
The Protocol Bypass Concept for High Speed OSI

Data Transfer

C. M. Woodside*, K. Ravindran** and R. G. Franks*

* Telecommunications Research Institute of Ontario, Dept. of Systems and Computer
Engineering, Carleton University, Ottawa, Canada K1S 5B6
** Dept. of Computer and Information Sciences, Kansas State University, Manhattan
KS 66506

Abstract
A protocol bypass is a fast processing path which is used for some data units, for instance
for large data packets. It can provide conformance with standardized layered protocol
system like OSI, together with some of the performance benefits of a “lightweight” pro-
tocol. The concept is discussed as it applies to the movement of user data by the OSI
transport and session protocols, with some implementation experience, and an outline
for an approach to formally deriving bypass specifications from protocol specifications is
given. This outline uses some steps which must still be proven to be practical. Correct
interleaving of data units from the two paths is a major concern, especially with mul-
tiple asynchronously specified layers. It seems that the difficulty can be overcome and
the concept has promise. In the (rather limited) implementation, bypassing consistently
outperformed parallel processing as a means of performance enhancement.

1 Introduction
The search for generality, flexibility and standardization in communications protocols
has led to the OSI layered system [1],[2] and many offshoots such as MAP [3]. However,
the slowness of execution of the protocol implementations, which is essentially due to the
complex checking of conditions that is done at every operation, is becoming a limiting
factor in some applications. Therefore a new generation of lightweight or high-speed data
transfer protocols is now emerging.

The lightweight protocols exploit the low error rates of many networks, and use larger
packets, reduced options to unclutter the data path, and more efficient methods for
congestion control. They are partly motivated by the high speeds of new fiber-based
networks, partly by high-throughput applications such as file system backups and full
motion video, and partly by performance constraints already being felt with current
protocols. Examples are Zwaenepoel’s Blast protocol [4, 5], VMTP [6], and XTP [7].

Present-day “heavyweight” protocols such as OSI place notable performance con-
straints on distributed applications. Svobodova [8] surveys the status of transport proto-
cols (OSI and others) running on LANs and finds throughputs up to a maximum of about
2 Mbits/s (other references are found in her paper). The goal of the current lightweight

1

CAVIUM-1038
Cavium, Inc. v. Alacritech, Inc.

Page 001

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Complex cases
(20% of cases?)

Special simple
cases (80%?)

Usual
Implementation Bypass

Figure 1: The Bypass Concept

protocols is to obtain an improvement by an order of magnitude now, and much greater
increases later on faster processors and nets, into the range 100–1000 Mbits/s. The
protocols do not have to be completely new ones; Clark et al [9] have analyzed the fun-
damental limitations in IP/TCP to show that it could be operated in the 100 Mbit/s.
range if implemented properly. They describe a “fast path” concept in [9],[10] which has
already, in an existing workstation environment, moved files at close to the capacity of
an Ethernet. Jacobson has called his guiding principle for a fast receiving path “Header
Prediction”.

The bypass concept described here is an attempt to generalize Jacobson’s “Header
Prediction” to other protocols, particularly to layered protocol systems like OSI. Figure 1
shows the general notion of The bypass part is activated when a very limited set of
conditions apply which may be executed quickly; it will be effective if the conditions
are satisfied often enough. Hopefully, one can obtain both the performance benefits of
a lightweight protocol, when operating within a restricted set of circumstances, and the
standardization and functional benefits of a fully conforming standard protocol stack.
To obtain the full potential performance, some adaptation of the OSI standards may be
necessary (e.g., larger window sizes). The bypass is an implementation concept rather
than a new protocol, but it raises interesting questions about specification, such as

• specifying the bypass path and control when several protocol layers are involved,

• specification properties which could constrain the applicability of the concept in

2

CAVIUM-1038
Cavium, Inc. v. Alacritech, Inc.

Page 002

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

some cases,

• formal derivation of the bypass process specification from the protocol specification.
The bypass concept is based on a standard idea in performance enhancement, called

the ‘centering principle’ by Smith [11] and sometimes called the “80–20 principle”. In
‘centering’, special fast processing is provided for a frequently-occurring case. Although
the idea is standard, and seems to be relatively straightforward in [11], it is nontrivial
for layered protocols because of the sequential relationships generated by segmenting
and reassembly of data, the complex interchanges supported by each layer, the web of
relationships that may exist between entities at different layers due to multiplexing of
connections, and especially because of the asynchronous nature of the separate layers.

The purpose of this paper then is to explore the feasibility of constructing a bypass for
an arbitrary layered protocol, and more particularly for OSI. It begins with an informal
outline of a particular bypass for the OSI Session and Transport layers, identifying diffi-
culties associated with operating and controlling a bypass, that seem to be fundamental.
Ways to overcome these difficulties are discussed, and have been demonstrated by some
preliminary implementation experience discussed in Section 6. The formal derivation
of bypass specifications is approached in Section 7 by outlining how the simple control
strategy used in Sections 3, 4 and 5 could be described formally. The paper is intended
to show that bypassing is a fruitful and important mechanism for combining standard
and lightweight protocol concepts, and that this topic is worth pursuing further.

2 The Architecture of a Bypass
Figure 2(a) illustrates the architecture of a bypass, including the following nomenclature:

stack the set of entities implementing the standard protocol, which are to be bypassed,

user the user of the topmost layer of ‘stack’, assumed to be unique,

provider the service provider entity below the bottom layer of ‘stack’, also assumed
to be unique at each end. These embody a service layer serving both ends, and
hiding the physical transmission of data, etc.

The Figure shows a system to support one-way data transfer, in which data flows from
the ‘Data Sender’ end A to the ‘Data Receiver’ end B; note that control packets are also
involved and flow in both directions.

As a data unit flows from left to right, it is filtered by tests and if it qualifies, is
processed by the fast path. The fast path is envisaged as a single process without
internal concurrency, cutting through all the layers of ‘stack’, while ‘stack’ may have
internal concurrent processes. Jacobson’s ‘Header Prediction’ conforms somewhat to
this model, for in his system a received packet is examined for a match against a stored
predicted header at the test labelled RBYPASSTEST, but there is no SEND test.

One of the potential values of isolating the fast path rather than just optimizing the
code in ‘stack’ is the excellent prospect of implementing the bypass in hardware. Fig-
ure 2(b) shows a suggested division when the service entities are hardware-implemented
link controllers such as Ethernet controller chips. SBP and RBP are the ‘send’ and ‘re-
ceive’ bypass devices. The receive test RBYPASSTEST is in hardware, to avoid breaking
the hardware path to the user level, and the RBP device writes data into addresses sup-
plied in memory accessed by the device. The send test does not have such compelling
reasons to be in hardware, and so is not.

3

CAVIUM-1038
Cavium, Inc. v. Alacritech, Inc.

Page 003

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(a) Architecture of Bypass for Sender and Receiver

(b) A Hardware Implementation Strategy with two bypass devices

(for the case where the provider is the link controller)

shared
data

user A

SPS

Send
Bypass
Device

Link Net

user B

Receive
Bypass
Device

SPS

shared
data

Link

test

user B

(header
predictor)

provider B

SPS
standard
(multi-
layer)
protocol
stack

RB
receive
bypass

shared
data

receive
bypass
test

provider A

user A

SB
send
bypass

SPS
standard
(multi-
layer)
protocol
stack

shared
data

send
bypass
test

(any
set
of
protocol
layers)

Figure 2: Bypass Architectures

4

CAVIUM-1038
Cavium, Inc. v. Alacritech, Inc.

Page 004

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3 One-Way Bypass of OSI Session and Transport

Layers
To focus the discussion this section examines a bypass around an OSI session layer
combined with a Transport Class 2 layer, and used with extended TPDU-numbering,
but without flow control.

3.1 Ideal Data Transfer
Further, bypassing will be provided only for those data units and transfers which satisfy
the following conditions for “ideal data transfer”,

• the session service data units are of type “data”,

• there is no segmentation/reassembly, concatenation/separation, or multiplexing in
the two layers,

• there are no piggybacked acknowledgements or window credits

Attention is also restricted to a one-way bypass, as illustrated in Figure 2(a). It
could be used for instance in a file server with a send-only bypass loading pages across a
network to diskless workstations with receive-only bypasses. Only one-way “fast paths”
were considered in [9, 10]. Greater generality will be introduced in later sections.

In an “ideal data transfer” each SSDU corresponds to exactly one NSDU and entails
these operations in the layers:

• increment PDU numbers by one in each layer at sender and receiver,

• send an acknowledgement, after a receive.
The bypass must produce the same effects as a standard implementation.

The general architecture of a one-way bypass system is as shown in Figure 2(a).

3.2 The Bypass Tests, without Window Flow Control
Correct execution of the protocol by a bypass depends on two key operations – the iden-
tification, at the bypass-condition tests in Figure 2(a), of those data units which which
will give an ideal transfer, and correct interleaving of data units which follow the two
paths. On sending a user data unit, the conditions to be met are that it be small enough
to fit into one TPDU, and that it be a ‘data’ type of unit (rather than control). The
connection must also meet the conditions stated above (eg., no multiplexing). Therefore
the bypass test will be only partly based on headers (as it was in Jacobson’s method); it
will also include some aspects of the state of the protocol layers, shown as the “shared
data” in Figure 2(a).

Packets which fail the bypass test follow the normal processing path through the full
implementation. This raises the problem of ensuring correct interleaving of data units
from the two paths where they rejoin. This is a non-trivial problem because in principle
the separate layers in OSI are asynchronous entities. In this work interleaving is ensured
by further assuming or enforcing that the protocol execution for an ideal data transfer
is atomic with respect to all other operations (send or receive, and by either layer) for
the same connection. This extra assumption is called ‘relative atomicity’ of processing.
Then there is a simple toggle in the flow, switching from one path to the other, and the

5

CAVIUM-1038
Cavium, Inc. v. Alacritech, Inc.

Page 005

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

