required by the target array is:

10 bytes * total number of handles
4. The maximum size of this array is:

(10 bytes/entry) * 255 entries = ZSSObetes.

LAJN

01h Search for Named Handle
Searches the handle name directory for a handle with a particular
name. If the named handle is found, this subfunction returns the
handle number associated with the name. ,

entry AH 54h
AL 01h

DS:SI pointer to an B—byte string that contains the name of the handle
being searched for

return AH error status: 00h, 80h, 81h, 84h, 8Fh, th, OAlh ‘
DX handle number ‘

note uses registers Ax and BK

02h Get Total Handles
Returns the total number of handles the EMM supports, including the
operating system handle (handle value 0).

entry AH 54h

AL 02h
return AH error status: 00h, 80h, 81h, 84h, 8Fh

BX total number of handles available
. note 1. This is NOT the current number of handles defined, but the maximum number

of handles that can be supported in the current environment.
2. uses registers AX and BX

Function 55h Alter Page Map and Jump (cross page branch)
LIM Function Call 22

Alters the memory mapping context and transfers control to the
specified address. Analogous to the FAR JUMP in the 8086 family
architecture. The memory mapping context which existed before
calling function is lost.

entry' AH 55h
AL 00h physical page numbers provided by caller

01h segment addresses provided by caller
DX handle

DS:SI pointer to structure containing map and jump address
return AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 88h, 8Fh
note 1. Flags and all registers except AX are preserved across the jump.

2. uses register Ax
3. Values in registers which don't contain required parameters maintain the 5

values across the jump. The values in registers (with the exception of
AX) and the flag state at the beginning of the function are still in the
registers and flags when the target address is reached.

4. Mapping no pages and jumping is not considered an error. If a request to
map zero pages and jump is made, control is transferred to the target
address, and this function performs a far jump.

Function 56h Alter Page Map and Call (cross page call)
LIM Function Call 23

HUAWEI EX. 1015 - 207/393

HUAWEI EX. 1015 - 208/393

Expanded and Enhanced expanded Memory Specifieations ' 20]
00h and 01h

These subfunctions save the current memory mapping context, alter
the specified memory mapping context, and transfer control to the
specified address.

entry AH 56h

' AL 00h physical page numbers provided by caller
01h segment addresses provided by caller

DS:SI pointer to structure containing page map and call addressDX handle

return AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 88h, 8Fh
note 1. Flags and all registers except AX are preserved to the called routine. On

return, flags and all registers except AX are preserved; AL is set tozero and AX is undefined.
2. uses register AX

3. Values in registers which don’t contain required parameters maintain the
values across the call. The values in registers (with the exception of
AX) and the flag state at the beginning of the function are still in the
registers and flags when the target address is reached.

4. Developers using this subfunction must make allowances for the additional
stack space this subfunction will use.

02h Get Page Map Stack Space Size
Since the Alter Page Map & Call function pushes additional
information onto the stack, this subfunction returns the number of
bytes of stack space the function requires.

entry AH 56h
AL 02h

return: BX number of bytes of stack used per call
AH error status: 00h, 80h, 81h, 84h, 8Fh

note 1. if successful, the target address is called. Use a RETF to return and
restore mapping context

2. uses registers AX, BX

Function 57h Move/Exchange Memory Region
LIM Function Call 24

00h Move Memory Region
Moves data between two memory areas. Includes moves between paged
and non—paged areas, or between two different paged areas.

entry AH 57h
AL 00h

DS:SI pointer to request block
return AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 8Fh, 92h,

93h, 94h, 95h, 96h, 98h, 0A2h
note 1. uses register AX

01h Exchange Memory Region
EXchanges data between two memory areas- Includes exchanges between
paged and non-paged areas, or between two different paged areas.

entry AH 57h
AL 01h
DS:SI pointer to the data structure which contains the source and

destination information for the exchange.
return AH error status: 00h, 80h, 81h, 83h, 84h, 8Ah, 8Fh, 93h, 94h, 95h,

96h, 97h, 98h, 0A2h
note 1. The request block is a structure with the following format:

dword region length in bytes
byte 0=source in conventional memory

1=source in expanded memory
word source handle

word source offset in page or selector
word source logical page (expanded) or selector (conventional)
byte O=target in conventional memory

1=target in expanded memory
word target handle
word target offset in page or selector
word target logical page (expanded) or selector (conventional)

2. Expanded memory allocated to a handle is considered to be a linear array,
starting from logical page 0 and progressing through logical page 1, 2,
... n, n+1, ... up to the last logical page in the handle.

3. uses register AX

HUAWEI EX. 1015 - 208/393

HUAWEI EX. 1015 - 209/393

202 The Programmer’s Technical Reference

Function 58h Mappable Physical Address Array
LIM Function Call 25

These functions let you obtain a complete map of the way physical
memory is laid out in a vendor independent manner. This is a
functional equivalent of EEMS function 68h ('function 41’). EEMS
function 60h (‘function 33') is a subset call of 68h.

00h Get Array
Returns an array containing the segment address and physical page
number for each mappable physical page in a system. This array
provides a cross reference between physical page numbers and the
actual segment addresses for each mappable page in the system.

entry AH 58h
AL 00h
ES:DI pointer to target array

return AH error status: 00h, 80h, 81h, 84h, BFh
CX entries in target array

note 1. The information returned is in an array composed.of word pairs. The first
word is the physical page's segment selector, the second word the
physical page number. Note that values are not necessarily returned in a
particular order, either ascending/descending segment selector values or
as ascending/descending physical page number.

2. For compatibility with earlier EMS specifications, physical page zero
contains the segment selector value returned by function 41h, and
physical pages 1, 2 and 3 return segment selector values that correspond
to the physical 16 KB blocks immediately following physical page zero.

3. uses registers AX and CX
4. The array is sorted in ascending segment order. This does not mean that

the physical page numbers associated with the segment addresses are also
in ascending order.

01h Get Physical Page Address Array Entries.
Returns a word which represents the nUmber of entries in the array
returned by the previous subfunction. This number also indicates
the number of mappable physical pages in a system.

entry AH 58h
AL 01h

return AH error status: 00h, 80h, 81h, 84h, 8Fh
CX number of entries returned by 58h/00h

note 1. multiply CX by 4 for the byte count.
2. uses registers AX and CX

Function 59h Get Expanded Memory Hardware Information
LIM Function Call 26

These functions return information specific to a given hardware
implementation and to use of raw pages as opposed to standard pages.
The intent is that only operating system code ever need use these
functions.

00h Get EMS Hardware Info
Returns an array containing expanded memory hardware configuration
'information for use by an operating system.

entry AH 59h
AL 00h

ES:DI pointer to 10 byte target array
The target array has the following format:
word: raw page size in paragraphs (multiples of 16 bytes)
word: number of alternate register sets
word: size of page maps (function 48h [15])
word: number of alternate registers sets for DNA
word: DMA operation —~ see full specification

return AH error status: 00h, 80h, 81h, 84h, 8Fh, 0A4h
note 1. uses register AX

2. This function is for use by operating systems only. -
3. This function can be disabled at any time by the operating system.

01h Get Unallocated Raw Page Count
Returns the number of unallocated non—standard length mappable pages
as well as the total number of non—standard length mappable pages
of expanded memory

entry AH 59h

HUAWEI EX. 1015 - 209/393

HUAWEI EX. 1015 - 210/393

Expanded and Enhanced expanded Memory Specifications 203
AL 01h

return AH error status: 00h, 80h, 81h, 84h, 8Fh
BX unallocated raw pages available for use
DX total raw 16k pages of expanded memory

note 1. uses registers AX, Bx, CX

2. An expanded memory page which is a sub-multiple of 16K is termed a raw
page. An operating system may deal with mappable physical page sizes
which are sub—multiples of 16K bytes. »

3. If the expanded memory board supplies pages in exact multiples of 16K
bytes, the number of pages this function returns is identical to the
number Function 3 (Get Unallocated Page Count) returns. In this case,
there is no difference between a page and a raw page.

Function 5Ah Allocate Raw Pages
LIM Function Call 27

Allocates the number of nonstandard size pages that the operating
system requests and assigns a unique EMM handle to these pages.

entry AH SAh 1
AL 00h allocate standard pages

01h allocate raw pages
BX number of pages to allocate

return AH error status: 00h, 80h, 81h, 84h, 85h, 87h, 88h
Dx unique raw EMM handle (1-255)

note 1. it is intended this call be used only by operating systems2. uses registers Ax and Dx

3. for all functions using the raw handle returned in DX, the length of the
physical and logical pages allocated to it are some non—standard length
(that is, not 16K bytes).

4. this call is primarily for use by operating systems or EMM drivers
supporting hardware with a nonstandard EMS page size.

Function SBh Alternate Map Register Set — DMA RegistersLIM Function Call 28

entry AH 00h Get Alternate Map Register Set
01h Set Alternate Map Register Set

BL new alternate map register set number
ES:DI pointer to map register context save area if BL=O

02h Get Alternate Map Save Array Size
03h Allocate Alternate Map Register Set
04h Deallocate Alternate Map Register Set

BL number of alternate map register set
05h Allocate DMA Register Set
06h Enable DMA on Alternate Map Register Set

BL DMA register set number
DL DMA channel number

07h Disable DMA on Alternate Map Register Set
BL DMA register set number

08h Deallocate DMA Register Set
BL DMA register set number

return AH status: 00h, 02h 00h, 80h, 84h, 81h, 8Fh, 0A4h
01h 00h, 80h, 81h, 84h, 8Fh, 9Ah, 9Ch, 9Dh,

0A3h, 0A4h
03h, 05h 00h 80h 81h 84h, 8Fh, 9Bh, 0A4h
04h 00h, 80h, 81h, 84h, 8Fh, 9Ch, 9Dh, 0A4h
06h, 07h ooh, 80h, 81h, 84h, 8Fh, 9Ah, 9Ch, 9Dh, 92h“

9Fh, 0A4h

BL current active alternate map register set number if nonzero (AL=O)
BL number of alternate map register set; zero if not supported (AL=3)
DX array size in bytes (subfunction 02h)
ES:DI pointer to a map register context save area if BL=O (AL=0)

note 1. this call is for use by operating systems only, and can be enabled or
disabled at any time by the operating system

2. This set of functions performs the same functions at EEMS function 6Ah
subfunctions 04h and 05h ("function 43").

3. 00h uses registers Ax, BX, ES:DI
01h uses register Ax
02h uses registers AX and DX
03h uses registers AX and BX
04h uses register AX
05h uses registers AX, BX
06h uses register AX

HUAWEI EX. 1015 - 210/393

HUAWEI EX. 1015 - 211/393

204 The Programmer’s Technical Reference

07h uses register AX

Function sch Prepare EMS Hardware for Warm Boot
LIM Function Call 29

Prepares the Hun hardware for a warm boot. 3
entry AH sch 1
return AH error status: 00h, 80h, 81h, 84h ‘
note 1. uses register AX

2. this function assumes that the next operation that the operating system
performs is a warm boot of the system.

3. in general, this function will affect the current mapping context, the
alternate register set in use, and any other expanded memory hardware
dependencies which need to be initialized at boot time.

4. if an application decides to map memory below 640K, the application must
trap all possible conditions leading to a warm boot and invoke this
function before performing the warm boot itself.

Function 5Dh Enable/Disable 05 Function Set Functions
LIM Function Call 30

Lets the OS allow other programs or device drivers to use the 05
specific functions. This capability is provided only for an 05
which manages regions of mappable conventional memory and cannot
permit programs to use any of the functions which affect that
memory, but must be able to use these functions itself.

entry AH 5Dh
AL 00h enable OS function set

01h disable OS function set
02h return access key (resets memory manager, returns access

key at next invocation)
BX,CX access key returned by first invocation

return BX,CX access key, returned only on first invocation of function
AH status ,00h, 80h, 81h, 84h, 8m, 0A4h

note 1. this function is for use by operating systems only. The operating system
can disable this function at any time.

2. 00h uses registers AX, BX, CX
01h uses registers AX, BX, CH
02h uses register AX

3. 00h, 01h: The OS/E (Operating System/Environment) functions thesesubfunctions affect are:
Function 26, Get Expanded Memory Hardware Information
Function 28, Alternate Map Register Sets
Function 30, Enable/Disable Operating System Functions

Function 5Eh Unknown
LIM Function call (not defined under LIM)

Function 5Fh Unknown
LIM Function call (not defined under LIM)

Function 60h EEMS — Get Physical Window Array
LIM Function call (not defined under LIM)
entry AH 60h

ES:DI pointer to buffer
return AH status

AL number of entries
buffer at ES:DI filled

Function 61h Generic Accelerator Card Support
LIM Function Call 34

entry _ Contact AST Research for a copy of the Generic Accelerator Card
return _ Driver (GACD) Specification
note Can be used by accelerator card manufacturer to flush RAH cache,ensuring

that the cache accurately reflects what the processor would see without
the cache.

Function 68h EEMS — Get Addresses of All Page Frames in System
LIM Function Call (not defined under LIM)

entry AH 68h

ES:DI pointer to buffer
return AH status

AL number of entries

HUAWEI EX. 1015 - 211/393

HUAWEI EX. 1015 - 212/393

Expanded and Enhanced expanded Memory Specifications 205

buffer at ES:DI filled
note Equivalent to LIM 4.0 function 58h

Function 69h EEMS — Map Page Into Frame
LIM Function Call (not defined under LIM)
entry - AH 69h

AL frame number
BX page number
DX handle

return AH status.
note Similar to EMS function 44h

Function 6Ah EEMS — Page Mapping
LIM Function Call (not defined under LIM)
entry AH 6Ah

AL 00h Save Partial Page Map
CH first page frame
CL number of frames »
ES:DI pointer to buffer which is to be filled

01h Restore Partial Page Map
CH first page frame
CL number of frames

DI:SI pointer to previously saved page map
02h Save And Restore Partial Page Map

CH first page frame
CL number of frames

ES:DI buffer for current page map
DI:SI new page map

03h ’Get Size of Save Array
CH first page frame
CL number of frames

return- AL size of array in bytes
04h Switch to Standard Map Register Setting
05h Switch to Alternate Map Register Setting
06h Deallocate Pages Mapped To Frames in Conventional Mem.

CH first page frame
CL number of frames

return AH status

note Similar to LIM function 4Eh, except that a subrange of pages can be
specified

Expanded Memory Manager Error Codes
EMM error codes are returned in AH after a call to the EMM (int 67h).

code meaning
00h function successful

80h internal error in EMM software (possibly corrupted driver)81h hardware malfunction

82h EMM busy (dropped in EEMS 3.2)
83h invalid EMM handle
84h function requested not defined ~ unknown function code in AH.
85h no more EMM handles available
86h error in save or restore of mapping context
87h more pages requested than exist
88h allocation request specified more logical pages than currently available

in system (request does not exceed actual physical number of pages, but
some are already allocated to other handles); no pages allocated

89h zero pages; cannot be allocated (dropped in EMS 4.0)
8Ah logical page requested to be mapped outside range of logical pages

assigned to handle
8Bh illegal page number in mapping request (valid numbers are 0 to 3)
8Ch page-mapping hardware state save area full
8Dh save of mapping context failed; save area already contains context

associated with page handle
8Bh restore of mapping context failed; save area does not contain context for

requested handle
8Fh subfunction parameter not defined (unknown function)

HUAWEI EX. 1015 - 212/393

HUAWEI EX. 1015 - 213/393

206 The Programmer’s Technical Reference

LIM 4.0 extended error codes:
90h
91h
92h
93h
94h
95h
96h
97h
98h
99h
9Ah
9Bh
9Ch
9Dh

9Eh
9Fh
OAOh
OAlh
OAZh
0A3h
0A4h

attribute type undefined
warm boot data save not implemented
move overlaps memory
move/exchange larger than allocated region
conventional/expanded regions overlap
logical page offset outside of logical page
region larger than 1 MB
exchange source/destination overlap
source/destination undefined or not supported
(no status assigned)
alternate map register sets supported, specified set is not
all alternate map 5 DMA register sets allocated
alternate map 5 DMA register sets not supported
alternate map register or DNA set not defined, allocated or is currentlydefined set
dedicated DMA channels not supported
dedicated DMA channels supported; specified channel is not
named handle could not be found
handle name already exists
move/exchange wraps around 1 MB boundary
data structure contains corrupted data
access denied

HUAWEI EX. 1015 - 213/393

HUAWEI EX. 1015 - 214/393

11

Conversion Between MSDOS and
Foreign Operating Systems

Overview

Software portability is a popular topic in programming texts. In real life, very little software is
ported from one system to another, and then normally only by necessity. When software must be

portable, it is often written in a proprietary high-level language designed for system portability.
InfoCom games and various CAD packages fall into this category.

From time to time the programmer may wish to target his software for a wider base of systems
than the one heIS currently working with. The usual reason is to broaden the market1n which

the software will be sold without having to write a specific version for each machine. In other

cases it maybe necessary to move existing software between machines when a particular ma-
chine becomes obsolescent, but there is a heavy investment in, software. Many companies have
custom or proprietary software (engineering and inventory control are the most usual) which
must be ported from such machines.

Programs from many different operating systems. may be ported easily to MSDOS. Though
single-tasking and single-user, MSDOS provides a rich applications program interface (API)
for the programmer. Porting software from MSDOS to a foreign OS can frequently be a source
of consternation to the programmer, as many functions taken for granted by DOS programmers
(nondestructive keyboard read, for example) do not exist in most microcomputer and many
mainframe operating systems.

When noncongruent function calls must be used between systems, it is probably best to build a
macro library in whatever language is being used and simply pass parameters to it as a data struc-
ture. If data from a windowing OS such as AmigaDOS or MacOS is to be ported, use of a win-
dowing shell is more efficient than trying to duplicate all the various functions yourself.

Porting of software depends on ‘good’ practice, i.e. placing hardware-dependent routines in
their own modules or noting such use in the main code.

HUAWEI EX. 1015 - 214/393

HUAWEI EX. 1015 - 215/393

208 The Programmer’s Technical Reference

Special Considerations

When porting from machines using the Motorola 68000 or another processor with a large linear
address space (non-segmented architecture) and you should take care that data structures
moved from the ST to not exceed the 8088’s 64k segment size limit. A program which requires
structures larger than 64k could be ported to 80386 machines but the large structures would only
be accessible in protected mode and would require switching in and out ofprotected mode to ac-
cess the data. The difficulty involved would preclude such a solution unless absolutely necessary.
A partial solution would be to port the software to a non-DOS OS having an MSDOS ‘window’
or emulation mode. Another solution would be to use one of the scientific number-crunching
boards such as the MicroWay TransPuter module and pass structures back and forth to it.

If you are writing a program from scratch for multiple-platform operation, it would be wise to
check into using a compiler vendor who supports the platforms in question. Some vendors have
a wide range of products. For instance:

Borland: Turbo Pascal CP/M-80
CP/M-86
MSDOS
Macintosh

Lattice: C MSDOS
Atari ST

Amiga

Some vendors offer similar products to run under Unix, VMS, or OS/2 as well.

One thing MSDOS programmers may find to be eerily different is the way some other operating
systems (Unix, for example) perform functions. In MSDOS, operating system functions are ac-
cessed by setting various CPU registers to specified values and calling the appropriate CPU in-
terrupt. MSDOS’ function dispatcher examines the values in the registers and takes the appro-
priate action.

‘Portable’ operating systems such as Unix and many networking systems cannot be certain of
having any specific registers of CPU modes available, and thus build ‘request packets’ or ‘call
blocks’, which are data structures the operating system can interpret, and then calling an inter-
rupt. The OS kernel examines the structure and takes the appropriate action. Systems operating
this way are (relatively) easily transported among CPU types and make both multitasking and
multiprocessing much easier at the expense ofsome overhead.

Should it be necessary to do any extensive porting work, I highly recommend Arthur S. Tanen-
baum’s Operating system Design and Implementation’ by Prentice-Hall. "Ianenbaum discusses
operating systems from philosophy down to actual code and is an invaluable reference for
anyone doing low-level OS programming.

Example Operating Systems
Atari ST

The Atari ST’s operating system is called TOS, for Tramiel Operating System. TOS is single-
user, single-tasking, and almost call-for-call compatible with MSDOS. Typically, the ST runs
TOS as a low-level interface for Digital Research’s GEM windowing environment.

HUAWEI EX. 1015 - 215/393

HUAWEI EX. 1015 - 216/393

Conversion Between MSDOS and Foreign Operating Systems 209

Applications moved from MSDOS to TOS should require no unusual modifications, though ap-
plications moved from the Atari ST to MSDOS would be easiest to port by using GEM on the
PC. TOS services are accessible through assembly language by manipulating the CPU registers,
as in MSDOS. TOS duplicates the UNIX-style file handling calls of MSDOS but not the ‘unsup-
ported’ CP/M style FCB calls.

CP/M

When Tim Paterson designed DOS he made it easy to port the CPM functions to his new opera-
ting system. All CP/M-80 calls are duplicated in MSDOS. These are the so-called FCB or File
Control Block calls which are now officially discouraged by IBM and Microsoft. Newer handle

- calls exist for most FCB calls. Porting software from MSDOS to CP/M may be difficult due to the
sparseness ofsystem calls and limited (64k address space) CPU resources. CP/M was written in a
language called PL/M, but both CP/M and MSDOS were designed for easy use from an assem-
bly—language level.

MacOS

Porting from MSDOS to the Apple MacIntosh OS should require no special handling. Porting
from MacOS to MSDOS involves duplicating the massive windowing functions built into
MacOS. Microsoft’s Windows is a licensee of Apple and would probably be the best choice,
though Aldus’ PageMaker program uses DRI’s GEM. The MacOS was written in Pascal and
uses Pascal data structures and calling conventions.

AmigaDOS

AmigaDOS is a Unix variant with a windowing shell. Newer versions have the Bourne shell as an

option for their CLI, or Command Line Interface. Most Amiga programs make little or no use
of the piping or multitasking structures available under Unix and should not be too difficult to

port. The Amiga’s windowing and mouse routines are fairly simple and could be duplicated by a
set of library routines or Quarterdeck’s Destiew could be used, which would also duplicate the
multitasking and interprocess data transfer available under AmigaDOS.

OS/2

Most new Microsoft language updates come with 08/2 and DOS variants. Microsoft Windows

can duplicate most OS/2 windowing and piping functions if needed. Microsoft provides ‘dual
mode’ libraries for programs to run under either DOS or OS/2. The official Microsoft interface

to OS/2’s 221 function calls is through the C language.

UNIX

Most versions of Unix appear very much like CP/M from the programmer’s stand-point. Unix
has memory management and hierarchic directory structures absent in CP/M. Most Unix sys-

tems use some son of paged virtual memory and code generated by some Unix compilers tends
to be very large. Should it be necessary to port a large Unix system to DOS, it would probably be
best to use Quarterdeck’s Destiew API and EEMS or LIM 4.0. Virtually all Unix software is
written in C.

HUAWEI EX. 1015 - 216/393

HUAWEI EX. 1015 - 217/393

12

Microsoft Windows A.P.I.

Overview

First released in November 1985, Microsoft Windows was originally designed as a high-level in-
terface for display, sort of like a super-ANSI.SYS driver.- An application program running under
Windows could write to its output device without knowing or caring if the display was a screen or
a printer, or what the resolution of the output device was. Windows also includes graphics primi-
tives for applications, arbitration for multiple programs accessing the screen or devices, and
simple program-swapping and memory management capability.

Windows was a grand concept, and worthy ofserious consideration. However, Microsoft pre-an-
nounced it by almost two years, and when the program finally did ship, it had a number of prob-
lems. Microsoft got snarled up in making Windows into a super-goombah pseudo-Macintosh
‘operating environment’ with enough code overhead to turn a standard AT into a reasonable
facsimile of an asthmatic Per. It was SLOW It was a RAM and disk hog, unsuitable for use on
small floppy-based machines common at the time. It was expensive, priced four times higher
than DOS, and programming in Windows required tools available only in the Windows Devel-
opment kit, priced at a princely $350 (now $500). And as a final blow, it could not perform its
task with normal DOS programs, requiring applications developed specially for Windows.

Later versions of Windows, tailored to the 80286 or 80386 processors, were able to increase the a
speed and functionality of the program somewhat. Despite the hard sell by some of the pro- ‘
grammer types at PC-Magazine and others, Windows has been a dead player since its introduc-
tion. Interest in Windows picked up when Microsoft announced that programs running under
Windows would be easy to port to the (then as yet unreleased) OS/Z operating system. Interest in
Windows died again when OS/2’s API turned out to be sufficiently different from Windows to
make it about as difficult to port Windows applications as anything else.

Microsoft’s original idea of a universal display interface would be very useful in today’s world of
multiple graphics standards, but few programmers want to haul Windows’ overhead around.
Microsoft could have made Windows an operating system in its own right, but has chosen not to '
do so. As part of their latest push, Microsoft has announced it will bundle Windows with
MSDOS in the second half of 1989.

HUAWEI EX. 1015 - 217/393

HUAWEI EX. 1015 - 218/393

Microsofi Windows A.P.I. 21]

Programming Windows

The Windows Application Program Interface (API) is designed to be accessible through the
linkable 'code libraries provided in the Windows Software Development Kit (SDK). The sug—
gested calling conventions are set up for the ‘C’ programming language. v

Windows has its own built-in mouse driver and will ignore any other drivers or mouse control
utilities.

0

Vers10ns

The following versions of Windows have been released:

1.0 November 1985, original release
1.03 (common to Zenith and aftermarket packaged products)
2.0 . third quarter 1987, overlapping windows, EMS support
286 customized for maximum performance on the 80286 CPU
386 customized for use of the 80386 special instructions

Various ‘runtime kits’ of Windows have been provided for some commercial software packages
such as Ami or Ventura Publisher.

Windows 2.0 added increased output performance (claimed up to 400%) for Windows applica-
tions, enhanced data exchange support for non-Windows based applications, a new visual inter-
face with overlapping windows (1.x windows could not overlap), support for running multiple
applications in expanded memory, a new memory manager to allow efficient use of expanded
memory hardware, allowing a single application to be larger than 640Kb, and for the user to
switch rapidly between large applications which are running simultaneously.

All versions ofWindows are reported to be backward-compatible.

Functions

The following function call listing is for Windows 1.03. Later-versions of Windows have en-
hanced capabilities. All conventions are for the C language.
AccessResource

Sets file pointer for read access to resource hResInfo.
entry AccessResource()

AccessResource(hInstance, hResInfo):nFile
handle hInstance;
handle hResInfo;

return int (DOS file handle)

AddAtom

Creates an atom for character string lpString.
entry AddAtom()

#undef NoAtom
AddAtom(lpString):wAtom
lpStr lpString;return atom

AddFontResource

Adds font resource in lpFilename to system font table.
entry AddFontResource()

AddFontResource(lpFilename):nFonts

HUAWEI EX. 1015 - 218/393

HUAWEI EX. 1015 - 219/393

212 The Programmer’s Technical Reference

lpStr lpFilename;
return short

AdjustWindowRect
Converts client rectangle to a window rectangle.

entry AdjustWindowRect()
#undef NoRect
AdjustWindowRect(1pRect, lStyle, bMenu)
lpRect lpRect;
long lstyle;
Boolean bMenu;

return void

AllocResource

Allocates deize bytes of memory for resource hResInfo.
entry AllocResource()

AllocResource(hInstance, hResInfo, deize):hMemhandle hInstance;
handle hResInfo;
dword dwsize;

return handle

AnsiLower
Converts character string lpStr to lower—case.

entry AnsiLower()
AnsiLower(lpStr):cChar
lpStr lpStr;

return byte

AnsiNext
Returns long pointer to next character in string lpCurrentChar.

entry AnsiNext() 1
AnsiNext(lpCurrentChar):leextChar
lpStr lpCurrentChar;

return lpStr

AnsiPrev

Returns long pointer to previous character in string lpstart.
lpCurrentchar points to current character.

entry AnsiPrev()
AnsiPrev(lpStart, lpCurrentChar):lpPrevChar
lpStr lpstart;
lpStr 1pCurrentChar;

return lpStr

AnsiToOem

Converts ANSI string to OEM character string. 3
entry AnsiToOem()

AnsiToOem(lpAnsiStr, lpOemStr):bTranslated
lpStr lpAnsiStr;
lpStr lpOemstr;

return Boolean

AnsiUpper
Converts character string (or character if lpString high word is zero) to
uppercase.

entry AnsiUpper()
AnsiUpper(lpstr):cChar
lpStr lpStr;

return byte

AnyPopup
Tells if a pop-up style window is visible on the screen.

entry AnyPopup()
AnyPopup():bVisible

return Boolean

Arc
Draws arc from X3, Y3 to x4, Y4, using current pen and moving
counter-clockwise. The arc’s centre is at centre of rectangle given by
x1, Y1 and x2, Y2.

HUAWEI EX. 1015 - 219/393

HUAWEI EX. 1015 - 220/393

‘Microsoft Windows A.P.I. I 213

entry Arc()
#undef NohDC

Arc(hDC, X1, Y1, X2, Y2, X3, Y3, X4, Y4):BDrawn
Mac Mac ;
short Xl;

‘short Y1;
short X2;
short Y2;
short X3;
short Y3;
short X4;
short Y4;

return Boolean

BeginPaint
Prepares window for painting, filling structure at lpPaint with

. painting data.
entry BeginPaint()

#undef NoRect
#undef NohDC

BeginPaint(hWnd, lpPaint):hDC
hWnd hWnd;

lpPaintStruct lpPaint;
return hDC

BitBlt

Moves bitmap from source device to destination device. Source origin is
at XSrc, YSrc. X,Y,,nWidth, nHeight give bitmap origin and dimensions on
destination device. DwRop defines how source and destination bits arecombined.

entry BitBlt()
#undef NohDC

BitBlt(hDestDC, x, Y, nwidth, nHeight, hSrcDC, XSrc, YSrc,
dwRop):bDrawn

hDC hDestDC;
short X;
short Y;
short nwidth;
short nHeight;
hDC hSrcDC;
short XSrc;
short YSrc;
dword dwRop;

return Boolean

BringWindowToTop

Brings pop—up or child window to top of stack of overlapping windows.
entry BringwindowToTop()

BringWindowToTop(hWnd)hWnd hWnd;
return void

BuildCommDCB

Fills device control block lpDCB with control codes named by lpDef.
entry BuildCommDCB()

#undef NoComm

BuildCommDCB(lpDef, 1pDCB):nResult
1pStr lpDef;

DCB FAR * lpDCB;
return short

CallMngilter
Passes message and code to current message—filter function.
Message—filter function is set using SetwindowsHook.

entry CallMngilter()
#undef NoMsg
CallMngilter(lpMsg, nCode):bResult
lpMsg lpMsg;
int nCode;

return Boolean

HUAWEI EX.1015 - 220/393'

HUAWEI EX. 1015 - 221/393

214 The Programmer’s Technical Reference

CallWindowProc .
Passes message information to the function specified by lpPreandFunc.

entry CallWindowProc()
#undef NoWinMessages
CallWindowProc(lpPreandFunc, hWnd, stg, wparam, lParam):lReply
FarProc lpPreandFunc;
hWnd hWnd;

unsigned stg;
word wparam;
long lParam;

return long

Catch

Copies current execution environment to buffer lpCatchBuf.
entry Catch()

Catch(lpCatchBuf):Throwback
lpCatchBuf lpCatchBuf;

return int

Changeclipboardchain
Removes hWnd from clipboard viewer chain, making hWndNext descendant of
hWnd's ancestor in the chain.

entry ChangeClipboardChain()
#undef NoClipBoard
Changeclipboardchain(hWnd, hWndNext):bRemovedhWnd hWnd;
hWnd hWndNext;

return Boolean

ChangeMenu
Appends, inserts, deletes, or modifies a menu item in hMenu.

entry ChangeMenu()
#undef NoMenus

ChangeMenu(hMenu, wlDChangeItem, leewItem, wlIDNewItem,
wChange):bChanged

hMenu hMenu;
word wlDChangeItem;
lpStr leewItem;
word wlIDNewItem;
word wChange;

return Boolean

CheclegButton

Places or removes check next to button, or changes state of 3—state Ibutton.

entry CheclegButton()
#undef NoCthgr
CheclegButton(thg, nIDButton, wcheck)
hWnd thg;
int nIDButton;
word wCheck;

return void

CheckMenuItem
Places or removes checkmarks next to pop—up menu items in hMenu.

entry CheckMenuItem()
#undef NoMenus
CheckMenuItem(hMenu, wIDCheckItem, wCheck):bOldCheckhMenu hMenu;
word wIDCheckItem;
word wCheck;

return Boolean

CheckRadioButton
Checks nIDCheckButton and unchecks all other radio buttons in the group
from nIDFirstButton to nIDLastButton.

entry CheckRadioButton()
#undef Nocthgr
CheckRadioButton(thg, nIDFirstButton, nIDLastButton, nIDCheckButton)
hWnd thg;
int nIDFirstButton;

HUAWEI EX. 1015 - 221/393

HUAWEI EX. 1015 - 222/393

Microsoft Windows A.P.I. ‘ . » 215

int nIDLastButton;
int nIDCheckButton;

return void

childwindowFromPoint

' Determines which, if any, child window of hWndParent contains Point.
entry ChildWindowFromPoint()#undef NoPoint

ChildWindowFromPoint(hWndParent, Point):hWndChild
hWnd hWndParent;
point Point;

return hWnd

ClearCommBreak

. Clears communication break state from communication device nCid.
entry ClearCommBreak()

#undef NoComm
ClearCommBreak(nCid):nResult
short nCid;

return short

ClientToScreen

Converts client coordinates to equivalent screen coordinates in place
entry ClientToScreen()

#undef NoPoint

ClientToScreen(hWnd, lpPoint)
hWnd hWnd;
lpPoint lpPoint;

return void

ClipCursor
Restricts the mouse cursor to a given rectangle on the screen.

entry ClipCursor()
#undef NoRect
ClipCursor(1pRect)
lpRect lpRect;

return void

CloseClipboard
Closes the clipboard

entry CloseClipboard()
#undef NoClipBoard
Closeclipboard():bclosedreturn Boolean

CloseComm

Closes communication device nCid after transmitting current output buffer.
entry CloseComm()

#undef NoComm
CloseComm(nCid):nResult
short nCid;

return short

CloseMetaFile
Closes the metafile and creates a metafile handle.

entry CloseMetaFi1e()
CloseMetaFile(hDC):hMF
handle hDC;

return handle

CloseSound

Closes play device after flushing voice queues and freeing buffers.
entry CloseSound()

#undef NoSound
CloseSound()

return int

CloseWindow

Closes the specified window.
entry CloseWindoW()

CloseWindow(hWnd):nClosed

HUAWEI EX. 1015 - 222/393

HUAWEI EX. 1015 - 223/393

21 6 The Programmer’5 Technical Reference

hWnd hWnd;
return int

CombineRgn
Combines, using nCombineMode, two existing regions into a new region.

entry CombineRgn()
#undef' NoRegion
CombineRgn(hDesthn, hSrcRgnl, hSrcRgnZ, nCombineMode):RgnType
hRgn hDesthn;
hRgn hSrcRgnl;
hRgn hSrcRgnz;
short nCombineMode;

return short

CopyMetaFile
Copies source metafile to lpFilename and returns the new metafile.

entry CopyMetaFile()
CopyMetaFile(hsrcMetaFile, lpFilename):hMFhandle hSrcMetaFile;
lpStr lpFilename;

return handle

CopyRect
Makes a copy of an existing rectangle.

entry CopyRect()
#undef NoRect
CopyRect(1pDestRect, 1pSourceRect)
lpRect lpDestRect;
lpRect lpSourceRect;

return int

CountClipboardFormats
Retrieves a count of the number of formats the clipboard can render.

entry CountClipboardFormats()
#undef Noclipboard
CountClipboardFormats():nCount

return int

CountVoiceNotes

Returns number of notes in voice queue nVoice. 9
entry CountVoiceNotes() ‘

#undef NoSound
CountVoiceNotes(nVoice):nNotes
int nVoice;

return int

CreateBitmap
Creates a bitmap having the specified width, height, and bit pattern.

entry CreateBitmap()
#undef NoBitmap
CreateBitmap(nWidth, nHeight, cPlanes, cBitCount, lpBits):hBitmap
short nwidth;
short nHeight;
byte cPlanes;
byte cBitCount;
lpStr lpBits;

return hBitmap

CreateBitmapIndirect
Creates a bitmap with the width, height, and bit pattern given by
lpBitmap.

entry CreateBitmapIndirect()
#undef NoBitmap
CreateBitmapIndirect(lpBitmap):hBitmap

Bitmap FAR * lpBitmap;
return hBitmap .

CreateBrushIndirect -
Creates a logical brush with the style, colour, and pattern given by
lpLogBrush.

entry CreateBrushIndirect()

HUAWEI EX. 1015 - 223/393

HUAWEI EX. 1015 - 224/393

‘ Microsoft Windows A.P.I. I 917

#undef NoGDI
#undef NoBrush
CreateBrushIndirect(lpLogBrush):hBrush

LogBrush FAR * lpLogBrush;
return hBrush

CreateCaret
Creates caret or hWnd using hBitmap. If hBitmmap is NULL, creates solid
flashing black block nWidth by nHeight pixels; if hBitmap is 1, caret is
grey. ‘

entry CreateCaret()
#undef NoBitmap
CreateCaret(hWnd, hBitmap, nwidth, nHeight)
hWnd hwnd;
hBitmap hBitmap;
int nwidth;
int nHeight;

return void

CreateCompatibleBitmap
Creates a bitmap that is compatible with the device specified by hDC.

entry CreateCompatibleBitmap()
#undef NoHDC
#undef NoBitmap
CreateCompatibleBitmap(hDC, nWidth, mnHeight):hBitmap
hDC hDC;
short nwidth;
short mnHeight;

return hBitmap

CreateCompatibleDC
Creates a memory display context compatible with the device specified byhDC.

entry CreateCompatibleDC()
#undef NoHdc
CreateCompatibleDC(hDC):hMemDC
hDC hDC;

return hDC

CreateDC

Creates a display context for the specified device.
entry CreateDC()

#undef NohDC

CreateDC(lpDriverName, lpDeviceName, lpOutput, lpInitData):hDC
lpstr lpDriverName;
lpstr lpDeviceName;
lpstr 1p0utput;
lpstr 1pInitData;

return hDC

CreateDialog
Creates a modeless dialogue box.

entry CreateDialog()
#undef NoCtlmgr
CreateDialog(hInstance, lpTemplateName, hWndParent,
lpDialogFunc):thg
handle hInstance;
lpstr lpTemplateName;
hWnd hWndParent;
farproc lpDialogFunc;

return hWND

CreateDiscardableBitmap
Creates a discardable bitmap.

entry CreateDiscardableBitmap()
#undef NohDC
#undef NoBitmap
CreateDiscardableBitmap(hDC, X, Y):hBitmap
th hDC;
short X;'
short Y;

HUAWEI EX. 1015 - 224/393

HUAWEI EX. 1015 - 225/393

218 . The Programmer’s Technical Reference

return hBitmap

CreateEllipticRgn
Creates an elliptical region whose bounding rectangle is defined by X1,
Y1, X2, and Y2.

entry CreateEllipticRgn()
#undef NoRegion
CreateEllipticRgn(x1, Y1, X2, Y2):hRgn
short X1; ‘
short Y1;
short X2;
short Y2;

return hRgn

CreateEllipticRgnIndirect
Creates an elliptical region whose bounding rectangle is given by lpRect.

entry CreateEllipticRgnIndirect()
#undef NoRect
#undef NoRegion
CreateEllipticRgnIndirect(lpRect):hRgn
lpRect 1pRect;

return hRGN

CreateFont

Creates a logical font having the specified characteristics.
entry CreateFont()

#undef NoFont
CreateFont(nheight, nWidth, nEscapement, nOrientation, nWeight,
cItalic, cUnderline, cstrikeout, nCharSet, cOutputPrecision,
cClipPrecision, cQuality, cPitchAndFamily, lpFacename):hFont
short nheight;
short nWidth;
short nEscapement;
short nOrientation;
short nWeight;
byte cItalic;

byte cUnderline;
byte cStrikeOut;
byte nCharSet;
byte coutputPrecision;
byte cClipPrecision;
byte cQuality;
byte cPitchAndFamily;
lpstr lpFacename;

return hFont

CreateFontIndirect
Creates a logical font with characteristics given by lpLogFont.

entry CreateFontIndirect()
#undef NoGDI
#undef NoFont
CreateFontIndirect(lpLogFont):hFont

LogFont FAR * lpLogFont;
return hFont

CreateHatchBrush
Creates a logical brush having the specified hatched pattern and colour.

entry CreateHatchBrush()
#undef NoBrush
CreateHatchBrush(nIndex, rgbColor):Brush
short nIndex;
dword rgbColor;

return hBrush

CreateIC
Creates an information context for the specified device.

entry CreateIC()
#undef NohDC

CreateIC(lpDriverName, lpDeviceName, lpoutput, lpInitData):hIC
lpStr 1pDriverName;
lpStr lpDeviceNamp;

HUAWEI EX. 1015 - 225/393

HUAWEI EX. 1015 - 226/393

_ Microsoft IdeowsAPJ. ' - 219
lpStr 1p0utput;
lpstr lpInitData;

return hDC

‘,x
g

CreateMenu
’ Creates an empty menu.

entry CreateMenu()
#undef NoMenus
CreateMenu():hMenu

return hMenu .

CreateMetaFile
' Creates a metafile display context.

entry CreateMetaFile()
CreateMetaFile(lpFilename):hDC
lpstr lpFilename;

- return handle

H CreatePatternBrush
i: Creates a logical brush having the pattern specified by hBitmap.

entry CreatePatternBrush()
#undef NoBitmap
#undef NoBrush
CreatePatternBrush(hBitmap):hBrush
hBitmap hBitmap;

return hBrush

CreatePen

Creates a logical pen having the specified style, width, and colour.
entry CreatePen()

#undef n0pen
CreatePen(nPenStyle, nWidth, rgbColor):hPen
short nPenStyle;
short nwidth;
dword rgbColor;

return hPen

CreatePenIndirect

Creates a logical pen with the style, width, and colour given by lpLogPen.
entry CreatePenIndirect()

#undef n0pen
CreatePenIndirect(lpLogPen):hPen

LogPen FAR * lpLogPen;
return hPen

CreatePolygonRgn
Creates a polygon region having nCount vertices as given by lpPoints.

entry CreatePolygonRgn()
#undef NoPoint
#undef NoRegion
CreatePolygonRgn(lpPoints, nCount, nPolyFillMode):hRgn
lpPoint lpPoints;
short nCount;
short nPolyFillMode;

return hRgn

CreateRecthn
Creates a rectangular region.

entry CreateRecthn()
#undef NoRegion
CreateRecthn(x1, Y1, X2, Y2):hRgn
short x1;
short Y1;
short x2;
short Y2;

return hRgn

CreateRecthnIndirect
Creates a rectangular region with the dimensions given by lpRect.

entry CreateRecthnIndirect()
#undef NoRect

HUAWEI EX. 1015 - 226/393

HUAWEI EX. 1015 - 227/393

220 The Programmer’s Technical Reference

#undef NoRegion
CreatRecthnIndirect(lpRect):hRgn
1pRect lpRect;

return hRgn

CreateSolidBrush
Creates a logical brush having the specified solid colour.

entry CreateSolidBrush()
#undef NoBrush
CreateSolidBrush(rgbColor):hBrush
dword rgbColor;

return hBrush

CreateWindow
Creates tiled, pop-up, and child windows.

entry Createwindow()
CreateWindow(1pC1assName, 1pWindowName, detyle, X,Y,nwidth, nHeight,

hWndParent, hMenu, hInstance, lpParam):hWnd
lpStr lpClasSName;
lpstr lpWindowName;
dword dwstyle;
int X;
int Y;
int nwidth;
int nHeight;
hWnd hWndParent;
hMenu hMenu;
handle hInstance;
lpstr lpParam;

return hWnd

DefWindowProc
Provides default processing for messages an application chooses not to
process.

entry DefwindowProc()
#undef NoWinMessages
DefwindowProc(hWnd, stg, wParam, 1Param):lReply
hWnd hWnd;

unsigned stg;
word wParam;
long lParam;

return long

DeleteAtom
Deletes an atom nAtom if its reference count is zero.

entry DeleteAtom()
#undef NoAtom
DeleteAtom(nAtom):nOldAtom
atom nAtom;

return atom

DeleteDC
Deletes the specified display context.

entry DeleteDC()
#undef NohDC
DeleteDC(hDC):bDeleted
hDC hDC;

return Boolean

DeleteMetaFile
Deletes access to a metafile by freeing the associated system resources

entry DeleteMetaFile()
DeleteMetaFile(hMF):bFreed
handle hMF;

return Boolean

Deleteobject V
Deletes the logical pen, brush, font, bitmap, or region by freeing all
associated system storage.

entry Deleteobject()
Deleteobject(h0bject):bDeleted

HUAWEI EX. 1015 - 227/393

HUAWEI EX. 1015 - 228/393

‘Microsoft Wmdows A.P.I.

handle hobject;
return Boolean

DestroyCaret
Destroys the current caret and frees any memory it occupied.

entry 'DestroyCaret()
DestroyCaret()
hWnd hWnd;

return int

CombineRgn

Combines, using nCombineMode, two existing regions into a new region.
entry CombineRgn()

#undef NoRegion

CombineRgn(hDesthn, hSrcRgnl, hSrcRgnZ, nCombineMode):RgnTypehRgn hDesthn;
hRgn hSrcRgnl;
hRgn hSrcRgnZ;
short nCombineMode;

return short

CopyMetaFile
Copies source metafile to lpFilename and returns the new metafile.

entry CopyMetaFile()
CopyMetaFile(hSrcMetaFile, lpFilename):hMF
handle hSrcMetaFile;
lpStr lpFilename;

return handle

CopyRect
Makes a copy of an existing rectangle.

entry CopyRect()
#undef NoRect
CopyRect(lpDestRect, lpSourceRect)
lpRect lpDestRect;
lpRect lpSourceRect;

return int

CountClipboardFormats

entry

return

Retrieves a count of the number of formats the clipboard can render.
CountClipboardFormats()
#undef NoClipboard
CountClipboardFormats():nCount
void

DestroyMenu

entry

return

Destroys the menu specified by hMenu and frees any memory it occupied.
DestroyMenu()
#undef NoMenus
DetroyMenu(hMenu):bDestroyed
hMenu hMenu;
Boolean

Destroywindow

entry

return

Sends a WM_DESTROY message to hWnd and frees any memory it occupied.
Destroywindow()
DestroyWindow(hWnd):bDestroyed
hWnd hWnd;
Boolean

DeviceModes

entry

return

Displays a dialogue box that prompts user to set printer modes.
DeviceModes()
DeviceModes(hWnd, hItem, lpString, lpString):lpString
hWnd hWnd;
handle hItem;
lpstr lpstring;
1pStr lpString;
lpStr .

HUAWEI EX

221

.1015 - 228/393

HUAWEI EX. 1015 - 229/393

222 The Programmer’s Technical Reference

DialogBox
creates a modal dialogue box.

entry DialogBox()
#undef NoCthgr
DialogBox(hInstance, lpTemplateName, hWndParent,
lpDialogFuncc):nResult
handle hInstance;

lpstr lpTemplateName;
hWnd hWndParent;
FarProc lpDialogFuncc;

return int

DispatchMessage
Passes message to window function of window specified in MSG structure.

entry DispatchMessage()
#undef NoMsg
DispatchMessage(lpMsg):lResult
1pMsg lpMsg;

return long

DlgDirList
Fills nIDListBox with names of files matching path specification.

entry DlgDirList() 1
#undef NoCthgr i
#undef NoCthgr 1
DlgDirList(thg, lpPathSpec, nIDListBox, nIDStaticPath, ‘

‘ wFiletype):nListed
hWnd thg;
lpStr lpPathSpec;
int nIDListBox; ‘
int nIDStaticPath; j

unsigned wFiletype;
return int

DlgDirSelect

Copies current selection from nIDListBox to lpstring.
entry DlgDirSelect()

#undef NoCthgr
#undef NoCthgr
DlgDirSelect(thg, lpString, nIDListBox):bDirectory
hWnd thg;
lpStr lpstring;
int nIDListBox;

return Boolean

DPtoLP

‘ Converts into logical points the nCount device points given by lpPoints
entry DPtoLP()

#undef NoPoint
#undef NohDC
DPtoLP(hDC, lpPoints, nCount):bConverted
hDC hDC;
lpPoint lpPoints;
short nCount;

return Boolean

DrawIcon
Draws an icon with its upper left corner at X, Y.

entry DrawIcon()
#undef NohDC
#undef NoDrawText
DrawIcon(hDC, X, Y, hIcon):bDrawn
hDC hDC;
int X;
int Y;
hIcon hIcon;

return Boolean

DrawMenuBar
Redraws the menu bar.

entry DrawMenuBar()

HUAWEI EX. 1015 - 229/393

HUAWEI EX. 1015 - 230/393

Microsoft Windows‘A.P.I. I ~ 223
#undef NoMenus
DrawMenuBar(hWnd)
hWnd hWnd;

return void

DrawText

Draws nCount characters of lpString in format specified by wFormat, using
current text and background colours. Clips output to rectangle given bylpRect.

entry DrawText()
#undef NoRect
#undef NohDC
#undef NoDrawText ‘

DrawText(hDC, lpstring, nCount, lpRect, wFormat)
hDC hDC;
lpStr lpstring;
int nCount;
1pRect 1pRect;
word wFormat;

return void

Ellipse

Draws ellipse with centre at the centre of the given bounding rectangle.
Draws border with current pen. Fills interior with current brush.

entry Ellipse()
#undef NohDC

; Ellipse(hDC, X1, Y1, x2, Y2):bDrawn
Iv hDC hDC;

§, short X1;
1? short Y1;
1 short X2;
3‘ short Y2;

return Boolean

EmptyClipboard

Empties clipboard, frees data handles, and assigns clipboard ownership to
the window that currently has the clipboard open.

, entry EmptyClipboard()
' #undef NoClipBoard

Emptyclipboard():bEmptiedE return Boolean

EnableMenuItem

Enables, disables, or greys a menu item, depending on wEnable.
entry EnableMenuItem()

#undef NoMenus

EnableMenuItem(hMenu, wIDEnableItem, wEnable):bEnabled
hMenu hMenu;
word wIDEnableItem;
word wEnable;

return Boolean

Enablewindow

Enables and disables mouse and keyboard input to the specified window.
entry Enablewindow()

EnableWindow(hWnd, bEnable):bDone
hWnd hWnd;
Boolean bEnable;

return Boolean

1 EndDialog
Frees resources and destroys windows associated with a modal dialogue box.

entry EndDialog()
#undef NoCthgr
EndDialog(thg, nResult)
hWnd thg;
int nResult;return void

EndPaint . .
Marks the end of window repainting; required after each BeginPaint call.

HUAWEI EX. 1015 - 230/393

HUAWEI EX. 1015 - 231/393

lpPaintStruct lpPaint;return

EnumChildWindows

entry

return

EnumclipboardFormats

The Programmer’s Technical Reference

EndPaint()
#undef NoRect
#undef NohDC
EndPaint(hWnd, lpPaint)
hWnd hWnd;

void

Enumerates the child style windows belonging to hWndParent by passing
each child window handle and lParam to the lpEnumFunc function.
EnumChildWindows()
Enumchildwindows(hWndParent, lpEnumFunc, lParam):bDone
hWnd hWndParent;
FarProc lpEnumFunc;
long lParam;
Boolean

Enumerates formats from list of available formats belonging to the
clipboard.

entry EnumClipboardFormats() {

#undef NoClipBoard '
EnumClipboardFormats(wFormats):wNextFormat
word wFormats;

return word 3

EnumFonts ;
Enumerates fonts available on a given device, passing font information g
through lpData to lpFontFunc function. 3

entry EnumFonts() *#undef NohDC
EnumFonts(hDC, lpFacenname, lpFontfunc, lpData):nResult
hDC hDC;
lpstr lpFacenname;
FarProc lpFontfunc; ’
lpStr lpData;

return short

Enumobjects
Enumerates pens or brushes (depending on nObjectType) available on a
device, passing object information through lpData to lpObjectFuncfunction.

entry Enumobjects()
#undef NohDC

EnumObjects(hDC, nObjectType, lpObjectFunc, lpData):nResulthDC hDC;
short nobjectType;
FarProc lpObjectFunc;
lpstr lpData;

return short

EnumProps
Passes each property of hWnd, in turn, to the lpEnumFunc function

entry EnumProps()
EnumProps(hWnd, lpEnumFunc):nResu1t
hWnd hWnd;
FarProc lpEnumFunc;

return int

EnumWindows
Enumerates windows on the screen by passing handle of each tiled, iconic,
pop—up, and hidden pop-up window (in that order) to the lpEnumFuncfunction.

entry EnumWindows()
EnumWindows(lpEnumFunc, lParam):bDone
FarProc lpEnumFunc;
long lParam;

return Boolean

HUAWEI EX. 1015 - 231/393

HUAWEI EX. 1015 - 232/393

Equalen

‘ Microsoft Windows A.P.I.

Checks the two given regions to determine if they are identical.
entry Equalen()

#undef NoRegion
Equalen(hSrc1, hSrcRgnZ):quual

- hRgn hSrcl;
hRgn hSrcRgnZ;

return Boolean

Escape .
Accesses device facilities not directly available through GDI.

entry Escape()
#undef NohDC
Escape(hDC, nEscape, nCount, lpInData, lpOutData):nResult
hDC hDC;
short nEscape;
short nCount;
lpStr lpInData;
lpStr lpOutData;

return short

Escape — AbortDoc

entry

return

Aborts the current job. lpInData, lpOutData, and nCount are not used.
Escape()
#undef NohDC

Escape(hDC, AbortDoc, nCount, lpInData, OutData):nResulthDC hDC;
short AbortDoc;
short nCount;
lpStr lpInData;
lpStr OutData;
short

Escape - DraftMode
Turns draft mode off or on. lpInData points to 1 (on) or 0 (off).
nCount is number of bytes at lpInData. lpoutData is not used.

entry Escape()
#undef NohDC
Escape(hDC, DraftMode, nCount, lpInData, lpOutData);nResult
th th;
short DraftMode;
short nCount;
lpStr lpInData;
lpStr 1p0utData;

return short

Escape — EndDoc
Ends print job started by StartDoc. nCount, lpInData, 1p0utData are not
used. '

entry Escape()
#undef Noth
Escape(hDC, EndDoc, nCount, lpInData, lpOutData):nResult
hDC hDC;
short ENDDOC;
short nCount;
lpStr lpInData;
lpStr lpOutData;

return short

Escape — FlushOutput
Flushes output in device buffer; lpInData, 1p0utData, and nCount are notused.

entry Escape()
#undef NohDC
Escape(hDC, FlushOutput, nCount, lpInData, lpOutData):nResult
hDC hDC;
short FlushOutput;
short nCount;
lpStr lpInData;
lpStr lpOutData;

return short

HUAWEI EX

225

.1015 - 232/393

HUAWEI EX. 1015 - 233/393

226 The Programmer’s Technical Reference

Escape ~ GetColourTable
Copies RGB colour table entry to 1p0utData. lpInData is colour table
index. nCount is not used.

entry Escape()
#undef NohDC

Escape(hDC, GetcolourTable, nCount, 1pInData, lpoutData):nResultHDC hDC;
short GetColourTable;
short nCount;
lpStr lpInData;
lpStr 1pOutData; 'return short

Escape — GetPhysPageSize
Copies physical page size to POINT structure at lpOutData. lpInData andnCount are not used.

entry Escape()
#undef Noth

Escape(hDC, GetPhysPageSize, nCount, lpInData, lpOutData);nResult

hm hm ; 1
short GetPhysPageSize; 9
short nCount;
lpStr lplnData;
lpStr 1pOutData;

return short

Escape - GetPrintingOffset
Copies printing offset to POINT structure at lpOutData. lpInData andnCount are not used.

entry Escape()
#undef NohDC
Escape(hDC, GetPrintingOffset, nCount, 1pInData,
lpOutData):nResu1tHDC
short
short
lpStr
lpStr

return short

hDC;
GetPrintingOffset;
nCount;
lpInData;
lpoutData;

Escape - GetScalingFactor
Copies scaling factors to POINT structure at lpoutData. lpInData andnCount are not used.

entry Escape()
#undef NohDC

Escape(hDC, GetScalingFactor, nCount, lpInData, lpOutData):nResultth
short
short
lpStr .
lpStr

return short

hDC;
GetScalingFactor;
nCount;
lpInData;
1p0utData;

Escape — NewFrame
Ends writing to a page. nCount, 1pInData and lpOutData are not used.

entry Escape()
#undef NohDC

Escape(hDC, NewFrame, nCount, lpInData, lpOutData):nResu1t
hDC hDC;
short NewFrame;
short nCount;
lpStr lpInData;
lpStr lpOutData;

return short

Escape - NextBand
Ends writing to a band. lpOutData gives rectangle to hold device
coordinates of next band. nCount and lpInData are not used.

entry Escape()
#undef NohDC
Escape(hDC, NextBand, nCount, lpInData, lpOutData):nResult

HUAWEI EX. 1015 - 233/393

HUAWEI EX. 1015 - 234/393

hDC
short
short
lpstr
lpStr

return' short

‘ Microsoft Windows A.P.I. . 1 227
hDC;
NextBand;
nCount;
lpInData;
1p0utData;

Escape - QueryEcSupport
Tests whether an escape is supported by device driver. lpInData points to
the escape. nCount is the number of bytes at lpInData. lpOutData is not
used.

entry Escape()
' #undef NohDC

Escape(hDC, QueryEcSupport, nCount, lpInData, 1p0utData):nResult
th th;
short QueryEcSupport;
short nCount;
lpstr lpInData;
lpstr lpOutData;

return short

Escape — SetAbortProc
Sets abort function for print job. lpInData, 1pOutData, and nCount are
not used.

entry Escape()
#undef NohDC
Escape(hDC, SetAbortProc, nCount, lpInData, lpOutData):nResu1t
th th;
short SetAbortProc;
short nCount;
lpstr lpInData;
lpStr 1p0utData;

return short

Escape — SetColourTable
Sets RGB colour table entry. lpInData points to table index and colour.

\ lpOutData points to RGB colour value to be set by device driver. nCount
is not used. ,

entry Escape()
#undef NohDC
Escape(hDC, SetColourTable, nCount, lpInData, lpOutData):nResult
hDC hDC;
short SetColourTable;
short nCount;
lpstr lpInData;
lpstr lpOutData;

return short

Escape - StartDoc
Starts print job, spooling NewFrame calls under same job until it
reaches ENDDOC. lpInData is name of document; nCount is its
length. lpOutData not used.

entry Escape()
#undef NohDC
Escape(hDC, StartDoc, nCount, lpInData, 0utData):nResult
hDC hDC;
short StartDoc;
short nCount;
lpStr lpInData;
lpstr OutData;

return short

EscapeCommFunction
Executes escape function nFunc for communication device nCid.

entry EscapeCommFunction()
#undef NoComm
EscapeCommFunction(nCid, nFunc):nResu1t
short nCid;
int nFunc;

return short

HUAWEI EX. 1015 - 234/393

HUAWEI EX. 1015 - 235/393

228 The Programmer’s Technical Reference

ExcludeClipRect ~
Creates new clipping region from existing clipping region less the given
rectangle.

entry ExcludeClipRect()
#undef NohDC
ExcludeClipRect(hDC, X1, Y1, X2, Y2):nRgnType
hDC hDC;
short X1;
short YI;
short x2;
short Y2;

return short

FatalExit
Halts windows and prompts through auxiliary port (AUX) for instructions
on how to proceed.

entry FatalExit()
FatalExit(Code):Result
int Code;

return void

FillRect

Fills given rectangle using the specified brush.
entry FillRect()

#undef NoBrush
#undef NohDC
#undef NoRect
FillRect(hDC, lpRect, hBrush):nResult
hDC hDC;
LPRECT lpRect;
HBRUSH hBrush;

return int

Fillen
Fills given region with brush specified by hBrush.

entry Fillen()
#undef NoBrush
#undef NohDC
#undef NoRegion
Fillen(hDC, hRgn, hBrush):bFilled
hDC hDC;
hRgn hRgn;
hBrush hBrush;

return Boolean

FindAtom

Retrieves atom (if any) associated with character string lpString.
entry FindAtom()

#undef NoAtom #
FindAtom(lpString):wAtom
lpStr lpString; 3

return atom i

FindResource

Locates resource lpname having lpType and returns handle for accessing
and loading the resource. ‘

entry FindResource()
FindResource(hInstance, lpname, lpType):hResInfo
handle hInstance;
lpStr lpname;
lpStr lpType;

return handle

FindWindow >
Returns the handle of the window having the given class and caption.

entry Findwindow()
FindWindow(lpClassName, lpWindowname):hWnd
lpStr 1pC1assName;
lpStr lpwindowname;

return hWnd

HUAWEI EX. 1015 - 235/393

HUAWEI EX. 1015 - 236/393

Microsoft Windows A.P.I. I 229
FlashWindow .

Flashes the given window once by inverting its active/inactive state.
entry Flashwindow() .

FlashWindow(hWnd, bInvert):bInverted
hWnd hWnd;
'Boolean bInvert;

return Boolean

FloodFill ‘
Fills area of the display surface with current brush, starting at X, Y,
and continuing in all directions to the boundaries with the given
rgbColour.

entry ' FloodFi11()
#undef NohDC
FloodFill(hDC, x, Y, rgbColour):bFi11ed
hDC hDC;
short x;
short Y;
dword rgbColour;

return Boolean

FlushComm
Flushes characters from nQueue of communication device nCid.

entry F1ushComm()
#undef NoComm
FlushComm(nCid, nQueue):nResult
short nCid;
int nQueue;

return short \

FrameRect
Draws border for the given rectangle using the specified brush.

entry FrameRect()
#undef NoBrush
#undef NohDC
#undef NoRect
FrameRect(hDC, lpRect, hBrush):nResu1t
hDC hDC;

: lpRect lpRect;
,5 hBrush hBrush;

:[return int
'. FrameRgn

5 Draws border for given region using hBrush. nWidth is width of vertical
f: brush strokes. nHeight is height of horizontal strokes.
‘. entry FrameRgn()

I #undef NoBrushI #undef NohDC
i§ #undef NoRegion

§§ FrameRgn(hDC, hRgn, hBrush, nWidth, nHeight):bFramed
1‘ . hDC hDC;
; hRgn hRgn;
; hBrush hBrush;

short nWidth;
short nHeight;

return Boolean

FreeLibrary
Removes library module hLibModule from memory if reference count is zero.

entry FreeLibrary()
FreeLibrary(hLibModule)
handle hLibModule;

return handle

FreeProcInstance
Removes the function instance entry at address lpProc.

g entry FreeProcInstance()
i FreeProcInstance(lpProc)
} FarProc lpProc;
E return void

HUAWEI EX. 1015 - 236/393

HUAWEI EX. 1015 - 237/393

230 The Programmer’s Technical Reference

FreeResource

Removes resource hResInfo from memory if reference count is zero.
entry FreeResource()

FreeResource(hResData):bFreed
handle hResData;

return Boolean _Returns handle to the active window.

GetActiveWindow
entry GetActivewindow()

GetActiveWindow():hWnd
return hWnd

GetAtomHandle
Returns the handle (relative to the local heap) of the atom string.

entry GetAtomHandle()
#undef NoAtom
GetAtomHand1e(wAtom):hMem
atom wAtom;

return handle

GetAtomName

Copies character string (up to nsize characters) associated with wAtom to
lpBuffer.

entry GetAtomName()
#undef NoAtom
GetAtomName(wAtom, 1pBuffer, nSize):nLength ‘
atom wAtom;
lpStr lpBuffer;
int nsize;

return word

GetBitmapBits
Copies lCount bits of specified bitmap into buffer pointed to by lpBits.’

entry GetBitmapBits()
#undef NoBitmap
GetBitmapBits(hBitmap, lCount, lpBits):lcopied
hBitmap hBitmap;
long lCount;
1pstr lpBits;

return long

GetBitmapDimension
Returns the width and height of the bitmap specified by hBitmap.

entry GetBitmapDimension()
#undef NoBitmap
GetBitmapDimension(hBitmap):ptDimensions
hBitmap hBitmap;

return dword

GetBkColour
Returns the current background colour of the specified device.

entry GetBkColour()
#undef NohDC
GetBkColour(hDC):rgbColour
hDC hDC ;

return dword

GetBkMode
Returns the background mode of the specified device.

entry GetBkMode()
#undef NohDC
GetBkMode(hDC):BkMode
hDC hDC; F

return short

GetBrushOrg
Retrieves the current brush origin for the given display context.

entry GetBrushOrg()
#undef NoBrush
GetBrushOrg(hDC):dwOrigin
hDC th ;

HUAWEI EX. 1015 - 237/393

HUAWEI EX. 1015 - 238/393

Microsoft Windows A.P.I. ‘ . 23]
return dword

GetBValue
Retrieves the blue value of the given colour.

entry GetBValue()
‘ GetBValue(rgbColour):cBlue

GetCaretBlinkTime
Returns the current caret flash rate.

entry GetCaretBlinkTime()
GetCaretBlinkTime():wMSeconds

return word

GetClassLong
Retrieves information at nIndex in the WNDCLASS structure.

entry GetClassLong()
#undef Nowinoffsets
GetClassLong(hWnd, nIndex):long
hWnd hWnd;
int nIndex;

return LONG

GetClassName

Copies hWnd’s class name (up to nMaxCount characters) into lpClassName.
entry GetClassName()

GetClassName(hWnd, nClassName, nMaxCount):nCopied
hWnd hWnd;
lpStr nClassName;
int nMaxCount;

return int

GetClassWord
Retrieves information at nIndex in the WNDCLASS structure.

entry GetClassWord()
#undef Nowinoffsets
GetClassWord(hWnd, nIndex):word
hWnd hWnd;
int nIndex;

return word

GetClientRect

Copies client coordinates of the window client area to lpRect.
entry GetClientRect()

#undef NoRect

GetClientRect(hWnd, lpRect)
hWnd hWnd;
lpRect lpRect;

return void

GetClipboardData
Retrieves data from the clipboard in the format given by wFormat.

entry GetClipboardData()
#undef NoClipboard
GetClipboardData(wFormat):hClipData
word wFormat;

return handle

GetClipboardFormatName
Copies wFormat’s format name (up to nMaxCount characters) into
lpFormatName. ‘ '

entry GetClipboardFormatName()
#undef NoClipboard
GetClipboardFormatName(wFormat, lpFormatName, nMaxCount):nCopied
word wFormat;
lpStr lpFormatName;
int nMaxCount;

return int

GetClipboardOwner
Retrieves the window handle of the current owner of the clipboard.

entry GetClipboardOwner()

HUAWEI EX. 1015 - 238/393

HUAWEI EX. 1015 - 239/393

232 The Programmer’s Technical Reference

#undef Noclipboard
GetClipboardOwner():hWnd

return hWnd

Getclipboardviewer
Retrieves the window handle of the first window in the clipboard viewer
chain.

entry Getclipboardviewer()
#undef NoClipboard
Getclipboardviewer():hWnd

return hWnd

GetClipBox
Copies dimensions of bounding rectangle of current clip boundary to
lpRect.

entry GetClipBox()
#undef NoRect
#undef NohDC
GetClipBox(hDC, 1pRect):nRgnType
hDC th;
lpRect lpRect;

return short

GetCodeHandle
Retrieves the handle of the Code segment containing the given function.

entry GetCodeHand1e()
GetCodeHandle(1pFunc):hInstance
FarProc lpFunc;

return handle

GetCommError

Fills buffer lpStat with communication status of device nCid. Returns
error code, if any.

entry GetCommError()
#undef NoComm
GetCommError(nCid, lpStat):nError
short nCid;

Comstat FAR * lpstat;
return short

GetCommEventMask
Fills buffer lpStat with communication status of device nCid. Returns
error code, if any.

entry GetCommEventMask()
#undef NoComm
GetCommEventMask(nCid, lpStat):nError
short nCid;
int lpstat;

return word

GetCommState

Fills buffer lpDCB with the device control block of communication
device nCid.

entry GetCommState()
#undef NOCOmm
GetCommState(nCid, lpDCB):nResu1t
short nCid;

DCB FAR * lpDCB;
return short

GetCurrentPosition

Retrieves the logical coordinates of the current position.
entry GetCurrentPosition()

#undef NohDC
GetCurrent Position(hDC):ptPos
hDC hDC;

return dword

GetCurrentTask
Returns task handle of the current task.

entry GetCurrentTask()

HUAWEI EX. 1015 - 239/393

HUAWEI EX. 1015 - 240/393

Microsoft Ideows A.P.I. ' 233

GetCurrentTask():hTask
return handle

GetCurrentTime
. Returns the time elapsed since the system was booted to the current time.

entry GetCurrentTime()
GetCurrentTime():lTime

return long

i GetCursorPos
' stores mouse cursor position, in screen coordinates, in POINT structure.

entry GetCursorPos()
#undef NoPoint
GetCursorPos(1pPoint)
lpPoinT lpPoint;

return void

GetDC

Retrieves the display context for the client area of the specified window.
entry GetDC()

#undef NohDC
GetDC(hWnd):hDC
hWnd hWnd;

return hDC

GetDeviceCaps
Retrieves the device-specific information specified by nIndex.

entry GetDeviceCaps()
#undef NohDC
GetDeviceCaps(hDC, nIndex):nVa1ue
hnc th ;
short nIndex;

return short

GetDlgItem , ,
Retrieves the handle of a dialogue item (control) from the given dialoguebox.

entry GetDlgItem()
#undef Nocthgr
GetDlgItem(thg, nIDDlgItem):thl
hWnd thg;
int nIDDlgItem;

return hWnd

GetDlgItemInt
Translates text of nIDDlgItem into integer value. Value at lpTranslated
is zero if errors occur. bSigned is nonzero if minus sign might be
present. a

entry GetDlgItemInt()
#undef NoCthgr
GetDlgItemInt(thg, nIDDlgItem, lpTranslated, bsigned):wValue
hWnd thg;
int nIDDlgItem;
Boolean FAR * lpTranslated;
Boolean bSigned;

return unsigned
GetDlgItemText

Copies nIDDlgItem's control text (up to nMaxCount characters) into
lpstring.

entry GetDlgItemText()
#undef Nocthgr
GetDlgItemText(thg, nIDDlgItem, lpString, nMaxCount):nCopied
hWnd thg;

int nIDDlgItem;
lpStr lpstring;
int nMaxCount;

return int

GetDoubleClickTime
Retrieves the current double—click time of the system mouse.

entry GetDoubleClickTime()

HUAWEI EX. 1015 - 240/393

HUAWEI EX. 1015 - 241/393

234 The Programmer’s Technical Reference

GetDoubleClickTime():wClickTime
return word

GetEnvironment

Copies to lpEnviron the environment associated with the device attached
to a given port.

entry GetEnvironment()
GetEnvironment(lpPortName, lpEnviron, nmaxCount):nCopied
lpStr lpPortName;
lpStr lpEnviron;
word nmaxCount;

return short

GetFocus

Retrieves the handle of the window currently owning the input focus.
entry GetFocus()

GetFocus():hWnd
return hWnd

GetGValue
Retrieves the green value of the given colour.

entry GetGValue()
GetGValue(rgbColour):cGreen

GetInstanceData

Copies nCount bytes of data from offset pData in instance hInstance to
same offset in current instance.

entry GetInstanceData()
GetInstanceData(hInstance, pData, nCount):nBytes
handle hInstance;
npstr pData;
int nCount;

return int

GetKeyState
Retrieves the state of the virtual key specified by nVirtKey.

entry GetKeyState()
GetKeyState(nVirtKey):nstate
int nVirtKey;

return int .

GetMapMode

Retrieves the current mapping mode.
entry GetMapMode()

#undef NohDC
GetMapMode(hDC):nMapMode
hDC hDC;

return short

GetMenu .
Retrieves a handle to the menu of the specified window.

entry GetMenu()
#undef NoMenus
GetMenu(hWnd):hMenu
hWnd hWnd;

return HMENU

GetMenuString
Copies wIDItem's menu label (up to nMaxCount characters) into lpString.
wFlag is MF_BYPOSITION or HP BYCOMMAND.

entry GetMenuString() —#undef NoMenus

GetMenuString(hMenu, wIDItem, lpString, nMaxCount, wFlag):nCopiedhMenu hMenu;
word wIDItem;

lpStr lpString;
int nMaxCount;
word wFlag;

return int

HUAWEI EX. 1015 - 241/393

HUAWEI EX. 1015 - 242/393

Microsoft Windows A.P.I. i ' 235
GetMessage

entry

return

Retrieves message in range stgFilterHin to stgFilterMax; stores at
IpMsg.
GetHessage()
#undef NoMsg
GetHessage(lpMsg, hWnd, stgFilterHin, stgFilterMax):bContinue
lpusg 1pMsg;
hWnd hWnd;

unsigned stgFilterMin;
unsigned stgFilterMax;
Boolean

GetMessagePos

entry

return

Returns mouse position, in screen coordinates, at the time of the last
message retrieved by GetMessage.
GetHessagePos()
GetMessagePos():deos
dword

GetMessageTime

entry

return

Returns the message time for the last message retrieved by GetMessage.
GetMessageTime()
GetMessageTime():lTime
long

GetMetaFile

entry

return

Creates a handle for the metafile named by 1pFilename.
GetMetaFile()
GetMetaFile(lpFilename):hMF
lpstr * lpFilename;
handle

GetMetaFileBits

entry

return

Stores specified metafile as collection of bits in global memory block.
GetMetaFileBits()
GetMetaFileBits(hMF):hMem
handle hMF;
handle

GetModuleFileName

entry

return

Copies module filename (up to nSize characters) to lpFilename
GetModuleFileName()
GetModuleFileName(hModule, lpfilename, nSize):nLength
handle hModule;
1pstr lpfilename;
int nSize;
int

GetModuleHandle

entry

return

Returns module handle of module named by lpModuleName.
GetModuleHandle()
GetModuleHandle(lpModuleName):hModule
lpstr lpModuleName;
handle

GetModuleUsage

entry

return

Returns reference count of module hModule.
GetModuleUsage()
GetModuleUsage(hMModule):nCount
handle hMModule;
int

GetNearestColour

entry

return

Returns the device colour closest to rgbColour.
GetNearestColour()
#undef NohDC

GetNearestColour(hObject, nCount, lpObject):nCopied
hDC hObject;
dword nCount;
dword

HUAWEI EX. 1015 - 242/393

HUAWEI EX. 1015 - 243/393

236 The Programmer’s Technical Reference

GetObject
Copies nCount bytes of logical data defining hobject to lpObject.

entry Getobject()
Getobject(hobject, NCount, lpObject):nCopied
handle hObject;
short NCount;
lpStr lpobject;

return short

GetParent
Retrieves the window handle of the specified window’s parent (if any).

entry GetParent()
GetParent(hWnd):hWndParent
hWnd hWnd;

return hWnd

GetPixel
Retrieves the RGB colour value of the pixel at the point specified by Xand Y.

entry GetPixe1()
#undef NohDC
GetPixel(hDC, X, Y,):rgbcolour
hm hm ;
short X;
short Y;

return dword

GetPolyFillMode
Retrieves the current polygon—filling mode.

entry GetPolyFillMode()
#undef NohDC
GetPolyFillMode(hDC):nPolyFillMode
hm hm ;

return short

GetProcAddress
Returns address of the function named by lpProcName in module hModule.

entry GetProcAddress()
GetProcAddress(hModule, lpProcName):1pAddress
handle hModule;
lpStr lpProcName;

return FarProc

GetProfileInt

Returns integer value named by lpKeyName in section lpSectionName from
the WIN.INI file. If name or section not found, nDefault is returned.

entry GetProfileInt()
GetProfileInt(lpSectionName, lpKeyName, nDefault):nnKeyValue
lpStr lpSectionName;
lpStr lpKeyName; E
_int nDefault;

return int

GetProfileString

Returns character string named by lpKeyName in section lpSectionName from
the WIN.INI file. String is copied (up to nSize characters) to
lpReturnedString. If name or section are not found, lpDefault is returned.

entry GetProfileString()
GetProfileString(lpSectionName, lpKeyName, lpDefault,
lpReturnedString, nSize):nLength
lpStr lpSectionName;
lpStr lpKeyName;
lpStr lpDefault;
lpStr lpReturnedString;
int nSize;

return int

GetProp
Retrieves data handle associated with lpString from window property list.

entry GetProp()
GetProp(hWnd, lpString):hData

HUAWEI EX. 1015 - 243/393

HUAWEI EX. 1015 - 244/393

Microsoft Windows A.P.I. I 237
hWnd hWnd;
lpStr lpString;

return handle

GetRelAbs
Retrieves the relabs flag.

entry GetRelAbs()
#undef NohDC
GetRelAbs(hDC):nRelAbsMode
hm hm ;

return short

GetROP2
g Retrieves the current drawing mode.

entry GetROP2()
#undef NohDC
GetROP2(hDC):nDrawMode
hDC hDC;

return short

GetRValue

Retrieves the red value of the given colour.
entry GetRValue()

' GetRValue(rgbColour):cRed
GetScrollPos

Retrieves current position of scroll bar elevator identified by hWnd andnBar.

entry GetScrollPos()
#undef NoScroll
GetScrollPos(hWnd, nBar):nPos
hWnd hWnd;
int nBar;

return int

GetScrollRange
Copies minimum and maximum scroll bar positions for given scroll bar to
lpMinPos and lpMaxPos.

entry GetScrollRange()
#undef NoScroll

GetScrollRange(hWnd, nBar, lpMinPos, lpMaxPos)
hWnd hWnd;
int nBar;
lpInt lpMinPos;
lplnt lpMaxPos;

return void

Getstockobject
Retrieves a handle to a predefined stock pen, brush, or font.

entry Getstockobject() '
GetStockObject(nIndex):hobject
short nIndex;

return handle
GetstretchBltMode

Retrieves the current stretching mode.
entry GetStretchBltMode()

#undef NohDC
GetStretchBltMode(hDC):nStretchMode
hDC hDC;

return short

GetSubMenu

Retrieves the menu handle of the pop—up menu at the given position inhmenu.

entry GetSubMenu()
#undef NoMenus
GetSubMenu(hMenu, nPos):hPopupmenu
hMenu hMenu;
int nPos;

return hMenu

HUAWEI EX. 1015 - 244/393

HUAWEI EX. 1015 - 245/393

238 The Programmer’s Technical Reference

GetSysColour
Retrieves the system colour identified by nIndex.

entry GetSysColour()
#undef NoColour
GetSysColour(nIndex):rgbColour
int nIndex;

return dword

GetSysModalWindow
Returns the handle of a system—modal window, if one is present.

entry GetSysModalWindow()
GetSysModalWindow():hWnd

return hWnd

GetSystemMenu
Allows access to the System menu for copying and modification. bRevert is
nonzero to restore the original System menu.

entry GetSystemMenu()
#undef NoMenus

GetSystemMenu(hWnd, bRevert):hSysMenuhWnd hWnd;
Boolean bRevert;

return hMenu

GetSystemMetrics
Retrieves information about the system metrics identified by nIndex.

entry GetSystemMetrics()
#undef NoSysMetrics
GetSystemMetrics(nIndex):nValue
int nIndex;

- return int

GetTempDrive
Returns letter for the optimal drive for a temporary file. cDriveLOetter
is a proposed drive.

entry GetTempDrive()
#undef NoOpenFile
GetTempDrive(cDriveLetter):cOptDriveLetter
byte cDriveLetter;

return byte

GetTempFileName
Creates a temporary filename.

entry GetTempFileName()
#undef NoOpenFile
GetTempFileName(cDriveLetter, lpPrefixstring, wUnique,

lpTempFileName):wUniqueNumber
byte cDriveLetter;
lpstr lpPrefixString;
word wUnique;
lpStr lpTempFileName;

return int

GetTextCharacterExtra
Retrieves the current intercharacter spacing.

entry GetTextCharacterExtra()
#undef NohDC
GetTextCharacterExtra(hDC):nCharExtra
hDC hDC;

return short ‘

GetTextColour
Retrieves the current text colour.

entry GetTextColour()
#undef NohDC
GetTextColour(hDC):rgbColour
hDC' th;

return dword

GetTextExtent
Uses current font to compute width and height of text line given by

HUAWEI EX. 1015 - 245/393

HUAWEI EX. 1015 - 246/393

Microsoft Windows A.P.I. ' 239

lpString.
entry GetTextExtent()

#undef NohDC
GetTextExtent(hDC, lpstring, nCount):dwTextExtents
hDC hDC;
lpstr lpString;
short nCount;

return dword

GetTextFace ‘
Copies the current font's facename (up to nCount characters) into
lpFacename.

entry- GetTextFace()
#undef NohDC

GetTextFace(hDC, nCount, lpFacename):nCopied
hDC hnc ;
short nCount;
lpstr lpFacename;

return short

GetTextMetrics
Fills buffer given by lpMetrics with metrics for currently selected font.

entry GetTextMetrics()
#undef NoTextMetric
#undef NohDC
GetTextMetrics(hDC, lpMetrics):bRetrieved
hDC hDC;

lpTextMetric lpMetrics;
return Boolean

GetThresholdEvent
Returns long pointer to a threshold flag. The flag is set if any voice
queue is below threshold (i.e., below a given number of notes).

entry GetThresholdEvent()
#undef NoSound

. GetThresholdEvent():1pInt
return lpInt

GetThresholdstatus
Returns a bit mask containing the threshold event status. If a bit is
set, the given voice queue is below threshold.

entry GetThresholdStatus()
#undef NoSound
GetThresholdstatus()sztatus

return int

GetUpdateRect
Copies dimensions of bounding rectangle of window region that needs
updating to lpRect. bErase is nonzero if background needs erasing.
bUpdate is zero if window is up—to—date.

entry GetUpdateRect()
#undef NoRect
#undef NohDC
GetUpdateRect(hWnd, lpRect, bErase):bUpdate
hWnd hWnd;
lpRect lpRect;
Boolean bErase;

return ‘Boolean

GetVersion »
Returns the current version of Windows.

entry GetVersion()
GetVersion():wVersion

return word

GetViewportExt
Retrieves the x and y-extents of the display context's viewport.

entry GetViewportExt()
#undef NohDC
GetViewportExt(hDC):ptExtents
hDC hDC;

HUAWEI EX. 1015 - 246/393

HUAWEI EX. 1015 - 247/393

240 The Programmer’s Technical Reference

return dword

GetViewportOrg
Retrieves x and Y coordinates of the origin of the display context's
viewport.

entry GetViewportOrg()
#undef Noth
GetViewportOrg(hDC):ptOrigin
hDC hDC;

return dword

GetWindoch
Retrieves display context for entire window, including caption bar,

menus, scroll bars.
entry GetWindowDC()

#undef NohDC'
GetWindowDC(hWnd)=hDC
hWnd hWnd;

return hDC

GetWindowExt
Retrieves x and Y extents of the display context’s window.

entry GetWindowExt()
#undef NohDC
GetWindowExt(hDC):ptExtents
hDC hDC;

return dword

GetWindowLong
Retrieves information identified by nIndex about the given window.

entry GetWindowLong()
#undef Nowinoffsets
GetWindowLong<hWnd, nIndex):long
hWnd hWnd;
int nIndex;

return long

GetWindowOrg
Retrieves x and Y coordinates of the origin of the display context’swindow.

entry GetWindowOrg()
#undef NohDC .
GetWindowOrg(hDC):ptorigin
hDC hDC ; !

return dword 5

GetWindowRect

Copies dimensions, in screen coordinates, of entire window (including
caption bar, border, menus, and scroll bars..) to 1pRect.

entry GetwindowRect()
#undef NoRect
GetWindowRect(hWnd, lpRect)
hWnd hWnd;
lpRect lpkect;

return void

GetwindowText

Copies hWnd's window caption (up to nMaxCount characters) into lpstring.
entry GetWindowText()

GetWindowText(hWnd, lpString, nMaxCount):nCopied
hWnd hWnd;
lpstr lpstring;
int nMaxCount;

return int

GetWindowTextLength
Returns the length of the given window's caption or text.

entry GetWindowTextLength()
GetWindowTextLength(hWnd):nLength
hWnd hWnd;

return int

HUAWEI EX. 1015 - 247/393

HUAWEI EX. 1015 - 248/393

‘ Microsoft Windows AR]. > 24]
GetWindowWord

entry

return

Retrieves information identified by nIndex about the given window.
GetwindowWord()
#undef Nowinoffsets
GetWindowWord(hWnd, nIndex):word
hWnd hWnd;
int nIndex;
word

GlobalAlloc ~

entry

return

Allocates deytes of memory from the global heap. Memory type (e.g.,
fixed or moveable) is set by wFlags.
GlobalAlloc()
#undef NoMemMgr
GlobalAlloc(wF1ags, deytes):hMem
word wFlags;
dword deytes;
handle

GlobalCompact

entry

return

Compacts global memory to generate deinFree free bytes.
GlobalCompact()
#undef NoMemMgr
Globa1Compact(deinFree):deargest
dword deinFree;
dword

GlobalDiscard

entry
Discards global memory block hMem if reference count is zero.
GlobalDiscard()
GlobalDiscard(hMem):hOldMem

GlobalFlags

entry

return

Discards memory type of global memory block hMem.
GlobalFlags()
#undef NoMemMgr
GlobalFlags(hMem):wFlags
handle hMem:
word

GlobalFree

entry

return

Removes global memory block hMem from memory if reference count is zero.
GlobalFree()
#undef NoMemMgr
GlobalFree(hmem):h01dMem
handle hmem;
handle

GlobalHandle

entry

return

Retrieves the handle of the global memory if reference count is zero.
GlobalHandle()
#undef NoMemMgr
GlobalHandle(wMem):dwmem
word wMem;
dword

GlobalLock

entry

return

Returns address of global memory block hMem, locks block in memory, and
increases the reference count by one.
GlobalLock()
#undef NoMemMgr
GlobalLock(hMem):1pAddress
handle hMem;
lpStr

GlobalReAlloc

entry

Reallocates the global memory block hMem to deytes and memory type
wFlags.
GlobalReAlloc()
#undef NoMemMgr
GlobalReAlloc(hMem, deytes, wFlags):hNewMem

HUAWEI EX. 1015 - 248/393

HUAWEI EX. 1015 - 249/393

242 The Programmer’s Technical Reference

handle hMem;
dword deytes;
word wFlags;

return handle

Globalsize
Returns the size, in bytes, of global memory block hHem.

entry Globalsize()
#undef NoMemMgr
GlobalSize(hMemmj):deytes
handle hMemmj;

return dword

GlobalUnlock

Unlocks global memory block hHem and decreases the reference count by one.
entry GlobalUnlock()

#undef NoMemMgr
GlobaIUnlock(hMem):bResult
handle hMem;

return Boolean

I

GreyString
Writes nCount characters of string at X, Y, using lpOutputFunc (or
TextOut if NULL). Grays text using hBrush. lpData specifies output
string (if lpOutputFunc is NULL) or data are passed to output function.
nWidth and nHeight give dimensions of enclosing rectangle (if zero,
dimensions are calculated).

entry Greystring() _
GreyString(hDC, hBrush, lpOutputFunc, lpData, nCount, X, Y, nWidth,

nHeight):bDrawn
hDC hDC ;
hBrush hBrush;
FarProc lpOutputFunc;
dword lpData;
int nCount;
int X;
int Y;
int nWidth;
int nHeight;

return Boolean

HiByte
Returns the high—order byte of nInteger.

entry HiByte()
HiByte(nInteger):cHighByte

HideCaret
Removes system caret from the given window.

entry HideCaret()
HideCaret(hWnd)
hWnd hWnd;

return void

HiliteMenuItem

Highlights or removes the highlighting from a top-level (menu—bar) menuitem.

entry HiliteMenuItem()
#undef NoMenus

HiliteMenuItem(hWnd, hMenu, wIDHiliteItem, wHilite):bHilited
hWnd hWnd;
hMenu hMenu;
word wIDHiliteItem;
word wHilite;

return Boolean

HIword
Returns the high-order word of lInteger.

entry HIword()
HIword(lInteger):wHighWord

InflateRect ;

HUAWEI EX. 1015 - 249/393

HUAWEI EX. 1015 - 250/393

Adhvosqflllfindonwzilll I 243

Expands or shrinks the rectangle specified by lpRect by X units on the
left and right ends of the rectangle and Y units on the top and bottom.

entry InflateRect()
#undef NoRect
InflateRect(lpRect, X, Y):nResult
lpRect lpRect;
int x;
int Y;

return int

InitAtomTable
Initializes atom hash table and sets it to nSize atoms.

entry InitAtomTable()
InitAtomTable(nSize):bResult
int nSize;

return Boolean

'InSendMessage
Returns TRUE if window function is processing a message sent with
SendMessage.

entry InSendMessage()
#undef NowinMessages
InSendMessage():bInSend

return Boolean

IntersectClipRect
Forms new clipping region from intersection of current clipping region
and given rectangle.

entry IntersectClipRect()
#undef NohDC
IntersectClipRect(hDC, X1, Y1, X2, Y2):nRgnType
th th;
short X1;
short Y1;
short X2;
short Y2;

return short

IntersectRect

Finds the intersection off two rectangles and copies it to lpDestRect.
entry IntersectRect()

#undef NoRect
IntersectRect(lpDestRect, lpSrclRect, lpScmRect):nIntersection
lpRect lpDestRect;
lpRect lpSrclRect;
lpRect 1pSrc2Rect;

return int

InvalidateRect

Marks for repainting the rectangle specified by lpRect (in client
coordinates). The rectangle is erased if bErase is nonzero.

entry InvalidateRect()
#undef NoRect
InvalidateRect(hWnd, lpRect, bErase)
hWnd hWnd; .
lpRect lpRect;
Boolean bErase;

return void

InvalidateRgn
Marks hRgn for repainting. The region is erased ifvirase is nonzero.

entry InvalidateRgn()
#undef NoRegion

InvalidateRgn(hWnd, lpRect, bErase)
hWnd hWnd;
hRgn lpRect;
Boolean bErase;

return void

InvertRect

Inverts the display bits of the specified rebtangle.

HUAWEI EX.1015 - 250/393

HUAWEI EX. 1015 - 251/393

244 The Programmer’s Technical Reference

entry InvertRect()
#undef NohDC
#undef NoRect
InvertRect(hDC, 1pRect):nResu1t
th hDC;
LPRECT lpRect;

return int

Inverthn
Inverts the colours in the region specified by hRgn.

entry Inverthn()
#undef Noth
#undef NoRegion
Inverthn(hDC, hRgn):bInverted
th hDC;
hRgn hRgn;

return Boolean

IsChild
Returns TRUE if given window is a child of hParenthd.

entry IsChild()
IsChild(hParenthd, hWnd):bChild
hWnd hParenthd;
hWnd hWnd;

return Boolean

IsClipboardFormatAvailable
Returns TRUE if data in given format is available.

entry IsClipboardFormatAvailable()
#undef NoClipBoard
IsClipboardFormatAvailable(wFormat):bAvailable
word wFormat;

return Boolean

IsDialogMessage

Determines whether lpMsg is intended for the given modeless dialogue box.
If so, the message is processed and bUsed is nonzero

entry IsDialogMessage()
#undef NoMsg
#undef NoCthgr
IsDialogMessage(thg, 1pMsg):bUsed
hWnd thg;
1pMsg lpMsg;

return Boolean

IlegButtonChecked
Tests whether nIDButton is checked. For a 3—state button, returns 2 for
greyed, 1 for checked, zero for neither.

entry IlegButtonChecked()
#undef Nocthgr
IlegButtonChecked(thg, lpMsg):bUsed
hWnd thg;
int lpMsg;

return word

IsIconic

Specifies whether or not a window is open or closed (iconic).
entry IsIconic()

IsIconic(hWnd):bIconic
hWnd hWnd;

return Boolean

IsRectEmpty
Determines whether or not the specified rectangle is empty.

entry IsRectEmpty()
#undef NoRect
IsRectEmpty(lpRect):bEmpty
lpRect lpRect;

return Boolean

IsWindow

HUAWEI EX. 1015 - 251/393

HUAWEI EX. 1015 - 252/393

Microsoft Vdeows A.P.I. I 245
Determines whether or not hWnd is a valid, existing window.

entry IsWindow()
IsWindow(hWnd):bExists
hWnd hWnd;

return Boolean

IsWindowEnabled
Specifies whether or not hWnd is enabled for mouse and keyboard input.

entry IsWindowEnabled()
IsWindowEnabledLhWnd):bEnabled
hWnd hWnd;

return Boolean

IsWindowVisible
Determines whether or not the given window is visible on the screen.

entry IsWindowVisib1e()
- IsWindowVisible(hWnd):bVisible

hWnd hWnd;
return Boolean

KillTimer
Kills the timer event identified by hWnd and nIDEvent.

entry KillTimer()
KillTimer(hWnd, nIDEvent):bKi11ed
hWnd hWnd;
short nIDEvent;

return Boolean

LineDDA
Computes successive points in line starting at X1, Y1 and ending at X2,
Y2, passing each point and lpData parameter to lpLineFunc function.

entry LineDDA()
LineDDA(x1, Y1, x2, Y2, lpLineFunclpData)
short X1;
short Y1;
short X2;
short Y2;
FarProc lpLineFunclpData;

return void

LineTo
Draws line with current pen from the current position up to, but not
including, the point x, Y.

entry LineTo()
#undef NohDC
LineTo(hDC, X, Y):bDrawn
hDC hDC;
short X;
short Y;

return Boolean

LoadAccelerators
Loads accelerator table named by lpTableName.

entry LoadAccelerators()
LoadAccelerators(hInstance, lpTableName):hRes
handle hInstance;
lpstr lpTableName;

return handle

LoadBitmap
Loads bitmap resource named by lpBitmapName.

entry LoadBitmap()
#undef NoBitmap \
LoadBitmap(hInstance, 1pBitmapName):hBitmap
handle hInstance;
lpstr lpBitmapName;

return hBitmap

LoadCursor
Loads cursor resource named by lpCursorName.

entry LoadCursor()

HUAWEI EX. 1015 - 252/393

HUAWEI EX. 1015 - 253/393

246 The Programmer’s Technical Reference

LoadCursor(hInstance, 1pCursorName):hCursor
handle hInstance;

. lpstr lpCursorName;
return hcursor

LoadIcon
Loads icon resource named by lpIconName.

entry LoadIcon()
LoadIcon(hInstance, lpIconName):hIcon
handle hInstance;
lpstr lpIconName;

return hIcon

LoadLibrary
Loads the library module named by lpLibFilename.

entry LoadLibrary()
LoadLibrary(lpLibFileName):hLibModule
lpStr lpLibFileName;

return handle

LoadMenu
Loads menu resource named by lpMenuName.

entry LoadMenu()
#undef NoMenus
LoadMenu(hInstance, 1pMenuName):hMenu
handle hInstance;
lpstr lpMenuName;

return hMenu

LoadResource
Loads the resource hResInfo and returns a handle to the resource.

entry LoadResource()
LoadResource(hInstance, hResInfo):hResData
handle hInstance;
handle hResInfo;

return handle

LoadString .

Loads string resource wID into the buffer lpBuffer. Up to nBufferMax
characters are copied.

entry Loadstring()
Loadstring(hInstance, wID, lpBuffer, nBufferMax):nsizehandle hInstance;

unsigned wID;
lpstr lpBuffer;
int nBufferMax;

return int

LoByte
Returns the low—order byte of nInteger.

entry LoByte()
LoByte(nInteger):cLowByte

LocalAlloc
Allocates wBytes of memory from the local heap. Memory type (e.g., fixed
or moveable) is set by wFlags.

entry LocalAlloc()
#undef NoMemMgr
LocalAlloc(wF1ags, wBytes):hMem
word wFlags;
word wBytes;

return handle

LocalCompact
Compacts local memory to generate wMinFree free bytes.

entry LocalCompact()
#undef NoMemMgr
LocalCompact(wMinFree):wLargest
word wMinFree;

return word

HUAWEI EX. 1015 - 253/393

HUAWEI EX. 1015 - 254/393

Microsoft Vdeows A.P.I. . 247
LocalDiscard

Discards local memory block hMem if reference count is zero.
entry LocalDiscard()

LocalDiscard(hmem):holdMem

LocalFlags
Returns memory type of local memory block hHem.

entry LocalFlags()
#undef NoMemng
LocalFlags(hmem):wFlags
handle hmem;

return word

LocalFree

Frees local memory block hMem from memory if reference count is zero.
entry LocalFree()

#undef NoMemMgr
LocalFree(hMem):hOldMem
handle hMem;

return handle

LocalFreeze

Prevents compaction of the local heap.
entry LocalFreeze()

LocalFreeze(Dummy)

LocalHandle

Retrieves the handle of the local memory object whose address is wMem.
entry LocalHand1e()

#undef NoMemMgr
LocalHandle(wMem):hmem
word wMem;

return handle

LocalHandleDelta

Sets the entry count for each new handle table created in the local heap.
entry LocalHandleDelta()

LocalHandleDelta(nNewDelta):nCurrentDelta
LocalInit

Initializes the local heap.
entry LocalInit()

#undef NoMemMgr
LocalInit(wValue, pString, pString):bResult
word wValue;

char NEAR * pString;
char NEAR * pString;return Boolean

LocalLock

Returns the address of the local memory block hMem, locks the block in
memory, and increases the reference count by one.

entry LocalLock()
#undef NoMemMgr
LocalLock(hMem):pAddress
handle hMem;

return char NEAR *

E LocalMelt

Permits compaction of the local heap.
entry LocalMelt()

LocalMelt(Dummy)

LocalNotify

i Sets the callback function for handling notification messages from local' memory.
entry LocalNotify()

#undef NoMemMgr
LocalNotify(lpFunc):lpPrevFunc
FarProc lpFunc;

return FarProc

HUAWEI EX. 1015 - 254/393

HUAWEI EX. 1015 - 255/393

248 The Programmer’s Technical Reference
LocalReAlloc

Reallocates the local memory block hMem to wBytes and memory type wFlags.
entry LocalReAlloc()

#undef NoMemMgr
LocalReAlloc(hMem, wBytes, wFlags):hNewMem
handle hMem;
word wBytes;
word wFlags;

return handle

LocalSize
Returns the size, in bytes, of local memory block hMem.

entry Localsize()
#undef NoMemMgr
LocalSize(hmem):wates
handle hmem;

return word

LocalUnlock .
Unlocks local memory block hMem and decreases the reference count by one.

entry LocalUnlock()
#undef NoMemMgr
LocalUnlock(hMem):bResult
handle hMem;

return Boolean

LockData
Locks the data segment in memory.

entry LockData()
LockData(Dummy):hMem

LockResource
Returns the memory address of the resource hResInfo, locks the resource
in memory, and increases the reference count by one.

entry LockResource()
LockResource(hResInfo):lpResInfo
handle hResInfo;

return lpStr

LockSegment Function
Locks the segment whose segment address is wSegment.

entry LockSegment()
#undef NoMemMgr
LockSegment(wSegment):hSegmentword wSegment; I

return handle E
LOword

Returns the low—order word of lInteger.
entry L0word()

LOword(lIntger):wLowWord

LPtoDP
Converts logical points into device points.

entry LPtoDP()
#undef NoPoint
#undef NohDC
LPtoDP(hDC, lpPoints, nCount):bConvertedhDC hDC;
LPPoint lpPoints;
short nCount;

return Boolean

MakeIntAtom
Casts an integer for use as an argument in AddAtom.

entry MakeIntAtom()
MakeIntAtom(wInteger):nAtom

MakeIntResource
Casts an integer for use as an argument in AddAtom.

entrv MakeIntResource()

HUAWEI EX. 1015 - 255/393

HUAWEI EX. 1015 - 256/393

‘ Microsofi Windows A.P.I. ‘ 249

MakeIntResource(nInteger):lpIntegerID

MakeLong

Creates an unsigned long integer.
entry MakeLong()

~ MakeLong(nLowWord, nHighWord):denteger
MakePoint

_Converts a long value into a Point structure.
entry MakePoint() .

MakePoint(lValue):ptPoint

MakeProcInstance

Returns function instance address for function lpProc. Calls to the
instance address ensure that the function uses the data segment ofinstance hInstance.

.entry MakeProcInstance()
MakeProcInstance(1pProc, hInstance):lpAddressFarProc-lpProc;
handle hInstance;return FarProc

MapDialogRect

converts the dialogue box coordinates given in lpRect to client ,coordinates. .
entry MapDialogRect()

#undef NoRect
#undef NoCthgr
MapDialogRect(thg, lpRect)
hWnd thg;
lpRect lpRect;

return void

Max

Returns the maximum value of A and B.
entry max()

max(A, B):nMaximum

MessageBeep

Generates a beep at the system speaker when a message box is displayed.entry MessageBeep()
#undef NoMb

MessageBeep(wType):bBeep
word wType;

return Boolean

MessageBox

Creates a window with given lpText and lpCaption containing the
predefined icons and push buttons defined by wType.

entry MessageBox()
#undef NoMb

MessageBox(hWndParent, lpText, lpCaption, wType):nMenuItem
~hWnd hWndParent;
lpstr lpText;
lpstr lpCaption;
word wType;

return int

Min

Returns the minimum value of A and B.
entry min()

min(A, B):nMinimum

MoveTo

Moves the current position to the point specified by X and Y.entry MoveTo()
#undef NohDC

MoveTo(hDC, X, Y):ptPrevPos
hDC hDC;
short X;
short Y;

HUAWEI EX. 1015 - 256/393

HUAWEI EX. 1015 - 257/393

250 The Programmer’s Technical Reference

return dword

Movewindow
Causes WM SIZE message to be sent to hWnd. X, Y, nWidth, and nHeight give
the new size of the window.

entry MoveWindow()
MoveWindow(hWnd, X, Y, nWidth, nHeight, bRepaint)
hWnd hWnd;
int X;
int ;
int nWidth;
int nHeight;
Boolean bRepaint;

return void

OemToAnsi
Converts the OEM character string to an ANSI string.

entry OemToAnsi()
OemToAnsi(lp0emStr, lpAnsiStr):bTranslated
lpStr lpOemStr;
lpStr lpAnsiStr;

return Boolean

OffsetClipRgn
Moves clipping region X units along the X-axis and Y units along the
Y-axis.

entry OffsetClipRgn()
#undef NohDC
OffsetClipRgn(hDC, X, Y):nRgnType
hDC hDC;
short X;
short Y;

return short

OffsetRect
Moves given rectangle X units along the X-axis and Y units along the
Y-axis.

entry OffsetRect()
#undef NoRect
OffsetRect(lpRect, X, Y):nResult
lpRect lpRect;
int X;
int Y;

return int

Offsethn
Moves the given region X units along the X-axis and Y units along
the Y-axis.

entry Offsethn()
#undef NoRegion
Offsethn(hRgn, X, Y):nRgntype
hRgn hRgn;
short X;
short Y;

return short

OpenClipboard v!

Opens clipboard; prevents other applications from modifying its contents.
entry 0penClipboard()

#undef NoClipBoard
0penClipboard(hWnd):bOpenedhWnd hWnd;

return Boolean

OpenComm
Opens communication device named by lpCommName. Transmit—queue and
receive—queue sizes are set by wInQueue and wOthueue.

entry OpenComm()
#undef NoComm

OpenComm(lpComName, wIaneue, wOthueue):nCid
lpStr 1pComName;

HUAWEI EX. 1015 - 257/393

HUAWEI EX. 1015 - 258/393

, Microsoft WYndows A.P.I. ' 251

word wIaneue;
word wOthueue;

return short

OpenFile
' Creates, opens, reopens, or deletes file named by lpFileName.

entry OpenFile()
#undef NoOpenFile
OpenFile(lpFileName, lpReOpenBuff, wStyle):nFile
lpstr lpFileName;

1pOfStruct lpReOpenBuff;
. word wStyle;

return int

OpenIcon
Opens the specified window.

”entry OpenIcon()
0penIcon(hWnd):bOpened
hWnd hWnd;

return Boolean

OpenSound
Opens the play device for exclusive use.

entry OpenSound()
#undef NoSound
0penSound():nVoices

return int

Painthn
Fills the region specified by hRgn with the currently selected brush.

entry Painthn()
#undef NohDC
#undef NoRegion
Painthn(hDC, hRgn):bFilled
hDC th;
hRgn hRgn;

return Boolean

PatBlt

Creates a bit pattern on the specified device, using dwRop to combine the
current brush with the pattern already on the device.

entry PatBlt()
#undef NohDC

PatBlt(hDC, X, Y, nwidth, nHeightS, dwRop):bDrawn
hDC hDC;
short X;
short Y;
short nWidth;
short nHeightS;
dword dwRop;

return Boolean

PeekMessage

Checks application queue and places message (if any) at lpMsg.
entry PeekMessage()

#undef NoMsg
PeekMessage(lpMsg, hWnd, stgFilterMin, stgFilterMax,

bRemoveMsg):bPresent
lpMsg lpMsg;
hWnd hWnd;

unsigned stgFilterMin;
word stgFilterMax;
Boolean bRemoveMsg;return Boolean

Pié

Draws arc starting at X3, Y3 and ending at X4, Y4 and connects centre and
two endpoints, using current pen. Moves counter-clockwise. Fills Wlth
current brush. Arc's centre is centre of bounding rectangle given by X1,
Y1, X2, Y2.

HUAWEI EX. 1015 - 258/393

HUAWEI EX. 1015 - 259/393

252 The Programmer’s Technical Reference

entry Pie()
#undef NohDC
Pie(hDC, x1, n, x2, Y2, X3, Y3, x4, Y4):bDrawn~ hDC hDC;
short X1;
short Y1;
short x2;
short Y2;
short X3;
short Y3;
short x4;
short Y4;

return Boolean

PlayMetaFilePlays the contents of the specified metafile on the given device context.
entry P1ayMetaFi1e()

#undef NohDC
PlayMetaFi1e(hDC, hMF):bP1ayed
hDC hDC;
handle hMF;

return Boolean

Polygon
Draws a polygon by connecting the nCount vertices given by lpPoints.

entry Polygon()
#undef NoPoint
#undef Noth
Polygon(hDC, lpPoints, nCount):bDrawnhDC hDC;
LPPoint lpPoints;
short nCount;

return Boolean

Polyline
Draws a set of line segments, connecting the nCount points given by
lpPoints.

entry Polyline()
#undef NoPoint
#undef NohDC
Polyline(hDC, lpPoints, nCount):bDrawnhDC hDC;
LPPoint lpPoints;
short nCount;

return Boolean

PostAppMessagePosts message to application; returns without waiting for processing.
entry PostAppMessage()

#undef NoWinMessages
PostAppMessage(hTask, stg, wParam, lParam):bPosted
handle hTask;

unsigned stg;
word wParam; ‘
long lParam;

return Boolean

PostMessage

Places message in application queue; returns without waiting for
processing.

entry PostMessage()
#undef NowinMessages
PostMessage(hWnd, stg, wParam, lParam):bPosted
hWnd hWnd;

unsigned stg;
word wParam;
long lParam;

return Boolean

PostQuitMessage
“A-+— a mM OUTT message to the application and returns immediately.

HUAWEI EX. 1015 - 259/393

HUAWEI EX. 1015 - 260/393

Microsoft Ideows A.P.I. ' ' 253
entry PostQuitMessage()

#undef NoWinMessages
PostQuitMessage(nExitCode)
int nExitCode;

return void

PtInRect

Indicates whether or not a specified point lies within a given rectangle.entry PtInRect()
#undef NoPoint
#undef NoRect -

PtInRect(1pRect, Point):bInRect
lpRect lpRect;
Point Point;

return Boolean

PtInRegion
Tests if X, Y is within the given region.

entry PtInRegion()
#undef NohDC
#undef NoRegion
PtInRegion(hRgn, S, Y):bSuccess
hRgn hRgn;
short S;
short Y;

return Boolean

PtVisible

Tests if X, Y is within the clipping region of the given display context.entry PtVisible()
#undef NohDC

PtVisible(hDC, X, Y):bVisible
hDC hDC;
short X;
short Y;

return Boolean

ReadComm

Reads up to nSize bytes from the communication device nCid into buffer
lpBuf.

entry ReadComm()
#undef Nocomm

ReadComm(nCid, lpBuf, nSize):nBytes
short nCid;
lpStr lpBuf;
int nsize;

return short

Rectangle ‘
Draws rectangle, using current pen for border and current brush for
filling.

entry Rectangle()
#undef NohDC

Rectangle(hDC, X1, Y1, X2, Y2):bDrawn
hDC hDC;
short X1;
short Y1;
short X2;
short Y2;

return Boolean

RectVisible

Determines if any part of given rectangle lies within clipping region.
entry RectVisible()

#undef NohDC
#undef NoRect

Rectvisib1e(hDC,lpRect):bVisible
hDC hDC;
lpRect lpRect;

return Boolean

Registerclass

HUAWEI EX. 1015 - 260/393

HUAWEI EX. 1015 - 261/393

254 The Programmer’s Technical Reference

Registers a window class.
entry Registerclass()

#undef NoBrush
#undef NoWndClass
Registerclass(landClass):bRegistered

1andclass landClass;
return Boolean

RegisterClipboardFormat
Registers a new clipboard format whose name is pointed to by 1pFormatName.

entry RegisterClipboardFormat()
#undef NoclipBoard
RegisterClipboardFormat(lpFormatName):wFormat
lpStr lpFormatName;

return word

RegisterWindowMessage
Defines a new window message that is guaranteed to be unique.

entry RegisterWindowMessage()
#undef NoWinMessages
RegisterWindowMessage(lpString):stg
lpstr lpString;

return unsigned '

ReleaseCapture
Releases mouse input and restores normal input processing.

entry ReleaseCapture()
ReleaseCapture()

return void

ReleaseDC
Releases a display context when an application is finished drawing in it.

entry ReleaseDC() -#undef NohDC
ReleaseDC(hWnd, hDC):nRe1eased
hWnd hWnd;
hDC hDC;

return int

RemoveFontResource
Removes from the font table the font resource named by lpFilename.

entry RemoveFontResource()
RemoveFontResource(lpFilename):bSuccess
lpstr lpFilename;

return Boolean

RemoveProp
Removes lpstring from property list; retrieves corresponding data handle.

entry RemoveProp()
RemoveProp(hWnd, lpString):hData
hWnd hWnd; '
lpstr lpString;

return handle

ReplyMessage
Replies to message without returning control to the SendMessage caller.

nentry ReplyMessage()
#undef NoWinMessages
ReplyMessage(1Reply)
long 1Reply;

return void

RestoreDC
Restores display context given by hDC to previous state given by nSavedDC.

entry RestoreDC()
#undef NohDC
RestoreDC(hDC, nSavedDC):bRestored
hDC hDC;
short nSavedDC;

return Boolean

HUAWEI EX. 1015 - 261/393

HUAWEI EX. 1015 - 262/393

Microsoft Vdeows A.P.I. ' 255

RGB '

Creates an RGB colour value from individual red, green, and blue values.
entry RGB()

RGB(r,g,b):dword
return none

RoundRect
Draws rounded rectangle, using current pen for border, current brush for
filling.

entry RoundRect()
#undef NohDC
RoundRect(hDC, X1, Y1, X2, Y2.X3, Y3):bDrawn
hm hm ;
short X1;
short Y1;
short X2;
short Y2 . x3;
short Y3;

return Boolean

SaveDC
Saves the current state of the display context hDC.

entry SaveDC()
#undef NohDC
SaveDC(hDC):nSavedDC
hDC hDC;

return short

ScreenToClient
Converts the screen coordinates at lpPoint to client coordinates.

entry ScreenToClient()
#undef NoPoint
ScreenToClient(hWnd,lpPoint)
hWnd hWnd;
lpPoint lpPoint;

return void

ScrollWindow
Moves contents of client area xAmount along screen’s x—axis and YAmount
units along y—axis (right for positive XAmount; down for positive
YAmount).

entry Scrollwindow()
#undef NoRect

ScrollWindow(hWnd, XAmount, YAmount, lpRect, 1pClipRect)
hWnd hWnd;
int XAmount;
int YAmount;'
lpRect lpRect;
lpRect lpClipRect;

return void

SelectClipRgn
Selects given region as current clipping region for the specified displaycontext.

entry SelectClipRgn()
#undef NohDC
#undef NoRegion
SelectClipRgn(hDC, hRgn):nRgnType
hm hm;
hRgn hRgn;

return short

Selectobject
Selects hobject as current object, replacing previous object of same type.

entry Selectobject()
#undef NohDC
SelectObject(hDC, hObject):hOld0bject
hm hm ;
handle hObject;

return handle

HUAWEI EX. 1015 - 262/393

HUAWEI EX. 1015 - 263/393

256 The Programmer’s Technical Reference

SenlegItemMessage
Sends a message to nIDDlgItem within the dialogue box specified by thg.

entry SenlegItemMessage()
#undef NoCthgr
SenlegItemMessage(thg, nIDDlgItem, stg, wParam, 1Param):lResult
hWnd thg;
int nIDDlgItem;

unsigned stg;
word wParam;
long lParam;

return long

SendMessage
Sends a message to a window or windows.

entry SendMessage()
#undef NoWinMessages
SendMessage(hWnd, stg, wParam, lParam):lReply
hWnd hWnd;

unsigned stg;
word wParam;
long lParam;

return long

SetActiveWindow
Makes a tiled or pop-up style window the active window.

entry SetActiveWindow()
SetActiveWindow(hWnd):hWndPrev
hWnd hWnd;

return hWnd

SetBitmapBits
Sets bitmap bits to values given at lpBits. dwCount is byte count at
lpBits.

entry SetBitmapBits()
#undef NoBitmap
SetBitmapBits(hBitmap, dwCount, lpBits):bCopied
hBitmap hBitmap;
dword dwCount;
lpstr lpBits;

return Boolean

SetBitmapDimension
Associates a width and height, in 0.1 millimeter units, with a bitmap.

entry SetBitmapDimension()
#undef NoBitmap
SetBitmapDimension(hBitmap, X, Y):ptoldDimensions
hBitmap hBitmap;
short X;
short Y;

return Dword

SetBkColour
Sets the background colour to the device colour closest to rgbColour.

entry SetBkColour()
#undef NohDC
SetBkColour(hDC, rgbColour):nOldColour
hDC hDC;
dword rgbColour;

return dword

SetBkMode
Sets the background mode used with text, hatched brushes, and line styles.

entry SetBkMode()
#undef NohDC V
SetBkMode(hDC, anMode):nOldMode
hDC hDC;
short anMode;

return short

SetBrushOrg
Sets the origin of all brushes selected into the given display context.

HUAWEI EX. 1015 - 263/393

HUAWEI EX. 1015 - 264/393

, Microsoft Windows AR]. 257
entry SetBrushorg()

#undef NoBrush

SetBrushOrg(hDC, X, Y):dwOldorigin
hDC hDC;
int ;
int Y;

return dword

SetCapture

Causes mouse input to be sent to hWnd, regardless of mouse cursorposition.
enter SetCapture()

' SetCapture(hWnd):hWndPrev
hWnd hWnd;

return hWnd

'SetCaretBlinkTime
Establishes the caret flash rate.

entry SetCaretBlinkTime()
SetCaretBlinkTime(wMSeconds)
word wMSeconds;

return void

SetCaretPos

Moves caret to the position specified by X and Y.
entry SetCaretPos()

SetCaretPos(X, Y)
int X;
int Y;

return void

SetClassLong
Replaces long value at nIndex in the WNDCLASS structure.

entry SetClassLong()
#undef Nowinoffsets

SetClassLong(hWnd, nIndex, lNewLong):loldLonghWnd hWnd;
int nIndex;
long lNewLong;

return long

SetClassWord

Replaces word at the given nIndex in the WNDCLASS structure.
entry SetClassWord()

#undef NoWinOffsets

SetClassWord(hWnd, nIndex, wNewWord):w01dword
hWnd hWnd;
int nIndex;
word wNewWord;

return word

SetClipboardData

Copies hMem, a handle for data having wFormat format, into the clipboard.entry SetClipboardData()
#undef NoClipboard
SetClipboardData(wformat, hMem):hClipData
word wformat;
handle hMem;

return handle

SetClipboardViewer
Adds hWnd to clipboard viewer chain. hWndNext is next window in chain.

entry SetClipboardViewer()
#undef NoClipboard
SetClipboardViewer(hWnd):hWndNext
hWnd hWnd;

return hWnd

SetCommBreak

Sets a break state on communication device nCid and suspends charactertransmission.

HUAWEI EX. 1015 - 264/393

HUAWEI EX. 1015 - 265/393

258

entry SetCommBreak()
#undef NOCOmm
SetCommBreak(nCid):nResult
short nCid;

return short

SetCommEventMask
Sets the event m

entry SetCommEventMask#undef Nocomm
SetCommEventMask
short nCid;
word nEvtMask

return word FAR *

SetCommState
Sets a communication device to the state specified by the device control
block lpDCB. The
control block.

entry Setcommstate()#undef NoComm
SetCommState(lpDCB):nResult
DCB FAR * 1pDCB;

return short

SetCursor
Sets cursor shap
NULL.

entry SetCursor()
SetCursor(hCurso
hCursor hCursor;

return hCursor

SetCursorPos
Sets position of

entry SetCursorPos()
SetCursorPos(X, Y)
int X;
int Y;

return void

SetDlgItemInt
Sets text of nID

entry SetDlgItemInt()
#undef Nocthgr
SetDlgItemInt(hD
hWnd thg;
int nIDDlgIt
unsigned wValue;
Boolean bSign

return void

SetDlgItemText
Sets caption or

entry SetDlgItemText()
#undef NoCthgr
SetDlgItemText(h
hWnd thg;
int nIDDlgIt
lpstr lpstring

return void

SetEnvironment
Copies data at l
to given port.

entry SetEnvironment()
SetEnvironment(l
lpstr lpPortName;
lpstr 1pEnviro
word nCount;

The Programmer ’3 Technical Reference

ask of the communication device nCid.
()

(nCid, nEvtMask):lpEvent

device to be set is identified by the ID field of the

e in hCursor, removes cursor from screen if hCursor is

r):h01dCursor

mouse cursor to screen coordinates given by X and Y.

DlgItem to string representing an integer.

lg, nIDDlgItem, wValue, bSigned)

em;

ed;

text of nIDDlgItem to lpString.

Dlg, nIDDlgItem, lpString)

em;
I

pEnviron to environment associated with device attached

pPortName, 1pEnviron, nCount):nCopied
n;

HUAWEI EX. 1015 - 265/393

HUAWEI EX. 1015 - 266/393

Microsoft I'deows A.P.I. ' 259
return short

SetFocus

Assigns the input focus to the window specified by hWnd.
entry SetFocus()

SetFocus(hWnd):hWndPrev
hWnd hWnd;

return hWnd

SetMapMode
Sets the mapping mode of the specified display context.

entry SetMapMode()
'#undef NohDC

SetMapMode(hDC, nMapMode):nOldMapMode
hDC hDC;
short nMapMode;

return short

SetMenu

Sets window menu to hmenu. Removes menu if hMenu is NULL.
entry SetMenu()

#undef NoMenus

SetMenu(hWnd, hMenu):bSet
hWnd hWnd;
hMenu hMenu;

return Boolean

SetMetaFileBits

Creates memory metafile from data in the given global memory block.
entry SetMetaFileBits()

SetMetaFileBits(hMem):hMF
handle hMem;

return handle

SetPixel .
Sets pixel at x, Y to the device colour closest to rgbcolour.

entry SetPixel()
#undef NohDC

SetPixel(hDC, X, Y, rgbColour):rgbActualColour
hDC hDC;
short X;
short Y;
dword rgbColour;

return dword

SetPolyFillMode

Sets the polygon-filling mode for the specified display context.
entry SetPolyFillMode()

#undef NohDC

SetPolyFillMode<hDC, nPolyFillMode):nOldPolyFillMode
hDC hDC;
short nPolyFillMode;

return short

SetPriority

Sets the task priority of the task hTask, and returns new priority.SetPriority()
SetPriority(hTask, nChangeAmount):nNew
handle hTask;
int nChangeAmount;

return int

SetProp

Copies string and data handle to property list of hWnd.
entry SetProp()

SetProp(hWnd, lpstring, hData):bSet
hWnd hWnd;
lpstr lpstring;
handle hData;

return Boolean

HUAWEI EX. 1015 - 266/393

HUAWEI EX. 1015 - 267/393

260 The Programmer’s Technical Reference

SetRect .
Fills RECT structure at lpRect with given coordinates.

entry SetRect()
#undef NoRect
SetRect(lpRect, x1, Y1, x2, Y2):nResult
lpRect lpRect;
int X1;
int Y1;
int X2;
int Y2;

return int

SetRectEmpty
Sets the rectangle to an empty rectangle (all coordinates are zero).

entry SetRectEmpty()
#undef NoRect
SetRectEmpty(1pRect):nResult
lpRect lpRect;

return int ‘

SetRelAbs
Sets the relabs flag.

entry SetRelAbs()
#undef NohDC
SetRelAbs(hDC, nRelAbsMode):nOldRelAbsMode
th th;
short nRelAbsMode;

return short

SetResourceHandler

entry

return

SetROPZ

entry

return

Sets the function address of the resource handler for resources with type
lpType. A resource handler provides for loading of custom resources.SetResourceHandler()
SetResourceHandler(hInstance, lpType, lpLoadFunc):lpLoadFunchandle hInstance;
lpstr lpType;
FarProc lpLoadFunc;
FARPROC

Sets the current drawing mode.
SetROP2()
#undef NohDC
SetROP2(hDC, nDrawMode):nOldDrawMode
hm hm ;
short nDrawMode;
short

SetScrollPos

entry

return

Sets scroll bar elevator to nPos; redraws scroll bar if bRedraw isnonzero.

'SetScrollPos()
#undef NoScroll
SetScrollPos(hWnd, nBar, nPos, bRedraw):nOldPos
hWnd hWnd;
int nBar;
int nPos;
Boolean bRedraw;
int

SetScrollRange

entry

return

Set minimum and maximum scroll bar positions for a given scroll bar.
SetScrollRange()
#undef NoScroll
SetScrollRang(hWnd, nBar, nMinPos, nMaxPos, bRedraw)
hWnd hWnd;
int nBar;
int nMinPos;
int nMaxPos;
Boolean bRedraw;
void

HUAWEI EX. 1015 - 267/393

HUAWEI EX. 1015 - 268/393

Microsoft Windows A.P.I. ' 26]

setSoundNoise .
Sets the source and duration of a noise from the play device

entry SetSoundNoise()#undef NoSound
SetSoundNoise(nSource, nDuration):nResu1t
.int nSource;
int nDuration;

return int

SetStretchBltMode
Sets the stretching mode for the StretchBlt function.

entry SetStretchBltMode()
- #undef NohDC

SetStretchMode(hDC, nStretchMode):noldstretchMode
hDC hDC;
short nstretchMode;

return short

SetSysColours
Changes one or more system colours.

entry SetSysColours()
#undef NoColour
SetSysColours(nChange, lpSysColour, lpColourValues)
int nChange;
1pInt lpsysColour;

long FAR * 1pColourValues;
return void

SetSysModalWindow
Makes the specified window a system—modal window.

entry SetSysModalWindow()
SetSysModalWindow(hWnd):hPreand
hWnd hWnd;

return hWnd

SetTextCharacterExtra
Sets the amount of intercharacter spacing.

entry SetTextCharacterExtra()
#undef NohDC
SetTextCharacterExtra(hDC, nCharExtra):nOldCharExtra
hDC hDC;
short nCharExtra;

return short

SetTextColour
Sets text colour to the device colour closest to rgbColour.

entry SetTextColour()
#undef NohDC
SetTextcolour(hDC, rgbColour):rgbOldColour
th th;
dword rgbColour;

return dword

SetTextJustification

Prepares GDI to justify a text line using nBreakExtra and nBreakCount.
entry SetTextJustification()

#undef NohDC
SetTextJustification(hDC, nBreakExtra, nBreakCount):nSet
hm hm ;
short nBreakExtra;
short nBreakCount;

return short

SetTimer

Creates system timer event identified by nIDEvent. wElapse is elapsed
milliseconds. lpTimerFunc receives timer messages; if NULL, messages go
to application queue.

entry SetTimer()
SetTimer(hWnd, nIDEvent, wElapse, lpTimerFunc):nIDNewEvent
hWnd hWnd;
short nIDEvent;

HUAWEI EX. 1015 - 268/393

HUAWEI EX. 1015 - 269/393

262 The Programmer’s Technical Reference

unsigned wElapse;
FarProc lpTimerFunc;

return short

SetViewportExt
Sets the X and Y extents of the viewport of the specified display context.

entry SetViewportExt()
#undef NohDC
SetViewportExt(hDC, X, Y):ptOldExtents
hDC hDC ;
short X;
short Y;

return Dword

SetViewportOrg
Sets the viewport origin of the specified display context.

entry SetViewportorg()
#undef NohDC
SetViewportOrg(hDC, x, Y):pt01d0rigin
hDC hDC ;
short x;
short Y;

return Dword
SetVoiceAccent

Places an accent (tempo, volume, mode, and pitch) in the voice queue
nVoice.

entry SetVoiceAccent()
#undef NoSound
SetVoiceAccent(nVoice, nTempo, nVolume, anode, nPitch):nResult
int nVoice;
int nTempo;
int nVolume;
int anode;
int nPitch;

return int

SetVoiceEnvelope
Places the envelope (wave shape and repeat count) in the voice queue
nVoice.

entry SetVoiceEnvelope()
#undef NoSound
SetVoiceEnvelope(nVoice, nShape, nRepeat):nResult
int nVoice;
int nShape;
int nRepeat;

return int

SetVoiceNote
Places a note in the voice queue nVoice.

entry SetVoiceNote()
#undef NoSound
SetVoiceNote(nVoice, nValue, nLength, nCdots):nResu1ts
int nVoice;
int nValue;
int nLength;
int nCdots;

return int

SetVoiceQueuesize
Allocates nBytes of memory for the voice queue nVoice.

entry SetVoiceQueueSize()
#undef NoSound
SetVoiceQueueSize(nVoice, nBytes):nResult
int nVoice;
int nBytes;

return int
note Default is 192 bytes.

SetVoiceSound
Places a sound (frequency and duration) in the voice queue nVoice.

entry SetVoiceSound()

HUAWEI EX. 1015 - 269/393

HUAWEI EX. 1015 - 270/393

_ Microsoft Windows A.R]. ' 263
#undef NoSound
SetVoiceSound(nVoice, nFrequency, nDuration):nResu1t
int nVoice;
int nFrequency;
int nDuration;

return' int

SetVoiceThreshold
Sets the threshold level to nNotes for the voice queue nVoice.

entry SetVoiceThreshold()
#undef NoSound
SetVoiceThreshold(nVoice, nNotes):nResult
int nVoice;
int nNotes;

return int

-SetWindowExt
Sets the X and Y extents of the window of the specified display context.

entry SetWindowExt()
#undef NohDC
SetwindowExt(hDC, X, Y):pt01dExtents
hDC hDC;
short X;
short Y;

return dword

SetwindowLong
Changes the window attribute identified by nIndex.

entry SetwindowLong()
#undef NoWinOffsets
SetWindowLong(hWnd, nIndex, lNewLong):loldLong
hWnd hWnd;
int nIndex;
long lNewLong;

return long

SetWindowOrg
Sets the window origin of the specified display context.

entry SetWindowOrg()
#undef NohDC
SetWindowOrg(hDC, X, Y):ptold0rigin
hDC hDC;
short X;
short ,Y;

return dword

setWindowsHook
Installs a system and/or application hook function.

entry SetwindowsHook()
#undef NOWH
Setwindowsflook(nFilterType, lpFilterFunc):lpPrevFilterFunc
int nFilterType;
FarProc lpFilterFunc;

return FarProc

SetWindowText
Sets window caption (if any) or text (if a control) to lpString.

entry SetWindowText()
SetWindowText(hWnd, lpString)
hWnd hWnd;
lpstr lpString;

return void

SetWindowWord
Changes the window attribute specified by nIndex.

entry SetwindowWord()
#undef Nowinoffsets
SetWindowWord(hWnd, nIndex, nNewWord):woldWord
hWnd hWnd;
int nIndex;
word nNewWord;

HUAWEI EX. 1015 - 270/393

HUAWEI EX. 1015 - 271/393

.

264 The Programmer’s Technical Reference

return word

ShowCaret

Displays newly-created caret or redisplays hidden caret.
entry ShowCaret()

ShowCaret(hWnd)
hWnd hWnd;

return void

ShowCursor

Adds 1 to cursor display count if bShow is nonzero. Subtracts 1 if bshowis zero.

entry Showcursor()
ShowCursor(bShow):nCount
Boolean bshow;

return int

Showwindow

Displays or removes the given window as specified by nCmdShow.
entry ShowWindow()

ShowWindow(hWnd, nCmdShow):bShown
hWnd hWnd;
int nCmdShow;

return Boolean

SizeofResource
Returns the size, in bytes, of resource hResInfo.

entry SizeofResource()
SizeofResource(hInstance, hResInfo):wBytes
handle hInstance;
handle hResInfo;

return word

StartSound
Starts play in each voice queue.

entry StartSound()
#undef NoSound
StartSound():nResult

return int

StopSound
. Stops playing all voice queues and flushes the contents of the queues.

entry StopSound()
#undef NoSOund
StopSound():nResu1t

return int

StretchBlt

Moves bitmap from source rectangle into destination rectangle, stretching
or compressing as necessary. Source origin is at xsrc, YSrc. X, Y,
nWidth, and nHeight give origin and dimensions of rectangle on
destination device. dwROP defines how source and destination bits are
combined.

entry StretchBlt()
#undef NohDC
StretchBlt(hDestDC, X, Y, nWidth, nHeight, hSrcDC, XSrc, YSrc,

nsrcwidth, nSrcHeight, dwROP):bDrawn
hDC hDestDC;
short X;
short Y;
short nWidth;
short nHeight;
hDC hSrcDC;
short XSrc;
short YSrc;
short nSrcWidth;
short nSrcHeight;
dword dwROP;

return Boolean

HUAWEI EX. 1015 - 271/393

HUAWEI EX. 1015 - 272/393

Microsoft Windows A.P.I. ' . 265

SwapMouseButton

entry

return

Swaps the meaning of the left and right mouse buttons if waap is TRUE.
SwapMouseButton()
SwapMouseButton(waap):bswapped
Boolean waap;

.Boolean

syncAllVoices

entry

return

TextOut

.entry

return

Throw

entry

Places a sync mark in each voice queue. Voices wait at the sync mark
until all queues have encountered it.
SyncAlIVoices()
#undef NoSound
SyncAllVoices():nResult
int

Writes character string using current font and starting at X, Y.
Textout()
#undef NohDC
TextOut(hDC, X, Y, lpString, nCount):bDrawn
hDC hDC;
short x;
short Y:
lpStr lpString;
short nCount;
Boolean

Restores the execution environment to the values in buffer lpCatchBuf.
Execution continues at the location specified by the environment with
the return value nThrowBack available for processing.
Throw()
Throw(lpCatchBuf, nThrowBacki)

lpCatchBuf lpCatchBuf;

return
int nThrowBacki;
void

TranslateAccelerator

entry

return

Processes keyboard accelerators for menu commands.
TranslateAccelerator()
#undef NoMsg
TranslateAccelerator(hWnd, hAccTable, lpMsg):nTranslated
hWnd hWnd;
handle hAccTable;
1pMsg lpMsg;
int

TranslateMessage

entry

return

Translates virtual keystroke messages into character messages.
TranslateMessage()
#undef NoMsg
TranslateMessage(lpMsg):bTranslated
1pMsg lpMsg;
Boolean

TransmitCommChar

entry

return

Places the character cChar at the head of the transmit queue for
immediate transmission.
TransmitCommChar()
#undef NoComm
TransmitCommChar(nCid, cChar):nResu1t
short nCid;
char cChar;
short

UngetCommChar

entry

Makes the character cChar the next character to be read from the receive
queue.
UngetCommChar()
#undef NoComm
UngetCommChar(nCid, cChar):nResult

HUAWEI EX. 1015 272/393

HUAWEI EX. 1015 - 273/393

266 The Programmer’s Technical Reference

short nCid;
char cChar;

return short

UnionRect
Stores the union of two rectangles at lpDestRect.

entry UnionRect()
#undef NoRect

UnionRect(lpDestRect, lpSrclRect, lpScmRect):nUnion
lpRect 1pDestRect;
lpRect 1pSrc1Rect;
lpRect lpScmRect;

return int

UnlockData
Unlocks the data segment.

entry UnlockData()
UnlockData(Dummy)

UnlockSegment
Unlocks the segment whose segment address is wSegment.

entry UnlockSegment()
#undef NoMemMgr
UnlockSegment(wSegment):hMem
word wSegment;

return handle

Unrealizeobject
Directs GDI to reset the origin of the given brush the next time it isselected.

entry Unrealizeobject()
#undef NoBrush
UnrealizeObject(hBrush):bUnrealized
hBrush hBrush;

return Boolean

UpdateWindow
Notifies application when parts of a window need redrawing after changes.

entry Updatewindow()
UpdateWindow(hWnd)
hWnd hWnd;

return void

ValidateRect
Releases from repainting rectangle specified by lpRect (in client
coordinates). If lpRect is NULL, entire window is validated.

entry ValidateRect()
#undef NoRect
ValidateRect(hWnd, lpRect)
hWnd hWnd;
lpRect lpRect;

return void

ValidateRgn
Releases hRgn from repainting. If hRgn is NULL, entire region isvalidated.

entry ValidateRgn()
#undef NoRegion
ValidateRgn(hWnd, hRgn)
hWnd hWnd;
hRgn hRgn;

return void

WaitMessage
Yields control to other applications when application has no tasks to
perform.

entry WaitMessage()
#undef NoWinMessages
WaitMessage()

return void

HUAWEI EX. 1015 - 273/393

HUAWEI EX. 1015 - 274/393

Microsoft Windows A.RI. 267

WaitSoundState
Waits until the play driver enters the state nState.

entry WaitSoundState()
#undef NoSound
WaitSoundState(nState):nResult
'int nState;

return int

WindowFromPoint
Identifies the window containing Point (in screen coordinates).

entry WindowFromPoint()
#undef NoPoint
WindowFromPoint(Point):hWnd
Point Point;

return hWnd

WinMain

Serves as entry point for execution of a Windows application.
entry WinMain() '

WinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow):nExitCode

WndProc .

Processes messages sent to it by Windows or the application’s mainfunction.
entry WndProc()

WndProc(hWnd, stg, wParam, lParam):lReply

WriteComm

Writes up to nsize bytes from buffer lpBuf to communicationdevice nCid.

entry WriteComm()
#undef NoComm
WriteComm(nCid, lpBuf, nSize):nbytes
short nCid;
lpStr lpBuf;
int nSize;

return short

WriteProfileString
Copies character string lpString to the WIN.INI file. The string replaces
the current string named by lpKeyName in section lpSectionname. If the
key or section does not exist, a new key and section are created.

entry WriteProfileString()
WriteProfileString(lpApplicationName, lpKeyName, lpString):bResult
lpStr lpApplicationName;
lpStr lpKeyName;
lpStr lpString;

return Boolean

Yield

Halts the current task and starts any waiting task.
entry Yield()

Yield():bResult
return Boolean

Errors

The following error codes are returned by Windows 1.03:

Error Description
001h Insufficient memory for allocation
OOZh Error reallocating memory
003h Memory cannot be freed
004h Memory cannot be locked
005h Memory cannot be unlocked
007h Window handle not valid
008h Cached display contexts are busy

HUAWEI EX. 1015 - 274/393

HUAWEI EX. 1015 - 275/393

268

010h
013h
014h
015h
016h
100h
14Gb
18Gb
lCOh
1F0h
200h
240h
280h
2C0h
2F0h
300h
301h
302h
303h
400h
401h
402h
403h
404h
405h
406h
407h
408h
409h
410h
411h
412h
4FFh
500h
501h
502h
503h
504h
505h
600h
700h

The Programmer’s Technical Reference

Clipboard already open
Mouse module not valid
Display module not valid
Unlocked data segment should be locked
Invalid lock on system queue
Lock memory errors
Local heap is busy
Invalid local handle
LocalLock count overflow
LocalUnlock count underflow
Global memory errors
Critical section problems
Invalid global handle
GlobalLock count overflow
GlobalUnlock count underflow
Task schedule errors
Invalid task ID
Invalid exit system call
Invalid BP register chain
Dynamic loader/linker errors
Error during boot process
Error loading a module
Invalid ordinal reference
Invalid entry name reference
Invalid start procedure
Invalid module handle
Invalid relocation record
Error saving forward reference
Error reading segment contents
Error reading segment contents
Insert disk for specified file
Error reading non-resident table
int 3Fh handler unable to load segment
Resource manager/user profile errors
Missing resource tableBad resource type
Bad resource type
Bad resource type
Error reading resource
Atom manager errors
Input/output package errors

HUAWEI EX. 1015 - 275/393

HUAWEI EX. 1015 - 276/393

Network Interfacing

Interrupt 60h FTP Driver - PC/TCP Packet Driver Specification
The handler for the interrupt will start with a 3-byte jump instruction, followed by the ASCIIZ
String ‘PKT DRVR’. To find the interrupt being used by the driver, an application should scan
through interrupt vectors 60h to 80h until it finds one with the ‘PKT DRVR’ string.

Network Interface classes/types: Class 01h Ethernet/IEEE 802.3
01h 3COM 3C500/3C501
02h 3COM 3C505
03h MICOM-Interlan NISOlO
04h BICC Data Networks 4110
05h BICC Data Networks 4117
06h MICOM—Interlan NPGOO
08h Ungermann—Bass PC—NIC
09h UnivatioanC—Slé
OAh TRW PC—ZOOO
0Bh MICOM—Interlan NI5210
Och - 3COM 3C503
ODh 3COM 3C523
OEh Western Digital WD8003
OFh Spider Systems S4

Class 02h ProNET—lo
01h Proteon p1300

Class 03h IEEE 802.5/ProNet—4
01h IBM Token—Ring Adapter
02h Proteon p1340
03h ’ Proteon p1344

Class 04h Omninet
Class 05h Appletalk
Class 06h Serial Line
Class 07h StarLAN
Class 08h ARCnet

01h Datapoint RIM

entry Ax OlFFh Get Class
BX handler returned by function 02h

return CF set on error
DH error code

01h invalid handle number
02h no interfaces of the specified class found
03h no interfaces of the specified type found
04h no interfaces of the specified number found
05h bad packet type
06h interface does not support multicast messages
07h this packet driver cannot terminate
08h invalid receiver mode

HUAWEI EX. 1015 - 276/393

HUAWEI EX. 1015 - 277/393

entry

return

note

entry

return

entry

return

entry

return

entry

return

note

entry

return

The Programmer’s Technical Reference

09h insufficient space
OAh type accessed but never released
OBh bad command
OCh packet could not be sent

CF clear if successful
BX version
CH class
DX type
CL number
DS:SI pointer to name
AL driver type

01h basic
02h extended
OFFh not installed

AH 02h - FTP Driver — Access Type
AL interface class
BX interface type
CX length of type
DL interface number
DS:SI pointer to type
ES:DI pointer to receiver
CF set on error

DH error code (see above)
CF clear if successful

AX handle
Receiver called with:
AX subfunction

00h application to return pointer to buffer in ES:DI
ES:DI 0:0 means throw away packet

01h copy to DS:SI buffer completed
BX handle
CX buffer length when a packet is received

AH 03h — FTP Driver — Release Type
BX handle
CF set on error

DH error code (see above)
CF clear if successful

AH 04h — FTP Driver - Send Packet
CX length
DS:SI pointer to buffer
CF set on error

DH error code (see above)

AH 05h — FTP Driver — Terminate Driver For Handle
BX handle
CF set on error

DH error code (see above)

AH 06h - FTP Driver - Get Address
BX handle
CX length
ES:DI pointer to buffer
CF set on error

DH error code (see above)
CF clear if successful

CX length

Copies the local net address associated with the handle into the buffer

AH 07h — FTP Driver - Reset Interface
BX handle
CF set on error

DH error code (see above)

Interrupt 60h 10—Net Network
entry AH 11h Lock and Wait

AL drive number or 0
DX number of seconds to wait
ES:SI Ethernet address or 0

HUAWEI EX. 1015 - 277/393

:
i
5
§1

3

HUAWEI EX. 1015 - 278/393

Network Interfacing 27]

DS:BX pointer to 31-byte ASCIIZ semaphore namereturn AL status
00h successful
01h timeout

02h server not responding
03h invalid semaphore name
04h semaphore list is full
05h invalid drive ID
06h invalid Ethernet address
07h ~ not logged in
08h write to network failed
09h semaphore already logged for this CPU

entry AH 12h Lock
AL drive number or O for default
ES:SI Ethernet address or 0

DS:BX pointer to 31-byte ASCIIZ semaphore name
return AL status (see function 11h)

01h semaphore currently logged
note Unlike function 11h, this function returns immediately.

entry AH 13h Unlock
AL drive number or 0
ES:SI Ethernet address or 0

DS:BX pointer to 31-byte ASCIIZ semaphore name
return AL status (see function 11h)

01h semaphore not logged

entry AH 20h — FTP Driver - Set Receive Mode
BX handle
CX mode

01h turn off receiver
02h receive only packets sent to this interface
03h — mode 2 plus broadcast packets
04h mode 3 plus limited multicast packets
05h mode 3 plus all multicast packets
06h all packets

return CF set on error
DH error code

entry AH 21h — FTP Driver - Get Receive Mode
BX handle

return CF set on error _
DH error code (see function 01h above)CF clear if successful
AX mode

entry AH 24h - FTP Driver — Get Statistics
BX handle

return CF set on error
DH error code

CF clear if successful
DS:SI pointer to statistics buffer

dword packets in
dword packets out
dword bytes in
dword bytes out
dword errors in
dword errors out

dword packets dropped

Interrupt 5Ch NETBIOS interface entry port, TOPS
entry AH . 5Ch

ES:BX pointer to network control block
Subfunction in first NCB field (or with 80h for non-waiting call)
10h start session with NCB_NAME name (call)11h listen for call

12h end session with NCB_NAME name (hangup)
14h send data via NCB_LSN15h receive data from a session
16h receive data from any session

HUAWEI EX. 1015 - 278/393

HUAWEI EX. 1015 - 279/393

return

return
note 1.

(11wa

16
16

14

1E

The Programmer’s Technical Reference

17h send multiple data buffers
20h send unACKed message (datagram)
21h receive datagram
22h send broadcast datagram
23h receive broadcast datagram
30h add name to name table
31h delete name from name table
32h reset adapter card and tables
33h get adapter status
34h status of all sessions for name
35h cancel
36h add group name to name table
70h unlink from IBM remote program (no FOh function)
71h send data without ACK
72h send multiple buffers without ACK
78h find name
79h token—ring protocol trace

AL status
00h successful
01h bad buffer size
03h invalid NETBIOS command
05h timeout
06h receive buffer too small
08h bad session number
09h LAN card out of memory
OAh session closed
OBh command has been cancelled
ODh name already exists
OEh local name table full
OFh name still in use, can't delete
11h local session table full
12h remote PC not listening
13h bad NCB_NUM field
14h no answer to CALL or no such remote
15h name not in local name table
16h duplicate name
17h bad delete
18h abnormal end
19h name error, multiple identical names in use
1Ah bad packet
21h network card busy
22h too many commands queued
23h bad LAN card number
24h command finished while cancelling
26h command can't be cancelled
OFFh NETBIOS busy

AL error code (0 if none)
When the NETBIOS is installed ints 13h and
NETBIOS.

(scheduler functions).
Normally not initialized.
TOPS network card uses DNA 1,
Sytek PCnet card uses DNA 3.
Structure of Network Control Block:

3 or none.

byte ncb command
byte ncb:retcode
byte ncb_lsn
byte ncb_num
dword pointer to ncb_buffer
word ncb_length
bytes ncb callname
bytes ncb:name
byte ncb_rto
byte ncb_sto
dword pointer to ncb_post
byte ncb lana_num
byte ncb:cmd_cplt
bytes ncb_reserve
Structure name:
hut p 9 nm name

17h are interrupted by the

Int 18h is moved to int 86h and one of int 02h or 03h is used
by NETBIOS. Also, NETBIOS extends the int 15h/fns Bob and 91h functions

m

HUAWEI EX. 1015 - 279/393

HUAWEI EX. 1015 - 280/393

byte
byte

nm_num
nm_status7. Structure A—status:

6 bytes
byte
byte
byte
byte
word
word
word
word
word
dword
dword
word
word

8 bytes
word
word
word

4 bytes
word
word
word
word
word

16 name

Interrupt 6Fh
entry AH

DS:DX

return CL
AK

8
8

12

as_ID
as_jumpers
as_post
as_major
as_minor
as_intervalas crcerr

as:algerras colerr

as:abterr
as_tcountas rcount

as:retran
as_xresrc
as_resO
as_ncbfree
as_ncbmax
as_ncbx
as_resl
as_sespend
as_msp
as_sesmax
as bufsize
as-names

Network Intetfacing

structures as_name
10-Net
00h Login
pointer to login record
bytes
bytes
bytes

user name

password
name of SuperStation

security level
status
ooooh
OlFFh
OZFFh
O3FFh
04FFh
OSFFh
OGFFh
07FFh
OBFFh
OBFFh
OAFFh

OBFFh
OCFFh
ODFFh
OEFFh
OFFFh
10FFh
llFFh
IZFFh
13FFh
14FFh
15FFh
16FFh
17FFh
18FFh
19FFh
lAFFh
lBFFh
lCFFh
lDFFh
lEFFh
lFFFh
ZOFFh

successful
time out on response
network (hardware) error
invalid password
local resource not available
server resource not available
already logged in under different name
login security failure (node)
not logged in
position calc error

273

receive subfunction does not equal send subfunction
(i.e. read, write)
request function not in range
no more server file handle entries left
no more shared file table entries left
no more user file handle entries left
chat permit not on
not a server on request
no transporter board error
time out on send
item not found (spool item not in queue)
DOS access incompatible
record already locked
invalid parameter
record lock time out error
currently spooling to named device
dropped receive message (throttle)
open sharing violation
no more tuf entries left

not file owner on open
read security not passed
write security not passed
group security not passed
security file failure

HUAWEI EX. 1015 - 280/393

HUAWEI EX. 1015 - 281/393

‘.[1125‘usié‘

274 The Programmer’s Technical Reference
ZlFFh activity file failure
22FFh spool control file failure
23FFh device not mounted (spooling)
24FFh spool file has not been terminated
ZSFFh device not mounted or is not being shared
26FFh duplicate node ID
27FFh file not found error
28FFh no more files
29FFh unknown internal system error
ZAFFh print queue is full or corrupted
ZBFFh invalid function
ZCFFh invalid handle
ZDFFh too many files opened
ZEFFh path not found
ZFFFh named file is active
OFFOlh timeout
OFFOZh network error
OFF03h invalid password
0FF04h no local buffer
OFFOSh superstation not available
OFFOSh node already logged in
0FFO7h login not valid from this node
OFFOBh node ID already in use
0FF16h invalid parameter (bad length, invalid node ID, etc)
0FF17h record locked by another user
OFFlah sent message has been dropped

AH 01h Logoff
DS:DX pointer to superstation ID or nulls (12 bytes)

return CX number of files closed
AX status (see function 00h)

0FF08h superstation ID not already logged in

entry AH 02h Status of Node
DS:DX pointer to 512-byte record

8 bytes user name (0 if none)
byte station type

00h workstation
01h superstation
02h gateway station
03h gateway active
04h logged into multiple superstations
05h reserved

24 bytes list of superstations logged into more than one
superstation

12 bytes node ID
word message count for this station (send for user node,

receive for superstations)

for superstations only:
word drives allocated (bit 0=A:, bit 1=B:,...)
byte user service flag

bit 7 gate
6 print permit on
5 ?
4 SUBMIT is on
3 mail waiting for node
2 calendar waiting for you
1 news waiting for you
0 mail waiting for you

byte printers allocated (bit 0=LPT1,...)
byte number of unprinted spool files
byte number of opened files
byte number of logged on nodes
byte primary drive (l=A:)
byte reserved

n bytes list of logged on node IDs (each 12 bytes, max 37 IDs)
(continues at offset 1F4h)

3 bytes time: sec/min/hrs
3 bytes date: day/mon/year (since 1980)

return CF set on error
AX error code (see function 00h)

HUAWEI EX. 1015 - 281/393

HUAWEI EX. 1015 - 282/393

entrY

__—up to here,

—-—beyond here,

entry

AH 03h

DS:DI pointer
return ES:BX pointer

ES:BX

AH
DS:BX

word
word
word
word
byte
byte
word
byte
byte
word

word
word
word
word
byte
word
word
word
word
word
word
word
word

pointer
byte

8 bytes
12 bytes

6 bytes
byte
byte

bit

byte
bit

byte
word
word
word
word
word
word
bytes
bytes
byte
byte

9 bytes

O‘KD

byte

dword
dword

N words

04h
, pointer

12 bytes

IvenvonkInufljhcbqg

Get Address of Configuration Table
to node ID (optional)
to record (actually starts at [Bx—41])local device table address

275

extended network error mapping table address
shared device table address
mounted device table address
receive buffer counter

.collect buffer counter
TUF address
enable flag
FCB keep flagreserved

IO—Net V3.3—-—

count of dropped SendGF
buffer start address
comm driver base address
send/receive retry count
number of 550ms loops before timeoutUFH address
CDIR address

’LTAB address
SFH address
FTAB address
RLTAB address
SMI address
NTAB address

to word address of first CT_DRVnumber of DRV entries
login name
node ID (blank—padded)node address
flag
CT CFLG (chat permit)
0 ' CHAT permit
1 sound bell
2-7 7
CT PSFLG

o _ SUBMIT permit
1 SUBMIT received
2 SUBMIT active
3 CHAT called FOXPTRM
4 KB initiated
5 PRINT permit
6-7 ?

in lO-Net flag
receive message count
send message count
retry count

‘failed count
driver errors
dropped responses/CHATS
LIST ID/NTAB address (3 entries, LPTl-3)
AUX ID/NTAB address (2 entries, COMl—Z)active CB channel

received 6F messages on queue
activity counters for channels 1-910—Net v3.3--—

bit 0 R5232 gate
1 Send6F gate (user set)2—7 ?

pointer into gate (user set)
pointer into lo-Net send
addresses of timer blocks

Send
to record
receiving node's ID
if first byte has high—order bit set, message is directed

to the CT_RGATE vector at the receiver

HUAWEI EX. 1015 - 282/393

HUAWEI EX. 1015 - 283/393

276

return

entry

return

entry

return

entry

return

entry

return

entry

entry

return

note

entry

DS:DX
CF

AH
CX
DS:DX

12

CF

CF

AH
BX
CX:DX
51
CF

AH
BX
AL

CF

AH
DS:BX

12

none?

AH
DS:BX

Nmm
DS:DX

AH

ES:SI
DS:BX
AL

same as

AK
AL

The Programmer’s Technical Reference
if second byte is 00h,

channel number and
first byte is taken as a CB

delivered to all nodes on same
channel

word length of data at Dx
pointer to data (max 1024 bytes)set on error

AX error code (see function 00h)

05h Receive
number of seconds before timeout
pointer to receive buffer
bytes sending node’s ID
word length of message
bytes message (maximum 1024 bytes)set on error
AX error code (see
clear if successful
AH OFEh if dequeued message is a CB message

function 00h)

07h Lock Handle
file handle
starting offset in file
record length
set on error

AX error code (see also function 00h)
02h file not found

08h Unlock Handle
file handle
mode
00h unlock all
01h unlock record at CX:DX
set on error

AX error code (see also function 00h)
02h file not found

09h Submit
pointer to record
bytes destination node ID (must be logged in)
word 1ength+2 of following 'command line’ text
bytes command line text (<=1OO bytes), system adds CR

OAh Chat

pointer to control parameters
bytes sender ID, if nulls defaults to node’s userID
bytes destination user ID, 'EVERYONE’ may be used
bytes destination node ID
pointer to chat message
word length+2 of following text
bytes text, max 101 bytes

OBh Lock Semaphore, Return Immediately
drive number or 00h
Ethernet address or 00h
pointer to 31-byte ASCIIZ semaphore name

status
00h successful
01h semaphore currently locked
02h server not responding
03h invalid semaphore name
04h semaphore list is full
05h invalid drive ID
06h invalid Ethernet address
07h not logged in .
08h write to network failed ,
09h semaphore already logged in this CPU
int 60h/fn 12h.

och Unlock Semaphore 1
drive number or 0 ‘

HUAWEI EX. 1015 - 283/393

HUAWEI EX. 1015 - 284/393

Network Interfacing
ES:SI Ethernet address or 0
DS:BX pointer to 31—byte ASCIIZ semaphore name

return AL status (see AH=OBh)
01h semaphore not locked

note Same as int 60h/fnl3h.

entry AH ODh Who
AL type code

01h return superstations only02h

12 bytes
byte

vreturn non-superstations only
otherwise return all

CX length of data
Ds:Dx pointer to array of records to be filled

node ID
flags

bit 1
2
3
4
5—7

workstation
superstation
xgate
active gate?

(if AL=01h, record continues)
byte version number
word level number of 10Net software in responding node
(if AL=02h, record continues)

8 bytes user ID
byte version number
word level number

return CL number of records returned (responding stations)

entry AH OEh Spool/Print
DS:DX pointer

word operation code
00h initiate spool
01h abort print
02h close spool
03h delete spool
04h print
05h get report info
06h set chat template
07h queue
08h return queue
09h queue non—spooled file for printing

11 bytes file name in FCB format
(if operation code = 00h or 06h, record continues)

byte notification
bit 0 notify at print start

1 notify server operator/reply
2 notify at print completion
3 explicit queuing only4 reserved
5 no form feed
6 do ID page
7 queue to top

byte days to keep (0FFh=forever)
byte bits 0,1: device (1=LPT1)

bits 4-7: remote drive to store spool file
(1=A,...)

word length of following data area
n bytes up to 64 bytes of description

(if operation code = 03h, record continues)
8 bytes user ID to associate with filename

(if operation code = 04h, record continues)
word block number

8 bytes user ID to associate with filename
(if operation code = 05h, record continues)

byte RRN to start retrieve
byte bits 0,1 local print device (LPTX)

bit 3 if set, return entries for all users
bits 4—7 not used?

word length of following area
up to 1500 bytes to receive SSCNTL records returnedn bytes

to record

HUAWEI EX. 1015 - 284/393

277

HUAWEI EX. 1015 - 285/393

278 The Programmer’s Technical Reference

(if operation code = 07h, record continues)
byte queue number
byte bits 0,1 local print device (LPTx)bits 2-7 not used?
word number of bytes of test print to be done
byte test code

01h print device
02h test print count03h PRN

(if operation code = 08h, record continues)
byte queue location or $SCNTL location to start accessreturns next item for access:

OOh-7Fh queued items
80h—FEh non—queued, non—printed items
OFFh no more items

word unused
word length of following area

n bytes up to 64 bytes to receive $SCNTL records (see note)
(if operation code = 09h, record continues)

3 bytes unused
n bytes path to non-spooled file to be queued for printing

return CF set on error
AX error code (see also function 00h)

0FF17h device not mounted
0FF18h already spooling to named device

note SSCNTL record:
8 bytes user ID

11 bytes filename in FCB format
6 bytes node ID
3 bytes creation date

byte flags
bit 0 notify at start

1 notify server operator/reply
2 notify at completion
3 explicit queueing only
4 reserved
5 no form feed at end
6 do ID page
7 queue to top

byte retention time in days
byte printing device (LPTx)

3 bytes date last printed (0=never) byte device containing spool file
word bytes to print for test print
word block number to start print
byte reserved

entry AH 10h Attach/Detach Printer
AL subfunction

00h initiate spooling if LPTl is mounted
01h terminate spooling if LPTl is mounted

entry AH 11h Lock FCBAL mode
01h sequential
02h random
03h random block

CX number of records
DS:DX pointer to FCB

return CF set on error
AX error code (see also function 00h)

02h file not found

entry AH 12h Unlock FCBAL mode
00h sequential
01h random
02h random block

CX number of records
DS:DX pointer to FCB

return CF set on error

HUAWEI EX. 1015 - 285/393

HUAWEI EX. 1015 - 286/393

Network Interfacing I 279

Ax error code (see also function 00h)02h file not found

entry AH 13h 10-Net v3.3 — Get Remote Configuration TableAddress

. DS:DX pointer to node ID, 12 bytes blank-paddedreturn CF set on error

Ax error code (see function 00h)CF clear if successful

ES:BX . configuration table address on given machine

entry AH 14h lo-Net v3.3 — Get Remote Memory
BX:SI address of remote memory
cx length («=1024 bytes)
DS:DX pointer to node ID, 12 bytes blank—padded
DS:DI pointer to area to receive remote memory imagereturn CF set on error

‘ AX error code (see function 00h)CF clear if successful

CX amount of memory copied to DS:sI

entry AH 15h shared Device Information

AL 01h 10—Net v3.3 — Get Shared Device EntryBX zero-based index

DS:SI pointer to node ID, 12 bytes blank—padded
ES:DI pointer to 85-byte buffer

return CF set on error

AX error code (see function 00h)CF clear if successful

ES:DI buffer contains shared device table entry ofthh device:
8 bytes device
8 bytes alias

64 bytes path
8 bytes password

byte access
4 bytes mask

02h 10—Net v3.3 — Set shared Device Entry
DS:SI pointer to node ID, 12 bytes blank-padded
ES:DI pointer to valid shared device table entryreturn CF set on error

Ax error code (see function 00h)

03h lo-Net v3.3 — Delete Shared Device EntryBX zero—based index

DS:SI pointer to node ID, 12 bytes blank—padded
return CF set on error .

AX error code (see function 00h)

entry AH 17h lo—Net v3.3 ~ Mount
AL local drive number (0=A:)
BL remote drive letter or ’1'..’3' for LPTx or ’4’ or ’5' for COMx
DS:DX pointer to node ID, 12 bytes blank—paddedreturn CF set on error

AX error code (see function 00h)

entry AH 18h lo—NET v3.3 — Unmount
AL local drive number (0=A:)
BL type

00h disk
01h—03h LPTx
04h,05h COMx

return CF set on error

AX error code (see function 00h)

Interrupt 68h APPC/PC

Function 01h APPC/PC
entry AH 01h

DS:DX pointer to control block

HUAWEI EX. 1015 - 286/393

HUAWEI EX. 1015 - 287/393

280

12 bytes
word

6 bytes
dword

if verb = IBOOh
word
bytes
bytes
bytes
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

cocooo

word
byte
byte
bytes
bytes
bytes
dword

cocoon
dword
byte

if verb=2100h (Attach Log

The Programmer’s Technical Reference
reserved
verb (action)
0

(high byte first) return code
0000b successful
OOOlh BAD TP_ID
0002h BAD:CONV__ID
0003b bad logical unit ID
0008h no physical unit attached
0110h bad state
0 1B1h BAD_PART_LUNAME
OlBZh bad mode name
0201h physical unit already active
0211h logical unit already active
0212h BAD_PART_SE§S
02 13h BAD_RU_SIZES‘~
02 14h BAD__MODE__SESS
0216h BAD_PACING_CNT
0219b EXTREME_RUS
021Ah SNASVCMG_1
0223h SSCP CONNECTED_LU
0230b invalid change
0243h too many TPs
0272h adapter close failure
0281h GET__ALLOC_BAD_TYPE
0282b unsuccessful
0283h DLC failure
0284h unrecognized DLC
0286h duplicate DLC
o 301h SSCP_PU_SESSION_NOT_ACTIVE
0302h data exceeds RU size
0401b invalid direction
0402b invalid type
0403h segment overlap
O404h invalid first character
0405b table error
0406h conversion error
OFOOlOOOOh APPC disabled
OFOOZOOOOh APPC busy
OF0030000h APPC abended
OFOO4000Oh incomplete

(DISPLAY), control block continues0

(high byte
(high byte
(high byte first) mode name
logical unit session limit
partner logical unit session limit

first) logical unit ID

mode maximum negotiable session limit
current session limit
minimum negotiated winner limit
maximum negotiated loser limit
active session count
active CONWINNER session count
active CONLOSER session count
session termination count
bit 7: SESSION_TERMINATION_TARGET_DRAIN
bit 6: SESSION_TERMINATION_SOURCE DRAIN

if verb=2000h (Attach Physical Unit),0
version
release

(high byte first) net name
(high byte first) physical unit name0

pointer to SYSTEM_LOG_EXIT routine,don't log errors
0

0 RETURN_CONTROL: COMPLETE
1 RETURN CONTROL: INCOMPLETE

first) partner logical unit name

control block continues

ical finit), control block continues

OFFFFFFFFh means

HUAWEI EX. 1015 - 287/393

HUAWEI EX. 1015 - 288/393

Network Intetfacing 28]

word 70 offset to partner logical unit record
8 bytes (high byte first) logical unit name
8 bytes (high byte first) logical unit ID

byte logical unit local address
byte logical unit session limit
dword pointer to CREATE_TP_EXIT routine,

OFFFFFFFFh reject incoming ALLOCATEs
OOOOOOOOh queue ALLOCATEs

dword 0

dword , pointer to SYSTEM_LOG_EXIT routine, OFFFFFFFFh means
don't log errors

dword 0

byte maximum TPs
byte queue depth
dword pointer to LU LU PASSword EXIT routine, OFFFFFFFFh means

no password eYit_ _
dword 0
word total length of partner records

for each partner logical unit:
word length of this partner logical unit record
word 42 offset to mode records

8 bytes (high byte first) partner logical unit name
byte partner logical unit security capabilities

bit 7 already verified
6 conversation level security
5 session level security4—0 not used?

byte partner logical unit session limit
word partner logical unit maximum MC SEND LL

8 bytes (high byte first) partner logical unit DLC name
byte partner logical unit adapter number

17 bytes (counted string) partner logical unit adapter. address
word total length of mode records

for each mode:
word 16 length of this mode record

8 bytes (high byte first) mode name
word RU_SIZE high bound
word RU_SIZE low bound
byte mode maximum negotiable session limit
byte pacing size for receive

if verb=2200h (Detach Logical Unit), control block continues:
8 bytes (high byte first) logical unit ID

byte 0
if verb=2700h (Detach Physical Unit), control block continues:

byte Physical Unit type
00h hard
01h soft

if verb=ZBOOh (Activate DLC), control block continues:
8 bytes (high byte first) DLC name

byte adapter number
Routines defined by LU_LU PASSword_EXIT, CREATE_TP_EXIT, and
SYSTEM LOG_£XIT pointers are called by pushing the dword pointer
to the-verb on the stack and then performing a FAR call.ACCESS LU LU PW Verb:

17 bytes reserved
_word 1900b

8 bytes (high byte first) logical unit In
8 bytes (high byte first) logical unit name
8 bytes (high byte first) partner logical unit name

17 bytes (counted string) partner fully qualified logical unit name
byte password available (0=no, 1=yes)

8 bytes password
CREATE TP verb:

1? bytes reservedword 2300b
6 bytes 0

dword (high byte first) sense codeoooooooon 0k

080F6 05m SECURITY_NOT__VALID
o 8 4 136 o 3 1 h TP_NOT_AVAIL_RE TRY

HUAWEI EX. 1015 - 288/393

HUAWEI EX. 1015 - 289/393

282

bytes
bytes
dword
byte
byte
byte

65 bytes
6 bytes

word
dword

8 bytes
18 bytes

8 bytes
12 bytes
11 bytes
11 bytes

byte

0000

SYSLOG verb:
12 bytes

word
10 bytes

word
dword
dword
dword
bytes
bytes
word
dword
byte

0000

Function 02h
entry AHDS:DX

12

The Programmer’s Technical Reference

084C0000h TP_NOT_AVAIL_NO_RETRY
10086 02 1h TP_NAME_NOT_RECOGNIZED
10086034h CONVERSATION_TYPE_flISMATCH
1008604 1h SYNC_LEVEL_NOT_SUPPORTED
(high byte first) TP ID
(high byte first) logical unit ID
(high byte first) conversation ID
0 basic conversation, 1 mapped conversation
0 no sync level, I confirm
reserved

(counted string) transaction program name0

length of ERROR_LOG_DATA to return
pointer to ERROR_LOG_DATA buffer
(high byte first) partner logical unit name
(counted string) partner fully qualified logical unit name
(high byte first) mode name0

(counted string) password
(counted string) user ID
0 verification should be performed
1 already verified

reserved
2600b
0

(high byte first) type
(high byte first) subtype
pointer to ADDITIONAL_INFO
(high byte first) conversation ID
(high byte first) TP ID
(high byte first) physical unit or logical unit name
length of data
pointer to data0

APPC/PC
02h

pointer to control block
bytes reserved
word verb (action)
byte 90h if basic verb01h if MC_ (mapped conversation) form of verb
bytes 0
word (high byte first) primary return code

0000b successful
0001b parameter check
0002h state check
0003b allocation error
0005b deallocate abended
0006b deallocate abended program
0007h deallocate abended SVC
0008h deallocate abended timer
0009b deallocate normal return
OOOAh data posting blocked
OOOBh posting not active
OOOCh PROG_ERROR_NO_TRUNC
ooonh PROG_ERROR_TRUNC
OOOEh PROG_ERROR_PURGING
ooorn CONV_FAILURE_RETRY
00 10h CONV__FAILURE_NO_RETRY
0011b SVC_ERROR_NO_TRUNC
0012b SVC_ERROR_IRUNC
0013h SVC_ERROR_PURGING
0014b unsuccessful
0018b CNOS partner logical unit reject
0019b conversation type mixed
F001h APPC disabled
FOOZh APPC busy
F003h APPC abended
F004h incomplete

HUAWEI EX. 1015 - 289/393

HUAWEI EX. 1015 - 290/393

dword

8 bytes
dword

Network Inteifacing

(high byte first) error code0001h bad TP ID
0002h bad conversation ID
0004b allocation error, no retry
0005h allocation error, retry
0006b data area crosses segment boundary
0010b bad TPN length
0011h bad CONV length
0012b bad SYNC level
0013b bad security selection
0014h bad return control
0015h SEC TOKENS too big
00 16h PIPZLEN incorrect0017h no use of SNASVCMG
0018h unknown partner mode
0031h confirm: SYNC_NONE
0032h confirm: bad state
0033h confirm: NOT LL BDY
0041h confirmed: bad state
0051h deallocate: bad type
0052h deallocate: flush bad state
0053b deallocate: confirm bad state
0055h deallocate: NOT LL_BDY
0057h deallocate: log—LL_WRONG0061h flush: not send state
0091b post on receipt. invalid length
0092h post on receipt: not in receive state
0093h post on receipt: bad fill
OOAlh prepare to receive:invalid type
00A2h prepare to receive: unfinished LL
00A3h prepare to receive: not in send state
OOBlh receive and wait: bad state

00B2h receive and wait: NOT_LL_BDY
OOBSh receive and wait: bad fill

00C1h receive immediate: not in receive state00C4h receive immediate: bad fill
00E1h request to send: not in receive state
00F1h send data: bad LL
00F2h send data: not in send state
0102b send error: log LL wrong
0103h send error: bad type
0121h test: invalid type
0122h test: not in receive state
(high byte first) TP ID
(high byte first) conversation ID

if verb=0100h (Allocate or MC_Allocate), control block continues:
byte

byte

word
byte

bytes
bytes
bytes
bytes
byte

mooooco

11 bytes
11 bytes
11 bytes

word
dword

(MC_Allocate only) 0 basic conversation
1 mapped conversation

SYNC_LEVEL00h none
01h confirm
0
RETURN CONTROL
00h — when session allocated
01h immediate
02h when session free
0

(high byte first) partner logical unit name
(high byte first) mode name
(counted string) TP name
Security
00h none
01h same
02h pgm
0

(counted string) password
(counted string) user ID
PIP DATA length
pointer to PIP DATA

if verb=0300h (Confirm or MC_Confirm), then control blockcontinues:

HUAWEI EX. 1015

783

290/393

HUAWEI EX. 1015 - 291/393

byte
if verb=0400h

byte
byte

word
dword

if verb=0600h (Flush or MC_Flush), no additional fields
if verb=0700h (Get_Attributes or MC_Get_httributes), control blockcontinues:

8 bytes
byte
byte

0000000000
bytes
bytes
bytes
bytes
bytes

byte
11 bytes

if verb=0800h (Get_$ype), then control block continues:
byte

if verb=0900h (Post on Receipt), then control block continues:word

if verb=0A00h (Prepare to Receive or MC Prepare_to_Receive):

if verb=OBOOh (Receive and Wait or MC_Receive_and_Wait),

if verb:

if verb:

if verb:

byte

byte
byte

byte

byte
byte
word’
word
dword
0C00h

byte

byte
byte
word
word
dword
0E00h

0F00h
byte
byte
word

(Confirmed or MC_Confirmed), no additional fields
-if verb=0500h (Deallocate or MC_Deallocate), control block continues:

The Programmer’s Technical Referencé

request to send received (0=no, 1=yes)

0
Type
ooh SYNC_LEVEL
01h FLUSH
02h ABEND_yRoc
03h ABEND_SVC
04h ABEND_:IMER
05h ABEND

(MC_Deallocate only) length of error log data
(MC Deallocate only) pointer to error log data

(high byte first) logical unit ID0

SYNC_LEVEL (0=none, 1=confirm)
(high byte first) mode name
(high byte first) own net name
(high byte first) own logical unit name
(high byte first) partner logical unit name
(counted string) partner’s fully qualified logical unitname
0

(counted string) user ID

type (0=basic conversation, 1=mapped conversation)

maximum length
fill (0=buffer, 1=LL)

type (6:5YNC_LEVEL, 1=Fiusn)
locks (0=short, 1=long)

control black continues:
What Received
00h data
01h data complete
02h data incomplete
03h confirm
04h confirm send
05h confirm deallocate
06h send

(MC_Receive_and_Wait only) fill (0=buffer, 1=LL)
Request to Send Received (0=no, 1=yes)
maximum—length _
data length
pointer to data
(Receive_Immediate or MC_Receive_Immediate),control block continues:
What Received
00h data
01h data complete
02h data incomplete
03h confirm
04h confirm send
05h confirm deallocate
06h send

(MC_Receive_Immediate only) fill (0=buffer, 1=LL)
Request_to_Send_Received (0=no, 1=yes)
maximum length
data length
pointer to data
(Request_to_Send or MC Request to Send), no additional
fields ’ ' '
(Send_Data or MC Send Data), control block continues:
request to send FeceiVed (0=no, 1=yes)0
data length

HUAWEI EX. 1015 - 291/393

HUAWEI EX. 1015 - 292/393

Network Integ‘acing l 285

dword pointer to data
if verb=1000h (Send_Error or MC Send_Error)

byte request to send received (0=no, l=yes)
byte type (0=program,1=SVC)
dword 0

word (MC_Send Error only) LOG DATA length
dword (MC__Send:Error only) pointer to LOG DATA

if verb=1200h (Test or MC_Test), then control block continues:
byte (MC_Test only) test

(0=posted, 1=request_to send received)
note error code has different interpretations for:
0 posted data
1 posted not data (primary return code = 0)
1 bad TP_ID (primary return code = 1)

if verb=1300h (Wait), then control block continues:
byte number of conversations to wait on

note error codes have interpretations as for 1200b

Function 03h
entry AH

DS:DX
12

6

8

(Test) above

APPC/PC
03h

pointer to control block
bytes reserved
word verb (action)
bytes 0
dword (high byte first) return code (see AH=01h)word 0

bytes (high byte first) logical unit ID
if verb=2400h (TP Started), control block continues:8 bytes (high byte first) TP ID
if verb=2800h (Get ALLOCATE), control block continues:

byte Type
_OOh degueue
01h test

dword pointer to CREATE TP record
if verb=2A00h (Change Logical Unit). control block continues:

Function 04h
entry AH

DS:DX/
12

Function 05h
entry AH

DS:DX
12

dword pointer to CREATE_TP_EXIT routine
OFFFFFFFFh reject_incoming ALLOCATES
OOOOOOOOh queue ALLOCATEs

dword 0

dword pointer to SYSTEM_LOG_EXIT routine, OFFFFFFFFh means
don’t log errors

dword 0

byte maximum TPs
byte QUEUE ALLOCATES

00h _ stop
01h resume

dword pointer to LU_LU_PASSword_EXIT routine, OFFFFFFFFh meansno exit
dword 0

APPC/PC
04h

pointer to control block
bytes reserved
word verb (action)

ZSOOh TP4ENDED
2900h TP_VALID

bytes 0
dword (high byte first) return code (see AH=01h)word 0

bytes (high byte first) TP ID
dword pointer to CREATE_TP—record (only if verb—2900h)

Transfer Message Data
05h

pointer to control block
bytes reserved
word 1C00h

byte 00h user defined01h NMVT

HUAWEI EX. 1015 292/393

HUAWEI EX. 1015 - 293/393

286 The Programmer’s Technical Reference
02h alert subvectors
03h PDSTATS subvectors

5 bytes 0
dword (high byte first) return code (see AH=01h)

12 bytes 0
byte if bit 0 clear, add correlation subvector

if bit 1 clear, add product set ID subvector
if bit 2 clear, do SYSLOG
if bit 3 clear, send SSCP_PU_§ESSION
bits 4-7 unknown

byte 0
word length of data

N bytes data

Function 06h Change Number of Sessions
entry AH 06h

DS:DX pointer to control block
12 bytes reserved

word 1500h
6 bytes 0

word (high byte first) primary return code (see AH=02h)
dword (high byte first) secondary return code (see AH=01h)

OOOOh accepted
0001h negotiated
0003h bad logical unit ID
0004b allocation failure, no retry
0005h allocation failure, retry
0151h can’t raise limits
0153h all modes must reset
0154h bad SNASVCMG limits
0155b minimum greater than total
0156h mode closed (prim return code = 1)

CNOS mode closed (prim return code = 18h)
0157h bad mode name (prim return code = 1)

CNOS bad mode name (prim return code = 18h)
0159h reset SNA drains
015Ah single not SRC response
015Bh bad partner logical unit
015Ch exceeds maximum allowed
015Dh change SRC drains
015Eh logical unit detached
015Fh CNOS command race reject

8 bytes (high byte first) logical unit ID
8 bytes blanks
8 bytes (high byte first) partner logical unit name
8 bytes (high byte first) mode name

byte
bit 7 use MODE_NA.ME_SELECT_ALL rather than MODE_NAME

6 set negotiable values
5-0 ?

byte partner logical unit mode session limit
byte minimum CONWINNERS_SOURCE
byte maximum CONWINNERS TARGET
byte automatic activati3n
byte 0
byte . Drain

bit 7 drain target
6 drain source
5 target responsible, not source
4-0 ?

Function 07h Passthrough
entry AH 07h

DS:DX pointer to control block
(format depends on application subsystem)

return unknown

Function OFAh Enable/Disable APPC
entry AH OFAh

AL bit 0 0 enable

HUAWEI EX. 1015 - 293/393

HUAWEI EX. 1015 - 294/393

return unknown

Function OFBh
entry _

DS:DX

return unknown

Function OFCh
entry

return unknown

Function OFDh
entry

return none

Function OFEh
entry

unknown
Do not move record while trace is active.
Trace Statistics Record
dword
word
word
dword
dword

return
note 1.

Function OFFh
entry "'AH

DS:DX
return unknown

Interrupt 6Fh
Interrupt 6Fh
entry

DS:DX

Network Imelfacing

1 disable

Convert
OFBh

pointer to control block
bytes reserved
word 1A00h

bytes 0
dword '(high byte first) return code
byte conversion

00h ASCII to EBCDIC
01h EBCDIC to ASCII

byte character set
00h AB
01h A
02h G

word length of string to convert
dword pointer to source
dword pointer to target

Enable/Disable Message Tracing
OFCh
00h disable tracing
01h enable tracing
number of bytes to keep (0=all)

Enable/Disable API Verb Tracing
OFDh
00h disable tracing
01h enable tracing

Trace Destination
OFEh
trace destinations
bits
0 storage (DS:DX pointer to trace stats record)
1 display
2 file (trace written to file OUTPUT.PC)
3 printer

pointer to storage trace buffer
max number of 80-byte records in trace
(high—order byte first) current record number (must init to O)
(high—order byte first) number of records written (init to 0)reserved

Set Passthrough
OFFh

pointer to passthrough exit routine

Novell NetWare — PCOX API (3270 PC terminal interface)
lo-Net Network API
00h Login
login record
bytes user name
bytes password
bytes name of super—station

no response from superstation

return CL security level
AX status

0000b good login
0FF01h
OFFOZh network error
OFF03h invalid password
0FF04h no local buffer

HUAWEI EX. 1015 - 294/393

HUAWEI EX. 1015 - 295/393

288 The Programmer’s Technical Reference

01h Logof
return CX

Ax

f

OFFOSh
OFFOGh
OFFO7h
OFFOBh

number
status
0000b
OFFOSh

02h Status of node
DS:DX pointer to 512-byte record

superstation not available
node already logged in
login not valid from this node
node ID already in use

of files closed

successful

superstation ID not already logged in

8 bytes user name (0 if none)
byte station type00h workstation

01h superstation
04h logged into multiple superstations

24 bytes list of superstations logged into more than one
superstation

12 bytes node ID
word message count for this station (send for user

node, receive for superstations)
for superstations only:
word drives allocated (bit O=A:, bit 1=B:,...)
byte user service flag

bit 0 mail waiting for you
1 news waiting for you
2 calendar waiting for you
3 mail waiting for node
4 SUBMIT is on
5—7 ?

byte printers allocated (bit O=LPT1,...)
byte number of unprinted spool files
byte number of opened files
byte number of logged on files
byte primary drive (1=A:)
byte reserved

n bytes list of logged on node IDs (each 12 bytes, max 38
IDs)

return CF set on error
AX error code

OFFOIh no response from node
OFFOZh network error
0FF04h no local buffer
0FF16h invalid node ID

03h Get Address of Configuration Table
return ES:BX pointer to record (actually starts at [BX—25])

word count of dropped SendGF
word buffer start address
word comm driver base address
word send/receive retry count
byte number of 550ms loopsword UFH address
word CDIR address
word LTAB address
word SFH address
word FTAB address
word RLTAB address
word SMI address
word NTAB address

ES:BX pointer to word address of first CT_DRV
byte number of DRV entries

8 bytes login name
12 bytes node ID

6 bytes node address
byte flag
byte CT_CFLG

bit 0 CHAT permit
1 sound bell

byte CT_PSFLG ‘
0 SUBMIT permit
1 SUBMIT received

HUAWEI EX. 1015 - 295/393

HUAWEI EX. 1015 - 296/393

Network Interfacing

2 SUBMIT active
3 CHAT called FOXPTRM
4 KB initiated
5 PRINT permit
6,7 7 -

byte reserved
word receive message count
word send message_count
word retry count
word failed count
word driver errors
word dropped responses/CHATS

9 bytes list ID/NTAB address (3 entries-LPT1—3?)
6 bytes AUX ID/NTAB address (2 entries—COMI-Z?)

byte active CB channel
byte received int 6Fh messages on queue

9 bytes activity counters for channels 1—9
04h Send '

DS:BX pointer to record
12 bytes receiving node’s ID

word length of data at Dx
DS:DX pointer to data (max 1024 bytes)return CF set on error
AX error code

OFFOlh timeout
OFFOZh network error
0FF04h no local buffer

0FF16h invalid parameter (bad length)05h Receive
CX number of seconds before timeout
DS:DX pointer to receive buffer

12 bytes sending node's ID
word length of message

n bytes message (maximum 1024 bytes)return CF set on error
Ax error code

OFFOIh timeout

0FF18h sent message has been dropped06h Unknown
07h Lock Handle

BX file handle
CX:DX starting offset in file
51 record length

return CF set on error
AX error code

OFFolh timeout
02h file not found
0FF17h record locked by another user

08h Unlock Handle
BX file handle
AL mode

00h unlock all
01h unlock record at CX:DX

return CF set on error
AX error code

02h file not found
OBh Lock Semaphore, Return Immediately

AL drive number or 0
ES:SI Ethernet address or 0

DS:BX pointer to 31—byte ASCIIZ semaphore namereturn AL status
00h successful
01h semaphore currently locked
02h server not responding
03h invalid semaphore name
04h semaphore list is full
05h invalid drive ID
06h invalid Ethernet address
07h not logged in
08h write to network failed
09h semaphore already logged in this CPU

289

HUAWEI EX. 1015 - 296/393

HUAWEI EX. 1015 - 297/393

290 The Programmer’s Technical Reference

OCh unlock semaphore
AL drive number or 0
ES:SI Ethernet address or 0
DS:BX pointer to 31-byte ASCIIZ semaphore name

return AL status (see AH=OBh)
1 semaphore not locked

ODh Who
CX length of data
DS:DX pointer to array of records to be filled

12 bytes node ID
byte flag (l=workstation,

2=superstation)
return CL number of records returned (responding stations)
OEh spool/print
DS:DX pointer to record

word 00h initiate spool
01h abort print
02h close spool
03h delete spool
04h print
05h get report info

11 bytes file name
byte notification

bit 0 no notification
1 notify at print start
2 notify at print start and reply?
3 notify at print completion4 ?
5 no form feed
6 do ID page
7 ?

byte days to keep (OFFh=forever)
byte device (1=LPT1)
word length of following data area

n bytes $SCNT records returned if code in first word is05h
return CF set on error

AX error code
0FF16h invalid parameter
0FF17h device not mounted
0FF18h already spooling to named device

11h Lock FCB
AL mode

00h sequential
01h random
02h random block

DS:DX pointer to FCB
return CF set on error

AX 02h file not found
OFFOlh timeout
0FF17h record locked by another user

12h Unlock FCB
AL mode

00h sequential
01h random
02h random block

DS:DX pointer to FCB
return CF set on error

AX 02h file not found

Aftermarket Application Installed Function Calls
Novel] Netware 2.11

Novell no longer recommends the int 21h method for invoking the Netware functions. Int 21h
will be supported indefinitely, but the net API calls for addressing the software through the
Multiplex Interrupt (2Fh). You may address the API through int 2Fh in the same manner as int
21h; only the interrupt number is different.

HUAWEI EX. 1015 - 297/393

HUAWEI EX. 1015 - 298/393

Function OB6h
entry AH

AL

CL
' bit

DS:DX
return CF

AL

CL

Function OB7h

Function OBBh
entry AHAL

CX
ES:BX

return none

OBBh N
AH OBBh
AL

Function
entry

return AL

Function OBCh
entry AH OBCAL

bit

BX
CX:DX
BP
SI:DI

return AL

Function OBDh
entry AH OBDhBX

CX:DX
return AL

Function OBEh
entry AH OBEhBX

CX:DX
return AL

Function OBFh
entry AH

AL
bit

Network Inteifacing 291

Novell NetWare SFT Level II — Extended File Attributes0B6h

00h Get Extended File Attributes)
01h Set Extended File Attributes)attributes
0-3 ?
4 transaction tracking file
5 indexing file (to be implemented)
6 read audit (to be implemented)
7 -write audit (to be implemented)
pointer to ASCIIZ pathnameset on error
error code
OFFh file not found
8Ch caller lacks privileges
current extended file attributes

unknown or not used. Novell?

Novell Advanced NetWare 2.0+ — Printer Functions
OBBh
00h Get Default Print Job Flags)
01h Set Default Capture Flags)
02h Get Specific Capture Flags)
03h Set Specific Print Job Flags)
04h Get Default Local Printer)
05h Set Default Local Printer)
06h Set Capture Print Queue)
07h Set Capture Print Job)
08h Get Banner User Name)
09h Set Banner User Name)
buffer size
pointer to buffer

ovell NetWare 4.0 - Set End Of Job Statush

new EOJ flag
00h disable Eon
otherwise enable EOJs
old EOJ flag

Novell NetWare 4.6 — Log Physical Recordh
h
flags
0 lock as well as log record
1 non—exclusive lock
2-7 ?
file handle
offset
timeout in timer ticks (1/18 sec)
length
error code

Novell NetWare 4.6 - Release Physical Recordh

file handle
offset '
error code

Novell NetWare 4.6 - Clear Physical Recordh

file handle
offset
error code

Novell NetWare 4.6 — Log Record (FCB)
OBFh
flags
0 lock as well as log record
1 non—exclusive lock

HUAWEI EX. 1015 - 298/393

HUAWEI EX. 1015 - 299/393

292

DS:DX
BX:CX
BP
SIzDI

return AL

Function OCOh
entry AH

DS:DX
BX:CX

return AL

Function 0C1h
entry AH

DS:DX
BX:CX

return AL

Function 0C2h Novell NetWare 4.

2—7

The Programmer’s Technical ReferenCe
?

pointer to FCBoffset
timeout in timer ticks (1/18 sec)
lengtherror code

Novell NetWare 4.6 — Release Record (FCB)
OCOh

pointer to FCBoffset
error

Novell NetWare 4.6 ~ Clear Record (FCB)
0C1h

code

pointer to FCB
offset
error code

6 — Lock Physical Record Seth

entry AH 0C2h
AL flags

bit 0 ?
1 non-exclusive lock
2—7 ?

BP timeout in timer ticks (1/18 sec)
return AL error code

Function 0C3h Novell NetWare 4.6 — Release Physical Record Seth
entry 0C3h
return AL error code

Function 0C4h Novell NetWare 4.6 — Clear Physical Record Seth
entry AH C4h
return AL error code

Function OCSh Novell NetWare 4.6 - Semaphores
entry AH 0C5h

AL 00h Open Semaphore)
DS:DX pointer semaphore name
CL initial value
return CX:DX semaphore handle

BL open count
01h Examine Semaphore)
return CX semaphore value (sign extended)

DL open count
02h Wait 0n Semaphore)

BP timeout in timer ticks (1/18 sec)
03h Signal Semaphore)

- 04h Close Semaphore)
CX:DX semaphore handle (except function 00h)

return AL error code

Function 0C6h Novell NetWare 4.6 — Get or Set Lock Mode
entry AH 0C6h

AL 00h set old ’compatibility' mode
01h set new extended locks mode
02h get lock mode

return AL current lock mode

Function 0C7h Novell NetWare 4.0 - TTS
entry AH 0C7h

AL 00h TTS Begin Transaction (NetWare SFT level II)
01h TTS End Transaction (NetWare SFT level II)
02h TTS Is Available (NetWare SFT level II)
03h TTS Abort Transaction (NetWare SFT level II)
04h TTS Transaction Status)
05h TTS Get Application Thresholds)
06h TTS Set Application Thresholds)
07h TTS Get Workstation Thresholds)
08h TTS Set Workstation Thresholds)

HUAWEI EX. 1015 - 299/393

HUAWEI EX. 1015 - 300/393

return AL

Function 0C8h
entry’ AH

return AL

Function OCBh
entry AH
return AL

Function OCAh
entry AH

DS:DX

return AL

Function OCBh
entry AH

return AL

Function OCCh
entry AH

DS:DX
return none

Function 0CDh
entry AH

Function OCEh
entry AH

DS:DX
return AL

Function OCFh
entry AH

Function ODOh
entry AH

DS:DX

return AL

Network Interfacing

varies according to function called
(00h) error code

CX:DX transaction reference number
(01h) error code
(02h) completion code

00h TTS not available
01h TTS available
OFDh TTS available but disabled

(03h) error code
(04h-08h) unknown

Novell NetWare 4.0 - Begin Logical File Locking0C8h
if function 0C6h lock mode 00h:
DL mode

00h no wait
01h wait

if function 0C6h lock mode 01h:

BP timeout in timer ticks (1/18 sec)error code

Novell NetWare 4.0 — End Logical File Locking
0C9h
error code‘

Novell NetWare 4.0 Log Personal File (FCB)OCAh
pointer to FCB
if function 0C6h lock mode 01h:
AL log and lock flag

00h log file only
01h lock as well as log file

BP timeout in timer ticks (1/18 sec)error code

Novell NetWare 4.0 - Lock File Set
OCBh .
if function 0C6h lock mode 00h:
DL mode

00h no wait
01h wait

if function 0C6h lock mode 01h:

BP timeout in timer ticks (1/18 sec)error code

Novell NetWare 4.0 — Release File (FCB)
OCCh
pointer to FCB

Novell NetWare 4.0 - Release File Set
0Cthreturn none

Novell NetWare 4.0 — Clear File (FCB)
OCBh

pointer to FCB
error code

Novell NetWare 4.0 — Clear File Set
OCthreturn AL 00h

Novell NetWare 4.6 ~ Log Logical Record
ODOh

pointer record string
if function 0C6h lock mode 01h:
AL flags

bit 0 lock as well as log the record
1 non-exclusive lock
2—7 ?

BP timeout in timer ticks (1/18 sec)
error code

293

HUAWEI EX. 1015 - 300/393

HUAWEI EX. 1015 - 301/393

294

Function
entry AH 0D1h

DL

BP
return AL

Function 0D2h
entry AH 0D2hDS:DX
return AL

The Programmer’s Technical Reference

ODlh Novell NetWare 4.6 — Lock Logical Record Seth

if function 0C6h lock mode 00h:
mode
00h no wait
01h wait
if function 0C6h lock mode 01h:
timeout in timer ticks (1/18 sec)
error code

Novell NetWare 4.0 - Release Logical Record Seth

pointer to record string
error code

Function 0D3h Novell NetWare 4.0 - Release Logical Record Seth
entry AH 0D3h
return AL error code

Function 0D4h Novell NetWare 4.0 — Clear Logical Record Seth
entry AH OD4h

DS:DX pointer to record string
return AL error code

Function 0D5h Novell NetWare 4.0 — Clear Logical Record Seth
entry AH ODSh
return AL

Function 0D6h
entry AH
return AL

Function OD7h
entry AH
return AL

Functions OD8h,

Function ODAh
entry AH

DL
ES:DI

return AL

16

error code

Novell NetWare 4.0 — End of Jobh
0D6h
error code

Novell NetWare 4.0 — System Logouth
OD7h

error code

0D9h unknown — Novell NetWare?

Novell NetWare 4.0 — Get Volume Statistics
ODAh
volume number

pointer to reply buffer
00h
reply buffer
word sectors/block
word total blocks
word unused blocks
word total directory entries
word unused directory entries
bytes volume name, null padded
word removable flag, 0 = not removable

Function ODBh Novell NetWare 4.0 — Get Number of Local Drivesh
entry AH ODBh
return AL

Function ODCh
entry AH
return AL

CX

Function ODDh
entry AH

DL

return AL

number of local disks

Novell NetWare 4.0 — Get Station Number (Logical ID)
ODCh
station
00h

number
if NetWare not loaded or this machine is a
non—dedicated server

station number in ASCII

Novell NetWare 4.0 — Set Error Modeh
ODDh
error mode

00h display critical I/O errors
01h extended errors for all I/O in AL
02h extended errors for critical I/O in AL
previous error mode

HUAWEI EX. 1015 - 301/393

HUAWEI EX. 1015 - 302/393

Function ODEh
entry AH

AL

return AL

Function ODFh
entry AH

AL

return AL

Function OEOh
entry AH

DS:SI

ES:DI
return AL

Function OElh
entry AH

DS:SI

ES:DI
return AL

Function 0E2h
entry AH

DS:SI
ES:DI

Network Intetfacing

Novell NetWare 4.0 - Get/Set Broadcast ModeODEh
broadcast mode

00h receive console and workstation broadcasts
01h receive console broadcasts only
02h receive no broadcasts
03h store all broadcasts for retrieval
04h get broadcast mode
05h . disable shell timer interrupt checks
06h enable shell timer interrupt checksold broadcast mode

Novell NetWare 4.0 - CaptureODFh

00h Start LPT Capture)
01h End LPT Capture)
02h Cancel LPT Capture)
03h Flush LPT Capture)
04h Start Specific Capture)
05h End Specific Capture)
06h Cancel Specific Capture)
07h Flush Specific Capture)error code

Novell NetWare — Print SpoolingOEOh

pointer to request buffer
subfunction in third byte of request buffer:
00h spool data to a capture file
01h close and queue capture file
02h set spool flags
03h spool existing file
04h get spool queue entry
05h remove entry from spool queue
06h get printer status '
09h create a disk capture file
pointer to reply buffererror code

Novell NetWare 4.0 — Broadcast MessagesOElh

pointer to request buffer
subfunction in third byte of request buffer:
00h send broadcast message
01h get broadcast message
02h disable station broadcasts
03h enable station broadcasts
04h send personal message
05h get personal message
06h open message pipe
07h close message pipe
08h check pipe status
09h broadcast to console
pointer to reply buffererror code

Novell NetWare 4.0 — Directory Functions0E2h

pointer to request buffer
pointer to reply buffer
subfunction in third byte of request buffer:
00h Set Directory Handle)
01h Get Directory Path)
02h Scan Directory Information)
03h Get Effective Directory Rights)
04h Modify Maximum Rights Mask)05h unknown

06h Get Volume Name)
07h Get Volume Number)08h unknown

295

HUAWEI EX. 1015 - 302/393

HUAWEI EX. 1015 - 303/393

296

return AL

Function 0E3h
entry AH

DS:SI
ES:DI

09h
OAh
OBh
OCh
ODh
OEh
OFh
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
error code

Novell NetWare 4.0 — Connection Control
E3h
pointer
pointer
subfunction in third byte of request buffer
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
OAh
OBh
och
0Dh
OEh
OFh
10h
11h
12h
13h
14h
15h
16h
17h-31h
32h
33h
34h
35h
36h
37h
38h
39h
3Ah
3Bh
3Ch
3Dh
3Bh
3Fh
40h
41h
42h
43h
44h
45h
46h
47h
48h-0C7h unknown

_unknown

The Programmer’s Technical Reference
unknown
Create Directory)
Delete Directory)
Scan Directory For Trustees)
Add Trustee To Directory)
Delete Trustee From Directory)
Rename Directory)
Purge Erased Files)
Restore Erased File)
Allocate Permanent Directory Handle)
Allocate Temporary Directory Handle)
Deallocate Directory Handle)
Get Volume Info with Handle)
Allocate Special Temporary Directory Handle)
retrieve a short base handle (Advanced NetWare 2.0)
restore a short base handle (Advanced NetWare 2.0)
Set Directory Information)

to request buffer
to reply buffer

login
change password
map user to station set
map object to number
map number to object
get station’s logged information
get station's root mask (obsolete)
map group name to number
map number to group name
get memberset M of group G
Enter Login Area)
unknown

Log Network Message)
get disk utilization (Advanced NetWare 1.0)
scan file information (Advanced NetWare 1.0)
set file information (Advanced NetWare 1.0)
get file server information (Advanced NetWare 1.0)unknown

get internet address (Advanced NetWare 1.02)
login to file server (Advanced NetWare 2.0)
get object connection numbers (Advanced NetWare 2.0)
get connection information (Advanced NetWare 1.0)unknown

create object (Advanced NetWare 1.0)
delete object (Advanced NetWare 1.0)
rename object (Advanced NetWare 1.0)
get object ID (Advanced NetWare 1.0)
get object name (Advanced NetWare 1.0)
scan object (Advanced NetWare 1.0)
change object security (Advanced NetWare 1.0)
create property (Advanced NetWare 1.0)
delete property (Advanced NetWare 1.0)
change property security (Advanced NetWare 1.0)
scan property (Advanced NetWare 1.0)
read property value (Advanced NetWare 1.0)
write property value (Advanced NetWare 1.0)
verify object password (Advanced NetWare 1.0)
change object password (Advanced NetWare 1.0)
add object to set (Advanced NetWare 1.0)
delete object from set (Advanced NetWare 1.0)
is object in set? (Advanced NetWare 1.0)
close bindery (Advanced NetWare 1.0)
open bindery (Advanced NetWare 1.0)
get bindery access level (Advanced NetWare 1.0)
scan object trustee paths (Advanced NetWare 1.0)

HUAWEI EX. 1015 - 303/393

HUAWEI EX. 1015 - 304/393

 return AL

Function 0E4h
entry AH

AL
return AL

Function 0E4h
entry AH

CL
bit

DX:DX
return AL

Function OESh
entry AH

DS:DX
return AL

Function 0E6h
entry AH

CX:DX
DS:SI
ES:DI

return AL

Function 0E7h
entry AH

DS:DX

0C8h Check Console Privileges)
0C9h Get File Server Description Strings)
OCAh Set File Server Date And Time)
OCBh Disable File Server Login)
OCCh Enable File Server Login)
OCDh Get File Server Login Status)
OCEh Purge All Erased Files)
OCFh Disable Transaction Tracking)
ODOh Enable Transaction Tracking)
0D1h . Send Console Broadcast)
0D2h Clear Connection Number)
0D3h Down File Server)
0D4h Get File System Statistics)
ODSh Get Transaction Tracking Statistics)
0D6h Read Disk Cache Statistics)

Network Interfacing

0D7h Get Drive Mapping Table)
0D8h Read Physical Disk Statistics)
0D9h Get Disk Channel Statistics)

297

ODAh Get Connection's Task Information)
ODBh Get List of Connection's Open Files)
ODCh Get List of Connections Using A File)
ODDh Get Physical Record Locks By Connection and File)
ODEh Get Physical Record Locks By File)
ODFh Get Logical Records By Connection)
OEOh Get Logical Record Information)
OElh Get Connection's Semaphores)
0E2h Get Semaphore Information)
OE3h Get LAN Driver’s Configuration Information)0E4h unknown

OESh Get Connection's Usage Statistics)
0E6h Get object's Remaining Disk Space)
0E7h Get Server LAN I/O Statistics)
0E8h Get Server Miscellaneous Information)
0E9h Get Volume Information)error code

DoubleDOS
0E4h
00h Check status

0 if DoubleDOS is active

Novell NetWare 4.0 - Set File Attributes (FCB)OE4h

file attributes byte
0 read only
1 hidden
2 system
3—6 undocumented
7 shareable
pointer to FCB
error code

Novell NetWare 4.0 f Update File Size (FCB)OESh

pointer to FCB
error code

Novell NetWare 4.0 — Copy File To File (FCB)0E6h

number of bytes to copy
pointer to source FCB
pointer to destination FCB
error code

Novell NetWare 4.0 — Get File Server Date and Timeh

pointer to 7-byte reply buffer

0E7h

byte year — 1900
byte month
byte day
byte hours

HUAWEI EX. 1015- 304/393

HUAWEI EX. 1015 - 305/393

298 The Programmer’s Technical Reference

byte minutes
byte seconds
byte day of week (0 = Sunday)

return unknown

Function 0E7h Novell NetWare 4.6 - Set FCB Re—open Mode
entry AH 0E8hDL mode

00h no automatic re-open
01h auto re—open

return AL error code

Function 0E9h Novell NetWare 4.6 - Shell's ’Get Base Status'
entry AH 0E9h

AL 00h Get Directory Handle
Dx drive number to check (0 = A:)

return AL network pathbase
AH base flags:

00h drive not currently mapped to a base
01h drive is mapped to a permanent base
02h drive is mapped to a temporary base
03h drive exists locally

Function DEAh Novell NetWare 4.6 — Return Shell Version
entry AH OEAh

AL 00h get specialized hardware information
return AL hardware type

00h IBM PC
01h Victor 9000

01h Get Workstation Environment Information)
ES:DI pointer to 40—byte buffer
return buffer filled with three null-terminated entries:

major operating system
version
hardware type

return AH 00h if MSDOS system

Function OEBh Novell NetWare 4.6 — Log File
entry OEBh Log File

DS:DX pointer to ASCIIZ filename
if function 0C6h lock mode 01h:
AL flags

00h log file only
01h lock as well as log file

BP timeout in timer ticks (1/18 second)
return AL error code

Function OECh Novell NetWare 4.6 - Release Fileh
entry AH OECh

DS:DX pointer to ASCIIZ filename
return none

Function OEDh Novell NetWare — Clear Fileh
entry AH OEDh

DS:DX pointer to ASCIIZ filename
return AL error code

Function OEEh Novell NetWare — Get Node Address (Physical ID)
entry AH OEEh '
return CX:BX:AX = six—byte address

Function OEFh Novell Advanced NetWare 1.0+ — Get Drive Info
entry AH OEFh

buffer 00h Get Drive Handle Table)
01h Get Drive Flag Table)
02h Get Drive Connection ID Table)
03h Get Connection ID Table)
04h Get File Server Name Table)

return ES:DI pointer to shell status table

HUAWEI EX. 1015 - 305/393

HUAWEI EX. 1015 - 306/393

Function OFOh
entry AH

AL

DL
return AL

Function OFlh
entry AH

AL

return AL

Function OFlh
entry AH
return unknown

Function 0F3h
entry AH

ES:DI

return AL
CX:DX

Function 0F3h

entry AH
return unknown

Novell Advanced NetWare 1.0+ - Connection IDOFOh
00h
01h
02h
03h
04h
05h
06h

Set Preferred Connection ID)
Preferred Connection ID)
Default Connection ID)

Get
Get
LPT
Set
Get
Get

Network Interfacing

Capture Active)
Primary Connection ID)
Primary Connection ID)
Printer Status)

preferred file server
selected file server

Novell Advanced NetWare 1.0+ - File Server ConnectionOFlh
00h

01h
02h

Attach To File Server)
preferred file server

Detach From File Server)
Logout From File Server)

DL

completion code

Novell NetWare — unknown
OFZh

Novell Advanced NetWare 2.0+ — File Server File Copy0F3h

pointer to request stringsource file handleword
word
dword
dword

_dword

destination file handle
starting offset in source
starting offset in destination
number of bytes to copystatus/error code

number of bytes copied

Novell NetWare

File Server File Copyh0F3h

HUAWEI EX. 1015 - 306/393

HUAWEI EX. 1015 - 307/393

14

Mouse Programming
___’_’____/

General Information
The current generation ofPC mice are all based on the Microsoft design originally introduced in
June 1983. The Microsoft design (now de facto industry standard) uses a CPU software inter-
rupt and a set of interrupt function calls to interpret data obtained from the pointing device. The
original Microsoft mice used a card plugged into the system bus and a proprietary connection to
the mouse. Later designs and most clones use a serial connection, a major exception being the
IBM PS/Z series’ ‘pointing device port’.

There are various types of mice on the market. Various arrangements ofwheels, balls, or a light-
reflecting grid are used to detect mouse motion. Other systems often emulate the mouse in soft-
ware while providing a different hardware implementation. These include trackballs, some joy-
sticks, and some touch pads (such as the Koala pad). There is at least one program which will let
a standard joy-stick emulate a mouse. Trackballs and joy—sticks are useful when desk space is at a
premium. Most of these devices communicate with the system through some form of the Micro-
soft mouse API.

Mouse movement is defined in terms of mickeys (according to Bill Gates, this unit of measure-
ment was named for the cartoon character Mickey Mouse). There are approximately 200 mic-
keys per inch of mouse movement. The mouse polls the current mickey count and sends the in-
formation to the mouse driver at regular intervals.

The mouse driver transforms the mickey count into screen pixels. The number of mickeys re-
quired to move the cursor one pixel is adjustable through a function call. The default mickey-to-
pixel ratio is 1:1 on the X axis (horizontal) and 2:1 on the Y axis (vertical).
In graphics modes the mouse cursor can be moved one pixel at a time. In text modes the mouse
cursor usually moves one character cell at a time. For example, on a Hercules screen in text
mode, the smallest increment the mouse cursor can move is 9 pixels horizontally or 14 vertically.
When the mouse is moved, the cursor moves a set amount. In order to allow fine positioning of
the cursor, the ratio between mouse movement and cursor movement must be small. This would
make it difficult to make large adjustments of cursor position without excessive mouse move-
ment. Tb solve this problem, some simple mouse drivers implement a ‘double-speed threshold’.
The mouse and cursor move in a 1:1 ratio up to a certain speed (mickeys per second) and then

HUAWEI EX. 1015 - 307/393

HUAWEI EX. 1015 - 308/393

Mouse Programming . ' 301

the driver multiplies the mickey count b ' ' ’ 'y two before prooessm 1t, effectivel doublin the cur-
sor speed. Double—speed mouse drivers are common. g y g

A better solution is the ‘ballistic’ driver. The mouse driver monitors the mickey count and
modifies the count according to an arithmetic function or table. The mickey/pixel rate is varied
in a smooth ratio from slowest to fastest.

The Microsoft mouse driver is not re-entrant. That is, a driver function may not call another

driver function and return to its previous state.

Register Usage

The mouse driver is accessed much the same as DOS. Appropriate values are placed in the CPU
registers and interrupt 33h is called. On return, the requested action is performed and whatever
return codes are given are in he registers.

With the Microsoft Mouse device driver the registers are used as follows:

AX mouse event flags:
bit significance
0 mouse movement
1 left button pressed
2 left button released
3 right button pressed
4 right button released
5—15 reserved

BX button state
bit significance
0 left button is down
1 right button is down
2—15 reserved

CX X coordinate
DX Y coordinate
DS mouse driver data segment
DI raw horizontal mickey count
SI raw vertical mickey count

Interrupt 33h Function Requests.
Interrupt 33h Microsoft Mouse Driver Extensions

The Microsoft mouse driver hooks into the int 10h video BIOS vector and watches for a change
in screen mode. The mouse driver will automatically adapt to any supported BIOS video mode.
The Microsoft driver makes 35 functions available to applications. Other brands of mouse dri-
vers may add more. The mouse driver does not check input values, so all registers used by a call
must be set by the application program.

Function Requests

Function 00h Reset Driver and Read Status
entry AX OOOOh
return AX status

oooon hardware or driver not installed
OFFFFh reset successful

BX number of buttons
0000h other than two
0002h two buttons

HUAWEI EX. 1015 - 308/393

HUAWEI EX. 1015 - 309/393

302 The Programmer’s Technical Reference

0003h Mouse Systems mouse
note 1. Checks current screen mode and resets mouse mode if required.

2. Hides cursor and positions it to centre of screen, sets all defaults.
Function 01h Show Mouse Cursor
entry ‘AX 0001hreturn none

Function 02h Hide Mouse Cursor
entry AX 0002breturn none

note Multiple calls to hide the cursor will require multiple calls to function
01h to unhide it.

Function 03h Get Button Status
entry AX 0003h
return BX button status byte

bits 0 left button
1 right button
2 middle button (Mouse Systems mouse)
3—7 not used

CX column
DX row

note If bit is 0, button is normal. If bit is 1, button is pressed.

Function 04h Set Mouse Cursor Position
entry AX 0004hCX column

Dx row
return none

note PCM v8n8 reports Microsoft as saying, 'If the screen is not in a mode
with a cell size of 1x1, the parameter values are rounded to the nearest
horizontal or vertical coordinate values permitted for the current
screen mode.’ Mefford reports that the Microsoft driver actually
truncates instead of rounding. This may explain the reported tendencies
of some Microsoft products toward not recognizing non-MS mice.

Function 05h Return Button Press Data
entry Ax 0005h

BX button ID byte (BL)
bits 0 left

1 right
2 middle (Mouse Systems mouse)

return AX button states (AL)
bits 0 left button

1 right button
2 middle button (Mouse Systems mouse)

BX # times specified button pressed since last call
CX column at time specified button was last pressed
Dx row at time specified button was last pressed

note If bit is 0, button is normal. If bit is 1, button is pressed.

Function 06h Return Button Release Data
entry AX 0006b

BX button ID byte (BL)
bits 0 left

1 right
2 middle (Mouse Systems mouse)

return AX button states (AL)
bits 0 left button

1 right button
2 middle button (Mouse Systems mouse)

BX no. of times specified button released since last call
CX column at time specified button was last released
DX row at time specified button was last released

note If bit is 0, button is normal. If bit is 1, button is pressed.

Function 07h
entry AXCX

DX
return none

Define Horizontal Cursor Range
0007b '
minimum column
maximum column

HUAWEI EX. 1015 - 309/393

HUAWEI EX. 1015 - 310/393

Mouse Programming ' 303

Function 08h Define Vertical Cursor Range
entry

return
note

AX 0008h
CX minimum row
DX maximum row
none

If the minimum value is greater than the maximum value, the values are
swapped.

Function 09h Define Graphics Cursor
entry

return
.note

AX ooosh ,
BX column of cursor hot spot in bitmap (~16 to 16)
CX row of cursor hot spot (-16 to 16)
ES:DX pointer to bitmap

16 words screen mask
16 words cursor mask

none

Each word defines the sixteen pixels of a row, low bit rightmost.

Function OAh 'Define Text Cursor
entry

return
note

Ax OOOAh
Bx select hardware/software text cursor

00h software
CX screen mask value or scan line start
DX cursor mask value or scan line stop

01h hardware
none

when the software cursor is selected, the char/attribute data at the
current screen position is ANDed with the screen mask and then XORed
with the cursor mask.

Function OBh Read Motion Counters
entry
return

note 1.
2.
3.

AX OOOBh

CX number of mickeys mouse moved horiz. since last call
DX number of mickeys mouse moved vertically
A mickey is the smallest increment the mouse can sense.
Positive values indicate up/right.
This call ignores overflow and sets mickey count to 0 on completion.

Function OCh Define Interrupt Subroutine Parameters
entry

return
note 1.

AX OOOCh
CX bit mask

bit 0 call if mouse moves (note 3)
1 call if left button pressed
2 call if left button released
3 call if right button pressed
4 call if right button released
5 call if middle button pressed (Mouse Systems)
6 call if middle button released (Mouse Systems)7-15 not used

Dx address of FAR routine (note 4)unknown

when the subroutine is called, it is passed these values:
AH condition mask (same bit assignments as call mask)BX button state
CX cursor column
DX cursor row

DI vertical mickey count
SI horizontal mickey count
According to PCM v8n8, the DI and SI registers shown above are correct
for the Microsoft Mouse and were shown reversed in some versions of the
Microsoft Mouse Programmer‘s Reference Guide.
The Microsoft documentation reads ’cursor’ instead of 'mouse’. The
Microsoft driver looks at mouse position, though. (PCM v8n8). Logitech
and Mouse Systems watch for cursor position.
The complete call is DS:DX. The segment value (DS) is taken care of by
the mouse driver. You need only pass DX.

Function ODh Light Pen Emulation On
entry
return
note 1.

AX OOODh

none .
Light pen emulation is on by default when using the Microsoft driver.

HUAWEI EX. 1015 - 310/393

HUAWEI EX. 1015 - 311/393

304

2. If a real light pen is present in the system, fn OEh must be used to ‘
disable emulation.

Function OEh
entry AX
return none

The Programmer’s Technical Reference ' 1

Light Pen Emulation OffOOOEh
the mouse driv

PC Mouse. Not documented by Microsoft

3. Array format:
offset value
01h left x
02h top y—
can right
04h

Function 11h not do

Function 12h Set La
entry AX 0012hBH cursor

CH rows i
BL horizo
CL vertic
DX pointe

return AH OFFFFh
note 1.

2. The complete c
the mouse driv

Function 13h Define
entry AX 0013hDX

0000b
return none
note If speed excee

Function 14h Exchan
entry AX 0014b

BX:DX pointeCX

return BX:DX FAR ad
CX

Function 15h
entry AX 0015hreturn BX

Function 16h

entry Ax 0016hDX offset
return none

Function 17h Restor
entry Ax 0017h

DX offset
return none

Function 18h-1Ch not

bottom y—screen coordinate

threshold speed in mickeys/second,

call mask (see function OOOCh)

call mask of previous interrupt routine

Return Driver State Storage Requirements

size of buffer needed to store driver state

Function OFh Define Mickey/Pixel Ratio ‘ 3
'entry AX OOOFh ’

CX mickeys per 8 pixels horizontally (default 8)
Dx mickeys per 8 pixels vertically (default 16)

return none

Function 10h Define Screen Region for Updating (Conditional Off)
entry AX OOth

DX pointer to region you want to update (note 2)return none

note 1. Mouse cursor is hidden during updating, and needs to be explicitly turned
on again.

2. The complete call is DS:Dx. The segment value (DS) is taken care of byer. You need only pass DX.

—screen coordinate
screen coordinate
x-screen coordinate

cumented by Microsoft

rge Graphics Cursor Block

width in words
n cursor

ntal hot spot (—16 to 16)
a1 hot spot (-16 to 16)
r to bit map of screen and cursor maps (note 2)

successful

all is DS:DX. The segment value (DS) is taken care of by
er. You need only pass DX.

Double-Speed Threshold

default of 64/second

ds threshold, the cursor's on—screen motion is doubled.

ge Interrupt Subroutines

r to FAR routine

dress of previous interrupt routine

Save Driver State

into buffer

e Driver State

into buffer containing saved state

documented by Microsoft

HUAWEI EX. 1015 - 311/393

HUAWEI EX. 1015 - 312/393

Mouse Programming 305

Function 18h Set Alternate Mouse User Handler
entry AX 0018b

CX call mask
bit 0 call if mouse moves

1 call if left button pressed
2 call if left button released
3 call if right button pressed
4 call if right button released
5 call if shift button pressed during event
6 ~call if ctrl key pressed during event
7 call if alt key pressed during event8-15 not used

DX offset to user subroutine
return AX OFFFFh error

note 1. when the subroutine is called, it is passed the following values:
Ax condition mask (same bit assignments as call mask)BX button state
CX cursor column
DX cursor row

DI horizontal mickey count
SI vertical mickey count

2. Up to three handlers can be defined by separate calls to this function.

Function 19h Return User Alternate interrupt Vectorentry AX 0019h

CX call mask (same as 0018b above)
preturn Ax status OFFFFh no vector or mask found

BX:DX pointer to user interrupt vector (0 if AX=0FFFFh)
cx call mask (0 if AX=OFFFFh)

note Attempts to find a user event handler (defined by function 18h) whosecall mask matches CX.

Function 1Ah Set Mouse Sensitivity
entry Ax 001Ah

BX horizontal speed
CX vertical speed
DX double speed threshold in mickeys/second,

OOOOh sets default of 64/second
return none

Function lBh Return Mouse Sensitivity
entry AX OOlBh
return BX horizontal speed

' CX vertical speed
DX double speed threshold

Function 1Ch Set Mouse Interrupt Rate
entry AX 001Ch

BX interrupt rate desired (BL)
00h no interrupts allowed
01h 30 interrupts per second
02h 50 interrupts per second
03h 100 interrupts per second
04h 290 interrupts per second
04h—FFh not defined

return none

note If a value larger than 04h is used, the Microsoft InPort driver may be
have unpredictably.

Function th Define Display Page Number
entry Ax 001Dh

BX display page number
note The cursor will be displayed on the specified page.

Function lEh Return Display Page Number
entry AX OOlEh
return BX display page number

Function th Disable Mouse Driver
entry AX OOth
return Ax OOth successful

HUAWEI EX.1015 - 312/393

HUAWEI EX. 1015 - 313/393

306 The Programmer’s Technical Reference
OFFFFh unsuccessful

ES:BX old int 33h vector
note 1. Restores vectors for int 10h and int 71h (8086) or int 74h (286/386).

2. If you restore int 33h to ES:BX, driver will be completely disabled.

Function 20h Enable Mouse Driver
entry AX 0020hreturn none

note Restores vectors for int 10h and int 71h (8086) or int 74h (286/386)
which were removed by function th.

Function 21h Software Reset
entry AX 0021b
return AX 0021b mouse driver not installed

OFFFFh mouse driver installed
BX 0002h mouse driver is installed

note Identical to function 0000h, but does not reset the mouse.

Function 22h Set Message Language
entry AX 0022h

BX language number (BL)
00h English
01h French
02h Dutch
03h German
04h Swedish
05h Finnish
06h Spanish
07h Portuguese
08h Italian
other values not used

return none

note Values other than 00h are valid only for Microsoft international mouse' driver software.

Function 23h Get Message Language
entry AX 0023h
return BX current language number (BL)
note See function 0022b.

Function 24h Get Software Version, Mouse Type, and IRQ Number
entry AX 0024b
return AX OFFFFh on error, else

BH major version
BL minor version
CH mouse interface type

01h bus mouse
02h serial mouse
03h Microsoft InPort
04h IBM PS/2 Pointing Device port

. 05h Hewlett—Packard mouse
CL IRQ interrupt request number

00h PS/2 pointing device
01h not defined
02h IRQ2
03h IRQ3

07h IRQ7)

Function 42h PCMouse - Get MSmouse Storage Requirements
entry AX 0042h
return AX OFFFFh successful

BX buffer size in bytes for functions Bob and 52h
00h MSmouse not installed
42h functions 42h, 50h, and 52h not supported

Function 43-49h unknown

Function 50h PCmouse - Save MSmouse State
entry AH 50h

BX buffer size

HUAWEI EX. 1015 - 313/393

HUAWEI EX. 1015 - 314/393

_ Mouse Programming I 307

ES:DX pointer to buffer
return Ax OFFFFh successful

Function 51h unknown

Function- 52h PCMouse ~ Save MSmouse State
entry AH 50h

BX buffer size
ES:DX pointer to buffer

return AX OFFFFh successful

Interrupt 10h (Video BIOS) Microsoft Mouse Driver EGA Support

The following functions are appended to BIOS int 10h and implemented as the EGA Register
Interface Library:

OFOh read one register
OFlh write one register
0F2h read consecutive register range
OF3h write consecutive register range
0F4h read non-consecutive register set
0F5h write non-consecutive register set
OF6h revert to default register values
0F7h define default register values
OFAh get driver status

Function OFOh Microsoft Mouse driver EGA support — Read One Register
entry AH OFOh

BH pointer for register/data chips
BL pointer
DX port number

(pointer/data chips)
00h CRT Controller (25 registers) (3B4h mono, 3D4h colour)
08h sequencer (5 registers) (3C4h)
10h graphics controller (9 registers) , (3CEh)
18h attribute controller (20 registers) (3C0h)
(single registers)
20h miscellaneous output register (3C2h)
28h Feature Control register (3BAh mono, 3DAh colour)
30h graphics 1 position register (3CCh)
38h graphics 2 position register (3CAh)return BL data

note All other registers are restored.

Function OFlh Microsoft Mouse driver EGA support - Write One Register
entry AH OFlh

BH pointer for pointer/data chips (ignored for single registers)
BL pointer for pointer/data chips or data for single registers
DX port number (see function OFOh) '

return BH and DX are not restored, all other registers are restored

Function 0F2h Microsoft Mouse driver EGA support - Read Register Rangeentry AH 0F2h 4
CH starting pointer value
CL number of registers (must be 1)
Dx port number

00h CRT controller (3B4h mono modes, 3D4h colour modes)
08h sequencer (3C4h)
10h graphics controller (3CEh)
18h attribute controller (3C0h)

ES:BX pointer to buffer, CL bytes
return CX is not restored, all other registers are restored

Function OF3h Microsoft Mouse driver EGA support — Write Register Range
entry AH OF3h

CH starting register
CL number of registers (must be 1)
DX port number

00h CRT controller (3B4h mono modes, 3D4h colour modes)
08h sequencer (3C4h)
10h graphics controller (3CEh)

HUAWEI EX. 1015 - 314/393

HUAWEI EX. 1015 - 315/393

308

return

The Programmer ’3 Technical Reference

18h attribute controller (3C0h)
ES:BX pointer to buffer, CL bytes
BX, CX, DX are not restored, all other registers are restored

Function 0F4h Microsoft Mouse driver EGA support — Read Register Set
entry

return

AH 0F4h
CX number of registers (must be 1)
ES:BX pointer to 4—byte table of records in this format:

byte 0—2 port number
(pointer/data chips)

00h CRTC (3B4h mono modes, 3D4h colour modes)
08h sequencer (3C4h)
10h graphics controller (3CEh)

. 18h attribute controller (3C0h)
(single registers)

20h miscellaneous output register (3C2h)
28h Feature Control register (3BAh mono modes,

3DAh colour)
30h graphics 1 position register (3CCh)
38h graphics 2 position register (3CAh)

byte 1 must be zero
byte 2 pointer value (0 for single registers)
byte 3 EGA Register Interface fills in data read from register

specified in bytes 0—2.
CX is not restored, all other registers are restored

Function 0F5h Microsoft Mouse driver EGA support — Read Register Set
entry

return

AH OFSh
CX number of registers (must be greater than 1)
Essz pointer to 4—byte table of records in this format:

byte 0—2 port number
(pointer/data chips)

00h CRT controller (3B4h mono modes,3D4h colour modes)
08h sequencer (3C4h) '
10h graphics controller (3CEh)
18h attribute controller (3C0h)

(single registers)
20h miscellaneous output register (3C2h)
28h Feature Control register (3BAh mono modes,

3DAh colour) '
30h graphics 1 position register (3CCh)
38h graphics 2 position register (3CAh)

byte 1 must be zero
byte 2 pointer value (0 for single registers)
byte 3 data to be written to register specified in bytes 0—2.

CX is not restored, all other registers are restored

Function OFGh MS Mouse driver EGA support - Revert to Default Registers
entry
return

AH 0F6h

all registers restored

Function 0F7h MS Mouse driver EGA support — Define Default Register Table
entry

return

AH 0F7h
CX VGA colour select flag

5448h allows EGA Register Interface to recognise byte
offset 14h of the table pointed to by ES:BX as the value
for the VGA colour select register

DX port number
(pointer/data chips)
00h CRT controller (3B4h mono modes, 3D4h colour modes)
08h sequencer (3C4h)
10h graphics controller (3CEh)
18h attribute controller (3C0h)
(single registers)
20h miscellaneous output register (3C2h)
28h Feature Control register (3BAh mono, 3DAh colour)
30h graphics 1 position register (3CCh)
38h graphics 2 position register (3CAh)

ES:BX pointer to table of one byte entries, one byte to be
written to each register (all registers must be written)

BX and DX are not restored, all other registers are restored

HUAWEI EX. 1015 - 315/393

HUAWEI EX. 1015 - 316/393

Mouse Programming ' 309 '

Functions 0F8h, OFSh unknown

Function OFAh Microsoft Mouse driver EGA support - Interrogate Driver
entry AH OFAh

BX 00h
return ,AX restored

BX 0000b if mouse driver not present
ES:BX pointer to EGA Register Interface version number, if present:

byte 0 major release number
byte 1 minor release number (in 100ths)

HUAWEI EX. 1015 - 316/393

HUAWEI EX. 1015 - 317/393

15

Register-Level Hardware Access

8255 Peripheral Interface Chip (PIC)

The Intel 8255 has 3 1-byte registers, referred to as ports A, B, or C. They are located at port ad-
dresses 60h-62h. Ports A and C are read-only, B is read/write. In the IBM PC, setting bit 7 of port

B changes information in port A, and setting bit 2 determines the contents of the lower 4 bits of
port C. (bit 3 in the XT)

60h port A read—only
byte (normal) 8-bit scancodes from keyboard (all machines)

(PC: port B bit 7-1) equipment byte as returned by int 11hbit 0 0 = no diskette drives installed
1 not used
2,3 banks of RAM on motherboard
4,5 display

1,1 monochrome
1,0 80x25 colour
0,1 40x25 colour

6,7 number of diskette drives

61h port B read/write
byte

bit 0 PC,XT,jr controls gate of 8253 timer chip channel 2
1 PC,XT,jr output to speaker
2 PC select contents of port C
3 PC,jr 0 text mode (default)

1 graphics mode
XT select contents of port C

4 PC,XT 0 enable RAM (default)
I disable RAM (not very useful)

5 PC,XT 0 enable expansion slot error signals
1 disable expansion slot error signals

5,6 jr select sound source
0,0 8253 chip
0,1 cassette port
1,0 sound line on expansion bus
1,1 TI 76496 sound chip

7 PC select contents of port A, acknowledge keyboard
XT keyboard acknowledge only

62h port C read only
(when port B bit 2=1 on PC or port B bit 3=1 on XT)
byte

bit 0-3 PC bottom half of configuration switch 2
(RAM in expansion slots)

0 Per 1 incoming keystroke lost
1 KT 0 no math coprocessor installed (default)

1 math coprocessor installed

HUAWEI EX. 1015 - 317/393

HUAWEI EX. 1015 - 318/393

Register-Level Hardware Access ’ , 3] 1

2 chr 0 modem card installed
2,3 XT banks of RAM on system board
3 Per » 0 128k RAM upgrade installed

1 64k RAM (default)
4 PC,jr cassette input

XT not used
5 PC,XT,jr output of 8253 channel 2
6 PC,XT 1 expansion slot error check

jr ' 1 keyboard data
7 ' PC,XT 1 parity error check

jr 0 keyboard cable connected
1 keyboard cable not connected (default)

(when port B bit 2=0 on PC or port 8 bit 3=0 on XT)
bit 0—3 PC top half of configuration switch 2 (unused)

0,1 XT display type
1,1 monochrome
1,0 80x25 colour
0,1 40x25’colour

2,3 XT number of diskette drives
4,7 PC,XT same as if port B bit 2=1

The AT keeps its configuration settings in a Motorola MC146818 chip along with
the real-time clock. It has no 8255 chip as such, although the same port ad—
dresses are used to control the timer chip and receive data from the keyboard.
The chip has 64 registers numbered 00h-3Fh. To read a register, first send its
number to port address 70h and then read it from 71h.

CMOS RAM map, PC/AT:

offset contents
00h Seconds
01h Second Alarm
02h Minutes
03h Minute Alarm
04h Hours
05h Hour Alarm
06h Day of the Week
07h Day of the Month
08h Month
09h Year
OAh Status Register A
OBh Status Register B
OCh Status Register C
ODh Status Register D

6 OEh Diagnostic Status Byte

P OFh Shutdown Status Byte
2L 10h Disk Drive Type for Drives A: and B:The drive—type bytes use bits 0:3 for the first drive

and 4:7 for the other Disk drive types:
00h no drive present
01h double sided 360k

02h high capacity (1.2 meg)
03h-0Fh reserved

E5 11h (AT):Reserved (PS/2):drive type for hard disk C:
12h (PS/2):drive type for hard disk D:

£1 (AT, XT/286):hard disk type for drives C: and
D: Format of drive—type entry for AT, XT/286:

0 number of cyls in drive (0—1023 allowed)
2 number of heads per drive (0-15 allowed)
3 starting reduced write compensation (not used

on AT)
5 starting cylinder for write compensation
7 max. ECC data burst length, XT only
8 control byte

Bit
7 disable disk—access retries
6 disable ECC retries
5—4 reserved, set to zero
3 more than 8 heads

2-0 drive option on XT (not used by AT)

HUAWEI EX. 1015 - 318/393

HUAWEI EX. 1015 - 319/393

312 The Programmer’s Technical Reference

9 timeout value for XT (not used by AT)
12 landing zone cylinder number
14 number of sectors per track (default

17, 0-17 allowed)
9 13h Reserved

1 14h Equipment Byte (corresponds to sw. 1 on PC and KT)
y 15h—16h Base Memory Size (low,high)

17h-18h Expansion Memory size (low,high)
19h-20h Reserved

(PS/2) POS information Model 50 (60 and 80 use a 2k
CMOS RAM that is not accessible through software)

21h-2Dh Reserved (not checksummed)
ZEh-ZFh Checksum of bytes 10 through 20 (low,high)
30h-31h Exp. Memory Size as Determined by POST (low,high)
32h Date Century Byte
33h Information Flags (set during power-on)

\ 34h-3Fh Reserved
3. The alarm function is used to drive the BIOS WAIT function (int

15h function 90h).
4. To access the configuration RAM write the byte address (00—3Fh)

you need to access to I/O port 70h, then access the data via I/O
port 71h.

5. CMOS RAM chip is a Motorola 146818.
6. The equipment byte is used to determine the configuration for the

POST power—on diagnostics.
7. Bytes OO—ODh are defined by the chip for timing functions, bytes

0Eh-3Fh are defined by IBM.
8. Compaq 386 uses came CMOS chip as IBM AT. Extra functions:

byte 45 (2Dh) stores additional info not maintained by AT.
bit 0 indicates is Compaq dual—mode monitor installed

indicates whether keyclick is enabled1
2 not used .
3 if non-Compaq graphics adapter installed

8259 Interrupt Controller

The 8259 Interrupt Controller chip provides vital support services for the CPU. In a typical PC,
interrupt signals can originate from several different places (i.e. keyboard, disk drive, etc). The
8088, however, has only one input line on which to receive an interrupt signal. The 8259 chip is
therefore employed to manage the various interrupt sources and .present a single, controllable
interrupt signal to the central processor.

As configured for use in the PC, the 8259 chip can accept up to eight independent signals num-
bered 0 through 7. For each interrupt it receives, the 8259 can present an interrupt signal to the
CPU. Furthermore it presents to the CPU 3 unique interrupt type code for each of the eight in-
terrupt sources. This allows us to assign a unique interrupt service routine to each different in-
terrupt source. The eight signal inputs to the 8259 are wired onto the control bus so that any de-
vice tied into the bus system can access this interrupt mechanism. On the control bus, the signals
are named IRQO through IRQ7.

Because each signal is independent, provision must be made for the possibility of two or more
signals occurring at the same time. The 8259 manages such an event by holding on to the second-
ary interrupt(s) while the processor services the first. When that interrupt has been serviced, the
next one is signalled to the processor. For events that occur at exactly the same moment, the
8259 passes them to the processor in a priority order, where interrupt source 0 has the highest
priority and interrupt source 7 has the lowest. One very important consequence of this scheme is
that the CPU must indicate to‘ the 8259 when it has completed the servicing of each interrupt.

This must be kept in mind whenever an interrupt service routine is written.

Because it has been designed for use in many different applications, the 8259 is an extremely
complex chip. Fortunately most of this complexity is handled by the BIOS, which programs the
proper configuration information into the 8259 on power-up. The 8259 is thus configured to sig-

HUAWEI EX. 1015 - 319/393

HUAWEI EX. 1015 - 320/393

Register-Level Hardware Access ' , 31 3

nal interrupt type codes OSh-OFh to correspond with interrupt sources 0-7. Note that the two
highest-priority interrupts, IRQO and IRQl, are wired directly on the system board. The rest of
the interrupt sources are obtained from adapter cards plugged into the expansion slots.

Programming the 8259 consists of two basic actions. First, you can enable or disable each inter—
rupt source independently by writing a value into the interrupt mask register, or IMR. The IMR
is a one-byte register within the 8259 that we can access via I/O port 21h. Each bit in the IMR
corresponds to the interrupt source with its bit number (i.e. bit O-IRQO, bit 1-IRQl, etc). If a bit
in the IMR is 0, then its corresponding interrupt source in enabled. A signal appearing on that

input to the 8259 will cause an interrupt to be sent to the CPU. If the IMR bit is 1, then the inter-
rupt source is disabled (or masked) and cannot generate an interrupt. Keep in mind that the
state of the interrupt flag within the CPU will ultimately determine whether or not any interrupt
signal is received.

The second 8259 programming action that we must be concerned with is the signalling of the
end of an interrupt service routine. This is accomplished by sending the ‘end of interrupt’ (E01)
command, represented by 20h, to the interrupt command register within the 8259. Coinciden-
tally, this one—byte register is accessed via I/O port 20h.

Interrupt Sources

8259 Input Type Code Device
IRQO 08h system timer (channel 0)
IRQl 09h keyboard
IRQZ OAh EGA and CGA
IRQ3 OBh COMZ
IRQ4 OCh COMl
IRQS ODh hard disk
IRQ6 OEh floppy drive
IRQ7 OFh parallel printer

Interrupt Mask Register:

if Interrupt Flag (in CPU) 0: All interrupts disabled (use CLI instruction)

if Interrupt Flag (in CPU) 1: Interrupts enabled (use STI instruction)

7 6 5 4 3 2 1' O Interrupt Mask Register
| IMR bit=0: IRQ enabled
IRQO IMR bit=1= IRQ disabled

IRQl Set IMR with nov' AL,xyz I
11292 our 21H,AL l

IRQ3
IRQ4

IRQS
IRQ6

IRQ7

HUAWEI EX. 1015 - 320/393

HUAWEI EX. 1015 - 321/393

16

Video Subsystems and
Programming

Quick List of Interrupt 10h Functions
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
OAh
OBh
OCh
ODh
OEh
OFh
10h
11h
12h
13h
14h
15h
lAh
lBh
1Ch
40h
41h
42h
43h
44h
45h
46h
47h
48h
49h
4Ah
4Bh
4Ch
4Dh
4Eh
6Ah
6Fh

Determine or Set Video State
Set Cursor Type
Set Cursor Position
Read Cursor Position
Readeight Pen
Select Active Page
Scroll Page Up
Scroll Page Down
Read Character Attribute
Write Character and Attribute
Write Character
Set Colour Palette
Write Dot
Read Dot
Write ’l‘TY
Return Current Video State
Set Palette Registers
Character Generator Routine
Alternate Select
Enhanced String Write
Load LCD Character Font

Return Physical Display Parameters
Display Combination Code
Functionality/state Information
Save/Restore Video State
Set Graphics Mode
Set Text Mode
Clear Current Page
Select Drawing Page
Select Drawing Function
Select Page to Display
Draw One Pixel
Find Pixel Value
Move to Point
Draw to Point
Block Fill

Display CharacterDraw Arc
Draw Circle
Fill Area

Direct Graphics Interface Standard
Set Video Mode

(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)
(Hercules Graphics Card)

(VEGA Extended EGA/VGA)
(DGIS)

HUAWEI EX. 1015 - 321/393

HUAWEI EX. 1015 - 322/393

70h
71h
72h
73h
81h

'82h
OBFh
OFOh
OFlh
0F2h
0F3h
0F4h
0F5h
OF6h

0F7h

0FAh
OFEh
OFFh

Interrupt 10h Video I/O - services to handle video output

(0:0040h)

Video Subsystems and Programming I 315
Get Video RAM Address
Get INGRAM Addresses

Scroll Screen Right
Scroll Screen Left
unknown
Get Current Window Info
Compaq Portable Extensions
Microsoft Mouse driver EGA support
Microsoft Mouse driver EGA support
Microsoft Mouse driver EGA support
Microsoft Mouse driver EGA support
Microsoft Mouse driver EGA support
Microsoft Mouse driver EGA support
Microsoft Mouse driver EGA support

Microsoft Mouse driver EGA support

Microsoft Mouse driver EGA support
\Get Virtual Buffer Address
Update Video Buffer

(Tandy 1000)
(Tandy 1000)
(Tandy 1000)
(Tandy 1000)

(Destiew)
(Destiew)

- Read One Register
— Write One Register
— Read Register Range
- Write Register Range
- Read Register Set
— Read Register Set
— Revert to Default

Registers
- Define Default Reg.

Table
— Interrogate Driver

(Topview/Destiew/Taskview)
(Topview/Destiew/Taskview)

The ROM video routines in the original PC BIOS are designed for use with the Colour Graphics

Adapter and incorporate, code to test for the horizontal retrace before writing. The check is per-
formed no matter what actual display adapter is installed. The ROM character table for the first

128 characters is located at 0FA6Eh in the PC. Int Oth can be used to point to a second table of
128 characters. CS, SS, DS, ES, BX, CX, DX are preservedvduring call. All others are destroyed.

Function 00h
entry AH

AL

16 Colour
16 Colour

16 Colour
16 Colour

16 Colour
16 Colour

16 Colour
4 Colour
4 tone grey
2 Colour
monochrome
16 Colour
16 Colour
4 Colour

N/A
N/A

16 Colour
16 Colour
monochrome
16&64 Colour
2 Colour

13h
14h

16 Colour
16564 Colour
256Colour

Determine or Set Video State

00h set video mode

display mode: CGA Per MDA MCGA EGA VGA 8514
00h 40x25 B/W text 8x8 CGA Per EGA l

40x25, 320x400 graphics MCGA
40x25, 360x400 graphics VGA!
40x25 B/w tet 8x14 | ATI VIP

01h 40x25 colour text 8x8 CGAIPer[| IEGAI |
40x25 8x14 | ATI VIP

02h 80x25 B/W text 8x8 CGA Per EGA
640x400 80x25 8x8 MCGA
720x400 80x25 VGA

80x25 B/W 8x14 1 ATI VIP
03h 80x25 colour text 8x8 CGA Per MCGA EGA VGA
04h 320x200 colour graphics CGA Per EGA
05h 320x200 B/W graphics 8x8 CGA Per EGA
06h 640x200 B/W graphics 8x8 CGA Per EGA
07h 80x25 monochrome text 9x14 MDA EGA VGA
08h 160x200 colour graphics CGA Per
09h 320x200 colour graphics Per VGA
OAh 640x200 colour graphics Per
OBh BIOS font load EGA VGA
OCh BIOS font load EGA VGA

ODh 320x200 graphics 40x25 8x8 EGA VGA
OEh 640x200 graphics 80x25 8x8 EGA VGA
OFh 640x350 graphics 80x25 8x14 EGA VGA
10h 640x350 colour 80x25 8x14 EGA VGA
11h 640x480 graphics MCGA VGA

= 40x25 8x8 320x200 256/256k A000 VGA,MCGA,ATI VIP
= 80x25 8x8 640x200 Lava Chrome II EGA
= 640x400 16 Tecmar VGA/AD

12h 640x480 graphics 8x16 | | | IVGAI640x480 80x30 8x16 ATI EGA Wonder

13h 320x200 graphics 8x8 | [MCGA] IVGA|8514
14h—20h used by EGA and VGA graphics modes
14h 640x200 80x25 8x8 Lava Chrome II EGA
15h 640x350 80x25 8x14 Lava Chrome II EGA
16h 640x350 80x25 8x14 Lava Chrome II EGA

HUAWEI EX. 1015 - 322/393

HUAWEI EX. 1015 - 323/393

316 The Programmer’s Technical Reference

16 Colour 800x600 Tecmar VGA/AD
17h 640x480 80x34 8x14 Lava Chrome II EGA

132x25 Tecmar VGA/AD
monochrome 18h 132x44 8x8 Tseng Labs EVA

640x480 80x34 8x14 Lava Chrome II EGA
16 Colour 1024x768 Tecmar VGA/AD
monochrome' 19h 132x25 8x14 Tseng Labs EVA
monochrome 1Ah 132x28 8x13 Tseng Labs EVA
256 Colour 640x350 Tecmar VGA/AD
256 Colour lBh 640x400 Tecmar VGA/AD
256 Colour 1Ch 640x480 Tecmar VGA/AD
256 Colour 1Dh 800x600 Tecmar VGA/AD
monochrome 21h Hercules Graphics, Graphics Page 1
monochrome 22h Hercules Graphics, Graphics Page 2

22h 132x44 8x8 Tseng Labs EVA
132x44 8x8 Ahead Systems EGA2001
132x43 Allstar Peacock (VGA)

23h 132x25 6x14 Tseng Labs EVA
132x25 8x14 Ahead Systems EGA2001

16 Colour ' 132x25 8x8 ATI EGA Wonder/ ATI VIP
132x28 Allstar Peacock (VGA)

24h 132x28 6x13 Tseng Labs EVA
132x25 Allstar Peacock (VGA)

25h 640x480 80x60 8x8 Tseng Labs EVA
16 Colour 640x480 80x60 VEGA VGA

26h 80x60 8x8 Tseng Labs EVA V
640x480 80x60 8x8 Ahead Systems EGA2001

80x60 Allstar Peacock (VGA)
16 Colour 27h 720x512 VEGA VGA
monochrome 132x25 8x8 ATI EGA Wonder, ATI VIP

28h unknown VEGA VGA
16 Colour 29h 800x600 VEGA VGA
16 Colour 800x600 Allstar Peacock (VGA)

2Ah 100x40 Allstar Peacock (VGA)
256 Colour 20h 640x350 VEGA VGA
256 Colour 2Eh 640x480 . VEGA VGA
256 Colour ZFh 720x512 VEGA VGA
256 Colour 30h 800x600 VEGA VGAunknown AT&T 6300
16 Colour 640x400 80x25 8x16 Logitech EGA
16 Colour 31h 1056x350 132x25 8x14 Logitech EGA
16 Colour 32h 640x400 80x25 8x16 Logitech EGA
16 Colour 33h 640x480 80x30 8x16 Logitech EGA
16 Colour 132x44 8x8 ATI EGA Wonder/ATI VIP
monochrome 34h 720x348 90x25 8x14 Logitech EGA
16 Colour 35h 720x350 90x25 8x16 Logitech EGA
16 Colour 36h 960x720 VEGA VGA
16 Colour 37h 1024x768 VEGA VGA
monochrome 132x44 8x8 ATI EGA Wonder/ATI VIP
2 Colour 40h 640x400 80x25 8x16 Compaq Portable II
2 Colour 640x400 80x25 8x16 AT&T 6300, AT&T VDC600

’ 80x43 VEGA VGA, Tecmar VGA/AD
80x43 Video7 V—RAM VGA
80x43 Tatung VGA

16 Colour ' 41h 640x200 AT&T 6300132x25 VEGA VGA
132x25 Tatung VGA
132x25 Video7 V—RAM VGA

16 Colour 42h 640x400 80x25 8x16 AT&T 6300, AT&T VDC600132x43 VEGA VGA

16 Colour 640x400 80x25 8x16 Logitech EGA
132x43 Tatung VGA

I 132x43 Video7 V—RAM VGA

43h unsupported 640x200 of 640x400 viewport | AT&T 630080x60 VEGA VGA

16 Colour 640x400 80x25 8x16 Logitech EGA
80x60 Tatung VGA
80x60 Video? V—RAM VGA

44h disable VDC and DEB output AT&T 6300
100x60 VEGA VGA

4 Colour 320x200 40x25 8x16 Logitech EGA

HUAWEI EX. 1015 - 323/393

HUAWEI EX. 1015 - 324/393

Video Subsystems and Programming I - 3] 7

100x60 Tatung VGA
100x60 Video7 V-RAM VGA

4 Colour 45h 320x200 40x25 8x16 Logitech EGA
132x28 Tatung VGA
132x28 Video7 V-RAM VGA

2 Colour 46h 640x400 80x25 8x16 Logitech EGA
2 Colour 800x600 100x40 8x15 AT&T VDC600
16 Colour 47h 800x600 100x37 8x16 AT&T VDC600
2 Colour 48h 640x400 80x50' 8x8 AT&T 6300, AT&T VDC600

49h 640x480 80x30 8x16 Lava Chrome II EGA
4Dh 120x25 VEGA VGA
4Eh 120x43 VEGA VGA
4Fh 132x25 VEGA VGA

monochrome 50h 132x25 9x14 Ahead Systems EGA2001
16 Colour 640x480 8x16 Paradise EGA—480
monochr. 80x43 VEGA VGA
monochr.? 640x480 Taxan 565 EGA

80x34 ' Lava Chrome II EGA
51h 80x30 8x16 Paradise EGA-480

monochrome 132x25 VEGA VGA
16 Colour 640x480 80x34 8x14 ATI EGA Wonder

80x30 Lava Chrome II EGA
monochrome 52h 132x44 9x8 Ahead Systems EGAZOOI
monochrome 132x43 VEGA VGA
16 Colour 752x410 94x29 8x14 ATI EGA Wonder

80x60 Lava Chrome II EGA
16 Colour 53h 800x560 100x40 8x14 ATI EGA Wonder/ATI VIP

132x43 Lava Chrome II EGA
54h 132x43 8x8 Paradise EGA—480

16 Colour 132x43 7x9 Paradise VGA 256k
16 Colour 132x43 8x9 Paradise VGA on multisync

132x43 Taxan 565 EGA
16 Colour 800x600 100x42 8x14 ATI EGA Wonder

132x25 Lava Chrome II EGA
132x43 AST VGA Plus
132x43 Hewlett-Packard D1180A

16 Colour 132x43 7x9 AT&T VDC600
55h . 132x25 8x14 Paradise EGA—480

16 Colour 132x25 7x16 Paradise VGA 256k
16 Colour 132x25 8x16 Paradise VGA on multisync

132x25 Taxan 565 EGA
132x25 AST VGA Plus
132x25 Hewlett—Packard D1180A

16 Colour 132x25 7x16 AT&T VDC600
16 Colour 80x66 8x8 ATI VIP 256k

752x410 94x29 8x14 Lava Chrome II EGA
2 Colour 56h 132x43 8x8 NSI Smart EGA+
4 Colour 132x43 7x9 , Paradise VGA
4 Colour 132x43 8x9 Paradise VGA on multisync
monochrome 132x43 Taxan 565 EGA
2 Colour 132x43 7x9 ATsT VDC600
4 Colour 57h 132x25 8x14 NSI Smart EGA+
4 Colour 132x25 7x16 Paradise VGA
4 Colour 132x25 8x16 Paradise VGA on multisync
monochrome 132x25 Taxan 565 EGA
2 Colour 132x25 7x16 ATET VDC600
16 Colour 58h 800x600 100x75 Paradise VGA 256k
16 Colour 80x33 8x14 ATI EGA Wonder/ATI VIP
16 Colour 800x600 100x75 8x8 AT&T VDC600
16 Colour 800x600 AST VGA Plus
16 Colour 800x600 Hewlett—Packard D1180A

59h 800x600 100x75 Paradise VGA
2 Colour 800x600 100x75 8x8 AT&T VDC600
2 Colour 800x600 8x8 AST VGA Plus
2 Colour 800x600 8x8 Hewlett-Packard D118OA
16 Colour 80x66 8x8 ATI VIP 256k
256 Colour SEh 640x400 Paradise VGA,VEGA VGA
256 Colour 640x400 AST VGA Plus
256 Colour 640x400 80x25 8x16 AT&T VDC600
256 Colour 5Fh 640x480 Paradise VGA
256 Colour 640x480 AST VGA Plus

HUAWEI EX. 1015 - 324/393

HUAWEI EX. 1015 - 325/393

318 The Programmer’s Technical Reference

256 Colour 640x480 Hewlett-Packard Dll80A
256 Colour 640x480 80x30 8x16 AT&T VDC600 (512K)

60h ?x400 30x? Corona/Cordata BIOSv4.10+
752x410 VEGA VGA

60h 400 line graphics+80col text Corona/Cordata BIOSV4.10+
752x410 VEGA VGA

16 Colour 752x410 Tatung VGA
16 Colour 752x410 Video7 V-RAM VGA

61h 400 line graphics Corona/Cordata BIOSv4.10+
720x540 VEGA VGA

16 Colour 720x540 Tatung VGA
16 Colour 720x540 Video7 V-RAM VGA

62h 800x600 VEGA VGA
16 Colour 800x600 Tatung VGA

_16 Colour 800x600 Video7 V—RAM VGA
2 Colour 63h 1024x768 Video7 V-RAM VGA
4 Colour 64h 1024x768 Video7 V-RAM VGA
16 Colour 65h 1024x768 Video7 V-RAM VGA
256 Colour 66h 640x400 Tatung VGA
256 Colour 640x400 Video7 V—RAM VGA
256 Colour 67h 640x480 Video7 V—RAM VGA
256 Colour 69h 720x540 Video7 V—RAM VGA

' 70h extended mode set Everex Micro Enhancer EGA
AX 0070h

BL mode (graphics mode if graphics res. listed)
00h 640x480 multisync
01h 752x410 multisync
02h reserved
03h 80x34 multisync
04h 80x60 multisync
05h 94x29 multisync
06h 94x51 multisync
07h reserved
08h reserved
09h 80x44 EGA

OAh 1 3 2 x2 5 EGA0Bh 132x44 EGA
OCh 132x25 CGA
0Dh 80x44 TTL mono
OEh 132x25 TTL mono
OFh 132x44 TTL mono

16 Colour 71h 800x600 100x35 8x16 NSI Smart EGA+
2 Colour 74h 640x400 Toshiba 3100

7Eh Special Mode Set Paradise VGA, AT&T VDC600
BX horizontal dimension of the mode desired
CX vertical dimension of the mode desired

(both BX/CX in pixels for graphics modes, rows
for text modes)

Dx number of colours of the mode desired
(use 00h for monochrome modes)

return AL 7Eh if successful (AT&T VDC600)
BH 7Eh if successful (Paradise VGA)

7Fh Special Function Set | Paradise VGA, ATET VDC600
BH 00h Set VGA Operation

01h Set Non—VGA Operation
02h Query Mode Status

return BL 00h if operating in VGA mode
01h if non—VGA mode.

CH total video RAM size in 64k byte units
CL video RAM used by the current mode
03h Lock Current Mode

Allows current mode (VGA or non—VGA) to
survive reboot.

04h Enter CGA Mode (AT&T VDC600 only)
05h Enter MDA Mode (ATGT VDC600 only)

BH OAh,OBh,OCh,0Dh,OEh,0Fh
write Paradise registers 0,1,2,3,4,5
(port O3CEh indices A,B,C,D,E,F)

HUAWEI EX. 1015 - 325/393

HUAWEI EX. 1015 - 326/393

~ note 1.

WM

P‘H h*owmu
12.

l3.

14.
15.

Vzdeo Subsystems and Programming I 319

EL value to set in the Paradise register.
BH 11m, 1Bh, 1Ch, 1Dh, lEh, 1Fh

read Paradise registers 0,1,2,3,4,5
(port 03CEh indices A,B,C,D,E,F)

return AL 7Fh if successful (ATET VDCSOO)
BH 7Fh if successful (Paradise VGA)
BL value of the Paradise register

note colour modes (0,1,2,3,4,5,6) will set non-VGA CGA
operation. Monochrome mode 7 will set non-VGA

. MDA/Hercules operation.
82h 80x25 B&W ATGT VDC overlay mode

'k

83h 80x25 ATST VDC overlay mode *
86h 640x200 B&W AT&T VDC overlay mode *
OCOh 640x400 2/prog palette ATST VDC overlay mode *
0C4h disable output ATGT VDC overlay mode *
ODOh 640x400 DEC VAXmate ATsT mode

If the high bit in AL is set, the display buffer is not cleared when a
new mode is selected. This may be used to mix modes on the display; for
example, characters of two difference sizes might be displayed
Modes 8—10 are available on the Per, Tandy 1000, and PS/2
IBM claims 100% software and hardware emulation of the CGA with the MCGA
chipset. All registers may be read and written as CGA. All charactersare
double—scanned to give 80x25 with 400 line resolution. The attributes
for setting border colour may be set on MCGA, but the borders will
remain the default colour (they cannot actually be set)
The IBM Colour Graphics Adapter (CGA) is too slow for the screen to be
updated before the vertical retrace of the monitor is completed. If the
video RAM is addressed directly, the screen will have ‘snow' or
interference. IBM's default is to turn the adapter off when it is being
updated, ie lflickering’ when the display is scrolled.
The vertical retrace signal may be ignored when using the MCGA adapter.
The MCGA will not generate snow when written to. There is no flicker withthe MCGA.

The Per Video Gate Array uses a user—defined block of main system RAM
from 4 to 32k in size instead of having dedicated memory for the display.
Vertical retrace may be ignored when writing to the Per. There is no
flicker with the Per display.
The Hercules Graphics Card has 750x348 resolution
The Hercules Graphics Card takes 64k beginning at 8:000 (same as MDA)
The CGA, MCGA, and VGA adapters use hardware address 3:800
The BIOS clears the screen when the mode is set or reset.
For AT&T VDC overlay modes, BL contains the DEB mode, which may be 06h,40h, or 44h '

Int 10 will take the shapes of the first 128 characters (00h—7Fh) from
the table located in ROM at absolute address FOOO:FA6E. The EGA and VGA
have hardware capability to change this.
The presence or absence of colour burst is only significant when a compo
site monitor is being used. For RGB monitors, there is no functional
difference between modes 00h and 01h or modes 02h and 03h.
0n the CGA, two palettes are available in mode 04h and one in mode 05h.
The Corona built-in hi-res mono adapter similar to the Hercules but not
identical. The Corona graphics memory address is not fixed; instead one
of the control registers must be loaded with the buffer address. This
makes it impossible to run most commercial graphics software, unless
there is specifically a Corona option. The design was actually quite
impressive — you could do hi-speed animation by switching buffers
(similar to switching pages on other configurations) but you could use as
many as you could fit in available memory, at 32k per page. In addition,
the mono text buffer is always available, and independent of graphics,
making it easy to overlay text and graphics on the same screen.
Unfortunately the Corona never really took off, and no one else picked
up on the design.

Function 01h Set Cursor Type — set the size of the cursor or turn it off
entry AH 01h

CH bit values:

bits 0-4 top line for cursor in character cell
5—6 blink attribute

0,0 normal
0,1 invisible (no cursor)
1,0 slow (not used on original IBM PC)

HUAWEI EX. 1015 - 326/393

HUAWEI EX. 1015 - 327/393

320 The Programmer’s Technical Reference

1,1 fast (may be erratic on Tandy 1000TX)
CL bit values:

bits 0—4 bottom line for cursor in character cell
return none

note 1. The ROM BIOS default cursors are: start end
monochrome mode 07h: 11 12
text modes ooh-03h: 6 7

2. The blinking in text mode is caused by hardware and cannot be turned off,
though some kludges can temporarily fake a nonblinking cursor.

3. The cursor is automatically turned off in graphics mode.
4. The cursor can be turned off in several ways. 0n the MDA, CGA, and VGA,

setting register CH = 20h causes the cursor to disappear. Techniques
that involve setting illegal starting and ending lines for the current
display mode tend to be unreliable. Another method of turning off the
cursor in text mode is to position it to a non—displayable address, such
as (X,Y)=(O,25).

5. For the EGA, MCGA, and VGA in text modes ooh—03h, the BIOS accepts cursor
start and end values as though the character cell were 8x8, and remaps
the values as appropriate for the true character cell dimensions. This
mapping is called cursor emulation. One problems is that the BIOS remaps
BIOS cursor shape in 43 line modes, but returns the unmapped cursor shape.

Function 02h Set Cursor Position - reposition the cursor to (X,Y)
entry AH 02h

BH video page
00h graphics mode
03h modes 2 and 3
07h modes 0 and 1

DH row (Y=0-24)
DL column (X=0-79 or 0-39)

return none

note 1. (0,0) is upper left corner of the screen
2. A separate cursor is maintained for each display page, and each can be

set independently with this function regardless of the currently active
page.

3. The maximum value for each text coordinate depends on the video adapter
and current display mode, as follows:
19,24 08h
39,24 00h, 01h, 04h, 05h, 09h, ODh, 13h
79,26 02h, 03h, 06h, 07h, OAh, OEh, OFh, 10h,
79,29 11h, 12h

Function 03h Read Cursor Position - return the position of the cursor
entry AH 03h

BH page number
00h in graphics modes
03h in modes 2 & 3
07h in modes 0 & 1

return CH top line for cursor (bits 4—0)
CL bottom line for cursor (bits 4—0)
DH row number (Y=0-24)
DL column number (x=o—79 or 0-39)

note A separate cursor is maintained for each display page, and each can be
checked independently with this function regardless of the currently
active page.

Function 04h Read Light Pen — fetch light pen information (CGA, Jr, EGA)
entry AH 04h
return AH 00h light pen not triggered

AH 01h light pen is triggered, values in registers
BX pixel column (X=0-319,639) graphics mode
CH raster line (Y=0—199) old graphics modes
CX (EGA) raster line (O—nnn) new graphics modes
DH row of current position (Y=0—24) text mode
DL column of current position (X=0—79 or 0-39) text mode

note 1. Not supported on PS/Z.
2. The range of coordinates returned by this function depends on the current

display mode.
3. 0n the GSA, the graphics coordinates returned by this function are not

continuous. The y coordinate is always a multiple of two; the x
coordinate is either a multiple of four (for 320—by—200 graphics modes)

HUAWEI EX. 1015 - 327/393

HUAWEI EX. 1015 - 328/393

Video Subsystems and Programming I - 321

or a multiple of eight (for 640-by-200 graphics modes).
4. Careful selection of background and foreground colours is necessary to

obtain maximum sensitivity from the light pen across the full screen
width.

Function 05h Select Active Page - set page number for services 6 and 7
entry AH 05h

AL number of new active page
0—7 modes 00h and 01h (CGA)

~modes 02h and 03h (CGA)
modes 02h and 03h (EGA)
mode ODh (EGA)
mode OEh (EGA)
mode OFh (EGA)
mode 10h (EGA)
set address of graphics bitmap buffer (modes 60h,61h)

0000000
I HHWNINW

BX segment of buffer
OFh get address of graphics bitmap buffer (modes 60h,61h)

BX segment of buffer
for Per, most Tandy 10005 only:

AL 80h to read CRT/CPU page registers
81h to set CPU page register to value in BL
82h to set CRT page register to value in BB
83h to set both CPU and page registers

(and Corona/Cordata BIOS v4.10+)
Corona/Cordata BIOS v4.10+

00h set address of graphics bitmap buffer (video modes
60h,61h)
BX segment of buffer

OFh get address of graphics bitmap buffer (video modes
60h,61h)

BH CRT page number for subfunctions 82h and 83h
BL CPU page register for subfunctions 81h and 83h

return standard PC none
Per if called with AH bit 7=1 then

BH CRT page register (if AL = 80h)
BL CPU page register (if AL = 80h)

Dx segment of graphics bitmap buffer (video modes 60h, 61h; AL=0Fh)
note 1. Mono adapter has only one display page

2. CGA has four 80x25 text pages or eight 40x25 text pages
3. A separate cursor is maintained for each display page
4. Switching between pages does not affect their contents
5. Higher page numbers indicate higher memory positions

Function 06h Scroll Page Up — scroll up or initialize a display 'window'
entry AH 06h

AL number of lines blanked at bottom of page
00h blank entire window

38 attributes to be used on blank line
CH row (Y) of upper left corner or window
CL column (X) of upper left corner of window
DH row (Y) of lower right corner of window
DL column (X) of lower right corner of windowreturn none

note 1. Push BP before scrolling, pop after
2. Affects current video page only

Function 07h Scroll Page Down — scroll down or clear a display ’window’
entry AH 07h

AL number of lines to be blanked at top of page
00h blank entire window

BH attributes to be used on blank line
CH row (Y) of upper left corner or window
CL column (X) of upper left corner of window
DH row (Y) of lower right corner of window
DL column (X) of lower right corner of windowreturn none

note 1. Push BP before scrolling, pop after
2. Affects current video page only

HUAWEI EX. 1015 328/393

HUAWEI EX. 1015 - 329/393

322 The Programmer’s Technical Reference

Function 08h Read Character Attribute-of character at current cursor pos.
entry AH 08h

BH display page number - text mode
return AH character attribute - text mode

AL ASCII code of character at current cursor position
note In video modes that support multiple pages, characters and their

attributes can be read from any page, regardless of the page currently
being displayed.

Function 09h Write Character and Attribute - at current cursor position
entry AH 09h

AL ASCII code of character to display
BH display page number - text mode
BL attribute (text modes) or colour (graphics modes)
CX number of characters to write

return none

note 1. CK should not exceed actual rows available, or results may be erratic.
2. Setting CX to zero will cause runaway.
3. All values of AL result in some sort of display; the various control

characters are not recognized as special and do not change the current
cursor position.

4. Does not change cursor position when called — the cursor must be advanced
with int 10 function OAh.

5. If used to write characters in graphics mode with bit 7 of AH set to 1
the character will by XORed with the current display contents. This
feature can be used to write characters and then lerase' them.

6. In graphics mode the bit patterns for ASCII character codes 80h—0FFh are
obtained from a table. On the standard PC and AT, the location is at
interrupt vector Oth (0000:007Ch). For ASCII characters 00h—O7Fh, the
table is at an address in ROM. On the Per the table is at interrupt
vector 44h (0000:00110h) and is in addressable RAM (may be replaced by
the user).

7. All characters are displayed, including CR, LF, and BS.
8. In graphics modes, the dup factor in CX produces a valid result only for

the current row. If more characters are written than there are remaining
columns in the current row, the result is unpredictable.

9. For the EGA, MCGA, and VGA in graphics modes, the address of the
character definition table is stored in the vector for int 43h.

Function OAh Write Character—display character(s) (use current attribute)
at current cursor position

entry AH OAh
AL ASCII code of character to display
BH display page - text mode
BL colour of character (graphics mode, Per only)
CX number of times to write character

return none

note 1. CK should not exceed actual rows available, or results may be erratic.
2. All values of AL result in some sort of display; the various control

characters are not recognized as special and do not change the current
cursor position.

3. If used to write characters in graphics mode with bit 7 of BL set to l
the character will by XORed with the current display contents. This
feature can be used to write characters and then ’erase’ them.

4. In graphics mode the bit patterns for ASCII character codes 80h—OFFh are
obtained from a table. On the standard PC and AT, the location is at
interrupt vector Oth (0000:007C). For ASCII characters 00h—07Fh, the
table is at an address in ROM. On the chr the table is at interrupt
vector 44h (0000:00110) and is in addressable RAM (may be replaced by
the user).

5. In graphics modes, replication count in CX works correctly only if all
characters written are contained on the same row.

6. All characters are displayed, including CR, LF, and BS.
7. For EGA, MCGA, and VGA in graphics modes, the address of the character

definition table is stored in the vector for int 43h.
8. After a character is written, the cursor must be moved explicitly with Fn

02h to the next position.

Function OBh Set Colour Palette - set palette for graphics or text border
Selects a palette, background, or border colour.

entry AH OBh

HUAWEI EX. 1015 - 329/393

HUAWEI EX. 1015 - 330/393

Vzd_e0 Subsystems and Programming I 323
BE ‘ 00h select border (text mode)

BL colour 0-15, 16—31 for high—intensity characters
BH 01h set graphics palette with value in BL

(CGA) EL 0 green/red/yellow
1 cyan/magenta/white

(EGA)-(graphics modes)BH 0

BL has border colour (0-15) & high intensity bkgr'd colour (16-31)BH 1

BL contains palette being selected (0-1)return none

note 1. Valid in CGA mode 04h, Per modes 06h, 08h-0Ah.
2. Although the registers in the MCGA may be set as if to change the border,

the MCGA will not display a border no matter what register settings areused.

3. In text modes, this function selects only the border colour. The
background colour of each individual character is controlled by the
upper 4 bits of that character’s attribute byte.

4. 0n the CGA and EGA, this function is valid for palette selection only in320-by—200 4-colour graphics modes.

5. In 320—by—200 4—colour graphics modes, if BH=01h, the following palettesmay be selected:
Palette Pixel value Colour

0 0 same as background
1 green
2 red'

. 3 brown or yellow
1 0 same as background

1 cyan
2 magenta
3 white

6. On the CGA in 640—by-200 2—colour graphics mode, the background colour
selected with this function actually controls the display colour for non
zero pixels; zero pixels are always displayed as black.

7. 0n the Per in 640—by—200 2—colour graphics mode, if BH=00h and bit 0 of
BL is cleared, pixel value 1 is displayed as white; if bit 0 is set,
pixel value 1 is displayed as black.

Function OCh Write Dot — plot one graphics pixelentry AH OCh

AL dot colour code (0/1 in mode 6, 0-3 in modes 4 and 5)
(set bit 7 to XOR the dot with current colour)0—3 mode 04h, 05h
0—1 mode 06h

BH page number (ignored if adapter supports only one page)
CX column (X=0000h — 027Fh)

(0 - 319 in modes 4,5,13, 0 — 639 in modes 6,14,15,16)
DX row (Y=0000h - 00C7h) (0 — 199 CGA).return none

note 1. Video graphics modes 4—6 only.
2. The range of valid pixel values and (x,y) coordinates depends on thecurrent video mode.

3. If bit 7 of AL is set, the new pixel value will be XORed with the current
contents of the pixel.

Function ODh Read Dot — determine the colour of one graphics pixelentry AH ODh
BH page

CX column (X=0000h — 027Fh) (0—319 or 639)
DX row (Y=0000h - ooc7h) (0—199)return AL colour of dot

note 1. Only valid in graphics modes.

2. The range of valid (x,y) coordinates and possible pixel values depends onthe current video mode.

3: Register EH is ignored for display modes that suppOrt only one page.

Function OEh Write TTY—write one character and update cursor. Also handles
CR (ODh), beep (07h),-backspace (10h), and scrollingentry AH OEh .

AL ASCII code of character to be written
BH page number (text)

HUAWEI EX. 1015 - 330/393

HUAWEI EX. 1015 - 331/393

324

EL
return none

note 1. The ASCII codes for bell, backspace, carriage return, and line-feed are
recognized and appropriate action taken. All other characters are
written to the screen and the cursor is advanced to the next position.

2. Text can be written to any page regardless of current active page.
3. Automatic linewrap and scrolling are provided through this function.
4. This is the function used by the DOS CON console driver.
5. This function does not explicitly allow the use of attributes to the

characters written. Attributes may be provided by first writing an ASCII
27h (blank) with the desired attributes using function 09h, then over
writing with the actual character using this function. While clumsy
this allows use of the linewrap and scrolling services provided by this
function.

6. The default DOS console driver (CON) uses this function to write text tothe screen.

Function OFh

entry AH
return AK

AL
BH

note 1. If mode was set with bit 7 set ("no blanking"), the returned mode will
also have bit 7 set.

2. This function can be called to obtain the screen width before clearing
the screen with Fns 06h or 07h.

Function 10h
entry AH

AL

The Programmer’s Technical Reference

foreground colour (video modes 6 a 7 only) (graphics)

Return Current Video State — mode and size of the screen
Obtains the current display mode of the active video controller.
OFh
number of character columns on screen
mode currently set (see AH=00h for display mode codes)
current active display page

Set Palette Registers (Per, Tandy 1000, EGA, MCGA, VGA)10h
00h Set Individual Palette Register

BH colour value to store
BL palette register to set

(on MCGA, only Bx = 0712h is supported)return none

note On the HCGA, this function can only be called
with BX=0712h and selects a colour register set
with eight consistent colours.

01h Set Border Colour (overscan) (Jr, EGA, VGA)
BB colour value to store

return none

02h Set All Palette Registers and Border
ES:DX pointer to 17-byte colour list

bytes 0—15 values for palette regs. 0-15
byte 16 value for border colour

register
return none

note In 16—colour graphics modes, the following default
palette is set up:

Pixel value Colour
01h blue
02h green
03h. cyan
04h red
05h magenta
06h brown
07h white
08h grey
09h light blue
OAh light green
OBh light cyan
OCh light red
0Dh light magenta
OEh yellow
OFh intense white

03h Toggle Blink/Intensity Bit (Jr & later exc Conv.)
BL 00h enable intensity

01h enable blink

HUAWEI EX. 1015 - 331/393

HUAWEI EX. 1015 - 332/393

04h

05h

06h

07h

return

08h
return

09h

return

10h

return

11h

12h

13h

14h

15h

return

16h

17h

return

Vldeo Subsystems and Programming 3 325
return none

unknown
unknown

unknown

Get Palette Register Value (VGA)
, BL palette register number

BH palette register colour value

Get Border Colour (overscan) (VGA)BH colour value

Read All Palette Registers and Overscan Register (VGA)
ES:DX pointer to buffer address (17 bytes)
ES:DX buffer contains palette values in bytes

OOh—OFh and border colour in byte 10h.

Set Individual Video DAC Colour Register (MCGA, VGA)
Bx register number ‘
CH new value for green (0—63)
CL new value for blue (0—63)
DH new value for red (0—63)none

note If greyscale summing is enabled, the weighted
greyscale value for each register is calculated
as described under Subfn lBh and is stored into
all three components of the colour register.

unknown

Set Block of Video DAC Colour Registers (MCGA, VGA)
BX starting colour register
CX number of registers to set
ES:DX pointer to a table of 3*CX bytes where each

3—byte group represents one byte each of red,
green and blue (0—63) in that order.return none

note If greyscale summing is enabled, the weighted
greyscale value for each register is calculated
as described under Subfn lBh and is stored into
all three components of the colour register.

Set Video DAC Colour Page (VGA)
BL 00h select paging mode

BH 00h select 4 pages of 64 registers
01h select 16 pages of 16 registers

01h select register page
BH page number (00h to 03h or 00h to OFh)return none

note This function not valid in mode 13h (320—by—200
256-colour graphics).

unknown

Read Individual Video DAC Colour Register (MCGA, VGA)
BX palette register number
CH green value
CL blue value
DH red value

unknown

Read Block of Video DAC Colour Registers (MCGA, VGA)
BX starting palette register
CX number of palette registers to read
ES:DX pointer for palette register list (3 * CX bytes

in size)
CX number of red, green and blue triples in buffer

HUAWEI EX. 1015 - 332/393

HUAWEI EX. 1015 - 333/393

326 The Programmer’s Technical Reference

ES:DX address of buffer with colour list
note The colour list returned in the caller's buffer consists

of a series of 3—byte entries corresponding to the
colour registers. Each 3—byte entry contains the
register’s red, green, and blue components in that order.

18h Set Pixel Mask (undocumented)
BL new pixel value

19h Read Pixel Mask (undocumented)
BL value read

lAh Read Video DAC Colour—Page State (VGA)
return BH current page

BL paging mode
00h four pages of 64 registers
01h sixteen pages of 16 registers

lBh Perform Greyscale Summing (MCGA, VGA)
BX starting palette register
CX number of registers to convert

return none

note 1. For each colour register, the weighted sum of its red,
green, and blue values is calculated (30 red + 59 green
+ 11 blue) and written back into all three components of
the colour register.

2. The original red, green, and blue values are lost.

BH colour value
BL if AL=OOh palette register to set (OOh-OFh)

if AL=03h 00h to enable intensity
01h to enable blinking

ES:DX if AL=02h pointer to 16—byte table of register values
followed by the overscan value:

bytes 0-15 values for palette registers 0—15
byte 16 value for border register

return none

note DAC is Digital to Analog Convertor circuit in MCGA/VGA chips.

Function 11h Character Generator Routine (EGA and after)
entry AH 11h

The following functions will cause a mode set, completely
resetting the video environment, but without clearing the videobuffer.

AL 00h, 10h

return
note 1.

6.

01h, 11h

return
note 1.

Load User—Specified Patterns or Fonts (EGA, MCGA, VGA)
BH number of bytes per character pattern
BL block to load in map 2
CX count of patterns to store
DX character offset into map 2 block (1st code)
ES:BP pointer to user font tablenone

If AL=10h, page 0 must be active. The bytes per
character, rows, and length of the refresh buffer are
recalculated.

The controller is reprogrammed with the maximum scan line
(points-1), cursor start (points-2), cursor end (points-
1), vertical display end ((rows*points)—1), and
underline locations (points-1, mode 7 only).
If subfn 10h is called at any time other than immediately
after a mode set, the results are unpredictable.
On the MCGA, a subfn 00h call should be followed by a
subfn 03h call so that the BIOS will load the font into
the character generator's internal font pages.
Subfn 10h is reserved on the MCGA. If it is called, subfn
00h is performed.
Text modes only.

Load ROM 8 by 14 Character Set (EGA, VGA)
BL block to load
none
Text modes only.

HUAWEI EX. 1015 - 333/393

HUAWEI EX. 1015 - 334/393

i: 2.
3.

02h, 12h

return
. note 1.
1 2.

03h

(EGA/MCGA) bits

(VGA) bits

return
(note 1.

2.

O4h,l4h

return
note 1.

2.
Video Subsystems and Programming ' 327

For AL=11h, page 0.must be active. The points (bytes per
character), rows, and length of the refresh buffer arerecalculated.

The controller is reprogrammed with the maximum scan line
(points—l), cursor start (points-2), cursor end (points—
1), vertical display end ((rows*points)—l), and
underline location (points-1, mode 7 only).
If subfn 11h is called at any time other than right after
a mode set, the results are unpredictable.
Subfns 01h and 11h are reserved on the MCGA. If either is

'called, subfn 04h is performed instead.

Load ROM 8x8 Double-Dot Patterns (EGA, MCGA, VGA)BL block to load
none

Text modes only.
If AL=12h, page 0 must be active. The points (bytes per
character), rows, and length of the refresh buffer arerecalculated.

The controller is reprogrammed with the maximum scan line
(points—1), cursor start (points—2), cursor end (points—
1), vertical display end ((rows*points)—1), and underline
location (points—1, mode 7 only).
If subfn 12h is called at any time other than right after
a mode set, the results are unpredictable.
For the MCGA, a subfn 02h call should be followed by a
subfn 03h call so the BIOS will load the font into the
character generator’s internal font pages.
Subfn 12h is reserved on the MCGA. If it is called, subfn02h is executed.

Set Block Specifier (EGA, MCGA, VGA)
BL block specifier select mode
0-1 char block selected by attr bytes with bit 3=0
2—3 char block selected by attr bytes with bit 3=1
4—7 not used (should be 0)
0,1,4 char block selected by attr bytes with bit 3=0
2,3,5 char block selected by attr bytes with bit 3=1
6—7 not used (should be 0)none

Determines the char blocks selected by bit 3 of char
attribute bytes in text display modes.
When using a 256 character set, both fields of BL should
select the same character block. In such cases,
character attribute bit 3 controls the foreground
intensity. When using 512—character sets, the fields of
BL designate the blocks holding each half of the
character set, and bit 3 of the character attribute
selects the upper or lower half of the character set.

. When using a 512-char set, a call to int th/fnloh/ subfn
00h with BX=0712h is recommended to set the colour
planes to eight consistent colours.

Load ROM 8x16 Text Character Set (MCGA,VGA)BL block
none
For text modes.

If AL=14h, page 0 must be active. The points (bytes per
char), rows, and refresh buffer length are recalculated
The controller is reprogrammed with the maximum scan line
(points—1), cursor start (points—2), cursor end (points—
1), vertical display end (rows*points —1 for 350 and 400
line modes, or rows*points*2 -1 for 200 line modes), and
underline location (points -1, mode 7 only).
If subfn 14h is called any time other than just after a
mode set, the results are unpredictable.
For MCGA, a subfn 04h call should be followed by a subfn
03h call so that the BIOS will load the font into the
character generator's internal font pages.
Subfn 14h is reserved on the MCGA. If it is called, subfn
04h is executed.

HUAWEI EX. 1015 - 334/393

HUAWEI EX. 1015 - 335/393

20h Set User 8x8 Graphics Chars (int 1Fh)(EGA, MCGA, VGA)
ES:BP pointer to user font table

return none

note 1. This table is used for chars 80h-0FFh in graphics modesO4h—06h.

2. If this subfn is called at any time other than just after
a mode set, the results are unpredictable.

328 The Programmer’s Technical Reference ' ‘
i

21h Set int 43h for User Graphics Chars (EGA, MCGA, VGA)
BL character rows specifier

00H if user specified (see register DL)
01h 14 (OEh) rows
02h 25 (19h) rows
03h 43 (23h) rows

CX bytes per character (points)
DL character rows per screen if BL=00h
ES:BP pointer to user table

return none

note 1. The video controller is not reprogrammed.
2. This function works for graphics modes.
3. If this subfn is called at any time other than right

after a mode set, the results are unpredictable.

22h Set int 43h for ROM 8x14 Font (EGA, MCGA, VGA)
BL character rows specifier

00h if user specified (see register DL)
01h l4 (OEh) rows
02h 25 (19h) rows
03h 43 (23h) rows

DL character rows per screen (if BL=00h)
return none

note 1. The video controller is not reprogrammed.
2. This function works for graphics modes.
3. If this subfn is called at any time other than right

after a mode set, the results are unpredictable.
4. When this subfn is called on the MCGA, subfn 24h is

substituted.

23h Set int 43h for ROM 8x8 Double Dot Font (EGA, MCGA, VGA)
BL character row specifier

00h if user specified (see register DL)
01h 14 (OEh) rows
02b 25 (19h) rows
03h 43 (2Bh) rows

DL character rows per screen (BL=00h)
return none

note 1. Updates the video BIOS data area. The video
controller is not reprogrammed.

2. Provides font selection in graphics modes.
3. If called at any time other than immediately

after a mode set the results are unpredictable.

24h Set int 43h for 8x16 Graphics Font (MCGA, VGA)
BL character row specifier

00h if user specified (see register DL)
01h 14 (OEh) rows
02h 25 (19h) rows
03h 43 (23h) rows

DL character rows per screen (BL=00h)
return none

note 1. Updates the video BIOS data area. The video
controller is not reprogrammed.

2. Provides font selection in graphics modes.
3. If called at any time other than immediately

after a mode set the results are unpredictable.

30h Get Font Information (EGA, MCGA, VGA)

BH pointer specifier
00h current int th pointer
01h current int 43h pointer

HUAWEI EX. 1015 - 335/393

HUAWEI EX. 1015 - 336/393

Video Subsystems and Programming I ' 329

02h ROM 8x14 char font ptr (EGA, VGA only)
03h ROM 8x8 double dot font pointer

(characters 00h-7Fh)
04h ROM 8x8 double dot font (top half)

(characters 80h—0FFh)
05h ROM text alternate (9x14) pointer

(EGA, VGA only)
06h ROM 8x16 font (MCGA, VGA only)
07h ROM alternate 9x16 font (VGA only)

return .CX points (bytes per character)
DL rows (character rows on screen —1)
ES:BP pointer to font table

Function 12h Alternate Select (EGA and after)
entry AH 12h

. BL 10h Return Configuration Information (EGA, VGA)
return BH 00h if colour mode is in effect (3Dx)

01h if mono mode is in effect (38x)
BL 00h if 64k EGA memory installed

01h if 128k EGA memory installed
02h if 192k EGA memory installed
03h if 256k EGA memory installed
10h EGA adapter is installed (use to check)

CH feature bits (see note 2)
CL switch settings (see note 3)

note 1. Obtains information for the active video subsystem.
2. The feature bits are set from Input Status register 0 in

response to an output on the specified Feature Control
register bits:

Feature Feature Control Input Status
Bit(s) Output Bit Bit
0 O 5
1 O 6
2 1 S
3 1 6
4—7 not used

3. The bits in the switch settings byte indicate the state
of the EGA's configuration DIP switch (1=off, 0=on).

bit 0 configuration switch 1
1 configuration switch 2
2 configuration switch 3
3 configuration switch 4
4-7 not used

20h Select Alternate Print Screen Routine (EGA, VGA)return none

note Selects PrtSc routine for screen modes using more thanthe default BIOS 25 lines.

30h Select Vertical Resolution for Text Modes (VGA)AL 00h 200 scan lines
01h 350 scan lines
02h 400 scan lines

return AL 12h if function supported
00h VGA not active

note The selected value takes effect the next time int th/Fn
00h is called to select the display mode.

31h Enable/Disable Default Palette Loading (MCGA, VGA)
AL 00h enable default palette loading

01h disable default palette loading
return AL 12h if function was supported

32h Enable/Disable Video Addressing (MCGA, VGA)AL 00h enable video access
01h disable video access

return AL 12h if function was supported
note Enables or disables CPU access to the video adapter’s I/O

ports and video refresh buffer.

33h Enable/Disable Default Greyscale Summing (MCGA, VGA)
AL 00h enable greyscale summing

HUAWEI EX. 1015 - 336/393

HUAWEI EX. 1015 - 337/393

330

Function 13h
entry AHAL

BH
BL
CX
DH
DL
ES:BP

return none

note 1. Recognizes CR, LF, BS, and hell.2. This function is not available on the original IBM PC or XT unless an EGA

Function 14h
entry AHAL

The Programmer’s Technical Reference

01h disable greyscale summing
return AL 12h if function was supported
note 1. Works for the currently active display.

2. When enabled, greyscale summing occurs during display
mode selection, palette programming, and colour register
loading.

34h Enable/Disable Text Cursor Emulation (VGA)
AL 00h enable cursor emulation

01h disable cursor emulation
return AL 12h if function was supported
note 1. Works for currently active display.

2. When cursor emulation is enabled the BIOS automatically
remaps int 10h/Fn 01h (Cursor Starting 5 Ending Lines)
for the current character cell dimensions.

35h Switch Active Display (PS/2) (MCGA, VGA)
AL 00h disable initial video adapter

01h enable motherboard video adapter
02h disable active video adapter
03h enable active video adapter
80h *undocumented* set system board videoactive flag

ES:DX 128 byte save area buffer if AL=00h, 02h or 03h
return AL 12h if function was supported
note 1. Allows selection of one of two video adapters in the

system when memory or port addresses conflict.
2. This subfn cannot be used unless both video adapters have

a disable capability (int 10h/Fn12h subfn 32h).
3. If there is no conflict between the system board video

and the adapter board video in memory or port usage,
both video controllers can be active simultaneously.

36h Enable/Disable Video Refresh (VGA)
AL 00h enable refresh

01h disable refresh
return AL 12h if function supported .
note Enables or disables the video refresh for the currently

active display.

55h unknown (used by ATI and Taxan video boards) fns 00h and02h

Enhanced string Write (except original PC)
13h
00h Write String, Don't Move cursor
01h Write String and Update Cursor
02h Write string of Alternating Characters and Attributes;

Don’t Move Cursor
bit 0: set in order to move cursor after write
bit 1: set if string contains alternating chars and

attributes '
03h Write String of Alternating Characters and Attributes;Move Cursor

bit 0: set in order to move cursor after write
bit 1: set if string contains alternating characters and

attributes

display page number
attribute (if AL=00h or 01h)
length of string
row of starting cursor position (y)
column of starting cursor position (x)
pointer to start of string

Load LCD Character Font (Convertible)
14h

00h load user—specified font

HUAWEI EX. 1015 - 337/393

HUAWEI EX. 1015 - 338/393

Video Subsystems and Programming I v 33]

BK number of bytes per character *
BL 00h load main font (block 0)

01h load alternate font (block 1)cx number of characters to store
Dx character offset into RAM font area

' ES:DI pointer to character font
AL 01h load system ROM default font

BL 00h load main font (block 0)
01h load alternate font (block 1)

AL . 02h set mapping of LCD high intensity attribute
BL 00h ignore high intensity attribute

01h map high intensity to underscore
02h map high intensity to reverse video
03h map high intensity to selected alternate font

return unknown

Function 15h Return Physical Display Parameters (Convertible)
entry AH 15h
return AX Alternate display adapter type

0000b none
5140h LCD
5151h mono
5153h CGA

ES:DI pointer to parameter table:
word # Information

01h monitor model number
02h vertical pixels per meter
03h horizontal pixels per meter
04h total number of vertical pixels
05h total number of horizontal pixels
06h horizontal pixel separation in micrometers
07h vertical pixel separation in micrometers

Functions 15h-19h apparently not used

Function 1Ah Get or Set Display Combination Code (PS/2) (MCGA, VGA)
Using the compatibility BIOS of the PS/Z Models 50, 60, 80
there is a way to determine which video controller and attached
display are on the system. The Display Combination Code (DCC) is
a Video BIOS function that provides the capability.

entry AH 1Ah
AL 00h read display combination code

01h write display combination code
BH inactive display code (if AL=Olh)
BL active display code (if AL=01h)

return AL 1Ah indicates Compatibility BIOS is supported, any other
value is invalid

BH Display Combination Code (DCC) (if AH=00h)
00h no display _
01h IBM monochrome adapter and 5151 display
02h IBM colour/graphics adapter w/5153 or 5154 colour display
03h reserved
04h IBM EGA, 5153 or 5154 colour display
05h IBM EGA, 5151 monochrome display
06h IBM PGA, 5175 colour display
07h VGA, analog monochrome display
08h VGA, analog colour display
09h reserved
OAh MCGA, digital colour display
OBh MCGA, analog monochrome display
OCh MCGA, analog colour display
ODh—OFEh reserved
OFFh unknown display type

BL active display device code (if AH=00h)
note This function may be used to test for VGA, since it is not supported in

earlier adapters. If AL is still lAh when the call completes, a VGA or
MCGA compatible adapter is present.

Function 1Bh Functionality/State Information (PS/2) (MCGA, VGA)
entry AH lBh

BX implementation type (always 0000h)

HUAWEI EX. 1015 - 338/393

HUAWEI EX. 1015 - 339/393

332 The Programmer’s Technical Reference

ES:DI pointer to 64 byte buffer
return AL 18h if function supported

ES:DI buffer filled

ooh-03h address of functionality table (see note 1)04h current video mode
05h—06h number of columns

07h—08h length of regen buffer in bytes
O9h-0Ah starting address in regen buffer of upper left corner of

display
OBh—OCh cursor position for page 0 (y,x)
ODh—OEh cursor position for page 1 (y,x)
OFh-th cursor position for page 2 (y,x) ;
11h-12h cursor position for page 3 (y,x) '

13h—14h cursor position fer page 4 (y,x) 115h-16h cursor position for page 5 (y,x)
17h—18h cursor position for page 6 (y,x)
19h—1Ah cursor position for page 7 (y,x)
lBh cursor starting line
lCh cursor ending line
1Dh active display page ‘
lEh—th adapter base CRTC port address (3BXh mono, 3th colour) ‘
20h current setting of register 3BBh or 3D8h ?
21h current setting of register 3B9h or 3D9h
22h number of character rows
23h—24h character height in scan lines
25h DCC of active display
26h DCC of alternate (inactive) display
27h—28h number of colours supported in current mode (0 for mono)
29h number of pages supported in current mode
2Ah number of scan lines active

00h 200 scan lines
01h 350 scan lines
02h 400 scan lines

’03h 480 scan lines

O4h-0FFh reserved ,
2Bh primary character block ' [
2Ch secondary character block ‘
2Dh miscellaneous flags byte .

bit 0 all modes on all displays on (always 0 on MCGA) ‘ 1
1 greyscale summing on 12 monochrome display attached
3 default palette loading disabled
4 cursor emulation enabled (always 0 on MCGA) :
5 0=intensity; 1=blinking6 reserved
7 reserved

2Bh—30h reserved

31h Video memory available 100h 64k

01h 128k)02h 192k '
03h 256k

32h save pointer state flags byte i

bit 0 512 character set active |1 dynamic save area active
2 text mode font override active ’
3 graphics font override active
4 palette override active
5 DCC override active
6 reserved
7 reserved

33h—3Fh reserved

note State Functionality Table format (16 bytes)
00h modes supported #1

bit 0 mode 00h supported
1 mode 01h supported
2 mode 02h supported
3 mode 03h supported
4 mode 04h supported
5 mode 05h supported
6 mode 06h supported

HUAWEI EX. 1015 - 339/393

HUAWEI EX. 1015 - 340/393

Wdeo Subsystems and Programming ' 333

7 mode 07h supported
01h modes supported #2

bit 0 mode 08h supported
1 mode 09h supported
2 mode OAh supported
3 mode OBh supported
4 mode och supported
5 mode ODh supported
6 mode OEh supported
7 mode OFh supported

02h modes supported #3
bit 0 mode 10h supported

1 mode 11h supported
2 mode 12h supported
3 mode 13h supported
4—7 reserved

03h to 06h reserved
07H scan lines available in text modes

bit 0 200 scan lines ‘
1 350 scan lines

2 400 scan lines
3—7 reserved

08h total number of character blocks available in text modes
09h maximum number of active character blocks in text modes
OAh miscellaneous BIOS functions #1

bit 0 all modes on all displays function supported (0 on MCGA)
1 greyscale summing function supported
2 character font loading function supported
3 default palette loading enable/disable supported
4 cursor emulation function supported
5 EGA 64-colour palette present
6 colour palette present
7 colour paging function supported

OBh miscellaneous BIOS functions #2
bit 0 light pen supported

1 save/restore state function 1Ch supported (0 on MCGA)
2 intensity blinking function supported
3 Display Combination Code supported
4—7 reserved

OCh to ODh reserved
OEh Save pointer function flags

bit 0 512 character set supported
1 dynamic save area supported
2 text font override supported
3 graphics font override supported
4 palette override supported
5 DCC extension supported
6 reserved
7 reserved

OFh reserved

Function 1Ch Save/Restore Video State (PS/2 50+) (VGA)
entry AH 1Ch

AL 00h return state buffer size
01h save video state

ES:BX buffer address
02h restore video state

ES:BX buffer address of previously saved state
CX requested states (1 byte)

bits 0 save or restore video hardware state
1 save or restore BIOS data areas
2 save or restore colour registers and DAC state
3—0Fh reserved

return AL lCh if function supported
BX number of 64 byte blocks needed (function 00h)

note 1. VGA only.
2. Saves or restores the digital-to-analog converter (DAC) state and colour

registers, BIOS video driver data area, or video hardware state.
3. Subfn 00h is used to determine the size of buffer to contain the

specified state information. The caller must supply the buffer.
4. The current video state is altered during a save state operation N

HUAWEI EX.1015 - 340/393

HUAWEI EX. 1015 - 341/393

334

(AL=Olh).

The Programmer’s Technical Reference

If the requesting program needs to continue in the same video
state, it can follow the save state request with an immediate call torestore

Function 40h
entry AH
return unknown

Function 41h
entry AH
return unknown

Function 42h
entry AH
return unknown

Function 43h
entry AH

AL
return unknown

Function 44h
entry AH

AL

return unknown

Function 45h
entry AH

AL
return unknown

Function 46h

the video state.

Set Graphics Mode (Hercules Graphics Card)40h

Set Text Mode (Hercules Graphics Card)41h

Clear Current Page (Hercules Graphics Card)42h

Select Drawing Page (Hercules Graphics Card)43h

page number (0 or 1)

Select Drawing Function (Hercules Graphics Card)44h
00h clear pixels
01h set pixels
02h invert pixels

Select Page to Display (Hercules Graphics Card)45h

page number (0 or 1)

Draw One Pixel (Hercules Graphics Card)
entry AH 46h

DI x (0—720)
BP y (0-347)

return unknown
note Function 44h

Function 47h
Find Pixel Value (Hercules Graphics Card)

entry AH 47h
DI x (0-720)
BP y (0—347)

return AL 00h pixel clear
01h pixel set

note Function 43h

Function 48h
entry AH

DI
BP

return unknown

Function 49h

Move to Point (Hercules Graphics Card)48h

x (0-720)
y (0—347)

Draw to Point (Hercules Graphics Card)
entry AH 49h

DI x (0-720)
BP y (0-347)

return unknown
note Function 48h

use .

Function 4Ah
entry AH
return unknown

Function 43h
entry AH

AL
DI
BP

Block Fill (Hercules Graphics Card)4Ah

Display Character (Hercules Graphics Card)

ASCII code for character to display

48h

x (0—720)
y (0—347)

specifies page that is used.

determines operation and function 43h which page to use.

or 49h specify first point, 44h operation and 43h page to

HUAWEI EX. 1015 - 341/393

HUAWEI EX. 1015 - 342/393

Video Subsystems and Programming I 335
return unknown -

note Unlike the other BIOS character functions character position is specified
in pixels rather than rows and columns.

Function 4Ch Draw Arc (Hercules Graphics Card)
entry ' AH 4Ch
return unknown

Function 4Dh Draw Circle (Hercules Graphics Card)
entry AH 4Dh
return unknown

Function 4Eh Fill Area (Hercules Graphics Card)
entry AH 4Eh
return unknown

rFunction 6Ah Direct Graphics Interface Standard (DGIS)
entry AH 6Ah

AL 00h Inquire Available Devices
BX 00h
CX 00h

Dx buffer length (may be zero)
ES:DI address of buffer

return BX number of bytes stored in buffer
CX bytes req’d for all descriptions (0 if no DGIS)

note Buffer contains descriptions and addresses of
DGIS-compatible display(s) and printer(s)

01h Redirect Character Output
CX 00h

ES:DI address of device to send INT 10 output to
return CX 00h output could not be redirected

not 00h int 10h output now routed to requested
display

02h Inquire int 10h Output Device
ES:DI 0:0

. return ES:DI 0:0 if current display is non—DGIS
else address of current DGIS int 10h display

Function 6Fh Set Video Mode (VEGA Extended EGA/VGA)
entry AH 6F

AL 05h
BL mode resoltn colours

62h 800x600 16
65h 1024x768 16
66h 640x400 256
67h 640x480 256
68h 720x540 256
69h 800x600 256

Function 70h Get Video RAM Address (Tandy 1000)
entry AH 70h
return AX Segment addresses of the following

BX Offset address of green plane
CX segment address of green plane
Dx segment address of red/blue plane

note (red offset = 0, blue offset = 4000)

Function 71h Get INCRAM Addresses (Tandy 1000)
entry AH 71h
return Ax segment address of the following

BX segment address of INCRAM
CX offset address of INCRAM

Function 72h Scroll Screen Right (Tandy 1000)
entry AH . 72h

AL number of columns blanked at left of page
00h blank window

BH attributes to be used on blank columns

CH,CL row, column address of upper left corner
DH,DL row, column address of lower right corner

HUAWEI EX. 1015 - 342/393

HUAWEI EX. 1015 - 343/393

336 The Programmer’s Technical Reference

Function 73h Scroll Screen Left (Tandy 1000)
entry AH 73h

AL number of columns blanked at right of page
00h blank window

BH attributes to be used on blank columns
CH,CL row, column address of upper left corner
DH,DL row, column address of lower right corner

Function 81h DESQview video - Get Video Buffer Segment
entry AH 81h - g

Dx 4456h ('DV') ;
return ES segment of DESQview data structure for video buffer

byte Es:[0] current window number (DV 2.0+)
note This function is probably meant for internal use only, due to the magic

value required in DX.

Function 82h DESQview — Get Current Window Info
entry AH 82h

Dx 4456h ('DV') ‘
return AH unknown

AL current window number 3
BH unknown :
BL direct screen writes

0 program does not do direct writes E
1 program does direct writes, so shadow buffer not usable

CH unknown)
CL current video mode 9
DS segment in DESQview for data structure

for DV 2.00+, structure is:
byte DS:[O] window number
word DS:[1] segment of other data structure
word DS:[3] segment of window's object handle

ES segment of DESQview data structure for video buffer
note This function is probably meant for internal use only, due to the magic

value required in Dx.

Function OBFh Compaq Portable Extensions
entry AH OBFh

AL subfunction :
00h Select External Monitor 3

(all registers preserved, the internal monitor is blanked ,
and the external monitor is now the active monitor) E

01h Select Internal Monitor
(all registers preserved, the external monitor is blanked
and internal monitor is now active monitor)

02h Set Master Mode of Current Active Video Controller
BH 04h CGA

05h EGA
07h MDA

03h Get Environment
BX oooon ‘

return BH active monitor
00h external
01h internal

BL master mode

00h switchable VDU not present04h CGA
05h EGA
07h MDA

CH 00h (reserved)
CL switchable VDU mode supported (1 byte) bits:

0 CGA supported
1,2 reserved (1)
3 MDA supported
4-7 reserved (1)

DH internal monitor type .
00h none ‘
01h dual—mode monitor
02h 5153 RGB monitor
03h Compaq colour monitor
04h 640x400 flat panel display

HUAWEI EX. 1015 - 343/393

HUAWEI EX. 1015 - 344/393

Vldeo Subsystems and Programming ' 33 7

DL external monitor type.
00h none
01h dual—mode monitor
02h 5153 RGB monitor
03h Compaq colour monitor
04h 640x400 flat panel display

04h Set Mode Switch Delay
BH switch

00h enable delay
01h disable delay

Function OEFh MSHERC.COM - Installation check?
entry AH OEFh
return DX unknown value
note MSHERC.COM is a program included with the PC Tech Journal high-level

benchmark suite that adds video modes 08h and 88h for Hercules cards,
and supports text in the new graphics modes.

Functions OFOh, OFlh, OFZh, 0F3h, 0F4h, OFSh, 0F6h, OF7h, OFAh
Microsoft Mouse Driver EGA Support.
See Chapter 14 for details.

Function OFEh Get Virtual Buffer Address (text mode only)
(Topview/Destiew/Taskview)

entry AH OFEh
ES:DI pointer to assumed video buffer

return ES:DI pointer to actual video buffer
note 1. This alternate video buffer can be written to directly, in the same

manner as writing to 8:000 or B:800. The MT program will manage the
actual display.

2. There is no need to synchronize vertical retrace when writing to the
alternate buffer; this is managed by the MT program

3. If Topview or DESQview is not running, ES:DI is returned unchanged.
4. Topview requires that function OFFh be called every time you write into

the buffer to tell Topview that something changed
5. This function returns the address of the virtual screen in the ES:DI

registers. If TaskView returns a virtual screen address, you can use a
combination of BIOS functions and writing directly to the virtual screen
which will automatically update the real screen when it is visible. You
do not have to synchronize screen writing to the virtual screen even if
the screen is in a colour text mode. A common way of using this function
is to place the real screen address in the ES:DI registers, put OFEh in
the AH register, then issue an interrupt 10h. If neither Topview nor
TaskView are present, the values of ES and DI will remain the same.

Function OFFh Update Real Display (text mode only) (Topview)
Update Video Buffer (Topview/Destiew/Taskview)

entry AH OFFh
CX number of sequential characters that have been modified
DI offset of first character that has been modified
ES ’ segment of video buffer

return unknown
note 1. Destiew supports this call, but does not require it

2. Avoid CX=0.
3. This function is unnecessary in TaskView, but using it will provide

compatibility with Topview as well. After you have written information
directly to the virtual screen, place the start address of the changed
information in ES:DI, the number of integers (not bytes) changed in CX,
OFFh in AH, and call int 10h. In Topview, the screen will be updated to
reflect your changes. In TaskView, the visible screen will automatically
reflect your changes.

HUAWEI EX. 1015 - 344/393

HUAWEI EX. 1015 - 345/393

These scan codes are generated by pressing a key on the PC’s keyboard. This is the ‘make’ code.
A ‘break’ code is generated when the key is released. The break scancode is 128 higher than the
make code, and is generated by setting bit 7 of the scan code byte to 1.

Appendix 1

Keyboard Scan Codes

IBM PC Keyboard Extended Codes

The keyboard returns an 0 in the ASCII code byte to indicate that the code passed in the Scan
Code byte is ‘special’.

Codes marked with an asterisk (*) are available only on the ‘enhanced’ keyboard.

key
escape

IIOWwNC‘Ln-wai-J
tab
backtab
RETURN
Home

UpArrow
PgUp
grey —
LArrow

keypad 5RArrow

grey +
End
DnArrow

PgDn
Ins
Del
PrtSc
L shift

Normal Shift Control

O;l48*

0;119
o;141*
0;132

0;115
none

0;116

0;117
o;145*
0;118
0;146*
0;128
0;114

Alt

0:120
0;121
0;122
0;123
0;124
0;125
0:126
0;127
0;128
0;129
0;130
0;131
0;165*
0;15

0;166*
0;151*
0;152*
0;153*

0;154*
none

0;155*

o;1ss*
o;1eo*
0;161*
0;162*
0;163*

O - \l

o u u NHtflroklmOiUlhm-u>mq
U"!-J

HUAWEI EX. 1015 - 345/393

HUAWEI EX. 1015 - 346/393

R shift
alt key
capslock
spacebar
control
numlock
scrollck

‘\/:h—Ir—‘-
O (1' H H

l

Ctrl 5
Ctrl +
ownH

I It

N‘<>¢€<E(+UIHIQ'UODSHWU-P'D‘Qfimflanc‘m
F9
F10
F11
F12
F11
F12

Shift Byte
Right Shift
Left Shift
Control
Alt

54
56
58
57
29
69
70
39
26
27
40
43
53
51
52

30
48
46
32
18
33
34
35
23
36
37
38
50
49
24
25
16
19
31
20
22
47
17
45
21
44

0:59
0:60
0:61
0:62
0:63
0:64
0:65
0:66
0:67
0:68
0:152
0:153
0:133
0:134

01
02
04
08

Keyboard Scan Codes

0:84
0:85
0:86
0:87
0:88
0:89
0:90
0:91
0:92
0:93
0:162
0:163
0:135
0:136

o;149*

o;142*
o;143*
o;144*
o;150*

0:94
0:95
0:96
0:97
0:98
0:99
0:100
0:101
0:102
0:103
0:172
0:173
0:137
0:138

0:164*

0:30
0:48
0:46
0:32
0:18
0:33
0:34
0:35
0:23
0:36
0:37
0:38
0:50
0:49
0:24
0:25
0:16
0:19
0:31
0:20
0:22
0:47
0:17
0:45
0:21
0:44
0:104
0:105
0:106
0:107
0:108
0:109
0:110
0:111
0:112
0:113
0:182
0:183
0:139
0:140

339

Tandy
Tandy

IBM
IBM

A shift byte can be created by adding together as many of the above as desired. That is, the shift

combination Control+Alt would be represented by a hex C, which is 04 + 08.

HUAWEI EX. 1015 - 346/393

HUAWEI EX. 1015 - 347/393

340 The Programmer’s Technical Reference

BIOS keystroke codes in hexadecimal
key

Esc
1!
26
3#
4$
5%
GA
75
8*

Hmfifl

fllv». HW H0

'1

hiftBUU<nb<N/5~--qu.3mflgmpnm_mgoy.cs<fl
F10

Normal
0113
0231 ’1'
0332 '2’
0433 ’3’
0534 ‘4’
0635 '5'
0736 ’6’
0837 ’7’
0938 ‘8’
0A39 ’9’
0830 ’0'
OCZD ‘—'
0D3D '='
0E08
0F09
1071 ’q’
1177 'w'
1265 'e'
1372 'r’
1474 't'
1579 'y'
1675 ’0’
1769 ’i’
186F ’o'
1970 ’p’
lASB '['
1350 '1'
1COD

1E61 ’a’
1F73 ’s’
2064 ’d'
2166 ’f'
2267 ’g'
2368 'h’
246A ’j'
2568 'k’
266C '1'
273B '7'
2827 "'
2960 "'

285C ’\'
207A '2'
2D78 ‘x’
2E63 'c'
2F76 ’v’
3062 'b'
316E 'n'
326D ’m’
332C ’,'
342E ’.’
352F ’/’

372A ’*’

3920 ' ’

3BOO
3C00
3D00
3EOO

3FOO
4000
4100
4200
4300
4400

Shift
0113
0221 '1'
0340 '6'
0423 '#'
0524 '5'
0625 '%'
0753 "'
0826 '5'
092A '*'
0A28 '('
0329 ')I
0053 '_'0023 ,+,
0E08
0F00
1051 ‘Q’
1157 'w'
1245 '3'
1352 ’R’
1454 ’T’
1559 ’Y’
1655 ’U'
1749 ’I’
184F 'o'
1950 ’P'

1A7B '{'
1370 '}'
1c00

1341 ’A’
1F53 's'
2044 '0'
2146 ’F’
2247 ‘G’
2348 'H'
244A ’J'
2543 ’K‘
264C ‘L’
273A I:'
2822 I"'
297E "'

237C '['ZCSA lz'
2D58 'x'
2343 'c'
2F56 'v'
3042 '3'
314E 'N’
324D ’M’
333C "
3433 I'
3533 '2'

3920 ' '

5400
5500
5600
5700

5800
5900
5A00
5300
5000
5000

Control
011B

0300

Alt

7800
7900
7A00
7300
7C00
7D00
7E00
7F00
8000
8100
8200
8300

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

HUAWEI EX. 1015 - 347/393

HUAWEI EX. 1015 - 348/393

NumLock
Scroll
7 Home

8 up
9 PgUp
Grey —
4 left
5 I

6 right
Grey +
1 End
2 down
3 PgDn
Ins
Del

~ An entry of "-—

ll

4700
4800
4900
4A2D
4B00

4D00
4EZB
4F00
5000
5100
5200
5300

means you can’t get that combination out of the BIOS.

I I

[+1-

4737
4838
4939
4A2D
4B34
4C35
4D36
4E2B
4F31
5032
5133
5230
532E

Keyboard Scan Codes

[7!
[8!
191I I

I4!
I51
[6!
1+1
Ill
12/
I3!
lo!I I

7700

0500

7300

7300

7300

7200

34]

HUAWEI EX. 1015 - 348/393

HUAWEI EX. 1015 - 349/393

Appendix 2

Standard ASCII Character Codes

dec hex char control code dec hex chr dec hex chr dec hex chr
0 0 Ctrl—@ NUL Null 32 20 SP 64 40 @ 96 60 ’

1 Ctrl—A SOH Start of Heading 33 21 I 65 41 A 97 61 a
2 2 Ctrl—B STX Start of Text 34 22 " 66 42 B 98 62 b
3 3 Ctrl—C ETX End of Text 35 23 # 67 43 C 99 63 c
4 4 Ctrl—D EOT End of Transmit 36 24 $ 68 44 D 100 64 d
5 5 Ctrl—E ENQ Enquiry 37 25 %v 69 45 E 101 65 e
6 6 Ctrl—F ACK Acknowledge 38 26 & 70 46 F 102 66 f
7 7 Ctrl—G BEL Bell 39 27 ' 71 47 G 103 67 g
8 8 Ctrl-H BS Back Space 40 28 (72 48 H 104 68 h
9 9 Ctrl-I HT Horizontal Tab 41 29) 73 49 I 105 69 i

10 ‘OA Ctrl-J LF Line Feed 42 2A * 74 4A J 106 6A j
11 0B Ctrl-K VT Vertical Tab 43 23 + 75 4B R 107 6B k
12 0c Ctrl—L FF Form Feed 44 2C , 76 4C L 108 6C 1
13 0D Ctrl—M CR Carriage Return 45 2D - 77 4D M 109 6D m
14 0E Ctrl—N SO shift Out 46 28 . 78 4E N 110 6E n
15 0F Ctrl-O SI Shift In 47 2F / 79 4F 0 111 6F 0
16 10 Ctrl-P DLE Data Line Escape 48 30 0 80 50 P 112 70 p
17 11 Ctrl—Q DCl Device Control 1 49 31 1 81 51 Q 113 71 q
18 12 Ctrl—R DC2 Device Control 2 50 32 2 82 52 R 114 72 r
19 13 Ctrl—S DC3 Device Control 3 51 33 3 83 53 S 115 73 s
20 14 Ctrl—T DC4 Device Control 4 52 34 4 84 54 T 116 74 t
21 15 Ctrl—U NAK Negative Acknowledge 53 35 5 85 55 U 117 75 u
22 16 Ctrl—V SYN Synchronous Idle 54 36 6 86 56 V 118 76 v
23 17 Ctrl-W ETB End of Transmit Blk 55 77 7 87 57 w 119 77 w
24 18 Ctrl—x CAN Cancel 56 38 8 88 58 x 120 78 x
25 19 Ctrl-Y EM End of Medium 57 39 9 89 59 Y 121 79 y
26 1A Ctrl—Z SUB Substitute 58 3A : 90 5A Z 122 7A 2
27 1B Ctrl-[ESC Escape 59 3B ; 91 5B [23 7B
28 1C Ctrl-\ FS File Separator 60 3C < 92 5C \ 124 7C 1
29 ID Ctrl—] GS Group Separator 61 3D = 93 5D] 125 7D }
30 1E Ctrl—A RS Record Separator 62 3E > 94 5E ‘ 126 7E '
31 1F Ctrl—_ US Unit Separator 63 3F ? 95 SF 127 7F DEL

ASCII = The American National Standard Code for Information Interchange

The complete document describing the ASCII standard, ‘X3.4-1977: American National Stand-
ard Code for Information Interchange’ can be ordered for $5.00 (plus $4 postage) from

American National Standards Institute

1430 Broadway
New York, NY 10018
212/354-3300

HUAWEI EX. 1015 - 349/393

HUAWEI EX. 1015 - 350/393

X3.64
0/0
0/1
0/2
0/3
0/4
0/5
0/6
0/7
0/8
0/9
0/10
0/11
0/12
0/13
0/14
0/15
1/0
1/1
1/2
1/3
1/4
1/5
1/6
1/7
1/8
1/9
1/10
1/11
1/12
1/13
1/14
1/15
2/0
2/1
2/2
2/3
2/4
2/5
2/6
2/7
2/8
2/9
2/10
2/11
2/12
2/13
2/14
2/15
3/0
3/1
3/2
3/3
3/4
3/5
3/6
3/7
3/8
3/9
3/10
3/11
3/12
3/13
3/14
3/15
4/0
4/1
4/2

Dec
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
O33
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066

Oct
000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
O44
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102

Hex
00
01
02
O3
04

0506
07
08
09
0A
OB
0C
OD
OE
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

a 20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42

StandardASCII Character Codes 343

1968 ASCII CODE
EBCDIC

00
01
02
03
37
2D
2E
2F
16
05
25
0B
0C
GD
0E
0F
10
11
12
13
3C
3D
32
26
18
19
3F
27
1C
1D
1E
1F
40
5A
7F
7B
5B
6C
50
7D
4D
5D
5C
4E
GB
60
4B
61
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
7A
5E
4C
7E
6E
6F
7C
C1
C2

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DCl
DCZ
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC

—mCN0M'Ummmm

+*VA~mdp<na=
'~

wmummwaHO\-I
~nu

waim-v

meaning
‘@ Null, ctrl—G
“A Start of Header
AB Start of Text
AC End of Text
‘D End of Transmission
‘E Enquire, WRU
AF HEREIS
AG Bell
AH Backspace, \b
AI TAB, \t

Record Separator
Unit Separator

‘J Newline, NL, \n
AK Vertical Tab
‘L Form Feed, \f
AM Return, \r,
‘N Shift Out
‘0 Shift in
AP
“Q XON, start Reader
“R DC2, Tape Punch 0N
AS XOFF, Stop Reader
‘T DC4, Tape Punch OFF
“U ,-Nak
“V Sync
“w End of Tape Block
‘X Cancel
‘Y End of Medium
‘2 CP/M End of File
‘[Escape, \E
‘\ File Separator
‘] Group Separator

space
.Exclamation mark
Double Quote

Apostrophe, Single Quote

Splat, Star, asterisk

Comma

Period
Slash, Stroke

Question Mark
Commercial AT

HUAWEI EX. 1015 - 350/393

HUAWEI EX. 1015 - 351/393

344 The Programmer’s Technical Reference

4/3 067 103 43 C3 C
4/4 068 104 44 C4 D
4/5 069 105 45 C5 E
4/6 070 106 46 C6 F
4/7 071 107 47 C7 G

4/8 072 110 48 C8 H 14/9 073 111 49 C9 I 1
4/10 074 112 4A D1 J 1
4/11 075 113 4B D2 K
4/12 076 114 4C D3 L
4/13 077 115 4D D4 M

4/14 078 116 4E D5 N ;
4/15 079 117 41“ D6 0 g5/0 080 120 50 D7 P
5/1 081 121 51 D8 Q
5/2 082 122 52 D9 R

5/3 083 123 53 22 s 15/4 084 124 54 E3 T
5/5 085 125 55 E4 U ‘
5/6 086 126 56 E5 V
5/7 087 127 57 E6 w
5/8 088 130 58 E7 X 2
5/9 089 131 59 E8 1 1‘
5/10 090 132 5A E9 Z

5/11 091 133 5B AD [Left square bracket 5
5/12 092 134 5C E0 \ Backslash f
5/13 093 135 5D BD] Right Square Bracket ’
5/14 094 136 5E 5F A circumflex

5/15 095 137 SF GD _ Underline or Back Arrow(old)5/16 Back Arrow on older codes
6/0 096 140 60 79 ‘ Accent Grave
6/1 097 141 61 81 a
6/2 098 142 62 82 b
6/3 099 143 63 83 C
6/4 100 144 64 84 d
6/5 101 145 65 85 e
6/6 102 146 66 86 f
6/7 103 147 67 87 g
6/8 104 150 68 88 h
6/9 105 151 69 89 1
6/10 106 152 6A 91 j
6/11 107 153 6B 92 k
6/12 108 154 6C 93 1
6/13 109 155 6D 94 m
6/14 110 156 6E 95 n
6/15 111 157 6F 96 0
7/0 112 160 70 97 p
7/1 113 161 71 98 q
7/2 114 162 72 99 r
7/3 115 163 73 A2 5
7/4 116 164 74 A3 t
7/5 117- 165 75 A4 u
7/6 118 166 76 A5 v
7/7 119 167 77 A6 w
7/8 120 170 78 A7 x
7/9 121 171 79 A8 y
7/10 122 172 7A A9 2
7/11 123 173 7B C0 Left Brace

7/12 124 174 7C 4F 1 Vertical Bar, Pipe, (Confirm on some
older systems)

7/13 125 175 7D D0 } Right Brace
7/14 126 176 7E 7E ' Tilde (ESC on some old sys)
7/15 127 177 7F 07 AP DEL, RUBOUT

ASCII = American Standard Code for Information Exchange

EBCDIC = Extended Binary-Coded Decimal Interchange Code

HUAWEI EX. 1015 - 351/393

HUAWEI EX. 1015 - 352/393

HUAWEI EX. 1015 - 353/393

HUAWEI EX. 1015 - 354/393

HUAWEI EX. 1015 - 355/393

HUAWEI EX. 1015 - 356/393

HUAWEI EX. 1015 - 357/393

HUAWEI EX. 1015 - 358/393

HUAWEI EX. 1015 - 359/393

HUAWEI EX. 1015 - 360/393

HUAWEI EX. 1015 - 361/393

HUAWEI EX. 1015 - 362/393

HUAWEI EX. 1015 - 363/393

HUAWEI EX. 1015 - 364/393

HUAWEI EX. 1015 - 365/393

HUAWEI EX. 1015 - 366/393

HUAWEI EX. 1015 - 367/393

HUAWEI EX. 1015 - 368/393

HUAWEI EX. 1015 - 369/393

HUAWEI EX. 1015 - 370/393

HUAWEI EX. 1015 - 371/393

HUAWEI EX. 1015 - 372/393

HUAWEI EX. 1015 - 373/393

HUAWEI EX. 1015 - 374/393

HUAWEI EX. 1015 - 375/393

HUAWEI EX. 1015 - 376/393

HUAWEI EX. 1015 - 377/393

HUAWEI EX. 1015 - 378/393

HUAWEI EX. 1015 - 379/393

HUAWEI EX. 1015 - 380/393

HUAWEI EX. 1015 - 381/393

HUAWEI EX. 1015 - 382/393

HUAWEI EX. 1015 - 383/393

HUAWEI EX. 1015 - 384/393

HUAWEI EX. 1015 - 385/393

HUAWEI EX. 1015 - 386/393

HUAWEI EX. 1015 - 387/393

HUAWEI EX. 1015 - 388/393

HUAWEI EX. 1015 - 389/393

HUAWEI EX. 1015 - 390/393

HUAWEI EX. 1015 - 391/393

HUAWEI EX. 1015 - 392/393

HUAWEI EX. 1015 - 393/393

