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The subdivision of the current probability interval would ideally require a multiplication of the interval by the probability
estimate for the LPS. Because this subdivision is done approximately, it is possible for the LPS sub-interval to be larger
than the MPS sub-interval. When that happens a “conditional exchange” interchanges the assignmentof the sub-intervals
such that the MPSis given the larger sub-interval.

Since the encoding procedure involves addition of binary fractions rather than concatenation of integer code words, the
more probable binary decisions can sometimes be codedat a cost of muchless than one bit per decision.

D.1.1.2 Conditioning of probability estimates

An adaptive binary arithmetic coder requires a statistical model — a model for selecting conditional probability estimates to
be used in the coding of each binary decision. When a given binary decision probability estimate is dependent on a
particular feature or features (the context) already coded, it is “conditioned” on that feature. The conditioning of
probability estimates on previously coded decisions must be identical in encoder and decoder, and therefore can use only
information knownto both.

Each conditional probability estimate required by the statistical model is kept in a separate storage location or “bin”
identified by a unique context-index 5. The arithmetic coder is adaptive, which means that the probability estimates at
each context-index are developed and maintained by the arithmetic coding system on the basis of prior coding decisions
for that context-index.

D.1.2 Encoding conventions and approximations

The encoding proceduresuse fixed precisioninteger arithmetic and an integer representation of fractional values in which
X’8000° can be regarded as the decimal value 0.75. The probability interval, A, is kept in the integer
range X’8000’ < A < X’10000" by doubling it whenever its integer value falls below X’8000’. This is equivalent to
keeping A in the decimal range 0.75 < A < 1.5. This doubling procedure is called renormalization.

The code register, C, contains the trailing bits of the bit stream. C is also doubled each time A is doubled. Periodically
—to keep C from overflowing —a byte of data is removed from the high order bits of the C-register and placed in the
entropy-coded segment.

Carry-over into the entropy-coded segmentis limited by delaying X’FF’ output bytes until the carry-over is resolved. Zero
bytes are stuffed after each X’FF’ byte in the entropy-coded segment in order to avoid the accidental generation of
markersin the entropy-coded segment.

Keeping A in the range 0.75 < A < 1.5 allows a simple arithmetic approximation to be used in the probability interval
subdivision. Normally, if the current estimate of the LPS probability for context-index S is Qe(S), precise calculation of
the sub-intervals would require:

Qe(S) x A Probability sub-interval for the LPS;
A—(Qe(S) x A) Probability sub-interval for the MPS.

Because the decimal valueof A is of orderunity, these can be approximated by

Qe(S) Probability sub-interval for the LPS;
A— Qe(S) Probability sub-interval for the MPS.

Wheneverthe LPSis coded, the value of A — Qe(S)is addedto the code register and the probability interval is reduced to
Qe(S). Whenever the MPS is coded, the code register is left unchanged and the interval is reduced to A - Qe(S). The
precision range required for A is then restored, if necessary, by renormalization of both A and C.

With the procedure described above, the approximations in the probability interval subdivision process can sometimes
make the LPS sub-interval larger than the MPS sub-interval. If, for example, the value of Qe(S) is 0.5 and A is at the
minimum allowed value of 0.75, the approximate scaling gives one-third of the probability interval to the MPS and two-
thirds to the LPS. To avoid this size inversion, conditional exchange is used. The probability interval is subdivided using
the simple approximation, but the MPS and LPS sub-interval assignments are exchanged whenever the LPS sub-interval is
larger than the MPS sub-interval. This MPS/LPS conditional exchange can only occur when a renormalization will be
needed.

Each binary decision uses a context. A context is the set of prior coding decisions which determine the context-index, S,
identifying the probability estimate used in coding the decision.

Whenever a renormalization occurs, a probability estimation procedure is invoked which determines a new probability
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative
probabilities of renormalization after coding of LPS and MPS provide, by means of a table-based probability estimation
state machine, a direct estimate of the probabilities.
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D.1.3 Encoder code register conventions

The flow charts in this annex assumethe register structures for the encoder as shown in Table D.2.

Table D.2 - Encoderregister connections

C-register 0000cbbb, bbbbbsss, XXXXXXKX, XXXXXXXXK

A-register 00000000, 00000000, aaaaaaaa, aaaaaaaa 
The “a” bits are the fractional bits in the A-register (the current probability interval value) and the “x” bits are the
fractionalbits in the code register. The “s” bits are optional spacer bits which provide useful constraints on carry-over, and
the “b”bits indicate the bit positions from which the completed bytes of data are removed from the C-register. The “c” bit
is a carry bit. Exceptat the timeofinitialization, bit 15 of the A-register is always set and bit 16 is always clear (the LSB
is bit 0).

These register conventions illustrate one possible implementation. However, any register conventions which allow
resolution of carry-over in the encoder and which produce the same entropy-coded segment may be used. The handling of
carry-overand the byte stuffing following X’FF’ will be described in a later part of this annex.

D.1.4 Code_1(S) and Code_0(S) procedures

When a given binary decision is coded, one of two possibilities occurs —either a 1-decision or a 0-decision is coded.
Code_1(S) and Code_0(S) are shown in Figures D.1 and D.2. The Code_1(S) and Code_0(S) procedures use probability
estimates with a context-index S. The context-index $ is determined by thestatistical model andis, in general, a function
of the previous coding decisions; each value of S identifies a particular conditional probability estimate which is used in
encoding the binary decision.

  
Code_1(S)

No Yes

Code_LPS(S) Code_MPS(S)

TISO1800-93/d039 
Figure D.1 - Code_1(S) procedure
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Code_0(S)

Code_LPS(S) Code_MPS(8) |
TISO1030-93/d040  

Figure D.2 — Code_0(S) procedure

The context-index S selects a storage location which contains Index(S), an index to the tables which make up the
probability estimation state machine. When coding a binary decision, the symbol being coded is either the more probable
symbolor the less probable symbol. Therefore, additional information is stored at each context-index identifying the sense
of the more probable symbol, MPS(S).

For simplicity, the flow charts in this subclause assume that the context storage for each context-index S has an additional
storage field for Qe(S) containing the value of Qe(Index(S)). If only the value of Index(S) and MPS(S) are stored, all
references to Qe(S) should be replaced by Qe(Index(S)).

The Code_LPS(S) procedure normally consists of the addition of the MPS sub-interval A — Qe(S) to the bit stream and a
scaling of the interval to the sub-interval, Qe(S). It is always followed by the procedures for obtaining a new LPS
probability estimate (Estimate_Qe(S)_after_LPS) and renormalization (Renorm_e) (see Figure D.3).

However, in the event that the LPS sub-interval is larger than the MPS sub-interval, the conditional MPS/LPS exchange
occurs and the MPS sub-interval is coded.

The Code_MPS(S) procedure normally reduces the size of the probability interval to the MPS sub-interval. However,if
the LPS sub-interval is larger than the MPS sub-interval, the conditional exchange occurs and the LPS sub-interval is
coded instead. Note that conditional exchange cannot occur unless the procedures for obtaining a new LPS probability
estimate (Estimate_Qe(S)_after_MPS) and renormalization (Renorm_e) are required after the coding of the symbol (see
Figure D.4).
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Code_LPS(S)

 
 

Estimate_Qe(S)_after_LPS
Renorm_e

TISO1040-99/d041

 

Figure D.3 - Code_LPS(S) procedure with conditional MPS/LPS exchange
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Code_MPS(S)

 
Estimate_Qe(S)_after_MPS
Renorm_e

 
 

TISO1050-93/d042

Figure D.4 - Code_MPS(S)procedure with conditional MPS/LPS exchange

D.1.5 Probability estimation in the encoder

D.1.5.1 Probability estimation state machine

The probability estimation state machine consists of a numberof sequences of probability estimates. These sequences are
interlinked in a manner which provides probability estimates based on approximate symbol counts derived from the
arithmetic coder renormalization. Some of these sequences are used during the initial “learning” stages of probability
estimation: the rest are used for “steady state” estimation.

Each entry in the probability estimation state machine is assigned an index, and each index has associated with it a
Qe value and two Next_Index values. The Next_Index_MPS gives the index to the new probability estimate after an MPS
renormalization; the Next_Index_LPSgives the index to the new probability estimate after an LPS renormalization. Note
that both the index to the estimation state machine and the sense of the MPSare kept for each context-index S. The sense
of the MPS ischanged wheneverthe entry in the Switch_MPSis one.

The probability estimation state machine is given in Table D.3. Initialization of the arithmetic coder is always with
an MPSsenseof zero and a Qeindex of zero in Table D.3.

The Qe vaiues listed in Table D.3 are expressed as hexadecimal integers. To approximately convert the 15-bit integer
representation of Qe to a decimalprobability, divide the Qe values by (4/3) x (X’ 8000’).
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Table D.3 — Qe values and probability estimation state machine

 

   
      
 

Index Qe Switch|Index Qe Next_ Index
_Value _LPS|_MPS MPS Value

0 X’SAID’ 1 1 1 57 XO1AY 55 58 0
1 X’2586’ 14 2 0 58 X’0160’ 56 59 0
2 XxX1114 16 3 0 59 0125’ 57 60 0
3 X’080B’ 18 4 0 60 X’00F6’ 58 61 0
4 X’03D8" 20 5 0 61 X’00CB’ 59 62 0
5 X’01LDA’ 23 6 0 62 X’00AB’ 61 63 0
6 X°00ES’ 25 7 0 63 X’008F 61 32 0
7 X°006F” 28 8 0 64 X’5B12’ 65 65 1
8 X’0036’ 30 9 0 65 X’4D04" 80 66 0
9 X’001A' 33 10 0 66 X’°412C’ 81 67 0

10 X’000D’ 35 ll 0 67 &’37D8" 82 68 0
11 X’0006" 9 12 0 68 X?2FE8’ 83 69 0
12 X’0003’ 10 13 0 69 X°293C’ 84 70 0
13 X’0001’ 12 13 0 70 X°2379" 86 71 0
14 X’5A7TF’ 15 15 1 71 X’1EDF’ 87 72 0
15 X’3F25° 36 16 0 72 X’1AA9’ 87 73 0
16 X?2CF2’ 38 17 0 73 X’174E" 72 74 0
17 X’207C’ 39 18 0 74 xX’ 1424" 72 75 0
18 X’17B9’ 40 19 0 75 xX119C’ 74 76 0
19 X’1182’ 42 20 0 76 X’0F6B’ 74 77 0
20 X’OCEF’ 43 21 0 TT X’ODS!’ 75 78 0
21 X’O9AL’ 45 22 0 78 X’0BB6’ TI 79 0
22 X’072P 46 23 0 719 X’0A40’ Ti 48 0
23 &’055C’ 48 24 0 80 X?5832’ 80 81 1
24 x’0406’ 49 25 0 81 xX’4D1IC’ 88 82 0
25 X’0303' 51 26 0 82 X’438E’ 89 83 0
26 X’0240° 52 27 0 83 X’3BDD' 90 84 0}
27 X’OIBI’ 54 28 0 84 X734EE’ 91 85 0
28 X’0144’ 56 29 0 85 X’ 2EAE’” 92 86 0
29 X’ 00F5’ 57 30 0 86 X°299A’ 93 87 0
30 X’00B7’ 59 31 0 87 2516 86 71 0
31 X’008A’ 60 32 0 88 X’5570° 88 89 1
32 X’0068’ 62 33 0 89 X’4ACAD’ 95 90 0
33 X’004F’ 63 34 0 90 X’44D9’ 96 91 0
34 X’003B’ 32 35 0 91 X"3E22’ 97 92 0
35 X'002C’ 33 9 0 92 X'3824" 99 93 0
36 X’5AE1’ 37 37 1 93 X’32B4’ 99 94 0
37 X’484C’ 64 38 0 94 X’2E17’ 93 86 0
38 X°3A0D’ 65 39 0 95 X’56A8’ 95 96 I
39 X’2EF1’ 67 40 0 96 K’4F46° 101 97 0
40 X’261F 68 41 0 o7 X’47ES’ 102 - 98 0
41 X’1F33’ 69 42 0 98 X’41CP 103 99 0
42 X’19A8’ 70 43 0 99 X'3C3D’ 104 100 0
43 X71518’ 72 44 0 100 X’375E’ 99 93 0
44 X°1177’ 73 45 0 101 XK’ 5231’ 105 102 0
45 X’0E74’ 74 46 0 102 X’4COF’ 106 103 0
46 X’0BFB’ 75 47 0 103 X°4639° 107 104 0
47 X’09F8’ 77 48 0 104 K’415E 103 99 0
48 X’0861’ 78 49 0 105 X’5627’ 105 106 1
49 X’0706’ 79 50 0 106 X’50E7’ 108 107 0
50 X’05CD’ 48 51 0 107 X’4B85’ 109 103 0
51 X’04DE’ 50 52 0 108 5597’ 110 109 0
52 X°040F’ 50 53 0 109 K’504F 111 107 0 =
53 X’0363’ 51 54 0 110 X’5A10’ 110 111 1
54 X’02D4’ 52 55 0 111] K’ 5522’ 112 109 0
55 X’025C’ 53 56 0 112 X’59EB’ 112 141 1
56 X’01F8’ 54 57 0
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D.1.5.2. Renormalization driven estimation

The changein state in Table D.3 occurs only when the arithmetic coder interval register is renormalized. This must always
be done after coding an LPS, and wheneverthe probability interval register is less than X'8000' (0.75 in decimal notation)
after coding an MPS.

When the LPS renormalization is required, Next_Index_LPS gives the new index for the LPS probability estimate. When
the MPS renormalization is required, Next_Index_MPS gives the new index for the LPS probability estimate. If
Switch_MPSis 1 for the old index, the MPS symbol sense mustbe inverted after an LPS.

D.1.5.3 Estimation following renormalization after MPS

The procedure for estimating the probability on the MPS renormalization path is given in Figure D.5. Index(S)is part of
the information stored for context-index S. The new value of Index(S) is obtained from Table D.3 from the column labeled
Next_Index_MPS,as that is the next index after an MPS renormalization. This next index is stored as the new value of
Index(S) in the context storage at context-index S, and the value of Qe at this new Index(S) becomes the new Qe(S).
MPS(S)does not change.

Estimate_Qe(S)_
after_MPS

1 = index(S)
| = Next_Index_MPS(1)
Index(S) =1
Qe(S) = Qe_Value(l) 

TISO1060-99/d043

Figure D.5 — Probability estimation on MPS renormalization path
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D.1.5.4 Estimation following renormalization after LPS

The procedure for estimating the probability on the LPS renormalization path is shown in Figure D.6. The procedure is
similar to that of Figure D.5 except that when Switch_MPS(D)is 1, the sense of MPS(S) mustbe inverted.

 Estimate_Qe(S)_
after_LPS

 
 

MPS(S) = 1 — MPS(S)

 
   I = Next_Index_LPS(|)

Index(S) = |
Qa(S) = Qe_Valua(l)

 
 71S01070-03/d044

Figure D.6 — Probability estimation on LPS renormalization path

D.1.6 Renormalization in the encoder

The Renorm_e procedure for the encoder renormalization is shown in Figure D.7. Both the probability interval register A
and the coderegister C are shifted, one bit at a time. The numberofshifts is counted in the counter CT; when CTis zero,
a byte of compressed data is removed from C by the procedure Byte_out and CTis reset to 8. Renormalization continues
until A is no longer less than X’8000’.
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 Renorm_e

 

 
 

 A=SLLA1
C=SLLC1
CT=CT-1

Byte_out

A<X’8000°
?

 
TISO1080-9a/d045

Figure D.7 — Encoder renormalization procedure

The Byte_out. procedure used in Renorm_e is shownin Figure D.8. This procedure uses byte-stuffing procedures which
prevent accidental generation of markers by the arithmetic encoding procedures. It also includes an example of a
procedure for resolving carry-over. For simplicity of exposition, the buffer holding the entropy-coded segment is assumed
to be large enough to contain the entire segment.

In Figure D.8 BPis the entropy-coded segmentpointer and B is the compressed data byte pointed to by BP. T in Byte_out
is a temporary variable which is used to hold the output byte and carry bit. ST is the stack counter which is used to count
X°FF’ output bytes until any carry-over through the X’FF’ sequence has been resolved. The value of ST rarely exceeds 3.
However,since the upperlimit for the value of ST is bounded only by the total entropy-coded segmentsize, a precision of
32 bits is recommended for ST.

Since large values of ST represent a latent output of compressed data, the following procedure may be needed in high
speed synchronous encoding systemsfor handling the burst of output data which occurs whenthe carry is resolved.
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T=SRLC19  
 

Output_stacked_zeros 

 
_ Output_stacked_

ST=ST+1 X'EF's

BP=BP+1 
  
 

 
 

BP=BP +1
B=T

C=CAND X’7FFFF’

 
TISO1090-93/d046

Figure D.8 — Byte_out procedure for encoder

 

Whenthestack count reaches an upper bound determined by output channel capacity, the stack is emptied and the stacked
X’FF’ bytes (and stuffed zero bytes) are added to the compressed data before the carry-over is resolved. If a carry-over —
then occurs, the carry is added to the final stuffed zero, thereby converting the final X’FFOO’ sequence to the X’FFO1’
temporary private marker. The entropy-coded segment must then be post-processed to resolve the carry-over and remove
the temporary marker code. For any reasonable boundonSTthis post processing is very unlikely.

Referring to Figure D.8, the shift of the code register by 19 bits aligns the output bits with the low order bits of T. The
first test then determines if a carry-over has occurred. If so, the carry must be added to the previous output byte before
advancing the segment pointer BP. The Stuff_0 procedure stuffs a zero byte whenever the addition of the carry to the data
already in the entropy-coded segments creates a X'FF’ byte. Any stacked output bytes — converted to zeros by the carry-
over — are then placed in the entropy-coded segment. Note that when the output byte is later transferred from T to the
entropy-coded segment(to byte B), the carry bit is ignoredifit is set.
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If a carry has not occurred, the output byteis tested to seeif it is X’FF’. If so, the stack count ST is incremented, as the
output must be delayed until the carry-overis resolved. If not, the carry-over has been resolved, and any stacked X’FF’
bytes must then be placed in the entropy-coded segment. Note that a zero byte is stuffed following each X°FF’.

The procedures used by Byte_outare defined in Figures D.9 through D.11.

 

  

 
Output_stacked_zeros

 
 
 

B=0
ST=ST-1

TISO1810-93/d047

Figure D.9 — Output_stacked_zeros procedurefor encoder

 

  

 
 
  

Output_stacked_
X'FF’s

BP =BP +1

TISO1 100-99/d048

Figure D.10 — Output_stacked_X’FF’s procedure for encoder
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BP=BP+1
B=0 

TISO1110-94/d049

Figure D.11 — Stuff_0 procedure for encoder

D.1.7 Initialization of the encoder

The Initenc procedureis used to start the arithmetic coder. The basic steps are shown in Figure D.12.

Initenc

Initialize statistics areas
ST=0
A= X’10000”

(see Note below)
c=0
cT=11
BP =BPST-1 

TISO1120-93/d050

Figure D.12 — Initialization of the encoder
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The probability estimation tables are defined by Table D.3. The statistics areas are initialized to an MPS sense of 0 and a
Qe index of zero as defined by Table D.3. The stack count (ST)is cleared, the code register (C) is cleared, and the interval
register is set to X’10000’. The counter (CT) is set to 11, reflecting the fact that whenAis initialized to X’10000’ three
spacerbits plus eight outputbits in C mustbefilled before the first byte is removed. Note that BPis initialized to pointto
the byte before the start of the entropy-coded segment (which is at BPST). Notealso that the statistics areas are initialized
for all values of context-index S to MPS(S) = 0 and Index(S) = 0.

NOTE — Although the probability interval is initialized to X’10000’ in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval registeris 16 bits, it is initialized toZero.

D.1.8 Termination of encoding

The Flush procedure is used to terminate the arithmetic encoding procedures and prepare the entropy-coded segmentfor
the addition of the X’FF’ prefix of the marker which follows the arithmetically coded data. Figure D.13 showsthis flush
procedure. Thefirst step in the procedureis to set as many low orderbits of the code register to zero as possible without
pointing outside of the final interval. Then,the output byte is aligned by shifting it left by CT bits; Byte_out then removes
it from C. C is then shifted left by 8 bits to align the second output byte and Byte_out is used a second time. The
remaining low order bits in C are guaranteed to be zero, and these trailing zero bits shall not be written to the entropy-
coded segment.

Clear_final_bits

C=SLLCCT

Byte_out
Discard_final_zeros
 

TISO1190-93/d051

Figure D.13 — Flush procedure
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Anytrailing zero bytes already written to the entropy-coded segment and not preceded by a X’FF’ may, optionally, be
discarded. This is done in the Discard_final_zeros procedure. Stuffed zero bytes shall not be discarded.

Entropy coded segments are always followed by a marker. For this reason,the final zero bits needed to complete decoding
shall not be included in the entropy coded segment. Instead, when the decoder encounters a marker, zero bits shall be
supplied to the decoding procedure until decoding is complete. This convention guarantees that when a DNL markeris
used, the decoder will intercept it in time to correctly terminate the decoding procedure.

Clear_final_bits

T=C+A-1
T=TAND

X’FFFFOO00’

T=T+x'8000" 
TISO1140-93/d052

Figure D.14 — Clear_final_bits procedure in Flush
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 Discard_final_zeros

 
 BP <BPST

?

 
 
 

Yes

BP=BP+1 ;

TISO1150-93/d053

Figure D.15 — Discard_final_zeros procedure in Flush

D.2 Arithmetic decoding procedures

Twoarithmetic decoding procedures are used for arithmetic decoding (see Table D.4).

The “Decode(S)” procedure decodes the binary decision for a given context-index S and retumsa value ofeither 0 or1. It
is the inverse of the “Code_0(S)’ and “Code_1(S)” procedures described in D.1. “Initdec” initializes the arithmetic
coding entropy decoder.

Table D.4 - Procedures for binary arithmetic decoding —

 

 

 

Procedure

  Decode(S) Decode a binary decision with context-index S 
  Initdec Initialize the decoder 
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D.2.1_—Binary arithmetic decoding principles

Theprobability interval subdivision and sub-interval ordering defined for the arithmetic encoding procedures also apply to
the arithmetic decoding procedures.

Sincethe bit stream always points within the current probability interval, the decoding process is a matter of determining,
for each decision, which sub-interval is pointed to by the bit stream. This is done recursively, using the same probability
interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts from the bit stream
any interval the encoder addedto the bit stream. Therefore, the code register in the decoder is a pointer into the current
probability interval relative to the base of the interval.

If the size of the sub-interval allocated to the LPS is larger than the sub-interval allocated to the MPS, the encoder invokes
the conditional exchange procedure, Whentheinterval sizes are inverted in the decoder, the sense of the symbol decoded
mustbe inverted.

D.2.2 Decoding conventions and approximations

The approximations and integer arithmetic defined for the probability interval subdivision in the encoder must also be
used in the decoder. However, where the encoder would have addedto the code register, the decodersubtracts from the
coderegister.

D.2.3. Decoder code register conventions

The flow charts given in this section assumetheregister structures for the decoder as shown in Table D.5:

Table D.5 — Decoder register conventions

Cx register XXXXXXXX, XXXXXXXX

C-low bbbbbbbb, 00000000

A-register aaaaaaaa, aaaaaaaa
 

Cx and C-low can be regarded as one 32-bit C-register, in that renormalization of C shifts a bit of new data from bit 15 of
C-low to bit 0 of Cx. However, the decoding comparisons use Cx alone. New data are inserted into the “b” bits of C-low
one byte at a time.

NOTE — The comparisons shown in the various procedures use arithmetic comparisons, and therefore assume precisions
greater than 16 bits for the variables. Unsigned (logical) comparisons should be used in 16-bit precision implementations.

D.2.4 The decode procedure

The decoder decodes onebinary decision at a time. After decoding the decision, the decoder subtracts any amountfrom
the code register that the encoder added. The amountleft in the code register is the offset from the base of the current
probability interval to the sub-interval allocated to the binary decisions not yet decoded. In the first test in the decode
procedure shownin Figure D.16 the coderegister is compared to the size of the MPS sub-interval. Unless a conditional
exchange is needed, this test determines whether the MPS or LPS for context-index S is decoded. Note that the LPS for
context-index S is given by 1 - MPS(S).
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When a renormalization is needed, the MPS/LPS conditional exchange may also be needed. For the LPS path, the
conditional exchange procedure is shown in Figure D.17. Note that the probability estimation in the decoder is identical
to the probability estimation in the encoder (Figures D.5 and D.6).

 
 
 
 

(S)

A < X’8000”

 
 
  

 D = Cond_LPS_exchange(S)D = Cond_MPS_exchange(S)
Renorm_dRenorm_d

D=MPS(S)

Figure D.16 — Decode(S) procedure

TISO1160-93/d054

For the MPS path of the decoder the conditional exchange procedure is given in Figure D.18.
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Figure D.17 - Decoder LPS path conditional exchange procedure

 
 

 

 
 

  Cond_LPS_
exchange(S)

 

 
 

 

 
 
 

D=1-—MPS(S)
Cx=Cx-A
A=Qe(8)

D =MPS(s)
Cx=Cx-A
A= Qe(S)
 

 

Estimate_Qe(S)_
after_LPS

Return D

TISO1170-93/d055

  
 

Estimate_Qe(S)_
after_MPS  

 

 

 
 

  Cond_MPS_
exchange(S)

D=1—MPS(S) D =MPS(S) 
 

 

 

Estimate_Qe(S)_
after_MPS Estimate_Qe(S)_

after_LPS  

TISO1 180-93/d056

Figure D.18 - Decoder MPS path conditional exchange procedure
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D.2.5 Probability estimation in the decoder

The procedures defined for obtaining a new LPS probability estimate in the encoderare also used in the decoder.

D.2.6 Renormalization in the decoder

The Renorm_d procedure for the decoder renormalization is shown in Figure D.19. CT is a counter which keeps track of
the numberof compressed bits in the C-low section ofthe C-register. When CTis zero, a new byte is inserted into C-low
by the procedure Byte_in and CTis reset to 8.

Both the probabilityinterval register A and the coderegister C are shifted, one bit at a time, until A is no longerless than
X’8000’.

 

Renorm_d

A <X’8000’
?

TISO1190-93/d057

Figure D.19 — Decoder renormalization procedure
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The Byte_in procedure used in Renorm_d is shown in Figure D.20. This procedure fetches one byte of data,
compensating for the stuffed zero byte which follows any X’FF’ byte. It also detects the marker which must follow the
entropy-coded segment. The C-register in this procedureis the concatenation of the Cx and C-low registers. For simplicity
of exposition, the buffer holding the entropy-coded segment is assumed to be large enoughto contain the entire segment.

B is the byte pointed to by the entropy-coded segment pointer BP. BPis first incremented.If the new value of B is not a
X°FF’, it is inserted into the high order 8 bits of C-low.

 
 
 

BP = BP +1

 C=C+SiLB8 Unstuff_O

TISO1200-99/d058

Figure D.20 — Byte_in procedure for decoder
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The Unstuff_0 procedure is shownin Figure D.21. If the new value of B is X’ FF’, BP. is incremented to point to the next
byte and this next B is tested to see if it is zero. If so, B contains a stuffed byte which must be skipped. The zero B is
ignored, and the X’FF’ B value which precededit is inserted in the C-register.

If the value of B after a-X’FF’ byte is not zero, then a marker has been detected. The markeris interpreted as required and
the entropy-coded segment pointer is adjusted (“Adjust BP” in Figure D.21) so that 0-bytes will be fed to the decoder
until decoding is complete.One way of accomplishingthis is to point BP to the byte preceding the marker which follows
the entropy-coded segment.

 
 

 
Unstuff_O

BP =BP+1

Interpret_marker
Adjust BP  

 
 C=C OR X’FFQ0’

TISO1210-93/d059

Figure D.21 ~ Unstuff_0 procedure for decoder
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D.2.7 Initialization of the decoder

The Initdec procedureis used to start the arithmetic decoder. The basic steps are shownin Figure D.22.

 
 

 
Initdec

Initialize statistics areas
BP =BPST-—1
A=X'0000'

(see Note below)
G=0

 
  
  

 
TISO1220-93/d060

Figure D.22 — Initialization of the decoder

The estimation tables are defined by Table D.3. Thestatistics areas are initialized to an MPS sense of 0 and a Qe index of
zero as defined by Table D.3. BP, the pointer to the entropy-coded segment,is then initialized to. point to the byte before
the start of the entropy-coded segment at BPST, andtheinterval register is set to the same starting value as in the encoder. _
Thefirst byte of compressed data is fetched and shifted into Cx. The second byte is then fetched and shifted into Cx. The
countis set to zero, so that a new byte of data will be fetchedby Renorm_d.

NOTE ~ Although the probability interval is initialized to X‘'10000° in both Initenc and Initdec, the precision of
the probability interval register can still be limited to 16 bits. When the precision of the interval register is 16 bits, it is initialized tozero.

D.3 Bit ordering within bytes

The arithmetically encoded entropy-coded segment is an integer of variable length. Therefore, the ordering of bytes and
the bit ordering within bytes is the same as for parameters (see B.1.1.1).
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Annex E

Encoderand decodercontrol procedures

(This annex formsan integral part of this Recommendation| International Standard)

This annex describes the encoder and decoder control procedures. for the sequential, progressive, and lossless modes of
operation.

The encoding and decoding control proceduresfor the hierarchical processes are specified in Annex J.

NOTES

1 There.is no requirementin this Specification that any encoder or decoder shall implement the procedures in precisely
the mannerspecified by the flow charts in this annex. It is necessary only that an. encoder or decoder implementthe function specified
in this annex. Thesole criterion for an encoder or decoder to be considered in compliance with this. Specification is that it satisfy the
requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the compliancetests specified in Part 2.

2  Implementation-specific setup steps are not indicated in this annex and may be necessary.

E.1 Encoder control procedures

E.1.1 Control procedure for encoding an image

The encoder control procedure for encoding an image is shownin Figure E.1.

_ Encode_image

Append SOI marker

Encode_frame

Append EO! marker 
71S01230-93/d061

Figure E.1 — Control procedure for encoding an image
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E.1.2 Control procedure for encoding a frame

In all cases where markers are appended to the compressed data, optional X’FF’ fill bytes may precede the marker.

The control procedure for encoding a frame is oriented around the scans in the frame. The frame headeris first appended,
and then the scans are coded. Table specifications and other marker segments may precede the SOF, marker,as indicated
by [tables/miscellaneous] in Figure E.2.

Figure E.2 shows the encoding process frame control procedure.

 
  

 
Encode_frame

 

 
[Append tables/miscellaneous]
Append SOF,, markerand rest

of frame header

Encode_scan |
Yes [Append DNL

S segment]
More scans

?

  

  
 
 

11801240-93/d062

Figure E.2 — Control procedure for encoding a frame

E.1.3. Control procedure for encoding a scan

A scan consists of a single pass through the data of each componentin the scan. Table specifications and other marker
segments may precede the SOS marker. If more than one component is coded in the scan, the data are interleaved. If
restart is enabled, the data are segmentedintorestart intervals. If restart is enabled, a RST;, marker is placed in the coded
data betweenrestart intervals. If restart is disabled, the control procedure is the same, exceptthat the entire scan contains a
single restart interval. The compressed image data generated by a scan is always followed by a marker, either the EOI
markeror the marker of the next marker segment.
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Figure E.3 shows the encoding process scan control procedure. The loop is terminated when the encoding process has
coded the numberofrestart intervals which make up the scan.“m”is the restart interval modulo counter needed for the
RST, marker. The modulo arithmetic for this counter is shownafter the “Append RST; marker” procedure.

 

 
 

 

Encode_scan

 
  

  
 
 
 
  
 

[Append tables/miscellaneous]
Append SOS marker andrest ofscan header
m=0

Encode_restart__
interval

Moreintervals9

Append RST,, marker
m=(m+1) AND 7

TISO1250-93/d063

Figure E.3 - Control procedure for encoding a scan
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E.1.4 Control procedure for encoding a restart interval

Figure E.4 shows the encoding process control procedure for a restart interval. The loop is terminated either when the
encoding process has coded the number of minimum coded units (MCU)in therestart interval or when it has completed
the image scan. ,

  
 

 
 

Encode.restart_
interval

Reset_encoder

Encode_MCU |
Prepare_for_marker

T1S01260-93/d064

Figure E.4 — Control procedure for encoding a restart interval

The “Reset_encoder” procedure consists at least of the following:

a) if arithmetic coding is used, initialize the arithmetic encoder using the “Initenc” procedure described
in D.1.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.1.1.5.1);

c) forlossless processes, reset the prediction to a default value for all components in the scan (see H.1 1);

d) doall other implementation-dependent setups that may be necessary.

The procedure “Prepare_for_marker” terminates the entropy-coded segmentby:

a) padding a Huffman entropy-coded segment with 1-bits to complete the final byte (and if needed stuffing a
zero byte) (see F.1.2.3); or

b) invoking the procedure “Flush” (see D.1.8) to terminate an arithmetic entropy-coded segment.

NOTE — The number of minimum coded units (MCU) in the final restart interval must be adjusted to match the number
of MCUin the scan. The number of MCUis calculated from the frame and scan parameters. (See Annex B.)
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E.1.5 Control procedure for encoding a minimum coded unit (MCU)

The minimum codedunit is defined in A.2. Within a given MCUthedata units are coded in the order in which they occur
in the MCU.The control procedure for encoding a MCUis shownin Figure E.5.

N=N+1
Encode data unit 

TIS01270-93/d065

Figure E.5 — Control procedure for encoding a minimum coded unit (MCU)

In Figure E.5, Nb refers to the number of data units in the MCU. The order in which data units occur in the MCU is
defined in A.2. The data unit is an 8 x 8 block for DCT-based processes, and a single sample for lossless processes.

The procedures for encoding a data unit are specified in AnnexesF,G, and H.

E.2 Decoder control procedures =

E.2.1 Control procedure for decoding compressed image data

Figure E.6 shows the decoding process control for compressed image data.

Decoding control centers around identification of various markers. The first marker must be the SOI (Start Of Image)
marker. The “Decoder_setup” procedure resets the restart interval (Ri = 0) and, if the. decoder has arithmetic decoding
capabilities, sets the conditioning tables for the arithmetic codingto their default values. (See F.1.4.4.1.4 and F.1.4.4.2.1.)
The next marker is normally a SOF, (Start Of Frame) marker;if this is not found, one of the marker segmentslisted in
Table E.1 has been received.
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SOI marker
?

Yes  
  
  
 

 
interpret markers

Decode.frame

TIS01280-83/d066

Figure E.6 -— Control procedure for decoding compressed image data

Table E.1 —Markers recognized by “Interpret markers”

Define Huffman Tables

  

  
  
   
 
 

Define Arithmetic Conditioning

Define Quantization Tables
Define Restart Interval

Application defined marker

Comment

Note that optional X’ FF’fill bytes which may precede any marker shall be-discarded before determining which markeris
present.
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The additional logic to interpret these various markers is contained’ in the box labeled “Interpret markers”. DHT markers
shall be interpreted by processes using Huffman coding. DAC markers shall be interpreted by processes using arithmetic
coding. DQT markers shall be interpreted by DCT-based decoders. DRI markers shall be interpreted by all decoders.
APPn and COM markersshall be interpreted only to the extent that they do not interfere with the decoding.

By definition, the procedures in “Interpret markers” leave the system at the next marker. Note that if the expected SOI
markeris missing atthe start of the compressed image data, an error condition has occurred. The techniques for detecting
and managing error conditions can be as elaborate or as simple as desired.

E.2.2. Control procedure for decoding a frame

Figure E.7 showsthe control procedure for the decoding of a frame.

 

 
 

Decode_frame

Interpret frame header

, Interpret markers
‘Yes

el
EO! marker

?

  
 

TISO1290-93/d067

Figure E.7 — Control procedure for decoding a frame

The loop is terminated if the EOI marker is foundat the end of the scan.

The markers recognized by “Interpret markers” are listed in Table E.1. Subclause E.2.1 describes the extent to which the
various markers shall be interpreted.
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E.2.3 Control procedure for decoding a scan

Figure E.8 showsthe decodingof a scan.

The loopis terminated when the expected numberofrestart intervals has been decoded.

 

 
 
 

  

Decode_scan

 Interpret scan headerm=0

Decode_restart_
interval

Moreintervals
2

71IS01300-93/d068

Figure E.8 — Control procedure for decoding a scan
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E.2.4 Control procedure for decoding a restart interval

@putec 10918-1 : 1993(E)

The procedure for decoding a restart interval is shown in Figure E.9. The “Reset_decoder” procedure consists at least of
the following:

a) if arithmetic coding is used, initialize the arithmetic decoder using the “Initdec” procedure described
in D.2.7;

b) for DCT-based processes, set the DC prediction (PRED) to zero for all components in the scan
(see F.2.1.3.1);

c) for lossless process, reset the prediction to a default value forallcomponentsin-the scan (see H.2.1);

d) do all other implementation-dependent setups that may be necessary.

  
 

 
 

Decode_restart_
interval

Reset_decoder

Decode_MCU

Find marker

TISO1310-93/d059

Figure E.9 — Control procedure for decoding a restart interval

Atthe end ofthe restart interval, the next markeris located. If a problem is detected in locating this marker, error handling
procedures may be invoked. While such procedures are optional, the decoder shall be able to correctly recognize restartmarkers in-the compressed data and reset the decoder when they are encountered. The decoder shall also be able to
recognize the DNL marker, set the number of lines defined in the DNL segment, and end the “Decode_restart_interval”
procedure.

NOTE — Thefinal restart interval may be smaller than the size spec:
number of MCUsremaining in the scan.

ified by the DRI marker segment, as it includes only the
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E.2.5 Control procedure for decodinga minimum coded unit (MCU)

The procedure for decoding a minimum coded unit (MCU) is shown in Figure E.10.

In Figure E.10 Nbis the numberof data units ina MCU.

The procedures for decoding a data unit are specified in-AnnexesF, G,and H.

N=N+1
Decode_data_unit 

TISO1320-83/d070

Figure E.10 - Control procedure for decoding a minimum coded unit (cu)

86 CCITTRec. T.81 (1992 E)

HUAWEI EX.1016 - 282/714



HUAWEI EX. 1016 - 283/714

‘D/TEC 10918-1 : 1993(E)  
Annex F

Sequential DCT-based modeof. operation
(This annex forms an integral part of this Recommendation| International Standard)

This annex provides a functionalspecification of the following coding processes for the sequential DCT-based mode of
operation:

1)_baseline sequential;

2) extended sequential, Huffman coding, 8-bit sample precision;
3) extended sequential, arithmetic coding, 8-bit sample precision;
4) extended sequential, Huffman coding, 12-bit samplé precision;
5) extended sequential, arithmetic coding, 12-bit sample precision.

For each of these, the encoding process is specified in F.1, and the decoding process is specified in F.2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE — Thereis no requirementin this Specification that any. encoder or decoder which embodies one of the above-named
processes shall implement the procedures in precisely the manner spécified by the flow charts in this annex.It is necessary only that anencoder or decoder implement the function specified ‘in this annex. The sole cfiterion for an encoder or decoder to be considered in
compliance with this Specification is thatit satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliancetests specified in Part 2.

F. Sequential DCT-based encoding processes

F.1.1 Sequential DCT-based control procedures and coding models

F.1.1.1 Control procedures for sequential DCT-based encoders

The control procedures for encoding an image and its constituent parts — the frame, scan, restart interval and
MCU —are given in Figures E.1 to E.5. The procedure for encoding a MCU (see Figure E.5) repetitively calls the
procedure for encoding a data unit. For DCT-based encoders the data unit is an 8 x 8 block of samples.
F.1.1.2 Procedure for encoding an 8 x 8 block data unit

Forthe sequential DCT-based processes encoding an 8 x8 block data unit consists of the following procedures:
a) level shift, calculate forward 8x8 DCT and quantize the. resulting coefficients using table destination

specified in frame header;

b) encode DCcoefficient for 8 x 8 block using DC.table destination specified in scan header;
c) encode AC coefficients for 8 x 8 block using AC table destination specified in scan header.

F.1.1.3. Level shift and forward DCT (FDCT)

The mathematical definition of the FDCTis given in A.3.3.

Prior to computing the FDCTthe input data are level shifted to.a signed two’s complement representation as described in
A.3.1. For 8-bit input precision the level shift is achieved by subtracting 128. For 12-bit input precision the level shift is
achieved by subtracting 2048.

F.1.1.4 Quantization of the FDCT

The uniform quantization procedure described in Annex A is used to quantize the DCT coefficients. One of four
quantization tables may be used by the encoder. No default quantization tables are specified in this Specification.
However, sometypical quantization tables are given in Annex K.

The quantized DCT coefficient values are signed, two’s complement integers with 11-bit precision for 8-bit input
precision and 15-bit precision for 12-bit input precision.
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F.1.1.5 Encoding models for the sequential DCT procedures

The two dimensional array of quantized DCT coefficients is rearrangedin a zig-zag sequence order defined in A.3.6. The
zig-zag order coefficients are denoted ZZ (0) through ZZ(63) with: ,

ZZ(0) = Sqo_ZZ(1) = Sqy).ZZ2) = Sq, q.e0,0.22(63) = Sq,

Sqvu are defined in Figure A.6.

Two coding procedures are used, one for the DC coefficient ZZ(0) and the other for the AC coefficients ZZ(1)..2Z(63).
The coefficients are encodedin the order in which they occurin.zig-zag sequence order, starting with the DC coefficient.
Thecoefficients are represented as two’s complementintegers.

F.1.1.5.1 Encoding model for DC coefficients

The DC coefficients are coded differentially, using a one-dimensional predictor, PRED, which is the quantized DE value
from the most recently coded 8 x 8 block from the same component. The difference, DIFF, is obtained ‘from

DIFF = ZZ(0) — PRED

At the beginning of the scan andat the beginning of each restart interval, the prediction for the DC coefficient prediction
is initialized to 0. (Recall.that the input data have been level shifted to two’s complementrepresentation.)

F,1.1.5.2 Encoding model for AC coefficients

Since many coefficients are zero, runs of zeros are identified and codedefficiently. In addition, if the remaining
coefficients in the zig-zag sequenceorderareall zero, this is coded explicitly as an end-of-block (EOB).

F.1.2 Baseline Huffman encoding procedures

The baseline encoding procedure is for 8-bit sample precision. The encoder may employ up to two DC and two AC
Huffman tables within one scan.

F.1.2.1_ Huffman encoding of DC coefficients

F1.2.1.1 Structure of DC code table

The DC code table consists of a set of Huffman codes (maximum length 16 bits) and appended additional bits (in most
cases) which can code any possible value ofDIFF, the difference between the current DC coefficient and the prediction.
The Huffman codes for the difference categories are generated in such a way that no code consists entirely of 1-bits
(X’FF’prefix marker code avoided).

The two’s complement difference magnitudes are grouped into 12 categories, SSSS, and a Huffman code is created for
each ofthe 12 difference magnitude categories (see Table F.1). _

For each category, except SSSS =0,an additional bits field is appended to the code word to uniquely identify which
difference in that category actually occurred. The numberofextrabits is given by SSSS;the extra bits are appended to the
LSB ofthe preceding Huffman code, most significant bit first. When DIFF is positive, the SSSS low order bits of DIFF
are appended. When DIFF is negative, the SSSS low order bits of (DIFF ~ 1) are appended. Note that the most significant
bit of the appended bit sequenceis 0 for negative differences and 1 for positive differences.

F.1.2.1.2 Defining Huffmantables for the DC coefficients

The syntax for specifying the Huffman tables is. given in Annex B. The procedure for creating a code table from this
information is described in Annex C. No more than two Huffman tables may be defined for coding of DC coefficients.
Two examples of Huffman tables for coding of DC coefficients are provided in Annex K.
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Table F.1 - Difference magnitude categories for DC coding
 

DIFF values

-1,1

-3,-2,2,3

-7.AA.7

—15..-8,8..15

—31,.-16,16..31

—63..-32,32..63

—127..-64,64..127

—255..-128,128..255

—511..-256,256..511

-1 023..-512,512..1 023

2

3

4

5

6

7

8

9

-= =Oo

  
—2 047..-1 024,1 024,.2 047

F.L.2.1.3 Huffman encoding procedures for DC coefficients

The encoding procedure is defined in terms of a set of extended tables, XHUFCO and XHUFSI, which contain the .
complete set of Huffman codes and sizesforall possible difference values. For full 12-bit precision the tables are relatively
large. For the baseline system, however, the precision of the differences may be small enough to. make this description
practical.

XHUFCO and XHUFSIare generated from the encoder tables EHUFCO and EHUFSI(see Annex C) by appendingto the
Huffman codes for each difference category the additional. bits that completely. define the difference. By definition,
XHUEFCO and XHUFSIhaveentries for each possible difference value. XHUFCOcontains the concatenated bit pattern of
the Huffman code and the additional bits field, XHUFSI contains the total length in bits of this concatenated bit pattern.
Both are indexed by DIFF, the difference between the DC coefficient and the prediction.

The Huffman encoding procedure for the DC difference, DIFF,is:

SIZE = XHUFSI(DIFF)

CODE = XHUFCO(DIFF)

code SIZE bits of CODE

where DC is the quantized DC coefficient value and PRED jis the predicted quantized DC value. The Huffman code
(CODE) (including any additional bits) is obtained from XHUFCO and SIZE (length of the code including additional
bits) is obtained from XHUFSI, using DIFF as the index to the two tables.

F.1.2.2 Huffman encoding of AC coefficients

F.1.2.2.1 Structure of AC code table

Each non-zero AC coefficient in ZZ is described by a composite 8-bit value, RS, of the form

RS = binary ’RRRRSSSS’
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The 4 least significant bits, ’SSSS’, define a category for the amplitude of the next non-zero coefficient in ZZ, and the 4
mostsignificant bits, ’RRRR’, give the position of the coefficient in ZZ relative to the previous non-zero coefficient (i.e.
the run-length of zero coefficients between non-zero coefficients). Since the run length of zero coefficients may exceed
15, the value "RRRRSSSS’= X’FO”is defined to represent a run length of 15 zero coefficients followed by a coefficient
of zero amplitude. (This can be interpreted ‘as a run length of 16 zero coefficients.) In addition, a special value
-RRRRSSSS’ = 00000000" is used to cade the end-of-block (EOB), whenall remaining coefficients in the block are
Zero.

The general structure of the code table is illustrated in Figure F.1. The entries marked “N/A” are undefined for the
baseline procedure.

  
 

RRRRA COMPOSITE VALUES

15
71801830-93/d07 1

Figure F.1 — Two-dimensional yaluearray for Huffman coding

The magnitude rangesassigned to each value of SSSS are defined in Table F.2.

Table F.2 — Categories assigned to coefficient values

AC coefficients

-1,1 

  
-3,-2,2,3 

 
 
 
 
 
 
 
 

-7.4,4..7

-15..-8,8..15

~31,.-16,16..31

-63,.-32,32..63

~127,.-64,64..127

~255..-128,128..255
 wowwonnanawuF&FWBWH

-511..-256,256..511

~1 023..-512,512..1 023 _ Qo

The composite value, RRRRSSSS,is Huffman coded and each Huffman code is followed by additional bits which specify
the sign and exact amplitude of the coefficient.

The AC codetable consists of one Huffman code (maximum length 16 bits, not including additional bits) for each
possible composite value. The Huffman codesfor the 8-bit composite values are generated in such a way that no code
consists entirely of 1-bits.
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The format for the additional bits is the same as in the coding of the DC coefficients. The value of SSSS gives the number
of additional bits required to specify the sign and precise amplitude of the coefficient. The additional bits are either the
low-order SSSSbits of ZZ(K) when.ZZ(K)is positive or the low-order SSSS bits of ZZ(K) — 1 when ZZ(K)is negative.
ZZ(K) is the Kth coefficientin the zig-zag sequence of coefficients being caded.

F.1.2.2.2 Defining Huffman tables for the AC coefficients

The syntax for specifying the Huffman tables is. given in Annex B. The procedure for creating a code.table from this
information is described in Annex C.

In the baseline system no more than two Huffmantables may be defined for coding of AC coefficients. Two examples of
Huffman tables for coding of AC coefficients are provided in Annex K.

F.1.2.2.3 Huffman encoding procedures for AC coefficients

As defined in Annex.C, the Huffman codetable is assumed to be available as a pair of tables, EHUFCO (containing the
codebits) and EHUFSI(containing the length of each code in bits), both indexed by the composite value defined above.

The procedure for encoding the AC coefficients in a block is shown in Figures F.2 and F.3. ‘In Figure F.2, K is the index
to the zig-zag scan position andRis the run length of zero coefficients.

The procedure “Append EHUFSI(X’FO0’) bits of EHUFCO(X’F0’)” codes a run of16 zero coefficients (ZRL code of
Figure F.1), The procedure “Code EHUFSI(0) ‘bits of EHUFCO(0)” codes the end-of-block (EOB code). If the last
coefficient (K =63) is not. zero, the EOB code is bypassed.

CSIZEis a procedure which maps an AC coefficientto the SSSS value as defined in Table F.2.

F.1.2.3 Byte stuffing

In order to provide code space for marker codes which can be located in the compressed image data without decoding,
byte stuffing is used.

Whenever, in the course of normal encoding, the byte value X°FF’ is created in the code string, a X’00’ byte is stuffed
into the codestring. ,

If a X’00’ byte is detected after a X’FF’ byte, the decoder must discard it. If the byte is not zero, a marker has been
detected, and shall be interpreted to the extent needed.to complete the decoding of the scan.

Byte alignment of markers is achieved by padding incomplete bytes with 1-bits. If padding with 1-bits creates a X’ FF’
value, a zero byte is stuffed before adding the marker.

F.1.3.. Extended sequential DCT-based Huffman encoding process for 8-bit sample precision

This processis identical to the Baseline encoding process described in F.1.2, with the exception that the numberofsets of
Huffman table destinations which may be used within the same scan is increased to four. Four DC and. four AC Huffman
table destinations is the maximum allowed by this Specification. .

F.1.4 Extended sequential DCT-based arithmetic encoding process for 8-bit sample precision

This subclause describes the use of arithmetic coding procedures in the sequential DCT-based encodingprocess. _
NOTE — The arithmetic coding proceduresin this Specification are defined for the maximum precision to encourage

interchangeability. :

The arithmetic coding extensions have the same DCT. model as the Baseline DCT encoder. Therefore, Annex F.1.1 also
applies to arithmetic coding. As with the Huffman coding technique, the binary arithmetic coding techniqueis lossless.It
is possible to transcodebetween the two systems without either FDCT or IDCT computations, and without modification of
the reconstructed image.

The basic principles of adaptive binary arithmetic coding are described in Annex D. Up to four DC and four AC
conditioning table destinations and associated statistics areas may be used within one scan.

The arithmetic encoding procedures for encoding binary decisions, initializingthe statistics area, initializing the encoder,
terminating the code string, and adding restart markers are listed in Table D.1 of Annex D.
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Encode_AC_
coefficients

   Append EHUFSI(X’FO’) bits - pppend EHUFSIX'00' bitsA of EHUPCOOCFO) FFURCORCON,

 
 

Encode_R,ZZ(K)

 

TISO1340-93/d072

Figure F.2 - Procedure for sequential encoding of AC coefficients with Huffman coding
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SSSS = CSIZE(ZZ(K))
RS =(16 x R)+SSSS
Append EHUFSI(RS)bits

af EHUFCO(RS)

Z2Z(K) = ZZ(K) - 1

 
 Append SSSS

low.orderbits of ZZ(K)

TISO1350-99/d073

Figure F.3 — Sequential encoding of a non-zero AC coefficient

Someofthe procedures in Table D.1 are used in the higher level control structure for scans and restart intervals described
in Annex E.At the beginning of scans and restart intervals, the probability estimates used in the arithmetic coder are reset
to the standard initial value as part of the Initenc procedure which restarts the arithmetic coder. At the end of scans and
restart intervals, the Flush procedure is invoked to empty the code register before the next marker is appended.

F.1.4.1 Arithmetic encoding of DCcoefficients

The basic structure of the decision sequence for encoding a DC difference value, DIFF,is shown in Figure F.4.

The context-index SO and other context-indices used in the DC coding procedures are defined in Table F.4
(sce F.1.4.4.1,3). A-O-decision is ‘codedif the difference value is zero and a 1-decision is coded if the difference is not
zero. If the differenceis not zero; the sign and magnitude are coded using the procedure Encode_V(S0), which is
described in F.1.4.3.1.

F.1.4.2 Arithmetic encoding of AC coefficients

The AC coefficients are coded in the order in which they occur in the zig-zag sequence ZZ(1,...,63). An end-of-block
(EOB)binary decision is coded before coding the first AC coefficient in ZZ, and after each non-zero coefficient. If the
EOBoccurs, all remaining coefficients in ZZ are zero. Figure F.5 ‘illustrates the decision sequence. The equivalent
procedure for the Huffman coderis found in Figure F.2.
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Encode_DC_DIFF 

  
   Code_1(S0)

Encode_V(S0) Code_0{S0)  

 
  

T1$01360-93/d074

Figure F.4 — Coding model for arithmetic coding of DC difference

The context-indices SE and SO used in the AC coding procedures are defined in Table F.5 (see F.1.4.4.2). In Figure F.5,
Kis the index to the zig-zag sequenceposition. For the sequential scan, Kmin is 1 and Se is 63. The V =0 decision is part

of a loop which codesruns of zero coefficients. Whenever the coefficient is non-zero, “Encode_V(SO)” codes the sign and
magnitude ofthe coefficient. Each time a non-zero coefficient is coded,it is followed by an EOB decision. If the EOB
occurs, a 1-decision is coded to indicate that the codingof the block is complete. If the coefficient for K = Se is not zero,
the EOB decision is skipped.

F.1.4.3 Encoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement integer values. The
decomposition of these signed integer values into a binary decision tree is done in the same. way for both the DC and AC
coding models.

Althoughthe binary decision trees for this section of the DC and’AC coding models are the same, the statistical models
for assigningstatistics bins to the binary decisionsin the tree are quite different.

F.1.4.3.1 Structure of the encoding decision sequence —_

The encoding sequence can be separated into three procedures, a procedure which encodesthe sign, a second procedure
which identifies the magnitude category, and 4 third procedure which identifies precisely which magnitude occurred
within the category identified in the secondprocedure.

At the point where the binary decision sequence in Encode_V(SO)starts, the coefficient or difference has already been
determined to be non-zero. That determination was made in the proceduresin Figures F.4 and F.5.

Denoting either DC differences (DIFF) or AC coefficients as V; the non-zero signed integer value of V is encoded by the
sequence shownin Figure F.6. This. sequence first codes the sign of V. It then (after converting V to a magnitude and
decrementing it by 1 to give Sz) codes the. magnitude category of Sz (code_log2_Sz), and then codes the low order
magnitude bits (code_Sz_bits) to identify the exact magnitude value.
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There are two significant differences between this sequence and the similar set of operations described in F.1.2 for
Huffman coding. First, the sign is encoded before the magnitude category is identified, and second, the magnitude is
decremented by 1 before the magnitude category is identified.

 

  

Encode_AC_
Coefficients

Code_1(SE)

Coda_Q(SE)

Code_0(S0)

  Code_1(S0)
Encode_V(S0)

71S01370-92/d075

Figure F.5 - AC coding modelfor arithmetic coding
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Encode_V(S)

Encode_sign_of_V

Sz=I1VI-1

Encode_log2_Sz

Encode_Sz_bits 
TIS01380-93/d076

Figure F.6 — Sequenceof proceduresin encoding non-zero values of V

F.1.4.3.1.1 Encoding the sign

The sign is encoded by coding a 0-decision when the sign is positive and a 1-decision when the sign is negative
(see Figure F.7). ,

The context-indices SS, SN and SPare defined for DC coding in Table F.4 and for AC coding in Table F.5. After the sign
is coded, the context-index S is set to either SN or SP, establishing an initial value for Encode_log2_Sz.

F.1.4.3.1.2 Encoding the magnitude category

The magnitude category is determined by a sequence of binary decisions which compares Sz against an exponentially
increasing bound (which is a power of 2) in order to determine the position of the leading 1-bit. This establishes the
magnitude category in much the same way that the Huffman encoder generates a code for the value associated with the
difference category. The flow chart for this procedure is shown in Figure F.8.

The starting value of the context-index S is determined in Encode_sign_of_V, and the context-index values X1 and X2
are defined for DC coding in Table F.4 and for AC coding in Table F.5. In Figure F:8, M is the exclusive upper boundfor
the magnitude and the abbreviations “SLL” and “SRI.”refer to the shift-left-logical and shift-right-logical operations — in
this case by one bit position. The SRL operation at the completion of the procedure aligns M with the most significantbit
of Sz (see Table F.3).

The highest precision allowed for the DCT is 15 bits. Therefore, the highest precision required for the coding decision
tree is 16 bits for the DC coefficientdifference and 15 bits for the AC coefficients, including the sign bit.
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 Encode_sign_of_V

 
 
| Code_1(SS) Code_0(SS) |

TISO 1290-93/d077
 

Figure F.7 ~ Encoding the sign of V

Table F.3 — Categories for each maximum bound

gl27

128,...,255

(256,...511

512,....1 023

OowoeADBHWBRWYND
— 21 024,...,2 047

_ _2 048,....4 095
_ No

4.096,...,8 191
_ Ww8 192,...,16 383

16 384,...,32 767
_ >

 
CCITT Rec. T.81 (1992 E)

/TEC 10918-1 : 1993(E)

97

HUAWEI EX.1016 - 293/714



HUAWEI EX. 1016 - 294/714

ISO/IEC 10918-1 : 1993(E)   

 

 
Encode_log2_Sz

| Code_1(S)

TISO1 400-93/d078

Figure F.8 — Decision sequenceto establish the magnitude category
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F.1.4.3.1.3 Encoding the exact value of the magnitude

After the magnitude category is encoded, the low order magnitude bits are encoded. These bits are encoded in order of
decreasing bit significance. The procedure is shown in Figure F.9. The abbreviation “SRL” indicates the shift-right-
logical operation, and M is. the exclusive bound established in Figure F.8. Note that M hasonly onebit set — shifting M
right converts it into a bit mask for the logical “AND”operation.

Thestarting value of the context-index S is determined in Encode_log2_Sz. The incrementof S by 14 at the beginning of
this procedure sets the context-indexto the value required in Tables F.4 and F.5.

Encode_Sz-bits

$=S+14

 

 
 No

T=MAND Sz 
 Code_i(S) |

TISO1 410-S2/d079

Lone

Figure F.9 - Decision sequence to code the magnitudebit pattern

 

CCITT Ree. T.81 (1992 E) 99

HUAWEI EX.1016 - 295/714

 



HUAWEI EX. 1016 - 296/714

ISO/IEC 10918-1 : 1993(E).   
F.1.4.4 Statistical models

Anadaptive binaryarithmetic coder requires a statistical model. The statistical model defines the contexts which are used
to select the conditional probability estimates used in the encoding and decoding procedures.

Each decision in the binary decisiontrees is associated with one or more contexts. These contexts identify the sense of the
MPSandthe index in Table D.3 of the conditional probability estimate Qe which is used to encode. and decode the binary
decision.

The arithmetic coder is adaptive, which means that the probability estimates for each context are developed and
maintained by the arithmetic coding system on the basis of prior coding decisions forthat context.

F.1.4.4.1 Statistical model for coding DC prediction differences

The statistical model for coding the DC difference conditions some of the probability estimates for the binary decisions on
previous DC codingdecisions.

F.1.4.4.1.1 Statistical conditioning on sign

In coding the DC coefficients, four separate statistics bins (probability estimates) are used in coding the zero/not-zero (V =
0) decision, the sign decision and the first magnitude category decision. Twoof these bins are used to code the V=0
decision and the sign decision. The other two bins are used in coding the ‘first magnitude decision, Sz < 1; one of these
bins is used when.the sign is positive, and the other-is used when the sign is negative. Thus, the first magnitude decision
probability estimate is conditioned on the sign of V.

F.1.4.4.1.2 Statistical conditioning on DC differencein previous block

The probability estimates for these first three decisions are also conditioned on Da, the difference value coded for the
previous DCT block. of-the-same. component. The differences are: classified into five groups: zero, small positive, small
negative, large positive and large negative. The relationship betweenthe defaultclassification and the quantization scale is
shownin Figure F.10.

5 -4+ --3 2 1 0 +1642 43 #44 «245 ... DC difference

 large | -small | 0 +large Classification
TIS01420-93/d080

Figure F.10 — Conditioningclassification of difference values

The bounds for the “small” difference category determine the classification. Defining Land U as integers in the range O to
15 inclusive, the lower bound (exclusive) for difference magnitudes classified as “small” is zero for L = 0, and is 2L-! for
L>0.

The upper bound (inclusive) for difference magnitudesclassified as “small”is 2U.
L shall beless than or equal to U.

These bounds for theconditioning category provide a segmentation whichis identical to thatlisted in Table F.3.

F.1.4.4.1.3 Assignment of statistical bins to the DC binary decision tree
As shown in Table F.4, each statistics area for DC coding consists of a set of 49 statistics bins. In the following
explanation, it is assumed that the bins are contiguous. The first 20 bins consist of five sets of four bins selected by a
context-index SO. The value of SOis given by DC_Context(Da), which provides a value of0, 4, 8, 12 or 16, depending on
the difference classification of Da(see F.1.4.4,1.2). The remaining 29 bins, X1,.. »X15,M2,...,.M15, are used to code
magnitude category decisions and magnitudebits.
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Table F.4 — Statistical model for DC coefficient coding

sO

 

 
     V=0

Sign.of V
Sz<1lifV>0
8z<1lifV<0-
8z<2
5z<4
Sz<8

DC_Context(Da)
SO+1-°
80+2
80+3

20
X1+1 0
X1+2

   
  
  
 
 

  $z< 215

Magnitudebits if Sz <4
Magnitudebits if Sz < 8

X1+14
X2+ 14
X3 +14  
 

 

 
 X15+ 14 Magnitudebits if Sz < 215 

F.1.4.4.1.4 Default conditioning for DC statistical model

The bounds, L and U, for determining the conditioning category have the'default values L = 0 and U = 1. Other bounds
maybe set using the DAC (Define Arithmetic coding Conditioning) marker segment, as described in Annex B.

F.1.4.4.1.5 Initial conditions for DC statistical model

Atthe start of a scan and at the beginning of each restart interval, the difference for the previous DC valueis defined to be
zero in determining the conditioningstate.

F.1.4.4.2 Statistical model for coding the AC coefficients

As shownin Table F.5, eachstatistics area for AC coding consists of a contiguous set of 245statistics bins. Three bins are
used for each value of the zig-zag index K, and two sets of 28-additional bins X2....,X15,M2,...,.M15 are used for coding
the magnitude category and magnitudebits.

The value of SE (and also SO, SP and SN) is determined by the zig-zag index K. Since K is in the range 1 to 63, the
lowest value for SE is 0 and the largest value for SP is 188. SS is not assigned a'valuein AC coefficient coding, as the
signs of the coefficients are coded with a fixedprobability value ofapproximately 0.5 (Qe = X’5A1D’, MPS = 0).

The value.of X2 is given by AC_Context(K). This gives X2 = 189 when K < Kx and X2 = 217 when K > Kx, where Kx is
defined using the DAC marker segment(see B.2.4.3).

Note that a X1 statistics bin is not-used inthis sequence. Instead, the 63 x 1 array ofstatistics bins for the magnitude
category is used for two decisions. Once the magnitude bound has been determined — at statistics bin Xn, for example — a
single statistics bin, Ma, is used to code the magnitude bit sequence for that bound.

F.1.4.4.2.1 Default conditioning for AC coefficient coding

The default value of Kx is 5. This may be modified using the DAC marker segment, as described in Annex B.

F.1.4.4,.2.2 Initial conditions for AC statistical model

Atthe start of a-scan and at each restart, all statistics bins are re-initialized to the standard default value described in
Annex D. : :
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. Table F.5 — Statistical model for AC coefficient coding

Coding decision

 

Context-index 
 
 
 
 
 
 
 

  
 
 

 

 
 

 

 
 
 

3x(K-1) K=EOB
SE+1 V=0

Fixed estimate Sign of V
S0+1 8z<1
S0+1 Sz<2

AC_Context(K) 8z<4

 
 

 
 

X2+1 $z<8

 
 

  
 
 

Sz < 215

Magnitudebits if Sz < 4
Magnitudebits if Sz < 8

X2+13
X2+ 14
X3+14

 X15+14 Magnitudebits if Sz.< 215

-F.1.5©Extended sequential DCT-based Huffman encoding process for 12-bit sample precision

This process is identical.to the sequential DCT: process for 8-bit precisionextended: to four Huffman table destinations as
documentedinF.1.3, with the following changes.

F.1.5.1 Structure of DC code table for 12-bit sample precision

The two’s complement difference magnitudes are grouped into 16 categories, SSSS, and a Huffman code is created for
each of the 16 difference magnitude categories.

The Huffman table for DC coding (see Table F.1) is extended as shown in Table F.6.

Table F.6 ~ Difference magnitude categories for DC coding

Difference values

—4 095..-2 048,2 048..4 095

-8 191.4 096,4 096..8 191

~16 383..-8 192,8 192..16 383

—32 767..-16 384,16 384..32 767

  
  
  
  

F.1.5.2 Structure of AC codetable for 12-bit sample precision

The general structure of the code table is extended_asillustrated in Figure F.11. The Huffman table for AC coding is
extended as shown in Table F.7. ©
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 RRRR COMPOSITE VALU ES

{5
TISO1430-94/d081..

Figure F.11 — Two-dimensional value array for Huffman coding

Table F.7 — Values assigned to coefficient amplitude ranges

 
  
  
    

AC coefficients

~2.047..-1 024,1 024..2 047

—4 095..-2 048,2 048..4 095
-$ 191..-4 096,4 096..8 191

--16 383..-8 192,8 192..16 383

 

F.1.6 Extended sequential DCT-based arithmetic encodingprocess for 12-bit sample precision
Theprocessis identicalto thesequential DCT process for 8-bitprecision except for changes in the precision of the FDCT
computation. oS
The structure of the encoding procedure is identical to that specified in F.1.4 which was already defined for a 12-bit
sample precision. -

F.2 Sequential DCT-based decoding processes

F.2.1 Sequential DCT-based control procedures and coding models
F.2.1.1 Control procedures for sequentialDCT-based decoders
The control procedures for decoding compressed image data andits constituent parts ~ the frame, scan, restart interval and_ MCU - are given in Figures E.6 to E.10. The procedure’ for decoding a MCU (Figure £.10) repetitively calls the
procedure for decoding a data unit. For DCT-based decoders the data unit is an 8 x 8 block of samples.
¥.2.1.2 Procedurefor decoding an 8 x 8 block data unit

In the sequential DCT-based. decoding process, decoding an 8x8 block data unit consists of the following procedures:
a) “decode DC coefficient for 8 x 8 block using the DC table destination specified in the scan header;
b) decode AC coefficients for 8 x 8 block using the ACtable destination specified in the scan header;
c) dequantize using table destination specified in the frame header and calculate the inverse 8x8 DCT.

F.2.1.3 Decoding models for the sequential DCT procedures

Two decoding procedures are used, one for the DC coefficient ZZ(0) and the other for the AC coefficients ZZ(1)..-ZZ(63).The coefficients are decoded in the order in which they occur in the zig-zag sequence order, starting with the DC
coefficient. The coefficients are represented as two’s complementintegers.
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F.2.1.3.1 Decoding model! for DC coefficients

The decoded difference, DIFF,is added to PRED,the DC value from the most recently decoded 8 x 8 block from the
same component, Thus ZZ(0) = PRED + DIFF. |

At the beginning of the scan and at the ‘beginning of each restart interval, the prediction for the DC coefficient is
initialized to zero.

F.2,1.3.2 Decoding model for AC coefficients

The AC coefficients are decoded in the order in which they occur in ZZ. When the EOB is decoded, all remaining
coefficients in ZZ, are initialized to zero...

¥.2.1.4 Dequantization of the quantized DCT coefficients

The dequantization of the quantized DCT coefficients as described in Annex A, is. accomplished by multiplying eachquantized coefficient value by the quantization table value for that coefficient. The decoder shall be able to use up to four
quantization table destinations. :

F.2.1.5 Inverse DCT (DCT)

The mathematical definition of the IDCTis given in A.3.3.

After computation of the IDCT, the signed output samples are level-shifted, as described in Annex A, converting theoutput to an unsigned representation. For 8-bitprecision the level shift is performed byadding 128. For 12-bit precisionthe level shift is performed by adding 2 048.If necessary, the output samples shall be clamped to stay within the range
appropriate for the precision (0 to 255 for 8-bit precision and 0 to 4 095:for 12-bit precision).

F.2.2 Baseline Huffman Decoding procedures

Thebaseline decoding procedureis for 8-bit sample precision. The decoder shall be capable of using up to two DC and
two AC Huffman tables within one scan.

F,2.2.1 Huffman decodingofpe coefficients
The decoding procedure for the be difference, DIFF,is:

T = DECODE

DIFF = RECEIVE(T)

DIFF = EXTEND(DIFF,T)

where DECODEis:a procedure which returns the 8-bit value associated with the next Huffman code in the compressedimage data (see F.2.2.3) and RECEIVE(T)is a procedure which places the next'T bits of the serial bit string into the loworder bits of DIFF, MSB first: If Tis zero, DIFF is set to zero. EXTEND is a procedure which converts the partially
decoded DIFF valueof precision T to the full precision difference. EXTENDis shownin Figure F.12.
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EXTEND(V,T)

V, =(SLL-1 7) +1
VeV+Vy

TISO1440-93/d082

Figure F.12 - Extending the sign bit of a decoded value in Vv

F.2.2.2 Decoding procedure for AC coefficients
cedure for AC coefficients is shown in Figures F.13 and F.14.The decoding pro

\SO/IEC 10918-1 : 1993(E)
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Decode_AC_
coefficients

RS = DECODE

SSSS = RS modulo 16
RRAR = SRL RS 4
R=RRRR

Decode_ZZ(K)

T1SO1450-93/d083

- Figure F.13 - Huffman decoding procedurefor AC coefficients
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 Decode_Z2(K)

 
 
 

   2Z(K) = RECEIVE(SSSS)
ZZ(K) = EXTEND(ZZ(K),SSSS)

 
IS01460-93/d084

Figure F.14 - Decoding a non-zero ACcoefficient

The decoding of the amplitude and sign of the non-zero coefficient is done in the procedure “Decode_ZZ(K)”, shown in
Figure F.14. , ,

DECODEis a procedure whichreturns the value, RS, associated with the next Huffman code in the code stream
(see F.2.2.3). The values SSSS and R are derived from RS. The value of SSSSis the four low order bits of the composite
value and R contains the value of RRRR (the four highorderbits. of the composite value); The interpretation of these
values is described in F.1.2:2. EXTENDis shownin Figure F.12.

F.2.2.3. The DECODEprocedure

The DECODEprocedure decodes an 8-bit value which, for the DC coefficient, determines the. difference magnitude
category. For the AC coefficient this 8-bit value determines the zero:run length and non-zero coefficient category.

Three tables, HUFFVAL, HUFFCODE,and HUFFSIZE,have been defined in Annex C. This particular implementation
of DECODE makes use of the ordering of the Huffman codes in HUFFCODEaccording to both value and codesize.
Manyother implementations ofDECODEarepossible.

NOTE = The values in HUFFVAL are. assigned to each code in HUFFCODE and HUFFSIZE in sequence. There are no
ordering requirements for the values in HUFFVAL which have assigned codes of the samelength.

The implementation of DECODEdescribed in this subclause uses-three tables, MINCODE, MAXCODEand VALPTR,
to decode a pointer to.the HUFFVAL table. MINCODE, MAXCODEand VALPTReach have 16 entries, one for each
possible code size. MINCODE(D contains the smallest code value for a given length I, MAXCODE()containsthe largest
code value for a given length J,and VALPTR(])contains the index to the start of the list of values in HUFFVAL which
are decoded by code wordsof length I. The values in MINCODE and MAXCODEare signed 16-bit integers; therefore, a
value of —1 sets all ofthe bits. ,

The procedure for generating these iablesis showniin Figure F.15. The procedure for DECODEiis shown in Figure F.16.
Note that the 8-bit “VALUE”is returned to theprocedure which invokes DECODE.
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Decoder_tables

MAXCODE()) = —1

BITS(I) =0
2,

 
 VALPTR(|) = J

MINCODE()) = HUFFCODE()
J=aJ+BITS()—-1
MAXCODE(!) = HUFFCODE(J)J=J+i1: 11801470-93/d085

Figure F.15 - Decoder table generation
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DECODE

 

  
  

l=1
CODE = NEXTBIT

  
 

t=l+1
CODE = (SLL CODE 1) + NEXTBIT

CODE > MAXCODE(I)
?

 
 

 
  
 

J = VALPTR(I)
J=J + CODE —MINCODE())
MALUE = HUFFVAL(d) ’

Retum VALUE

TISO1480-93/d086

Figure F.16 — Procedure for DECODE

 bs 2: DITEC 10918-1 : 1993(E)
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F.2.2.4 The RECEIVE procedure

 

RECEIVE(SSSS)is a procedure which places the next SSSSbits ofthe entropy-coded segmentinto the low orderbits of
DIFF, MSBfirst. It calls NEXTBITandit returnsthe value of DIFF to the calling procedure (see Figure F.17).

 

 
RECEIVE(SSSS)

 

 
 
 

Isi+i
V = (SLL V 1) + NEXTBIT

Retum V

TISOt 490-93/d087

Figure F.17 — Procedurefor RECEIVE(SSSS)

¥.2.2.5 The NEXTBIT procedure

NEXTBIT reads the next bit of compressed data and passesit to higher level routines. It also iritercepts and removesstuff
bytes and detects markers. NEXTBIT readsthe bits ofa byte starting with the MSB(see Figure F.18).

Before starting the decoding ofa scan, and after processing a RST. marker, CNT is cleared. The compressed data are read
one byte at a time, using the procedure NEXTBYTE.Eachtimea byte, B,is read, ENT is setto 8.

The only valid marker which may occur within the Huffman coded data is the RSTmarker. Other than the EOI or
markers which may occur at or before the start of a scan, the only marker which can occur at the end of the scan is the
DNL (define-number-of-lines). . ‘

Normally, the decoderwill terminate the decoding at the endofthe final restart interval before the terminating marker is
intercepted.If the DNL markeris encountered,the currentline countis set to the value specified by that marker. Since the
DNL marker can only be used at the end of the first scan, the scan decode procedure must be terminated when it is
encountered. ,
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NEXTBIT

B=NEXTBYTE
CNT =8  

 
B2 = NEXTBYTE

 
 
 

 
 
 

BIT = SRLB7
CNT =CNT~1
B=SLLB1 
 

Process DNL marker
 

 
 Retum BIT Terminate scan  
  

No .

Figure F.18 — Procedure for fetching the next bit of compressed data

TISO1500-93/d088

F.2.3 Sequential DCT decoding process with 8-bit precision extended to four sets of Huffman tables

This processis identical to the Baseline decoding process described in F.22, with the exception that the decoder shall be
capable ofusing up to.four DC and four AC Huffman tables within one scan. Four DC and.four AC Huffman tablesis the
maximum allowedby this Specification. .

F.2.4 Sequential DCT decoding process with arithmetic coding

This subclause describes the sequential DCT decoding process with arithmetic decoding.

The arithmetic decoding procedures for decoding binary decisions, initializing the statistical model, initializing the
decoder, and resynchronizing the decoderare listedin Table D.4 of Annex D.

Someofthe procedures in Table D.4 are used in the higherlevel control structure for scans andrestart intervals described
in F.2: At the beginning of scans'andrestart intervals, the probabilityestimates used in the arithmetic decoderare resetto
the standard initial value as part of the Initdec procedure which restarts the arithmetic coder.
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Thestatistical models defined in F.1.4.4 also apply to this decoding process.

The decodershall be capable of using up to four DC and four AC conditioning tables and associated statistics areas within
one scan.

F.2.4.1 Arithmetic decoding of DC coefficients

The basic structure of the decision sequence for decoding a DC difference value, DIFF, is shown in Figure F.19. The
equivalent structure for the encoderis found in Figure F.4.

 

 

 
 
  

Decode_DC_DIFF

D = Decode(S0)

Decode_V(SQ)

TISO1510-93/d089

Figure F.19 — Arithmetic decoding of DC difference

The context-indices used in the DC decoding procedures are defined in Table F.4 (see F.1.4.4.1.3).

The “Decode” procedure returns the value “D”of the binary decision. If the value is not zero, the sign and magnitude of
the non-zero DIFF must be decodedby the procedure “Decode_V(SO)”.

F.2.4.2. Arithmetic Decoding of AC coefficients

The AC coefficients are decoded in the order that they occur in ZZ(1,...,63). The encoder procedure for the coding process
is found in Figure F.5. Figure F.20illustrates the decoding sequence.
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Decode_AC_
coefficients

D = Decode(SE)

D = Decode(S0)

Decode_V(S0)

TISO1520-93/d090

Figure F.20 — Procedure for decoding the AC coefficients

The context-indices used in the AC decoding procedures are defined in Table F.5 (see F.1.4.4.2).
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In Figure F.20, K is the index to the zig-zag sequence position. For the sequential scan, Kmin = 1 and Se = 63. The
decision at the top of the loop is the EOB decision.If the EOB occurs (D = 1), the remaining coefficients in the block are
set to zero. The inner loop just below the EOB decoding decodes runsof zero coefficients. Wheneverthe coefficient is
non-zero, “Decode_V” decodes the sign and magnitudeofthe coefficient. After each non-zero coefficientis decoded, the
EOBdecision is again decoded unless K = Se.

F.2.4.3. Decoding the binary decision sequence for non-zero DC differences and AC coefficients

Both the DC difference and the AC coefficients are represented as signed two’s complement16-bit integer values. The
decoding decision tree for these signed integer values is the same for both the DC and AC coding models. Note, however,
that the statistical models are not the same.

¥F.2.4.3.1 Arithmetic decoding of non-zero values

Denoting either DC differences or AC coefficients as V, the, non-zero signed integer value of V is decoded by the
sequence shownin Figure F.21. This sequencefirst decodes the sign of V. It then decodes the magnitude category of Vv
(Decode_log2_Sz), and then decodes the low order magnitude bits (Decode_Sz_bits). Note that the value decoded for Sz
must be incremented by 1 to get the actual coefficient magnitude.

  
  
  

Decode_V(S)

Decode_sign_of_V

Decode_log2_Sz

Decode_Sz_bits

71IS01530-93/d091

Figure F.21 — Sequence of procedures in decoding non-zero values of V

114 CCITT Rec. T.81 (1992 E)

HUAWEI EX.1016 - 310/714

 



HUAWEI EX. 1016 - 311/714

{TEC 10918-1 : 1993(E)  
F.2.4.3.1.1. Decoding the sign

The sign is decoded by the procedure shownin Figure F.22.

The context-indices are defined for DC decoding in Table F.4 and AC decodingin Table F.5.

If SIGN = 0,the sign of the coefficient is positive; if SIGN = 1, the sign of the coefficient is negative.

 Decode_sign_of_V

 SIGN = Decode(SS)

 TISO 1540-93/d092

Figure F.22 — Decoding the sign of V

F.2.4.3.1.2 Decoding the magnitude category

The context-index S is set in Decode_sign_of_V and the context-index values X1 and X2 are defined for DC coding in
Table F.4 and for AC coding in Table F.5. ,

In Figure F.23, M is set to the upper bound for the magnitude andshifted left until the decoded decisionis zero.It is then
shifted right by 1 to becometheleading bit of the magnitudeof Sz.
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Decode_log2_Sz

D = Decode(S)

D = Decode(S)

D = Decode(S)

TISO1550-93/d093

Figure F.23 - Decoding procedureto establish the magnitude category
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F.2.4.3.1.3. Decoding the exact value of the magnitude

After the magnitude category is decoded, the low order magnitude bits are decoded, These bits are decoded in order of
decreasing bit significance. The procedure is shown in Figure F.24.

The context-index S is set in Decode_log2_Sz.

Decode_Sz_bits

  
 

D = Decode(S)

TISO1560-93/d094

Figure F.24 - Decision sequence to decode the magnitudebit pattern

F,2.4.4 Decoderrestart

The RST,, markers which are added to the compressed data between each restart interval have a two byte value which
cannot be generated by the coding procedures. These two byte sequences can be located without decoding, and can
therefore be used to resynchronize the decoder. RST, markers can therefore be used for error recovery.
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Before error recovery procedures can be invoked, the error condition mustfirst be detected. Errors during decoding can
show upin twoplaces:

a) The decoderfails to find the expected marker at the point whereit is expecting resynchronization.

b) Physically impossible data are decoded. For example, decoding a magnitude beyond the range of values
allowed by the modelis quite likely when the compressed data are corrupted by errors. For arithmetic
decoders this error condition is extremely important to detect, as otherwise the decoder may reach a
condition whereit uses the compressed data very slowly.

NOTE — Someerrors will not cause the decoder to lose synchronization. In addition, recovery is not
possible for all errors; for example, errors in the headers are likely to be catastrophic. The two error
conditions listed above, however, almost always cause the decoder to lose synchronization in a way which
permits recovery.

In regaining synchronization, the decoder can make use of the modulo 8 codingrestart interval numberin the low order
bits of the RST, marker. By comparing the expected restart interval numberto the value in the next RST,, marker in. the
compressed image data, thedecoder can usually recover synchronization.It then fills in missing lines in the output data by
replication or some other suitable procedure, and continues decoding. Of course, the reconstructed image will usually be
highly corruptedfor at least a part ofthe restart interval where the error occurred.

F.2.5 Sequential DCT decoding process with Huffman coding and 12-bit precision

This process is identical to the sequential DCTprocess defined for 8-bit sample precision and extended to four Huffman
tables, as documented in F.2.3, but with the following changes.

F.2.5.1 Structure of DC Huffman decode table

The general structure of the DC Huffman decode table is extended as described in F.1.5.1.

F.2.5.2 Structure of AC Huffman decodetable

The general structure of the AC Huffman decode table is extended as described in F.1.5,.2.

F.2.6 Sequential DCT decoding process with arithmetic coding and 12-bit precision

The processis. identical to the sequential DCT process for 8-bit precision except for changes in the precision of the IDCT
computation,

The structure of the decoding procedurein F.2.4 is already defined for a 12-bit input precision. ~
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Annex G

Progressive DCT-based modeof operation

(This annex forms an integral part of this Recommendation | International Standard)

This annex provides a functional specification of the following coding processes for the progressive DCT-based mode
of operation:

1) spectral selection only, Huffman coding, 8-bit sample precision;

2) spectral selection only, arithmetic coding, 8-bit sample precision;

3) full progression, Huffman coding, 8-bit sample precision;

4)_full progression,arithmetic coding, 8-bit sample precision;

5) spectral selection only, Huffman coding, 12-bit sample precision;
6) spectral selectiononly, arithmetic coding, 12-bit sample precision;

7) full progression, Huffman coding, 12-bit sample precision;

8) full progression, arithmetic coding, 12-bit sample precision.

For eachof these, the encoding process is specified in G.1, and the decoding processis specified in G.2. The functional
specification is presented by means of specific flow charts for the various procedures which comprise these coding
processes.

NOTE - Thereis no requirementin this Specification that any encoder or decoder which embodies one of the above-named
processes shall implementthe procedures in precisely the manner specified by the flow charts in this annex. It is necessary only that an
encoder or decoder implement the function specified-in this annex. The sole criterion for an encoder or decoder to be considered in

compliance with this Specification is thatit satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as
determined by the compliance tests specified in Part 2.

The numberofHuffman or arithmetic conditioning tables which may be used within the samescan is four.

Two complementary progressive procedures are defined, spectral selection and successive approximation.

In spectral selection the DCT coefficients of each. block are segmented into frequency bands. The bands are coded inseparate scans.

In successive approximation the DCT coefficients are. divided by a power of two before coding. In the decoder the
coefficients are multiplied by that same powerof two before computing the IDCT.In the succeeding scans the precision of
the coefficients is increased by onebit in each scan until full precision is reached.

An encoder or decoder implementing a full progression uses spectral selection within successive approximation. An
allowed subsetis.spectral selection alone.

Figure G.1 illustrates the spectral selection and successive approximation progressive processes.

G.1 Progressive DCT-based encoding processes

G.1.1_ Control procedures and coding models for progressive DCT-based procedures

G.1.1.1 Control procedures for progressive DCT-based encoders

The control procedures for encoding an image and its constituent parts — the frame, scan, restart interval and MCU ~ are
given in Figures E.1 through E.5.

The control structure for encoding a frame is the same as for the sequential procedures. However, it is convenient to
calculate the FDCTfor the entire. set of components in a framebeforestarting the scans. A buffer which is large enough to
store all of the DCT coefficients may be used for this progressive mode of operation.

The numberof scans is determined by the progression defined; the number of scans may be muchlarger than the number
of components in the frame.
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Figure G.1 — Spectral selection and successive approximation progressive processes
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The procedure for encoding a MCU (see Figure E.5) repetitively invokes the procedure. for coding a data unit. For
DCT-based encodersthe data unit is an 8 x 8 block of samples.

Only a portion of each 8 x 8 block is codedin each scan, the portion being determined by the scan header parameters Ss,
Se, Ah, and Al (see B.2.3). The procedures used to code portions of each 8 x 8 block are described in this annex. Note,
however, that where these procedures are identical to those used in the sequential DCT-based mode of operation, the
sequential procedures are simply referenced.

G.1.1.1.1 Spectral selection control

In spectral selection the zig-zag sequence of DCT coefficients is segmented into bands. A band is defined in the scan
header by specifying the starting and ending indices in the zig-zag sequence. One bandis coded in a given scan of the
progression. DC coefficients are always coded separately from AC coefficients, and only scans which code DC
coefficients may have interleaved blocks from more than one component. All other scans shall have only one component.
With the exception of the first DC scans for the components, the sequence of bands defined in the scans need not follow
the zig-zag ordering, For each component, a first DC scan shall precede any AC scans.

G.1.1.1.2 Successive approximationcontrol

If successive approximation is used, the DCTcoefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). The successive approximation bit position parameter Al specifies the actual point
transform, and the high four bits (Ah) — if there are preceding scans for the band — contain the value of the point transform
used in those preceding scans.If there are no preceding scans for the band, Ahis zero.
Each scan which followsthefirst scan for a given band progressively improves the precision of the coefficients by one bit,
until full precision is reached.

G.1.1.2 Codingmodels for progressive DCT-based encoders

If successive approximation is used, the DCT coefficients are reduced in precision by the point transform (see A.4)
defined in the scan header (see B.2.3). These models also apply to the progressive DCT-based encoders, but with the
following changes.

G.1.1.2.1 Progressive encoding modelfor DC coefficients

If Al is not zero, the point transform for DC coefficients shall be used to reduce the precision of the DC coefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded, using the procedure described in Annex
F. If Ah is notzero,the least significantbit of the point transformed DC coefficients shall be coded, using the procedures
described in this annex.

G.1.1.2.2 Progressive encoding model for AC coefficients

If Al is not zero, the point transform-for AC coefficients shall be used to reduce the precision of the ACcoefficients. If Ah
is zero, the coefficient values (as modified by the point transform) shall be coded using modifications of the procedures
described.in Annex F. These modifications are described in this annex.IfAh is not zero, the precision of the coefficients
shall be improvedusing the procedures described in this annex.

G.1.2 Progressive encoding procedures with Huffman coding

G.1.2.1 Progressive encoding of DC coefficients with Huffman coding _
Thefirst scan for a given componentshall encode the DC coefficient values using the procedures described in F.1.2.1. If
the successive approximation bit position parameter Al is not zero, the coefficient values shall be reduced in precision by
the point transform described in Annex A before coding.

In subsequent scans using successive approximation. the least significant bits are appended to the compressed bit stream
without compression or modification (see G.1.2.3), except for byte stuffing.

G.1.2.2 Progressive encoding of AC coefficients with Huffman coding

In spectral selection andin the first scan of successive approximation for a component, the AC coefficient coding modelis
similar to that used by the sequential procedures. However, the Huffman code tables are extended to include coding of
runs of End-Of-Bands (EOBs). See Table G.1.
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Table G.1 — EOBncode runlength extensions

  
 
 
 
 
 
 
 
 
 
 

 
 
 

 

EOBO 1

EOB1 2,3

EOB2 4.7

EOB3 8.15

EOB4 16.31

EOBS5 32..63

EOB6 64..127

EOB7 128..255

EOB8 256..511

EOB9 512..1 023

EOB10 1 024..2.047

EOB11 2, 048..4 095

EOB12 4096.8 191
EOB13 8 192..16 383

16 384..32 767

 
The end-of-band run structure allows efficient coding of blocks which have only zero coefficients. An EOB run oflength
5 means that the current block and the next four blocks have an end-of-band with no intervening non-zero coefficients.
The EOB mun length is limited only by the restart interval.

Theextension of the codetableis illustrated in Figure G.2.

  
 

RRAAR COMPOSITE VALUES

TISO1s80-94/d096

Figure G.2 — Two-dimensional value array for Huffman coding

The EOBn code sequence is defined as follows. Each EOBn code is followed by an extension field’ similar to the
extensionfield for the coefficient amplitudes (but with positive numbers only). The numberofbits appended to the EOBn
codeis the minimum numberrequiredto specify the run length.

If an EOBrunisgreater than 32 767,it is coded as a sequence of EOB runs of length 32 767 followed by a final EOB mun
sufficient to complete the run.

At the beginning of each restart interval the EOB run count, EOBRUN,is set to zero. At the end of each restart interval
any remaining EOBrunis coded,

The Huffman encoding procedure for AC coefficients in spectral selection and in the first scan of successive
approximationisillustrated in Figures G.3, G.4, G.5, and G.6.
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 Encode_AC_
coefficients_SS

 
Encode_EOQBRUN

 EOBRUN =
EOBRUN+ 1

Encode_ZRL ; /

Encode_R_Z2(K)
 
 

Encode_EOBRUN

 
  TISO1590-93/d097

Figure G.3 — Procedure for progressive encoding of AC coefficients with Huffman coding
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In Figure G.3, Ss is the start of spectral selection, Se is the end of spectral selection, K is the index into the list of
coefficients stored in the zig-zag sequence ZZ,R is the run length of zero coefficients, and EOBRUNisthe run length of
EOBs. EOBRUNissetto zero at the start of each restart interval.

If the scan header parameter Al (successive approximation bit position low) is not zero, the DCT coefficient values ZZ(K)
in Figure G.3 andfigures which follow in this annex, including those in the arithmetic coding section, shall be replaced
by the point transformed values ZZ’(K), where ZZ’ (K) is definedby:

ZZ(K)x
22(K) = SF
 

EOBSIZEis a procedure which returnsthesize of the EOB extension field given the EOB run length as input. CSIZE is a
procedure which maps an AC coefficient to the SSSS value defined in the subclauses on sequential encoding (see F.1.1
and F.1.3).

Encode_EOBRUN

EOBRUN =0
?

No

SSSS = EOBSIZE(EOBRUN)
|=SSSS x 16

Append EHUFSi(})
bits of EHUFCO(1)

Append SSSSlow order
bits of EOBRUN

EOBRUN =0

 
   

  

  

 

TIS01600-93/d098

Figure G.4 — Progressive encoding of a non-zero AC coefficient

Encode_ZRL

Append EHUFSI(X’F0}).
bits of EHUFCO(X'F0")

R=R-16

 
  

TISO1610-93/d099

Figure G.5 — Encodingof the run ofzero coefficients
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Encode_R_Z2(K)

SSSS = CSIZE(ZZ(K))
|=(16 x R)+SSSS
Append EHUFSI(!)

bits of EHUFCO(|)
  

 
 Append SSSSlow order

bits of ZZ(K)
R=0  

7150 1620-93/d 100

Figure G.6 — Encodingof the zero run and non-zero coefficient

G.1.2.3 Coding model for subsequentscans of successive approximation

The Huffman coding structure of the subsequent scansof successive approximation for a given componentis similar to the
coding structure ofthe first scan of that component.

The structure of the AC codetable is identical to the structure described in G.1.2.2. Each non-zero point transformed
coefficient that has a zero history (i.e. that has a value + 1, and therefore has not been codedin a previous scan) is defined
by a composite 8-bit run length-magnitude value of the form:

RRRRSSSS

The four most significant bits, RRRR, give the numberofzero coefficients that are between the current coefficient and the
previously coded coefficient (or the start of band). Coefficients with non-zero history (a non-zero value coded in a
previous scan) are skipped over when countingthe zero coefficients. The fourleast significant bits, SSSS, provide the
magnitude category of the non-zero coefficient; for a given component the value of SSSS can only be one.

The run length-magnitude composite value is Huffman coded and each Huffman codeis followed by additional bits:

a) Onebit codes the sign of the newly non-zero coefficient. A 0-bit codes a negative sign; a 1-bit codes a
positive sign.

b) For each coefficient with a-non-zero history, one bit is used to code the correction. A O-bit means no
correction anda 1-bit meansthat one shall be added to the (scaled) decoded magnitude of the coefficient.
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Non-zero coefficients with zero history are coded with a composite code of the form:

HUFFCO(RRRRSSSS) + additional bit (rule a) + correction bits (rule b)

In addition whenever zero runs are coded with ZRL or EOBncodes, correction bits for those coefficients with non-zero
history contained within the zero run are appended accordingto rule b above.

For the Huffman coding version of Encode_AC_Coefficients_SA the EOB is defined to be the position of the last point
transformed coefficient of magnitude 1 in the band.If there are no coefficients of magnitude 1, the EOBis defined to be
zero.

NOTE - Thedefinition of EOB is different for Huffmanandarithmetic coding procedures.

In Figures G.7 and G.8 BEis the countof buffered correction bits at the start of coding of the block. BEis initialized to
zero at the start of each restart interval. At the end of each restart interval any remaining buffered bits are appended to the
bit stream following the last EOBn Huffman code and associated appendedbits.

In Figures G.7 and G.9, BRis the count of buffered correction bits which are appendedto the bit stream according to rule
b. BR is set to zero at the beginning of each Encode_AC_Coefficients_SA. At the end of each restart interval any
remaining buffered bits are appendedto the bit stream following the last Huffman code and associated appendedbits.

G.1.3_ Progressive encoding procedures with arithmetic coding

G.1.3.1 Progressive encoding of DC coefficients with arithmetic coding

Thefirst scan for a given componentshall encode the DC coefficient values using the procedures described in F.1.4.1. If
the successive approximation bit position parameter is not zero, the coefficient values shall be reduced in precision by the
point transform described in Annex A before coding.

In subsequentscans using successive approximation the least significant bits shall be coded as binary decisions using a
fixed probability estimate of 0.5 (Qe = X'5A1D’, MPS = 0).

G.1.3.2 Progressive encoding of AC coefficients with arithmetic coding

Except for the point transform scaling of the DCT coefficients and the grouping of the coefficients into bands, the first
scan(s) of successive approximation is identical to the sequential encoding procedure described in F.1.4. If Kmin is
equated to Ss, the index of the first AC coefficient index in the band, the flow chart shown in Figure F.5 applies. The
EOBdecision in that figure refers to the “end-of-band”rather than the “end-of-block”. For the arithmetic coding version
of Encode_AC_Coefficients_SA (and all other AC coefficient coding procedures) the EOB is defined to be the position
following the last non-zero coefficient in the band. =

NOTE-Thedefinition of EOBis different for Huffman andarithmetic coding procedures.

Thestatistical model described in F.1.4 also holds. For this model the default value of Kx is 5. Other values of Kx may be
specified using the DAC marker code (Annex B). The following calculation for Kx has proven to give goodresults for 8-
bit precision samples:

Kx =Kmin+SRL (8+Se—Kmin) 4

This expression reducesto the default of Kx = 5 when the bandis from index 1 to index 63.
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Figure G.7 - Successive approximation coding of ACcoefficients using Huffmancoding
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Append_BE_bits 
 
 

Append BEbuffered bits
to bit stream

BE=0

TISO1640-93/d102

Figure G.8 - Transferring BE buffered bits from buffer to bit stream

Append BR buffered bits
to bit stream

BR=0 
TISO1650-93/d103

Figure G.9 - Transferring BR buffered bits from buffer to bit stream
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G.1.3.3 Coding model for subsequent scans of successive approximation

The procedure “Encode_AC_Coefficient_SA” shown in Figure G.10 increases the precision of the AC coefficient values
in the band byonebit.

Asin the first scan of successive approximation for a component, an EOB decision is coded atthe start of the band and
after each non-zero coefficient.

. However, since the end-of-band index of the previous successive approximation. scan for a given component, EOBx,is
knownfrom the data codedin the prior scan of that component, this decision is bypassed wheneverthe current index, K,
is less than EOBx.Asin the first scan(s), the EOB decision is also bypassed wheneverthe last coefficient in the bandis
not zero. The decision ZZ(K) = 0 decodes runsofzero coefficients. If the decoderis at this step of the. procedure, at least
one non-zero coefficient remains in the band ofthe block being coded. If ZZ(K)is not zero, the procedure in Figure G.11
is followed to code the value.

The context-indices in. Figures G.10 and G.11 are defined in Table G.2 (see G.1.3.3.1). The signs of coefficients with
magnitude of one are coded with a fixed probability value of approximately 0.5 (Qe = X’5A1D’, MPS = 0).

G.1.3.3.1 Statistical model for subsequentsuccessive approximation scans

As shownin Table G.2, eachstatistics area for subsequent successive approximation scans of AC coefficients consists of a
contiguous set of 189 statistics bins. The signs of coefficients with magnitude of one are coded with a fixed probability
value of approximately 0.5 (Qe = X’5ALD’, MPS = 0).

G.2 Progressive decoding of the DCT

The description of the computation of the IDCT and the dequantization procedure contained in A33 and A.3.4 apply to
the progressive operation.

Progressive decoding processes must be able to decompress compressed image data which requires up to four sets of
Huffman or arithmetic coder conditioning tables within a scan.

In order to avoid repetition, detailed flow diagrams of progressive decoder operation are not included. Decoder operation
is defined by reversing the function of each step described in the encoder flow charts, and performing the steps in reverse
order.
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Figure G.10 — Subsequent successive approximation scans for coding
of AC coefficients using arithmetic coding
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 . CodeSA_Z2(K)

 
T =LSB ZZ(K) Code_1(S0)

 
  

  
TIS01670-93/d105

Figure G.11 — Coding non-zero coefficients for subsequent successive approximation scans

Table G.2 — Statistical model for subsequent scans of successive
approximation coding of AC coefficient

 

Context-index AC coding Coding decision

3 x (K-1) K=EOB

SE+ 1 vV=0

Fixed estimate Sign

SO+1 LSB ZZ(K) = 1 =
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Annex H

Lossless mode of operation

(This annex formsan integral part of this Recommendation| International Standard)

This annex providesa functional specification of the following coding processes for the lossless mode of operation:

1) lossless processes with Huffman coding;

2) lossless processes with arithmetic coding.

For each ofthese, the encoding process is specified in H.1, and the decoding process is specified in H.2. The functional
specification is presented by means of specific procedures which comprise these coding processes.

NOTE- There is no requirementin this Specification that any encoder or decoder which embodies one of the above-named
processes shall implement the proceduresin precisely the mannerspecified in this annex.It is necessary only that an encoder or decoder
implementthe function specified in this annex. The sole criterion for an encoder or decoder to be considered in compliance with this
Specification is that it satisfy the requirements given in clause 6 (for encoders) or clause 7 (for decoders), as determined by the
compliance tests specified in Part 2.

The processes which provide for sequential lossless encoding and decodingare not based on the DCT. The processes used
are spatial processes based on the coding model developed for the DC coefficients of the DCT. However, the model is
extended by incorporating a set of selectable one- and two-dimensional predictors, and for interleaved-data the ordering of
samples for the one-dimensional predictor can be different from that used in the DCT-based processes.

Either Huffman codingor arithmetic coding entropy coding may be employed for these lossless encoding and decoding
processes. The Huffman code table structure is extended to allow upto 16-bit precision for the input data. The arithmetic
coderstatistical model is extended to a two-dimensional form.

H.1 Lossless encoder processes

H.1.1—_Lossless encoder control procedures

Subclause E.1 contains the encoder control procedures. In applying these proceduresto the lossless encoder, the data unit
is one sample.

Input data precision may be from 2 to 16 bits/sample. If the input data path has different precision from the inputdata, the
data shall be aligned with the least significant bits of the input data path. Input data is represented as unsigned integers
andis not level shifted prior to coding.

Whenthe encoderis reset in the restart interval control procedure (see E.1.4), the prediction is reset to a default value. If
arithmetic coding is used, the statistics are also reset.

Forthe lossless processestherestart interval shall be an integer multiple of the number of MCU in an MCU-row.

H.1.2 Coding model for lossless encoding

The coding model developed for encoding the DC coefficients of the DCT is extended to. allow a selection from a set of
seven one-dimensional and two-dimensional predictors. The predictor is selected in the scan header (see Annex B). The
same predictor is used for all components of: the scan. Each component in the scan is modeled independently, using
predictions derived from neighbouring samples ofthat component.

H.1.2.1 Prediction

Figure H.1 shows the relationship between the positions (a, b, c) of the reconstructed neighboring. samples used for
prediction and the position of x, the sample being coded.
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Figure H.1 — Relationship between sample and prediction samples

Define Px to be the prediction and Ra, Rb, and Rc to be the reconstructed samples immediately to the left, immediately
above, and diagonally to the left of the current sample. The allowed predictors, one of which is selected in the scan
header, are listed in Table H.1.

Table H.1 — Predictors for lossless coding

0 No prediction (See Annex J) 
 
 
 
 

  
 

  
Px =Ra

Px =Rb

Px =Re

.Px = Ra+Rb—Re

Px = Ra + ((Rb— Re)/2)®

) Px =Rb+((Ra- Rey/2)

 

Px =(Ra+Rby/2 
  4) Shift right arithmetic operation

Selection-value0 shall only be used for differential codingin the hierarchical modeof operation. Selections 1, 2 and 3 are
one-dimensional predictors andselections 4, 5, 6, and 7 are two-dimensional predictors.

The one-dimensional horizontal predictor (prediction sample Ra) is used for the first line of samplesat the start of the scan
and at the beginning of each restart interval. The selected predictor is used for ail other lines. The sample from the line
above (prediction sample Rb) is used at the start of each line, exceptforthefirst line. At the beginningofthefirst line and
at the beginning of eachrestart interval the prediction value of 2P-1 is used, where P is the input precision.

If the point transformation parameter (see A.4) is non-zero, the prediction value at the beginning of the first lines and the
beginning of eachrestart interval is 2P- Pt— 1, where Pt is the value of the point transformation parameter.

Each prediction is calculated with full integer arithmetic precision, and without clamping of either underflow or overflow
beyond the input precision bounds. For example, if Ra and Rb are both 16-bit integers, the sum is a 17-bit integer. After
dividing the sum by2 (predictor7), the prediction is a 16-bit integer.
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For simplicity of implementation, the divide by 2 in the prediction selections 5 and 6 of Table H.1 is done by an
arithmetic-right-shift of the integer values.

 

The difference between the prediction value and the input is calculated modulo 2!6. In the decoder the difference is
decoded and added, modulo 216, to the prediction.

H.1.2.2 Huffman coding of the modulo difference

The Huffman coding procedures defined in Annex F for coding the DC coefficients are used to code the modulo 216
differences. The table for DC coding contained in Tables F.1 and F.6 is extendedby one additional entry. No extra bits
are appended after SSSS = 16 is encoded. See Table H.2.

Table H.2 — Difference categories for lossless Huffman coding
 

Difference values

0

~1,1

-3,-2,2,3

-7..4,4..7

—15..~8,8..15

-31..-16,16..31

-63..-32,32..63

-127..-64,64..127

—255..—128,128..255

—511..-256,256..511

~1 023.,-512,512..1 023

~2 047.,-1 024,1 024..2 047

—4 095..-2 048,2 048..4 095

8 191..-4 096,4 096..8 191

-16 383.8 192,8 192..16 383

~32 767..-16 384,16 384..32 767
32 768

OomTNAFRWY
BeeeBeBwuFfWYSS© 
_ ON

H.1.2.3 Arithmetic coding of the modulo difference

The statistical model defined for the DC coefficient arithmetic coding model (see F.1.4.4.1) is generalized to a two-
dimensional form in which differences coded for the sample to the left and for the line above are used for conditioning.

H.1.2.3.1 Two-dimensional statistical.model

The binary decisions are conditioned on the differences coded for the neighbouring samples immediately above and
immediately to the left from the same component. Asin the coding of the DC coefficients, the differences are classified
into 5 categories: zero(0), small positive (+S), small negative (-S), large positive (+L); and large negative (—L)..The two
independent difference categories. combine to give 25 different conditioning states: Figure H.2 shows the two-dimensional:
array of conditioning indices. For each of the 25 conditioning states probability estimates for four binary decisions are
kept.

At the beginning of the scan and eachrestart interval the conditioning derived from the line above is set to zero for the
first line of each component. Atthestart of eachline, the differenceto theleft is set to zero for the purposes of calculating
the conditioning.
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Difference above (position b)

Difference to left
(position a) 

TISO1690-93/d107

 
‘Figure H.2 - 5 x 5Conditioning array for two-dimensionalstatistical model

H.1.2.3.2 Assignmentofstatistical bins to the DC binary decision tree

Eachstatistics area for lossless coding consists of a contiguous set of 158 statistics bins. The first 100 bins consist of
25 sets of four bins selected by a context-index SO. The value of SO is given by L_Context(Da,Db), which provides a
value of 0, 4,..., 92 or 96, depending on the difference classifications of Da and Db (see H.1.2.3.1). The value for SO
provided by L_Context(Da,Db) is from the array in Figure H.2.

The remaining 58 bins consist of two sets of 29 bins, X1, .... X15, M2, .... M15, which are used to code magnitude
category decisions and magnitude bits. The value of X1 is given by X1_Context(Db), which provides a value of 100 when
Dbis in the zero, small positive or small negative categories and a value of 129 when Dbis in thelarge positive or large
negative categories.

The assignmentofstatistical bins to the binary decision tree used for coding the difference is given in Table H.3.

Table H.3 — Statistical model for lossless coding

SO L_Context(Da,Db) vV=0

SO+1 Sign
S0+2 Sz< lif V>0
S0+3 Sz<lifV<0

X1_Context(Db) §$z<2

X1+1 Sz<4
X1+2 $z<8

   
  
  

  
 
 

$z< 215

Magnitudebits if Sz <4

Magnitude bits if S52 < 8

X1+14
X2+ 14

X3+14

 
 
 

 
 X15+14 Magnitudebits if Sz < 215
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H.1.2.3.3 Default conditioning bounds

 

The bounds, L and U, for determining the conditioning category have the default values L = 0 and U = 1. Other bounds
maybeset using the DAC (Define-Arithmetic-Conditioning) marker segment, as described in Annex B.

¥£.1.2.3.4 Initial conditions for statistical model

At the start of a scan and at éach restart, all statistics bins are re-initialized to the standard default value described in
Annex D.

H.2 Lossless decoder processes

Lossless decoders may employ either Huffman decoding or arithmetic decoding. They shall be capable of using up to four
tables in a scan. Lossless decoders shall be able to decode encoded image source data with any input precision from 2 to
16 bits per sample.

H.2.1—_Lossless decoder contro! procedures

Subclause E.2 contains the decodercontrol procedures. In applying these procedures to the lossless decoder the data unit
is one sample.

When the decoderis reset in the restart interval control procedure (see E.2.4) the prediction is reset to the same value
used in the encoder (see H.1.2.1). If arithmetic coding is used,the statistics are also reset.

Restrictions on the restart interval are specified in H.1.1.

H.2.2 Coding model forlossless decoding

Thepredictor calculations defined in H.1.2 also apply to the lossless decoder processes.
The lossless decoders, decode the differences and add them, modulo 216, to the predictions to create the output. The
lossless decoders shall be able to interpret the point transform parameter, and if non-zero, multiply the output of the
lossless decoder by 2Pt.

In orderto avoid repetition, detailed flow charts of the lossless decoding procedures are omitted.
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Annex J

Hierarchical mode of operation

(This annex forms an integral part of this Recommendation| International Standard)

This annex provides a functionalspecification of the coding processesfor the hierarchical mode of operation.

In the hierarchical modeof operation each componentis encoded or decoded in a non-differential frame. Such frames may
be followed by a sequence of differential frames. A non-differential frame shall be encoded or decoded using the
procedures defined in AnnexesF, G and H.Differential frame procedures are definedin this annex.

The coding process for a hierarchical encoding containing DCT-based processes is defined as the. highest numbered
process listed in Table J.1 which is used to code any non-differential DCT-based or differential DCT-based frame in the
compressed image data format. The coding process for a hierarchical encoding containing only lossless processes is
defined to be the process used for the non-differential frames. ,

Table J.1 — Coding processes for hierarchical mode

  
 
   
   
  
  

  
  
  
 
 
 

 
 
 

 
 
 

1 Extended sequential DCT, Huffman, 8-bit Annex F, process 2
2 Extended sequential DCT, arithmetic, 8-bit Annex F, process 3
3 Extended sequential DCT, Huffman, 12-bit AnnexF,process 4
4 Extended sequential DCT, arithmetic, 12-bit AnnexF,process 5
5 Spectral selection only, Huffman, 8-bit AnnexG,process 1
6 Spectral selection only, arithmetic, 8-bit AnnexG,process 2
7 Full progression, Huffman, 8-bit Annex G,process 3
8 Full progression, arithmetic, 8-bit AnnexG,process 4
9 Spectral selection only, Huffman, 12-bit Annex G,process 5

10 Spectral selection-only, arithmetic, 12-bit Annex G, process 6
11 Full progression, Huffman, 12-bit Annex G, process 7
12 Full progression, arithmetic, 12-bit Annex G,process 8
13 Lossless, Huffman, 2 through 16 bits Annex H,process 1

 
 
   Annex H,process 2roe > Lossless, arithmetic, 2 through 16 bits

Hierarchical mode syntax requires a DHP marker segment that appears before the non-differential frame or frames. It may
include EXP marker segments and differential frames which shall follow the initial non-differential frame. The frame
structure in hierarchical modeis identical to the frame structure in non-hierarchical mode.

Bitherall non-differential frames within an image shall be coded with DCT-based processes,orall non-differential frames
shall be coded with lossless processes. All frames within an image must use the same entropy coding procedure, either
Huffman or arithmetic, with the exception that non-differential frames coded with the baseline process may occur in the
same image with frames.coded with arithmetic coding processes.

If the non-differential frames use DCT-based processes,all differential frames except the final frame for a component shall
use DCT-based processes. Thefinal differential frame for each componentmayusea differential lossless process.

If the non-differential frames use lossless processes,all differential frames shall use differential lossless processes.

For each ofthe processes listed in Table J.1, the encoding processes are specified in J:1, and decoding processes are
specified in J.2. : :

NOTE — There is no requirement in this Specification that any encoder or decoder which embodies one of the
above-named processes shall implement the procedures in precisely the manner specified by the flow charts in this annex. It is
necessary only that an encoder or decoder implementthe function specified in this annex. The sole criterion for an encoder or decoder
to be considered in compliancewiththis Specificationis thatit satisfythe requirements givenin clause 6 (for encoders) or clause 7 (for
decoders), as determined by the compliance tests specified in Part 2. .
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In the hierarchical mode of operation each componentis encoded or decoded in a non-differential frame followed by a
sequence ofdifferential frames. A non-differential frame shall use the procedures defined in Annexes F, G, and H.
Differential frame procedures are definedin this annex.

J.1 Hierarchical encoding

J.1.1 Hierarchical control procedure for encoding an image

The control structure for encoding of an image using the hierarchical modeis given in Figure J.1.

 
 Encode_image

 

 
 

  [Generate down-sampled images]
Append SOI marker
[Appendtables/miscellaneous]
Append: DHP marker segment

 
   

 
 
  

Differential frame
?

[Upsample reference componenis and
append EXP marker segment]

Generate differential components
Encode_differential_frame
Reconstruct differential components
Reconstruct components

  
  Encode_frame

  
  
   
 

Reconstruct components
using matching

decoder process

 
 

 
More frames

?

Append EO! marker

 
TISO1700-93/d108

Figure J.1 — Hierarchical control procedure for encoding an image

In Figure J.1 procedures in brackets shall be performed whenever the particular hierarchical encoding sequence being
followed requires them.
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In the hierarchical mode the define-hierarchical-progression (DHP) marker segmentshall be placed in the compressed
image data before thefirst start-of-frame. The DHPsegment is used to signal the size of the image components of the
completed image. The syntax of the DHP segmentis specified in Annex B.

 

The first frame for each component or group of components in a hierarchical process shall be encoded by a
non-differential frame. Differential frames shall then be used to encode the two’s complementdifferences between source
input components (possibly downsampled) and the reference components (possibly upsampled). The reference
components are reconstructed componentscreated by previous framesin the hierarchical process. Foreither differential or
non-differential frames, reconstructions of the components shall be generated if needed as reference components for a
subsequentframein the hierarchical process.

Resolution changes may occur between hierarchical frames in a hierarchical. process. These changes occur if
downsampling filters are used to reduce the spatial resolution of some or all of the components of the source image. When
the resolution of a reference componentdoes not match the resolution of the component input to a differential frame, an
upsampling filter shall be used to increase the spatial resolution of the reference component. The EXP marker segment
shall be added to the compressed image data before the start-of-frame whenever upsampling of a reference componentis
required. No more than one EXP marker segmentshall precede a given frame.

Any of the marker segments allowed before a start-of-frame for the ericoding process selected may be used before either
non-differential or differential frames.

For 16-bit input precision (lossless encoder), the differential components which are input to a differential frame are
calculated modulo 215, The reconstructed’ components calculated from the reconstructed differential components are also
calculated modulo 216.

If a hierarchical encoding process uses a DCT encoding process for the first frame, all frames in the hierarchical process
exceptfor the final frame for each componentshall use the DCT encoding processes defined in either Annex F or Annex
G, or the modified DCT encoding processes defined in this annex. The final frame may use a modified lossless process
defined in this annex.

If a hierarchical encoding process uses a lossless encoding processforthefirst frame, all framesin the hierarchical. process
shall use a lossless encoding process defined in Annex H,or a modified lossless process defined in this annex.

J.1.1.1 Downsamplingfilter

The downsampled components are generated using a downsampling filter that is not specified in, this Specification. This
filter should, however, be consistent with the upsamplingfilter. An example of a downsamplingfilter is provided in K.5.

J.1.1.2 Upsampling filter

The upsamplingfilter increases the spatial resolution by a factor of two horizontally, vertically, or both. Bi-linear
interpolation is used for the upsamplingfilter,as illustrated in Figure J.2.

TISO1710-93/d109

Figure J.2 - Diagram of sample positions for upsampling rules
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The rule for calculating the interpolated valueis:

P. = (Ra + Rb)/2

where Ra and Rb are sample values from adjacent positions a and b of the lower resolution image and Px is. the
interpolated value. The division indicates truncation, not rounding. Theleft-most column ofthe upsampled image matches
the left-most column ofthe lowerresolution image. The top line ofthe upsampledimage matchesthe top line of the lower
resolution image. The right columnandthe bottom line of the lowerresolution image are replicated to provide the values
required for the right column edge and bottom line interpolations. The upsampling process always doubles the line length
or the numberof lines. :

If both horizontal and vertical expansions are signalled, they are done in sequence — first the horizontal expansion and
then the vertical.

J.1.2 Control procedure for encodinga differential frame

The control procedures in Annex E for frames, scans, restart intervals, and MCUalso apply to the encoding of differential
frames, and the scans,restart intervals, and MCU from which the differential frame is constructed. The differential frames
differ from the frames of AnnexesF, G, and H only at the coding modellevel.

J.1.3 Encoder coding models fordifferential frames

The coding models defined in AnnexesF, G, and H are modified to allow them to be used for coding of two’s complement
differences.

 
J.1.3.1 Modifications to encoder DCT encoding models for differential frames

Two modifications are made to the DCT coding modelsto allow them to be used in differential frames. First, the FDCT of
the differential input is calculated without the level shift. Second, the DC coefficient of the DCT is coded directly —
without prediction. :

1.1.3.2. Modifications to lossless encoding models for differential frames

One modification is made to the lossless coding models. The difference is coded directly — without prediction. The
prediction selection parameter in the scan header shall be set to zero. The point transform which may be applied to the
differential inputs is defined in Annex A.

J.1.4. Modifications to the entropy encodersfor differential frames

The coding of two’s complementdifferences requires one extra bit of precision for the Huffman coding of AC coefficients.
The extension to Tables F.1 and F.7 is given in Table J.2.

Table J.2 ~ Modifications to table _.
of AC coefficient amplitude ranges

~32 767..-16 384, 16 384..32 767

 

 
 

 

 
 

The arithmetic coding models are already defined for the precision needed in differential frames.
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J.2 Hierarchical decoding

J.2.1 Hierarchical contro] procedure for decoding an image

The control structure for decoding an imageusingthe hierarchical modeis given in Figure J.3.

Interpret markers

 
 
  

 

 

 

No

Hierarchical
?

Yes

Differential frame
?

Non-Hierarchical mode

Yes

[Upsample reference components]
Decode_differential_frame
Reconstruct_.components

   
 Decode_frame

7IS01720-93/d110

Figure J.3 - Hierarchical control procedure for decoding an image
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The Interpret markers procedure shall decode the markers which may precede the SOF marker, continuing this decoding
until either a SOF or EOI marker is found.If the DHP markeris encountered before the first frame, a flag is set which
selects the hierarchical decoderat the “hierarchical?” decision point. In addition to the DHP marker (which shall precede
any SOF) and the EXP marker (which shall precede any differential SOFrequiring resolution changes in the referencecomponents), any other markers which may precede a SOFshall beinterpreted to the extent required for decoding ofthe
compressed image data.

If a differential SOF markeris found, the differential frame path is followed.If the EXP was encountered in the Interpret
markers procedure, the reference components for the frame shall be upsampled as required by the parameters in the EXP
segment. The upsampling procedure described in J.1.1.2 shall be followed.

The Decode_differential_frame procedure generates a set of differential components. These differential components shall
be added, modulo 2!6, to the upsampled reference components in the Reconstruct_components procedure. This creates a
new set of reference components which shall be used when required in subsequentframes of the hierarchical process.

J.2.2 Control procedure for decoding a differential frame

The control procedures in Annex E for frames,scans, restart intervals, and MCUalso apply to the decoding of differential
frames and the scans, restart intervals, and MCU from which the differential frame is constructed. The differential frame
differs from the frames of AnnexesF, G, and H only at the decoder coding modellevel.

J.2.3 Decoder coding models for differential frames

The decoding models described in Annexes F, G, and H are modified to allow them to be used for decoding of two’s
complementdifferential components.

 
J.2.3.1 Modifications to the differential frame decoder DCT coding model

Two modifications are madeto the decoder DCT coding models to allow them to code differential frames. First, the IDCT
of the differential outputis calculated withoutthe level shift. Second, the DC coefficient of the DCTis decoded directly —
withoutprediction.

J.2.3.2 Modifications to the differential frame decoderlossless coding model

One modification is made to the lossless decoder coding model. The differenceis decoded directly — without prediction. If
the point transformation parameter in the. scan header is not zero, the point transform, defined in Annex A, shall be
applied to the differential output.

J.2.4 Modifications to the entropy decodersfor differential frames

The decoding of two’s complementdifferences requires one extra bitof precision in the Huffman code table: This is
described in J.1.4. The arithmetic coding models are already defined for the precision neededin differential frames.
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Annex K —

Examples and guidelines

(This annex does not form an integral part of this Recommendation| International Standard)

This annex provides examples of various tables, procedures, and other guidelines.

K.1 Quantization tables for luminance and chrominance components

Two examples of quantization tables are given in Tables K.1 and K.2. These are basedon psychovisual thresholding and
are derived empirically using luminance and chrominance and 2:1 horizontal subsampling. These tables are provided as
examples only and are not necessarily suitable for any particular application. These quantization values have been used
with good results on 8-bit per sample luminance and chrominance images of the format illustrated in Figure 13, Note that
these quantization values are appropriate for the DCT normalization defined in A.3.3.

If these quantization values are divided by 2,the resulting reconstructed imageis usually nearly indistinguishable from the
source image.

Table K.1 - Luminance quantization table

 
Table K.2 — Chrominance.quantization table
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K.2 A procedurefor generatingthe lists which specify a Huffman code table

A Huffman table is generated from a collection ofstatistics in two steps. The first.step is the generation of the list of
lengths and values which are in accord with the rules for generating the Huffman codetables. The secondstep is the
generation of the Huffman code table from thelist of lengths and values.

The first step, the topic of this section, is needed only for custom Huffman table generation and is done only in the
encoder.In this step thestatistics are used to create a table associating each value to be coded with the size (in bits) of the
corresponding Huffman code.This table is sorted by codesize.

A procedure for creating a Huffman table for a set of up to 256 symbols is shown in Figure K.1. Three vectors are defined
for this procedure:

FREQ(V) Frequencyof occurrence of symbol Vv
CODESIZE(V) Codesize of symbol V
OTHERS(V) Indexto next symbolin‘chain ofall symbols in current branch of codetree

where V goes from 0 to 256.

Before starting the procedure, the values of FREQ arecollected for V = 0 to 255 and the FREQ valuefor V = 256is set to
1 to reserve one code point. FREQ values for unused symbols are defined to be zero. In addition, the entries in
CODESIZEare all set to 0, and the indices in OTHERSare set to —1, the value which terminates a chain of indices.
Reserving one code point guarantees that'no code word can everbeall “1”bits.

The search for the entry with the least value of FREQ(V)selects the largest value of V with the least value of FREQ(V)
greater than zero.

The procedure “Find V1 for least value of FREQ(V1) > 0” always selects the value with the largest value of V1 when
more than one V1 with the same frequency occurs. The reserved codepointis then guaranteed to be in the longest code
word category.
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Code_size

Find V1 for least value of
FREQ(V1) > 0

Find V2 for next least value
of FREQ(V2) > 0

  FREQ(V1) =
FREQ(V1) +
FREQ(V2)

FREQ(V2) = 0

 

 
  

CODESIZE(V1) =
CODESIZE(V1) + 1  V1 = OTHERS(V1)

OTHERS(V1) = V2

CODESIZE(V2)=
CODESIZE(V2)+ 1 

 
V2 = OTHERS(V2)

TISO1730-93/d111

Figure K.1 — Procedureto find Huffmancodesizes
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Oncethe code lengths for each symbol have been obtained, the number of codes of each length is obtained using the
procedure in Figure K.2. The count for each size is contained in the list, BITS. The counts in BITSare zero at the start of
the procedure. The procedure assumes that the probabilities are large enough that code lengths greater than 32 bits never
occur. Note that until the final Adjust_BITS procedure is complete, BITS may have more than the 16 entries required in
the table specification (see Annex C).

Count_BITS 
 
 

  No} BITS(CODESIZE()) =

CODESIZE(|) =|BITS(CODESIZE())) +1

  
Adjust_BITS

 
TISO1740-93/d112

Figure K.2 — Procedureto find the numberof codes of each size =
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Figure K.3 gives the procedure for adjusting the BITSlist so that no codeis longer than 16 bits. Since symbols are paired
for the longest Huffman code, the symbols are removed from this length category two at a time. The prefix for the pair
(whichis one bit shorter) is allocated to one ofthe pair; then (skipping the BITS entry for that prefix length) a code word
from the next shortest non-zero BITS entry is converted into a prefix for two code words one bit longer. After the BITS
list is reduced to a maximum codelength of 16 bits, the last step removes the reserved code point from the code length
count.

 

 
 
 

Adjust_BiTS

 
 
   
 

 

BITS(l)= BITS() 2
BITS(I—1) = BITS(— 1) +4
BITS(U + 1) = BITS(J + 1) +2
BITS(J) = BITS (J) — 1

BITS(I) = BITS(I) — 1

T1$01750-93/d113

Figure K.3 — Procedureforlimiting code lengths to 16 bits
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The input values are sorted according to code size as shown in Figure K.4. HUFFVALis thelist containing the input
values associated with each code word,in orderof increasing codelength.

At this point, the list of code lengths (BITS) and the list of values (HUFFVAL)can be used to generate the code tables.
These procedures are described in Annex Cc.

 

 
 

Sort_input  
TISO1760-93/d114

Figure K.4 — Sorting of input values according to codesize

K.3 Typical Huffmantables for 8-bit precision luminance and chrominance
Huffman table-specification syntax is specified in B.2.4.2.
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K.3.1 Typical Huffmantables for the DC coefficient differences

Tables K.3 and K.4 give Huffman tables for the DC coefficient differences which have been developed from the average
statistics of a large set of video images with 8-bit precision. Table K.3 is appropriate for luminance components and Table
K.4 is appropriate for chrominance components. Although there are no default tables, these tables may prove to be useful
for many applications.

Table K.3 — Table for luminance DCcoefficient differences

0 2 00
010

011

100

101

110

1110

11110

111110

1111110

11111410

W11111110
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Table K.4 — Table for chrominance DC coefficient differences

00
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10

110

1110

11110

111110
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 1111110

11111110

111111110

1111111110 =
12111111110

wonnaumfF|DY wownubkwryNWN
— -Oo —— -©&

K.3.2 Typical Huffman tables for the AC coefficients

Tables K.5 and K.6 give Huffman tables for the AC coefficients which have been developed from the average statistics of
a large set of images with 8-bit precision. Table K.5 is appropriate for luminance components and Table K.6 is appropriate
for chrominance components. Although there are no default tables, these tables may prove to be useful for many
applications.
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Table K.5 — Table for luminance AC coefficients (sheet 1 of 4)

  
   
  

    
 
  
  
  
  
  
  
  
  
  
  
  
  

   
 
 

 
  

  
 

  
 

 
 
 

0/0 (EOB) 4 1010
o/1 2 00
0/2 2 01
0/3 3 100
0/4 4 1011
o/5 5 11010
0/6 7 1111000
of7 8 11111000
0/8 10 1111110110

1111111110000010
1111111110000011
1100
11011

1111001
111110110

11111110110
1114111110000100

1111111110000101
1111111110000110

1111111110000111
1111111110001000
11100
11111001
1111110111

111111110100
1111111110001001

1111111110001010
1111111110001011
1111111110001100
1111111110001101
1111111110001110
111010
111110111
141111110101

1111111110001111
1111111110010000°
1111111110010001
1111111110010010

1111111110010011
1111111110010100
1111111110010101

— a0/9
OA

W/1
V2
1/3
V4
1/5
1/6
\/7
U8

1/9
VA
2/1
2/2
2/3

  
  
  
  
  
  

 
 
 
 
 
 
 
   

2/5
2/6
2/7
2/8
2/9
YA

3/1
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 Code length 

Table K.5 (sheet 2 of 4)

Code word

TEC 10918-1 : 1993(E)

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
  

  
 
 

 
 

 
 

6
10
16
16
16
16
16
16
16
16
7

11
16
16
16
16
16
16
16
16
7

12
16
16
16
16
16
16
16

16
8

12
16
16
16
16
16
16
16
16
9

15

 
 
 
 
 
 
 
 
 

111011
1111111000
1111111110010110
1111111110010111
1111111110011000
1111111110011001
1111111110011010
1111111110011011
1111111110011100
1111111110011101
1111010

11111110111
1111111110011110

1111111110011111
1111111110100000
1111111110100001
1111111110100010
1111111110100011
1111111110100100
1111111110100101
1111011
111111110110
1111111110100110
1111111110100111
1111111110101000
1111111110101001
1111111110101010
1111111110101011
1111111110101100
1111111110101101
11111010
111111110111
1111111110101110
1111111110101111
1111111110110000
1111111110110001
1111111110110010
1111111110110011
1111111110110100
1111111110110101
111111000
111111111000000
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Table K.5 (sheet 3 of 4)

Run/Size Code. length 1111111110110110
1111111110110111
1111111110111000

1111111110111001
1111111410111010
1111111110111011
1111111110111100

1111111110111101
111111001
1111111110111110

W11112110111111
1111111111000000

1111111111000001

1111111111000010
1111111111000011

11411111111000100
1111111111000101
1111111111000110
111111010...
1141111111000111
1111111111001000

1111111111001001
1111111111001010

1111111111001011
| 4111111111001100

1111111111001101
1111111111001110

1111111111001111

1111111001
1111111111010000

1111111111010001
1111111111010010
1111111111010011
1111111111010100

1111141111010101

 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 

1111111111010111
111111111101 1000
1111111010,
1111111111011001

1111111111011010
1111111111011011
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Table K.5 (sheet 4 of 4) 
     
                                                                 
  

 Code word
Code length  

1411111111011100
LIL1L111 11011101
1111111111011110
1111111111011111
1111111111100000
1111111111100001
11111111000

1111111111100010
1111111111100011
1111111111100100
1111111111100101
1111111111100110
11111119111100111

4111111111101000
1111111111101001
1111111111101010
1111111111101011 ~
1111111111101100
1111111111101101
4141111111101110
1111111111011

1111111111110000
1111111111110001
4111111111110010
1111111111110011
1111111111110100
11111111001

1111111111110101
1111111111110110
1111111111110111
1111111111111000
1111111111111001
1111111111111010
1111111911111011
1114111111111100
L111111111111101
LLLL1111 11111110
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Removalof subjective redundancy from DCT-coded
images

David L. McLaren, BE
D. Thong Nguyen, PhD
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Indexing terms: Discrete cosine transform coding, Image processing, Subjective redundancy

Abstract: The renioval of subjective redundancy
from video images has recently become an import-
ant area of study. A suggested method of removin-
g this redundancy [rom transform-coded imagesis
through the psychovisual thresholding and quan-
tisation of the image transform coefficients. In this
paper, the coefficient thresholding and quantisa-
tion levels are based on the combined effects of
spatial masking and the varying sensitivity of the
human visual system to different spatial fre-
quencies and levels of luminance. By combining
the Discrete Cosine Transform (DCT) method of
image coding with psychovisual thresholding and
quantisation schemes, subdistortion motion video
bit-rates as low as 2.5 Mbit/s (non-interlaced 25
frame-per-second video) have been obtained
without the need for interframe coding.

1 introduction

The increasing user demand for video as a cammunica-
tion medium over the last decade has greatly increased
the-need for efficient image coding and compression
methods. Although many data compression algorithms
have been proposed in the past, only recently have high-
compression algorithms been introduced. Thefirst coding
schemes, involving simple Differential Pulse Code Modu-
lation (DPCM) and Adaptive Predictive Coding (APC)
algorithms, were only able to obtain compression ratios
of up to 25:1 [1]. Interpolative and extrapolative
coding went a step further and increased the compression
ratio to around 4: 1 [1] by transmitting only a subset of
the samples and interpolating or extrapolating to obtain
the full image. However, the most recent and most suc-
cessful methods of image compression to date have been
transform-coding-based [2,3]. By transforming spatial
data into another domain (usually frequency-related), sta-
tistical independence between pixels and high-energy
compaction can be obtained. In particular, the Discrete
Cosine Transform (DCT) algorithm has become widely
recognised as an almost optimum transform method
when compared with other transforms on the basis of
energy compaction and decorrelation between pixels [4,
5).

The general method of discrete cosine transform
coding [5] involves dividing the original spatial image 
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into smaller N x N blocks ofpels, and then transforming
the blocks to obtain equal-sized blocks of transform coef
ficients in the frequency domain. These coefficients are
then thresholded, quantised and coded ready for trans-
mission. By combining the discrete cosine transform with
a minimum redundancy coding scheme [5] much of the
statistical redundancy in an image can be removed in the
coding process. Recently, however, the removal of subjec-
tive redundancy, through the thresholding and quant-
ising of the transform coefficients, has also become an
important area of study as the quest continues to further
reduce the required bit rates to transmit still and moving
images. The problem has, however, not been dealt with
adequately.

It is the removal of these subjective redundancies from
DCT-coded images, through psychovisual thresholding
and quantisation, which is the subject of this paper.

The compression techniques described in this paper
are all general in nature and are therefore applicable to
the coding and compression of any image or video-based
service from low bit-rate video-telephony to High Defini-
tion Television (HDTV). The sub-distortion results pre-
sented in Section 5 are, however, more suitable for
intermediary services such as high-quality video con-
ferencing or low-quality entertainment television with
bit-rates in the region of | to 5 Mbit/s.

2 Subjective redundancy

Unlike statistical redundancy, the removal of subjective
redundancy is an irreversible process and involves dis-
carding information which the designer feels can be
removed without any change being noticed by the human
observer [6]. The sensitivity of the human visual system
to stimuli of varying levels of contrast, luminance and
different spatial and temporal frequencies varies greatly
[6], and these inconsistencies can be exploited to deter-
mine how information can be discarded without subjec-
tively degrading the final image. A number of methods
have already been proposed for including certain psycho-
visual properties of the human visual system (frequency
sensitivity [7, 8], luminance dependence (6] and masking
effects [9, 6]) into image coding and compression
schemes, However, no coding schemehas yet adequately
combined these effects to.produce a simple,efficient and
optimum method of removing subjectively-redundant
information.

There are two areas in the standard transform-coding
process — the thresholding and the quantising of the
DCTcoefficients ~ where the subjective redundancyin
an image, and hence the numberofhits required for rep-
resentation, can be reduced.

Many of the DCT coefficients, ontained by trans-
forming the blocks of spatial image. are small enough not
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to be transmitted. By thresholding the blocks of coefi-
cients, values below a given threshold level will be set to
zero leaving a reduced numberofcoefficients for coding.
Of course, as more coefficients are set to zero the quality
of the reconstructed image deteriorates. However, the
way in which the image quality is affected depends not
only on the number of non-zero coefficients retained but
also on which coefficients are discarded. Harsh thresh-
olding of low-frequency coefficients causes blocking
effects (sub-block boundaries becoming visible), while
dropping too manyhigh-frequency coefficients results in
a loss of resolution and blurring in areas of high activity.
For this reason, an N x N thresholding matrix is used
which is made up of optimum thresholding values for

eachspatialIrequency,angwienroxeach spatial fi and which removes only
subjectively-redundant coefficients.

Once the blocksofcoefficients have been thresholded,
the remaining non-zero coefficients are quantised to
teduce the numberoflevels and hence further reduce the
numberofbits. Again, over-harsh quantisation of coeffi-
cients corresponding to different spatial frequencies
affects the reconstructed image in different ways. Over-
quantising low-frequency coefficients again causes block-
ing, while large quantisation steps at higher frequencies
lead to random noise becomingvisible. The phenomenon
of spatial masking can also be taken into account to
allow for larger quantisation step sizes in certain areas.

In the past, these coefficient thresholding and quant-
ising stages have been combined into a single uniform
quantisation scheme where only those coefficients below
the lowest quantisation slep size arc discarded [5].
However, because harshly thresholding and quantising
different transform coefficients leads to different subjec-
tive effects, these two areas should be treated separately.

3 Psychovisual thresholding

Becauseof the varied effects of harshly thresholding DCT
coefficients of different spatial frequencies, if is clear that
a constant threshold level for all coefficients is not effi-
cient. When a typical video image (3:4 aspect ratio) is
viewed from a standardviewing distance [6], the spatial
frequency, w,,, in cyclesper degree (cpd), of a coefficient,
¢jj, can be calculated from

— ( 323 \2 ff ay?oot) tN
ij=012...N—1

where N is the sub-block size, and i and j are the matrix
tow and column indices respectively. Psychovisual
studies have shown that the human visual system has a
general bandpass characteristic [10,7] with peak sensi-
tivity between 3 and 4 cycles per degree and reduced
sensitivity at higher and lowerspatial frequencies (Fig.1).
This response curve has been the subject of much
research in the past and, as a result, a fairly standard
transfer function has evolved. One of the more common

forms of this sensitivity function, $;,, proposed by Ngan
in [9], is given in eqn. !

S,, = (0.31 + 0.69w,Je 79-295
ifjHOi2..N-1 Q

By making the coefficient thresholding levels inversely
proportional to the relative sensilivilics of the corres-
ponding spatial frequencies, coefficients corresponding ta
relatively insensitive frequencies will be more harshly
thresholded than those corresponding to frequencies of
46

higher sensitivity. However, the spatial frequency sensi-
tivity function of eqn. 1 has been constructed from sub-
jective tests where the distribution of energy is uniform
over all frequencies [7]. Asthis is not true for the blocks
of DCTcoefficients, the sensitivity curve must be normal-
ised by the average powerat each frequency.

50

40

30aoDv

2202
ac
210

0.5 1 § 10 50
spatial frequency, cycles/degrees

Fig.1 Frequency sensitivity curve

To determine the coefficient energy distribution, the
power in each coefficient was averaged over each sub-
block in ten different 512 x 512 x 8-bit images (10240
blocks in all) to obtain the distribution in Fig. 2. This
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= 30Qa

3 20¥

10

0 aon IT i vote0 10 20 30 40
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Fig. 2 Coefficient powerdistribution

energy distribution can be adequately modelled by the
‘best-fit’ function of eqn. 2 (shown by the solid line in
Fig. 2)

P,, = 34.10 x we— 1 4f=0,1,2,..,N—1 (2)
In addition to varying with spatial frequency content, the
sensitivity of the human visual systema to small changesin
a single sub-block is directly proportional to the average
background luminance of the block. This relationshipis
known as Weber's Law [11] and, althoughit is slightly
distorted by the non-linear relationship between the
applied voltage and the displayed luminance of a typical
television screen, it still holds at high luminance levels
[6]. As the DC transform coefficient, coo, is a measure of
the average luminance in an image [5], this effect is easily
incorporated into the coding process by simply scaling
each block thresholding matrix by Coo.

The N x N matrix ofsensitivity values, S,,, is normal-
ised using the power distribution, P,,, and each valueis
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inverted to obtain a normalised sensitivity matrix Sj;, 4,
j=0,1,2,..., N — 1. This matrix is given in Table 1 for
a sub-blocksize of 16 x 16 pels. Each valuc in the matrix
is then multiplied by cog, and uniformly scaled so that
Table 1: Thresholding level matrix, Si,

o 224 111 «4 41 «4 22 3 4 4 6
224 1 47 «1 4 «1° 222 23 4 4 6
14 1 7 4 7 47 4 «4 2 2 2 3°45 6
1474 97° 49 79 4 74 «9° 2°23 °3°4 5 7
1 t ¥dea1112 2 2 3 44 6 7
1447 4 4 19° °4 «2223 4 4 5 7 8
14 1 4 7 2 2 2 23 °3 4 5 6 6 9
22222 223 3 44 5 6831
2222 23 3 3 4 4 «5 6 8B 9 11 13
3333 3 4 4 4 5 6 7 B 91 13°17
44 4 4 4 &§ &§ 6 7 8 98 11 13 15 17 19
5 5 6 & 6 7 7 8 9 9 11 33 15 17 19 25

8 8 B 8 8 8 11 13 13 15 17 19 22 25 27
140647°«1f 11°91 13:93: 15°17 17 19 22 25 27 W 32
18 15 15 15 17 17 17 19 19 22 25 27 27 30 32 33
19 19 19 19 22 22 22 25 25 27 30 30 32 3 32 28 

the thresholding, although as harsh as possible, still
causes only sub-threshold distortion (unseen by the
human observer). All subjective scaling and testing is per-
formedas a recursive comparison procedure [12], where
the parameter in question is adjusted until no visible dif-
ference can be seen between the original and recon-
structed images when viewed from a standard viewing
distance of 6 to 8 times the image height [6]. Several
independent subjects were also used in each of these
viewing sessions. To avoid blocking effects, the low-
frequency coefficients (below 5 cycles per degree) are
further reduced to suitable values, Ty (again determined
through subjective tests as described above). This final
matrix of thresholding values, 7,,, (given by eqn. 3), is
then used to threshold the blocks of DCT coefficients
before quantisation.

\-3

5H) Coo Wi 2S cpdii

To wy < Scpd

i,j=0,12..,N—-1 (3)

1¢ is“important to note that although each image sub-
blockis thresholded by the same basic matrix (Tj), the
varying amountofactivity in each block (refiected in the
relative magnitudes of the DCT coefficients), combined
with the changing luminance values (c))), makes this
thresholding scheme inherently adaptive to changing
image characteristics. Sub-blocks containing little or no
information (and hence very small non-DC transform
coefficients) are thresholded relatively more harshly and
produce fewerbits for transmission.

 

4 Psychovisual quantisation

Once thresholded, the remaining coefficients are quant-
ised to a numberofdiscrete levels. To make the thresh-
olding and quantisation levels independent, the lowest
quantisation level, gf’,is set half a step above the thresh-
old level, Tj. The overall quantisation scheme is then
uniform from that point, as shown in Fig. 3. The nonzero
transform coefficients, ¢,,, are then quantised to ¢,, using

cj ~ Ty + Qi/2
Q;;

ey t Ty - be cy <0Qy

> 9  
ij 7

 
ij=O1...N—1
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where |x| refers to the integer value closest to x. The
optimum quantisation step sizes for each coefficient, 0:5,
again depend on the spatial frequency sensitivity curve.

(2) .
ai 3Ty+304f2 

Fig. 3 Coefficient quantisation scheme

The effects of spatial masking, however, can also be
exploited to allow for larger quantisation step sizes in
DCTblocks containing areas of high activity [13].

Spatial masking is a well known phenomenon [6, 14]
and refers to the changing visibility of a single stimulus in
an area ofvarying spatial and temporalactivity. Inastill
image,this leads to a reduction in the visibility of pixel
errors in areas of high-detail luminance changes (high
activity). The relationship between the allowable quant-
isation step size for sub-threshold distortion and the
amountofactivity in a block has been the subject of pre-
vious research [6]. For uniform quantisation, the
relationshipis given by :

Q;=J(TjAs) 4f=0,1,2,-,N—1 (4)
where Ty, is the threshold level corresponding to the
spatial frequency at matrix co-ordinates (i,j) and Ag ts
the black activity function* (a measure of the amountof
activity in a block).

In References 6 and 14 A,is defined as the sum of first
derivatives in the spatia! domain. However, this defini-
tion produces a numberofinconsistencies. For example,
a ramp and a sawtooth function would give the same
value for Ay. In this paper, we propose a more accurate
measure of block activity ie. the power contained in the
sum of second derivatives in the spatial domain. The
Laplacian edge detector [15] achieves second-order dif-
ferentiation through the approximation

w? = (w? + w3) = 4 — 2 cos w, — 2 cos wz

Converting to the (2;, 2;)-domain, this approximation
results in the well-known Laplacian mask, L, in eqn. 5.
Totake into account the 3: 4 aspect ratio of most video
images, this mask is altered to obtain the mask, M, in
eqn. 6.

-1 -1 -1

L=j-1 8 -1 (5)
-1 -1 -1

-1 -2.777 -1

M =] -1.5625 12.679 — 1.5625 (6)
-1 -2777 -1
aC

* Also knownas the masking function.
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The activily function, A, > 1, is then given by

Ap=l+ JE: (Mss x) (7)i,ja0

where M «+ X denotes the 2-dimensional convolution
output of the edge operator, q is a normalisation factor
andAis the sub-block dimension. The square-rootof the
summation has been applied to express the power in
linear units. However, when employing transform coding,
an ideal activity function should be calculated directly
from the blocks of transform coefficients. By invoking
Parseval's theorem, the total power contained in the
summation of second derivatives in the spatial domain
can be transformed into the frequency domain to obtain
 a?x(m) 2 N-1 3

= (wie2 dm? &, a  
Taking the square-root of the summation, again to revert
to linear units, an activity function in the transform
domain is given by

N-1

arn tea|('S wet] (8}i,j=0

where w, is the spatial frequency corresponding to
matrix position(i, j), The activity functions given by eqns.
7 and 8 are, however, computationally costly. In view of
the asymmetry of thc mask M, Ap as given in eqn. 7
requires (4N? + 1) multiplications per block while, by
using a pre-calculated w%, matrix, A, as defined in eqn. 8
requires (2N? + 1) multiplications per block. If a sim-
plifying approximation to eqn. 8 is made, which includes
the square-root in the summation, the equation reducesto

Not

Ap=ltq 2 wileal (9)je

Eqn. 9 now produces results which are well correlated
with those produced by ean. 7 (shownby the correlation
plot of Fig. 4) and at a much reduced computationalcost
(now only (N? +1) multiplications per block and no
square-root operator). Eqn. 9, therefore, provides an
alternative definition for Ap which can be used in situ-
ations where the advantages of increased computational
efficiency outweigh the disadvantages of reduced accu-
racy.

By combining the subjective thresholding matrix, Tj,
with the activity function, as described by eqn. 4, the

 
eet te.ed

 
6c BC ct 120

ity Measure eqn ?
 iat meusury correlation plot

 
coefficient quantisation step sizes are obtained. The nor-
matisation factor, q, is again subjectively adjusted (using
the subjective testing criteria described in Section 3) so
that quantisation of the blocks of coefficients results in
only sub-threshold distortion.

5 Rasults

The psychovisual thresholding and quantisation schemes,
described in Sections 3 and 4 respectively, have been
combined with the standard DCT-coding algorithm and
applied to two 512 x 512 x B-bit images (Figs. 5a and

Fig. 5=*Face’ image
e Original image
& Reconstructed image
c Scaled difference image

IEE PROCEEDINGS-1. Vol La, No SS OCTOBER iyi
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6a). A sub-block size of 16 x 16 pels was used (N = 16)
and the images were thresholded and quantised as
harshly as possible while avoiding supra-threshold distor-

 
 

- ears

Fig. 6 ‘Church’ image
a Original image
6 Reconstructed image
¢ Scaled diflereace image

tion (no visible differences between the original and
reconstructed images when viewed from a standard
viewing distance [6]). The resulting blocks of transform
coefficients were scanned in order of increasing frequency,
and Hufiman-coded using tables of optimum code-words
[5]. The compression results obtained (bits/pel ratios and
bit-rates for non-interlaced 25 frame-per-second video)
arc summarised in Table 2 along with compression
results obtained without the use of subjective compres-

1EE PROCEEDINGS-I1,Vol. 138, No. 5, OCTOBER 1991

sion techniques (transform coding without any thresh-
olding or quantising of the transform coefficients). Both
the reconstructed and difference (between original and
reconstructed) images and are displayed in Figs. 5b and

Table 2: Compression results

  
Image Standard DCT Perceptually optimum

compression compression

Compression Bit-rate Compression Bit-rate

Face 1,47 bitpel 9.61 Mbit/s 0.38 bitfpel 2.51 Mbit/s
Church 2.39 biv/pel 15.65 Mbit/s 0.66 bit/pel 4.30 Mbit/s

6b and Figs. 5c and 6c, respectively. The difference
images have been scaled byafactoroffive to make the
variationsvisible. A darker area indicates no change.

As expected, the higher complexity ‘church’ image
requires a higher bit-rate for transmission than the
simpler head-and-shoulders image. By removing most of
the subjective redundancy from the twotest images, com-
pression ratios up to 0.38 bits per pel (21: 1) have been
obtained without the need for interframe coding. Thisis
also an improvementby a factor of 3.8 when compared
to the standard DCT-coding algorithm without psycho-
visual compression.

6 Conclusions

The combination of standard transform coding tech-
niques and psychovisually optimum thresholding and
quantising schemes has resulted in an optimum, high-
compression, image-coding algorithm. Because of the
general nature of the psychovisualeffects exploited in the
compression scheme, the same techniques can be incor-
porated into almost any image communication system
involvingstill or moving images.

Although the results in Table 2 are optimum for sub-
threshold distortion, it should be remembered that the
bit-rates could be further reduced if a limited amount of
suprathreshold distortion was allowed for a lower grade
of service during periods of network congestion, Also, the
thresholding and quantisation levels in this case have
been optimised for still images. The sensitivity of the
human visual system to different spatial frequencies is
greatly reduced over the entire spectrum as the temporal
frequency approaches that of motion pictures [6], in
which case the images could be thresholded and quant-
ised more harshly. The result would be even lower bit-
rates whilestill retaining a high image quality.
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42.2: Color-Facsimile System for Mixed-Color Documents
1. Miyagawa, H. Mizumachi, M. Matsuki

NTT HumanInterface Laboratories, Kanagawa, Japan

ABSTRACT

In order to transmit mixed color documents such as a color
pageofillustrated magazine, with high data efficiency, we proposed
to use ODA type documentstructure and developed the simulation
system. Theresult of coding simulation, automatic image area
separation and the simulation system are described.

INTRODUCTION

Dueto recent progress in colar image technology, the demand
for color image communication such as color facsimile ts rapidly
increasing. Color documents to be transmitted by color facsimile can
be roughly classified into the following types:

- multicolor _: color pie graphs, B&W(Black and White)
documents marked with red ink,

- full color color photographs,
- mixed color : combinations of above documents

(ex. color pageofillustrated magazine,color catalog)

Standardization ofa color extension for facsimile is being
discussed in ITU-T Study Group 8. The representation method for a
single full color image on a single page will be developed as thefirst
step; mixed colors will be the secondstep. As many color documents
can be classified as mixed color documents, a highly efficient but high
quality encoding method for mixed color documents is very
important.

Weproposed to use an ODA(Open Document Architecture)!
type documentstructure such as page and block,and single content
type i.e. raster graphic content,for the encoding of mixed color
documents{!.2], We have developed a simulation system forthis
encoding and communication system named the Mixed Color
Facsimile, This paper presents results gained from encoding
simulations, mixed color syntax, and automatic image area separation,
especially for photographic images and B&W documents.

MIXED COLOR FACSIMILE

In the past few years, remarkable advances have been made in
the developmentand standardization of image coding techniques. The
JPEG] and JBIG(S] encoding schemes were developed by an ITU-T
and ISO/IEC joint group. The JPEG encoding scheme was
developedforfull color images. The JBIG encoding scheme was
developed for B&Wbi-level images and bit-plane images such as
multi-color images. Therefore, they are notsuitable for other types of
images.

If only one encoding scheme, JPEG or JBIG, is used for
mixed color documents, we may not be able to achieve high efficiency
and high quality for all document components.

In orderto solvethis issue, we introduce the mixed color
communication mode, in which a page of mixed color components is
divided into few different image types such as full color, multi-color,
and B&W binary. Each type is encoded using the most suitable
encoding method. Full color areas are encoded using JPEG. Multi-
color areas and B&W binary images are encoded by J BIG or MMR.
For example,if the test image containing a full color component
(JPEG gold hill) and a B&W document (CCITT Test document
NO.4)in one page as shownin Figure 1 is encoded by JPEG, the
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Figure 1. Test image for Mixed Color Facsimile simulation

Table 1.

[| JPEG only Mixed color compressionwith MH with JBIG

B&W doc.

Facot] °"9 Ke
81 Kbyteq 81 Kbytes

157 Kbyted129Kbyteg126Kbytes

result is a compressedfile of 500kbytes. If this image is divided into
a full-color area and a B&Wbi-level area and coded with JPEG and
MMRor JBIG respectively, the compressed file occupies only 125 to
129 kbytes. This is about one fourth that output by JPEG only. The
result is summarized in Table1.

Simulation results of Mixed Color Facsimile compression

 
 

 

   

In order to apply this method to the scan and send type color
facsimile system which scans and sends almost simultaneously,the
following are required;

1) document syntax that can represent the structure of the area
separated color images.

2) automatic area separation method.
Therefore, we studied documentsyntax and developed these items. A
simulation system was constructed on a work-station for confirming
the efficiency and applicability of the proposed method, This paper
reports the structure of the document syntax, automatic area
separation method and simulation results.
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Figure 2, The structure of mixed color documents

DOCUMENT SYNTAX FOR MIXED COLOR FACSIMILE

For transmitting a mixed color facsimile document, a
document syntax that represents the documentstructureis necessary.
Forthis simulation system, we extended the Group 4 class | facsimile
syntax. The Group 4 class 1 syntax is a subset of ODA and can be
extended to support structured documents. In this syntax, only the
layout structure is used and root, page and blockare specified. This
structure is shownin Figure 2. Contents used for this system are
limited to the raster graphic contents of ODA.

An ASN.1(Abstract Syntax Notation 1) representation ofthis
syntax is shown in Figure 3. Colorrelated attributes that are used in
this system are introduced from the ODA Colour extension and JPEG
related attributes are newly added. Image encoding schemesused in
the simulation system are JPEG for full color images and MMRfor
B&W images.

AUTOMATIC IMAGE AREA SEPARATION

Foreasy operation of the mixed color facsimile, an automatic
image area separation technique is necessary. In this system, spatial
frequency analysis using DCT(Discrete Cosine Transform) is used to
distinguish character and photographic image area. Spatial frequency
analysis is a well known methodforthis kind of process, butit is
difficult to apply this method to scanned images whose resolutions
range from 200 or 300 ppi(pel/inch) resolution because the
differences between the DCT coefficients of these images are not
clear. Therefore, we analyzed thespatial frequency property ofthese
images using several subsampleratios from I/I to 1/3.

Statistical Characteristics af DCT Coefficients
Weregard [g]as an( MxN_) two dimensional image data

matrix, and [ G } as the two dimensional discrete cosine transformed
data matrix of ( g]. In this case, the element (u, v ) of [G J is givenas;

888 « SID 94 DIGEST

 

--- Layout Object Descriptor ---
Layout-Object-Descriptor

abject-type
descriptor-body

t= SEQUENCE {
Layout-Object-Type,
Layout-Obdject-Descriptor-Body OPTIONAL }

Layout-Object-Type == INTEGER { document-layout-root (0),
page Q),
block (4)}

Layout-Object-Descriptor-Body ::= SET {
position [3]HIMPLICIT Measure-Pair OPTIONAL,
dimensions (4] IMPLICIT Dimension-Pair OPTIONAL,
presentation-attributes {6]IMPLICIT Presentation-Atuibutes OPTIONAL}

Measure-Pair usSEQUENCE{
x-position [0] IMPLICIT INTEGER,
y-position [0] IMPLICIT INTEGER }

Dimension-Pair n= SEQUENCE(
horizontal {O]IMPLICIT INTEGER,
vertical CHOICE(

fixed (O)IMPLICIT INTEGER}}
Presentation-Attributes== SET {

taster-graphics-attributes [1JIMPLICIT Raster-Graphics-Attributes OPTIONAL)
Raster-Graphics-Attributes s= SET {

pel-transmission-density {2}IMPLICIT Pel-Transmission-Density OPTIONAL}
Pel-Transmission-Density = INTEGER { p6 (200 dpi) (1),

p3 (400 dpi) ()}

--- Text Unit ---
Fext-Unit z= SEQUENCE (

content-portion-attributes|Content-Portion-Attributes OPTIONAL,
content-information Content-Information }

Content-Portion-Atrributes ::= SET {
type-of-coding Type-of-Coding OPTIONAL,
coding-atiributes CHOICE {

raster-gr-coding-attributes [2]IMPLICIT Raster-Gr-Coding-Attributes}
OPTIONAL)

Raster-Gr-Coding-Attributes ::= SET {
number-of-pels-per-line {0} IMPLICIT INTEGER OPTIONAL,
number-of-lines {1] IMPLICIT INTEGER OPTIONAL,
subsampling (10]}IMPLICIT Subsampling OPTIONAL,
jpeg-coding-mode (11}IMPLICIT INTEGER{ baseline (0)} OPTIONAL}

Type-of-Coding z= {O)IMPLICIT INTEGER{ t-6(MMR) (0),
t-81 (PEG) (16),
{-82 (JBIG) (17)}

t= SEQUENCE{
IMPLICIT Sub-Sample-Pair,
IMPLICIT Sub-Sample-Pair,

Subsampling
first-component
second-component
third-component IMPLICIT Sub-Sample-Pair}

Sub-Sample-Pair z= SEQUENCE {
horizontal INTEGER,
vertical INTEGER}

3= OCTET STRINGS{ t-6 or 81 of t-82 }Content-Information
END

Figure 3. ASN.1 definition for Mixed Color Facsimile simulation
system

M-1t N-f

G (u,v)220) oma} (ges) (eep~]= COS|————————— COS |
NMN m=O 920 2M 2Nn

(k =0)eel

Osu sM-1, e(k) Xo
Osv sN-1, =1 (1)

(k #0)

This spatial frequency analysis applied to the luminance
componentof the color image obtained by color scanner. The CCITT
test document No. 4 and photographic area of the Test chart No. 5 of
TheSociety of the Electrophotography of Japan were used as sample
images for character image and photographic image. Spatial
frequency characteristics were calculated as follows. Absolute values
of DCTcoefficients G(u, v) were calculated for each 8 x 8 block of
each subsampled image and averaged for the entire image area. The
result was plotted for the order of (8*v + u). Figure 4 shows the
result of the character image and figure 5 showstheresult of the
photographic image.
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Figure 4. DCT coefficient characteristics of character image for
different subsamplingratios.
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Figure 5. DCT coefficient characteristics of photographic image for
different subsamplingratios.

These two figures show almost the same characteristics for
1/1 subsampling. There are, however, remarkable differences in high
frequencies u and v with 1/2 and 1/3 subsampling. According to
these results, character image areas and photographic image areas can
be distinguish using 1/2 or 1/3 subsampling and DCTcoefficient
analysis.

Discrimination of photographic image and character image
In order to determine the discrimination function, the DCT

coefficients matrix is divided to four groups: DC component, group
A, group B,and group C, as show in Figure 6.

The dominant DCT coefficient groups for character images are
the DC component and group C. DC componentis influenced by
background region of character documents whichis generally white.
Group C components correspondto the edge structure of character
images. Group B components are also important for composing
charter shapes, butthey also change with photographic images.

The dominant DCT coefficient group for photographic images
is group A, which correspondsto gradually changing tone areas.
High frequency componentssuch as group C have quite low levels.
DC componentis also influenced by the background of photographic
image areas. Therefore, we selected the variables x, y for
discrimination function as follows;

Spatial Frequency u

pe

Group A

>
Group B —2

s
3a

s
Group C —#

 
Figure 6. Separated DCT coefficient matrix
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Thedistribution of the x y coordinate of each block for
character image areas and photographic image areas is shown inigure 7,

Frommulti regression analysis, the discrimination function
forcharacter image areas and photographic image areas became asollows;

1

C$lxa lak (Kya [7]Vixg kV (yy) x
Migr(ya) || VeaV Cra)
MixprM typ)||Olxavah Oley Yy)

VoxghV (ya)

“1
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(3)
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Original image
, where,

M(xa), M(ya) : the mean of x,y,
V(xa), V(ya)_: the varianceof x,y,
Vixa), V(ya) : the covariance between x andy,

from photographic image;

Separated image blocks Document syntax

 
 

1
Described

 M(xb), M(yb): the mean of x,y, : in Figure 2
V(xb), V(yb)_: the variance of x, y, : .V(xb), V(yb) _; the covariance betweenx and y , i|using ASN. 1

from character image. : notation

Automa ti !
SIMULATION SYSTEM

separator iet ed converter
Layout info, |Atfirst, an original image stored in thefile system is displayed

as shown in Figure 9. On the display,it is possible to chose eitherautomatic or manual image area separation mode. In the case of the SUI Coded_|JPEG & INR
automatic separation mode, the image is processed by the method 4 image coderencoder

described in Section 4. The discrimination function calculated in “|
Section 4 is used. Theresult of discriminated result is displayed on |
the original image using rectangular area markers as shown in Figure SUI (Session Template
9. If the result is accurate, the imageis divided into content blocks User, Info. )and encoded by JPEG and MMRcoders. The SUI (Session User ;Information) that contains the structured image data for Mixed Color CLAN) reconstructed image
Facsimile communication is then assembled by the SUI encoderusing SUI
the layout information and the coded imageblockdata. In the decoder
receiving side, the transferred data is disassembled to yield the layout .information and the coded block data. The full imageis reconstructed Layout info.using these data and displayed. This system can also print out the | coded image }  image througha digital color copying system (Canon CLC-500). Thecompressed image shownin Figure 9, occupies about 247 kbytes. JPEG & MAR Layout
This is about 60 % less than the JPEG only coded case (609kbyte). decoder processor
Theprinted example exhibits some image quality degradation, such as
jerkiness in the character image area. This is because the character
image area was binarized as a 200 dpi image. Higher resolution may . . _,be needed to avoid this degradation for binary images. Figure 8. Process block diagram of Mixed Color Facsimile system

CONCLUSION

The mixed color facsimile and an automatic color image area
separation method using DCT were proposed. The mixed color
facsimile can reduce the amount of coded data by 60 % to 70 % from
that needed by the JPEG only color facsimile. The automatic color
image area separation method was applied to the test image, and its
performance was confirmed.
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THE CONTRAST SENSITIVITY OF HUMAN COLOURVISION TO

RED-GREEN AND BLUE-YELLOW CHROMATIC GRATINGS
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SUMMARY

1. Amethod of producing red—green and blue~yellowsinusoidal chromatic gratings
is used which permits the correction of all chromatie aberrations.

2. A quantitative criterion is adopted to choose the intensity match of the two
colours in the stimulus: this is the intensity ratio at which contrast sensitivity for
the chromatic grating differs most from the contrast sensitivity for a monochromatic
luminance grating. Results show that this intensity match varies with spatial
frequency and does not necessarily correspond to a luminance match between the
colours.

3. Contrast sensitivities to the chromatic gratings at the criterion intensity match
are measured as a function of spatial frequency. using field sizes ranging from 2 to
23 deg. Both blue—-yellow and red-green contrast sensitivity functions have similar
low-pass characteristics, with no low-frequency attenuation even at low frequencies
below 0-1 eycles/deg. These functions indicate that the limiting acuities based on
red—green and blue—yellowcolour diseriminations are similar at 11 or 12 cyeles/deg.

4. Comparisons between contrast sensitivity functions for the chromatic and
monochromatic gratings are made at the same mean luminances. Results showthat.
at low spatial frequencies below0-5 cycles/deg. contrast sensitivity is greater to the
chromatic gratings. consisting of two monochromatic gratings added in antiphase.
than to either monochromatic grating alone. Above 0-5 cycles/deg, contrast
sensitivity is greater to monochromatic than to chromatic gratings.

INTRODUCTION

The aim of this paper is to examine the spatial characteristics of human colour
vision. For luminancevision this has been done by measuring a contrast sensitivity

function: the ability of the visual svstem to detect luminancecontrastat different
neies. The experiments described here aimto make comparablecontrast

sensitivity measurements for colour vision. by using grating stimuli which vary
sinusoidally in colour.

A few previous studies have attempted to determine spatial sensitivity to red-green
sinusoidal gratings. in which the two colours are matched in luminanceto create an
isoluminant stimulus (¢.g. Schade. 1958: Van der Horst & Bouman, 1969: Granger
& Heurtley. 1973: Kelly. 1983). Only one of these reports measurements using
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bluc-ycllowsinusoidal stimuli (Van der Horst & Bouman, 1969}. However. there are
many difficulties associated with these investigations. First, the chromatic aberrations
of the eyearelikely to produce luminanceartifacts in colour gratings at medium and
high spatial frequencies. Transverse aberrations. or a chromatic difference of
magnification, have not been corrected in previous isoluminant experiments.
Corrections for longitudinal aberrations. or a chromatic difference of focus. have
sometimes been made (Van der Horst & Bouman, 1969: Kelly. 1983). Secondly. a
luminance match between the twocolours in the stimulus has generally been made
byusing flicker photometry at one temporal! and spatial frequency (Van der Horst
& Bouman. 1969: Granger & Heurtley. 1973) andit has been assumed that this match
is appropriate for all the other spatial and temporal frequencies used. However.
red-green brightness matches may alter with temporal frequency (Ives. 1912:
Bornstein & Marks. 1972), and so temporal andpossibly spatial-frequency-dependent
changesin brightness matches mayhave producedartifacts in previous isoluminant
studies.

Thirdly, previous measurements havenot extendedto verylow spatial frequencies
and veryfewspatial cycles have been displayed at the lowest frequencies. A spatial
cycle numberbelowfourorfive is known to reduce sensitivity to luminance gratings
(Findlay, 1969: Savoy & McCann. 1975). The lowest chromatic frequency that has
been used while displaying four cyeles is 0-4 cycles/deg (Granger & Heurtley, 1973)
althoughoften thelowest frequency measured with this cyele number has been higher
at, for example. 1-4 eveles/deg (Van der Horst & Bouman, 1969). Furthermore. these
latter measurementsonly extended downto spatial frequencies of 0:7 eycles/deg and
for luminance gratings at comparable cyele numbers, low-frequencyattenuation does
not occur until below0:5 cycles/deg (Howell & Hess. 1978). Thus. the previous studies
have not satisfactorily investigated coloursensitivity to lowspatial frequencies and
the effects of reducing the spatial cyele number have not been distinguished from
possible low-frequency attenuation below 0-5 eyeles/deg. Finally. in previous
investigations comparisonsbetween colour and luminance sensitivities have not been
attempted. This is partly becausethere is no adequate definition of colour contrast
available which can be used for all colour combinations and does not depend on
theoretical assumptions about post-receptoral cone interactions. Previous measures
ofcolour sensitivity. such as purity (Van der Horst & Bouman. 1969) and wave-length
discrimination.are difficult to relate to juminance contrast sensitivities.

The experiments described in this paper aim to overcome these problems in the
following ways. (1) A different method of producing chromatic stimuli is used which
permits correctionofall chromatic aberrations. (2) Quantitative criteria are used to
judge the most appropriate intensity match for creation of an optimum chromatic
stimulus, and this match is adjusted separately at all spatial frequencies. (3) A very
large field size is used which allows low spatial frequencies to be presented. without
thresholds being affected by a low number of spatial evcles. (4) The stimulus is
arranged so that the same contrast scale is used to determine thresholds for both
chromatic and luminance gratings. This enables simple calculations to be madeof
the contrasts of the chromatic and luminancestimuli to individual cone types.

 

 
The =

scree!
filters
were

[2°
cor
10
(de
col
me
mic

(x
en

ap
th
(rd

fil’

 

HUAWEI EX. 1016 - 361/714



HUAWEI EX. 1016 - 362/714

    
 

 
 
 

 
 

 
 

 
 
 

 
 
 
 

 
 
 
 

 
 
 

 

 

' CONTRA: ‘T SENSITI MIT Y TO CHROMATIC GRATINGS 383
ere are j METHODS
rations .

The stimulus and procedure
im and . . . . . ae

A red-green chromatic grating was produced bydisplaying two gratings. each on Joyce display
nee of ‘ screens with white (P+) phosphors. These gratings were viewed through narrow band interference
ments. ' filters to produce their colour (Fig. 1). Interference filters with peak transmissions at 526 and 602 nm
i, have were chosen as these wave-lengths are at the peaks of both the human opponent colour spectral
idly, a
t made D.s. 1
Horst

match\RLVS
wever,
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andent
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Fig. 1. Adiagram ofthe experimental apparatus used tocreate the red-green and blue—yellow
|

| from | chromatic gratings. B.s., beam splitter: d.s. 1. d.s. 2, display screens Nos. | and 2: E. eve
2v10us of observer: n.d., neutral densityfilter: Z. Zeiss telescope ( x3): i.f., interference filter.

|

 

 

t been | Interference filters with peak wave-length transmissions of 602 and 526 nm were used to
ntrast produce a red—green chromatic grating andfilters with peaks at 470 and 577 nm were used

i for the blue-yellowgrating.nd on

asures 1

ength sensitivity function (Sperling & Harwerth, 1971) and the chromatic response function of Hurvich
i & Jameson (1955). Thus. this red-green wave-length pair causes maximal modulation in the

in the : red~green chromatic response function but modulates the blue-yellow response function by only
which 12%. The two monochromatic gratings were combined optically 180 deg out of phase to form the
sed to : com posite chromatic grating. The chromatic grating patch was circular and ranged from 9-2 to

, i 10-3 cm in diameter, depending on the correction madefor the chromatic difference of magnification
matic (described later). The remainderof the display screen was masked off with a diffuser; thus, at all
1 very contrasts used. the grating patch wasset in a uniform surroundofthe same meancolour and reduced

mean luminance. A fixation mark appeared at the centre of the chromatic grating. Viewing waspout monocular with a natural pupil and at a distance of 82 cm from eachdisplayscreen. A Zeiss telescope
: ( x 3) could be placeddirectlyin front of the eve. Viewing with the eve-piece close to the eve optically

‘ both enlarged the grating andthefield size. whereas viewing with the objective lens close to the eve
ide of , optically reduces the image: it was thus equivalent to changing the viewing distance, and enabled
‘. the field size to be varied from 2-2 to 23-5 deg. The stimulus was phase reversed sinusoidally at0-4 Hz.

The same method was used to produce a blue-yellow chromatic grating, but using interference
filters with peak transmissions at 470 and 577 nm. 577 nmfalls at the trough of the red-green
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opponent spectral sensitivity function. and 470 nmis close to the blue peak. A filter transmitting
light at the blue peak was not used hecause it severely reduced the mean luminance of the stimulus.
This hlue-vellow wave-length pair causes 74", modulation in the blue-vellow chromatic response
function. but only 5%, modulation in the red-green response function. Thus. the choice of the two
wave-length pairs has been made on the basis of our knowledge of the post-receptoral colour
opponent responses todifferent wave-lengths. As far as possible. chromatic gratings have been
created which maximallystimulate one opponent colour system, and as such cause litte modulation
in the other opponent colour system.

Contrast of either component grating in the chromatic stimulus is defined by the usual formula:
l i

+, Emax 7 “niin
Iinax tf

where [may and Jppin are the peak and trough fuminancevalues respectively of the monochromatic
grating. The contrasts of the two component gratings were yoked together electronically. although
their respective mean luminanves may differ. Thus. Cs2g = Ceor ANd Cizy = Csrz at all luminances.
To find threshold, contrast ix varied andat threshold the reciprocal contrast of either grating may
be taken as the contrast sensitivity. Contrast output on the displayscreen was measuredfor a range
of input contrasts using a UDT (United Detector Technology. model 40X) light-meter. Output
contrast waslinearly related to input contrast. andcontrasts shownin the following experiments
are the true. calibrated values.

Contrast output was also measured as a function of the spatial frequency on the display screen.
using a psychophysical procedure which avoids the use of any additional optical apparatus with
unknown modulation transfer characteristics. The subject set contrast thresholds for a range of
gratings which consisted of pairs of stimuli identical in retinal spatial frequency(in cycles/deg) and
retinal feld size, but differing only in their screen spatial frequency {in evcles/em) and viewing
distance. Thus. anydifferences found between the thresholds for a pair of stimuli are likely to be
due to the loss of contrast on the display screen at higher spatial frequencies. The results. shown
in Fig. 2. reveal a non-linearrelation between contrast output andscreen spatial frequency: contrast
output declines markedly above4+ cycles/em andtheloss is 40%at 2 cyeles/em. Inthe following
experiments, screen spatial frequencies above 1°8 cyeles/em were not usec. All contrast values
quoted are of contrast output calibrated from the data of Fig. 2. The results of this psychophysical
procedure agree well with results obtained fromoptical measurements of contrast loss for the same
type of apparatus (Hess & Baker. 1984). Natural pupil sizes for the red-green stimuli were around
4mm. and 6mmfor the blue-yellow stimuli, All mean luminances were measured using a
calibrated SEI spot photometer.

Contrast thresholds were determined bya single staircase procedure (Cornaweet. 1962). begun
at a randomlyselected contrast above or below threshold. The grating was displayed continuously
to increase the speedofthreshold setting andto reduce considerably temporal transients. A mean
ofat least four thresholds was obtained for each plotted data point. Thelargest standard deviation
of the thresholds is marked on each data curve. A 6809 Motorola microprocessor was usedon-line
to control the stimulus production and presentation, and data collection.

Three subjects were used in the experiments: K.T. (the author), R.M.C. and 8.0.8. At least
two subjects. and in some cases three. were used in each experiment. All subjects wore their normal
correcting lenses, and performed normallyon the Farnsworth-Munsell 100 hue test and the Ishihara
test for colour blindness.

max min

 

Correction of chromatic aberrations
This methodofgrating production has the advantage over the use of colour TVdisplays in that

it allows the chromaticdifference offocus and the chromatic difference of magnification of the eve
andother optics to be corrected. The difference of focus may be corrected byplacing a negative
lens in the path of the shorter wavedength of the grating pair or a positive lens in the path of the
longer wave-length. before the two component gratings are combined hy the beam splitter.

It ix also possible to measure the magnitude ofthis correction directly. The stimulus was arranged
such that in the top halfof the test patch one monochromatic square-wave component grating was
displayed. whereas in the bottom half the other one appeared. The subject fixated on the
longer-wave-length member of the pair 602 or A77 um) with the help of a fixation mark. A series
of negative correcting: lenses wins placed in front of the shorterwet ve-length stimulus (470 or 526 nm)
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smitting und the subject saw this stimulus in sharpest focus simultaneously with the longer-wave-length
timulus. grating, This method indicated that a correction of —1 D was required for the blue grating in the
response blue-vellow pair and a correction of —0-5 D was required for the green grating in the red-green
“the two pair. These values are close ta previous calculations (see Wryazecki & Stiles. 1967) and were used
d colour in the present experiments.ve been
dulation

Qe

ormula: a
S oad

8 3
2 ae

romatic 3 10 8 2
Ithough 3 aeinances. = E £
ng may E 38
a range 2
Output 20
riments 01 0:3 1 3

Screen spatial frequency (cycies/em)

screen, Fig. 2. Output contrast (¢) normalized ta contrast threshold as a functionof sereen spatial
us with frequency(eycles/em). A psyehophysical method. describedin the text. ig used to calculate
ange of output contrast. Output contrast declines after 0-4 cycles/em. Real contrast may be
eg) and calculated from the curve by multiplying the uncalibrated input contrast by the
rliewing normalized output contrast, or by adding the normalized output attenuation to the
y to be uncalibrated input attenuation. The smallest and largest standard deviations are shown.
shown Attenuation (dB) = 20 x log 1/c.ontrast

llowing

jraines This empirical method of measuring the chromatic differenceof focusis convenient to use since
“ theoretical calculations become complex when the telescope is used to magnify or minify the

around stimulus, and will depend on the design of the telescope. When the telescope was used to magnify.
ising a very little correction was required for the short-wave-length gratings (—0-25 D for the 470 nm

grating only). Whenthe telescope was used to minify. much larger correcting lenses were needed.
begun since for this reverse viewing condition a small difference offocus at the eve requires large correcting

uously lenses at the eye-piece. A +3 =Dlens for the yellow grating in the blue-yellow stimulus, anda +2D
L mean lens far the red grating in the red-green stimulus were found to be the best corrections.
viation The chromatic difference of magnification of the eve, and any additional optics in use. can be
on-line corrected by making independentadjustments to the spatial frequency of one of the component

gratings. This was done by adjusting the N-gain on the appropriate display screen. Magnification
t least differences are easily detected by displaying the two component gratings as square waves; overlap
aormal of adjacent bars produces a bright strip of a different colour which can be removed by adjusting
hihara the magnification of one grating. ; ;

Wave-length-dependent diffraction effects did not need correction as high frequencies, greater
than 6 cycles/deg are not used (Van der Horst. de Weert & Bouman. 1967}. While the chromatic
aberrations are being corrected the subject’s head is held in place using a dental bite bar and this 7

n that line-up is maintained throughout the experiment. When the corrections have been made the
he eve gratings are displayed sinusvidally in space to produce a sinusoidal red-green or biue-vellow
gative chromatic grating.
of the RESULTS

‘anged The removal of achromatic contrast

. the When creating stimuli which vary only in colour. an important problem is to
series establish the basis on which the intensities of the colours in the stimulus should be

‘6 nm) matched. Furthermore, it has frequently been assumed that a match madeat one

12 py 359
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apply toall other frequencies. However, there is

hed in luminance, for example by flicker
high spatial or high temporal

conditions luminance

spatial or temporal frequency will
evidence to suggest that stimuli mate
photometry. will appear equally bright only under

conditions, whereas under other low-frequency

+ |

DDI
—— (%}

Green Red R+G

frequency

aa + SNAN: 75

+ PNP: 100
(Contrast = 1)

Fig. 3. A diagram of the luminanceprofiles across space of the red and green component
gratings which are added 180 deg outof phase to produce a sinusoidal red-green chromaticstimulus. The ratio of red (2) to green (G) mean Juminances in the chromatic grating
is variable, and is expressed as the percentage of red light in the mixture. The mean
luminance of the whole stimulus (& + @)is constant. The contrasts of the component red
and green gratings are always equal and are at a value of | in this Figure. Contrast is
yaried to determine threshold. The same method is used to produce a blue-yellow
chromatic grating. and the blue to yellow ratio is expressed as the percentage of yellow
in the mixture.

matched stimuli will contain brightness differences (Ives. 1912; Bornstein & Marks,
1972; Myers. Ingling & Drum, 1973). Thus. there is a need to devise an appropriate
criterion and a quantitative methodfor matching the intensity of the two colours
in the stimulus which maybeusedatall spatial and temporal frequencies.

In thisexperiment, the ratio of the mean luminancesof the two component gratings
in the stimulus was varied over a widerange. and the subject's contrast sensitivity
to the stimulus was measuredat selected points. The criterion for the choice of the
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CONTRAST SENSITIVITY TO CHROMATIC GRATINGS 387

ere is intensity match was the luminance ratio at which the contrast sensitivity to the
icker chromatic grating differs most from the contrast sensitivity to the monochromatic
poral gratings. The methodis illustrated for the red-green grating in Fig. 3. In this case.
tance the ratio has been expressed as the percentage of red (A) in the red-green mixture.

The range begins and ends with a red or green monochromatic stimulus that has
luminance contrast but no colour contrast, and in the middle region the stimulus will

300 -

o-O-n, 23
100 Ta of ON a, 63

aX SAT
Ys 977-80 0-09X— o

\ or
\e-o of

10 §-0-9Contrastsensitivity
Ld

' 0 25 50 75 100
tm)R+G

Fig. 4. Contrast sensitivity as a function of the red-green luminance ratio in the stimulus,
expressed as the percentage of red in the mixture. Four spatial frequencies are shown
(cycles/deg): x, 23; ©, 53; ©, 70 and O, 0-09. Vertical bars indicate +1 s.p.. The
subject is R.M.C.

have maximum colour contrast and minimal luminance contrast. Over-all there is
no net change in the mean luminance of the composite stimulus; although 2/G varies,
R+G was arranged to be at a constant photopic luminance (15 cd/m?). The same
method is used to vary the colour ratio in the blue-yellow stimulus. Theratio is

it expressed as the percentage of yellow in the mixture. The mean luminance of the
composite stimulus (B+ Y) remains constant at 2°t cd/m’.

Contrast sensitivity for one spatial frequency was measured at eleven or twelve
percentages in the red-green or the blue-yellow range. The run was then repeated

8 but beginning with the opposite colour in the range to avoid any effects due to

 

‘ chromatic adaptation. This was repeated for a range of spatial frequencies. Thus, the
experiment examines the effect on detection of a monochromatic grating when a
second grating of a different colour is added out of phase in various proportions.
Typical results for the red-green grating are shownin Fig.4, and for the blue—yellow 7

larks, grating in Fig. 5. The subject’s contrast sensitivity is plotted as a function of the
iriate luminance ratio. The set of curves in each Figure represents a range of spatial
lours frequencies.

The spatial frequencyof the stimulus has a profound influence on the results. For
tings low spatial frequencies (below 1 cycle/deg) the subject is less sensitive to the
tivity monochromatic conditions at cither end, but as luminance contrast is reduced
of the sensitivity increases reaching a maximum. However,for the higherspatial frequencies

12-2
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the reverse occurs: the subject is most sensitive to the two monochromati¢ conditions.
and in between sensitivity decreases reaching a minimum. Thus, under low spatial
frequency.conditionssensitivity is greatest whenthere are colour differences in the—er 7 te 5 mn astimulus, wnerees Se higher frequencies sensitivity is greatest when the stimulushas_
only luminance contras Seen -

 

Contrastsensitivity ww3 2

0 25 50 75 100Y 9

YrE (%}
Fig. 5. Contrast sensitivity as a function of the blue-yellow luminance ratio in the
stimulus. expressed as the percentage of yellow in the mixture. Fourspatial frequencies
are shown (cyeles/deg): x. 1-9: . 20: ©. 34 and ©. 0:24. The subject is K.T.

 

For the blue-yellow contrast sensitivities (Fig. 5) the minimum at high spatial
frequencies’shifted relative to the maximum at lowspatial frequencies. The low
spatial frequency (0:24 eycles/deg) maximum occurs at 60%) yellow. or higher. At
1-9 cycles/deg a minimum occursat 50°, yellow. and the remaining curves at 2-9 and
3-4 eycles/deg both have minimaat 45 4 yellow. All spatial frequencies in this Figure
were displayed with the samefield size (6:5 deg). Thus. for this subject (K.T.) as for
others, there is a shift in the intensity match with spatial frequencyof about fifteen
percentage points. Most of this change occurs below 2 eyeles/deg. Less blue is
required at the low spatial frequency maxima than at the high spatial frequency
minima,indicating that the effective intensity of the 470 nm wave-lengthis relatively
lower at high frequencies. The red-green threshold data. shown in Fig. 4. are
suggestive of a similar but much gmaller shift. The low spatial frequency maxima
occur at 55% red. and the minima occurat 50 and 47 ®. red for 2 and 3 cyeles/deg
respectively. For other subjects a similar pattern occurs. This effect is not more than
7°but resembles the blue-yellow results in that relatively more of the shorter-
wave-length (526 nm) light is required at the criterion match as spatial frequency
increases up to 2 cycles/deg. Thus. for both red-green and bluc—yellow stimuli a
luminance match between colours. which occurs at 50°, red or 50%yellow. does not
predict the maxima or minima of contrast sensitivity.

It can also be seen from these results that the minimaat high spatial frequencies
become moresharply defined. making an accurate choice of intensity match more
critical. since small differences in the match have quitelarge effects on sensitivity.
These minima continue to increase in depth from 2 to 7 eveles/deg.
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All subjects were asked to report any changes in the appearance of the gratings

 

S, . ’ . . “

al at threshold. at the different intensity ratios. The appearance varied from a
le homochromatie condition. where the bars appeared to be of a uniform colour but
as varying in brightness. to a heterochromatic condition where hue differences could be

distinguished at threshold, At low spatial frequencies, colour differences could be

Field size (deg): 235 + 5 + 19

300 ‘
(18) (2:8)

oO.

100 OohSSCAo
a

2 %>

= 30+ Oc Q
8

@ 10r ava
5 ‘aoO ‘

3b :

a
003 01 03 1 3 10

Spatial frequency (cycles/deg)

Fig. 6. Contrast sensitivity as a function of spatial frequencyfor a red-green grating (Q:
526, 602 nm). Slightlydifferent red-green ratios were used at different spatial frequencies
to obtain the criterion intensity match of the twocolours. The lowest numbers of spatial

al eycles displayedare indicated in parentheses. The continuous curve was fitted by eve. The
Ww methodof extrapolation (dashedline) is described in the text. The subject is R.M.C. See
At also the upper curve of Fig. 7 for results of subject K.T.
1d . . .
re detected at threshold for most of the intensity ratios. However, for the highest spatial
or frequencies used. such heterochromatic colour thresholds occurred at only 2 or 3
on intensity ratios. and these always coincided with the minima of sensitivity. These
is observations strongly suggest that colourdifferences are detected at threshold at the
ty intensity ratios which produce the maximal and minimal sensitivities. They also
ly emphasize the need for an accurate. quantitative method of determining the match

since, at high spatial frequencies. only a narrow range of intensity ratios produce
colour detection thresholds. Furthermore. at the intensity ratios which occur at and

2g around the maxima and minimaofcontrast sensitivity. the two coloursin the grating
appear as bars of equal brightness. Many subjects comment on the unusually vividun

r- or ‘fluorescent’ appearance of the colours at these points. -
*y yn . wpe . .
a The chromatic contrast sensitivity function (¢.s.f.)

3t Measurements ofthe sensitivity of colourvision to different spatial frequencies can
now be made using the criterion that the maxima and minimaindicate the best

es intensity ratio for the two colours in the chromatic grating. For a range of spatial
re frequencies, results similar to those of Figs. 4and 4 were obtained, and intensity ratios
y. at the maxima and minimaselected for determining the contrast sensitivities which

are plotted in Figs. G6 and 7. The largest field size (23-5 deg) used in the experiment
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CONTRAST SENSITIVITY TO CHROMATIC GRATINGS 391

Comparisons between colour and luminance c.8fs
The colour and luminance c.s.f.s differ in shape, but we do not knowhowtheir

relative sensitivities compare. Comparisonsof sensitivity are difficult since thereis
no adequatedefinition of colour contrast available which canbe appliedtoall colour
combinations, and does not depend on theoretical assumptions about post-receptoral

Field size (deg): 235 : 5 1 19 52-4
300 '

 
 

  
(4-8) (28) 0°SOO,

-00.0.0.05_ 54 0.
100 Bo . BA 25

woa o® “S \
o iNoO

10Contrastsensitivity
1
0:03 0:1 0:3 1 3 10 30 100

Spatial frequency (cycles/deg)

Fig. 8. Contrast sensitivity as a function of spatial frequencyfor the red-green grating
(C1; 526, 602 nm) and a green monochromatic grating (©; 526 nm). The data for the
chromatic grating are taken from Fig. 6. The subject is R.M.C.

cone interactions. None of the previous measures of chromatic sensitivity, such as
wave-length discrimination or purity, translate readily into the luminance domain.
Measures of purity have resulted in the two componentluminance gratings being
presented at different contrasts, making comparisons with luminance sensitivity
difficult. In the present experiments, the contrasts of the two component gratings
are alwaysheld equal to each other, and at threshold the reciprocal contrast of either
grating is taken as contrast sensitivity. Thus, as a working measure, the same contrast
scale is used to determinedetection thresholds for both the luminance and chromatic
gratings. More direct and quantitative comparisons ofsensitivity can also be made
of the level of the cone responsessinceit is relatively simple to calculate the contrast
of the luminance and chromatic gratings to each cone type.

The results shown in Figs. 4 and 5 give an initial indication of how contrast
sensitivity changes as luminancecontrast is removed and chromatic contrast is added
to the stimulus. The present experiment extends these comparisons over the complete
spatial range. The data for the chromatic gratings were' taken from Figs. 6 and 7.
Data for the luminance gratingswere obtained by cither using the pure green grating
(0 % red condition) to makethe red-green comparison,or using the pure yellow grating
(100% yellow condition) to make the blue-yellow comparison. Luminance and
chromatic comparisons were each made at the same mean luminances. The choice
of monochromaticgrating is not important since Van Nes & Bouman (1967) have
shown that the wave-length of a monochromatic luminance grating does not affect
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enabled frequencies as low as 0-17 eycles/deg to be displayed with over 4 cycles
present. Thus. low spatial frequency sensitivity could be assessed without being
affected by a reduced eyele number, since if more thanfourspatial cycles are present
contrastsensitivity is independent of the eyele numberandthefield size (Howell &
Hess, 1978).
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Fig. 7. Contrast sensitivities as a function of spatial frequency for a blue-yellow grating
(©: 470, 577mm) and a red-green grating (J; 602, 526 nm). both for subject K.T.
Different blue-yellow ratios were used at different spatial frequencies to obtain the
criterion intensity match of the two colours. Slightly different red-green ratios were also
required for the criterion match. The continuous curve wasfitted by eye. The method of
extrapolation (dashed line) is described in the text.

The results obtained using red-green gratings are shown in Fig. 6 for R.M.C. and
in the uppercurveof Fig. 7 for K.T., the blue-yellow results for K.T. are shown in
Fig. 7. Sensitivities to both blue-yellow and red-green stimuli have low-pass
characteristics, with no decline in sensitivity for spatial frequencies below
0:1 cycles/deg. Previous declines found (e.g. Kelly, 1983) may have been due to the
low numberof cycles displayed.

Sensitivity to the red—green and blue-yellow stimuli declines at spatial frequencies
above 0:8 cycles/deg, Sensitivity to the red-green medium and higher spatial
frequenciesis lower than has been previously reported and by extrapolation, red-green
chromatic resolution fails at 11-12 cycles/deg for R.M.C. and K.T. (The method of
extrapolation is described later.) Previously, resolutions above 25 eycles/deg have
been suggested. Resolution ofthe blue-yellowgrating also failsat around 11 cycles/deg
for both subjects K.T. and S.C.S. (no Figure), This compares with an acuity of above
20 cyeles/deg. obtained using bluc—yellow sine-wave stimuli (Van der Horst &
Bouman,1969). These chromatic acuity values are investigated more fully in a latersection.

Fig. 7 shows a comparison between the red-green and blue—yellowsensitivities
obtained from the same subject (K.T.). The two e.s.f.s are remarkablysimilar and
have much the same high spatial frequencydecline. The onlysignificant difference
occurs in the low spatial frequency region where the blue-yellow sensitivity is
consistently about (1540-2 log units lower.
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contrast sensitivity providedthestimuli have the same mean luminance. The results
for the comparisonbetweensensitivities to the red-green chromatic grating and the
green monochromatic grating are shownin Fig. 8. The blue-yellow chromatic and
yellow monochromatic comparisons arc shownin Fig. 9.

Field size (deg): 23-5 ° 65 2.27
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Fig. 9. Contrast sensitivity as a function of spatial frequencyfor the blue-vellow grating
(C1; 470. 577 nm) and a yellow monochromatic grating (QO: 477 nm). The data for the
chromatic grating are taken from Fig. 7. Thesubject is K.T.

The results showthat the contrast sensitivity to both red-green and blue-yellow
gratings is greatest below1 cycle/deg. whereas luminance contrast sensitivity peaks
at 0:84 cycles/deg. For the lowspatial frequencies. the combination of the red and
green monochromatic gratings in antiphase can be seen whenneither grating can be
seen alone. This difference in contrast sensitivity reaches 0°6 log units and may
increase at even lower spatial frequencies. Results obtained on another subject (K.T.)
are very similar. The sameeffect occurs for the blue-ycllowstimuli. For low spatial
frequencies, contrast sensitivity to the combination of monochromatic gratings in
antiphaseis greater than to the monochromatic grating alone. This difference reaches
0-5 log units at 0-1 cycles/deg. For another subject (8.C.8.) the difference was slightly
less (0-4 log units). Above cross-over points at 03-0-5 cycles/deg for all subjects.
contrast sensitivity becomes greatest to the monochromatic stimuli. and it is
luminance vision which has the higher acuity.

Comparisonsof chromatic and luminance acuity
Previous studies using isoluminant techniques have produced a wide range of

values for chromatic acuity. In most studies. extrapolations haveto be made by eve
from threshold measurementsobtainedat lowerspatial frequencies. Such procedures,
using purity asthe measure ofchromaticsensitivity suggest acuityvalues for red-green
gratings that range from 25-30 cyeles/deg (Van der Horst & Bouman, 1969) to
50 cycles/deg and equal to luminance acuity (Schade. 1958). Two studies which
include measurements madeusing bluc—yellow sine or square-wave stimuli suggest
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an acuity greater than 20 cyeles/deg (Van der Horst et al. 1967; Van der Horst &
Bouman. 1969). Studics which have attempted to measure acuity using isoluminant
sine- or square-wavegratings of variable wave-lengths have also reported a similar
range of acuity values from 20to 30 cvcles/deg (Hilz, Hupperman & Cavonius, 1974).

100 -

a
iat30 - a>

= a a
3 lo S
g 0%  \,
g A \oO \

- | 9 \° \
3 | \,1

aan

 
Q 10 20 30 40

Spatial frequency (cycles/deg)
Fig. 10. Contrast sensitivity as a function of spatial frequency. plotted on semilogarithmic
coordinates. The data for red-green gratings (1): 602. 526 nm) and green monochromatic
gratings (©. 526 nm) are taken fromFig. 8. Linear regression lines are fitted to the data
and extrapolated to a contrast sensitivity of 1 (100°, contrast) to indicate acuity. Low
spatial frequency data have been omitted (see text for further details). The subject is
R.M.C.

and barfrequenciesof46 cycles/deg reported to equal luminance acuity undersimilar
conditions (Cavonius & Sehumacher. 1966). The purposeofthe following calculations
is to make accurate predictions of colour and luminance acuity on the basis of the
new contrast sensitivity measurements obtained here.

The high spatial frequency data points for the luminance and chromatic gratings
were replotted on semilogarithmic coordinates. All the data points which occur after
the peak sensitivity of the colour or luminance contrast sensitivity functions are
included in the plot. In effeet. the medium and high spatial frequency points that
occur at or below a contrast sensitivity of 100 were included. A linear regression line
was fitted to each function and extrapolated to a contrast of 100% (contrast
sensitivity = 1) to predict acuity.

Results for red-green stimuli are shown in Fig. 10 and the blue-yellow results in
Fig. 11. Visual inspection reveals that the regression lines fit the data points well.
Red-green chromatic acuity is 11-12 cycles/deg, compared to the luminance acuity
of 34-36 cycles/deg at the same mean luminance for subjects R.M.C. and K.T.
Blue—yellow chromatic acuityis around 11 cycles/deg, closely resembling red—green
acuity. compared to the luminance acuity of 32-33 cycles/deg. for subjects K.T. and
S.CLS.

Luminanceacuity is lower than might be expected. This is probably due to the
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relatively low mean luminance of the stimuli which will reduce sensitivity to very
high spatialfrequencies. However. comparisons with theresults ofprevious chromatic
studies can be made since equivalent or higher luminances have been used in the
present experiments.

10 _ ‘5

oContrastsensitivity
0 10 20 30 40
Spatial frequency (cycles/deg)

Fig. 11. Contrast sensitivity as a function ofspatial frequency. plotted on semilogarithmic
coordinates, The data for blue—yellowgratings (1: 470.577 nm)andyellow monochromatic¢
gratings (©. 577 nm) are taken fromFig. 9. Linear repression lines are fitted to the data
and extrapolated to a contrast sensitivity of 1 (100, contrast) to indicate acuity. Low
spatial frequency data have been omitted(see text for further details). The subject is K.T.

Thus, these results indicate that chromatic acuity, based on hue discriminations
ofsinusoidal chromatic gratings,is lower thanpreviously thought at 11-12 cycles/deg
for both the red-green and bluc—yellowstimuli. Possible explanationsfor the higher
sensitivities and acuities found in previous studies are considered in the Discussion.

Note on colour appearance

Atsuprathreshold levels these purely chromatic sinc-wave gratings are square wave
in appearance. For example, no intermediaryshades of yelloware seen between the
red and green peaks and little variation occurs in the appearance of these colours
within each bar. A similar effect occurs for the blue—yellow stimulus, where no
intermediary blue—whites are seen. The unexpectedabsenceofyellow betweenregions
of red and green, and the absence of other such ‘transition’ colours, has been
commented on before. both in the spectrum (von Helmholtz, 1909), and using
overlapping linear ramps of red and green (Campbell, 1983). Below about
0-3 cycles/deg, this effect disappears and the chromatic gratings become more
sinusoidal in appearance.

DISCUSSION

These experiments have revealed a shift with spatial frequency in the intensity
match which produces the maximumchangein contrast sensitivity. The shift is most
prominent for bluc-yellow gratings and shows that the effectiveness of blue light
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CONTRAST SENSITIVITY TO CHROMATIC GRATINGS 395

relative to yellow in the match, decreases as spatial frequency increases up to
2 cycles/deg. There is also a suggestion of a similar but smaller shift in the red-green
match, where the effectiveness of green light decreases relative to red at the higher
spatial frequencies. The question arises as to what causes these changes in match
point. Wave-length-dependent diffraction effects are unlikely since the shift occurs
at relatively low spatial frequencies, below6 cycles/deg. Also, diffraction would cause
a relative decrease in the contrast of the red or yellow grating. and so would produce
a shift in the oppositedirection at higher spatial frequencies. Small differences in focus
between the two colours due to longitudinal chromatic aberrations might cause an
apparentshift in an intensity match, by reducing the contrast ofone colour. However,
in the present experiments chromatic aberrations have been corrected, and a
considerable change in matchstill oecurs for blue—yellow stimuli at very low spatial
frequencies below 1-2 eycles/deg. Any small residual differences in focus between the
two colours are unlikely to affect thresholds at these low spatial frequencies (Campbell
& Green, 1965).

Another possible explanation is that blue cones or rods contribute to the match
under low spatial frequency conditions, but not at higher spatial frequencies,
therefore decreasing the effectiveness of short wave-length light in the match at these
higher frequencies. It is known that the sensitivity of the ‘isolated’ blue system
decreases above 1~2 cycles/deg and is considerably reduced by 5-6 cycles/deg (Kelly,
1974; Green, 1972), which is broadly compatible withthe shift occurring at lowspatial
frequencies. The fact that the shift is considerably greater for the blue-yellow match
than for the red-green one is compatible with a blue-sensitive mechanism being
involved. Rodsensitivity also declines above | cycle/deg (Green, 1972). However,
rods are unlikely to contribute to threshold since, at threshold. different colours can
be seen in the stimulus. These results suggest that spatial frequency influences
brightness perception: and are compatible with other evidence which shows that
brightness differences are not always predicted by the standard V, luminosity
function (Ives, 1912; Bornstein & Marks, 1972; Myers et al. 1973).

These results have shown that acuities for the red-green and blue—yellow gratings
are verysimilar. namely 10-12 cycles/deg. Although our knowledge ofpost-receptoral
colour processing is very limiting, the wave-length pairs for the two gratings were
chosen so as to optimally stimulate either the red-green or the blue—yellow opponent
colour system, and each causes verylittle response in the opposite opponent system
(see Methods). Thus, it is ikely that the detection of the red-green and blue—yellow
gratings is by the red-green and blue-yellow opponent colour systems respectively.
It is interesting that the red-green colour acuity is so low in view of the dense
distribution of red and green cone types in the retina. The acuity for the blue-yellow
grating agrees well with recent estimates of the acuity of the ‘isolated’ blue
mechanism, also at 10-14 cycles/deg (Stromeyer, Kranda & Sternheim, 1978;
Williams. Collier & Thompson, 1983). Thus, the results may suggest that the sparse
distribution of blue cones in the retina is not the only factor limiting blue—yellow
grating acuity. Previous measurements have suggested much higher chromatic acuity
values ranging from 20 to 30 cycles/deg to normal luminance acuitics. The methods
used here allow accurate measurements of sensitivity to chromatic high spatial
frequencies to be made since a quantitative way of making an intensity match has
been adopted: the accuracy of this match is shown to be most important at high
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been made for both types of
artifacts in the stimulus.

all detect the colour differences in the matched
ed. suggesting that these

spatial frequencies. Furthermore. corrections have
chromatic aberration, reducing or eliminating luminance
In the experiments. the subjects could
stimulus at threshold. at all spatial frequencics measur
thresholds are based on colour discriminations,Reports by some other authors suggest that previous measurements ofsensitivityto medium and high spatial frequency chromatic gratings are not based on the
perception of colour differences. For example. Granger & Heurtley(1973) found thatcolourdifferencesin the stimulus at threshold disappearat spatial frequencies above
3 eycles/deg. and that the remaining brightness differences could not be nulled byreadjusting the colour match. Sucheffects might be explained if the mediumand highspatial frequency thresholds were based on luminance artifacts in the stimulusproduced by chromatic aberrations. Cavonius & Schumacher (1966). who measuredacuities to chromaticgratings, did not look for colour differences in the stimulus but
reported a wave-length discrimination function at 30 cycles/deg which is veryunlikely to be based on hue discriminations. Another possibility which should beconsidered in this case is that the spectral sensitivity of the achromatic detecting
mechanism changes at spatial frequencies greater than those used in the present
experiment introducing brightness differences into the stimulus. If two achromaticdetecting mechanisms were available then brightness differences could not be nulledsimply by readjusting the brightness match. Further experiments eliminating alljuminance artifacts at spatial frequencies above 7 cycles/deg are in progress to test
these possibilities.In the experiments described here. comparisons have been made betweencontrast
sensitivities to luminance and chromatic gratings. Although contrast sensitivity to
monochromatic gratings docs not change with the wave-length (colour) of the
stimulus. providing the mean luminance is constant (Van Nes & Bouman. 1967), theover-all contrast sensitivity to the chromatic gratings will depend on the particular

h they contain. Thus. any comparisons of sensitivity to luminance
and chromatic gratings will be influenced bythe colours of the pairs in the chromatic
stimulus. For the comparisons madehere. wave-lengths were chosento coincide with
the peaks of the opponent colour spectral sensitivity function and the chromaticresponse function (sec Methods). and so the over-all contrast sensitivity to thechromatic gratings is unlikely to be greatly increased. but maybe decreased. by using
different wave-lengths. Also. measurements made of modulation sensitivities to
different wave-length combinations (Butler & Riggs. 1978) confirm that sensitivityis
relatively high to the colour pairs used here.Both red andgreengratings in the red-greenstimulus will stimulate both medium-
andlong-wave-length cone types and evenat isoluminancethe stimulus will contain
intensity differences to individual cone types. ‘Thus, comparisons between thein terms of their cone contrasts.

colour pairs whic

luminance and colour ¢.s.f.s can also be madeCalculations have been madein the Appendix which show that. at the red-greenratio
used for subject R. M.-C. in the lowspatial frequency chromatic grating. the contrast
of this grating toa mechanism with the spectral sensitivity of long-wave-length cones
is 18°,of the contrast of cither component grating. For
sensitivity of medium-wave-length cones, the contrast o

amechanismwith the spectral
fthe chromaticgrating in39°Q
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sot of the contrast of cither component grating. These values at the criterion red-green
shed match for another subject (K.T.) are also given in the Appendix.
hese The comparisons of contrast sensitivities have revealed that at low spatial

frequencies the two monochromaticgratings combined in antiphasecan be seen when
vity neither grating can be seen alone. For example. at the lowest spatial frequency
the contrast sensitivity to the red-green grating is 3-8 times greater than to the green

that grating presented alone (subject R.M.C.. Fig. 8). However, when considered in terms
sove of cone contrasts, this effect is considerably greater. The modulations of the
1 by long-wave-length cones whichcan be detected in the chromatic condition are 21 times
high smaller than those which can be detected for the monochromatic grating presented
ulus alone. For medium-wave-length cones. modulations 10 times smaller can be detected
ured when the stimulus is in the chromatic (antiphase) condition than when either
but monochromatic stimulus is presented alonc. Thus, at low spatial frequencies a

very chromatic grating can be detected on the basis of considerably smaller receptor
d be modulations than can a luminance grating. This interesting effect is presumably
ting mediated bythe post-receptora] extraction of colour opponentsignals, involving the
sent combination of different cone outputs.
atic Finally. the psychophysical results reportedhere are relevantto the neurophysiology
led of primatecolourvision. The evidence has shown thattherelative sensitivities of the
x all visual systemto colour and luminance contrast change with spatial frequency. Since
“best colour opponentcells are likely to respond to both colour and luminance contrast

(Ingling & Drum, 1973). it can be predicted that the relative sensitivity of these single
rast cells to colour and luminancecontrast is spatial frequency dependent. Thus. these
y to psychophysical results emphasize the importancein future neurophysiological studies
the of considering spatial variables when determining the colour and luminance contrast

the sensitivities and the spectral sensitivities of single cells.
tular

ance APPENDIX
latic Thefollowing calculations are of the effective contrast ((',) of a chromatic grating.
with composed of two monochromatic gratings added in antiphase. for a single cone type.
atic The quantal intensityprofile (/,) of the chromatic grating is described by:

sing L, = M,a,+M,a,+(a,@%,—@,a,) sin wx.
$ to where s is its spatial frequency and x is space. The contrast of the grating
™ is (Tharaha,
ium- “ey DAD
itain where: 1, 2 are subscripts denoting the wave-lengths of the component gratings: W,.

the M, are the mean quantal intensities of each component grating: a). a, are the
asts. amplitudes of each component grating: a. # denote the spectral sensitivity weightings
ratio for the wave-lengths of the two component gratings for long (a)- and medium
srast (f)-wave-length cone types.
ones If the contrasts of the two component gratings are equal and at a value C
stral ‘

19 0% My =a[C.
MM, =a,/C
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OaUTG%c x C1, (1)
QA, $A, hy

If the ratio of the luminance of component grating No. 1 to component grating
No. 2 is £, their quantal intensities are equated by:

a, V, = La, ¥,,or

a, = La, V, (2)

where } = ¥/4,; Vi, J, are the standard J’, luminousefficiency weightings of the
component wave-lengths.

Substituting eqn. (2) in eqn. (1):

_ Vaya,
¢ L¥a, +2,C x (3)

For the red-green chromatic grating used in the present experiments. wave-length
No. 1 is 526 nm and wave-length No. 2 is 602 nm

Foog = 08012,

Vigo = 06054.

Therefore, }’ = 0-7556.

Cone spectral sensitivities may be taken from the Smith & Pokorny (1975) cone
sensitivity functions, based on colour matching data (see Boynton, 1979).

For long-wave-length cones (a)
Osog = 04526,
Oeon = 0-4905.

For medium-wave-length cones (f)

Boog = 03484.
Boon = 01149.

The data in Fig. 4 for subject R.M.C. showthat the criterion intensity match at
lowspatial frequencies is at 50% red. Thus the green to red luminanceratio (L) = t.

Using these values in eqn. (3) gives:

a C, = —0:1784 x Cfor long-wave-length cones, or 18°, of C:an

Cy = +0°3923 x C for medium-wave-length cones. or 39°, of C.

For subject K.T., the intensity match at lowspatial frequencies is at 55°, red.
Thus, the green to red luminanceratio (L) = 0:8182.

Using these values in eqn. (3) gives:

C, = —0-2735 x C for long-wave-length cones. or 27%, of C:
and

C. = +0°3048 x C for medium-wave-length cones. or 30°, of C,
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this is because letters are objectively more discriminable in these frequency bands or because can utilizethe information more efficiently, we studied the 26 upper-case letters of English. Six two-octave wide filterswere used to produce spatially filtered letters with 2D-mean frequencies ranging from 0.4 to 20 cycles perletter height. Subjects attempted to identify filtered letters in the presence of identically filtered. addedGaussian noise. The percent of correct letter identifications vs s/7 (the root-mean-square ratio of signalto noise power) was determined for each band at four viewing distances ranging over 32:1. Object spatialfrequency band and s/n determine presence of information in the stimulus: viewing distance determinesretinal spatial frequency, and affects only ability to utilize. Viewing distance had no effect upon letterdiscriminability: object spatial frequency, not retinal spatial frequency. determined discriminability. Todetermine discriminationefficiency, we compared human discrimination to an ideal discriminator. For ourtwo-octave wide bands, s/n performance of humans and of the ideal detector improved with frequencymainly because linear bandwidth increased as a function of frequency. Relative to the ideal detector.humanefficiency was 0 in the lowest frequency bands, reached a maximum of 0.42 at 1.5 cycles per object

:1

. |Abstract—-To determine which spatial frequencies are most effective for letter identification. and whether |

I

and dropped to about 0.104 in the highest band. Thus, our subjects best extract upper-case letterinformation from spatial frequencies of 1.5 cycles per object height, and they can extract it with equalefficiency over a 32:1 range of retinal frequencies. from 0.074 to more than 2.3 cycles per degree ofvisual
angle.

Spatial filtering Scale invariance

INTRODUCTION

Characterizing objects

When we view objects, what range of spatial
frequenciesis critical for recognition, and how
is our visual system adapted to perceive these
frequencies? Ginsburg (1978, 1980) was among
the first to investigate this problem by means of
spatial bandpass filtered images of faces and
lowpassfiltered images of letters. He noted the
lowest frequency band for faces and the cutoff
frequency for letters at which the images seemed
to him to be clearly recognizable. The cutoff
frequency for letters was 1-2 cycles per letter
width; faces were ‘best recognized in a band
centered at 4 cycles per face width. He also
proposed that the perception of geometric visual
illusions, such as the Mugtler-Lyer and Poggen-
dorf, was mediated “low spatial frequencies
(Ginsberg. 1971, 678. Ginsberg & Evans.
1979),
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Psychophysics Contrast sensitivity Acuity

An issue that is related to the lowest fre-
quency band that suffices for recognition is the
encoding economy of a band. For a filter with
a bandwidth that is proportional to frequency
(e.g. 4 two-octave-widefilter). the lower the ;
frequency, the smaller the number of frequency
components needed to encodethe filtered image
of a constant object. Combining these two
notions, Ginsburg concluded that objects were
best, or most efficiently, characterized by the
lowest band of spatial frequencies that sufficed |!

i
i

to discriminate them. Ginsburg (1980) went on
to suggest that higher spatial frequencies were —
redundant for certain tasks. such as face or
letter recognition.

Several investigators were quick to point out
that objects can be well discriminated in various
spatial frequency bands. Fiorentini, Maffei and
Sandini (1983) observed that faces were well
recognized in either high or in lowpass filtered
bands. Norman and Erlich (1987) observed that
high spatial frequencies were essential for dis-
crimination between toy tanks in photographs.

y39u
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With respect to geometric illusions, both Janez
(1984) and Carlson, Moeller and Anderson

(1984) observed that the geometric illusions
could be perceived for images that had been
highpass filtered so that they contained no
low spatial frequencies. This suggests that low
and high spatial frequency bands may carry
equivalently useful information for higher visual
processes.

Characterizing the visual system

In the studies cited above, the discussion of
spatial filtering focuses on object spatial fre-
quencies, that is, frequencies that are defined in
terms of some dimension of the object they
describe (cycles per object). Most psychophysi-
cal research with spatial frequency bands has
focused on retinal spatial frequencies, that is,
frequencies defined in terms ofretinal coordi-
nates. For example, the spatial contrast sensi-
tivity function (Davidson, 1968; Campbell &
Robson, 1968) describes the threshold sensi-
tivity of the visual system to sine wave gratings
as a function of their retinal spatial frequency.
Visual system sensitivity is greatest at 3-10
cycles per degree of visual angle (c/deg). How
does visual system sensitivity relate to object
spatial frequencies?

Unconfounding retinal and object spatial
Srequencies

Retinal spatial frequency and object spatial
frequency can be varied independently to deter-
mine whethercertain object frequencies are best
perceived at particular retinal frequencies. Ob-
ject frequency is manipulated by varying the
frequency band of bandpass filtered images:
retinal frequency is manipulated by varying the
viewing distance.

The cutoff object spatial frequency of lowpass
filters and the observer’s viewing distance were
varied independently by Legge, Pelli, Rubin and
Schleske (1985) who studied reading rate of
filtered text at viewing distances over a 133:1
range. Over about a 6:1 middle range of dis-
tances, reading rate was perfectly constant, and
it was approximately constant over a 30:1
range. At the longest viewing distances. there
was a sharp performance decrease (as the
letters became indiscriminably small). At the
shortest viewing distance, performance de-
creased slightly. perhaps due to large eye move-
ments that the subjects would have to execute
to bring relevant material towards their lines of

sight, and to the impossibility of peripherally
previewing new text.

While viewing distance changed the overall
level of performance in Leggeet al., the cutoff
object frequency of their low-pass filters at
which performance asymptoted did not change.
From this study, we learn that reading rate can
be quite independentofretinal frequency over a
fairly wide range, and that dependenceoncriti-
cal object frequency does not depend on viewing
distance. Because the authors measured reading
rate only in lowpassfiltered images, we cannot
infer reading performancein higher spatial fre-
quency bands from their data.

Unconfounding object statistics and visual system
properties

Humanvisual performanceis the result of the
combined effects of the objectively available
information in the stimulus, and the ability of
humansto utilize the information. In studying
visual performance with differently filtered im-
ages, it it critical to separate availability from
ability to utilize. For example, narrow-band
images can be completely described in terms
of a small number of parameters—Fourier
coefficients or any other independent descrip-
tors—than wide-band images. Poor human
performance with narrow-band images may
reflect the impoverished image rather than
an intrinsically human characteristic—an ideal
observer would exhibit a similar loss.

The problem ofassessing the utility of stimu-
lus information becomes acute in comparing
human performance in high and in low fre-
quency bandpass filtered images. Typically.
fillers are constructed to have a bandwidth

proportional to frequency (constant bandwidth
in terms of octaves). For example, Ginsburg
(1980) used faces filtered into 2-octave-wide
bands; while Norman and Ehrlich (1987) also
used 2-octave bands for theirfiltered tank pic-
tures. With such filters, high spatial frequency
images contain more independent frequencies
than low frequency images.

Although linear bandwidth represents per-
haps the important difference between images
filtered in octave bandsat different frequencies,
the informational content of the various bands

also dependscritically on the nature of the
specific class of objects. such as facesor letter.
Obviously, determining the information content
of imagesis a difficult problem. Whenit is not
solved, the amount of stimulus information

available within a frequencyband is confounded
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with the ability of human observers to use the
information. Direct comparisons of perform-
ance between differently filtered objects are
inappropriate. This distinction between objec-
tively available stimulus information and the
human ability to use it has not been adequately
posed in the context of spatial bandpass
filtering.

Efficiency
In the present context, physically available

information is best characterized by the per-
formance of an ideal observer. If there were no
noise in the stimulus, the ideal observer would
invariably respond perfectly. To compare the
performance of an observer, human or ideal,
noise of root-mean-square (r.m.s.) amplitude 1
is progressively added to the signal of r.m.s.
amplitude s until the performanceis reduced to
some criterion, such as 50% correct in a letter
identification task. This defines the signal to
noise ratio, (s/7),, for a criterion c. Efficiency eff
of human performance is defined by:a: 2

si ifsi¥
eff = ~) jf

Hie! Ma]

where # and i indicate Auman and ideal observ-
ers, and s and nm are r.m.s. signal and noise
amplitudes (Tanner & Birdsall. 1958). In a pure,
quantally limited system, efficiency actually
represents the fraction of quanta absorbed
(utilization efficiency). In the context ofsignal
detection theory,efficiency is given by a d’ ratio:

eff =(dy!diy.

Overview

For an object that contains a broad spectrum
of spatial frequencies, object spatial frequency is
determined by the center frequency of a spatial
bandpass filtered image. Retinal spatial fre-
quency is determined by the viewing distance at
which the stimulus is viewed. Stimulus infor-
mation is determined jointly by the signal-to-
noise ratio. by the spatial filtering. and by the
characteristics of the set of signals: these three
informational components are combined in the
efficiency computation. Letters are a convenient
stimulus to study because theyare highly over-
learned so that human performance can be
expected to be reasonablyefficient. and because
much is already known about the visibility of
letters in the presence of internal noise (letter
acuity) and about the visual processing of
letters.

Spatial frequencies and discrimination efficiency
1401

Specifically, to determine the roles of object
and retinal spatial frequencies, letters are
filtered into various frequency bands. Noise is
added, and the psychometric function for cor-
rect identification is determined as a function
of s/n. Accuracydepends only on s/n and not on
overall contrast, for a wide range of contrasts
(Pavel, Sperling, Riedl & Vanderbeck, 1987).
This determination is repeated for every combi-
nation of object frequency band and viewing
distance. Thereby, retinal spatial frequency
and object spatial frequency are unconfounded,
enabling us to determine whether a particular
object frequency band is better discriminated
in one visual channel (retinal frequency) than
any other (Parish & Sperling, 1987a, b). More-
over, by computing an ideal observer for the
identification task, we obtain an objective
measure of the information that is present in
each of the frequency bands. Finally, the com-
parison of human performance with the per-
formanceofthe ideal observergives us a precise
measure of the ability of our subjects to utilize
the information in the stimulus. Having
untangled these factors, we can determine which
spatial frequencies most efficiently characterize
letters for identification.

METHOD

Two experiments were conducted using simi-
lar stimuli and procedures.

Stimuli

Letters (signals) and noise. The original,
unfiltered letters were selected from a simple
5 x 7 upper-case font commonly used on CRT
terminals. Since this is an experimentin pattern
recognition, we felt that the simplestletter pat-
tern might be the most general: indeed, this font
has been widely used in letter discrimination
studies. For the purpose of subsequent spatial
filtering. the letters were redefined on a pixel
grid that measured 45 (vertical height) x 35
(maximum horizontal extent of letters M and
W). The letters had value | (white); the back-
ground had value 0 (black). To avoid edge
effects in filtering. the background was extended
to 128 x 128 pixels for all computations. How-
ever. only the center 90 x 90 pixels of the sumu-
lus were displayed, as these contained effectively
all the usable stimulus information, even for
low spatial-frequency stimuli. Letters for pres-
entation were chosen pseudo-randomly from
the set of 26 upper-case English letters. Noise

HUAWEI EX.1016 - 382/714
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Table 1. Parameters of the bandpassfilters: lower and upper
half-amplitude frequencies, peak, and 2D mean frequencies

in cycles/letter height

Band Lower Peak * Upper Mean?

0 0 Lowpass 0.53 0.39
I 0.26 0.53 1.05 0.74 ~
2 0.53 1.05 2.11 L.49
3 1.05 2.11 4.22 2.92
4 2.11 4.22 8.44 5.77
5 6.33 Highpass 22.5 20.25 

“Frequencies are weighted according to their squared ampli-
tude (power) in computing the mean.

fields were defined on a 128 x 128 array by
choosing independent Gaussian noise samples
for each pixel, with the mean equal to zero and
a variance g? as required by the condition. (As
with the letters, only the central 90 x 90 pixels
were displayed.) Forty different noise fields were
created.

Filters. Each stimulus consisted of a filtered

letter added to an identically filtered noise field.
Six spatial filters were available, corresponding
to six successive levels of a Laplacian pyramid
(Burt & Adelson, 1983). The zero-frequency
componentwasaddedto the imagesso that they
could be viewed. The object-relative filter
characteristics, upper and lower half-amplitude
cutoff and 2D mean frequency (cycles per
letter height), appear in Table 1. The 2D mean
frequency / for a given band is:

$27) 127 / 127) (127

f= x x Far Ber} 2 x a.xe=07=0 xed yrs0

where f,, is the 2D frequency and a,,, is its
amplitude. Cycles per object height is used
rather than the more usual cycles per object
width because the height of our upper-case
letters remained constant across the entire set,
whereas the width varied between letters.

The transfer functions (spectra) of the filters
are displayed in Fig. 1. Approximately, filters
are separated in spatial frequency by an octave
(factor of 2) and have a bandwidth at half-
amplitude of two octaves. The small mound in
the lower right corner of Fig. | is a negligible
imperfection in filter 4. For convenience, the
limited range of spatial frequencies passed by
each ofthefilters will be referred to as the band

of that filter; a specific band is 5, (i =0, 1, 2. 3,
4, 5), where dp is the lowest set of frequencies
and b, is the highest.

The filter spectra (shown in Fig. !) are
approximately symmetrical in log frequency
coordinates, a symmetrical spectrum in log co-
ordinates is highly skewed to the right in linear
frequency coordinates. resulting in a mean that

Davip H. ParisH and GEORGE SPERLING

Cycles /field width
1 2 4 8 16 32 64

Gain 
0.0.0.35 ~ 0.70 14 2.8 5.6 "1.2 22.4

Cycles/ letter height

Fig. |. Filter characteristics for the filters used in the
experiments. There are two abscissas, both ona Jogscale.
The top abscissa is the frequency in cycles per unwindowed
field width (128 pixels); the bottom abscissais in cycles per
letter height (45 pixels). The ordinate is the normalized gain.
The parameter/ indicates thefilter designation 5,in thetext.

is much greater than the mode. In a 2D (vs 1D)
filter, the rightward shift is accentuated. For
example, band 2 has a peak frequency of 1.05
c/object but a 2D mean frequency of 1.49
c/object. The single most informative character-
ization of such a skewed bandpass spectrum
depends somewhat on the context; usually use
the mean rather than the peak.

Figure 2 (top) showstheletter G,filtered in
bands 1-5 without noise; the bottom shows the
same signals plus noise, s/n =0.5. The full
128 x 128 array (extendedbyreflection beyond
its edges) was passed throughthefilter so that
the effect of the picture boundary did not
intrude into the critical part of the display.

Signal to noise ratio, sin. A filtered letter is a
signal. Let i, j index a particular pixel in the ~, y
coordinate space of the stimulus. The signal
contrast c,(i,)) of pixel i, is:

a(i,j)= G0—) ()0

where/,, is the luminance ofpixel i, j and 4 is
the mean signal luminance over the 90 x 90
array. Signal power per pixel, s, is defined as
mean contrast power averaged over the 90 x 90.
pixel array:

if

s = (WY YY ai Q)

where c,, is the contrast of pixel i, j and
f=J=90.

Noise contrast ¢,(i./) is the value of the #, jth
noise sample divided by the mean luminance.
Analogously to signal power (equation 2), noise
contrast power per pixel. 7. is equal to (a thy.
The signal to noise ratio is simply 5.7.
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Spatial frequencies and discrimination efficiency

Quantization. Our display system produced
156 discrete luminance levels. Level 128 was
used as the mean luminance [3 4 was
47.5cd/m?. To produce a visual display of a
given letter, band, and s/n, signal power s and
noise power mM were normalized so that the
luminance of every one of the 8100 displayed
pixels fell within the range of the display system.
there was no truncation of the tails of the
Gaussian noise. (Although the relationship be-
tween input gray-level and output luminance
was not quite linear at the extreme intensity
values, it was determined that more than 90%
of the pixels fell within the linear intensity
range.) Intensity normalization was applied sep-
arately to each stimulus (combination of signal
plus noise). By normalizing the total stimulus
s+n, the actual value of s displayed to the
subject diminished as increased;i.e. the actual
value of s was not knownby the subject. Indeed,
aven stimuli with precisely the same letter in the
same band and with the same s/n might be
produced with slightly different s and » depend-
ing on the extreme values of the noise fields.

Seven values of s/n were available for each
band, chosen in a pilot study to insure that the
data yielded the entire psychometric function
(chance to best performance). The same pilot
study showed that subjects never performed
above chance when confronted with noise-free
letters from by; this band was omitted from the
present study.

Procedure: experiment !
Four of the experimental variables—letter

identity, noise field, frequency band, and sin—
were randomized within each session. A fifth
variable, viewing distance. was held constant
within each session and was varied between
sessions. Four viewing distances were used:
0.121, 0.38, 1.21 and 3.84m. A chin rest was
used to stabilize the subject’s head for viewing
at the shortest distance. At the four distances.
the 90 x 90 pixel stimulus subtended 31.6, 10.

“ 4.16and 1.0 deg ofvisual angle respectively. The

1405

upper and lower half-amplitude cut-off retinal
frequencies for the upper six filters. with respect
to the four viewing distances used in this exper-
iment, and for a fifth distance used in the second
experiment, appear in Table 2. Subjects partici-
pated in four I-hr sessions at each viewing
distance. Each session consisted of 315 trials,
ninetrials at each of seven sin’s for each of the
five frequency bands.

Prior to the first session, subjects were shown
noise-free examples of the unfiltered letters.
They were told that each stimulus presentation
consisted of a letter and a certain amount of
noise, and that the letter may appear degraded
in some way. They were informed that at no
time would a letter be shifted in orientation or
from its central location in the stimulus field.
Finally, they were instructed to view each stimu-
lus for as long as they desired before making
their best guess as [o which letter had been
presented. A response (letter identity) was
required on every trial. Subjects typed the
response on a keyboard connected to the host
computer (Vax 117750); subsequently, typing a
carriage return erased the video screen and
initiated the next trial in a few seconds. The
room illumination was very dim: the response
keyboard was lighted by stray light from its
associated CRT terminal. No feedback was
offered to the subjects.

Observers

Three subjects, two male and one female.
between the ages of 20 and 27 participated in the
experiment. All subjects had normal or cor-
rected-to-normalvision. Oneof the subjects was
a paid participant in the study.
Procedure: experiment 2

This experiment was run before expt 1. It is
reported here because it offers additional data
with two new and one old subject at a fifth
viewing distance. Except as noted, the pro-
cedures are similar to expt {. The screen was
viewed through a darkened hood at a distance

Table 2. Lower and upper half-powerfrequency and 2D mean frequency(in ¢ deg of visual angle) for all bands and viewing
distances used in both experiments

Band 0.12 0.38 
0 owpass) 0.00-0.04 (0.03) 0.00 -0.12 (0.09)

1 0.02--0.07 (0.05) 0.06 0.23 (0.16)
2 0.04-0.15 (0.10) 0.42. 0.47 (0.33)
3 0.07-0.30 (0.20) 0.23 0.94 (0.64)
4 0.15 0.59 (0.40) 0.47 1.88 (1.27)

S (highpass) 0.30-2.25(1.41) 0.94 7.13 (4.45)  

Viewing distance (m) 4

The po

3,84 0.48 

0.00 0.37 (0.27) 0.00- 1.48 (0.871 0.00 -0.15 (0.11)
0.18 0.7410.82) 0.8% 2.34 (1.65) 0.07 0.29 (0.21)
0.37 -1.48 (1.04) L18 43.70 (3.30) 0.15--0.59 (0.41)
0.74 2.97 (2.04) 224-9.40 (6.48) 0.29-1.18 (0.81)0.59 2.36 (1.60)

1.77 %.96 (5.631
4.70 (8.80 12.82)
yo 70.27 48.00)

14x $.94(4.04)
2.97 22.53 14.19)

| phe tte (et rather 0.43 ofOss al 0% ww
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1406 Davip H. ParisH and GEORGE SPERLING

of 0.48 m. At this distance, the 90 x 90 stimuli
subtended 7.15 deg of visual angle. The half-
amplitude cut-off frequencies and the mean
frequencies of the six spatialfilters are given in
the rightmost column of Table 2. Three male
subjects between the ages of 20 and 27 par-
ticipated in the experiment. All subjects had
normal or corrected-to-normal vision. Two of
the subjects were paid for their participation,
and one, DHP,also participated in expt |. Five
sessions of 315 trials were run for each subject.

RESULTS

Psychometric functions: B vs logo sin
The measure of performance is the observed

probability p of a correct letter identification.

Probabilitycorrect

“3.0 +2. “1. -2,0

 
The complete psychometric functions are dis-
played in Figs 3 (expt 1) and 4 (expt 2). A
separate psychometric function is shown for
each subject, viewing distance and frequency
band. In band 6,, for all subjects, performance
asymptotes (for noiseless stimuli) at p = 0.5. In
all other bands, performance improves from
near-chance (1/26) to near perfect as the value
of s/n increases.

Noise resistance as a function offrequency band

An obvious aspect of the data of both exper-
iments is that the data moveto theleft of the
figure panels as band spatial frequency in-
creases. This means that high spatial frequency
stimuli (bands ,, 6;) are identifiable at smaller

*1.0

Logy) S/N

Fig. 3. Psychometric functions from expt 1. Each graph displays performance as a function of logia 5”.
within a frequency band. The parameter is viewing distance. Subjects are arranged in columns and
frequency bandis arranged in rows. progressing from the highest frequency bandat the top to the lowest
band at the bottom. The four viewing distances are 3.84 (©), 1.21 (A). 0.38 (2). and 0.121 (O) m.
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Probabilitycorrect 
Log, ,S/N

Fig. 4. Psychometric functions for each subject and fre-
quency band in expt 2. Viewing distance was 0.48 m. The
jive frequency bands, b,~bs, are indicated, respectively, by
3.0. A, © and +. The probability of a correct response

is plotted as a function of logig s/n.

s‘n than stimuli in bands 5, and 6,; resistance to
noise increases with spatial frequency band. To
enable comparisons of noise sensitivity as a
function of band, the s/n at which p = 50%was
estimated for each subject and frequency band
from expt 1 by means of inverse interpolation
from the best fitting logistic function. As view-
ing distance had no effect, all estimates were

made using the data collected when viewing
distance was equal to 0.38 m. A graph of these
(S/n)so, points as a function of the mean object
frequency of the band is plotted in Fig. 5 (O).
For comparison, the expected rate of improve-
Ment in (s/m)so,, based on the increasing num-
ber of frequency components as one moves from
low to high frequency bands, is plotted as a
series of parallel lines in Fig. 5. Performance
improves [(s/n)so,, decreases] somewhat faster
than 1/f (the slope of the parallel lines). These
results, and Fig. 5, will be analyzed in detail in
the Discussion section.

 
—3.5

032 0.56 178 «34.6

2D Mean frequency (cyclas/Letter height)

|

|

1.00 1.78 3.16 5.62 10.0

Fig. 5. Performance of human subjects and various compu-
tational discriminators. The abscissa indicates logy of the
mean frequency of each bandpassstimulus. The ordinate
indicates the (interpolated) s/n ratio at which a probability
of a correct response p = 0.5 is achieved. Circles indicate
each of the three subjects in expt | at the intermediate
viewing distance of 1.21m. In band 5,, 2 of 3 human
subjects fail to achieve 50% correct (eff = 0); these pointslie
outside the graph. (A\)indicates sub-ideal and () indicates
super-ideal performancesofdiscriminators that brackets the
idea) discriminator. The shaded area below the super-ideal
discriminator indicates theoretically unachievable perform-
ance. Squares indicate performanceof a spatial correlator-
discriminator. The oblique parallel lines have slope — I that
represents the improvement in expected performance
(decrease in s/n) as function of the number of frequency
components in each band when filter bandwidth is

proportional to frequency.

The non-effect of viewing distance

 Another property of the data is that, in most bile
conditions, viewing distance has no effect on /”~“ ~
performance. Analysis of variance, carried out ls are
individually for each subject, showsthatthereis KW ~De

1

no significanteffect of distance in any band for |
subject dhp andasignificant effect of distance in |
bands 6, and 6, for the other two subjects. I
Further analysis by a Tukey test (Winer, 1971)
in bands b, and &; for these subjects shows that |
the only significant effect of distance is that |
visibility at the longest viewing distance is better
than at the other three distances. For subject
CID, the improvementis equivalent to a gain in
s/n of 0.19 and 0.28 logy, (for bands 4, and 4;, |
respectively); for MAV,the corresponding gains |
were 0.21 and 0.40. '

Improved performance at long viewing dis- _ i
tances is almost certainly due to the square
configuration of individual pixels, which pro- :
duces a high frequency spatial pixel noise thatis
attenuated by viewing from sufficiently far away
(Harmon & Julesz, 1973). In low frequency
bands, pixel-boundary noise is not a problem
because the spatialfiltering insures that adjacent
pixels vary only slightly in intensity. We ex-
plored the hypothesis of pixel-boundary noise
with subject CID, who showed a distance effect
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in band 5S. At an intermediate viewing distance
of 1.21 m, CJD squinted her eyes while viewing
stimuli from band 5. By blurring the retinal
image of the display in this way, performance
improved approximately to the level of the
furthest viewing distance. ~

To summarize, the only significant effect of
distance that we observed was a lowering of
performance at near viewing distances relative
to the furthest distance. This impairment
occurred primarily in bands 4 and 5. In these
bands, the spatial quantization of the display
(90 x 90 square-shaped pixels) produces arti-
factual high spatial frequencies that mask
the target. These artifactually produced spatial
frequencies can be attenuated by deliberate
blurring (squinting), or by producing displays
with higher spatial resolution, or by increasing
the viewing distance to the point wherethe pixel
boundaries are attenuated by the optics of the
eye and neural componentsof the visual modu-
lation transfer function. In all cases, blurring
improves performance and eliminates the
slightly deleterious effect of a too small viewing
distance. Thus, for correctly constructed stim-
uli, in the frequency ranges studied, there would
be no significant effect of viewing distance on
performance. This finding is in agreement with
the results of Legge et al. (1985), who examined
reading rate rather than letter recognition.It is
in stark disagreement with the results of
sinewave detection experiments in which retinal
frequency is critical—see Sperling (1989) for an
explanation.

DISCUSSION

A comparison of performance in different
frequency bands shows that subjects perform
better the higher the frequency band; and sub-
jects require the smallest signal-to-noise ratio
in the highest frequency band. To determine
whether performance in high frequency bandsis
good because humans are more efficient in
utilizing high-frequency information, or because
there is objectively more information in the
high-frequency images. or both, requires an
investigation of the performance of an ideal
observer. The performance of the ideal observer
is the measure of the objective presence of
information. Human performance results from
the joint effect of the objective presence of
information and the ability of humansto utilize
that information. Human efficiency is the ratio
of human performance to ideal performance.

Davip H. ParisH and GEORGE SPERLING

Ideal discriminator

Definition. An ideal discriminator makesthe
best possible decision given the available data
and the interpretation of “best.’”” The perform-
ance of the ideal discriminator defines the objec-
tive utility of the information in the stimulus.
Weprefer the name ideal discriminator, rather
than ideal observer, because it indicates the

critical aspect of performance under consider-
ation, but we occasionally use ideal observer to
emphasize the relations to a large, relevant
literature on this subject. Our purposes in this
section are first, to derive an ideal discriminator
for the letter identification task, second, to

develop a practical working approximation to
this discriminator, and third, to compare the
performance of the human with the ideal dis-
criminator,

Although ideal observers have recently come
into greater use in vision research, the appli-
cations have focused primarily on determining
the limits of performancefor relatively low-level
visual phenomena. For example, Barlow (1978.
1980), and Barlow and Reeves (1979) investi-
gated the perception of density and of mirror
symmetry; Geisler (1984) investigated thelimits
of acuity and hyperacuity; Legge, Kersten and
Burgess (1987) examined the pedestal effect:
Kersten (1984) studied the detection of noise
patterns; and Pelli (1981) detailed the roles of
internal visual noise. Geisler (1989) provides an
overview of efficiency computations in early
vision. Our application differs from these in that
we expand the techniques and apply them to
a higher perceptual/cognitive function, letter
recognition,

For the letter identification task, the ideal
discriminator is conceptually easy to define. A
particular observed stimulus, x, representing an
unknownletter plus noise, consists of an inten-
sity value (one of 256 possible values) at each of
90 x 90 locations. The discriminator’s task is to

makethe correct choice as frequently as possible _
from amongthe 26 alternative letters.

The likelihood of observing stimulus x, given
each of the 26 possible signal alternatives, can
be computed when the probability density func-
tion of the added noise is known exactly. The
optimal decision chooses the letter that has the
highest likelihood of yielding x. The expected
performance of the ideal discriminator is com-
puted by summing its probability of a correct
response over the 256"possible stimuli (256
gray levels. 90x90 pixels). Unfortunately.
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0
res that are modelled by the jdeal discriminator analysis.
lower half indicates the corresponding operations in the

n 128 x 128 arrays; the subject sees only the center
field are each filtered by the same filter (b); the noise

ignal-to-noise ratio; the letter and noise are added, the output is scaled
addition ofdigitization noise), and the result is shown to the subject.

the bandpassfilter selects an annulus, whereas the quantization noise

Fig. 6. Flow chart of the experimental procedu
Upper half indicates space-domain operations:
frequency domain. Computations are carried out 0
90 x 90 pixels, A randomletter and a random noise
is amplified to provide the desiredsi
and quantized (represented by the
In the frequency domain w,, 5

a-|O|-0->-o- 

 

is uniform over w,, Wy.

when there is both bandpassfiltered and inten-
sity quantization, the usual simplifications that
make this enormous computation tractable are
not applicable.

As an alternative to computing the expected
performanceof the ideal discriminator, one can
compute its performance with a particular sub-
set of the possible stimuli—the stimuli that the
subject actually viewed or, preferably, a larger
set ofstimuli for more reliable estimation. This
Monte Carlo simulation of the performance
of the ideal discriminator is a tractable com-
putation that yields an estimate of expected
performance.

Derivation. Stimulus construction is dia-
grammed in Fig. 6 which showsthe equivalent
operations in the space and the frequency do-
mains. To derive an ideal discriminator, we need
to carefully review the processes of stimulus
construction. We use uppercase letters to rep-
tesent quantities in the frequency domain and
lowercase letters to represent quantities in the
space domain. A letter is defined by a 90 x 90
array that takes the value | at the letter
locations and 0 at the background locations.
Whenthis array is spatially filtered in band 5,it
defines the /etter template t,,(X.¥). where /

indicates the particular letter, b the frequency
band, and x,y the pixel location. We write
T,, p(€0,» Wy) For the Fourier series coefficient of
t,, indexed by frequency.

An unknownstimulus u; ,(%, y) to be viewed
by a subject is produced by adding filtered
n(x, y) with post-filtering variance oi, to the
template 1,,(x, Y)s whereletter identity i is un-
known to the subject. The stimulusis scaled and
digitized (quantized) to 256 levels prior to pres-
entation, contributing an additional source of
noise q;4(%,))s called digitization noise. Finally,
a d.c. component (de) is added to u,, to bring
the mean luminancelevel to 128. These steps are
diagrammed in Fig. 6 which shows both the
space-domain and the corresponding frequency-
domain operations. The space-domain compu-
tation is encapsulated in equations(3):

WieY) = Bi sltia(es 3) + n(x (3a)
Ui (X,Y) = Bisltioey) + nx.y)]

+ Gialx. 3) + ae. (3b)
The scaling constant Bj», limits the range of

real values for each pixel, prior to quantization,
to [—0.5, 255.5]. The degree ofscaling is deter-
mined by the maximum and minimum valuesin

i
||

|
\

 
 

;
i

 

HUAWEI EX.1016 - 389/714

 



HUAWEI EX. 1016 - 390/714

mrpSeRReme
Sereneor

Semperwe:MtormeramereseitrenacatemeTeee

ITeREareneeneeGoteeNGregeeeREEpieeeeTSTet
 

1410 Davip H. ParisH and GEORGE SPERLING

the function ¢,,+,. Note that the extreme
values in the image are determined by o,, which
is adjusted to yield the appropriate s/n for each
condition; the values of t,, are fixed prior to

‘scaling. Specifically:
256

P= axle m)— mini, em)
As a result of bandpass filtering, the

noise samples in adjacent pixels are strongly
dependent on each other. Therefore, the dis-
criminator problem is best approached in the
Fourier domain, where the random variables

{N,(@,,@,)} are jointly independent because
the filtering operations simply scale the differ-
ent frequency components without intro-
ducing any correlations (van Tress, 1968). The
task of the ideal discriminator is to pick the
template s, , that maximizesthe likelihood of w,,
with a priori knowledge of: (i) the fixed func-
tions 1,,, and their probabilities; and (ii) the
densities of the jointly independent random
variables {N,(w,,@,)}. As is clear, B.,, 0%.
{0;,(@,, @,)}, and {N,,(w,, @,)} are all jointly
distributed random variables characterized by
some density f. To computethe likelihood of u;,
the ideal discriminator must integrate f overall
possible values that may be assumed by the
set of jointly. distributed random variables,
whose values are constrained only in that they
result in a possible stimulus u,;,. Unfortunately,
no closed-form solution to this problem is avail-
able, forcing us to look for an alternative
approach.

Bracketing. To estimate the performance of
the ideal discriminator, we look for a tractable

super-idea! discriminator that is better than the
ideal but which is solvable. Similarly, we look
for a tractable sub-ideal discriminator that is
worse than the ideal. The ideal discriminator
must lie between these two discriminators; that

is, we bracket its performance between that of
a “super-ideal” and a ‘“‘sub-ideal” discriminator.
The more similar the performance of the super-
and sub-ideal discriminators, the more con-

strained is the ideal performance which lies
between them.

Oursuper-ideal discriminatoris told, a priori,
the extact values for f,, and o} for each stimu-
lus presentation. Therefore, it is expected to
perform slightly better than the ideal discrimi-
nator which must estimate these values from
the data. The sub-ideal discriminator estimates

these same parameters from the presented
stimulus in a simple but nonideal way. There-

é

fore, it is expected to perform slightly worse
than the ideal discriminator. The computational
forms used to compute B,, and a} for the
sub-ideal discriminator are presented in the
Appendix, along with the derivation of the
likelihood estimator used by both discrimin-
ators. A complete discussion of these deri-
vations and the problems associated with the
formulation of an ideal discriminator for such

complex stimuli is presented in Chubb, Sperling
and Parish (1987).

Performance of the bracketed discriminator.
The super- and sub-ideal discriminators were
tested in a Monte Carloseries oftrials, in which

they each were confronted with 90 stimuli in
each of the frequency bands at each ofseven s.n
values chosen to best estimate their 50%per-

formance point. The s/n necessary for 50%
correct discriminations was estimated by an

inverse interpolation of the best fitting logistic
function. The derived (s/1)s9o, is the measure
of performance of a discriminator. The mean
ratio, across frequency bands. of

(s/1)sq2, Sub-ideal/(s/1)soo, Super-ideal

is about 2 (approx. 0.3 logy units). The
ratio does not depend on the criterion of
performance.

Efficiency of human discrimination

In all conditions, human subjects perform
worse than the sub-ideal discriminator. Notably.
with no added luminance noise, the subideal
(and, of course, the ideal) discriminator func-
tion perfectly, even in 5) where subject perform-
ance is at chance. and in 5, where subjects
reached asymptote at about 50% correct.

Data from the subjects are plotted with the
(s/n)sqx, Sub-ideal and (5 /1)soe, super-ideal in
Fig. 5. For comparison, Fig. 5 also shows the
performanceof a correlator discriminator which
chooses the letter template that correlates most
highly with the stimulus in the space domain.In
the coordinates of Fig. 5 (logis/n vs logit
where f represents the mean 2D spatial fre-
quencyofthe band), the vertical distance d from
the human data log(s i)so»,, Auman downtothe
bracketed discriminator log(s-7)so,, ideal rep-
resents the log, of the factor by which the
bracketed discriminator outperforms the human
observer at that value of f. For the purposé
of specifying efficiency. we assume the ideal
discriminator lies at the mid-point of the su?
and super-ideal discriminators in Fig. 5. The

Lfficiency
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Spatial frequencies and discrimination efficiency

Efficiency
  

0°85 6 a MM 10 aM
2D MeanSpatial Frequency. Cycles/Object

Fig. 7. Discrimination efficiency as a function of the mean
frequency of a 2-octave band (in cycles per letter height)
indicated on a logarithmic scale. Data are shown for three
observers: A =SAW, (1 =RS. O = DHP. The viewing
distance is 2.21m, which is representative ofall viewing

distancestested.

efficiency eff of human discrimination relative
to the bracketed discriminator is eff =10-™,
where:

d = log(s 11) 5025, human log(s in }s0%, ideal*

The values of eff in each object frequency
band are shown in Fig. 7. In band 0,effis zero
because human performance never reaches
50%; indeed, it never rises significantly above
4% (chance). In band 1, human performance
asymptotically climbs close to 50% as s/n ap-
proaches infinity: eff + 0. In band 2, eff reaches
its maximum of 35-47% (depending on the
subject), and it declines rapidly with increasing
frequency (b;—-6s).

The 42% average efficiency in band 2 is
similar in magnitude to the highest efficiencies
observed in comparable studies. For example.
efficiency has been determined for detecting
various kinds of patterns in arrays of random
dots (Barlow, 1978. 1980; van Meeteren &
Barlow, 1981), tasks which, like ours, may
require significantly cognitive processing. In a
wide range of conditions, the highest efficiencies
observed were about 50%, and frequently
lower. Van Meeteren and Barlow (1981) also

found that efficiency was perfectly correlated
with object spatial frequency and was indepen-
dent of retinal spatial frequency.
Spatial correlator discriminator. A correlator

discriminator cross-correlates the presented
stimulus with its memory templates and chooses
the template with the highest correlation. Corre-
lation can be carried out in the space or in the
frequency domain. Correlation is an efficient
Strategy when noise in adjacent pixels is inde-
pendent and when membersoftheset of signals
have the same energy: both of these conditions

SRT ROL
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are violated by our stimuli. However, when
sufficient prior information is available to sub-
jects, they do appear to employ a cross-corre-
lation strategy (Burgess. 1985).

It is interesting to note that the performance
of the spatial correlator discriminator over the
middle range of spatial frequenciesis quite close
to the performance of the sub-ideal discrimin-
ator. At high spatial frequencies, correlator
performance degenerates. due to its inability to
focus spatially on those pixel locations that
contain the most information. A spatial corre-
jator that optimally weighted spatial locations,
could overcomethe spatial focusing problem at
high frequencies. (Spatial focusing is treated in
the next section.)

At all frequencies, the spatial correlator is
nonideal because noise at spatial adjacent pixels
is not independent. At low spatial frequencies,
the nonindependence of adjacent locations be-
comes extreme and the correlator fails miser-
ably. This points out that. for our stimuli,
correlation detection is better carried out in the
frequency domain because there the noise at
different frequencies is independent. The quali-
tative similarity between the correlator dis-
criminator and the subjects’ data suggests that
the subjects might be employing a spatial
correlation strategy, augmented by location
weighting at high frequencies.

Lowest spatial frequencies sufficient for letter
discrimination. Band 2 corresponds to a 2-
octave band with a peak frequency of 1.05
ciobject (vertical height of letters) and a 2D
mean frequency of 1.49 ¢. object. At the four
viewing distances, 1.05 cobject corresponds to
retinal frequencies of 0.074. 0.234, 0.739 and
2.34 c/deg of visual angle. We observe perfect
scale invariance:all of these retinal frequencies,
and hence the visual channels that process this
information, are equally effective in achieving
the high efficiency of discrimination.

Thefinding that 5, with a center frequency of
1.05 c/object and a ! amplitude cutoff at 2.1
cjobject is critical for letter discrimination is in
good agreement with previous findings of both
Ginsburg (1978) for letter recognition and
Leggeet al. (1985) for reading rate. Leggeetal.
used low-pass filtered stimuli, which included
not only spatial frequencies within an octave of
1 c’object (b,} but also included all lower fre-
quencies. From the present study, we expect
human performance with low-pass and with
band-pass spatial filtering to be quite similar up
to | cobject because the lowest frequency
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bands, whenpresented in isolation, are percep-
tually useless (at least when presented alone).

It is an important fact that our subjects
actually performed better, in the sense of achiev-
ing criterion performanceat a lowers/nratio, at
higher frequency bands than 6,. This is ex-
plained by the increase in stimulus information |
in higher frequency stimuli. Increased infor-
mation more than compensates for the subjects’
loss in efficiency as spatial frequency increases.

Components of discrimination performance

Though the performance of the bracketed
ideal discriminator is useful in quantifying the
informational utility of the various bands,it is
instructive to consider the changing physical
structure of the stimuli as well. What com-

ponents of the stimuli actually lead to a gain in
information with increasing frequency? Accord-
ing to Shannon’s theorem (Shannon & Weaver,
1949), an absolutely bandlimited I-D signal can
be represented by a number of samples m that
iS proportional to its bandwidth. When the
signal-to-noise ratio in each sample s,/n, is the
same, the overall signal-to-noise ratio s/n graws
as ./m. In the space domain, our filters were
constructed (approximately) to differ only in
scale but not in the shape of their impulse
responses. Therefore, when the mean frequency
of a filter band increased by a factor of 2. the
bandwidth also increased by 2. Since the stimuli
are 2D, the effective number of samples in-
creases with the square of frequency, and the
increasein effective s/n ratio is proportional to
m. This expected improvement with frequency.
based simply on the increase in effective number
of samples, is indicated by the oblique parallel
lines of Fig. 5 with slope of —1. The expected
improvementin threshold s/n due simply to the
linearly increasing bandwidth of the bands does
a reasonable job of accounting for the improve-
ment in performance for both human and
bracketed discriminators between 6, and dg.

Performance of all discriminators improves
faster with frequency between 0.39 and 1.5
c/object and between 5.8 and 22 c, object thanis
predicted from the bandwidths of the images. A
slope steeper than —1 means that there is more
information for discriminating letters in higher
frequency bands even when the number of
independent samples is kept the same in each
band. Once sampling density is controlled, just
how muchinformation letters happen to con-
tain in each frequency band is an ecological
property of upper-case letters.

Increasing spatial localization with increasing
frequency band. From the human observer's
point ofview, the letter information in low-pass
filtered imagesis spread out overa large portion
of the total image array. In high spatial-fre-
quency images,the letter information is concen-
trated in a small proportion of the total number
of pixels. In high spatial-frequency images, a
human observer who knows which pixels to
attend will experience an effective s/n that is
higher than an observer whoattends equally to
all pixels. In this respect, humansdiffer from an
ideal discriminator. The ideal discriminator has

unlimited memory and processing resources,
does not explicitly incorporate any selective
mechanism into its decision, and uses the same

algorithm ‘in all frequency bands. Information
from irrelevant pixels is enmeshed in the
computation but cancels out perfectly in the
letter-decision process. To understand human
performance, however, it is useful to examine
how, with our size-scaled spatial filters, letter
information comes to be occupy a smaller and
smaller fraction of the image array as spatial
frequency increases.

Here we consider three formulations of the

change in the interna] structure of the images
with increasing spatial frequency: (1) spatial
localization; (2) correlation between signals; and
(3) nearest neighbor analysis. We have already
noted that, in our images, the information-rich
pixels become a smaller fraction of the total
pixels as frequency band increases. Indeed, this
reduction can be estimated by computing the
information transmitted at any particular pixel
location or. more appropriately for estimating
noise resistance, by computing the variance of
intensity (at that pixel location) over the set of
26 alternative signals.

To demonstrate the degree of increasing
localization with increasing frequency, the vari-
ance (over the set of 26 letter templates) was
computed at each pixel location (x.y). Total
power, the total variance, is obtained by sum-
ming over pixel locations. The numberofpixel
locations needed to achievea specific fraction of
the total poweris given in Fig. 8, with frequency
band as a parameter. These curves describe the
spatial distribution of information in the latter
templates. If all pixels were equally informative.
exactly half of the total numberofpixels would
be needed to account for 50%of the total

power. Thesolid curves in Fig. 8 showthat the
numberof pixels needed to convey anypercent-
age of total signal power. decreases as the
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Fractionofpower °°S&&
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3000 4000 5000° 1000 2000
Numberof plxels

fig. 8. Fraction of total power contained in the n most
extreme-valued pixels as a function of n (out of 8100). Solid
ines indicate the power fractions for signals: the curve
parameter indicates the filter band, Dashed lines indicate
power fractions for filtered ‘noise fields. Although power
fractions from successive bands of noise are too close to
label, they generally fall in the same left-right 5-0 order as

those for signal bands.

frequency band increases. These information
distribution curves are an ecological property of
our set of letter stimuli; different curves would
be needed describe other stimulussets.

The dashed curves in Fig. 8 were derived from
random noise filtered in each of the six fre-
quency bands (by—4;). The distribution of noise
poweris very similar between the various bands,
enormously more so than the distribution of
signal power. For ourletter stimuli, stimulus
information coalesces to a smaller number of
spatial locations as spatial frequency increases.

Correlation between signals, A more abstract
way of describing the change of information
with bandwidth is to note that letters become
less confusible with each other in the higher

frequency bands. A good measureofconfusibil-
ity is the average pairwise correlation between
the 26 letter templates in each frequency band
(Table 3). The average correlation between
letter templates diminishes from 0.94 in band 0
to 0.31 in band5. In a band in which templates
have a pairwise correlation over 0.9, the over-
whelming amountofintensity variation (“infor-
mation”) is useless for discrimination. Small
wonder that subjects fail completely in this
band. Overall, performance of the ideal dis-
criminator and of observers improves as the
correlation decreases, but there is no obvious
way to use the pairwise correlation between
templates to predict performance.

Nearest neighbors. The analysis of nearest
neighbors is a useful technique for predicting
accuracy by the analysis of the possible causes
of errors. We can regard.a filtered image 1, of
letter jas a vector in a space of dimensionality
8100 (90 x 90 pixels). When noise is added, the

1413

Table 3. Average pairwise correlations and
nearest neighbors (Euclidean distance x 1075)

Band Correlations Nearest neighbor
(te 0.94 0.01
1 0.91 0.30
2 0.58 1.2
3 0.38 2.3

74 0.33 31
5 0.31 AlTes

possible positions of #; are described by a cloud
whose dimensions are determined by the s/n
ratio. A neighboring letter & may be confused
with letter i when the cloud around 4, envelopes
tye The closer the neighbor, the greater the
opportunity for error. Table 3 gives the average
normalized distance to the nearest neighbor in
each of the bands. The increase in distance to
the nearest neighborreflects the improvement in
the representation ofsignals as spatial frequency
increases.

We consider possible causes of lower
efficiency of discrimination in bands below 52.
Theletters in these bands have high pair-wise
correlations and the mean band frequency is
less than the object frequency. This means
that letters differ only in subtle differences of
shading, a feature that we usually do not think
of as shape. Observers would need to be able to
utilize smail intensity differences to distinguish
between letters. To eliminate an alternative ex-
planation (the smaller number of frequency
components in the low-frequency bands), we
conducted an informal experiment with a lower
fundamental! frequency. The fundamental fre-
quency, which is outside the band, nevertheless
determines the spacing of frequency com-
ponents within the band. Reducing the funda-
mental frequency of the letter by one-half
increases the number of frequency components
in the band by a factor of 4. (A 256 x 256
sampling grid was used rather than 128 x 128.)
These 4x more highly sampled stimuli were not
more discriminable than the original stimuli.
This suggests that the internal letter represen-
tation (template) that subjects bring with them
to the experiment cannotutilize low-frequency
information, even when it is abundantly avail-
able. Whether, with sufficient training, subjects
could learn to use low spatial frequencies to
make letter discriminations is an open question.

SUMMARY AND CONCLUSIONS

1. Visual discrimination of letters in noise,
spatially filtered in 2-octave wide bands, is
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independent of viewing distance (retinal fre-
quency) but improves as spatial frequency
increases. .

2. The improvement in performance with
increasing spatial frequency results mainly from
an increase in the objective amount of infor-
mation transmitted bythe filters with increasing
frequency (because filter bandwidth was pro-
portional to center frequency) which is mani-
fested as objectively less confusible stimuli in the
higher bands.

3. The comparison of human performance
with that of an estimated ideal discriminator

demonstrates that humans achieve optimal
discrimination (a remarkable 42% efficiency)
whenletters are defined by a 2-octave band of
spatial frequencies centered at 1 cycle perletter
height (mean frequency 1.5 c/letter). This high
efficiency of discrimination is maintained over a
32:1 range of viewing distances.

4. Detection efficiency was invariant over a
range of retinal spatial frequencies in which the
contrast threshold for detection of sine gratings
(the modulation transfer function, MTF) varies
enormously. The independenceofdetection per-
formanceandretinalsize held for all frequency
bands.

5. A part ofthe loss of humanefficiency in
discrimination as spatial frequency exceeded |
c/object height may have been due to the sub-
jects’ inability to identify, to selectively attend,
and toutilize the smaller fraction of information-

rich pixels in the higher frequency images.
6. Finally, it is important to note that

without the comparison to the ideal observer,
we would not have been able to understand the

components of human performance in the
different frequency bands.
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APPENDIX

Both sub-ideal and super-ideal discriminators must compute
estimates of the likelihood that the stimulus u,, was pro-
duced with template s,, and noise 1,, where & is the letter
used to generate the stimulus, jis an arbitrary letter, and 6
indexes spatial frequency band. Let x be an index on the
pixels of the image: | < x < 8100, for the 90 x 90 images of
the experiments.

For the Monte Carlo simulations of the super-ideal
discriminator, the unknownstimulus parameters, 4,,and a}
are computed during stimulus construction, and their exact
values are supplied to the discriminator a priori. The
sub-ideal discriminator, however, must estimate these par-
ameters from the data as follows.

Sub-Ideal Parameter Estimation

Recall that stimulus contrast is modulated for anypixel
vin the image:

Ugal] = Balto(X) +00d] + 9, 4(X)- (Al)

The scaling constant 8,, limits range of real values for each
Pixel, prior to quantization, to the open interval (—0.5,
255.5); the addition of 9,0[x], called quantization noise,
rounds off pixel values to integers.

For each bandpassfiltered template/,,. we first compute
the correlation p, , of the template to the stimulus «, »:

¥XO OY)

PFs iy i

{rt air fou aX vt
(A2)

1415

To compute the likelihood estimates for each template 1,,,
we must beable to reverse the effect of f,,,. Thus we define
4,5 = 1/8, and chd@se ,, so as to minimize the expression:

Dlei o%, o)P = SleeCP. (A3)

Solving for %,, gives us:

Lleeor
26 = Pky ————— (A4)

x (uy, o(x)P

Finally weset:

,_I¢ 2
ox=y> D (totes) — 4 CF (A5)cel

where Y = 8100, the number of pixels in the image.

Likelihood Estimation

With estimates of a3 and 2,, for the sub-ideal dis-
criminator, and the @ priori values for the super-ideal
discriminator, we can formulate a maximum likelihood
estimator. By rearranging terms of equation (Al) and
dividing both sides by £ yields:

4.0()
Hi.) — fy p(X) = (x) +aB

Substituting 2,, for 1/8, and by transposing into the fre-
quency domain, denoted by upper-caseletters and indexed
by w, we have:

2.00, (@) — T,.(@) = N(@) + %, 62, ,(@)-

Note that the left side of equation (A7) is simply a
difference image between the stimulus U,,(w) and the
template T,,(w). This difference is exactly equal to the sum
of the luminance and quantization noise only when the
correct template is chosen (i =&). When the incorrect
template is chosen (i 4k) the right hand side of equation
(A7) is equal to the sum of the noise sources plus some
residue that is equal to 7,,(@)—T7,,(w). Under the
assumption that quantization noise can be modeled as
independent additive noise in the frequency domain, the
density A of the joint realization of the right-hand side of
equation (A7) is given by:

Xx

a nlooxie + a5|For

x exe| — 1%.6 Oe. (@) —| (A8)

 
(A6)

{A7)

A=

22,03 +05 |F,()I?
where F,(w) is simply the kerneloffilter 5, in the frequency
domain. Dropping the multiplicative term in equation (A8),
which does not depend on the template 7. and taking logs,
the ideal discriminator chooses the template that minimizes:

X14, ,.U;,(@) — Tol?es ; (A9)
4709 t ORF(@) |?

Finally, it is more convenient to compute the power of
the quantization noise in the space domain (a?) than in the
frequency domain (a3): 63 = a}. Spatial quantization noise,
4, 4X}. is uniformly distributed on the interval [—0.5, 0.5),
so that a2 is computed as:at

xt dxne (ALO)

and is equal to | 12.
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Visual Factors in Letter Identification

Denis G. Pelli, Catherine W. Burns, Manoj Raghavan, and Bart Farell
Institute for Sensory Research, Syracuse University, Syracuse, New York

We have been studying how people identify letters. Ourre-
sults indicate that the processofletter identification is medi-
ated by a general visual object recognition pracess.

Task ‘

We briefly present a low contrast letter with indepen-
dent Gaussian noise addedto each pixel. Then the observer
is shown a complete high-contrast alphabet and asked to in-
dicate which letter was seen. An adaptive procedure adjusts
the letter contrast on successive trials (each with indepen-
dentnoise) to estimate the “threshold”letter contrastat which
the observerattains 62% correct.

Efficiency
For comparison, we also implementthe ideal Bayesian

classifier, using exactly the sametask. "Efficiency" is the
ratio of contrast energies at threshold (whichis the squared
ration of ideal to humanthreshold contrasts).

Alphabets
We havetested fluent readers of English, Devanagari

(the script used for Hindi and Sanskit), Hebrew, and Arme-
nian. The appearancesofthese alphabets are very different,
yettheir efficiencies are all about 10%.

Learning
We have measured the learning of new alphabets by ob-

servers of all ages. Learning proceeds at a similar rate, per
trial, in all observers and alphabets, reaching expert perfor-
mance(indistinguishable from a fluent reader) after a mere

3,000trials. This includes a previously illiterate 3-year old
learning the English alphabet, and adult readers learning for-
eign alphabets.

Novel Alphabets
We havecreated novel alphabets: two series of 26 ran-

dom checkerboards. They are learned at similar rates as the
traditional alphabets, but the asymptotic efficienciesare dif-
ferent. For a 4x4 checkerboard the efficiency is about 6%.
For a 2x3 checkerboard the efficiency is about 24%. The
similar fast learning rate fortraditional and novel alphabets
indicates that the process is not unique to reading, instead
reflecting the operation of a general visual object recogni-
tion process.

Critical Band
Solomon and Pelli (1994) measured the effects of vi-

sual noise at variousspatial frequencies on the threshold for
letter identification. Their results reveal thatletter identifi-
cation is mediated by an octave-wide bandpassfilter cen-
tered at 3 cycles perletter. The insensitivity at low spatial-
frequencies confirms Parish and Sperling (1991).
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An Improved Detection Model for DCT Coefficient Quantization
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ABSTRACT

A detection model is developed to predict visibility thresholds for discrete cosine transform coefficient
quantization error, based on the luminance and chrominanceofthe error. The model is an extension of a
previously proposed luminance-based model, and is based on new experimentaldata. In addition to the
luminance-only predictions of the previous model, the new model predicts the detectability of quantization error
in color space directions in which chrominance error plays a major role. This more complete model allows
DCTcoefficient quantization matrices to be designed for display conditions other than those of the experimental
measurements: other display luminances, other veiling luminances, other spatial frequencies (different pixel
sizes, viewing distances, and aspectratios), and other color directions.

1. INTRODUCTION

1.1 Discrete cosine transform-based image compression

The discrete cosine transform (DCT) has become a standard method of image compression.'* Typically
the image is divided into 8x8-pixel blocks, which are each transformed into 64 transform coefficients. The DCT
transform coefficients [,,,,, of an NxN block of imagepixels i;,,, are given by

N-1 N-1

Inga = Dy De ijk Sim Ska = =0,..., N-1, (1a)
jo k=O

where

tim... VIIN , m=0 tb
Cjm = Om cos(a, (2j+1]) , and Gm =) 57N , m>o (Lb)

The block of image pixels is reconstructed by the inverse transform:
N-1 N-1

big = > D Inia Cj.m Chm» Jik=1...,N-1, (2)m=O n=0

which for this normalization is the same as the forward transform. Quantization of the DCTcoefficients
achieves image compression, but also causes distortion in the decompressed image. Specifically, quantization of —
coefficient J,,, induces an error image which is simply the associated basis function, with amplitude equal to
the coefficient quantization error (neglecting the DCT normalization).

1.2 The Quantization Matrix

The JPEG compression standard! requires that uniform quantizers be used for all the DCT coefficients.
The quantizer step size used for each coefficient is determined by the user. A matrix is used to specify the
quantization of the DCTcoefficients, where the m,nth entry, Q,,,, in the matrix gives the quantizer step size
for coefficient J,,,,. Two example quantization matrices have been included in the JPEG standard. These
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matrices are given in Tables K.1 and K.2 of reference(2) and in Table 5 of reference(4). One of these matrices
is commonly used for graylevel images, and for the luminance component image of color images; the other
matrix is used for chrominance images. These matrices were designed for a particular compression/viewing
scenario, andit is not clear how they should be changed when used under different viewing conditions, or
especially for compression in a different color space. In this paper we propose a quantization matrix design
technique that can be applied under a wide variety of conditions: different display luminances, veiling
luminances, spatial frequencies, and color spaces.

2. DETECTION MODELS

2.1 Luminance-only Detection Model

Peterson, Peng, Morgan, and Pennebaker’ developed quantization matrices for compressing images in the
RGBcolor space (a different matrix is used for each of the R, G, and B component images). The matrices were
derived from measured detection thresholds for small patches of replicated DCT basis functions, produced on a
monitor using an individual R, G, or B gun on a black background. With minor adjustments, the measured
thresholds were converted to quantization matrices which performed well in informaltests.

Ahumadaand Peterson’ proposed that the threshold measurements of Peterson ef al.* could be predicted
by a luminance-only detection model. The theoretical basis of their model is the assumption that the
detectability of distortion in the decompressed RGB image can be predicted from the luminance contrast of the
error image caused in a color component image by quantization of an individual DCT coefficient for a single
block. That is, if the quantization error images associated with all the quantized DCTcoefficients in all image
blocks in all three color component images have amplitudes below their respective visibility thresholds, then no
distortion will be visible in the decompressed image.

The Ahumada/Peterson luminance-only detection model approximates the log of the contrast sensitivity
function (the dependence of the inverse threshold contrast on spatial frequency) by a parabola in log spatial
frequency. The predicted log luminance threshold of the m,nth DCT basis function is

sb
+k (logfmn ~logfi)?, min =0,...,N-1. (3)

 
log T, = lo
Elma 8 rit (ry) COS*Omn, 5

The minimum luminance threshold, s b,, occurs at spatial frequency f,, and ky, determines the steepness of the
parabola. The parameter 0.0<s < 1.0 is to account for visual system summation of quantization errors over a
spatial neighborhood. Such spatial summation causes a decrease in threshold. The spatial frequency, fim,»
associated with the m,nth basis function, is given by

- + swe)WyeFain — 2N Vm W,) + (n/ Wy) ’ (4)
where W,, is the horizontal and W, the vertical size of a pixel in degrees of visual angle. The model includes a
factor ( rp+(l=ry) COS"mn. n } which accounts for the imperfect summation of the two Fourier components
present in basis functions having two cosine components (m and n #0), and also accounts for the reduced
sensitivity due to the obliqueness of these Fourier components. The magnitude of the summation/obliqueness
effect is determined by 0.0<r,<1.0, and the angular parameter 9,,,, is given by

2fm n -“for °
Based on a fourth power summation rule for the two Fourier components’, rz is set to 0.6. The oblique effect
can be included by decreasing the value of ry.

Ahumada and Peterson? fit this model to the Peterson et al.’ threshold data, and then used the grating
detection data of Van Nes and Bouman’ to derive luminance dependencies for b,, f, and k,, thus enabling the
to model be used for a range of viewing conditions affecting luminance, contrast, and spatial frequency of the
quantization errors. Since the single gun measurements of Peterson ef al.’ mainly varied the intensity of the

8n.q = arcsin
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predict visibility thresholds for modulations in combined luminance and chrominance directions was not
adequately tested. Also, the replicated DCT basis functions used by Peterson ef al.’ have Fourier transforms
possibly more like those of grating studies than those of single basis functions’®. To address these issues,
Peterson? made new threshold measurements ofsingle basis function, single monitor-gun test images
superimposed on a white background (1931 CIE coordinates: Xp = 37.27, Yo = 41.19, Zp = 29.65). This
configuration gives test stimuli having more significant chrominance modulation. Figure 1 shows the new
measured thresholds for basis functions where m or 2 =0.

A parabola representing a version of the luminance-only modelis also shown in Figure 1. This model
does a fair job of predicting the measured thresholds independent of color direction, except for the DC (m and ‘
n = 0) thresholds, which are obviously different for the three color guns. We propose that the lower thresholds
for the R and B gun DCbasis functions are the result of chromatic detection mechanisms having greater
sensitivity than the luminance mechanism. Thus, even for quantization in the RGB color space, a luminance-
only model is not quite sufficient. Color mechanisms mustbe taken into accountto determine appropriate
quantization levels for the DC coefficients. More importantly, for images compressed using isoluminant color
directions, a complete color space discrimination model for the DCT basis functions is clearly needed.

spatial modulation (chrominance remained relatively constant), the ability of the luminance-only model to
|

  thresholdratioT/L 
frequency, cycles / deg

Figure 1: Visibility threshold contrast ratio measurements from Peterson’ of single basis function, single
monitor-gun test images superimposed on a white background, for basis functions where m or n =0.
Circles indicate R gun thresholds, diamonds indicate G gun thresholds, and squares indicate B gun
thresholds. The points plotted at the far left of the graph are DC basis function (m and n =0)thresholds.
The parabola-shaped curve represents a version of the luminance-only model of Equation (3).

2.2 The Luminance/Chrominance Detection Model

To account for the DC sensitivities in the data of Figure 1, we add two chromatic channels to the =
luminance-only model. A large numberofdifferent color spaces have been proposed as appropriate bases for
chromatic discriminations. We have selected for our chrominance channels those favored by Boynton!®: a red-
green opponent channel and a blue channel. The relation between these chromatic channels and the CIE 1931
XYZcolor space is straightforward. The blue channelis just Z, and the red-green opponent channel O is given
by O = 0.47X ~— 0.37 Y — 0.10Z. This opponent channel is Boynton’s!® (Red-cone) — 2(Green-cone) channel,
with the Red and Green XYZ cone responses taken from MacLeod and Boynton!®, (We ignore the small
correction developed by Vos!‘ for going from the 1931 standard CIE values to the scientifically favored 1951
Judd CIE values used by MacLeod and Boynton.) Expressed in matrix form, the transformation from XYZ to
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our YOZ opponentcolor spaceis

0 0.47 0

[ YOZ ] = [ XYZ J xyzMyoz = [ XYZ ] ] -0.37 0 . (6)
0 -0.10 |

We model the frequency response of the Y channel with the luminance-only model described above. To
reflect this, we subsequently refer to threshold Ty, m.1 48 Ty,m,.- The parameters in the luminance channel
model will subsequently be referred to with a similar change of subscript (L — Y). To complete our
luminance/chrominance model, we must also specify the shape of the frequency responses of the O and Z
channels. Measurements of the spatial frequency responses of isoluminant chromatic modulations have typically
found the chromatic sensitivity functions (the dependence of the inverse threshold contrasts on spatial frequency)
to be low-pass in the frequency range of our basis functions and to be less sensitive at high spatial frequencies
than the luminance channel.''!? We therefore model each of the O and Z log chromatic thresholds as a
parabola, modified by setting it equal to its minimum value for all spatial frequencies to the left of the
minimum. Since the data of Peterson” are too sparse to estimate two separate chromatic channels in close
proximity, we make the simplifying assumption, supported by the results of Mullen!!, that both O and Z have
the same shape spatial frequency response. The O and Z log chromatic thresholds for the m,nth DCT basis
function can then be written:

Sbo
log if fain S foz

rozt(1-roz) c0s78,, » *
log Toman = 5 bo (7a)

0g7+ koz (lo —lo 2. if >° roz+(1—roz)C0s"8n,n oz lonfm.n~losfor) Frain>Foz
and

sb
——__+*2__, if Fan Sfo2
roz+(1—-rgz) cos On .n

log Tz,m.n = (7b)sb .
g————5— + koz (log finn ~ log foz)"» if finn > Foz

rozt(-roz) cos Onn

Note that Equations (7a) and (7b) are identical, except for the parameters bg and bz; Tom, and Tz,m,, share
the parameters s, koz, f oz, and roz. To obtain the overall model threshold T,,,,,, from the three channel
thresholds, we use the “minimum of" combinationrule:

Tas. = min{ Ty, mone To, m,n Tz mon } . (8)

In order to estimate the parameters in the model described above, we fit the model to the data of Peterson?
shownin Figure 1. Recall that the Peterson” thresholds were measured for single basis functions. To reflect the
absence of a spatial summation effect in this data, we fixed s =1.0 during the fitting process. This fit resulted in
the parameter values shown in Table 1 for ky, fy, koz, and foz. We chose rgz=0.6, the same as ry.

Boynton!® claims that at moderately high intensities, the Z channel’s minimum threshold (s bz inour
model) is approximately proportional to the background activity of the Z channel, and the minimum thresholds
for the Y and O channels (s by and s bg in our model) are approximately proportional to the background Y.
Based onthefit of our model to the Figure 1 data, we set the constants of proportionality to be: by = 0.0219 Yo,
bo = 0.0080 Yo, and bz = 0.0647 Zy, where Yo and Zp are the CIE values of average white. To determine a
value for s, we compared the thresholds measured in Peterson? to those measured by Van Nes and Bouman* for
large test pattern sinusoidal gratings. The Peterson” thresholds are consistently higher than the Van Nes and

‘Bouman’thresholds, a result attributable to spatial summation. Multiplication of the Peterson® data by 0.25
brings them into approximate agreement with the Van Nes and Bouman® data. Wetherefore chose s =0.25.
These results are summarized in Table 1.
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Table 1. Parameter values estimated for the model of Equation (8).

channel

Y
oO
z

  
 
 

parameter values
s r f k

0.25 06 3.1 1.34 0.0219 Yo
0.25 06 1.0 3.00 0.0080 Yo
0.25 06 10 3.00 0.06472

 
 

 

 

 
 
 

  
 
  

As part of the modelfitting, we also tried the Euclidean distance combination rule:
Tn2 = TY,min 2 + Tome t+ Tzmn (9)

However, when the data of Figure 1 were fit using this rule, in order to prevent contributions from the chromatic
channels at low spatial frequencies, {oz was forced to be unrealistically low, and/or kgz was forced to be
unrealistically high. This led to ourselection of the "minimum of" rule for Tin. n-

3. QUANTIZATION MATRIX DESIGN

Quantization errors in an arbitrary color space are interpreted in the following way. Suppose we wish to
compress a color image whose pixels are computed as a linear combination of XYZ values,

(DEF] = [XYZ] xyzMper. (10)
That is, the DCT is to be performed on an image in color space DEF, and xyzMoper is the transformation from
XYZ to DEF. The image in DEF space can be thought of as being transformed to XYZ space, and then
converted by the visual system to YOZ space for discrimination. We need to determine limits on the sizes of
errors in each of the D, E, and F color space dimensions, in order for the resulting errors in the Y, O, and Z
channels to all be below the thresholds established by our model. These DEF thresholds determine the
quantization matrices. For example, a unit error in the amplitude of a DCT coefficient in dimension D induces
errors whose amplitudes in the Y, O, and Z channels are given by the first row of perFMyoz:

Mi: M2 Mis
perMyoz = peFMxyz%xvzMyoz =| M21 Ma2 Maz |> (11)

M3; M32 Mas

where pEFMxyz is the inverse of xyzMpee-
We now describe in detail the procedure to calculate Qp, mn» Qem.n» 2nd Ormn» the quantization matrix

entries for DCT coefficient J,,,, in the D, E, and F component images. First, using Equations (3) and (7), the
display parameters W, and W,, and the model parameters given in Table 1, the model channel thresholds,
Tymony EO,m,n2 29d Tz, m,n» for the m,nth DCTbasis function are calculated. Now let yTp,m,n» OFD,m.ns and
zTp,m,n indicate the thresholds imposed on the quantization error in the D component by the model’s thresholds
for the Y, O, and Z channels, respectively. Each of the Y, O, and Z model channel thresholds are converted to
a D threshold as follows: ,

 

 

   

Ty mn To min Tz mnToma =e ot =a" and=oT =. 12aTD.min=Tyg gh) Ome Ty BS BPs MG ol (12a)
Similarly for E and F:

Ty mya To min Tz, m nT, = = wt = — | 12bY+Ema IM, i . OlE,m.n [Mp, a! ’ ZTE, mon IMo, 3! ( )
Ty mn To min TZ, m nT. = en - nn T = a 12cY*E,mva IM, iI olEma IM, al Zt Eman My, 3 ( )

Then the combination rule is used to determine the D, E, and F thresholds. We use the "minimum of" rule:

SPIE Vol. 1913/1495
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(13a)

(13b)

Tp, ma = min{ yTp, m,n: oTp,m,a+ 21Dmn },

TE. m,n = min{ YTE, m,n? OTE, m.n> ZTE. m,n } ,

Trim = Mnf yTRmins Olminr Zemin } (13c)

Finally, the D, E, and F quantization matrix entries are obtained by dividing the thresholds above by the DCT
normalization constants ( Oj, in Equation (1b) ):

Tp, mn TE m n TE, m a
-=2—, =2——_, =?2———., 14Odmi Om O% Qe min Om Oy QF, m,n On Gq ( )

The factor 2 results from the maximum quantization error being half the quantizer step size.

3.1 Quantization in RGB space

For quantization in monitor-RGB space, we require the matrix to transform from RGB to XYZ space,
ropMxyz. Assuming that R, G, and B take on values between 0 and 1, popMxyz is the monitor calibration
matrix giving the XYZ values for unit changes in each of the RGB signals. For our monitor,

26.1 13.3 2,3

ropMyyz =| 25.2 48.9 10.2 |. (15)
93 4.7 35.7

This matrix is post-multiplied by xyzMyoz to obtain ropMyoz:
13.3 7.1 2,3

[ YOZ]=[ RGB ] pgsMyoz =[ RGB]}48.9 -7.3 10.2 |. (16)
4.7 -0.9 35.7

The matrix pggMyoz gives the amplitude of the YOZ errors resulting from unit errors in RGB. These values
indicate the sensitivity of the discrimination model YOZ channels to RGB errors. For example, a unit error in
the R componentleads to an error of 7.1 in the O channel of the model.

We cancalculate the R, G, and B coordinate increments which induce a minimum threshold step in each
of the Y, O, and Z channels. Theseare the the entries of rGBMyoz divided into the appropriate minimum
threshold: s by, 5 bo, or s bz, calculated using the expressions in Table 1 and the Yo and Zp values of our
average white. For example,letting (pgaMyoz)j, 1, signify the upper left corner entry in pggMyoz, the increment
in R whichresults in a minimum threshold change in Y is (s by)! (pasMyoz)1,1. RGB minimum threshold
increments calculated in this way are given in Table 2 for YOZ. Note that the minimum threshold for G is
determined by the Y channel (0.0046 versus 0.0113 and 0.0469). That is, the Y channel imposesthe strictest
limit on G in order for a G change to not induce "too large" a change in YOZ-space. Similarly, the minimum
threshold for R comes from the O channel (0.0116), and for B comes from the Z channel (0.0134). Following
the procedure described above, using pggMyoz, the model parameters in Table 1, and the Yq and Zp values for
our monitor, we obtain the quantization matrices shown in Table 3 for our RGB color space.

Table 2. Minimum thresholds imposed on R, G, and B quantization errors by the Y, O, and Z model
minimum thresholds. -

10.0170 0.0116 0.2091
0.0046 -0.0113 0.0469
0.0483 -0.0881 0.0134 
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Table 3. RGB quantization matrices. The values in these matrices are obtained following the procedure
described in Section 3. The Qo,9 valuc is located in the upper left corner of each quantization matrix. AS
specified in the JPEG standard, the values have been rounded to the nearest integer. JPEG also requires
that values in the quantization matrix be $255.

33 60
R 77 89

quantization 119
matrix 103 142

127 124 166
170 128 154 197
224 167 192. 236

G

quantization
matrix 49

59
69
81

B

quantization
matrix

915 1109
1066 1306

 
Figure 2 plots all the measured R. G. and B gun,single basis function thresholds from Peterson’

(including those for the dual frequency (7: and n + 0) basis functions), after correction by the id
summation/obliqueness factors of Equations (3) and (7), Figure 2 also shows the curves for the model thresho
predictions Tym,n To,m,n+ 2nd Tz,m.,- Using the parameters in Table 1, except with s =1.0. This value for s
was used to reflect the absence of a spatia] summation effect in the single basis function data. In addition, the
To.m.n and Tzmn threshold prediction cerves have been converted to luminance units, since all the threshold
data plotted are in luminance units. This is s¢complished by multiplying the Tom.n threshold predictions by
13.3/7.1, and the Tz, m,, threshold predicnons by 4.7 / 35.7. These factors are obtained from the rgasMyvoz
matrix. Figure 2 showsthat for the B component. the DC and lowest spatial frequency thresholds are 1
determined by the Z channel, and for the R component, the DC threshold is determined by the O channel. A’
the G thresholds are assumed to be deternzined by the Y channel. Notethat the be threshold for the Y channel
(which we assume to be the DC threshoic measured for G) 1s not predicted on a theoretical basis. The dot- —
dashed line in Figure 2 demonstrates tha: the measured DC threshold for G, and hence our DC threshold for Y,
was found to be approximately equal to -he <unimum threshold of the Y channel.
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' . 4. CONCLUSIONS

We have presented a model for predicting visibility thresholds for DCT coefficient quantization error, from
which quantization matrices for use in DCT-based compression can be designed. We estimated values for the
parameters of our model based on experimentally measuredvisibility thresholds. The frequency parameters we
estimated, fy and fop, agree fairly well with results others have reported for similar parameters. The values we
have estimated for ky and Koz are similar to those estimated by others, however we have found these parameters
to vary for the different experimentally measured thresholds. The value we have proposed for the
obliqueness/summation parameters, ry and roz, only reflects summation and does notreflect an effect due to
obliqueness. More data may be needed to more determine values for ky, koz, ry, and roz morereliably; though
those we propose here are reasonable and result in quantization matrices which perform well in preliminary
tests. The value for s we have proposed is based on a limited amount of data. Further experiments are needed
to determine the spatial extent over which summation occurs among DCT quantization errors, in order to
estimate s more accurately.

_The quantization matrices computed by the techniques described above take no account of image content.
A promising extension of this model may beto optimize the quantization matrices for individual images or a
class of images. That is, use an image-dependent approach to quantization matrix design. Watson!® has shown
how this may be done for grayscale images, by taking into accountlocal light adaptation, local contrast
masking, and error pooling. Watson's technique can be extendedto the case of color images by adopting rules
governing masking and adaptation within the O and Z channels.
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Humanvisual sensitivity-weighted progressive
image transmission using the lapped orthogonal

transform
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Abstract. Progressive transmission of images based on the lapped
orthogonaltransform (LOT), adaptive classification, and humanvis-
ual sensitivity (HVS) weighting is proposed. HVS weighting for LOT
basis functions is developed. This technique is quite general and
can be applied to any orthogonaltransform. The method is com-
pared with discrete cosine transform (DCT)-based progressive im-
age transmission (PIT). It is shown that LOT-based PIT yields sub-
jectively improved images compared to those based on DCT.This
is consistent with the reduction in block structure characteristic of

LOTimagecoding.

1. Introduction

While progressive image transmission! (PIT) can be clas-
sified into two major categories, i.e., (1) spatial or pel do-
main and (2) transform or spectral domain, the latter has
gained wide. acceptance.?-!° This is not only due to various
adaptive features such as classification,'!-!® spectral selec-
tion,*:7°8 and human visual system (HVS) weight-
ing,2"78-!7-21 etc., which can be easily incorporated into
the transform coding scheme, but is also due to the VLSI
developmentof coding operations such as transform, quan-
tization, and variable length coding. In addition, PIT based
on the discrete cosine transform (DCT) has been extensively
investigated. For example, the JPEG (Joint Photographic
Experts Group) algorithm” ® for the baseline system is DCT
based and various hardware/software systems have already
been developedforthis algorithm. Also, the nonhierarchical
extended system of JPEG (both spectral selection and suc-

Paper 92-018 received April 7, 1992; revised manuscript received July 13. 1992;
accepted for publication July 16, 1992.
1017-9909/92/$2.00. © 1992 SPIE and IS&T.
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cessive approximation) is DCT based. At low bitrates,
however, DCT introduces block structure in the recon-
structed images.” Onetechnique used to reduce or eliminate
this artifact is to replace DCT by the lapped orthogonal
transform (LOT),?2-28 whose basis vectors overlap across
traditional block boundaries. Also because LOT has good
filtering properties, it has been applied to compatible cod-
ing,29" i.e., coding ofthe original image/sequenceat dif-
ferent spatial resolutions. It has also been combined with
vector quantization (VQ) to achieve additional compres-
sion.*! It is intuitively felt that LOT-based PIT shouldyield
subjectively more pleasing pictures compared to the DCT—
even during the initial stages. This is the objective ofthis
paper: to develop a LOT-PIT incorporating various adaptive
features and to compare it with the DCT-dependentPIT.

In Sec. 2, we will address the Chen-Smith coder, giving
a brief summary ofthe algorithm steps and explaining the
incorporation of PIT techniques in this algorithm. Section
3 is reserved for a discussion about the HVS modelin the
transform domain. Simulations and coder details_are pre-
sented in Sec. 4, with conclusions given in Sec. 5.

2 PIT with the Chen-Smith Coder

The Chen-Smith coder’? is based on the zonal sampling
strategy. First, the image undergoes an orthogonal trans-
form. The transform coefficients are stored in a buffer and
somestatistics are computed prior to the decision-making
process of (1) which coefficients are transmitted, (2) how
these coefficients are quantized, and (3) the orderof trans-
mission. We will assume the image has N xNpicture ele-
ments (pixels or pels).

The encoding steps can bebriefly described as follows:
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Humanvisual sensitivity-weighted progressive image transmission

e Transform the image using blocks of M x M pels. Let
N, = (N/M)? be the total numberofblocks in the im-
age. To simplify the presentation, we will use a lex-
icographic ordering that can obey row or columnar-
rangement. The blocks are then labeled from | to Nz.
Each one contains M? coefficients given as x,(u,v) for
i=1,...,N, and (u,v) €{(0,0),}, where Wis defined
as the set of M?— 1 block-index pairs, excluding the
pair (0,0), as ¥ ={(0,1), (0,2), ..., @, @—1), (1,0),
(1,1), .-s (M1, M1}.

® Quantize and code separately the coefficients x,(0,0)
(the de coefficients) using uniform quantizers.

e Compute the ac energy of each block £; as

Ej= > x?(mn). ()(mnyewr .

Sort the energies, and classify the blocks (in sorted
order) into Nc equally populated classes.'? Thus, there
would be N,/Nc blocks in each class. Construct the
class map C(i) with the classification of each block,
where C(i) indicates the class to which the i’th block
belongs and is ordered in the original nonsorted se-
quence. If the ith block belongs to the class k (k= 1,
wary No), then C(i) =k.

e For all blocks belonging to the same class, compute
the variances of the transform coefficients and then
their standard deviations. Construct N- standard de-
viation maps with the standard deviations of the coef-
ficients, which are obtained from

Ne

of(mn)= S8(Ci)—Axian) (mane , (2)i=l

where 8 is the Kronecker delta function.

© Merge all N; standard deviation maps and decide the
bit allocation. Based on the rate-distortion theory, we
shall iteratively find a distortion value D and a set of
integers B,(m,n) [for (m,n)EV and | <k<Ne], 80
that

By(m,n) = % log2{oz(m,n)] —logo(D) (3)

is satisfied given the constraints
No-!

Ne
B, (m,n) =(RN? — Boy) —2 oma x(n, n)=( oye: (4)

O<By(m,n)=Brmax , (5)

where B,,,, is the maximum numberofbits allowed,
B,, is the numberofbits required for the transmission
of the overhead information, and R is the bit rate in

bits/pel for the whole image. Create N bit-allocation
maps with a one-to-one correspondence with the cle-
ments of the standard deviation maps.

« Reestimate the standard deviations using the bit-
allocation maps:

y(n) = c2PR™M- 1 1<kENo (mn)EWV, (6)

where c ig a normalization factor. Reference [2 sug-

gested that c be chosen as the maximum o,(#7,") for
which B,(m,) = 1 to avoid excessive clipping.

¢ Send class map ¢ and the bit-allocation mapsasside
information.

e Quantize, encode, and sendail the coefficients, using
the reestimated variances. A coefficient x,(m,n) (block
i), which belongs to class &[C(i)=4], is scaled [di-
vided by 6,(m,n)], applied to a quantizer with 28.»
levels, and encoded with B,(m,n) bits. If B,(m,n)=0,
the particular coefficient is not transmitted.

The receiver may first decode the side information and
the dc coefficients. Given the class map, the bit-allocation
maps, and the normalization factor c, the decoder can re-
construct the standard deviations used to scale the quantizers
as in Eq. (6). With the maps reconstructed, and with the
knowledge of the transmission order, the decoder can ex-
actly determinethe position of the incoming coefficient, the
class of its block, how manybits were assignedtoit, and
the variance used for quantization. Therefore, the receiver
can decodethe coefficients, apply an inverse transform, and
obtain the image.

The overhead is made bythe class map, the bit-allocation
maps, and by c, Quantizing c with 16 bits, the total amount
of overhead is given by:

Bov=Np logo(Nc) + Nc(M? — 1)

X loga(Bmax + 1+ 16 . (7)

IfM=8, N=256, Nc =8, Bmax =7, then Boy = 4552, which
is equivalentto an approximate rate of 0.07 bit/pel, requiring
about 2 s of transmission on a 2400 bits/s communication
rate.

To use PIT, we transmit data in the following order:
(1) de coefficients in any predefined order, (2) class map ¢
and bit-allocation maps, (3) ac coefficients. The transmis-
sion of the ac coefficients” is made by spanning the blocks
and sending first the elements xj{(m,n), which would yield
a higher contribution to the reconstructed image. To min-
imize the reconstruction error, we send the coefficients with
higher variances. Alternatively, we can incorporate some
information aboutthe spatial response of the visual system,
by using weighted standard deviations. If one assumes that
the estimated standard deviation is a good measure of the
real standard deviation of a particular coefficient (at least,
is the best information we have at hand), the priority can
be decided based on the weighting of the standard deviation
maps by a matrix H(m,n) containing spatial information
about the HVS. Let _

nein, n) =6x(m,nH(i,2) 5 1SkSNec; (mnyEwv . (8)

The orderfor transmission of the coefficients is then defined
by sending first the coefficients [x;(m,.n); C(i)=&], which
correspond to: (1) greater value of (7,2); (2) if two or
more 7; (m,1) have the samevalue, take the one with smaller
value of m+n: or (3) if there is still any ambiguity, take
the smaller value of &.

The first item is the only one that follows any theoretical
explanation; the last two are included merely for eliminating
ambiguities, such as two equal values, and can be changed
without affecting the performance. Note that using Eq. (6),
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Fig. 1 Coder diagram for PIT using LOT.

we can take the log and sum log(2/c) on both sides of Eq.
(8) so that yg(m,n) can be redefined as

(m,n) = By(n,n) + logafA(m,n)] . (9)

Although having a different value, this representationstill
maintains the transmission order, addressing directly the bit-
allocation maps. As long as both encoder and decoder have
the same maps and use the same weighting matrix, there
will be no overhead for indicating the transmission order.

The coder has some limitations. First, the maximum
numberofdifferent variances used for scaling the quantizers
is Bmax. For high rates (>4 bits/pel), the performance de-
creases, since there will no longer be coefficients with only
a few bits allocated. Second,it is not possible to apply HVS
weighting to quantization without causing excessive mis-
match or amplification of distortion because of the reesti-
mation procedure in Eq. (6). It can be overcome by the
transmission of standard deviations in place of the bit-
allocation maps. Weare interested in ‘‘small’’ pictures, such
as 256 X 256 pel images. For these types of images, using
8 or 16 classes, the overhead forfully transmitting the var-
iance maps would be prohibitive. The performance ofthis
coder can be improved in several ways. For example, by
choosing the proper parameters (block size, numberofclasses,
and bit rate), the coder can achieve very good performance.
The great advantage of the Chen-Smith approach is that it
is quite insensitive to the transform used. One can inter-
changeably use DCT, LOT, extended lapped transforms,”
or any transform resulting in blocks of MxM coefficients

330 / Journal of Electronic Imaging / July 1992 / Vol. {3}

without any alteration in the algorithm (except for the
weighting matrix and, possibly, coding details). This is the
main reason for choosing the Chen-Smith coder.

The coder and decoder block diagrams employing the
LOTare presented in Figs. 1 and 2, respectively.

3 The HVS Weighting Matrix
A complete study of the psychophysical properties of the
visual system is well beyond the scope of this paper. Our
intention is restricted to the determination of a spatial re-
sponse weighting matrix for use with the LOT coefficients.
Wenow present a procedure that allows us to find a HVS
weighting function for any transform.

Reference 2 discussed the application ofa linear function
describing the HVSto spatial variations. Although the HVS
modelresponse is not linear, this principle was used with
good results and further discussion on the subjectis left to
Ref. 2. Given a linear transfer function representing the
unidimensional spatial HVS as H({) (where f is given in
cycles per degree of the visual angle subtended), we will
assume this model to be reliable and it will serve as the
basis for the rest of this section. However, we will present
our results as a function of the model in order to allow one
to change H({)if desired. Further, the usual assumptions
follow:

e The screen has a 1:1 ratio and has uniform brightness
when displaying a uniform image.

e The vieweris situated at a distance v from the screen,

right in front of its geometric center.
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e The screen has width w and each row (column) has N
pels.

e The viewer can observe approximately the same den-
sity of pels-per-degree (spatial) in any region of the
screen.

Let « be the ratio of viewer distance (v) by screen width
(w), j.e., « =v/w. This factoris the relative distance of the
observer. The maximum visible frequency in cycles per
degree is obtained when the discrete signal displayed has
its maximum frequency component, which is half of the
sampling frequency. In other words, in N samples it is
possible to observe N/2 cycles. The maximum visible fre-
quency can be foundas:

N/2 N
cycles/degree , (10)

1
4 t —

arctan\ >—

where 0 in degrees is the viewing angle, from the center to
the extreme of the screen, and tan(@)=w/2v=L/2a. We,
therefore, can represent a discrete sensitivity function as

Hp(e!”)=Hp(e?™) =HUifimax)+ [fl<fmax- AND

An orthogonal block transform is a special case of a
lapped transform in which there are as many basis functions
as elements in each basis function.“° Furthermore, lapped
transforms are equivalent to paraunitary filter banks.
Therefore, we can always regard any discrete, real, and
orthogonal (lapped or block) transform asafilter bank.26-32.33
The analysis filters’ coefficients are the time-reversed basis
functions elements.2°32 Suppose the M basis functions have
elements pz(n) (k=0, 1, ....M@—1 andn=0,1,...,2—1).
The equivalentanalysisfilter bank is shownin Fig. 3, where
eachfilter [with coefficientf.(n)] is equalto a basis function
of the LOT, ie., fe(n)=pa(L—1—2) for n=0, I, ...,
L—1. Forthe particular case of the LOT of M bands, L=2M,
but for the DCT we have L=M (as anyblock transform).
In Fig. 3, with x() as the input signal to the filter bank,

S| Classification Map |
a Bit Allocation Map |

Rearrange
Coefficients

 

 
  
  

 
 

 Reestimati f
eestimation 0 HVS-MTFStandard SNE

Deviations p Weighting
  

 Display

 
Fig. 3 Analysis section of a critically decimated M-bandfilter bank
where x(n) is the input signal and Jx(mM) are the subband signals
after filtering (0<kK=<M-—1). The subband signals are decimated
resulting in yx(m) =fe(mM). The filters’ impulse responsesf,(1) are
the time-reversed basis functions of the transform.

j4(n) corresponds to each subband (filtered signals), and
ye(t) is the subband signal after decimation. Let F,(e?”) be
the frequency response off(t). Figure 4 shows the fre-
quency response of the first three filters (basis functions)
for 2 one-dimensional LOT with 8 bands(i.e., a 16x 8 LOT
matrix). Similar results for the DCT are found in Fig. 5.
The same procedure can also be applied to nonuniform filter
banks such as those resulting from the use of hierarchical
structures. If, in Fig. 3, the input x(7) has a power spectral
density (psd) given by S,(w), and denoting the PSD of ¥x(1)
and yz(n) as Sym) and Sy(w), we have: =

S5e(o)=Sx(co)| Fuel)? (12)
After the decimator, ye(n) =Jx(n), and

Mot w—20rsytoy= 5 Su ). (13)r=0 M

As

 

b 2a-a

S5y(w) w= | S5(w) da ,a 2a-—b
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Fig. 4 Frequency response in decibels of the filters fm(n) corre-
sponding to the first three basis functions of the LOT,ie., |Fn(e)|,
m=0, 1,2.

20

 Gain
dB

2
frequency - w

Fig. 5 Frequency response in decibels of the filters fm(n) corre-
spondingto thefirst three basis functions of the DCT,i.e., |Fm(eI,
m=0,1, 2.

the variance of yx is given by

1(* 1(*ga1) Sy{w) don S5(@) da . (14)
Altematively, this result could be shown using the fact that
if u(n) is a stationary process, then var{u()] = var[u(Mr)].
Therefore, var[},(n)] = var[y<(n)] and the preceding equa-
tion is also true. .

Roughly, if a signal is filtered by Hp(e’”), the signal
andits filtered version would be indistinguishable for the
observer to whom Hp(e’”) is a perfect sensitivity model.
If this signal has a flat PSD (white noise), the filtered signal
has the PSD shaped by the filter, letting one know the
relative importance of each frequency component for the
observer. If this colored signal is split into subbands, as
when using the LOT, how can we measure the importance
of each subband component? A sampling in the frequency
domain would be imprecise and very dependent on the phase
of the sampling train, since there would be only M bands
of width 7/M. This bandwidth can be large enough to allow
significant variations of the input PSD. Since we are mea-
suring up to the second-order statistics in the image, and
on those we may apply the weighting matrix, one possible
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Fig. 6 HVS model function used in this paper.”

solution would be the measure of the variance of each band.
These variances can providetherelative significance of each
subband. Note that as M increases, L increases, and the
filters are becoming closeto idealfilters and the bandwidth
is becoming narrower. In the limit, the approximations by
sampling and by variance computation would yield the same
results.

If a white noise with unit variance is input to the linear
system Hp(e"), and its output is transformed using the
LOT, then Eq. (14) is given by:

getI p(e™)? |Fe(e™)? deo (1s)TIO

The continuous HVS modelfunction as used in Ref. 2
is plotted in Fig. 6. As previously stated, the frequency f
is given in cycles per degree of visual angle subtended. The
model is given by:

H(f)=2.46(0.1+0.25fe"°7% (16)

The corresponding weights ¢; can be found using Eqs. (11)
and (15).

The two-dimensional case is just an extension of these
results, since the transform is separable. We are interested
in weights Gi;, (i,j) EW, which can be derived from

g=4| I \Hp(e/", ef?2)/?a” /0 40

x | Fiy(el!, e/#2)|? dar dor, (17)
where =

Hp(e!*! , ef2) =Hy(e?™, eh) = H(folfmax) (18)
and

f= VIRAL + Vil Sus » UALS
and

File, ef2) = F(el) Fj(e/”2) (19)

In our application, we are weighting standard deviation val-
ues and we use £;; instead of the squared value. Figure 7

meeeeeeeeeeeeeeeeEA
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0.6854 0.8698 0.9883 1.0000 0.9546 0.8703 0.7706 0.6793
0.8698 0.9371 0.9930 0.9821 0.9294 0.8457 0.7475 0.6598
0.9883 0.9930 0.9963 0.9606 0.8987 0.8154 0.7194 0.6362
1.0000 0.9821 0.9606 0.9114 0.8458 0.7659 0.6752 0.5984
0.9546 0.9294 0.8987 0.8458 0.7816 0.7073 0.6241 0.5543
0.8703 0.8457 0.8154 0.7659 0.7073 0.6409 0.5667 0.5047
0.7706 0.7475 0.7194 0.6752 0.6241 0.5667 0.5028 0.4493
0.6793 0.6598 0.6362 0.5984 0.5543 0.5047 0.4493 0.4024

(a) «= 4; fas = 9 cycles/degree

0.7460 0.9223 1.0000 0.9542 0.8566 0.7341 0.6071 0.5101
0.9223 0.9686 0.9836 0.9214 0.8222 0.7051 0.5829 0.4911
1.0000 0.9836 0.9515 0.8742 0.7749 0.6653 0.5503 0.4655
0.9542 0.9214 0.8742 0.7955 0.7032 0.6051 0.5021 0.4265
0.8566 0.8222 0.7749 0.7032 0.6222 0.5375 0.4483 0.3824
0.7341 0.7051 0.6653 0.6051 0.5375 0.4665 0.3916 0.3356
0.6071 0.5829 0.5503 0.5021 0.4483 0.3916 0.3312 0.2854
0.5101 0.4911 0.4655 0.4265 0.3824 0.3356 0.2854 0.2468

(b) w = 5; fmaz = 11.2 cycles/degree

0.8090 0.9702 1.0000 0.8988 0.7576 0.6112 0.4710 0.3804
0.9702 0.9920 0.9627 0.8533 0.7171 0.6803 0.4476 0.3630
1.0000 0.9627 0.8966 0.7846 0.6583 0.6354 0.4145 0.3379
0.8988 0.8533 0.7846 0.6845 0.5759 0.4714 0.3676 0.3012
0.7576 0.7171 0.6583 0.5759 0.4877 0.4024 0.3169 0.2610
0.6112 0.5803 0.5354 0.4714 0.4024 0.3348 0.2664 0.2206
0.4710 0.4476 0.4145 0.3676 0.3169 0.2664 0.2146 0.1789
0.3804 0.3630 0.3379 0.3012 0.2610 0.2206 0.1789 0.1498

(c) « = 6; fmaz = 13.4 cycles/degree

0.8629 1.0000 0.9750 0.8228 0.6487 0.4928 0.3515 0.2769
1.0000 0.9933 0.9177 0.7674 0.6051 0.4622 0.3305 0.2616
0.9750 0.9177 0.8206 0.6824 0.5402 0.4162 0.2998 0.2384
0.8228 0.7674 0.6824 0.5696 0.4549 0.3541 0.2582 0.2060
0.6487 0.6051 0.5402 0.4549 0.3678 0.2897 0.2144 0.1717
0.4928 0.4622 0.4162 0.3541 0.2897 0.2307 0.1733 0.1304
0.3515 0.3305 0.29908 0.2582 0.2144 0.1733 0.1326 0.1073
0.2769 0.2616 0.2384 0.2060 0.1717 0.1394 0.1073 0.0872

(4) a= 7; fmaz = 15.7 cycles/degree

Fig. 7 Two-dimensional HVS weighting matrices for the LOT, as-
suming 256 pels in a line and blocks of 8x8 pels. The relative
distance « and maximum frequency fmax are indicated.

shows weighting matrices containing normalized Cj; forfmax
as 9.0, 11.2, 13.4, and 15.7 cycles/degree. They represent
a=4, 5, 6, 7, respectively, for N=256. Values for « of 6
or 7 are more representative for broadcast TV viewing.
Values of 4 or 5 fit modern PIT needs very well and ap-
proximate the situation in which a 256 X 256 pel imageis
displayed on the 640480 resolution mode on a regular
home PC monitor, with the observer in front of it, working
on the computer. The same procedure is repeated for the
matrices in Fig. 8, assuming N=512. For this value of N
and the same values of o, the maximum frequencies are
18.0, 22.4, 26.8, and 31.4 cycles per degree.

4 Implementation and Results
A 256X256 pel monochromeimage is divided into 8x8
nonoverlapping blocks (M=8) and the LOTis applied to
each block. Based on the ac energies, the 8X8 blocks are

0.8945 1.0000 0.9209 0.7295 0.5375 0.3865 0.2539 0.2005
1.0000 0.9644 0.8474 0.6684 0.4942 0.3581 0.2362 0.1872
0.9209 0.8474 0.7270 0.5746 0.4289 0.3143 0.2098 0.1663
0.7295 0.6684 0.5746 0.4589 0.3477 0.2581 0.1754 0.1387
0.5375 0.4942 0.4289 0.3477 0.2683 0.2022 0.1404 0.1108
0.3865 0.3581 0.3143 0.2581 0.2022 0.1543 0.1092 0.0862
0.2539 0.2362 0.2098 0.1754 0.1404 0.1092 0.0792 0.0627
0.2005 0.1872 0.1663 0.1387 0.1108 0.0862 0.0627 0.0499

(a) «= 4; faz = 18 cycles/degree

0.9608 1.0000 0.8236 0.5781 0.3739 0.2485 0.1360 0.1222
1.0000 0.9107 0.7255 0.5121 0.3343 0.2242 0.1239 0.1104
0.8236 0.7255 0.5746 0.4122 0.2747 0.1863 0.1057 0.0915
0.5781 0.5121 0.4122 0.3025 0.2071 0.1423 0.0835 0.0698
0.3739 0.3343 0.2747 0.2071 0.1460 0.1021 0.0622 0.0504
0.2485 0.2242 0.1863 0.1423 0.1021 0.0723 0.0452 0.0361
0.1360 0.1239 0.1057 0.0835 0.0622 0.0452 0.0295 0.0231
0.1222 0.1104 0.0915 0.0698 0.0504 0.0361 0.0231 0.0185

(b) a =5; far = 22.4 cycles/degree

1.0000 0.9676 0.7115 0.4434 0.2512 0.1646 0.0707 0.0878
0.9676 0.8317 0.6001 0.3796 0.2184 0.1433 0.0631 0.0754
0.7115 0.6001 0.4384 0.2857 0.1699 0.1111 0.0516 0.0568
0.4434 0.3796 0.2857 0.1928 0.1191 0.0779 0.0385 0.0387
0.2512 0.2184 0.1699 0.1191 0.0767 0.0507 0.0266 0.0245
0.1646 0.1433 O.L111 0.0779 0.0507 0.0338 0.0182 0.0164
0.0707 0.0631 0.0516 0.0385 0.0266 0.0182 0.0106 0.0087
0.0878 0.0754 0.0568 0.0387 0.0245 0.0164 0.0087 0.0082

(c) « = 6; finer = 26.8 cycles/degree

1.0000 0.8965 0.5850 0.3231 0.1591 0.1141 0.0347 0.0692
0.8965 0.7254 O.4715 0.2669 0.1343 0.0943 0.0303 0.0561
0.5850 0.4715 0.3165 0.1870 0.0985 0.0663 0.0236 0.0379
0.3231 0.2669 0.1870 0.1157 0.0641 0.0418 0.0165 0.0227
0.1591 0.1343 0.0985 0.0641 0.0375 0.0241 0.0106 0.0123
0.1141 0.0943 0.0663 0.0418 0.0241 0.0159 0.0069 0.0083
0.0347 0.0303 0.0236 0.0165 0.0106 0.0069 0.0035 0.0033
0.0692 0.0561 0.0379 0.0227 0.0123 0.0083 0.0033 0.0046

(d) a= 7; finac = 31-4 cycles/degree

Fig. 8 Two-dimensional HVS weighting matrices for the LOT, as-
suming 512 pels in a line and blocks of 8x8 pels. The relative
distance a and maximum frequency fmax are indicated.

grouped into eightdifferent equally populated classes (Nc = 8).
Thus, there are 32 x 32 blocks in the image (Ng = 1024).
The dc coefficients are quantized with a uniform 7-bit quan-
tizer, and Bmax is set to 7. Therefore, the overhead in Eq.
(7) is, as previously computed, 4552 bits and the amount
of bits needed to code the dc coefficients is 7168. “Fhis
yields a total of 11,720 bits sent prior to the transmission
of the ac coefficients (approximately 0.18 bits/pel). The
block classification map for the 256X256 monochrome
“Lena” image is shown in Fig. 9. Classes 1 through 8
representincreasing energies of 2-D LOTblocks. Figure 10
showsmapswith standard deviations. Classes 1, 3, 6, and
8 are chosen as examples, and the dc coefficient is not
computed. The resulting bit-allocation map for the eight
classes is presented in Fig. 11. Using these maps and the
weighting matrix of Fig. 7 (for «=6), by means of Eq. (9)
we get the order for the transmission of the ac coefficients
as shownin Fig. 12.

Journal of Electronic imaging / July 1992 / Vol. 13) / 333
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PLIGALIIFVLLELLLL2E1I52L127841148
1225422211L122121112431115571884
122541 2LL ELL 2355 2L12ISLLL2786852
$95264221124334558422912221478422
66265121154324333783324411286237
76264121232333554377426821572357
25264124612334643238725475842473
25264127823466333224856887723841
15364128533554343442468737727421
153641285355454333344549268737311
25264128554445665555332578484111
252GH51L2K7H434GG7THSSIISSTSSSTIAIII
252641187544 767787T425868HSG6H5 1111
14364126754756787534588623751111
14364134857656876442388525632331
1436413688755686777378883 8412233
24364487868668687856887848211134
35464788767477856546666855222364
35454677778788542447576873113733
254567G67G66R88743355858788 2114331
26355776878887332467556872127211
37356765788857525688845841137111
26357777678635633465645821148122
35456667686323474438455832258137
§6468667778523365348874835664487
56558777668633543243686823565864
BRF558476668 854752223368 812375743
886465746788567512239328722658443
88647444678656731122327753478444
78757444677367711122335857876446
77766356677367311112232836885544
5676546776763 1111112233863554675

Fig. 9 Equally populated 32 x 32 classification map for the “Lena”
image. Classes 1 through 8 represent increasing energies of 8x8
LOTblocks.

The ac coefficients are well modeled by a Laplacian
probability density function (pdf), but the blocks are clas-
sified according to their ac activities. If u is the amplitude
of an ac coefficient, the actual important function is no
longerits density function pu(“), but one conditional to the
estimated standard deviation pu(ulé). If there is just one
class (Nc = 1), the Laplacian model fits well. At the other
extreme, suppose there are as many blocks as classes (the
overhead would be enormous). The variances would be
computed from one element and would determine its am-
plitude completely. Therefore, the density would be an im-
pulse. In this extreme case, all quantizers should only have
two levels to indicate the sign of the coefficient. As long
as we have few classes, these extreme cases do notapply.
However, the lowest frequency ac coefficients (which have
great influencein theclassification process because they are
larger) are well apart from having a Laplacian conditional
density. As an example for a particular coefficient, suppose
its standard deviation is estimated to be very large. This
indicates that the coefficients on that coordinate (m,n) & v
belongingto the same class are expected to have high am-
plitudes, not amplitudes close to zero as in the Laplacian
model. Generally, these large coefficients have low fre-
quencies and have large numbers ofbits allocated. Coef-
ficients with one or two bits allocated generally do not have
a great influence on the ac energy andare very close to the
Laplacian model. In our constantdistortion rule for bit al-
location, we assumed that all the quantizers were optimized

334 / Journalof Electronic Imaging / July 1992 / Vol. 1/3)

aseSS

0.0 121.1 54.8 39.1 22.9 24.1 13.8 12.8
67.3 51.8 42.1 27.4 204 17.8 14.0 12.3
29.7 31.1 29.8 25.8 214 15.7 15.0 121
92.5 20.7 2.1 19.7 168 11.3 100 7.8
12.9 13.9 12.3 14.0 i14 124 98 8.2
1 114 16 82 94 96 65 66
56 58 58 62 58 62 51 59
62 5.7 55 53 64 51 44 49

0.0 31G5 116.1 68.0 41.6 34.0 20.1 20.5
160.7 149.2 81.6 46.3 39.1 325 18.8 19.2
47.9 62.2 $4.9 45.7 266 22.7 18.9 16.8
31.7 31.3 34.3 27.3 27.0 22.6 13.4 13.1
18.1 185 21.7 21.3 184 15.8 14.2 11.6
13.5 168 149 118 155 114 9.2 9.4
85 102 84 91 84 89 71 7.6
91 M2 90 7.5 83 7.2 6.2 6.8

Fig. 10 Map with standard deviations of LOT coefficients in each
class. Classes1, 3, 6, and 8 are chosen as examples. The standard
deviation for the de coefficient is not shown.

using the same pdf. Therefore, we have chosen the Gaussian
density as the density model for our Lloyd-Max quantizers
dueto its greater robustness against pdf mismatches. Tests
carried out (for 8 and 16 classes) using twosets of quantizers
(for Laplacian and Gaussian pdfs), showed better perfor-
mance for the Gaussian set of quantizers.

The reestimated standard deviations assume an integer
number ofbits allocated to each coefficient; hence, if we
assumethat all quantizer levels may be used, the quantizer
should be a midrise one. For one- and two-bit quantizers
optimized for a Gaussian input pdf, the inner reconstruction
levels (positive or negative) are 0.7980, and 0.45302, re-
spectively, where 0, =c and o2= 2c represent the estimated
standard deviations for those coefficients that have been
allocated 1 and 2 bits, respectively. It is possible that some
null or insignificant coefficients would have to be quantized
using relatively high standard deviation values, and must
be reconstructed as a nonzero component with a magnitude
comparable to the standard deviation. In these cases, non-
existent frequency components emerge, resulting in annoy-
ing effects. For this reason, we decided to apply midtread
quantizers with three levels and variable length coding, in-
stead of quantizing with two or four levels. The standard
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Fig. 11 Bit-allocation maps for each class for the “Lena” image. Therateis 1 bit/pel including
overhead.This is also the final stage of the PIT.

Class 1 Class 2
- 137 - = -=- - - = - 70 114 19 - - - =

3B - - - = = = = 139 124 = - - = = =

Class 3 Class 4
- 40 115 56 - Wl - - —- 41 52 SF 140 162 - -
71 #61 #111 1288 - - += = 72 #31 #49 #127 144 - = =
116 112 1188 - - - = = 7 #413) 540 «1382 «2166
120 126 1381 —- _ _ - - 121 128 133 151 —- - - -
- = = = = = = = - 145 156 - - = - =

Class 5 Class 6
- 13 19 27 73 87 181 198 - 3 20 28 74 88 182 199
42 32 50 62 146 170 - = 14 3838 #16 64 76 95 184 202
53. 51 55 «134 157 172) - - 21 17 24 67 82 99 122 213
58 63 135 152 167 - - - 59 65 68 79 90 177 194 217
141 147 158 168 175 - - = 142 148 159 169 176 190 208 225
13 - - = -=- = = = 164 171 173 178 191 208 - —-—

Class 7 Class 8
- 4 9 29 43 89 107 149 - 1 10 11 44 47 108 150
15 12 6 34 45 96 109 153 5 2 7 35 46 48 #110 154
22 #18 #+%2 37 88 100 187 214 23 8 26 38 85 101 123 160
60 66 69 80 91 105 136 218 30 36 39 81 93 106 196 220
143. 77 «84 92 103 192 209 226 75 78 86 94 104 129 211 227
165 97 174 179 193 206 222 229 166 98 102 180 130 207 223 230

— 185 188 199 210 - — — 183 186 189 197 212 224 — 231
200 203 215 219 - - - -= 20L 204 216 221 228 - - -

Fig. 12 Transmission orderof the LOT coefficients amongall classes for the “Lena” image. This order
is found using the bit-allocation maps in Fig. 11, weighted by the HVS matrix in Fig. 7(c), according
to Eq. (9). The transmission priority rules were defined in Sec. 2 based on these weighted matrices.
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(a)

 
(c)

(b}

 
(d)

Fig. 13 Partially reconstructed images: (a) DCT 0.2 bit/pel, (b) LOT 0.2 bit/pel, (c) DCT 0.3 bit/pel,
and (d) LOT 0.3 bit/pel.

deviations for quantization and reconstructionof these coef-
ficients would remain the same, but the distortion rule and
the average bit rate would be affected. However, the dis-
tortion increase, a result of going from fourto three levels
in the 2-bit quantizer, is partially compensated by the dis-
tortion decrease in going from twoto three levels for the
1-bit quantizer. The same occurs with the bit-rate changes.
In our simulations, both schemes yielded roughly the same
bit rates, with the three-level scheme leading to images with
higher signal-to-noise ratios (SNRs).

The HVS-weighted PIT described previously is extended
to the 2-D DCT. The weighting matrix was found using the
method described in Ref. 2 for finax = 13.4 (a =6). Recon-
structed images based on both LOT and DCT for several
stages are shown in Fig. 13. Critical observation of these

336 / Journalof Electronic imaging / July 1992 / Vol. 1/3)

images indicates the improvedfidelity and absence of block
structure during the initial stages when LOT is used. In
Table 1, a comparison of both methods is carried out, €val-
uating the SNR of reconstructed images at several stages
for the ‘‘Lena’’ and ‘‘Girl’’ images. Since the HVS weight-
ing is used only for prioritizing the transmission of coeffi-
cients, the SNR measure did not incorporate subjective
weighting factors. If u(#,n) and &(m,n) represent the orig-
inal and reconstructed image, then the SNR is given by

N-1N-1

Ss Ss wUn,n)m=0 21=0

SNR = 10 logio sy
SS (unr) —am,nyPm=0 n=0
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(g) {h)

Fig. 13 (continued) Partially reconstructed images: (e) DCT 0.4 bit/pel, (f) LOT 0.4 bit/pel, (g) DCT
1.0 bit/pel, and (h) LOT 1.0 bit/pei.

5 Conclusions

A PIT scheme that incorporates adaptive classification in
the transform domain and bit allocation based on the rate-
distortion theory is presented. A general technique for de-
veloping HVS weighting of the transform coefficients is
developed. Based on this, HVS weighting matrices appli-
cable to LOT are obtained. The order in which the transform
coefficients are transmitted is based on the estimated vari-
ances of these coefficients weighted by the human visual
system sensitivity, measured in the 2-D LOT domain. Be-
cause these variances can be estimated at the receiver, over-
head is limited to bit-allocation maps ofthe classes to which
the blocks are grouped andto the classification of the blocks.
The transform coefficients for all the classes during each
stage are transmitted progressively such that a specified bit
rate is reached for each stage. Visual comparison of the

Table 1 SNR (in decibels) resulting from intermediary reconstructed
images at several bit rates for the “Lena” and “Girl” images.

16.10}15.18
19.43|18.41
21.00|20.55
22.74|22.39
23.68|23.29|25.21
25.35|25.15|26.98
26.81|26.67|28.50

 
reconstructed images based on the LOT and DCT shows
that the former yields subjectively superior images com-
pared to the DCTin all stages.
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‘Abstract

The class of modulated lapped transforma (MET) with extended overlap is investi,length-signals implementation usin i

1 Introduction

While block transforms becamevery popular in the imag¢ codingfield, the lapped orthogonal transform (LOT)[1, 2} aroseas a promising competitor to transforms auch aa the diiscrete cosine transform (DCT){3], which is the block transform
used in most image and video coding algorithms [3]. The advantage of lapped transforma [4] resides on the length of
their basis functions, providing improved spectral selection better filtering capabilities, and on the extreme reduction of
the blocking artifacts commoiilyPrESENEinBISEEtransformcodingallowbitsalsi-Teithermere, the concept of lapped
transforms was established and proven to be equivalent to the concept of paraunitary FIR. uniform filterbanks(4,5}.
Underthis point of view, bath the LOT and the DCT are considered as special choices of paraunitaryfilter banks[4, 8, 6].
Cosine modulated filter banks {5} allow perfect reconstruction (PR) in paraunitary analysis-synthesis systems, using a
modulation of a low-pass prototype by a cosinétrain. By a properchoice of the phase of the modulating cosine, Malvar
developed the modulated lapped transform (MET)[7], which led to the so-called extended lapped transforms (ELT)[4] 8}.
The ELT allows several overlapping factors; genétating a family of PR cosine modulated filter banka. Both designations
(MLT and ELT)are frequently applied to this class of filter banks[4]. Other cosine-modulation approaches have also
been developed (see, for example, [5, 9] and references therein) and the mostsignificant difference among them is the
low-pass prototype choice and the phase of the cosine sequence.

As ELTs are maximally decimated FIR uniform filter banks, let M be the number of filters, which is the number of
channels, the decimation factor of.the.subbands, and the block size. In the ELT,thefilters’ length L ia basicaly an even
multiple of the block size M, as ZL = 2K M}, where K is the overlap factor. The analysis filters (f.,(n)) are tine-reversedversions of the synthesis filters (gm(n)) ‘afin any paraunitaryfilter bank (for m= 0,1...,M—1andn=0,1,... »L—1).The MLT-ELTclass is defined by(4, 8}

 

9m(n) = fin (Lb — 1 —n}= an)con (co 3) (n+)a Q)
form =0,1...,.M—Jandn = O1,...,.L-L¢ A(n))is a symmetric window modulating the cosine sequence and
the impulse response of a low-pass prototype (with cutoff frequency at x/2M) which is translated in frequency to M
different frequency slots in order to construct the uniform filter bank. We will mostly use ELT with K = 2, which will be
designated as ELT-2, while ELT with other overlap factors will be referred aa ELT-K. We assume row-column separable
implementation of the transform. Therefore, one-dimensional analysis of the transform implementation is sufficient fortwo-dimensional applications.ee

"This work was supported in part by CNPq, Brazil, under Grant 200.804-90-1.
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Figure 1. Flow graph for the direct (top) and inverse (bottom) ELT. Each branch carries M/2 sample:

 

 

2 Implementation algorithm
i i ization of the

i i i . The algorithm is based on a factorization o
i jor plua a fast implementation algorithm (4). factorizationornayniase com 2seatconti jnto aseries of plane rotation stages and delays and : per ‘ypenal hogonal eta©tatatuge which has fast implementation stgorithms B 4]. aetitcamelre neerai ooinie just M72ith generi ¢. In Fig. 1 each branch carries . jus ?to mal bat tiest eatMa plane uations and both analysis ([orward transform) andManMi{invenenflowee‘areshown, Let 0 and I be the null and identity matrices, respectively,of sitransform} fiow- .

let J be the M/2 x M/2 counter-identity matrix as:
00---01
00-+-10

: J=}i 3
O1---00
10---00

The stages ©, contain the plane rotations and are defined by -
—Ch Sad Q)

Gn = [ JS, IC,3 |'
Gp = diag {co8(Bon)s+*.008(4oral} Sa = diag {ein(Gon).°-+ 8m ag —an)}

6:3 are the rotation an: ri er: n of an ELT. We will use the optimized angles presented inj gles and free parameters in the design of
{ ]. The plane ro! ations define the window h(n) and the DCT-IV generates the cosine terms in (1)4]. The ph ti th dow h

es on the tranaform applied to blocksnear the borders of theimage.One problem to implement this algorithm resid ay be included THtRe analysis section. On thei i daries mi ‘sect ;
: lap, samples outside the image boun Seaeextensionsaeeee  vranaformmed blocks we needed in the synthesis process to reconsintihesignal,Feri ieextensionsother hand,©x vroblem at the expense of inserting artificial edges caused OFanaaamcintain polyphesefei . Symmetric extensions are desirable,becausetheydonotinclude arof the image.

normalization across the image boundaries. Maly. ¥ the finite-length-signals implementation of
ig ig iP!

i Bf ndari alvar devised a solution forda Domne
ELTs [4]. His solution envolves change of the filterBankusartheenaSatechniques“Gnd, in Gar tests, thesei found using saiiple~éxtensions and Soeat in Mh Fig. 23)eneramaextension, proved to have better performance than the orthogonal msolutions, usin|

tl low-graph for PR implementation of the “1 using symmetric extensions. In this figure,g! rn ELT-1 using symmetric ¢ 6showsthe fi h

 

3

ae °
ZW) = 3(So+Go).
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Time blocks ELT-1 blocks Time blocks ELT-2 blocks

Block 0 Block 0 Block 0 Block 0

Block 1 Block 1 Block 1 Block t

Block 2 Block 2 Black 2 Block 2

Block 3 Block 3 Block 3 Block 3

Block 4 Block 4=Block 4 Block 4
 

(a) (b)
Figure 2. Flow graph forfinite-len, iigsth signals. (a) ELT-1 (4 = 1); (b) ELT-2 (K = i
igus2.F ; i 2 (K = 2). Each branch M,vas ome performed by following the flow-graph from left to the right, while inverse transformarlene vingthe‘graph in the opposite direction and substituting the Z matrices by their inverses. , ” following the
 

Similarly, Fig. 2(b) shows the flow-graph for PR implementation of the ELY-2 using symmetric extensions, where

Zi). -A (Si-C,)J, (5)
22) = ~Cy §,J(So—Ca)S; (So+Co)CiJ |? (6)

22). [ I(Co~So}Cy  I(Co + So)SiT¢ JS Ios | , (7)
ZB) = 3(Si+C)). (8)

In th a i

a athwhgraph,pease(aeonsteMf2 aynpadSualysit is accomplished by following the paths from left to; he rm) is achieved by following the paths from right to theleft, replacing ¢eanatties by weet inverses. Note that20), 20), 22 and 23) are simple counter-diagonal matrices and thence
io wedaieasic format. Z and Ze are composed by M/2 butterflies, but the lattice is mo longer orthogonal (see|. inverses are obtained by inverting each of the butterflies. As a reault, both analysis or synthesis havethe same fast algorithm. The DCT-IV i i
onimatte ad otheenal 2 and 9, matrices do not need replacement in synthesia because they are bothTh i i

ese algorithms for ELT-1 and ELT-2 were found by using a symmetric extension and applying regular ELT flow-graph to the extended sequence. Then, it is found a size-limi. imited flow- i
than 2 can also be found, but we will use mostly the ELT-2 and oeererhtheune savivalent, Values of 1 greater
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Table I. Gro in dB and implementation complexity (C) in FLOPSfor various transforms and block sizes. For the tree structured
filter banks, full-tree is applied and M = 2°, where 3 is the number of stagesofthetree,

 
       

(TeGreC1GreTCTGre]
Cetist[=i|pet 35|7.57|505|6.89

9.20
9.33
9.48
9.32
9.aT
9.66
9.58

  

3 Theorectical comparisons with other transforms

The coding gain Grc, in dB,ofa tranaform/subband scheme is defined as [22]

1 Mri
wo”
= am |: (9)2
(2)

with o? as the varianceofthe i-th subband signal (transform coefficient)for i= 0,...,@—1. Under certain assumptions,
it measures the gain of transform coding over PCM coding {12}, i.c., measures the gain in terms of signal-to-noise ratio
(SNR) one can obtain by transforming the signal before coding it. Actually, it measures the average performance of the
transform andits potential regarding compacting the most of the energy ofthe signal in fewer coefficients. Implementation
complexity (C) will be measured here by the number of floating-point operations (additions plus multiplications) per
sample (FLOPS) required to implement the one-dimensional transform.

Gre = logy

Another way to generate transforms with longer overlap is based on the hierarchical connection of two-band filter
banksfollowing the pathsof a binary tree, Forparallel M-band systems, the full-tree is applied. If S stages of filter banke
are cascaded, the resulting filter bank will have M = 25 channels and theresulting filters have length (M—1)(La-1}+1,
where Log ia the length of the filters in the two-bandfilter bank used as a basic cell for the hierarchical structure.

In Table 1 are shown Gre and C for the DCT, LOT, ELT-1, and ELT-2. Additionally, we included the same
parameters for the tree-structured filter banks based on two-band systems with filters with 8 and 16 taps. We used
Smith and Barnwell conjugate quadrature filters (CQF) {13] and Johnston's quadrature mirrorfilters (QMF)[14]. Note
that 8-tapfilters lead to equivalent filter banks whosefilters have length closer to ELT-2. The “IDEAL” entry in this
table refers to ideal brick-wall filters, which only can be implemented using infinitelength filters. The input signal was
assumed to follow an AR(1) model with adjacent-sample correlation p = 0.95.

From Table I, we can see that ELT-2 has coding gain similar to BA tree-structured filter banks at a much lower
complexity. The complexity of the DCT is unbeatably low, and LOT and ELT-2 are regarded as improvements for which
the trade-off between coats and benefits has lo be taken into account. LOT has proven to be superior to DCT leading to
more pleasant images even at high compression rates. We will show later that ELT-2 surpasses LOT performance withbonus features.

One of the incentives to study ELTs oflarger overlap for image coding resides in their longer basis functions and,
therefore, in their potential for better spectral selectivity of each subband filter. In fact, the ELT-2 has filters with
good atopbandattenuation. Thefiltering capability is supposed to be reflected by Gre measurements, in the case of
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Figute3. Frequency Tesponse of a
transform. Plo for DCT, LOT, low-pass Alter with cut-off freqand ELT-2 are shown. wency = x/2 produced by the first four filters of a M = 8

eee
n- layered im; i i i ‘i

nee fee as idone.ner, in compatible coding [15], filtering performance is a plus. In this approach, an
option oldecoding the aN on is encoded using any transform/quantization method and the receiver makes th
te: inverse transform fellereoreduced versionofit, auch as a N x N image. A straightforward methed can
ee relsin Mix M/2 low. @ filtering and subsampling. As a faster and more efficient approach, oneresulting in a reconstructed { i

tana, Me will Goh (HVS) weighting function for anyet. although th alu 4 i ecause it was succesh i
P st atin eoretreatsponse is bot linear. Assume that the image area is square and theviewerieTat‘

oN ppels in 2 tow on eee - i. istance(@ imes longer than the image width. Assume, also, that the ima e contains
the screen. Given a linear transferbeet can peeve the same density of pels per spatial degree in any region of; ion representing the unidimensional spatial iven i
degree of the visual angle subtended), the i i befound ae U/L Biven im excles per,themaximum le frequency can bi S .hememe ? deequency can be found as:: N

(Umes=F i“ 4arct —
ctan (i)We caf tepresent

a discrete sensitivity function as Hp{es) = jz
ion willbe accurate ifHUV=0forHf]STosebetclon gee) = HUSmnaz) fa a. Thi .nen HVS weloh if #7 I) = 0 for [f[ > Fmaz- Let Fy(c!”) be the frequency ones) ofSe when’ filterfate)

& coefficients Gj (for 01,4 ‘§ M~'l) are found from synthesis filter f,(n).

 
 

cycles/degree. (10)

iss" yg . .

oe af f [HaleHy? [Fis(et™s, ef™2)92 du; du, ay
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0.6516 0.8667 0.9843 1.0000 0.9511 0.8669 0.7672 0.6629
0.8667 0.9402 0.9923 0.9839 0.9278 0.8432 0.7457 0.6445
0.9843 0.9823 0.9923 0.9588 0.8943 O.809T 0.7156 0.6190
1.0000 0.9839 0.9588 0.9112 0.8432 0.7613 0.6729 0.5829

(9) O.A51% 0.8278 0.8943 0.8432 0.7771 0.7010 0.6205 O.53370.8669 0.8432 0.8097 0.7613 0.7010 0.6331 0.5617 0.4892
Q.7672 «(0.7457 «O.7156 0.6729 0.6205 0.5617 0.5000 0.4372
0.4629 0.6445 0.6190 0.5820 O6387 0.4892 0.4973 0.3858
GQ7775 0.9744 0.9974 0.8985 6.7524 0.6018 0.4665 0.3599
Q.9744 1.0000 0.9625 0.8559 0.7156 O.5716 0.4443 0.3380
0.8974 0.9625 0.8914 0.7811 0.6523 0.5246 0.4099 0.3135

ey 0.6985 0.8539 0.7311 0.6821 0.5716 0.4623 0.3644 0.28080.7824 0.7136 0.6523 0.8716 0.4623 0.3939 0.9131 0.2435
0.6018 O.5716 6.5246 0.4628 0.3939 9.3250 0.2610 0.2051
04665 0.4443 04059 0.9644 O.SISE 0.2610 0.2120 0.1683
0.3539 G.3380 0.3135 0.2308 0.2435 0.2051 0.1683 0,135)

| 9.8627 1.0000" B.910 O.7I99 0.5262 0.3688 0.2470" “0.1634""‘ 1.0000 6.9632 0.8377 0.6593 0.4843 0.3395 0.2303 0.1531
‘ 0.9106 0.8577 O.724! 0.5635 0.4185 0.2970 0.2038 0.1369i 0.7199 0.6599 0.5635 0.4499 0.3394 0.2449 0.1707 0.1163

(9); aszer ada 0.4185 0.3304 0.2609 0.1919 0.1362 0.0043
woo \ 9.2665 0.2995 0.2970 0.2443 0.1919 0.1499 0.1041 0.07340.2470 0.2303 0.2038 0.1707 0.1362 0.1041 0.0768 0.0551

0.1634 O.1541 0.1969 0.163 0.0943 0.0734 0.0551__0.0402
1.0000 0.9838 0.7103 0.4354 0.2449 0.1209 0.0680 0.0554
0.9838 0.8350 0.5952 O3712 0.2127 0.1285 0.0608 9.0920
0.7103 0.5952 0.4319 0.2784 0.1649 0.0921 0.0495 0.0264

@ 0.4354 0.3712 (0.2784 (0.1868 O.1152 0.0667 0.0369 0.02010.2449 (0.2127 0.1649 0.1152 6.0740 0.0445 0.0255 0.0142
0.1309 O.1155 0.0921 0.0667 0.0445 0.0278 0.0165 0.0095
0.0680 0.0608 0.0495 0.0369 0.0755 0.0165 0.0201 0.0060

- 0.0354 6.0320 0.0264 0.0201 0.0142 0.0095 0.0060 0.0036

Figure 4. Two-dimensional normalized HVS weighting arrays for the ELT-2 and M = 8, (a} a = 4, N = 256, (b) a = 6, .N= 256,
(c) @=4,N = 512, and (d} a =6, N = 512.
 

where

Hp{el* e842) = Hy lel", f*4) = HUfp/Imor)s (12)

where fp =VS+fF(for [fil < fmar and |f2| < fmer) and
Fij(eie' lM) = Fie) Fy(ef?), (13)

For the continuous one-dimensional HVS model given by (18]

Hf) = 2.46(0.1-+0.25f) e795, a4)

we show in Fig. 4 normalized HVS weighting arrays of'size 8 x 8 (Mf = 8) for the ELT-2, using several values of a and
Note that the same fmes can accomodate different combinations of N and a. However, a in the range off ri

5 if more commonto displays in computer monitors, while the range of 4 thru 8 is more common to TV. For tirfform
faantization such as in JPEG baseline coder [19}, the step size for each coefficient in a black canbe e/(ij, where c isa

scaling constant.
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5 Information loss in ATM networks

Asynchronoustransfer mode (ATM) networks are
cells (packets) and transfered thru the network, and

to protect more important data, as cell losses can occur. For transform coding,it is important to find ways to recoverlost information with minimum Possible distortion. We assume that as a single cell-loss occurs, all the information fora block is lost, except for the DC coefficient which is Protected. LOT has proven to be robust against errors in ATMnetworks [16]. In [16], several recovery methods for the LOT were tested, including: (i) setting all AC coefficients tozero;(ii) coefficient averaging among neighboring blocks; (ii) inverse methods, with or without enhancement;(iv)leastsquares. We will limit ourselves to simple reconstruction by setting all AC coefficients to zero, which is the most mosteconomical way to reconstruct the lost blocks. The ELT-2 is expected to perform better than LOT because ofits largeroverlapping. As the spatial tegion affected by the lost-block increases, the error ig locally leas intense. Fig. 5(a) showsthe original 256 x 256 pels image Lena, We transformed this image using the DCT, LOT, and ELT-2, and deleted ailthe coefficients of a single block except for the DC term. After respective inverse transforms, Fig. 5(b) shows a zoomof the region where a lost-block occured, using the DCT. From this image, we can clearly see where the lost-block waslocated. Fig. 5(c) shows the same results for the LOT and Fig.5(d) repeats the experimentfor the ELT-2. We can seethat ELT-2 performed fairly better than DCT and LOT when a cell loss occurs,

6 Image Coding Simulations

We have compared the ELT-1 and ELT-2,using two intraframe image coders, named JPEG baseline coder (JPEG)[19]and the improved Chen-Smith (ICS) coder [20]. The formeris based on thresholding, while the latter outperforms JPEGand follows the zonal sampling philosophy. In both, the DCT was merely replaced by the other transforms. The SNR(not peak-SNR) results comparing ELT-2, ELT-1, LOT, and DCT are found in Table I, using both JPEG and the ICScoder. In these measurementa the SNR was computed by skipping the first and last 4 samples of each column or row.
This is to prevent the errors on the borders {using the ELTa) from affecting the SNR. values, since they’are generallyinvisible, occuring more intensively on the last pixel in each tow-column (11) and being masked by the background.

Fig. 6 shows the 256 x 256 pels image Lena coded at 0.8 bits/pel (bpp) using both the JPEG algorithm and both theDCT and the ELT-2. In these we simulated 5% rate of lost blocks (51 blocksare lost),
7 Conclusions

The ELT-2 is proven to be very robust against cell losses due to its larger overlap. However, this greater overlap isachieved with only a small increase in computation. Thefinite-length implementations, presented here, allow the ELT-2to beefficiently computed even near the borders and this transform reveals to be a very attractive alternative for imagecoding, replacing the DCT in applications such as still-frame image coding (JPEG)orin other coders,
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Figure 6. Image compression results for 256 x 256-pele image Lena. All compressed images are subject to a block-loss rate of 5%.
{a) Original image at 8 bpp; (b) Image (a) compressed to 0.8 bpp using DOT and JPEG coder;(c) Image (a) compressed to 0.8 Fig. 6(b)bpp using ELT-2 and JPEG coder;
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Figure 5. Trivial image reconstruction when all AC coefficenta of a single block are lost. The AC coefficients are set to zero in this
block. Top left corner, original image zoom. Top right corner, reconstructed image using DCT. Bottom left corner, reconstructed t
image using LOT,and on the bottom right comer, the samefor the ELT-2.

Fig.6(c)
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A Perceptually Tuned Sub-band Image Coder With
Image Dependent Quantization and Post-quantization

Data Compression

Robert J. Safranek James D. Johnston
AT&TBell Laboratories

Murray Hill, NJ

Abstract

In this paper we present a 16 band sub-band coder, arranged as
4 equal width sub-bands in each dimension, that uses an
empirically derived perceptual masking modelto set noise-level
targets not only for each sub-band but also for each pixel in a
given sub-band. The noise-level target is used to set the
quantization levels in a DPCM quantizer. The output from the
DPCM quantizer is then encoded, using an entropy-based
coding scheme, in either 1x1, 1x2, or 2x2 pixel blocks. The
type of encoding depends the statistics in each 4x4 sub-block
of a particular sub-band. One set of codebooks, consisting of
less than 100,000 entries, is used for all images, while the
codebook subset used for any given image is dependent on the
distribution of the quantizer outputs for that image. A block
elimination algorithm takes advantage of the peaky spatial
energy distribution of sub-bands to avoid using bits for
quiescent parts of a given sub-band, Using this system, high
quality output is obtainable at bitrates 0.1 to 0.9 bdits/pixel,
while nearly transparent quality requires 0.3 to 1.5 bits/pixel.

1. {ntroduction

In general, the current generation of low bitrate
(< Ilbpp) Black and White image coders provide
a quality level of good to very good. Many
applications, such as remote slideshows, would
benefit from higher quality. To achieve this level
of performance, we believe that knowledge of
human visual perception should play a strong part
in the coder design process. Our goal in this
work, was to develop a visual perceptual qualitymetric which would provide nearly transparent
quality to a coded image. In addition, this metric
should be image independent. Thatis, it should
perform equally well over-a wide range of image

‘Input, say ‘flat field to strong irregular texture,
‘with no image specific. tuning. This papér will
presenta system that uses this perceptual metric
in. conjunction with: sub-band filtering, DPCM
coding of sub-bands and multidimensional
Huffman compression to provide nearly
transparent coding of a wide variety of images at
rates of less than 1 bit/pixel.

2. Sub-band Analysis
In order to exploit the generally lowpass
characteristic of images, each image is first
Passed through a separable Generalized
Quadrature Mirror Filter. (GQMF)_bank
[Cox,Woods], after the mean of the image is
calculated and removed. The mean is quantized
'0 8 bits (0-255) and retained for transmission to
the decoder. Each of the I-dimensional GQMF
ilters decompose the input image into 4 bandpass
sub-images with one stage of filtering. ‘This
‘ontrasts with the 2 stages required with
conventional QMF filters. Since the filters are

applied in both the horizontal and_ vertical
dimensions, this results in 16 total sub-bands,
numbered as shown below.

 
Table 1 - The sub-bands are numbered using this
scheme.

The GQMF filter that was used has a first
sidelobe suppression of >48dB, which ensures
perfect reconstruction of an 8 bit/pixel image
(ignoring edge effects). A contrast enhanced
example of the sub-band images, where the range
in each sub-band is. stretched to full scale, ts
shown here for a text image:

 
. Figure 1: Here: aresub-band images of grayscale text. The
right image is contrast “enhanced with -each . sub-band ©
stretched to use the full gray scale range. -

The actual mean energy for this image is 123 and
the peak level in each sub-bandis:

Table 2 - Presented here are the peak values in

each sub-bandfor the text image of Figure lL.

3. Perceptual Masking Model

In the perceptual masking model, we use the
local mean and variance to calculate a noise

tolerance relative to the observed noise sensitivity
of that sub-band given a uniform background
grey level of 127.
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3.1 Obtaining the Base Sensitivity
The hase sensitivity for each sub-band was

‘ established in an informal test using 3 trained
subjects. A set of 512x512 images with aconstant grey level of. 127 (on a scale of 0-255)
were created, and uniformly distributed random
noise of known energy was added to the center
64x64 pixels of each sub-band in turn. _Taking
into account the 4:1 decimation ratio, the
reconstructed pictures have a 256x256 square of
noise in the center. For each sub-band, the
energy level of the noise was adjusted until the
observers could not reliably determine if the
reconstructed image did or did not contain the
"noise square". The images were viewed in a
darkened room on a Sun 3/110 workstation
screen at 6 times the image height. The results
of this sensitivity test were:

 
Table 3 - RMS noise sensitivity threshold for
each sub-band. The order corresponds with
Figure 1.

3.2 Sensitivity Adjustment for Brightness
The next step in determining the perceptual
model was to vary the image grey scale
background, and determine the change in
sensitivity of band 0 for varied background grey
levels. This test was run in the same manner as *
the previous test, yielding a brightness correction
curve. For the specific conditions in this coder,

- the resulting adjustment curve is:
0

-6

Correction

Factor 1?
dB

-18
 
0 32 64 96 128160, 192224 255

. * Mean Level

The brightness adjustment was spot-checked in
other low frequency bands and found to predict
the thresholds reasonably well. A better model
could be obtained by running this correction test
for each sub-band.

3.3 Texture Masking Adjustment

The base sensitivity and brightness adjustment
provide a perceptual threshold which attempts to
account for the human visual systems sensitivity
to frequency content and image brightness for a
flat-field image. Since humans are more sensitive
to noise in flat-fields than in textured regions,this
model provides a_ conservative perceptual
threshold. Smooth image regions would be
coded to an appropriate quality level, but textured

 

15

TexEnergy (x,y) = ¥ MTFweight(s)*Energy (s,x,y) +

regions would be greatly over-coded. Therefore,
a texture masking adjustment was incorporated to
the perceptual model.
The texture masking adjustment is a function of
the ‘‘texture energy’’ at cach image location. It
is comprised of the weighted sum of the local
(either 2x2 or 1x1 pixel, depending on the target
quality) energy in each sub-band other than band
zero plus the variance of band zero over the same
locality (the variance is always taken over a 2x2
area with the target pixel in the upper left
comer). The weights for each sub-band are
determined empirically from the visual system's
modulation transfer function [Cornsweet]. That
is

s=l

MTFweight(0)*variance (Gay)(x+y), (xytl),(@x+Ly+l))

Where TexEnergy is the measure of texture
energy, x and y horizontal and vertical pixel
indices, MTFweight is the empirical weight from
(Clarke, p. 271], and variance an_ operator that
retums the variance of the enclosed: pixels. This
provides a crude measure of how much masking
energy is visible in each sub-band. his texture
energy is raised to the power 0.07, and the
energy threshold multipled (or added in the dB
domain) by the texture component. ,

The final form of the perceptual threshold is
pt(s,x,y) = Base (s) —.15*log.(TexEnergy (x,y))

— BrightWeight*BrightCorr(x,y)
where x and y are pixel locations in a sub-band, s
is the sub-band number, Base() is the base noise
sensitivity from Table 3 (in dB), and prt is
expressed as a PSNR. Shown below is a
representation of the relative perceptual threshold
function for the text image. Portions of the
image that have large tolerance to coding errors
are represented by dark pixels, while sensitive
areas are indicated by light pixels.

4. DPCM Coding of Sub-bands

Each sub-band ‘is coded using a DPCM coder
‘With a variable uniform mid-riser quantizer. It .
use$-a threepoint predictor optimized for each
sub-band. The predictor coefficients are quantized
to 5 ‘bit accuracyatid sent as.side information.

. The quantizer step size is adjustedto ensure’ that

1946

the perceptualcriterion is just met at.mostcritical.
point in the sub-band. This ensures that every

int in the sub-band receives. a sufficiently high
evel of coding without overcoding the most

sensitive position. Due to the wide dynamic
range of the perceptual threshold values,
adaptation of the quantizer step size will be
advantageous. However, we have just begun
testing a modified step-size algorithm _ that
responds within each sub-band to the image
texture information.
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aibalt

 

 
Figure 2: In the upperleft is the zero sub-band. To its
right is the perceptual threshold function The perceptual
threshold function provides an measure of the sensitivity
of each point to coding noise. Dark pixels indicate
insensitive portion of the image, while white areas are
very sensitive. - The bottom row shows the activity
measure. The number of sub-bands that are coded at
each point is a function of the local frequency content.
Black pixels denote that one sub-band was coded while
white denotes that 6 sub-bands were coded.

5. Noiseless Compression

After quantization, the codewords for each sub-
band are compressed using_potentially
multidimensional Huffman coding. First, if an
entire subband consists of the zero codeword
(which implies the perceptual threshold is metif
every point in the sub-bandis identical to zero), a
tag notes this, and the coder proceeds to the next
sub-band. If portions of a sub-band are non-zero,
4x4 blocks .of zero: codewords -are- identified.

’ : Depending on the percéntage of zero blocks, one -
of two schemes of ‘encodingthis.is used. If there’ -
are less than 102 non-zero blocks, the block
numberfor each of these is sent, followed by the
block’s codewords. If there are more than 960
non-zero blocks, a bitmap is sent, followed by the
codewords for the non-zero blocks. Smooth
portions of an image require information from
one sub-band. But, textured areas and edges, due
to their broad spectrum, require information from
several sub-bands. The perceptual threshold
function automatically determines the number of
sub-bands that must be coded. Shown below is a
representation of this activity measure for the text
image. Black pixels indicate that one sub-band
was required at that point. Each successively
lighter shade of gray denotes another sub-band
was coded. For this image, a maximum of six
sub-bands were required at any one point, even
though portions of nine sub-bands were coded.

 

 
Table 3 - The coding algorithm encodes only the
perceptually relevant portions of a sub-band. In
addition, multidimensional Huffman coding is
highly effective.

Each non-zero block is encoded using one, two,
or four dimensional Huffman codebooks. The
codebook with the highest dimensionality that
will fit the rate (i.e. lowest potential rate) is used
for each block. The dimensionality of the
codebook for each block is combined with the
block activity information and transmitted for
each sub-band that is not all zeros. The four
dimensional codebook operates on 2x2 codeword
blocks, where each codeword has an absolute
value of less than 4. The two dimensional
codebook operates on 2x1 codeword blocks,
where each codeword has an absolute value of
less than 26. Likewise the one dimensional
codebook operates on individual codewords, of
any size required to meet the perceptual
threshold. Since the quantizer outputs are
entropy coded, and hence inherently of a variable
bit length, the high peak quantizer outputs do not
degrade the transmission cost of less active areas
of the same image by a_factor of
loga (largest level count)—logs(mean level count)
as would happen in a standard DPCM coder.

6. Testing and Results

A wide selection of images, ranging from simple
(low-resolution scenery) to complex (strongly
contrasting textures, grey level text), have been
collected for both training purposes and test
purposes. No image is included in both the test
and training sets. The results reported in this
paper are for images that are in the test set,Which consists of around 30 512x512grey level
‘images. - All codebooks used in the compréssion <.--..
salgorithms . were generated strictly “ from-‘the . -
training sef, ‘which consists of “107 images, that ~

‘are distinct from thetest set.

1947

The results of this compression algorithm provide
an image quality, at a rate of .33 bit/pixel, for the
"Lena Image" similar to or better than that of the

.5 bit/pixel coder previously reported in ICASSP

°88 [Safranek]. The quality of the Lena imageisnearly transparent at 6x the image height at a rate
of .5 bit/pixel. Using this algorithm, typical
images require from .[ bit/pixel to .6 bit/pixel,

and extremely complex textures require in therange of 0.9 bit/pixel for a high-quality encoding,
or 1.5 bits/pixel for near-transparent coding.Grey scale text images that are not obviously
impaired also require roughly 9 bits/pixel, while
readable (for characters understandable in the
original at 6x the image height) grey scale images
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of text require about .5 bits/pixel Figures 4 to 7
resent the output of this coder on a variety of

- images at three different quality levels. For these
examples, the upper left image is the 8 bit/pixel
original, the upper right image is at the nearly

uality level, the lowerleft offsets thetransparent é
erceptual eshold function by 5dB, and the
ower right offsets the perceptual threshold

function by 10 dB.

7. Conclusions

We have presented a variable bit rate coder
which provides approximately constant quality for
a wide range of input image complexities. Its
compression gains are a result of a combination
of all of the compression methods (DPCM,
entropy coding, perceptual-threshold calculation,
and quiescent block rejection), which work co-
operatively to automatically provide good
compression results and quality over a variety of
images withoutuser intervention.
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Figure 3: Here are the results of coding lena. The original
image is in the upper left. The upper right is coded at
0.47 bits/pixel, lower left is coded at 0.33 bits/pixel, and
the lower right is coded at 0.23 bits/pixel.
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Figure 4: Here is an example of coding gray leveltext.
The original image is in the upperleft. The upperright is
coded at 0.83 bits/pixel, lower left is coded at 0.47
bits/pixel, and the lower right is coded at 0.34 bits/pixel.

adakTange

  [Cee z a

* origirial ‘image is in te, upperleft. The, upper’right is.
coded at 1.00 bits/pixel, lower left is coded at 0.58

" bits/pixel, and the lower right is coded at 9:37 bits/pixel.
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Abstract

Recently, the use of image compression algorithms in commercial products has been increasing
an extremely fast rate. This explosion has been fueled by two recent developments, the
availability of cheap signal processing ICs and the completion of several international standards
for image compression. The ICs make the products cost effective, and the standards provide for a
large degree of interoperability.

Oneof these standards, JPEG (Joint Photographics Experts Group), deals with the compression of
still images. As is typical of these newly evolving standards, it specifies the information
contained in the compressed bit stream, and a decoder architecture which can reconstruct an
image from the data in the bit stream. However, the exact implementation of the encoderis not
standardized. The only requirement on the encoder is that is generate a compliant bit stream.
This provides an opportunity to introduce new research result

The chailenge in improving these standards based codecs is to generate a compliant bitstream
which produces a perceptually equivalent image as the baseline system that has a higher
compression ratio. This results in a lower encoded bit rate without perceptual loss in quality.
The proposed encoder uses the perceptual model developed by Johnston and Safranek [JohnSaf]
to determine, based on the input data, which coefficients are perceptually irrelevant. This
information, is used to remove (zero out) some coefficients before they are input to the quantizer
block. This results in a larger percentage of zero codewords at the output of the quantizer which
reduces the entropy of the resulting codewords.

1. Introduction

Recently, the use of image compression algorithms in commercial products has been increasing
rapidly. This explosion has been fueled by two recent developments, the availability of cheap
signal processing ICs and the establishment of several international standards for image
compression. The ICs make the products cost effective, and the standards provide for a large
degree of interoperability. —

Oneofthese standards, JPEG (Joint Photographics Experts Group), deals with the compression of
still images. Some applications in which it has been utilized are archival storage of images for
the publishing industry, reducing storage requirements for picture archiving systems, and ISDN —
based image services. In addition, it has been used for intraframe only compression of motion
video.

As is typical of these newly evolving standards, it specifies the information contained in the
compressed bit stream, and a decoder architecture which can reconstruct an image from the data
in the bit stream. However, the exact implementation of the encoder is not standardized. The
only requirement on the encoderis that it generates a compliant bit stream. This provides an
opportunity for people to improve the compressionefficiency and/or subjective image quality by
designing better encoders. This paper will present an such encoderfor the Baseline Sequential

0-8194-1474-3/94/$6.00 + SPIE Vol. 2179 £117
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As shownin Figure 1, the encoder consists of three major components, 2 Forward Transform,
Quantization, and Entropy Coding. The Forward Transform is an 8x8 Discrete Cosine Transform
(DCT). Its purpose is to reduce number of samples that need to be transmitted by performing
energy compaction on the signal. Since most images have a low pass spectrum,transforming the
spatial domaindata into the frequency domainresults in a fewersignificant samples. In addition
these samples tend to be clustered at the low frequencies.

The purpose of the quantization step is to take the raw output of the DCT and quantize the
coefficients. This step results in a loss of information, but provides for the majority of the data
rate reduction in the system. By adjusting parameters in this stage,it is possible to control the
compressedbitrate and output image quality.

Entropy Coding takes the fixed length quantized DCTcoefficients and produces a set of variable
length channel symbols. This operation attempts to produce a compressed data stream whoserate
is as close as possible to the entropyof the quantized DCTcoefficients.

2.1 Quantization

Wewill now focus on how the quantization is performedsince thatstep is vital in understanding
the improved encoder. The forward DCT produces 64 coefficients. These coefficients are then
uniformly quantized. The quantizer step size that is used for each coefficient is determined by a
Quantization Table which must be specified by the application as an input to the encoder.
Elements in the Quantization Table can take on integer values in the range of I to 255.

The quantization processis defined as a division of each DCT coefficient by its corresponding
entry from the quantization table, followed by roundingto the nearest integer.

F(u,v)

Q(u,v) Fo(u,v) = IntegerRound

where F(u,v) the DCT coefficients for a given input block, Fg(u,v) are the quantized DCT
coefficients, and (u,v) is the Quantization Table.

In the decoder, the inverse operation is performed which provides the decoder with the values
appropriate for input to the inverse DCT,

Fo(uv) = Fo(u,v) * Q(u,v)

where F sub Q‘ (u,v)are the reconstructed DCTcoefficients for a given block. ae _
Fromathis discussion it is clear that the Quantization Table is part of the information that must be
transmitted from the encoder to decoder. If an entry in the Quantization Table is greater than _.
unity, information loss occurs. The table is chosen to trade off compression efficiency an
subjective image quality.

3. Perceptual Model

In has long been known that the human visual system is not an ideal receiver, and that it is
possible to take advantage ofthis fact in the encoding process [Cornsweet]. It has only been
recently however, that more systematic investigation of the use of visual masking in image
compression has occurred [JaJoSa]. These studies have attempted to derive a computational

SPIE Vol. 2179/1119
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proposed by Watson do not have this restriction. and provide more adaptability at the cost of
increased computational load.

Max

Threshold
Elavation

1.0

Standard Daviation of Input Bleck

Figure 2: Presented here is an exampleof a threshold elevation curve.

4. Perceptual Encoder

The previous section described a method for determining a set of masking thresholds for each
block of an input image which result in a unique perceptually optimal quantization table for each
block. Unfortunately, JPEG allows only one quantization table for each image. Therefore the
problem that must be solved is how to make use ofthis local information within the framework of

the JPEG standard. If you examine the forward quantization equation in section 2.1, it is clear
that all input coefficients that have a value less than their corresponding quantization table entry
will be quantized to a value of zero. This observation is the key to incorporating locally adaptive
quantization into JPEG.

Since a quantized coefficient with a value of zero is a valid member of the JPEG bitstream,the
perceptually based encoder will identify which coefficients can be set to zero while maintaining -
the sybjective quality of the encoded image. This will maintain complaince with the JPEG
bitstream specification while reducing the bitrate required to encode the image.

Figure 3 illustrates the structure of such an encoder. The forward transform is identical to the one
in baseline JPEG. At this point, the DCT coefficients are input to the perceptual model which
generates the data dependent quantization table for that block. This table and the raw DCT
coefficients are now input to a ‘‘pre-quantizer."’ The purpose of this module is to zero out the
coefficients that have a magnitude less than the corresponding entry in the quantization table for
that block, and pass the othercoefficients through unchanged.

SPIE Vol. 2179/1121
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Figure 4: Bitrate savings over baseline JPEG obtained from PxJPEG

Two objective evaluation methods were used. Thefirst was a traditional A/B forced choice test.
The subject was simultaneously shown two images sided by side on a video monitor. One was the
original image and the other was the same image encoded using either JPEG or PxJPEG. The
order of presentation, that is which side the original image was located on, was randomized.
Given this stimulus, the task was to determine which image was the original. A test set of 10

imagesthat was used. This set was chosen to contain typical images, as well as test patterns that
would stress the encoder. At present, this test has been taken by 7 times by a single subject, the
author, who was familiar with the test data. The result of this test was that both JPEG and -
PxJPEGusing the perceptually optimal quantization matrices were statistically indistinguishable
from the original image.

In order to provide further insight into the subjective quality of the codecs, the output images
were evaluated using Scot Daly’s Visual Difference Predictor (VDP) [Daly]. This algorithm
takes as input two images, a reference and a test, as well as viewing condition and a
characterization of the display. The input images are normalized to account for the viewing
conditions and display, and then passed thought a detailed model of the human visual system.It

SPIE Vol. 2179 1 123
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Figure 5: Bitrate savings by PxJPEG as a function of JPEGbitrate
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ABSTRACT

Several image compression standards (JPEG, MPEG,H.261) are based on the Discrete Cosine Transform
(DCT). Thesestandards do not specify the actual DCT quantization matrix. Ahumada & Peterson! and Peterson,
Ahumada & Watson? provide mathematical formulae to compute a perceptually lossless quantization matrix.
Here I show how to computea matrix thatis optimizedfor a particular image. The methodtreats each DCT
coefficient as an approximationto the local responseof a visual "channel." For a given quantization matrix, the
DCTquantization errors are adjusted by contrastsensitivity, light adaptation, and contrast masking, and are
pooled non-linearly over the blocks of the image. This yields an 8x8 “perceptual error matrix." A second non-
linear pooling over the perceptual error matrix yields total perceptualerror. With this model we mayestimate the
quantization matrix for a particular imagethat yields minimum bitrate for a given total perceptual error, or
minimum perceptualerror for a given bit rate. Custom matrices for a numberof images show clear improvement
over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requirestransmission of the quantization matrix.

1. JPEG DCT QUANTIZATION

The JPEG image compression standard provides a mechanism by which images may be compressed andshared among users 347 briefly review the quantization process within this standard. The imageis first divided
into blocks of size (8,8}. Each block is transformed into its DCT, which we write Crips where 1, indexes the DCT
frequency(or basis function), and k indexesa block ofthe image. Though the blocks themselves form a two
dimensional array, for present purposes a one dimensional block indexis sufficient. Each block is then quantized
by dividingit, coefficient by coefficient, by a quantization matrix (QM) Gy, and rounding to the nearestinteger

Uizp = Round|cix/q,j] . (1)
Thequantization error ej, in the DCT domain is then

Cijk = Cijfk— Uigk Gj (2)

2. IMAGE-INDEPENDENT PERCEPTUAL QUANTIZATION

frequencies. In recent papers, Peterson et al. 5:©have provided measurementsof threshold amplitudes for DCT
basis functions. For each frequency ij they measured psychophysically the smallest coefficient that yielded a
visible signal. Call this threshold {,. From Eqn.s (1) and (2)it is clear that the maximum possible quantization
error ejis qi /2. Thusto ensure that all errors are invisible (below threshold), we set

Vj =2 ty . | (3)
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[call this the Image-IndependentPerceptual approach(IIP).It is perceptual becauseit dependsexplicitly
upon detection thresholds for DCT basis functions, butis image-independent because a single matrix is computed
independentof any image. Ahumadaetal. L7 have extended the value of this approach by measuring t,under
yarious conditions and by providing a formulathatallows extrapolation to other display luminances (L) and pixel
sizes (px,py), as well as other display properties. For future reference, we write this formula in symbolic form as

t= ap[i, JL, px,PY] (4)7]

3. LIMITATIONSOF THE IIP APPROACH

While a great advance overthe ad hoc matrices that precededit, the HP approach has several shortcomings.
The fundamental drawbackis that the matrix is computed independentof the image. This would not be a
problemif visual thresholdsfor artifacts werefixed and independentof the image upon which they are
superimposed, butthis is not the case. ‘

First, visual thresholds increase with background luminance. The formula of Ahumada & Peterson describes
the threshold for DCT basis functions as a function of a mean luminance. This would normally be taken as the
mean luminanceofthe display. But variations in local mean luminancewithin the imagewill in fact produce
substantial variations in DCTthreshold. Wecall this luminance masking.

Second, threshold for a visual pattern is typically reduced in the presence of other patterns, particularly those
of similar spatial frequency and orientation, a phenomenonusually called contrast masking. This means that
threshold error in a particular DCT coefficient in a particular block of the image will be a function of the value of
that coefficient in the original image.

Third, the IIP approach ensuresthatanysingle erroris below threshold. But in a typical image there are
many errors, of varying magnitudes. Thevisibility of this error ensemble is not generally equalto the visibility of
the largest error, butreflects a poolingof errors, over both frequencies and blocks of the image.I call this error
pooling.

Fourth, whenall errors are kept below a perceptualthresholda certain bit rate will result. The IP method
gives no guidance on whatto do when a lowerbitrate is desired. The ad hoc “quality factors" employed in some
JPEG implementations, which usually do no more than multiply the quantization matrix by a scalar, will allow an
arbitrary bit rate, but do not guarantee (or even suggest) optimum quality at thatbit rate. I call this the problem of
selectable quality.

Here I present a general method of designing a custom quantization matrix tailored to a particular image.
This image-dependent perceptual (IDP) methodincorporates solutions to each of the problems described above:
luminance masking, contrast masking, error pooling, and selectable quality. The strategyis to develop a very
simple modelof perceptual error, based upon DCTcoefficients, andtoiteratively estimate the quantization
matrix which yields a designated perceptualerror.

4, LUMINANCE MASKING

Detection threshold for a luminancepattern typically depends upon the mean luminanceofthe local image
region:the brighter the background, the higher the luminance threshold 8,9 This is usually called "light
adaptation,” but here wecallit “luminance masking" to emphasize the similarity to contrast masking, discussed in
the next section.

Toillustrate this effect, the solidlines in Fig. 1 plot values of the formula for f, provided by Ahumada and
Peterson! as a function of the mean luminanceofthe block, assuming that the maximum display luminanceis 100
cd m2 and thatthe greyscale resolution is 8 bits. The three curves areforfive representative frequencies. These

SPIE Vol. 1913 / 203

HUAWEI EX.1016 - 433/714



HUAWEI EX. 1016 - 434/714

curvesillustrate that variations by as much as 0.5 log unit in ¢, might be expected to occur within an image, <
variations in the mean luminanceof the block.

LogT 
0 20 40 60 80 100

L (cd/m*2)

Figure 1. Log of f, as a function of luminanceL of the block. From the top, the curves are for frequenciesof {7
{0,7}, {0,0}, {0,3}, and {0,1}. The maximum display luminance is assumed to be 100 cd m2, The dashed
curves are the powerfunction approximation described in the text.

The effect of mean luminance upon the DCTthresholds is complex, involving both vertical and horizonte
shifts of the contrast sensitivity function. We can compute a luminance-masked threshold matrix for each bloc
either of two ways. Thefirst is to make use of a formula suchas that supplied by Ahumada and Peterson L

tin = apt, j, Lo Coon /o0]

where Cy), is the DC coefficient of the DCT for block k., Lg is the mean luminanceof the display, and Cog is the
coefficient corresponding to Lg (1024 for an 8 bit image). This solution is as complete and accurate as the
underlying formula, but may be rather expensive to compute. For example, in the Mathematica language, usin
compiled function, and running on a SUN Sparc2,it takes about 1 second per block.

A second, simpler solution is to approximate the dependenceof f,upon Cop, with a power function:

tije = ty(Cook/E00)”

Theinitial calculation of t,,should be made assuming a display luminance of Lg The parameter a; takes
namefrom the corresponding parameter in the formula of Anumadaand Peterson, wherein they suggest a va
of 0.649. Note that luminance masking may be suppressed by setting @,=0. More generally, a-controls the
degree to which this masking occurs. Note also that the power function makesit easy to incorporate a non-un
display Gamma, by multiplying a, by the Gamma exponent (see Section 10.2).
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As illustrated by the dashed linesin Fig. 1, this power function approximation is accurate over an upper

range of luminances (for the parametersin Fig. 1, above about 10 cd m7). Except for very dark sections of an
image, this range should be adequate. The discrepancy is also greatest at the lowest frequencies, especially the DC
term. This could be corrected by adopting a matrix of exponents, one for each frequency. But note that the
discrepancy isa conservative one, thatis the threshold changes less with block luminance than the modelcalls
for. This maynotbe a bad thing,especially at DC, wherethe validity of the model maybeleast.

5. CONTRAST MASKING

Contrast masking refers to the reduction in the visibility of one image component by the presence of another.
This masking is strongest when both componentsare of the samespatial frequency, orientation, and location.
Here we consider only masking within a block and a particular DCT coefficient(It is possible to extend these
ideas to masking between DCTcoefficients, and across DCTblocks). We employ a modelof visual maskingthat
has been widely used in vision models, based on seminal work by Legge and Foley “~’ 11, Given a DCT coefficient
Ci and a corresponding absolute threshold f,, our maskingrule states that the maskedthreshold m,, will be

Wy 1-w,ye
where w;; is an exponentthat lies between 0 and 1, Because the exponent maydiffer for each frequency, we

allow a matrix of exponents equalin size to the DCT. Note that when wj =0, no masking occurs, and the
thresholdis constantat t,,. When wjj = 1, we have whatis usually called "Weber Law" behavior, and threshold
is constant in log or percentage terms(for C,,>f,,). The function is pictured for a typical empirical value of wjj=
0.7 in Fig. 2.

(7)

 Mi, = Maxfp , ist

My, 10
Crp

Figure 2. Contrast masking function, describing the masked threshold mj, asa function of DCT coefficient ¢,, ,
for parameters W;j=0.7, fig, = 2. _

Becausetheeffect of the DC coefficient upon thresholds has already been expressed by luminance masking,
we specifically exclude the DC term from the contrast masking, by setting the value of Wo) = Q. It is interesting
that while contrast masking is assumed to be independentfrom coefficientto coefficient (frequency to frequency),
in the case of luminance masking the DC frequencyaffects all other frequencies.

Figure 3 shows the maskedsensitivity (mil) for the Lena image. Note that the dark strip in the upperright
results in generally higher sensitivity due to luminance masking (un-masking, perhaps we shouldsay).
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Figure 3. The Lena ima

cells would be identical and would looklige andits maskedsensitivity DCT ( mig) for W=0.7 and a,=0.649. If Wy=0 and a,=0,ke the inset (2 f;).

6. PERCEPTUAL ERROR AND JUST-NOTICEABLE-DIFFERENCES
In vision science, we often express the magnitude of a signalin multiples of the thresholdThesethreshold units are often called “just-noticeable differences," for that signal.

M,,, the error DCT maytherefore be or jnd's. Having computed a masked thresho.
expressedin jnd's as

Aji = ijk / Mik
(8

Each value of d,, is an error ina particular frequency and block, expressed as a proportion of the just-detectable errorin that frequency andblock. Thusall the errors are now in the "commoncoin" of perceptualerro:
7. SPATIAL ERROR POOLING

To poolthe errorsin the jnd DCT we employanother standard feature of currentvision models: the so-callecB-norm (or Minkowski metric). It often arises from an atte
mpt to combinethe separate probabilities that€ seen, in the scheme known as “probability summation” 12, 13,14 | Wepoolthe jnds foraparticular frequency {ij} over all blocks kas

8 VB,
Py= Edie , (9)k

Different values of the exponent B, implementdifferent types or degrees of pooling. When B; =1, thepoolingis linear summation of absolute values. When f, =2, the errors combine quadratically, in an RMS orstandard deviation type measure. When s = (in practice, a large numbersuch as 100 will do), the pooling rulebecomes a maximum-of operation:only the largest error ma tters. In psychophysical experiments that examine
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summation among sinusoidal components of differing frequency, a Bs of about 4 has been observed 15, 16, 17,
The exponent fi, is given here as a scalar, but may be made a matrix equalin size to the QM to allow differing

ooling behaviorfor different DCT frequencies. This matrix p,of "pooled jnds" is now a simple measureof the
visibility of artifacts within each of the frequency bands definedby the DCTbasis functions.I call it the
“perceptual error matrix."

8. FREQUENCY ERROR POOLING

This perceptualerror matrix p, mayitself be of valuein revealing the frequencies that result in the greatest
ooled error for a particular image and quantization matrix. But to optimize the matrix we would like a single-

valued perceptualerror metric. We obtain this by combining the elements in the perceptual error matrix, using a
Minkowski metric with a possibly different exponent, Bf

YB,

P=| ¥pyPr . (10)
ij

It is now straightforward,at least conceptually, to optimize the quantization matrix to obtain minimum bit-
rate for a given P, or minimum P fora givenbitrate. In practice, however, a solution may be difficult to compute.
Butif 8fr then P is given by the maximumof the p,. Underthis condition minimum bit-rate for a given
P= is achieved when all p= Y. Intuitively, if the maximum of the p,equals y, each of the others might as
well be increased to ¥/, since that will not increase P, but will decreasebit-rate. .

Recall that each entry in the matrix p,; corresponds(atleast monotonically) with the visibility of a particular
class of artifact: that of the corresponding frequency (basis function). This strategy of equating all p,to y thus
also has the effect of equating the visibilities of each of these classesof error.

Whileit is likely that the true value of B'f is nearer to By (approximately 4), it also seemslikely that this
more accurate value will not greatly alter the outcomeof the optimization and will not be worth the substantial
increase in computational effort.

8. OPTIMIZATION METHOD

Under the assumption f ¢=©°,the joint optimization of the quantization matrix reduces to the vastly simpler
separate optimization of the individual elementsof the matrix. Each entry of the perceptual error matrix DP, may
be considered an independentfunction of the corresponding entry 4, of the quantization matrix

Py = f(y) (11)
This function is monotonically increasing and

fyQ)=0 V if. (12)

Weseek a particular 4, such that

fyl@g)=v Vis - (13)
Ofcourse, in some cases no amountof quantization will yield a value as large as thetarget y (for example,if

all coefficients are quantized to 0, but the error remains below Y). For those cases weare contentto set q, to an
arbitrary maximum,suchas 255(the largest quantization table entry permitted in the JPEG baseline standard).
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In a practical implementation,a rapid method of estimating qiis required. Here we have used a bisection
methodthat, while slow, is guaranteedto find a solution. A range is established for q,, between lower and upp
bounds of qj and qi (typically {1,255}). p,is evaluated at the midpointof the range,

.=R = .Vij ound (qij + aa) Ql
If py< W, then dui = ,, otherwise, aii = 4, This procedureis repeated until q, no longer changes. Aspractical matter, since M's in baseline JPEG areeightbit integers, this degree of accuracyis obtained in n=9

iterations from a starting range of 255 .

In the following examples, unless otherwise stated, the parameter values used were a; = 0.649, B =4,0.7, display mean luminance Lo= 65 cd m2, image greylevels = 256, Too = 1024. The viewing distance was
assumedto yeild 32 pixels/degree. Fora 256 by 256 pixel image,this correspondsto a viewing distance if 7.118
picture heights. The "JPEG bit rate" is calculated by computing the code size for AC and DC coefficients using tdefault JPEG Huffman tables. It does not include the overhead composed of quantization tables, Huffman tabk
marker codes,etc. because this overhead is not image dependent and depends on coding decisions made byth
application (e.g. use of restart intervals). If it had been included it would increase the bit rate for a 256 by 256
image by about 0.038bits/pixel.

Several steps in the iterative estimation of Gi are illustrated in Fig. 4. Successive steps show further
refinementin 4,,, and a progressively more uniform matrix p,.Onstep 1, qj = 255, V i,j.On this step th
perceptual error matrix showsgreatest error at low spatial frequencies.
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trial 1 Dbit/pix = 0.2168 Max(p-psi] = Null

 
&

trial 2 bit/pix = 0.418 lMax[p-psi] = 4.419

 
trial 3 bit/pix = 0.9398 [Max[p-psi] = 1.941

 
triel 10 bit/pix = 1.703 Max[p-psi] = 0.122

 
Figure4. Iterative estimation of the custom quantization matrix Gi. The three panels in each row show

quantization matrix q,, the reconstructed imageusing qj, and the perceptualerror matrix p,. The
labels indicate the iterationtrial, the current JPEG bit-rate, and the maximum difference between Pi and
Y (discounting those for which the maximumerroris always less than YW). The image was {64,64}, target
ywas 1. For qj and Pj, the DC coefficientis at the lowerleft corner. -

Figure 5 shows the Lena image 18 compressed to various values of perceptual error Wf = {1, 2, 4, 8}. The
value of y=1produces an essentially "perceptually lossless" compression*”underthe prescribed viewing
conditions (mean luminance = 65 cd m”“, 32 pixels/deg.
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Figure 5. The Lena image compressed using custom matrices designed for perceptualerrorlevels( y) of 1,2, 4,

and 8. Correspondingbit rates were 2.28, 1.47, 0.72, 0.24. The original image had dimensions of {256,256}.

It is interesting to comparethe image-independentquantization matrix to the custom matrix for various
quality levels. This is shown in Table 1, where wegive theratio of image-dependent and independent matrices,
for two quality levels of 1 and 4. Elements that have been set to the maximumof 255 are indicated by zeros. Note
that image dependence doesalter the structure of the matrix, and that changesin quality (as defined here) do not
yield a constantscaling of the basic matrix.
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Table 1. Ratio of image-dependent and independent quantization matrices for the Lena image at quality levels of

1 (top) and 4 (bottom). This ratio is equal to q,/2t, . Empty cells indicate that the image-dependent
matrix had a value of 255 (the maximum allowed).

9, OPTIMIZING QM FOR A GIVEN BIT-RATE

It is of interest to relate the JPEG bit-rate to the perceptualerror level y/. This is shown for the Lena and
Mandrill imagesin Fig. 6. This is a sort of inverse "rate-distortion" function. Note that useful bit-rates below 2
bits/pixel yield perceptual errors above about2.

bits/pixel 
Perceptual Error

Figure 6. JPEG bit-rate versus perceptual error y for the Lena (lower curve) and Mandrill (upper curve) images.
Thelines are second order polynomial interpolations.
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The method described aboveyields a QM with a specified perceptual error Y’. However, one may desire a
OMthatyields a given bit rate Ao with minimum perceptual error y. This can be done iteratively by noting that
the bitrate is a decreasing function of y, as shownin Fig. 6. In ourcurrent implementation, we use a second
order interpolating polynomialfit to all previous estimated values of (h, w} to estimate the next candidate y,
terminating when | — hol < Ah, where Ahis the desired accuracy in bit-rate. On each iteration, a complete
estimation of qi is performed. There are no doubt more rapid methods.

The most meaningful contest between IDP and IIP approachesis to compare images compressed by the two
methodsto a constantbit rate. Furthermore, the bit rate must be low enoughthat the poorer method shows
visible artifacts, else both will appearperfect. Figures 7 and 8 provide such comparisons. The IDP methodis
visibly superior, evenin relatively low-quality printed renditions.  

jqi
gi
s
E 

 
Figure 7. IP (left) and IDP (right) compressions at 0.25 bits/ pixel (top row) and 0.5 bits /pixel (bottom row).
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y

 
Figure 8. IIP (left) and IDP (right) compressionsat0.25 bits/pixel (top row) and 0.5 bits/pixel (bottom row).

10. EXTENSIONS AND FUTURE RESEARCH

10.1 Estimation of t, wy, By. ar

The method described here depends uponestimates of the matrices f,and w,;, and the parameters B, and
ay. Estimates of t,,may be obtained directly from psychophysical experiments that measuredetection thresholds
for individual DCTbasis functions ! * ©. We are devising experiments, adapted from the methods of Legge and
Foley !0!1 to directly estimate w,,- In these experiments detection thresholds are measured for an increment(or
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decrement) in the amplitude of a DCT basis function. Estimation of f, is more difficult. Several values of J, in
the rangeof 1-100 could be evaluated for the degree to which they yield a plausible perceptualerror metric p,;. In
addition, a matrix of values of 8, might be warranted, with different degrees of spatial pooling at each DCT
frequency.

10.2 Gamma Functions

Remarkably, the JPEG specification makes no statement regardingthe relation between pixel values and
displayed luminance. While one can understandtheir reluctance to imposeconstraints upon JPEG applications,it
should be understoodthat ultimate visual quality dependon this relation. The "de facto" assumption appears to
be thatpixel values will be applied directly to the display subsystem, which typically has a non-linear relation
betweengreylevel and luminance, often known as a "gamma function"thatis approximately a power function
with an exponent(gamma) of about 2.3. The assumption presumablyalsois that variations in this function from
system to system are not so greatas to seriously degrade visual quality.

In an ideal system, one would specify both the gammafunction of image capture, and ofthe target display.
Image data would be transformed to luminancebefore compression, andafter reconstruction,to values that
would result in luminance onthe display. Unfortunately, we cannot add descriptors of these gamma functions to
the existing JPEG specification, so we must be content with the "de facto” assumption.

Since the preceding calculations have treated pixel values as proportionalto luminance (gamma=1), under
the "de facto” assumption, we should subject the image data to inverse and forward gammatransformations
before coding and after decoding, respectively. The present approach, which does no such transformations, relies
on the approximatelinearity of the gamma function near the middle ofits range, and on the inclusion of the
display gammainto the luminance masking function as discussed in Section 4. This subject will be examinedin
future research.

10.3 Color Images

The Image-DependentPerceptual approach has been described here only with respectto coding of
monochrome images. The principles, however, are easily extended to color images. The simplest approach is to
measure or compute a unique f,,for each of the three color channels”, and from them compute three custom
quantization matrices. The matter may be complicated by different masking and pooling properties in thechromatic channels than in the luminance channel. But since color consumes so small a part of the totalbit-rate,
these details are notlikely to becriticalin practical applications.

11, SUMMARY

have shown how to compute a visually optimal quantization matrix for a given image. These image-
dependent quantization matrices producebetter results than image independentmatrices. The algorithm can be
easily incorporated into JPEG compliantapplications.

In a practical sense, the IDP method proposed here solves two problems. Thefirst is to provide maximum
visual quality for a given bit rate. The second problem it solvesis to provide the user with a sensible and
meaningful quality scale for JPEG compression. Without such a scale, each image mustbe repeatedly compressed,
reconstructed, and evaluated by eyeto find the desired level of visual quality.

However,at present,it is admittedly only a conjecture thatthis scale relates in a direct way to perceived
visual quality. While I am confident thatit relates more directly to quality than does the ad hoc "quality factor” of
some JPEG implementations, to demonstrate a robust relation between computed perceptualerror and perceived
quality will require subjective judgments,both over different bit rates and different images.
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From the standpoint of computational complexity, this algorithm adds only a modest amountto the costof
JPEG image compression.All optimization takes place in the DCT domain,so no additional forward orinverse
DCT's are required. The DCT maskis computed only once, and consists of a few calculations on each DCTpixel.
The estimation of the quantization matrix requires a maximum of ten (and probably many fewer) iterations, each
of which consists of a modest numberof simple operations on each DCTpixel. It is certainly a smaller burden
than requiring the user to repeatedly compress, reconstruct, and visually assess the result.

12, NOTATION

Cik DCTof an image
qij quantization matrix
uijk quantized DCT
Cijk DCTerror

ty DCTthreshold matrix (based on global mean luminance)
apli,j,£, px, PY...) threshold formula of Ahumadaand Peterson?
Lik DCTthreshold matrix (based on local mean luminance c,,,)
ar luminance masking exponent
Wij contrast masking exponent (Weber exponent)
My mask DCT

dix jnd DCT
Py perceptualerror matrix
Bs spatial error-pooling exponent
P total perceptual error
f frequency error-pooling exponent

Cor DC coefficient in block k

Lo mean luminance of the display
Coo Average DC coefficient, corresponding to [y (typically 1024)
y target total perceptual error value
Gi estimated quantization matrix yielding target perceptual error

13. ACKNOWLEDGMENTS

I thank Albert J. Anumada,Jr. and Heidi A. Peterson for valuable discussions. This work was supported by
NASA RTOPs 506-59-65 and 505-64-53.

14. REFERENCES

1. A. J. AhumadaJr. and H.A. Peterson. “Luminance-Model-Based DCT Quantization for Color Image
Compression," in Human Vision, Visual Processing, and Digital Display ILI, B. E. Rogowitz, ed. (Proceedingsof the
SPIE, 1992).

2. HA.Peterson, A. J. AnumadaJr. and A. B. Watson. "The Visibility of DCT Quantization Noise," SID Digest
of Technical Papers, in press (1993).

3. G. Wallace. "The JPEGstill picture compression standard," Communications of the ACM.34(4), 30-44
(1991).

SPIE Vol. 1913/2195

 
HUAWEI EX.1016 - 445/714



HUAWEI EX. 1016 - 446/714

Andrew B. Watson,

. W. B. Pennebaker and J. L. Mitchell. JPEGStill image data compression standard (Van Nostrand Reinhold,
New York, 1993).5. HL.A.Peterson. "DCT basis function visibility in RGB space," in Societyfor Information Display Digest of TechnicalPapers,J. Morreale, ed. (Society for Information Display, Playa del Rey, CA, 1992).
6.  H.A. Peterson, H.Peng, J. H. Morgan and W.B. Pennebaker. "Quantization of color image components inthe DCT domain,". Human Vision, Visual Processing, and Digital Display. Proc. SPIE. 1453: 210-222, 1991.
7, HA.Peterson, A.J. AhumadaJr. and A. B. Watson. "An improved detection model for DCTcoefficient
quantization,” SPIE Proceedings. 1913 (In press), (1993).8, FL. van Nes and M. A. Bouman. "Spatial modulation transfer in the human eye," Journalof the Optical
Society of America. 57, 401-406 (1967).9,  H.B. Barlow. "Dark and light adaptation: Psychophysics,” in Handbook of Sensory Physiology, L. Hurvich and
D.Jameson, ed. (Springer-Verlag, New York, 1972).
10. G.E. Legge andJ. M. Foley- "Contrast masking in human vision," Journalof the Optical Society of America.
70(12), 1458-1471 (1980).
11. GE. Legge "A powerlaw for contrast discrimination," Vision Research. 21, 457-467 (1981).
42. N. Graham. “Visual detection of aperiodic spatial stimuli by probability summation among narrowband
detectors,” Vision Research. 17, 37-652 (1977 ).
43, J. G. Robson and N. Graham. “probability summation andregional variation in contrast sensitivity across
the visualfield," Vision Research. 21, 409-418 (1981).
14. A.B. Watson. “Probability summation over time," Vision Research. 19, 515-522 (1979).
15. N.Graham andJ. Nachmias. "Detection of grating patterns containing two spatial frequencies: acomparison of single-channel and multiple-channel models,” Vision Research. 11, 251-259 (1971 ).
16. N. Graham,J. G. Robson andJ. Nachmias. “Grating summation in fovea and periphery," Vision Research.
18, 815-825 (1978).17. A.B. Watson and J. Nachmias. "Summation of asynchronous gratings," Vision Research. 20, 91-94 (1980).
18. A. Weber.Image data base ( USCIPI Report 1070 ) (Image Processing Institute, University of Southern
California, Los Angeles, CA, 1983).
19, A.B. Watson. "Receptive fields and visual representations,” SPIE Proceedings. 4077, 190-197 (1989).

216 / SPIE Vol. 1913

HUAWEI EX.1016 - 446/714



HUAWEI EX. 1016 - 447/714

DCT BASIS FUNCTIONVISIBILITY:

EFFECTS OF VIEWING DISTANCE AND CONTRAST MASKING

Andrew B. Watson JoshuaA. Solomon Albert Ahumada

MS 262-2, NASA AmesResearch Center, Moffett Field, CA 94035-1000
beau @vision.arc.nasa.gov al@vision.arc.nasa.gov jsolomon@vision.arc.nasa.gov

Alan Gale

San Jose State University

ABSTRACT

Several recent image compression standards rely upon the Discrete Cosine Transform (DCT). Models of DCT basis
function visibility can be used to design quantization matrices for arbitrary viewing conditions and images. Here we report new
results on the effects of viewing distance and contrast masking on basis function visibility. We measured contrast detection
thresholds for DCTbasis functions at viewing distances yielding 16, 32, and 64 pixels/degree. Our detection model has been
elaborated to incorporate the observed effects. We have also measured detection thresholds for individual basis functions when
superimposed upon anotherbasis function of the sameora different frequency. Wefind considerable masking between nearby
DCTfrequencies. A model for these masking effects will also be presented.

1. INTRODUCTION

The JPEG, MPEG,and CCITT H.261 image compression standards, and several proposed HDTV schemes employ the
Discrete Cosine Transform (DCT)as a basic mechanism 1,2, Typically the DCTis applied to 8 by 8 pixel blocks, followed by
uniform quantization of the DCTcoefficient matrix. The quantization bin-widths for the various coefficients are specified by a
quantization matrix (QM). The QMis not defined by the standards,but is supplied by the user and stored or transmitted with
the compressed images.

Theprinciple that should guide the design of a QMis that it provide optimum visual quality for a given bit rate. QM
design thus depends upon the visibility of quantization errors at the various DCT frequencies. In recent papers>* 4 Peterson et
al. have provided measurements of threshold amplitudes for DCT basis functions at one viewing distance and several mean
luminances. Ahumadaand Peterson > have devised a modelthat generalizes these measurements to other luminances and
viewing distances, and Petersonetal. © have extended this modelto deal with color images. From this model, a matrix can be
computed which will insure thatall quantization errors are below threshold. Watson T has shown how this model may be used to
optimize the quantization matrix for an individual image.

2. EFFECTS OF DISPLAY RESOLUTION

Visual resolution of the display (in pixels/degree of visual angle) may be expected to have a strong effect upon the
visibility of DCT basis functions, and wetherefore collected data to documentthis effect and to validate and enhance the model.
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 2.1 Practical Pixel Sizes

Visual resolution of the display (in pixels/degree of visual angle) is determined by display resolution (in pixels/cem) and
viewing distance (in cm), according to the formula

(pixels/degree) = (pixels/cm)/ cot"! [distance]

In the viewingsituations for which block-DCT compression is contemplated,there are limits to the practical range of
visual resolutions. At the high end, display resolution will be wasted on spatial frequencies whichare notvisible to the human
eye. The limit of human spatial resolution is about 60 cycles/degree, Nyquist sampling of this frequency would require 120
pixels/degree. This corresponds to 300 dpi printing viewed at a distance of about 23 inches. At the low end, the pixel raster
becomesvisible. In these experiments, we have examined three viewing distances, 16, 32, and 64 pixels/degree, that spana
large part of the range of useful viewing distances.

2.2 Methods  
Detection thresholds for single basis functions were measured by a two-alternative, forced-choice method. Eachtrial

consisted of two timeintervals, within one of whichthe stimulus appeared, The stimulus was a single DCT basis function,
addedto the uniform gray background that remained throughout the experiment. Background luminance was 40 cd m~, and
frame rate was 60 Hz. Observers viewed the display screen from distances of 48.7, 97.4, 194.8 cm. Display resolution was
37.65 pixels/cm. Images were magnified by two in each dimension,by pixel replication, to reduce monitor bandwidth
limitations, resulting in magnified pixel sizes of 1/16, 1/32, and 1/64 of a degree, respectively at the three viewing distances
(basis functions were 1/2, 1/4, and 1/8 degree in width). We describe these three viewing distances as yielding effective visual
resolutions of 16, 32, and 64 (magnified) pixels/degree.

During presentation, the luminance contrast of the stimulus was a Gaussian function of time, with a duration of 32
frames (0.53 sec) between e™ points. The peak contrast on eachtrial was determined by an adaptive QUEST procedure 8
which convergedto the contrast yielding 82% correct. After completion of 64 trials, thresholds were estimated byfitting a
Weibull psychometric function 9. Thresholds are expressed as contrast (peak luminance, less mean luminance, divided by mean
luminance), converted to decibel sensitivities (-20 logjo[threshold])

To reduce the burden of data collection, we measured thresholds for only 30 of the possible 64 basis functions, as
indicated in Fig. 1. To the extent that thresholds change slowly as a function of DCT frequency, this sampling constrains our
model sufficiently.

oOFFNNWwWPRUH~1 
0123 45 67

Figure 1. Subset of DCT frequencies used in the experiment.

To date, two data sets have beencollected at the low resolution, five at the middle resolution, and one at the highest
resolution, as shown in Table 1.
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resolution

(pixels/degree)

0 30 0 30 0
7 30-60 30 30
0 30 0 2 0

Table 1. Thresholds collected for each observer and viewing distance.

 
 

2.3 Model of DCT Contrast Sensitivity

The model of DCT contrast sensitivity that we consider here is essentially that described by Petersonetal. © In that
model, log sensitivity versus log frequency is a parabola, whose peak value, peak location, and width vary with mean
luminance.In addition, sensitivity at oblique frequencies ({ u#0,v#0}) is reduced by a factor that is attributed to the orientation
tuning of visual channels. The parameters of significance here are sg (peak sensitivity), fO (peak DCT frequency at high
luminances), and kg (inverse of the latus rectum of the parabola), and r (the orientation effect).

2.4 Results

Figures 2, 3, and 4 show decibel contrast sensitivities for the three viewing distances, along with curves showing the
predictions ofthe bestfitting version of the model. Within each figure, the three panels show data for horizontal frequencies [x,
0}, vertical frequencies degree orientations {u, v=u}, and the remaining obliques {u>0, 0<v#u},all plotted against the
radial frequency f = u> +" . In the caseofthe obliques, because there is no simple one-dimensionalprediction to plot, we
plot instead the actual sensitivity minus that predicted by the model. Theseplots, and thefits, do not include the thresholds at
{0,0} (DC), which are reserved for a separate discussion. The data at 64 pixels/degree also omit 3 thresholds at very high
frequencies which we suspectto be artifactual.

Vertical Horizontal

 
2 4 6 8 10 2 4 6 8 10

45 Degree Oblique Errors

 
Figure 2. DCT basis functionsensitivities at 16 pixels/degree.
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Vertical Horizontal

 
2 4 6 8 10 2 4 6 8 10

45 Degree Oblique Errors

 
2 4 6 8 10

Figure 3. DCTbasis function sensitivities at 32 pixels/degree.
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Figure 4. DCTbasis function sensitivities at 64 pixels/degree.
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Thefits are reasonable, though there appear to be some systematic departures from the model. For reference, the RMS
error of the raw data at the middle distanceis 2.03 decibels, while the RMSerrorofthe fit in Fig.s 2-4 is 2.94 decibels. The
estimated parameters are shown in Table 2.

 
 16 32

56
64

7 29.84

 

 
 

 

Table 2. Estimated model parameters.

The parameters JO, kO, andr (related to peak frequency, bandwidth, and orientation effects) are equated forall
resolutions, while a separate value of sO (peak contrastsensitivity) is estimated for each ofthe three resolutions. The behavior of
this parameteris worth considering. Between 64 and 32 pixels/degree,it increases by a factor of 1.88. Between these two
resolutions, the basis functions increase in size by a factor of two in cach dimension. Thusif sensitivity increased linearly with
area (as it should for very small targets 10, 11, 12) we would expect an increaseofa factor of4. If sensitivity increased due only
to spatial probability summation 13!4, we would expect a factor of about 41/4 = 1.414. Thusthe obtained effect is nearer to that
expected of probability summation. At the closest viewing distance, despite a further magnification by 2, the parameter s0
actual declines. While we would expect a smaller effect of size at the largest sizes, this decline is unexpected and may be due to
1) the relatively poorfit at this resolution, and 2) aspects of visual sensitivity which are not yet captured by the model.

2.5 DC Sensitivities

Figure 5 showsthesensitivities for DC basis functions at the three visual resolutions.

Sensitivity(dB) w oO 28

26

24

22 -

20 20 30 40 50 60 70
pixels/degree

Figure 5. DC basis function sensitivities as.a function of display visual resolution. Error bars of plus and minus one standard
deviation are shown when multiple measurements were available. Forclarity, points with errorbars are labeled on theleft, those

without, on the right. Theline indicates the parameter sO from Table 2.
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_Ahumadaetal. > 6proposed as.a working hypothesis that DC sensitivity is given by the peak sensitivity sO. This
prediction is given bythe line: drawnin Fig. 5. It capturés some of the variation in the DC sensitivities, but further data will be
needed to adequately-test this model. Thepoints in Fig. 5 at a resolution of 16 pixels/degree and-labeled-with the suffix "-
were obtainedbypixel-replication atthe middle viewing distance, rather than use of the near distance. Their enhanced
sensitivity suggests that viewing distance per se may havean effect,,even when visual resolution isheld constant. The
substantial variability of DC thresholds at the highest resolution may be die to differénces.in accommodation between
observers.

2.6 Discussion

Wehave examined the variation in visibility of single DCT basis functions as.a.function of display visual resolution.
We have shownthat the existing.model > 6 secommodates resolutions of 16, 32, and 64 pixels/degree,provided that one
paratneter, the peaksensitivity. sO,is allowedto vary. Variations in this parameter are to some extent consistent with spatial
summation,although sensitivity is lowerat the lowestresolution than summation would predict.

Practical DCT quantization matrices must take into account both the visibility of single basis functions,and the spatial

pooling ofartifacts fromblock to block, Elsewhere we haveshownthatto afirst approximation this pooling is consistent with
probability summation!5. If we consider two images of equivalent size in degrees, butvisual resolutionsdiffering by a factor of
two, then the sensitivity to individual artifacts would be lower'by 41/4 in the higher resolution image due to-the smaller block
size in.degrees, but higher by 41/4in the same image dueto the greatér nuinberof blocks. Thus the same matrix should be used
with both. The point-ofthis exampleis that the overall gain of the best quantization matrix musttake into account both display
resolution and.imagesize.

3,EFFECTS OF CONTRAST MASKING

3.1 Contrast masking —

Watson’rioted.several image-dependent factors influencing the detectability of DCTbasis functions and showed how
to compute custom QMsfor given images,in accord with thesefactors. One image-dependentfactor influencing the
detectability of DCT basis functionsis contrast masking. Typically, sensitivity to quantization error, in a particular DCT

coefficient, decreases with the magnitude¢of that coefficient... Watson's quantization scheme relies onthe following model
(based-on work-by Legge and Foley 16 17) for contrast masking: given a DCT coefficient cp and a corresponding absolute
threshold Zp, the masked threshold Mey will be

wr
r

where Wy is an exponentthatlies between O.and 1. In the sequel, we will refer to this model as Model 1 In Model.1,
sensitivity to a particular coefficient's quantization erroris independentof the magnitudesofall the other coefficients (except
the DC). Here we present data whichindicate that sensitivity to a particular coefficient's quantization error is affected by the

magnitudes ofother coefficients. Wepropose a revision of Model 1 to accountfor between-coefficient contrast masking.

—_ he — Mp = by Max{ I, ee

3.2 Methods

General methods werethe sameasin the earlier experiments (Section 2.2). Each stimulus was the sum ofa test basis
function and a mask basis function, added to the mean luminance of the display. The contrast of the mask remained constant
throughout a block of 64 trials; while the contrast of the test was varied using the Quest procedure® to determine the threshold
for the test in the presence ofthe mask. Effective visual resolution was 32 pixels/degree,so that each stimulus subtended 0.25
degrees by 0.25 degrees. ,
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Masked thresholds Mey for four test DCT frequencies were measured as a function ofmasking contrast for three
‘different mask frequencies. Thetests frequencies 'T_ were {0,0}, {0,1}, {0,3} and {0,7}. Theselast threealso served as the
masks. Additionally, {131} and {1,0} were used.to mask { 0,1}; and {2,2} was used to mask{0,3}. Un-masked threshold
twas also determined for eachtest. Theoretically, DCTcoefficients can assume any realvalue.’ In the current study we use
coefficients Cy;, such that 0:<.¢, <1: A coefficient with value i fully. utilizes the dynamic rangeofthe display. For nearly
every tes/mask combination, six masking contrasts were used. Here we express these contrasts in decibels
(dB[ey] =20° logig[cu ]}): -36, -30, -24,-18,-12 and-6. Because é7 is so high, whenthisbasis function served to mask
others, only the four greatestmasking contrasts were used. Test and mask frequencies were fixed within a block of trials, and
frequency combinations were nin in a randomized fashion, The second author (jas) was the only observer in these experiments.
3.3 Results and Discussion

The results are plotted in-Figs..6 and 7.

T={0, 0};M=[0, 1} T=(0, 1},M=(0, 1}. T=(0, 3},M={0, 1} T={0, 7},M=(0, 1}
0 O 0 0

-10 -10 “10 -10
-20 20 -20 -20

-40 40! | -40) p40
-40 -30 -20-10 0-40 -30 -20 -10 0 40. -80 -20 =10 0 -40 -30 -20 -10 0

T=(0, 0},M={0, 3) | T=(0, 1},M={0, 3} _ T=(0, 3},M={0, 3} T=(0, 7},M={0, 3}
0 0 0, 0

10 ~10 10 10

20 20 20 20

30 30 an -30 -30 ine|-40 -40 -40 i
-40 -30 -20-10 0-40-80 -20-10 0 40-80-2010 0  -40 G0 BO AO 0

0 T=(0, 0},M=(0, 7} 5 T=(0, 1};M={0, 7} PF T={0, 3},M={0, 7}. 0 T={0,-7},M=(0, 7}
-10 -10 “10 -10

-20) -20 -20 -20 7

-30 -30 -30 30

-40 -40, -40 -40 ;-40 -30 -20:-10..0 -40 -30 -20 -10:.0 -40 -30 -20 -10 0 -40 -30 -20 -10 -0

Fig. 6. Masked thresholds ( dB[mr ]) forfour test basis functions are plotted as a function of masking contrast ( Blcy }) for
three different masks. Unmasked thresholds (dBty ]) for thetest basis functions are plotted onthe ordinates. The dashed and

solid lines are the predictions of Models | and 2, respectively, as described in thetext.
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T={0, 1},M=(1, 1} T=(0, 1},M={1, 0} T=(0, 3},M=(2, 2}
0 0 0

-10 -10 -10

-20 -20 -20 :

-40 -40 -40 |
-40 -30 -20 -10 0 -40 -30 -20 -10 0 -40 -30 -20 -10 0 i

i
Fig. 7. Masked thresholds for test {0,1} as a function of masking contrast for the masks {1,1} and {1,0}, and fortest {0,3} as a

function of masking contrast for the mask {2,2}.

3.3.1 The dipper effect
Data gathered with the {0,1}/{0,1} test/mask combination at masking contrasts of -36 and -30 dB have been omitted

from further analysis. Similarly, we have omitted the {0,3}/(0,3} data at -36 and -30 dB. These data appear as short vertical j
line segments in Fig. 6. Measured thresholds for these four viewing conditions fall well below their corresponding unmasked
thresholds. These data demonstrate the "dippereffect," a well-documented phenomenon wherein a low contrast grating
increases the detectability of a grating of the same frequency and phase?® 18,19 ‘These data have been omitted becauseit is not
clear that the dipper effect comes into play for natural images. For images composed of more than one 8x8 pixel block, DCT
basis functions can appear as gratings (uniform values)or noise (random values; with a quantifiable variance) or anything in
between. The dipper effect would appear if both test and mask were gratings. However, there is no indication that it would
appear otherwise. The influence of a particular DCT coefficient on the detectability of quantization errors in natural imagesis
similar in conceptto the influence of a grating on the detectability of random visual noise. No dipper effect is expected in such
a paradigm. Since we ultimately wish to model the detectability of quantization error in natural images, we believe that the
exclusion of the "dipper data" will benefit our initial approximations.

3.3.2 Model 1

Model 1 was fit to the data. Model 1 does not include between-coefficient contrast masking. Consequently, for any
given test basis function,its prediction for masked threshold is the same constant function of masking contrast for every mask
having a non-zero coefficient at a different DCT index thanthe test. By setting all of the 7,s in Eq. 1. equal toa single
parameter w, the total variance (on a log scale) from the model increased by less than 0.3%. Hereafter, when we refer to Model
1, we mean specifically: Given a test DCT basis function Gp, its corresponding absolute threshold ft, and a mask DCTbasis
function Cy, the masked threshold 772, will be

 
 

tr Max(1 (cu ity)” | for T=M ) (2)
ty otherwise

where 0 Sw S1 . Bestfitting (method ofleast squares) values for w and ¢,, as determined for Model1, are given in Table 3.
For comparison, we have also analyzed a Model 0 whichpredicts no contrast masking, ie. Mp = t,VT. Bestfitting values
for ty, as determined by Model 0 are also given in Table 3. Model1 reflects the data for the viewing conditions in which the
mask and target were identical more accurately than Model 0 does. However,it cannotreflect the between-coefficietit masking
evident by the increase in measured threshold with masking contrast for the other test/mask combinations.

3.3.3 Model 2

In orderto reflect the between-coefficient masking, we propose the following revision of Model 1, referred to
hereafter as Model 2. Given a test DCT basis function Cy, its corresponding absolute threshold £, and a mask DCTbasis
function Cy the masked threshold 772) will be
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Mey =. bya (raga) } (3)
where w is an exponentthat lies between 0 and 1 and f[T,M] is a positive, frequency-dependent scaling factor, that assumes a
maximum value of 1 when T=M. f[T,M] maybedescribed as a family of tuning functions. Thatis, for any test basis
function Cp, f[T,M]reflects the sensitivity of Cp detection to masksat different frequencies. We have chosento specify these
sensitivity functions with the following one-parameterrule:

f[T,M] = exp] - xT - MI? /c? |, | (4) :

where Gp = ¢ Max{ 1,|| ].. This is a radially symmetric Gaussian sensitivity function with a bandwidth that increases in
proportion to frequency (except at DC). This is analogousto the spatial frequency channels that are believed to underlie the
early stages of human visual processing.

Bestfitting (method of least squares) values for ¢, w and fp, as determined for Model2, are also given in Table 3.
The average variance (squared rmserror on a decibel scale) from Models 0, 1 and 2 is also provided in Table 3. The bestfitting
predictions of Model 2 are also drawn as solid lines in Figs. 6 and 7.

, Parameter Model 0 Model 1 Model 2

 
Average variance from model

Table 3. Residual variance from Models0, 1 and 2.

3.4 Conclusions

With the addition of a single parameter (¢), our Model 1 captures 46% moreof the variance in our data than does
Model0. Incorporating this modification into the current method for computing DCT quantization matrices will yield more
efficient image compression. The estimated value of ¢ indicates a rather broad bandwidth for the masking effect. This may be
due in part to the rather broad bandwidth ofthe basis functions themselves.
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