
The

SNeeae,
ae
ae

ae

i
8

es

Zz.

ar
eg)
al

a
mal
C2)

CAVIUM-1008

Cavium,Inc. v. Alacritech, Inc.
Paae 001

CAVIUM-1008

Cavium,Inc. v. Alacritech, Inc.
Paae 002

AIX 3,2.2

~1.92

Solaris 2.2

solaris

~1.32

~themet

SunOS 4.1.1

gemini

Intemet

gateway. J router

TolA

Telebit
NetBlazer

(dialup)

BSD/386 1.0 BSD/386 1.0 .1o29 SVR4

Ethemet

SLIP

SunOS 4.1.3

Portion of the class B network 140.252 used for al! the examples in the text.
All the hosts are in the tUCo noaoo edu domain.

IP Header
15 16

4-bit 4-bit header 8-bit type of service

3-bit
vemion length (TOS)

16-bit identification I flags

8-bit time to live I 8-bit protocol(TTL)

16-bit total length (in bytes)

13-bit fragment offset

16-bit header checksum

32-bit source IP address

32-bit destination IP address

7 options (if any)

data

31

20 bytes

7

UDP Header
0 15 16

16-bit source port number I

16-bit UDP length

16-bit destination port number

16-bit UDP checksum

data (if any)

31

TCP Header
0

4-bit headerI reserved
length ~_ (6 bits)

15 16

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgment number

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

options (if any)

data (if any)

31

20 bytes

TCP/IP Illustrated, Volume 1

Addison-Wesley Professional ComPuting Series
Brian W. Kernighan, Consulting Editor

Ken Arnold/John Peyton, A C User’s Guide to ANSI C

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C ++ Standard Template Library
David R. Butenhof, Programming with POSIX~ Threads

Brent Callaghan, NFS Illustrated

Tom Cargill, C++ Programming Style

William R. Cheswick/Steven M. Bellovin, Firewalls and lnternet Security: Repelling the Wily Hacker
David A. Curry, UNIX~ System Security: A Guide for Users and System Administrators

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of

Reusable Object-Oriented Software

Peter Haggar, Practical JavaTM Programming Language Guide
David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software

Mark Harrison/Michael McLen_nan, Effective Tcl/Tk Programming: Writing Better Programs with TcI and Tk

Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++
Brian W. Kernighan/Rob Pike, The Practice of Programming

S.Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and

the Telephone Network

John Lakos, Large-Scale C++ Software Design
Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs

Scott Meyers, Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs and Designs

Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

Robert B. Murray, C++ Strategies and Tactics
David R. Musser/Atul Saini, STL Tutorial and Reference Guide: C ++ Programming with the

Standard Template Library

John K. Ousterhout, Tcl and the Tk Toolkit

Craig Partridge, Gigabit Networking

J. Stephen Pendergrast Jr., Desktop KornShell Graphical Programming

Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols
David M. Piscitello/A. Lyman Chapin, Open Systems Networking: TCP/IP and OSI

Stephen A. Rago, UNIX~ System V Network Programming

Curt Schimmel, UNIX~ Systems for Modern Architectures: Symmetric Multiprocessing and Caching

for Kernel Programmers

W. Richard Stevens, Advanced Programming in the UNIX~ Environment

W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols
W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX®

Domain Protocols

Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation

Please see our web site (http://www.awl.com/cseng/series/professionalcomputing) for more information on these titles.

TCP/IP Illustrated, Volume 1

The Protocols

W. Richard Stevens

¯

ADDISON-WESLEY

Boston ¯ San Francisco ¯ New York ¯ Toronto ¯ Montreal
London ° Munich ¯ Paris ¯ Madrid

Capetown ° Sydney ° Tokyo ¯ Singapore ¯ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and we were aware of a trademark claim, the
designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more ~nforma-
tion, please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales @pearsontechgroup .corn

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Stevens, W. Richard

TCP/IP Illustrated: the protocols/W. Richard Stevens.
p. cm.-(Addison-Wesley professional computing series)

Includes bibliographical references-and index.
ISBN 0-201-63346-9 (v.1)
1.TCP/IP (Computer network protocol) I. Title. II. Series.

TK5105.55S74 1994
004.6’2~c20

Copyright © 1994 by Addxson Wesley

UNIX is a technology trademark of X/Open Company, Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or other-wise, without the prior consent of the publisher. Printed in the United States of
America. Published
simultaneously in Canada.

ISBN 0-201-63346-9
Text printed on recycled paper
18 19 20 21 22--MA--0403020100
18th printing, October 2000

To Brian Kernighan and John Wait,
for their encouragement, faith, and support

over the past 5 years.

Praise for TCP/IP illustrated, Volume 1: The Protocols

"This is sure to be the bible for TCP/IP developers and users. Within minutes of picking up the text,
I encountered several scenarios which had tripped-up both my colleagues and myself in the past.
Stevens reveals many of the mysteries once held tightly by the ever-elusive networking gums.
Having been involved in the implementation of TCP/IP for some years now, I consider this by far
the finest text to date."

-- Robert A. Ciampa, Network Engineer, Synernetics, division of 3COM

"While all of Stevens’ books are readable and technically excellent, this new opus is awesome.
Although many books describe the TCP/IP protocols, Stevens provides a level of depth and real-
world detail lacking from the competition. He puts the reader inside TCP/IP using a visual approach
and shows the protocols in action."

-- Steven Baker, Networking Columnist, Unix Review

"TCP/IP Illustrated, Volume 1 is an excellent reference for developers, network administrators, or
anyone who needs to understand TCP/IP technology. TCP/IP Illustrated is comprehensive in its
coverage of TCP/IP topics, providing enough details to satisfy the experts while giving enough
background and commentary for the novice."

-- Bob Williams, V.P. Marketing, NetManage, Inc.

"... the difference is that Stevens wants to show as well as tell about the protocols. His principal
teaching tools are straight-forward explanations, exercises at the ends of chapters, byte-by-byte
diagrams of headers and the like, and listings of actual traffic as examples."

-- Walter Zintz, UnixWorld

"Much better than theory only ... W. Richard Stevens takes a multihost-based configuration and uses
it as a travelogue of TCP/IP examples with illustrations. TCP/IP Illustrated, Volume I is based on
practical examples that reinforce the theory -- distinguishing this book from others on the subject,
and making it both readable and informative."

-- Peter M. Haverlock, Consultant, IBM TCP/IP Development

"The diagrams he uses are excellent and his writing style is clear and readable. In sum, Stevens has
made a complex topic easy to understand. This book merits everyone’s attention. Please read it and
keep it on your bookshelf."

-- Elizabeth Zinkann, Sys Admin

"W. Richard Stevens has produced a fine text and reference work. It is well organized and very
clearly written with, as the title suggests, many excellent illustrations exposing the intimate details
of the logic and operation of IP, TCP, and the supporting cast of protocols and applications."

-- Scott Bradner, Consultant, Harvard University OIT/NSD

Contents

Preface

Chapter 1.

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

Introduction

Introduction 1
Layering 1
TCP/IP Layering 6
Internet Addresses 7
The Domain Name System 9
Encapsulation 9
Demultiplexing 11
Client-Server Model 12
Port Numbers 12
Standardization Process 14
RFCs 14
Standard, Simple Services 15
The Internet 16
Implementations 16
Application Programming Interfaces
Test Network 18
Summary 19

17

xv

vii

viii TCP/IP Illustrated Contents

Chapter 2.

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

Chapter 3.

Link Layer

Introduction 21
Ethernet and IEEE 802 Encapsulation 21
Trailer Encapsulation 23
SLIP: Serial Line IP 24
Compressed SLIP 25
PPP: Point-to-Point Protocol 26
Loopback Interface 28
MTU 29
Path MTU 30
Serial Line Throughput Calculations 30
Summary 31

IP: Internet Protocol

3.1 Introduction 33
3.2 IP Header 34
3.3 IP Routing 37
3.4 Subnet Addressing 42
3.5 Subnet Mask 43
3.6 Special Case IP Addresses
3.7 A Subnet Example 46
3.8 ±fconf±g Command 47
3.9 neLsLaL Command 49
3.10 IP Futures 49
3.11 Summary 50

Chapter 4.

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Chapter 5.

45

ARP: Address Resolution Protocol

Introduction 53
An Example 54
ARP Cache 56
ARP Packet Format
ARP Examples 57
Proxy ARP 60
Gratuitous ARP 62
arp Command 63
Summary 63

56

RARP: Reverse Address Resolution Protocol

5.1 Introduction 65
5.2 RARP Packet Format 65
5.3 RARP Examples 66
5.4 RARP Server Design 67
5.5 Summary 68

21

33

53

65

TCP/IP Illustrated

Chapter 6.

6.1
6.2
6.3
6.4
6.5
6.6
6.7

ICMP: Internet Control Message Protocol

Introduction 69
ICMP Message Types 70
ICMP Address Mask Request and Reply 72
ICMP Timestamp Request and Reply 74
ICMP Port Unreachable Error 77
4.4BSD Processing of ICMP Messages 81
Summary 83

Chapter 7. Ping Program

7.1 Introduction 85
7.2 Ping Program 85
7.3 IP Record Route Option
7.4 IP Timestamp Option
7.5 Summary 96

91
95

Chapter 8. Traceroute Program

8.1 Introduction 97
8.2 Traceroute Program Operation 97
8.3 LAN Output 99
8.4 WAN Output 102
8.5 IP Source Routing Option 10z~
8.6 Summary 109

Chapter 9.

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Chapter 10.

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

IP Routing

Introduction 111
Routing Principles 112
ICMP Host and Network Unreachable Errors
To Forward or Not to Forward 119
ICMP Redirect Errors 119
ICMP Router Discovery Messages 123
Summary 125

Dynamic Routing Protocols

Introduction 127
Dynamic Routing 127
Unix Routing Daemons 128
RIP: Routing Information Protocol 129
RIP Version 2 136
OSPF: Open Shortest Path First 137
BGP: Border Gateway Protocol 138
CIDR: Classless Interdomain Routing 140
Summary 141

117

Contents

69

85

97

111

127

ix

t

x TCP/IP Illustrated Contents

Chapter 11. UDP: User Datagram Protocol

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10 Maximum UDP Datagram. Size
11.11 ICMP Source Quench Error
11.12 UDP Server Design 162
11.13 Summary 167

Introduction 143
UDP Header 144
UDP Checksum 144
A Simple Example 147
IP Fragmentation 148
ICMP Unreachable Error (Fragmentation Required)
Determining the Path MTU Using Traceroute 153
Path MTU Discovery with UDP 155
Interaction Between UDP and ARP 157

159
160

151

143

Chapter 12. Broadcasting and Multicasting

12.1 Introduction 169
12.2 Broadcasting 171
12.3 Broadcasting Examples
12.4 M ulticasting 175
12.5 Summary 178

172

169

Chapter 13. IGMP: Internet Group Management Protocol

13.1 Introduction 179
13.2 IGMP Message 180
13.3 IGMP Protocol 180
13.4 An Example 183
13.5 Summary 186

179

Chapter 14. DNS: The Domain Name System

14.1 Introduction 187
14.2 DNS Basics 188
14.3 DNS Message Format 191
14.4 A Simple Example 194
14.5 Pointer Queries 198
14.6 Resource Records 201
14.7 Caching 203
14.8 UDP or TCP 206
14.9 Another Example 206
14.10 Summary 208

187

TCP/IP Illustrated Contents xi

Chapter 15.

15.1
15.2
15.3
15.4
15.5

Chapter 16.

16.1
16.2
16.3
16.4
16.5
16.6
16.7

Chapter 17.

17.1
17.2
17.3
17.4

Chapter 18.

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12

Chapter 19.

19.1
19.2
19.3
19.4
19.5
19.6

TFTP: Trivial File Transfer Protocol

Introduction 209
Protocol 209
An Example 211
Security 213
Summary 213

BOOTP: Bootstrap Protocol

Introduction 215
BOOTP Packet Format 215
An Example 218
BOOTP Server Design 219
BOOTP Through a Router 220
Vendor-Specific Information 221
Summary 222

TCP: Transmission Control Protocol

Introduction 223
TCP Services 223
TCP Header 225
S.ummary 227

TCP Connection Establishment and Termination

Introduction 229
Connection Establishment and Termination
Timeout of Connection Establishment
Maximum Segment Size 236
TCP Half-Close 238
TCP State Transition Diagram 240
Reset Segments 246
Simultaneous Open 250
Simultaneous Close 252
TCP Options 253
TCP Server Design 254
Summary 260

235
229

TCP Interactive Data Flow

Introduction 263
Interactive Input 263
Delayed Acknowledgments
Nagle Algorithm 267
Window Size Advertisements
Summary 274

265

274

209

215

223

229

263

xii TCP/IP Illustrated Contents

Chapter 20. TCP Bulk Data Flow

20.1 Introduction 275
20.2 Normal Data Flow 275
20.3 Sliding Windows 280
20.4 Window Size 282
20.5 PUSH Flag 284
20.6 Slow Start 285
20.7 Bulk Data Throughput 286
20.8 Urgent Mode 292
20.9 Summary 296

Chapter 21.

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9
21.10
21.11
21.12

TCP Timeout and Retransmission

Introduction 297
Simple Timeout and Retransmission Example
Round-Trip Time Measurement 299
An RTT Example 301
Congestion Example 306
Congestion Avoidance Algorithm 310
Fast Retransmit and Fast Recovery Algorithms
Congestion Example (Continued) 313
Per-Route Metrics 316
ICMP Errors 317
Repacketization 320
Summary 321

Chapter 22. TCP Persist Timer

22.1 Introduction 323
22.2 An Example 323
22.3 Silly Window Syndrome
22.4 Summary 330

Chapter 23. TCP Keepaiive Timer

23.1 Introduction 331
23.2 Description 332
23.3 Keepalive Examples
23.4 Summary 337

325

333

Chapter 24. TCP Futures and Performance

24.1 Introduction 339
24.2 Path MTU Discovery 340
24.3 Long Fat Pipes 344
24.4 Window Scale Option 347

298

275

297

312

323

331

339

TCP/IP Illustrated Contents xiii

24.5
24.6
24.7
24.8
24.9

Timestamp Option 349
PAWS: Protection Against Wrapped Sequence Numbers 351
T/TCP: A TCP Extension for Transactions 351
TCP Performance 354
Summary 356

Chapter 25. SNMP: Simple Network Management Protocol

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
25.10 Traps 385
25.11 ASN.1 and BER
25.12 SNMP Version 2
25.13 Summary 388

Introduction 359
Protocol 360
Structure of Management Information 363
Object Identifiers 364
Introduction to the Management Information Base
Instance Identification 367
Simple Examples 370
Management Information Base (Continued) 372
Additional Examples 382

386
387

365

359

Chapter 26. Telnet and Rlogin: Remote Login

26.1 Introduction 389
26.2 Rlogin Protocol 391
26.3 Rlogin Examples 396
26.4 Telnet Protocol 401
26.5 Telnet Examples 406
26.6 Summary 417

Chapter 27.

27.1
27.2
27.3
27.4

FTP: File Transfer Protocol

Introduction 419
FTP Protocol 419
FTP Examples 426
Summary 439

389

419

Chapter 28.

28.1
28.2
28.3
28.4
28.5

SMTP: Simple Mail Transfer Protocol

Introduction 441
SMTP Protocol 442
SMTP Examples 448
SMTP Futures 452
Summary 459

441

xiv TCP/IP Illustrated Contents

Chapter 29.

29.1
29.2
29.3
29.4
29.5
29.6
29.7
29.8

Chapter 30.

30.1
30.2
30.3
30.4
30.5
30.6

Appendix A.

A.1
A.2
A.3
A.4
A.5
A.6

Appendix B.

Appendix C.

Appendix D.

Appendix E.

E.1
E.2
E.3
E.4
E.5
E.6

Appendix F.

Bibliography

Index

NFS: Network File System

Introduction 461
Sun Remote Procedure Call 461
XDR: External Data Representation
Port Mapper 465
NFS Protocol 467
NFS Examples 474
NFS Version 3 479
Summary 480

465

Other TCP/IP Applications
Introduction 481
Finger Protocol 481
Whois Protocol 483
Archie, WAIS, Gopher, Veronica, and WWW
X Window System 486
Summary 490

The tcpdump Program
BSD Packet Filter 491
SunOS Network Interface Tap 493
SVR4 Data Link Provider Interface
t cpdump Output 495
Security Considerations 496
Socket Debug Option 496

Computer Clocks

494

The sock Program

Solutions to Selected Exercises

Configurable Options

BSD/386 Version 1.0
SunOS 4.1.3 527
System V Release 4
Solaris 2.2 529
AIX 3.2.2 536
4.4BSD 537

526

529

Source Code Availability

484

461

481

491

499

503

507

525

539

543

555

Preface

Introduction

This book describes the TCP/IP protocol suite, but from a different perspective than
other texts on TCP/IP. Instead of just describing the protocols and what they do, we’ll
use a popular diagnostic tool to watch the protocols in action. Seeing how the protocols
operate in varying circumstances provides a greater understanding of how they work
and why certain design decisions were made. It also provides a look into the imple-
mentation of the protocols, without having to wade through thousands of lines of
source code.

When networking protocols were being developed in the 1960s through the 1980s,
expensive, dedicated hardware was required to see the packets going "across the wire."
Extreme familiarity with the protocols was also required to comprehend the packets dis-
played by the hardware. Functionality of the hardware analyzers was limited to that
built in by the hardware designers.

Today this has changed dramatically with the ability of the ubiquitous workstation
to monitor a local area network [Mogul 1990]. Just attach a workstation to your net-
work, run some publicly available software (described in Appendix A), and watch what
goes by on the wire. While many people consider this a tool to be used for diagnosing
network problems, it is also a powerful tool for understanding how the network proto-
cols operate, which is the goal of this book.

This book is intended for anyone wishing to understand how the TCP/IP protocols
operate: programmers writing network applications, system administrators responsible
for maintaining computer systems and networks utilizing TCP/IP, and users who deal
with TCP/IP applications on a daily basis.

XV

xvi TCP/IP Illustrated Preface

Organization of the Book

The following figure shows the various protocols and applications that are covered.
The italic number by each box indicates the chapter in which that protocol or applica-
tion is described.

Chap. 7 26 27 28 30 8 14 15 16 25 29

~ 5

media

(Numerous fine points are missing from this figure that will be discussed in the appro-
priate chapter. For example, both the DNS and RPC use TCP, which we don’t show.)

We take a bottom-up approach to the TCP/IP protocol suite. After providing a
basic introduction to TCP/IP in Chapter 1, we will start at the link layer in Chapter 2
and work our way up the protocol stack. This provides the required background for
later chapters for readers who aren’t familiar with TCP/IP or networking in general.

This book also uses a functional approach instead of following a strict bottom-to-
top order. For example, Chapter 3 describes the IP layer and the IP header. But there
are numerous fields in the IP header that are best described in the context of an applica-
tion that uses or is affected by a particular field. Fragmentation, for example, is best
understood in terms of UDP (Chapter 11), the protocol often affected by it. The time-to-
live field is fully described when we look at the Traceroute program in Chapter 8,
because this field is the basis for the operation of the program. Similarly, many features
of ICMP are described in the later chapters, in terms of how a particular ICMP message
is used by a protocol or an application.

We also don’t want to save all the good stuff until the end, so we describe TCP/IP
applications as soon as we have the foundation to understand them. Ping and Trace-
route are described after IP and ICMP have been discussed. The applications built on
UDP (multicasting, the DNS, TFTP, and BOOTP) are described after UDP has been

TCP/IP Illustrated Preface xvii

examined. The TCP applications, however, along with network management, must be
saved until the end, after we’ve thoroughly described TCP. This text focuses on how
these applications use the TCP/IP protocols. We do not provide all the details on run-
ning these applications.

Readers

This book is self-contained and assumes no specific knowledge of networking or
TCP/IP. Numerous references are provided for readers interested in additional details
on specific topics.

This book can be used in many ways. It can be used as a self-study reference and
covered from start to finish by someone interested in all the details on the TCP/IP
protocol suite. Readers with some TCP/IP background might want to skip ahead and
start with Chapter 7, and then focus on the specific chapters in which they’re interested.
Exercises are provided at the end of the chapters, and most solutions are in Appen-
dix D. This is to maximize the usefulness of the text as a self-study reference.

When used as part of a one- or two-semester course in computer networking, the
focus should be on IP (Chapters 3 and 9), UDP (Chapter 11), and TCP (Chapters 17-24),
along with some of the application chapters.

Many forward and backward references are provided throughout the text, along
with a thorough index, to allow individual chapters to be studied by themselves. A list
of all the acronyms used throughout the text, along with the compound term for the
acronym, appears on the inside back covers.

If you have access to a network you are encouraged to obtain the software used in
this book (Appendix F) and experiment on your own. Hands-on experimentation with
the protocols will provide the greatest knowledge (and make it more fun).

Systems Used for Testing

Every example in the book was run on an actual network and the resulting output
saved in a file for inclusion in the text. Figure 1.11 (p. 18) shows a diagram of the differ-
ent hosts, routers, and networks that are used. (This figure is also duplicated on the
inside front cover for easy reference while reading the book.) This collection of net-
works is simple enough that the topology doesn’t confuse the examples, and with four
systems acting as routers, we can see the error messages generated by routers.

Most of the systems have a name that indicates the type of software being used:
bsdi, svr4, sun, solaris, aix, slip, and so on. In this way we can identify the type
of software that we’re dealing with by looking at the system name in the printed output.

A wide range of different operating systems and TCP/IP implementations are used:

BSD/386 Version 1.0 from Berkeley Software Design, Inc., on the hosts named
bsdi and slip. This system is derived from the BSD Networking Software,
Release 2.0. (We show the lineage of the various BSD releases in Figure 1.10 on
p. 17.)

xviii TCP/IP Illustrated Preface

Unix System V/386 Release 4.0 Version 2.0 from U.H. Corporation, on the host
named svr4. This is vanilla SVR4 and contains the standard implementation of
TCP/IP from Lachman Associates used with most versions of SVR4.

SunOS 4.1.3 from Sun Microsystems, on the host named sun. The SunOS 4.1.x
systems are probably the most widely used TCP/IP implementations. The
TCP/IP code is derived from 4.2BSD and 4.3BSD.

Solaris 2.2 from Sun Microsystems, on the host named solaris. The Solaris 2.x
systems have a different implementation of TCP/IP from the earlier SunOS 4.1.x
systems, and from SVR4. (This operating system is really SunOS 5.2, but is com-
monly called Solaris 2.2.)

AIX 3.2.2 from IBM on the host "named aix. The TCP/IP implementation is
based on the 4.3BSD Reno release.

4.4BSD from the Computer Systems Research Group at the University of Califor-
nia at Berkeley, on the host vangogh, cs. berkeley, edu. This system has the
latest release of TCP/IP from Berkeley. (This system isn’t shown in the figure on
the inside front cover, but is reachable across the Internet.)

Although these are all Unix systems, TCP/IP is operating system independent, and is
available on almost every popular non-Unix system. Most of this text also applies to
these non-Unix implementations, although some programs (such as Traceroute) may
not be provided on all systems.

Typographical Conventions

When we display interactive input and output we’ll show our typed input in a bold
font, and the computer output like this. Comments are added in italics.

bsdi % telnet svr4 discard
Trying 140.252,13.34...
Connected to svr4.

connect to the discard server
this line and next output by Telnet client

Also, we always include the name of the system as part of the shell prompt (bsdi in
this example) to show on which host the command was run.

Throughout the text we’ll use indented, parenthetical notes such as this to describe historical
points or implementation details,

We sometimes refer to the complete description of a command in the Unix manual
as in ifconfig(8). This notation, the name of the command followed by a number in
parentheses, is the normal way of referring to Unix commands. The number in paren-
theses is the section number in the Unix manual of the "manual page" for the com-
mand, where additional information can be located. Unfortunately not all Unix systems
organize their manuals the same, with regard to the section numbers used for various
groupings of commands. We’ll use the BSD-style section numbers (which is the same
for BSD-derived systems such as SunOS 4.1.3), but your manuals may be organized
differently.

TCP/IP Illustrated Preface

Acknowledgments

Although the author’s name is the only one to appear on the cover, the combined effort
of many people is required to produce a quality text book. First and foremost is the
author’s family, who put up with the long and weird hours that go into writing a book.
Thank you once again, Sally, Bill, Ellen, and David.

The consulting editor, Brian Kernighan, is undoubtedly the best in the business. He
was the first one to read various drafts of the manuscript and mark it up with his infi-
nite supply of red pens. His attention to detail, his continual prodding for readable
prose, and his thorough reviews of the manuscript are an immense resource to a writer.

Technical reviewers provide a different point of view and keep the author honest by
catching technical mistakes. Their comments, suggestions, and (most importantly) criti-
cisms add greatly to the final product. My thanks to Steve Bellovin, Jon Crowcroft, Pete
Haverlock, and Doug Schmidt for comments on the entire manuscript. Equally valu-
able comments were provided on portions of the manuscript by Dave Borman, Tony
DeSimone, Bob Gilligan, Jeff Gitlin, John Gulbenkian, Tom Herbert, Mukesh Kacker,
Barry Margolin, Paul Mockapetris, Burr Nelson, Steve Rago, James Risner, Chris
Walquist, Phil Winterbottom, and Gary Wright. A special thanks to Dave Borman for
his thorough review of all the TCP chapters, and to Bob Gilligan who should be listed as
a coauthor for Appendix E.

An author cannot work in isolation, so I would like to thank the following persons
for lots of small favors, especially by answering my numerous e-mail questions: Joe
Godsil, Jim Hogue, Mike Karels, Paul Lucchina, Craig Partridge, Thomas Skibo, and
Jerry Toporek.

This book is the result of my being asked lots of questions on TCP/IP for which I
could find no quick, immediate answer. It was then that I realized that the easiest way
to obtain the answers was to run small tests, forcing certain conditions to occur, and just
watch what happens. I thank Pete Haverlock for asking the probing questions and Van
Jacobson for providing so much of the publicly available software that is used in this
book to answer the questions.

A book on networking needs a real network to work with along with access to the
Internet. My thanks to the National Optical Astronomy Observatories (NOAO), espe-
cially Sidney Wolff, Richard Wolff, and Steve Grandi, for providing access to their net-
works and hosts. A special thanks to Steve Grandi for answering lots of questions and
providing accounts on various hosts. My thanks also to Keith Bostic and Kirk McKu-
sick at the U.C. Berkeley CSRG for access to the latest 4.4BSD system.

Finally, it is the publisher that pulls everything together and does whatever is
required to deliver the final product to the readers. This all revolves around the editor,
and John Wait is simply the best there is. Working with John and the rest of the profes-
sionals at Addison-Wesley is a pleasure. Their professionalism and attention to detail
show in the end result.

Camera-ready copy of the book was produced by the author, a Troff die-hard, using
the Groff package written by James Clark. I welcome electronic mail from any readers
with comments, suggestions, or bug fixes.
Tucson, Arizona Wo Richard Stevens
October 1993 rstevens@noao, edu

http : //www. noao. edu/-rstevens

CAVIUM-1008

Cavium,Inc. v. Alacritech, Inc.
Pade 024

Introduction

1.1

1.2

Introduction

The TCP/IP protocol suite allows computers of all sizes, from many different computer
vendors, running totally different operating systems, to communicate with each other.
It is quite amazing because its use has far exceeded its original estimates. What started
in the late 1960s as a government-financed research project into packet switching net-
works has, in the 1990s, turned into the most widely used form of networking between
computers. It is truly an open system in that the definition of the protocol suite and
many of its implementations are publicly available at little or no charge. It forms the
basis for what is called the worldwide Internet, or the Internet, a wide area network
(WAN) of more than one million computers that literally spans the globe.

This chapter provides an overview of the TCP/IP protocol suite, to establish an ade-
quate background for the remaining chapters. For a historical perspective on the early
development of TCP/IP see [Lynch 1993].

Layering

Networking protocols are normally developed in layers, with each layer responsible for a
different facet of the communications. A protocol suite, such as TCP/IP, is the combina-
tion of different protocols at various layers. TCP/IP is normally considered to be a
4qayer system, as shown in Figure 1.1.

2 Introduction Chapter I

Application

Transport

Network

Link

Telnet, FTP, e-mail, etc.

TCP, UDP

IP, ICMP, IGMP

device driver and interface card

Figure 1.1 The four layers of the TCP/IP protocol suite.

Each layer has a different responsibility.

The link layer, sometimes called the data-link layer or network interface layer, nor-
mally includes the device driver in the operating system and the corresponding
network interface card in the computer. Together they handle all the hardware
details of physically interfacing with the cable (or whatever type of media is
being used).

The network layer (sometimes called the internet layer) handles the movement of
packets around the network. Routing of packets, for example, takes place here.
IP (Internet Protocol), ICMP (Internet Control Message Protocol), and IGMP
(Internet Group Management Protocol) provide the network layer in the
TCP/IP protocol suite.

The transport layer provides a flow of data between two hosts, for the applica-
tion layer above. In the TCP/IP protocol suite there are two vastly different
transport protocols: TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol).

TCP provides a reliable flow of data between two hosts. It is concerned with
things such as dividing the data passed to it from the application into appropri-
ately sized chunks for the network layer below, acknowledging received pack-
ets, setting timeouts to make certain the other end acknowledges packets that
are sent, and so on. Because this reliable flow of data is provided by the trans-
port layer, the application layer can ignore all these details.

UDP, on the other hand, provides a much simpler service to the application
layer. It just sends packets of data called datagratns from one host to the other,
but there is no guarantee that the datagrams reach the other end. Any desired
reliability must be added by the application layer.

There is a use for each type of transport protocol, which we’ll see when we look
at the different applications that use TCP and UDP.

Section 1.2 Layering

The application layer handles the details of the particular application. There are
many common TCP/IP applications that almost every implementation pro-
vides:

¯ Telnet for remote login,
¯ FTP, the File Transfer Protocol,
¯ SMTP, the Simple Mail Transfer protocol, for electronic mail,
¯ SNMP, the Simple Network Management Protocol,

and many more, some of which we cover in later chapters.

If we have two hosts on a local area network (LAN) such as an Ethernet, both run-
ning FTP, Figure 1.2 shows the protocols involved.

application

transport

network

lmk

FTP

~

FTP protocol

~

FTP
client server

TCP
~

TCPpr°t°c°l _~ TCP

ip
~_

IPpr°t°c°l
~

ip

Ethernetdriver
~

Ethernetprotocol

~
Ethernetdriver

[Ethernet !

user
processes

kernel

handles
application

details

handles
communication

details

Figure 1.2 Two hosts on a LAN running FTP.

We have labeled one application box the FTP client and the other the FTP server.
Most network applications are designed so that one end is the client and the other side
the server. The server provides some type of service to clients, in this case access to files
on the server host. In the remote login application, Telnet, the service provided to the
client is the ability to login to the server’s host.

Each layer has one or more protocols for communicating with its peer at the same
layer. One protocol, for example, allows the two TCP layers to communicate, and
another protocol lets the two IP layers communicate.

On the right side of Figure 1.2 we have noted that normally the application layer is
a user process while the lower three layers are usually implemented in the kernel (the
operating system). Although this isn’t a requirement, it’s typical and this is the way it’s
done under Unix.

4 Introduction Chapter i

There is another critical difference between the top layer in Figure 1.2 and the lower
three layers. The application layer is concerned with the details of the application and
not with the movement of data across the network. The lower three layers know noth-
ing about the application but handle all the communication details.

We show four protocols in Figure 1.2, each at a different layer. FTP is an application
layer protocol, TCP is a transport layer protocol, IP is a network layer protocol, and the
Ethernet protocols operate at the link layer. The TCP/IP protocol suite is a combination of
many protocols. Although the commonly used name for the entire protocol suite is
TCP/IP, TCP and IP are only two of the protocols. (An alternative name is the Internet
Protocol Suite.)

The purpose of the network interface layer and the application layer are
obvious--the former handles the details .of the communication media (Ethernet, token
ring, etc.) while the latter handles one specific user application (FTP, Telnet, etc.). But on
first glance the difference between the network layer and the transport layer is some-
what hazy. Why is there a distinction between the two? To understand the reason, we
have to expand our perspective from a single network to a collection of networks.

One of the reasons for the phenomenal growth in networking during the 1980s was
the realization that an island consisting of a stand-alone computer made little sense. A
few stand-alone systems were collected together into a network. While this was
progress, during the 1990s we have come to realize that this new, bigger island consist-
ing of a single network doesn’t make sense either. People are combining multiple net-
works together into an internetwork, or an internet. An internet is a collection of
networks that all use the same protocol suite.

The easiest way to build an internet is to connect two or more networks with a
router. This is often a special-purpose hardware box for connecting networks. The nice
thing about routers is that they provide connections to many different types of physical
networks: Ethernet, token ring, point-to-point links, FDDI (Fiber Distributed Data Inter-
face), and so on.

These boxes are also called IP routers, but we’ll use the term router.

Historically these boxes were called gateways, and this term is used throughout much of the
TCP/IP literature. Today the term gateway is used for an application gateway: a process that
connects two different protocol suites (say, TCP/IP and IBM’s SNA) for one particular applica-
tion (often electronic mail or file transfer).

Figure 1.3 shows an internet consisting of two networks: an Ethernet and a token
ring, connected with a router. Although we show only two hosts communicating, with
the router connecting the two networks, any host on the Ethernet can communicate with
any host on the token ring.

In Figure 1.3 we can differentiate between an end system (the two hosts on either
side) and an intermediate system (the router in the middle). The application layer and the
transport layer use end-to-end protocols. In our picture these two layers are needed only
on the end systems. The network layer, however, provides a hop-by-hop protocol and is
used on the two end systems and every intermediate system.

Section 1.2

FTP
client

TCP

IP

FTP protocol

~__ _ TCP protocol

router

~Pprotocol ~ ~
IP protocol~

Ethernet Ethernet Ethernet
driver protocol ~ driver

Ethernet

token ring token ring
driver p-r~t~c~l- --~

~--

I token ring

Layering

server

TCP

token ring
driver

Figure 1.3 Two networks connected with a router.

In the TCP/IP protocol suite the network layer, IP, provides an unreliable service.
That is, it does its best job of moving a packet from its source to its final destination, but
there are no guarantees. TCP, on the other hand, provides a reliable transport layer
using the unreliable service of IP. To provide this service, TCP performs timeout and
retransmission, sends and receives end-to-end acknowledgments, and so on. The trans-
port layer and the network layer have distinct responsibilities.

A router, by definition, has two or more network interface layers (since it connects
two or more networks). Any system with multiple interfaces is called multihomed. A
host can also be multihomed but unless it specifically forwards packets from one inter-
face to another, it is not called a router. Also, routers need not be special hardware
boxes that only move packets around an internet. Most TCP/IP implementations allow
a multihomed host to act as a router also, but the host needs to be specifically config-
ured for this to happen. In this case we can call the system either a host (when an appli-
cation such as FTP or Telnet is being used) or a router (when it’s forwarding packets
from one network to another). We’ll use whichever term makes sense given the context.

One of the goals of an internet is to hide all the details of the physical layout of the
internet from the applications. Although this isn’t obvious from our two-network inter-
net in Figure 1.3, the application layers can’t care (and don’t care) that one host is on an
Ethernet, the other on a token ring, with a router between. There could be 20 routers
between, with additional types of physical interconnections, and the applications would
run the same. This hiding of the details is what makes the concept of an internet so
powerful and useful.

Introduction Chapter I

Another way to connect networks is with a bridge. These connect networks at the
link layer, while routers connect networks at the network layer. Bridges makes multiple
LANs appear to the upper layers as a single LAN.

TCP/IP internets tend to be built using routers instead of bridges, so we’ll focus on
routers. Chapter 12 of [Perlman 1992] compares routers and bridges.

1.3 TCP/IP Layering

There are more protocols in the TCP/IP protocol suite. Figure 1.4 shows some of the
additional protocols that we talk about in this text.

User User
Process Process

t_

ICMP

User
Process

I-.
TCP UDP

User~

Process[

transport

IGMP

application

network

ARP Q Hardware
Interface

media

RARP link

Figure 1.4 Various protocols at the different layers in the TCP/IP protocol suite.

TCP and UDP are the two predominant transport layer protocols. Both use IP as
the network layer.

TCP provides a reliable transport layer, even though the service it uses (IP) is unreli-
able. Chapters 17 through 22 provide a detailed look at the operation of TCP. We then
look at some TCP applications: Telnet and Rlogin in Chapter 26, FTP in Chapter 27, and
SMTP in Chapter 28. The applications are normally user processes.

Section 1.4 Internet Addresses

1.4

UDP sends and receives datagrams for applications. A datagram is a unit of infor-
mation (i.e., a certain number of bytes of information that is specified by the sender)
that travels from the sender to the receiver. Unlike TCP, however, UDP is unreliable.
There is no guarantee that the datagram ever gets to its final destination. Chapter 11
looks at UDP, and then Chapter 14 (the Domain Name System), Chapter 15 (the Trivial
File Transfer Protocol), and Chapter 16 (the Bootstrap Protocol) look at some applica-
tions that use UDR SNMP (the Simple Network Management Protocol) also uses UDP,
but since it deals with many of the other protocols, we save a discussion of it until
Chapter 25.

IP is the main protocol at the network layer. It is used by both TCP and UDP. Every
piece of TCP and UDP data that gets transferred around an internet goes through the IP
layer at both end systems and at every intermediate router. In Figure 1.4 we also show
an application accessing IP directly. This is rare, but possible. (Some older routing pro-
tocols were implemented this way. Also, it is possible to experiment with new transport
layer protocols using this feature.) Chapter 3 looks at IP, but we save some of the details
for later chapters where their discussion makes more sense. Chapters 9 and 10 look at
how IP performs routing.

ICMP is an adjunct to IP. It is used by the IP layer to exchange error messages and
other vital information with the IP layer in another host or router. Chapter 6 looks at
ICMP in more detail. Although ICMP is used primarily by IP, it is possible for an appli-
cation to also access it. Indeed we’ll see that two popular diagnostic tools, Ping and
Traceroute (Chapters 7 and 8), both use ICMP.

IGMP is the Internet Group Management Protocol. It is used with multicasting:
sending a UDP datagr~m to multiple hosts. We describe the general properties of
broadcasting (sending a UDP datagram to every host on a specified network) and
multicasting in Chapter 12, and then describe IGMP itself in Chapter 13.

ARP (Address Resolution Protocol) and RARP (Reverse Address Resolution
Protocol) are specialized protocols used only with certain types of network interfaces
(such as Ethernet and token ring) to convert between the addresses used by the IP layer
and the addresses used by the network interface. We examine these protocols in Chap-
ters 4 and 5, respectively.

Internet Addresses

Every interface on an internet must have a unique Internet address (also called an IP
address). These addresses are 32-bit numbers. Instead of using a flat address space such
as 1, 2, 3, and so on, there is a structure to Internet addresses. Figure 1.5 shows the five
different classes of Internet addresses.

These 32-bit addresses are normally written as four decimal numbers, one for each
byte of the address. This is called dotted-decimal notation. For example, the class B
address of the author’s primary system is 140.252.13.33.

The easiest way to differentiate between the different classes of addresses is to look
at the first number of a dotted-decimal address. Figure 1.6 shows the different classes,
with the first number in boldface.

Introduction Chapter i

Class A

Class B

Class C

Class D

Class E

bits 24 bits

netid] hostid

14 bits 16 bits

netid I hostid

21 bits 8 bits

I netld I hostid

28 bits

~ I 1 I J_ I 0 multicastgroupID J

28 bits

~-~; I (reserved for future use)

Figure 1.5 The five different classes of Internet addresses.

Class Range

A 0.0.0,0 to 127.255.255.255
B 128 0.0.0 to 191.255.255.255
C 192.0.0.0 to 223.255.255.255
D 224.0.0.0 to 239.255.255.255
E 240.0.0.0 to 255.255.255.255

Figure 1.6 Ranges for different classes of IP addresses.

It is worth reiterating that a multihomed host will have multiple IP addresses: one per
interface.

Since every interface on an internet must have a unique IP address, there must be
one central authority for allocating these addresses for networks connected to the
worldwide Internet. That authority is the Internet Network Information Center, called the
InterNIC. The InterNIC assigns only network IDs. The assignment of host IDs is up to
the system administrator.

Registration services for the Internet (IP addresses and DNS dommn names) used to be han-
dled by the NIC, at n±c. ddn.mJ_X. On April 1, 1993, the InterNIC was created. Now the NIC
handles these requests only for the Defense Data Network (DDN) All other Internet users now
use the InterNIC registration services, at rs. ±ntern±c. net.

There are actually three parts to the fnterNIC: registration services (rs. ±nternJ_c.net),
directory and database services (ds. i_ntern±c.net), and informationservices
(±s. ±ntern±c. ne~c). See Exercise 1.8 for additional information on the InterNIC.

There are three types of IP addresses: unicast (destined for a single host), broadcast
(destined for all hosts on a given network), and multicast (destined for a set of hosts that
belong to a multicast group). Chapters 12 and 13 look at broadcasting and multicasting
in more detail.

Section 1.6 Encapsulation 9

In Section 3.4 we’ll extend our description of IP addresses to include subnetting,
after describing IP routing. Figure 3.9 shows the special case IP addresses: host IDs and
network IDs of all zero bits or all one bits.

1.5 The Domain Name System

Although the network interfaces on a host, and therefore the host itself, are known by IP
addresses, humans work best using the name of a host. In the TCP/IP world the Domain
Name System (DNS) is a distributed database that provides the mapping between IP
addresses and hostnames. Chapter 14 looks into the DNS in detail.

For now we must be aware that any application can call a standard library function
to look up the IP address (or addresses) corresponding to a given hostname. Similarly a
function is provided to do the reverse lookup--given an IP address, look up the corre-
sponding hostname.

Most applications that take a hostname as an argument also take an IP address.
When we use the Telnet client in Chapter 4, for example, one time we specify a host-
name and another time we specify an IP address.

1.6 Encapsulation

When an application sends data using TCP, the data is sent down the protocol stack,
through each layer, until it is sent as a stream of bits across the network. Each layer
adds information to the data by prepending headers (and sometimes adding trailer
information) to the data that it receives. Figure 1.7 shows this process. The unit of data
that TCP sends to IP is called a TCP segment. The unit of data that IP sends to the net-
work interface is called an IP datagram. The stream of bits that flows across the Ethernet
is called a frame.

The numbers at the bottom of the headers and trailer of the Ethernet frame in Fig-
ure 1.7 are the typical sizes of the headers in bytes. We’ll have more to say about each of
these headers in later sections.

A physical property of an Ethernet frame is that the size of its data must be between
46 and 1500 bytes. We’ll encounter this minimum in Section 4.5 and we cover the maxi-
mum in Section 2.8.

All the Internet standards and most books on TCP/IP use the term octet instead of byte. The
use of this cute, but baroque term is historical, since much of the early work on TCP/IP was
done on systems such as the DEC-10, which did not use 8-bit bytes. Since almost every current
computer system uses 8-bit bytes, we’ll use the term byte in this text.

To be completely accurate in Figure 1.7 we should say that the unit of data passed between IP
and the network interface is a packet. This packet can be either an IP datagram or a fragment of
an IP datagram. We discuss fragmentation in detail in Section 11.5.

We could draw a nearly identical picture for UDP data. The only changes are that
the unit of information that UDP passes to IP is called a UDP datagram, and the size of
the UDP header is 8 bytes.

10 Introduction Chapter I

Ethernet
header

14

user data

Appl
header user data

TCP application dataheader

TCP segment

IP I TCP application dataheader header

IP datagram

IP

]

TCP
header header
20 20

Ethernet frame

application data

46 to 1500 bytes

Ethernet
trailer

4

Figure 1.7 Encapsulation of data as it goes down the protocol stack.

application]

TCP

IP

Ethernet
driver

Ethernet

Recall from Figure 1.4 (p. 6) that TCP, UDP, ICMP, and IGMP all send data to IP. IP
must add some type of identifier to the IP header that it generates, to indicate the layer
to which the data belongs. IP handles this by storing an 8-bit value in its header called
the protocol field. A value of 1 is for ICME 2 is for IGMP, 6 indicates TCE and 17 is for
UDR

Similarly, many different applications can be using TCP or UDP at any one time.
The transport layer protocols store an identifier in the headers they generate to identify
the application. Both TCP and UDP use 16-bit port numbers to identify applications.
TCP and UDP store the source port number and the destination port number in their
respective headers.

The network interface sends and receives frames on behalf of IP, ARE and RARP.
There must be some form of identification in the Ethernet header indicating which net-
work layer protocol generated the data. To handle this there is a 16-bit frame type field
in the Ethernet header.

Section 1.7 Demultiplexing 11

1.7 Demultiplexing

When an Ethernet frame is received at the destination host it starts its way up the proto-
col stack and all the headers are removed by the appropriate protocol box. Each proto-
col box looks at certain identifiers in its header to determine which box in the next
upper layer receives the data. This is called demultiplexing. Figure 1.8 shows how this
takes place.

y I ~x, I "~ demultiplexingbased °n

/ \ / ~ destination port number
/ \ /)in TCP or UDP header

TCP UDP

ICMP [IGMP I ;~
1

~
I .~

~ I k ~ I / ~ /demultiplexingbasedon
~ protocol value ~ IP header

~~ ~ ~ ~ demultiplex~g based on

~ ~ ~ d frame type ~ Ethernet header

Ethernet
driver

incom~g frame

Figure 1.8 The demultiplexing of a received Ethernet frame.

Positioning the protocol boxes labeled "ICMP" and "IGMP" is always a challenge. In Fig-
ure 1.4 we showed them at the same layer as IP, because they really are adjuncts to IP. But here
we show them above IP, to reiterate that ICMP messages and IGMP messages are encapsulated
in IP datagrams.

We have a similar problem with the boxes "ARP" and "RARP" Here we show them above the
Ethernet device driver because they both have their own Ethernet frame types, like IP data-
grams. But in Figure 2 4 we’ll show ARP as part of the Etherne~ device driver, beneath IP,
because that’s where it logically fits.

Realize that these pictures of layered protocol boxes are not perfect.

When we describe TCP in detail we’ll see that it really demultiplexes incoming seg-
ments using the destination port number, the source IP address, and the source port
number.

I

12 Introduction Chapter 1

1.8 Client-Server Model

1.9

Most networking applications are written assuming one side is the client and the other
the server. The purpose of the application is for the server to provide some defined ser-
vice for clients.

We can categorize servers into two classes: iterative or concurrent. An iterative
server iterates through the following steps.

I1. Wait for a client request to arrive.

I2. Process the client request.

I3. Send the response back to the client that sent the request.

I4. Go back to step I1.

The problem with an iterative server is when step I2 takes a while. During this time no
other clients are serviced.

A concurrent server, on the other hand, performs the following steps.

C1.

C2.
Wait for a client request to arrive.

Start a new server to handle this client’s request. This may involve creating a
new process, task, or thread, depending on what the underlying operating sys-
tem supports. How this step is performed depends on the operating system.

This new server handles this client’s entire request. When complete, this new
server terminates.

C3. Go back to step C1.

The advantage of a concurrent server is that the server just spawns other servers to han-
dle the client requests. Each client has, in essence, its own server. Assuming the operat-
ing system allows multiprogramming, multiple clients are serviced concurrently.

The reason we categorize servers, and not clients, is because a client normally can’t
tell whether it’s talking to an iterative server or a concurrent server.

As a general rule, TCP servers are concurrent, and UDP servers are iterative, but
there are a few exceptions. We’ll look in detail at the impact of UDP on its servers in
Section 11.12, and the impact of TCP on its servers in Section 18.11.

Port Numbers

We said that TCP and UDP identify applications using 16-bit port numbers. How are
these port numbers chosen?

Servers are normally known by their well-known port number. For example, every
TCP/IP implementation that provides an FTP server provides that service on TCP port

Section 1.9 Port Numbers 13

21. Every Telnet server is on TCP port 23. Every implementation of TFTP (the Trivial
File Transfer Protocol) is on UDP port 69. Those services that can be provided by any
implementation of TCP/IP have well-known port numbers between 1 and 1023. The
well-known ports are managed by the Internet Assigned Numbers Authority (IANA).

Until 1992 the well-known ports were between 1 and 255. Ports between 256 and 1023 were
normally used by Unix systems for Unix-specific services--that is, services found on a Unix
system, but probably not found on other operating systems. The IANA now manages the
ports between I and 1023.

An example of the difference between an Internet-wide service and a Unix-specific service is
the difference between Telnet and Rlogin. Both allow us to login across a network to another
host. Telnet is a TCP/IP standard with a well-known port number of 23 and can be imple-
mented on almost any operating system. Rlogin, on the other hand, was originally designed
for Unix systems (although many non-Unix systems now provide it also) so its well-known
port was chosen in the early 1980s as 513.

A client usually doesn’t care what port number it uses on its end. All it needs to be
certain of is that whatever port number it uses be unique on its host. Client port num-
bers are called ephemeral ports (i.e., short lived). This is because a client typically exists
only as long as the user running the client needs its service, while servers typically run
as long as the host is up.

Most TCP/IP implementations allocate ephemeral port numbers between 1024 and
5000. The port numbers above 5000 are intended for other servers (those that aren’t
well known across the Internet). We’ll see many examples of how ephemeral ports are
allocated in the examples throughout the text.

Solaris 2.2 is a notable exception. By default the ephemeral ports for TCP and UDP start at
32768. Section E.4 details the configuration options that can be modified by the system admin-
istrator to change these defaults.

The well-known port numbers are contained in the file /ete/serv±ees on most
Unix systems. To find the port numbers for the Telnet server and the Domain Name
System, we can execute

sun % grep telnet /etc/services
telnet 23/tcp

sun % grep domain /etc/services
domain 53/udp
domain 53/top

says it uses TCP port 23

says ~t uses UDP port 53
and TCP port 53

Reserved Ports

Unix systems have the concept of reserved ports. Only a process with superuser privi-
leges can assign itself a reserved port.

These port numbers are in the range of I to 1023, and are used by some applications
(notably Rlogin, Section 26.2), as part of the authentication between the client and
server.

14 Introduction Chapter I

1.10 Standardization Process

Who controls the TCP/IP protocol suite, approves new standards, and the like? There
are four groups responsible for Internet technology.

The Internet Society (ISOC) is a professional society to facilitate, support, and
promote the evolution and growth of the Internet as a global research communi-
cations infrastructure.

The Internet Architecture Board (IAB) is the technical oversight and coordination
body. It is composed of about 15 international volunteers from various disci-
plines and serves as the final editorial and technical review board for the quality
of Internet standards. The IAB falls under the ISOC.

The Internet Engineering Task Force (IETF) is the near-term, standards-oriented
group, divided into nine areas (applications, routing and addressing, security,
etc.). The IETF develops the specifications that become Internet standards. An
additional Internet Engineering Steering Group (IESG) was formed to help the
IETF chair.

4. The Internet Research Task Force (IRTF) pursues long-term research projects.

Both the IRTF and the IETF fall under the IAB. [Crocker 1993] provides additional
details on the standardization process within the Internet, as well as some of its early
history.

1.11 RFCs

All the official standards in the internet community are published as a Request for Com-
ment, or RFC. Additionally there are lots of RFCs that are not official standards, but are
published for informational purposes. The RFCs range in size from 1 page to almost
200 pages. Each is identified by a number, such as RFC 1122, with higher numbers for
newer RFCs.

All the RFCs are available at no charge through electronic mail or using FTP across
the Internet. Sending electronic mail as shown here:

TO: rfc-info@ISI.EDU
Subject: getting rfcs

help: ways_to_get_rfcs

returns a detailed listing of various ways to obtain the RFCs.
The latest RFC index is always a starting point when looking for something. This

index specifies when a certain RFC has been replaced by a newer RFC, and if a newer
RFC updates some of the information in that RFC.

There are a few important RFCs.

1. The Assigned Numbers RFC specifies all the magic numbers and constants that
are used in the Internet protocols. At the time of this writing the latest version

Section 1.12 Standard, Simple Services 15

o

o

of this RFC is 1340 [Reynolds and Postel 1992]. All the Internet-wide well-
known ports are listed here.

When this RFC is updated (it is normally updated at least yearly) the index list-
ing for 1340 will indicate which RFC has replaced it.

The Internet Official Protocol Standards, currently RFC 1600 [Postel 1994]. This
RFC specifies the state of standardization of the various Internet protocols. Each
protocol has one of the following states of standardization: standard, draft stan-
dard, proposed standard, experimental, informational, or historic. Additionally
each protocol has a requirement level: required, recommended, elective, limited
use, or not recommended.

Like the Assigned Numbers RFC, this RFC is also reissued regularly. Be sure
you’re reading the current copy.

The Host Requirements RFCs, 1122 and 1123 [Braden 1989a, 1989b]. RFC 1122
handles the link layer, network layer, and transport layer, while RFC 1123 han-
dles the application layer. These two RFCs make numerous corrections and
interpretations of the important earlier RFCs, and are often the starting point
when looking at any of the finer details of a given protocol. They list the fea-
tures and implementation details of the protocols as either "must," "should,"
"may, should not," or "must not."

[Borman 1993b] provides a practical look at these two RFCs, and RFC 1127
[Braden 1989c] provides an informal summary of the discussions and conclu-
sions of the working group that developed the Host Requirements RFCs.

The Router Requirements RFC. The official version of this is RFC 1009 [Braden
and Postel 1987], but a new version is nearing completion [Almquist 1993]. This
is similar to the host requirements RFCs, but specifies the unique requirements
of routers.

1.12 Standard, Simple Services

There are a few standard, simple services that almost every implementation provides.
We’ll use some of these servers throughout the text, usually with the Telnet client. Fig-
ure 1.9 describes these services. We can see from this figure that when the same service
is provided using both TCP and UDP, both port numbers are normally chosen to be the
same.

If we examine the port numbers for these standard services and other standard TCP/IP ser-
vices (Telnet, FTP, SMTP, etc.), most are odd numbers. This is historical as these port numbers
are derived from the NCP port numbers. (NCP, the Network Control Protocol, preceded TCP
as a transport layer protocol for the ARPANET.) NCP was simplex, not full-duplex, so each
application required two connections, and an even-odd pair of port numbers was reserved for
each application. When TCP and UDP became the standard transport layers, only a single
port number was needed per application, so the odd port numbers from NCP were used.

16 Introduction Chapter I

1.13

Name

echo 7
discard 9
daytime 13

chargen 19

time 37

TCP port UDP port RFC

7 862
9 863

13 867

19 864

37 868

Description

Server returns whatever the client sends.
Server discards whatever the client sends.
Server returns the time and date in a human-readable

format.
TCP server sends a continual stream of characters, until the

connection is terminated by the client. UDP server
sends a datagram containh~g a random number of
characters each time the chent sends a datagram

Server returns the time as a 32-b~t binary number. This
number represents the number of seconds since
midnight January 1, 1900, UTC.

Figure 1.9 Standard, simple services provided by most implementations.

The Internet

In Figure 1.3 we showed an internet composed of two networks--an Ethernet and a
token ring. In Sections 1.4 and 1.9 we talked about the worldwide Internet and the need
to allocate IP addresses centrally (the InterNIC) and the well-known port numbers (the
IANA). The word internet means different things depending on whether it’s capitalized
or not.

The lowercase internet means multiple networks connected together, using a com-
mon protocol suite. The uppercase Internet refers to the collection of hosts (over one
million) around the world that can communicate with each other using TCP/IP. While
the Internet is an internet, the reverse is not true.

1.14 Implementations

The de facto standard for TCP/IP implementations is the one from the Computer Sys-
tems Research Group at the University of California at Berkeley. Historically this has
been distributed with the 4.x BSD system (Berkeley Software Distribution), and with the
"BSD Networking Releases." This source code has been the starting point for many
other implementations.

Figure 1.10 shows a chronology of the various BSD releases, indicating the impor-
tant TCP/IP features. The BSD Networking Releases shown on the left side are publicly
available source code releases containing all of the networking code: both the protocols
themselves and many of the applications and utilities (such as Telnet and FTP).

Throughout the text we’ll use the term Berkeley-derived implementation to refer to
vendor implementations such as SunOS 4.x, SVR4, and AIX 3.2 that were originally
developed from the Berkeley sources. These implementations have much in common,
often including the same bugs!

Section 1.15 Application Programming Interfaces 17

1.15

BSD Networking Software
Release 1.0 (1989). Net/1

BSD Networking Software
Release 2.0 (1991): Net/2

4.41~SD-LIte (1994)
also referred to as Net/3

4.2t~SD (1983)
first widely available

release of TCP/IP

4.3BSD (1986)
TCP performance improvements

4.3BSD Tahoe (1988)
slow start,

congestion avoidance,
fast retransmit

4.3BSD Reno (1990)
fast recovery,

TCP header prediction,
SLIP header compression,

routing table changes

4.4BSD (1993)
multicasting,

long fat pipe modifications

Figure 1.10 Various BSD releases with important TCP/IP features.

Much of the original research in the Internet is still being applied to the Berkeley
system--new congestion control algorithms (Section 21.7), multicasting (Section 12.4),
"long fat pipe" modifications (Section 24.3), and the like.

Application Programming Interfaces

Two popular application programming interfaces (APIs) for applications using the TCP/IP
protocols are called sockets and TLI (Transport Layer Interface). The former is some-
times called "Berkeley sockets," indicating where it was originally developed. The lat-
ter, originally developed by AT&T, is sometimes called XTI (X/Open Transport
Interface), recognizing the work done by X/Open, an international group of computer
vendors that produce their own set of standards. XTI is effectively a superset of TLI.

18 Introduction Chapter 1

This text is not a programming text, but occasional reference is made to features of
TCP/IP that we look at, and whether that feature is provided by the most popular API
(sockets) or not. All the programming details for both sockets and TLI are available in
[Stevens 1990].

1.16 Test Network

Figure 1.11 shows the test network that is used for all the examples in the text. This fig-
ure is also duplicated on the inside front cover for easy reference while reading the
book.

Solans 2.2

solaris

T.1.32

Ethernet

AIX 3.2.2

aix

T.1.92

SunOS 4.1.1

gemini

T.I.ll

BSD/386 1.0 BSD/386 1.0

slip ~.13.65 SLIP
.13.66t

bsdi

T.13.35

Internet

.104.1Cisco
gateway router

.1,4

~.1.183

1Telebit
NetBlazer

netb

SLIP I (dialup)

SunOS 4.1.3 .1.29

sun

T.13.33

Ethernet

SVR4

svr4

T.13.34

Figure 1.11 Test network used for all the examples in the text. All IP addresses begin with 140.252.

Most of the examples are run on the lower four systems in this figure (the author’s sub-
net). All the IP addresses in this figure belong to the class B network ID 140.252. All the
hostnames belong to the . tuc. noao. edu domain. (noao stands for "National Optical
Astronomy Observatories" and tuc stands for Tucson.) For example, the lower right
system has a complete hostname of svr4. tuc. noao.edu and an IP address of
140.252.13.34. The notation at the top of each box is the operating system running on
that system. This collection of systems and networks provides hosts and routers run-
ning a variety of TCP/IP implementations.

Chapter 1 Exercises 19

1.17

It should be noted that there are many more networks and hosts in the noao. edu
domain than we show in Figure 1.11. All we show here are the systems that we’ll
encounter throughout the text.

In Section 3.4 we describe the form of subnetting used on this network, and in Sec-
tion 4.6 we’ll provide more details on the dialup SLIP connection between sun and
netb. Section 2.4 describes SLIP in detail.

Summary

This chapter has been a whirlwind tour of the TCP/IP protocol suite, introducing many
of the terms and protocols that we discuss in detail in later chapters.

The four layers in the TCP/IP protoco! suite are the link layer, network layer, trans-
port layer, and application layer, and we mentioned the different responsibilities of
each. In TCP/IP the distinction between the network layer and the transport layer is
critical: the network layer (IP) provides a hop-by-hop service while the transport layers
(TCP and UDP) provide an end-to-end service.

An internet is a collection of networks. The common building block for an internet
is a router that connects the networks at the IP layer. The capital-I Internet is an internet
that spans the globe and consists of more than 10,000 networks and more than one mil-
lion computers.

On an internet each interface is identified by a unique IP address, although users
tend to use hostnames instead of IP addresses. The Domain Name System provides a
dynamic mapping between hostnames and IP addresses. Port numbers are used to
identify the applications communicating with each other and we said that servers use
well-known ports while clients use ephemeral ports.

Exercises

1.1

1.2

1.3

1.4

Calculate the maximum number of class A, B, and C network IDs.

Fetch the file nsfnet/statistics/history.netcount using anonymous FTP (Sec-
tion 27.3) from the host nic.merit, edu. This file contains the number of domestic and
foreign networks announced to the NSFNET infrastructure. Plot these values with the year
on the x-axis and a logarithmic y-axis with the total number of networks. The maximum
value for the y-axis should be the value calculated in the previous exercise. If the data
shows a visual trend, extrapolate the values to estimate when the current addressing
scheme will run out of network IDs. (Section 3.10 talks about proposals to correct this
problem.)

Obtain a copy of the Host Requirements RFC [Braden 1989a] and look up the robustness
principle that applies to every layer of the TCP/IP protocol suite. What is the reference for
this principle?

Obtain a copy of the latest Assigned Numbers RFC. What is the well-known port for the
"quote of the day" protocol? Which RFC defines the protocol?

20 Introduction Chapter 1

1o5 If you have an account on a host that is connected to a TCP/IP internet, what is its primary
IP address? Is the host connected to the worldwide Internet? Is it multihomed?

1.6 Obtain a copy of RFC 1000 to learn where the term RFC originated.

1.7 Contact the Internet Society, i soc@ i soc. org or +1 703 648 9888, to find out about joining.

1.8 Fetch the file about-internic/information-about-the-internic using anony-
mous FTP from the host is. internic, net.

2

Link Layer

2.1

2.2

Introduction

From Figure 1.4 (p. 6) we see that the purpose of the link layer in.the TCP/IP protocol
suite is to send and receive (1) IP datagrams for the IP module, (2) ARP requests and
replies for the ARP module, and (3) RARP requests and replies for the RARP module.
TCP/IP supports many different link layers, depending on the type of networking
hardware being used: Ethernet, token ring, FDDI (Fiber Distributed Data Interface),
RS-232 serial lines, and the like.

In this chapter we’ll look at some of the details involved in the Ethernet link layer,
two specialized link layers for serial interfaces (SLIP and PPP), and the loopback driver
that’s part of most implementations. Ethernet and SLIP are the link layers used for
most of the examples in the book. We also talk about the MTU (Maximum Transmission
Unit), a characteristic of the link layer that we encounter numerous times in the remain-
ing chapters. We also show some calculations of how to choose the MTU for a serial
line.

Ethernet and IEEE 802 Encapsulation

The term Ethernet generally refers to a standard published in 1982 by Digital Equipment
Corp., Intel Corp., and Xerox Corp. It is the predominant form of local area network
technology used with TCP/IP today. It uses an access method called CSMA/CD, which
stands for Carrier Sense, Multiple Access with Collision Detection. It operates at 10
Mbits/sec and uses 48-bit addresses.

A few years later the IEEE (Institute of Electrical and Electronics Engineers) 802
Committee published a sightly different set of standards. 802.3 covers an entire set of

21

22 Link Layer Chapter 2

CSMA/CD networks, 802.4 covers token bus networks, and 802.5 covers token ring net-
works. Common to all three of these is the 802.2 standard that defines the logical link
control (LLC) common to many of the 802 networks. Unfortunately the combination of
802.2 and 802.3 defines a different frame format from true Ethernet. ([Stallings 1987]
covers all the details of these IEEE 802 standards.)

In the TCP/IP world, the encapsulation of IP datagrams is defined in RFC 894
[Hornig 1984] for Ethernets and in RFC 1042 [Postel and Reynolds 1988] for IEEE 802
networks. The Host Requirements RFC requires that every Internet host connected to a
10 Mbits/sec Ethernet cable:

Must be able to send and receive packets using RFC 894 (Ethernet) encapsula-
tion.

2. Should be able to receive RFC 1042 (IEEE 802) packets intermixed with RFC 894
packets.

3. May be able to send packets using RFC 1042 encapsulation. If the host can send
both types of packets, the type of packet sent must be configurable and the con-
figuration option must default to RFC 894 packets.

RFC 894 encapsulation is most commonly used. Figure 2.1 shows the two different
forms of encapsulation. The number below each box in the figure is the size of that box
in bytes.

Both frame formats use 48-bit (6-byte) destination and source addresses. (802.3
allows 16-bit addresses to be used, but 48-bit addresses are normal.) These are what we
call hardware addresses throughout the text. The ARP and RARP protocols (Chapters 4
and 5) map between the 32-bit IP addresses and the 48-bit hardware addresses.

The next 2 bytes are different in the two frame formats. The 802 length field says
how many bytes follow, up to but not including the CRC at the end. The Ethernet type
field identifies the type of data that follows. In the 802 frame the same type field occurs
later in the SNAP (Sub-network Access Protocol) header. Fortunately none of the valid
802 length values is the same as the Ethernet type values, making the two frame formats
distinguishable.

In the Ethernet frame the data immediately follows the type field, while in the 802
frame format 3 bytes of 802.2 LLC and 5 bytes of 802.2 SNAP follow. The DSAP (Desti-
nation Service Access Point) and SSAP (Source Service Access Point) are both set to
0xaa. The ctrl field is set to 3. The next 3 bytes, the org code are all 0. Following this is
the same 2-byte type field that we had with the Ethernet frame format. (Additional type
field values are given in RFC 1340 [Reynolds and Postel 1992].)

The CRC field is a cyclic redundancy check (a checksum) that detects errors in the
rest of the frame. (This is also called the FCS or frame check sequence.)

There is a minimum size for 802.3 and Ethernet frames. This minimum requires
that the data portion be at least 38 bytes for 802.3 or 46 bytes for Ethernet. To handle
this, pad bytes are inserted to assure that the frame is long enough. We’ll encounter this
minimum when we start watching packets on the wire.

In this text we’ll display the Ethernet encapsulation when we need to, because this
is the most commonly used form of encapsulation.

Section 2.3 Trailer Encapsulation 23

IEEE 802.2/802.3 Encapsulation (RFC 1042):

~ 802.3 MAC ~ 802.2 LLC ~ 802.2 SNAP ~

LdestinationI source I . ~SAI~SSAPIcntll orgcode ty~
addr6 [addr 6

lengtt~ 2 ~~13 AA AA 03

030 2

data

38-1492

type

~0~_0
IP datagram

2 38-1492

type ARP request/reply
0806

2 28 10

type RARP request/reply PAD
8035

2 28 10

Ethernet Encapsulation (RFC 894):

destination] source type
L addr addr

6 6 2

46-1500 bytes

data

46-1500

type I IP datagram

2 46-1500

type PAD
0806 ARP request/reply

2 28 18

type RARP request/reply PAD
8035

2 28 18

Figure 2.1 IEEE 802.2/802.3 encapsulation (RFC 1042) and Ethernet encapsulation (RFC 894).

2.3 Trailer Encapsulation

RFC 893 [Leffier and Karels 1984] describes another form of encapsulation used on
Ethernets, called trailer encapsulation. It was an experiment with early BSD systems on
DEC VAXes that improved performance by rearranging the order of the fields in the IP
datagram. The variable-length fields at the beginning of the data portion of the Ether-
net frame (the IP header and the TCP header) were moved to the end (right before the
CRC). This allows the data portion of the frame to be mapped to a hardware page,

24 Link Layer Chapter 2

saving a memory-to-memory copy when the data is copied in the kernel. TCP data that
is a multiple of 512 bytes in size can be moved by just manipulating the kernel’s page
tables. Two hosts negotiated the use of trailer encapsulation using an extension of ARP.
Different Ethernet frame type values are defined for these frames.

Nowadays trailer encapsulation is deprecated, so we won’t show any examples of
it. Interested readers are referred to RFC 893 and Section 11.8 of [Leffier et al. 1989] for
additional details.

2.4 SLIP" Serial Line IP

SLIP stands for Serial Line IP. It is a simple form of encapsulation for IP datagrams on
serial lines, and is specified in RFC 1055 [Romkey 1988]. SLIP has become popular for
connecting home systems to the lnternet, through the ubiquitous RS-232 serial port
found on almost every computer and high-speed modems.

The following rules specify the framing used by SLIP.

1. The IP datagram is terminated by the special character called END (0xe0).
Also, to prevent any line noise before this datagram from being interpreted as
part of this datagram, most implementations transmit an END character at the
beginning of the datagram too. (If there was some line noise, this END termi-
nates that erroneous datagram, allowing the current datagram to be transmitted.
That erroneous datagram will be thrown away by a higher layer when its con-
tents are detected to be garbage.)

2. If a byte of the IP datagram equals the END character, the 2-byte sequence
0xdb, 0xdc is transmitted instead. This special character, 0xd_b, is called the
SLIP ESC character, but its value is different from the ASCII ESC character
(Ox b).

3. If a byte of the IP datagram equals the SLIP ESC character, the 2-byte sequence
0xdb, 0xdd is transmitted instead.

Figure 2.2 shows an example of this framing, assuming that one END character and one
ESC character appear in the original IP datagram. In this example the number of bytes
transmitted across the serial line is the length of the IP datagram plus 4.

SLIP is a simple framing method. It has some deficiencies that are worth noting.

o

Each end must know the other’s IP address. There is no method for one end to
inform the other of its IP address.

There is no type field (similar to the frame type field in Ethernet frames). If a
serial line is used for SLIP, it can’t be used for some other protocol at the same
time.

There is no checksum added by SLIP (similar to the CRC field in Ethernet
frames). If a noisy phone line corrupts a datagram being transferred by SLIP,
it’s up to the higher layers to detect this. (Alternately, newer modems can detect

Section 2.5 Compressed SLIP

2.5

END

e0

1

IP datagram ~

IESC \ \ ESC \~ \ END

~cOdb dc/ db dd

Figure 2.2 SLIP encapsulation.

and correct corrupted frames.) This makes it essential that the upper layers pro-
vide some form of CRC. In Chapters 3 and 17 we’ll see that there is always a
checksum for the IP header, and for the TCP header and the TCP data. But in
Chapter 11 we’ll see that the checksum that covers the UDP header and UDP
data is optional.

Despite these shortcomings, SLIP is a popular protocol that is widely used.

The history of SLIP dates back to 1984 when Rick Adams implemented it in 4.2BSD. Despite
its self-description as a nonstandard, it is becoming more popular as the speed and reliability
of modems increase. Publicly available implementations abound, and many vendors support
it today.

Compressed SLIP

Since SLIP lines are often slow (19200 bits/sec or below) and frequently used for inter-
active traffic (such as Telnet and Rlogin, both of which use TCP), there tend to be many
small TCP packets exchanged across a SLIP line. To carry 1 byte of data requires a
20-byte IP header and a 20-byte TCP header, an overhead of 40 bytes. (Section 19.2
shows the flow of these small packets when a simple command is typed during an
Rlogin session.)

Recognizing this performance drawback, a newer version of SLIP, called CSLIP (for
compressed SLIP), is specified in RFC 1144 [Jacobson 1990a]. CSLIP normally reduces
the 40-byte header to 3 or 5 bytes. It maintains the state of up to 16 TCP connections on
each end of the CSLIP link and knows that some of the fields in the two headers for a
given connection normally don’t change. Of the fields that do change, most change by a
small positive amount. These smaller headers greatly improve the interactive response
time.

Most SLIP implementations today support CSLIP. Both SLIP links on the author’s subnet (see
inside front cover) are CSLIP links.

26

2.6

Link Layer Chapter 2

PPP: Point-to-Point Protocol

PPP, the Point-to-Point Protocol, corrects all the deficiencies in SLIP. PPP consists of
three components.

A way to encapsulate IP datagrams on a serial link. PPP supports either an
asynchronous link with 8 bits of data and no parity (i.e., the ubiquitous serial
interface found on most computers) or bit-oriented synchronous links.

A link control protocol (LCP) to establish, configure, and test the data-link connec-
tion. This allows each end to negotiate various options.

A family of network control protocols (NCPs) specific to different network layer
protocols. RFCs currently exist for IP, the OSI network layer, DECnet, and
AppleTalk. The IP NCP, for example, allows each end to specify if it can per-
form header compression, similar to CSLIP. (The acronym NCP was also used
for the predecessor to TCP.)

RFC 1548 [Simpson 1993] specifies the encapsulation method and the link control proto-
col. RFC 1332 [McGregor 1992] specifies the network control protocol for IP.

The format of the PPP frames was chosen to look like the ISO HDLC standard
(high-level data link control). Figure 2.3 shows the format of PPP frames.

flag addr control
7 E FF 03 protocol

1 1 1 2

information CRC

up to 1500 bytes 2 1

protocol IP datagram
0021

protocol link control datac021

protocol network control data8021

Figure 2.3 Format of PPP frames.

Each frame begins and ends with aflag byte whose value is 0xTe. This is followed
by an address byte whose value is always 0x f f, and then a control byte, with a value of
0x03.

Next comes the protocol field, similar in function to the Ethernet type field. A value
of 0x0021 means the information field is an IP datagram, a value of 0xc021 means the
information field is link control data, and a value of 0x8021 is for network control data.

Section 2.6 PPP: Point-to-Point Protocol 27

The CRC field (or FCS, for frame check sequence) is a cyclic redundancy check, to
detect errors in the frame.

Since the byte value 0×7÷ is theflag character, PPP needs to escape this byte when it
appears in the information field. On a synchronous link this is done by the hardware
using a technique called bit stuffing [Tanenbaum 1989]. On asynchronous links the spe-
cial byte 0x?d is used as an escape character. Whenever this escape character appears
in a PPP frame, the next character in the frame has had its sixth bit complemented, as
follows:

1. The byte 0xVe is transmitted as the 2-byte sequence 0xVd, 0xSe. This is the
escape of the flag byte.

2. The byte 0xVd is transmitted as the 2-byte sequence 0xVd, 0xSd. This is the
escape of the escape byte.

3. By default, a byte with a value less than 0×2 0 (i.e., an ASCII control character) is
also escaped. For example, the byte 0x03_ is transmitted as the 2-byte sequence
0xvd, 0x21. (In this case the complement of the sixth bit turns the bit on,
whereas in the two previous examples the complement turned the bit off.)

The reason for doing this is to prevent these bytes from appearing as ASCII con-
trol characters to the serial driver on either host, or to the modems, which some-
times interpret these control characters specially. It is also possible to use the
link control protocol to specify which, if any, of these 32 values must be escaped.
By default, all 32 are escaped.

Since PPP, like SLIP, is often used across slow serial links, reducing the number of
bytes per frame reduces the latency for interactive applications. Using the link control
protocol, most implementations negotiate to omit the constant address and control fields
and to reduce the size of the protocol field from 2 bytes to 1 byte. If we then compare the
framing overhead in a PPP frame, versus the 2-byte framing overhead in a SLIP frame
(Figure 2.2), we see that PPP adds three additional bytes: 1 byte for the protocol field,
and 2 bytes for the CRC. Additionally, using the IP network control protocol, most
implementations then negotiate to use Van Jacobson header compression (identical to
CSLIP compression) to reduce the size of the IP and TCP headers.

In summary, PPP provides the following advantages over SLIP: (1) support for mul-
tiple protocols on a single serial line, not just IP datagrams, (2) a cyclic redundancy
check on every frame, (3) dynamic negotiation of the IP address for each end (using the
IP network control protocol), (4) TCP and IP header compression similar to CSLIP, and
(5) a link control protocol for negotiating many data-link options. The price we pay for
all these features is 3 bytes of additional overhead per frame, a few frames of negotia-
tion when the link is established, and a more complex implementation.

Despite all the added benefits of PPP over SLIP, today there are more SLIP users than PPP
users. As implementations become more widely available, and as vendors start to support
PPP, it should (eventually) replace SLIP.

28 Link Layer Chapter 2

2.7 Loopback Interface

Most implementations support a loopback interface that allows a client and server on the
same host to communicate with each other using TCP/IP. The class A network ID 127
is reserved for the loopback interface. By convention, most systems assign the IP
address of 127.0.0.1 to this interface and assign it the name !oca2khost:. An IP data-
gram sent to the loopback interface must not appear on any network.

Although we could imagine the transport layer detecting that the other end is the
loopback address, and short circuiting some of the transport layer logic and all of the
network layer logic, most implementations perform complete processing of the data in
the transport layer and network layer, and only loop the IP datagram back to itself
when the datagram leaves the bottom of the network layer.

Figure 2.4 shows a simplified diagram of how the loopback interface processes IP
datagrams.

IP output IP input

I ~estination IP address Iptace on IP
¯ ~ ~ equalbroadcast address .

P q ~

yes e i!-a~!iiii~iiaS ~!)~is

qm ut ueue ~ ~ . mput ueue

loopback driver

yes’~ destination IP address

~equal interface IP address~J
no, use ARP to |
get destination

Ethernet address

ARP

tSend

IP

.,~ demultiplex based on
Ethernet frame type

treceive

Ethernet

Figure 2.4 Processing of IP datagrams by loopback interface.

Ethernet
driver

Section 2.8 MTU 29

2.8

The key points to note in this figure are as follows:

1. Everything sent to the loopback address (normally 127.0.0.1) appears as IP
input.

2. Datagrams sent to a broadcast address or a multicast address are copied to the
loopback interface and sent out on the Ethernet. This is because the definition
of broadcasting and multicasting (Chapter 12) includes the sending host.

3. Anything sent to one of the host’s own IP addresses is sent to the loopback
interface.

While it may seem inefficient to perform all the transport layer and IP layer process-
ing of the loopback data, it simplifies the design because the loopback interface appears
as just another link layer to the network layer. The network layer passes a datagram to
the loopback interface like any other link layer, and it happens that the loopback inter-
face then puts the datagram back onto IP’s input queue.

Another implication of Figure 2.4 is that IP datagrams sent to the one of the host’s
own IP addresses normally do not appear on the corresponding network. For example,
on an Ethernet, normally the packet is not transmitted and then read back. Comments
in some of the BSD Ethernet device drivers indicate that many Ethernet interface cards
are not capable of reading their own transmissions. Since a host must process IP data-
grams that it sends to itself, handling these packets as shown in Figure 2.4 is the sim-
plest way to accomplish this.

The 4.4BSD implementation defines the variable useloopback and initializes it to 1. If this
variable is set to 0, however, the Ethernet driver sends local packets onto the network instead
of sending them to the loopback driver. This may or may not work, depen&ng on your Ether-
net interface card and device driver.

MTU

As we can see from Figure 2.1, there is a limit on the size of the frame for both Ethernet
encapsulation and 802.3 encapsulation. This limits the number of bytes of data to 1500
and 1492, respectively. This characteristic of the link layer is called the MTU, its maxi-
mum transmission unit. Most types of networks have an upper limit.

If IP has a datagram to send, and the datagram is larger than the link tayer’s MTU,
IP performs fragmentation, breaking the datagram up into smaller pieces (fragments), so
that each fragment is smaller than the MTU. We discuss IP fragmentation in Sec-
tion 11.5.

Figure 2.5 lists some typical MTU values, taken from RFC 1191 [Mogul and Deering
1990]. The listed MTU for a point-to-point link (e.g., SLIP or PPP) is not a physical char-
acteristic of the network media. Instead it is a logical limit to provide adequate
response time for interactive use. In the Section 2.10 we’ll see where this limit comes
from.

In Section 3.9 we’ll use the n÷tstat command to print the MTU of an interface.

30 Link Layer Chapter 2

Network

Hyperchannel
16 Mbits/sec token ring (IBM)
4 Mbits/sec token ring (IEEE 802.5)
FDDI
Ethernet
IEEE 802.3/802.2
X.25
Point-to-point (low delay)

MTU (bytes)

65535
17914
4464
4352
1500
1492
576
296

Figure 2.5 Typical maximum transmission units (MTUs).

2.9 Path MTU

When two hosts on the same network are communicating with each other, it is the MTU
of the network that is important. But when two hosts are communicating across multi-
ple networks, each link can have a different MTU. The important numbers are not the
MTUs of the two networks to which the two hosts connect, but rather the smallest MTU
of any data link that packets traverse between the two hosts. This is called the path
MTU.

The path MTU between any two hosts need not be constant. It depends on the
route being used at any time. Also, routing need not be symmetric (the route from A to
B may not be the reverse of the route from B to A), hence the path MTU need not be the
same in the two directions.

RFC 1191 [Mogul and Deering 1990] specifies the "path MTU discovery mecha-
nism," a way to determine the path MTU at any time. We’ll see how this mechanism
operates after we’ve described ICMP and IP fragmentation. In Section 11.6 we’ll exam-
ine the ICMP unreachable error that is used with this discovery mechanism and in Sec-
tion 11.7 we’ll show a version of the traceroute program that uses this mechanism to
determine the path MTU to a destination. Sections 11.8 and 24.2 show how UDP and
TCP operate when the implementation supports path MTU discovery.

2.10 Serial Line Throughput Calculations

If the line speed is 9600 bits/sec, with 8 bits per byte, plus 1 start bit and 1 stop bit, the
line speed is 960 bytes/sec. Transferring a 1024-byte packet at this speed takes 1066 ms.
If we’re using the SLIP link for an interactive application, along with an application
such as FTP that sends or receives 1024-byte packets, we have to wait, on the average,
half of this time (533 ms) to send our interactive packet.

This assumes that our interactive packet will be sent across the link before any fur-
ther "big" packets. Most SLIP implementations do provide this type-of-service queue-
ing, placing interactive traffic ahead of bulk data traffic. The interactive traffic is
normally Telnet, Rlogin, and the control portion (the user commands, not the data) of
FTP.

S~ction 2.11 Summary 31

This type of service queueing is imperfect. It cannot affect noninteractive traffic that is already
queued downstream (e.g., at the serial driver). Also newer modems have large buffers so non-
interactive traffic may already be buffered in the modem.

Waiting 533 ms is unacceptable for interactive response. Human factors studies
have found that an interactive response time longer than 100-200 ms is perceived as
bad [Jacobson 1990a]. This is the round-trip time for an interactive packet to be sent
and something to be returned (normally a character echo).

Reducing the MTU of the SLIP link to 256 means the maximum amount of time the
link can be busy with a single frame is 266 ms, and half of this (our average wait) is 133
ms. This is better, but still not perfect. The reason we choose this value (as compared to
64 or 128) is to provide good utilization of the line for bulk data transfers (such as large
file transfers). Assuming a 5-byte CSLIP header, 256 bytes of data in a 261-byte frame
gives 98.1% of the line to data and 1.9% to headers, which is good utilization. Reducing
the MTU below 256 reduces the maximum throughput that we can achieve for bulk
data transfers.

The MTU value listed in Figure 2.5, 296 for a point-to-point link, assumes 256 bytes
of data and the 40-byte TCP and IP headers. Since the MTU is a value that IP queries
the link layer for, the value must include the normal TCP and IP headers. This is how
IP makes its fragmentation decision. IP knows nothing about the header compression
that CSLIP performs.

Our average wait calculation (one-half the time required to transfer a maximum
sized frame) only applies when a SLIP link (or PPP link) is used for both interactive traf-
fic and bulk data transfer. When only interactive traffic is being exchanged, 1 byte of
data in each direction (assuming 5-byte compressed headers) takes around 12.5 ms for
the round trip at 9600 bits/sec. This is well within the 100-200 ms range mentioned
earlier. Also notice that compressing the headers from 40 bytes to 5 bytes reduces the
round-trip time for the i byte of data from 85 to 12.5 ms.

Unfortunately these types of calculations are harder to make when newer error cor-
recting, compressing modems are being used. The compression employed by these
modems reduces the number of bytes sent across the wire, but the error correction may
increase the amount of time to transfer these bytes. Nevertheless, these calculations
give us a starting point to make reasonable decisions.

In later chapters we’ll use these serial line calculations to verify some of the timings
that we see when watching packets go across a serial link.

2.11 Summary

This chapter has examined the lowest layer in the Internet protocol suite, the link layer.
We looked at the difference between Ethernet and IEEE 802.2/802.3 encapsulation, and
the encapsulation used by SLIP and PPP. Since both SLIP and PPP are often used on
slow links, both provide a way to compress the common fields that don’t often change.
This provides better interactive response.

The loopback interface is provided by most implementations. Access to this inter-
face is either through the special loopback address, normally 127.0.0.1, or by sending IP

Link Layer Chapter 2

datagrams to one of the host’s own IP addresses. Loopback data has been completely
processed by the transport layer and by IP when it loops around to go up the protocol
stack.

We described an important feature of many link layers, the MTU, and the related
concept of a path MTU. Using the typical MTUs for serial lines, we calculated the
latency involved in SLIP and CSLIP links.

This chapter has covered only a few of the common data-link technologies used
with TCP/IP today. One reason for the success of TCP/IP is its ability to work on top of
almost any data-link technology.

Exercises

2.1 If your system supports the netstat(1) command (see Section 3.9 also), use it to determine
the interfaces on your system and their MTUs.

IP: Internet Protocol

3.1 Introduction

IP is the workhorse protocol of the TCP/IP protocol suite. All TCP, UDP, ICMP, and
IGMP data gets transmitted as IP datagrams (Figure 1.4). A fact that amazes many
newcomers to TCP/IE especially those from an X.25 or SNA background, is that IP pro-
vides an unreliable, connectionless datagram delivery service.

By unreliable we mean there are no guarantees that an IP datagram successfully gets
to its destination. IP provides a best effort service. When something goes wrong, such
as a router temporarily running out of buffers, IP has a simple error handling algorithm:
throw away the datagram and try to send an ICMP message back to the source. Any
required reliability must be provided by the upper layers (e.g., TCP).

The term connectionless means that IP does not maintain any state information about
successive datagrams. Each datagram is handled independently from all other data-
grams. This also means that IP datagrams can get delivered out of order. If a source
sends two consecutive datagrams (first A, then B) to the same destination, each is
routed independently and can take different routes, with B arriving before A.

In this chapter we take a brief look at the fields in the IP header, describe IP routing,
and cover subnetting. We also look at two useful commands: ±fconfJ_qI and net:s~:at.
We leave a detailed discussion of some of the fields in the IP header for later when we
can see exactly how the fields are used. RFC 791 [Postel 1981a] is the official specifica-
tion of IR

33

34 IP: Internet Protocol Chapter 3

3.2 IP Header

Figure 3.1 shows the format of an IP datagram. The normal size of the IP header is 20
bytes, unless options are present.

0 15 16

4-bit header 8-bit type of service
length (TOS)

3-bit

16-bit total length (in bytes)

13-bit fragment offset

16-bit header checksum

32-bit source IP address

32-bit destmation IP address

options (if any)

4-bit
version

16-bit identihcation

8-bit time to live
(TTL) 8-bit protocol

31

20 bytes

data

Figure 3.1 IP datagram, showing the fields in the IP header.

We will show the pictures of protocol headers in TCP/IP as in Figure 3.1. The most sig-
nificant bit is numbered 0 at the left, and the least significant bit of a 32-bit value is num-
bered 31 on the right.

The 4 bytes in the 32-bit value are transmitted in the order: bits 0-7 first, then bits
8-15, then 16-23, and bits 24-31 last. This is called big endian byte ordering, which is
the byte ordering required for all binary integers in the TCP/IP headers as they traverse
a network. This is called the network byte order. Machines that store binary integers in
other formats, such as the little endian format, must convert the header values into the
network byte order before transmitting the data.

The current protocol version is 4, so IP is sometimes called IPv4o Section 3.10 dis-
cusses some proposals for a new version of IP.

The header length is the number of 32-bit words in the header, including any options.
Since this is a 4-bit field, it limits the header to 60 bytes. In Chapter 8 we’ll see that this
limitation makes some of the options, such as the record route option, useless today.
The normal value of this field (when no options are present) is 5.

The type-of-service field (TOS) is composed of a 3-bit precedence field (which is
ignored today), 4 TOS bits, and an unused bit that must be 0. The 4 TOS bits are: mini-
mize delay, maximize throughput, maximize reliability, and minimize monetary cost.

Section 3.2 IP Header 35

Only 1 of these 4 bits can be turned on. If all 4 bits are 0 it implies normal service.
RFC 1340 [Reynolds and Postel 1992] specifies how these bits should be set by all the
standard applications. RFC 1349 [Almquist 1992] contains some corrections to this RFC,
and a more detailed description of the TOS feature.

Figure 3.2 shows the recommended values of the TOS field for various applications.
In the final column we show the hexadecimal value, since that’s what we’ll see in the
tcpdump output later in the text.

Mmimize Maximize Minimize Hex
Application delay reliability monetary cost value

1 0 0xl0Telnet/Rlogm
FTP

control
data

any bulk data
TETP
SMTP

command phase
data phase

DNS
UDP query
TCP query
zone transfer

ICMP
error
query

any IGP
SNMP
BOOTP
NNTP

1
0
0
1

1
0

1
0
0

0
0
0
0
0
0

Maximize
throughput

0 0

0 0
1 0
1 0
0 0

0 0
1 0

0 0
0 0
1 0

0 0
0 0
0 1
0 1
0 0
0 0

0
0
0
0

0
0

0
0
0

0
0
0
0
0
1

OxlO
OxO8
OxO8
OxlO

OxlO
OxO8

OxlO
OxOO
OxO8

OxO0
OxO0
Ox04
Ox04
OxO0
Ox02

Figure 3.2 Recommended vaiues for type-of-service field.

The interactive login applications, Telnet and Rlogin, want a minimum delay since
they’re used interactively by a human for small amounts of data transfer. File transfer
by FTP, on the other hand, wants maximum throughput. Maximum reliability is speci-
fied for network management (SNMP) and the routing protocols. Usenet news (NNTP)
is the only one shown that wants to minimize monetary cost.

The TOS feature is not supported by most TCP/IP implementations today, though
newer systems starting with 4.3BSD Reno are setting it. Additionally, new routing pro-
tocols such as OSPF and IS-IS are capable of making routing decisions based on this
field.

In Section 2.10 we mentioned that SLIP drivers normally provide type-of-service queueing,
allowing interactive traffic to be handled before bulk data. Since most implementations don’t
use the TOS field, this queueing is done ad hoc by SLIP, with the driver looking at the protocol
field (to determine whether it’s a TCP segment or not) and then checking the source and desti-
nation TCP port numbers to see if the port number corresponds to an interacfive service. One
driver comments that this "disgusting hack" is required since most implementations don’t
allow the application to set the TOS field.

36 IP: Internet Protocol Chapter 3

The total length field is the total length of the IP datagram in bytes. Using this field
and the header length field, we know where the data portion of the IP datagram starts,
and its length. Since this is a 16-bit field, the maximum size of an IP datagram is 65535
bytes. (Recall from Figure 2.5 [p. 30] that a Hyperchannel has an MTU of 65535. This
means there really isn’t an MTU--it uses the largest IP datagram possible.) This field
also changes when a datagram is fragmented, which we describe in Section 11.5.

Although it’s possible to send a 65535-byte IP datagram, most link layers will frag-
ment this. Furthermore, a host is not required to receive a datagram larger than 576
bytes. TCP divides the user’s data into pieces, so this limit normally doesn’t affect TCP.
With UDP we’ll encounter numerous applications in later chapters (RIP, TFTP, BOOTP,
the DNS, and SNMP) that limit themselves to 512 bytes of user data, to stay below this
576-byte limit. Realistically, however, most implementations today (especially those
that support the Network File System, NFS) allow for just over 8192-byte IP datagrams.

The total length field is required in the IP header since some data links (e.g., Ether-
net) pad small frames to be a minimum length. Even though the minimum Ethernet
frame size is 46 bytes (Figure 2.1), an IP datagram can be smaller. If the total length
field wasn’t provided, the IP layer wouldn’t know how much of a 46-byte Ethernet
frame was really an IP datagram.

The identif!’cation field uniquely identifies each datagram sent by a host. It normally
increments by one each time a datagram is sent. We return to this field when we look at
fragmentation and reassembly in Section 11.5. Similarly, we’ll also look at theflags field
and the fragmentation offset field when we talk about fragmentation.

RFC 791 [Postel 1981a] says that the identification field should be chosen by the upper layer
that is having IP send the datagram. This implies tttat two consecutive IP datagrams, one gen-
erated by TCP and one generated by UDP, can have the same identification field. While this is
OK (the reassembty algorithm handles this), most Berkeley-derived implementations have the
IP layer increment a kernel variable each time an IP datagram is sent, regardless of which layer
passed the data to IP to send. This kernel variable is initialized to a value based on the time-of-
day when the system is bootstrapped.

The time-to-live field, or TTL, sets an upper limit on the number of routers through
which a datagram can pass. It limits the lifetime of the datagram. It is initialized by the
sender to some value (often 32 or 64) and decremented by one by every router that han-
dles the datagram. When this field reaches 0, the datagram is thrown away, and the
sender is notified with an 1CMP message. This prevents packets from getting caught in
routing loops forever. We return to this field in Chapter 8 when we look at the Trace-
route program.

We talked about the protocol field in Chapter 1 and showed how it is used by IP to
demultiplex incoming datagrams in Figure 1.8. It identifies which protocol gave the
data for IP to send.

The header checksum is calculated over the IP header only. It does not cover any data
that follows the header. ICMP, IGMP, UDP, and TCP all have a checksum in their own
headers to cover their header and data.

To compute the IP checksum for an outgoing datagram, the value of the checksum
field is first set to 0. Then the 16-bit one’s complement sum of the header is calculated
(i.e., the entire header is considered a sequence of 16-bit words). The 16-bit one’s

Section 3.3 IP Routing 37

complement of this sum is stored in the checksum field. When an IP datagram is
received, the 16-bit one’s complement sum of the header is calculated. Since the
receiver’s calculated checksum contains the checksum stored by the sender, the
receiver’s checksum is all one bits if nothing in the header was modified. If the result is
not all one bits (a checksum error), IP discards the received datagram. No error mes-
sage is generated. It is up to the higher layers to somehow detect the missing datagram
and retransmit.

ICMP, IGMP, UDP, and TCP all use the same checksum algorithm, although TCP
and UDP include various fields from the IP header, in addition to their own header and
data. RFC 1071 [Braden, Borman, and Partridge 1988] contains implementation tech-
niques for computing the Internet checksum. Since a router often changes only the TTL
field (decrementing it by 1), a router can incrementally update the checksum when it
forwards a received datagram, instead of calculating the checksum over the entire IP
header again. RFC 1141 [Mallory and Kullberg 1990] describes an efficient way to do
this.

The standard BSD implementation, however, does not use this incremental update feature
when forwarding a datagram.

Every IP datagram contains the source IP address and the destination IP address.
These are the 32-bit values that we described in Section 1.4.

The final field, the options, is a variable-length list of optional information for the
datagram. The options currently defined are:

¯ security and handling restrictions (for military applications, refer to RFC 1108
[Kent 1991] for details),

¯ record route (have each router record its IP address, Section 7.3),
¯ timestamp (have each router record its IP address and time, Section 7.4),
¯ loose source routing (specifying a list of IP addresses that must be traversed by

the datagram, Section 8.5), and
¯ strict source routing (similar to loose source routing but here only the addresses

in the list can be traversed, Section 8.5).

These options are rarely used and not all host and routers support all the options.
The options field always ends on a 32-bit boundary. Pad bytes with a value of 0 are

added if necessary. This assures that the IP header is always a multiple of 32 bits (as
required for the header length field).

3.3 IP Routing

Conceptually, IP routing is simple, especially for a host. If the destination is directly
connected to the host (e.g., a point-to-point link) or on a shared network (e.g., Ethernet
or token ring), then the IP datagram is sent directly to the destination. Otherwise the

38 IP: Internet Protocol Chapter 3

host sends the datagram to a default router, and lets the router deliver the datagram to
its destination. This simple scheme handles most host configurations.

In this section and in Chapter 9 we’ll look at the more general case where the IP
layer can be configured to act as a router in addition to acting as a host. Most multiuser
systems today, including almost every Unix system, can be configured to act as a router.
We can then specify a single routing algorithm that both hosts and routers can use. The
fundamental difference is that a host never forwards datagrams from one of its inter-
faces to another, while a router forwards datagrams. A host that contains embedded
router functionality should never forward a datagram unless it has been specifically
configured to do so. We say more about this configuration option in Section 9.4.

In our general scheme, IP can receive a datagram from TCP, UDP, ICMP, or IGMP
(that is, a locally generated datagram) to set’d, or one that has been received from a net-
work interface (a datagram to forward). The IP layer has a routing table in memory that
it searches each time it receives a datagram to send. When a datagram is received from
a network interface, IP first checks if the destination IP address is one of its own IP
addresses or an IP broadcast address. If so, the datagram is delivered to the protocol
module specified by the protocol field in the IP header. If the datagram is not destined
for this IP layer, then (1) if the IP layer was configured to act as a router the packet is for-
warded (that is, handled as an outgoing datagram as described below), else (2) the data-
gram is silently discarded.

Each entry in the routing table contains the following information:

Destination IP address. This can be either a complete host address or a network
address, as specified by the flag field (described below) for this entry. A host
address has a nonzero host ID (Figure 1.5) and identifies one particular host,
while a network address has a host ID of 0 and identifies all the hosts on that
network (e.g., Ethernet, token ring).

IP address of a next-hop router, or the IP address of a directly connected network.
A next-hop router is one that is on a directly connected network to which we can
send datagrams for delivery. The next-hop router is not the final destination, but
it takes the datagrams we send it and forwards them to the final destination.

Flags. One flag specifies whether the destination IP address is the address of a
network or the address of a host. Another flag says whether the next-hop router
field is really a next-hop router or a directly connected interface. (We describe
each of these flags in Section 9.2.)

Specification of which network interface the datagram should be passed to for
transmission.

IP routing is done on a hop-by-hop basis. As we can see from this routing table
information, IP does not know the complete route to any destination (except, of course,
those destinations that are directly connected to the sending host). All that IP routing
provides is the IP address of the next-hop router to which the datagram is sent. It is
assumed that the next-hop router is really "closer" to the destination than the sending
host is, and that the next-hop router is directly connected to the sending host.

Section 3.3 IP Routing 39

IP routing performs the following actions:

1. Search the routing table for an entry that matches the complete destination IP
address (matching network ID and host ID). If found, send the packet to the
indicated next-hop router or to the directly connected interface (depending on
the flags field). Point-to-point links are found here, for example, since the other
end of such a link is the other host’s complete IP address.

2. Search the routing table for an entry that matches just the destination network
ID. If found, send the packet to the indicated next-hop router or to the directly
connected interface (depending on the flags field). All the hosts on the destina-
tion network can be handled with this single routing table entry. All the hosts
on a local Ethernet, for example, are handled with a routing table entry of this
type.

o

This check for a network match must take into account a possible subnet mask,
which we describe in the next section.

Search the routing table for an entry labeled "default." If found, send the packet
to the indicated next-hop router.

If none of the steps works, the datagram is undeliverable. If the undeliverable data-
gram was generated on this host, a "host unreachable" or "network unreachable" error
is normally returned to the application that generated the datagram.

A complete matching host address is searched for before a matching network ID.
Only if both of these fail is a default route used. Default routes, along with the ICMP
redirect message sent by a next-hop router (if we chose the wrong default for a data-
gram), are powerful features of IP routing that we’ll come back to in Chapter 9.

The ability to specify a route to a network, and not have to specify a route to every
host, is another fundamental feature of IP routing. Doing this allows the routers on the
Internet, for example, to have a routing table with thousands of entries, instead of a
routing table with more than one million entries.

Examples

First consider a simple example: our host bsd± has an IP datagram to send to our host
sun. Both hosts are on the same Ethernet (see inside front cover). Figure 3.3 shows the
delivery of the datagram.

When IP receives the datagram from one of the upper layers it searches its routing
table and finds that the destination IP address (140.252.13.33) is on a directly connected
network (the Ethernet 140.252.13.0). A matching network address is found in the rout-
ing table. (In the next section we’ll see that because of subnetting the network address
of this Ethernet is really 140.252.13.32, but that doesn’t affect this discussion of routing.)

The datagram is passed to the Ethernet device driver, and sent to sun as an Ether-
net frame (Figure 2.1). The destination address in the IP datagram is Sun’s IP address
(140.252.13.33) and the destination address in the link-layer header is the 48-bit Ethernet
address of sun’s Ethernet interface. This 48-bit Ethernet address is obtained using ARP,
as we describe in the next chapter.

40 IP: Internet Protocol Chapter 3

destination network =
140.252.13.0 I Sun

"13"33i ~
Ethernet, 140.252.13 ’

t~lh~k] IP]
~

’

k- -~ dest IP = 140.252.13.33
L_ _~ dest Enet = Enet of 140.252.13.33

Figure 3.3 Delivery of IP datagram from bsd~_ to sun.

Now consider another example: bsdi has an IP datagram to send to the host
ftp. uu. net, whose IP address is 192.48.96.9. Figure 3.4 shows the path of the data-
gram through the first three routers. First bsdi searches its routing table but doesn’t
find a matching host entry or a matching network entry. It uses its default entry, which
tells it to send datagrams to sun, the next-hop router. When the datagram travels from
bsdi to sun the destination IP address is the final destination (192.48.96.9) but the link-
layer address is the 48-bit Ethernet address of sun’s Ethernet interface. Compare this
datagram with the one in Figure 3.3, where the destination IP address and the destina-
tion link-layer address specified the same host (sun).

When sun receives the datagram it realizes that the datagram’s destination IP
address is not one of its own, and sun is configured to act as a router, so it forwards the
datagram. Its routing table is searched and the default entry is used. The default entry
on sun tells it to send datagrams to the next-hop router netb, whose IP address is
140.252.1.183. The datagram is sent across the point-to-point SLIP link, using the mini-
mal encapsulation we showed in Figure 2.2. We don’t show a link-layer header, as we
do on the Ethernets, because there isn’t one on a SLIP link.

When netb receives the datagram it goes through the same steps that sun just did:
the datagram is not destined for one of its own IP addresses, and netb is configured to
act as a router, so the datagram is forwarded. The default routing table entry is used,
sending the datagram to the next-hop router gateway (140.252.1.4). ARP is used by
netb on the Ethernet 140.252.1 to obtain the 48-bit Ethernet address corresponding to
140.252.1.4, and that Ethernet address is the destination address in the link-layer header.

gateway goes through the same steps as the previous two routers and its default
routing table entry specifies 140.252.104.2 as the next-hop router. (We’ll verify that this
is the next-hop router for gateway using Traceroute in Figure 8.4.)

A few key points come out in this example.

1. All the hosts and routers in this example used a default route. Indeed, most
hosts and some routers can use a default route for everything other than desti-
nations on local networks.

Section 3.3 IP Routing 41

next hop =
140.252.104.2

(default)

Internet

gateway ~

r--~ dest Enet = Enet of 140.252.1.4
.--~ dest IP = 192.48.96.9

J li~k Ii~

| hdr I hdr I

Ethernet, 140.252.1

next hop =
140.252.13.33.

(default)
bsdl

T’.13.35

Ethernet140.252.13

SLIP

.1.29

sun

t ~flink IP

k __ ~ dest IP = 192.48.96.9
k -~ dest Enet = Enet of 140.252.13.33

nexthop =
,140.252.1.4
(default)

~ IP
I hdr

k---~ destIP = 192.48.96.9

next hop =
140.252.1.183
(default)

Figure 3.4 Initial path of datagram from bsdl to ftp. uu. net (192.48.96.9).

The destination IP address in the datagram never changes. (In Section 8.5 we’ll
see that this is not true only if source routing is used, which is rare.) All the
routing decisions are based on this destination address.
A different link-layer header can be used on each link, and the link-layer desti-
nation address (if present) always contains the link-layer address of the next
hop. In our example both Ethernets encapsulated a link-layer header containing
the next-hop’s Ethernet address, but the SLIP link did not. The Ethernet
addresses are normally obtained using ARP.

In Chapter 9 we’ll look at IP routing again, after describing ICMP. We’ll also look at
some sample routing tables and how they’re used for routing decisions.

42

3.4

IP: Internet Protocol Chapter 3

Subnet Addressing

All hosts are now required to support subnet addressing (RFC 950 [Mogul and Postel
1985]). Instead of considering an IP address as just a network ID and host ID, the host
ID portion is divided into a subnet ID and a host ID.

This makes sense because class A and class B addresses have too many bits allo-
cated for the host ID: 224- 2 and 216- 2, respectively. People don’t attach that many
hosts to a single network. (Figure 1.5 [p. 8] shows the format of the different classes of
IP addresses.) We subtract 2 in these expressions because host IDs of all zero bits or all
one bits are invalid.

After obtaining an IP network ID of a certain class from the InterNIC, it is up to the
local system administrator whether to subtiet or not, and if so, how many bits to allo-
cate to the subnet ID and host ID. For example, the internet used in this text has a
class B network address (140.252) and of the remaining 16 bits, 8 are for the subnet ID
and 8 for the host ID. This is shown in Figure 3.5.

16 bits 8 bits 8 bits

Class B [netid = 140.252 I subnetid [hostid

Figure 3.5 Subnetting a class B address.

This division allows 254 subnets, with 254 hosts per subnet.
Many administrators use the natural 8-bit boundary in the 16 bits of a class B host

ID as the subnet boundary. This makes it easier to determine the subnet ID from a dot-
ted-decimal number, but there is no requirement that the subnet boundary for a class A
or class B address be on a byte boundary.

Most examples of subnetting describe it using a class B address. Subnetting is also
allowed for a class C address, but there are fewer bits to work with. Subnetting is rarely
shown with a class A address because there are so few class A addresses. (Most class A
addresses are, however, subnetted.)

Subnetting hides the details of internal network organization (within a company or
campus) to external routers. Using our example network, all IP addresses have the
class B network ID of 140.252. But there are more than 30 subne’ts and more than 400
hosts distributed over those subnets. A single router provides the com~ection to the
Internet, as shown in Figure 3.6.

In this figure we have labeled most of the routers as Rn, where n is the subnet num-
ber. We show the touters that connect these subnets, along with the nine systems from
the figure on the inside front cover. The Ethernets are shown as thicker lines, and tb~e
point-to-point links as dashed lines. We do not show all the hosts on the various sub-
nets. For example, there are more than 50 hosts on the 140.252.3 subnet, and more than
100 on the 140.252.1 subnet.

The advantage to using a single class B address with 30 subnets, compared to 30
class C addresses, is that subnetting reduces the size of the Internet’s routing tables.
The fact that the class B address 140.252 is subnetted is transparent to all Internet
routers other than the ones within the 140.252 subnet. To reach any host whose IP

Section 3.5 Subnet Mask 43

192.68.189.0 .82.0

.81.0 H:~ .51.0

.57.0

.54.0 .55.0

Internet -,~ 140.252.104.1 q_~

~ ~] ~3~14

.2.0 .3.0

Figure 3.6 Arrangement of most of the noao. ectu 140.252 subnets.

3.5

address begins with 140.252, the external routers only need to know the path to the IP
address 140.252.104.1. This means that only one routing table entry is needed for all the
140.252 networks, instead of 30 entries if 30 class C addresses were used. Subnetting,
therefore, reduces the size of routing tables. (In Section 10.8 we’ll look at a new tech-
nique that helps reduce the size of routing tables even f class C addresses are used.)

To show that subnetting is not transparent to routers within the subnet, assume in
Figure 3.6 that a datagram arrives at gateway from the Internet with a destination
address of 140.252.57.1. The router gat:ewa~, needs to know that the subnet number is
57, and that datagrams for this subnet are sent to kpno. Similarly kpno must send the
datagram to R55, who then sends it to R57.

Subnet Mask

Part of the configuration of any host that takes place at bootstrap time is the specifica-
tion of the host’s IP address. Most systems have this stored in a disk file that’s read at
bootstrap time, and we’ll see in Chapter 5 how a diskless system can also find out its IP
address when it’s bootstrapped.

’I

44 IP: Lnternet Protocol Chapter 3

In addition to the IP address, a host also needs to know how many bits are to be
used for the subnet ID and how many bits are for the host ID. This is also specified at
bootstrap time using a subnet mask. This mask is a 32-bit value containing one bits for
the network ID and subnet ID, and zero bits for the host ID. Figure 3.7 shows the for-
mation of the subnet mask for two different partitions of a class B address. The top
example is the partitioning used at noao. edu, shown in Figure 3.5, where the subnet
ID and host ID are both 8 bits wide. The lower example shows a class B address parti-
tioned for a 10-bit subnet ID and a 6-bit host ID.

16 bits 8 bits 8 bits

Class B [netid .] subnetid hostid

Subnetmask: Z Z ~ Z ~ i ~ ~ ~ 1 i 1 i 1 i i 1 1 i 1 1 I 1 1 0 0 0 0 0 0 0 0 -~OxffffffO0

-- 255.255.255.0

16 bits 10 bits 6 bits

Class B [netid 1
subnetid

I hostid
Subnetmask: z 1 1 1 ? 1 ~ 1 ~]. 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 = 0xffffffc0

255.255.255.192

Figure 3.7 Example subnet masks for two different class B subnet arrangements.

Although IP addresses are normally written in dotted-decimal notation, subnet masks
are often written in hexadecimal, especially if the boundary is not a byte boundary,
since the subnet mask is a bit mask.

Given its own IP address and its subnet mask, a host can determine if an IP data-
gram is destined for (1) a host on its own subnet, (2) a host on a different subnet on its
own network, or (3) a host on a different network. Knowing your own IP address tells
you whether you have a class A, B, or C address (from the high-order bits), which tells
you where the boundary is between the network ID and the subnet ID. The subnet
mask then tells you where the boundary is between the subnet ID and the host ID.

Example

Assume our host address is 140.252.1.1 (a class B address) and our subnet mask is
255.255.255.0 (8 bits for the subnet ID and 8 bits for the host ID).

¯ If a destination IP address is 140.252.4.5, we know that the class B network IDs
are the same (140.252), but the subnet IDs are different (1 and 4). Figure 3.8
shows how this comparison of two IP addresses is done, using the subnet mask.

¯ If the destination IP address is 140.252.1.22, the class B network IDs are the same
(140.252), and the subnet IDs are the same (1). The host IDs, however, are differ-
ent.

If the destination IP address is 192.43.235.6 (a class C address), the network IDs
are different. No further comparisons can be made against this address.

Section 3.6 Special Case IP Addresses 45

Class B
Subnet mask:

end of end of
class B specified

network ID subnet ID

16 bits 8 bits
140 252 I 1

i i I i i i I I i i i i i i i iII i i i i i I 1 1

network IDs equal ~ subnet IDs
~

v i~ not equal ~

Class B 140 I 252
I 4

I 5

bits

0 0 0 0 0 = 255.255.255.0

3.6

Figure 3.8 Comparison of two class B addresses using a subnet mask.

The IP routing function makes comparisons like this all the time, given two IP addresses
and a subnet mask.

Special Case IP Addresses

Having described subnetting we now show the seven special case IP addresses in Fig-
ure 3.9. In this figure, 0 means a field of all zero bits, -1 means a field of all one bits, and
netid, subnetid, and hostid mean the corresponding field that is neither all zero bits nor all
one bits. A blank subnet ID column means the address is not subnetted.

net ID

0
0

127

-1
netid
netid
netid

IP address

subnet ID

subnetid
-1

Can appear as
host ID source? destination?

0 OK never
hostld OK never

anything OK OK
-1 never OK
-1 never OK
-1 never OK
-1 never OK

Description

this host on this net (see restrictions below)
specified host on this net (see restrictions below)

loopback address (Section 2.7)
limited broadcast (never forwarded)
net-directed broadcast to netid
subnet-directed broadcast to netid, subnetid
all-subnets-directed broadcast to netid

Figure 3.9 Special case IP addresses.

We have divided this table into three sections. The first two entries are special case
source addresses, the next one is the special loopback address, and the final four are the
broadcast addresses.

The first two entries in the table, with a network ID of 0, can only appear as the
source address as part of an initialization procedure when a host is determining its own
IP address, for example, when the BOOTP protocol is being used (Chapter 16).

In Section 12.2 we’ll examine the four types of broadcast addresses in more detail.

46 IP: Internet Protocol Chapter 3

3.7 A Subnet Example

This example shows the subnet used in the text, and how two different subnet masks
are used. Figure 3.10 shows the arrangement.

SLIP

t
bsd~_s 1 ±p .65 subnet .66

140.252.13.64 ~’.35|

Intemet

140.252.104.1
gateway

Ethernet, subnet 140.252.1

t140.252.1.29

sun svr4

Ethernet, subnet 140.252.13.32

author’s subnet: 140.252.13

Figure 3.10 Arrangement of hosts and networks for author’s subnet.

If you compare this figure with the one on the ir~side front cover, you’ll notice that
we’ve omitted the detail that the connection from the router sun to the top Ethernet in
Figure 3.10 is really a dialup SLIP connection. This detail doesn’t affect our description
of subnetting in this section. We’ll return to this detail in Section 4.6 when we describe
proxy ARP.

The problem is that we have two separate networks within subnet 13: an Ethernet
and a point-to-point link (the hardwired SLIP link). (Point-to-point links always cause
problems since each end normally requires an IP address.) There could be more hosts
and networks in the future, but not enough hosts across the different networks to justify
using another subnet number. Our solution is to extend the subnet ID from 8 to 11 bits,
and decrease the host ID from 8 to 5 bits. This is called variable-length subnets since most
networks within the 140.252 network use an 8-bit subnet mask while our network uses
an 11-bit subnet mask.

RFC 1009 [Braden and Postel 1987] allows a subnetted network to use more than one subnet
mask. The new Router Requirements RFC [Almquist 1993] requires support for this.

The problem, however, is that not all routing protocols exchange the subnet mask along with
the destination network ID. We’ll see in Chapter 10 that RIP does not support variable-length
subnets, while RIP Version 2 and OSPF do. We don’t have a problem with our example, since
RIP isn’t required on the author’s subnet.

Figure 3.11 shows the IP address structure used within the author’s subnet. The
first 8 bits of the 11-bit subnet ID are always 13 within the author’s subnet. For the
remaining 3 bits of the subnet ID, we use binary 001 for the Ethernet, and binary 010 for

Section 3.8 i fconf ig Command 47 ~

Class B

16 bits
net ID = 140.252

Subnet mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

~ 11 bits ~- 5 bits

subnetlD’’’
~I2864 32 16 8 4 2

bits = 13

i i I 1 1 1 1 1 i I 1 0 0 0 0 0 : OxffffffeO

= 255 255.255.224

Figure 3.11 Using variable-length subnets.

the point-to-point SLIP link. This variable-length subnet mask does not cause a prob-
lem for other hosts and touters in the 140.252 network--as long as all datagrams des-
tined for the subnet 140.252.13 are sent to the router sun (IP address 140.252.1.29) in
Figure 3.10, and if sun knows about the 11-bit subnet ID for the hosts on its subnet 13,
everything is fine.

The subnet mask for all the interfaces on the 140.252.13 subnet is 255.255.255.224, or
0xf f f f f re0. This indicates that the rightmost 5 bits are for the host ID, and the 27 bits
to the left are the network ID and subnet ID.

Figure 3.12 shows the allocation of IP addresses and subnet masks for the interfaces
shown in Figure 3.10.

Host IP address

sun 140.252.1.29
140.252.13.33

svr4 140.252.13.34
bsdi 140,252.13.35

140.252.13.66
slip 140 252.13.65

140.252 13.63

Subnetmask

255.255.255.0
255.255.255.224
255 255.255 224
255.255.255.224
255.255.255.224

255.255.255.224

255.255.255.224

Net ID/Subnet ID Host ID Comment

140.252.1 29 on subnet 1
140.252.13.32 1 on author’s Ethernet

140.252.13.32 2
140.252.13.32 3 on Ethernet
140.252.13.64 2 point-to-point
140.252.13.64 1 point-to-point

140.252.13.32 31 broadcast addr on Ethernet

Figure 3.12 IP addresses on author’s subnet.

The first column is labeled "Host," but both sun and bsdi also act as routers, since
they are multihomed and route packets from one interface to another.

The final row in this table notes that the broadcast address for the bottom Ethernet
in Figure 3.10 is 140.252.13.63: it is formed from the subnet ID of the Ethernet
(140.252.13.32) and the low-order 5 bits in Figure 3.11 set to 1 (16 + 8 + 4 + 2 + 1 = 31).
(We’ll see in Chapter 12 that this address is called the subnet-directed broadcast
address.)

3.8 ifconfig Command

Now that we’ve described the link layer and the IP layer we can show the command
used to configure or query a network interface for use by TCP/IP. The ifconfig(8)
command is normally run at bootstrap time to configure each interface on a host.

48 IP: Internet Protocol Chapter 3

For dialup interfaces that may go up and down (such as SLIP links), ifconfi9
must be run (somehow) each time the line is brought up or down. How this is done
each time the SLIP link is brought up or down depends on the SLIP software being
used.

The following output shows the values for the author’s subnet. Compare these val-
ues with the values in Figure 3.12.

sun % /usr/etc/ifconfig -a SunOS-aoptzonsa~reportonallinterfaces
le0: fIags=63<UP,BROADCAST,NOTRAILERS,RUNNING>

inet 140.252.13.33 netmask ffffffe0 broadcast 140.252.13.63
sl0: flags=I051<UP,POINTOPOINT,RUNNING,LINK0>

inet 140.252.1.29 --> 140.252.1.183 netmask ffffff00
lo0: flags=49<UP,LOOPBACK,RUNNING>

inet 127.0.0.1 netmask ff000000

The loopback interface (Section 2.7) is considered a network interface. Its class A
address is not subnetted.

Other things to notice are that trailer encapsulation (Section 2.3) is not used on the
Ethernet, and that the Ethernet is capable of broadcasting, while the SLIP link is a point-
to-point link.

The flag LINK0 for the SLIP interface is the configuration option that enables com-
pressed slip (CSLIP, Section 2.5). Other possible options are LINK1, which enables
CSLIP if a compressed packet is received from the other end, and LINK2, which causes
all outgoing ICMP packets to be thrown away. We’ll look at the destination address of
this SLIP link in Section 4.6.

A comment in the installation instructions gives the reason for this last option: "This shouldn’t
have to be set, but some cretin pinging you can drive your throughput to zero."

bsdi is the other routen Since the -a option is a SunOS feature, we have to execute
i fconfig multiple times, specifying the interface name as an argument:

bsdi % /sbin/ifconfig we0
we0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING, SIMPLEX>

inet 140.252.13.35 netmask ffffffe0 broadcast 140.252.13.63
bsdi % /sbin/ifconfig sl0
sl0: flags=I011<UP,POINTOPOINT,LINK0>

inet 140.252.13.66 --> 140.252.13.65 netmask ffffffe0

Here we see a new option for the Ethernet interface (we0): SIMPLEX. This 4.4BSD flag
specifies that the interface can’t hear its own transmissions. It is set in BSD/386 for all
the Ethernet interfaces. When set, if the interface is sending a frame to the broadcast
address, a copy is made for the local host and sent to the loopback address. (We show
an example of this feature in Section 6.3.)

On the host slip the configuration of the SLIP interface is nearly identical to the
output shown above on bsdi, with the exception that the IP addresses of the two ends
are swapped:

slip % /sbin/ifconfig sl0
sl0: flags=I011<UP,POINTOPOINT,LINK0>

inet 140.252.13.65 --> 140.252.13.66 netmask ffffffe0

Section 3.10 IP Futures 49

The final interface is the Ethernet interface on the host svr4. It is similar to the
Ethernet output shown earlier, except that SVR4’s version of i fconf±g doesn’t print
the RUNNING flag:

svr4 % /usr/sbin/ifconfig emd0
emd0: flags=23<UP,BROADCAST,NOTRAILERS>

inet 140.252.13.34 netmask ffffffe0 broadcast 140.252.13.63

The ifconfig command normally supports other protocol families (other than
TCP/IP) and has numerous additional options. Check your system’s manual for these
details.

3.9 netstat Command

The net s t at (1) command also provides information about the interfaces on a system.
The -i flag prints the interface information, and the -n flag prints IP addresses instead
of hostnames.

sun % netstat -in
Name Mtu Net/Dest Address Ipkts
le0 1500 140.252.13.32 140.252.13.33 67719
sl0 552 140.252.1.183 140.252.1.29 48035
Io0 1536 127.0.0.0 127.0.0.1 15548

Ierrs Opkts Oerrs Collis Queue
0 92133 0 1 0
0 54963 0 0 0
0 15548 0 0 0

This command prints the MTU of each interface, the number of input packets, input
errors, output packets, output errors, collisions, and the current size of the output
queue.

We’ll return to the netstat command in Chapter 9 when we use it to examine the
routing table, and in Chapter 13 when we use a modified version to see active multicast
groups.

3.10 IP Futures

There are three problems with IP. They are a result of the phenomenal growth of the
Internet over the past few years. (See Exercise 1.2 also.)

o

Over half of all class B addresses have already been allocated. Current estimates
predict exhaustion of the class B address space around 1995, if they continue to
be allocated as they have been in the past.

32-bit IP addresses in general are inadequate for the predicted long-term growth
of the Internet.

The current routing structure is not hierarchical, but flat, requiring one routing
table entry per network. As the number of networks grows, amplified by the
allocation of multiple class C addresses to a site with multiple networks, instead
of a single class B address, the size of the routing tables grows.

5O IP: Internet Protocol Chapter 3

CIDR (Classless Interdomain Routing) proposes a fix to the third problem that will
extend the usefulness of the current version of IP (IP version 4) into the next century.
We discuss it in more detail in Section 10.8.

Four proposals have been made for a new version of IP, often called IPng, for the
next generation of IP. The May 1993 issue of IEEE Network (vol. 7, no. 3) contains
overviews of the first three proposals, along with an article on CIDR. RFC 1454 [Dixon
1993] also compares the first three proposals.

1. SIP, the Simple Internet Protocol. It proposes a minimal set of changes to IP that
uses 64-bit addresses and a different header format. (The first 4 bits of the
header still contain the version number, with a value other than 4.)

2. PIP. This proposal also uses larger, .variable-length, hierarchical addresses with
a different header format.

o TUBA, which stands for "TCP and UDP with Bigger Addresses," is based on the
OSI CLNP (Connectionless Network Protocol), an OSI protocol similar to IP. It
provides much larger addresses: variable length, up to 20 bytes. Since CLNP is
an existing protocol, whereas SIP and PIP are just proposals, documentation
already exists on CLNP. RFC 1347 [Callon 1992] provides details on TUBA.
Chapter 7 of [Perlman 1992] contains a comparison of IPv4 and CLNP. Many
routers already support CLNP, but few hosts do.

TP/IX, which is described in RFC 1475 [Ullmann 1993]. As with SIP, it uses
64 bits for IP addresses, but it also changes the TCP and UDP headers: 32-bit
port number for both protocols, along with 64-bit sequence numbers, 64-bit
acknowledgment numbers, and 32-bit windows for TCP.

The first three proposals use basically the same versions of TCP and UDP as the trans-
port layers.

Since only one of these four proposals will be chosen as the successor to IPv4, and
since the decision may have been made by the time you read this, we won’t say any
more about them. With the forthcoming implementation of CIDR to handle the short-
term problem, it will take many years to implement the successor to IPv4.

3.11 Summary

We started this chapter with a description of the IP header and briefly described all the
fields in this header. We also gave an introduction to IP routing, and saw that host rout-
ing can be simple: the destination is either on a directly connected network, in which
case the datagram is sent directly to the destination, or a default router is chosen.

Hosts and routers have a routing table that is used for all routing decisions. There
are three types of routes in the table: host specific, network specific, and optional default
routes. There is a priority to the entries in a routing table. A host route will be chosen
over a network router, and a default route is used only when no other route exists to the
destination.

Chapter 3 Exercises 51

IP routing is done on a hop-by-hop basis. The destination IP address never changes
as the datagram proceeds through all the hops, but the encapsulation and destination
link-layer address can change on each hop. Most hosts and many routers use a default
next-hop router for all nonlocal traffic.

Class A and B addresses are normally subnetted. The number of bits used for the
subnet ID is specified by the subnet mask. We gave a detailed example of this, using the
author’s subnet, and introduced variable-length subnets. The use of subnetting reduces
the size of the Internet routing tables, since many networks can often be accessed
through a single point. Information on the interfaces and networks is available through
the ifconficd and netstat commands. This includes the IP address of the interface,
its subnet mask, broadcast address, and MTU.

We finished the chapter with a discussion of potentia! changes to the Internet proto-
col suite-the next generation of IP.

Exercises

3.1 Must the loopback address be 127.0.0.1?

3.2 Identify the routers in Figure 3.6 with more than two network interfaces.

3.3 What’s the difference in the subnet mask for a class A address with 16 bits for the subnet ID
and a class B address with 8 bits for the subnet ID?

3.4 Read RFC 1219 [Tsuchiya 1991] for a recommended technique for assigning subnet IDs and
host IDs.

3.5 Is the subnet mask 255.255.0.255 valid for a class A address?

3.6 Why do you think the MTU of the loopback interface printed in Section 3.9 is set to 1536?

3.7 The TCP/IP protocol suite is built on a datagram network technology, the IP layer. Other
protocol suites are built on a connection-oriented network technology. Read [Clark 1988] to
discover the three advantages the datagram network layer provides.

:
ii:
i

CAVIUM-1008

Cavium,Inc. v. Alacritech, Inc.
Paae 076

ARP: Address Resolution

Protocol

4.1 Introduction

The problem that we deal with in this chapter is that IP addresses only make sense to
the TCP/IP protocol suite. A data link such as an Ethernet or a token ring has its own
addressing scheme (often 48-bit addresses) to which any network layer using the data
link must conform. A network such as an Ethernet can be used by different network
layers at the same time. For example, a collection of hosts using TCP/IP and another
collection of hosts using some PC network software can share the same physical cable.

When an Ethernet frame is sent from one host on a LAN to another, it is the 48-bit
Ethernet address that determines for which interface the frame is destined. The device
driver software never looks at the destination IP address in the IP datagram.

Address resolution provides a mapping between the two different forms of
addresses: 32-bit IP addresses and whatever type of address the data link uses. RFC 826
[Plummer 1982] is the specification of ARP.

Figure 4.1 shows the two protocols we talk about in this chapter and the next: ARP
(address resolution protocol) and RARP (reverse address resolution protocol).

32-bit Internet address

ARPt l
RARP

48-bit Ethernet address

Figure 4.1 Address resolution protocols: ARP and RARP.

54 ARP: Address Resolution Protocol Chapter 4

ARP provides a dynamic mapping from an IP address to the corresponding hardware
address. We use the term dynamic since it happens automatically and is normally not a
concern of either the application user or the system administrator.

RARP is used by systems without a disk drive (normally diskless workstations or X
terminals) but requires manual configuration by the system administrator. We describe
it in Chapter 5.

4.2 An Example

Whenever we type a command of the form

% ftp bsdi

the following steps take place. These numbered steps are shown in Figure 4.2.

The application, the FTP client, calls the function gethostbyname(3) to convert
the hostname (bsd±) into its 32-bit IP address. This function is called a resolver
in the DNS (Domain Name System), which we describe in Chapter 14. This con-
version is done using the DNS, or on smaller networks, a static hosts file
(/etc/hosts).

The FTP client asks its TCP to establish a connection with that IP address.

TCP sends a cotmection request segment to the remote host by sending an IP
datagram to its IP address. (We’ll see the details of how this is done in Chap-
ter 18.)

If the destination host is on a locally attached network (e.g., Ethernet, token
ring, or the other end of a point-to-point link), the IP datagram can be sent
directly to that host. If the destination host is on a remote network, the IP rout-
ing function determines the Internet address of a locally attached next-hop
router to send the IP datagram to. In either case the IP datagram is sent to a
host or router on a locally attached network.

Assuming an Ethernet, the sending host must convert the 32-bit IP address into
a 48-bit Ethernet address. A translation is required from the logical Internet
address to its corresponding physical hardware address. This is the function of
ARP.

ARP is intended for broadcast networks where many hosts or routers are con-
nected to a single network.

ARP sends an Ethernet frame called an ARP request to every host on the net-
work. This is called a broadcast. We show the broadcast in Figure 4.2 with
dashed lines. The ARP request contains the IP address of the destination host
(whose name is bsd±) and is the request "if you are the owner of this IP
address, please respond to me with your hardware address."

Section 4.2 An Example 55

resolver

hostname

~ hostname FTP

I-~IP addr~!(1). ~ I estabiish connection

(2)lwith IP address

TCP

IP datagram
(3),~oe~pd address

(5) ARP (4)

(6), (9)

Ethernet

I
driver

ARP request (Ethernet broadcast)
I

Ethernet
driver

~ Ethernet
, driver

ARP

TCP

Figure 4.2 Operation of ARP when user types "f tp hostname".

7. The destination host’s ARP layer receives this broadcast, recognizes that the
sender is asking for its hardware address, and replies with an ARP reply. This
reply contains the IP address and the corresponding hardware address.

8. The ARP reply is received and the IP datagram that forced the ARP
request-reply to be exchanged can now be sent.

9. The IP datagram is sent to the destination host.

56 ARP: Address Resolution Protocol Chapter 4

The fundamental concept behind ARP is that the network interface has a hardware
address (a 48-bit value for an Ethernet or token ring interface). Frames exchanged at the
hardware level must be addressed to the correct interface. But TCP/IP works with its
own addresses: 32-bit IP addresses. Knowing a host’s IP address doesn’t let the kernel
send a frame to that host. The kernel (i.e., the Ethernet driver) must know the destina-
tion’s hardware address to send it data. The function of ARP is to provide a dynamic
mapping between 32-bit IP addresses and the hardware addresses used by various net-
work technologies.

Point-to-point links don’t use ARP. When these links are configured (normally at
bootstrap time) the kernel must be told of the IP address at each end of the link. Hard-
ware addresses such as Ethernet addresses are not involved.

4.3 ARP Cache

Essential to the efficient operation of ARP is the maintenance of an ARP cache on each
host. This cache maintains the recent mappings from Internet addresses to hardware
addresses. The normal expiration time of an entry in the cache is 20 minutes from the
time the entry was created.

We can examine the ARP cache with the arp(8) command. The -a option displays
all entries in the cache:

bsdi % arp -a
sun (140.252.13.33) at 8:0:20:3:f6:42
svr4 (140.252.13.34) at 0:0:c0:c2:9b:26

The 48-bit Ethernet addresses are displayed as six hexadecimal numbers separated by
colons. We discuss additional features of the arp command in Section 4.8.

4.4 ARP Packet Format

Figure 4.3 shows the format of an ARP request and an ARP reply packet, when used on
an Ethernet to resolve an IP address. (ARP is general enough to be used on other net-
works and can resolve addresses other than IP addresses. The first four fields following
the frame type field specify the types and sizes of the final four fields.)

hard s~ze

destinatxonaddr sourceaddr Itypeltype,type ~op [~tth~rennedte~ddr i iPaddr i Ethernetaddr | IPadd~

6 6 2 2 2 1 I 2 6 4 6 4
~ Ethernet header --+ 28 byte ARP request / reply ~,.

Figure 4.3 Format of ARP request or reply packet when used on an Ethernet.

The first two fields in the Ethernet header are the source and destination Ethernet
addresses. The special Ethernet destination address of all one bits means the broadcast
address. All Ethernet interfaces on the cable receive these frames.

Section 4.5 ARP Examples 57

The 2-byte Ethernet frame type specifies the type of data that follows. For an ARP
request or an ARP reply, th~s field is 0x0 8 0 6.

The adjectives hardware and protocol are used to describe the fields in the ARP pack-
ets. For example, an ARP request asks for the hardware address (an Ethernet address in
this case) corresponding to a protocol address (an IP address in this case).

The hard type field specifies the type of hardware address. Its value is 1 for an Ether-
net. Prot type specifies the type of protocol address being mapped. Its value is 0x0 8 0 0
for IP addresses. This is purposely the same value as the type field of an Ethernet frame
containing an IP datagram. (See Figure 2.1, p. 23.)

The next two 1-byte fields, hard size and prot size, specify the sizes in bytes of the
hardware addresses and the protocol addresses. For an ARP request or reply for an IP
address on an Ethernet they are 6 and 4, respectively.

The op field specifies whether the operation is an ARP request (a value of 1), ARP
reply (2), RARP request (3), or RARP reply (4). (We talk about RARP in Chapter 5.)
This field is required since the frame type field is the same for an ARP request and an
ARP reply.

The next four fields that follow are the sender’s hardware address (an Ethernet
address in this example), the sender’s protocol address (an IP address), the target hard-
ware address, and the target protocol address. Notice there is some duplication of infor-
mation: the sender’s hardware address is available both in the Ethernet header and in
the ARP request.

For an ARP request all the fields are filled in except the target hardware address.
When a system receives an ARP request directed to it, it fills in its hardware address,
swaps the two sender addresses with the two target addresses, sets the op field to 2, and
sends the reply.

4.5

Normal

ARP Examples

In this section we’ll use the ¢cpdurap command to see what really happens with ARP
when we execute normal TCP utilities such as Telnet. Appendix A contains additional
details on the ¢cpdum~ program.

Example

To see the operation of ARP we’ll execute the telnet command, connecting to the dis-
card server.

bsdi % arp -a
bsdi % telnet svr4 discard
Trying 140.252.13.34...
Connected to svr4.
Escape character is ’^]’.
^]
telnet> quit
Connection closed.

ver~] ARP cache ~s empty
connect to the discard server

type Control, right bracket to get Telnet client prompt
and terminate

58 ARP: Address Resolution Protocol Chapter 4

While this is happening we run the tcpdurap command on another system (sun) with
the -e option. This displays the hardware addresses (which in our examples are 48-bit
Ethernet addresses).
1

2

0.0 O:O:cO:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
arp who-has svr4 tell bsdi

0.002174 (0.0022) 0:0:c0:c2:9b:26 O:O:cO:6f:2d:40 arp 60:
arp reply svr4 is-at 0:0:c0:c2:9b:26

0.002831 (0.0007) O:O:cO:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
bsdi.1030 > svr4.dlscard: S 596459521:596459521(0)
win 4096 <mss 1024> [tos OxlO]

0.007834 (0.0050) 0:0:c0:c2:9b:26 O:O:cO:6f:2d:40 Ip 60:
svr4.discard > bsdi.1030: S 3562228225:3562228225(0)
ack 596459522 wln 4096 <mss 1024>

0.009615 (0.0018) 0:O:cO:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
bsdl.1030 > svr4.discard: . ack 1 win 4096 [tos OxlO]

Figure 4.4 ARP request and ARP reply generated by TCP connection request.

Figure A.3 in Appendix A contains the raw output from tcpdump used for Figure 4.4.
Since this is the first example of tcpdurap output in the text, you should review that
appendix to see how we’ve beautified the output.

We have deleted the final four lines of the tcpdurap output that correspond to the
termination of the connection (which we cover in Chapter 18), since they’re not relevant
to the discussion here.

In line 1 the hardware address of the source (bsdi) is 0 : 0 : cO : 6f : 2d : 4 0. The
destination hardware address is ff : ff : ff : ff : ff : ff, which is the Ethernet broadcast
address. Every Ethernet interface on the cable will receive the frame and process it, as
shown in Figure 4.2.

The next output field on line 1, arp, means the frame type field is 0x0806, specify-
ing either an ARP request or an ARP reply.

The value 60 printed after the words arp and ip on each of the five lines is the
length of the Ethernet frame. Since the size of an ARP request and ARP reply is 42 bytes
(28 bytes for the ARP message, 14 bytes for the Ethernet header), each frame has been
padded to the Ethernet minimum: 60 bytes.

Referring to Figure 1.7, this minimum of 60 bytes starts with and includes the
14-byte Ethernet header, but does not include the 4-byte Ethernet trailer. Some books
state the minimum as 64 bytes, which includes the Ethernet trailer. We purposely did
not include the 14-byte Ethernet header in the minimum of 46 bytes shown in Fig-
ure 1.7, since the corresponding maximum (1500 bytes) is what’s referred to as the
MTU--maximum transmission unit (Figure 2.5). We use the MTU often, because it lim-
its the size of an IP datagram, but are normally not concerned with the minimum. Most
device drivers or interface cards automatically pad an Ethernet frame to the minimum
size. The IP datagrams on lines 3, 4, and 5 (containing the TCP segments) are all smaller
than the minimum, and have also been padded to 60 bytes.

The next field on line 1, arp who-has, identifies the frame as an ARP request with
the IP address of svr4 as the target IP address and the IP address of bsdi as the sender

Section 4.5 ARP Examples 59

IP address, tcpdump prints the hostnames corresponding to the IP address by default.
(We’ll use the -n option in Section 4.7 to see the actual IP addresses in an ARP request.)

From line 2 we see that while the ARP request is broadcast, the destination address
of the ARP reply is bsdi (0 : 0 : c0 : 6f : 2d: 40). The ARP reply is sent directly to the
requesting host; it is not broadcast.

tcpdump prints arp reply for this frame, along with the hostname and hardware
address of the responder.

Line 3 is the first TCP segment requesting that a connection be established. Its des-
tination hardware address is the destination host (svr4). We’ll cover the details of this
segment in Chapter 18.

The number printed after the line number on each line is the time (in seconds) when
the packet was received by tcpduinp. Each line other than the first also contains the
time difference (in seconds) from the previous line, in parentheses. We can see in this
figure that the time between sending the ARP request and receiving the ARP reply is 2.2
ms. The first TCP segment is sent 0.7 ms after this. The overhead involved in using
ARP for dynamic address resolution in this example is less than 3 ms.

A final point from the tcpdump output is that we don’t see an ARP request from
svr4 before it sends its first TCP segment (line 4). While it’s possible that svr4 already
had an entry for bsdi in its ARP cache, normally when a system receives an ARP
request addressed to it, in addition to sending the ARP reply it also saves the
requestor’s hardware address and IP address in its own ARP cache. This is on the logi-
cal assumption that if tee requestor is about to send it an IP datagram, the receiver of
the datagram will probably send a reply.

ARP Request to a Nonexistent Host

What happens if the host being queried for is down or nonexistent? To see this we spec-
ify a nonexistent Internet address--the network ID and subnet ID are that of the local
Ethernet, but there is no host with the specified host ID. From Figure 3.10 we see the
host IDs 36 through 62 are nonexistent (the host ID of 63 is the broadcast address). We’ll
use the host ID 36 in this example.

telnet to an address thzs tm~e, not a hostname
bsdi % date ; telnet 140.252.13.36 ; date
Sat Jan 30 06:46:33 MST 1993
Trying 140.252.13.36...
telnet: Unable to connect to remote host: Connection timed out
Sat Jan 30 06 : 47 : 49 MST 1993 76 seconds after premous date output

bsdi % arp -a check theARP cache
? (140.252.13.36} at (incomplete)

Figure 4.5 shows the tcpdump output.

1 0.0 arp who-has
2 5.509069 (5.5091) arp who-has
3 29.509745 (24.0007) arp who-has

140.252.13.36 tell bsdi
140.252.13.36 tell bsdi
140.252.13.36 tell bsdi

Figure 4.5 ARP requests to a nonexistent host

60 ARP: Address Resolution Protocol Chapter 4

This time we didn’t specify the -e option since we already know that the ARP requests
are broadcast.

What’s interesting here is to see the frequency of the ARP requests: 5.5 seconds after
the first request, then again 24 seconds later. (We examine TCP’s timeout and retrans-
mission algorithms in more detail in Chapter 21.) The total time shown in the t:cpdurap
output is 29.5 seconds. But the output from the dat:e commands before and after the
t:e~tnet: command shows that the connection request from the Telnet client appears to
have given up after about 75 seconds. Indeed, we’ll see later that most BSD implemen-
tations set a limit of 75 seconds for a TCP connection request to complete.

In Chapter 18 when we see the sequence of TCP segments that is sent to establish
the connection, we’ll see that these ARP requests correspond one-to-one with the initial
TCP SYN (synchronize) segment that TCP is trying to send.

Note that on the wire we never see the TCP segments. All we can see are the ARP
requests. Until an ARP reply comes back, the TCP segments can’t be sent, since the des-
tination hardware address isn’t known. If we ran t:cpdump in a filtering mode, looking
only for TCP data, there would have been no output at all.

ARP Cache Timeout

A timeout is normally provided for entries in the ARP cache. (In Section 4.8 we’ll see
that the arp command allows an entry to be placed into the cache by the administrator
that will never time out.) Berkeley-derived implementations normally have a timeout
of 20 minutes for a completed entry and 3 minutes for an incomplete entry. (We saw an
incomplete entry in our previous example where we forced an ARP to a nonexistent
host on the Ethernet.) These implementations normally restart the 20-minute timeout
for an entry each time the entry is used.

The Host Requirements RFC says that this timeout should occur even if the entry is in use, but
most Berkeley-derlved unptementatlons do not do this--they restart the timeout each time the
entry is referenced.

4.6 Proxy ARP

Proxy ARP lets a router answer ARP requests on one of its networks for a host on
another of its networks. This fools the sender of the ARP request into thinking that the
router is the destination host, when in fact the destination host is "on the other side" of
the router. The router is acting as a proxy agent for the destination host, relaying pack-
ets to it from other hosts.

An example is the best way to describe proxy ARP. In Figure 3.10 we showed that
the system sun was connected to two Ethernets. But we also noted that this wasn’t
really true, if you compare that figure with the one on the inside front cover. There is in
fact a router between sun and the subnet 140.252.1, and this router performs proxy ARP
to make it appear as though sun is actually on the subnet 140.252.1. Figure 4.6 shows
the arrangement, with a Telebit NetBlazer, named net:b, between the subnet and the
host sun.

Section 4.6 Proxy ARP 61

Ethernet, subnet 140.252.1

slmp

Figure 4.6

gem±ni

¯ ! ~ ARP request for 140 252.1 29
~-~- v ’- - -’- -~-

/ ~ 1140-252.1.183
{~ ARP reply "] -] Telebit NetBlazer
- netb ~ router configured to act as

J proxy ARP agent for sun

SLIP (dialup)

i140.252.1.29

sun

T.33

Ethernet 140.252.13

svr4

Example of proxy ARP.

When some other host on the subnet 140.252.1 (say, gemini) has an IP datagram to
send to sun at address 140.252.1.29, gemini compares the network ID (140.252) and
subnet ID (1) and since they are equal, issues an ARP request on the top Ethernet in Fig-
ure 4.6 for IP address 140.252.1.29. The router netb recognizes this IP address as one
belonging to one of its dialup hosts, and responds with the hardware address of its
Ethernet interface on the cable 140.252.1. The host gemini sends the IP datagram to
netb across the Ethernet, and netb forwards the datagram to sun across the dialup
SLIP link. This makes it transparent to all the hosts on the 140.252.1 subnet that host
sun is really configured "behind" the router netb.

If we execute the arp command on the host gemini, after communicating with the
host sun, we see that both IP addresses on the 140.252.1 subnet, netb and sun, map to
the same hardware address. This is often a clue that proxy ARP is being used.

gemlni % arp -a

netb (140.252.1.183) at 0:80:ad:3:6a:80
sun (140.252.1.29) at 0:80:ad:3:6a:80

many hnes for other hosts on the 140.252.1 subnet

Another detail in Figure 4.6 that we need to explain is the apparent lack of an IP
address at the bottom of the router netb (the SLIP link). That is, why don’t both ends
of the dialup SLIP link have an IP address, as do both ends of the hardwired SLIP link
between bsdi and slip? We noted in Section 3.8 that the destination address of the
dialup SLIP link, as shown by the ifconfig command, was 140.252.1.183. The Net-
Blazer doesn’t require an IP address for its end of each dialup SLIP link. (Doing so

62 ARP: Address Resolution Protocol Chapter 4

4.7

would use up more IP addresses.) Instead, it determines which dialup host is sending it
packets by which serial interface the packet arrives on, so there’s no need for each
dialup host to use a unique IP address for its link to the router. All the dialup hosts use
140.252.1.183 as the destination address for their SLIP link.

Proxy ARP handles-the delivery of datagrams to the router sun, but how are the
other hosts on the subnet 140.252.13 handled? Routing must be used to direct data-
grams to the other hosts. Specifically, routing table entries must be made somewhere on
the 140.252 network that point all datagrams destined to either the subnet 140.252.13, or
the specific hosts on that subnet, to the router netb. This router then knows how to get
the datagrams to their final destination, by sending them through the router sun.

Proxy ARP is also called promiscuous ARP or the ARP hack. These names are from
another use of proxy ARP: to hide two physical networks from each other, with a router
between the two. In this case both physical networks can use the same network ID as
long as the router in the middle is configured as a proxy ARP agent to respond to ARP
requests on one network for a host on the other network. This technique has been used
in the past to "hide" a group of hosts with older implementations of TCP/IP on a sepa-
rate physical cable. Two common reasons for separating these older hosts are their
inability to handle subnetting and their use of the older broadcasting address (a host ID
of all zero bits, instead of the current standard of a host ID with all one bits).

Gratuitous ARP

Another feature of ARP that we can watch is called gratuitous ARP. It occurs when a
host sends an ARP request looking for its own IP address. This is usually done when
the interface is configured at bootstrap time.

In our internet, if we bootstrap the host bsdi and run tcpdump on the host sun,
we see the packet shown in Figure 4.7.

1 0.0 O:O:cO:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
arp who-has 140.252.13.35 tell 140.252.13.35

Figt~re 4.7 Example of gratuitous ARP

(We specified the -n flag for tcpdump to print numeric dotted-decimal addresses,
instead of hostnames.) In terms of the fields in the ARP request, the sender’s protocol
address and the target’s protocol address are identical: 140.252.13.35 for host bsd±.
Also, the source address in the Ethernet header, 0 : 0 : cO : 6f : 2d: 40 as shown by
t cpdump, equals the sender’s hardware address (from Figure 4.4).

Gratuitous ARP provides two features.

It lets a host determine if another host is already configured with the same IP
address. The host bsd± is not expecting a reply to this request. But if a reply is
received, the error message "duplicate IP address sent from Ethernet address:
a:b:c:d:e:f" is logged on the console. This is a warning to the system administra-
tor that one of the systems is misconfigured.

Section 4.9 Summary 63

If the host sending the gratuitous ARP has just changed its hardware address
(perhaps the host was shut down, the interface card replaced, and then the host
was rebooted), this packet causes any other host on the cable that has an entry
in its cache for the old hardware address to update its ARP cache entry accord-
ingly. A little known fact of the ARP protocol [Plummer 1982] is that if a host
receives an ARP request from an IP address that is already in the receiver’s
cache, then that cache entry is updated with the sender’s hardware address
(e.g., Ethernet address) from the ARP request. This is done for any ARP request
received by the host. (Recall that ARP requests are broadcast, so this is done by
all hosts on the network each time an ARP request is sent.)

[Bhide, Elnozahy, and Morgan 1991] describe an application that can use this
feature of ARP to allow a backup file server to take over from a failed server by
issuing a gratuitous ARP request with the backup’s hardware address and the
failed server’s IP address. This causes all packets destined for the failed server
to be sent to the backup instead, without the client applications being aware that
the original server has failed.

Unfortunately the authors then decided against this approach, since it depends on the
correct implementation of ARP on all types of clients. They obviously encountered client
implementations that did not implement ARP accordmg to its specification.

Monitoring all the systems on the author’s subnet shows that SunOS 4.1.3 and 4 4BSD
both issue gratuitous ARPs when bootstrapping, but SVR4 does not.

4.8 arp Command

We’ve used this command with the -a flag to display all the entries in the ARP cache.
Other options are provided.

The superuser can specify the -d option to delete an entry from the ARP cache.
(This was used before running a few of the examples, to let us see the ARP exchange.)

Entries can also be added using the -s option. It requires a hostname and an Ether-
net address: the IP address corresponding to the hostname, and the Ethernet address are
added to the cache. This entry is made permanent (i.e., it won’t time out from the
cache) unless the keyword t erap appears at the end of the command line.

The keyword pub at the end of a command line with the -s option causes the sys-
tem to act as an ARP agent for that host. The system will answer ARP requests for the
IP address corresponding to the hostname, replying with the specified Ethernet address.
If the advertised address is the system’s own, then this system is acting as a proxy ARP
agent for the specified hostname.

4.9 Summary

ARP is a basic protocol in almost every TCP/IP implementation, but it normally does its
work without the application or the system administrator being aware. The ARP cache

64 ARP: Address Resolution Protocol Chapter 4

is fundamental to its operation, and we’ve used the arp command to examine and
manipulate the cache. Each entry in the cache has a timer that is used to remove both
incomplete and completed entries. The arp command displays and modifies entries in
the ARP cache.

We followed through the normal operation of ARP along with specialized versions:
proxy ARP (when a router answers ARP requests for hosts accessible on another of the
router’s interfaces) and gratuitous ARP (sending an ARP request for your own IP
address, normally when bootstrapping).

Exercises

4.1

4.2

4.3

4.4

In the commands we typed to generate the output shown in Figure 4.4 (p. 58), what would
happen if, after verifying that the local ARP cache was empty, we type the command

bsdi % rsh svr4 arp -a

to verify that the ARP cache is also empty on the destination host? (This command causes
the arp -a command to be executed on the host svr 4.)

Describe a test to determine if a given host handles a received gratuitous ARP request
correctly.

Step 7 in Section 4.2 can take a while (milliseconds) because a packet is sent and ARP then
waits for the response. How do you think ARP handles multiple datagrams that arrive
from IP for the same destination address during this period?

At the end of Section 4.5 we mentioned that the Host Requirements RFC and Berkeley-
derived implementations differ in their handling of the timeout of an active ARP entry.
What happens if we’re on a Berkeley-derived client and keep trying to contact a server host
that’s been taken down to replace its Ethernet board? Does this change if the server issues a
gratuitous ARP when it bootstraps?

5

RARP: Reverse Address

Resolution Protocol

5.1 Introduction

When a system with a local disk is bootstrapped it normally obtains its IP address from
a configuration file that’s read from a disk file. But a system without a disk, such as an
X terminal or a diskless workstation, needs some other way to obtain its IP address.

Each system on a network has a unique hardware address, assigned by the manu-
facturer of the network interface. The principle of RARP is for the diskless system to
read its unique hardware address from the interface card and send an RARP request (a
broadcast frame on the network) asking for someone to reply with the diskless system’s
IP address (in an RARP reply).

While the concept is simple, the implementation is often harder than ARP for rea-
sons described later in this chapter. The official specification of RARP is RFC 903 [Fin-
layson et al. 1984].

5.2 RARP Packet Format

The format of an RARP packet is almost identical to an ARP packet (Figure 4.3, p. 56).
The only differences are that the frame type is 0x8 03 5 for an RARP request or reply, and
the op field has a value of 3 for an RARP request and 4 for an RARP reply.

As with ARP, the RARP request is broadcast and the RARP reply is normally
unicast.

65

66 RARP: Reverse Address Resolution Protocol Chapter 5

5.3 RARP Examples

In our internet we can force the host sun to bootstrap from the network, instead of its
local disk. If we run an RARP server and tepdump on the host bsdi we get the output
shown in Figure 5.1. We use the -e flag to have tcpdump print the hardware addresses:

1 0.0 8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:f6:42 tell 8:0:20:3:f6:42

2 0.13 (0.13) 0:0:c0:6f:2d:40 8:0:20:3:f6:42 rarp 42:
rarp reply 8:0:20:3:f6:42 at sun

3 0.14 (0.01) 8:0:20:3:f6:4~ 0:0:c0:6f:2d:40 ±p 65:
sun.26999 > bsdi.tftp: 23 RRQ "SCFCOD21.SUN4C"

Figure 5.1 RARP request and reply.

The RARP request is broadcast (line 1) and the RARP reply on line 2 is unicast. The out-
put on line 2, at sun, means the RARP reply contains the IP address for the host sun
(140.252.13.33).

On line 3 we see that once sun receives its IP address, it issues a TFTP read-request
(RRQ) for the file 8CFCOD21. SUN4C. (TFTP is the Trivial File Transfer Protocol. We
describe it in more detail in Chapter 15.) The eight hexadecimal digits in the filename
are the hex representation of the IP address 140.252.13.33 for the host sun. This is the IP
address that was returned in the RARP reply. The remainder of the filename, SUN4C,
indicates the type of system being bootstrapped.

tcpdump says that line 3 is an IP datagram of length 65, and not a UDP datagram
(which it really is), because we are running tcpdurap with the -e flag, to see the hard-
ware-level addresses. Another point to notice in Figure 5.1 is that the length of the
Ethernet frame on line 2 appears to be shorter than the minimum (which we said was 60
bytes in Section 4.5.) The reason is that we are running tcpdurap on the system that is
sending this Ethernet frame (bsdi). The application, rarpd, writes 42 bytes to the BSD
Packet Filter device (14 bytes for the Ethernet header and 28 bytes for the RARP reply)
and this is what tcpdump receives a copy of. But the Ethernet device driver pads this
short frame to the minimum size for transmission (60). Had we been running tcpdump
on another system, the length would have been 60.

We can see in this example that when this diskless system receives its IP address in
an RARP reply, it issues a TFTP request to read a bootstrap image. At this point we
won’t go into additional detail about how diskless systems bootstrap themselves.
(Chapter 16 describes the bootstrap sequence of a diskless X terminal using RARP,
BOOTP, and TFTP.)

Figure 5.2 shows the resulting packets if there is no RARP server on the network.
The destination address of each packet is the Ethernet broadcast address. The Ethernet
address following who-is is the target hardware address, and the Ethernet address fol-
lowing t e i I is the sender’s hardware address.

Note the frequency of the retransmissions. The first retransmission occurs after 6.55
seconds and then increases to 42.80 seconds, then goes down to 5.34 seconds, then 6.55,
and then works its way back to 42.79 seconds. This continues indefinitely. If we

Section 5.4 RARP Server Design 67

1 0.0

2 6.55 (6.55)

3 15.52 (8.97) 8:0:20:3:f6
rarp who-is

% 29.32 (13.80) 8:0:20:3:f6
rarp who-is

5 52.78 (23.46) 8:0:20:3:f6
rarp who-is

6 95.58 (42.80) 8:0:20:3:f6
rarp who-is

7 100.92 (5.34) 8:0:20:3:f6
rarp who-is

8 107.47 (6.55) 8:0:20:3:f6
rarp who-is

9 116.44 (8.97) 8:0:20:3:f6
rarp who-ls

10 130.24 (13.80) 8:0:20:3:f6
rarp who-is

11 153.70 (23.46) 8:0:20:3:f6
rarp who-is

12 196.49 (42.79) 8:0:20:3:f6
rarp who-is

Figure 5.2

8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:f6:42 tell 8:0:20:3:f6:42
8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff rarp 60:
rarp who-is 8:0:20:3:f6:42 tell 8:0:20:3:f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20:3:f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20:3:f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20:3:f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20: :f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20:3:f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20:3:f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20:3:f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20:3:f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20:3:f6:42

:42 ff:ff:ff:ff:ff:ff rarp 60:
8:0:20:3:f6:42 tell 8:0:20:3:f6:42

RARP requests with no RARP server on the network.

calculate the differences between each timeout interval we see a doubling effect: from
5.34 to 6.55 is 1.21 seconds, from 6.55 to 8.97 is 2.42 seconds, from 8.97 to 13.80 is 4.83
seconds, and so on. When the timeout interval reaches some limit (greater than 42.80
seconds) it’s reset to 5.34 seconds.

Increasing the timeout value like this is a better approach than using the same value
each time. In Figure 6.8 we’ll see one wrong way to perform timeout and retransmis-
sion, and in Chapter 21 we’ll see TCP’s method.

5.4 RARP Server Design

While the concept of RARP is simple, the design of an RARP server is system depen-
dent and complex. Conversely, providing an ARP server is simple, and is normally part
of the TCP/IP implementation in the kernel. Since the kernel knows its tP addresses
and hardware addresses, when it receives an ARP request for one of its IP addresses, it
just replies with the corresponding hardware address.

RARP Servers as User Processes

The complication with an RARP server is that the server normally provides the map-
ping from a hardware address to an IP address for many hosts (all the diskless systems
on the network). This mapping is contained in a disk file (normally /etc/ethers on

68 RARP: Reverse Address Resolution Protocol Chapter 5

Unix systems). Since kernels normally don’t read and parse disk files, the function of an
RARP server is provided as a user process, not as part of the kernel’s TCP/IP
implementation.

To further complicate matters, RARP requests are transmitted as Ethernet frames
with a specific Ethernet frame type field (0x8035 from Figure 2.1.) This means an
RARP server must have some way of sending and receiving Ethernet frames of this
type. In Appendix A we describe how the BSD Packet Filter, Sun’s Network Interface
Tap, and the SVR4 Data Link Provider Interface can be used to receive these frames.
Since the sending and receiving of these frames is system dependent, the implementa-
tion of an RARP server is tied to the system.

Multiple RARP Servers per Network

Another complication is that RARP requests are sent as hardware-level broadcasts, as
shown in Figure 5.2. This means they are not forwarded by routers. To allow diskless
systems to bootstrap even when the RARP server host is down, multiple RARP servers
are normally provided on a single network (e.g., a single cable).

As the number of servers increases (to provide redundancy), the network traffic
increases, since every server sends an RARP reply for every RARP request. The diskless
system that sent the RARP request normally uses the first RARP reply that it receives.
(We never had this problem with ARP, because only a single host sends an ARP reply.)
Furthermore, there is a chance that each RARP server can try to respond at about the
same time, increasing the probability of collisions on an Ethernet.

5.5 Summary

RARP is used by many diskless systems to obtain their IP address when bootstrapped.
The RARP packet format is nearly identical to the ARP packet. An RARP request is
broadcast, identifying the sender’s hardware address, asking for anyone to respond
with the sender’s IP address. The reply is normally unicast.

Problems with RARP include its use of a link-layer broadcast, preventing most
routers from forwarding an RARP request, and the minimal information returned: just
the system’s IP address. In Chapter 16 we’ll see that BOOTP returns more information
for the diskless system that is bootstrapping: its IP address, the name of a host to boot-
strap from, and so on.

While the RARP concept is simple, the implementation of an RARP server is system
dependent. Hence not all TCP/IP implementations provide an RARP server.

Exercises

5.1

5.2

Is a separate frame type field required for RARP? Could the same value be used for ARP and
RARP 0x0806?

With multiple RARP servers on a network, how can they prevent their responses from col-
liding with each on the network?

ICMP: Internet Control

Message Protocol

6.1 Introduction

ICMP is often considered part of the IP layer. It communicates error messages and
other conditions that require attention. ICMP messages are usually acted on by either
the IP layer or the higher layer protocol (TCP or UDP). Some ICMP messages cause
errors to be returned to user processes.

ICMP messages are transmitted within IP datagrams, as shown in Figure 6.1.

IP datagram

IP
ICMP messageheader

20 bytes

Figure 6.1 ICMP messages encapsulated within an IP datagram.

RFC 792 [Postel 1981b] contains the official specification of ICMP.
Figure 6.2 shows the format of an ICMP message. The first 4 bytes have the same

format for all messages, but the remainder differs from one message to the next. We’ll
show the exact format of each message when we describe it.

There are 15 different values for the type field, which identify the particular ICMP
message. Some types of ICMP messages then use different values of the code field to
further specify the condition.

The checksum field covers the entire ICMP message. The algorithm used is the same
as we described for the IP header checksum in Section 3.2. The ICMP checksum is
required.

69

70 ICMP: Internet Control Message Protocol Chapter 6

7 8 15 16 31

8-bit type 8-bit code 16-bit checksum

6.2

(contents depends on type and code)

Figure 6.2 ICMP message.

In this chapter we talk about ICMP messages in general and a few in detail: address
mask request and reply, timestamp request and reply, and port unreachable. We discuss
the echo request and reply messages in detail with the Ping program in Chapter 7, and
we discuss the ICMP messages dealing with IP routing in Chapter 9.

ICMP Message Types

Figure 6.3 lists the different ICMP message types, as determined by the type field and
code field in the ICMP message.

The final two columns in this figure specify whether the ICMP message is a query
message or an error message. We need to make this distinction because ICMP error
messages are sometimes handled specially. For example, an ICMP error message is
never generated in response to an ICMP error message. (If this were not the rule, we
could end up with scenarios where an error generates an error, which generates an
error, and so on, indefinitely.)

When an ICMP error message is sent, the message always contains the IP header
and the first 8 bytes of the IP datagram that caused the ICMP error to be generated.
This lets the receiving ICMP module associate the message with one particular protocol
(TCP or UDP from the protocol field in the IP header) and one particular user process
(from the TCP or UDP port numbers that are in the TCP or UDP header contained in the
first 8 bytes of the IP datagram). We’ll show an example of this in Section 6.5.

An ICMP error message is never generated in response to

1. An ICMP error message. (An ICMP error message may, however, be generated
in response to an ICMP query message.)

2. A datagram destined to an IP broadcast address (Figure 3.9) or an IP multicast
address (a class D address, Figure 1.5).

3. A datagram sent as a link-layer broadcast.

4. A fragment other than the first. (We describe fragmentation in Section 11.5.)

Section 6.2 ICMP Message Types 71

code Query Error

0 ¯

type Description

0 echo reply (Pmg reply, Chapter 7)
3 destination unreachable:

0 network unreachable (Section 9.3) °
1 host unreachable (Section 9.3) °
2 protocol unreachable
3 port unreachable (Section 6.5) °
4 fragmentation needed but don’t-fragment bit set (Section 11.6) °
5 source route failed (Section 8.5) ¯
6 destination network unknown °
7 destination host unknown ¯
8 source host isolated (obsolete)
9 destmation network administratively prohibited ¯

10 destination host administratively prohibited °
11 network unreachable for TOS (Section 9.3) °
12 host unreachable for TOS (Section 9.3) °
13 communication administratively prohibited by filtering °
14 host precedence violation °
15 precedence cutoff in effect °

4 0 source quench (elementary flow control, Section 11.11) °

5 redirect (Section 9.5).
0 redirect for network °
1 redirect for host °
2 redirect for type-of-service and network °
3 redirect for type-of-service and host °

8 0 echo request (Ping request, Chapter 7) °

9 0 router advertisement (Section 9.6) ¯
10 0 router sohcitation (Section 9.6) ¯

11 time exceeded.
0 time-to-live equals 0 during transit (Traceroute, Chapter 8) °
1 time-to-live equals 0 during reassembly (Section 11.5) °

12 parameter problem:
0 IP header bad (catchall error)
1 required option missing °

13 0 t~mestamp request (Section 6.4) °
14 0 t~mestamp reply (Section 6.4) ¯

15 0 information request (obsolete) ¯
16 0 mformation reply (obsolete) °

17 0 address mask request (Section 6.3) °
18 0 address mask reply (Section 6.3) °

Figure 6.3 ICMP message types.

5. A datagram whose source address does not define a single host. This means the
source address cannot be a zero address, a loopback address, a broadcast
address, or a multicast address.

These rules are meant to prevent the broadcast storms that have occurred in the past
when ICMP errors were sent in response to broadcast packets.

72 ICMP: Internet Control Message Protocol Chapter 6

6.3 ICMP Address Mask Request and Reply

The ICMP address mask request is intended for a diskless system to obtain its subnet
mask (Section 3.5) at bootstrap time. The requesting system broadcasts its ICMP
request. (This is similar to a diskless system using RARP to obtain its IP address at
bootstrap time.) An alternative method for a diskless system to obtain its subnet mask
is the BOOTP protocol, which we describe in Chapter 16. Figure 6.4 shows the format
of the ICMP address mask request and reply messages.

0 7 8 15 16

type (17 or 18) code (0) checksum

identifier sequence number

32-bit subnet mask

31

12 bytes

Figure 6.4 ICMP address mask request and reply messages.

The identifier and sequence number fields in the ICMP message can be set to anything
the sender chooses, and these values are returned in the reply. This allows the sender to
match replies with requests.

We can write a simple program (named icmpaddrraask) that issues an ICMP
address mask request and prints all replies. Since normal usage is to send the request to
the broadcast address, that’s what we’ll do. The destination address (140.252.13.63) is
the broadcast address for the subnet 140.252.13.32 (Figure 3.12).

sun % icmpaddrmask 140.252.13.63
received mask = ffffffe0, from 140.252.13.33
received mask = ffffffe0, from 140.252.13.35
received mask = ffff0000, from 140.252.13.34

~om ourse~
~om bsdi

~om svr4

The first thing we note in this output is that the returned value from svr4 is wrong. It
appears that SVR4 is returning the general class B address mask, assuming no subnets,
even though the interface on svr4 has been configured with the correct subnet mask:

svr4 % ifconfig emd0
emd0: flags=23<UP,BROADCAST,NOTRAILERS>

inet 140.252.13.34 netmask ffffffe0 broadcast 140.252.13.63

There is a bug in the SVR4 handling of the ICMP address mask request.
We’ll watch this exchange on the host bsdi using tcpdump. The output is shown

in Figure 6.5. We specify the -e option to see the hardware addresses.

Section 6.3 ICMP Address Mask Request and Reply73

1

2

3

0.0 8:0:20:3:f6:42 ff:ff:ff:ff:ff:ff ip 60:
sun > 140.252.13.63: icmp: address mask request

0.00 (0.00) O:O:cO:6f:2d:40 ff:ff:ff:ff:ff:ff ip 46:
bsdl > sun: icmp: address mask is OxffffffeO

0.01 (0.01) 0:0:c0:c2:9b:26 8:0:20:3:f6:42 zp 60:
svr4 > sun: icmp: address mask is OxffffO000

Figure6,5 [CMPaddress maskrequestsenttobroadc~staddress.

Note that the sending host, sun, receives an ICMP reply (the output line with the com-
ment from ourself shown earlier), even though nothing is seen on the wire. This is a gen-
eral characteristic of broadcasting: the sending host receives a copy of the broadcast
packet through some internal loopback mechanism. Since by definition the term
"broadcast" means all the hosts on the local network, it should include the sending host.
(Referring to Figure 2.4 [p. 28] what is happening is that when the Ethernet driver rec-
ognizes that the destination address is the broadcast address, the packet is sent onto the
network and a copy is made and passed to the loopback interface.)

Next, bsdi broadcasts the reply, while svr4 sends the reply only to the requestor.
Normally the reply should be unicast unless the source IP address of the request is
0.0.0.0, which it isn’t in this example. Therefore, sending the reply to the broadcast
address is a BSD/386 bug.

The Host Requirements RFC says that a system must not send an address mask reply unless it
is an authoritative agent for address masks. (To be an authoritative agent it must be specifi-
cally conhgured to send these replies. See Appendtx E.) As we can see from this example,
however, most host implementations send a reply if they get a request. Some hosts even send
the wrong reply!

The final point is shown by the following example. We send an address mask
request to our own IP address and to the loopback address:

sun % icmpaddrmask sun
recelved mask = ffO00000, from 140.252.13.33

sun % icmpaddrmask localhost
recelved mask = ffO00000, from 127.0.0.1

In both cases the returned address mask corresponds to the loopback address, the
class A address 127.0.0.1. Again, referring to Figure 2.4 we see that IP datagrams sent to
the host’s own IP address (140.252.13.33 in this example) are actually sent to the loop-
back interface. The ICMP address mask reply must correspond to the subnet mask of
the interface on which the request was received (since a multihomed host can have dif-
ferent subnet masks for each interface), and in both cases the request is received from
the loopback interface.

74 ICMP: Internet Control Message Protocol Chapter 6

6.4 ICMP Timestamp Request and Reply

The ICMP timestamp request allows a system to query another for the current time.
The recommended value to be returned is the number of milliseconds since midnight,
Coordinated Universal Time (UTC). (Older manuals refer to UTC as Greenwich Mean
Time.) The nice feature of this ICMP message is that it provides millisecond resolution,
whereas some other methods for obtaining the time from another host (such as the
rdat e command provided by some Unix systems) provide a resolution of seconds. The
drawback is that only the time since midnight is returned--the caller must know the
date from some other means.

Figure 6.6 shows the format of the ICMP timestamp request and reply messages.

0 7 8 15 16 31

type (13 or 14) code (0) checksum

identifier sequence number

32-bit originate hmestamp

32-bit receive timestamp

32-bit transmit hmestamp

20 bytes

1
Figure 6.6 ICMP timestamp request and reply messages.

The requestor fills in the originate timestamp and sends the request. The replying sys-
tem fills in the receive timestamp when it receives the request, and the transmit time-
stamp when it sends the reply. In actuality, however, most implementations set the
latter two fields to the same value. (The reason for providing the three fields is to let the
sender compute the time for the request to be sent, and separately compute the time for
the reply to be sent.)

Examples

We can write a simple program (named icmptime) that sends an ICMP timestamp
request to a host and prints the returned reply. We try it first on our small internet:

sun % icmptime bsdi
orlg = 83573336, recv = 83573330, xmic = 83573330, rot = 2 ms
difference : 6 ms

sun % icmptime bsdi
orig = 835?7987, recv = 83577980, xmit = 83577980, rtt = 2 ms
dlfference = -7 ms

Section 6.4 ICMP Timestamp f~equest and Reply 75

The program prints the three timestamps in the ICMP message: the originate (or±g),
receive (:cecv), and transmit (xra±t) timestamps. As we can see in this and the follow-
ing examples, all the hosts set the receive and transmit timestamps to the same value.

We also calculate the round-trip time (rtt), which is the time the reply is received
minus the time the request was sent. The d±fference is the received timestamp
minus the originate timestamp. Figure 6.7 shows the relationship between these values.

originate received transmit

t
request ~-- reply

~ RTT ~

Figure 6.7 Relat,onshlp between values printed by our xcmptlme program.

If we believe the RTT and assume that one-half of the RTT is for the request, and the
other half for the reply, then the sender’s clock needs to be adjusted by d±fference
minus one-half the RTT, to have the same time as the host being queried. In the preced-
ing example, the clock on bsdz was 7 and 8 ms behind the clock on sun.

Since the timestamp values are the number of milliseconds past midnight, UTC,
they should always be less than 86,400,000 (24 × 60 x 60 x 1000). These examples were
run just before 4:00 PM in a time zone that is 7 hours behind UTC, so the values being
greater than 82,800,000 (2300 hours) makes sense.

If we run this program several times to the host bsd± we see that the final digit in
the receive and transmit timestamp is always 0. This is because the software release
(Version 0.9.4) only provides a 10-ms clock. (We describe this in Appendix B.)

If we run the program twice to the host svr4 we see that the low-order three digits
of the SVR4 timestamp are always 0:

sun % icmptime svr4
orig = 83588210, recv = 83588000° xmit : 83588000, rtt = 4 ms
difference = -210 ms

sun % icmptime svr4
orig = 83591547, recv = 83591000, xmit : 83591000, rtt = 4 ms
difference = -547 ms

For some reason SVR4 doesn’t provide any millisecond resolution using the ICMP time-
stamp. This imprecision makes the calculated differences useless for subsecond adjust-
ments.

If we try two other hosts on the 140.252.1 subnet, the results show that one clock
differs from sun’s by 3.7 seconds, and the other by nearly 75 seconds:

sun % icmptime gemini
orig = 83601883, recv = 83598140, xmit = 83598140, rtt = 247 ms
difference = -3743 ms

sun % icmptime aix
orig = 83606768, recv = 83532183, xmlt = 83532183, rtt = 253 ms
dlfference = -74585 ms

76 ICMP: Internet Control Message Protocol Chapter 6

Another interesting example is to the router gat÷way (a Cisco router). It shows
that when a system returns a nonstandard timestamp value (something other than mil-
liseconds past midnight, UTC), it is supposed to turn on the high-order bit of the 32-bit
timestamp. Our program detects this, and prints the receive and transmit timestamps
in angle brackets (after turning off the high-order bit). Also, we can’t calculate the dif-
ference between the originate and receive timestamps, since they’re not the same units.

sun % icmptime gateway
orlg : 83620811, recv : <4871036> xmit : <4871036>, rtt : 220 ms

sun % icmptime gateway
orig : 83641007, recv : <4891232> xmit : <4891232>, rtt : 213 ms

If we run our program to this host a few times it becomes obvious that the values do
contain millisecond resolution and do count the number of milliseconds past some
starting point, but the starting point is not midnight, UTC. (It could be a counter that’s
incremented every millisecond since the router was bootstrapped, for example.)

As a final example we’ll compare sun’s clock with a system whose clock is ka~own
to be accurate--an NTP stratum 1 server. (We say more about NTP, the Network Time
Protocol, below.)

sun % icmptime clock.llnl.gov
orig : 83662791, recv : 83662919, xmit : 83662919, rtt : 359 ms
difference = 128 ms

sun % icmptime clock.llnl.gov
orig : 83670425, recv : 83670559, xmlt : 83670559, rtt : 345 ms
dlfference = 134 ms

If we calculate the difference minus one-half the RTT, this output indicates that the clock
on sun is between 38.5 and 51.5 ms fast.

Alternatives

There are other ways to obtain the time and date.

We described the daytime service and time service in Section 1.12. The former
returns the current time and date in a human readable form, a line of ASCII
characters. We can test this service using the t e 1 net command:

sun % telnet bsdi daytime
Trying 140.252.13.35 ...
Connected to bsdl.
Escape character is ’^]’.
Wed Feb 3 16:38:33 1993
Connectlon closed by foreign host.

first three hnes output are from the Telnet client
here’s the dayhme service output
this is also from the Telnet chent

The time server, on the other hand, returns a 32-bit binary value with the num-
ber of seconds since midnight January 1, 1900, UTC. While this provides the
date, the time value is in units of a second. (The rdate command that we men-
tioned earlier uses the TCP time service.)

Section 6.5 ICMP Port Unreachable Error 77

o

Serious timekeepers use the Network Time Protocol (NTP) described in
RFC 1305 [Mills 1992]. This protocol uses sophisticated techniques to maintain
the clocks for a group of systems on a LAN or WAN to within millisecond accu-
racy. Anyone interested in precise timekeeping on computers should read this
RFC.

The Open Software Foundation’s (OSF) Distributed Computing Environment
(DCE) defines a Distributed Time Service (DTS) that also provides clock syn-
chronization between computers. [Rosenberg, Kenney, and Fisher 1992] provide
additional details on this service.

Berkeley Unix systems provide the daemon t±med(8) to synchronize the clocks
of systems on a local area network. Unlike NTP and DTS, t ±raed does not work
across wide area networks.

6.5 ICMP Port Unreachable Error

The last two sections looked at ICMP query messages--the address mask and time-
stamp queries and replies. We’ll now examine an ICMP error message, the port
unreachable message, a subcode of the ICMP destination unreachable message, to see
the additional information returned inan ICMP error message. We’ll watch this using
UDP (Chapter 11).

One rule of UDP is that if it receives a UDP datagram and the destination port does
not correspond to a port that some process has in use, UDP responds with an ICMP port
unreachable. We can force a port unreachable using the TFTP client. (We describe TFTP
in Chapter 15.)

The well-known UDP port for the TFTP server to be reading from is 69. But most
TFTP client programs allow us to specify a different port using the connect command.
We use this to specify a port of 8888:

bsdl % tftp
tftp> connect svr4 8888
tftp> get temp.foo
Transfer timed out.
tftp> quit

specify the hostname and port number
try to fetch a file
about 25 seconds later

The connect command saves the name of the host to contact and the port number on
that host, for when we later issue the get command. After typing the get command a
UDP datagram is sent to port 8888 on host svr4. Figure 6.8 shows the tcpdurap output
for the exchange of packets that takes place.

Before the UDP datagram can be sent to svr4 an ARP request is sent to determine
its hardware address (line 1). The ARP reply (line 2) is returned and then the UDP data-
gram is sent (line 3). (We have left the ARP request-reply in this tcpdurap output to
remind us that this exchange may be required before the first IP datagram is sent from
one host to the other. In future output we’ll delete this exchange if it’s not relevant to
the topic being discussed.)

78 ICMP: Internet Control Message Protocol Chapter 6

6

7
8

9
10

11
12

1 0.0
2 0 . 002050 (0 . 0020)

3 0.002723 (0.0007)
4 0.006399 (0.0037)

5 5.000776 (4.9944)
5.004304 (0.0035)

10.000887 (4.9966)
10.004416 (0.0035)

15.001014 (4.9966)
15.004574 (0.0036)

20.001177 (4.9966)
20.004759 (0.0036)

arp who-has svr4 tell bsdi
arp reply svr4 is-at 0:0:c0:c2:9b:26

bsdi.2924 > svr4.8888: udp 20
svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

bsdi.2924 > svr4.8888: udp 20
svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

bsdl.2924 > svr4.8888: udp 20
svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

bsdi.2924 > svr4.8888: udp 20
svr4 > bsdi: ~cmp: svr4 udp port 8888 unreachable

bsdl.2924 > svr4.8888: udp 20
svr4 > bsdi: icmp: svr4 udp port 8888 unreachable

Figure 6.8 ICMP port unreachable generated by TFTP request.

An ICMP port unreachable is immediately returned (line 4). But the TFTP client
appears to ignore the ICMP message, sending another UDP datagram about 5 seconds
later (line 5). This continues three more times before the client gives up.

Notice that the ICMP messages are exchanged between hosts, without a port num-
ber designation, while each 20-byte UDP datagram is from a specific port (2924) and to
a specific port (8888).

The number 20 at the end of each UDP line is the length of the data in the UDP
datagram. In this example 20 is the sum of the TFTP’s 2-byte opcode, the 9-byte null
terminated name temp. foo, and the 9-byte null terminated string netascii. (See
Figure 15.1 for the details of the TFTP packet layout.)

If we run this same example using the -e option of tcpdurap we see the exact
length of each ICMP port unreachable message that’s returned to the sender. This
length is 70 bytes, and is allocated as shown in Figure 6.9.

IP datagram
~

ICMP message
~

~-- data portion of ICMP message ~-~

Ethernet IP ICMP IP header of datagram UDP
header header header that generated error header

14 bytes 20 bytes 8 bytes 20 bytes 8 bytes

Figure 6.9 ICMP message returned for our "UDP port unreachable" example.

Section 6.5 ICMP Port Unreachable Error 79

One rule of ICMP is that the ICMP error messages (see the final column of Fig-
ure 6.3, p. 71) must include the IP header (including any options) of the datagram that
generated the error along with at least the first 8 bytes that followed this IP header. In
our example, the first 8 bytes following the IP header contain the UDP header (Fig-
ure 11.2).

The important fact is that contained in the UDP header are the source and destina-
tion port numbers. It is this destination port number (8888) that caused the ICMP port
unreachable to be generated. The source port number (2924) can be used by the system
receiving the ICMP error to associate the error with a particular user process (the TFTP
client in this example).

One reason the IP header of the datagram that caused the error is sent back is
because in this IP header is the protocol field that lets ICMP know how to interpret the 8
bytes that follow (the UDP header in this example). When we look at the TCP header
(Figure 17.2) we’ll see that the source and destination port numbers are contained in the
first 8 bytes of the TCP header.

The general format of the ICMP unreachable messages is shown in Figure 6.10.

0 78

type (3)

15 16

code (0-15)
!

checksum

Unused (must be 0)

IP header (including options) + first 8 bytes of original IP datagram data

31

8 bytes

Figure 6.10 ICMP unreachable message.

In Figure 6.3 we noted that there are 16 different ICMP unreachable messages, codes 0
through 15. The ICMP port unreachable is code 3. Also, although Figure 6.10 indicates
that the second 32-bit word in the ICMP message must be 0, the Path MTU Discovery
mechanism (Section 2.9) allows a router to place the MTU of the outgoing interface in
the low-order 16 bits of this 32-bit value, when code equals 4 ("fragmentation needed
but the don’t fragment bit is set"). We show an example of this error in Section 11.6.

Although the rules of ICMP allow a system to return more than the first 8 bytes of the data
portion of the IP datagram that caused the ICMP error, most Berkeley-derived implementa-
tions return exactly 8 bytes. The Solaris 2.2 ±p_±erap_lzeturn_clata bytes option returns
the first 64 bytes of data by default (Section E.4).

80 ICMP: Internet Control Message Protocol Chapter 6

tcpdump Time Line

Throughout the text we’ll also display the tcpdump output in a time line diagram as
shown in Figure 6.11.

bsdi.2924 svr4.8888

0.0

0.002050 (0.0020)
0.002723 (0.0007)

0.006399 (0.0037)

5.000776 (4.9944)

5.004304 (0.0035)

10.000887 (4.9966)

10.004416 (0.0035)

15.001014 (4.9966)

15.004574 (0.0036)

20.001177 (4.9966)

20.004759 (0.0036)

arp who-has~sv_r4 tell bsdi

arp reply svr4 is-at 0"0:c0:c2"9b:26~-~-~

ICMP: svr4 udp port 8888 unreachable -~’

udp 20 bytes

1CMP: svr4 udp port 8888 unreachable

udp 20 bytes

ICMP: svr4 udp port 8888 unreachable

udp 20 bytes

ICMP: svr4 udp port ggg8 unreachable~’~

~ ICMP" svr4 udp port 8888 unreach~

Figure 6.11 Time line of TFTP request to an invalid port.

Section 6.6 4.4BSD Processing of ICMP Messages81

Time increases down the page and the labels on the far left of the figure are the
same time values as in our tcpdump output (Figure 6.8). The labels at the top are the
hostnames and port numbers for each side of the time line. Be aware that the y-axis
down the page is not exactly proportional to the time value. When there is a significant
time lag, as between each 5-second retransmission in this example, we’ll designate that
with a squiggle on both sides of the time line. When UDP or TCP data is being trans-
mitted, we show that packet with a thicker line.

Why does the TFTP client keep retransmitting its request when the ICMP messages
are being returned? An element of network programming is occurring in which BSD
systems don’t notify user processes using UDP of tCMP messages that are received for
that socket unless the process has issued a connect on that socket. The standard BSD
TFTP client does not issue the connect, so it never receives the ICMP error notification.

Another point to notice here is the poor retransmission timeout algorithm used by
this TFTP client, it just assumes that 5 seconds is adequate and retransmits every 5 sec-
onds, for a total of 25 seconds. We’ll see later that TCP has a much better algorithm.

Th~s old-fash~oned timeout and retransmission algorithm used by the TFTP chent is forbidden
by the Host Requirements RFC. Nevertheless, all three systems on the author’s subnet, and
Solans 2.2 st~ll use it AIX 3.2 2 applies an exponential backoff to xts tlmeout, sendh~g packets
at 0, 5, 15, and 35 seconds, which is the recommended way. We talk much more about time-
outs in Chapter 21.

Finally note that the ICMP messages are returned about 3.5 ms after the UDP data-
gram is sent, which we’ll see in Chapter 7 is similar to the round-trip times for Ping
replies.

6.6 4.4BSD Processing of ICMP Messages

Since 1CMP covers such a wide range of conditions, from fatal errors to informational
messages, each ICMP message is handled differently, even within a given implementa-
tion. Figure 6.12 is a redo of Figure 6.3, showing the handling performed by 4.4BSD for
each of the possible ICMP messages.

If the final column specifies the kernel, that ICMP message is handled by the kernel.
If the final column specifies "user process", then that message is passed to all user pro-
cesses that have registered with the kernel to read received ICMP messages. If there are
none of these user processes, the message is silently discarded. (These user processes
also receive a copy of all the other ICMP messages, even those handled by the kernel,
but only after the kernel has processed the message.) Some messages are completely
ignored. Finally, if the final column is a string in quotes, that is the Unix error message
corresponding to that condition. Some of these errors, such as TCP’s handling of a
source quench, we’ll cover in later chapters.

82 ICMP: Internet Control Message Protocol Chapter 6

type code Handled by

0 0 user process
3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
04

5
0 kernel updates routing table
1 kernel updates routing table
2 kernel updates routing table
3 kernel updates routing table

8 0 kernel generates reply
9 0 user process

10 0 user process
11

0 user process
1 user process

12
0 "Protocol not available"
1 "Protocol not available"

13 0 kernel generates reply
14 0 user process

15 0 (ignored)
16 0 user process
17 0 kernel generates reply
18 0 user process

Description

echo reply
destination unreachable:

network unreachable
host unreachable
protocol unreachable
port unreachable
fragmentation needed but DF bit set
source route failed
destination network unknown
destination host unknown
source host isolated (obsolete)
dest. network administratively prohibited
dest. host administratively prohibited
network unreachable for TOS
host unreachable for TOS
communication administratively prohibited
host precedence violation
precedence cutoff in effect

source quench
redirect:

redirect for network
redirect for host
redirect for type-of-service and network
redirect for type-of-service and host

echo request
router advertisement
router solicitation

time exceeded:
TTL equals 0 during transit
TTL equals 0 during reassembly

parameter problem:
IP header bad (catchall error)
required option missing

timestamp request
timestamp reply

information request (obsolete)
information reply (obsolete)

address mask request
address mask reply

"No route to host"
"No route to host"
"Connection refused"
"Connection refused"
"Message too long"
"No route to host"
"No route to host"
"No route to host"
"No route to host"
"No route to host"
"No route to host’"
"No route to host"
"No route to host’"
(ignored)
(ignored)
0gnored)

kernel for TCP, ignored by UDP

Figure 6.12 Handling of the ICMP message types by 4.4BSD.

Chapter 6 Exercises 83

6.7 Summary

This chapter has been a look at the Internet Control Message Protocol, a required part of
every implementation. Figure 6.3 lists all the ICMP message types, most of which we’ll
discuss later in the text.

We looked at the ICMP address mask request and reply and the timestamp request
and reply in detail. These are typical of the request-reply messages. Both have an iden-
tifier and sequence number in the ICMP message. The sending application stores a
unique value in the identifier field, to distinguish between replies for itself and replies
for other processes. The sequence number field lets the client match replies with
requests.

We also saw the ICMP port unreachable error, a common ICMP error. This let us
examine the information returned in an ICMP error: the IP header and the next 8 bytes
of the IP datagram that caused the error. This information is required by the receiver of
the ICMP error, to know more about the cause of the error. Both TCP and UDP store the
source and destination port numbers in the first 8 bytes of their headers for this reason.

Finally, we presented our first time line of tcpdurnp output, a presentation format
we’ll use in later chapters.

Exercises

6.1 At the end of Section 6.2 we listed five special conditions under which an ICMP error mes-
sage is not sent. What would happen if these five conditions weren’t followed and we sent
a broadcast UDP datagram to an unlikely port on the local cable?

6.2 Read the Host Requirements RFC [Braden 1989a] to see if the generation of an ICMP port
unreachable is a "must," "’should," or "may." What section and page is this found on?

6.3 Read RFC 1349 [Almquist 1992] to see how the IP type-of-service field (Figure 3.2) should
be set by ICMP.

6.4 If your system provides the ne~: s"ca~: command, use it to see what types of ICMP messages
are received and sent.

Netgearennanenctenentneniinetenetthneeweetsentnn

“eeoFatermmervenysareewetseeSMRUCASEURVEREVMWJLINNMTALREEFinnHChoindIEnlmattcaweenrae

CAVIUM-1008

Paae 108

Cavium,Inc. v. Alacritech, Inc.

7

Ping Program

7.1 Introduction

The name "ping" is taken from the sonar operation to locate objects. The Ping program
was written by Mike Muuss and it tests whether another host is reachable. The pro-
gram sends an ICMP echo request message to a host, expecting an ICMP echo reply to
be returned. (Figure 6.3 lists all the ICMP message types.)

Normally if you can’t Ping a host, you won’t be able to Telnet or FTP to that host.
Conversely, if you can’t Telnet to a host, Ping is often the starting point to determine
what the problem is. Ping also measures the round-trip time to the host, giving us some
indication of how "far away" that host is.

In this chapter we’ll use Ping as a diagnostic tool and to further explore ICMP. Ping
also gives us an opportunity to examine the IP record route and timestamp options.
Chapter 11 of [Stevens 1990] provides the source code for the Ping program.

Years ago we could make the unqualified statement that if we can’t Ping a host, we can’t Telnet
or I~I’P to that host. With the increased awareness of security on the Internet, routers that pro-
wde access control lists, and firewall gateways, unqualified statements like this are no longer
true. Reachability of a given host may depend not only on reachability at the IP layer, but also
on what protocol is being used, and the port numbers involved. Ping may show a host as
being unreachable, yet we might be able to Telnet to port 25 (the mail server).

7.2 Ping Program

We call the ping program that sends the echo requests the client, and the host being
pinged the server. Most TCP/IP implementations support the Ping server directly in the
kernel--the server is not a user process. (The two ICMP query services that we
described in Chapter 6, the address mask and timestamp requests, are also handled
directly by the kernel.)

85

86 Ping Program Chapter 7

Figure 7.1 shows the ICMP echo request and echo reply messages.

78

type (0 or 8)

identifier

code (0)

15 16

checksum

sequence number

optional data

31

8 bytes

Figure 7.1 Format of ICMP message for echo request and echo reply,

As with other ICMP query messages, the server must echo the identifier and sequence
number fields. Also, any optional data sent by the client must be echoed. These are pre-
sumably of interest to the client.

Unix implementations of p±ng set the identifier field in the ICMP message to the
process ID of the sending process. This allows p±ng to identify the returned responses
if there are multiple instances of p±n9 running at the same time on the same host.

The sequence number starts at 0 and is incremented every time a new echo request is
sent. p±n~ prints the sequence number of each returned packet, allowing us to see if
packets are missing, reordered, or duplicated. IP is a best effort datagram delivery ser-
vice, so any of these three conditions can occur.

Historically the p±n~ program has operated in a mode where it sends an echo
request once a second, printing each echo reply that is returned. Newer implementa-
tions, however, require the -s option to operate this way. By default, these newer
implementations send only a single echo request and output "’host is alive" if an echo
reply is received, or "no answer" if no reply is received within 20 seconds.

LAN Output

p±n~ output on a LAN normally looks like the following:
bsdi % ping svr4
PING svr4 (140.252.13
64 bytes from 140.252
64 bytes from 140.252
64 bytes from 140.252
64 bytes from 140.252
64 bytes from 140.252
64 bytes from 140.252
64 bytes from 140.252

34): 56 data bytes
13.34: icmp_seq=0 tt1=255 time=0 ms
13.34: icmp_seq=l tti=255 time=0 ms
13.34: icmp_seq=2 tti=255 time=0 ms
13.34: icmp_seq=3 tti=255 time=0 ms
13.34: icmp_seq=4 tti=255 time=0 ms
13.34: icmp_seq=5 tti=255 time=0 ms
13.34: icmp_seq=6 tti=255 time=0 ms

64 bytes from 140.252.13.34: acmp_seq=7 tti=255 tlme=O ms
^ ? ~pe interrupt key to stop
--- svr4 ping statistlcs
8 packets transmitted, 8 packets received, 0% packet loss
round-trip mln/avg/max = 0/0/0 ms

Section 7.2 Ping Program 87

When the ICMP echo reply is returned, the sequence number is printed, followed by the
TTL, and the round-trip time is calculated. (TTL is the time-to-live field in the IP
header. The current BSD p±ng program prints the received TTL each time an echo
reply is received--some implementations don’t do this. We examine the usage of the
TTL in Chapter 8 with the traceroute program.)

As we can see from the output above, the echo replies were returned in the order
sent (0, 1, 2, and so on).

p±ng is able to calculate the round-trip time by storing the time at which it sends
the echo request in the data portion of the ICMP message. When the reply is returned it
subtracts this value from the current time. Notice that on the sending system, bsd±, the
round-trip times are all calculated as 0 ms. This is because of the low-resolution timer
available to the program. The BSD/386 Version 0.9.4 system only provides a 10-ms
timer. (We talk more about this in Appendix B.) We’ll see later that when looking at the
tcpdurap output from this ping example on a system with a finer resolution clock (the
Sun) the time difference between the ICMP echo request and its echo reply is just under
4 ms.

The first line of output contains the IP address of the destination host, even though
we specified its name (svr4). This implies that the name has been converted to the IP
address by a resolver. We examine resolvers and the DNS in Chapter 14. For now real-
ize that if we type a p±ng command, and a few seconds pass before the first line of out-
put with the IP address is printed, this is the time required for the DNS to determine the
IP address corresponding to the hostname.

Figure 7.2 shows the tcpdump output for this example.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

0.0 bsdl > svr4: icmp: echo request
0.003733 (0.0037) svr4 > bsdi: icmp: echo reply

0.998045 (0.9943) bsdl > svr4: icmp: echo request
1.001747 (0.0037) svr4 > bsdi: icmp: echo reply

1.997818 (0.9961) bsdi > svr4: icmp: echo request
2.001542 (0.0037) svr4 > bsdi: lcmp: echo reply

2.997610 (0.9961) bsdl > svr4: icmp: echo request
3.001311 (0.0037) svr4 > bsdl: icmp: echo reply

3.997390 (0.9961) bsdl > svr4: icmp: echo request
4.001115 (0.0037) svr4 > bsdi: icmp: echo reply

4.997201 (0.9961) bsdl > svr4: icmp: echo request
5.000904 (0.0037) svr4 > bsdi: icmp: echo reply

5.996977 (0.9961) bsdl > svr4: icmp: echo request
6.000708 (0.0037) svr4 > bsdi: lcmp: echo reply

6.996764 (0.9961) bsdl > svr4: icmp: echo request
7.000479 (0.0037) svr4 > bsdi: icmp: echo reply

Figure 7.2 p~ng output across a LAN.

The time between sending the echo request and receiving the echo reply is always 3.7
ms. We can also see that echo requests are sent approximately i second apart.

88 Ping Program Chapter 7

Often the first round-trip time is larger than the rest. This occurs if the destination’s
hardware address isn’t in the ARP cache of the sender. As we saw in Chapter 4, send-
ing an ARP request and getting the ARP reply can take a few milliseconds before the
first echo request can be sent. The following example shows this:

sun % arp -a make sure ARP cache ~s empty

sun % ping svr4
PING svr4:56 data bytes
64 bytes from svr4 (140.252.13.34): lcmp_seq=0, time=7, ms
64 bytes from svr4 (140.252.13.34) : lcmp_seq=l, time=4, ms
64 bytes from svr4 (140.252.13.34): icmp seq=2, tlme=4, ms
64 bytes from svr4 (140.252.13.34)~ icmp_seq=3, time=4, ms
^? typeinterruptk~ tostop

s̄vr4 PING Statlstlcs
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 4/4/7

Theadditional 3 ms in the first RTT is probably for the ARP request and reply.
This example was run on the host sun, which provides a timer with microsecond

resolution, but the p±ng program prints the round-trip times with only millisecond res-
olution. The earlier example, run under BSD/386 Version 0.9.4,,printed the round-trip
times as 0 ms, since the available timer provided only 10-ms accuracy. The following
output is from BSD/386 Version 1.0, which provides a timer with microsecond resolu-
tion and a version of ping that prints the higher resolution.

bsdi % ping svr4
PING svr4 (140.252.13.34): 56 data bytes
64 bytes from 140.252.13.34:icmp_seq=0 tti=255 time=9.304 ms
64 bytes from 140.252.13.34: icmp_seq=l tti=255 time=6.089 ms
64 bytes from 140.252.13.34:icmp_seq=2 tti=255 tlme=6.079 ms
64 bytes from 140.252.13.34: icmp_seq=3 tti=255 time=6.096 ms
^? typeinterruptkeytostop
--- svr4 ping statistics
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 6.079/6.880/9.304 ms

WAN Output

On a wide area network the results can be quite different. The following example was
captured on a weekday afternoon, a time when the Internet is normally busy:

geminl % ping vangogh.cs.berkeley.edu
PING vangogh.cs.berkeley.edu: 56 data bytes
64 bytes from 128.32 130.2 : icmp_seq=0, t~me=660, ms
64 bytes from
64 bytes from
64 bytes from
64 bytes from
64 bytes from
64 bytes from
64 bytes from

128
128
128
128
128
128
128

32 130.2
32 130.2
32 130.2
32 130.2
32 130.2
32 130.2
32 130.2

: icmp_seq=5, time=1780, ms
: icmp_seq=7, t~me=380, ms
: icmp_seq=8, time=420, ms
: icmp_seq=9, time=390, ms
: icmp_seq=14, time=ll0, ms
: icmp_seq=15, time=f70, ms
: icmp_seq=16, time=f00, ms

typeinterruptkeytostop

Section 7.2 Ping Program 89

.... vangogh. CS.Berkeley. EDU PING Statistics
17 packets transmitted, 8 packets received, 52% packet loss
round-trip (ms) min/avg/max = 100/501/1780

Either the echo requests or the echo replies for sequence numbers 1, 2, 3, 4, 6, 10, 11, 12,
and 13 were lost somewhere. Note also the large variance in the round-trip times. (This
high packet loss rate of 52% is an anomaly. This is not normal for the Internet, even on a
weekday afternoon.)

It is also possible across WANs to see packets duplicated (the same sequence num-
ber printed two or more times), and to see packets reordered (sequence number N + 1
printed before sequence number N).

Hardwired SLIP Links

Let’s look at the round-trip times encountered over SLIP links, since they often run at
slow asynchronous speeds, such as 9600 bits/sec or less. Recall our serial line through-
put calculations in Section 2.10. For this example we’ll set the speed of the hardwired
SLIP link between hosts bsdi and slip to 1200 bits/sec.

We can estimate the round-trip time as follows. First, notice from the example Ping
output shown earlier that by default it sends 56 bytes of data in the ICMP message.
With a 20-byte IP header and an 8-byte ICMP header this gives a total IP datagram size
of 84 bytes. (We can verify this by running tcpdump -÷ and seeing the Ethernet flame
sizes.) Also, from Section 2.4 we know that at least two additional bytes are added: the
END byte at the beginning and end of the datagram. It’s also possible for additional
bytes to be added by the SLIP framing, but that depends on the value of each byte in the
datagram. At 1200 bits/sec with 8 bits per byte, 1 start bit, and 1 stop bit, the rate is 120
bytes per second, or 8.33 ms per byte. Our estimate is then (86 x 8.33 x 2), or 1433 ms.
(The multiplier of 2 is because we are calculating the round-trip time.)

The following output verifies our calculation:

svr4 % ping -s slip
PING slip: 56 data bytes
64 bytes from slip (140.252.13.65): icmp_seq:0, time:1480, ms
64 bytes from slip (140.252.13.65): icmp_seq=l, time=1480, ms
64 bytes from slip (140.252.13.65): icmp_seq=2, time=1480, ms
64 bytes from slip (140.252.13.65): icmp_seq:3, time=1480, ms
^?
.... slip PING Statistics
5 packets transmitted, 4 packets received, 20% packet loss
round-trip (ms) min/avg/max = 1480/1480/1480

(The -s option is required for SVR4 to send one request every second.) The round-trip
time is almost 1.5 seconds but the program is still sending out each ICMP echo request
at 1-second intervals. This means there are two outstanding echo requests (sent at time
0 and time 1) before the first reply comes back (at time 1.480). That’s also why the sum-
mary line says one packet has been lost. It really hasn’t been lost, it’s probably still on
its way back.

We’ll return to this slow SLIP link in Chapter 8 when we examine the traceroute
program.

9O

Dialup

Ping Program Chapter 7

SLIP Links

The conditions change with a dialup SLIP link since we now have modems on each end
of the link. The modems being used between the systems sun and netb provide what
is called V.32 modulation (9600 bits/sec), V.42 error control (also called LAP-M), and
V.42bis data compression. This means that our simple calculations, which were fairly
accurate for a hardwired link where we knew all the parameters, become less accurate.

Numerous factors are at work. The modems introduce some latency. The size of
the packets may decrease with the data compression, but the size may then increase to a
multiple of the packet size used by the error control protocol. Also the receiving
modem can’t release received data bytes u.ntil the cyclic redundancy character (the
checksum) has been verified. Finally, we’re dealing with a computer’s asynchronous
serial interface on each end, and many operating systems read these interfaces only at
fixed intervals, or when a certain number of characters have been received.

As an example, we ping the host 9eraini from the host sun:
sun % ping gemini
PING gemini: 56 data
64 bytes from geminl
64 bytes from geminl
64 bytes from geminl
64 bytes from geminl
64 bytes from geminl
64 bytes from geminl
64 bytes from geminz
64 bytes from geminl
64 bytes from geminl
64 bytes from gemin~

btes
140,252.1
140.252.1
140,252.1
140.252.1
140.252.1
140,252.1
140.252.1
140.252.1
140.252.1
140,252.1
140.252.1
140.252.1

ii)
ii)
ii)
ii)
ii)
ii)
ii)

Ii): icmp_seq=0, tlme=373, ms
ii): icmp_seq=l, tlme=360, ms
ii) : icmp_seq=2, t~me=340, ms
ii): ~cmp_seq=3. time=320, ms
ii): ~cmp_seq=4. tlme=330, ms

: icmp_seq=5, time=310, ms
: icmp_seq=6, time=290, ms
: icmp_seq=7, time=300, ms
: icmp_seq=8, time=280, ms
: icmp_seq=9, tlme=290, ms
: icmp_seq=10, time=300, ms
: ~cmp_seq=ll. time=280, ms

Note that the first RTT is not a multiple of 10 ms, but every other line is. If we run this
numerous times, we see this property every time. (This is not caused by the resolution
of the clock on the host sun, because we know that its clock provides millisecond reso-
lution from the tests we run in Appendix B.)

Also note that the first RTT is larger than the next, and they keep decreasing, and
then they range between 280 and 300 ms. If we let it run for a minute or two, the RTTs
stay in this range, never going below 260 ms. If we calculate the expected RTT at
9600 bits/sec (Exercise 7.2) we get 180 ms, so our observed values are about 1.5 times
the expected value.

If we run p±ng for 60 seconds and look at the average RTT it calculates, we find that
with V.42 and V.42bis our average is 277 ms. (This is better than the average printed for
our preceding example, because we ran it longer to amortize the longer RTTs at the
beginning.) If we turn off just the V.42bis data compression our average is 330 ms. If
we turn off the V.42 error control (which also turns off the V.42bis data compression) our
average is 300 ms. These modem parameters do affect the RTTs, and using the error
control and data compression appears to be the best.

64 bytes from gemin~
64 bytes from geminl
.... gemKni PING Statistics
12 packets transmitted, 12 packets recelved,
round-trip (ms) min/avg/max = 280/314/373

0% packet loss

Section 7.3 IP Record Route Option 91

7.3 IP Record Route Option

The p±ng program gives us an opportunity to look at the IP record route (RR) option.
Most versions of ping provide the -R option that enables the record route feature. It
causes ping to set the IP RR option in the outgoing IP datagram (which contains the
ICMP echo request message). This causes every router that handles the datagram to
add its IP address to a list in the options field. When the datagram reaches the final des-
tination, the list of IP addresses should be copied into the outgoing ICMP echo reply,
and all the routers on the return path also add their IP addresses to the list. When p±ng
receives the echo reply it prints the list of IP addresses.

As simple as this sounds, there are pitfalls. Generation of the RR option by the
source host, processing of the RR option by the intermediate routers, and reflection of
the incoming RR list in an ICMP echo request into the outgoing ICMP echo reply are all
optional features. Fortunately, most systems today do support these optional features,
but some systems don’t reflect the IP list.

The biggest problem, however, is the limited room in the IP header for the list of IP
addresses. We saw in Figure 3.1 (p. 34) that the header length in the IP header is a 4-bit
field, limiting the entire IP header to 15 32-bit words (60 bytes). Since the fixed size of
the IP header is 20 bytes, and the RR option uses 3 bytes for overhead (which we
describe below), this leaves 37 bytes (60- 20- 3) for the list, allowing up to nine IP
addresses. In the early days of the ARPANET, nine IP addresses seemed like a lot, but
since this is a round-trip list (in the case of the -R option for ping), it’s of limited use
today. (In Chapter 8 we’ll look at the Traceroute tool for determining the route followed
by a datagram.) Despite these shortcomings, the record route option works and pro-
vides an opportunity to look in detail at the handling of IP options.

Figure 7.3 shows the general format of the RR option in the IP datagram.

~ bytes m39

c~de 1~ IP addr #1 IP addr #2 IP addr #3 IP addr #9ptr

t 1 1 ~ 4bytes ~ 4 bytes ~ 4 bytes ~ 4 bytes ~
ptr = 4 ptr = 8 ptr = 12 ptr = 36 ptr = 40

Figure 7.3 General format of record route option in IP header.

Code is a 1-byte field specifying the type of IP option. For the RR option its value is 7.
Len is the total number of bytes of the RR option, which in this case is 39. (Although it’s
possible to specify an RR option with less than the maximum size, ping always pro-
vides a 39-byte option field, to record up to nine IP addresses. Given the limited room
in the IP header for options, it doesn’t make sense to specify a size less than the maxi-
mum.)

Ptr is called the pointer field. It is a 1-based index into the 39-byte option of where
to store the next IP address. Its minimum value is 4, which is the pointer to the first IP
address. As each IP address is recorded into the list, the value of ptr becomes 8, 12, 16,
up to 36. After the ninth address is recorded ptr becomes 40, indicating the list is full.

92 Ping Program Chapter 7

When a router (which by definition is multihomed) records its IP address in the list,
which IP address is recorded? It could be the address of the incoming interface or the
outgoing interface. RFC 791 [Postel 1981a] specifies that the router records the outgoing
IP address. We’ll see that when the originating host (the host rurming p±ng) receives
the ICMP echo reply with the RR option enabled, it also records its incoming IP address
in the list.

Normal Example

Let’s run an example of the RR option with the p±ng program. We’ll run ping on the
host svr4 to the host slip. One intermediate router (bsdi) will handle the datagram.
The following output is from svr4:

svr4 % ping -R slip
PING slip (140.252.13.65): 56 data bytes
64 bytes from 140.252.13.65: icmp_seq=0 tti=254
RR: bsdi (140,252.13.66)

slip (140.252.13.65)
bsdi (140.252.13.35)
svr4 (140.252.13.34)

64 bytes from 140.252.13.65: icmp_seq=l tti=254
64 bytes from 140.252.13.65: icmp_seq=2 tti=254
^?

--- slip ping statistlcs
3 packets transmitted, 3 packets received,
round-trip mln/avg/max : 270/276/280 ms

time=280 ms

tlme=280 ms (same route)
time=270 ms (same route)

0% packet loss

Figure 7.4 shows the four hops that the packets take (two in each direction), and which
hop adds which IP address to the RR list.

slip SLIP 6~6 bsdl svr4

T.35
-

T.34
!4th = 140 252"13"34SUrl I

Ethernet

1st = 140.252.13.66

2nd = 140.252.13.65

empty list

3rd = 140.2~3.3~

Figure 7.4 ping with record route option.

The router bsdi adds a different IP address to the list in each direction. It always adds
the IP address of the outgoing interface. We can also see that when the ICMP echo reply
reaches the originating system (svr4) it adds the IP address of the incoming interface to
the list.

Section 7.3 IP Record Route Option 93

We can also watch this exchange of packets from the host sun, rmming tcpdump

with its -v option (to see the IP options). Figure 7.5 shows the output.

0.0 svr4 > slip: icmp: echo request (ttl 32, ±d 35835,
optlen=40 RR{39}= RR{#0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/ 0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0} EOL)

2 0.267746 (0.2677) sllp > svr4: icmp: echo reply (ttl 254, id 1976,
optlen=40 RR{39}= RR{140.252.13.66/140.252.13.65/
140.252.13.35/#0.0.0.0/0.0.0.0/0.0.0.0/0.0.0.0/
0.0.0.0/0.0.0.0} EOL)

Figure 7.5 tcpdump output of record route option.

The output optlen=40 indicates there are 40 bytes of option space in the IP header.
(Recall that the length of the IP header must be a multiple of 4 bytes.) RR{ 39 } means
the record route option is present, and its length field is 39. The list of nine IP addresses
is then shown, with a pound sign (#) indicating which IP address is pointed to by the ptr
field in the RR option header. Since we are watching these packets on the host sun (see
Figure 7.4) we only see the ICMP echo request with the empty list, and the ICMP echo
reply with three addresses in the list. We have deleted the remaining lines in the
t cpdump output, since they are nearly identical to what we show in Figure 7.5.

The notation EOL at the end of the record route information indicates the IP option
"end of list" value appeared. The EOL option has a value of 0. What’s happening is
that 39 bytes of RR data are in the 40 bytes of option space in the IP header. Since the
option space is set to 0 before the datagram is sent, this final byte of 0 that follows the 39
bytes of RR data is interpreted as an EOL. That is what we want to have happen. If
there are multiple options in the option field of the IP header, and pad bytes are needed
before the next option starts, the other special character NOP ("no operation"), with a
value of 1, can be used.

In Figure 7.5, SVR4 sets the TTL held of the echo request to 32, and BSD/386 sets it to 255. (It
prints as 254 since the router bsd~_ has already decremented ~t by one.) Newer systems are set-
ring the TTL of ICMP messages to the maximum (255).

It turns out that of the three TCP/IP implementations used by the author, both BSD/386 and
SVR4 support the record route option. That is, they correctly update the RR list when forward-
ing a datagram, and they correctly reflect the RR list from an incoming ICMP echo request to
the outgoing ICMP echo reply. SunOS 4.1.3, however, updates the RR list when forwarding a
datagram, but does not reflect the RR list. Solaris 2.x corrects this problem

Abnormal Output

The following example was seen by the author and provides a starting point for our
description of the ICMP redirect message in Chapter 9. We ping the host aix on the
140.252.1 subnet (accessible through the dialup SLIP connection on the host sun) with
the record route option. We get the following output, when run on the host s lip:

94 Ping Program Chapter 7

slip % ping -R aix
PING aix (140.252.1.92): 56 data bytes
64 bytes from 140.252.1.92: icmp_seq=0 ttl=251 time=650 ms
RR: bsdi (140.252.13.35)

sun (140.252.1.29)
netb (140.252.1.183)
aix (140.252.1.92)
gateway (140.252.1.4) whyzsth~srouterused~
netb (140.252.1.183)
sun (140.252,13.33)
bsdi (140.252.13.66)
slip (140.252.13.65)

64 bytes from alx: ±cmp_seq=l ttl=251 time=610 ms (same route)
64 bytes from aix: zcmp_seq=2 ttl-251 tlme=600 ms (same route)
^?

alx ping statlstlcs ---
4 packets transmitted, 3 packets received, 25% packet loss
round-trzp min/avg/max = 600/620/650 ms

We could have run this example from the host bsdi. We chose to run it from slip to
see all nine IP addresses in the RR list used.

The puzzle in this output is why the outgoing datagram (the ICMP echo request)
went directly from netb to aix, but the return (the ICMP echo reply) went from aix,
through the router gateway, before going to netb. What we’re seeing here is a feature
of IP routing that we describe below. Figure 7.6 shows the path of the datagrams.

8th = 140.252 13.66
p~_ng client "~-

sl~p t.13.65 SLIP .13.~66~

Internet

gateway ~ 4th = 140.252.1.92

~ Ethernet

6th = 140.252.1.183

7th = 140.252.13.33

~.13.35

Ethernet

empty hst ~ 1st = 1~07252~-13~3~

.1.183

.13.33

ping destination

alx

/ 3rd = 140.252.1.183

12nd = 140.252.1.29

Figure 7.6 pzng w~th record route, showing IP routing feature.

The problem is that a±x does not know to send IP datagrams destined for the subnet
140.252.13 to netb. Instead, a±x has a default entry in its routing table that tells it to

Section 7.4 IP Timestamp Option 95

send all datagrams to the router gateway if it doesn’t have a particular route for the
destination. The router gateway has more routing knowledge than any of the hosts on
the 140.252.1 subnet. (There are more than 150 hosts on this Ethernet and instead of
running a routing daemon on every one, each has a "default" entry that points to the
router gateway.)

An unanswered question here is why doesn’t gateway send an ICMP redirect (Sec-
tion 9.5) to aix to update its routing table? For some reason (perhaps that the datagram
generating the redirect is an ICMP echo request message) the redirect is not generated.
But if we use Telnet and connect to the daytime server on aix, the ICMP redirect is gen-
erated, and the routing table on aix is updated. If we then execute ping with the
record route option enabled, the route shows that the datagrams go from netb to aix
and back to herb, without the extra hop to the router gateway. We’ll look at these
ICMP redirects in more detail in Section 9.5.

7.4 IP Timestamp Option

The IP timestamp option is similar to the record route option. Figure 7.7 shows the for-
mat of the IP timestamp option (compare with Figure 7.3).

~̄ 40 bytes m

code len ptr OF FL timestamp #1 timestamp #2 tlmestamp #3 ... timestamp #9

1 1 1 4 bytes 4 bytes 4 bytes 4 bytes

Figure 7.7 General format of timestamp option in IP header.

The code field is 0x4 4 for the timestamp option. The two fields len and ptr are the same
as for the record route option: the total length of the option (normally 36 or 40) and a
pointer to the next available entry (5, 9, 13, etc.).

The next two fields are 4-bit values: OF is the overflow field and FL is a flags field.
The operation of the timestamp option is driven by the flags field, as shown in Fig-
ure 7.8.

flags

0
1

Description

Record only t~mestamps This ~s what we show in Figure 7.7.
Each router records its IP address and its timestamp. There is room for only four of these

pairs in the options list.
The sender ~n~tiahzes the options list w~th up to four pairs of IP addresses and a 0

timestamp. A router records its t~mestamp only ~f the next IP address m the list
matches the router’s

Figure 7.8 Meaning of the flags value for t~mestamp option.

If a router can’t add a timestamp because there’s no room left, it just increments the
overflow field.

96 Ping Program Chapter 7

7.5

The preferred value for the timestamps is the number of milliseconds past mid-
night, UTC, similar to the ICMP timestamp request and reply (Section 6.4). If this for-
mat is not available to a router, it can insert whatever time representation that it uses,
but must then turn on the high-order bit of the timestamp to indicate the nonstandard
value.

Given the limitations that we encountered with the record route option, things get
worse with the timestamp option. If we record both IP addresses and timestamps (a
flags of 1), we can store only four of these pairs. Recording only timestamps is next to
useless because we have no indication regarding which timestamp corresponds to
which router (unless we have a fixed topology that never changes). A flags of 3 is better,
as we can then select which touters insert theirtimestamp. A more fundamental prob-
lem is that you probably have no control over how accurate the timestamp is at any
given router. This makes it fruitless to try to measure hop times between routers using
this IP option. We’ll see that the traceroute program (Chapter 8) provides a better way
of measuring hop times between touters.

Summary

The ping program is the basic connectivity test between two systems running TCP/IP.
It uses the ICMP echo request and echo reply messages and does not use a transport
layer (TCP or UDP). The Ping server is normally part of the kernel’s ICMP implementa-
tion.

We looked at the normal ping output for a LAN, WAN, and SLIP links (dialup and
hardwired), and performed some serial line throughput calculations for a dedicated
SLIP link. p±ng also let us examine and use the IP record route option. We used this IP
option to see how default routes are often used, and will return to this topic in Chap-
ter 9. We also looked at the IP timestamp option, but it is of limited practical use.

Exercises

7.1

7.2

7.3

7.4

7.5

Draw a time line for the pq_ng output for the SLIP link m Section 7.2.

Calculate the RTT if the SLIP link between bsdz and s~xp is set to 9600 bits/sec. Assume
the default of 56 bytes of data.

The current BSD ping program allows us to specify a pattern for the data portion of the
ICMP message. (The first 8 bytes of the data portion are not filled with the pattern, since
the time at which the packet ~s sent is stored here.) If we specify a pattern of 0xc0, recalcu-
late the answer to the previous exercise. (Hint" Reread Section 2.4.)

Does the use of compressed SLIP (CSLIP, Section 2.5) affect the ping times that we
observed in Section 7.2?

Examine Figure 2.4 (p. 28). Do you expect any difference between a ping of the loopback
address, versus a ping of the host’s Ethernet address~

8

Traceroute Program

8.1 Introduction

The Traceroute program, written by Van Jacobson, is a handy debugging toot that
allows us to further explore the TCP/IP protocols. Although there are no guarantees
that two consecutive IP datagrams from the same source to the same destination follow
the same route, most of the time they do. Traceroute lets us see the route that IP data-
grams follow from one host to another. Traceroute also lets us use the IP source route
option.

The manual page states: "Implemented by Van Jacobson from a suggestion by Steve Deering.
Debugged by a cast of thousands with particularly cogent suggestions or fixes from C. Phihp
Wood, T~m Seaver, and Ken Adelman."

8.2 Traceroute Program Operation

In Section 7.3 we described the IP record route option (RR). Why wasn’t this used
instead of developing a new application? There are three reasons. First, historically not
all touters have supported the record route option, making it unusable on certain paths.
(Traceroute doesn’t require any special or optional features at any intermediate routers.)

Second, record route is normally a one-way option. The sender enables the option
and the receiver has to fetch all the values from the received IP header and somehow
return them to the sender. In Section 7.3 we saw that most implementations of the Ping
server (the ICMP echo reply function within the kernel) reflect an incoming RR list, but
this doubles the number of IP addresses recorded (the outgoing path and the return
path), which runs into the limit described in the next paragraph. (Traceroute requires
only a working UDP module at the destination--no special server application is
required.)

97

98 Traceroute Program Chapter 8

o

The third and major reason is that the room allocated for options in the IP header
isn’t large enough today to handle most routes. There is room for only nine IP
addresses in the IP header options field. In the old days of the ARPANET this was ade-
quate, but it is far too small nowadays.

Traceroute uses ICMP and the TTL field in the IP header. The TTL field (time-to-
live) is an 8-bit field that the sender initializes to some value. The recommended initial
value is specified in the Assigned Numbers RFC and is currently 64. Older systems
would often initialize it to 15 or 32. We saw in some of the Ping examples in Chapter 7
that ICMP echo replies are often sent with the TTL set to its maximum value of 255.

Each router that handles the datagram is required to decrement the TTL by either
one or the number of seconds that the router holds onto the datagram. Since most
routers hold a datagram for less than a second, the TTL field has effectively become a
hop counter, decremented by one by each router.

RFC 1009 [Braden and Postel 1987] required a router that held a datagram for more than 1 sec-
ond to decrement the TTL by the number of seconds. Few routers implemented this reqmre-
ment. The new Router Requirements RFC [Almquist 1993] makes this optional, allowing a
router to treat the TTL as just a hop count.

The purpose of the TTL field is to prevent datagrams from ending up in infinite
loops, which can occur during routing transients. For example, when a router crashes
or when the connection between two routers is lost, it can take the routing protocols
some time (from secor~ds to a few rfiinutes) to detect the lost route and work around it.
During this time period it is possible for the datagram to end up in routing loops. The
TTL field puts an upper limit on these looping datagrams.

When a router gets an IP datagram whose TTL is either 0 or 1 it must not forward
the datagram. (A destination host that receives a datagram like this can deliver it to the
application, since the datagram does not have to be routed. Normally, however, no sys-
tem should receive a datagram with a TTL of 0.) Instead the router throws away the
datagram and sends back to the originating host an ICMP "time exceeded" message.
The key to Traceroute is that the IP datagram containing this ICMP message has the
router’s IP address as the source address.

We can now guess the operation of Traceroute. It sends an IP datagram with a TTL
of 1 to the destination host. The first router to handle the datagram decrements the
TTL, discards the datagram, and sends back the ICMP time exceeded. This identifies
the first router in the path. Traceroute then sends a datagram with a TTL of 2, and we
find the IP address of the second router. This continues until the datagram reaches the
destination host. But even though the arriving IP datagram has a TTL of 1, the destina-
tion host won’t throw it away and generate the ICMP time exceeded, since the data-
gram has reached its final destination. How can we determine when we’ve reached the
destination?

Traceroute sends UDP datagrams to the destination host, but it chooses the destina-
tion UDP port number to be an unlikely value (larger than 30,000), making it improba-
ble that an application at the destination is using that port. This causes the destination
host’s UDP module to generate an ICMP "port unreachable" error (Section 6.5) when
the datagram arrives. All Traceroute needs to do is differentiate between the received
ICMP messages--time exceeded versus port unreachable--to know when it’s done.

Section 8.3 LAN Output 99

The Traceroute program must be able to set the TTL field in the outgoing datagram. Not all
programming interfaces to TCP/IP support this, and not all implementations support the
capability, but most current systems do, and are able to run Traceroute. Th~s programming
interface normally reqmres the user to have superuser privilege, meaning ~t may take special
pnwlege to run ~t on your host.

8.3 LAN Output

We’re now ready to run traceroute and see the output. We’ll use our simple internet
(see the figure on the inside front cover) going from svr4 to slip, through the router
bsdi. The hardwired SLIP link between bsdi and slip is 9600 bits/sec.

svr4 % traceroute slip
traceroute to sllp (140.252.13.65), 30 hops max,

1 bsdi (140.252.13.35) 20 ms i0 ms i0 ms
2 sllp (140.252.13.65) 120 ms 120 ms 120 ms

40 byte packets

The first unnumbered line of output gives the name and IP address of the destination
and indicates that traceroute won’t increase the TTL beyond 30. The datagram size
of 40 bytes allows for the 20-byte IP header, the 8-byte UDP header, and 12 bytes of user
data. (The 12 bytes of user data contain a sequence number that is incremented each
time a datagram is sent, a copy of the outgoing TTL, and the time at which the data-
gram was sent.)

The next two lines in the output begin with the TTL, followed by the name of the
host or router, and its IP address. For each TTL value three datagrams are sent. For
each returned ICMP message the round-trip time is calculated and printed. If no
response is received within 5 seconds for any of the three datagrams, an asterisk is
printed instead and the next datagram is sent. In this output the first three datagrams
had a TTL of 1 and the ICMP messages were returned in 20, 10, and 10 ms. The next
three datagrams were sent with a TTL of 2 and the ICMP messages were returned 120
ms later. Since the TTL of 2 reached the final destination, the program then stopped.

The round-trip times are calculated by the traceroute program on the sending
host. They are the total RTTs from the Craceroute program to that router. If we’re
interested in the per-hop time we have to subtract the value printed for TTL N from the
value printed for TTL N + 1.

Figure 8.1 shows the tcpdump output for this run. As we might have guessed, the
reason that the first probe packet to bsd± had an RTT of 20 ms and the next two had an
RTT of 10 ms was because of an ARP exchange, tcpdump shows this is indeed the case.

The destination UDP port starts at 33435 and is incremented by one each time a
datagram is sent. This starting port number can be changed with a command-line
option. The UDP datagram contains 12 bytes of user data, which we calculated earlier
when traceroute output that it was sending 40-byte datagrams.

Next, tcpdurap prints the comment [ttl 1] when the IP datagram has a TTL of 1.
It prints a message like this when the TTL is 0 or 1, to warn us that something looks
funny in the datagram. Here we expect to see the TTL of 1, but with some other appli-
cation it could be a warning that the datagram might not get to its final destination. We
should never see a datagram passing by with a TTL of 0, unless the router that put it on
the wire is broken.

100 Traceroute Program Chapter 8

1 0.0
2 0.000586 (0.0006)

3 0.003067 (0.0025)
4 0.004325 (0.0013)

arp who-has bsdl tell svr4
arp reply bsdl is-at O:O:cO:6f:2d:40

5 0.069810 (0.0655)
6 0.071149 (0.0013)

svr4.42804 > slip.33435: udp 12 [ttl i]
bsdi > svr4: icmp: time exceeded In-transit

7 0.085162 (0.0140)
8 0.086375 (0.0012)

svr4.42804 > slip.33436: udp 12 [ttl I]
bsdi > svr4: icmp: time exceeded Kn-transit

9 0.118608 (0.0322)
10 0.226464 (0.1079)

svr4.42804 > slip.33437: udp 12 [ttl i]
bsdi > svr4: icmp: tlme exceeded in-transit

11 0.287296 (0.0608)
12 0.395230 (0.1079)

13 0.409504 (0.0143)
14 0.517430 (0.1079)

svr4.42804 > slip.33438: udp 12
slip > svr4: icmp: slip udp port 33438 unreachable

svr4.42804 > ~iip.33439: udp 12
slip > svr4: icmp: slip udp port 33439 unreachable

svr4.42804 > slip.33440: udp 12
sl~p > svr4: icmp: sllp udp port 33440 unreachable

Figure 8.1 tcpdump output for traceroute example from svr4 to slip.

The ICMP message "time exceeded in transit" is what we expect to see from the
router bsdi, since it will decrement the TTL to 0. The ICMP message comes from the
router even though the IP datagram that was thrown away was going to slip.

There are two different ICMP "time exceeded" messages (Figure 6.3, p. 71), each
with a different code field in the ICMP message. Figure 8.2 shows the format of this
ICMP error message.

7 8 15 16

type (11) code (0 or 1) I checksum

Unused (must be 0)

IP header (including options) + first 8 bytes of original IP datagram data

31

8 bytes

Figure 8.2 ICMP time exceeded message.

The one we’ve been describing is generated when the TTL reaches 0, and is specified by
a code of 0.

It’s also possible for a host to send an ICMP "time exceeded during reassembly"
when it times out during the reassembly of a fragmented datagram. (We talk about
fragmentation and reassembly in Section 11.5.) This error is specified by a code of 1.

Lines 9-14 in Figure 8.1 correspond to the three datagrams sent with a TTL of 2.
These reach the final destination and generate an ICMP port unreachable message.

Section 8.3 LAN Output 101

It is worthwhile to calculate what the round-trip times should be for the SLIP link,
similar to what we did in Section 7.2 when we set the link to 1200 bits/sec for the Ping
example. The outgoing UDP datagram contains 12 bytes of data, 8 bytes of UDP
header, 20 bytes of IP header, and 2 bytes (at least) of SLIP framing (Section 2.4) for a
total of 42 bytes. Unlike Ping, however, the size of the return datagrams changes.
Recall from Figure 6.9 (p. 78) that the returned ICMP message contains the IP header of
the datagram that caused the error and the first 8 bytes of data that followed that IP
header (which is a UDP header in the case of traceroute). This %ives us a total of
20 + 8 + 20 + 8 + 2, or 58 bytes. With a data rate of 960 bytes/sec the expected RTT is
(42 + 58)/960 or 104 ms. This corresponds to the 110-ms value measured oia svr4.

The source port number in Figure 8.1 (42804) seems high. traceroute sets the
source port number of the UDP datagrams that it sends to the logical-OR of its Unix
process ID with 32768. In case traceroute is being run multiple times on the same
host, each process looks at the source port number in the UDP header that’s returned by
ICMP, and only handles those messages that are replies to probes that it ser~t.

There are several points to note with traceroute. First, there is no guarantee that
the route today will be in use tomorrow, or even that two consecutive IP datagrams fol-
low the same route. If a route changes while the program is running you’ll see it occur
because traceroute prints the new IP address for the given TTL if it changes.

Second, there is no guarantee that the path taken by the returned ICMP message
retraces the path of the UDP datagram sent by traceroute. This implies that the
round-trip times printed may not be a true indication of the outgoing and returning
datagram times. (If it takes 1 second for the UDP datagram to travel from the source to
a router, but 3 seconds for the ICMP message to travel a different path back to the
source, the printed round-trip time is 4 seconds.)

Third, the source IP address in the returned ICMP message is the IP address of the
interface on the router on which the UDP datagram arrived. This differs from the IP
record route option (Section 7.3), where the IP address recorded was the outgoing inter-
face’s address. Since every router by definition has two or more interfaces, running
traceroute from host A to host B can generate different output than from host B to
host A. Indeed, if we run traceroute from host slip to svr4 the output becomes:

slip % trameroute svr4
traceroute to svr4 (140.252.13.34), 30 hops max, 40 byte packets
1 bsdi (140.252.13.66) ii0 ms ii0 ms ii0 ms
2 svr4 (140.252.13.34) ii0 ms 120 ms ii0 ms

This time the IP address printed for host bsdi is 140.252.13.66, the SLIP interface, while
previously it was 140.252.13.35, the Ethernet interface. Since traceroute also tries to
print the name associated with an IP address, the names can change. (In our example
both interfaces on bsdi have the same name.)

Consider Figure 8.3. It shows two local area networks with a router connected to
each LAN. The two routers are connected with a point-to-point link. If we run
traceroute from a host on the left LAN to a host on the right LAN, the IP addresses
found for the routers will be if! and if3. But going the other way will print the IP
addresses if4 and if2. The two interfaces if2 and/]:3 share the same network ID, while
the other two interfaces have different network IDs.

102

8.4

Traceroute Program Chapter 8

~!etwo!k 1

l router1 ~f2 network2 ~ router2

network 3

Figure 8.3 Idenhhcatlon of interfaces printed by traceroute.

Finally, across wide area networks the traceroute output is much easier to com-
prehend if the IP addresses are printed as readable domain names, instead of as IP
addresses. But since the only piece of information traceroute has when it receives
the ICMP message is an IP address, it does a "reverse name lookup" to find the name,
given the IP address. This requires the administrator responsible for that router or host
to configure their reverse name lookup function correctly (which isn’t always the case).
We describe how an IP address is converted to a name using the DNS in Section 14.5.

WAN Output

The output shown earlier for our small internet is adequate for examining the protocols
in action, but more a realistic use of traceroute involves larger intemets such as the
worldwide Internet.

Figure 8.4 is from the host sun to the Network Information Center, the NIC.

sun % traceroute nic.ddn.mil
traceroute to nlc.ddn.mll (192.112.36.5), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 218 ms 227 ms 233 ms
2 gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 204 ms

3
4
5

butch.telcom.arlzona.edu (140.252.104.2)
Gabby. Telcom.Arizona.EDU (128.196.128.1)
NSIgate. Telcom.Arxzona.EDU (192.80,43.3)

6 JPLI.NSN.NASA.GOV (128.161.88.2) 234 ms 590 ms 262 ms
7 JPL3.NSN.NASA.GOV (192.100~15.3) 238 ms 223 ms 234 ms
8 GSFC3.NSN.NASA.GOV (128.161.3.33) 293 ms 318 ms 324 ms
9 GSFCS.NSN.NASA.GOV (192.100.13.8} 294 ms 318 ms 294 ms

i0 SURA2.NSN.NASA.GOV (128.161.166.2) 323 ms 319 ms 294 ms
ii nsn-FIX-pe.sura.net (192.80.214.253) 294 ms 318 ms 294 ms
12 GSI.NSN.NASA.GOV (128.161.252.2) 293 ms 318 ms 324 ms

13 NIC.DDN.MIL (192.112.36.5) 324 ms 321 ms 324 ms

204 ms 228 ms 234 ms
234 ms 228 ms 204 ms
233 ms 228 ms 234 ms

Figure 8.4 traceroute from host sun to n±c. ddn .mll.

Since running this example for inclumon in the text, the NIC for non-DDN sites (i.e., non-
mihtary) has moved from n~c. ddn. mzl to rs. lnternxc, net, the new "InterNIC."

Section 8.4 WAN OutT)ut 103

Once the datagrams leave the tuc. noao. edu network they enter the
telcom.arizona.edu network. They then enter the NASA Science Internet,
nsn.nasa, gov. The routers for TTLs 6 and 7 are at the Jet Propulsion Laboratory
(JPL). The network sura. net in the output for TTL 11 is the Southeastern Universities
Research Association Network. The name GSI at TTL 12 is Government Systems, Inc.,
the operator of the NIC.

The second RTT for the TTL of 6 (590) is more than double the other two RTTs (234
and 262). This illustrates the dynamics of IP routing. Something happened somewhere
between the sending host and this router that slowed down this datagram. Also, we
can’t tell if it was the outbound datagram that got held up or the return ICMP error.

The RTT for the first probe with a TTL of 3 (204) is less than the RTT for the first
probe with a TTL of 2 (233). Since each printed R~II’ is the total time from the sending
host to that router, this can (and does) happen.

The example in Figure 8.5 is from the host sun to the author’s publisher.

sun % traceroute aw. com
traceroute to aw.com (192o207.117.2), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 227 ms 227 ms 234 ms
2 gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 234 ms

3 butch.telcom.arizona.edu (140.252.104.2) 233 ms 229 ms 234 ms
4 Gabby. Telcom. Arizona. EDU (128.196.128.1) 264 ms 228 ms 234 ms
5 Westgate.Telcom. Arizona. EDU (192.80.43.2) 234 ms 228 ms 234 ms

6 uu-ua.AZ.westnet.net (192.31,39.233) 263 ms 258 ms 264 ms
7 enss142.UT.westnet.net (192.31.39.21) 263 ms 258 ms 264 ms

8 t3-2.Denver cnss97.t3.ans.net (140.222.97.3) 293 ms 288 ms 275 ms
9 t3-3.Denver-cnss96.t3.ans.net (140.222.96.4) 283 ms 263 ms 261 ms

i0 t3-l.St-Louis-cnss80.t3.ans.net (140.222.80.2) 282 ms 288 ms 294 ms
ii t3 l.Chicago-cnss24.t3.ans.net (140.222.24.2) 293 ms 288 ms 294 ms
12 t3-2.Cleveland-cnss40.t3.ans.net (140.222.40.3) 294 ms 288 ms 294 ms
13 t3-l.New-York-cnss32.t3.ans.net (140.222.32.2) 323 ms 318 ms 324 ms
14 t3-l.Washington-DC-cnss56.t3.ans.net (140.222.56.2) 323 ms 318 ms 324 ms
15 t3-0.Washington-DC-cnss58,t3.ans.net (140.222.58.1) 324 ms 318 ms 324 ms
16 t3-0.enss136.t3.ans.net (140.222.136.1) 323 ms 318 ms 324 ms

17 Washlngton. DC.ALTER.NET (192.41.177.248) 323 ms 377 ms 324 ms
18 Boston.MA.ALTER.NET (137.39.12.2) 324 ms 347 ms 324 ms
19 AW-gw. ALTER.NET (137.39.62.2) 353 ms 378 ms 354 ms

20 aw.com {192.207.117.2) 354 ms 349 ms 354 ms

Figure 8.5 traceroute from host sun. tuc. noao. edu to aw. com.

This time the datagrams enter the regional network west:net, net (TTLs 6 and 7) after
leaving the telcom, arizona, edu network. They then enter the NSFNET backbone,
t3. ans. net, which is run by Advanced Network & Services. (T3 is the common
abbreviation for the 45 Mbits/sec phone lines used by the backbone.) The final network
is alter, net, the connection point to the Internet for aw. com.

104 Traceroute Program Chapter 8

8.5 IP Source Routing Option

Normally IP routing is dynamic with each router making a decision about which next-
hop router to send the datagram to. Applications have no control of this, and are nor-
mally not concerned with it. It takes tools such as Traceroute to figure out what the
route really is.

The idea behind source routing is that the sender specifies the route. Two forms are
provided:

¯ Strict source routing. The sender specifies the exact path that the IP datagram
must follow. If a router encounters a next hop in the source route that isn’t on a
directly connected network, an ICMP ";ource route failed" error is returned.

¯ Loose source routing. The sender specifies a list of IP address that the datagram
must traverse, but the datagram can also pass through other routers between
any two addresses in the list.

Traceroute provides a way to look at source routing, as we can specify an option allow-
ing us to force a source route, and see what happens.

Some of the publicly available Traceroute source code packages contain patches to specify
loose source routing But the standard versions normally don’t include this option. A com-
ment ha the patches is that "Van Jacobson’s original traceroute (spnng 1988) supported this fea-
ture, but he removed it due to pressure from people with broken gateways." For the examples
shown in this section, the author installed these patches and modified them to allow both loose
and strict source routing.

Figure 8.6 shows the format of the source route option.

39 bytes

~j len IP addr #1 IP addr #2 1P addr #3 IP addr #9ptr

1 1 1 4 bytes 4 bytes 4 bytes 4 bytes

Figure 8.6 Ger~eral format of the source route option in the ~P header.

This format is nearly identical to the format of the record route option that we showed
in Figure 7.3. But with source routing we have to fill in the list of IP addresses before
sending the IP datagram, while with the record route option we allocate room and zero
out the list of IP addresses, letting the routers fill in the next entry in the list. Also, with
source routing we only allocate room for and initialize the number of IP addresses
required, normally fewer than nine. With the record route option we allocated as much
room as we could, for up to nine addresses.

The code is 0x83 for loose source routing, and 0x89 for strict source routing. The
len and ptr fields are identical to what we described in Section 7.3.

The source route options are actually called "source and record route" (LSRR and
SSRR, for loose and strict) since the list of IP addresses is updated as the datagram
passes along the path. What happens is as follows:

Section 8.5 IP Source Routing Option 105

¯ The sending host takes the source route list from the application, removes the
first entry (it becomes the destination address of the datagram), moves all the
remaining entries left by one entry (where left is as in Figure 8.6), and places the
original destination address as the final entry in the list. The pointer still points
to the first entry in the list (e.g., the value of the pointer is 4).

¯ Each router that handles the datagram checks whether it is the destination
address of the datagram. If not, the datagram is forwarded as normal. (In this
case loose source routing must have been specified, or we wouldn’t have
received the datagram.)

If the router is the destination, and the pointer is not greater than the length,
then (1) the next address in the list (where ptr points) becomes the destination
address of the datagram, (2) the IP address corresponding to the outgoing inter-
face replaces the source address just used, and (3) the pointer is incremented
by 4.

This is best explained with an example. In Figure 8.7 we assume that the sending appli-
cation on host S sends a datagram to D, specifying a source route of R1, R2, and R3.

dest = D
{ #R1, R2, R3 }

~ dest = R1
{ #R2, R3, D }’~

dest = R2 [~
{ R1, #R3, D

dest = R3
{ al, R2, #D }~-

dest = D ~_~[~j
{ R1, R2, R3#

Figure 8.7 Example of IP source routing.

In this figure the pound sign (#) denotes the pointer field, which assumes the values of
4, 8, 12, and 16. The length field will always be 15 (three IP addresses plus 3 bytes of
overhead). Notice how the destination address of the IP datagram changes on every
hop.

When an application receives data that was source routed, it should fetch the value
of the received route and supply a reversed route for sending replies.

The Host Requirements RFC speclhes that a TCP client must be able to specify a source route,
and that a TCP server must be able to receive a source route, and use the reverse route for all
segments on that TCP connection If the TCP server later receives a &fferent source route, that
newer source route overrides the earlier one.

traceroute Examples with Loose Source Routing

The -g option to traceroute lets us specify intermediate routers to be used with loose
source routing. This option can be specified up to eight times. (The reason this is eight
and not nine is that the programming interface being used requires that the final entry
be the destination.)

106 Traceroute Program Chapter 8

Recall from Figure 8.4 that the route to the NIC, n±c. ddn .re±l, was through the
NASA Science Internet. In Figure 8.8 we force the datagrams to pass through the
NSFNET instead by specifying the router enss 14 2. UT. westnet, net (192.31.39.21) as
an intermediate router:

sun % traceroute -g 192.31.39.21 nic.ddn.mil
traceroute to nic.ddn.mil (192.112.36.5), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 259 ms 256 ms 235 ms

2 butch.telcom.arizona.edu (140.252.104.2) 234 ms 228 ms 234 ms
3 Gabby. Telcom. Arizona.EDU (128.196.128.1) 234 ms 257 ms 233 ms

4 enss142.UT.westnet.net (192.31.39.2~) 294 ms 288 ms 295 ms

5 t3-2.Denver-cnss97.t3.ans.net (140.222.97.3) 294 ms 286 ms 293 ms
6 t3-3.Denver-cnss96.t3.ans.net (140.222.96.4) 293 ms 288 ms 294 ms
7 t3-l.St-Louis-cnss80.t3oans.net (140.222.80.2) 294 ms 318 ms 294 ms
8 * t3-l.Chicago-cnss24.t3.ans.net (140.222.24.2) 318 ms 295 ms
9 t3-2.Cleveland-cnss40.t3.ans.net (140.222.40.3) 319 ms 318 ms 324 ms

I0 t3-l.New-York-cnss32.t3.ans.net (140.222.32.2) 324 ms 318 ms 324 ms
ii t3-l.Wash/ngton-DC-cnss56.t3.ans.net (140.222.56.2) 353 ms 348 ms
12 t3-0.Washington-DC-cnss58.t3.ans.net (140.222.58.1) 348 ms 347 ms
13 t3-0.enss145.t3.ans.net (140.222.145.1) 353 ms 348 ms 325 ms

14 nsn-FIX-pe.sura.net (192.80.214.253) 353 ms 348 ms 325 ms
15 GSI.NSN.NASA.GOV (128.161.252.2) 353 ms 348 ms 354 ms
16 NIC.DDN.MIL (192.112.36.5) 354 ms 347 ms 354 ms

325 ms
325 ms

Figure 8.8 traceroute to nlc .ddn .roll with a loose source route through the NSFNET.

This time there appear to be 16 hops with an average RTT of around 350 ms, while the
normal route shown in Figure 8.4 had only 13 hops and an average RTT of around 322
ms. The default route appears better. (There are also other decisions made when routes
are established. Some are made on the basis of the organizational and political bound-
aries of the networks involved.)

But we said there appear to be 16 hops, because a comparison of this output with our
previous example through the NSFNET (Figure 8.5) shows three missing routers in this
example using loose source routing. (These are probably caused by bugs in the router’s
generation of ICMP time exceeded errors in response to source routed datagrams.) The
router gateway, tuc. noao. edu is missing between netb and butch, and the routers
Westgate. Telcom. Arizona. edu and uu-ua. AZ. westnet, net are also missing
between Gabby and enss142. UT. westnet, net. There is probably a software prob-
lem in these missing routers related to incoming datagrams with the loose source rout-
ing option. There are really 19 hops between the source and the NIC, when using the
NSFNET. Exercise 8.5 continues the discussion of these missing touters.

This example also illustrates another problem. On the command line we have to
specify the dotted-decimal IP address of the router enss142.UT.westnet.net
instead of its name. This is because the reverse name lookup (return the name, given
the IP address, Section 14.5), associates the name with the IP address, but the forward
lookup (given the name, return the IP address) fails. The forward mapping and reverse
mapping are two separate files in the DNS (Domain Name System) and not all

Section 8.5 IP Source Routing Option 107

administrators keep the two synchronized with each other. It’s not uncommon to have
one direction work and the other direction fail.

Something that we haven’t seen before is the asterisk (*) printed for the first RTT for
the TTL of 8. This indicates that a timeout occurred and no response was received
within 5 seconds for this probe.

Another point that we can infer from a comparison of this figure and Figure 8.4 is
that the router nsn-FIX-pe, sura.net is connected to both the NSFNET and the
NASA Science Internet.

traceroute Examples with Strict Source Routing

The -G option in the author’s version of traceroute is identical to the -g option
described earlier, but the source route is strict instead of loose. We can use this to see
what happens when an invalid strict source route is specified. Recall from Figure 8.5
that the normal sequence of routers for datagrams from the author’s subnet to the
NSFNET is through netb, gateway, butch, and gabby. (We’ve omitted the domain
suffixes, . tuc. noao. edu and . telcom, arizona, edu, in all the output below to
make it easier to read.) We specify a strict source route that omits butch, trying to go
directly from gateway to gabby. We expect this to fail, as shown in Figure 8.9.

sun % traceroute -G netb -G gateway -G gabby westgate
traceroute to westgate (192.80.43.2), 30 hops max, 40 byte packets

1 netb (140.252.1.183) 272 ms 257 ms 261 ms
2 gateway (140.252.1.4) 263 ms 259 ms 234 ms
3 gateway (140.252.1.4) 263 ms !S * 235 ms !S

Figure 8.9 traceroute with a strict source route that fails.

The key here is the notation ! S following the RTTs for the TTL of 3. This indicates that
traceroute received an ICMP "source route failed" error message: a type of 3 and a
code of 5 from Figure 6.3. The asterisk for the second RTT for the TTL of 3 indicates no
response was received for that probe. This is what we expect, since it’s impossible for
gateway to send the datagram directly to gabby, because they’re not directly con-
nected.

The reason that both TTLs 2 and 3 are from gateway is that the values for the TTL
of 2 are from gateway when it receives the datagram with an incoming TTL of 1. It dis-
covers that the TTL has expired before it looks at the (invalid) strict source route, and
sends back the ICMP time exceeded. The line with a TTL of 3 is received by gateway
with an incoming TTL of 2, so it looks at the strict source route, discovers that it’s
invalid, and sends back the ICMP source route failed error.

Figure 8.10 shows the tcpdump output corresponding to this example. This output
was collected on the SLIP link between sun and netb. We had to specify the -v option
for tcpdurap to display the source route information. This produces other output that
we don’t need, such as the datagram ID, which we’ve deleted. Also, the notation SSRR
stands for "strict source and record route."

108 Traceroute Program Chapter 8

1 0.0

2 0.270278

3 0.284784

4 0.540338

5 0.550062

6 0.810310

7 0.818030

8 1.080337

9 1.092564

10 1.350322

1I 1.357382

12 1.590586

13 1.598926

14 1.860341

15

16

17

0.2703)

0.0145)

0.2556)

0.0097)

0.2602)

0.0077)

0.2623)

0.0122)

0.2578)

0.0071)

0.2332)

0.0083)

0.2614

sun.33593 > herb.33435: udp 12 [ttl i]
(optlen=16 SSRR{#gateway gabby westgate} EOL)
netb > sun: icmp: time exceeded in-transit

sun.33593 > netb.33436: udp 12 [ttl i]
(optlen:16 SSRR{#gateway gabby westgate} EOL)
netb> sun: lcmp: time exceeded in-transit

sun.33593 > netb.33437: udp 12 [ttl i]
(optlen=16 SSRR{#gateway gabby westgate} EOL)
netb > sun: Icmp: time exceeded in-translt

sun.33593 > netb.33438: udp 12 (ttl 2,
optlen=16 SSRR{#gateway gabby westgate} EOL)
gateway > sun: icmp: time exceeded in-translt

sun.33593 > herb.33439: udp 12 (ttl 2,
optlen=16 SSRR{#gateway gabby westgate} EOL)
gateway > sun: icmp: tzme exceeded in transit

sun.33593 > herb.33440: udp 12 (ttl 2,
optlen=16 SSRR{#gateway gabby westgate} EOL)
gateway > sun: lcmp: time exceeded in-transit

sun.33593 > herb.33441: udp 12 (ttl 3,
optlen=16 SSRR{#gateway gabby westgate} EOL)
gateway > sun:
icmp: gateway unreachable - source route failed

1.875230 0.0149 sun.33593 > netb.33442: udp 12 (ttl 3,
optlen=16 SSRR{#gateway gabby westgate} EOL)

6.876579 5.0013

7.110518 (0.2339

sun.33593 > herb.33443: udp 12 (ttl 3,
optlen=16 SSRR{#gateway gabby westgate} EOL)
gateway > sun:
lcmp: gateway unreachable - source route failed

Figure 8.~[0 tcpdump output of traceroute with failed strict source route.

First note that each UDP datagram sent by sun has a destination of herb, not the
destination host (westgate). We described this with the example shown in Figure 8.7.
Similarly, the other two touters specified with the -G option (gateway and gabby) and
the final destination (we s t gat e) become the SSRR option list on the first hop.

We can also see from this output that the timeout used by traceroute (the time
difference between lines 15 and 16) is 5 seconds.

traceroute Round Trips with Loose Source Routing

Earlier we said that there is no guarantee that the route from A to B is the same as the
route from B to A. Other than having a login on both systems and running
traceroute on each end, it’s hard to find out if there is a difference in the two paths.
Using loose source routing, however, we can determine the route in both directions.

The trick is to specify loose source routing with the destination as the loose route,
and the sending host as the final destination. For example, on the host sun we can find
the paths to and from the host bruno, cs. colorado, edu (Figure 8.11).

Section 8.6 Summary 109

sun % traceroute -g bruno.cs.colorado.edu sun
traceroute to sun (140.252.13.33), 30 hops max, 40 byte packets

1 netb.tuc.noao.edu (140.252.1.183) 230 ms 227 ms 233 ms
2 gateway.tuc.noao.edu (140.252.1.4) 233 ms 229 ms 234 ms

3 butch.telcom.arizona.edu (140.252.104.2) 234 ms 229 ms 234 ms
4 Gabby. Telcom.Arlzona.EDU (128.196.128.1) 233 ms 231 ms 234 ms
5 NSIgate.Telcom. Arizona.EDU (192.80.43.3) 294 ms 258 ms 234 ms

6 JPLI.NSN.NASA.GOV (128.161.88.2) 264 ms 258 ms 264 ms
7 JPL2.NSN.NASA.GOV (192.100.15.2) 264 ms 258 ms 264 ms
8 NCAR.NSN.NASA.GOV (128.161.97.2) 324 ms * 295 ms

9 cu-gw.ucar.edu (192.43.244.4) 294 ms 318 ms 294 ms

10 engr-gw,Colorado.EDU (128.138.1.3) 294 ms 288 ms 294 ms
ii bruno.cs.colorado.edu (128.138.243.151) 293 ms 317 ms 294 ms
12 engr-gw-ot.cs.colorado.edu (128.138.204.1) 323 ms 317 ms 384 ms
13 cu-gw. Colorado.EDU (128.138.1.1) 294 ms 318 ms 294 ms

14 enss.ucar.edu (192.43.244.10) 323 ms 318 ms 294 ms

15 t3-l.Denver-cnss97.t3.ans.net (140.222.97.2) 294 ms 288 ms 384 ms
16 t3-0.enss142.t3.ans.net (140.222.142.1) 293 ms 288 ms 294 ms

17 Gabby. Telcom.Arizona.EDU (192.80.43.1) 294 ms 288 ms 294 ms
18 Butch. Telcom. Arizona. EDU (128.196.128.88) 293 ms 317 ms 294 ms

19 gateway.tuc.noao.edu (140.252.104.1) 294 ms 289 ms 294 ms
20 netb.tuc.noao.edu (140.252.1.183) 324 ms 321 ms 294 ms
21 sun.tuc.noao.edu (140.252.13.33) 534 ms 529 ms 564 ms

Figure 8.11 traceroute example showing unsymmetrical routing path.

The outbound path (TTLs 1-11) differs from the return path (TTLs 11-21), a good illus-
tration that Internet routing need not be symmetrical.

This output also illustrates the point we discussed with Figure 8.3. Compare the
output for TTLs 2 and 19: both are for the router gateway, tuc. noao. edu, but the
two IP addresses are different. Since traceroute identifies the incoming interface,
and since we’re passing through the router in two different directions, once on the out-
bound path (TTL 2) and then on the return path (TTL 19), we expect this. We see the
same effect comparing TTLs 3 and 18, and TTLs 4 and 17.

8.6 Summary

Traceroute is an indispensable tool when working with a TCP/IP network. Its opera-
tion is simple: send UDP datagrams starting with a TTL of 1, increasing the TTL by 1, to
locate each router in the path. An ICMP time exceeded is returned by each router when
it discards the UDP datagram, and an ICMP port unreachable is generated by the final
destination.

We ran examples of traceroute on both LANs and WANs, and used it to examine
IP source routing. We used loose source routing to see if the route to a destination is the
same as the return route from that destination.

110 Traceroute Program Chapter 8

Exercises

8.1 What can happen if an IP implementation decrements the incoming TTL and then tests for
equal to 0?

8.2 How does ¢raceroute calculate the RTT? Compare this to the RTT calculation done by
ping.

8.3 (This exercise and the next one are based on actual problems determined when
¢racerou¢e was being developed, and are from comments in the ¢raceroute source
code.) Assume there are three routers (R1, R2, and R3) between the source and destinahon
and that the middle router (R2) decrements the TTL but incorrectly forwards the IP data-
gram when the incoming TTL was 1. Describe what happens. How can you see this occur
when running traceroute?

8.4 Again assume there are three routers between the source and destination. This time the
destination host has a bug whereby it always uses the incoming TTL as the outgoing TTL of
an ICMP message. Describe what happens and how you would see this.

8.5 We can run tcpdump on the SLIP link between sun and netb when running the example
from Figure 8.8. If we specify the -v option we can see the TTL value of the returned ICMP
messages. Doing this shows the incoming TTL from netb to be 255, from butch it’s 253,
from Gabby it’s 252, and from enss142 .UT.westnet.net it’s 249. Does this give any
additional information about whether there really are some missing routers?

8.6 Both SunOS and SVR4 provide a version of ping with a -1 option that provides a loose
source route.- The manual pages state that it’s intended to be used with the -R option
(which specifies the record route option). If you have access to either of these systems, try
these two options together. What’s happening? If you can watch the datagrams with
tcpdump, describe what’s going on.

Compare the ways ping and traceroute handle multiple instances of the client on the
same host.

8.7

8.8

8.9

8.10

Compare the ways ping and traceroute measure the round-trip time.

We said traceroute picks the starting UDP destination port number at 33435 and incre-
ments this by one for each packet sent. In Section 1.9 we said ephemeral port numbers are
normally between 1024 and 5000, making it unlikely that Traceroute’s destination port is in
use on the destination host. Is this still true under Solaris 2.2? (Hint: Read Section E.4.)

Read RFC 1393 [Malkin 1993b] for a proposed alternative way of determining the path to a
destination. What are ~ts advantages and disadvantages?

IP Routing

9.1 Introduction

Routing is one of the most important functions of IP. Figure 9.1 shows a simplified view
of the processing done at the IP layer. Datagrams to be routed can be generated either
on the local host or on some other host. In the latter case this host must be configured to
act as a router, or datagrams received through the network interfaces that are not ours
are dropped (i.e., silently discarded).

In Figure 9.1 we also show a routing daemon, which is normally a user process.
The most common daemons used on Unix systems are the programs routed and
gated. (The term daemon means the process is running "in the background," carrying
out operations on behalf of the whole system. Daemons are normally started when the
system is bootstrapped and run as long as the system is up.) The topics of which rout-
ing protocol to use on a given host, how to exchange routing information with adjacent
routers, and how the routing protocols work are complex and can fill an entire book of
their own. (Interested readers are referred to [Perlman 1992] for many of the details.)
We’ll look briefly at dynamic routing and the Routing Information Protocol (RIP) in
Chapter 10. Our main interest in the current chapter is how a single IP layer makes its
routing decisions.

The routing table that we show in Figure 9.1 is accessed frequently by IP (on a busy
host this could mean hundreds of times a second) but is updated much less frequently
by a routing daemon (possibly about once every 30 seconds). The routing table can also
be updated when ICMP "redirect" messages are received, something we’ll look at in
Section 9.5, and by the route command. This command is often executed when the
system is bootstrapped, to install some initial routes. We’ll also use the netstat com-
mand in this chapter to display the routing table.

111

112 IP Routing Chapter 9

1

9.2

routing
daemon

routing table~
updates from l

adjacent touters ~

route
command

!
!

!
I

!

netstat
command

UDP TCP

Figure 9.1 Processing done at the IP layer,

Routing Principles

The place to start our discussion of IP routing is to understand what is maintained by
the kernel in its routing table. The information contained in the routing table drives all
the routing decisions made by IR

In Section 3.3 we listed the steps that IP performs when it searches its routing table.

1. Search for a matching host address.

2. Search for a matching network address.

3. Search for a default entry. (The default entry is normally specified in the routing
table as a network entry, with a network ID of 0o)

A matching host address is always used before a matching network address.
The routing done by IP, when it searches the routing table and decides which inter-

face to send a packet out, is a routing mechanism. This differs from a muting policy, which
is a set of rules that decides which routes go into the routing table. IP performs the
routing mechanism while a routing daemon normally provides the routing policy.

Section 9.2 Routing Principles 113

Simple Routing Table

Let’s start by looking at some typical host routing tables. On the host svr4 we execute
the netstat command with the -r option to list the routing table and the -n option,
which prints IP addresses in numeric format, rather than as names. (We do this because
some of the entries in the routing table are for networks, not hosts. Without the -n
option, the nets¢at command searches the file /etc/neCworks for the network
names. This confuses the discussion by adding another set of names--network names
in addition to hostnames.)

svr4 % netstat -rn
Routlng tables
Destinatlon Gateway Flags Refcnt Use Interface
140.252.13.65 140.252.13.35 UGH 0 0 emd0
127.0.0.1 127.0.0.1 UH 1 0 io0
default 140.252.13.33 UG 0 0 emd0
140.252.13.32 140.252.13.34 U 4 25043 emd0

The first line says for destination 140.252.13.65 (host s i ±p) the gateway (router) to send
the packet to is 140.252.13.35 (bsd±). This is what we expect, since the host s~L±p is con-
nected to bsdi with a SLIP link, and bsdi is on the same Ethernet as this host.

There are five different flags that can be printed for a given route.

The route is up.

The route is to a gateway (router). If this flag is not set, the destination is
directly connected.

The route is to a host, that is, the destination is a complete host address. If this
flag is not set, the route is to a network, and the destination is a network
address: a net ID, or a combination of a net ID and a subnet ID.

The route was created by a redirect (Section 9.5).

The route was modified by a redirect (Section 9.5).

The G flag is important because it differentiates between an indirect route and a direct
route. (The G flag is not set for a direct route.) The difference is that a packet going out a
direct route has both the IP address and the link-layer address specifying the destina-
tion (Figure 3.3, p. 40). When a packet is sent out an indirect route, the IP address speci-
fies the final destination but the link-layer address specifies the gateway (that is, the
next-hop router). We saw an example of this in Figure 3.4 (p. 41). In this routing table
example we have an indirect route (the G flag is set) so the IP address of a packet using
this route is the final destination (140.252.13.65), but the link-layer address must corre-
spond to the router 140.252.13.35.

It’s important to understand the difference between the G and H flags. The G flag
differentiates between a direct and an indirect route, as described above. The H flag,
however, specifies that the destination address (the first column of netstat output) is
a complete host address. The absence of the H flag means the destination address is a
network address (the host ID portion will be 0). When the routing table is searched for

114 IP Routing Chapter 9

a route to a destination IP address, a host address entry must match the destination
address completely, while a network address only needs to match the network ID and
any subnet ID of the destination address. Also, some versions of the netstat com-
mand print all the host entries first, followed by the network entries.

The reference count column gives the number of active uses for each route. A con-
nection-oriented protocol such as TCP holds on to a route while the connection is estab-
lished. If we established a Telnet connection between the two hosts svr4 and s 1 ±p, we
would see the reference count go to 1. With another Telnet connection the reference
count would go to 2, and so on.

The next column ("use") displays the number of packets sent through that route. If
we are the only users of the route and we run the p±ng program to send 5 packets, the
count goes up by 5. The final column, the int.erface, is the name of the local interface.

The second line of output is for the loopback interface (Section 2.7), always named
lo0. The G flag is not set, since the route is not to a gateway. The H flag indicates that
the destination address (127.0.0.1) is a host address, and not a network address. When
the G field is not set, indicating a direct route, the gateway column gives the IP address
of the outgoing interface.

The third line of output is for the default route. Every host can have one or more
default routes. This entry says to send packets to the router 140.252.13.33 (sun) if a
more specific route can’t be found. This means the current host (svr4) can access other
systems across the Internet through the router sun (and its SLIP link), using this single
routing table entry. Being able to establish a default route is a powerful concept. The
flags for this route (UG) indicate that it’s a route to a gateway, as we expect.

Here we purposely call sun a router and not a host because when it’s used as a default router,
its IP forwarding funchon is being used, not its host functionahty.

The Host Requirements RFC specifically states that the IP layer must support multiple default
routes. Many implementations, however, don’t support this. When multiple default routes
exist, a common technique ~s to round robin among them. Th~s is what Solaris 2.2 does, for
example.

The final line of output is for the attached Ethernet. The H flag is not set, indicating
that the destination address (140.252.13.32) is a network address with the host portion
set to 0. Indeed, the low-order 5 bits are 0 (Figure 3.11, p. 47). Since this is a direct route
(the G flag is not set) the gateway column specifies the IP address of the outgoing
interface.

Implied in this final entry, but not shown by the netstat output, is the mask asso-
ciated with this destination address (140.252.13.32). If this destination is being com-
pared against the IP address 140.252.13.33, the address is first logically ANDed with the
mask associated with the destination (the subnet mask of the interface, 0xffffffe0,
from Section 3.7) before the comparison. For a network route to a directly connected
network, the routing table mask defaults to the subnet mask of the interface. But in
general the routing table mask can assume any 32-bit value. A value other than the
default can be specified as an option to the route command.

The complexity of a host’s routing table depends on the topology of the networks to
which the host has access.

Section 9.2 Routing Principles 115

The simplest (but least interesting) case is a host that is not connected to any
networks at all. The TCP/IP protocols can still be used on the host, but only to
communicate with itself! The routing table in this case consists of a single entry
for the loopback interface.

Next is a host connected to a single LAN, only able to access hosts on that LAN.
The routing table consists of two entries: one for the loopback interface and one
for the LAN (such as an Ethernet).

The next step occurs when other networks (such as the Internet) are reachable
through a single router. This is normally handled with a default entry pointing
to that router.

The final step is when other host-specific or network-specific routes are added.
In our example the route to the host s 1 ±p, through the router bsd±, is an exam-
ple of this.

Let’s follow through the steps IP performs when using this routing table to route
some example packets on the host svr4.

Assume the destination address is the host sun, 140.252.13.33. A search is first
made for a matching host entry. The two host entries in the table (sl±p and
localhost) don’t match, so a search is made through the routing table again
for a matching network address. A match is found with the entry 140.252.13.32
(the network IDs and subnet IDs match), so the erad0 interface is used. This is a
direct route, so the link-layer address will be the destination address.

Assume the destination address is the host s 1 ±p, 140.252.13.65. The first search
through the table, for a matching host address, finds a match. This is an indirect
route so the destination IP address remains 140.252.13.65, but the link-layer
address must be the link-layer address of the gateway 140.252.13.35, and the
interface is emd0.

This time we’re sending a datagram across the Internet to the host aw. corn
(192.207.117.2). The first search of the routing table for a matching host address
fails, as does the second search for a matching network address. The final step
is a search for a default entry, and this succeeds. The route is an indirect route
through the gateway 140.252.13.33 using the interface ernd0.

In our final example we send a datagram to our own host. There are four ways
to do this, using either the hostname, the host IP address, the loopback name, or
the loopback IP address:

ftp svr4
ftp 140.252.13.34

ftp localhost
ftp 127.0.0.1

116 IP Routing Chapter 9

In the first two cases, the second search of the routing table yields a network
match with 140.252.13.32, and the packet is sent down to the Ethernet driver. As
we showed in Figure 2.4 (p. 28) it will be seen that this packet is destined for the
host’s own IP address, and the packet is sent to the loopback driver, which
sends it to the IP input queue.

In the latter two cases, specifying the name of the loopback interface or its IP
address, the first search of the routing table finds the matching host address
entry, and the packet is sent to the loopback driver, which sends it to the IP
input queue.

In all four cases the packet is sent to She loopback driver, but two different rout-
ing decisions are made.

Initializing a Routing Table

We never said how these routing table entries are created. Whenever an interface is ini-
tialized (normally when the interface’s address is set by the ±fconf±¢ command) a
direct route is automatically created for that interface. For point-to-point links and the
loopback interface, the route is to a host (i.e., the H flag is set). For broadcast interfaces
such as an Ethernet, the route is to that network.

Routes to hosts or networks that are not directly connected must be entered into the
routing table somehow, One common way is to execute the route command explicitly
from the initialization files when the system is bootstrapped. On the host svr4 the fol-
lowing two commands were executed to add the entries that we showed earlier:

route add default sun 1
route add sllp bsdl 1

The third arguments (default and slip) are the destinations, the fourth argument is
the gateway (router), and the final argument is a routing metric. All that the route
command does with this metric is install the route with the G flag set if the metric is
greater than 0, or without the G flag if the metric is 0.

Unfortunately, few systems agree on which start-up hle contmns the route commands.
Under 4.4BSD and BSD/386 it is /etc/netstart, under SVR4 ~t is /etc/znet/rc. znet,
under Solaris 2 x ~t is /etc/rc2. d/S69~_net, SunOS 4.1.x uses /etc/re. local, and AIX
3.2.2 uses/etc!rc, net.

Some systems allow a default router to be specified in a file such as
/etc/defaultrouter, and this default is added to the routing table on every reboot.

Other ways to initialize a routing table are to run a routing daemon (Chapter 10) or
to use the newer router discovery protocol (Section 9.6).

A More Complex Routing Table

The host sun is the default router for all the hosts on our subnet, since it has the dialup
SLIP link that connects to the Intemet (see the figure on the inside front cover).

Section 9.3 ICMP Host and Network Unreachable Errors117

sun ~ netstat -rn
Routlng tables
Dest±natlon
140.252.13.65
127.0.0.1
140.252.1.183
default
140.252.13.32

Gateway Flags Refcnt Use Interface
140.252.13.35 UGH 0 171 le0
127.0.0.1 UH 1 766 io0
140.252.1.29 UH 0 0 sl0
140.252.1.183 UG 1 2955 sl0
140.252.13.33 U 8 99551 le0

The first two entries are identical to the first two for the host svr4: a host-specific route
to s 1 ip through the router bsd±, and the loopback route.

The third line is new. It is a direct route (the G flag is not set) to a host (the H flag is
set) and corresponds to our point-to-point link, the SLIP interface. If we compare it to
the output from the ifconfig command,

sun % lfconflg sl0
sl0: flags=I051<UP,POINTOPOINT,RUNNING>

inet 140.252.1.29 --> 140.252.1.183 netmask ffffff00

we see that the destination address in the routing table is the other end of the point-to-
point link (the router netb) and the gateway address is really the local IP address of the
outgoing interface (140.252.1.29). (We said earlier that the gateway address printed by
netstat for a direct route is the local IP address of the interface to use.)

The default entry is an indirect route (G flag) to a network (no H flag), as we expect.
The gateway address is the address of the router (140.252.1.183, the other end of the
SLIP link) and not the local IP address of the SLIP link (140.252.1.29). Again, this is
because it is an indirect route, not a direct route.

We should also note that the third and fourth lines output by netstat (the ones
with an interface of sl0) are created by the SLIP software being used when the SLIP
line is brought up, and deleted when the SLIP link is brought down.

No Route to Destination

All our examples so far have assumed that the search of the routing table finds a match,
even if the match is the default route. What if there is no default route, and a match
isn’t found for a given destination?

The answer depends on whether the IP datagram being routed was generated on
the host or is being forwarded (e.g., we’re acting as a router). If the datagram was gen-
erated on this host, an error is returned to the application that sent the datagram, either
"host unreachable" or "network unreachable." If the datagram was being forwarded,
an tCMP host unreachable error is sent back to original sender. We examine this error in
the following section.

9.3 ICMP Host and Network Unreachable Errors

The ICMP "host unreachable" error message is sent by a router when it receives an IP
datagram that it cannot deliver or forward. (Figure 6.10 shows the format of the ICMP

118 IP Routing Chapter 9

unreachable messages.) We can see this easily on our network by taking down the
dialup SLIP link on the router sun, and trying to send a packet through the SLIP link
from any of the other hosts that specify sun as the default router.

Older lmplementat~ons of the BSD TCP/IP software generated either a host unreachable, or a
network unreachable, depending on whether the destination was on a local subnet or not.
4.4BSD generates only the host unreachable

Recall from the netstat output for the router sun shown in the previous section
that the routing table entries that use the SLIP link are added when the SLIP link is
brought up, and deleted when the SLIP link is brought down. This means that when
the SLIP link is down, there is no default route on sun. But we don’t try to change all
the other host’s routing tables on our small network, having them also remove their
default route. Instead we count on the ICMP host unreachable generated by sun for
any packets that it gets that it carmot forward.

We can see this by running ping on svr4, for a host on the other side of the dialup
SLIP link (which is down):

svr4 % ping gemini
ICMP Host Unreachable from gateway sun (140.252.13.33)
ICMP Host Unreachable from gateway sun (140.252.13.33)
^? typemterruptk~ tostop

Figure 9.2 shows the tcpdump output for this example, run on the host bsdi.

1 0.0
2 0.00 (0.00)

3 0.99 (0.99)
4 0.99 (0.00)

svr4 > gemlnz: lcmp: echo request
sun > svr4: zcmp: host gemini unreachable

svr4 > gemlnz: zcmp: echo request
sun > svr4: icmp: host gemlni unreachable

Figure 9.2 ICMP host unreachable ~n response to ping.

When the router sun finds no route to the host gemini, it responds to the echo request
with a host unreachable.

if we bring the SLIP link to the Internet up, and try to ping an IP address that is not
connected to the Intemet, we expect an error. What is interesting is to see how far the
packet gets into the Internet, before the error is returned:

sun % ping ~92.82.148.1 th~slPaddress~snotconnectedtothelnternet
PING 192.82.148.1: 56 data bytes
ICMP Host Unreachable from gateway enss142.UT.westnet.net (192.31.39.21)

for icmp from sun (140.252.1.29) to 192.82.148.1

Looking at Figure 8.5 (p. 103) we see that the packet made it through six reuters before
detecting that the IP address was invalid. Only when it got to the border of the
NSFNET backbone was the error detected. This implies that the six reuters that for-
warded the packet were doing so because of default entries, and only when it reached
the NSFNET backbone did a router have complete knowledge of every network con-
nected to the Internet. This ~llustrates that many reuters can operate with just partial
ta~owledge of the big picture.

Section 9.5 ICMP Redirect Errors 119

[Ford, Rekhter, and Braun 1993] define a top-level routing domain as one that main-
tains routing information to most Internet sites and does not use default routes. They
note that five of these top-level routing domains exist on the Internet: the NSFNET
backbone, the Commercial Internet Exchange (CIX), the NASA Science Internet (NSI),
SprintLink, and the European IP Backbone (EBONE).

9.4 To Forward or Not to Forward

We’ve mentioned a few times that hosts are not supposed to forward IP datagrams
unless they have been specifically configured as a rot~ter~ How is this configuration
done?

Most Berkeley-derived implementations have a kernel variable named
±pforwardJ_ng, or some similar name. (See Appendix E.) Some systems (BSD/386
and SVR4, for example) only forward datagrams if this variable is nonzero. SunOS 4.1.x
allows three values for the variable: -1 means never forward and never change the
value of the variable, 0 means don’t forward by default but set this variable to 1 when
two or more interfaces are up, and 1 means always forward. Solaris 2.x changes the
three values to be 0 (never forward), 1 (always forward), and 2 (only forward when two
or more interfaces are up).

Older 4.2BSD hosts forwarded datagrams by default, which caused lots of problems
for systems configured improperly. That’s why this kernel option must always default
to "never forward" unless the system administrator specifically enables forwarding.

9.5 ICMP Redirect Errors

The ICMP redirect error is sent by a router to the sender of an IP datagram when the
datagram should have been sent to a different router. The concept is simple, as we
show in the three steps in Figure 9.3. The only time we’ll see an ICMP redirect is when
the host has a choice of routers to send the packet to. (Recall the earlier example of this
we saw in Figure 7.6, p. 94.)

We assume that the host sends an IP datagram to R1. This routing decision is
often made because R1 is the default router for the host.

R1 receives the datagram and performs a lookup in its routing table and deter-
mines that R2 is the correct next-hop router to send the datagram to. When it
sends the datagram to R2, R1 detects that it is sending it out the same interface
on which the datagram arrived (the LAN to which the host and the two routers
are attached). This is the due to a router that a redirect can be sent to the origi-
nal sender.

R1 sends an ICMP redirect to the host, telling it to send future datagrams to that
destination to R2, instead of R1.

120 IP Routing Chapter 9

host

(1) IPdatagram -~ I ~
, ,

(3) ICMP redirect

(2) IP datagram

t R2

final destination

Figure 9.3 Example of an ICMP redirect.

A common use for redirects is to let a host with minimal routing knowledge build up a
better routing table over time. The host can start with only a default route (either R1 or
R2 from our example in Figure 9.3) and anytime this default turns out to be wrong, it’ll
be informed by that default router with a redirect, allowing the host to update its rout-
ing table accordingly. ICMP redirects allow TCP/IP hosts to be dumb when it comes to
routing, with all the intelligence in the routers. Obviously R1 and R2 in our example
have to know more about the topology of the attached networks, but all the hosts
attached to the LAN can start with a default route and learn more as they receive
redirects.

An Example

We can see ICMP redirects in action on our network (inside front cover). Although we
show only three hosts (a±x, so2Lar±s, and 9era±n±) and two touters (qateway and
herb) on the top network, there are more than 150 hosts and 10 other touters on this
network. Most of the hosts specify ga~:eway as the default router, since it provides
access to the Internet.

How is the author’s subnet (the bottom four hosts in the figure) accessed from the
hosts on the 140.252.1 subnet? First recall that if only a single host is at the end of the
SLIP link, proxy ARP is used (Section 4.6). This means nothing special is required for
hosts on the top network (140.252.1) to access the host sun (140.252.1.29). The proxy
ARP software in netb handles this.

When a network is at the other end of the SLIP link, however, routing becomes
involved. One solution is for every host and router to know that the router ne~b is the
gateway for the network 140.252.13. This could be done by either a static route in each
host’s routing table, or by running a routing daemon in each host. A simpler way (and
the method actually used) is to utilize ICMP redirects.

Section 9.5 ICMP Redirect Errors 121

Let’s run the ping program from the host solaris on the top network to the host
bsdi (140.252.13.35) on the bottom network. Since the subnet fDs are different, proxy
ARP can’t be used. Assuming a static route has not been installed, the first packet sent
will use the default route to the router gateway. Here is the routing table before we
run ping:

solarls % netstat -rn
Routing Table:

Destination Gateway Flags Ref Use Interface

127.0.0.1 127.0.0.1 UH 0 848 io0
140.252.1.0 140.252.1.32 U 3 15042 le0
224.0.0.0 140.252.1.32 U 3 0 le0
default 140.252.1.4 UG 0 5747

(The entry for 224.0.0.0 is for IP multicasting. We describe it in Chapter 12.) If we spec-
ify the -v option to ping, we’ll see any ICMP messages received by the host. We need
to specify this to see the redirect message that’s sent.

solaris % ping -sv bsdi
PING bsdi: 56 data bytes
ICMP Host redirect from gateway gateway (140.252.1.4)
to netb (140.252.1.183) for bsdl (140.252.13.35)

64 bytes from bsdl (140.252.13.35): icmp_seq=0, time=383.
64 bytes from bsdi (140.252.13.35) : icmp_seq=l, tlme=364, ms
64 bytes from bsdi (140.252.13.35): icmp_seq=2, time=353, ms
47 typeinterruptkeytostop
.... bsdi PING Statistlcs
4 packets transmitted, 3 packets received, 25% packet loss
round-trip (ms) min/avg/max = 353/366/383

Before we receive the first ping response, the host receives an ICMP redirect from the
default router gateway. If we then look at the routing table, we’ll see that the new
route to the host bsdi has been inserted. (This new entry is shown in a bolder font.)

solar~s % netstat -rn
Routing Table:

Destination Gateway Flags Ref Use Interface

127.0.0.1 127.0.0.1 UH 0 848 io0
140.252.13.35 140.252.1.183 UGHD 0 2
140.252.1.0 140.252.1.32 U 3 15045 le0
224.0.0.0 140.252.1.32 U 3 0 le0
default 140.252.1.4 UG 0 5749

This is the first time we’ve seen the D flag, which means the route was installed by an
ICMP redirect. The G flag means it’s an indirect route to a gateway (netb), and the H
flag means it’s a host route (as we expect), not a network route.

Since this is a host route, added by a host redirect, it handles only the host bsdi. If
we then access the host svr4, another redirect is generated, creating another host route.
Similarly, accessing the host slip creates another host route. The point here is that
each redirect is for a single host, causing a host route to be added. All three hosts on the
author’s subnet (bsdi, svr4, and slip) could also be handled by a single network

122 IP Routing Chapter 9

route pointing to the router sun. But ICMP redirects create host routes, not network
routes, because the router generating the redirect in this example (gateway) has no
knowledge of the subnet structure on the 140.252.13 network.

More Details

Figure 9.4 shows the format of the ICMP redirect message.

0 7 8 15 16

type (5) code (0-3) checksum

router IP address that should be used

IP header (including options) + first 8 bytes of original [P datagram data

31

8 bytes

Figure 9.4 ICMP redirect message.

There are four different redirect messages, with different code values, as shown in Fig-
ure 9.5.

Description

redirect for network
redirect for host
redirect for type-of-service and network
redirect for type-of-service and host

Figure 9.5 Different code values for ICMP redirect.

There are three IP addresses that the receiver of an ICMP redirect must look at: (1)
the IP address that caused the redirect (which is in the IP header returned as the data
portion of the ICMP redirect), (2) the IP address of the router that sent the redirect
(which is the source IP address of the IP datagram containing the redirect), and (3) the
IP address of the router that should be used (which is in bytes 4-7 of the ICMP
message).

There are numerous rules about ICMP redirects. First, redirects are generated only
by routers, not by hosts. Also, redirects are intended to be used by hosts, not routers. It
is assumed that routers participate in a routing protocol with other routers, and the
routing protocol should obviate the need for redirects. (This means that in Figure 9.1
the routing table should be updated by either a routing daemon or redirects, but not by
both.)

Section 9.6 ICMP Router Discovery Messages 123

4.4BSD, when acting as a router, performs the following checks, all of which must
be true before an ICMP redirect is generated.

1. The outgoing interface must equal the incoming interface.

2. The route being used for the outgoing datagram must not have been created or
modified by an ICMP redirect, and must not be the router’s default route.

3. The datagram must not be source routed.

4. The kernel must be configured to send redirects.

The kernel variable is named ±p_sendred±rects, or something similar. (See Appen-
dix E.) Most current systems (4.4BSD, SunOS 4.1.x, Solaris 2.x, and AIX 3.2 2, for exam-
ple) enable th~s variable by default. Other systems such as SVR4 disable it by default.

Additionally, a 4.4BSD host that receives an ICMP redirect performs some checks before
modifying its routing table. These are to prevent a misbehaving router or host, or a
malicious user, from incorrectly modifying a system’s routing table.

1. The new router must be on a directly connected network.

2. The redirect must be from the current router for that destination.

3. The redirect cannot tell the host to use itself as the router.

4. The route that’s being modified must be an indirect route.

Our final point about redirects is that routers should send only host redirects (codes
1 or 3 from Figure 9.5) and not network redirects. Subnetting makes it hard to specify
exactly when a network redirect can be sent instead of a host redirect. Some hosts treat
a received network redirect as a host redirect, in case a router sends the wrong type.

9.6 ICMP Router Discovery Messages

We mentioned earlier in this chapter that one way to initialize a routing table is with
static routes specified in configuration files. This is often used to set a default entry. A
newer way is to use the ICMP router advertisement and solicitation messages.

The general concept is that after bootstrapping, a host broadcasts or multicasts a
router solicitation message. One or more routers respond with a router advertisement
message. Additionally, the touters periodically broadcast or multicast their router
advertisements, allowing any hosts that are listening to update their routing table
accordingly.

RFC 1256 [Deering 1991] specifies the format of these two ICMP messages. Fig-
ure 9.6 shows the format of the ICMP router solicitation message. Figure 9.7 shows the
format of the ICMP router advertisement message sent by routers.

Multiple addresses can be advertised by a router in a single message. Number of
addresses is the number. Address entry size is the number of 32-bit words for each router
address, and is always 2. Lifetime is the number of seconds that the advertised
addresses can be considered valid.

124 IP Routing Chapter 9

0 15 16 31

type (10) code (0) checksum

78

Unused (sent as 0)

8 bytes

Figure 9.6 Format of ICMP router sohcitation message.

0 7 8 15 16

type (9) code (0) checksum

nmnber of address
hfetlme

addresses entry s,ze (2)

router address [1]

preference level [1]

router address [2]

preference level [2]

31

8 bytes

Figure 9.7 Format of tCMP router advertisement message.

One or more pairs of an IP address and a preference then follow. The IP address
must be one of the sending router’s IP addresses. The preference level is a signed 32-bit
integer indicating the preference of this address as a default router address, relative to
other router addresses on the same subnet. Larger values imply more preferable
addresses. The preference level 0xS0000000 means the corresponding address,
although advertised, is not to be used by the receiver as a default router address. The
default value of the preference is normally 0.

Router Operation

When a router starts up it transmits periodic advertisements on all interfaces capable of
broadcasting or multicasting. These advertisements are not exactly periodic, but are

Section 9.7 Summary 125

randomized, to reduce the probability of synchronization with other touters on the
same subnet. The normal time interval between advertisements is between 450 and 600
seconds. The default lifetime for a given advertisement is 30 minutes.

Another use of the lifetime field occurs when an interface on a router is disabled. In
that case the router can transmit a final advertisement on the interface with the lifetime
set to 0.

In addition to the periodic, unsolicited advertisements, a router also listens for solic-
itations from hosts. It responds to these solicitations with a router advertisement.

If there are multiple routers on a given subnet, it is up to the system administrator
to configure the preference level for each router as appropriate. For example, the pri-
mary default router would have a higher preference than a backup.

Host Operation

Upon bootstrap a host normally transmits three router solicitations, 3 seconds apart. As
soon as a valid advertisement is received, the solicitations stop.

A host also listens for advertisements from adjacent touters. These advertisements
can cause the host’s default router to change. Also, if an advertisement is not received
for the current default, that default can time out.

As long as the normal default router stays up, that router will send advertisements
every 10 minutes, with a lifetime of 30 minutes. This means the host’s default entry
won’t time out, even if one or two advertisements are lost.

Implementation

The router discovery messages are normally generated by and processed by a user pro-
cess (a daemon). This adds yet another program updating the routing table in Fig-
ure 9.1, although it would only add or delete a default entry. The daemon would have
to be configured to act as a router or a host.

These two ICMP messages are new and not supported by all systems. Solarls 2.x is the only
system in our network that supports these messages (the zn. rdzsc daemon) Although the
RFC recommends using IP multlcastlng whenever possible, router d~scovery can work using
broadcast messages also.

9.7 Summary

The operation of IP routing is fundamental to a system running TCP/IP, be it a host or
router. The routing table entries are simple: up to 5 flag bits, a destination IP address
(host, network, or default), a next-hop router IP address (for an indirect route) or a local
interface IP address (for a direct route), and a pointer to a local interface to use. Host
entries have priority over network entries, which have priority over default entries.

A search of this routing table is made for every IP datagram that the system gener-
ates or forwards, and can be updated by either a routing daemon or ICMP redirects. By
default a system should never forward a datagram unless it has specifically been

126 IP Routing Chapter 9

configured to do so. Static routes can be entered using the route command, and the
newer ICMP router discovery messages can be used to initialize and dynamically
update default entries. Hosts can start with a simple routing table that is updated
dynamically by ICMP redirects from its default router.

Our discussion in this chapter has focused on how a single system uses its routing
table. In the next chapter we examine how touters exchange routing information with
each other.

Exercises

9.1

9.2

9.3

9.4

Why do you think both types of ICMP redirects--network and host--exist?

In the routing table for svr4 shown at the beginning of Section 9.2, is a specihc route to the
host sZ±p (140.252.13.65) necessary? What would change if this entry were removed from
the routing table?

Consider a cable with both 4.2BSD hosts and 4.3BSD hosts. Assume the network ID is
140.1. The 4.2BSD hosts only recognize a host ID of all zero bits as the broadcast address
(140.1.0.0), while the 4.3BSD hosts normally send a broadcast using a host ID of all one bits
(140.1.255.255). Also, the 4.2BSD hosts by default will try to forward incoming datagrams,
even if they have only a single interface

Describe the events that happen when the 4.2BSD hosts receive an IP datagrarff with the
destination address of 140.1 255.255.

Continue the previous exercise, assuming someone corrects this problem by adding an
entry to the ARP cache on one system on the 140.1 subnet (using the arp command) saying
that the IP address 140.1.255.255 has a corresponding Ethernet address of all one bits (the
Ethernet broadcast). Describe what happens now.

9.5 Examine your system’s routing table and describe each entry.

10

Dynamic Routing Protocols

10.1 Introduction

Our discussion in the previous chapter dealt with static routing. The routing table
entries were created by default when an interface was configured (for directly con-
nected interfaces), added by the rout÷ command (normally from a system bootstrap
file), or created by an ICMP redirect (usually when the wrong default was used).

This is fine if the network is small, there is a single connection point to other net-
works, and there are no redundant routes (where a backup route can be used if a pri-
mary route fails). If any of these three conditions is false, dynamic routing is normally
used.

This chapter looks at the dynamic routing protocols used by routers to communi-
cate with each other. We concentrate on RIP, the Routing Information Protocol, a widely
used protocol that is provided with ahnost every TCP/IP implementation. We then
look at two newer routing protocols, OSPF and BGP. The chapter finishes with an
examination of a new routing technique, called classless interdomain routing, that is
starting to be implemented across the Internet to conserve class B network numbers.

10.2 Dynamic Routing

Dynamic routing occurs when routers talk to adjacent routers, informing each other of
what networks each router is currently connected to. The routers must communicate
using a routing protocol, of which there are many to choose from. The process on the
router that is running the routing protocol, communicating with its neighbor routers, is
usually called a routing daemon. As shown in Figure 9.t, the routing daemon updates
the kernel’s routing table with information it receives from neighbor routers.

127

128 Dynamic Routing Protocols Chapter 10

10.3

The use of dynamic routing does not change the way the kernel performs routing at
the IP layer, as we described in Section 9.2. We called this the routing mechanism. The
kernel still searches its routing table in the same way, looking for host routes, network
routes, and default routes. What changes is the information placed into the routing
table--instead of coming from route commands in bootstrap files, the routes are
added and deleted dynamically by a routing daemon, as routes change over time.

As we mentioned earlier, the routing daemon adds a routing policy to the system,
choosing which routes to place into the kernel’s routing table. If the daemon finds mul-
tiple routes to a destination, the daemon chooses (somehow) which route is best, and
which one to insert into the kernel’s table. If the daemon finds that a link has gone
down (perhaps a router crashed or a phone line is out of order), it can delete the affected
routes or add alternate routes that bypass the problem.

In a system such as the Internet, many different routing protocols are currently
used. The Internet is organized into a collection of autonomous systems (ASs), each of
which is normally administered by a single entit}: A corporation or university campus
often defines an autonomous system. The NSFNET backbone of the Internet forms an
autonomous system, because all the routers in the backbone are under a single adminis-
trative control.

Each autonomous system can select its own routing protocol to communicate
between the routers in that autonomous system. This is called an interior gateway proto-
col (IGP) or intradomain routing protocol. The most popular IGP has been the Routing
Information Protocol (RIP). A newer IGP is the Open Shortest Path First protocol (OSPF).
It is intended as a replacement for RIP. An older tGP that has fallen out of use is
HELLO--the IGP used on the original NSFNET backbone in 1986.

The new Router Reqmrements RFC [Almqulst 1993] states that a router that implements any
dynamic routing protocol must support both OSPF and RIP, and may support other IGPs

Separate routing protocols called exterior gateway protocols (EGPs) or interdomain
routing protocols are used between the routers in different autonomous systems. Histori-
cally (and confusingly) the predominant EGP has been a protocol of the same name:
EGP. A newer EGP is the Border Gateway Protocol (BGP) that is currently used
between the NSFNET backbone and some of the regional networks that attach to the
backbone. BGP is intended to replace EGP.

Unix Routing Daemons

Unix systems often run the routing daemon named routed. It is provided with almost
every implementation of TCP/IP. This program communicates using only RIP, which
we describe in the next section. It is intended for smal! to medium-size networks.

An alternative program is gated. It supports both 1GPs and EGPs. [Fedor 1988]
describes the early development of gated. Figure 10.1 compares the various routing
protocols supported by routed and two different versions of gated. Most systems
that run a routing daemon run routed, unless they need support for the other proto-
cols supported by gated.

Section 10.4 RIP: Routing Information Protocol 129

Daemon

routed

gated, Version 2
gated, Version 3

Figure 10.1

Interior Gateway Protocol
HELLO RIP OSPF

V1
¯ V1
¯ V1, V2 V2

Exterior Gateway Protocol
EGP BGP

¯ V1
¯ V2, V3

Routing protocols supported by routed and gated.

We describe RIP Version 1 in the next section, the differences with RIP Version 2 in
Section 10.5, OSPF in Section 10.6, and BGP in Section 10.7.

10.4 RIP: Routing Information Protocol

This section provides an overview of RIP, because it is the most widely used (and most
often maligned) routing protocol. The official specification for RIP is RFC 1058 [Hedrick
1988a], but this RFC was written years after the protocol was widely implemented.

Message Format

RIP messages are carried in UDP datagrams, as shown in Figure 10.2. (We talk more
about UDP in Chapter 11.)

~ IF datagram 1=

UDP datagram

UDP I RIP messageheader

8 bytes

IP
header

20 bytes

Figure 10.2 RIP message encapsulated within a UDP datagram.

Figure 10.3 shows the format of the RIP message, when used with IP addresses.
A command of 1 is a request, and 2 is a reply. There are two other obsolete com-

mands (3 and 4), and two undocumented ones: poll (5) and poll-entry (6). A request
asks the other system to send all or part of its routing table. A reply contains all or part
of the sender’s routing table.

The version is normally 1, although RIP Version 2 (Section 10.5) sets this to 2.
The next 20 bytes specify the address family (which is always 2 for IP addresses), an

IP address, and an associated metric. We’ll see later in this section that RIP metrics are
hop counts.

Up to 25 routes can be advertised in a RIP message using this 20-byte format. The
limit of 25 is to keep the total size of the RIP message, 20 x 25 + 4 = 504, less than 512
bytes. With this limit of 25 routes per message, multiple messages are often required to
send an entire routing table.

130 Dynamic Routing Protocols Chapter 10

0 7 8 15 16 31

command (1-6) version (1) (must be zero)

address family (2) (must be zero)
~

32-b~t IP address

(must be zero) 20 bytes

(must be zero) [

metric (1-16)

(up to 24 more routes, with same format as previous 20 bytes)

Figure 10.3 Format of a RIP message.

Normal Operation

Let’s look at the normal operation of routed, using RIP. The well-known port number
for RIP is UDP port 520.

Initialization. When the daemon starts it determines all the interfaces that are
up and sends a request packet out each interface, asking for the other router’s
complete routing table. On a point-to-point link this request is sent to the other
end. The request is broadcast if the network supports it. The destination UDP
port is 520 (the routing daemon on the other router).

This request packet has a command of 1 but the address family is set to 0 and the
metric is set to 16. This is a special request that asks for a complete routing table
from the other end.

¯ Request received. If the request is the special case we just mentioned, then the
entire routing table is sent to the requestor. Otherwise each entry in the request
is processed: if we have a route to the specified address, set the metric to our
value, else set the metric to 16. (A metric of 16 is a special value called "infinity"
and means we don’t have a route to that destination.) The response is returned.

¯ Response received. The response is validated and may update the routing table.
New entries can be added, existing entries can be modified, or existing entries
can be deleted.

Section 10.4 RIP: Routing Information Protocol 131

¯ Regular routing updates. Every 30 seconds, all or part of the router’s entire
routing table is sent to every neighbor router. The routing table is either broad-
cast (e.g., on an Ethernet) or sent to the other end of a point-to-point link.

¯ Triggered updates. These occur whenever the metric for a route changes. The
entire routing table need not be sent--only those entries that have changed
must be transmitted.

Each route has a timeout associated with it. If a system running RIP finds a route that
has not been updated for 3 minutes, that route’s metric is set to infinity (16) and marked
for deletion. This means we have missed six of the 30-second updates from the router
that advertised that route. The deletion of the route from the local routing table is
delayed for another 60 seconds to ensure the invalidation is propagated.

Metrics

The metrics used by RIP are hop counts. The hop count for all directly connected inter-
faces is 1. Consider the routers and networks shown in Figure 10.4. The four dashed
lines we show are broadcast RIP messages.

N2 = 1 hop_~.~ T

ends up with a route to N3 ~ ~
through R2 with hop count of 2 ~.~

~-I’~1 i= 1 hop

N1

h_op_~
N2

ends up with a route to N1
through R1 with hop count of 2

N3

Figure 10.4 Example routers and networks

Router R1 advertises a route to N2 with a hop count of 1 by sending a broadcast on N1.
(It makes no sense to advertise a route to N1 in the broadcast sent on N1.) It also adver-
tises a route to N1 with a hop count of 1 by sending a broadcast on N2. Similarly, R2
advertises a route to N2 with a metric of 1, and a route to N3 with a metric of 1.

If an adjacent router advertises a route to another network with a hop count of 1,
then our metric for that network is 2, since we have to send a packet to that router to get
to the network. In our example, the metric to N1 for R2 is 2, as is the metric to N3 for
R1.

As each router sends its routing tables to its neighbors, a route can be determined to
each network within the AS. If there are multiple paths within the AS from a router to a
network, the router selects the path with the smallest hop count and ignores the other
paths.

132 Dynamic Routing Protocols Chapter 10

The hop count is limited to 15, meaning RIP can be used only within an AS where
the maximum number of hops between hosts is 15. The special metric of 16 indicates
that no route exists to the IP address.

Problems

As simple as this sounds, there are pitfalls. First, RIP has no knowledge of subnet
addressing. If the normal 16-bit host ID of a class B address is nonzero, for example,
RIP can’t tell if the nonzero portion is a subnet ID or if the IP address is a complete host
address. Some implementations use the subnet mask of the interface through which the
RIP information arrived, which isn’t always correct.

Next, RIP takes a long time to stabilize after the failure of a router or a link. The
time is usually measured in minutes. During this settling time routing loops can occur.
There are many subtle details in the implementation of RIP that must be followed to
help prevent routing loops and to speed convergence. RFC 1058 [Hedrick 1988a] con-
tains many details on how RIP should be implemented.

The use of the hop count as the routing metric omits other variables that should be
taken into consideration. Also, a maximum of 15 for the metric limits the sizes of net-
works on which RIP can be used.

Example

We’ll use the program r±pquery, which is available from the gaged distribution, to
query some routers for their routing table, r±pquery tries to send one of the undocu-
mented requests (named "poll," a command of 5 from Figure 10.3) to the router, asking
for its entire routing table. If no response is received in 5 seconds, the standard RIP
request is issued (command of 1). (Earlier we said a request with the family set to 0 and
the metric set to 16 asks the other router for its entire routing table.)

Figure 10.5 shows the two routers that we’ll query for their routing table from the
host sun. If we execute ripquery from sun, fetching the routing information from its
next-hop router, netb, we get the following:

sun % ripquery -n netb
504 bytes from netb (140.252.1.183):

140.252.1.0, metric 1
140.252.13.0, metrlc 1

244 bytes from netb (140.252.1.183):

first message contains 504 bytes
lots of other hnes deleted
the top Ethernet in F~gure 10.5
the bottom Ethernet zn Figure 10.5
second message with remaining 244 bytes
lots of other lines deleted

As we expect, the metric for our subnet that is announced by netb is 1. Additionally,
the top Ethernet that netb is also attached to (140.252.1.0) has a metric of 1. (The -n
flag says to print the IP addresses numerically instead of trying to look up the names.)
In this example netb has been configured to consider all the hosts on the subnet
140.252.13 as directly connected to it--that is, netb knows nothing about which hosts
are actually on the 140.252.13 subnet. Since there is only one connection point to the
140.252.13 subnet, advertising different metrics for each host makes little practical sense.

Section 10.4 RIP: Routing Information Protocol 133

gateway

140.252

netb

sun

140.252.13

Figure 10.5 Two touters netb and gateway that we’ll query for their routing tables

Figure 10.6 shows the packet exchange using tcpdurap. We specify the SLIP inter-
face with the -i s 10 option.

sun % tcpdump -s600 -i slO
1 0.0 sun.2879 > netb.route: rip-poll 24

2 5.014702 (5.0147) sun.2879 > netb.route: rlp-req 24

3 5.560427 (0.5457) herb.route > sun.2879: rlp-resp 25:

4 5.710251 (0.1498) netb.route > sun.2879: rip-resp 12:

Figure 10.6 tcpdump output while running rzpquery program.

The first request issued is the RIP poll command (line 1). This times out after 5 seconds
and a normal RIP request is issued (line 2). The number 24 at the end of lines 1 and 2 is
the size of the request packets in bytes: the 4-byte RIP header (with the command and
version) followed by a single 20-byte address and metric.

Line 3 is the first reply message. The number 25 at the end indicates that 25 address
and metric pairs are in the message, which we calculated earlier to be 504 bytes. This is
what ripquery printed above. We specified the -s 600 option to tcpdurap telling it to
read 600 bytes from the network. This allows it to receive the entire UDP datagram
(instead of just the first portion of it) and it then prints the contents of the RIP response.
We’ve omitted that output.

Line 4 is the second response message from the router, with the next 12 address and
metric pairs. We can calculate the size of this message to be 12 x 20 + 4 = 244, which is
what ripquery printed earlier.

If we go one router beyond netb, to gateway, we expect the metric to our subnet
(140.252.13.0) to be 2. We can check this by executing:

134 Dynamic Routing Protocols Chapter 10

sun % ripquery -n gateway
504 bytes from gateway (140.252.1.4) :

lots of other hnes deleted
140. 252.1.0, metric 1 the top Ethernet m Figure 10.5
140. 252.13.0, metric 2 the bottom Ethernet in Figure 10.5

Here the metric for the top Ethernet in Figure 10.5 (140.252.1.0) stays at 1, since that
Ethernet is directly connected to both gateway and netb. Our subnet 140.252.13.0,
however, now has the expected metric of 2.

Another Example

We’ll now watch all the unsolicited RIP updates on an Ethernet and see just what RIP
sends on a regular basis to its neighbors. Figure 10.7 shows the arrangement of many of
the noao. edu networks. We have named the routers Rn for simplicity, where n is the
subnet number, except for the ones we use elsewhere in the text. We show the point-to-
point links with dashed lines and the IP address at each end of these links.

.81.0

192.68.189.0 .82.0

.105.1\ /.106.1

.51.0
1.3

.57.0

.55.0

Internet ~,~- - 21-04-"

.2.0 .3.0

.101.4

.1.0

.4.0 .6.0 .7.0 .8.0 .9.0 .10.0 .11.0

.~.183

.12.0 .13.0

Figure 10.7 Many of the noao. edu t40.252 networks.

We’ll run the Solaris 2.x program snoop, which is similar to tcpdump, on the host
solaris. We can run this program without superuser privileges, but only to capture

Section 10.4 RIP: Routing Information Protocol 135

broadcast packets, multicast packets, or packets sent to the host. Figure 10.8 shows the
packets captured during a 60-second period. We have replaced most of the official host-
names with our notation Rn.

solarls %
0.00000
4.49708
6.30506

11.68317
16.19790
16.87131
17.02187
20.68009

29.87848 R6
34.50209 R4
36.32385 R2
41.34565 R7
46.19257 R8
46.52199 R3
47.01870
50.66453

snoop -P -tr udp port 520
R6 tuc.noao.edu -> 140 252.1.255 RIP
R4 tuc.noao.edu -> 140 252.1.255 RIP
R2 tuc.noao.edu -> 140 252.1.255 RIP
R7 tuc.noao.edu -> 140 252.1.255 RIP
R8 tuc.noao.edu -> 140 252.1.255 RIP

R (i
R (i
R (i
R (i
R (i

R3 tuc.noao.edu -> 140 252.1.255 RIP R (i
gateway.tuc.noao.edu -> 140.252.1.255 RIP
Rl0.tuc.noao.edu -> BROADCAST RIP R (4

tuc.noao.edu -> 140 252.1.255 RIP
tuc.noao.edu -> 140
tuc.noao.edu -> 140
tuc.noao.edu -> 140
tuc.noao.edu -> 140

R (i
252.1.255 RIP R (i
252.1.255 RIP R (i
252.1.255 RIP R (i
252.1.255 RIP R (i

tuc.noao.edu -> 140 252.1.255 RIP R (I
gateway.tuc.noao.edu -> 140.252.1.255 RIP
Rl0.tuc.noao.edu -> BROADCAST RIP R (4

destinations
destinatlons
destinations
destinations
destinations
destinations
R (15 destinations)
destinatKons)

destinations)
destlnations)
destinations)
destlnatlons)
destinations)
destinations)
R (15 destinations)
destinations)

Figure 10.8 RIP broadcasts captured at solar~s over a 60-second period.

The -P flag captures packets in nonpromiscuous mode, -tr prints the relative time-
stamps, and udp port 520 captures only UDP datagrams with a source or destination
port of 520.

The first six packets, from R6, R4, R2, R7, R8, and R3, each advertise just one net-
work. If we looked at the packets we would see that R6 advertises a route to 140.252.6.0
with a hop count of 1, R4 advertises a route to 140.252.4.0 with a hop count of 1, and so
on.

The router gateway, however, advertises 15 routes. We can run snoop with the -v
flag and see the entire contents of the RIP message. (This flag outputs the entire con-
tents of the entire packet: the Ethernet header, the IP header, the UDP header, and the
RIP message. We’ve deleted everything except the RIP information.) Figure 10.9 shows
the output.

Compare these advertised hop counts on the 140.252.1 network with the topology
shown in Figure 10.7.

A puzzle in the output in Figure 10.8 is why R10 is advertising four networks when
Figure 10.7 shows only three. If we look at the RIP packet with snoop we see the fol-
lowing advertised routes:

RIP: Address Metric
RIP: 140.251.0.0 16 (not reachable)
RIP: 140.252.9.0 1
RIP: 140.252.10.0 1
RIP: 140.252.11.0 1

The route to the class B network 140.251 is bogus and should not be advertised. (It
belongs to another institution, not noao. edu.)

136 Dynamic Routing Protocols Chapter 10

solaris % snoop -P -v -tr udp port

RIP: Opcode = 2 (route response)
RIP: Version = 1

RIP: Address Metric

RIP: 140.252.101.0 I
RIP: 140.252.104.0 1

RIP: 140.252.51.0 2
RIP: 140.252.81.0 2
RIP: 140.252.105.0 2
RIP: 140.252.106.0 2

RIP:
RIP:
RIP:
RIP:
RIP:
RIP:
RIP:
RIP:

140 252.52.0
140 252.53.0
140 252.54.0
140 252.55.0
140 252.58.0
140 252.60.0
140 252.82.0
192 68.189.0

3
3
3
3
3
3
3
3

RIP: 140.252.57.0 4

Figure 10.9

520 host gateway
manyhnesdeleted

RIP response from gateway.

The notation "BROADCAST" output by snoop in Figure 10.8 for the RIP packet
sent by R10 means the destination IP address is the limited broadcast address
255.255.255.255 (Section 12.2), instead of the subnet-directed broadcast address
(140.252.1.255) that the other routers use.

10.5 RIP Version 2

RFC 1388 [Malkin 1993a] defines newer extensions to RIP, and the result is normally
called RIP-2. These extensions don’t change the protocol, but pass additional informa-
tion in the fields labeled "must be zero" in Figure 10.3. RIP and RIP-2 can interoperate
if RIP ignores the fields that must be zero.

Figure 10.10 is a redo of that figure, as defined by RIP-2. The version is 2 for RIP-2.
The routing domain is an identifier of the routing daemon to which this packet

belongs. In a Unix implementation this could be the daemon’s process ID. This field
allows an administrator to run multiple instances of RIP on a single router, each operat-
ing within one routing domain.

The route tag exists to support exterior gateway protocols. It carries an autonomous
system number for EGP and BGP.

The subnet mask for each entry applies to the corresponding IP address. The next-hop
IP address is where packets to the corresponding destination IP address should be sent.
A value of 0 in this field means packets to the destination should be sent to the system
sending the RIP message.

OSPF: Open Shortest Path First 137Section 10.6

command (1-6)

78

version (2)

15 16 31

routing domain

address family (2) route tag

32-bit IP address

32-bit subnet mask

32-bit next-hop IP address

metric (1-16)

(up to 24 more routes, with same format as previous 20 bytes)

20 bytes

Figure 10.10 Format of a RIP-2 message.

A simple authentication scheme is provided with RIP-2. The first 20-byte entry in a
RIP message can specify an address family of 0xff£f, with a route tag value of 2. The
remaining 16 bytes of the entry contain a cleartext password.

Finally, RIP-2 supports multicasting in addition to broadcasting (Chapter 12). This
can reduce the load on hosts that are not listening for RIP-2 messages.

10.6 OSPF: Open Shortest Path First

OSPF is a newer alternative to RIP as an interior gateway protocol. It overcomes all the
limitations of RIP. OSPF Version 2 is described in RFC 1247 [Moy 19911.

OSPF is a link-state protocol, as opposed to RIP, which is a distance-vector protocol.
The term distance-vector means the messages sent by RIP contain a vector of distances
(hop counts). Each router updates its routing table based on the vector of these dis-
tances that it receives from its neighbors.

In a link-state protocol a router does not exchange distances with its neighbors.
Instead each router actively tests the status of its link to each of its neighbors, sends this
information to its other neighbors, which then propagate it throughout the autonomous
system. Each router takes this link-state information and builds a complete routing
table.

188 Dynamic Routing Protocols Chapter 10

From a practical perspective, the important difference is that a link-state protocol
will always converge faster than a distance-vector protocol. By converge we mean stabi-
lizing after something changes, such as a router going down or a link going down. Sec-
tion 9.3 of [Perlman 1992] compares other issues between the two types of routing
protocols.

OSPF is different from RIP (and many other routing protocols) in that OSPF uses IP
directly. That is, it does not use UDP or TCP. OSPF has its own value for the protocol
field in the IP header (Figure 3.1).

Besides being a link-state protocol instead of a distance-vector protocol, OSPF has
many other features that make it superior to RIP.

OSPF can calculate a separate set of routes tor each IP type-of-service (Fig-
ure 3.2). This means that for any destination there can be multiple routing table
entries, one for each IP type-of-service.

Each interface is assigned a dimensionless cost. This can be assigned based on
throughput, round-trip time, reliability, or whatever. A separate cost can be
assigned for each IP type-of-service.

When several equal-cost routes to a destination exist, OSPF distributes traffic
equally among the routes. This is called load balancing.

OSPF supports subnets: a subnet mask is associated with each advertised route.
This allows a single IP address of any class to be broken into multiple subnets of
various sizes. (We showed an example of this in Section 3.7 and called it
variable-length subnets.) Routes to a host are advertised with a subnet mask of all
one bits. A default route is advertised as an IP address of 0.0.0.0 with a mask of
all zero bits.

5. Point-to-point links between routers do not need an IP address at each end.
These are called unnumbered networks. This can save IP addresses--a scarce
resource these days!

6. A simple authentication scheme can be used. A cleartext password can be spec-
ified, similar to the RIP-2 scheme (Section 10.5).

7. OSPF uses multicasting (Chapter 12), instead of broadcasting, to reduce the load
on systems not participating in OSPE

With most router vendors supporting OSPF, it will start replacing RIP in many net-
works.

10.7 BGP: Border Gateway Protocol

BGP is an exterior gateway protocol for communication between routers in different
autonomous systems. BGP is a replacement for the older EGP that was used on the
ARPANET. BGP Version 3 is defined in RFC 1267 [Lougheed and Rekhter 1991].

Section 10.7 BGP: Border Gateway Protocol 139

RFC 1268 [Rekhter and Gross 1991] describes the use of BGP in the Internet. Much
of the following description comes from these two RFCs. Also, during 1993 BGP
Version 4 was under development (see RFC 1467 [Topolcic 1993]) to support CIDR,
which we describe in Section 10.8.

A BGP system exchanges network reachability information with other BGP systems.
This information includes the full path of autonomous systems that traffic must transit
to reach these networks. This information is adequate to construct a graph of AS con-
nectivity. Routing loops can then be pruned from this graph and routing policy deci-
sions can be enforced.

We first categorize an IP datagram in an AS as either local traf~’c or transit traffic.
Local traffic in an AS either originates or terminates in that AS. That is, either the
source IP address or the destination IP address identifies a host in that AS. Anything
else is called transit traffic. A major goal of BGP usage in the Internet is to reduce tran-
sit traffic.

An AS can be categorized as one of the following:

A stub AS has only a single connection to one other AS. A stub AS carries only
local traffic.

A multihomed AS has connections to more than one other AS, but refuses to carry
transit traffic.

A transit AS has connections to more than one other AS and is designed, under
certain policy restrictions, to carry both local and transit traffic.

The overall topology of the Internet is then viewed as an arbitrary interconnection of
transit, multihomed, and stub ASs. Stub and multihomed ASs need not use BGP--they
can run EGP to exchange teachability information with transit ASs.

BGP allows for policy-based routing. Policies are determined by the AS administrator
and specified to BGP in configuration files. Policy decisions are not part of the protocol,
but policy specifications allow a BGP implementation to choose between pates when
multiple alternatives exist and to control the redistribution of information. Routing
policies are related to political, security, or economic considerations.

BGP is different from RIP and OSPF in that BGP uses TCP as its transport protocol.
Two systems running BGP establish a TCP connection between themselves and then
exchange the entire BGP routing table. From that point on, incremental updates are sent
as the routing table changes.

BGP is a distance vector protocol, but unlike RIP (which announces hops to a desti-
nation), BGP enumerates the route to each destination (the sequence of AS numbers to
the destination). This removes some of the problems associated with distance-vector
protocols. An AS is identified by a 16-bit number.

BGP detects the failure of either the link or the host on the other end of the TCP con-
nection by sending a keepalive message to its neighbor on a regular basis. The recom-
mended time between these messages is 30 seconds. This application-level keepalive
message is independent of the TCP keepalive option (Chapter 23).

140 Dynamic Routing Protocols Chapter 10

10.8 CIDR: Classless Interdomain Routing

In Chapter 3 we said there is a shortage of class B addresses, requiring sites with multi-
ple networks to now obtain multiple class C network IDs, instead of a single class B net-
work ID. Although the allocation of these class C addresses solves one problem
(running out of class B addresses) it introduces another problem: every class C network
requires a routing table entry. Classless Interdomain Routing (CIDR) is a way to prevent
this explosion in the size of the Internet routing tables. It is also called supernetting and
is described in RFC 1518 [Rekhter and Li 1993] and RFC 1519 [Fuller et al. 1993], with a
overview in [Ford, Rekhter, and Brauxz 1993]. CIDR has the Internet Architecture
Board’s blessing [Huitema 1993]. RFC 1467 [Topolcic 1993] summarizes the state of
deployment of CIDR in the Internet.

The basic concept in CIDR is to allocate multiple IP addresses in a way that allows
summarization into a smaller number of routing table entries. For example, if a single
site is allocated 16 class C addresses, and those 16 are allocated so that they can be sum-
marized, then all 16 can be referenced through a single routing table entry on the Inter-
net. Also, if eight different sites are connected to the same Internet service provider
through the same connection point into the Internet, and if the eight sites are allocated
eight different IP addresses that can be summarized, then only a single routing table
entry need be used on the Internet for all eight sites.

Three features are needed to allow this summarization to take place.

1. Multiple IP addresses to be summarized together for routing must share the
same high-order bits of their addresses.

2. The routing tables and routing algorithms must be extended to base their rout-
ing decisions on a 32-bit IP address and a 32-bit mask.

3. The routing protocols being used must be extended to carry the 32-bit mask in
addition to the 32-bit address. OSPF (Section 10.6) and RIP-2 (Section 10.5) are
both capable of carrying the 32-bit mask, as is the proposed BGP Version 4.

As an example, RFC 1466 [Gerich 1993] recommends that new class C addresses in
Europe be in the range 194.0.0.0 through 195.255.255.255. In hexadecimal these
addresses are from 0xc2000000 through 0xc3ffff~f. This represents 131,072 differ-
ent class C network IDs, but they all share the same high-order 7 bits. In countries other
than Europe a single routing table entry with an IP address of 0xc2 0 0 0 0 0 0 and a 32-bit
mask of 0xfe000000 (254.0.0.0) could be used to route all of these 65536 class C net-
work IDs to a single point. Subsequent bits of the class C address (that is, the bits fol-
lowing 194 or 195) can also be allocated hierarchically, perhaps by country or by service
provider, to allow additional summarization within the European touters using addi-
tional bits beyond the 7 high-order bits of the 32-bit mask.

CIDR also uses a technique whereby the best match is always the one with the
longest match: the one with the greatest number of one bits in the 32-bit mask. Continu-
ing the example from the previous paragraph, perhaps one service provider in Europe
needs to use a different entry point router than the rest of Europe. If that provider has
been allocated the block of addresses 194.0.!6.0 through 194.0.31.255 (16 class C network

Chapter 10 Exercises 141

tDs), rotating table entries for just those networks would have an IP address of 194.0.16.0
and a mask of 255.255.240.0 (0xfffff000). A datagram being routed to the address
194.0.22.1 would match both this routing table entry and the one for the rest of the Euro-
pean class C networks. But since the mask 255.255.240 is "longer" than the mask
254.0.0.0, the routing table entry with the longer mask is used.

The term "classless" is because routing decisions are now made based on masking
operations of the entire 32-bit IP address. Whether the IP address is class A, B, or C
makes no difference.

The initial deployment of CIDR is proposed for new class C addresses. Making just
this change will slow down the growth of the Internet routing tables, but does nothing
for all the existing routes. This is the short-term solution. As a long-term solution, if
CIDR were applied to all IP addresses, and if existing IP addresses were reallocated
(and all existing hosts renumbered!) according to continental boundaries and service
providers, [Ford, Rekhter, and Braun 1993] claim that the current routing table consist-
ing of 10,000 network entries could be reduced to 200 entries.

10.9 Summary

There are two basic types of routing protocols: interior gateway protocols (IGPs), for
routers within an autonomous system, and exterior gateway protocols (EGPs), for
routers to communicate with touters in other autonomous systems.

The most popular IGP is the Routing Information Protocol (RIP) with OSPF being a
newer IGP that is gaining widespread use. A new and popular EGP is the Border Gate-
way Protocol (BGP). In this chapter we looked at RIP and the types of messages that it
exchanges. RIP Version 2 is a recent enhancement that supports subnetting and other
minor improvements. We also described OSPF, BGP, and classless interdomain routing
(CIDR), a newer technique being deployed to reduce the size of the Internet routing
tables.

There are a two other OSI routing protocols that you may encounter. Interdomain
Routing Protocol (IDRP) started out as a version of BGP modified for use with OSI
addresses instead of IP. Intermediate System to Intermediate System Protocol (IS-IS) is the
OSI standard IGP. It is used for routing CLNP (Connectionless Network Protocol), an
OSI protocol similar to IP. IS-IS and OSPF are similar.

Dynamic routing is still a fertile area of internetworking research. The choice of
which routing protocol to use, and which routing daemon to run, is complex. [Perlman
1992] provides many of the details.

Exercises

10.1

10.2

In Figure 10.9 which of the routes came to gateway from the router kpno?

Assume a router has 30 routes to advertise using RIP, requiring one datagram with 25
routes and another with the remaining 5. What happens if once an hour the first datagram
with 25 routes is lost?

142 Dynamic Routing Protocols Chapter 10

10.3 The OSPF packet format has a checksum field, but the RIP packet does not. Why?

10.4 What effect does load balancing, as done by OSPF, have on a transport layer?

10.5 Read RFC 1058 for additional details on the implementation of RIP. In Figure 10.8 each
router advertises only the routes that it provides, and none of the other routes that it
learned about through the other router’s broadcasts on the 140.252.1 network. What is this
technique called?

10.6 In Section 3.4 we said there are more than 100 hosts on the 140.252.1 subnet in addition to
the eight routers we show in Figure 10.7. What do these 100 hosts do with the eight broad-
casts that arrive every 30 seconds (Figure 10.8)?

11

UDP: User Datagram Protocol

11.1 Introduction

UDP is a simple, datagram-oriented, transport layer protocol: each output operation by
a process produces exactly one UDP datagram, which causes one IP datagram to be
sent. This is different from a stream-oriented protocol such as TCP where the amount of
data written by an application may have little relationship to what actually gets sent in
a single IP datagram.

Figure 11.1 shows the encapsulation of a UDP datagram as an IP datagram.

IP datagram ~

~ UDP datagram ~

IP UDP
header header

20 bytes 8 bytes

UDP data

Figure 11.1 UDP encapsulation.

RFC 768 [Postel 1980] is the official specification of UDP.
UDP provides no reliability: it sends the datagrams that the application writes to

the IP layer, but there is no guarantee that they ever reach their destination. Given this
lack of reliability, we are tempted to think we should avoid UDP and always use a reli-
able protocol such as TCP. After we describe TCP in Chapter 17 we’ll return to this
topic and see what types of applications can utilize UDP.

143

144 UDP: User Datagram Protocol Chapter 11

The application needs to worry about the size of the resulting IP datagram. If it
exceeds the network’s MTU (Section 2.8), the IP datagram is fragmented. This applies
to each network that the datagram traverses from the source to the destination, not just
the first network connected to the sending host. (We defined this as the path MTU in
Section 2.9.) We examine IP fragmentation in Section 11.5.

11.2 UDP Header

Figure 11.2 shows the fields in the UDP header.

0 15 16

16-bit source port number 16-bit destination port number

16-bit UDP length 16-bit UDP checksum

data (if any)

31

8 bytes

Figure 11.2 UDP header.

The port numbers identify the sending process and the receiving process. In Figure 1.8
we showed that TCP and UDP use the destination port number to demultiplex incom-
ing data from IP. Since IP has already demultiplexed the incoming IP datagram to
either TCP or UDP (based on the protocol value in the IP header), this means the TCP
port numbers are looked at by TCP, and the UDP port numbers by UDP. The TCP port
numbers are independent of the UDP port numbers.

Despite this independence, if a well-known service is prowded by both TCP and UDP, the port
number is normally chosen to be the same for both transport layers. This is purely for conve-
nience and is not required by the protocols.

The UDP length field is the length of the UDP header and the UDP data in bytes.
The minimum value for this field is 8 bytes. (Sending a UDP datagram with 0 bytes of
data is OK.) This UDP length is redundant. The IP datagram contains its total length in
bytes (Figure 3.1), so the length of the UDP datagram is this total length minus the
length of the IP header (which is specified by the header length field in Figure 3.1).

11.3 UDP Checksum

The UDP checksum covers the UDP header and the UDP data. Recall that the checksum
in the IP header only covers the IP header--it does not cover any data in the IP

Section 11.3 UDP Checksum 145

datagram. Both UDP and TCP have checksums in their headers to cover their header
and their data. With UDP the checksum is optional, while with TCP it is mandatory.

Although the basics for calculating the UDP checksum are similar to what we
described in Section 3.2 for the IP header checksum (the ones complement sum of 16-bit
words), there are differences. First, the length of the UDP datagram can be an odd num-
ber of bytes, while the checksum algorithm adds 16-bit words. The solution is to
append a pad byte of 0 to the end, if necessary, just for the checksum computation.
(That is, this possible pad byte is not transmitted.)

Next, both UDP and TCP include a 12-byte pseudo-header with the UDP datagram
(or TCP segment) just for the checksum computation. This pseudo-header includes cer-
tain fields from the IP header. The purpose is to let UDP double-check that the data has
arrived at the correct destination (i.e., that IP has not accepted a datagram that is not
addressed to this host, and that IP has not given UDP a datagram that is for another
upper layer). Figure 11.3 shows the pseudo-header along with a UDP datagram.

15 16

32-bit source IP address

32-bit destination IP address

zero 8-bit protocol (17)

16-bit source port number

16-bit UDP length

16-bit UDP length

16-bit destination port number

16-bit UDP checksum

data

31

UDP

header

IUDP
header

pad byte (0)

Figure 11.3 Fields used for computation of UDP checksum.

In this figure we explicitly show a datagram with an odd length, requiring a pad byte
for the checksum computation. Notice that the length of the UDP datagram appears
twice in the checksum computation.

If the calculated checksum is 0, it is stored as all one bits (65535), which is equiva-
lent in ones-complement arithmetic. If the transmitted checksum is 0, it indicates that
the sender did not compute the checksum.

146 UDP: User Datagram Protocol Chapter 11

If the sender did compute a checksum and the receiver detects a checksum error, the
UDP datagram is silently discarded. No error message is generated. (This is what hap-
pens if an IP header checksum error is detected by IP.)

This UDP checksum is an end-to-end checksum. It is calculated by the sender, and
then verified by the receiver. It is designed to catch any modification of the UDP header
or data anywhere between the sender and receiver.

Despite UDP checksums being optional, they should always be enabled. During the
1980s some computer vendors turned off UDP checksums by default, to speed up their
implementation of Sun’s Network File System (NFS), which uses UDPo While this might
be acceptable on a single LAN, where the cyclic redundancy check on the data-link
frame (e.g., Ethernet or token ring flame) can detect most corruption of the frame, when
the datagrams pass through routers, all bets are off. Believe it or not, there have been
routers with software and hardware bugs that have modified bits in the datagrams
being routed. These errors are undetectable in a UDP datagram if the end-to-end UDP
checksum is disabled. Also realize that some data-link protocols (e.g., SLIP) don’t have
any form of data-link checksum.

The Host Requirements RFC requires that UDP checksums be enabled by default. It also states
that an implementation must verify a received checksum if the sender calculated one (i.e., the
received checksum is nonzero). Many implementations violate this, however, and only verify
a received checksum if outgoing checksums are enabled,

t cpdump Output

It is hard to detect whether a particular system has UDP checksums enabled. It is nor-
mally impossible for an application to obtain the checksum field in a received UDP
header. To get around this, the author added another option to the Lcpdump program
that prints the received UDP checksum. If this printed value is 0, it means the sending
host did not calculate the checksum.

Figure 11.4 shows the output to and from three different systems on our test net-
work (see the figure on the inside front cover). We ran our sock program (Appen-
dix C), sending a single UDP datagram with 9 bytes of data to the standard echo server.

1 0.0 sun.1900 > gemini.echo: udp 9 (UDP cksum=6e90)
2 0.303755 (0.3038) gemini.echo > sun.1900: udp 9 (UDP cksum=0)

3 17.392480 (17.0887) sun.1904 > alx.echo: udp 9 (UDP cksum=6e3b)
4 17.614371 (0.2219) aix.echo > sun.1904: udp 9 (UDP cksum=6e3b)

5 32.092454 (14.4781) sun.1907 > solarzs.echo: udp 9 (UDP cksum=6e74)
6 32.314378 (0.2219) solaris.echo > sun.1907: udp 9 (UDP cksum=6e74)

Figure 11.4 t cpdump output to see whether other hosts enable UDP checksum.

We can see from this that two of the three systems have UDP checksums enabled.
Also notice that for this simple example the outgoing datagram has the same check-

sum as the incoming datagram (lines 3 and 4, 5 and 6). Looking at Figure 11.3 we see
that the two IP addresses are swapped, as are the two port numbers. The other fields in
the pseudo-header and the UDP header are the same, as is the data being echoed. This

Section 11.4 A Simple Example 147

reiterates that the UDP checksums (indeed, all the checksums in the TCP/IP protocol
suite) are simple 16-bit sums. They cannot detect an error that swaps two of the 16-bit
values.

The author also directed a DNS query at each of the eight root name servers described in Sec-
tion 14.2. The DNS uses UDP primarily, and only two of the eight had UDP checksums
enabled!

Some Statistics

[Mogul 1992] provides counts of various checksum errors on a busy NFS (Network File
System) server that had been up for 40 days. Figure 11.5 summarizes these numbers.

Number of Approximate totalLayer checksum errors number of packets

Ethernet 446 170,000,000
IP 14 170,000,000
UDP 5 140,000,000
TCP 350 30,000,000

Figure 11.5 Counts of corrupted packets detected by various checksums.

The final column is only the approximate total for each row, since other protocols are in
use at the Ethernet and IP layers. For example, not all the Ethernet frames are IP data-
grams, since minimally ARP is also used on an Ethernet. Not all IP datagrams are UDP
or TCP, since ICMP also uses IP.

Note the much higher percentage of TCP checksum errors compared to UDP check-
sum errors. This is probably because the TCP connections on this system tended to be
"long distance" (traversing many routers, bridges, etc.) while the UDP traffic was local.

The bottom line is not to trust the data-link (e.g., Ethernet, token ring, etc.) CRC
completely. You should enable the end-to-end checksums all the time. Also, if your
data is valuable, you might not want to trust either the UDP or the TCP checksum com-
pletely, since these are simple checksums and were not meant to catch all possible
errors.

11.4 A Simple Example

We’ll use our sock program to generate some UDP datagrams that we can watch with
tcpdump:

bsdi % sock -v -u -i -n4 svr4 discard
connected on 140.252.13.35.1108 to 140.252.13.34.9

bsdi % sock -v -u -i -n4 -wO svr4 discard
connected on 140.252.13.35.1110 to 140.252.13.34.9

The first time we execute the program we specify the verbose mode (-v) to see the
ephemeral port numbers, specify UDP (-u) instead of the default TCP, and use the

148 UDP: User Datagram Protocol Chapter 11

source mode (-±) to send data instead of trying to read and write standard input and
output. The -n4 option says to output 4 datagrams (instead of the default 1024) and the
destination host is svr4. We described the discard service in Section 1.12. We use the
default output size of 1024 bytes per write.

The second time we run the program we specify -w0, causing 0-length datagrams
to be written. Figure 11.6 shows the tcpdump output for both commands.

1
2
3
4

0.0
0.002424 (0.0024)
0.006210 (0.0038)
0.010276 (0.0041)

bsdl.ll08 > svr4.dlscard: udp 1024
bsdi.ll08 > svr4.discard: udp 1024
bsdi.ll08 > svr4.discard: udp 1024
bsdl.ll08 > .svr4.discard: udp 1024

5
6
7
8

41.720114 (41.7098)
41.721072 (0.0010)
41.722094 (0.0010)
41.723070 (0.0010)

bsdl.lllO > svr4.dlscard: udp 0
bsdl.lllO > svr4.dlscard: udp 0
bsdi.lllO > svr4.discard: udp 0
bsd~.lllO > svr4.dlscard: udp 0

Figure 11.6 tcpdump output when UDP datagrams are sent in one direction.

This output shows the four 1024-byte datagrams, followed by the four 0-length data-
grams. Each datagram followed the previous by a few milliseconds. (It took 41 seconds
to type in the second command.)

There is no communication between the sender and receiver before the first data-
gram is sent. (We’ll see in Chapter 17 that TCP must establish a connection with the
other end before the first byte of data can be sent.) Also, there are no acknowledgments
by the receiver when the data is received. The sender, in this example, has no idea
whether the other end receives the datagrams.

Finally note that the source UDP port number changes each time the program is
run. First it is 1108 and then it is 1110. We mentioned in Section 1.9 that the ephemeral
port numbers used by clients are typically in the range 1024 through 5000, as we see
here.

11.5 IP Fragmentation

As we described in Section 2.8, the physical network layer normally imposes an upper
limit on the size of the frame that can be transmitted. Whenever the IP layer receives an
IP datagram to send, it determines which local interface the datagram is being sent on
(routing), and queries that interface to obtain its MTU. IP compares the MTU with the
datagram size and performs fragmentation, if necessary. Fragmentation can take place
either at the original sending host or at an intermediate router.

When an IP datagram is fragmented, it is not reassembled until it reaches its final
destination. (This handling of reassembly differs from some other networking protocols
that require reassembly to take place at the next hop, not at the final destination.) The
IP layer at the destination performs the reassembly. The goal is to make fragmentation
and reassembly transparent to the transport layer (TCP and UDP), which it is, except for
possible performance degradation. It is also possible for the fragment of a datagram to

Section 11.5 IP Fragmentation 149

again be fragmented (possibly more than once). The information maintained in the IP
header for fragmentation and reassembly provides enough information to do this.

Recalling the IP header (Figure 3.1, p. 34), the following fields are used in fragmen-
tation. The ident~cation field contains a unique value for each IP datagram that the
sender transmits. This number is copied into each fragment of a particular datagram.
(We now see the use for this field.) Theflags field uses one bit as the "more fragments"
bit. This bit is turned on for each fragment comprising a datagram except the final frag-
ment. The fragment offset field contains the offset (in 8-byte units) of this fragment from
the beginning of the original datagram. Also, when a datagram is fragmented the total
length field of each fragment is changed to be the size of that fragment.

Finally, one of the bits in the flags field is called the "don’t fragment" bit. If this is
turned on, IP will not fragment the datagram. Instead the datagram is thrown away
and an ICMP error ("fragmentation needed but don’t fragment bit set," Figure 6.3) is
sent to the originator. We’ll see an example of this error in the next section.

When an IP datagram is fragmented, each fragment becomes its own packet, with
its own IP header, and is routed independently of any other packets. This makes it pos-
sible for the fragments of a datagram to arrive at the final destination out of order, but
there is enough information in the IP header to allow the receiver to reassemble the
fragments correctly.

Although IP fragmentation looks transparent, there is one feature that makes it less
than desirable: if one fragment is lost the entire datagram must be retransmitted. To
understand why this happens, realize that IP itself has no timeout and
retransmission--that is the responsibility of the higher layers. (TCP performs timeout
and retransmission, UDP doesn’t. Some UDP applications perform timeout and
retransmission themselves.) When a fragment is lost that came from a TCP segment,
TCP will time out and retransmit the entire TCP segment, which corresponds to an IP
datagram. There is no way to resend only one fragment of a datagram. Indeed, if the
fragmentation was done by an intermediate router, and not the originating system,
there is no way for the originating system to know how the datagram was fragmented.
For this reason alone, fragmentation is often avoided. [Kent and Mogul 19871 provide
arguments for avoiding fragmentation.

Using UDP it is easy to generate IP fragmentation. (We’ll see later that TCP tries to
avoid fragmentation and that it is nearly impossible for an application to force TCP to
send segments large enough to require fragmentation.) We can use our sock program
and increase the size of the datagram until fragmentation occurs. On an Ethernet the
maximum amount of data in a frame is 1500 bytes (Figure 2.1), which leaves 1472 bytes
for our data, assuming 20 bytes for the IP header and 8 bytes for the UDP header. We’ll
run our sock program, with data sizes of 1471, 1472, 1473, and 1474 bytes. We expect
the last two to cause fragmentation:

bsdi % sock -u -i -nl -w1471 svr4 discard
bsdi % sock -u -i -nl -w1472 svr4 discard
bsdi % sock ~u -i -nl -w1473 svr4 discard
bsdi % sock ~u -i -nl -w1474 svr4 discard

Figure 11.7 shows the corresponding tepdump output.

150 UDP: User Datagram Protocol Chapter 11

I

2

3
4

5
6

0.0

21

5O
5O

75
75

bsdi.lll2 > svr4.discard: udp 1471

.008303 (21.0083) bsdi.lll4 > svr4.discard: udp 1472

.449704 (29.4414) bsdl.lll6 > svr4.discard: udp 1473

.450040 (0.0003) bsdl > svr4: (frag 26304:1@1480)

.328650 (24.8786) bsdi.lll8 > svr4.discard: udp 1474

.328982 (0.0003) bsdi > svr4: (frag 26313:2@1480)

Figure11.7 Watchmg ~agmentationofUDPdatagrams.

(frag 26304:1480@0+)

(frag 26313:1480@0+)

The first two UDP datagrams (lines 1 and 2) fit into Ethernet frames, and are not frag-
mented. But the length of the IP datagram corresponding to the write of 1473 bytes is
1501, which must be fragmented (lines 3 and 4). Similarly the datagram generated by
the write of 1474 bytes is 1502, and is also fragmented (lines 5 and 6).

When the IP datagram is fragmented, tcpdump prints additional information.
First, the output frag 26304 (lines 3 and 4) and frag 26313 (lines 5 and 6) specify the
value of the identification field in the IP header.

The next number in the fragmentation information, the 1480 between the colon and
the at sign in line 3, is the size, excluding the IP header. The first fragment of both data-
grams contains 1480 bytes of data: 8 bytes for the UDP header and 1472 bytes of user
data. (The 20-byte IP header makes the packet exactly 1500 bytes.) The second frag-
ment of the first datagram (line 4) contains 1 byte of data--the remaining byte of user
data. The second fragment of the second datagram (line 6) contains the remaining 2
bytes of user data.

Fragmentation requires that the data portion of the generated fragments (that is,
everything excluding the IP header) be a multiple of 8 bytes for all fragments other than
the final one. In this example, 1480 is a multiple of 8.

The number following the at sign is the offset of the data in the fragment, from the
start of the datagram. The first fragment of both datagrams starts at 0 (lines 3 and 5)
and the second fragment of both datagrams starts at byte offset 1480 (lines 4 and 6). The
plus sign following this offset that is printed for the first fragment of both datagrams
means there are more fragments comprising this datagram. This plus sign corresponds
to the "more fragments" bit in the 3-bit flags in the IP header. The purpose of this bit is
to let the receiver know when it has completed the reassembly of all the fragments for a
datagram.

Finally, notice that lines 4 and 6 (fragments other than the first) omit the protocol
(UDP) and the source and destination ports. The protocol could be printed, since it’s in
the IP header that’s copied into the fragments. The port numbers, however are in the
UDP header, which only occurs in the first fragment.

Figure 11.8 shows what’s happening with the third datagram that is sent (with 1473
bytes of user data). It reiterates that any transport layer header appears only in the first
fragment.

Also note the terminology: an IP datagram is the unit of end-to-end transmission at
the IP layer (before fragmentation and after reassembly), and a packet is the unit of data
passed between the IP layer and the link layer. A packet can be a complete IP datagram
or a fragment of an IP datagram.

Section 11o6 ICMP Unreachable Error (Fragmentation Required) 151

IP
header

20 bytes

IP
header

20 bytes

UDP
header

IP datagram ~

UDP
header

8 byte~

8 bytes 1472 bytes

UDP data (1473 bytes)

header
20 bytes I byte

packet ~ packet ~

Figure 11.8 Example of UDP fragmentation.

11.6 ICMP Unreachable Error (Fragmentation Required)

Another variation of the ICMP unreachable error occurs when a router receives a data-
gram that requires fragmentation, but the don’t fragment (DF) flag is turned on in the IP
header. This error can be used by a program that needs to determine the smallest MTU
in the path to a destination--called the path MTU discovery mechanism (Section 2.9).

Figure 11.9 shows the format of the ICMP unreachable error for this case. This dif-
fers from Figure 6.10 because bits 16-31 of the second 32-bit word can provide the MTU

15 16

type (3) code (4) checksum

of the next hop, instead of being 0.
78

Unused (must be 0) MTU of next-hop network

IP header (inc|udmg options) + first 8 bytes of original IP datagram data

31

8 bytes

Figure 11.9 ICMP unreachable error when fragmentation required but don’t fragment bit set.

If a router doesn’t provide this newer format ICMP error, the next-hop MTU is set to 0.

The new Router Requirements RFC [Almquist 1993] states that a router must generate this
newer form when originating this ICMP unreachable error.

152 UDP: User Datagram Protocol Chapter 11

Example

A problem encountered by the author involving fragmentation and this ICMP error is
trying to determine the MTU on the dialup SLIP link from the router netb to the host
sun. We kd~ow the MTU of this link from sun to netb: it’s part of the SLIP configura-
tion process when SLIP was installed in the host sun, plus we saw it with the netstat
command in Section 3.9. We want to determine the MTU in the other direction also. (In
Chapter 25 we’ll see how to determine this using SNMP.) On a point-to-point link, it is
not required that the MTU be the same in both directions.

The technique used was to run ping on the host solaris, to the host bsdi,
increasing the size of the data packets until ’fragmentation was seen on the incoming
packets. This is shown in Figure 11.10.

MTU=1500

bsd~ ~-- __

Figure 11.10

MTU=1500 MTU=1500

M’IIJ=552 MTU=~

fragment
fragment

watch with fragmentation
t cpdurap

MTU=IS00

~ solarls

1CMP echo
p±ngrequest

Systems being used to determine MTU of SLIP link from netb to sun.

tcpdump was run on the host sun, watching the SLIP link, to see when fragmentation
occurred. No fragmentation was observed and everything was fine until the size of the
data portion of the ping packet was increased from 500 to 600 bytes. The incoming
echo requests were seen (there was still no fragmentation), but the echo replies disap-
peared.

To track this down, tcpdurap was also run on bsdi, to see what it was receiving
and sending. Figure 11.11 shows the output.

1 0.0 solarls > bsdi: icmp: echo request (DF)
2 0.000000 (0.0000) bsdi > solaris: icmp: echo reply (DF)
3 0.000000 (0.0000) sun > bsdi: icmp: solaris unreachable -

need to frag, mtu = 0 (DF)

4 0.738400 (0.7384) solaris > bsdl: icmp: echo request (DF)
5 0.748800 (0.0104) bsdi > solaris: icmp: echo reply (DF)
6 0.748800 (0.0000) sun > bsdl: icmp: solar±s unreachable -

need to frag, mtu = 0 (DF)

Figure 11.11 tcpdump output for plng of bsdi from solar~s with 600-byte IP datagram.

First, the notation (DF) in each line means the don’t fragment bit is turned on in the
IP header. It turns out that Solaris 2.2 normatly turns this bit on, as part of its imple-
mentation of the path MTU discovery mechanism.

Section 11.7 Determining the Path MTU Using Traceroute153

Line 1 shows that the echo request got through the router netb to sun without
being fragmented, and with the DF bit set, so we know that the SLIP MTU of netb has
not been reached yet.

Next, notice in line 2 that the DF flag is copied into the echo reply. This is what
causes the problem. The echo reply is the same size as the echo request (just over 600
bytes), but the MTU on sun’s outgoing SLIP interface is 552. The echo reply needs to be
fragmented, but the DF flag is set. This causes sun to generate the ICMP unreachable
error back to bsdi (where it’s discarded).

This is why we never saw any echo replies on solar±s. The replies never got past
sun. Figure 11.12 shows the path of the packets.

MTU:IS00 MTU=1500

MTU :552

SLIP

MTU=I500

MTU=~

ICMP echo
request

ICMP echo
repl~ - --~-

IcMP unreachable:
frag~mme{t~ti-o~ required

and DF set

ICMP echo
request

ICMP echo
request

Figure 11.12 Packets exchanged m example.

Finally, the notation mtu=0 in lines 3 and 6 of Figure 11.11 indicates that sun does
not return the MTU of the outgoing interface in the ICMP unreachable message, as
shown in Figure 11.9. (In Section 25.9 we return to this problem and use SNMP to deter-
mine that the MTU of the SLIP interface on netb is 1500.)

11.7 Determining the Path MTU Using Traceroute

Although most systems don’t support the path MTU discovery feature, we can easily
modify a version of traceroute (Chapter 8) to let us determine the path MTU. What
we’ll do is send packets with the "don’t fragment" bit set. The size of the first packet
we send will equal the MTU of the outgoing interface, and whenever we receive an
ICMP "can’t fragment" error (which we described in the previous section) we’ll reduce
the size of the packet. If the router sending the ICMP error sends the newer version that
includes the MTU of the outgoing interface, we’ll use that value; otherwise we’ll try the
next smallest MTU. As RFC 1191 [Mogul and Deering 1990] states, there are a limited
number of MTUs, so our program has a table of the likely values and moves to the next
smallest value.

Let’s first try it from our host sun to the host sl±p, knowing that the SLIP link has
an MTU of 296:

154 UDP: User Datagram Protocol Chapter 11

sun % traceroute.pmtu slip
traceroute to slip (140.252.13.65),
outgoing MTU = 1500

1 bsdi (140.252.13.35) 15 ms 6
2 bsdi (140.252.13.35) 6 ms

fragmentation required and DF set,
fragmentation
fragmentation
fragmentation
fragmentation
fragmentation
fragmentatlon

required and
required and
required and
required and
required and
required and

DF set
DF set
DF set
DF set
DF set
DF set

fragmentation required and DF set
2 slip (140.252.13.65) 377 ms

30 hops max

ms 6 ms

trylng new MTU :
trylng new MTU =
trylng new MTU :
trying new MTU :
trying new MTU =
trylng new MTU :
trying new MTU :
trylng new MTU =

377 ms 377 ms

1492
1006
576
552
544
512
508
296

In this example the router bsdi does not return the MTU of the outgoing interface in
the ICMP error, so we step through the likely values for the MTU. The first line of out-
put for a TTL of 2 prints a hostname of bsdi, but that’s because it’s the router returning
the ICMP error. The final line of output for a TTL of 2 is what we’re looking for.

It’s not hard to modify the ICMP code on bsdi to return the MTU of the outgoing
interface, and if we do that and rerun our program, we get the following output:

sun % traceroute.pmtu slip
traceroute to slip (140.252.13.65), 30 hops max
outgoing MTU : 1500

1 bsdi (140.252.13.35) 53 ms 6 ms 6 ms
2 bsdi (140.252.13.35) 6 ms

fragmentation required and DF set, next hop MTU = 296
2 slip (140.252.13.65) 377 ms 378 ms 377 ms

Here we don’t have to try eight different values for the MTU before finding the right
one--the router returns the correct value.

The Worldwide Internet

As an experiment, this modified version of traceroute was run numerous times to
various hosts around the world. Fifteen countries (including Antarctica) were reached
and various transatlantic and transpacific links were used. Before doing this, however,
the MTU of the dialup SLIP link between the author’s subnet and the router netb (Fig-
ure 11.12) was increased to 1500, the same as an Ethernet.

Out of 18 runs, only 2 had a path MTU of less than 1500. One of the transatlantic
links had an MTU of 572 (a value not even listed as a likely value in RFC 1191) and the
router did return the newer format ICMP error. Another link, between two routers in
Japan, wouldn’t handle a 1500-byte frame, and the router did not return the newer for-
mat ICMP error. Setting the MTU down to 1006 did work.

The conclusion we can make from this experiment is that many, but not all, WANs
today can handle packets larger than 512 bytes. Using the path MTU discovery feature
will allow applications to take advantage of these larger MTUs.

Section 11.8 Path MTU Discovery with UDP 155

11.8 Path MTU Discovery with UDP

Let’s examine the interaction between an application using UDP and the path MTU dis-
covery mechanism. We want to see what happens when the application writes data-
grams that are too big for some intermediate link.

Example

Since the only system that we’ve been using that supports the path MTU discovery
mechanism is Solaris 2.x, we’ll use it as the source host to send 650-byte datagrams to
slip. Since our host slip sits behind a SLIP link with an MTU of 296, any UDP data-
gram greater than 268 bytes (296 - 20 - 8) with the "don’t fragment" bit set should cause
the router bsdi to generate the ICMP "can’t fragment" error. Figure 11.13 shows the
topology and the MTUs.

MTU=1500

MTU=296 M~I1J=296

Fun

tcpdump
here

MTU=1500 ~

~ SLIP

MTU =552

MTU=1500

MTU=I500

MTU=1500

650-byte UDP datagram with DF bit set

ICMP can’t fragment error

Systems used for path MTU discovery using UDP.Figure 11.13

The following command generates ten 650-byte UDP datagrams, with a 5-second pause
between each datagram:

solaris % sock -u -i -nlO -w650 -p5 slip discard

Figure 11.14 shows the tcpdump output. When this example was run, the router bsdi
was set to not return the next-hop MTU as part of the ICMP "can’t fragment" error.

The first datagram is sent with the DF bit set (line 1) and generates the expected
error from the router bsdi (line 2). What’s puzzling is that the next datagram is also
sent with the DF bit set (line 3) and generates the same ICMP error (line 4). We would
expect this datagram to be sent with the DF bit off.

On line 5 it appears IP has finally learned that datagrams to this destination should
not be sent with the DF bit set, so IP goes ahead and fragments the datagrams at the
source host. This "is different from earlier examples where IP sends the datagram that is
passed to it by UDP and allows the router with the smaller MTU (bsdi in this case) to

156 ---U4)P~-I_Jser Datagram Protocol Chapter 11

I 0~0
2 0.004218 (0.0042)

3 4.980528 (4.9763)
4 4.984503 (0.0040)

5
6

7
8

9.870407 (4.8859)
9.960056 (0.0896)

14.940338 (4.9803)
14.944466 (0.0041)

9 19.890015 (4.9455)
I0 19.950463 (0.0604)

11 24.870401 (4.9199)
12 24.960038 (0.0896)

13 29.880182 (4.9201)
14 29,940498 (0.0603)

15 34.860607 (4.9201)
16 34.950051 (0.0894)

17 39.870216 (4.9202)
18 39.930443 (0.0602)

19 44.940485 (5.0100)
20 44.944432 (0.0039)

solarls.38196 > sllp.discard: udp 650 (DF)
bsdi > solaris: zcmp:

slip unreachable - need to frag, mtu = 0 (DF)

solaris,38196 > slip.discard: udp 650 (DF)
bsdi > solarls; icmp:

sllp unreachable - need to frag, mtu = 0 (DF)

solarls.38196 > slzp.discard: udp 650 (frag 47942:552@0+)
solaris > slip: (frag 47942:106@552)

solaris.38196 > slzp.dlscard: udp 650 (DF)
bsdz > solaris: icmp:

slip unreachable - need to frag, mtu = 0 (DF)

solarls.38196 > sllp.discard: udp 650 (frag 47944"552@0+)
solaris > slip: (frag 47944:106@552)

solaris.38196 > slip.discard: udp 650 (frag 47945:552@0+)
solaris > sllp: (fra9 47945:106@552)

solaris.38196 > slip.dlscard: udp 650 (frag 47946:552@0+)
solaris > slip: (frag 47946:106@552)

solaris.38196 > slip.dzscard: udp 650 (frag 47947:552@0+)
solaris > slip: (frag 47947:106@552)

solaris.38196 > slip.dlscard: udp 650 (frag 47948:552@0+)
solaris > sllp: (frag 47948:106@552)

solarls.38196 > sllp.dlscard: udp 650 (DF)
bsdi > solaris: icmp:

slip unreachable - need to frag, mtu = 0 (DF)

Figure 11.14 Path MTU d~scovery using UDP.

do the fragmentation. Since the ICMP "can’t fragment" message didn’t specify the
next-hop MTU, it appears that IP guesses that an MTU of 576 is OK. The first fragment
(line 5) contains 544 bytes of UDP data, the 8-byte UDP header, and the 20-byte IP
header, for a total IP datagram size of 572 bytes. The second fragment (line 6) contains
the remaining 106 bytes of UDP data and a 20-byte IP header.

Unfortunately the next datagram, line 7, has its DF bit set, so it’s discarded by bsdi
and the ICMP error returned. What has happened here is that an IP timer has expired
telling IP to see if the path MTU has increased by setting the DF bit again. We see this
happen again on lines 19 and 20. Comparing the times on lines 7 and 19 it appears that
IP turns on the DF bit, to see if the path MTU has increased, every 30 seconds.

This 30-second timer value is way too small. RFC 1191 recommends a value of 10 minutes. It
can be changed by modifying the parameter ip_zre_pathmtu_~nterval (Section E.4).
Also there is no way in Solaris 2.2 to turn off this path MTU discovery for a s~ngle UDP apph-
cation or for all UDP apphcations. It cart ortly be enabled or disabled on a systemwide basis by
changing the parameter lp_path_ratu_dlscovery. As we can see from this example,
enabling path MTU discovery when UDP applicahons write datagrams that will probably be
fragmented can cause datagrams to be discarded.

Section 11.9 Interaction Between UDP and ARP 157

The maximum datagram size assumed by the IP layer on solar±s (576 bytes) is
not right. In Figure 11.13 we see that the real MTU is 296 bytes. This means the frag-
ments generated by solar±s will be fragmented again by bsd±. Figure 11.15 shows
the t cpdurap output collected on the destination host (s l±p) for the first datagram that
arrives (lines 5 and 6 from Figure 11.14).
I 0.0
2 0.304513 (0.3045)
3 0.334651 (0.0301)
4 0.466642 (0.1320)

solaris.38196 > slip.discard: udp 650 (frag 47942:272@0+)
solaris > slzp: (frag 47942:272@272+)
solaris > slip: (frag 47942:8@544+)
solaris > slip: (frag 47942:106@552)

Figure 11.15 First datagram arriving at host slip from solarxs.

In this example the host solaris should not fragment the outgoing datagrams but
should turn off the DF bit and let the router with the smaller MTU do the fragmenta-
tion.

Now we’ll run the same example but modify the router bsd± to return the next-hop
MTU in the ICMP "can’t fragment" error. Figure 11.16 shows the first six lines of the
t cpdump output.

0.0 solaris.37974 > slip.discard: udp 650 (DF)
0.004199 (0.0042) bsdi > solaris: icmp:

slzp unreachable - need to frag, mtu = 296 (DF)

4.950193 (4.9460) solaris.37974 > slip.discard: udp 650 (DF)
4.954325 (0.0041) bsdi > solaris: lcmp:

slip unreachable - need to frag, mtu = 296 (DF)

9.779855 (4.8255) solarls.37974 > slip.discard: udp 650 (frag 35278:272@0+)
9.930018 (0.1502) solaris > slip: (frag 35278:272@272+)
9.990170 (0.0602) solarls > slip: (frag 35278:114@544)

Figure 11.16 Path MTU discovery using UDP.

Again, the first two datagrams are sent with the DF bit set, and both elicit the ICMP
error. The ICMP error now specifies the next-hop MTU of 296.

In lines 5, 6, and 7 we see the source host perform fragmentation, similar to Fig-
ure 11.14. But knowing the next-hop MTU, only three fragments are generated, com-
pared to the four fragments generated by the router bsdi in Figure 11.15.

1.9 Interaction Between UDP and ARP

Using UDP we can see an interesting (and often unmentioned) interaction with UDP
and typical implementations of ARP.

We use our sock program to generate a single UDP datagram with 8192 bytes of
data. We expect this to generate six fragments on an Ethernet (see Exercise 11.3). We
also assure that the ARP cache is empty before running the program, so that an ARP
request and reply must be exchanged before the first fragment is sent.

158 UDP: User Datagram Protocol Chapter 11

bscb_ % arp -a ver~] ARP cache is empty
bsdi % sock -u -i -nl -w8192 svr4 discard

We expect the first fragment to cause an ARP request to be sent. Five more fragments
are generated by IP and this presents two timing questions that we’ll need to use
tepdurap to answer: are the remaining fragments ready to be sent before the ARP reply
is received, and if so, what does ARP do with multiple packets to a given destination
when it’s waiting for an ARP reply? Figure 11.17 shows the tcpdump output.

I 0.0
2 0.001234
3 0.001941
4 0.002775
5 0 003495
6 0 004319
7 0 008772
8 0 009911
9 0 011127

I0 0 011255
11 0 012562
12 0 013458
13 0 014526
14 0 015583

arp who-has svr4 tell bsdl
(0.0012) arp who-has svr4 tell bsdi
(0.0007) arp who-has svr4 tell bsdl
(0.0008) arp who-has svr4 tell bsdi
(0.0007) arp who-has svr4 tell bsdl
(0.0008) arp who-has svr4 tell bsdi
(0.0045) arp reply svr4 is-at 0:0:c0:c2:9b:26
(0.0011) arp reply svr4 is-at 0:0:c0:c2:9b:26
(0.0012) bsdl > svr4: (frag 10863:800@7400)
(0.0001) arp reply svr4 is-at 0:0:c0:c2:9b:26
(0.0013) arp reply svr4 is-at 0:0:c0:c2:9b:26
(0.0009) arp reply svr4 is-at 0:0:c0:c2:9b:26
(0.0011) arp reply svr4 is-at 0:0:c0:c2:9b:26
(0.0011) arp reply svr4 is-at 0:0:c0:c2:9b:26

Figure 11.17 Packet exchange when an 8192-byte UDP datagram is sent on an Ethernet

There are a few surprises in this output. First, six ARP requests are generated
before the first ARP reply is returned. What we guess is happening is that IP generates
the six fragments rapidly, and each one causes an ARP request.

Next, when the first ARP reply is received (line 7) only the last fragment is sent (line
9)! It appears that the first five fragments have been discarded. Indeed, this is the nor-
mal operation of ARP. Most implementations keep only the last packet sent to a given
destination while waiting for an ARP reply.

The Host Requirements RFC requires an implementation to prevent this type of ARPflooding
(repeatedly sending an ARP request for the same IP address at a high rate). The recommended
maximum rate ~s one per second. Here we see six ARP requests in 4.3 ms.

The Host Requirements RFC states that ARP should save at least one packet, and this should
be the latest packet. That’s what we see here.

Another unexplained anomaly in this output is that svr4 sends back seven ARP
replies, not six.

The final point worth mentioning is that tcpdump was left to run for 5 minutes
after the final ARP reply was returned, waiting to see if svr4 sent back an ICMP "time
exceeded during reassembly" error. The ICMP error was never sent. (We showed the
format of this message in Figure 8.2. A code of 1 indicates that the time was exceeded
during the reassembly of a datagram.)

The IP layer must start a timer when the first fragment of a datagram appears. Here
"first" means the first arrival of any fragment for a given datagram, not the first frag-
ment (with a fragment offset of 0). A normal timeout value is 30 or 60 seconds. If all the

;ection 11.10 Maximum UDP Datagram Size 159

11.10

fragments for this datagram have not arrived when the timer expires, all these frag-
ments are discarded. If this were not done, fragments that never arrive (as we see in
this example) could eventually cause the receiver to run out of buffers.

There are two reasons we don’t see the ICMP message here. First, most Berkeley-
derived implementations never generate this error! These implementations do set a
timer, and do discard all fragments when the timer expires, but the ICMP error is never
generated. Second, the first fragment--the one with an offset of 0 containing the UDP
header--was never received. (It was the first of the five packets discarded by ARP.) An
implementation is not required to generate the ICMP error unless this first fragment has
been received. The reason is that the receiver of the ICMP error couldn’t tell which user
process sent the datagram that was discarded, because the transport layer header is not
available. It’s assumed that the upper layer (either TCP or the application using UDP)
will eventually time out and retransmit.

In this section we’ve used IP fragmentation to see this interaction between UDP and
ARP. We can also see this interaction if the sender quickly transmits multiple UDP data-
grams. We chose to use fragmentation because the packets get generated quickly by IP,
faster than multiple datagrams can be generated by a user process.

As unlikely as this example might seem, it occurs regularly. NFS sends UDP data-
grams whose length just exceeds 8192 bytes. On an Ethernet these are fragmented as
we’ve indicated, and if the appropriate ARP cache entry times out, you can see what
we’ve shown here. NFS will time out and retransmit, but the first IP datagram can still
be discarded because of ARP’s limited queue.

Maximum UDP Datagram Size

Theoretically, the maximum size of an IP datagram is 65535 bytes, imposed by the 16-bit
total length field in the IP header (Figure 3.1). With an IP header of 20 bytes and a UDP
header of 8 bytes, this leaves a maximum of 65507 bytes of user data in a UDP data-
gram. Most implementations, however, provide less than this maximum.

There are two limits we can encounter. First the application program may be lim-
ited by its programming interface. The sockets API (Section 1.15) provides a function
that the application can call to set the size of the receive buffer and the send buffer. For
a UDP socket, this size is directly related to the maximum size UDP datagram the appli-
cation can read or write. Most systems today provide a default of just over 8192 bytes
for the maximum size of a UDP datagram that can be read or written. (This default is
because 8192 is the amount of user data that NFS reads and writes by default.)

The next limitation comes from the kernel’s implementation of TCP/IP. There may
be implementation features (or bugs) that limit the size of an IP datagram to less than
65535 bytes.

The author experimented with various UDP datagram sizes, using the sock program. Using
the loopback interface under SunOS 4.1.3, the maximum size IP datagram was 32767 bytes.
All higher values failed. But going across an Ethernet from BSD/386 to SunOS 4.1.3, the maxi-
mum size IP datagram the Sun could accept was 32786 (that is, 32758 bytes of user data).
Using the loopback interface under Solaris 2.2, the maximum 65535-byte IP datagram could be
sent and received. From Solaris 2.2 to AIX 3.2.2, the maximum 65535-byte IP datagram could
be transferred. Obviously this limit depends on the source and destination implementations.

160 UDP: User Datagram Protocol Chapter

We mentioned in Section 3.2 that a host is required to receive at least a 576-byte IP
datagram. Many UDP applications are designed to restrict their application data to 512
bytes or less, to stay below this limit. We saw this in Section 10.4, for example, where
the Routing Information Protocol always sent less than 512 bytes of data per datagram.
We’l! encounter this same limit with other UDP applications: the DNS (Chapter 14),
TFTP (Chapter 15), BOOTP (Chapter 16), and SNMP (Chapter 25).

Datagram Truncation

Just because IP is capable of sending and receivirig a datagram of a given size doesn’t
mean the receiving application is prepared to read that size. UDP programming inter-
faces allow the application to specify the maximum number of bytes to return each
time. What happens if the received datagram exceeds the size the application is pre-
pared to deal with?

Unfortunately the answer depends on the programming interface and the imple-
mentation.

The tradlhonal Berkeley version of the sockets API truncates the datagram, discarding any
excess data Whether the applicahon is notified depends on the version (4.3BSD Reno and
later can notify the apphcation that the datagram was truncated)

The sockets API under SVR4 (including Solaris 2 x) does not truncate the datagram. Any
excess data ~s returned m subsequent reads. The apphcation is not notified that multiple reads
are being fulfilled from a single UDP datagram

The TLI API does not discard the data. Instead a flag ~s returned re&caring that more data is
ava~lable, and subsequent reads by the applicahon return the rest of the datagram.

When we discuss TCP we’ll see that it provides a continuous stream of bytes to the
application, without any message boundaries. TCP passes the data to the application in
whatever size reads the application asks for--there is never any data loss across this
interface.

11.11 ICMP Source Quench Error

Using UDP we are also able to generate the tCMP "source quench" error. This is an
error that may be generated by a system (router or host) when it receives datagrams at a
rate that is too fast to be processed. Note the qualifier "may." A system is not required
to send a source quench, even if it runs out of buffers and throws datagrams away.

Figure 11.18 shows the format of the ICMP source quench error. We have a perfect
scenario with our test network for generating this error. We can send datagrams from
bsd± to the router sun across the Ethernet that must be routed across the dialup SLIP
link. Since the SLIP link is about 1000 times slower than the Ethemet, we should easily
be able to overrun its buffer space. The following command sends 100 1024-byte data-
grams from the host bsdi through the router sun to so~ar±s. We send the datagrams
to the standard discard service, where they’ll be ignored:

bsdi % sock -u -i -wi024 -nlO0 solaris discard

Section 11.11 ICMP Source Quench Error161

0 7 8 15 16 31

type (4) code (0) checksum T
8 bytes

Unused (must be 0) /

IP header (including options) + first 8 bytes of original IP datagram data

Figure 11.18 ICMP source quench error.

Figure 11.19 shows the tcpdurap output corresponding to this con’wnand.

1 0.0 bsd±.1403 > sokar±s.d±seard: udp 1024
261inesthatwedon’tshow

27 0.i0 (0.00) bsdi.1403 > solaris.discard: udp 1024

28 0.ii (0.01) sun > bsdi: icmp: source quench

29 0oli (0.00) bsdi.1403 > solaris.discard: udp 1024

30 0.11 (0.00) sun > bsdi: icmp: source quench
!421inesthatwedon’tshow

I~ 0.71 (0.06) bsdi.1403 > solaris.diseard: udp 1024

174 0.71 (0.00) sun > bsdi: icmp: source quench

Figure 11.19 ICMP source quench from the router sun.

We have removed lots of lines from this output; there is a pattern. The first 26 data-
grams are received without an error; we show the output only for the first. Starting
with our 27th datagram, however, every time we send a datagram, we receive a source
quench in return. There are a total of 26 + (74 x 2) = 174 lines of output.

From our serial line throughput calculations in Section 2.10, it takes just over 1 sec-
ond to transfer a 1024-byte datagram at 9600 bits/sec. (In our example it should take
longer than this since the 20 + 8 + 1024 byte datagram will be fragmented because the
MTU of the SLIP link from sun to netb is 552 bytes.) But we can see from the timing in
Figure 11.19 that the router sun receives all 100 datagrams in less than I second, before
the first one is through the SLIP link. It’s not surprising that we used up many of its
buffers.

Although RFC 1009 [Braden and Postel 1987] requires a router to generate source quenches
when it runs out of buffers, the new Router Requirements RFC [Almquist 1993] changes this
and says that a router must not originate source quench errors. The current feeling is to depre-
cate the source quench error, since it consumes network bandwidth and is an ineffective and
unfair fix for congestion.

Another point to make regarding this example is that our sock program either
never received a notification that the source quenches were being received, or if it did, it

162 UDP: User Datagram Protocol Chapter 11

appears to have ignored them. It turns out that BSD implementations normally ignore
received source quenches if the protocol is UDP. (TCP is notified, and slows down the
data transfer on the connection that generated the source quench, as we discuss in Sec-
tion 21.10.) Part of the problem is that the process that generated the data that caused
the source quench may have already terminated when the source quench is received.
Indeed, if we use the Unix time program to measure how long our sock program takes
to run, it only executes for about 0.5 seconds. But from Figure 11.19 we see that some of
the source quenches are received 0.71 seconds after the first datagram was sent, after the
process has terminated. What is happening is that our program writes 100 datagrams
and terminates. But not all 100 datagrams have been sent--some are queued for
output.

This example reiterates that UDP is an unreliable protocol and illustrates the value
of end-to-end flow control. Even though our sock program successfully wrote 100
datagrams to its network, only 26 were really sent to the destination. The other 74 were
probably discarded by the intermediate router. Unless we build some form of acknowl-
edgment into the application, the sender has no idea whether the receiver really got the
data.

11.12 UDP Server Design

There are some implications in using UDP that affect the design and implementation of
a server. The design and implementation of clients is usually easier than that of servers,
which is why we talk about server design and not client design. Servers typically inter-
act with the operating system and most servers need a way to handle multiple clients at
the same time.

Normally a client starts, immediately communicates with a single server, and is
done. Servers, on the other hand, start and then go to sleep, waiting for a client’s
request to arrive. In the case of UDP, the server wakes up when a client’s datagram
arrives, probably containing a request message of some form from the client.

Our interest here is not in the programming aspects of clients and servers ([Stevens
1990] covers all those details), but in the protocol features of UDP that affect the design
and implementation of a server using UDP. (We examine the details of TCP server
design in Section 18.11.) Although some of the features we describe depend on the
implementation of UDP being used, the features are common to most implementations.

Client IP Address and Port Number

What arrives from the client is a UDP datagram. The IP header contains the source and
destination IP addresses, and the UDP header contains the source and destination UDP
port numbers. When an application receives a UDP datagram, it must be told by the
operating system who sent the message--the source IP address and port number.

This feature allows an iterative UDP server to handle multiple clients. Each reply is
sent back to the client that sent the request.

;ection 11.12 UDP Server Design 163

)estination IP Address

Some applications need to know who the datagram was sent to, that is, the destination
IP address. For example, the Host Requirements RFC states that a TFTP server should
ignore received datagrams that are sent to a broadcast address. (We describe broadcast-
ing in Chapter 12 and TFTP in Chapter 15.)

This requires the operating system to pass the destination IP address from the
received UDP datagram to the application. Unfortunately, not all implementations pro-
vide this capability.

The sockets API provides this capability with the IP_RECVDSTADDR socket option. Of the sys-
tems used in the text, only BSD/386, 4.4BSD, and AIX 3.2.2 support this option. SVR4, SunOS
4.x, and Solaris 2.x don’t support it.

JDP Input Queue

We said in Section 1.8 that most UDP servers are iterative servers. This means a single
server process handles all the client requests on a single UDP port (the server’s well-
known port).

Normally there is a limited size input queue associated with each UDP port that an
application is using. This means that requests that arrive at about the same time from
different clients are automatically queued by UDP. The received UDP datagrams are
passed to the application (when it asks for the next one) in the order they were received.

It is possible, however, for this queue to overflow, causing the kernel’s UDP module
to discard incoming datagrams. We can see this with the following experiment. We
start our sock program on the host bsdi running as a UDP server:

bsdi % sock -s -u -v -E -R256 -r256 -P30 6666
from 140.252.13.33, to 140.252.13.63: iiiiiiiiii
from 140.252.13.34, to 140.252.13.35: 4444444444444

from sun, to broadcast address
from svr4, to unicast address

We specify the following flags: -s to run as a server, -u for UDP, -v to print the client’s
IP address, and -~. to print the destination IP address (which is supported by this sys-
tem). Additionally we set the UDP receive buffer for this port to 256 bytes (-R), along
with the size of each application read (-r). The flag -P3 0 tells it to pause for 30 seconds
after creating the UDP port, before reading the first datagram. This gives us time to
start the clients on two other hosts, send some datagrams, and see how the receive
queueing works.

Once the server is started, and is in its 30-second pause, we start one client on the
host sun and send three datagrams:

sun % sock -u -v 140. 252.’13.63 6666 to Ethernet broadcast address
connected on 140.252.13.33.1252 to 140.252.13.63.6666
111111.1.111 11 bytes of data (with newhne)
2222:22222 I0 bytes of data (with newhne)
33333333333 12 bytes of data (with newhne)

The destination address is the broadcast address (140.252.13.63). We also start a second
client on the host svr4 and send another three datagrams:

164 UDP: User Datagram Protocol Chapter 11

svr4 % sock-u-v bsdi 6666
connected on 0.0.0.0. 1042 to 140. 252.13.35. 6666
4444444444444 14 bytes of data (with newline)
555555555555555 16 bytes of data (with newline)
66666666 9 bytes of data (with newline)

The first thing we notice in the interactive output shown earlier on bsdi is that only
two datagrams were received by the application: the first one from sun with all ls, and
the first one from svr4 with all 4s. The other four datagrams appear to have been
thrown away.

The tcpdump output in Figure 11.20 shows.that all six datagrams were delivered to
the destination host. The datagrams were typed on the two clients in alternating order:
first from sun, then from svr4, and so on. We can also see that all six were delivered in
about 12 seconds, within the 30-second period while the server was sleeping.

0.0
2.499184 (2.4992)
4.959166 (2.4600)
7.607149 (2.6480)

10.079059 (2.4719)
12.415943 (2.3369)

sun.1252 > 140.252.13.63.6666: udp ii
svr4.1042 > bsdi.6666: udp 14
sun.1252 > 140.252.13.63.6666: udp i0
svr4.1042 > bsdi.6666: udp 16
sun.1252 > 140.252.13.63.6666: udp 12
svr4.1042 > bsdi.6666: udp 9

Figure 11.20 tcpdump for UDP datagrams sent by two clients.

We can also see the server’s -E option lets it know the destination IP address of
each datagram. If it wanted to, it could choose what to do with the first datagram it
receives, which was sent to a broadcast address.

We can see several points in this example. First, the application is not told when its
input queue overflows. The excess datagrams are just discarded by UDP. Also, from
the tcpdump output we see that nothing is sent back to the client to tell it that its data-
gram was discarded. There is nothing like an ICMP source quench sent back to the
sender. Finally, it appears that the UDP input queue is FIFO (first-in, first-out), whereas
we saw that the ARP input queue in Section 11.9 was LIFO (last-in, first-out).

Restricting Local IP Address

Most UDP servers wildcard their local IP address when they create a UDP end point.
This means that an incoming UDP datagram destined for the server’s port will be
accepted on any local interface. For example, we can start a UDP server on port 7777:

sun % sock -u -s 7777

We then use the netstat command to see the state of the end point:

sun % netstat -a -n -f inet
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
udp 0 0 *.7777 *.*

(state)

We have deleted many lines of output other than the one in which we’re interested. The
-a flag reports on all network end points. The -n flag prints IP addresses as dotted-

Section 11.12 UDP Server Design 165

decimal numbers, instead of trying to use the DNS to convert the address to a name,
and prints numeric port numbers instead of service names. The -f ±net option reports
only TCP and UDP end points.

The local address is printed as *. 7777 where the asterisk means the local IP
address has been wildcarded.

When the server creates its end point it can specify one of the host’s local IP
addresses, including one of its broadcast addresses, as the local IP address for the end
point. Incoming UDP datagrams will then be passed to this end point only if the desti-
nation IP address matches the specified local address. With our sock program, if we
specify an IP address before the port number, that IP address becomes the local IP
address for the end point. For example,

sun % sock -u -s 140.252.1.29 7777

restricts the server to datagrams arriving on the SLIP interface (140.252.1.29).
net star output shows this:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
udp 0 0 140.252.1.29.7777 *.*

The

If we try to send this server a datagram from a host on the Ethernet, bsdi at address
140.252.13.35, an ICMP port unreachable is returned. The server never sees the data-
gram. Figure 11.21 shows this scenario.

1 0.0
2 0.000822 (0.0008)

bsdi.1723 > sun.7777: udp 13
sun > bsdi: icmp: sun udp port 7777 unreachable

Figure 11.21 Rejection of UDP datagram caused by server’s local address binding.

It is possible to start different servers at the same port, each with a different local IP
address. Normally, however, the system must be told by the application that it is OK to
reuse the same port number.

With the sockets API the SO_REUSEADDR socket option must be specified. This is done by our
sock program by specifying the -A option.

On our host sun we can start five different servers on the same UDP port (8888):

sun % sock -u -s 140.252.1.29 8888
sun % sock -u -s -A 140.252.13.33 8888
sun % sock -u -s -A 127.0.0.1 8888
sun % sock -u -s -A 140.252.13.63 8888
sun % sock -u -s -A 8888

for SLIP hnk
for Ethernet
for Ioopback interface
for Ethernet broadcasts
everything else (wddcard IP address)

All except the first of the servers must be started with the -A flag, telling the system that
it’s OK to reuse the same port number. The netstat output shows the five servers:

Proto Recv-Q Send-Q Local Address Foreign Address
udp 0 0 *.8888 *.*
udp 0 0 140.252.13.63.8888 *.*
udp 0 0 127.0.0.1.8888 *.*
udp 0 0 140.252.13.33.8888 *.*
udp 0 0 140.252.1.29.8888 *.*

(state)

166 UDP: User Datagram Protocol Chapter 11

I In this scenario, the only datagrams that will go to the server with the wildcarded local
IP address are those destined to 140.252.1.255, because the other four servers cover all
other possibilities.

There is a priority implied when an end point with a wildcard address exists. An
end point with a specific IP address that matches the destination IP address is always
chosen over a wildcard. The wildcard end point is used only when a specific match is
not found.

Restricting Foreign IP Address

In all the netstat output that we showed earlier, the foreign IP address and foreign
port number are shown as * * meaning the end point will accept an incoming UDP
datagram from any IP address and any port number. Most impletnentations allow a
UDP end point to restrict the foreign address.

This means the end point will only receive UDP datagrams from that specific IP
address and port number. Our sock program uses the -f option to specify the foreign
IP address and port number:

sun % sock -u -s -f 140.252.13.35.4444 5555

This sets the foreign IP address to 140.252.13.35 (our host bad±) and the foreign port
number to 4444. The server’s well-known port is 5555. If we run netstat we see that
the local IP address has also been set, even though we didn’t specify it:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
udp 0 0 140.252.13.33.5555 140.252.13.35.4444

This is a side effect of specifying the foreign IP address and foreign port on Berkeley-
derived systems: if the local address has not been chosen when the foreign address is
specified, the local address is chosen automatically. Its value becomes the IP address of
the interface chosen by IP routing to reach the specified foreign IP address. Indeed, in
this example the IP address on sun for the Ethernet that is connected to the foreign
address is 140.252.13.33.

Figure 11.22 summarizes the three types of address bindings that a UDP server can
establish for itself.

Local Address Foreign Address Descrtption

locallP, lport fore~gnlP.fport restricted to one client
locallP, lport *.* restricted to datagrams arnvh~g on one local interface’ localIP

*. lport *.* receives all datagrams sent to lport

Figure 11.22Specihcahon of local and foreign IP addresses and port number for UDP server.

In all cases, lport is the server’s well-known port and locallP must be the IP address of a
local interface. The ordering of the three rows in the table is the order that the UDP
module applies when trying to determine which local end point receives an incoming
datagram. The most specific binding (the first row) is tried first, and the least specific
(the last row with both IP addresses wildcarded) is tried last.

Section 11.13 Summary 167

Multiple Recipients per Port

Although it’s not specified in the RFCs, most implementations allow only one applica-
tion end point at a time to be associated with any one local IP address and UDP port
number. When a UDP datagram arrives at a host destined for that IP address and port
number, one copy is delivered to that single end point. The IP address of the end point
can be the wildcard, as shown earlier.

For example, under SunOS 4.1.3 we start one server on port 9999 with a wildcarded
local IP address:

sun % sock -u -s 9999

If we then try to start another server with the same wildcarded local address and the
same port, it doesn’t work, even if we specify the -A option:

sun % sock -u -s 9999 weexpectth~to~il
can’t bind local address: Address already in use

sun % sock -u -s -A 9999 so wet~-Aflagth~stime
can’t bind local address: Address already in use

On systems that support multicasting (Chapter 12), this changes. Multiple end
points can use the same local IP address and UDP port number, although the applica-
tion normally must tell the API that this is OK (i.e., our -A flag to specify the
$O_REUSEADDR socket option).

4.4BSD, which supports multicastmg, requires the application to set a different socket option
(SO_REUSEPORT) to allow multiple end points to share the same port. Furthermore each end
point must specify th~s option, including the first one to use the port.

When a UDP datagram arrives whose destination IP address is a broadcast or
multicast address, and there are multiple end points at the destination IP address and
port number, one copy of the incoming datagram is passed to each end point. (The end
point’s local IP address can be the wildcard, which matches any destination IP address.)
But if a UDP datagram arrives whose destination IP address is a unicast address, only a
single copy of the datagram is delivered to one of the end points. Which end point gets
the unicast datagram is implementation dependent.

11.13 Summary

UDP is a simple protocol. Its official specification, RFC 768 [Poste! 1980], requires only
three pages. The services it provides to a user process, above and beyond IP, are port
numbers and an optional checksum. We used UDP to examine this checksum and to
see how fragmentation is performed.

We then examined the ICMP unreachable error that is part of the new path MTU
discovery feature (Section 2.9). We watched path MTU discovery using Traceroute and
UDP. We also looked at the interaction between UDP and ARP whereby most ARP
implementations only retain the most recently transmitted datagram to a given destina-
tion, while waiting for an ARP reply.

168 UDP: User Datagram Protocol Chapter 11

The ICMP source quench error can be sent by a system that is receiving IP data-
grams faster than they can be processed. It is easy to generate these ICMP errors using
UDP.

Exercises

11.1 In Section 11.5 we caused fragmentation on an Ethernet by writing a UDP datagram with
1473 bytes of user data. What is the smallest amount of user data that causes fragmenta-
tion on an Ethernet if IEEE 802 encapsulation (Section 2.2) is used instead?

11.2 Read RFC 791 [Postel 1981a] to determine why all fragments other than the last must have
a length that is a multiple of 8 bytes.

11.3 Assume an Ethernet and a UDP datagram with 8192 bytes of user data. How many frag-
ments are transmitted and what is the offset and length of each fragment?

11.4 Continue the previous exercise, assuming these fragments then traverse a SLIP link with
an MTU of 552. You also need to remember that the amount of data in each fragment (i.e.,
everything other than the IP header) must be a multiple of 8 bytes. How many fragments
are transmitted and what is the offset and length of each fragment?

11.5 An application using UDP sends a datagram that gets fragmented into four pieces.
Assume that fragments 1 and 2 make it to the destination, with fragments 3 and 4 being
lost. The application then times out and retransmits the UDP datagram 10 seconds later
and this datagram is fragmented identically to the first transmission (i.e., same offsets and
lengths). Assume that this time fragments 1 and 2 are lost but fragments 3 and 4 make it to
the destination. Also assume that the reassembly timer on the receiving host is 60 seconds,
so when fragments 3 and 4 of the retransmission make it to the destination, fragments 1
and 2 from the first transmission have not been discarded. Can the receiver reassemble the
IP datagram from the four fragments it now has?

11.6 How do you know that the fragments in Figure 11.15 really correspond to lines 5 and 6 in
Figure 11.14?

11.7 After the host gera±n± had been up for 33 days, the ne~:stat: program showed that 129 IP
datagrams out of 48 million had been dropped because of a bad header checksum, and 20
TCP segments out of 30 million had been dropped because of a bad TCP checksum. Not a
single UDP datagram was dropped, however, because of a UDP checksum error, out of the
approximately 18 million UDP datagrams. Give two reasons why. (Hint: See Figure 11.4.)

11.8 In our discussion of fragmentation we never said what happens to IP options in the IP
header--are they copied as part of the IP header in each fragment, or left in the first frag-
ment only? We’ve described the following IP options: record route (Section 7.3), time-
stamp (Section 7.4), strict and loose source routing (Section 8.5). How would you expect
fragmentation to handle these options? Check your answer with RFC 791.

11.9 In Figure 1.8 (p. 11) we said that incoming UDP datagrams are demultiplexed based on the
destination UDP port number. Is that correct?

12

Broadcasting and Multicasting

12.1 Introduction

We mentioned in Chapter 1 that there are three kinds of IP addresses: unicast, broadcast,
and multicast. In this chapter we discuss broadcasting and multicasting in more detail.

Broadcasting and multicasting only apply to UDP, where it makes sense for an
application to send a single message to multiple recipients. TCP is a connection-
oriented protocol that implies a connection between two hosts (specified by IP
addresses) and one process on each host (specified by port numbers).

Consider a set of hosts on a shared network such as an Ethernet. Each Ethernet
frame contains the source and destination Ethernet addresses (48-bit values). Normally
each Ethernet frame is destined for a single host. The destination address specifies a
single interface--called a unicast. In this way communication between any two hosts
doesn’t bother any of the remaining hosts on the cable (except for possible contention
for the shared media).

There are times, however, when a host wants to send a frame to every other host on
the cable--called a broadcast. We saw this with ARP and RARP. Multicasting fits
between unicasting and broadcasting: the frame should be delivered to a set of hosts
that belong to a multicast group.

To understand broadcasting and multicasting we need to understand that filtering
takes place on each host, each time a frame passes by on the cable. Figure 12.1 shows a
picture of this.

First, the interface card sees every frame that passes by on the cable and makes a
decision whether to receive the frame and deliver it to the device driver. Normally the
interface card receives only those frames whose destination address is either the hard-
ware address of the interface or the broadcast address. Additionally, most interfaces
can be placed into a promiscuous mode whereby they receive a copy of every frame.
This mode is used by ~: cpdurap, for example.

169

170 Broadcasting and Multicasting Chapter 12

deliver

UDP ~ &scard

Idehver

IP ~ discard

ldeliver

device
driver -~ discard

ldeliver

interfaCecard ~ d~scard

Figure 12,1 Filtertng that takes place up the protocol stack when a frame is received.

Today most interfaces can also be configured to receive frames whose destination
address is a multicast address, or some subset of multicast addresses. On an Ethernet, a
multicast address has the low-order bit of the high-order byte turned on. In hexadeci-
mal this bit looks like 01 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0. (We can consider the Ethernet broadcast
address, ff : f£ : ~f : ~f : f£ : ~f as a special case of the Ethernet multicast address.)

If the interface card receives the frame, it is passed to the device driver. (One reason
the interface card might discard the frame is if the Ethernet checksum is incorrect.)
Additional filtering is performed by the device driver. First, the frame type must spec-
ify a protocol that is supported (IP, ARP, etc.). Second, additional multicast filtering
may be performed, to check whether the host belongs to the addressed multicast group.

The device driver then passes the frame to the next layer, such as IP, if the frame
type specifies an IP datagram. IP performs more filtering, based on the source and des-
tination IP addresses, and passes the datagram up to the next layer (such as TCP or
UDP) if all is well.

Each time UDP receives a datagram from IP, it performs filtering based on the desti-
nation port number, and sometimes the source port number too. If no process is cur-
rently using the destination port number, the datagram is discarded and an ICMP port
unreachable message is normally generated. (TCP performs similar filtering based on
its port numbers.) If the UDP datagram has a checksum error, UDP silently discards it.

The problem with broadcasting is the processing load that it places on hosts that
aren’t interested in the broadcasts. Consider an application that is designed to use UDP

Section 12.2 Broadcasting 171

broadcasts. If there are 50 hosts on the cable, but only 20 are participating in the appli-
cation, every time one of the 20 sends a UDP broadcast, the other 30 hosts have to pro-
cess the broadcast, all the way up through the UDP layer, before the UDP datagram is
discarded. The UDP datagram is discarded by these 30 hosts because the destination
port number is not in use.

The intent of multicasting is to reduce this load on hosts with no interest in the
application. With multicasting a host specifically joins one or more multicast groups. If
possible, the interface card is told which multicast groups the host belongs to, and only
those multicast frames are received.

12.2 Broadcasting

In Figure 3.9 we showed four different forms of IP broadcast addresses. We now
describe them in more detail.

Limited Broadcast

The limited broadcast address is 255.255.255.255. This can be used as the destination
address of an IP datagram during the host configuration process, when the host might
not know its subnet mask or even its IP address.

A datagram destined for the limited broadcast address is never forwarded by a
router under any circumstance. It only appears on the local cable.

An unanswered question is: if a host is multihomed and a process sends a datagram
to the limited broadcast address, should the datagram be sent out each com~ected inter-
face that supports broadcasting? If not, an application that wants to broadcast out all
interfaces must determine all the interfaces on the host that support broadcasting, and
send a copy out each interface.

Most BSD systems treat 255.255.255.255 as an alias for the broadcast address of the
first interface that was configured, and don’t provide any way to send a datagram out
all attached, broadcast-capable interfaces. Indeed, two applications that send UDP
datagrams out every interface are routed (Section 10.3) and rwhod (the server for the
BSD rwho client). Both of these applications go through a similar start-up procedure to
determine all the interfaces on the host, and which ones are capable of broadcasting.
The net-directed broadcast address corresponding to that interface is then used as the
destination address for datagrams sent out the interface.

The Host Requirements RFC takes no stand on the issue of whether a multlhomed host should
send a limited broadcast out all its interfaces.

Net-directed Broadcast

The net-directed broadcast address has a host ID of all one bits. A class A net-directed
broadcast address is netid.255.255.255, where netid is the class A network ID.

A router must forward a net-directed broadcast by default, but it must also have an
option to disable this forwarding.

172 Broadcasting and Multicasting Chapter 12

Subnet-directed Broadcast

The subnet-directed broadcast address has a host ID of all one bits but a specific subnet ID.
Classification of an IP address as a subnet-directed broadcast address requires knowl-
edge of the subnet mask. For example, if a router receives a datagram destined for
128.1.2.255, this is a subnet-directed broadcast if the class B network 128.1 has a subnet
mask of 255.255.255.0, but it is not a broadcast if the subnet mask is 255.255.254.0
(Oxf ffffeO0).

AII-subnets-directed Broadcast

An all-subnets-directed broadcast address also reqtiires knowledge of the destination net-
work’s subnet mask, to differentiate this broadcast address from a net-directed broad-
cast address. Both the subnet ID and the host ID are all one bits. For example, if the
destination’s subnet mask is 255.255.255.0, then the class B IP address 128.1.255.255 is an
all-subnets-directed broadcast. But if the network is not subnetted, then this is a net-
directed broadcast.

Current feeling [Almquist 1993] is that this type of broadcast is obsolete. It is better
to use multicasting than an all-subnets-directed broadcast.

[Almquist 1993] notes that RFC 922 requires that an all-subnets-directed broadcast be sent to
all subnets, but no current routers do so. This is fortunate since a host that has been misconfig-
ured without its subnet mask sends all its "’local" broadcasts to all ~ubnets. For example, if the
host with IP address 128 1.2.3 doesn’t set a subnet mask, then its broadcast address normally
defaults to 128.t.255.255. But if the subnet mask should have been set to 255.255.255.0, then
broadcasts from this mlsconfigured host appear directed to all subnets.

The hrst widespread implementation of TCP/IP, the 4.2BSD system in 1983, used a host ID of
all zero bits for the broadcast address. One of the earhest references to the broadcast IP
address is IEN 212 [Gurwitz and Hinden 1982], and it proposed to define the IP broadcast
address as a host ID of one bits. (IENs are the ~nternet Experiment Notes, basically predecessors
to the RFCs.) RFC 894 [Hornig 1984] commented that 4.2BSD used a nonstandard broadcast
address, but RFC 906 [Finlayson 1984] noted that there was no Internet standard for the broad-
cast address. The RFC editor added a footnote to RFC 906 acknowledging the lack of a stan-
dard broadcast address, but strongly recommended that a host ID of all one bits be used as the
broadcast address Although Berkeley adopted the use of all one bits for the broadcast address
with 4.3BSD in 1986, some operating systems (notably SunOS 4.x) continued to use the non-
standard broadcast address through the early 1990s.

12.3 Broadcasting Examples

How are broadcasts sent and what do routers and hosts do with broadcasts? Unfortu-
nately this is a hard question to answer because it depends on the type of broadcast
address, the application, the TCP/IP implementation, and possible configuration
switches.

First, the application must support broadcasting. If we execute
sun % ping 255.255.255.255
/usr/etc/ping: unknown host 255.255.255.255

Section 12.3 Broadcasting Examples 173

intending to send a broadcast on the local cable, it doesn’t work. But the problem here
is a programming problem in the application (p±ng). Most applications that accept
either a dotted-decimal IP address or a hostname call the function inet_addr(3) to
convert the dotted-decimal character string to its 32-bit binary IP address, and if this
fails, assume the character string is a hostname. Unfortunately this library function
returns -1 to indicate an error (such as a character other than a digit or decimal point in
the string), but the limited broadcast address (255.255.255.255) also converts into -1.
Most programs then assume that the character string is a hostname, look it up using the
DNS (Chapter 14), and end up printing an error such as "unknown host."

If we fix this programming shortfall in the ping program, however, the results are
often not what we expect. On six different systems tested by the author, only one han-
dled this as expected and generated a broadcast packet on the local cable. Most looked
up the IP address 255.255.255.255 in the routing table, applied the default route, and
sent a unicast packet to the default router. Eventually the packet was thrown away.

A subnet-directed broadcast is what we should be using. Indeed, in Section 6.3 we
sent datagrams to the IP address 140.252.13.63 for the bottom Ethernet in our test net-
work (inside front cover), and got replies from all the hosts on the Ethernet. The sub-
net-directed broadcast address associated with each interface is the value used with the
±fconf±g command (Section 3.8). If we ping that address, the result is what we
expect:

sun % arp -a

sun % ping 140.252.13.63
PING 140.252.13.63: 56 data bytes
64 bytes from sun
64 bytes from bsdl
64 bytes from svr4

64 bytes from sun
64 bytes from bsd~
64 bytes from svr4

ARP cache is empty

(140.252.13.33): icmp_seq=0, time=4, ms
(140.252.13.35): icmp_seq=0, tlme=172, ms
(140.252.13.34): icmp_seq=0, time=192, ms

(140.252.13.33): icmp_seq=l, time=l, ms
(140.252.13.35): icmp_seq=l, tlme=52, ms
(140.252.13.34): icmp_seq=l, time=90, ms

type interrupt key to stop
.... 140.252.13.63 PING Statistlcs
2 packets transmitted, 6 packets received, -200% packet loss
round-trip (ms) min/avg/max = 1/85/192

sun % arp -a check ARPcacheagain
svr4 (140.252.13.34) at 0:0:c0:c2:9b:26
bsdi (140.252.13.35) at 0:0:c0:6f:2d:40

IP looks at the destination address (140.252.13.63), determines that it is the subnet-
directed broadcast address, and sends the datagram to the link-layer broadcast address.

We mentioned in Section 6.3 that this type of broadcast means all the hosts on the
local network, including the sender. We see here that we do get a reply from the send-
ing host (sun) in addition to the other hosts on the cable.

In this example we’ve also shown the ARP cache before and after the ping of the
broadcast address. This is to show the interaction between broadcasting and ARP. The
ARP cache is empty before we execute ping, but full afterward. (That is, there is one
entry for every other host on the cable that responded to the echo request.) How did

174 Broadcasting and Multicasting Chapter 12

this happen when we said that the Ethernet frame is sent to the link-layer broadcast
address (0xffffffff)? The sending of these frames by sun does not require ARP.

If we watch ping using ¢cpdurap, we see that it is the recipients of the broadcast
frames that generate an ARP request to sun, before they can send their reply. This is
because the reply is unicast. We said in Section 4.5 that the receiver of an ARP request
(sun in this example) normally adds the requestor’s IP address and hardware address
to its ARP cache, in addition to sending an ARP reply. This is on the assumption that if
the requestor is about to send us a packet, we’ll probably want to send something back.

Our use of p±ng is somewhat special because the type of programming interface
that it uses (called "raw sockets" on most Unix implementations) always allows a data-
gram to be sent to the broadcast address. What if we use an application that was not
designed to support broadcasting, such as TFTP? (We cover TFTP in more detail in
Chapter 15.)

bsdl % tftp
tftp> connect 140.252.13.63
tftp> get temp.foo
tftp: sendto: Permlssion denied
tftp> quit

start the client
specify the IP address of the server
and try to fetch a Jile from the server

terrmnate the chent

Here we get an error immediately, and nothing is sent on the cable. What’s happening
here is that the sockets API doesn’t allow a process to send a UDP datagram to the
broadcast address unless the process specifically states that it plans to broadcast. This is
intended to prevent users from mistakenly specifying a broadcast address (as we did
here) when the application was never intended to broadcast.

With the sockets API the application must set the SO_BROADCAST socket option before send-
ing a UDP datagram to a broadcast address.

Not all systems enforce this restriction Some implementahons allow any process to broadcast
UDP datagrams, without requiring the process to say so. Others are more restrictive and
require a process to have superuser priwleges to broadcast.

The next question is whether directed broadcasts are forwarded or not. Some ker-
nels and routers have an option to enable or disable this feature. (See Appendix E.)

If we enable this feature on our router bsdi and run ping from the host slip, we
can see if the subnet-directed broadcasts are forwarded by bsdi. Forwarding a directed
broadcast means the router takes the incoming unicast datagram, determines that the
destination address is the directed broadcast for one of its interfaces, and then forwards
the datagram onto the appropriate network using a link-layer broadcast.

sllp % ping 140.252.13.63
PING 140.252.13.63 ~140.252.13.63): 56 data bytes
64 bytes from 140.252.13.35
64 bytes from 140.252.13.33
64 bytes from 140.252.13.34

64 bytes from 140.252.13.35
64 bytes from 140.252.13.33
64 bytes from 140.252.13.34

: icmp_seq=0 tti=255 time=190 ms
: icmp_seq=0 tti=254 time=280 ms (DUP!)
: icmp_seq=0 tti=254 time=360 ms (DUP!)

: icmp_seq=l tti=255 time=180 ms
: icmp_seq=l tti=254 time=270 ms (DUP!)
: zcmp_seq=l tti=254 time=360 ms (DUP!)

type interrupt key to stop

Section 12.4 Multicasting 175

--- 140.252.13.63 ping statistics ---
3 packets transmitted, 2 packets received, +4 duplicates, 33% packet loss
round-trlp min/avg/max = 180/273/360 ms

We see that this does indeed work. We also see that the BSD ping program checks for
duplicate sequence numbers and prints DUP ! when this occurs. It normally means a
packet was duplicated somewhere, but here we expect to see this, since we sent the
requests to a broadcast address.

We can also run this test from a host much farther away from the network to which
the broadcast is directed. If we run ping from the host vangogh, cs. berkeley, edu
(14 hops away from our network), it still works if the router sun is configured to for-
ward directed broadcasts. In this case the IP datagrams (carrying the ICMP echo
requests) are forwarded by every router in the path as a normal datagram. None of
them knows that it’s really a directed broadcast. The next to last router, netb, thinks
it’s for the host with an ID of 63, and forwards it to sun. It is the router sun that detects
that the destination IP address is really the broadcast address of an attached interface,
and turns the datagram into a link-layer broadcast on that network.

Broadcasting is a feature that should be used with great care. In many cases IP
multicasting will prove to be a better solution.

12.4 Multicasting

IP multicasting provides two services for an application.

1. Delivery to multiple destinations. There are many applications that deliver
information to multiple recipients: interactive conferencing and dissemination
of mail or news to multiple recipients, for example. Without multicasting these
types of services tend to use TCP today (delivering a separate copy to each des-
tination). Even with multicasting, some of these applications might continue to
use TCP for its reliability.

2. Solicitation of servers by clients. A diskless workstation, for example, needs to
locate a bootstrap server. Today this is provided using a broadcast (as we’ll see
with BOOTP in Chapter 16), but a multicast solution would impose less over-
head on the hosts that don’t provide the service.

In this section we’ll take a look at multicast addresses, and the next chapter looks at the
protocol used by multicasting hosts and routers (IGMP).

Multicast Group Addresses

Figure 12.2 shows the format of a class DIP address.
28 bits

Class D ! 1 1 1 0 multicast group ID

Figure 12.2 Format of a class D IP address.

176 Broadcasting and Multicasting Chapter 12

Unlike the other three classes of IP addresses (A, B, and C), which we showed in Fig-
ure 1.5, the 28 bits allocated for the multicast group ID have no further structure.

A multicast group address is the combination of the high-order 4 bits of 1110 and the
multicast group ID. These are normally written as dotted-decimal numbers and are in
the range 224.0.0.0 through 239.255.255.255.

The set of hosts listening to a particular IP multicast address is called a host group.
A host group can span multiple networks. Membership in a host group is
dynamic--hosts may join and leave host groups at will. There is no restriction on the
number of hosts in a group, and a host does not have to belong to a group to send a
message to that group.

Some multicast group addresses are assigned as well-known addresses by the
IANA (Internet Assigned Numbers Authority). These are called permanent host groups.
This is similar to the well-known TCP and UDP port numbers. Similarly, these well-
known multicast addresses are listed in the latest Assigned Numbers RFC. Notice that
it is the multicast address of the group that is permanent, not the membership of the
group.

For example, 224.0.0.1 means "all systems on this subnet," and 224.0.0.2 means "all
routers on this subnet." The multicast address 224.0.1.1 is for NTP, the Network Time
Protocol, 224.0.0.9 is for RIP-2 (Section 10.5), and 224.0.1.2 is for SGI’s (Silicon Graphics)
dogfight application.

Converting Multicast Group Addresses to Ethernet Addresses

The IANA owns an Ethernet address block, which in hexadecimal is 00 : 00 : 5e. This is
the high-order 24 bits of the Ethernet address, meaning that this block includes
addresses in the range 00:00:Se:00:00:00 through 00:00:Se:ff:ff:ff. The
IANA allocates half of this block for multicast addresses. Given that the first byte of
any Ethernet address must be 0 X to specify a multicast address, this means the Ethernet
addresses corresponding to IP multicasting are in the range 0X : 00 : 5e : 00 : 00 : 00
through Ol : O0 : 5e : 7f : ff : ff.

Our notation here uses the lnternet standard bit order, for a CSMA/CD or token bus network,
as the bits appear in memory. This is what most programmers and system administrators deal
with. The IEEE documentation uses the transmission order of the bits. The Assigned Num-
bers RFC gives additional details on the differences between these representations.

This allocation allows for 23 bits in the Ethernet address to correspond to the IP
multicast group ID. The mapping places the low-order 23 bits of the multicast group ID
into these 23 bits of the Ethernet address. This is shown in Figure 12.3.

Since the upper 5 bits of the multicast group ID are ignored in this mapping, it is
not unique. Thirty-two different multicast group IDs map to each Ethernet address.
For example, the multicast addresses 224.128.64.32 (hex e0.8 0.4 0.2 0) and 224.0.64.32
(hex e0.0 0.4 0.2 0) both map into the Ethernet address 01 : 0 0 : 5e : 0 0 : 4 0 : 2 0.

Since the mapping is not unique, it implies that the device driver or the IP module
in Figure 12.1 must perform filtering, since the interface card may receive multicast
frames in which the host is really not interested. Also, if the interface card doesn’t

Section 12.4 Multicasting 177

these 5 bits in the multicast group 1D are

~ not used to form the Ethernet address

0 ~ 7 8~ 15 16 23 24 31

Class DIP address: I1,1,1,01 II I I, , ~] , , I , , , , , , I , , , , ~ , I , , ,

1.,~ low-order 23 bits of multicastIgroup ID copied to Ethernet address

IO,O,O,O,O,O,O,iIO,0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 I I
48-bit Ethemet address

Figure 12.3 Mapping of a class DIP address into Ethernet multicast address.

provide adequate filtering of multicast frames, the device driver may have to receive all
multicast frames, and perform the filtering itself.

LAN interface cards tend to come in two varieties. One type performs multicast filtering
based on the hash value of the multicast hardware address, which means some unwanted
frames can always get through. The other type has a small, fixed number of multicast
addresses to hsten for, meaning that when the host needs to receive more multicast addresses
than are supported, the interface must be put into a "multicast promiscuous" mode. Hence,
both types of interfaces still require that the device driver perform checking that the received
frame is really wanted.

Even if the interface performs perfect multicast hltermg (based on the 48-bit hardware
address), since the mapping from a class DIP address to a 48-bit hardware address is not one-
to-one, filtering is still reqmred.

Despite this imperfect address mapping and hardware filtering, multicasting is still better than
broadcasting.

Multicasting on a single physical network is simple. The sending process specifies a
destination IP address that is a multicast address, the device driver converts this to the
corresponding Ethernet address, and sends it. The receiving processes must notify their
IP layers that they want to receive datagrams destined for a given multicast address,
and the device driver must somehow enable reception of these multicast frames. This is
called "joining a multicast group." (The reason we use the plural "receiving processes"
is because there are normally multiple receivers for a given multicast message, either on
the same host or on multiple hosts, which is why we’re using multicasting in the first
place.) When a multicast datagram is received by a host, it must deliver a copy to all
the processes that belong to that multicast group. This is different from UDP where a
single process receives an incoming unicast UDP datagram. With multicasting it is pos-
sible for multiple processes on a given host to belong to the same multicast group.

But complications arise when we extend multicasting beyond a single physical net-
work and pass multicast packets through touters. A protocol is needed for multicast
routers to know if any hosts on a given physical network belong to a given multicast
group. This protocol is called the Internet Group Management Protocol (IGMP) and is the
topic of the next chapter.

178 Broadcasting and Multicasting Chapter 12

Multicasting on FDDI and Token Ring Networks

12.5

FDDI networks use the same mapping between the class DIP address and the 48-bit
FDDI address [Katz 1990]. Token ring networks normally use a different mapping,
because of limitations in most token ring controllers [Pusateri 1993].

Summary

Broadcasting is sending a packet to all hosts on a network (usually a locally attached
network) and multicasting is sending a packet to a set of hosts on a network. Basic to
these two concepts is an understanding of the different types of filtering that occur
when a received frame passes up a protocol st~ck. Each layer can discard a received
packet for different reasons.

There are four types of broadcast addresses: limited, net-directed, subnet-directed,
and all-subnets-directed. The most common is subnet-directed. The limited broadcast
address is normally seen only when a system is bootstrapping.

Problems occur when trying to broadcast through routers, often because the router
may not know the subnet mask of the destination network. The results depend on
many factors: which type of broadcast address, configuration parameters, and so on.

A class D IP address is called a multicast group address. It is converted to an Ether-
net address by placing its lower 23 bits into a fixed Ethernet address. The mapping is
not unique, requiring additional filtering by one of the protocol modules.

Exercises

12.1 Does broadcasting increase the amount of network traffic?

12.2 Consider 50 hosts on an Ethernet: 20 running TCP/IP and 30 running some other protocol
suite. How are broadcasts from one protocol suite handled by hosts running the other
protocol suite?

12.3 You login to a Unix system that you’ve never used before and want to find the subnet-
directed broadcast address for all attached interfaces that support broadcasting. How can
you do this?

12.4 If we p±ng the broadcast address with a large packet size, as in

sun % ping 140.252.13.63 1472
PING 140.252.13.63:1472 data bytes
1480 bytes from sun (140.252.13.33): icmp seq=0, time=6, ms
1480 bytes from svr4 (140.252.13.34): icmp_seq=0, time=84, ms
1480 bytes from bsdi (140.252.13.35): icmp_seq=0, tlme=128, ms

it works, but increasing the packet size by 1 byte gives us the following error:

sun % ping 140.252.13.63 1473
PING 140.252.13.63:1473 data bytes
sendto: Message too long

What’s going on?

12.5 Redo Exercise 10.6 assuming the eight RIP messages are multicast instead of broadcast
(assume RIP Version 2 is being used). What changes?

13

IGMP: Internet Group

Management Protocol

13.1 Introduction

Section 12.4 provided an overview of IP multicasting and described how class DIP
addresses are mapped into Ethernet addresses. We briefly mentioned how multicasting
occurs on a single physical network, but said complications occur when multiple net-
works are involved and the multicast datagrams must pass through touters.

In this chapter we’ll look at the Internet Group Management Protocol (IGMP), which is
used by hosts and routers that support multicasting. It lets all the systems on a physical
network know which hosts currently belong to which multicast groups. This informa-
tion is required by the multicast routers, so they know which multicast datagrams to
forward onto which interfaces. IGMP is defined in RFC 1112 [Deering 1989].

Like ICMP, IGMP is considered part of the IP layer. Also like ICMP, IGMP mes-
sages are transmitted in IP datagramso Unlike other protocols that we’ve seen, IGMP
has a fixed-size message, with no optional data. Figure 13.1 shows the encapsulation of
an IGMP message within an IP datagram.

Figure 13.1

~-- IP datagram --~

IP IGMP
header message

20 bytes 8 bytes

Encapsulation of an IGMP message within an IP datagram.

IGMP messages are specified in the IP datagram with a protocol value of 2.

179

180 IGMP: Internet Group Management Protocol Chapter 13

13.2 IGMP Message

Figure 13.2 shows the format of the 8-byte IGMP message.

0 34 78
4-bit I 4-bit

IGMP I IGMP
version (1)~ type (1-2)

(unused)

15 16

16-bitchecksum

32-bit group address (class D IP address)

31

Figure 13.2 Format of fields in IGMP message.

The IGMP version is 1. An IGMP type of I is a query sent by a multicast router, and 2 is a
response sent by a l~ost. The checksum is calculated in the same manner as the ICMP
checksum.

The group address is a class D IP address. In a query the group address is set to 0,
and in a report it contains the group address being reported. We’ll say more about it in
the next section when we see how IGMP operates.

13.3 IGMP Protocol

Joining a Multicast Group

Fundamental to multicasting is the concept of a process joining a multicast group on a
given interface on a host. (We use the term process to mean a program being executed
by the operating system.) Membership in a multicast group on a given interface is
dynamic--it changes over time as processes join and leave the group.

We imply here that a process must have a way of joining a multicast group on a
given interface. A process can also leave a multicast group that it previously joined.
These are required parts of any API on a host that supports multicasting. We use the
qualifier "interface" because membership in a group is associated with an interface. A
process can join the same group on multiple interfaces.

The release of IP multicasting for Berkeley Unix from Stanford University details these changes
for the sockets API. These changes are also provided in Solaris 2.x and documented in the
xp(7) manual pages.

Implied here is that a host identifies a group by the group address and the interface.
A host must keep a table of all the groups that at least one process belongs to, and a ref-
erence count of the number of processes belonging to the group.

Section 13.3 IGMP Protocol 181

IGMP Reports and Queries

IGMP messages are used by multicast routers to keep track of group membership on
each of the router’s physically attached networks. The following rules apply.

1. A host sends an IGMP report when the first process joins a group. If multiple
processes on a given host join the same group, only one report is sent, the first
time a process joins that group. This report is sent out the same interface on
which the process joined the group.

2. A host does not send a report when processes leave a group, even when the last
process leaves a group. The host knows that there are no members in a given
group, so when it receives the next query (next step), it won’t report the group.

3. A multicast router sends an IGMP query at regular intervals to see if any hosts
still have processes belonging to any groups. The router must send one query
out each interface. The group address in the query is 0 since the router expects
one response from a host for every group that contains one or more members on
that host.

A host responds to an IGMP query by sending one IGMP report for each group
that still contains at least one process.

Using these queries and reports, a multicast router keeps a table of which of its inter-
faces have one or more hosts in a multicast group. When the router receives a multicast
datagram to forward, it forwards the datagram (using the corresponding multicast link-
layer address) only out the interfaces that still have hosts with processes belonging to
that group.

Figure 13.3 shows these two IGMP messages, reports sent by hosts, and queries sent
by touters. The router is asking each host to identify each group on that interface.

IGMP report, TTL = 1,
IGMP group addr = group address

dest IP addr = group address
src IP addr = host’s IP addr

1

IGMP query, TTL = 1,
IGMP group addr = 0

dest IP addr = 224.0.0.1
src IP addr = router’s IP addr

multicast
router

Figure 13.3 IGMP reports and queries.

We talk about the TTL field later in this section.

182 IGMP: Internet Group Management Protocol Chaptel" 13

Implementation Details

There are many implementation details in this protocol that improve its efficiency. First,
when a host sends an initial IGMP report (when the first process joins a group), there’s
no guarantee that the report is delivered (since IP is used as the delivery service).
Another report is sent at a later time. This later time is chosen by the host to be a ran-
dom value between 0 and 10 seconds.

Next, when a host receives a query from a router it doesn’t respond immediately,
but schedules the responses for later times. (We use the plural "responses" because the
host must send one report for each group that contains one or more members.) Since
multiple hosts can be sending a report for the same group, each schedules its response
using random delays. Also realize that all the hosts on a physical network receive all
the reports from other hosts in the same group, because the destination address of the
report in Figure 13.3 is the group’s address. This means that, if a host is scheduled to
send a report, but receives a copy of the same report from another host, the response
can be canceled. This is because a multicast router doesn’t care how many hosts belong
to the group--only whether at least one host belongs to the group. Indeed, a multicast
router doesn’t even care which host belongs to a group. It only needs to know that at
least one host belongs to a group on a given interface.

On a single physical network without any multicast routers, the only IGMP traffic is
the reports issued by the hosts that support IP multicasting, when the host joins a new
group.

Time-to-Live Field

In Figure 13.3 we noted that the TTL field of the reports and queries is set to 1. This
refers to the normal TTL field in the IP header. A multicast datagram with an initial
TTL of 0 is restricted to the same host. By default, multicast datagrams are sent with a
TTL of 1. This restricts the datagram to the same subnet. Higher TTLs can be for-
warded by multicast routers.

Recall from Section 6.2 that an ICMP error is never generated in response to a data-
gram destined to a multicast address. Multicast routers do not generate ICMP "time
exceeded" errors when the TTL reaches 0.

Normally user processes aren’t concerned with the outgoing TTL. One exception, however, is
the Traceroute program (Chapter 8), which ~s based on setting the TTL field. Since multicast-
ing applications must be able to set the outgoing TTL field, this implies that the programming
interface must provide this capability to user processes.

By increasing the TTL an application can perform an expanding ring search for a par-
ticular server. The first multicast datagram is sent with a TTL of 1. If no response is
received, a TTL of 2 is tried, then 3, and so on. In this way the application locates the
closest server, in terms of hops.

The special range of addresses 224.0.0.0 through 224.0.0.255 is intended for applica-
tions that never need to multicast further than one hop. A multicast router should
never forward a datagram with one of these addresses as the destination, regardless of
the TTL.

Section 13.4 An Example I83

All-Hosts Group

In Figure 13.3 we also indicated that the router’s IGMP query is sent to the destination
IP address of 224.0.0.1. This is called the all-hosts group address. It refers to all the
multicast-capable hosts and routers on a physical network. Each host automatically
joins this multicast group on all multicast-capable interfaces, when the interface is ini-
tialized. Membership in this group is never reported.

13.4 An Example

Now that we’ve gone through some of the details of IP multicasting, let’s take a look at
the messages involved. We’ve added IP multicasting support to the host sun and will
use some test programs provided with the multicasting software to see what happens.

First we’ll use a modified version of the net st at command that reports multicast
group membership for each interface. (We showed the standard netstat -ni output
for this host in Section 3.9.) In the following output we show the lines corresponding to

sl0 552 140.252.1 13587 0 15615

io0 1536 127 1351 0 1351

multicast groups in a bold font:
sun % netstat -nia
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
le0 1500 140.252.13. 140.252.13.33 4370 0 4924 0 0

224.0.0.1
08:00:20:03:f6:42
01:00:5e:00:00:01
140.252.1.29
224.0.0.1
127.0.0.1
224.0.0.1

0

0

0

0

The -n option prints IP addresses in numeric format (instead of trying to print them as
names), -± prints the interface statistics, and -a reports on all configured interfaces.

The second line of output for le0 (the Ethernet) shows that this interface belongs to
the multicast group 224.0.0.1 ("all hosts"), and two lines later the corresponding Ether-
net address is shown: 01 : 00 : 5e : 00 : 00 : 01. This is what we expect for the Ethernet
address, given the mapping we described in Section 12.4. We also see that the other two
interfaces that support multicasting, the SLIP link sl0 and the loopback interface 3_o0,
also belong to the all-hosts group.

We must also show the IP routing table, as the normal routing table is used for
multicast datagrams. The bold entry shows that all datagrams for 224.0.0.0 are sent to
the Ethernet:

sun % netstat -rn
Routing tables
Destination Gateway Flags Refcnt Use Interface
140.252.13.65 140.252.13.35 UGH 0 32 le0
127.0.0.1 127.0.0.1 UH 1 381 io0
140.252.1.183 140.252.1.29 UH 0 6 sl0
default 140.252.1.183 UG 0 328 sl0
224.0.0.0 140.252.13.33 U 0 66 le0
140.252.13.32 140.252.13.33 U 8 5581 le0

184 IGMP: Internet Group Management Protocol Chapter 13

If you compare this routing table to the one shown in Section 9.2 for the router sun,
you’ll see that the multicast entry is the only change.

We now run a test program that lets us join a multicast group on an interface. (We
don’t show any output for our use of this test program.) We join the group 224.1.2.3 on
the Ethernet interface (140.252.13.33). Executing netstat shows that the kernel has
joined the group, and again the Ethernet address is what we expect. We show the
changes from the previous netstat output in a bold font:

sun % netstat -nia
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
le0 1500 140.252.13. 140.252.13.33 4374 0 4929 0 0

224.1.2.3
224.0.0.1
08:00:20:03:f6:42
01:00:5e:01:02:03
01:00:5e:00:00:01
140.252.1.29 13862 0 15943 0
224.0.0.1
127.0.0.1 1360 0 1360 0
224.0.0.1

slO 552 140.252.1

io0 1536 127

0

0

We have shown the output again for the other two interfaces, s~L0 and ZoO, to reiterate
that the multicast group is joined only on one interface.

Figure 13.4 shows the tcpdurap output corresponding to the process joining the
multicast group.

0.0

6.94

8:0:20:3:f6:42 i:0:5e:i:2:3 lp 60:
sun > 224.1,2,3: igmp report 224.1.2.3 [ttl i]

(6.94) 8:0:20:3:f6:42 i:0:5e:i:2:3 ip 60:
sun > 224.1.2,3: igmp report 224.1.2.3 [ttl i]

Figure 13.4 tcpdump output when a host joins a multicast group.

Line 1 occurs when the host joins the group. The next line is the delayed report that we
said is sent at some random time up to 10 seconds afterward.

We have shown the hardware addresses in these two lines, to verify that the Ether-
net destination address is the correct multicast address. We can also see that the source
IP address is the one corresponding to sun, and the destination IP address is the multi-
cast group address. We can also see that the reported address is that same multicast
group address.

Finally, we note that the TTL is 1, as specified, t cpdump prints the TTL in square
brackets when its value is 0 or 1. This is because the TTL is normally greater than this.
With multicasting, however, we expect to see lots of IP datagrams with a TTL of 1.

Implied in this output is that a multicast router must receive all multicast datagrams
on all its interfaces. The router has no idea which multicast groups the hosts might join.

Section 13.4 An Example 185

Multicast Router Example

Let’s continue the previous example, but we’ll also start a multicast routing daemon on
the host sun. Our interest here is not the details of multicast routing protocols, but to
see the IGMP queries and reports that are exchanged. Even though the multicast rout-
ing daemon is running on the only host that supports multicasting (sun), all the queries
and reports are multicast on the Ethernet, so we can see them on any other system on
the Ethernet.

Before starting the routing daemon we joined another multicast group: 224.9.9.9.
Figure 13.5 shows the output.

0.0 sun > 224.0.0.4: igmp report 224.0.0.4

2
3

4
5
6
7

8
9

10
11

12
13
14
15

0.00 (0.00) sun > 224.0.0
5.10 (5.10) sun > 224.9.9

5.22 (0.12) sun > 224.0.0
7.90 (2.68) sun > 224.1.2
8.50 (0.60) sun > 224.0.0

11.70 (3.20) sun > 224.9.9

125.51 (113.81) sun > 224.0.0
125.70 (0.19) sun > 224.9.9
128.50 (2.80) sun > 224.1.2
129.10 (0.60) sun > 224.0.0

247.82 (118.72) sun > 224.0.0
248.09 (0.27) sun > 224.1.2
248.69 (0.60) sun > 224.0.0
255.29 (6.60) sun > 224.9.9

.i: igmp query

.9: igmp report 224.9.9.9

.I: igmp query

.3: igmp report 224.1.2.3

.4: igmp report 224.0.0.4

.9: igmp report 224.9.9.9

.I: igmp query

.9: igmp report 224.9.9.9

.3: igmp report 224.1.2.3
.4: igmp report 224.0.0.4

.i: igmp query

.3: igmp report 224.1.2.3

.4: igmp report 224.0.0.4
.9: igmp report 224.9.9.9

Figure 13.5 tcpdurap output while multicast routing daemon is running.

We have not included the Ethernet addresses in this output, because we’ve already veri-
fied that they are what we expect. We’ve also deleted the notation that the TTL equals
1, because again that’s what we expect.

Line 1 is output when the routing daemon starts. It sends a report that it has joined
the group 224.0.0.4. Multicast address 224.0.0.4 is a well-known address used by
DVMRP (Distance Vector Multicast Routing Protocol), the protocol currently used for
multicast routing. (DVMRP is defined in RFC 1075 [Waitzman, Partridge, and Deering
1988].)

When the daemon starts it also sends out a query (line 2). The destination IP
address of the query is 224.0.0.1 (all-hosts), as shown in Figure 13.3.

The first report (line 3) is received about 5 seconds later, for group 224.9.9.9. This is
the only report received before another query is sent (line 4). These two queries (lines 2
and 4) occur rapidly when the daemon starts up, as it tries to build its multicast routing
table.

186 IGMP: Internet Group Management Protocol Chapter 13

Lines 5, 6, and 7 are what we expect: one report from the host sun for each group to
which it belongs. Notice that the group 224.0.0.4 is reported, in addition to the two
groups that we explicitly joined, because as long as the routing daemon is running, it
belongs to this group.

The next query on line 8 occurs about 2 minutes after the previous query. Again it
elicits the three reports we expect (lines 9, 10, and 11). The reports are in a different
order this time, as expected, since the time between receiving the query and sending the
report should be randomized.

The final query that we show occurs about 2 minutes after the previous query, and
again we have the expected responses.

13.5 Summary

Multicasting is a way to send a message to multiple recipients. In many applications it
is better than broadcasting, since multicasting imposes less overhead on hosts that are
not participating in the communication. The simple host membership reporting proto-
col (IGMP) is the basic building block for multicasting.

Multicasting on a LAN or across closely connected LANs uses the techniques we’ve
described in this chapter. Since broadcasting is often restricted to a single LAN, multi-
casting could be used instead of broadcasting for many applications that use broadcast-
ing today.

A problem that has not been completely solved, however, is multicasting across
wide area networks. [Deering and Cheriton 1990] propose extensions to common rout-
ing protocols to support multicasting. Section 9.13 of [Perlman 1992] discusses some of
the problems with multicasting across WANs.

[Casner and Deering 1992] describe the delivery of audio for an IETF meeting across
the Internet using multicasting and a virtual network called the MBONE (multicasting
backbone).

Exercises

13.1 We said that hosts schedule IGMP reports with random delays. How can the hosts on a
LAN try to ensure that no two hosts generate the same random delay?

13.2 In [Casner and Deering 1992] they mention that UDP lacks two features needed for send-
ing audio samples across the MBONE: detection of packet reordering and detection of
duplicate packets. How could you add these capabilities above UDP?

ld

DNS: The Domain Name

System

14.1 Introduction

The Domain Name System, or DNS, is a distributed database that is used by TCP/IP
applications to map between hostnames and IP addresses, and to provide electronic
mail routing information. We use the term distributed because no single site on the Inter-
net knows all the information. Each site (university department, campus, company, or
department within a company, for example) maintains its own database of information
and rurts a server program that other systems across the Internet (clients) can query.
The DNS provides the protocol that allows clients and servers to communicate with
each other.

From an application’s point of view, access to the DNS is through a resolver. On
Unix hosts the resolver is accessed primarily through two library functions,
gethostbyname(3) and gethostbyaddr(3), which are linked with the application
when the application is built. The first takes a hostname and returns an IP address, and
the second takes an IP address and looks up a hostname. The resolver contacts one or
more name servers to do the mapping.

In Figure 4.2 (p. 55) we showed that the resolver is normally part of the application.
It is not part of the operating system kernel as are the TCP/IP protocols. Another fun-
damental point from this figure is that an application must convert a hostname to an IP
address before it can ask TCP to open a connection or send a datagram using UDP. The
TCP/IP protocols within the kernel know nothing about the DNS.

In this chapter we’ll take a look at how resolvers communicate with name servers
using the TCP/IP protocols (mainly UDP). We do not cover all the administrative
details of running a name server or all the options available with resolvers and servers.
These details can fill an entire book. (See [Albitz and Liu 1992] for all the details on the
care and feeding of the standard Unix resolver and name server.)

187

188 DNS: The Domain Name System Chapter 14

14.2

RFC 1034 [Mockapetris 1987a] specifies the concepts and facilities provided by the
DNS, and RFC 1035 [Mockapetris 1987b] details the implementation and specification.
The most commonly used implementation of the DNS, both resolver and name server, is
called BIND--the Berkeley Internet Name Domain server. The server is called named.
An analysis of the wide-area network traffic generated by the DNS is given in [Danzig,
Obraczka, and Kumar 1992].

DNS Basics

The DNS name space is hierarchical, similar to the Unix filesystem. Figure 14.1 shows
this hierarchical organization.

um~amed

top level
domams

second level
domains

United Arab Zimbabwe
Emirates

cnri.reston.va.us. ~

generic domams country domams ~

~ 33.13.252.140.h~-addr.arpa.

Figure 14.1 Hierarchical organization of the DNS.

Every node (circles in Figure 14.1) has a label of up to 63 characters. The root of the
tree is a special node with a null label. Any comparison of labels considers uppercase
and lowercase characters the same. The domain name of any node in the tree is the list of
labels, starting at that node, working up to the root, using a period ("dot") to separate

Section 14.2 DNS Basics 189

the labels. (Note that this is different from the Unix filesystem, which forms a pathname
by starting at the top and going down the tree.) Every node in the tree must have a
unique domain name, but the same label can be used at different points in the tree.

A domain name that ends with a period is called an absolute domain name or a fully
qualified domain name (FQDN). An example is sun.t:uc, noao. edu.. If the domain
name does not end with a period, it is assumed that the name needs to be completed.
How the name is completed depends on the DNS software being used. If the uncom-
pleted name consists of two or more labels, it might be considered to be complete; oth-
erwise a local addition might be added to the right of the name. For example, the name
sun might be completed by adding the local suffix . ~:uc. noao. edu..

The top-level domains are divided into three areas:

1. arpa is a special domain used for address-to-name mappings. (We describe this
in Section 14.5.)

2. The seven 3-character domains are called the generic domains. Some texts call
these the organizational domains.

3. All the 2-character domains are based on the country codes found in ISO 3166.
These are called the country domains, or the geographical domains.

Figure 14.2 lists the normal classification of the seven generic domains.

~Domain Description

cora commercial organizations
edu educational institutions
gov other U.S. governmental organizattons
xn~c international organizations
tax1 U.S. mlhtary
neL networks
orcd other organizations

Figure 14.2 The 3-character generic domains.

DNS folklore says that the 3-character generic domains are only for U.S. organiza-
tions, and the 2-character country domains for everyone else, but this is false. There are
many non-U.S, organizations in the generic domains, and many U.S. organizations in
the .us country domain. (RFC 1480 [Cooper and Postel 1993] describes the .us
domain in more detail.) The only generic domains that are restricted to the United
States are . gov and . ra±~_.

Many countries form second-level domains beneath their 2-character country code
similar to the generic domains: . ac. uk, for example, is for academic institutions in the
United Kingdom and . co. uk is for commercial organizations in the United Kingdom.

One important feature of the DNS that isn’t shown in figures such as Figure 14.1 is
the delegation of responsibility within the DNS. No single entity manages every label
in the tree. Instead, one entity (the NIC) maintains a portion of the tree (the top-level
domains) and delegates responsibility to others for specific zones.

190 DNS: The Domain Name System Chapter 14

A zone is a subtree of the DNS tree that is administered separately. A common zone
is a second-level domain, noao. ectu, for example. Many second-level domains then
divide their zone into smaller zones. For example, a university might divide itself into
zones based on departments, and a company might divide itself into zones based on
branch offices or internal divisions.

If you are familiar with the Unix hlesystem, notice that the division of the DNS tree into zones
is similar to the diwsion of a logical Unix filesystem into physical disk partitions. Just as we
can’t tell from Figure 14.1 where the zones of authority he, we can’t tell from a similar picture
of a Umx filesystem which directories are on which disk partitions.

Once the authority for a zone is delegated, it is up to the person responsible for the
zone to provide multiple name servers for that zone. Whenever a new system is installed
in a zone, the DNS administrator for the zone allocates a name and an IP address for the
new system and enters these into the name server’s database. This is where the need
for delegation becomes obvious. At a small university, for example, one person could
do this each time a new system was added, but in a large university the responsibility
would have to be delegated (probably by departments), since one person couldn’t keep
up with the work.

A name server is said to have authority for one zone or multiple zones. The person
responsible for a zone must provide a primary name server for that zone and one or more
secondary name servers. The primary and secondaries must be independent and redun-
dant servers so that availability of name service for the zone isn’t affected by a single
point of failure.

The main difference between a primary and secondary is that the primary loads all
the information for the zone from disk files, while the secondaries obtain all the infor-
mation from the primary. When a secondary obtains the information from its primary
we call this a zone transfer.

When a new host is added to a zone, the administrator adds the appropriate infor-
mation (name and IP address minimally) to a disk file on the system running the pri-
mary. The primary name server is then notified to reread its configuration files. The
secondaries query the primary on a regular basis (normally every 3 hours) and if the
primary contains newer data, the secondary obtains the new data using a zone transfer.

What does a name server do when it doesn’t contain the information requested? It
must contact another name server. (This is the distributed nature of the DNS.) Not every
name server, however, knows how to contact every other name server. Instead every
name server must know how to contact the root name servers. As of April 1993 there
were eight root servers and all the primary servers must know the IP address of each
root server. (These IP addresses are contained in the primary’s configuration files. The
primary servers must know the IP addresses of the root servers, not their DNS names.)
The root servers then know the name and location (i.e., the IP address) of each authori-
tative name server for all the second-level domains. This implies an iterative process:
the requesting name server must contact a root server. The root server tells the request-
ing server to contact another server, and so on. We’ll look into this procedure with
some examples later in this chapter.

Section 14.3 DNS Message Format 191

You can fetch the current list of root servers using anonymous FTP. Obtain the file
netlnfo/root-servers, txt from either ftp. rs. internlc, net or nlc. ddn .mll.

A fundamental property of the DNS is caching. That is, when a name server
receives information about a mapping (say, the IP address of a hostname) it caches that
information so that a later query for the same mapping can use the cached result and
not result in additional queries to other servers. Section 14.7 shows an example of
caching.

14.3 DNS Message Format

There is one DNS message defined for both queries and responses. Figure 14.3 shows
the overall format of the message.

0

identification

number of questions

number of authority RRs

15 16

flags

number of answer RRs

number of additional RRs

questions

answers
(varlable number of resource records)

authority
(variable number of resource records)

additional information
(variable number of resource records)

31

12 bytes

Figure 14.3 General format of DNS queries and responses.

The message has a fixed 12-byte header followed by four variable-length fields.
The identification is set by the client and returned by the server. It lets the client

match responses to requests.

192 DNS: The Domain Name System Chapter 14

The 16-bit flags field is divided into numerous pieces, as shown in Figure 14.4.

QRI opcode AAITCIRD RA (zero) I rcode
1 4 1 1 1 1 3 4

Figure 14.4 flags field in the DNS header

We’ll start at the leftmost bit and describe each field.

¯ QR is a 1-bit field: 0 means the message is a query, i means it’s a response.
¯ opcode is a 4-bit field. The normal value fs 0 (a standard query). Other values are

1 (an inverse query) and 2 (server status request).
¯ AA is a 1-bit flag that means "authoritative answer." The name server is author-

itative for the domain in the question section.
¯ TC is a 1-bit field that means "truncated." With UDP this means the total size of

the reply exceeded 512 bytes, and only the first 512 bytes of the reply was
returned.

¯ RD is a 1-bit field that means "recursion desired." This bit can be set in a query
and is then returned in the response. This flag tells the name server to handle
the query itself, called a recursive query. If the bit is not set, and the requested
name server doesn’t have an authoritative answer, the requested name server
returns a list of other name servers to contact for the answer. This is called an
iterative query. We’ll see examples of both types of queries in later examples.

¯ RA is a 1-bit field that means "recursion available." This bit is set to 1 in the
response if the server supports recursion. We’ll see in our examples that most
name servers provide recursion, except for some root servers.

There is a 3-bit field that must be 0.

rcode is a 4-bit field with the return code. The common values are 0 (no error)
and 3 (name error). A name error is returned only from an authoritative name
server and means the domain name specified in the query does not exist.

The next four 16-bit fields specify the number of entries in the four variable-length
fields that complete the record. For a query, the number of questions is normally 1 and
the other three counts are 0. Similarly, for a reply the number of answers is at least 1, and
the remaining two counts can be 0 or nonzero.

Question Portion of DNS Query Message

The format of each question in the question section is shown in Figure 14.5. There is nor-
mally just one question.

The query name is the name being looked up. It is a sequence of one or more labels.
Each label begins with a 1-byte count that specifies the number of bytes that follow. The
name is terminated with a byte of 0, which is a label with a length of 0, which is the
label of the root. Each count byte must be in the range of 0 to 63, since labels are limited

Section 14.3 DNS Message Format 193

0 15 16 31

I query name

query type query class

Figure 14.5 Format of question portion of DNS query message.

to 63 bytes. (We’ll see later in this section that a count byte with the two high-order bits
turned on, values 192 to 255, is used with a compression scheme.) Unlike many other
message formats that we’ve encountered, this field is allowed to end on a boundary
other than a 32-bit boundary. No padding is used.

Figure 14.6 shows how the domain name gem±n±. ~:uc. noao. edu is stored.

i 3 t u c 4 n o a o 3 e d u 0

count count count count count

Figure 14.6 Representation of the domain name gemini, tuc. noao. edu.

Each question has a query type and each response (called a resource record, which
we talk about below) has a type. There are about 20 different values, some of which are
now obsolete. Figure 14.7 shows some of these values. The query type is a superset of
the type: two of the values we show can be used only in questions.

Name

A
NS
CNAME
PTR
HINFO
MX
AXFR
* or ANY

Numeric
value

1
2
5

12
13
15

252
255

Description

IP address
name server
canonical name
pointer record
host info
mail exchange record
request for zone transfer
request for all records

Figure 14.7 type and query type values for DNS questions and responses.

The most common query type is an A type, which means an IP address is desired
for the query name. A PTR query requests the names corresponding to an IP address.
This is a pointer query that we describe in Section 14.5. We describe the other query
types in Section 14.6.

The query class is normally 1, meaning Internet address. (Some other non-IP values
are also supported at some locations.)

194 DNS: The Domain Name System Chapter 14

Resource Record Portion of DNS Response Message

The final three fields in the DNS message, the answers, authority, and additional informa-
tion fields, share a common format called a resource record or RR. Figure 14.8 shows the
format of a resource record.

0 15 16 31

domain name

type class

tlme-to-hve

resource data length

resource data

Figure 14.8 Format of DNS resource record.

The domain name is the name to which the following resource data corresponds. It is
in the same format as we described earlier for the query name field (Figure 14.6).

The type specifies one of the RR type codes. These are the same as the query type va!-
ues that we described earlier. The class is normally 1 for Internet data.

The time-to-live field is the number of seconds that the RR can be cached by the
client. RRs often have a TTL of 2 days.

The resource data length specifies the amount of resource data. The format of this data
depends on the type. For a type of 1 (an A record) the resource data is a 4-byte IP
address.

Now that we’ve described the basic format of the DNS queries and responses, we’ll
see what is passed in the packets by watching some exchanges using ~:cpctump.

14.4 A Simple Example

Let’s start with a simple example to see the communication between a resolver and a
name server. We’ll run the Telnet client on the host sun to the host cjem±n±, connecting
to the daytime server:

Section 14.4 A Simple Example 195

sun % telnet gemini daytime
Trying 140.252.1.11 ...
Connected to gemini.tuc.noao.edu.
Escape character is ’^]’
Wed Mar 24 10:44:17 1993
Connection closed by foreign host.

first three hnes of output are from Telnet chent

th~s is the output from the daytime server
and th~s ~s/rom the Telnet chent

For this example we direct the resolver on the host sun (where the Telnet client is run)
to use the name server on the host noao.edu (140.252.1.54). Figure 14.9 shows the
arrangement of the three systems.

140.252.1

I edu namenoao.
server

T.1.54 ~\\\

ldaytime
gemini_ / se;ver

~.1 11

Telnetsun client

Figure 14.9 Systems being used for simple DNS example.

As we’ve mentioned before, the resolver is part of the client, and the resolver contacts a
name server to obtain the IP address before the TCP connection can be established
between Telnet and the daytime server.

In this figure we’ve omitted the detail that the connection between sun and the
140.252.1 Ethernet is really a SLIP link (see the figure on the inside front cover) because
that doesn’t affect the discussion. We will, however, run tcpdump on the SLIP link to
see the packets exchanged between the resolver and name server.

The file/etc/resolv, conf on the host sun tells the resolver what to do:

sun % cat /etc/resolv.conf
nameserver 140.252.1.54
domain tuc.noao.edu

The first line gives the IP address of the name server--the host noao. edu. Up to three
nameserver lines can be specified, to provide backup in case one is down or unreach-
able. The domain line specifies the default domain. If the name being looked up is not
a fully qualified domain name (it doesn’t end with a period) then the default domain
¯ tuc. noao. edu is appended to the name. This is why we can type telnet gemini
instead of telnet gemini, tuc. noao. edu.

Figure 14.10 shows the packet exchange between the resolver and name server.

196 DNS: The Domain Name System Chapter 14

0.0 140.252.1.29.1447 > 140.252.1.54.53: I+ A?
gemini.tuc.noao.edu. (37)

0.290820 (0.2908) 140.252.1.54.53 > 140.252.1.29.1447: i* 2/0/0 A
140.252.1.11 (69)

Figure14.10 tcpdump outputfornameserverqueryofthehos~amegemln±.tuc.noao.edu.

We’ve instructed tcpdump not to print domain names for the source and destination IP
addresses of each IP datagram. Instead it prints 140.252.1.29 for the client (the resolver)
and 140.252.1.54 for the name server. Port 1447 is the ephemeral port used by the client
and 53 is the well-known port for the name serv.er. If tcpdump had tried to print names
instead of IP addresses, then it would have been contacting the same name server
(doing pointer queries), confusing the output.

Starting with line 1, the field after the colon (1+) means the identification field is 1,
and the plus sign means the RD flag (recursion desired) is set. We see that by default,
the resolver asks for recursion.

The next field, A?, means the query type is A (we want an IP address), and the
question mark indicates it’s a query (not a response). The query name is printed next:
gemini, tuc. noao. edu.. The resolver added the final period to the query name,
indicating that it’s an absolute domain name.

The length of user data in the UDP datagram is shown as 37 bytes: 12 bytes are the
fixed-size header (Figure 14.3); 21 bytes for the query name (Figure 14.6), and 4 bytes for
the query type and query class. The odd-length UDP datagram reiterates that there is
no padding in the DNS messages.

Line 2 in the t cpdump output is the response from the name server and 1" is the
identification field with the asterisk meaning the AA flag (authoritative answer) is set.
(We expect this server, the primary server for the noao. edu domain, to be authoritative
for names within its domain.)

The output 2 / 0 / 0 shows the number of resource records in the final three variable-
length fields in the response: 2 answer RRs, 0 authority RRs, and 0 additional RRs.
tcpdump only prints the first answer, which in this case has a type of A (IP address)
with a value of 140.252.1.11.

Why do we get two answers to our query? Because the host gemini is multi-
homed. Two IP addresses are returned. Indeed, another useful tool with the DNS is a
publicly available program named host. It lets us issue queries to a name server and
see what comes back. If we run this program we’ll see the two tP addresses for this
host:

sun % host gemini
gemini.tuc.noao.edu A
gemlni.tuc.noao.edu A

140.252.1.11
140.252.3.54

The first answer in Figure 14.10 and the first line of output from the host command are
the IP address that shares the same subnet (140.252.1) as the requesting host. This is not
an accident. If the name server and the host issuing the query are on the same network
(or subnet), then BIND sorts the results so that addresses on common networks appear
first.

Section 14.4 A Simple Example 197

We can still access the host gemini using the other address, but it might be less efficient.
Using traceroute m this instance shows that the normal route from subnet 140.252.1 to
140 252.3 is not through the host gemini, but through another router that’s comaected to both
networks. So m this case if we accessed gemini through the other IP address (140.252.3 54) all
the packets would require an additional hop. We return to thls example and explore the rea-
son for the alternative route in Section 25.9, when we can use SNMP to look at a router’s rout-
mg table

There are other programs that provide easy interactive access to the DNS. nslookup ~s sup-
plied with most ~mplementations of the DNS. Chapter 10 of [Albitz and L~u 1992] provides a
detailed descnptlon of how to use this program. The d~.g program ("Domain Intemet
Groper") is another publicly avaJable tool that queries DNS servers, doc ("Domain Obscenity
Control") is a shell script that uses dig and dmgnoses misbehaving domains by sending
queries to the appropriate DNS name servers, and performing simple analysis of the
responses. See Appen&x F for details on how to obtain these programs.

The final detail to account for in this example is the size of the UDP data in the
reply: 69 bytes. We need to know two points to account for these bytes.

The question is returned in the reply.

There can be many repetitions of domain names in a reply, so a compression
scheme is used. Indeed, in our example, there are three occurrences of the
domain name gemini, tuc. noao. edu.

The compression scheme is simple. Anywhere the label portion of a domain
name can occur, the single count byte (which is between 0 and 63) has its two
high-order bits turned on instead. This means it is a 16-bit pointer and not an
8-bit count byte. The 14 bits that follow in the pointer specify an offset in the
DNS message of a label to continue with. (The offset of the first byte in the iden-
tification field is 0.) We purposely said that this pointer can occur wherever a
label can occur, not just where a complete domain name can occur, since it’s pos-
sible for a pointer to form either a complete domain name or just the ending
portion of a name. (This is because the ending labels in the names from a given
domain tend to be identical.)

Figure 14.11 shows the format of the DNS reply, line 2 from Figure 14.10. We also show
the IP and UDP headers to reiterate that DNS messages are normally encapsulated in
UDP datagrams. We explicitly show the count bytes in the labels of the domain name in
the question. The two answers returned are the same, except for the different IP
addresses returned in each answer. In this example the pointer in each answer would
have a value of 12, the offset from the start of the DNS header of the complete domain
name.

The final point to note from this example is from the second line of output from the
Telnet command, which we repeat here:

sun % telnet gemini daytime
Trying 140.252.1.11 ...
Connected to gemini.tuc.noao.edu.

we only type gemini

but the Telnet client outputs FQDN

We typed just the hostname (gemini), not the FQDN, but the Telnet client output the
FQDN. What’s happening is that the Telnet client looks up the name we type by calling

198 DNS: The Domain Name System Chapter 14

IP datagram

IP UDP DNS
header header header

20 bytes 8 bytes 12~bytes

domain name
(6gemln ~3t uc4noao3eduO)

UDP datagram

DNS message

question
(Figure 14.5)

25 bytes

21 bytes

answer #1 (RR) answer #2 (RR)
(Figure 14.8) I, (Figure 14.8)

16 bytes - ,16 bytes

qtype qclass’ f ptr I type I classl Ilength , I
(1) (1)](12) (1) (I)

TTL (4) IP adc~r]

2 2 2 2 2 4 2 4

Figure 14.11 Format of DNS reply corresponding to line 2 of Figure 14 10.

the resolver (gethostbyname), which returns the IP addresses and the FQDN. Telnet
then prints the IP address that it’s trying to establish a TCP connection with, and when
the connection is established, it outputs the FQDN.

If there is a significant pause between typing the Telnet command and printing the
IP address, this delay is caused by the resolver contacting a name server to resolve the
name into an IP address. A pause between printing Trying and Connected to, how-
ever, is a delay caused by the establishment of the TCP connection between the client
and server, not the DNS.

14.5 Pointer Queries

A perpetual stumbling block in understanding the DNS is how pointer queries are
handled--given an IP address, return the name (or names) corresponding to that
address.

First return to Figure 14.1 (p. 188) and examine the arpa top-level domain, and the
in-addr domain beneath it. When an organization joins the Internet and obtains
authority for a portion of the DNS name space, such as noao. edu, they also obtain
authority for a portion of the in-addr, arpa name space corresponding to their IP
address on the Internet. In the case of noao. edu it is the class B network ID 140.252.
The level of the DNS tree beneath in-addr, arpa must be the first byte of the IP
address (140 in this example), the next level is the next byte of the IP address (252), and
so on. But remember that names are written starting at the bottom of the DNS tree,
working upward. This means the DNS name for the host sun, with an IP address of
140.252.13.33, is 33.13. 252. 140. in-addr, arpa.

We have to write the 4 bytes of the IP address backward because authority is dele-
gated based on network IDs: the first byte of a class A address, the first and second

;ection 14.5 Pointer Queries 199

bytes of a class B address, and the first, second, and third bytes of a class C address. The
first byte of the IP address must be immediately below the ±n-addr label, but FQDNs
are written from the bottom of the tree up. If FQDNs were written from the top down,
then the DNS name for the IP address would be arpa. ±n-addr. 140. 252.3_3.33, but
the FQDN for the host would be edu. noao. tuc. sun.

If there was not a separate branch of the DNS tree for handling this address-to-
name translation, there would be no way to do the reverse translation other than start-
ing at the root of the tree and trying every top-level domain. This could literally take
days or weeks, given the current size of the Internet. The ±n-addr. arpa solution is a
clever one, although the reversed bytes of the IP address and the special domain are
confusing.

Having to worry about the ±n-addr. arpa domain and reversing the bytes of the
IP address affects us only if we’re dealing directly with the DNS, using a program such
as host, or watching the packets with tcpdurap. From an application’s point of view,
the normal resolver function (gethostbyaddr) takes an IP address and returns infor-
mation about the host. The reversal of the bytes and appending the domain
in-addr, arpa are done automatically by this resolver function.

Example

Let’s use the host program to do a pointer lookup and watch the packets with
tcpdurap. We’ll use the same setup as in Figure 14.9, running the host program on the
host sun, and the name server on the host noao. edu. We specify the IP address of our
host svr4:

sun % host 140.252.13.34
Name: svr4.tuc.noao.edu
Address: 140.252.13.34

Since the only command-line argument is an IP address, the host program automati-
cally generates the pointer quer~ Figure 14.12 shows the tcpdump output.

1 0.0 140.252.1.29.1610 > 140.252.1.54.53: 1+ PTR?
34.13.252.140.1n-addr.arpa. (44)

2 0.332288 (0.3323) 140.252.1.54.53 > 140.252.1.29.1610: i* I/0/0 PTR
svr4.tuc.noao.edu. (75)

Figure 14.12 tcpdump output for a pointer query.

Line 1 shows that the identifier is 1, the recursion-desired flag is set (the plus sign), and
the query type is PTR. (Recall that the question mark means this is a query and not a
response.) The data size of 44 bytes is from the 12-byte DNS header, 28 bytes for the 7
labels in the domain name, and 4 bytes for the query type and query class.

The reply has the authoritative-answer bit set (the asterisk) and contains one
answer RR. The RR type is PTR and the resource data contains the domain name.

What is passed from the resolver to the name server for a pointer query is not a
32-bit IP address, but the domain name 34.13.252.140. in-addr, arpa.

200 DNS: The Domain Name System Chapter 14

Hostname Spoofing Check

When an IP datagram arrives at a host for a server, be it a UDP datagram or a TCP con-
nection request segment, all that’s available to the server process is the client’s IP
address and port number (UDP or TCP). Some servers require the client’s IP address to
have a pointer record in the DNS. We’ll see an example of this, using anonymous FTP
from an unknown IP address, in Section 27.3.

Other servers, such as the Rlogin server (Chapter 26), not only require that the
client’s IP address have a pointer record, but then ask the DNS for the IP addresses cor-
responding to the name returned in the PTR response, and require that one of the
returned addresses match the source IP address in the received datagram. This check is
because entries in the . rhosts file (Section 26.2) contain the hostname, not an IP
address, so the server wants to verify that the hostname really corresponds to the
incoming IP address.

Some vendors automatically put this check into their resolver routines, specifically
the function gethostbyaddr. This makes the check available to any program using
the resolver, instead of manually placing the check in each application.

We can see an example of this using the SunOS 4.1.3 resotver library. We have writ-
ten a simple program that performs a pointer query by calling the function
gethostbyaddr. We have also set our /etc/resolv.conf file to use the name
server on the host noao. edu, which is across the SLIP link from the host sun. Fig-
ure 14.13 shows the tcpdurap output collected on the SLIP link when the function
gethostbyaddr is called to fetch the name corresponding to the IP address
140.252.1.29 (our host sun).

0.0 sun.1812 > noao.edu.domain: i+ PTR?
29.1.252.140.in-addr.arpa. (43)

0.339091 (0.3391) noao.edu.domaln > sun.1812: I* i/0/0 PTR
sun.tuc.noao.edu. (73)

3 0.344348 (0.0053)

4 0.669022 (0.3247)

Figure 14.13

sun.1813 > noao.edu.domain: 2+ A?
sun.tuconoao.edu. (33)
noao.edu.domain > sun.1813: 2* 2/0/0 A
140.252.1.29 (69)

Callingresolverfunct,ontoperform pointerquer~

Line 1 is the expected pointer query, and line 2 is the expected response. But the
resolver function automatically sends an IP address query in line 3 for the name
returned in line 2. The response in line 4 contains two answer records, since the host
sun has two IP addresses. If one of the addresses does not match the argument to
gethostbyaddr, a message is sent to the system logging facility, and the function
returns an error to the application.

Section 14.6 Resource Records 201

14.6 Resource Records

We’ve seen a few different types of resource records (RRs) so far: an IP address has a
type of A, and PTR means a pointer query. We’ve also seen that RRs are what a name
server returns: answer RRs, authority RRs, and additional information RRs. There are
about 20 different types of resource records, some of which we’ll now describe. Also,
more RR types are being added over time.

A

PTR

CNAME

HINFO

An A record defines an IP address. It is stored as a 32-bit binary value.

This is the pointer record used for pointer queries. The IP address is rep-
resented as a domain name (a sequence of labels) in the in-addr, arpa
domain.

This stands for "canonical name." It is represented as a domain name (a
sequence of labels). The domain name that has a canonical name is often
called an alias. These are used by some FTP sites to provide an easy to
remember alias for some other system.

For example, the gated server (mentioned in Section 10.3) is available
through anonymous FTP from the server gated, cornell.÷du. But
there is no system named gated, this is an alias for some other system.
That other system is the canonical name for gated, cornell, edu:

sun % host -tcname gated.eornell.edu
gated.cornell.edu CNAME COMET.CIT.CORNELL.EDU

Here we use the -t option to specify one particular query type.

Host information: two arbitrary character strings specifying the CPU and
operating system. Not all sites provide HINFO records for all their sys-
tems, and the information provided may not be up to date.

sun % host -t hinfo sun
sun.tuc.noao.edu HINFO Sun-4/25 Sun4.1.3

MX Mail exchange records, which are used in the following scenarios: (1) A
site that is not connected to the Internet can get an Internet-connected
site to be its mail exchanger. The two sites then work out an alternative
way to exchange any mail that arrives, often using the UUCP protocol.
(2) MX records provide a way to deliver mail to an alternative host when
the destination host is not available. (3) MX records allow organizations
to provide virtual hosts that one can send mail to, such as
cs. university, edu, even if a host with that name doesn’t exist. (4)
Organizations with firewall gateways can use MX records to limit con-
nectivity to internal systems.

202 DNS: The Domain Name System Chapter 14

NS

Many sites that are not connected to the Internet have a UUCP link with
an Internet connected site such as UUNET. MX records are then pro-
vided so that electronic mail can be sent to the site using the standard
user@host notation. For example, a fictitious domain foo. corn might
have the following MX records:

sun % host -t mx foo.com
foo.com MX relayI.UU.NET
foo.com MX relay2.UU.NET

MX records are used by mailers on hosts connected to the Internet. In
this example the other mailers, are told "if you have mail to send to
user@ foo. com, send the mail to relayl, uu. net or
relay2, uu. net."

MX records have 16-bit integers assigned to them, called preference values.
If multiple MX records exist for a destination, they’re used in order, start-
ing with the smallest preference value.

Another example of MX records handles the case when a host is down or
unavailable. In that case the mailer uses the MX records only if it can’t
connect to the destination using TCP. In the case of the author’s primary
system, which is connected to the Internet by a SLIP connection, which is
down most of the time, we have:

sun % host -tv mx sun
Query about sun for record types MX
Trying sun within tuc.noao.edu ...
Query done, 2 answers, authoritative status: no error
sun.tuc.noao.edu 86400 IN MX 0 sun.tuc.noao.edu
sun.tuc.noao.edu 86400 IN MX i0 noao.edu

We also specified the -v option, to see the preference values. (This
option also causes other fields to be output.) The second field, 86400, is
the time-to-live value in seconds. This TTL is 24 hours (24 x 60 x 60). The
third column, IN, is the class (Internet). We see that direct delivery to the
host itself, the first MX record, has the lowest preference value of 0. If
that doesn’t work (i.e., the SLIP link is down), the next higher preference
is used (10) and delivery is attempted to the host noao.edu. If that
doesn’t work, the sender will time out and retry at a later time.

In Section 28.3 we show examples of SMTP mail delivery using MX
records.

Name server record. These specify the authoritative name server for a
domain. They are represented as domain names (a sequence of labels).
We’ll see examples of these records in the next section.

These are the common types of RRs. We’ll encounter many of them in later examples.

Section 14.7 Caching 203

14.7 Caching

To reduce the DNS traffic on the Internet, all name servers employ a cache. With the
standard Unix implementation, the cache is maintained in the server, not the resolver.
Since the resolver is part of each application, and applications come and go, putting the
cache into the program that lives the entire time the system is up (the name server)
makes sense. This makes the cache available to any applications that use the server.
Any other hosts at the site that use this name server also share the server’s cache.

In the scenario that we’ve used for our examples so far (Figure 14.9), we’ve run the
clients on the host sun accessing the name server across the SLIP link on the host
noao. edu. We’ll change that now and run the name server on the host sun. In this
way if we monitor the DNS traffic on the SLIP link using tcpdump, we’ll only see
queries that can’t be handled by the server out of its cache.

By default, the resolver looks for a name server on the local host (UDP port 53 or
TCP port 53). We delete the nameserver directive from our resolver file, leaving only
the domain directive:

sun % cat /etc/resolv.conf
domain tuc.noao.edu

The absence of a nameserver directive in this file causes the resolver to use the name
server on the local host.

We then use the host command to execute the following query:

sun % host ftp.uu.net
ftp.uu.net A 192.48.96.9

Figure 14.14 shows the tcpdurap output for this query.

1 0.0

2 0.559285 (0.5593)

sun.tuc.noao.edu.domain > NS.NIC.DDN.MIL.domain:
2 A? ftp.uu.net. (28)
NS.NIC,DDN,MIL,domaln > sun.tuc.noao.edu.domain:
2- 0/5/5 (229)

3 0.564449 (0.0052)

4 1,009476 (0.4450)

sun.tuc.noao.edu.domaln > ns.UU.NET.domain:
3+ A? ftp.uu.net. (28)
ns.UU.NET.domain > sun.tuc,noao.edu.domain:
3* i/0/0 A ftp. UU.NET (44)

Figure 14.14 tcpdump output for: host ftp. uu. net.

This time we’ve used a new option for tcpdump. We collected all the data to or from UDP or
TCP ports 53 with the -w option. This saves the raw output m ahle for later processing. This
prevents tcpdump from trying to call the resolver itself, to pnnt all the names corresponding
to the IP addresses. After we ran our queries, we terminated tcpdurap and reran ~t with the
-r option. Th~s causes it to read the raw output hie and generate its normal pnnted output
(which we show ha Figure 14.14). This takes a few seconds, since tcpdump calls the resolver
itself.

204 DNS: The Domain Name System Chapter 14

The first thing to notice in our tcpdurap output is that the identifiers are small inte-
gers (2 and 3). This is because we terminated the name server, and then restarted it, to
force the cache to be empty. When the name server starts up, it initializes the identifier
to 1.

When we type our query, looking for the IP address of the host ftp. uu. nee, the
name server contacts one of the eight root servers, ns. n±c. ddn.ra±l (line 1). This is
the normal A type query that we’ve seen before, but notice that the recursion-desired
flag is not specified. (A plus sign would have been printed after the identifier 2 if the
flag was set.) In our earlier examples we always saw the resolver set the recursion-
desired flag, but here we see that our name server doesn’t set the flag when it’s contact-
ing one of the root servers. This is because the’root servers shouldn’t be asked to recur-
sively answer queries--they should be used only to find the addresses of other,
authoritative servers.

Line 2 shows that the response comes back with no answer RRs, five authority RRs,
and five additional information RRs. The minus sign following the identifier 2 means
the recursion-available (RA) flag was not set--this root server wouldn’t answer a recur-
sive query even if we asked it to.

Although tcpdurap doesn’t print the 10 RRs that are returned, we can execute the
host command to see what’s in the cache:

sun % host -v ftp.uu.net
Query about ftp.uu.net for record types A
Trying ftp.uu.net ...
Query done, 1 answer, status: no error
The following answer is not authoritatlve:
ftp.uu.net 19109
Authoritative nameservers:

IN A 192.48.96.9

UU.NET 170308 IN NS NS.UU.NET
UU.NET 170308 IN NS UUNET.UU.NET
UU.NET 170308 IN NS UUCP-GW-I.PAoDEC.COM
UU.NET 170308 IN NS UUCP-GW-2.PA.DEC.COM
UU.NET 170308 IN NS NS.EU.NET
Additional informatlon:
NS.UU.NET 170347 IN A 137.39.1.3
UUNET.UU.NET 170347 IN A 192.48.96.2
UUCP-GW-I.PA.DEC.COM 170347 IN A 16.1.0.18
UUCP-GW-2.PA.DEC.COM 170347 IN A 16.1.0.19
NS.EU.NET 170347 IN A 192.16.202.11

This time we specified the -v option to see more than just the A record. This shows that
there are five authoritative name servers for the domain uu. net. The five RRs with
additional information that are returned by the root server contain the IP addresses of
these five name servers. This saves us from having to contact the root server again, to
look up the address of one of the servers. This is another implementation optimization
in the DNS.

The host command states that the answer is not authoritative. This is because the
answer was obtained from our name server’s cache, not by contacting an authoritative
server.

Returning to line 3 of Figure 14.14, our name server contacts the first of the authori-
tative servers (ns.uu.net) with the same question: What is the IP address of

ection 14.7 Caching 208

ftp.uu.net? This time our server sets the recursion-desired flag. The answer is
returned on line 4 as a response with one answer RR.

We then execute the host command again, asking for the same name:

sun % host ftp.uu.net
ftp.uu, net A 192.48.96.9

This time there is no tcpdump output. This is what we expect, since the answer output
by host is returned from the server’s cache.

We execute the host commandagain, looking for the address of
ftp. ee. lbl. gov:

sun % host ftp.ee.lbl.gov
ftp.ee.lbl.gov CNAME ee.lbl.gov
ee.lbl.gov A 128.3.112.20

Figure 14.15 shows the tcpdurap output.

1 18.664971

2 19.429412

3 19.432271

4 19.909242

17.6555)

0.7644)

sun.tuc.noao.edu.domain > c.nyser.net.domain:
4 A? ftp.ee.lbl.gov. (32)
c.nyser.net.domain > sun.tuc.noao.edu.domain:
4 0/4/4 (188)

0.0029)

0.4770)

sun.tuc.noao.edu.domain > nsl.lbl.gov.domain:
5+ A? ftp.ee.lbl.gov. (32)
nsl.lbl.gov.domain > sun.tuc.noao.edu.domain:
5* 2/0/0 CNAME ee.lbl.gov. (72)

Figure 14.15 tcpdump output for: host ftp. ee. lbl. gov.

Line 1 shows that this time our server contacts another of the root servers (c. nyser, net). A
name server normally cycles through the various servers for a zone until round-trip estimates
are accumulated. The server with the smallest round-trip time is then used.

Since our server is contacting a root server, the recursion-desired flag is not set.
This root server does not clear the recursion-available flag, as we saw in line 2 in Fig-
ure 14.14. (Even so, a name server still should not ask a root server for a recursive
query.)

In line 2 the response comes back with no answers, but four authority RRs and four
additional information RRs. As we can guess, the four authority RRs are the names of
the name servers for ftp.ee.lbl.gov, and the four other RRs contain the IP
addresses of these four servers.

Line 3 is the query of the name server nsl. lbl. gov (the first of the four name
servers returned in line 2). The recursion-desired flag is set.

The response in line 4 is different from previous responses. Two answer RRs are
returned and tcpdump says that the first one is a CNAME RR. The canonical name of
ftp. ee. ibl. gov is ee. ibl. gov.

This is a common usage of CNAME records. The FTP site for LBL always has a name begin-
ning with ftp, but it may move from one host to another over time. Users need only know
the name ftp. ee. lbl. gov and the DNS wdl replace this with its canonical name when refer-
enced.

206 DNS: The Domain Name System Chapter 14

14.8

Remember that when we ran host, it printed both the CNAME and the 1P address
of the canonical name. This is because the response (line 4 in Figure 14.15) contained
two answer RRs. The first one is the CNAME and the second is the A record. If the A
record had not been returned with the CNAME, our server would have issued another
query, asking for the IP address of ee. lbl.gov. This is another implementation
optimization--both the CNAME and the A record of the canonical name are returned
in one response.

UDP or TCP

We’ve mentioned that the well-known port numbers for DNS name servers are UDP
port 53 and TCP port 53. This implies that the DNS supports both UDP and TCP. But
all the examples that we’ve watched with tcpdump have used UDP. When is each
protocol used and why?

When the resolver issues a query and the response comes back with the TC bit set
("truncated") it means the size of the response exceeded 512 bytes, so only the first 512
bytes were returned by the server. The resolver normally issues the request again, using
TCP. This allows more than 512 bytes to be returned. (Recall our discussion of the max-
imum UDP datagram size in Section 11.10.) Since TCP breaks up a stream of user data
into what it calls segments, it can transfer any amount of user data, using multiple
segments.

Also, when a secondary name server for a domain starts up it performs a zone
transfer from the primary name server for the domain. We also said that the secondary
queries the primary on a regular basis (often every 3 hours) to see if the primary has
had its tables updated, and if so, a zone transfer is performed. Zone transfers are done
using TCP, since there is much more data to transfer than a single query or response.

Since the DNS primarily uses UDP, both the resolver and the name server must per-
form their own timeout and retransmission. Also, unlike many other Internet applica-
tions that use UDP (TFTP, BOOTP, and SNMP), which operate mostly on local area
networks, DNS queries and responses often traverse wide area networks. The packet
loss rate and variability in round-trip times are normally higher on a WAN than a LAN,
increasing the importance of a good retransmission and timeout algorithm for DNS
clients.

14.9 Another Example

Let’s look at another example that ties together many of the DNS features that we’ve
described. We start an Rlogin client, connecting to an Rlogin server in some other
domain. Figure 14.16 shows the exchange of packets that takes place. The following 11
steps take place, assuming none of the information is already cached by the client or
server:

1. The client starts and calls its resolver function to convert the hostname that we
typed into an IP address. A query of type A is sent to a root server.

Section 14.9 Another Example 207

root
name server

root
name server

Rlogh~
server

Rlogin
client

server’s
name server

chent’s
name server

Figure 14.16 Summary of packets exchanged to start up Rlogin chent and server.

2. The root server’s response contains the name servers for the server’s domain.
3. The client’s resolver reissues the query of type A to the server’s name server.

This query normally has the recursion-desired flag set.
4. The response comes back with the IP address of the server host.

5. The Rlogin client establishes a TCP connection with the Rlogin server. (Chap-
ter 18 provides all the details of this step.) Three packets are exchanged
between the client and server TCP modules.

6. The Rlogin server receives the connection from the client and calls its resolver
to obtain the name of the client host, given the IP address that the server
receives from its TCP. This is a PTR query issued to a root name server. This
root server can be different from the root server used by the client in step 1.

7. The root server’s response contains the name servers for the client’s
in-addr, arpa domain.

8. The server’s resolver reissues the PTR query to the client’s name server.

9. The PTR response contains the FQDN of the client host.
10. The server’s resolver issues a query of type A to the client’s name server, ask-

ing for the IP addresses corresponding to the name returned in the previous
step. This may be done automatically by the server’s gethostbyaddr func-
tion, as we described in Section 14.5, otherwise the Rlogin server does this step
explicitly. Also, the client’s name server is often the same as the client’s
±n-addr. arpa name server, but this isn’t required.

11. The response from the client’s name server contains the A records for the client
host. The Rlogin server compares the A records with the IP address from the
client’s TCP connection request.

Caching can reduce the number of packets exchanged in this figure.

208 DNS: The Domain Name System Chapter 14

14.10 Summary

The DNS is an essential part of any host connected to the Internet, and widely used in
private internets also. The basic organization is a hierarchical tree that forms the DNS
name space.

Applications contact resolvers to convert a hostname to an IP address, and vice
versa. Resolvers then contact a local name server, and this server may contact one of the
root servers or other servers to fulfill the request.

All DNS queries and responses have the same message format. This message con-
tains questions and possibly answer resource records (RRs), authority RRs, and addi-
tional RRs. We saw numerous examples, showing the resolver configuration file and
some of the DNS optimizations: pointers to domain names (to reduce the size of mes-
sages), caching, the ±n-addr. arpa domain (to look up a name given an IP address),
and returning additional RRs (to save the requestor from issuing another query).

Exercises

14.1

14.2

14.3

14.4

14.5

Classify a DNS resolver and a DNS name server as either client, server, or both.

Account for all 75 bytes in the response in Figure 14.12.

In Section 12.3 we said that an application that accepts either a dotted-decimal IP address
or a hostname should assume the former, and if that fails, then assume a hostname. What
happens if the order of the tests is reversed?

Every UDP datagram has an associated length. A process that receives a UDP datagram is
told what its length is. When a resolver issues a query using TCP instead of UDP, since
TCP is a stream of bytes without any record markers, how does the application know how
much data is returned? Notice that there is no length field in the DNS header (Figure 14.3).
(Hint: Look at RFC 1035.)

We said that a name server must know the IP addresses of the root servers and that this
information is available via anonymous FTP. Unfortunately not all system administrators
update their DNS files whenever changes are made to the list of root servers. (Changes do
occur to the list of root servers, but not frequently.) How do you think the DNS handles
this?

14.6 Fetch the file specified in Exercise 1.8 and determine who is responsible for maintaining
the root name servers. How frequently are the root servers updated?

14.7 What is a problem with maintaining the cache in the name server, and having a stateless
resolver?

14.8 In the discussion of Figure 14.10 we said that the name server sorts the A records so that
addresses on common networks appear first. Who should sort the A records, the name
server or the resolver?

15

TFTP: Trivial File Transfer

Protocol

15.1 Introduction

TFTP is the Trivial File Transfer Protocol. It is intended to be used when bootstrapping
diskless systems (normally workstations or X terminals). Unlike the File Transfer Proto-
col (FTP), which we describe in Chapter 27 and which uses TCP, TFTP was designed to
use UDP, to make it simple and small. Implementations of TFTP (and its required UDP,
IP, and a device driver) can fit in read-only memory.

This chapter provides an overview of TFTP because we’ll encounter it in the next
chapter with the Bootstrap Protocol. We also encountered TFTP in Figure 5.1 when we
bootstrapped the host sun from the network. It issued a TFTP request after obtaining
its IP address using RARP.

RFC 1350 [Sollins 1992] is the official specification of version 2 of TFTP. Chapter 12
of [Stevens 1990] provides a complete source code implementation of a TFTP client and
server, and describes some of the programming techniques used with TFTP.

15.2 Protocol

Each exchange between a client and server starts with the client asking the server to
either read a file for the client or write a file for the client. In the normal case of boot-
strapping a diskless system, the first request is a read request (RRQ). Figure 15.1 shows
the format of the five TFTP messages. (Opcodes I and 2 share the same format.)

The first 2 bytes of the TFTP message are an opcode. For a read request (RRQ) and
write request (WRQ) the f!lename specifies the file on the server that the client wants to
read from or write to. We specifically show that this filename is terminated by a byte of
0 in Figure 15.1. The mode is one of the ASCII strings netasc±± or octet (in any

209

210 TFTP: Trivial File Transfer Protocol Chapter 15

IP /
UDP

header header

20 bytes 8 bytes

IP datagram

opcode~
(1 =RRQ)I

2 bytes ~

opcode~ block
(3=data) number

2 bytes 2 bytes

2 bytes 2 bytes

UDP datagram
~

TFTP message q~

filename I0 mode
~

N bytes 1 N bytes 1

data

0-512 bytes

error message

N bytes

Figure 15.1 Format of the five TFTP messages.

combination of uppercase or lowercase), again terminated by a byte of 0. netasc±±
means the data are lines of ASCII text with each line terminated by the 2-character
sequence of a carriage return followed by a linefeed (called CR/LF). Both ends must
convert between this format and whatever the local host uses as a line delimiter. An
octet transfer treats the data as 8-bit bytes with no interpretation.

Each data packet contains a block number that is later used in an ackmowledgment
packet. As an example, when reading a file the client sends a read request (RRQ) speci-
fying the filename and mode. If the file can be read by the client, the server responds
with a data packet with a block number of 1. The client sends an ACK of block number
1. The server responds with the next data packet, with a block number of 2. The client
sends an ACK of block number 2. This continues until the file is transferred. Each data
packet contains 512 bytes of data, except for the final packet, which contains 0-511
bytes of data. When the client receives a data packet with less than 512 bytes of data, it
knows it has received the final packet.

Section 15.3 An Example 211

In the case of a write request (WRQ), the client sends the WRQ specifying the file-
name and mode. If the file can be written by the client, the server responds with an
ACK of block number 0. The client then sends the first 512 bytes of file with a block
number of 1. The server responds with an ACK of block number 1.

This type of data transmission is called a stop-and-wait protocol. It is found only in
simple protocols such as TFTP. We’ll see in Section 20.3 that TCP provides a different
form of acknowledgment, which can provide higher throughput. TFTP is designed for
simplicity of implementation, not high throughput.

The final TFTP message type is the error message, with an opcode of 5. This is what
the server responds with if a read request or write request can’t be processed. Read and
write errors during file transmission also cause this message to be sent, and transmis-
sion is then terminated. The error number gives a numeric error code, followed by an
ASCII error message that might contain additional, operating system specific informa-
tion.

Since TFTP uses the unreliable UDP, it is up to TFTP to handle lost and duplicated
packets. Lost packets are detected with a timeout and retransmission implemented by
the sender. (Be aware of a potential problem called the "sorcerer’s apprentice syn-
drome" that can occur if both sides time out and retransmit. Section 12.2 of [Stevens
1990] shows how the problem can occur.) As with most UDP applications, there is no
checksum in the TFTP messages, which assumes any corruption of the data will be
caught by the UDP checksum (Section 11.3).

15.3 An Example

Let’s examine TFTP by watching the protocol in action. We’ll run the TFTP client on the
host bsd± and fetch a text file from the host svr4:

bsdl % tftp svr4
tftp> get testl.c
Received 962 bytes
tftp> quit

in 0.3 seconds

start the TFTP client
fetch a file from the server

and terminate

bsdx % is -i testl.c how many bytes in thefile we fetched?
-rw-r--r-- 1 rstevens staff 914 Mar 20 11:41 testl.c

bsdi % wc -I testl.c
48 testl.c

and how many lines?

The first point that catches our eye is that the file contains 914 bytes under Unix, but
TFTP transfers 962 bytes. Using the we program we see that there are 48 lines in the file,
so the 48 Unix newline characters are expanded into 48 CR/LF pairs, since the TFTP
default is a netascii transfer.

Figure 15.2 shows the packet exchange that takes place.

212 TFTP: Trivial File Transfer Protocol Chapter 15

1

2
3

4
5

0.0 bsdi.ll06 > svr4.tftp:

0.287080 (0.2871) svr4.1077 > bsdl.ll06: udp 516
0.291178 (0.0041) bsdi.l106 > svr4.1077: udp 4

0.299446 (0.0083)
0.312320 (0.0129)

19 RRQ "testl.c"

svr4.1077 > bsdl.ll06: udp 454
bsdl.ll06 > svr4.1077: udp 4

Figure 15.2 Packet exchange for TFTP of a file.

Line 1 shows the read request from the client to the server. Since the destination UDP
port is the TFTP well-known port (69), tcpdurap interprets the TFTP packet and prints
RRQ and the name of the file. The length of the UDP data is printed as 19 bytes and is
accounted for as follows: 2 bytes for the opcode, 7 bytes for the filename, i byte of 0, 8
bytes for netascii, and another byte of 0.

The next packet is from the server (line 2) and contains 516 bytes: 2 bytes for the
opcode, 2 bytes for the block number, and 512 bytes of data. Line 3 is the acknowledg-
ment for this data: 2 bytes for the opcode and 2 bytes for the block number.

The final data packet (line 4) contains 450 bytes of data. The 512 bytes of data in
line 2 and this 450 bytes of data account for the 962 bytes of data output by the client.

Note that tcpdump doesn’t output any additional TFTP protocol information for
lines 2-5, whereas it interpreted the TFTP message in line 1. This is because the
server’s port number changes between lines 1 and 2. The TFTP protocol requires that
the client send the first packet (the RRQ or WRQ) to the server’s well-known UDP port
(69). The server then allocates some other unused ephemeral port on the server’s host
(1077 in Figure 15.2), which is then used by the server for all further packet exchange
between this client and server. The client’s port number (1106 in this example) doesn’t
change, tcpdurap has no idea that port 1077 on host svr4 is really a TFTP server.

The reason the server’s port number changes is so the server doesn’t tie up the well-
known port for the amount of time required to transfer the file (which could be many
seconds or even minutes). Instead, the well-known port is left available for other TFTP
clients to send their requests to, while the current transfer is under way.

Recall from Figure 10.6 (p. 133) that when the RIP server had more than 512 bytes to
send to the client, both UDP datagrams came from the server’s welt-known port. In
that example, even though the server had to write multiple datagrams to send all the
data back, the server did one write, followed by the next, both from its well-known
port. Here, with TFTP, the protocol is different since there is a longer term relationship
between the client and server (which we said could be seconds or minutes). If one
server process used the well-known port for the duration of the file transfer, it would
either have to refuse any further requests that arrived from other clients, or that one
server process would have to multiplex file transfers with multiple clients at the same
time, on the same port (69). The simplest solution is to have the server obtain a new
port after it receives the RRQ or WRQ. Naturally the client must detect this new port
when it receives the first data packet (line 2 in Figure 15.2) and then send all further
acknowledgments (lines 3 and 5) to that new port.

In Section 16.3 we’ll see TFTP used when an X terminal is bootstrapped.

Chapter 15 Exercises 213

15.4 Security

Notice in the TFTP packets (Figure 15.1) that there is no provision for a username or
password. This is a feature (i.e., "security hole") of TFTP. Since TFTP was designed for
use during the bootstrap process it could be impossible to provide a username and
password.

This feature of TFTP was used by many crackers to obtain copies of a Unix pass-
word file and then try to guess passwords. To prevent this type of access, most TFTP
servers nowadays provide an option whereby only files in a specific directory (often
/t:f~:pboo~: on Unix systems) can be accessed. This directory then contains only the
bootstrap files required by the diskless systems.

For additional security, the TFTP server on a Unix system normally sets its user ID
and group ID to values that should not be assigned to any real user. This allows access
only to files that have world-read or world-write permissions.

15.5 Summary

TFTP is a simple protocol designed to fit into read-only memory and be used only dur-
ing the bootstrap process of diskless systems. It uses only a few message formats and a
stop-and-wait protocol.

To allow multiple clients to bootstrap at the same time, a TFTP server needs to pro-
vide some form of concurrency. Because UDP does not provide a unique connection
between a client and server (as does TCP), the TFTP server provides concurrency by cre-
ating a new UDP port for each client. This allows different client input datagrams to be
demultiplexed by the server’s UDP module, based on destination port numbers, instead
of doing this in the server itself.

The TFTP protocol provides no security features. Most implementations count on
the system administrator of the TFTP server to restrict any client’s access to the files nec-
essary for bootstrapping only.

Chapter 27 covers the File Transfer Protocol (FTP), which is designed for general
purpose, high-throughput file transfer.

Exercises

15.1 Read the Host Requirements RFC to see what a TFTP server should do if it receives a
request and the destination IP address of the request is a broadcast address.

15.2 What do you think happens when the TFTP block number wraps around from 65535 to 0?
Does RFC 1350 say anything about this?

15.3 We said that the TFTP sender performs the timeout and retransmission to handle lost pack-
ets. How does this affect the use of TFTP when it’s being used as part of the bootstrap
process?

15.4 What is the limiting factor in the time required to transfer a file using TFTP?

CAVIUM-1008

Cavium,Inc. v. Alacritech, Inc.
Pade 238

BOOTP: Bootstrap Protocol

16.1 Introduction

In Chapter 5 we described how a diskless system, with no knowledge of its IP address,
can determine its IP address using RARP when it is bootstrapped. There are two prob-
lems with RARP: (1) the only thing returned is the IP address, and (2) since RARP uses a
linkqayer broadcast, RARP requests are not forwarded by routers (necessitating an
RARP server on every physical network). This chapter describes an alternative method
for a diskless system to bootstrap itself, called the Bootstrap Protocol, or BOOTP.

BOOTP uses UDP and normally works in conjunction with TFTP (Chapter 15).
RFC 951 [Croft and Gilmore 1985] is the official specification for BOOTP with clarifica-
tions given in RFC 1542 [Wimer 1993].

16.2 BOOTP Packet Format

BOOTP requests and replies are encapsulated in UDP datagrams, as shown in Fig-
ure 16.1.

_~ IP datagram ~

¯ ~ UDP datagram ~I

IP UDP BOOTP request/reply
header header

20 bytes 8 bytes 300 bytes

Figure 16.1 Encapsulation of BOOTP requests and replies within a UDP datagram.

215

216 BOOTP: Bootstrap Protocol Chapter 16

Figure 16.2 shows the format of the 300-byte BOOTP request and reply.

7 8 15 16 23 24

Opcode hardware type hardware address
(1=request, 2=reply) (1 = Ethernet) length (6 for Ethernet) hop count

transaction ID

number of seconds (unused)

client IP address

your IP address

server IP address

gateway IP address

chent hardware address (16 bytes)

server hostname (64 bytes)

boot hlename (128 bytes)

vendor-specific Information (64 bytes)

31

300 bytes

Figure 16.2 Format of BOOTP request and reply.

Opcode is 1 for a request and 2 for a reply. The hardware type field is 1 for a 10
Mbits/sec Ethernet, the same value that is in the field of the same name in an ARP
request or reply (Figure 4.3). Similarly, the hardware address length is 6 bytes for an
Ethernet.

The hop count is set to 0 by the client, but can be used by a proxy server (described
in Section 16.5).

Section 16.2 BOOTP Packet Format 217

The transaction ID is a 32-bit integer set by the client and returned by the server.
This lets the client match a response with a request. The client should set this to a ran-
dom number for each request.

Number of seconds can be set by the client to the time since it started trying to boot-
strap. The servers can look at this value, and perhaps a secondary server for a client
won’t respond until the number of seconds has exceeded some value, implying that the
client’s primary server is down.

If the client already knows its IP address, it fills in the client IP address. Otherwise,
the client sets this to 0. In the latter case the server fills in your IP address with the
client’s IP address. The server IP address is filled in by the server. If a proxy server is
used (Section 16.5), that proxy server fills in its gateway IP address.

The client must set its client hardware address. Although this is the same value as in
the Ethernet header, by placing the field in the UDP datagram also, it is easily available
to any user process (e.g., a BOOTP server) that receives the datagram. It is normally
much harder (or impossible) for a process reading UDP datagrams to determine the
fields in the Ethernet header that carried the UDP datagram.

The server hostname is a null terminated string that is optionally filled in by the
server. The server can also fill in the boot f!lename with the fully qualified, null termi-
nated pathname of a file to bootstrap from.

The vendor-specific area is used for various extensions to BOOTP. Section 16.6
describes some of these extensions.

When a client is bootstrapping using BOOTP (an opcode of 1) the request is nor-
mally a link-layer broadcast and the destination IP address in the IP header is normally
255.255.255.255 (the limited broadcast, Section 12.2). The source IP address is often
0.0.0.0 since the client does not know its own IP address yet. Recall from Figure 3.9 that
0.0.0.0 is a valid source IP address when a system is bootstrapping itself.

Port Numbers

There are two well-known ports for BOOTP: 67 for the server and 68 for the client. This
means the client does not choose an unused ephemeral port, but uses 68 instead. The
reason two port numbers were chosen, instead of just one for the server, is that a
server’s reply can be (but normally isn’t) broadcast.

If the server’s reply were broadcast, and if the client were to choose an ephemeral
port number, these broadcasts would also be received by other applications on other
hosts that happen to be using the same ephemeral port number. Hence, it is considered
bad form to broadcast to a random (i.e., ephemeral) port number.

If the client also used the server’s well-known port (67) as its port, then all servers
on the network are awakened to look at each broadcast reply. (If all the servers were
awakened, they would examine the opcode, see that it’s a reply and not a request, and
go back to sleep.) Therefore the choice was made to have all clients use a single well-
known port that differs from the server’s well-known port.

If multiple clients are bootstrapping at the same time, and if the server broadcasts
the replies, each client sees the replies intended for the other clients. The clients can use
the transaction ID field in the BOOTP header to match replies with requests, or the
client can examine the returned client hardware address.

218 BOOTP: Bootstrap Protocol Chapter 16

16.3 An Example

Let’s look at an example of BOOTP when an X terminal is bootstrapped. Figure 16.3
shows the tcpdump output. (The client’s name is proteus and the server’s name is
mercury. This tcpdump output was obtained on a different network from the one
we’ve been using for all the other examples in the text.)

1 0.0

2 0.355446 (0.3554)

0.0.0.0.68 > 255.255.255.255.bootp:
secs:100 ether 0:0:a7:0:62:7c
mercury.bootp > proteus.68: secs:100 Y:proteus
S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncdl9r"

3 0.355447 (0.0000)
4 0.851508 (0.4961)
5 1.371070 (0.5196)

6 1.863226 (0.4922)

7 1.871038 (0.0078)

arp who-has proteus tell 0.0.0.0
arp who-has proteus tell 0.0.0.0
arp who-has proteus tell proteus

proteus.68 > 255.255.255.255.bootp:
secs:100 ether 0:0:a7:0:62:7c
mercury.bootp > proteus.68: secs:100 Y:proteus
S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncdl9r"

8 3.871038 (2.0000)

9 3.878850 (0.0078)

proteus.68 > 255.255.255.255.bootp:
secs:100 ether 0:0:a7:0:62:7c
mercury.bootp > proteus.68:secs:100 Y:proteus
S:mercury G:mercury ether 0:0:a7:0:62:7c
file "/local/var/bootfiles/Xncdl9r"

10 5.925786 (2.0469)
11 5.929692 (0.0039)

12 5.929694 (0.0000)

13 5.996094 (0.0664)
14 6.000000 (0.0039)

15 14.980472 (8.9805)
16 14.984376 (0.0039)
17 14.984377 (0.0000)
18 14.984378 (0.0000)

arp who-has mercury tell proteus
arp reply mercury is-at 8:0:2b:28:eb:id

proteus.tftp > mercury.tftp: 37 RRQ
"/local/var/bootfiles/Xncdl9r"
mercury.2352 > proteus.tftp: 516 DATA block 1
proteus.tftp > mercury.2352: 4 ACK

many lin~ deleted he~

mercury.2352 > proteus.tftp: 516 DATA block 2463
proteus.tftp > mercury.2352: 4 ACK
mercury.2352 > proteus.tftp: 228 DATA block 2464
proteus.tftp > mercury.2352: 4 ACK

Figure 16.3 Example of BOOTP being used to bootstrap an X terminal.

In line 1 we see the client’s request from 0.0.0.0.68, destined for 255.255.255.255.67.
The only fields the client has filled in are the number of seconds and its Ethernet
address. We’ll see that this client always sets the number of seconds to 100. The hop
count and transaction ID are both 0 since they are not output by tcpdump. (A transac-
tion ID of 0 means the client ignores the field, since it would set this field to a random
number if it was going to verify the returned value in the response.)

Line 2 is the reply from the server. The fields filled in by the server are the client’s
IP address (which tcpdump prints as the name proteus), the server’s IP address
(printed as the name mercury), the IP address of a gateway (printed as the name
mercury), and the name of a boot file.

Section 16.4 BOOTP Server Design 219

After receiving the BOOTP reply, the client immediately issues an ARP request to
see if anyone else on the network has its IP address. The name pro~zeus following
who-has corresponds to the target IP address (Figure 4.3), and the sender’s IP address
is set to 0.0.0.0. It sends another identical ARP request 0.5 second later, and another one
0.5 second after that. In the third ARP request (line 5) it changes the sender’s IP address
to be its own IP address. This is a gratuitous ARP request (Section 4.7).

Line 6 shows that the client waits another 0.5 second and broadcasts another
BOOTP request. The only difference between this request and line 1 is that now the
client puts its own IP address in the IP header. It receives the same reply from the same
server (line 7). The client waits another 2 seconds and broadcasts yet another BOOTP
request (line 8) and receives the same reply from the same server.

The client then waits another 2 seconds and sends an ARP request for its server
mercury (line 10). The ARP reply is received and the client immediately issues a TFTP
read request for its boot file (line 12). What follows are 2464 TFTP data packets and
acknowledgments. The amount of data transferred is 512 x 2463 + 224 = 1,261,280
bytes. This loads the operating system into the X terminal. We have deleted most of the
TFTP lines from Figure 16.3.

One thing to notice, when comparing this TFTP exchange with Figure 15.2, is that
here the client uses the TFTP well-known port (69) for the entire transfer. Since one of
the two partners is using port 69, t cpdump knows that the packets are TFTP messages,
so it is able to interpret each packet using the TFTP protocol. This is why Figure 16.3
indicates which packets contain data, which contain acknowledgments, and what the
block number is for each packet. We didn’t get this additional information in Fig-
ure 15.2 because neither end was using TFTP’s well-known port for the data transfer.
Normally the TFTP client cannot use TFTP’s well-known port, since that port is used by
the server on a multiuser system. But here the system is being bootstrapped, so a TFTP
server is not provided, allowing the client to use the port for the duration of the transfer.
This also implies that the TFTP server on mercury doesn’t care what the client’s port
number is--it sends the data to the client’s port, whatever that happens to be.

From Figure 16.3 we see that 1,261,280 bytes are transferred in 9 seconds. This is a
rate of about 140,000 bytes per second. While this is slower than most FTP file transfers
across an Ethernet, it is not that bad for a simple stop-and-wait protocol such as TFTR

What follows as this X terminal is bootstrapped are additional TFTP transfers of the
terminal’s font files, some DNS name server queries, and then the initialization of the X
protocol. The total time in Figure 16.3 was almost 15 seconds, and another 6 seconds is
taken for the remaining steps. This gives a total of 21 seconds to bootstrap the diskless
X terminal.

16.4 BOOTP Server Design

The BOOTP client is normally provided in read-only memory on the diskless system. It
is interesting to see how the server is normally implemented.

First, the server reads UDP datagrams from its well-known port (67). Nothing spe-
cial is required. This differs from an RARP server (Section 5.4), which we said had to
read Ethernet frames with a type field of "RARP request." The BOOTP protocol also

220 BOOTP: Bootstrap Protocol Chapter 16

16.5

made it easy for the server to obtain the client’s hardware address, by placing it into the
BOOTP packet (Figure 16.2).

An interesting problem arises: how can the server send a response directly back to
the client? The response is a UDP datagram, and the server knows the client’s IP
address (probably read from a configuration file on the server). But if the BOOTP server
sends a UDP datagram to that IP address (the normal way UDP output is handled), the
server’s host will probably issue an ARP request for that IP address. But the client can’t
respond to the ARP request since it doesn’t know its IP address yet! (This is called the
"chicken and egg" issue in RFC 951.)

There are two solutions. The first, commorily used by Unix servers, is for the server
to issue an ±octaL(2) request to the kernel, to place an entry into the ARP cache for this
client. (This is what the arp -s command does, Section 4.8.) The server can do this
since it knows the client’s hardware address and IP address. This means that when the
server sends the UDP datagram (the BOOTP reply), the server’s ARP module will find
the client’s IP address in the ARP cache.

An alternative solution is for the server to broadcast the BOOTP reply, instead of
sending it directly to the client. Since reducing the number of broadcasts on a network
is always desirable, this solution should be used only if the server cannot make an entry
into its ARP cache. Normally it requires superuser permission to make an entry into the
ARP cache, requiring a broadcast reply if the server is nonprivileged.

BOOTP Through a Router
We said in Section 5.4 that one of the drawbacks of RARP is that it uses a link-layer
broadcast, which is normally not forwarded by a router. This required an RARP server
on each physical network. BOOTP can be used through a router, if supported by the
router. (Most major router vendors do support this feature.)

This is mainly intended for diskless touters, because if a multiuser system with a
disk is used as a router, it can probably rur~ a BOOTP server itself. Alternatively, the
common Unix BOOTP server (Appendix F) supports this relay mode, but again, if you
can run a BOOTP server on the physical network, there’s normally no need to forward
the requests to yet another server on another network.

What happens is that the router (also called the "BOOTP relay agent") listens for
BOOTP requests on the server’s well-known port (67). When a request is received, the
relay agent places its IP address into the gateway IP address field in the BOOTP request,
and sends the request to the real BOOTP server. (The address placed by the relay agent
into the gateway field is the IP address of the interface on which the request was
received.) The relay agent also increments the hops field by one. (This is to prevent
infinite loops in case the request is reforwarded. RFC 951 mentions that the request
should probably be thrown away if the hop count reaches 3.) Since the outgoing
request is a unicast datagram (as opposed to the original client request that was broad-
cast), it can follow any route to the real BOOTP server, passing through other touters.
The real server gets the request, forms the BOOTP reply, and sends it back to the relay
agent, not the client. The real server knows that the request has been forwarded, since
the gateway field in the request is nonzero. The relay agent receives the reply and sends
it to the client.

Section 16.6 Vendor-Specific Information 221

16.6 Vendor-Specific Information

In Figure 16.2 we showed a 64-byte vendor-specific area. RFC 1533 [Alexander and
Droms 1993] defines the format of this area. This area contains optional information for
the server to return to the client.

If information is provided, the first 4 bytes of this area are set to the IP address
99.130.83.99. This is called the magic cookie and means there is information in the area.

The rest of this area is a list of items. Each item begins with a 1-byte tag field. Two
of the items consist of just the tag field: a tag of 0 is a pad byte (to force following items
to preferred byte boundaries), and a tag of 255 marks the end of the items. Any bytes
remaining in this area after the first end byte should be set to pad bytes (0).

Other than these two 1-byte items, the remaining items consist of a single length
byte, followed by the information. Figure 16.4 shows the format of some of the items in
the vendor-specific area.

Pad:

1 byte

Subnet mask~ len=4 subnet mask

1 byte I byte 4 bytes

Time offset: I tag=2 len=4 time

i byte 1 byte 4 bytes

Gateway: ~_t IP addressag=3 len=N of preferred gateway

1 byte I byte 4 bytes
N bytes

IP address
of gateway

4 bytes

14 other items with tags 4-17

End:

I byte

Figure 16.4 Format of some of the items tn the vendor-specific area.

The subnet mask and time value are really fixed-length items because their values
always occupy 4 bytes. The time offset is the number of seconds since midnight Jan-
uary 1, 1900, UTC.

222 BOOTP: Bootstrap Protocol Chapter 16

The gateway item is an example of a variable-length item. The length is always a
multiple of 4, and the values are the 32-bit IP addresses of one or more gateways
(routers) for the client to use. The first one returned must be the preferred gateway.

There are 14 other items defined in RFC 1533. Probably the most important is the IP
address of a DNS name server, with a tag value of 6. Other items return the IP address
of a printer server, the IP address of a time server, and so on. Refer to the RFC for all the
details.

Returning to our example in Figure 16.3, we never saw an ICMP address mask
request (Section 6.3) that would have been broadcast by the client to find its subnet
mask. Although it wasn’t output by ~:cpdurap, we can probably assume that the client’s
subnet mask was returned in the vendor-specifi~ area of the BOOTP reply.

The Host Requirements RFC recommends that a system using BOOTP obtain its subnet mask
using BOOTP, not ICMP.

The size of the vendor-specific area is limited to 64 bytes. This is a constraint for
some applications. A new protocol named DHCP (Dynamic Host Configuration
Protocol) is built on, but replaces, BOOTP. DHCP extends this area to 312 bytes and is
defined in RFC 1541 [Droms 1993].

16.7 Summary

BOOTP uses UDP and is intended as an alternative to RARP for bootstrapping a disk-
less system to find its IP address. BOOTP can also return additional information, such
as the IP address of a router, the client’s subnet mask, and the IP address of a name
server.

Since BOOTP is used in the bootstrap process, a diskless system needs the following
protocols implemented in read-only memory: BOOTP, TFTP, UDP, IP, and a device
driver for the local network.

The implementation of a BOOTP server is easier than an RARP server, since BOOTP
requests and replies are in UDP datagrams, not special link-layer frames. A router can
also serve as a proxy agent for a real BOOTP server, forwarding client requests to the
real server on a different network.

Exercises

16.1

16.2

We’ve said that one advantage of BOOTP over RARP is that BOOTP can work through
routers, whereas RARP, which is a link-layer broadcast, cannot. Yet in Section 16.5 we had
to define special ways for BOOTP to work through a router. What would happen if a capa-
bility were added to routers allowing them to forward RARP requests?

We said that a BOOTP client must use the transaction ID to match responses with requests,
in case there are multiple clients bootstrapping at the same time from a server that broad-
casts replies. But in Figure 16.3 the transaction ID is 0, implying that this client ignores the
transaction ID. How do you think this client matches the responses with its requests?

17

TCP: Transmission Control

Protocol

17.1 Introduction

In this chapter we provide a description of the services provided by TCP for the applica-
tion layer. We also look at the fields in the TCP header. In the chapters that follow we
examine all of these header fields in more detail, as we see how TCP operates.

Our description of TCP starts in this chapter and continues in the next seven chap-
ters. Chapter 18 describes how a TCP connection is established and terminated, and
Chapters 19 and 20 look at the normal transfer of data, both for interactive use (remote
login) and bulk data (file transfer). Chapter 21 provides the details of TCP’s timeout
and retransmission, followed by two other TCP timers in Chapters 22 and 23. Finally
Chapter 24 takes a look at newer TCP features and TCP performance.

The original specification for TCP is RFC 793 [Postel 1981c], although some errors in
that RFC are corrected in the Host Requirements RFC.

17.2 TCP Services

Even though TCP and UDP use the same network layer (IP), TCP provides a totally dif-
ferent service to the application layer than UDP does. TCP provides a connection-
oriented, reliable, byte stream service.

The term connection-oriented means the two applications using TCP (normally con-
sidered a client and a server) must establish a TCP connection with each other before
they can exchange data. The typical analogy is dialing a telephone number, waiting for
the other party to answer the phone and say "hello," and then saying who’s calling. In
Chapter 18 we look at how a connection is established, and disconnected some time
later when either end is done.

223

224 TCP: Transmission Control Protocol Chapter 17

There are exactly two end points communicating with each other on a TCP connec-
tion. Concepts that we talked about in Chapter 12, broadcasting and multicasting,
aren’t applicable to TCP.

TCP provides reliability by doing the following:

¯ The application data is broken into what TCP considers the best sized chunks to
send. This is totally different from UDP, where each write by the application
generates a UDP datagram of that size. The unit of information passed by TCP
to IP is called a segment. (See Figure 1.7, p. 10.) In Section 18.4 we’ll see how
TCP decides what this segment size is.

¯ When TCP sends a segment it maintains a timer, waiting for the other end to
acknowledge reception of the segment. If an acknowledgment isn’t received in
time, the segment is retransmitted. In Chapter 21 we’ll look at TCP’s adaptive
timeout and retransmission strategy.

¯ When TCP receives data from the other end of the connection, it sends an
acknowledgment. This acknowledgment is not sent immediately, but normally
delayed a fraction of a second, as we discuss in Section 19.3.

¯ TCP maintains a checksum on its header and data. This is an end-to-end check-
sum whose purpose is to detect any modification of the data in transit. If a seg-
ment arrives with an invalid checksum, TCP discards it and doesn’t
acknowledge receiving it. (It expects the sender to time out and retransmit.)

¯ Since TCP segments are transmitted as IP datagrams, and since IP datagrams
can arrive out of order, TCP segments can arrive out of order. A receiving TCP
resequences the data if necessary, passing the received data in the correct order
to the application.

¯ Since IP datagrams can get duplicated, a receiving TCP must discard duplicate
data.

TCP also provides flow control. Each end of a TCP co~ection has a finite
amount of buffer space. A receiving TCP only allows the other end to send as
much data as the receiver has buffers for. This prevents a fast host from taking
all the buffers on a slower host.

A stream of 8-bit bytes is exchanged across the TCP connection between the two
applications. There are no record markers automatically inserted by TCP. This is what
we called a byte stream service. If the application on one end writes 10 bytes, followed by
a write of 20 bytes, followed by a write of 50 bytes, the application at the other end of
the connection cannot tell what size the individual writes were. The other end may
read the 80 bytes in four reads of 20 bytes at a time. One end puts a stream of bytes into
TCP and the same, identical stream of bytes appears at the other end.

Also, TCP does not interpret the contents of the bytes at all. TCP has no idea if the
data bytes being exchanged are binary data, ASCII characters, EBCDIC characters, or
whatever. The interpretation of this byte stream is up to the applications on each end of
the connection.

Section 17.3 TCP Header 225

17.3

This treatment of the byte stream by TCP is similar to the treatment of a file by the Unix oper-
ating system. The Unix kernel does no interpretation whatsoever of the bytes that an applica-
tion reads or write--that is up to the applications. There is no distinction to the Unix kernel
between a binary file or a file containing lines of text.

TCP Header

Recall that TCP data is encapsulated in an IP datagram, as shown in Figure 17.1.

IP datagram

TCP segment

IP TCP TCP dataheader header

20 bytes 20 bytes

Figure 17.1 Encapsulation of TCP data in an IP datagram.

Figure 17.2 shows the format of the TCP header. Its normal size is 20 bytes, unless
options are present.

4-bit header
length

16-bit source port number

15 16

16-bit destination port number

32-bit sequence number

32-bit acknowledgment number

reserved iiHP ~ NYS ~
(6 bits) S S 16-bit window size

16-bit TCP checksum 16-bit urgent pointer

options (if any)

data (if any)

31

20 bytes

Figure 17.2 TCP header.

226 TCP: Transmission Control Protocol Chapter 17

Each TCP segment contains the source and destination port number to identify the
sending and receiving application. These two values, along with the source and desti-
nation IP addresses in the IP header, uniquely identify each connection.

The combination of an IP address and a port number is sometimes called a socket.
This term appeared in the original TCP specification (RI~C 793), and later it also became
used as the name of the Berkeley-derived programming interface (Section 1.15). It is the
socket pair (the 4-tuple consisting of the client IP address, client port number, server IP
address, and server port number) that specifies the two end points that uniquely identi-
fies each TCP connection in an internet.

The sequence number identifies the byte in the stream of data from the sending TCP
to the receiving TCP that the first byte of data in’this segment represents. If we consider
the stream of bytes flowing in one direction between two applications, TCP numbers
each byte with a sequence number. This sequence number is a 32-bit unsigned number
that wraps back around to 0 after reaching 232 - 1.

When a new connection is being established, the SYN flag is turned on. The
sequence number field contains the initial sequence number (ISN) chosen by this host for this
connection. The sequence number of the first byte of data sent by this host will be the
ISN plus one because the SYN flag consumes a sequence number. (We describe addi-
tional details on exactly how a connection is established and terminated in the next
chapter where we’ll see that the FIN flag consumes a sequence number also.)

Since every byte that is exchanged is numbered, the acknowledgment number contains
the next sequence number that the sender of the acknowledgment expects to receive.
This is therefore the sequence number plus 1 of the last successfully received byte of
data. This field is valid only if the ACK flag (described below) is on.

Sending an ACK costs nothing because the 32-bit acknowledgment number field is
always part of the header, as is the ACK flag. Therefore we’ll see that once a connection
is established, this field is always set and the ACK flag is always on.

TCP provides a full-duplex service to the application layer. This means that data can
be flowing in each direction, independent of the other direction. Therefore, each end of
a connection must maintain a sequence number of the data flowing in each direction.

TCP can be described as a sliding-window protocol without selective or negative
acknowledgments. (The sliding window protocol used for data transmission is
described in Section 20.3.) We say that TCP lacks selective acknowledgments because
the acknowledgment number in the TCP header means that the sender has successfully
received up through but not including that byte. There is currently no way to acknowl-
edge selected pieces of the data stream. For example, if bytes 1-1024 are received OK,
and the next segment contains bytes 2049-3072, the receiver cannot acknowledge this
new segment. All it can send is an ACK with 1025 as the acknowledgment number.
There is no means for negatively acknowledging a segment. For example, if the seg-
ment with bytes 1025-2048 did arrive, but had a checksum error, all the receiving TCP
can send is an ACK with 1025 as the acknowledgment number. In Section 21.7 we’ll see
how duplicate acknowledgments can help determine that packets have been lost.

The header length gives the length of the header in 32-bit words. This is required
because the length of the options field is variable. With a 4-bit field, TCP is limited to a
60-byte header. Without options, however, the normal size is 20 bytes.

Section 17.4 Summary 227

There are six flag bits in the TCP header. One or more of them can be turned on at
the same time. We briefly mention their use here and discuss each flag in more detail in
later chapters.

URG

ACK

PSH

RST

SYN

FIN

The urgent pointer is valid (Section 20.8).

The acknowledgment number is valid.

The receiver should pass this data to the application as soon as possible (Sec-
tion 20.5).

Reset the connection (Section 18.7).

Synchronize sequence numbers to initiate a connection. This flag and the
next are described in Chapter 18.

The sender is finished sending data.

TCP’s flow control is provided by each end advertising a window size. This is the
number of bytes, starting with the one specified by the acknowledgment number field,
that the receiver is willing to accept. This is a 16-bit field, limiting the window to 65535
bytes. In Section 24.4 we’ll look at the new window scale option that allows this value
to be scaled, providing larger windows.

The checksum covers the TCP segment: the TCP header and the TCP data. This is a
mandatory field that must be calculated and stored by the sender, and then verified by
the receiver. The TCP checksum is calculated similar to the UDP checksum, using a
pseudo-header as described in Section 11.3.

The urgent pointer is valid only if the URG flag is set. This pointer is a positive offset
that must be added to the sequence number field of the segment to yield the sequence
number of the last byte of urgent data. TCP’s urgent mode is a way for the sender to
transmit emergency data to the other end. We’ll look at this feature in Section 20.8.

The most common option field is the maximum segment size option, called the MSS.
Each end of a connection normally specifies this option on the first segment exchanged
(the one with the SYN flag set to establish the connection). It specifies the maximum
sized segment that the sender wants to receive. We describe the MSS option in more
detail in Section 18.4, and some of the other TCP options in Chapter 24.

In Figure 17.2 we note that the data portion of the TCP segment is optional. We’ll
see in Chapter 18 that when a connection is established, and when a connection is termi-
nated, segments are exchanged that contain only the TCP header with possible options.
A header without any data is also used to acknowledge received data, if there is no data
to be transmitted in that direction. There are also some cases dealing with timeouts
when a segment can be sent without any data.

17.4 Summary

TCP provides a reliable, connection-oriented, byte stream, transport layer service. We
looked briefly at all the fields in the TCP header and will examine them in detail in the
following chapters.

228 TCP: Transmission Control Protocol Chapter 17

TCP packetizes the user data into segments, sets a timeout any time it sends data,
acknowledges data received by the other end, reorders out-of-order data, discards
duplicate data, provides end-to-end flow control, and calculates and verifies a manda-
tory end-to-end checksum.

TCP is used by many of the popular applications, such as Telnet, Rtogin, FTP, and
electronic mail (SMTP).

Exercises

17.1

17.2

17.3

17.4

17.5

We’ve covered the following packet formats, each of which has a checksum in its corre-
sponding header: IP, ICMP, IGMP, UDP, and TCP. For each one, describe what portion of
an IP datagram the checksum covers and whether the checksum is mandatory or optional.

Why do all the Internet protocols that we’ve discussed (IP, ICMP, IGMP, UDP, TCP) quietly
discard a packet that arrives with a checksum error?

TCP provides a byte-stream service where record boundaries are not maintained between
the sender and receiver. How can applications provide their own record markers?

Why are the source and destination port numbers at the beginning of the TCP header?

Why does the TCP header have a header length field while the UDP header (Figure 11.2,
p. 144) does not?

TCP Connection Establishment

and Termination

18.1 Introduction

TCP is a connection-oriented protocol. Before either end can send data to the other, a
connection must be established between them. In this chapter we take a detailed look at
how a TCP connection is established and later terminated.

This establishment of a connection between the two ends differs from a
connectionless protocol such as UDP. We saw in Chapter 11 that with UDP one end just
sends a datagram to the other end, without any preliminary handshaking.

18.2 Connection Establishment and Termination

To see what happens when a TCP connection is established and then terminated, we
type the following command on the system svr4:

svr4 % telnet bsdi discard
Trying 140.252.13.35 ...
Connected to bsdi.
Escape character is ’^]’.
^] type Control, right bracket to talk to the Telnet client
telnet> quit terminate the connection
Connection closed.

The telnet command establishes a TCP connection with the host bsdi on the port
corresponding to the discard service (Section 1.12). This is exactly the type of service we
need to see what happens when a connection is established and terminated, without
having the server initiate any data exchange.

229

230 TCP Connection Establishment and Termination Chapter 18

t cpdump OU|pU|

Figure 18.1 shows the tcpdump output for the segments generated by this command.

1 0.0 svr4.1037 > bsd~.discard: S 1415531521:1415531521(0)
win 4096 <mss 1024>

2 0.002402 (0.0024 bsd±.discard > svr4.1037: S 1823083521:1823083521(0)
ack 1415531522 win 4096
<mss 1024>

3 0.007224 (0.0048 svr4.1037 > bsdi.discard: . ack 1823083522 win 4096

4 4.155441 (4.1482 svr4.1037 > bsdi.d~scard: F 1415531522:1415531522(0)
ack 1823083522 win 4096

5 4.156747 (0.0013) bsdl.discard > svr4.1037: . ack 1415531523 win 4096

6 4.158144 (0.0014) bsdl.discard > svr4.1037: F 1823083522:1823083522(0)
ack 1415531523 win 4096

7 4.180662 (0.0225) svr4.1037 > bsdz.dlscard: . ack 1823083523 wln 4096

Figure18.1 tcpdumpoutputforTCPconnectionestabhshmentandtermination.

These seven TCP segments contain TCP headers only. No data is exchanged.
For TCP segments, each output line begins with

source > destination: flags

where flags represents four of the six flag bits in the TCP header (Figure 17.2). Fig-
ure 18.2 shows the five different characters that can appear in the flags output.

3-character
flag abbreviation Description

s SYN synchronize sequence numbers
F FIN sender is fimshed sending data
R RST reset connection
P PSH push data to receiving process as soon as possible
¯ none of above four flags ~s on

Figure 18.2 flag characters output by tcpdump for flag bits in TCP header.

In this example we see the S, F, and period. We’ll see the other twoflags (R and P) later.
The other two TCP header flag bits--ACK and URG--are printed specially by
t cpdurap.

It’s possible for more than one of the four flag bits in Figure 18.2 to be on in a single
segment, but we normally see only one on at a time.

RFC 1025 [Postel 1987], the TCP and IP Bake Off, calls a segment with the maximum combina-
tton of allowable flag bits turned on at once (SYN, URG, PSH, FIN, and 1 byte of data) a
Kamikaze packet. It’s also known as a nastygram, Christmas tree packet, and lamp test
segment.

Section 18.2 Connection Establishment and Termination 231

In line 1, the field 1415 5 31521 : 14 ~_ 5 5 3 J_ 521 (0) means the sequence number of
the packet was 1415531521 and the number of data bytes in the segment was 0.
tcpdump displays this by printing the starting sequence number, a colon, the implied
ending sequence number, and the number of data bytes in parentheses. The advantage
of displaying both the sequence number and the implied ending sequence number is to
see what the implied ending sequence number is, when the number of bytes is greater
than 0. This field is output only if (1) the segment contains one or more bytes of data or
(2) the SYN, FIN, or RST flag was on. Lines 1, 2, 4, and 6 in Figure 18.1 display this field
because of the flag bits--we never exchange any data in this example.

In line 2 the field ack 1415531522 shows the acknowledgment number. This is
printed only if the ACK flag in the header is on.

The field w±n 4 0 96 in every line of output shows the window size being advertised
by the sender. In these examples, where we are not exchanging any data, the window
size never changes from its default of 4096. (We examine TCP’s window size in Sec-
tion 20.4.)

The final field that is output in Figure 18.1, <mss 1024> shows the maximum seg-
ment size (MSS) option specified by the sender. The sender does not want to receive TCP
segments larger than this value. This is normally to avoid fragmentation (Section 11.5).
We discuss the maximum segment size in Section 18.4, and show the format of the vari-
ous TCP options in Section 18.10.

Time Line

Figure 18.3 shows the time line for this sequence of packets. (We described some gen-
eral features of these time lines when we showed the first one in Figure 6.11, p. 80.) This
figure shows which end is sending packets. We also expand some of the ~:cpdurnp out-
put (e.g., printing SYN instead of 8). In this time line we have also removed the win-
dow size values, since they add nothing to the discussion.

Connection Establishment Protocol

Now let’s return to the details of the TCP protocol that are shown in Figure 18.3. To
establish a TCP connection:

The requesting end (normally called the client) sends a SYN segment specifying
the port number of the server that the client wants to connect to, and the client’s
initial sequence number (ISN, 1415531521 in this example). This is segment 1.

The server responds with its own SYN segment containing the server’s initial
sequence number (segment 2). The server also acknowledges the client’s SYN
by ACKing the client’s ISN plus one. A SYN consumes one sequence number.

The client must acknowledge this SYN from the server by ACKing the server’s
ISN plus one (segment 3).

These three segments complete the connection establishment. This is often called the
three-way handshake.

232 TCP Connection Establishment and Termination Chapter 18

svr4.1037 bsdi.discard

0.0

0.002402 (0.0024)

0.007224 (0.0048)

4.155441 (4,1482)

4.156747 (0.0013)

4.158144 (0.0014)

4.180662 (0.0225)

segment I

segment 3

segment 4

segment 7

<n~ss 1024>

~ " ack 1823083522

~~531522(O)ack18230835~22

ack 1415531523

~ 3522(O) ack 1415531523

~ ack 1~23083523

segment 2

segment5

segment 6

Figure 18.3 Time line of connection estabhshment and connection termination.

The side that sends the first SYN is said to perform an active open. The other side,
which receives this SYN and sends the next SYN, performs a passive open. (In Sec-
tion 18.8 we describe a simultaneous open where both sides can do an active open.)

When each end sends its SYN to establish the com~ection, it chooses an initial
sequence number for that connection. The ISN should change over time, so that each
connection has a different ISN. RFC 793 [Postel 1981c] specifies that the ISN should be
viewed as a 32-bit counter that increments by one every 4 microseconds. The purpose
in these sequence numbers is to prevent packets that get delayed in the network from
being delivered later and then misinterpreted as part of an existing connection.

How are the sequence numbers chosen? In 4.4BSD (and most Berkeley-derived implementa-
tions) when the system is initialized the inittal send sequence number is initialized to 1. This
practice violates the Host Requirements RFC. (A comment in the code acknowledges that this
is wrong.) This variable ts then incremented by 64,000 every half-second, and will cycle back
to 0 about every 9.5 hours. (This corresponds to a counter that is incremented every 8

Section 18.2 Connection Establishment and Termination 233

microseconds, not every 4 microseconds.) Additionally, each time a com~ectton is established,
this variable ~s incremented by 64,000

The 4.1-second gap between segments 3 and 4 is the time between establishing the
connection and typing the qu±~: command to tea_net to terminate the connection.

Connection Termination Protocol

While it takes three segments to establish a connection, it takes four to terminate a con-
nection. This is caused by TCP’s half-close. Since a TCP connection is full-duplex (that
is, data can be flowing in each direction independently of the other direction), each
direction must be shut down independently. The rule is that either end can send a FIN
when it is done sending data. When a TCP receives a FIN, it must notify the application
that the other end has terminated that direction of data flow. The sending of a FIN is
normally the result of the application issuing a close.

The receipt of a FIN only means there will be no more data flowing in that direction.
A TCP can still send data after receiving a FIN. While it’s possible for an application to
take advantage of this half-close, in practice few TCP applications use it. The normal
scenario is what we show in Figure 18.3. We describe the half-close in more detail in
Section 18.5.

We say that the end that first issues the close (e.g., sends the first FIN) performs the
active close and the other end (that receives this FIN) performs the passive close. Nor-
mally one end does the active close and the other does the passive close, but we’ll see in
Section 18.9 how both ends can do an active close.

Segment 4 in Figure 18.3 initiates the termination of the coru~ection and is sent when
the Telnet client closes its connection. This happens when we type qu±t:. This causes
the client TCP to send a FIN, closing the flow of data from the client to the server.

When the server receives the FIN it sends back an ACK of the received sequence
number plus one (segment 5). A FIN consumes a sequence number, just like a SYN. At
this point the server’s TCP also delivers an end-of-file to the application (the discard
server). The server then closes its connection, causing its TCP to send a FIN (segment
6), which the client TCP must ACK by incrementing the received sequence number by
one (segment 7).

Figure 18.4 shows the typical sequence of segments that we’ve described for the ter-
mination of a connection. We omit the sequence numbers. In this figure sending the
FINs is caused by the applications closing their end of the connection, whereas the
ACKs of these FINs are automatically generated by the TCP software.

Connections are normally initiated by the client, with the first SYN going from the
client to the server. Either end can actively close the connection (i.e., send the first FIN).
Often, however, it is the client that determines when the connection should be termi-
nated, since client processes are often driven by an interactive user, who enters some-
thing like "quit" to terminate. In Figure 18.4 we can switch the labels at the top, calling
the left side the server and the right side the client, and everything still works fine as
shown. (The first example in Section 14.4, for example, shows the daytime server clos-
ing the connection.)

234 TCP Connection Establishment and Termination Chapter 18

client server

application close

ack of F~

FIN ~

~-~~k of FIN

--~ deliver EOF to application

~-- apphcation close

Figure 18.4 Normal exchange of segments during connection termination.

Normal tcpdump Output

Having to sort through all the huge sequence numbers is cumbersome, so the default
tcpdump output shows the complete sequence numbers only on the SYN segments,
and shows all following sequence numbers as relative offsets from the original sequence
numbers. (To generate the output for Figure 18.1 we had to specify the -S option.) The
normal t cpdump output corresponding to Figure 18.1 is shown in Figure 18.5.

1 0.0

2 0.002402 (0.0024)

3 0.007224 (0.0048)

4 4.155441 (4.1482)

5 4.156747 (0.0013)

6 4.158144 (0.0014)

7 4.180662 (0.0225)

svr4.1037 > bsdi.discard: S

bsdi.discard > svr4.1037: S

svr4.1037 > bsdi.discard: .

svr4.1037 > bsdi.discard: F

bsdi.discard > svr4.1037: .

bsdi.discard > svr4.1037: F

svr4.1037 > bsdi.discard: .

1415531521:1415531521(0)
win 4096 <mss 1024>

1823083521:1823083521(0)
ack 1415531522
win 4096 <mss 1024>

ack 1 wln 4096

i:I(0) ack i win 4096

ack 2 win 4096

i:i(0) ack 2 win 4096

ack 2 win 4096

Figure 18.5 Normal t cpdurap output for cormection establishment and termination.

Unless we need to show the complete sequence numbers, we’ll use this form of output
in all following examples.

Section 18.3 Timeout of Connection Establishment 235

18.3 Timeout of Connection Establishment

There are several instances when the connection cannot be established. In one example
the server host is down. To simulate this scenario we issue our telnet command after

Ethernet cable from the server’s host. Figure 18.6 shows thedisconnecting the
tcpdump output.

1 0.0

2 5.814797 (5.8148)

3 29.815436 (24.0006)

bsdi.1024 > svr4.discard: S 291008001:291008001(0)
win 4096 <mss 1024>
[tos 0xl0]

bsdi.1024 > svr4.discard: S 291008001:291008001(0)
win 4096 <mss 1024>
[tos 0xl0]

bsdi.1024 > svr4.discard: S 291008001:291008001(0)
win 4096 <mss 1024>
[tos 0xl0]

Figure 18.6 tcpdump output for connechon establishment that hmes out

The interesting point in this output is how frequently the client’s TCP sends a SYN
to try to establish the connection. The second segment is sent 5.8 seconds after the first,
and the third is sent 24 seconds after the second.

As a side note, this example was run about 38 minutes after the client was rebooted. This cor-
responds with the initial sequence number of 291,008,001 (approximately 38 x 60 x 64000 x 2)
Recall earher in this chapter we said that typical Berkeley-derived systems ~nltiahze the m~tial
sequence number to 1 and then increment it by 64,000 every half-second.

Also, th~s is the hrst TCP connection since the system was bootstrapped, which is why the
chent’s port number ~s 1024

What isn’t shown in Figure 18.6 is how long the client’s TCP keeps retransmitting
before giving up. To see this we have to time the telnet command:

bsdi % date ; telnet
Thu Sep 24 16:24:11 MST 1992
Trying 140.252.13.34...
telnet: Unable to connect to remote host:
Thu Sep 24 16:25:27 MST 1992

Connection timed out

The time difference is 76 seconds. Most Berkeley-derived systems set a time limit of 75
seconds on the establishment of a new connection. We’ll see in Section 21.4 that the
third packet sent by the client would have timed out around 16:25:29, 48 seconds after it
was sent, had the client not given up after 75 seconds.

First Timeout Period

One puzzling item in Figure 18.6 is that the first timeout period, 5.8 seconds, is close to 6
seconds, but not exact, while the second period is almost exactly 24 seconds. Ten more

236 TCP Connection Establishment and Termination Chapter 18

of these tests were run and the first timeout period took on various values between 5.59
seconds and 5.93 seconds. The second timeout period, however, was always 24.00 (to
two decimal places).

What’s happening here is that BSD implementations of TCP run a timer that goes
off every 500 ms. This 500-ms timer is used for various TCP timeouts, all of which we
cover in later chapters. When we type in the te3_net command, an initial 6-second
timer is established (12 clock ticks), but it may expire anywhere between 5.5 and 6 sec-
onds in the future. Figure 18.7 shows what’s happening.

11 clock ticks x 500 ms/t~ck = 5.5 seconds

11 10 9 8 7 6 5 4 3 2 1 0

somewhere in here 500 ms TCP reschedulesapplication causes TCP per tick
to set timeout for 6 sec. timeout for 24 sec.
(12 treks) in the future in the future

Figure 18,7 TCP 500-ms t~mer.

Although the timer is initialized to 12 ticks, the first decrement of the timer can occur
between 0 and 500 ms after it is set. From that point on the timer is decremented about
every 500 ms, but the first period can be variable. (We use the qualifier "about" because
the time when TCP gets control every 500 ms can be preempted by other interrupts
being handled by the kernel.)

When that 6-second timer expires at the tick labeled 0 in Figure 18.7, the timer is
reset for 24 seconds (48 ticks) in the future. This next timer will be close to 24 seconds,
since it was set at a time when the TCP’s 500-ms timer handler was called by the kernel.

Type-of-Service Field

In Figure 18.6, the notation [~:os 0xl 0] appears. This is the type-of-service (TOS) field
in the IP datagram (Figure 3.2). The BSD/386 Telnet client sets the field for minimum
delay.

18.4 Maximum Segment Size

The maximum segment size (MSS) is the largest "chunk" of data that TCP will send to
the other end. When a connection is established, each end can announce its MSS. The
values we’ve seen have all been 1024. The resulting IP datagram is normally 40 bytes
larger: 20 bytes for the TCP header and 20 bytes for the IP header.

Some texts refer to this as a "negotiated" option. It is not negotiated in any way.
When a connection is established, each end has the option of announcing the MSS it

Section 18.4 Maximum Segment Size 237

expects to receive. (An MSS option can only appear in a SYN segment.) If one end does
not receive an MSS option from the other end, a default of 536 bytes is assumed. (This
default allows for a 20-byte IP header and a 20-byte TCP header to fit into a 576-byte IP
datagramo)

In general, the larger the MSS the better, until fragmentation occurs~ (Thfs may not
always be true. See Figures 24.3 and 24.4 for a counterexample.) A larger segment size
allows more data to be sent in each segment, amortizing the cost of the IP and TCP
headers. When TCP sends a SYN segment, either because a local application wants to
initiate a connection, or when a connection request is received from another host, it can
send an MSS value up to the outgoing interface’s MTU, minus the size of the fixed TCP
and IP headers. For an Ethernet this implies an MSS of up to 1460 bytes. Using IEEE
802.3 encapsulation (Section 2.2), the MSS could go up to 1452 bytes.

The values of 1024 that we’ve seen in this chapter, for connections involving
BSD/386 and SVR4, are because many BSD implementations require the MSS to be a
multiple of 512. Other systems, such as SunOS 4.1.3, Solaris 2.2, and AIX 3.2.2, all
announce an MSS of 1460 when both ends are on a local Ethernet. Measurements in
[Mogul 1993] show how an MSS of 1460 provides better performance on an Ethemet
than an MSS of 1024.

If the destination IP address is "nonlocal," the MSS normally defaults to 536. Whfle
it’s easy to say that a destination whose IP address has the same network ID and the
same subnet ID as ours is local, and a destination whose IP address has a totally differ-
ent network ID from ours is non!ocal, a destination w~th the same network ID but a dif-
ferent subnet ID could be either local or nonlocal. Most implementations provide a
configuration option (Appendix E and Figure E.1) that lets the system administrator
specify whether different subnets are local or nonlocal. The setting of this option deter-
mines whether the announced MSS is as large as possible (up to the outgoing interface’s
MTU) or the default of 536.

The MSS lets a host limit the size of datagrams that the other end sends it. When
combined with the fact that a host can also limit the size of the datagrams that it sends,
this lets a host avoid fragmentation when the host is connected to a network with a
small MTU.

Consider our host slip, which has a SLIP link with an MTU of 296 to the router
bsdi. Figure 18.8 shows these systems and the host sun.

slip

MTU :296

SLIP

MTU:1500

MTU=296

MTU;1500

sun

SYN <mss 1460>

SYN <mss 256>

Figure 18.8 TCP connection from sun to slip showing MSS values.

238 TCP Com~ection Establishment and Termination Chapter 18

We initiate a TCP connection from sun to slip and watch the segments using
t epdurap. Figure 18.9 shows only the connection establishment (with the window size
advertisements removed).

1 0.0 sun.1093 > sllp.dlscard: S 517312000:517312000(0)
<mss 1460>

2 0.i0 (0.00) slip.dlscard > sun.f093: S 509556225:509556225(0)
ack 517312001 <mss 256>

3 0.10 (0.00)

Figure18.9

sun.1093 > slzp.discard: ack 1

tcpdumpoutputforconnectlonestabhshmentfrom suntosl~p.

The important fact here is that sun cannot send a segment with more than 256 bytes of
data, since it received an MSS option of 256 (line 2). Furthermore, since slip knows
that the outgoing interface’s MTU is 296, even though sun announced an MSS of 1460,
it will never send more than 256 bytes of data, to avoid fragmentation. It’s OK for a sys-
tem to send less than the MSS announced by the other end.

This avoidance of fragmentation works only if either host is directly connected to a
network with an MTU of less than 576. If both hosts are connected to Ethernets, and
both announce an MSS of 536, but an intermediate network has an MTU of 296, frag-
mentation will occur. The only way around this is to use the path MTU discovery
mechanism (Section 24.2).

18.5 TCP Half-Close

TCP provides the ability for one end of a connection to terminate its output, while still
receiving data from the other end. This is called a half-close. Few applications take
advantage of this capability, as we mentioned earlier.

To use this feature the programming interface must provide a way for the applica-
tion to say "I am done sending data, so send an end-of-file (FIN) to the other end, but I
still want to receive data from the other end, until it sends me an end-of-file (FIN),"

The sockets API supports the half-close, if the application calls shutdown with a second argu-
ment of 1, instead of calhng close. Most apphcat~ons, however, terrmnate both directions of
the co~mection by calting close.

Figure 18.10 shows a typical scenario for a half-close. We show the client on the left
side initiating the half-close, but either end can do this. The first two segments are the
same: a FIN by the initiator, followed by an ACK of the FIN by the recipient. But it then
changes from Figure 18.4, because the side that receives the half-close can still send
data. We show only one data segment, followed by an ACK, but any number of data
segments can be sent. (We talk more about the exchange of data segments and
acknowledgments in Chapter 19.) When the end that received the half-close is done
sending data, it closes its end of the connection, causing a FIN to be sent, and this deliv-
ers an end-of-file to the application that initiated the half-close. When this second FIN
is acknowledged, the connection is completely closed.

Section 18.5 TCP Half-Close 239

client server

apphcation shutdown

apphcation read

dehver EOF to application

FIN

~~ of data

FIN

ack of F~

data

--~ deliver EOF to application

application write

application close

Figure 18.10 Example of TCP’s half-close.

Why is there a half-close? One example is the Unix rsh(1) command, which exe-
cutes a command on another system. The command

sun % rsh bsdi sort < datafile

executes the sort command on the host bsdi with standard input for the rsh com-
mand being read from the file named datafile. A TCP connection is created by rsh
between itself and the program being executed on the other host. The operation of rsh
is then simple: it copies standard input (datafile) to the connection, and copies from
the connection to standard output (our terminal).Figure 18.11 shows the setup.
(Remember that a TCP connection is full-duplex.)

standard host sun host bsd?_

dataflle h~put "’~ ~-~ ~ ~ ~ ~ TCP cormection
rsh sort

terminal -~ standard
output

Figure18.11 The command: rsh bsdz sort < datafile.

On the remote host bsdi the rshd server executes the sort program so that its stan-
dard input and standard output are both the TCP connection. Chapter 14 of [Stevens
1990] details the Unix process structure involved, but what concerns us here is the use
of the TCP connection and the required use of TCP’s half-close.

240 TCP Connection Establishment and Termination Chapter 18

18.6

The sort program cannot generate any output until all of its input has been read.
All the initial data across the connection is from the rsh client to the sort server, send-
ing the file to be sorted. When the end-of-file is reached on the input (da~:af±~te), the
z:sh client performs a half-close on the TCP connection. The sort server then receives
an end-of-file on its standard input (the TCP connection), sorts the file, and writes the
result to its standard output (the TCP connection). The ~:sh client continues reading its
end of the TCP com~ection, copying the sorted file to its standard output.

Without a half-close, some other technique is needed to let the client tell the server
that the client is finished sending data, but still let the client receive data from the
server. Two connections could be used as an alternative, but a single connection with a
half-close is better.

TCP State Transition Diagram

We’ve described numerous rules regarding the initiation and termination of a TCP con-
nection. These rules can be summarized in a state transition diagram, which we show
in Figure 18.12.

The first thing to note in this diagram is that a subset of the state transitions is "typi-
cal." We’ve marked the normal client transitions with a darker solid arrow, and the nor-
mal server transitions with a darker dashed arrow.

Next, the two transitions leading to the ESTABLISHED state correspond to opening
a connection, and the two transitions leading from the ESTABLISHED state are for the
termination of a coImection. The ESTABLISHED state is where data transfer can occur
between the two ends in both directions. Later chapters describe what happens in this
state.

We’ve collected the four boxes in the lower left of this diagram within a dashed box
and labeled it "active close." Two other boxes (CLOSE_WAIT and LAST_ACK) are col-
lected in a dashed box with the label "passive close."

The names of the 11 states (CLOSED, LISTEN, SYN_SENT, etc.) in this figure were
purposely chosen to be identical to the states output by the ne~:stat command. The
ne~:s~:a*: names, in turn, are almost identical to the names originally described in
RFC 793. The state CLOSED is not really a state, but is the imaginary starting point and
ending point for the diagram.

The state transition from LISTEN to SYN_SENT is legal but is not supported in
Berkeley-derived implementations.

The transition from SYN_RCVD back to LISTEN is valid only if the SYN_RCVD
state was entered from the LISTEN state (the normal scenario), not from the SYN_SENT
state (a simultaneous open). This means if we perform a passive open (enter LISTEN),
receive a SYN, send a SYN with an ACK (enter SYN_RCVD), and then receive a reset
instead of an ACK, the end point returns to the LISTEN state and waits for another con-
nection request to arrive.

Section 18.6 TCP State Transition Diagram 241

starting point

CLOSED

appl: passive open
send <nothing>

LISTEN

,pen

SYN_RCVD

appl" close
send: FIN

recv: SYN
send. SYN, ACK
szmultaneous open

state

SYN_SENT appl: close
or timeout

active open

active close

"~L recv: ACKLAST ACK --~- ./~ send: <nothing>

passive close

~ indzcate normal transitions for chent
indicate normal transitions for server
re&care state transitzons taken when application issues operation

recv: indicate state transitions taken when segment received
send: indicate what ~s sent for this trans,tzon

Figure 18.12 TCP state transition diagram.

242 TCP Connection Establishment and Termination Chapter 18

Figure 18.13 shows the normal TCP connection establishment and termination,
detailing the different states through which the client and server pass. It is a redo of
Figure 18.3 showing only the states.

client server

(active open) SYN_SENT

ESTABLISHED

(active close) FIN_WAIT_I

FIN_WAIT_2

TIME_WAIT

sYN K~

~ ack K+I

FIN 3/[

~~a ck N+I

LISTEN (passive open)

SYN_RCVD

ESTABLISHED

CLOSE_WAIT (passive close)

LAST ACK

CLOSED

Figure 18.13 TCP states corresponding to normal connection estabhshment and termination.

We assume in Figure 18.13 that the client on the left side does an active open, and the
server on the right side does a passive open. Although we show the client doing the
active close, as we mentioned earlier, either side can do the active close.

You should follow through the state changes in Figure 18.13 using the state transi-
tion diagram in Figure 18.12, making certain you understand why each state change
takes place.

2MSL Wait State

The TIME_WAIT state is also called the 2MSL wait state. Every implementation must
choose a value for the maximum segment lifetime (MSL). It is the maximum amount of

Section 18.6 TCP State Transition Diagram 243

time any segment can exist in the network before being discarded. We know this time
limit is bounded, since TCP segments are transmitted as IP datagrams, and the IP data-
gram has the TTL field that limits its lifetime.

RFC 793 [Postet 1981c] specifies the MSL as 2 minutes. Common lmplementation values, how-
ever, are 30 seconds, 1 minute, or 2 minutes.

Recall from Chapter 8 that the real-world limit on the lifetime of the IP datagram is
based on the number of hops, not a timer.

Given the MSL value for an implementation, the rule is: when TCP performs an
active close, and sends the final ACK, that connection must stay in the TIME_WAIT
state for twice the MSL. This lets TCP resend the final ACK in case this ACK is lost (in
which case the other end will time out and retransmit its final FIN).

Another effect of this 2MSL wait is that while the TCP connection is in the 2MSL
wait, the socket pair defining that connection (client IP address, client port number,
server IP address, and server port number) cannot be reused. That connection can only
be reused when the 2MSL wait is over.

Unfortunately most implementations (i.e., the Berkeley-derived ones) impose a
more stringent constraint. By default a local port number cannot be reused while that
port number is the local port number of a socket pair that is in the 2MSL wait. We’ll see
examples of this common constraint below.

Some implementations and APIs provide a way to bypass this restriction. With the sockets
AP[, the SO_REUSEADDR socket option can be specified. It lets the caller assign itself a local
port number that’s in the 2MSL wait, but we’ll see that the rules of TCPstill prevent this port
number from being part of a connection that is in the 2MSL walt.

Any delayed segments that arrive for a connection while it is in the 2MSL wait are
discarded. Since the connection defined by the socket pair in the 2MSL wait cannot be
reused during this time period, when we do establish a valid connection we know that
delayed segments from an earlier incarnation of this connection cannot be misinter-
preted as being part of the new connection. (A connection is defined by a socket pair.
New instances of a connection are called incarnations of that com~ection.)

As we said with Figure 18.13, it is normally the client that does the active close and
enters the TIME_WAIT state. The server usually does the passive close, and does not go
through the TIME_WAIT state. The implication is that if we terminate a client, and
restart the same client immediately, that new client cannot reuse the same local port
number. This isn’t a problem, since clients normally use ephemeral ports, and don’t
care what the local ephemeral port number is.

With servers, however, this changes, since servers use well-known ports. If we ter-
minate a server that has a connection established, and immediately try to restart the
server, the server cannot assign its well-known port number to its end point, since that
port number is part of a connection that is in a 2MSL wait. It may take from I to 4 min-
utes before the server can be restarted.

We can see this scenario using our sock program. We start the server, connect to it
from a client, and then terminate the server:

244 TCP Connection Establishment and Termination Chapter 18

sun % sock -v -s 6666 start as server, listening on port 6666
(execute chent on bsdi that connects to this port)

connect±on on 140.252.13.33.6666 from 140.252.13.35.1081
^ ? then type interrupt key to terminate server

sun % sock -s 6666 and immediately try to restart server on same port
can’t bind local address: Address already in use

sun % netstat let’s check the state of the connection
Active Internet connectlons
Proto Recv-Q Send-Q Local Address Forelgn Address (state)
tcp 0 0 sun.6666 bsdl.1081 TIME WAIT

mqny more hnes that are deleted

When we try to restart the server, the program outputs an error message indicating it
cannot bind its well-known port number, because it’s already in use (i.e., it’s in a 2MSL
wait).

We then immediately execute netstat to see the state of the connection, and verify
that it is indeed in the TIME_WAIT state.

If we continually try to restart the server, and measure the time until it succeeds, we can mea-
sure the 2MSL value. On SunOS 4.1.3, SVR4, BSD/386, and AIX 3.2.2, it takes 1 minute to
restart the server, meaning the MSL is 30 seconds. Under Solaris 2.2 it takes 4 minutes to
restart the server, implying an MSL of 2 minutes.

We can see the same error from a client, if the client tries to allocate a port that is
part of a connection in the 2MSL wait (something clients normally don’t do):

sun % sock -v bsdi echo start as chent, connect to echo server
connected on 140.252.13.33.1162 to 140.252.13.35.7
hello there type this hne
hello there and it’s echoed by the server
^I] type end-of-f~le character to terminate client

sun % sock -bi162 bsdi echo
can’t blnd local address: Address already in use

The first time we execute the client we specify the -v option to see what the local port
number is (1162). The second time we execute the client we specify the -b option,
telling the client to assign itself 1162 as its local port number. As we expect, the client
can’t do this, since that port number is part of a connection that is in a 2MSL wait.

We need to reemphasize one effect of the 2MSL wait because we’ll encounter it in
Chapter 27 with FTP, the File Transfer Protocol. As we said earlier, it is a socket pair
(that is, the 4-tuple consisting of a local IP address, local port, remote IP address and
remote port) that remains in the 2MSL wait. Although many implementations allow a
process to reuse a port number that is part of a connection that is in the 2MSL wait (nor-
mally with an option named SO_REUSEADDR), TCP cannot allow a new connection to be
created with the same socket pair. We can see this with the following experiment:

sun % sock -v -s 6666 start as server, hstening on port 6666
(execute client on bsdi that connects to this port)

Section 18.6 TCP State Transition Diagram 245

connection on 140.252.13.33.6666 from 140.252.13.35.1098
^ ? then type interrupt key to terminate server

sun % sock -b6666 bsdi 1098 try to start as client with local port 6666
can’t blnd local address: Address already in use

sun % sock -A -b6666 bsd± J.098 try again, thzs t~me w~th -A option
act±re open error: Address already ~_n use

The first time we run our sock program, we run it as a server on port 6666 and connect
to it from a client on the host bsd±. The client’s ephemeral port number is 1098. We
terminate the server so it does the active close. This causes the 4-tuple of 140.252.13.33
(local IP address), 6666 (local port number), 140.252.13.35 (foreign IP address), and 1098
(foreign port number) to enter the 2MSL wait on the server host.

The second time we run the program, we run it as a client and try to specify the
local port number as 6666 and connect to host bsd± on port 1098. But the program gets
an error when it tries to assign itself the local port number of 6666, because that port
number is part of the 4-tuple that is in the 2MSL wait state.

To try and get around this error we run the program again, specifying the -A
option, which enables the SO_REUSEADDR option that we mentioned. This lets the pro-
gram assign itself the port number 6666, but we then get an error when it tries to issue
the active open. Even though it can assign itself the port number 6666, it cannot create a
connection to port 1098 on the host bsd±, because the socket pair defining that connec-
tion is in the 2MSL wait state.

What if we try to establish the connection from the other host? First we must restart
the server on sun with the -A flag, since the local port it needs (6666) is part of a con-
nection that is in the 2MSL wait:

sun % sock -A -s 6666 start as server, listening on port 6666

Then, before the 2MSL wait is over on sun, we start the client on bsd±:

bsdi % sock -bi098 sun 6666
connected on 140.252.13.35.1098 to 140.252.13.33.6666

Unfortunately it works! This is a violation of the TCP specification, but is supported by
most Berkeley-derived implementations. These implementations allow a new connec-
tion request to arrive for a connection that is in the TIME WAIT state, if the new
sequence number is greater than the final sequence number from the previous incarna-
tion of this connection. In this case the ISN for the new incarnation is set to the final
sequence number from the previous incarnation plus 128,000. The appendix of
RFC 1185 [Jacobson, Braden, and Zhang 1990] shows the pitfalls still possible with this
technique.

This implementation feature lets a client and server continually reuse the same port
number at each end for successive incarnations of the same connection, but only if the
server does the active close. We’ll see another example of this 2MSL wait condition in
Figure 27.8, with FTP. See Exercise 18.5 also.

246 TCP Connection Establishment and Termination Chapter 18

Quiet Time Concept

The 2MSL wait provides protection against delayed segments from an earlier incarna-
tion of a connection from being interpreted as part of a new connection that uses the
same local and foreign IP addresses and port numbers. But this works only if a host
with connections in the 2MSL wait does not crash.

What if a host with ports in the 2MSL wait crashes, reboots within MSL seconds,
and immediately establishes new connections using the same local and foreign IP
addresses and port numbers corresponding to the local ports that were in the 2MSL
wait before the crash? In this scenario, delayed segments from the connections that
existed before the crash can be misinterpreted as belonging to the new connections cre-
ated after the reboot. This can happen regardless of how the initial sequence number is
chosen after the reboot.

To protect against this scenario, RFC 793 states that TCP should not create any con-
nections for MSL seconds after rebooting. This is called the quiet time.

Few implementations abide by this since most hosts take longer than MSL seconds to reboot
after a crash.

FIN WAIT 2 State

In the FIN_WAIaf_2 state we have sent our FIN and the other end has acknowledged it.
Unless we have done a half-close, we are waiting for the application on the other end to
recognize that it has received an end-of-file notification and close its end of the connec-
tion, which sends us a FIN. Only when the process at the other end does this close will
our end move from the FIN_WAIT_2 to the TIME_WAIT state.

This means our end of the connection can remain in this state forever. The other
end is still in the CLOSE_WAIT state, and can remain there forever, until the application
decides to issue its close.

Many Berkeley-derived ~mplementations prevent this infinite wait in the FIN_WAIT _2 state as
follows. If the application that does the active close does a complete close, not a half-close
indicating that it expects to receive data, then a timer is set. If the connection is idle for 10 min-
utes plus 75 seconds, TCP moves the com~ection into the CLOSED state. A comment in the
code acknowledges that th~s implementation feature violates the protocol specification.

18.7 Reset Segments

We’ve mentioned a bit in the TCP header named RST for "reset." In general, a reset is
sent by TCP whenever a segment arrives that doesn’t appear correct for the referenced
connection. (We use the term "referenced connection" to mean the connection specified
by the destination IP address and port number, and the source IP address and port
number. This is what RFC 793 calls a socket.)

Section 18.7 Reset Segments 247

Connection Request to Nonexistent Port

A common case for generating a reset is when a connection request arrives and no pro-
cess is listening on the destination port. In the case of UDP, we saw in Section 6.5 that
an ICMP port unreachable was generated when a datagram arrived for a destination
port that was not in use. TCP uses a reset instead.

This example is trivial to generate--we use the Telnet client and specify a port
number that’s not in use on the destination:

bsd± % teXnet svr4 20000 port2OOOOshouldnotbem use
Trying 140.252.13.34...
telnet: Unable to connect to remote host: Connection refused

This error message is output by the Telnet client immediately. Figure 18.14 shows the
packet exchange corresponding to this command.

1 0.0 bsdi.1087 > svr4.20000:

2 0.003771 (0.0038) svr4.20000 > bsdi.1087:

S 297416193:297416193(0)
win 4096 <mss 1024>
[tos 0xl0]

R 0:0(0) ack 297416194 win 0

Figure 18.14 Reset generated by attempt to open connection to nonexistent port.

The values we need to examine in this figure are the sequence number field and
acknowledgment number field in the reset. Because the ACK bit was not on in the
arriving segment, the sequence number of the reset is set to 0 and the acknowledgment
number is set to the incozning ISN plus the number of data bytes in the segment.
Although there is no real data in the arriving segment, the SYN bit logically occupies 1
byte of sequence number space; therefore, in this example the acknowledgment number
in the reset is set to the ISN, plus the data length (0), plus one for the SYN bit.

Aborting a Connection

We saw in Section 18.2 that the normal way to terminate a connection is for one side to
send a FIN. This is sometimes called an orderly release since the FIN is sent after all pre-
viously queued data has been sent, and there is normally no loss of data. But it’s also
possible to abort a connection by sending a reset instead of a FIN. This is sometimes
called an abortive release.

Aborting a connection provides two features to the application: (1) any queued data
is thrown away and the reset is sent immediately, and (2) the receiver of the RST can tell
that the other end did an abort instead of a normal close. The API being used by the
application must provide a way to generate the abort instead of a normal close.

We can watch this abort sequence happen using our sock program. The sockets
API provides this capability by using the "linger on close" socket option (SO_LINGER).
We specify the -L option with a linger time of 0. This causes the abort to be sent when
the connection is closed, instead of the normal FIN. We’ll connect to a server version of
our sock program on svr4 and type one line of input:

248 TCP Connection Establishment and Termination Chapter 18

bsdi % sock -L0 svr4 8888
hello, world
^D

this ~s the client; server shown later
type one line of input that’s sent to other end
type end-of-]iTe character to terminate client

Figure 18.15 shows the tcpdump output for this example. (We have deleted all the win-
dow advertisements in this figure, since they add nothing to the discussion.)

1 0.0 bsdi.1099 > svr4.8888: S 671112193:671112193(0)
<mss 1024>

2 0.004975 (0.0050) svr4.8888 > bsdi.1099: S 3224959489:3224959489(0}
ack 671112194 <mss 1024>

3 0.006656 (0.0017) bsdi.1099 > svr4.8888: . ack 1

4 4.833073 (4.8264) bsdi.1099 > svr4.8888: P 1:14(13) ack 1
5 5.026224 (0.1932) svr4.8888 > bsdi.1099: . ack 14

6 9.527634 (4.5014) bsdi.1099 > svr4.8888: R 14:14(0) ack 1

Figure 18.15 Aborting a connection with a reset (RST) instead of a FIN.

Lines 1-3 show the normal connection establishment. Line 4 sends the data line
that we typed (12 characters plus the Unix newline character), and line 5 is the acknowl-
edgment of the received data.

Line 6 corresponds to our typing the end-of-file character (Control-D) to terminate
the client. Since we specified an abort instead of a normal close (the -L0 command-line
option), the TCP on bsdi sends an RST instead of the normal FIN. The RST segment
contains a sequence number and acknowledgment number. Also notice that the RST
segment elicits no response from the other end--it is not acknowledged at all. The
receiver of the reset aborts the connection and advises the application that the connec-
tion was reset.

We get the following error on the server for this exchange:

svr4 % sock -s 8888 run as server, listen on port 8888
hello, world this is what the chent sent over
read error: Connection reset by peer

This server reads from the network and copies whatever it receives to standard output.
It normally ends by receiving an end-of-file notification from its TCP, but here we see
that it receives an error when the RST arrives. The error is what we expect: the connec-
tion was reset by the peer.

Detecting Half-Open Connections

A TCP connection is said to be half-open if one end has closed or aborted the connection
without the knowledge of the other end. This can happen any time one of the two hosts
crashes. As long as there is no attempt to transfer data across a half-open connection,
the end that’s still up won’t detect that the other end has crashed.

Another common cause of a half-open connection is when a client host is powered
off, instead of terminating the client application and then shutting down the client host.
This happens when PCs are being used to run Telnet clients, for example, and the users

Section 18.7 Reset Segments 249

power off the PC at the end of the day. If there was no data transfer going on when the
PC was powered off, the server will never know that the client disappeared. When the
user comes in the next morning, powers on the PC, and starts a new Telnet client, a new
occurrence of the server is started on the server host. This can lead to many half-open
TCP connections on the server host. (In Chapter 23 we’ll see a way for one end of a TCP
connection to discover that the other end has disappeared using TCP’s keepalive
option.)

We can easily create a half-open connection. We’ll execute the Telnet client on
bsd±, connecting to the discard server on svrd. We type one line of input, and watch it
go across with tcpdump, and then disconnect the Ethernet cable on the server’s host,
and reboot the server host. This simulates the server host crashing. (We disconnect the
Ethernet cable before rebooting the server to prevent it from sending a FIN out the open
connections, which some TCPs do when they are shut down.) After the server has
rebooted, we reconnect the cable, and try to send another line from the client to the
server. Since the server’s TCP has rebooted, and lost all memory of the connections that
existed before it was rebooted, it knows nothing about the connection that the data seg-
ment references. The rule of TCP is that the receiver responds with a reset.

bsdl % telnet svr4 discard start the client

Trying 140.252.13.34...
Connected to svrd.
Escape character is ’ ^]’
hi there thzs line is sent OK

here is where we reboot the server host
and this one elicits a resetanother line

Connection closed by foreign host.

Figure 18.16 shows the tcpdump output for this example. (We have removed from this
output the window advertisements, the type-of-service
announcements, since they add nothing to the discussion.)

0.0
0.004811

bsdi.ll02 > svr4.discard: S
0.0048) svr4.discard > bsdi.ll02: S

1
2

4
5

0.006516

5.167679
5.201662

194.909929
194.914957
194.915678
194.918225

0.0017

5.1612
0.0340

189.7083
0.0050
0.0007
0.0025

information, and the MSS

bsdi.ll02 > svr4.discard:

1591752193:1591752193(0)
26368001:26368001(0)
ack 1591752194
ack 1

bsdi.ll02 > svr4.discard: P i:ii(i0) ack 1
svr4.discard > bsdi.ll02: . ack Ii

bsdi.ll02 > svr4odiscard: P 11:25(14) ack 1
arp who-has bsdi tell svr4
arp reply bsdi is-at 0:0:c0:6f:2d:40
svr4.diseard > bsdi.ll02: R 26368002:26368002(0)

6
7
8
9

Figure 18.16 Reset in response to data segment on a half-open connection.

Lines 1-3 are the normal connection establishment. Line 4 sends the line "hi there"
to the discard server, and line 5 is the acknowledgment.

At this point we disconnect the Ethernet cable from svrd, reboot it, and reconnect
the cable. This takes almost 190 seconds. We then type the next line of input to the
client ("another line") and when we type the return key the line is sent to the server

250 TCP Coi~ection Establishment and Termination Chapter 18

18.8

(line 6 in Figure 18.16). This elicits a response from the server, but note that since the
server was rebooted, its ARP cache is empty, so an ARP request and reply are required
(lines 7 and 8). Then the reset is sent in line 9. The client receives the reset and outputs
that the connection was terminated by the foreign host. (The final message output by
the Telnet client is not as informative as it could be.)

Simultaneous Open

It is possible, although improbable, for two applications to both perform an active open
to each other at the same time. Each end must transmit a SYN, and the SYNs must pass
each other on the network. It also requires each end to have a local port number that is
well known to the other end. This is called a simultaneous open.

For example, one application on host A could have a local port of 7777 and perform
an active open to port 8888 on host B. The application on host B would have a local port
of 8888 and perform an active open to port 7777 on host A.

This is not the same as connecting a Telnet client on host A to the Telnet server on
host B, at the same time that a Telnet client on host B is connecting to the Telnet server
on host A. In this Telnet scenario, both Telnet servers perform passive opens, not active
opens, and the Telnet clients assign themselves an ephemeral port number, not a port
number that is well known to the other Telnet server.

TCP was purposely designed to handle simultaneous opens and the rule is that
only one connection results from this, not two connections. (Other protocol suites,
notably the OSI transport layer, create two connections in this scenario, not one.)

" When a simultaneous open occurs the state transitions differ from those shown in
Figure 18.13. Both ends send a SYN at about the same time, entering the SYN_SENT
state. When each end receives the SYN, the state changes to SYN_RCVD (Figure 18.12),
and each end resends the SYN and acknowledges the received SYN. When each end
receives the SYN plus the ACK, the state changes to ESTABLISHED. These state
changes are summarized in Figure 18.17.

(active open) SYN_SENT

SYN_RCVD

ESTABLISHED

SYN_SENT (active open)

SYN_RCVD

ESTABLISHED

Figure 18.17 Segments exchanged during simultaneous open.

Section 18.8 Simultaneous Open 251

A simultaneous open requires the exchange of four segments, one more than the
normal three-way handshake. Also notice that we don’t call either end a client or a
server, because both ends act as client and server.

An Example

It is possible, though hard, to generate a simultaneous open. The two ends must be
started at about the same time, so that the SYNs cross each other. Having a long round-
trip time between the two ends helps, to let the SYNs cross. To do this we’ll execute one
end on our host bsdi, and the other end on the host vangogh, cs. berkeley, edu.
Since there is a dialup SLIP link between them, the round-trip time should be long
enough (a few hundred milliseconds) to let the SYNs cross.

One end (bsd±) assigns itself a local port of 8888 (the -b command-line option) and
performs an active open to port 7777 on the other host:

bsdi % sock -v-b8888 vangogh.cs.berkeley.edu 7777
connected on 140.252.13.35.8888 to 128.32.130.2.7777
TCP MAXSEG = 512
hello, world we type this line
and hi there this line was typed on other end
connection closed by peer this is output when FIN received

The other end is started at about the same time, assigns itself a local port of 7777, and
performs an active open to port 8888:

vangogh % sock -v -b7777 bsdi.tuc.noao.edu 8888
connected on 128.32.130.2.7777 to 140.252.13.35.8888
TCP MAXSEG = 512
hello, world this is typed on the other end
and hi there we type this line
^D and then type our EOF character

We specify the -v flag to our sock program to verify the IP address and port numbers
on each end of the com~ection. This flag also prints the MSS used by each end of the
connection. We also type in one line on each end, which is sent to the other end and
printed, to verify that both ends are indeed talking to each other.

Figure 18.18 shows the exchange of segments across the connection. (We have
deleted some new TCP options that appear in the original SYN from vangogh, a
4.4BSD system. We describe these newer options in Section 18.10.) Notice the two
SYNs (lines 1 and 2) followed by the two SYNs with ACKs (lines 3 and 4). These per-
form the simultaneous open.

Line 5 shows the input line "hello, world" going from bsd± to vangogh, with the
acknowledgment in line 6. Lines 7 and 8 correspond to the line "and hi there" going in
the other direction. Lines 9-12 show the normal connection termination.

Many Berkeley-derived implementations do not support the simultaneous open correctly. On
these systems, if you can get the SYNs to cross, you end up with an infinite exchange of seg-
ments, each with a SYN and an ACK, in each direction. The transition from the SYN_SENT
state to the SYN_RCVD state in Figure 18.12 is not always tested in many implementations.

252 TCP Connection Establishment and Termination Chapter 18

18.9

I 0.0

2 0.213782 (0.2138)

3 0.215399 (0.0016)

4 0.340405 (0.1250)

5 5,633142 (5.2927)
6 6.100366 (0.4672)

7 9,640214 (3.5398)
8 9.796417 (0.1562)

9 13,060395 (3.2640)
10 13.061828 (0.0014)
11 13.079769 (0.0179)
12 13.299940 (0.2202)

bsdl.8888 > vangogh.7777: S

vangogh.7777 > bsdi.8888: S

bsdi.8888 > vangogh.7777: S

vangogh.7777 > bsdl.8888: S

bsdi.8888 > vangogh.7777: P
vangogh.7777 > bsdi.8888: .

vangogh.7777 > bsdi.8888: P
bsdl.8888 > vangogh.7777:

vangogh.7777 > bsdi.8888: F
bsdi.8888 > vangogh.7777: .
bsdi.8888 > vangogh.7777: F
vangogh.7777 > bsdi.8888:

91904001:91904001(0)
wzn 4096 <mss 512>
1058199041:1058199041(0)
wzn 8192 <mss 512>
91904001:91904001(0)
ack 1058199042 win 4096
<mss 512>
1058199041:1058199041(0)
ack 91904002 w~n 8192
<mss 512>

1:14(13) ack 1 win 4096
ack 14 win 8192

1:14(13) ack 14 win 8192
ack 14 win 4096

14:14(0) ack 14 w~n 8192
ack 15 win 4096
14:14(0) ack 15 wln 4096
ack 15 win 8192

Figure 18.18 Exchange of segments during s,multaneous open.

Simultaneous Close

We said earlier that one side (often, but not always, the client) performs the active close,
causing the first FIN to be sent. It’s also possible for both sides to perform an active
close, and the TCP protocol allows for this simultaneous close.

In terms of Figure 18.12, both ends go from ESTABLISHED to FIN_WAIT_I when
the application issues the close. This causes both FINs to be sent, and they probably
pass each other somewhere in the network. When the FIN is received, each end transi-
tions from FIN_WAIT_I to the CLOSING state, and each state sends its final ACK.
When each end receives the final ACK, the state changes to TIME_WAIT. Figure 18.19
summarizes these state changes.

(active close) FIN_WAIT_I

CLOSING

TIME_WAIT

FIN_WAIT_I (active close)

CLOSING

TIME_WAIT

Figure 18.19 Segments exchanged during simultaneous close.

With a simultaneous close the same number of segments are exchanged as in the
normal close.

Section 18.10 TCP Options 253

18.10 TCP Options

The TCP header can contain options (Figure 17.2). The only options defined in the orig-
inal TCP specification are the end of option list, no operation, and the maximum seg-
ment size option. We have seen the MSS option in almost every SYN segment in our
examples.

Newer RFCs, specifically RFC 1323 [Jacobson, Braden, and Borman 1992], define
additional TCP options, most of which are found only in the latest implementations.
(We describe these new options in Chapter 24.) Figure 18.20 shows the format of the
current TCP options--those from RFC 793 and RFC 1323.

End of option list:

i byte

No operation:

I byte

Maximum segment size: I kind=2 len=4

I byte 1 byte

maximum
segment

size (MSS)
2 bytes

Window scale factor: kind=3

len=3~shift
1 byte 1 byte I byte

Timestamp: ~md=8 len=10

I byte 1 byte

timestampvalue
I

timestamp echo reply

I
4 bytes 4 bytes

Figure 18.20 TCP options.

Every option begins with a 1-byte kind that specifies the type of option. The options
with a kind of 0 and 1 occupy a single byte. The other options have a len byte that fol-
lows the kind byte. The length is the total length, including the kind and len bytes.

The reason for the no operation (NOP) option is to allow the sender to pad fields to
a multiple of 4 bytes. If we initiate a TCP connection from a 4.4BSD system, the follow-
ing TCP options are output by tcpdurap on the initial SYN segment:

<mss 512,nop, wscale O,nop,nop, timestamp 146647 O>

The MSS option is set to 512, followed by a NOP, followed by the window scale option.
The reason for the first NOP is to pad the 3-byte window scale option to a 4-byte

254 TCP Connection Establishment and Termination Chapter 18

boundary. Similarly, the 10-byte timestamp option is preceded by two NOPs, to occupy
12 bytes, placing the two 4-byte timestamps onto 4-byte boundaries.

Four other options have been proposed, with k~nds of 4, 5, 6, and 7 called the selective-ACK
and echo options. We don’t show them in Figure 18.20 because the echo options have been
replaced with the tlmestamp option, and selective ACKs, as currently defined, are still under
discussion and were not included in RFC 1323. Also, the T/TCP proposal for TCP transactions
(Section 24.7) specifies three options with kinds of 11, 12, and 13.

18.11 TCP Server Design

We said in Section 1.8 that most T.CP servers’are concurrent. When a new connection
request arrives at a server, the server accepts the connection and invokes a new process
to handle the new client. Depending on the operating system, various techniques are
used to invoke the new server. Under Unix the common technique is to create a new
process using the fork function. Lightweight processes (threads) can also be used, if
supported.

What we’re interested in is the interaction of TCP with concurrent servers. We need
to answer the following questions: how are the port numbers handled when a server
accepts a new connection request from a client, and what happens if multiple connec-
tion requests arrive at about the same time?

TCP Server Port Numbers

We can see how TCP handles the port numbers by watching any TCP server. We’ll
watch the Telnet server using the netstat command. The following output is on a
system with no active Telnet connections. (We have deleted all the lines except the one
showing the Telnet server.)

sun % netstat -a -n -f inet
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
tcp 0 0 *.23 *.*

(state)
LISTEN

The -a flag reports on all network end points, not just those that are ESTABLISHED.
The -n flag prints IP addresses as dotted-decimal numbers, instead of trying to use the
DNS to convert the address to a name, and prints numeric port numbers (e.g., 23)
instead of service names (e.g., Telnet). The -f ±net option reports only TCP and UDP
end points.

The local address is output as *. 23, where the asterisk is normally called the
wildcard character. This means that an incoming connection request (i.e., a SYN) will be
accepted on any local interface. If the host were multihomed, we could specify a single
IP address for the local IP address (one of the host’s IP addresses), and only connections
received on that interface would be accepted. (We’ll see an example of this later in this
section.) The local port is 23, the well-known port number for Telnet.

The foreign address is output as *. *, which means the foreign IP address and for-
eign port number are not known yet, because the end point is in the LISTEN state, wait-
ing for a connection to arrive.

Section 18.11 TCP Server Design 255

We now start a Telnet client on the host slap (140.252.13.65) that connects to this
server. Here are the relevant lines from the ne¢sta¢ output:

Proto Recv-Q Send-Q Local Address Forelgn Address (state)
tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED
tcp 0 0 *.23 *.* LISTEN

The first line for port 23 is the ESTABLISHED connection. All four elements of the local
and foreign address are filled in for this connection: the local IP address and port num-
ber, and the foreign IP address and port number. The local IP address corresponds to
the interface on which the connection request arrived (the Ethernet interface,
140.252.13.33).

The end point in the LISTEN state is left alone. This is the end point that the con-
current server uses to accept future connection requests. It is the TCP module in the
kernel that creates the new end point in the ESTABLISHED state, when the incoming
connection request arrives and is accepted. Also notice that the port number for the
ESTABLISHED connection doesn’t change: it’s 23, the same as the LISTEN end point.

We now initiate another Telnet client from the same client (slip) to this server.
Here is the relevant netstat output:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 140.252.13.33.23 140.252.13.65.1030 ESTABLISHED
tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED
tcp 0 0 *.23 *.* LISTEN

We now have two ESTABLISHED connections from the same host to the same server.
Both have a local port number of 23. This is not a problem for TCP since the foreign
port numbers are different. They must be different because each of the Telnet clients
uses an ephemeral port, and the definition of an ephemeral port is one that is not cur-
rently in use on that host (slip).

This example reiterates that TCP demultiplexes incoming segments using all four
values that comprise the local and foreign addresses: destination IP address, destination
port number, source IP address, and source port number. TCP cannot determine which
process gets an incoming segment by looking at the destination port number only. Also,
the only one of the three end points at port 23 that will receive incoming connection
requests is the one in the LISTEN state. The end points in the ESTABLISHED state can-
not receive SYN segments, and the end point in the LISTEN state cannot receive data
segments.

Next we initiate a third Telnet client, from the host solaris that is across the SLIP
link from sun, and not on its Ethernet.

Proto Recv-Q Send-Q Local Address Forelgn Address (state)
tcp 0 0 140.252.1.29.23 140.252.1.32.34603 ESTABLISHED
tcp 0 0 140.252.13.33.23 140.252.13.65.1030 ESTABLISHED
tcp 0 0 140.252.13.33.23 140.252.13.65.1029 ESTABLISHED

tcp 0 0 *.23 *.* LISTEN

The local IP address of the first ESTABLISHED connection now corresponds to the inter-
face address of SLIP link on the multihomed host sun (140.252.1.29).

256 TCP Connection Establishment and Termination Chapter 18

Restricting Local IP Address

We can see what happens when the server does not wildcard its local IP address, setting
it to one particular local interface address instead. If we specify an IP address (or host-
name) to our sock program when we invoke it as a server, that IP address becomes the
local IP address of the listening end point. For example

sun % sock -s 140.252.1.29 8888

restricts this server to connections arriving on the SLIP interface (140.252.1.29). The
netstat output reflects this:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 140.252.1.29.8888 *.* LISTEN

If we connect to this server across the SLIP link, from the host solaris, it works.

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tep 0 0 140.252.1.29.8888 140.252.1.32.34614 ESTABLISHED
tcp 0 0 140.252.1.29.8888 *.* LISTEN

But if we try to connect to this server from a host on the Ethernet (140.252.13), the con-
nection request is not accepted by the TCP module. If we watch it with tcpdurap the
SYN is responded to with an RST, as we show in Figure 18.21.

1 0.0 bsdi.1026 > sun.8888: S 3657920001:3657920001(0)
win 4096 <mss 1024>

2 0.000859 (0.0009) sun.8888 > bsdi.1026: R 0:0(0) ack 3657920002 wln 0

Figure 18.21 Rejection of a cotmectlon request based on local IP address of server.

The server application never sees the connection request--the rejection is done by the
kernel’s TCP module, based on the local IP address specified by the application.

Restricting Foreign IP Address

In Section 11.12 we saw that a UDP server can normally specify the foreign tP address
and foreign port, in addition to specifying the local IP address and local port. The inter-
face functions shown in RFC 793 allow a server doing a passive open to have either a
fully specified foreign socket (to wait for a particular client to issue an active open) or a
unspecified foreign socket (to wait for any client).

Unfortunately, most APIs don’t provide a way to do this. The server must leave the
foreign socket unspecified, wait for the cotmection to arrive, and then examine the IP
address and port number of the client.

Figure 18.22 summarizes the three types of address bindings that a TCP server can
establish for itself. In all cases, Iport is the server’s well-known port and locallP must be
the IP address of a local interface. The ordering of the three rows in the table is the
order that the TCP module applies when trying to determine which local end point
receives an incoming connection request. The most specific binding (the first row, if
supported) is tried first, and the least specific (the last row with both IP addresses wild-
carded) is tried last.

Section 18.11 TCP Server Design 257

Local Address Foreign Address Description

locallP, lport fore~gnlP.fport restricted to one chent (normally not supported)
locallP, lport *.* restricted to com~ectxons arriving on one local interface locallP

*. Iport *.* receives all connections sent to Iport

Figure 18.22Specification of local and foreign IP addresses and port number for TCP server

Incoming Connection Request Queue

A concurrent server invokes a new process to handle each client, so the listening server
should always be ready to handle the next incoming connection request. That’s the
underlying reason for using concurrent servers. But there is still a chance that multiple
connection requests arrive while the listening server is creating a new process, or while
the operating system is busy running other higher priority processes. How does TCP
handle these incoming connection requests while the listening application is busy?

In Berkeley-derived implementations the following rules apply.

Each listening end point has a fixed length queue of connections that have been
accepted by TCP (i.e., the three-way handshake is complete), but not yet
accepted by the application.

Be careful to differentiate between TCP accepting a connection and placing it on
this queue, and the application taking the accepted coru~ection off this queue.

The application specifies a limit to this queue, commonly called the backlog.
This backlog must be between 0 and 5, inclusive. (Most applications specify the
maximum value of 5.)

When a connection request arrives (i.e., the SYN segment), an algorithm is
applied by TCP to the current number of connections already queued for this
listening end point, to see whether to accept the connection or not. We would
expect the backlog value specified by the application to be the maximum num-
ber of queued connections allowed for this end point, but it’s not that simple.
Figure 18.23 shows the relationship between the backlog value and the real max-
imum number of queued connections allowed by traditional Berkeley systems
and Solaris 2.2.

Backlog value

0
1
2
3
4
5

Max # of queued connections
~lYadit~onal BSD

1
2
4
5
7
8

Solans 2.2

0
1
2
3
4
5

Figure 18.23 Maximum number of accepted connections allowed for listening end point

258 TCP Connection Establishment and Termination Chapter 18

Keep in mind that this backlog value specifies only the maximum number of
queued connections for one listening end point, all of which have already been
accepted by TCP and are waiting to be accepted by the application. This back-
log has no effect whatsoever on the maximum number of established connec-
tions allowed by the system, or on the number of clients that a concurrent server
can handle concurrently~

The Solaris values m this figure are what we expect The traditional BSD values are (for
some unknown reason) the backlog value times 3, divided by 2, plus 1.

If there is room on this listening end point’s queue for this new connection
(based on Figure 18.23), the TCP module ACKs the SYN and completes the con-
nection. The server application with the listening end point won’t see this new
connection until the third segment of the three-way handshake is received.
Also, the client may think the server is ready to receive data when the client’s
active open completes successfully, before the server application has been noti-
fied of the new connection. (If this happens, the server’s TCP just queues the
incoming data.)

If there is not room on the queue for the new connection, TCP just ignores the
received SYN. Nothing is sent back (i.e., no RST segment). If the listening
server doesn’t get around to accepting some of the already accepted connections
that have filled its queue to the limit, the client’s active open will eventually
time out.

We can see this scenario take place with our sock program. We invoke it with a
new option (-O) that tells it to pause after creating the listening end point, before
accepting any connection requests. If we then invoke multiple clients during this pause
period, it should cause the server’s queue of accepted connections to fill, and we can see
what happens with tcpdump.

bsdi % sock -s -v -ql -030 7777

The -ql option sets the backlog of the listening end point to 1, which for this traditional
BSD system should allow two pending connection requests (Figure 18.23). The -O30
option causes the program to sleep for 30 seconds before accepting any client connec-
tions. This gives us 30 seconds to start some clients, to fill the queue. We’ll start four
clients on the host sun.

Figure 18.24 shows the tcpdurap output, starting with the first SYN from the first
client. (We have removed the window size advertisements and MSS announcements.
We have also marked the client port numbers in bold when the TCP connection is
established--the three-way handshake.)

The first client’s connection request from port 1090 is accepted by TCP (segments
1-3). The second client’s connection request from port 1091 is also accepted by TCP
(segments 4-6). The server application is still asleep, and has not accepted either con-
nection yet. Everything has been done by the TCP module in the kernel. Also, the two
clients have returned successfully from their active opens, since the three-way hand-
shakes are complete.

Section 18.11 TCP Server Design 259

1
2

3

4
5

0.0
0.002310

0.003098

4.291007
4.293349

6 4.294167

7 7.131981
8 10.556787
9 12.695916

10 16.195772
Ii 24.695571

12 28.195454
13 28.197810

14 28. 198639

i5 48.694931
16 48.697292

17 48.698145

0.0023

0.0008

4.2879
0.0023

0.0008

2.8378
3.4248
2.1391
3.4999
8.4998

3.4999
0.0024

0.0008

(20.4963
(0.0024

sun.f090 > bsdi.7777:
bsdl.7777 > sun.t090:

sun.f090 > bsdi.7777:

sun.t091 > bsdi.7777:
bsdl.7777 > sun.t091:

sun.t091 > bsdl.7777:

sun.1092 > bsdi.7777:
sun.1093 > bsdi.7777:
sun.f092 > bsdi.7777:
sun.f093 > bsdi.7777:
sun.1092 > bsdA.7777:

sun. K093 > bsdi.7777:
bsdi.7777 > sun.f093:

sun.f093 > bsdi.7777:

sun.f092 > bsdi.7777:
bsdi.7777 > sun.f092:

(0.0009

Figure18.24

sun.f092 > bsdi.7777:

S 1617152000:1617152000(0)
S 4164096001:4164096001(0)

ack 1617152001
. ack 1

S 1617792000:1617792000(0)
S 4164672001:4164672001(0)

ack 1617792001
¯ ack 1

S 1618176000:1618176000(0)
S 1618688000:1618688000(0)
S 1618176000:1618176000(0)
S 1618688000:1618688000(0)
S 1618176000:1618176000(0)

S 1618688000:1618688000(0)
S 4167808001:4167808001(0)

ack 1618688001
. ack 1

S 1618176000:1618176000(0)
S 4170496001:4170496001(0)

ack 1618176001
. ack 1

tcpdump output for backlog example.

We try to start a third client in segment 7 (port 1092), and a fourth in segment 8
(port 1093). TCP ignores both SYNs since the queue for this listening end point is full.
Both clients retransmit their SYNs in segments 9, 10, 11, 12, and 15. The fourth client’s
third retransmission is accepted (segments 12-14) because the server’s 30-second pause
is over, causing the server to remove the two connections that were accepted, emptying
its queue. (The reason it appears this connection was accepted by the server at the time
28.19, and not at a time greater than 30, is because it took a few seconds to start the first
client [segment 1, the starting time point in the output] after starting the server.) The
third client’s fourth retransmission is then accepted (segments 15-17). The fourth client
connection (port 1093) is accepted by the server before the third client comnection (port
1092) because of the timing interactions between the server’s 30-second pause and the
client’s retransmissions.

We would expect the queue of accepted connections to be passed to the application in FIFO
(first-in, first-out) order. That is, after TCP accepts the connections on ports 1090 and 1091, we
expect the application to receive the connection on port 1090 first, and then the connection on
port 1091. But a bug has existed for years in many Berkeley-derived implementations causing
them to be returned in a LIFO (last-in, first-out) order instead. Vendors have recently started
fixing this bug, but it still exists in systems such as SunOS 4 1.3.

TCP ignores the incoming SYN when the queue is full, and doesn’t respond with an
RST, because this is a soft error, not a hard error. Normally the queue is full because the
application or the operating system is busy, preventing the application from servicing
incoming connections. This condition could change in a short while. But if the server’s
TCP responded with a reset, the client’s active open would abort (which is what we saw

260 TCP Connection Establishment and Termination Chapter 18

happen if the server wasn’t started). By ignoring the SYN, the server forces the client
TCP to retransmit the SYN later, hoping that the queue will then have room for the new
connection.

A subtle point in this example, which is found in most TCP/IP implementations, is
that TCP accepts an incoming connection request (i.e., a SYN) if there is room on the lis-
tener’s queue, without giving the application a chance to see who it’s from (the source
IP address and source port number). This is not required by TCP, it’s just the common
implementation technique (i.e., the way the Berkeley sources have always done it). If an
API such as TLI (Section 1.15) gives the application a way to learn when a connection
request arrives, and then allows the application to choose whether to accept the connec-
tion or not, be aware that with TCP, when the. application is supposedly told that the
connection has just arrived, TCP’s three-way handshake is over! Other transport layers
may be implemented to provide this separation to the application between arrival and
acceptance (i.e., the OSI transport layer) but not TCP.

Solaris 2.2 provides an option that prevents TCP froIn accepting an incoming connection
request until the application says so (tcp_eager_l i steners in Section E.4)

This behavior also means that a TCP server has no way to cause a client’s active
open to fail. When a new client connection is passed to the server application, TCP’s
three-way handshake is over, and the client’s active open has completed successfully. If
the server then looks at the client’s IP address and port number, and decides it doesn’t
want to service this client, all the server can do is either close the conriection (causing a
FIN to be sent) or reset the connection (causing an RST to be sent). In either case the
client thought everything was OK when its active open completed, and may have
already sent a request to the server.

18.12 Summary

Before two processes can exchange data using TCP, they must establish a connection
between themselves. When they’re done they terminate the connection. This chapter
has provided a detailed look at how connections are established using a three-way
handshake, and terminated using four segments.

We used tcpdump to show all the fields in the TCP header. We’ve also seen how a
connection establishment can time out, how resets are sent, what happens with a half-
open connection, and how TCP provides a half-close, simultaneous opens, and simulta-
neous closes.

Fundamental to understanding the operation of TCP is its state transition diagram.
We’ve followed through the steps involved in connection establishment and termina-
tion, and the state transitions that take place. We also looked at the implications of
TCP’s connection establishment on the design of concurrent TCP servers.

A TCP connection is uniquely defined by a 4-tuple: the local IP address, local port
number, foreign IP address, and foreign port number. Whenever a connection is termi-
nated, one end must maintain knowledge of the connection, and we saw that the
TIME_WAIT state handles this. The rule is that the end that does the active close enters
this state for twice the implementation’s MSL.

Chapter 18 Exercises 261

Exercises

18.1 In Section 18.2 we said that the initial sequence number (ISN) normally starts at 1 and is
incremented by 64,000 every half-second and every time an active open is performed. This
would imply that the low-order three digits of the ISN would always be 001. But in Fig-
ure 18.3 these low-order three digits are 521 in each direction. What’s going on?

18.2 In Figure 18.15 we typed 12 characters and saw 13 bytes sent by TCP. In Figure 18.16 we
typed eight characters but TCP sent 10 bytes. Why was i byte added in the first case, but 2
bytes in the second case?

18.3

18.4

18.5

What’s the difference between a half-open connection and a half-closed connection?

If we start our sock program as a server, and then terminate it (without having a client
connect to it), we can immediately restart the server. This implies that it doesn’t go
through the 2MSL wait state. Explain this in terms of the state transition diagram.

In Section 18.6 we showed that a client cannot reuse the same local port number while that
port is part of a connection in the 2MSL wait. But if we run our sock program twice in a
row as a client, connecting to the daytime server, we can reuse the same local port number.
Additionally, we’re able to create a new incarnation of a connection that should be in the
2MSL wait. What’s going on?

sun % sock -v bsdi daytime
connected on 140.252.13.33.1163 to 140.252.13.35.13
Wed Jul 7 07:54:51 1993
connection closed by peer
sun % sock -v -b1163 bsdi daytime ~usesamelocalportnumber
connected on 140.252.13.33.1163 to 140.252.13.35.13
Wed Jul 7 07:55:01 1993
connection closed by peer

18.6

18.7

18.8

18.9

1 0

At the end of Section 18.6 when describing the FIN_WAIT_2 state, we mentioned that
many implementations move a connection from this state into the CLOSED state if the
application did a complete close (not a half-close) after just over 11 minutes. If the other
end (in the CLOSE_WAIT state) waited 12 minutes before issuing its close (1.e., sending its
FIN), what would its TCP get in response to the FIN?

Which end of a telephone conversation does the active open, and which does the passive
open? Are simultaneous opens allowed? Are simultaneous closes allowed?

In Figure 18.6 we don’t see an ARP request or an ARP reply. Obviously the hardware
address for host svr4 must be in the ARP cache on bsdi. What would change in this fig-
ure if this ARP cache entry was not present?

Explain the following t cpdurap output. Compare it with Figure 18.13.

solaris.32990 > bsdi.discard: S 40140288:40140288(0)

2 0.003295 (0.0033)

0.419991 (0.4167)
0.449852 (0.0299)
0.451965 (0.0021)
0.464569 (0.0126)
0.720031 (0.2555)

3
4
5
6
7

bsdi.discard > solaris.32990:

solariSo32990 > bsdi.discard:
solaris.32990 > bsdi.discard:
bsdi.discard > solaris.32990:
bsdi.discard > solaris.32990:
solaris.32990 > bsdl.discard:

win 8760 <mss 1460>
S 4208081409:4208081409(0)
ack 40140289 win 4096
<mss 1024>
P 1:257(256) ack 1 win 9216
F 257:257(0) ack 1 win 9216

ack 258 win 3840
F i:I(0) ack 258 win 4096
. ack 2 win 9216

262 TCP Cormection Establishment and Termination Chapter 18

18.10

18.11

18.12

18.13

18.14

18.15

18.16

18.17

18.18

Why doesn’t the server in Figure 18.4 combine the ACK of the client’s FIN with its own
FIN, reducing the number of segments to three?

In Figure 18.16 why is the sequence number of the RST 26368002?

Does TCP’s querying the hnk layer for the MTU violate the spirit of layering?

Assume in Figure 14.16 that each DNS query is issued using TCP instead of UDP. How
many packets are exchanged?

With an MSL of 120 seconds, what is the maximum at which a system can initiate new con-
nections and then do an active close?

Read RFC 793 to see what happens when an end point that is in the TIME_WAIT state
receives a duplicate of the FIN that placed it if~to this state.

Read RFC 793 to see what happens when an end point that is in the TIME_WAIT state
receives an RST.

Read the Host Requirements RFC to obtain the definition of a half-duplex TCP close.

In Figure 1.8 (p. 11) we said that incoming TCP segments are demultiplexed based on the
destination TCP port number. Is that correct?

1Q

TCP Interactive Data Flow

19.1 Introduction

~’~’~0~ e~m~e tho ~ran~Icr ~t daL~ Linen# Iq)~

I-CP obt locl$1~ handle> b+>tl~ t} pm~ ol dMa, but dlttmrc’l~t al~,~r/thm~

19.2 Interactive Input

264 TCP Interactive Data Flow Chapter 19

remote system (the server) echo the characters that we (the client) type. This could gen-
erate four segments: (1) the interactive keystroke from the client, (2) an acknowledg-
ment of the keystroke from the server, (3) the echo of the keystroke from the server, and
(4) an acknowledgment of the echo from the client. Figure 19.1 shows this flow of data.

client server

keystroke

display

data byte

ack. of data byte

of data byteecl~o

~ ack of echoed byte

-~ server

echo

Figure 19.1 One possible way to do remote echo of interachve keystroke.

Normally, however, segments 2 and 3 are combined--the acknowledgment of the key-
stroke is sent along with the echo. We describe the technique that combines these
(called delayed acknowledgments) in the next section.

We purposely use Rlogin for the examples in this chapter because it always sends
one character at a time from the client to the server. When we describe Telnet in Chap-
ter 26, we’ll see that it has an option that allows lines of input to be sent from the client
to the server, which reduces the network load.

Figure 19.2 shows the flow of data when we type the five characters date\n. (We
do not show the connection establishment and we have removed all the type-of-service
output. BSD/386 sets the TOS for an Rlogin connection for minimum delay.) Line 1
sends the character d from the client to the server. Line 2 is the acknowledgment of this
character and its echo. (This is combining the middle two segments in Figure 19.1.)
Line 3 is the acknowledgment of the echoed character. Lines 4-6 correspond to the
character a, lines 7-9 to the character t, and lines 10-12 to the character e. The frac-
tional second delays between lines 3-4, 6-7, 9-10, and 12-13 are the human delays
between typing each character.

Notice that lines 13-15 are slightly different. One character is sent from the client to
the server (the Unix newline character, from our typing the RETURN key) but two char-
acters are echoed. These two characters are a carriage return and linefeed (CR/LF), to
move the cursor back to the left and space down one line.

Line 16 is the output of the date command from the server. The 30 bytes are com-
posed of the following 28 characters

Sat Feb 6 07:52:17 MST 1993

Section 19.3 Delayed Acknowledgments 265

1 0.0
2 0.016497 (0.0165)
3 0.139955 (0.1235)

4 0.458037 (0.3181)
5 0.474386 (0.0163)
6 0.539943 (0.0656)

7 0.814582 (0.2746)
8 0.831108 (0.0165)
9 0.940112 (0.1090)

10 1.191287 (0.2512)
II 1.207701 (0.0164)
12 1.339994 (0.1323)

13 1.680646 (0.3407)
14 1.697977 (0.0173)
15 1.739974 (0.0420)

16 1.799841 (0.0599)
17 1.940176 (0.1403)
18 1.944338 (0.0042)
19 2.140110 (0.1958)

Figure 19.2

bsdl.1023 > svr4.1ogin: P 0:i(i) ack 1 win 4096
svr4.1ogin > bsdi.1023: P 1:2(1) ack 1 win 4096
bsdi.1023 > svr4.1ogln: . ack 2 win 4096

bsdi.1023 > svr4.1ogin: P 1:2(i) ack 2 win 4096
svr4.1ogin > bsdi.1023: P 2:3(1) ack 2 win 4096
bsdi.1023 > svr4.1ogin: . ack 3 wln 4096

bsdi.1023 > svr4.1ogln: P 2:3(1) ack 3 win 4096
svr4.1ogin > bsdi.1023: P 3:4(1) ack 3 wln 4096
bsdi.1023 > svr4.1ogin: . ack 4 win 4096

bsdi.1023 > svr4.1og±n: P 3:4(1) ack 4 w~n 4096
svr4.1ogin > bsdi.1023: P 4:5(1) ack 4 win 4096
bsdi.1023 > svr4.1ogzn: . ack 5 win 4096

bsdi.1023 > svr4.1ogin: P 4:5(1) ack 5 win 4096
svr4.1ogin > bsdl.1023: P 5:7(2) ack 5 win 4096
bsdi.1023 > svr4.1ogin: ack 7 win 4096

svr4.1ogin > bsdl.1023: P 7:37(30) ack 5 win 4096
bsdl.1023 > svr4.1ogin: ack 37 wln 4096
svr4.1ogin > bsdi.1023: P 37:44(7) ack 5 win 4096
bsdi.1023 > svr4.1ogin: . ack 44 win 4096

TCP segments when date typed on Rlogin connection.

plus a CR/LF pair at the end. The next 7 bytes sent from the server to the client (line 18)
are the client’s prompt on the server host: svr4 % Line 19 acknowledges these 7
bytes.

Notice how the TCP acknowledgments operate. Line 1 sends the data byte with the
sequence number 0. Line 2 ACKs this by setting the acknowledgment sequence number
to 1, the sequence number of the last successfully received byte plus one. (This is also
called the sequence number of the next expected byte.) Line 2 also sends the data byte
with a sequence number of 1 from the server to the client. This is ACKed by the client
in line 3 by setting the acknowledged sequence number to 2.

19.3 Delayed Acknowledgments

There are some subtle points in Figure 19.2 dealing with timing that we’ll cover in this
section. Figure 19.3 shows the time line for the exchange in Figure 19.2. (We have
deleted all the window advertisements from this time line, and have added a notation
indicating what data is being transferred.)

We have labeled the seven ACKs sent from bsdi to svr4 as delayed ACKs. Nor-
mally TCP does not send an ACK the instant it receives data. Instead, it delays the
ACK, hoping to have data going in the same direction as the ACK, so the ACK can be
sent along with the data. (This is sometimes called having the ACK piggyback with the
data.) Most implementations use a 200-ms delay--that is, TCP will delay an ACK up to
200 ms to see if there is data to send with the ACK.

266 TCP Interactive Data Flow Chapter 19

bsdi.1023 svr4.1ogin

O0

0.016497 (0.0165)

delayed ACK (
* 0.139955 (0.1235)

0.458037 (0.3181)

0.474386 (0,0163)

delayed ACK (
* 0.539943 (0,0656)

0.814582 (0.2746)

0.831108 (0.0165)

delayed ACK (
* 0.940112 (0.1090)

1.191287 (0.2512)

1.207701 (0 0164)

delayed ACK (
* 1.339994 (0.1323)

1.680646 (0.3407)

1.697977 (0.0173)

delayed ACK (
* 1.739974 (0.0420)

1.799841 (0.0599)

delayed ACK (
* 1.940176 (0.1403)

1.944338 (0.0042)

* 2.140110 (0.1958)delayed ACK (

9

10

12

13

15

17

19

3

4,

PSH 0:1(1) ack I (d)

PSH 1:2(1) ack 1 (echo of d)

ack 2

,PSH 1:2(1) ack 2 (a)

PSH 2:3(1) ack 2 (echo of a)

ack 3

--___.____ PSH 2:3(1) ack 3 (t)

PSH 3:4(1) ack 3 (echo of L)

ack 4

PSH 3:4(1) ack 4 (e)

PSH 4:5(1) ack 4 (echo of e)

~ ack 5

._..________ PSH 4:5(1) ack 5 (newline)

PSH 5:7(2) ack 5 (CR,LF)

~ ack 7

PSH 7:37(30) ack 5 (Sat Feb 6 07 : 52 : 17 MST 1993)

~ ack 37

PSH 37:44(7) ack 5 (svr4 ~)

ack 44

Figure 19.3 Time line of data flow for date command typed on an rl_ocj±n connection.

Section 19.4 Nagle Algorithm 267

If we look at the time differences between bsdi receiving the data and sending the
ACK, they appear to be random: 123.5, 65.6, 109.0, 132.3, 42.0, 140.3, and 195.8 ms. Look
instead at the actual times (starting from 0) when the ACKs are sent: 139.9, 539.9, 940.1,
1339.9, 1739.9, 1940.1, and 2140.1 ms. (We have marked these with an asterisk to the left
of the time in Figure 19.3.) There is a multiple of 200 ms between these times. What is
happening here is that TCP has a timer that goes off every 200 ms, but it goes off at fixed
points in time--every 200 ms relative to when the kernel was bootstrapped. Since the
data being acknowledged arrives randomly (at times 16.4, 474.3, 831.1, etc.), TCP asks to
be notified the next time the kernel’s 200-ms timer expires. This can be anywhere from
1 to 200 ms in the future.

If we look at how long it takes svr4 to generate the echo of each character it
receives, the times are 16.5, 16.3, 16.5, 16.4, and 17.3 ms. Since this time is less than 200
ms, we never see a delayed ACK on that side. There is always data ready to be sent
before the delayed ACK timer expires. (We could still see a delayed ACK if the wait
period, about 16 ms, crosses one of the kernel’s 200-ms clock tick boundaries. We just
don’t see any of these in this example.)

We saw this same scenario in Figure 18.7 with the 500-ms TCP timer used when
detecting a timeout. Both TCP timers, the 200- and 500-ms timers, go off at times rela-
tive to when the ke~:nel was bootstrapped. Whenever TCP sets a timer, it can go off any-
where between 1-200 or 1-500 ms in the future.

The Host Requirements RFC states that TCP should implement a delayed ACK but the delay
must be less than 500 ms.

19.4 Nagle Algorithm

We saw in the previous section that I byte at a time normally flows from the client to the
server across an Rlogin connection. This generates 41-byte packets: 20 bytes for the IP
header, 20 bytes for the TCP header, and 1 byte of data. These small packets (called
tinygrams) are normally not a problem on LANs, since most LANs are not congested,
but these tinygrams can add to congestion on wide area networks. A simple and ele-
gant solution was proposed in RFC 896 [Nagle 1984], called the Nagle algorithm.

This algorithm says that when a TCP connection has outstanding data that has not
yet been acknowledged, small segments cannot be sent until the outstanding data is
acknowledged. Instead, small amounts of data are collected by TCP and sent in a single
segment when the acknowledgment arrives. The beauty of this algorithm is that it is
self-clocking: the faster the ACKs come back, the faster the data is sent. But on a slow
WAN, where it is desired to reduce the number of tinygrams, fewer segments are sent.
(We’ll see in Section 22.3 that the definition of "small" is less than the segment size.)

We saw in Figure 19.3 that the round-trip time on an Ethernet for a single byte to be
sent, acknowledged, and echoed averaged around 16 ms. To generate data faster than
this we would have to be typing more than 60 characters per second. This means we
rarely encounter this algorithm when sending data between two hosts on a LAN.

268 TCP Interactive Data Flow Chapter 19

Things change, however, when the round-trip time (RTT) increases, typically across
a WAN. Let’s look at an Rlogin connection between our host s]_±p and the host
vangogh, cs. berke3_ey, edu. To get out of our network (see inside front cover), two
SLIP links must be traversed, and then the Internet is used. We expect much longer
round-trip times. Figure 19.4 shows the time line of some data flow while characters
were being typed quickly on the client (similar to a fast typist). (We have removed the
type-of-service information, but have left in the window size advertisements.)

slip.1023 vangogh.login

0.0

0.197694 (0.1977)

0.232457 (0.0348)

0.437593 (0.2051)

0.464257 (0.0267)

0.677658 (0.2134)

0.707709 (0.0301)

0.917762 (0.2101)

0.945862 (0.0281)

1.157640 (0.2118)

1.187501 (0.0299)

1.427852 (0.2404)

1.428025 (0.0002)

1.457191 (0.0292)

1.478429 (0.0212)

1.727608 (0.2492)

1.762913 (0.0353)

1.997900 (0.2350)

14

15

PSH 5:6(1) ack 47, win 4096

PSH 47:48(1) ack 6, win 8192

PSH 6:7(1) ack 48, win 4096

PSH 48:49(1) ack 7, win 8192

PSH 7:9(2) ack 49, win 4095

PSH 49:51(2) ack 9, win 8192

PSH 9:10(1) ack 51, win 4094

PSH 51:52(1) ack 10, win 8192

PSH 10:12(2) ack 52, win 4095

PSH 52:54(2) ack 12, win 8192

PSH 12:14(2) ack 54, win 4094

ack 14, win 8190

PSH 54:56(2) ack 14, win 8192

PSH 14:17(3) ack 54, win 4096

PSH 17:18(1) ack 56, win 4096

PSH 56:59(3) ack 18, win 8191

PSH 18:21(3) ack 59, win 4093

PSH 59:60(1) ack 21, win 8189

10

12

13

16

18

Figure 19.4 Data flow using rlogin between slip and vangogh, cs. berkeley, edu.

Section 19.4 Nagle Algorithm 269

The first thing we notice, comparing Figure 19.4 with Figure 19.3, is the lack of
delayed ACKs from s:t±p to vangocjh. This is because there is always data ready to
send before the delayed ACK timer expires.

Next, notice the various amounts of data being sent from the left to the right: 1, 1, 2,
1, 2, 2, 3, 1, and 3 bytes. This is because the client is collecting the data to send, but
doesn’t send it until the previously sent data has been acknowledged. By using the
Nagle algorithm only nine segments were used to send 16 bytes, instead of 16 segments.

Segments 14 and 15 appear to contradict the Nagle algorithm, but we need to look
at the sequence numbers to see what’s really happening. Segment 14 is in response to
the ACK received in segment 12, since the acknowledged sequence number is 54. But
before this data segment is sent by the client, segment 13 arrives from the server. Seg-
ment 15 contains the ACK of segment 13, sequence number 56. So the client is obeying
the Nagle algorithm, even though we see two back-to-back data segments from the
client to the server.

Also notice in Figure 19.4 that one delayed ACK is present, but it’s from the server
to the client (segment 12). We are assuming this is a delayed ACK since it contains no
data. The server must have been busy at this time, so that the Rlogin server was not
able to echo the character before the server’s delayed ACK timer expired.

Finally, look at the amounts of data and the sequence numbers in the final two seg-
ments. The client sends 3 bytes of data (numbered 18, 19, and 20), then the server
acknowledges these 3 bytes (the ACK of 21 in the final segment) but sends back only 1
byte (numbered 59). What’s happening here is that the server’s TCP is acknowledging
the 3 bytes of data once it has received them correctly, but it won’t have the echo of
these 3 bytes ready to send back until the Rlogin server sends them. This shows that
TCP can acknowledge received data before the application has read and processed that
data. The TCP acknowledgment just means TCP has correctly received the data. We
also have an indication that the server process has not read these 3 bytes of data because
the advertised window in the final segment is 8189, not 8192.

Disabling the Nagle Algorithm

There are times when the Nagle algorithm needs to be turned off. The classic example
is the X Window System server (Section 30.5): small messages (mouse movements) must
be delivered without delay to provide real-time feedback for interactive users doing cer-
tain operations.

Here we’ll show another example that’s easier to demonstrate--typing one of the
terminal’s special function keys during an interactive logino The function keys normally
generate multiple bytes of data, often beginning with the ASCII escape character. If
TCP gets the data 1 byte at a time, it’s possible for it to send the first byte (the ASCII
ESC) and then hold the remaining bytes of the sequence waiting for the ACK of this
byte. But when the server receives this first byte it doesn’t generate an echo until the
remaining bytes are received. This often triggers the delayed ACK algorithm on the
server, meaning that the remaining bytes aren’t sent for up to 200 ms. This can lead to
noticeable delays to the interactive user.

270 TCP Interactive Data Flow Chapter 19

The sockets API uses the TCP_NODELAY socket option to disable the Nagle algorithm.

The Host Requirements RFC states that TCP should implement the Nagle algorithm but there
must be a way for an application to disable it on an individual connection.

An Example

We can see this interaction between the Nagle algorithm and keystrokes that generate
multiple bytes. We establish an Rlogin connection from our host sl±p to the host
vangogh, cs.berkeley, edu. We then type the F1 function key, which generates 3
bytes: an escape, a left bracket, and an M. We then type the F2 function key, which gen-
erates another 3 bytes. Figure 19.5 shows the tcpdump output. (We have removed the
type-of-service information and the window advertisements.)

type F1 kmj
1 0.0 slip.1023 > vangogh.login: P 1:2(1) ack 2
2 0.250520 (0.2505) vangogh.login > slip.1023: P 2:4(2) ack 2
3 0.251709 (0.0012) slip.f023 > vangogh.login: P 2:4(2) ack 4
4 0.490344 (0.2386) vangogh.login > slip.1023: P 4:6(2) ack 4
5 0.588694 (0.0984) slip.1023 > vangogh.login: ack 6

type F2 key
6 2.836830 (2.2481) slip.1023 > vangogh.login: P 4:5(1) ack 6
7 3.132388 (0.2956) vangogh.login > slip.1023: P 6:8(2) ack 5
8 3.133573 (0.0012) slip.f023 > vangogh.login: P 5:7(2) ack 8
9 3.370346 (0.2368) vangogh.login > slip.1023: P 8:10(2) ack 7

10 3.388692 (0.0183) sllp.1023 > vangogh.logzn: . ack 10

Figure 19.5 Watching the Nagle algorithm when typing characters that generate multiple bytes of data.

Figure 19.6 shows the time line for this exchange. At the bottom of this figure we
show the 6 bytes going from the client to the server with their sequence nurnbers, and
the 8 bytes of echo being returned.

When the first byte of input is read by the rlog±n client and written to TCP, it is
sent by itself as segment 1. This is the first of the 3 bytes generated by the F1 key. Its
echo is returned in segment 2, and only then are the next 2 bytes sent (segment 3). The
echo of the second 2 bytes is received in segment 4 and acknowledged in segment 5.

The reason the echo of the first byte occupies 2 bytes (segment 2) is because the
ASCII escape character is echoed as 2 bytes: a caret and a left bracket. The next 2 bytes
of input, a left bracket and an M, are echoed as themselves.

The same exchange occurs when the next special function key is typed (segments
6-10). As we expect, the time difference between segments 5 and 10 (slip sending the
acknowledgment of the echo) is a multiple of 200 ms, since both ACKs are delayed.

Section 19.4 Nagle Algorithm 271

slip.1023 vangogh.login

0.0

0.250520 (0.2505)
0.251709 (0.0012)

0.490344(0.2386)

0.588694 (0.0984)

2.836830 (2.2481)

3.132388 (0.2956)
3.133573 (0.0012)

3.370346 (0.2368)

3.388692 (0.0183)

type F1 -q 1

type F2-~

10

PSH 1:2(1) ack 2

PSH 2:4(2) ack 2

PSH 2.4(2) ack 4

PSH 4:6(2) ack 4

ack 6

PSH 4:5(1) ack 6

PSH 6:8(2) ack 5

PSH 5:7(2) ack 8

PSH 8:10(2) ack 7

ack 10

--7

F2 key F1 key

seq#: 6 5 4 3 2 1
F1 echo F2 echo

2 3 4 5 6 7 8 9

Figure 19.6 Time line for Figure 19.5 (watching the Nagle algorithm).

We now repeat this same example using a version of rlogin that has been modi-
fied to turn off the Nagle algorithm. Figure 19.7 shows the tcpdump output. (Again,
we have deleted the type-of-service information and the window advertisements.)

272 TCP Interactive Data Flow Chapter 19

I 0.0
2 0.002163 (0.0022)
3 0.004218 (0.0021)
4 0.280621 (0.2764)
5 0.281738 (0.0011)
6 2,477561 (2.1958)
7 2.478735 (0.0012)

8 3.217023 (0.7383)
9 3.219165 (0.0021)

10 3.221688 (0.0025)
Ii 3.460626 (0.2389)
12 3.489414 (0.0288)
13 3.640356 (0,1509)

~pe F1 key
slip.f023 > vangogh.login:
slip.f023 > vangogh.login:
slip.1023 > vangogh.login:
vangogh.login > slip.1023:
slip,1023 > vangogh, login:
vangogh,login > slipo1023:
slip,f023 > vangogh.login:

slip,f023 > vangogh.login:
slip.1023 > vangogh.login:
slipo1023 > vangogh.login:
vangogh.lo@in > slip.f023:
vangogh.login > slip.f023:
slip.1023 > vangogh.login:

P 1:2(i) ack 2
P 2:3(1) ack 2
P 3:4(1) ack 2
P 5:6(1) ack 4
. ack 2
P 2:6(4) ack 4
¯ ack 6

4:5(1) ack 6
5:6(1) ack 6
6:7(1) ack 6
6:8(2) ack 5
8:10(2) ack 7
ack 10

Figure 19.7 Disabling the Nagle algorithm during an Rlogin session.

It is instructive and more enlightening to take this output and construct the time
line, knowing that some of the segments are crossing in the network. Also, this example
requires careful examination of the sequence numbers, to follow the data flow. We
show this in Figure 19.8. We have numbered the segments to correspond with the num-
bering in the tcpdump output in Figure 19.7.

The first change we notice is that all 3 bytes are sent when they’re ready (segments
1, 2, and 3). There is no delay--the Nagle algorithm has been disabled.

The next packet we see in the tcpdump output (segment 4) contains byte 5 from the
server with an ACK 4. This is wrong. The client immediately responds with an ACK 2
(it is not delayed), not an ACK 6, since it wasn’t expecting byte 5 to arrive. It appears a
data segment was lost. We show this with a dashed line in Figure 19.8.

How do we know this lost segment contained bytes 2, 3, and 4, along with an ACK
3? The next byte we’re expecting is byte number 2, as announced by segment 5.
(Whenever TCP receives out-of-order data beyond the next expected sequence number,
it normally responds with an acknowledgment specifying the sequence number of the
next byte it expects to receive.) Also, since the missing segment contained bytes 2, 3,
and 4, it means the server must have received segment 2, so the missing segment must
have specified an ACK 3 (the sequence number of the next byte the server is expecting
to receive.) Finally, notice that the retransmission, segment 6, contains data from the
missing segment and segment 4. This is called repacketization, and we’ll discuss it more
in Section 21.11.

Returning to our discussion of disabling the Nagle algorithm, we can see the 3 bytes
of the next special function key that we type is sent as three individual segments (8, 9,
and 10). This time the server echoes the byte in segment 8 first (segment 11), and then
echoes the bytes in segments 9 and 10 (segment 12).

What we’ve seen in this example is that the default use of the Nagle algorithm can
cause additional delays when multibyte keystrokes are entered while running an inter-
active application across a WAN. (See Exercise 19.3.)

We return to the topic of timeout and retransmission in Chapter 21.

Section 19.4 Nagle Algorithm 273

0.0

0.002163 (0.0022)

0.004218 (0.0021)

0.280621 (0.2764)
0.281738 (0.0011)

2.477561 (2.1958)
2.478735 (0.0012)

3.217023 (0.7383)

3.219165 (0.0021)

3.221688 (0.0025)

3.460626 (0.2389)

3.489414 (0.0288)

3.640356 (0.1509)

slip.1023 vangogh.login

type F1 ~ 1 ~ ~ck 2

2~~

type F2 ~ 8 ~) ack 6

. (timeout and
retransmlsslon)

11

12

F2 key F1 key

seq#: 6 5 4 3 2 1

F1 echo F2 echo

2 3 4 5 6 7 8 9

Figure 19.8 Time line for Figure 19.7 (Nagle algorithm disabled).

274 TCP Interactive Data Flow Chapter 19

19.5 Window Size Advertisements

19.6

In Figure 19.4 (p. 268) we see that s3_±p advertises a window of 4096 bytes and
vango~tl~ advertises a window of 8192 bytes. Most segments in this figure contain one
of these two values.

Segment 5, however, advertises a window of 4095 bytes. This means there is still 1
byte in the TCP buffer for the application (the Rlogin client) to read. Similarly, the next
segment from the client advertises a window of 4094 bytes, meaning there are 2 bytes
still to be read.

The server normally advertises a window of 8192 bytes, because the server’s TCP
has nothing to send until the Rlogin server reads the received data and echoes it. The
data from the server is sent after the Rlogin server has read its h~put from the client.

The client TCP, on the other hand, often has data to send when the ACK arrives,
since it’s buffering the received characters just waiting for the ACK. When the client
TCP sends the buffered data, the Rlogin client has not had a chance to read the data
received from the server, so the client’s advertised window is less than 4096.

Summary

Interactive data is normally transmitted in segments smaller than the maximum seg-
ment size. With Rlogin a single byte of data is normally sent from the. client to the
server. Telnet allows for the input to be sent one line at a time, but most implementa-
tions today still send single characters of input.

Delayed acknowledgments are used by the receiver of these small segments to see if
the acknowledgment can be piggybacked along with data going back to the sender.
This often reduces the number of segments, especially for an Rlogin session, where the
server is echoing the characters typed at the client.

On slower WANs the Nagle algorithm is often used to reduce the number of these
small segments. This algorithm lirnits the sender to a single small packet of unacknowl-
edged data at any time. But there are times when the Nagle algorithm needs to be dis-
abled, and we showed an example of this.

Exercises
19.1 Consider a TCP client application that writes a small application header (8 bytes) followed

by a small request (12 bytes). It then waits for a reply from the server. What happens if the
request is sent using two writes (8 bytes, then 12 bytes) versus a single write of 20 bytes?

19.2 In Figure 19.4 we are running t:cpdump on the router sun. This means the data in the
arrows from the right to the left still have to go through bsdi, and the data in the arrows
from the left to the right have already come through bsd±. When we see a segment going
to s l J_p, followed by a segment coming from s 1_ ±p, the time differences between the two
are: 34.8, 26.7, 30.1, 28.1, 29.9, and 35.3 ms. Given that there are two links between sun and
sl±p (an Ethernet and a 9600 bits/sec CSLIP link), do these time differences make sense?
(Hint: Reread Section 2.10.)

19.3 Compare the time required to send a special function key and have it acknowledged using
the Nagle algorithm (Figure 19.6) and with the algorithm disabled (Figure 19.8).

2O

TCP Bulk Data Flow

20.1 Introduction

In Chapter 15 we saw that TFTP uses a stop-and-wait protocol. The sender of a data
block required an acknowledgment for that block before the next block was sent. In this
chapter we’ll see that TCP uses a different form of flow control called a sliding window
protocol. It allows the sender to transmit multiple packets before it stops and waits for
an acknowledgment. This leads to faster data transfer, since the sender doesn’t have to
stop and wait for an acknowledgment each time a packet is sent.

We also look at TCP’s PUSH flag, something we’ve seen in many of the previous
examples. We also look at slow start, the technique used by TCP for getting the flow of
data established on a connection, and then we examine bulk data throughput.

20.2 Normal Data Flow

Let’s start with a one-way transfer of 8192 bytes from the host svr4 to the host bsd±.
We run our sock program on bsd± as the server:

bsdi % sock -i -s 7777

The -± and -s flags tell the program to run as a "sink" server (read from the network
and discard the data), and the server’s port number is specified as 7777. The corre-
sponding client is then run as:

svr4 % sock -i -n8 bsdi 7777

This causes the client to perform eight 1024-byte writes to the network. Figure 20.1
shows the time line for this exchange. We have left the first three segments in the out-
put to show the MSS values for each end.

275

276 TCP Bulk Data Flow
Chapter 20

0.0

0.002185 (0.0022)

0.007295 (0.0051)

0.017868 (0.0106)

0.022699 (0.0048)

0.027650 (0.0050)

0.027799 (0.0001)

0 031881 (0.0041)

0.034789 (0.0029)

0.039276 (0.0045)

0.044618 (0.0053)

0.050326 (0.0057)

0 055286 (0.0050)

0 055441 (0.0002)

0.061742 (0.0063)

0.066206 (0.0045)

0.066850 (0.0006)

0.068216 (0.0014)

0.069358 (0.0011)

0.075414 (0.0061)

svr4.1056 bsdi.7777

20

1

SYN 1367249409:1367249409(0)
ack 1305814530, win 4096, <ross 1024>

3 ~ ack 1, win 4096

4 PSH. 1:1025(1024) ack 1, win 4096

5 PSH 1025:2049(1024) ack 1, win 4096

6 _____._____PSH 2049:3073(1024) ack 1, win 4096

ack 2049, win 4096

ack 3073, win 3072

9 PSH 3073:4097(1024) ack 1, win 4096

ack 4097, win 4096

11 PSH 4097:5121(1024) ack 1, win 4096

12 PSH 5121:6145(1024) ack I, win 4096

13 ______.__.__PSH 6145:7169(1024) ack 1, win 4096

ack 6145, win 4096

15 PSH 7169:8193(1024) ack 1, win 4096

ack 8193, win 4096

17 ~ FIN 8193:8193(0) ack I, win 4096

ack 8194, win 4096

FIN 1.1(0) ack 8194, win 4096

~ ack 2, win 4096

SYN 1305814529:1305814529(0)
win 4096~m s 1024>

10

14

16

18

19

Figure 20.1 Transfer of 8192 bytes from svr4 to bsd±.

Section 20.2 Normal Data Flow 277

The sender transmits three data segments (4-6) first. The next segment (7)
acknowledges the first two data segments only. We know this because the acknowl-
edged sequence number is 2049, not 3073.

Segment 7 specifies an ACK of 2049 and not 3073 for the following reason. When a
packet arrives it is initially processed by the device driver’s interrupt service routine
and then placed onto 1P’s input queue. The three segments 4, 5, and 6 arrive one after
the other and are placed onto IP’s input queue in the received order. IP will pass them
to TCP in the same order. When TCP processes segment 4, the connection is marked to
generate a delayed ACK. TCP processes the next segment (5) and since TCP now has
two outstanding segments to ACK, the ACK of 2049 is generated (segment 7), and the
delayed ACK flag for this connection is turned off. TCP processes the next input seg-
ment (6) and the connection is again marked for a delayed ACK. Before segment 9
arrives, however, it appears the delayed ACK timer goes off, and the ACK of 3073 (seg-
ment 8) is generated. Segment 8 advertises a window of 3072 bytes, implying that there
are still 1024 bytes of data in the TCP receive buffer that the application has not read.

Segments 11-16 show the "ACK every other segment" strategy that is common.
Segments 11, 12, and 13 arrive and are placed on IP’s input queue. When segment 11 is
processed by TCP the connection is marked for a delayed ACK. When segment 12 is
processed, an ACK is generated (segment 14) for segments 11 and 12, and the delayed
ACK flag for this connection is turned off. Segment 13 causes the connection to be
marked again for a delayed ACK but before the timer goes off, segment 15 is processed,
causing the ACK (segment 16) to be sent immediately.

It is important to notice that the ACK in segments 7, 14, and 16 acknowledge two
received segments. With TCP’s sliding-window protocol the receiver does not have to
acknowledge every received packet. With TCP, the ACKs are cumulative--they
acknowledge that the receiver has correctly received all bytes up through the acknowl-
edged sequence number minus one. In this example three of the ACKs acknowledge
2048 bytes of data and two acknowledge 1024 bytes of data. (This ignores the ACKs in
the connection establishment and termination.)

What we are watching with tcpdurap are the dynamics of TCP in action. The
ordering of the packets that we see on the wire depends on many factors, most of which
we have no control over: the sending TCP implementation, the receiving TCP imple-
mentation, the reading of data by the receiving process (which depends on the process
scheduling by the operating system), and the dynamics of the network (i.e., Ethernet
collisions and backoffs). There is no single correct way for two TCPs to exchange a
given amount of data.

To show how things can change, Figure 20.2 shows another time line for the same
exchange of data between the same two hosts, captured a few minutes after the one in
Figure 20.1.

278 TCP Bulk Data Flow Chapter 20

svr4.1057 bsdi.8888

0.0

0.002159 (0.0022)

0.007097 (0.0049)

0.017558 (0.0105)

0.022519 (0.0050)

0.027456 (0.0049)

0.027595 (0.0001)

0.035231 (0.0076)

0.040258 (0.0050)

0.040402 (0.0001)

0.046791 (0.0064)

0.046930 (0.0001)

0.055466 (0.0085)

0.060522 (0.0051)

0.060662 (0.0001)

0.066479 (0.0058)

0.067878 (0.0014)

0.068994 (0.0011)

0.087556 (0.0186)

4

5

6

8

11

13

14

16

19

SYN 1332182529:1332182529(0)
win 40~

SYN 1394129409:1394129409(0)
ack 1332182530, win 4096, <mss 1024>

ack 1, win 4096

PSI~I 1:1025(1024) ack 1, win 4096

PSH 1025:2049(1024) ack 1, win 4096
_ PSH 2049:3073(1024) ack 1, win 4096

ack 2049, win 4096

._._____.__PSH 3073:4097(1024) ack 1, win 4096

--------. PSH 4097:5121(1024) ack 1, win 4096 "~

ack 4097, win 4096

~ PSH 5121:6145(1024) ack 1, win 4096

ack 5121, win 4096

_ PSH 6145:7169(1024) ack 1, win 4096

PSH 7169:8193(1024) ack 1, win 4096

ack 7169, win 4096

~ FIN 8193:8193(0) ack 1, win 4096

ack 8194, w~n 4096

FIN 1:1(0) ack 8194, win 4096

ack 2, win 4096

10

12

15

17

18

Figure 20.2 Another transfer of 8192 bytes from svr4 to bsct~..

A few things have changed. This time the receiver does not send an ACK of 3073;
instead it waits and sends the ACK of 4097. The receiver sends only four ACKs (seg-
ments 7, 10, 12, and 15): three of these are for 2048 bytes and one for 1024 bytes. The
ACK of the final 1024 bytes of data appears in segment 17, along with the ACK of the
FIN. (Compare segment 17 in this figure with segments 16 and 18 in Figure 20.1.)

Section 20.2 Normal Data Flow 279

Fast Sender, Slow Receiver

Figure 20.3 shows another time line, this time from a fast sender (a Sparc) to a slow
receiver (an 80386 with a slow Ethernet card). The dynamics are different again.

sun.1181 bsdi.discard

0.0

0.002238 (0.0022)

0.003020 (0.0008)

0.006806 (0.0038)

0.008838 (0.0020)

0.010490 (0.0017)

0.012057 (0.0016)

0.038562 (0.0265)

0.055994 (0.0174)

0.057815 (0.0018)

0.059777 (0.0020)

0.061439 (0.0017)

0.062992 (0.0016)

0.071915 (0.0089)

0.074313 (0.0024)

0.075746 (0.0014)

0.076439 (0.0007)

4

5

6

7

10

11

12

13

17

SYN 690560000:690560000(0)
win 4096, <mss 1460>

SYN 2566353409:2566353409(0)
ac~4096, <ross 1024>

ack 1, win 4096

PSH 1"1025(1024) ack 1, win 4096

PSH 1025:2049(1024) ack 1, win 4096

PSH 2049:3073(1024) ack 1, win 4096

PSH 3073:4097(1024) ack 1, win 4096

ack 4097, win 0

ack 4097, win 4096

4097.5121(1024) ack 1, win 4096

5121.6145(1024) ack I, win 4096

6145:7169(1024) ack 1, win 4096

FIN,PSH 7169:8193(1024) ack 1, win 4096

ack 8194, win 0

ack 8194, win 4096

FIN 1:1(0) ack 8194, win 4096

ack 2, win 4096

14

15

16

Figure 20.3 Sending 8192 bytes from a fast sender to a slow receiver.

The sender transmits four back-to-back data segments (4-7) to fill the receiver’s
window. The sender then stops and waits for an ACK. The receiver sends the ACK
(segment 8) but the advertised window is 0. This means the receiver has all the data,
but it’s all in the receiver’s TCP buffers, because the application hasn’t had a chance to
read the data. Another ACK (called a window update) is sent 17.4 ms later, announcing
that the receiver can now receive another 4096 bytes. Although this looks like an ACK,
it is called a window update because it does not acknowledge any new data, it just
advances the right edge of the window.

280 TCP Bulk Data Flow Chapter 20

The sender transmits its final four segments (10-13), again filling the receiver’s win-
dow. Notice that segment 13 contains two flag bits: PUSH and FIN. This is followed by
another two ACKs from the receiver. Both of these acknowledge the final 4096 bytes of
data (bytes 4097 through 8192) and the FIN (numbered 8193).

20.3 Sliding Windows

The sliding window protocol that we observed in the previous section can be visualized
as shown in Figure 20.4.

offered window
(advertised by receiver)

usable window

7 8 9 10 1t ...

sent and sent, not ACKed ~
acknowledged ~" can send ASAP "~

can’t send until
window moves

Figure 20.4 Visualizatlon of TCP sliding window

In this figure we have numbered the bytes 1 through 11. The window advertised by the
receiver is called the offered window and covers bytes 4 through 9, meaning that the
receiver has acknowledged all bytes up through and including number 3, and has
advertised a window size of 6. Recall from Chapter 17 that the window size is relative
to the acknowledged sequence number. The sender computes its usable window, which
is how much data it can send immediately.

Over time this sliding window moves to the right, as the receiver acknowledges
data. The relative motion of the two ends of the window increases or decreases the size
of the window. Three terms are used to describe the movement of the right and left
edges of the window.

1. The window closes as the left edge advances to the right. This happens when
data is sent and acknowledged.

2. The window opens when the right edge moves to the right, allowing more data
to be sent. This happens when the receiving process on the other end reads
acknowledged data, freeing up space in its TCP receive buffer.

3. The window shrinks when the right edge moves to the left. The Host Require-
ments RFC strongly discourages this, but TCP must be able to cope with a peer
that does this. Section 22.3 shows an example when one side would like to
shrink the window by moving the right edge to the left, but cannot.

Figure 20.5 shows these three terms. The left edge of the window cannot move to
the left, because this edge is controlled by the acknowledgment number received from

Section 20.3 Sliding Windows 281

closes

window

shrinks I opens

Figure 20.5 Movement of window edges.

the other end. If an ACK were received that implied moving the left edge to the left, it
is a duplicate ACK, and discarded.

If the left edge reaches the right edge, it is called a zero window. This stops the
sender from transmitting any data.

An Example

Figure 20.6 shows the dynamics of TCP’s sliding window protocol for the data transfer
in Figure 20.1.

1024 1025 204812049 3072 3073 4096 4097 5120 5121 6144 6145 716817169 81921

F

t
window advertised by segment 2

data sent in
segments 4, 5, 6

ACKed by
segment 7

window advertised by segment 7

ACKed by F -
-~- - - - ~ window advertised by segment 8

segment 8 L

ACKed by r

segment 10 t
window advertised by segment 10

data sent in
segments 11,12, 13

ACKed by i window advertised
segment 14 L by segment 14

ACKed by
segment 16

Figure 20.6 Sliding window protocol for Figure 20.1.

282 TCP Bulk Data Flow Chapter 20

There are numerous points that we can summarize using this figure as an example.

The sender does not have to transmit a full window’s worth of data.

One segment from the receiver acknowledges data and slides the window to the
right. This is because the window size is relative to the acknowledged sequence
number.

The size of the window can decrease, as shown by the change from segment 7 to
segment 8, but the right edge of the window must not move leftward.

The receiver does not have to wait for the window to fill before sending an
ACK. We saw earlier that many implementations send an ACK for every two
segments that are received.

We’ll see more examples of the dynamics of the sliding window protocol in later
examples.

20.4 Window Size

The size of the window offered by the receiver can usually be controlled by the receiv-
ing process. This can affect the TCP performance.

4.2BSD defaulted the send buffer and receive buffer to 2048 bytes each. With 4.3BSD both were
increased to 4096 bytes As we can see from all the examples so far in this text, SunOS 4.1.3,
BSD/386, and SVR4 still use this 4096-byte default. Other systems, such as Solaris 2.2, 4.4BSD,
and AIX 3.2, use larger default buffer sizes, such as 8192 or 16384 bytes.

The sockets API allows a process to set the sizes of the send buffer and the receive buffer. The
size of the receive buffer is the maximum size of the advertised window for that connection.
Some applications change the socket buffer sizes to increase performance.

[Mogul 1993] shows some results for file transfer between two workstations on an
Ethernet, with varying sizes for the transmit buffer and receive buffer. (For a one-way
flow of data such as file transfer, it is the size of the transmit buffer on the sending side
and the size of the receive buffer on the receiving side that matters.) The common
default of 4096 bytes for both is not optimal for an Ethernet. An approximate 40%
increase in throughput is seen by just increasing both buffers to 16384 bytes. Similar
results are shown in [Papadopoulos and Parulkar 1993].

In Section 20.7 we’ll see how to calculate the minimum buffer size, given the band-
width of the communication media and the round-trip time between the two ends.

An Example

We can control the sizes of these buffers with our sock program. We invoke the server
as:

bsdi % sock -i -s -R6144 5555

Section 20.4 Window Size 283

which sets the size of the receive buffer (-R option) to 6144 bytes. We then start the
client on the host sun and have it perform one write of 8192 bytes:

sun % sock -i -nl -w8192 bsdi 5555

Figure 20.7 shows the results.

sun.1126 bsdi.5555

00

0.002282 (0.0023)

0.003067 (0 0008)

0.022170 (0.0191)

0.024136 (0.0020)

0.026084 (0.0019)

0.027711 (0.0016)

0.029334 (0.0016)

0.030910 (0.0016)

0.044570 (0.0137)

0.046510 (0.0019)

0.048234 (0.0017)

0.050074 (0.0018)

0.054250 (0.0042)

0.056215 (0.0020)

0.058233 (0.0020)

0.059518 (0.0013)

0.060167 (0.0006)

4

5

6

7

8

9

11

12

18

SYN 1227520000:1227520000(0)
win 4096, <mss 1460>

SYN 2363371521.2363371521(0)
ack--ack20001, win 6144, <ross 1024>

ack 1, win 4096

1:1025(1024) ack 1, win 4096

¯ 1025:2049(1024) ack 1, win 4096

_ 2049:3073(1024) ack 1, win 4096

PSH 3073:4097(1024) ack 1, win 4096

4097:5121(1024) ack 1, win 4096

5121:6145(1024) ack 1, win 4096

ack 6145, win 2048

6145"7169(1024) ack 1, win 4096

FIN,PSH 7169:8193(1024) ack 1, win 4096

ack 6145, win 4096

ack 8194, win 2048

ack 8194, win 4096

ack 8194, win 6144
FIN 1"1(0) ack 8194, win 6144

ack 2, win 4096

10

13

14

15

16

17

Figure 20.7 Data transfer with receiver offering a wlndow size of 6144 bytes

First notice that the receiver’s window size is offered as 6144 bytes in segment 2.
Because of this larger window, the client sends six segments immediately (segments
4-9), and then stops. Segment 10 acknowledges all the data (bytes 1 through 6144) but
offers a window of only 2048, probably because the receiving application hasn’t had a
chance to read more than 2048 bytes. Segments 11 and 12 complete the data transfer
from the client, and this final data segment also carries the FIN flag.

284 TCP Bulk Data Flow Chapter 20

Segment 13 contains the same acknowledgment sequence number as segment 10,
but advertises a larger window. Segment 14 acknowledges the final 2048 bytes of data
and the FIN, and segments 15 and 16 just advertise a larger window. Segments 17 and
18 complete the normal close.

20.5 PUSH Flag

We’ve seen the PUSH flag in every one of our TCP examples, but we’ve never described
its use. It’s a notification from the sender to .the receiver for the receiver to pass all the
data that it has to the receiving process. This data would consist of whatever is in the
segment with the PUSH flag, along with any other data the receiving TCP has collected
for the receiving process.

In the original TCP specification, it was assumed that the programming interface
would allow the sending process to tell its TCP when to set the PUSH flag. In an inter-
active application, for example, when the client sent a command to the server, the client
would set the PUSH flag and wait for the server’s response. (In Exercise 19.1 we could
imagine the client setting the PUSH flag when the 12-byte request is written.) By allow-
ing the client application to tell its TCP to set the flag, it was a notification to the client’s
TCP that the client process didn’t want the data to hang around in the TCP buffer, wait-
ing for additional data, before sending a segment to the server. Similarly, when the
server’s TCP received the segment with the PUSH flag, it was a notification to pass the
data to the server process and not wait to see if any additional data arrives.

Today, however, most APIs don’t provide a way for the application to tell its TCP to
set the PUSH flag. Indeed, many implementors feel the need for the PUSH flag is out-
dated, and a good TCP implementation can determine when to set the flag by itself.

Most Berkeley-derived implementations automatically set the PUSH flag if the data
in the segment being sent empties the send buffer. This means we normally see the
PUSH flag set for each application write, because data is usually sent when it’s written.

A comment in the code indicates this algorithm is to please those implementations that only
pass received data to the application when a buffer fills or a segment is received with the
PUSH flag.

It is not possible using the sockets API to tell TCP to turn on the PUSH flag or to tell whether
the PUSH flag was set in received data.

Berkeley-derived implementations ignore a received PUSH flag because they nor-
mally never delay the delivery of received data to the application.

Examples

In Figure 20.1 (p. 276) we see the PUSH flag turned on for all eight data segments (4-6,
9, 11-13, and 15). This is because the client did eight writes of 1024 bytes, and each
write emptied the send buffer.

Look again at Figure 20.7 (p. 283). We expect the PUSH flag to be set on segment 12,
since that is the final data segment. Why was the PUSH flag set on segment 7, when the

Section 20.6 Slow Start 285

sender knew there were still more bytes to send? The reason is that the size of the
sender’s send buffer is 4096 bytes, even though we specified a single write of 8192
bytes.

Another point to note in Figure 20.7 concerns the three consecutive ACKs, segments
14, 15, and 16. We saw two consecutive ACKs in Figure 20.3, but that was because the
receiver had advertised a window of 0 (stopping the sender) so when the window
opened up, another ACK was required, with the nonzero window, to restart the sender.
In Figure 20.7, however, the window never reaches 0. Nevertheless, when the size of
the window increases by 2048 bytes, another ACK is sent (segments 15 and 16) to pro-
vide this window update to the other end. (These two window updates in segments 15
and 16 are not needed, since the FIN has been received from the other end, meaning it
will not send any more data.) Many implementations send this window update if the
window increases by either two maximum sized segments (2048 bytes in this example,
with an MSS of 1024) or 50% of the maximum possible window (3072 bytes in this
example, with a maximum window of 6144). We’ll see this again in Section 22.3 when
we examine the silly window syndrome in detail.

As another example of the PUSH flag, look again at Figure 20.3 (p. 279). The reason
we see the flag on for the first four data segments (4-7) is because each one caused a
segment to be generated by TCP and passed to the IP layer. But then TCP had to stop,
waiting for an ACK to move the 4096-byte window. While waiting for the ACK, TCP
takes the final 4096 bytes of data from the application. When the window opens up
(segment 9) the sending TCP knows it has four segments that it can send immediately,
so it only turns on the PUSH flag for the final segment (13).

20.6 Slow Start

In all the examples we’ve seen so far in this chapter, the sender starts off by injecting
multiple segments into the network, up to the window size advertised by the receiver.
While this is OK when the two hosts are on the same LAN, if there are touters and
slower links between the sender and the receiver, problems can arise. Some intermedi-
ate router must queue the packets, and it’s possible for that router to run out of space.
[Jacobson 1988] shows how this naive approach can reduce the throughput of a TCP
connection drastically.

TCP is now required to support an algorithm called slow start. It operates by
observing that the rate at which new packets should be injected into the network is the
rate at which the acknowledgments are returned by the other end.

Slow start adds another window to the sender’s TCP: the congestion window, called
cwnd. When a new connection is established with a host on another network, the con-
gestion window is initialized to one segment (i.e., the segment size announced by the
other end). Each time an ACK is received, the congestion window is increased by one
segment. (cwnd is maintained in bytes, but slow start always increments it by the seg-
ment size.) The sender can transmit up to the minimum of the congestion window and
the advertised window. The congestion window is flow control imposed by the sender,
while the advertised window is flow control imposed by the receiver.

286 TCP Bulk Data Flow Chapter 20

The sender starts by transmitting one segment and waiting for its ACK. When that
ACK is received, the congestion window is incremented from one to two, and two seg-
ments can be sent. When each of those two segments is acknowledged, the congestion
window is increased to four. This provides an exponential increase.

At some point the capacity of the internet can be reached, and an intermediate
router will start discarding packets. This tells the sender that its congestion window
has gotten too large. When we talk about TCP’s timeout and retransmission algorithms
in the next chapter, we’ll see how this is handled, and what happens to the congestion
window. For now, let’s watch slow start in action.

An Example

Figure 20.8 shows data being sent from the host sun to the host
vangogh, cs. berkeZe¥, edu. The data traverses a slow SLIP link, which should be
the bottleneck. (We have removed the connection establishment from this time line.)

We see the sender transmit one segment with 512 bytes of data and then wait for its
ACK. The ACK is received 716 ms later, which is an indicator of the round-trip time.
The congestion window is then increased to two segments, and two segments are sent,
When the ACK in segment 5 is received, the congestion window is increased to three
segments. Two more segments are sent (not three) because the ACK for segment 4 is
still outstanding. When the ACK in segment 8 is received, the congestion window is
increased to 4 but only two more segments are sent, because the ACKs for segments 6
and 7 are still outstanding.

We’ll return to slow start in Section 21.6 and see how it’s normally implemented
with another technique called congestion avoidance.

20.7 Bulk Data Throughput

Let’s look at the interaction of the window size, the windowed flow control, and slow
start on the throughput of a TCP connection carrying bulk data.

Figure 20.9 shows the steps over time of a connection between a sender on the left
and a receiver on the right. Sixteen units of time are shown. We show only discrete
units of time in this figure, for simplicity. We show segments carrying data going from
the left to right in the top half of each picture, numbered 1, 2, 3, and so on. The ACKs
go in the other direction in the bottom half of each picture. We draw the ACKs smaller,
and show the segment number being acknowledged.

Section 20.7 Bulk Data Throughput

sun.1118 vangogh.discard

0.0

0.716330 (0 7163)

0.716967 (0.0006)

0.717640 (0.0007)

1.466086 (0.7484)

1.466778 (0.0007)

1.467425 (0.0006)

1.946065 (0.4786)

1.946709 (0.0006)

1.947350 (0 0006)

2.576084 (0.6287)

2.576294 (0.0002)

2.576841 (0.0005)

2.906014 (0.3292)

3.085978 (0.1800)

3.326275 (0.2403)

3.356106 (0.0298)

3.356543 (0.0004)

cwnd = 1

cwnd = 2

cwnd = 3

cwnd = 4

cwnd = 5

cwnd = 6

9

10..

13

18

1:513(512) ack 1, win 4096

ack 513, win 8192

513:1025(512) ack 1, win 4096

1025:1537(512) ack 1, win 4096

ack 1025, win 8192

1537:2049(512) ack 1, win 4096

2049:2561(512) ack 1, win 4096

ack 1537, win 8192

2561:3073(512) ack 1, win 4096

3073:3585(512) ack 1, win 4096

ack 2049, win 8192

ack 2561, win 8192

FIN,PSH 3585:4097(512) ack 1, win 4096

ack 3073, win 8192

ack 3585, win 8192

ack 4098, win 7680

FIN 1:1(0) ack 4098, win 8192

ack 2, win 4096

11

12

14

15

16

17

287

Figure 20.8 Example of slow start.

288 TCP Bulk Data Flow Chapter 20

tzme
sender

tzme l. 1

ttme 2.

ttme 3.

1

tnne 4:

t~me 5:

t~me 6:

ack l

time 7

sender ~-~ ~
ack 1

1

~~ receiver

~-~-- receiver

ack 1

time 8. 2

sender ~ ~

tzme 9" 3
sender--~- i’i~,

t~me 10. 3 2

ack 1

Figure 20.9

time 11.

time 12:

time 13.

receiver

3

receiver

receiver
ack 2

ack 2 ack 3

time 14.

ack 2 ack 3

t~me 15:

sender -~- ~
ack 2 ack 3

Times 0-15 for bulk data throughput example.

-~-~receiver

At time 0 the sender transmits one segment. Since the sender is in slow start (its
congestion window is one segment), it must wait for the acknowledgment of this seg-
ment before continuing.

At times 1, 2, and 3 the segment moves one unit of time to the right. At time 4 the
receiver reads the segment and generates the acknowledgment. At times 5, 6, and 7 the
ACK moves to the left one unit, back to the sender. We have a round-trip time (RTT) of
8 units of time.

We have purposely drawn the ACK segment smaller than the data segment, since
it’s normally just an IP header and a TCP header. We’re showing only a unidirectional

Section 20.7 Bulk Data Throughput 289

flow of data here. Also, we assume that the ACK moves at the same speed as the data
segment, which isn’t always true.

In general the time to send a packet depends on two factors: a propagation delay (caused by
the finite speed of hght, latencies in transmission equipment, etc) and a transmission delay
that depends on the speed of the med~a (how many bits per second the media can transmit).
For a given path between two nodes the propagation delay is fixed while the transmission
delay depends on the packet size. At lower speeds the transmission delay dominates (e.g.,
Exercise 7.2 where we didn’t even consider the propagation delay), whereas at gigabit speeds
the propagation delay dominates (e.g., Figure 24.6).

When the sender receives the ACK it can transmit two more segments (which we’ve
numbered 2 and 3), at times 8 and 9. Its congestion window is now two segments.
These two segments move right toward the receiver, where the ACKs are generated at
times 12 and 13. The spacing of the ACKs returned to the sender is identical to the spac-
ing of the data segments. This is called the self-clocking behavior of TCR Since the
receiver can only generate ACKs when the data arrives, the spacing of the ACKs at the
sender identifies the arrival rate of the data at the receiver. (In actuality, however,
queueing on the return path can change the arrival rate of the ACKs.)

Figure 20.10 shows the next 16 time units. The arrival of the two ACKs increases
the congestion window from two to four segments, and these four segments are sent at
times 16-19. The first of the ACKs returns at time 23. The four ACKs increase the con-
gestion window from four to eight segments, and these eight segments are transmitted
at times 24-31.

At time 31, and at all successive times, the pipe between the sender and receiver is
full. It cannot hold any more data, regardless of the congestion window or the window
advertised by the receiver. Each unit of time a segment is removed from the network by
the receiver, and another is placed into the network by the sender. However many data
segments fill the pipe, there are an equal number of ACKs making the return trip. This
is the ideal steady state of the connection.

Bandwidth-Delay Product

We can now answer the question: how big should the window be? In our example, the
sender needs to have eight segments outstanding and unacknowledged at any time, for
maximum throughput. The receiver’s advertised window must be that large, since that
limits how much the sender can transmit.

We can calculate the capacity of the pipe as

capacity (bits) = bandwidth (bits/sec) x round-trip time (sec)

This is normally called the bandwidth-delay product. This value can vary widely, depend-
ing on the network speed and the RTT between the two ends. For example, a T1 tele-
phone line (1,544,000 bits/sec) across the United States (about a 60-ms RTT) gives a
bandwidth-delay product of 11,580 bytes. This is reasonable in terms of the buffer sizes
we talked about in Section 20.4, but a T3 telephone line (45,000,000 bits/sec) across the
United States gives a bandwidth-delay product of 337,500 bytes, which is bigger than
the maximum allowable TCP window advertisement (65535 bytes). We describe the

290 TCP Bulk Data Flow Chapter 20

tzme 16: 4

sendersender ---~ ~
ack 3

tzme 17: 5 4

sender --~ .: ._

time 18: 6 5 4
sender --~

time 19" 7 6 5 4

sender-~. ~ii:>~ :](} ’~:.)~]~,.ij~_~i!~!;!.:-!---~receiver

tzme 24: 8

sender +

ack 5 ack 6 ack 7

tune 25" 9 8

sender ~ ’

 ender -- I
ack 6 ack 7

time 26. 10 9 8

ack 7

Dme 27. n ~0 9 8

---~receiver

time 20:

time 21

t~me 22:

tzme 23.

sender ~
ack 4

7 6 5

--]~;’i~!~[~i~i~!~i~--~receiver~--receiver

ack 4

7 6

-~", :, ~ ;"’~: ~ ~ receiver

-~--receiver
ack 4 ack 5

ack4 ack5 ack6

time 28
sender ~

t~me 29.

sender ~

12 11 10 9

¯ :7 ~:’-:![:~: ~2 [’-~4/~-.:~ii~:-~[~--~ receiverreCeiver

ack 8

13 12 11 10

. ~--12"i ;’~’]:-°~":.i--!"- ---~ receivert lq -.--receiver
ack 8 ack 9

time 30: 14 13 12 I1

--~ receiver sender ~ ’ "- ~ -’ - } ~/::"] " ~’/;;,’:" :~.... --~ receiver
~-- receiver }1 7t ~{ ~-- receiver

ack8 ack9 ack 10

time 31 15 14 13 12
.~, --~ recmver

~ [~ [£1 1.~, -.~--receiver sender-~-- !!1~ V["~)i] -~--receiver
ack 5 ack 6 ack 7 ack 8 ack 9 ack 10 ack 11

Figure 20.10 Times 16-31 for bulk data throughput example.

new TCP window scale option in Section 24.4 that gets around this current limitation of
TCP.

The value 1,544,000 bits/sec for a T1 phone line is the raw b~t rate. The data rate is actually
1,536,000 bits/sec, since 1 bit in 193 is used for framing. The raw bit rate of a T3 phone hne is
actually 44,736,000 bits/sec, and the data rate can reach 44,210,000 bits/sec. For our discussion
we’ll use 1.544 Mbits/sec and 45 Mbits/sec.

Either the bandwidth or the delay can affect the capacity of the pipe between the
sender and receiver. In Figure 20.11 we show graphically how a doubling of the RTT
doubles the capacity of the pipe.

Section 20.7 Bulk Data Throughput 291

~-~--- RTT ~]

double the RTT <

Figure 20.11 Doubhng the RTT doubles the capacxty of the pipe.

In the lower illustration of Figure 20.11, with the longer RTT, the pipe can hold eight
segments, instead of four.

Similarly, Figure 20.12 shows that doubling the bandwidth also doubles the capacity
of the pipe.

~ RTT - ~

Figure 20.12 Doubling the bandwqdth doubles the capacity of the pipe

tn the lower illustration of Figure 20.12, we assume that the network speed has doubled,
allowing us to send four segments in half the time as in the top picture. Again, the
capacity of the pipe has doubled. (We assume that the segments in the top half of this
figure have the same area, that is the same number of bits, as the segments in the bot-
tom half.)

Congestion

Congeshon can occur when data arrives on a big pipe (a fast LAN) and gets sent out a
smaller pipe (a slower WAN). Congestion can also occur when multiple input streams
arrive at a router whose output capacity is less than the sum of the inputs.

Figure 20.13 shows a typical scenario with a big pipe feeding a smaller pipe. We say
this is typical because most hosts are connected to LANs, with an attached router that is
connected to a slower WAN. (Again, we are assuming the areas of all the data segments
(9-20) in the top half of the figure are the same, and the areas of all the acknowledg-
ments in the bottom half are all the same.)

In this figure we have labeled the router R1 as the "bottleneck," because it is the
congestion point. It can receive packets from the LAN on its left faster than they can be

292 TCP Bulk Data Flow Chapter 20

sender

20 19 18 t7 16 15 10
(bottleneck) 14 13 12 11

receiver

ack 1 ack 2 ack 7 ack 8

Figure 20.13 Congestion caused by a bigger pipe feeding a smaller pipe.

receiver

sent out the WAN on its right. (Commonly R1 and R3 are the same router, as are R2 and
R4, but that’s not required; asymmetrical paths can occur.) When router R2 puts the
received packets onto the LAN on its right, they maintain the same spacing as they did
on the WAN on its left, even though the bandwidth of the LAN is higher. Similarly, the
spacing of the ACKs on their way back is the same as the spacing of the slowest link in
the path.

In Figure 20.13 we have assumed that the sender did not use slow start, and sent the
segments we’ve numbered 1-20 as fast as the LAN could take them. (This assumes the
receiving host advertised a window of at least 20 segments.) The spacing of the ACKs
will correspond to the bandwidth of the slowest link, as we show. We are assuming the
bottleneck router has adequate buffering for all 20 segments. This is not guaranteed,
and can lead to that router discarding packets. We’ll see how to avoid this when we
talk about congestion avoidance in Section 21.6.

20.8 Urgent Mode

TCP provides what it calls urgent mode, allowing one end to tell the other end that
"urgent data" of some form has been placed into the normal stream of data. The other
end is notified that this urgent data has been placed into the data stream, and it’s up to
the receiving end to decide what to do.

The notification from one end to the other that urgent data exists in the data stream
is done by setting two fields in the TCP header (Figure 17.2, p. 225). The URG bit is
turned on and the 16-bit urgent pointer is set to a positive offset that must be added to
the sequence number field in the TCP header to obtain the sequence number of the last
byte of urgent data.

There is continuing debate about whether the urgent pointer points to the last byte of urgent
data, or to the byte following the last byte of urgent data. The original TCP specification gave

Section 20.8 Urgent Mode 293

both interpretations but the Host Requirements RFC identifies which is correct: the urgent
pointer points to the last byte of urgent data.

The problem, however, is that most implementations (i.e., the Berkeley-derived implementa-
tions) continue to use the wrong interpretation. An implementation that follows the specifica-
tion ~n the Host Requirements RFC might be compliant, but m~ght not communicate correctly
w~th most other hosts.

TCP must inform the receiving process when an urgent pointer is received and one
was not already pending on the connection, or if the urgent pointer advances in the data
stream. The receiving application can then read the data stream and must be able to tell
when the urgent pointer is encountered. As long as data exists from the receiver’s cur-
rent read position until the urgent pointer, the application is considered to be in an
"urgent mode." After the urgent pointer is passed, the application returns to its normal
mode.

TCP itself says little more about urgent data. There is no way to specify where the
urgent data starts in the data stream. The only information sent across the connection
by TCP is that urgent mode has begun (the URG bit in the TCP header) and the pointer
to the last byte of urgent data. Everything else is left to the application.

Unfortunately many implementations incorrectly call TCP’s urgent mode
out-of-band data. If an application really wants a separate out-of-band channel, a second
TCP connection is the easiest way to accomplish this. (Some transport layers do pro-
vide what most people consider true out-of-band data: a logically separate data path
using the same connection as the normal data path. This is not what TCP provides.)

The confusion between TCP’s urgent mode and out-of-band data is also because the predomi-
nant programming interface, the sockets API, maps TCP’s urgent mode into what sockets calls
out-of-band data.

What is urgent mode used for? The two most commonly used applications are Tel-
net and Rlogin, when the interactive user types the interrupt key, and we show exam-
ples of this use of urgent mode in Chapter 26. Another is FTP, when the interactive user
aborts a file transfer, and we show an example of this in Chapter 27.

Telnet and Rlogin use urgent mode from the server to the client because it’s possible
for this direction of data flow to be stopped by the client TCP (i.e., it advertises a win-
dow of 0). But if the server process enters urgent mode, the server TCP immediately
sends the urgent pointer and the URG flag, even though it can’t send any data. When
the client TCP receives this notification, it in turn notifies the client process, so the client
can read its input from the server, to open the window, and let the data flow.

What happens if the sender enters urgent mode multiple times before the receiver
processes all the data up through the first urgent pointer? The urgent pointer just
advances in the data stream, and its previous position at the receiver is lost. There is
only one urgent pointer at the receiver and its value is overwritten when a new value
for the urgent pointer arrives from the other end. This means if the contents of the data
stream that are written by the sender when it enters urgent mode are important to the
receiver, these data bytes must be specially marked (somehow) by the sender. We’ll see
that Telnet marks all of its command bytes in the data stream by prefixing them with a
byte of 255.

294 TCP Bulk Data Flow Chapter 20

An Example

Let’s watch how TCP sends urgent data, even when the receiver’s window is closed.
We’ll start our sock program on the host bsd± and have it pause for 10 seconds after
the connection is established (the -p option), before it reads from the network. This lets
the other end fill the send window.

bsdi % sock -i -s -PI0 5555

We then start the client on the host sun telling it to use a send buffer of 8192 bytes (-s
option) and perform six 1024-byte writes to.the network (-n option). We also specify
-uS telling it to write I byte of data and enter urgent mode before writing the fifth buff-
er to the network. We specify the verbose flag to see the order of the writes:

sun % sock -v -i -n6 -$8192 -U5 bsdi 5555
connected on 140.252.13.33.1305 to 140.252.13.35.5555
SO_SNDBUF = 8192
TCP_MAXSEG : 1024
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1024 bytes
wrote 1 byte of urgent data
wrote 1024 bytes
wrote 1024 bytes

We set the send buffer size to 8192 bytes, to let the sending application immediately
write all of its data. Figure 20.14 shows the tcpdump output for this exchange. (We
have removed the connection establishment.) Lines 1-5 show the sender filling the
receiver’s window with four 1024-byte segments. The sender is then stopped because
the receiver’s window is full. (The ACK on line 4 acknowledges data, but does not
move the right edge of the window.)

After the fourth application write of normal data, the application writes 1 byte of
data and enters urgent mode. Line 6 is the result of this application write. The urgent
pointer is set to 4098. The urgent pointer is sent with the URG flag even though the
sender cannot send any data.

Five of these ACKs are sent in about 13 ms (lines 6-10). The first is sent when the
application writes 1 byte and enters urgent mode. The next two are sent when the
application does the final two writes of 1024 bytes. (Even though TCP can’t send these
2048 bytes of data, each time the application performs a write, the TCP output function
is called, and when it sees that urgent mode has been entered, sends another urgent
notification.) The fourth of these ACKs occurs when the application closes its end of the
connection. (The TCP output function is again called.) The sending application termi-
nates milliseconds after it starts--before the receiving application has issued its first
read. TCP queues all the data and sends it when it can. (This is why we specified a
send buffer size of 8192--so all the data can fit in the buffer.) The fifth of these ACKs is
probably generated by the reception of the ACK on line 4. The sending TCP has proba-
bly already queued its fourth segment for output (line 5) before this ACK arrives. The
receipt of this ACK from the other end also causes the TCP output routine to be called.

Section 20.8 Urgent Mode 295

i 0.0
2 0.073743 (0.0737)
3 0.096969 (0.0232)
4 0.157514 (0.0605)
5 0.164267 (0.0068)

6 0.167961 (0.0037)
7 0.171969 (0.0040)
8 0.176196 (0.0042)
9 0.180373 (0.0042)

]0 0.180768 (0.0004)

]1 0.367533 (0.1868)
12 0.368478 (0.0009)

13 9.829712 (9.4612)
14 9.831578 (0.0019)

]5 9.833303 (0.0017)

16 9.835089 (0.0018)
]7 9.835913 (0.0008)
18 9.840264 (0.0044)
19 9.842386 (0.0021)
20 9.843622 (0.0012)
21 9.844320 (0.0007)

sun.1305 > bsdi.5555
sun.1305 > bsdi.5555
sun.1305 > bsdl.5555
bsdl.5555 > sun.1305
sun.1305 > bsdi.5555

sun.1305 > bsdi.5555
sun.1305 > bsdi.5555
sun.1305 > bsdi.5555
sun.1305 > bsdl.5555
sun.1305 > bsdi.5555

bsdi.5555 > sun.1305
sun.1305 > bsdi.5555

bsdi.5555 > sun.1305
Sunol305 > bsdi

: P 1:1025(1024) ack 1 wln 4096
: P i025:2049(i024) ack 1 win 4096
: P 2049:3073(1024) ack 1 win 4096
: ¯ ack 3073 win 1024
: P 3073:4097(1024) ack 1 win 4096

: ¯ ack 1 win 4096 urg 4098
: ack 1 win 4096 urg 4098
: . ack I wln 4096 urg 4098
: . ack 1 win 4096 urg 4098
: . ack 1 win 4096 urg 4098

: ¯ ack 4097 win 0
: ack 1 win 4096 urg 4098

: ack 4097 wln 2048
.5555: 4097:5121(1024) ack 1 win 4096

urg 4098
sunol305 > bsdl.5555: 5121:6145(1024) ack 1 win 4096

bsdi.5555 > sun.1305: ack 4097 win 4096
sun.1305 > bsdl.5555: FP 6145:6146(1) ack 1 wln 4096
bsdi.5555 > sun.1305: ¯ ack 6147 win 2048
bsdl.5555 > sun.1305: ¯ ack 6147 win 4096
bsdi.5555 > sun.1305: F i:i(0) ack 6147 win 4096
sun.1305 > bsd~.5555: . ack 2 wln 4096

Figure 20.14 tcpdump output for TCP urgent mode.

The receiver then acknowledges the final 1024 bytes of data (line 11~,_xb.ut also adver-
tises a window of 0. The sender responds with another segment containfn,g the urgent
notification. " "

The receiver advertises a window of 2048 bytes in line 13, when the aplSlication
wakes up and reads some of the data from the receive buffer¯ The next two 1024-byte
segments are sent (lines 14 and 15). The first segment has the urgent notification set,
since the urgent pointer is within this segment. The second segment has turned the
urgent notification off.

When the receiver opens the window again (line 16) the sender transmits the final
byte of data (numbered 6145) and also initiates the normal connection termination.

Figure 20.15 shows the sequence numbers of the 6145 bytes of data that are sent¯
We see that the sequence number of the byte written when urgent mode was entered is
4097, but the value of the urgent pointer in Figure 20.14 is 4098. This confirms that this
implementation (SunOS 4.1.3) sets the urgent pointer to 1 byte beyond the last byte of
urgent data.

~̄ writevl~]~ write v]~-- 1- write ~- ~ write v]~ ~]~{~ur[[~ write + write ~

segment ~-segment ~@~-segment ~- ~-edrn~r~t + segment + segment

Figure 20.15 Apphcat,on wr,tes and TCP segments for urgent mode example.

296 TCP Bulk Data Flow Chapter 20

This figure also lets us see how TCP repacketizes the data that the application
wrote. The single byte that was output when urgent mode was entered is sent along
with the next 1023 bytes of data in the buffer. The next segment also contains 1024 bytes
of data, and the final segment contains i byte of data.

20.9 Summary

As we said early in the chapter, there is no single way to exchange bulk data using TCP.
It is a dynamic process that depends on many factors, some of which we can control
(e.g., send and receive buffer sizes) and some of which we have no control over (e.g.,
network congestion, implementation features). In this chapter we’ve examined many
TCP transfers, explaining all the characteristics and algorithms that we could see.

Fundamental to the efficient transfer of bulk data is TCP’s sliding window protocol.
We then looked at what it takes for TCP to get the fastest transfer possible by keeping
the pipe between the sender and receiver full. We measured the capacity of this pipe as
the bandwidth-delay product, and saw the relationship between this and the window
size. We return to this concept in Section 24.8 when we look at TCP performance.

We also looked at TCP’s PUSH flag, since we’ll always see it in trace output, but we
have no control over its setting. The final topic was TCP’s urgent data, which is often
mistakenly called "out-of-band data." TCP’s urgent mode is just a notification from the
sender to the receiver that urgent data has been sent, along with the sequence number
of the final byte of urgent data. The programming interface for the application to use
with urgent data is often less than optimal, which leads to much confusion.

Exercises

20.1 In Figure 20.6 (p. 281) we could have shown a byte numbered 0 and a byte numbered 8193.
What do these 2 bytes designate?

20.2 Look ahead to Figure 22.1 (p. 324) and explain the setting of the PUSH flag by the host
bsdi.

20.3

20.4

20.5

20.6

In a Usenet posting someone complained about a throughput of 120,000 bits/sec on a
256,000 bits/sec link with a 128-ms delay between the United States and Japan (47% utili-
zation), and a throughput of 33,000 bits/sec when the link was routed over a satellite (13%
utilization). What does the window size appear to be for both cases? (Assume a 500-ms
delay for the satellite link.) How big should the window be for the satellite link?

If the API provided a way for a sending application to tell its TCP to turn on the PUSH
flag, and a way for the receiver to tell if the PUSH flag was on in a received segment, could
the flag then be used as a record marker?

In Figure 20.3 why aren’t segments 15 and 16 combined?

In Figure 20.13 we assume that the ACKs come back nicely spaced, corresponding to the
spacing of the data segments. What happens if the ACKs are queued somewhere on the
return path, causing a bunch of them to arrive at the same time at the sender?

21

TCP Timeout and Retransmission

21.1 Introduction

TCP provides a reliable transport layer. One of the ways it provides reliability is for
each end to acknowledge the data it receives from the other end. But data segments
and acknowledgments can get lost. TCP handles this by setting a timeout when it sends
data, and if the data isn’t acknowledged when the timeout expires, it retransmits the
data. A critical element of any implementation is the timeout and retransmission strat-
egy. How is the timeout interval determined, and how frequently does a retransmission
occur?

We’ve already seen two examples of timeout and retransmission: (1) In the ICMP
port unreachable example in Section 6.5 we saw the TFTP client using UDP employing a
simple (and poor) timeout and retransmission strategy: it assumed 5 seconds was an
adequate timeout period and retransmitted every 5 seconds. (2) In the ARP example to
a nonexistent host (Section 4.5), we saw that when TCP tried to establish the connection
it retransmitted its SYN using a longer delay between each retransmission.

TCP manages four different timers for each connection.

1. A retransmission timer is used when expecting an acknowledgment from the
other end. This chapter looks at this timer in detail, along with related issues
such as congestion avoidance.

2. A persist timer keeps window size information flowing even if the other end
closes its receive window. Chapter 22 describes this timer.

3. A keepalive timer detects when the other end on an otherwise idle connection
crashes or reboots. Chapter 23 describes this timer.

4. A 2MSL timer measures the time a connection has been in the TIME_WAIT
state. We described this state in Section 18.6.

297

298 TCP Timeout and Retransmission Chapter 21

In this chapter we start with a simple example of TCP’s timeout and retransmission
and then move to a larger example that lets us look at all the details involved in TCP’s
timer management. We look at how typical implementations measure the round-trip
time of TCP segments and how TCP uses these measurements to estimate the retrans-
mission timeout of the next segment it transmits. We then look at TCP’s congestion
avoidance--what TCP does when packets are lost--and follow through an actual
example where packets are lost. We also look at the newer fast retransmit and fast
recovery algorithms, and see how they let TCP detect lost packets faster than waiting
for a timer to expire.

21.2 Simple Timeout and Retransmission Example

Let’s first look at the retransmission strategy used by TCP. We’ll establish a connection,
send some data to verify that everything is OK, disconnect the cable, send some more
data, and watch what TCP does:

bsdi % telmet svr4 discard
Trying 140.252.13.34...
Connected to svr4.
Escape character is ’^]’.
hello, world
and hi
Connection closed by foreign host.

send this line normally
&sconnect cable before sen&ng this hne
output when TCP g~ves up after 9 minutes

Figure 21.1 shows the tcpdump output. (We have removed all the type-of-service infor-
mation that is set by bsdi.)

1

2

3

0.0

0. 004811

0.006441

6.102290
6.259410

0.0048)

0.0016)

6.0958)
0.1571)

bsdi.1029 > svr4.discard: S 1747921409:1747921409(0)
win 4096 <mss 1024>

svr4.discard > bsdi.1029: S 3416685569:3416685569(0)
ack 1747921410
win 4096 <mss 1024>

bsdi.1029 > svr4.discard: . ack 1 win 4096

bsdi.1029 > svr4.discard: P 1:15(14) ack 1 win 4096
svr4.discard > bsdi.1029: . ack 15 win 4096

6
7
8
9

10
11
12
13
14
15
16
17
18
19

24
25
28
34
46
70

118
182
246
310
374
438
502
566

.480158
493733
493795
493971
484427
485105
486408
488164
489921
491678
493431
495196
486941
488478

(18.2207)
(1.0136)
(3 0001)
(6 0002)
(ii 9905)
(24 0007)
(48 0013)
(64 0018)
(64 0018)
(64 0018)
(64 0018)
(64 0018)
(63 9917)
(64 0015)

bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: P 15:23(8) ack 1 win 4096
bsdi.1029 > svr4.discard: R 23:23(0) ack 1 win 4096

Figure 21.1 S~mple example of TCP’s timeout and retransmiss~on.

Section 21.3 Round-Trip Time Measurement 299

Lines 1, 2, and 3 correspond to the normal TCP connection establishment. Line 4 is
the transmission of "hello, world" (12 characters plus the carriage return and linefeed),
and line 5 is its acknowledgment. We then disconnect the Ethernet cable from sva:4.

Line 6 shows "and hi" being sent. Lines 7-18 are 12 retransmissions of that seg-
ment, and line 19 is when the sending TCP finally gives up and sends a reset.

Examine the time difference between successive retransmissions: with rounding
they occur 1, 3, 6, 12, 24, 48, and then 64 seconds apart. We’ll see later in this chapter
that the first timeout is actually set for 1.5 seconds after the first transmission. (The rea-
son it occurs 1.0136 seconds after the first transmission, and not exactly 1.5 seconds, was
explained in Figure 18.7.) After this the timeout value is doubled for each retransmis-
sion, with an upper limit of 64 seconds.

This doubling is called an exponential backoff. Compare this to the TFTP example in
Section 6.5, where every retransmission occurred 5 seconds after the previous.

The time difference between the first transmission of the packet (line 6 at time
24.480) and the reset (line 19 at time 566.488) is about 9 minutes. Modern TCP’s are per-
sistent when trying to send data!

On most implementations this total timeout value is not tunable. Solaris 2.2 allows the admin-
istrator to change this (the tcp_~_p_abort_n_nterval variable in Section E.4) and its default
is only 2 minutes, not the more common 9 minutes.

21.3 Round-Trip Time Measurement

Fundamental to TCP’s timeout and retransmission is the measurement of the round-trip
time (RTT) experienced on a given connection. We expect this can change over time, as
routes might change and as network traffic changes, and TCP should track these
changes and modify its timeout accordingly.

First TCP must measure the RTT between sending a byte with a particular sequence
number and receiving an acknowledgment that covers that sequence number. Recall
from the previous chapter that normally there is not a one-to-one correspondence
between data segments and ACKs. In Figure 20.1 (p. 276) this means that one RTT that
can be measured by the sender is the time between the transmission of segment 4 (data
bytes 1-1024) and the reception of segment 7 (the ACK of bytes 1-2048), even though
this ACK is for an additional 1024 bytes. We’ll use M to denote the measured RTT.

The original TCP specification had TCP update a smoothed RTT estimator (called
R) using the low-pass filter

R ~- ~R+(1-~)M

where ~ is a smoothing factor with a recommended value of 0.9. This smoothed RTT is
updated every time a new measurement is made. Ninety percent of each new estimate
is from the previous estimate and 10% is from the new measurement.

Given this smoothed estimator, which changes as the RTT changes, RFC 793 recom-
mended the retransmission timeout value (RTO) be set to

RTO = Rfl

where ~ is a delay variance factor with a recommended value of 2.

300 TCP Timeout and Retransmission Chapter 21

[Jacobson 1988] details the problems with this approach, basically that it can’t keep
up with wide fluctuations in the RTT, causing unnecessary retransmissions. As
Jacobson notes, unnecessary retransmissions add to the network load, when the net-
work is already loaded. It is the network equivalent of pouring gasoline on a fire.

What’s needed is to keep track of the variance in the RTT measurements, in addi-
tion to the smoothed RTT estimator. Calculating the RTO based on both the mean and
variance provides much better response to wide fluctuations in the round-trip times,
than just calculating the RTO as a constant multiple of the mean. Figures 5 and 6 in
[Jacobson 1988] show a comparison of the RFC 793 RTO values for some actual round-
trip times, versus the RTO calculations we show below, which take into account the
variance of the round-trip times.

As described by Jacobson, the mean deviation is a good approximation to the stan-
dard deviation, but easier to compute. (Calculating the standard deviation requires a
square root.) This leads to the following equations that are applied to each RTT mea-
surement M.

Err = M - A

A ~- A + gErr

D ~- D+h(I Err l - D)

RTO = A + 4D

where A is the smoothed RTT (an estimator of the average) and D is the smoothed
mean deviation. Err is the difference between the measured value just obtained and the
current RTT estimator. Both A and D are used to calculate the next retransmission time-
out (RTO). The gain g is for the average and is set to 1/8 (0.125). The gain for the devi-
ation is h and is set to 0.25. The larger gain for the deviation makes the RTO go up
faster when the RTT changes.

[Jacobson 1988] specified 2D ~n the calculation of RTO, but after further research, [Jacobsor~
1990c] changed the value to 4D, which Is what appeared in the BSD Net/1 implementation

Jacobson specifies a way to do all these calculations using integer arithmetic, and
this is the implementation typically used. (That’s one reason g, h, and the multiplier 4
are all powers of 2, so the operations can be done using shifts instead of multiplies and
divides.)

Comparing the original method with Jacobson’s, we see that the calculations of the
smoothed average are similar (o~ is one minus the gain g) but a different gain is used.
Also, Jacobson’s calculation of the RTO depends on both the smoothed RTT and the
smoothed mean deviation, whereas the original method used a multiple of the
smoothed RTT.

We’ll see how these estimators are initialized in the next section, when we go
through an example.

Section 21,4 An RTT Example 301

Karn’s

21.4

Algorithm

A problem occurs when a packet is retransmitted. Say a packet is transmitted, a time-
out occurs, the RTO is backed off as shown in Section 21.2, the packet is retransmitted
with the longer RTO, and an acknowledgment is received. Is the ACK for the first
transmission or the second? This is called the retransmission ambiguity problem.

[Karn and Partridge 1987] specify that when a timeout and retransmission occur, we
cannot update the RTT estimators when the acknowledgment for the retransmitted data
finally arrives. This is because we don’t know to which transmission the ACK corre-
sponds. (Perhaps the first transmission was delayed and not thrown away, or perhaps
the ACK of the first transmission was delayed.)

Also, since the data was retransmitted, and the exponential backoff has been
applied to the RTO, we reuse this backed off RTO for the next transmission. Don’t cal-
culate a new RTO until an acknowledgment is received for a segment that was not
retransmitted.

An RTT Example

We’ll use the following example throughout this chapter to examine various imple-
mentation details of TCP’s timeout and retransmission, slow start, and congestion
avoidance.

Using our sock program, 32768 bytes of data are sent from our host sl±p to the
discard service on the host vangogh, cs. berkeley, edu using the command:

slip % sock -D -i -n32 vangogh.cs.berkeley.edu discard

From the figure on the inside front cover, s 1 ip is connected to the 140.252.1 Ethernet by
two SLIP links, and from there across the Internet to the destination. With two
9600 bits/sec SLIP links, we expect some measurable delays.

This command performs 32 1024-byte writes, and since the MTU between s 1 ip and
bsdi is 296, this becomes 128 segments, each with 256 bytes of user data. The total time
for the transfer is about 45 seconds and we see one timeout and three retransmissions.

While this transfer was running we ran tcpdump on the host s 1 ip and captured all
the segments sent and received. Additionally we specified the -D option to turn on
socket debugging (Section A.6). We were then able to run a modified version of the
trpt(8) program to print numerous variables in the connection control block relating to
the round-trip timing, slow start, and congestion avoidance.

Given the volume of trace output, we can’t show it all. Instead we’ll look at pieces
as we proceed through the chapter. Figure 21.2 shows the transfer of data and acknowl-
edgments for the first 5 seconds. We have modified this output slightly from our previ-
ous display of tcpdump output. Although we only measure the times that the packet is
sent or received on the host running tcpdump, in this figure we want to show that the
packets are crossing in the network (which they are, since this WAN connection is not
like a shared Ethernet), and show when the receiving host is probably generating the
ACKs. (We have also removed all the window advertisements from this figure, slip
always advertised a window of 4096, and vangogh always advertised a window of
8192.)

302 TCP Timeout and Retransmission Chapter 21

slip.1024 vangogh.discard

0.0

1.061206 (1.0612)
1.063093 (0.0019)
1.065502 (0.0024)

1.871101 (0.8056)
1.872966 (0.0019)
1.875377 (0.0024)

2.137876 (0.2625)
2.140096 (0.0022)

RTT #1
(1.061 sec)

RTT #2
(0.808 sec)

RTT #3
(t.015 sec)

2.887534 (0.7474) 112.947597 (0.0601)
13

10
~12

15

Figure 21.2 Packet exchange and RTT measurement.

Section 21.4 An RTT Example 303

Also note in this figure that we have numbered the segments 1-13 and 15, in the order
in which they were sent or received on the host s~_±p. This correlates with the
~:cpdump output that was collected on this host.

Round-Trip Time Measurements

Three curly braces have been placed on the left side of the time line indicating which
segments were timed for RTT calculations. Not all data segments are timed.

Most Berkeley-derived implementations of TCP measure only one RTT value per
connection at any time. If the timer for a given connection is already in use when a data
segment is transmitted, that segment is not timed.

The timing is done by incrementing a counter every time the 500-ms TCP timer rou-
tine is invoked. This means that a segment whose acknowledgment arrives 550 ms after
the segment was sent could end up with either a i tick RTT (implying 500 ms) or a 2 tick
RTT (implying 1000 ms).

In addition to this tick counter for each connection, the starting sequence number of
the data in the segment is also remembered. When an acknowledgment that includes
this sequence number is received, the timer is turned off. If the data was not retransmit-
ted when the ACK arrives, the smoothed RTT and smoothed mean deviation are
updated based on this new measurement.

The timer for the connection in Figure 21.2 is started when segment 1 is transmitted,
and turned off when its acknowledgment (segment 2) arrives. Although its RTT is 1.061
seconds (from the tepdurap output), examining the socket debug information shows
that three of TCP’s clock ticks occurred during this period, implying an RTT of 1500 ms.

The next segment timed is number 3. When segment 4 is transmitted 2.4 ms later, it
cannot be timed, since the timer for this connection is already in use. When segment 5
arrives, acknowledging the data that was being timed, its RTT is calculated to be 1 tick
(500 ms), even though we see that its RTT is 0.808 seconds from the tcpdump output.

The timer is started again when segment 6 is transmitted, and turned off when its
acknowledgment (segment 10) is received 1.015 seconds later. The measured RTT is 2
clock ticks. Segments 7 and 9 cannot be timed, since the timer is already being used.
Also, when segment 8 is received (the ACK of 769), nothhlg is updated since the
acknowledgment was not for bytes being timed.

Figure 21.3 shows the relationship in this example between the actual RTTs that we
can determine from the tcpdump output, and the counted clock ticks.

0.03 0.53 1.03 1.53 2.03 2.53

0.0 1 061 1.063 1.871 1.872 2.887

on off on off on off

1.061 sec, 3 ticks 0.808 sec, 1 tick 1.015 sec, 2 ticks

3.03

Figure 21.3 RTT measurements aa~d clock ticks.

304 TCP Timeout and Retransmission Chapter 21

On the top we show the clock ticks, every 500 ms. On the bottom we show the times
output by t cpclurap, and when the timer for the connection is turned on and off. We
know that 3 ticks occur between sending segment 1 and receiving segment 2, 1.061 sec-
onds later, so we assume the first tick occurs at time 0.03. (The first tick must be
between 0.00 and 0.061.) The figure then shows how the second measured RTT was
counted as 1 tick, and the third as 2 ticks.

In this complete example, 128 segments were transmitted, and 18 RTT samples were
collected. Figure 21.4 shows the measured RTT (taken from the tcpdump output) along
with the RTO used by TCP for the timeout (taken from the socket debug output). The
x-axis starts at time 0 in Figure 21.2, when the first data segment is transmitted, not
when the first SYN is transmitted.

RTT / RTO
(seconds)

0 5 10 15 20 25 30 35

time (seconds)

Figure 21.4 Measured RTT and TCP’s calculated RTO for example.

The first three data points for the measured RTT correspond to the 3 RTTs that we
show in Figure 21.2. The gaps in the RTT samples around times 10, 14, and 21 are
caused by retransmissions that took place there (which we’ll show later in this chapter).
Karn’s algorithm prevents us from updating our estimators until another segment is
transmitted and acknowledged. Also note that for this implementation, TCP’s calcu-
lated RTO is always a multiple of 500 ms.

RTT Estimator Calculations

Let’s see how the RTT estimators (the smoothed RTT and the smoothed mean deviation)
are initialized and updated, and how each retransmission timeout is calculated.

Section 21.4 An RTT Example 305

The variables A and D are initialized to 0 and 3 seconds, respectively. The initial
retransmission timeout is calculated using the formula

RTO = A+2D = 0+2x3 = 6 seconds

(The factor 2D is used only for this initial calculation. After this 4D is added to A to cal-
culate RTO, as shown earlier.) This is the RTO for the transmission of the initial SYN.

It turns out that this initial SYN is lost, and we time out and retransmit. Figure 21.5
shows the first four lines from the tcpdump output file.

I 0.0 slzp.1024 > vangogh.discard: S 35648001:35648001(0)
wln 4096 <mss 256>

2 5.802377 (5.8024) slip.1024 > vangogh.dlscard: S 35648001:35648001(0)
win 4096 <mss 256>

3 6.269395 (0.4670) vangogh.dlscard > sl±p.1024: S 1365512705:1365512705(0)
ack 35648002
win 8192 <mss 512>

4 6.270796 (0.0014) slip.1024 > vangogh.dlscard: . ack 1 win 4096

Figure21.5 TimeoutandretransmissionofmltialSYN.

When the timeout occurs after 5.802 seconds, the current RTO is calculated as

RTO = A + 4D = 0 + 4 x 3 = 12 seconds

The exponential backoff is then applied to the RTO of 12. Since this is the first timeout
we use a multiplier of 2, giving the next timeout value as 24 seconds. The next timeout
is calculated using a multiplier of 4, giving a value of 48 seconds: 12 x 4. (These initial
RTOs for the first SYN on a connection, 6 seconds and then 24 seconds, are what we
saw in Figure 4.5.)

The ACK arrives 467 ms after the retransmission. The values of A and D are not
updated, because of Karn’s algorithm dealing with the retransmission ambiguity. The
next segment sent is the ACK on line 4, but it is not timed since it is only an ACK.
(Only segments containing data are timed.)

When the first data segment is sent (segment 1 in Figure 21.2) the RTO is not
changed, again owing to Karn’s algorithm. The current value of 24 seconds is reused
until an RTT measurement is made. This means the RTO for time 0 in Figure 21.4 is
really 24, but we didn’t plot that point.

When the ACK for the first data segment arrives (segment 2 in Figure 21.2), three
clock ticks were counted and our estimators are initialized as

A=M+0.5= 1.5+0.5=2

D = A/2 = 1

(The value 1.5 for M is for 3 clock ticks.) The previous initialization of A and D to 0 and
3 was for the initial RTO calculation. This initialization is for the first calculation of the
estimators using the first RTT measurement M. The RTO is calculated as

RTO = A+4D = 2+4 x i = 6 seconds

306 TCP Timeout and Retransmission Chapter 21

When the ACK for the second data segment arrives (segment 5 in Figure 21.2), 1 clock
tick is counted (0.5 seconds) and our estimators are updated as

Err = M-A =0.5-2 =-1.5

A = A+gErr = 2-0.125×1.5 = 1.8125

D = D+ h(I Err l - D) = 1+0.25x(1.5-1) = 1. 125

RTO = A + 4D = 1. 8125 + 4 x 1. 125 = 6.3125

There are some subtleties in the fixed-point representations of Err, A, and D, and the
fixed-point calcv_lations that are actually used (which we’ve shown in floating-point for
simplicity). These differences yield an RTO of 6 seconds (not 6.3125), which is what we
plot in Figure 21.4 for time 1.871.

Slow Start

We described the slow start algorithm in Section 20.6. We can see it in action again in
Figure 21.2 (p. 302).

Only one segment is initially transmitted on the connection, and its acknowledg-
ment must be received before another segment is transmitted. When segment 2 is
received, two more segments are transmitted.

21.5 Congestion Example

Now let’s look at the transmission of the data segments. Figure 21.6 is a plot of the
starting sequence number in a segment versus the time that the segment was sent. This
provides a nice way to visualize the data transmission. Normally the data points
should move up and to the right, with the slope of the points being the transfer rate.
Retransmissions will appear as motion down and to the right,

At the beginning of Section 21.4 we said the total time for the transfer was about 45
seconds, but we show only 35 seconds in this figure. These 35 seconds account for
sending the data segments only. The first data segment was not transmitted until 6.3
seconds after the first SYN was sent, because the first SYN appears to have been lost
and was retransmitted (Figure 21.5). Also, after the final data segment and the FIN
were sent (at time 34.1 in Figure 21.6) it took another 4.0 seconds to receive the final 14
ACKs from the receiver, before the receiver’s FIN was received.

Section 21.5 Congestion Example 307

sequence
number
(Kbytes)

32

30

28

26-

24]

22

20

18

16

14

12

lO

8

6

4

2

5 10 15 20 25 30

send time (seconds)

-32

130

128

126

124

122

120

118

716

214

712

12

Figure 21.6 Sending of 32768 bytes of data from sl zp to vangogh.

We can immediately see the three retransmissions around times 10, 14, and 21 in
Figure 21.6. At each of these three points we can also see that only one segment is
retransmitted, because only one dot dips below the upward slope.

Let’s examine the first of these dips in detail (around the 10-second mark). From
the ~ cpdump output we can put together Figure 21.7.

308 TCP Timeout and Retransmission Chapter 21

7 149042

slip.1024

43

7.419087 (0.0023) 45
7.420653 (0.0016) 46

7.688778 (0.0022) 48
7 778708 (0.0023) 50

8.226522 (0.4478)
8.228772 (0.0023) 52

8.496522 (0.2677)
8.498925 (0.0024) 54
8.500346 (0.0014) 55

8.766436 (0.2661)
8.768662 (0.0022) 57

9.156176 (0.3875)
9 158419 (0.0022)

9.489518 (0.331I)

9.879355 (0.3898)

10.029321 (0.1500)
10.031239 (0.0019)

10 239456(0.2082)

10.479344 (0.2399)

t0.779073 (0.2997)
10.780960 (0.0019)

11.049394 (0.2684)
11.051328 (0.0019)

11.438824 (0.3875)
11.440718 (0.0019)
11.618798 (0.1781)

59

63

67

69

71

vangogh.discard

51

53

56

256 bytes
58 to appl

(HOLE)
60 (save 256 bytes)

61 (save 256 bytes)

62 (save 256 bytes)

64 (save 256 bytes)

65 (save 256 bytes)

66 (save 256 bytes)

68 (save 256 bytes)

70 (save 256 bytes)

2304 bytes
72 to appl

Figure 21.7 Packet exchange for retransmission around the 10-second mark.

Section 21.5 Congestion Example 309

We have removed all the window advertisements from this figure, except for seg-
ment 72, which we discuss below, sl±p always advertised a window of 4096, and
vangogh advertised a window of 8192. The segments are numbered in this figure as a
continuation of Figure 21.2, where the first data segment across the connection was
numbered 1. As in Figure 21.2, the segments are numbered according to their send or
receive order on the host slip, where tcpdump was being run. We have also removed
a few segments that have no relevance to the discussion (44, 47, and 49, all ACKs from
vangogh).

It appears that segment 45 got lost or arrived damaged--we can’t tell from this out-
put. What we see on the host slip is the acknowledgment for everything up through
but not including byte 6657 (segment 58), followed by eight more ACKs of this same
sequence number. It is the reception of segment 62, the third of the duplicate ACKs,
that forces the retransmission of the data starting at sequence number 6657 (segment
63). Indeed, Berkeley-derived implementations count the number of duplicate ACKs
received, and when the third one is received, assume that a segment has been lost and
retransmit only one segment, starting with that sequence number. This is Jacobson’s fast
retransmit algorithm, which is followed by his fast recovery algorithm. We discuss both
algorithms in Section 21.7.

Notice that after the retransmission (segment 63), the sender continues normal data
transmission (segments 67, 69, and 71). TCP does not wait for the other end to acknowl-
edge the retransmission.

Let’s examine what happens at the receiver. When normal data is received in
sequence (segment 43), the receiving TCP passes the 256 bytes of data to the user pro-
cess. But the next segment received (segment 46) is out of order: the starting sequence
number of the data (6913) is not the next expected sequence number (6657). TCP saves
the 256 bytes of data and responds with an ACK of the highest sequence number suc-
cessfully received, plus one (6657). The next seven segments received by vangogh (48,
50, 52, 54, 55, 57, and 59) are also out of order. The data is saved by the receiving TCP,
and duplicate ACKs are generated.

Currently there is no way for TCP to tell the other end that a segment is missing.
Also, TCP cannot acknowledge out-of-order data. All vangogh can do at this point is
continue sending the ACKs of 6657.

When the missing data arrives (segment 63), the receiving TCP now has data bytes
6657-8960 in its buffer, and passes these 2304 bytes to the user process. All 2304 bytes
are acknowledged in segment 72. Also notice that this ACK advertises a window of
5888 (8192 - 2304), since the user process hasn’t had a chance to read the 2304 bytes that
are ready for it.

If we look in detail at the tcpdurap output for the dips around times 14 and 21 in
Figure 21.6, we see that they too were caused by the receipt of three duplicate ACKs,
indicating that a packet had been lost. In each of these cases only a single packet was
retransmitted.

We’ll continue this example in Section 21.8, after describing more about the conges-
tion avoidance algorithms.

310 TCP Timeout and Retransmission Chapter 21

21.6 Congestion Avoidance Algorithm

Slow start, which we described in Section 20.6, is the way to initiate data flow across a
connection. But at some point we’ll reach the limit of an intervening router, and packets
can be dropped. Congestion avoidance is a way to deal with lost packets. It is
described in [Jacobson 1988].

The assumption of the algorithm is that packet loss caused by damage is very small
(much less than 1%), therefore the loss of a packet signals congestion somewhere in the
network between the source and destination. There are two indications of packet loss: a
timeout occurring and the receipt of duplicate ACKs. (We saw the latter in Section 21.5.
If we are using a timeout as an indication of congestion, we can see the need for a good
RTT algorithm, such as that described in Section 21.3.)

Congestion avoidance and slow start are independent algorithms with different
objectives. But when congestion occurs we want to slow down the transmission rate of
packets into the network, and then invoke slow start to get things going again. In prac-
tice they are implemented together.

Congestion avoidance and slow start require that two variables be maintained for
each connection: a congestion window, cwnd, and a slow start threshold size, ssthresh.
The combined algorithm operates as follows:

Initialization for a given connection sets cwnd to one segment and ssthresh to
65535 bytes.

The TCP output routine never sends more than the minimum of cwnd and the
receiver’s advertised window.

Congestion avoidance is flow control imposed by the sender, while the adver-
tised window is flow control imposed by the receiver. The former is based on
the sender’s assessment of perceived network congestion; the latter is related to
the amount of available buffer space at the receiver for this connection.

When congestion occurs (indicated by a timeout or the reception of duplicate
ACKs), one-half of the current window size (the minimum of cwnd and the
receiver’s advertised window, but at least two segments) is saved in ssthresh.
Additionally, if the congestion is indicated by a timeout, cwnd is set to one seg-
ment (i.e., slow start).

When new data is acknowledged by the other end, we increase cwnd, but the
way it increases depends on whether we’re performing slow start or congestion
avoidance.

If cwnd is less than or equal to ssthresh, we’re doing slow start; otherwise we’re
doing congestion avoidance. Slow start continues until we’re halfway to where
we were when congestion occurred (since we recorded half of the window size
that got us into trouble in step 2), and then congestion avoidance takes over.

Slow start has cwnd start at one segment, and be incremented by one segment
every time an ACK is received. As mentioned in Section 20.6, this opens the
window exponentially: send one segment, then two, then four, and so on.

Section 21.6 Congestion Avoidance Algorithm 311

Congestion avoidance dictates that cwnd be incremented by 1/cwnd each time
an ACK is received. This is an additive increase, compared to slow start’s expo-
nential increase. We want to increase cwnd by at most one segment each round-
trip time (regardless how many ACKs are received in that RTT), whereas slow
start will increment cwnd by the number of ACKs received in a round-trip time.

All 4.3BSD releases and 4.4BSD incorrectly add a small fraction of the segment size (the seg-
ment size divided by 8) during congestion avoidance. This is wrong and should not be emu-
lated in future releases [Floyd 1994]. Nevertheless, we show this term in future calculations, to
arrive at the same answer as the (incorrect) implementation.

The 4.3BSD Tahoe release, described in [Leffler et al. 1989], performed slow start only if the
other end was on a different network. This was changed with the 4.3BSD Reno release so that
slow start is always performed.

Figure 21.8 is a visual description of slow start and congestion avoidance. We show
cwnd and ssthresh in units of segments, but they’re really maintained in bytes.

cwnd
(segments)

20~

18-

16- ssthresh

14--

12--

10--

8--

6--

4--

2--

0

1 2 3 4 5 6 7

round-trip times

Figure 21.8 Visualization of slow start and congestion avoidance.

In this figure we assume that congestion occurred when cwnd had a value of 32 seg-
ments, ssthresh is then set to 16 segments and cwnd is set to I segment. One segment is
then sent at time 0 and assuming its ACK is returned at time 1, cwnd is incremented to 2
segments. Two segments are then sent and assuming their ACKs return by time 2, cwnd
is incremented to 4 segments (once for each ACK). This exponential increase continues
until cwnd equals ssthresh, after 8 ACKs are received between times 3 and 4. From this
point on the increase in cwnd is linear, with a maximum increase of one segment per
round-trip time.

As we can see in this figure, the term "slow start" is not completely correct. It is a
slower transmission of packets than what caused the congestion, but the rate of increase

312 TCP Timeout and Retransmission Chapter 21

in the number of packets injected into the network increases during slow start. The rate
of increase doesn’t slow down until ssthresh is reached, when congestion avoidance
takes over.

21.7 Fast Retransmit and Fast Recovery Algorithms

Modifications to the congestion avoidance algorithm were proposed in 1990 [Jacobson
1990b]. We’ve already seen these modifications in action in our congestion example
(Section 21.5).

Before describing the change, realize that TCP is required to generate an immediate
acknowledgment (a duplicate ACK) when an out-of-order segment is received. This
duplicate ACK should not be delayed. The purpose of this duplicate ACK is to let the
other end know that a segment was received out of order, and to tell it what sequence
number is expected.

Since we don’t know whether a duplicate ACK is caused by a lost segment or just a
reordering of segments, we wait for a small number of duplicate ACKs to be received.
It is assumed that if there is just a reordering of the segments, there will be only one or
two duplicate ACKs before the reordered segment is processed, which will then gener-
ate a new ACK. If three or more duplicate ACKs are received in a row, it is a strong
indication that a segment has been lost. (We saw this in Section 21.5.) We then perform
a retransmission of what appears to be the missing segment, without waiting for a
retransmission timer to expire. This is the fast retransmit algorithm. Next, congestion
avoidance, but not slow start is performed. This is the fast recovery algorithm.

In Figure 21.7 we saw that slow start was not performed after the three duplicate
ACKs were received. Instead the sender did the retransmission, followed by three more
segments with new data (segments 67, 69, and 71), before the acknowledgment of the
retransmission was received (segment 72).

The reason for not performing slow start in this case is that the receipt of the dupli-
cate ACKs tells us more than just a packet has been lost. Since the receiver can only
generate the duplicate ACK when another segment is received, that segment has left the
network and is in the receiver’s buffer. That is, there is still data flowing between the
two ends, and we don’t want to reduce the flow abruptly by going into slow start.

This algorithms are usually implemented together as follows.

1. When the third duplicate ACK is received, set ssthresh to one-half of the mini-
mum of the current congestion window (cwnd) and the receiver’s advertised
window.

Retransmit the missing segment.

Set cwnd to ssthresh plus 3 times the segment size.

2. Each time another duplicate ACK arrives, increment cwnd by the segment size
and transmit a packet (if allowed by the new value of cwnd).

3. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh
(the value set in step 1). This should be the ACK of the retransmission from step
1, one round-trip time after the retransmission. Additionally, this ACK should

Section 21.8 Congestion Example (Continued) 313

21.8

acknowledge all the intermediate segments sent between the lost packet and the
receipt of the third duplicate ACK. This step is congestion avoidance, since
we’re slowing down to one-half the rate we were at when the packet was lost.

We’ll see what happens to the two variables cwnd and ssthresh in the calculations in the
next section.

The fast retransmit algorithm first appeared in the 4.3BSD Tahoe release, but it was incorrectly
followed by slow start. The fast recovery algorithm appeared in the 4.3BSD Reno release.

Congestion Example (Continued)

Watching a connection using tct~durnp and the socket debug optioi~ (which we
described in Section 21.4) we can see the values of cwnd and ssthresh as each segment is
transmitted. If the MSS is 256 bytes, the initial values of cwnd and ssthresh are 256 and
65535, respectively. Each time an ACK is received we can see cwnd incremented by the
MSS, taking on the values 512, 768, 1024, 1280, and so on. Assuming congestion doesn’t
occur, eventually the congestion window will exceed the receiver’s advertised window,
meaning the advertised window will limit the data flow.

A more interesting example is to see what happens when congestion occurs. We’ll
use the same example from Section 21.4. There were four occurrences of congestion
while this example was being run. There was a timeout on the transmission of the ini-
tial SYN to establish the connection (Figure 21.5), followed by three lost packets during
the data transfer (Figure 21.6).

Figure 21.9 shows the values of the two variables cwnd and ssthresh when the initial
SYN is retransmitted, followed by the first seven data segments. (We showed the
exchange of the initial data segments and their ACKs in Figure 21.2.) We show the data
bytes transmitted using the tcpdurap notation: 1:257(256) means bytes 1 through 256.

When the timeout of the SYN occurs, ssthresh is set to its minimum value (512 bytes,
which is two segments for this example), cwnd is set to one segment (256 bytes, which it
was already at) to enter the slow start phase.

When the SYN and ACK are received, nothing happens to the two variables, since
new data is not being acknowledged.

When the ACK 257 arrives, we are still in slow start since cwnd is less than or equal
to ssthresh, so cwnd in incremented by 256. The same thing happens when the ACK 513
arrives.

When the ACK 769 arrives we are no longer in slow start, but enter congestion
avoidance. The new value for cwnd is calculated as

segsize x segsize segsizecwnd ~- cwnd + + --
cwnd 8

This is the 1/cwnd increase that we mentioned earlier, taking into account that cwnd is
really maintained in bytes and not segments. For this example we calculate

256x256 256
cwnd ~- 768 + ~

768 8

314 TCP Timeout and Retransmission
Chapter 21

Segment# Action Variable
(Figure 21.2) Send Receive Comment cwnd ssthresh

lnitiahze 256 65535

1
2
3
4
5
6
7
8
9

10
11
12

SYN

SYN

ACK

1:257(256)

257:513(256)
513:769(256)

769:1025(256)
1025:1281(256)

1281:1537(256)

1537:1793(256)

SYN, ACK

ACK 257

ACK 513

ACK 769

ACK 1025

ACK 1281

timeout
retransmit

slow start

slow start

cong. avoid

cong. avoid

cong. avoid

256

512

768

885

991

1089

512

512

512

512

512

512

Figure 21.9 Example of congestion avoidance.

which equals 885 (using integer arithmetic). When the next ACK 1025 arrives we
calculate

256x256 256cwnd <-- 885 + - + --
885 8

which equals 991. (In these expressions we include the incorrect 256/8 term to match
the values calculated by the implementation, as we noted on p. 311.)

This additive increase in cwnd continues until the first retransmission, around the
10-second mark in Figure 21.6. Figure 21.10 is a plot of the same data as in Figure 21.6,
with the value of cwnd added.

The first six values for cwnd in this figure are the values we calculated for Fig-
ure 21.9. It is impossible in this figure to tell the difference visually between the expo-
nential increase during slow start and the additive increase during congestion
avoidance, because the slow start phase is so quick.

We need to explain what is happening at the three points where a retransmission
occurs. Recall that each of the retransmissions took place because three duplicate ACKs
were received, indicating a packet had been lost. This is the fast retransmit algorithm
from Section 21.7. ssthresh is immediately set to one-half the window size that was in
effect when the retransmission took place, but cwnd is allowed to keep increasing while
the duplicate ACKs are received, since each duplicate ACK means that a segment has
left the network (the receiving TCP has buffered it, waiting for the missing hole in the
data to arrive). This is the fast recovery algorithm.

Figure 21.11 is similar to Figure 21.9, showing the values of cwnd and ssthresh. The
segment numbers in the first column correspond to Figure 21.7.

Section 21.8 Congestion Example (Continued) 315

sequence
number
(Kbytes)

and
cwnd

(100 bytes)

36

34

32

30

28

26

24 --

22--

20--
18

14~

12-

10-

6

cwnd

4

2

sequence number

0 5 10 15 20 25 30

send time (seconds)

Figure 21.10 Value of cwnd and send sequence number while data is being transmitted.

¸36

134

132

130

128

126

124

122

~20

35

18

16

14

12

10

0

Segment#
(Figure 21.7)

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Send

8705:8961 (256)

6657:6913(256)

8961:9217(256)

9217:9473(256)

9473:9729(256)

ACK 6657

ACK 6657
ACK 6657
ACK 6657

ACK 6657
ACK 6657
ACK 6657

ACK 6657

ACK 6657

ACK 8961

Action Variable

Receive ! Comment cwnd ssthresh

ACK of new data 5122426

duplicate ACK #1 2426 512
duplicate ACK #2 2426 512
duplicate ACK #3 1792 1024

retransmission
duplicate ACK #4 2048 1024
duplicate ACK #5 2304 1024
duplicate ACK #6 2560 1024

duplicate ACK #7 2816 1024

duplicate ACK #8 3072 1024

ACK of new data 1280 1024

Figure 21.11 Example of congestion avoidance (continued)

316 TCP Timeout and Retransmission Chapter 21

The values for cwnd have been increasing continually, from the final value in Fig-
ure 21.9 for segment 12 (1089), to the first value in Figure 21.11 for segment 58 (2426).
The value of ssthresh has remained the same (512), since there have been no retransmis-
sions in this period.

When the first two duplicate ACKs arrive (segments 60 and 61) they are counted,
and cwnd is left alone. (This is the flat portion of Figure 21.10 preceding the retransmis-
sion.) When the third one arrives, however, ssthresh is set to one-half cwnd (rounded
down to the next multiple of the segment size), cwnd is set to ssthresh plus the number
of duplicate ACKs times the segment size (i.e., 1024 plus 3 times 256). The retransmis-
sion is then sent.

Five more duplicate ACKs arrive (segments 64-66, 68, and 70) and cwnd is incre-
mented by the segment size each time. Finally a new ACK arrives (segment 72) and
cwnd is set to ssthresh (1024) and the normal congestion avoidance takes over. Since
cwnd is less than or equal to ssthresh (they are equal), the segment size is added to cwnd,
giving a value of 1280. When the next new ACK is received (which isn’t shown in Fig-
ure 21.11), cwnd is greater than ssthresh, so cwnd is set to 1363.

During the fast retransmit and fast recovery phase, we transmit new data after
receiving the duplicate ACKs in segments 66, 68, and 70, but not after receiving the
duplicate ACKs in segments 64 and 65. The reason is the value of cwnd, versus the
number of unacknowledged bytes of data. When segment 64 is received, cwnd equals
2048, but we have 2304 unacknowledged bytes (nine segments: 46, 48, 50, 52, 54, 55, 57,
59, and 63). We can’t send anything. When segment 65 arrives, cwnd equals 2304, so we
still can’t send anything. But when segment 66 arrives, cwnd equals 2560, so we can
send a new data segment. Similarly when segment 68 arrives, cwnd equals 2816, which
is greater than the 2560 bytes of unacknowledged data, so we can send another new
data segment. The same scenario happens when segment 70 is received.

When the next retransmission takes place at time 14.3 in Figure 21.10, it is also trig-
gered by the reception of three duplicate ACKs, so we see the same increase in cwnd as
one more duplicate ACK arrives, followed by a decrease to 1024.

The retransmission at time 21.1 in Figure 21.10 is also triggered by duplicate ACKs.
We receive three more duplicates after the retransmission, so we see three additional
increases in cwnd, fol!owed by a decrease to 1280. For the remainder of the transfer
cwnd increases linearly to a final value of 3615.

21.9 Per-Route Metrics

Newer TCP implementations maintain many of the metrics that we’ve described in this
chapter in the routing table entry. When a TCP connection is closed, if enough data was
sent to obtain meaningful statistics, and if the routing table entry for the destination is
not a default route, the following information is saved in the routing table entry, for the
next use of the entry: the smoothed RTT, the smoothed mean deviation, and the slow
start threshold. The quantity "enough data" is 16 windows of data. This gives 16 RTT
samples, which allows the smoothed RTT filter to converge within 5% of the correct
value.

Section 21.10 ICMP Errors 317

Additionally, the route(8) command can be used by the administrator to set the
metrics for a given route: the three values mentioned in the preceding paragraph, along
with the MTU, the outbound bandwidth-delay product (Section 20.7), and the inbound
bandwidth-delay product.

When a new TCP connection is established, either actively or passively, if the rout-
ing table entry being used for the connection has values for these metrics, the corre-
sponding variable is initialized from the metrics.

21.10 ICMP Errors

Let’s see how TCP handles ICMP errors that are returned for a given connection. The
most common ICMP errors that TCP can encounter are source quench, host unreach-
able, and network unreachable.

Current Berkeley-based implementations handle these ICMP errors as follows:

A received source quench causes the congestion window, cwnd, to be set to one
segment to initiate slow start, but the slow start threshold, ssthresh, is not
changed, so the window will open until it’s either open all the way (limited by
the window size and round-trip time) or until congestion occurs.

A received host unreachable or network unreachable is effectively ignored, since
these two errors are considered transient, tt could be that an intermediate router
has gone down and it can take the routing protocols a few minutes to stabilize
on an alternative route. During this period either of these two ICMP errors can
occur, but they must not abort the connection. Instead, TCP keeps trying to send
the data that caused the error, although it may eventually time out, (Recall in
Figure 21.1 that TCP did not give up for 9 minutes.)

Current Berkeley-based implementations record that the ICMP error occurred,
and if the connection times out, the ICMP error is translated into a more relevant
error code than "connection timed out."

Earlier BSD implementations incorrectly aborted a connection whenever an ICMP host
unreachable or network unreachable was received.

An Example

We can see how an ICMP host unreachable is handled by taking our dialup SLIP link
down during the middle of a connection. We establish a connection from the host s 3_±p
to the host a±x. (From the figure on the inside h’ont cover we see that this connection
goes through our dialup SLIP link.) After establishing the connection and transferring
some data, the dialup SLIP link between the routers sun and netb is taken down. This
causes the default routing table entry on sun (which we showed in Section 9.2) to be
removed. We expect sun to then respond to IP datagrams destined for the 140.252.1
Ethernet with an ICMP host unreachable. We want to see how TCP handles these ICMP
errors.

318 TCP Timeout and Retransmission Chapter 21

Here is the interactive session on the host s 1 ±p:

sllp % sock aix echo
test line
test line

another line

another line
line number 3
llne number 3
the last line

read error: No route to host

run our sock program
type this line
and it’s echoed
SLIP hnk is brought down here
then type th~s line and watch retransmissions
SLIP hnk is reestablished here
and the line and its echo are exchanged

SLIP hnk is brought down here, and not reestablished
TCP finally gives up

Figure 21.12 shows the corresponding tcpdump output, captured on the router bsdi.
(We have removed the connection establishment and all the window advertisements.)
We connect to the echo server on the host aix and type "test line" (line 1). It is echoed
(line 2) and the echo is acknowledged (line 3). We then take down the SLIP link.

We type "another line" (line 3) and expect to see TCP time out and retransmit the
message. Indeed, this line is sent six times before a reply is received. Lines 4-13 show
the first transmission and the next four retransmissions, each of which generates an
ICMP host unreachable from the router sun. This is what we expect: the IP datagrams
go from slip to the router bsdi (which has a default route that points to sun), and
then to sun, where the broken link is detected.

While these retransmissions are taking place, the SLIP link is brought back up, and
the retransmission on line 14 gets delivered. Line 15 is the echo from aix, and line 16 is
the acknowledgment of the echo.

This shows that TCP ignores the ICMP host unreachable errors and keeps retrans-
mitting. We can also see the expected exponential backoff in each retransmission time-
out: the first appears to be 2.5 seconds, which is then multiplied by 2 (giving 5 seconds),
then 4 (10 seconds), then 8 (20 seconds), then 16 (40 seconds).

We then type the third line of input ("line number 3") and see it sent on line 17,
echoed on line 18, and the echo acknowledged on line 19.

We now want to see what happens when TCP retransmits and gives up, after
receiving the ICMP host unreachable, so we take down the SLIP link again. After tak-
ing it down we type "the last line" and see it transmitted 13 times before TCP gives up.
(We have deleted lines 30-43 from the output. They are additional retransmissions.)

The thing we notice, however, is the error message printed by our sock program
when it finally gives up: "No route to host." This corresponds to the Unix error associ-
ated with the ICMP host unreachable error (Figure 6.12, p. 82). This shows that TCP
saves the ICMP error that it receives on the connection, and when it finally gives up, it
prints that error, instead of "Connection timed out."

Finally, notice the different retransmission intervals in lines 22-46, compared to
lines 6-14. It appears that TCP updated its estimators when the third line we typed
was sent and acknowledged without any retransmissions in lines 17-19. The initial
retransmission timeout is now 3 seconds, giving successive values of 6, 12, 24, 48, and
then the upper limit of 64.

Section 21.10

1
2
3

4
5

6
7

8
9

lo
11

12
13

14
I5
16

17
18
19

20
21

22
23

24
25

26
27

28
29

44
45

46
47

ICMP Errors

0,0
0,212271 (0.2123)
0,310685 (0.0984)

174.758100
174.759017

177.150439
177,151271

182.150200
182,151189

192,149671
192.150608

212,148783
212,149786

slip.1035 > aix.echo: P I:ii(i0) ack 1
alx.echo > slip.f035: P i:Ii(i0) ack ii
slip.1035 > aix.echo: ack ii

SLIP link brought down here

174.4474) slip.lO35 >
0.0009) sun > slip:

2.3914) slip.f035 >
0.0008) sun > slip:

4.9989)
0.0010)

252,146774
252,439257
252,505331

261.977246
262.158758
262,305086

9.9985)
0.0009)

slip.1035 >
sun > slip:

458
458

461
461

467
467

479
479

5O3
503

,155330
,156163

.136904
.137826

,136461
,137385

,135811
,136647

,134816
,135740

slip.f035 >
sun > slip:

19.9982) slip.f035 >
0.0010) sun > slip:

39.9970)
0.2925)
0.0661)

9.4719)
0,1815)
0,1463)

alx.echo: P ii:24(13) ack ii
lcmp: host alx unreachable

aix.echo: P 11:24(13) ack Ii
icmp: host aix unreachable

aix.echo: P 11:24(13) ack ii
icmp: host a~x unreachable

aix.echo: P 11:24(13) ack ii
icmp: host alx unreachable

alx.echo: P 11:24(13) ack ii
icmp: host aix unreachable

i000.219573
1000,220503

1064,201281
1064.202182

SLIP hnk brought up here

slip.1035 > aix.echo: P 11:24(13) ack ii
a~x.echo > sllp.1035: P 11:24(13) ack 24
sllp.1035 > aix.echo: . ack 24

slip.1035 > aix.echo: P 24:38(14) ack 24
aix.echo > slip.1035: P 24:38(14) ack 38
slip.1035 > aix.echo: ack 38

SLIP hnk brought down here

195.8502) slip.1035 >
0.0008) sun > slip:

2.9807) sllp.1035 >
0.0009) sun > slip:

5.9986) slip.1035 >
0.0009) sun > slip:

11.9984) slip.f035 >
0.0008) sun > sl~p:

23.9982) slip.1035 >
0.0009) sun > slip:

64.0959)
0.0009)

63.9808)
0.0009)

aix.echo: P 38:52(14) ack 38
¯ cmp: host aix unreachable

aix.echo: P 38:52(14) ack 38
icmp: host aix unreachable

alx.echo: P 38:52(14) ack 38
¯ cmp: host azx unreachable

aix.echo: P 38:52(14) ack 38
icmp: host aix unreachable

aix.echo: P 38:52(14) ack 38
icmp: host aix unreachable

14 lines of output deleted here

sl±p.1035 > alx.echo: P 38:52(14) ack 38
sun > slip: icmp: host a~x unreachable

slip.1035 > alx.echo: R 52:52(0) ack 38
sun > slzp: icmp: host aix unreachable

319

Figure 21.12 TCP handling of received ICMP host unreachable error.

320 TCP Timeout and Retransmission Chapter 21

21.11 Repacketization

When TCP times out and retransmits, it does not have to retransmit the identical seg-
ment again. Instead, TCP is allowed to perform repacketization, sending a bigger seg-
ment, which can increase performance. (Naturally, this bigger segment cannot exceed
the MSS announced by the other receiver.) This is allowed in the protocol because TCP
identifies the data being sent and acknowledged by its byte number, not its segment
number.

We can easily see this in action. We use our sock program to connect to the discard
server and type one line. We then disconnect the Ethernet cable and type a second line.
While this second line is being retransmitted, we type a third line. We expect the next
retransmission to contain both the second and third lines.

bsdi % sock svr4 discard
hello there

line number 2
and 3

Jirst hne gets sent OK
then we disconnect the Ethernet cable
th~s hne gets retransmitted
type thzs hne before second line sent OK
then reconnect Ethernet cable

Figure 21.13 shows the tcpdump output. (We have removed the connection establish-
ment, the connection termination, and all the window advertisements.)

1 0.0
2 0.140489 (0.1405

bsdi.1032 > svr4.discard: P 1:13(12) ack 1
svr4.discard > bsdi.1032: . ack 13

Ethernet cable dzsconnected here

3 26.407696 (26.2672
4 27.639390 (1.2317
5 30.639453 (3.0001

6 36.639653 (6.0002
7 48.640131 (12.0005

bsdi.1032 > svr4.discard:
bsdi.1032 > svr4.discard:
bsdi.1032 > svr4.discard:

th~rdlinetypedhere

bsdl.1032 > svr4.discard:
bsdi.1032 > svr4.discard:

Ethernet cable reconnected here

P 13:27(14) ack 1
P 13:27(14) ack 1
P 13:27(14) ack 1

P 13:33(20) ack 1
P 13:33(20) ack 1

8 72.640768 (24.0006
9 72.719091 (0.0783

bsdi.1032 > svr4.discard: P 13:33(20) ack 1
svr4.discard > bsdi.1032: ack 33

Figure 21.13 Repacketization of data by TCP.

Lines 1 and 2 show the first line ("hello there") being sent and its acknowledgment.
We then disconnect the Ethernet cable and type "line number 2" (14 bytes, including the
newline). These bytes are transmitted on line 3, and then retransmitted on lines 4 and 5.

Before the retransmission on line 6 we type "and 3" (6 bytes, including the newline)
and see this retransmission contain 20 bytes: both lines that we typed. When the
acknowledgment arrives on line 9, it is for all 20 bytes.

Chapter 21 Exercises 321

21.12 Summary

This chapter has provided a detailed look at TCP’s timeout and retransmission strategy.
Our first example was a lost SYN to establish a connection and we saw how an expo-
nential backoff is applied to successive retransmission timeout values.

TCP calculates the round-trip time and then uses these measurements to keep track
of a smoothed RTT estimator and a smoothed mean deviation estimator. These two
estimators are then used to calculate the next retransmission timeout value. Many
implementations only measure a single RTT per window. Karn’s algorithm removes the
retransmission ambiguity problem by preventing us from measuring the RTT when a
packet is lost.

Our detailed example, which included three lost packets, let us see many of TCP’s
algorithms in action: stow start, congestion avoidance, fast retransmit, and fast recovery.
We were also able to hand calculate TCP RTT estimators along with the congestion win-
dow and slow-start threshold, and verify the values with the actual values from the
trace output.

We finished the chapter by looking at the effect various ICMP errors have on a TCP
connection and how TCP is allowed to repacketize its data. We saw how the "soft"
ICMP errors don’t cause a connection to be terminated, but are remembered so that if
the connection terminates abnormally, the soft error can be reported.

Exercises

21.1 In Figure 21.5 the first timeout was calculated as 6 seconds and the next as 24 seconds. If
the ACK for the initial SYN had not arrived after the 24-second timeout expired, when
would the next timeout occur?

21.2 In the discussion following Figure 21.5 we said that the timeout intervals are calculated as
6, 24, and then 48 seconds, as we saw in Figure 4.5. But if we watch a TCP connection to a
nonexistent host from an SVR4 system, the timeout intervals are 6, 12, 24, and 48 seconds.
What’s going on?

21.3 Compare the performance of TCP’s sliding window versus TFTP’s stop-and-wait protocol
as follows. In this chapter we transferred 32768 bytes in about 35 seconds (Figure 21.6)
across a link with an RTT that averaged around 1.5 seconds (Figure 21.4). Calculate how
long TFTP would take for the same transfer.

21.4 In Section 21.7 we said that the receipt of a duplicate ACK is caused by a segment being
lost or reordered. In Section 21.5 we saw the generation of duplicate ACKs caused by a
lost segment. Draw a picture showing that a reordering of segments also generates dupli-
cate ACKs.

21.5 There is a noticeable blip in Figure 21.6 between times 28.8 and 29.8. Is this a retransmis-
sion?

322 TCP Timeout and Retransmission Chapter 21

21.6

21.7

21.8

In Section 21.6 we said that the 4.3BSD Tahoe release only performed slow start if the desti-
nation was on a different network. How do you think "different network" was deter-
mined? (Hint: Look at Appendix E.)

In Section 20.2 we said that TCP normally ACKs every other segment. But in Figure 21.2
we see the receiver ACK every segment, Why?

Are per-route metrics really useful, given the prevalence of default routes?

TCP Persist Timer

22.1 Introduction

We’ve seen that TCP has the receiver perform flow control by specifying the amount of
data it is willing to accept from the sender: the window size. What happens when the
window size goes to 0? This effectively stops the sender from transmitting data, until
the window becomes nonzero.

We saw this scenario in Figure 20.3 (p. 279). When the sender received segment 9,
opening the window that was shut down by segment 8, it immediately started sending
data. TCP must handle the case of this acknowledgment that opens the window (seg-
ment 9) being lost. Acknowledgments are not reliably transmitted--that is, TCP does
not ACK acknowledgments, it only ACKs segments containing data.

If an acknowledgment is lost, we could end up with both sides waiting for the
other: the receiver waiting to receive data (since it provided the sender with a nonzero
window) and the sender waiting to receive the window update allowing it to send. To
prevent this form of deadlock from occurring the sender uses a persist timer that causes
it to query the receiver periodically, to find out if the window has been increased. These
segments from the sender are called window probes. In this chapter we’ll examine win-
dow probes and the persist timer. We’ll also examine the silly window syndrome,
which is tied to the persist timer.

22.2 An Example

To see the persist timer in action we’ll start a receiver process that listens for a connec-
tion request from a client, accepts the connection request, and then goes to sleep for a
long time before reading from the network.

323

324 TCP Persist Timer Chapter 22

Our sock program lets us specify a pause option -P that sleeps between the server
accepting the connection request and performing the first read. We’ll invoke the server
as:

svr4 % sock -i -s -PIO0000 5555

This has the server sleep for 100,000 seconds (27.8 hours) before reading from the net-
work. The client is run on the host bad± and performs 1024-byte writes to port 5555 on
the server. Figure 22.1 shows the tcpdump output. (We have removed the connection
establishment from

I 0.0
2 0.191961 (0
3 0.196950 (0
4 0.200340 (0
5 0,207506 (0
6 0.212676 (0
7 0.216113 (0
8 0.219997 (0
9 0.227882 (0

~0 0.233012 (0
11 0.237014 { 0
12 0.240961 (0
13 0.402143 (0

14 5.351561 (4
15 5.355571 (0

16 10.351714 (4
17 10.355670 (0

18 16.351881 (5
19 16.355849 { 0

20 28.352213 (ii
21 28.356178 (0

22 52.352874 {23
23 52.356839 (0

24 100.354224 (47
25 100.358207 (0

26 160.355914 (59
27 160.359835 (0

28 220.357575 (59
29 220.361668 (0

30 280.359254 (59
31 280.363315 (0

the output.)

bsd~.]027
1920) svr4.5555
0050) bsdi.1027
0034) bsdi.1027
0072) svr4.5555
0052) bsdi.1027
0034) bsdi.1027
0039) bsdi.1027
0079) svr4.5555
0051) bsdi.1027
0040) bsdi.1027
0039) bsdl.1027
1612) svr4.5555

.9494) bsdi.1027

.0040) svr4.5555

.9961) bsdi.1027

.0040) svr4.5555

.9962) bsdi.1027

.0040) svr4.5555

.9964) bsdl.1027

.0040) svr4.5555

.9967) bsdl.1027

.0040) svr4.5555

.9974) bsdi.1027

.0040 svr4.5555

.9977 bsd[.1027

.0039 svr4.5555

.9977 bsdi.1027

.0041 svr4.5555

.9976 bsdi.1027

.0041 svr4.5555

>
> bsdi.1027:
> svr4.5555:
> svr4.5555:
> bsdi.1027:
> svr4.5555:
> svr4.5555:
> svr4.5555:
> bsdi.1027:
> svr4.5555:
> svr4.5555:
> svr4.5555:
> bsdi.1027:

P]:1025(1024) ack i win 4096
. ack 1025 win 4096

1025:2049(1024) ack 1 wln 4096
2049:3073(i024) ack 1 win 4096

. ack 3073 win 4096
3073:4097(i024) ack 1 win 4096

P 4097:5121(1024) ack 1 win 4096
P 5121:6145(1024) ack 1 win 4096
. ack 5121 win 4096
P 6145:7169(i024) ack 1 win 4096
P 7169:8193(1024) ack 1 wln 4096
P 8193:9217(1024) ack 1 win 4096
. ack 9217 win 0

> svr4.5555: . 9217:9218(1) ack i win 4096
> bsdi.1027: . ack 9217 win 0

> svr4.5555: 9217:9218(i) ack 1 win 4096
> bsdi.1027: . ack 9217 win 0

> svr4.5555: . 9217:9218(1) ack 1 win 4096
> bsdi.1027: . ack 9217 w±n 0

> svr4.5555: . 9217:9218(i) ack i wln 4096
> bsdl.1027: . ack 9217 win 0

> svr4.5555: . 9217:9218(1) ack 1 win 4096
> bsdi.1027: . ack 9217 wln 0

> svr4.5555: . 9217:9218(1) ack 1 win 4096
> bsdl.1027: . ack 9217 win 0

> svr4.5555: . 9217:9218(1) ack i win 4096
> bsdl.1027: . ack 9217 win 0

> svr4.5555: . 9217:9218(1) ack 1 wln 4096
> bsdi.1027: . ack 9217 win 0

> svr4.5555: . 9217:9218(1) ack 1 win 4096
> bsdl.1027: . ack 9217 win 0

Figure 22.1 Example of persist timer probing a zero-sized window.

Segments 1-13 shows the normal data transfer from the client to the server, filling
up the window with 9216 bytes of data. The server advertises a window of 4096, and
has a default socket buffer size of 4096, but really accepts a total of 9216 bytes. This is
some form of interaction between the TCP/IP code and the streams subsystem in SVR4.

Section 22.3 Silly Window Syndrome 325

22.3

In segment 13 the server acknowledges the previous four data segments, but adver-
tises a window of 0, stopping the client from transmitting any more data. This causes
the client to set its persist timer. If the client doesn’t receive a window update when the
timer expires, it probes the empty window, to see if a window update has been lost.
Since our server process is asleep, the 9216 bytes of data are buffered by TCP, waiting
for the application to issue a read.

Notice the spacing of the window probes by the client. The first (segment 14) is
4.949 seconds after receiving the zero-sized window. The next (segment 16) is 4.996 sec-
onds later. The spacing is then about 6, 12, 24, 48, and 60 seconds after the previous.

Why are the spacings always a fraction of a second less than 5, 6, 12, 24, 48, and 60?
These probes are triggered by TCP’s 500-ms timer expiring. When the timer expires, the
window probe is sent, and a reply is received about 4 ms later. The receipt of the reply
causes the timer to be restarted, but the time until the next clock tick is about 500 minus
4 ms.

The normal TCP exponential backoff is used when calculating the persist timer. The
first timeout is calculated as 1.5 seconds for a typical LAN connection. This is multi-
plied by 2 for a second timeout value of 3 seconds. A multiplier of 4 gives the next
value of 6, a multiplier of 8 gives a value of 12, and so on. But the persist timer is
always bounded between 5 and 60 seconds, which accounts for the values we see in Fig-
ure 22.1.

The window probes contain 1 byte of data (sequence number 9217). TCP is always
allowed to send 1 byte of data beyond the end of a closed window. Notice, however,
that the acknowledgments returned with the window size of 0 do not ACK this byte.
(They ACK the receipt of all bytes through and including byte number 9216.) Therefore
this byte keeps being retransmitted.

The characteristic of the persist state that is different from the retransmission time-
out in Chapter 21 is that TCP never gives up sending window probes. These window
probes continue to be sent at 60-second intervals until the window opens up or either of
the applications using the connection is terminated.

Silly Window Syndrome

Window-based flow control schemes, such as the one used by TCP, can fall victim to a
condition known as the silly window syndrome (SWS). When it occurs, small amounts of
data are exchanged across the connection, instead of full-sized segments [Clark 1982].

It can be caused by either end: the receiver can advertise small windows (instead of
waiting until a larger window could be advertised) and the sender can transmit small
amounts of data (instead of waiting for additional data, to send a larger segment). Cor-
rect avoidance of the silly window syndrome is performed on both ends.

The receiver must not advertise small windows. The normal algorithm is for
the receiver not to advertise a larger window than it is currently advertising
(which can be 0) until the window can be increased by either one full-sized seg-
ment (i.e., the MSS being received) or by one-half the receiver’s buffer space,
whichever is smaller.

326 TCP Persist Timer Chapter 22

Sender avoidance of the silly window syndrome is done by not transmitting
unless one of the following conditions is true: (a) a full-sized segment can be
sent, (b) we can send at least one-half of the maximum sized window that the
other end has ever advertised, or (c) we can send everything we have and either
we are not expecting an ACK (i.e., we have no outstanding unacknowledged
data) or the Nagle algorithm is disabled for this com-tection (Section 19.4).

Condition (b) deals with hosts that always advertise tiny windows, perhaps
smaller than the segment size. Condition (c) prevents us from sending small
segments when we have unacknoi, vledged data that is waiting to be ACKed and
the Nagle algorithm is enabled. If the application is doing small writes (e.g.,
smaller than the segment size), it is condition (c) that avoids the silly window
syndrome.

These three conditions also let us answer the question: if the Nagle algorithm
prevents us from sending small segments while there is outstanding unac-
knowledged data, how small is small? From condition (a) we see that "small"
means the number of bytes is less than the segment size. Condition (b) only
comes into play with older, primitive hosts.

Condition (b) in step 2 requires that the sender keep track of the maximum window size
advertised by the other end. This is an attempt by the sender to guess the size of the
other end’s receive buffer. Although the size of the receiver buffer could decrease while
the connection is established, in practice this is rare.

An Example

We’ll now go through a detailed example to see the silly window syndrome avoidance
in action, which also involves the persist timer. We’ll use our sock program with the
sending host, sun, doing six 1024-byte writes to the network:

sun % sock -i -n6 bsdi 7777

But we’ll put some pauses in the receiving process on the host bsdi, pausing 4 seconds
before doing the first read, and then pausing 2 seconds between successive reads.
Additionally, the receiver issues 256-byte reads:

bsdi % sock -i -s -P4 -p2 -r256 7777

The reason for the initial pause is to let the receiver’s buffer fill, forcing it to stop the
transmitter. Since the receiver then performs small reads from the network, we expect
to see the receiver perform silly window syndrome avoidance.

Figure 22.2 is the time line for the transfer of the 6144 bytes of data. (We have
deleted the connection establishment.)

We also need to track what happens with the application that’s reading the data at
each point in time, along with the number of bytes currently in the receive buffer, and
the number of bytes of available space in the receive buffer. Figure 22.3 shows every-
thing that’s happening.

Section 22.3 Silly Window Syndrome 327

sun.1069 bsdi.7777

0.0

0.002026 (0.0020)

0.003737 (0.0017)

0.005361 (0.0016)

0.170306 (0.1649)

5.151768 (4.9815)

5.170308 (0.0185)

10.151592 (4.9813)

10.170299 (0.0187)

15.151466 (4.9812)

15.170296 (0.0188)
15.172006 (0 0017)

15.370307 (0.1983)

20.151782 (4.7815)

20.170297 (0.0185)

25.151162 (4.9809)

25.170302 (0.0191)
25.171801 (0.0015)

25.174401 (0.0026)

39.991658 (14.8173)

51.991775(12.0001)
51.992665 (0.0009)

1

2.

3

4

10

12

16

18

2~

PSH 1:1025(1024) ack 1, win 4096

PSH 1025:2049(1024) ack 1, win 4096

PSH 2049:3073(1024) ack 1, win 4096

PSH 3073:4097(1024) ack 1, win 4096

ack 4097, win 0

4097:4098(1) ack 1, win 4096

ack 4098, win 0

4098"4099(1) ack 1, win 4096

ack 4099, win 0

4099:4100(1) ack 1, win 4096

ack 4100, win 1533

4100:5124(1024) ack 1, win 4096

ack 5124, win 509

5124:5633(509) ack 1, win 4096

ack 5633, win 0

5633:5634(1) ack 1, win 4096

ack 5634, win 1279

FIN, PSH 5634:6145(511)ack 1, w~n 4096

ack 6146, win 767

ack 6146, win 2816

FIN 1:1(0) ack 6146, win 4096

ack 2, win 4096

17

~19

!20

21

Figure 22.2 Time line showing receiver avoidance of silly window syndrome.

328 TCP Persist Timer Chapter 22

Time

0.000
0.002
0.003
0.005
0.170
3.99
5.151
5.17
5.99
7.99
9.99

!0.151
10.170
11.99
13.99
15.151
15.170
15.172
15.370
15.99
17.99
19.99
20.151
20.17o
21.99
23.99
25.151
25.170
25.171
25.174
25.99
27.99
29.99
31.99
33.99
35.99
37.99
39.99
39.99
41.99
t3.99
t5.99
t7.99
i9.99
51.99
51.9911
51.992 I

Segment#

(Figure 22.2)

1
2
3
4
5

6
7

8
9

10
11
12
13

14
15

16
17
18
19

20

21
22

Send TCP

1:1025(1024)
1025:2049(1024)
2049:3073(1024)
3073:4097(1024)

4097:4098(1)

Action
Receive TCP Application

ACK 4097, win 0

ACK 409"8, win 0

read 256

read 256
read 256

data

1024
2048
3072
4096

Receiverbuffer
available

3072
2048
1024

0

3840
3841

4098:4099(1)

4099:4100(1)

4100:5124(I024)

5124:5633(509)

5633:5634(1)

5634:6145(511)

ACK 2

ACK 4099, wm 0

ACK4100, win1533

ACK5124, win509

ACK 5633, win 0

ACK5634, win1279

ACK 6146, win767

ACK 6146, win 2816

ACK6146, win4096

read 256

read 256
read 256

read 256
read 256
read 256

read 256
read 256

read 256
read 256
read 256
read 256
read 256
read 256
read 256
read 256

read 256
read 256
read 256
read 256
read 256
read 256

3585
3329
3073
3074

2818
2562
2563

3587

3331
3075
2819
3328

3072
2816
2817

3328

3072
2816
2560
2304
2048
1792
1536
1280

1024
768
512
256

0
(EOF) 0

256
255

511
767

1023
1022

1278
1534
1533

509

765
1021
1277
768

1024
1280
1279

768

1024
1280
1536
1792
2048
2304
2560
2816

3072
3328
3584
3840
4096
4096

Figure 22.3 Sequence of events for receiver avoidance of the silly window syndrome.

Section 22.3 Silly Window Syndrome 329

In Figure 22.3 the first column is the relative point in time for each action. Those
times with three digits to the right of the decimal point are taken from the ~cpc~ump
output (Figure 22.2). Those times with 99 to the right of the decimal point are the
assumed times of the action on the receiving host. (Having these relative times on the
receiver contain 99 for the hundredths of a second correlates them with segments 20 and
22 in Figure 22.2, the only two events on the receiver that we can see with ~cpdurap that
are triggered by a timeout on the receiving host. All the other packets that we see from
t)sc~ are triggered by the reception of a segment from the sender. It also makes sense,
because this would place the initial 4-second pause just before time 0 when the sender
transmits the first data segment. This is about when the receiver would get cDl-~t~ol,
after receiving the ACK of its SYN in the co~¢nection establishment.)

The amount of data in the receiver’s buffer increases when it receives data from the
sender, and decreases as the application reads data from the buffer. What we want to
follow are the window advertisements sent by the receiver to the sender, and what
those window advertisements are. This lets us see how the silly window syndrome is
avoided by the receiver.

The first four data segments and the corresponding ACK (segments 1-5) show the
sender filling the receiver’s buffer. At that point the sender is stopped but it still has
more data to send. It sets its persist timer for its minimum value of 5 seconds.

When the persist timer expires, 1 byte of data is.sent (segment 6). The receiving
application has read 256 bytes from the receive buffer (at time 3.99), so the byte is
accepted and acknowledged (segment 7). But the advertised window is still 0, since the
receiver does not have room for either one full-sized segment or one-half of its buffer.
This is silly window avoidance by the receiver.

The sender’s persist timer is reset and goes off again 5 seconds later (at time 10.151).
One byte is again sent and acknowledged (segments 8 and 9). Again the amount of
room in the receiver’s buffer (1022 bytes) forces it to advertise a window of 0.

When the sender’s persist timer expires next, at time 15.151, another byte is sent
and acknowledged (segments 10 and 11). This time the receiver has 1533 bytes available
in its buffer, so a nonzero window is advertised. The sender immediately takes advan-
tage of the window and sends 1024 bytes (seg~nent 12). The acknowledgment of these
1024 bytes (segment 13) advertises a window of 509 bytes. This appears to contradict
what we’ve seen earlier with small window advertisements.

What’s happening here is that segment 11 advertised a window of 1533 bytes but
the sender only transmitted 1024 bytes. If the acknowledgment in segment 13 adver-
tised a window of 0, it would violate the TCP principle that a window cannot shrink by
moving the right edge of the window to the left (Section 20.3). That’s why the small
window of 509 bytes must be advertised.

Next we see that the sender does not immediately transmit into this small window.
This is silly window avoidance by the sender. Instead it waits for another persist timer
to expire at time 20.151, when it sends 509 bytes. Even though it ends up sending this
small segment with 509 bytes of data, it waits 5 seconds before doing so, to see if an
ACK arrives that opens up the window more. These 509 bytes of data leave only 768
bytes of available space in the receive buffer, so the acknowledgment (segment 15)
advertises a window of 0.

33O TCP Persist Timer Chapter 22

22.4

The persist timer goes off again at time 25.151, and the sender transmits 1 byte. The
receive buffer then has 1279 bytes of space, which is the window advertised in segment
17.

The sender has only 511 additional bytes of data to transmit, which it sends imme-
diately upon receiving the window advertisement of 1279 (segment 18). This segment
also contains the FIN flag. The receiver acknowledges the data and the FIN, advertising
a window of 767. (See Exercise 22.2.)

Since the sending application issues a c.lose after performing its six 1024-byte writes,
the sender’s end of the connection goes from the ESTABLISHED state to the
FIN_WAIT_I state, to the FIN_WAIT_2 state (Figure 18.12). It sits in this state until
receiving a FIN from the other end. There is no timer in this state (recall our discussion
at the end of Section 18.6), since the FIN that it sent in segment 18 was acknowledged in
segment 19. This is why we see no further transmissions by the sender until it receives
the FIN (segment 2i).

The receiving application continues reading 256 bytes of data every 2 seconds from
the receive buffer. Why is the ACK sent at time 39.99 (segment 20)? The amount of
room in the receive buffer has gone from its last advertised value of 767 (segment 19) to
2816 when the application reads at time 39.99. This equals 2049 bytes of additional
space in the receive buffer. Recalling the first rule at thestart of this section, the receiver
now sends a window update because the amount of room has increased by one-half the
room in the receive buffer. This implies that the receiving TCP checks whether to send a
window update every time the application reads data from TCP’s receive buffer.

The final application read occurs at time 51.99 and the application receives an end-
of-file notification, since the buffer is empty. This causes the final two segments (21 and
22), which complete the termination of the connection.

Summary

TCP’s persist timer is set by one end of a connection when it has data to send, but has
been stopped because the other end has advertised a zero-sized window. The sender
keeps probing the closed window using a retransmission interval similar to what we
saw in Chapter 21. This probing of the closed window continues indefinitely.

When we ran an example to see the persist timer we also encountered TCP’s avoid-
ance of the silly window syndrome. This is to prevent TCP from advertising small win-
dows or from sending small segments. In our example we saw avoidance of the silly
window syndrome by both the sender and the receiver.

Exercises

22.1 In Figure 22.3 notice the times of all the acknowledgments (segments 5, 7, 9, 11, 13, 15, and
17): 0.170, 5.170, 10.170, 15.170, 15.370, 20.170, and 25.170. Also notice the time differences
between sending the data and receiving the ACK: 164.9, 18.5, 18.7, 18.8, 198.3, 18.5, and
19.1 ms. Explain what’s probably going on.

22.2 In Figure 22.3 at time 25.174 a window of 767 is advertised, but 768 bytes are available in
the receive buffer. Why the difference of I byte?

23

TCP Keepalive Timer

23.1 Introduction

Many newcomers to TCP/IP are surprised to learn that no data whatsoever flows across
an idle TCP connection. That is, if neither process at the ends of a TCP connection is
sending data to the other, nothing is exchanged between the two TCP modules. There is
no polling, for example, as you might find with other networking protocols. This
means we can start a client process that establishes a TCP connection with a server, and
walk away for hours, days, weeks or months, and the connection remains up. Interme-
diate routers can crash and reboot, phone lines may go down and back up, but as long
as neither host at the ends of the com~ection reboots, the connection remains estab-
lis[~ed.

This assumes that neither application--the client or server--has application-level
timers to detect inactivity, causing either application to terminate. Recall at the end of
Section 10.7 that BGP sends an application probe to the other end every 30 seconds.
This is an application timer that is independent of the TCP keepalive timer.

There are times, however, when a server wants to know if the client’s host has either
crashed and is down, or crashed and rebooted. The keepalive timer, a feature of many
implementations, provides this capability.

Keepalives are not part of the TCP speciftcation The Host Requirements RFC provides three
reasons not to use them: (1) they can cause perfectly good connections to be dropped during
transient failures, (2) they consume urmecessary bandwidth, and (3) they cost money on an
internet that charges by the packet. Nevertheless, many implementations provide the keep-
alive timer.

The keepalive timer is a controversial feature. Many feel that this polling of the
other end has no place in TCP and should be done by the application, if desired. This is
one of the religious issues, because of the fervor expressed by some on the topic.

331

332 TCP Keepalive Timer Chapter 23

The keepalive option can cause an otherwise good connection between two pro-
cesses to be terminated because of a temporary loss of connectivity in the network join-
ing the two end systems. For example, if the keepalive probes are sent during the time
that an intermediate router has crashed and is rebooting, TCP will think that the client’s
host has crashed, which is not what has happened.

The keepalive feature is intended for server applications that might tie up resources
on behalf of a client, and want to know if the client host crashes. Many versions of the
Telnet server and Rlogin server enable the keepalive option by default.

A common example showing the need for the keepalive feature nowadays is when
personal computer users use TCP/IP to login to a host using Telnet. tf they just power
off the computer at the end of the day, without logging off, they leave a half-open con-
nection. In Figure 18.16 we showed how sending data across a half-open connection
caused a reset to be returned, but that was from the client end, where the client was
sending the data. If the client disappears, leaving the half-open connection on the
server’s end, and the server is waiting for some data from the client, the server will wait
forever. The keepalive feature is intended to detect these half-open connections from
the server side.

23.2 Description

In this description we’ll call the end that enables the keepative option the server, and the
other end the client. There is nothing to stop a client from setting this option, but nor-
mally it’s set by servers. It can also be set by both ends of a connection, if it’s important
for each end to know if the other end disappears. (In Chapter 29 we’ll see that when
NFS uses TCP, both the client and server set this option. But in Chapter 26 with Rlogin
and Telnet, only the servers set the option, not the clients.)

If there is no activity on a given connection for 2 hours, the server sends a probe
segment to the client. (We’ll see what the probe segment looks like in the examples that
follow.) The client host must be in one of four states.

o

The client host is still up and running and reachable from the server. The
client’s TCP responds normally and the server knows that the other end is still
up. The server’s TCP will reset the keepalive timer for 2 hours in the future. If
there is application traffic across the connection before the next 2-hour timer
expires, the timer is reset for 2 hours in the future, following the exchange of
data.

The client’s host has crashed and is either down or in the process of rebooting.
In either case, its TCP is not responding. The server wil! not receive a response
to its probe and it times out after 75 seconds. The server sends a total of 10 of
these probes, 75 seconds apart, and if it doesn’t receive a response, the server
considers the client’s host as down and terminates the connection.

The client’s host has crashed and rebooted. Here the server will receive a
response to its keepalive probe, but the response will be a reset, causing the
server to terminate the connection.

Section 23°3 Keepalive Examples 333

4. The client’s host is up and running, but unreachable from the server. This is the
same as scenario 2, because TCP can’t distinguish between the two. All it can
tell is that no replies are received to its probes.

The server does not have to worry about the client’s host being shut down and then
rebooted. (This refers to an operator shutdown, instead of the host crashing.) When the
system is shut down by an operator, all application processes are terminated (i.e., the
client process), which causes the client’s TCP to send a FIN on the connection. Receiv-
ing the FIN would cause the server’s TCP to report an end-of-file to the server process,
allowing the server to detect this scenario.

In the first scenario the server application has no idea that the keepalive probes are
taking place. Everything is handled at the TCP layer. It’s transparent to the application
until one of scenarios 2, 3, or 4 occurs. In these three scenarios an error is returned to
the server application by its TCP. (Normally the server has issued a read from the net-
work, waiting for data from the client. If the keepalive feature returns an error, it is
returned to the server as the return value from the read.) In scenario 2 the error is some-
thing like "connection timed out," and in scenario 3 we expect "connection reset by
peer." The fourth scenario may look like the connection timed out, or may cause
another error to be returned, depending on whether an ICMP error related to the con-
nection is received. We look at all four scenarios in the next section.

A perpetual question by people discovering the keepalive option is whether the 2-hour idle
time value can be changed. They normally want it much lower, on the order of minutes. As
we show in Appendix E, the value can usually be changed, but in all the systems described in
this appendix, the keepalive interval is a system-wide value, so changing it affects all users of
the option.

The Host Requirements RFC says that an implementation may provide the keepalive feature,
but it must not be enabled unless the apphcation specifically says so. Also, the keepalive inter-
val must be configurable, but it must default to no less than 2 hours.

23.3 Keepalive Examples

We’ll now go through scenarios 2, 3, and 4 from the previous section, to see the packets
exchanged using the keepalive option.

Other End Crashes

Let’s see what happens when the server host crashes and does not reboot. To simulate
this we’ll do the following steps:

¯ Establish a connection between a client (our sock program on the host bsd±)
and the standard echo server on the host svr4. The client enables the keepalive
option with the -K option.

¯ Verify that data can go across the connection.
¯ Watch the client’s TCP send keepalive packets every 2 hours, and see them

acknowledged by the server’s TCP.

334 TCP Keepalive Timer Chapter 23

Disconnect the Ethernet cable from the server, and leave it off until the example
is complete. This makes the client think the server host has crashed.

We expect the client to send 10 keepalive probes, 75 seconds apart, before declar-
ing the connection dead.

Here is the interactive output on the client:

bsdi % sock -K svr4 echo
hello, world
hello, world

read error: Connection timed out

-K for keepahve option
type th~s at beginning, to verify connectmn ~s up

¯ and see th~s echoed
disconnect Ethernet cable after 4 hours
th~s happens about 6 hours and 11 minutes after start

Figure 23.1 shows the tepdurap output. (We have removed the connection establish-
ment and the window advertisements.)

0.0
0. 006105 (0 . 0061
0 . 093140 (0 . 0870

7199.972793 (7199.8797
7199.974878 (0.0021
7199.975741 (0.00096

7

8
9

10
11

12
13
14
15
16
17
18
19
20
21

7199.979843 (0

14400.134330 (7200
14400.136452 (0
14400.137391 (0
14400.141408 (0

21600.318309 7200
21675.320373 75
21750.322407 75
21825.324460 75
21900.436749 75
21975.438787 75
22050.440842 75
22125.432883 74
22200.434697 75
22275.436788 75

.0041

.1545
.0021
.0009
.0040

1769
0021
0020
0021
1123
0020
0021
9920
0018
0021

bsdi.1055 > svr4.echo: P 1:14(13) ack 1
svr4.echo > bsdl.1055: P 1:14(13) ack 14
bsdi.1055 > svr4.echo: ack 14

arp who-has svr4 tell bsdi
arp reply svr4 is-at 0:0:c0:c2:9b:26
bsdi.1055 > svr4.echo: ack 14
svr4.echo > bsdi%1055: ack 14

arp who-has svr4 tell bsdi
arp reply svr4 is at 0:0:c0:c2:9b:26
bsdi.1055 > svr4.echo: ack 14
svr4.echo > bsdi.1055: ack 14

arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi
arp who-has svr4 tell bsdi

Figure 23.1 Keepalive packets that determine that a host has crashed

Lines 1, 2, and 3 send the line "hello, world" from the client to the server and back.
The first keepalive probe occurs 2 hours (7200 seconds) later on line 4. The first thing
we see is an ARP request and an ARP reply, before the TCP segment on line 6 can be
sent. The keepalive probe on line 6 elicits a response from the other end dine 7). The
same sequence of packets is exchanged 2 hours later in lines 8-11.

If we could see all the fields in the keepalive probes, lines 6 and 10, we would see
that the sequence number field is one less than the next sequence number to be sent (i.e.,
13 in this example, when it should be 14), but because there is no data in the segment,
tcpdump does not print the sequence number field. (It only prints the sequence num-
ber for empty segments that contain the SYN, FIN, or RST flags.) It is the receipt of this

Section 23.3 Keepalive Examples 335

incorrect sequence number that forces the server’s TCP to respond with an ACK to the
keepalive probe. The response tells the client the next sequence number that the server
is expecting (14).

Some older implementations based on 4 2BSD do not respond to these keepalive probes unless
the segment contains data. Some systems can be configured to send one garbage byte of data
m the probe to elicit the response. The garbage byte causes no harm, because it’s not the
expected byte (it’s a byte that the receiver has previously received and acknowledged), so ~t’s
thrown away by the receiver. Other systems send the 4.3BSD-style segment (no data) for the
first half of the probe period, and if no response is received, switch to the 4.2BSD-style segment
for the last half.

We then disconnect the cable and expect the next probe, 2 hours later, to fail. When
this next probe takes place, notice that we never see the TCP segments on the cable,
because the host is not responding to ARP requests. We can still see that the client
sends 10 probes, spaced 75 seconds apart, before giving up. We can see from our inter-
active script that the error code returned to the client process by TCP gets translated
into "Connection timed out," which is what happened.

Other End Crashes and Reboots

In this example we’ll see what happens when the clieht crashes and reboots. The initial
scenario is the same as before, but after we verify that the connection is up, we discon-
nect the server from the Ethernet, reboot it, and then reconnect it to the Ethernet. We
expect the next keepalive probe to generate a reset from the server, because the server
now knows nothing about this connection. Here is the interactive session:

bsdi % sock -K svr4 echo
hi there
hi there

read error: Connectlon reset by peer

-K to enable keepalive optzon
type this to verify connection is up
and this is echoed back from other end
here server is rebooted while disconnected from Ethernet

Figure 23.2 shows the tcpdump output. (We have removed the connection establish-
ment and the window advertisements.)

1
2
3

0.0 bsdi.1057 > svr4.echo: P 1:10(9) ack 1
0.006406 (0.0064) svr4.echo > bsdi.1057: P 1:10(9) ack i0
0.176922 (0.1705) bsdi.1057 > svr4.echo: . ack i0

4 7200.067151 (7199.8902) arp who-has svr4 tell bsdi
5 7200.069751 (0.0026) arp reply svr4 is-at 0:0:c0:c2:9b:26
6 7200.070468 (0.0007) bsdi.1057 > svr4.echo: . ack i0
7 7200.075050 (0.0046) svr4.echo > bsdi.1057: R 1135563275:1135563275(0)

Figure 23.2 Keepalive example when other host has crashed and rebooted.

We establish the connection and send 9 bytes of data from the client to the server (lines
1-3). Two hours later the first keepalive probe is sent by the client, and the response is
a reset from the server. The client application prints the error "Connection reset by
peer," which makes sense.

336 TCP Keepalive Timer Chapter 23

Other End Is Unreachable

In this example the client has not crashed, but is not reachable during the 10-minute
period when the keepalive probes are sent. An intermediate router may have crashed, a
phone line may be temporarily out of order, or something similar.

To simulate this example we’ll establish a TCP comaection from our host
through our dialup SLIP link to the host vangogh, cs. berkeley, edu, and then take
the link down. First, here is the interactive output:

slip % sock -K vangogh.cs.berkeley.edu echo
testing we type thzs hne
t es t ing and see it echoed

somettme zn here the dtalup SLIP link zs taken down
read error: No route to host

Figure 23.3 shows the tepdurap output that was collected on the router bsd±. (The con-
nection establishment and window advertisements have been removed.)

1 0.0
2 0.277669 (0.2777
3 0.424423 (0.1468

4 7200.818081 (7200.3937
5 7201.243046 (0.4250

6 14400.688106 (7199.4451
7 14400.689261 (0.0012

8 14475.684360 (74.9951
9 14475.685504 (0.0011

slip.1056 > vangogh.echo: P 1:9(8) ack 1
vangogh.echo > slip.1056: P 1:9(8) ack 9
slip.1056 > vangogh.echo: . ack 9

slip.1056 > vangogh.echo: . ack 9
vangogh.echo > sllp.1056: . ack 9

slip.1056 > vangogh.echo: . ack 9
sun > sllp: icmp: net vangogh unreachable

slip.1056 > vangogh.echo: . ack 9
sun > slip: icmp: net vangogh unreachable

141inesdeleted

24 15075.759603 (75.1008 slip.1056 > vangogh.echo: R 9:9(0) ack 9
25 15075.760761 (0.0012 sun > sllp: icmp: net vangogh unreachable

Figure 23.3 Keepalive example when other end is unreachable.

We start the example the same as before: lines 1-3 verify that the connection is up. The
first keepalive probe 2 hours later is fine (lines 4 and 5), but before the next one occurs
in another 2 hours, we bring down the SLIP connection between the routers sun and
herb. (Refer to the inside front cover for the topology.)

The keepalive probe in line 6 elicits an ICMP network unreachable from the router
sun. As we described in Section 21.10, this is just a soft error to the receiving TCP on
the host sl±p. It records that the ICMP error was received, but the receipt of the error
does not take down the connection. Eight more keepalive probes are sent, 75 seconds
apart, before the sending host gives up. The error returned to the application generates
a different message this time: "No route to host." We saw in Figure 6.12 (p. 82) that this
corresponds to the ICMP network unreachable error.

Chapter 23 Exercises 337

23.4 Summary

As we said earlier, the keepalive feature is controversial. Protocol experts continue to
debate whether it belongs in the transport layer, or should be handled entirely by the
application.

It operates by sending a probe packet across a connection after the connection has
been idle for 2 hours. Four different scenarios can occur: the other end is still there, the
other end has crashed, the other end has crashed and rebooted, or the other end is cur-
rently unreachable. We saw each of these scenarios with an example, and saw different
errors returned for the last three conditions.

In the first two examples that we looked at, had this feature not been provided, and
without any application-level timer, our client would never have known that the other
end had crashed, or crashed and rebooted. In the final example, however, nothing was
wrong with the other end, the connection between them was temporarily down. We
must be aware of this limitation when using keepalives.

Exercises

23.1 List some advantages of the keepalive feature.
23.2 List some disadvantages of the keepalive feature.

TCP Futures and Performance

24.1 Introduction

TCP has operated for many years over data links ranging from 1200 bits/sec dialup
SLIP links to Ethernets. Ethernets were the predominant form of data link for TCP/IP
in the 1980s and early 1990s. Although TCP operates correctly at speeds higher than an
Ethernet (T3 phone lines, FDDI, and gigabit networks, for example), certain TCP limits
start to be encountered at these higher speeds.

This chapter looks at some proposed modifications to TCP that allow it to obtain the
maximum throughput at these higher speeds. We first look at the path MTU discovery
mechanism, which we’ve seen earlier in the text, focusing this time on how it operates
with TCP. This often lets TCP use an MTU greater than 536 for nonlocal connections,
increasing its throughput.

We then look at long fat pipes, networks that have a large bandwidth-delay prod-
uct, and the TCP limits that are encountered on these networks. Two new TCP options
are described that deal with long fat pipes: a window scale option (to increase TCP’s
maximum window above 65535 bytes) and a timestamp option. This latter option lets
TCP perform more accurate RTT measurement for data segments, and also provides
protection against wrapped sequence numbers, which can occur at high speeds. These
two options are defined in RFC 1323 [Jacobson, Braden, and Borman 1992].

We also look at the proposed T/TCP, modifications to TCP for transactions. The
transaction mode of communication features a client request responded to by a server
reply. It is a common paradigm for client-server computing. The goal of T/TCP is to
reduce the number of segments exchanged by the two ends, avoiding the three-way
handshake and the four segments to close the connection, so that the client receives the
server’s reply in one RTT plus the time required to process the request.

339

340 TCP Futures and Performance Chapter 24

What is impressive about these new options--path MTU discovery, the window
scale option, the fimestamp option, and T/TCP--is that they are backward compatible
with existing TCP implementations. Newer systems that include these options can still
interoperate with all older systems, With the exception of an additional field in an
ICMP message that can be used by path MTU discovery, these newer options need only
be implemented on the end systems that want to take advantage of them.

We finish the chapter by looking at recently published figures dealing with TCP
performance.

24.2 Path MTU Discovery

In Section 2.9 we described the concept of the path MTU. It is the minimum MTU on
any network that is currently in the path between two hosts. Path MTU discovery
entails setting the "don’t fragment" (DF) bit in the IP header to discover if any router on
the current path needs to fragment IP datagrams that we send. tn Section 11.6 we
showed the ICMP unreachable error returned by a router that is asked to forward an IP
datagram with the DF bit set when the MTU is less than the datagram size. In Sec-
tion 11.7 we showed a version of the traceroute program that used this mechanism
to determine the path MTU to a destination. In Section 11.8 we saw how UDP handled
path MTU discovery. In this section we’ll examine how this mechanism is used by TCP,
as specified by RFC 1191 [Mogul and Deering 1990].

Of the various systems used m this text (see the Preface) onIy Solarls 2.x supports path MTU
discovery.

TCP’s path MTU discovery operates as follows. When a connection is established,
TCP uses the minimum of the MTU of the outgoing interface, or the MSS announced by
the other end, as the starting segment size. Path MTU discovery does not allow TCP to
exceed the MSS announced by the other end. If the other end does not specify an MSS,
it defaults to 536. It is also possible for an implementation to save path MTU informa-
tion on a per-route basis, as we mentioned in Section 21.9.

Once the initial segment size is chosen, all IP datagrams sent by TCP on that con-
nection have the DF bit set. If an intermediate router needs to fragment a datagram that
has the DF bit set, it discards the datagram and generates the ICMP "can’t fragment"
error we described in Section 11.6.

If this ICMP error is received, TCP decreases the segment size and retransmits. If
the router generated the newer form of this ICMP error, the segment size can be set to
the next-hop MTU minus the sizes of the IP and TCP headers. If the older ICMP error is
returned, the probable value of the next smallest MTU (Figure 2.5) must be tried. When
a retransmission caused by this ICMP error occurs, the congestion window should not
change, but slow start should be initiated.

Since routes can change dynamically, when some time has passed since the last
decrease of the path MTU, a larger value (up to the minimum of the MSS announced by
the other end, or the outgoing interface MTU) can be tried. RFC 1191 recommends this
time interval be about 10 minutes. (We saw in Section 11.8 that Solaris 2.2 uses a 30-sec-
ond timer for this.)

Section 24.2 Path MTU Discovery 341

Given the normal default MSS of 536 for nonlocal destinations, path MTU discovery
avoids fragmentation across intermediate links with an MTU of less than 576 (which is
rare). It can also avoid fragmentation on local destinations when an intermediate link
(e.g., an Ethernet) has a smaller MTU than the end-point networks (e.g., a token ring).
But for path MTU discovery to be more useful, and take advantage of wide area net-
works with MTUs greater than 576, implementations must stop using a default MSS of
536 bytes for nonlocal destinations. A better choice for the MSS is the MTU of the out-
going interface (minus the size of the IP and TCP headers, of course). (In Appendix E
we’ll see that most implementations allow the system administrator to change this
default MSS value.)

An Example

We can see how path MTU discovery operates when an intermediate router has an
MTU less than either of the end point’s interface MTUs. Figure 24.1 shows the topology
for this example.

fragmentation
of 512-byte

segment here

MTU=1500

~T SLIP ~__

MTU=552 MTU=296

run
tcpdump

here

MTU=IS00 1 MTU=1500

~ SLIP ~__

MTU=552 MTU=1500

MTU=1500

~-MSS=512 -~
TCP co~mection

~- MSS=1460-~

Figure 24.1 Topology for path MTU example.

We’ll establish a connection from the host solaris (which supports the path MTU dis-
covery mechanism) to the host slip. This setup is identical to the one used for our
UDP path MTU discovery example (Figure 11.13) but here we have set the MTU of the
interface on slip to 552, instead of its normal 296. This causes slip to armounce an
MSS of 512. But leaving the MTU of the SLIP link on bsdi at 296 will cause TCP seg-
ments greater than 256 to be fragmented, and we can see how the path MTU discovery
mechanism on solaris handles this.

We’ll run our sock program on solaris and perform one 512-byte write to the
discard server on s 1 ip:

solaris % sock -i -nl -w512 slip discard

Figure 24.2 shows the tcpdump output, collected on the SLIP interface on the host sun.
The MSS values in lines 1 and 2 are what we expect. We then see solar±s send

a 512-byte segment (line 3) containing the 512 bytes of data and the ACK of the SYN.
(We saw this combination of the ACK of a SYN along with the first segment of data in

342 TCP Futures and Performance Chapter 24

1 0.0

2 0.101597 (0.1016)

3 0.630609 (0.5290)

4 0.634433 (0.0038)

5 0.660331 (0.0259)

6 0.752664 (0.0923)

7 1.110342 (0.3577)

8 1.439330 (0.3290)

9 i~770154 (0.3308}

10 2.095987 (0.3258)
11 2.138193 (0.0422)
12 2.310103 (0.1719)

solaris.33016 > sllp.dlscard: S 1171660288:1171660288(0)
win 8760 <mss 1460> (DF)

slIp.dxscard > solaris.33016: S 137984001:137984001(0)
ack 1171660289 win 4096
<mss 512>

solarls.33016 > slip.discard: P 1:513(512)
ack 1 win 9216 (DF)

bsd± > solarxs: ±cmp:
sllp unreachable - need to frag, mtu = 296 (DF)

solar~s.33016 ~ slip.discard: F 513:513(0)
ack 1 win 9216 (DF)

slip.discard > solarxs.33016: . ack 1 win 4096

solaris.33016 > slip.d~scard: P 1:257(256)
ack 1 win 9216 (DF)

slip.discard > solaris.33016: . ack 257 win 3840

solaris.33016 > slip.discard: FP 257:513(256)
ack 1 win 9216 (DF)

slip.discard > solaris.33016: . ack 514 win 3840
slzp.d~scard > solaris.33016: F I:i(0) ack 514 w~n 4096
solaris.33016 > slip.discard: . ack 2 win 9216 (DF)

Figure 24.2 tcpdump output for path MTU discovery.

Exercise 18.9.) This generates the ICMP error in line 4 and we see that the router bsdi
generates the newer ICMP error containing the MTU of the outgoing interface.

It appears that before this error makes it back to solaris, the FIN is sent (line 5).
Since slip never received the 512 bytes of data discarded by the router bsdi, it is not
expecting this sequence number (513), so it responds in line 6 with the expected
sequence number (1).

At this time the ICMP error has made it back to solaris and it retransmits the 512
bytes of data in two 256-byte segments (lines 7 and 9). Both are sent with the DF bit set,
since there could be another router beyond bsdi with a smaller MTU.

A longer transfer was run (taking about 15 minutes) and after moving from the
512-byte initial segment to 256-byte segments, solaris never tried the higher segment
size again.

Big Packets or Small Packets?

Conventional wisdom says that bigger packets are better [Mogul 1993, Sec. 15.2.8]
because sending fewer big packets "costs less" than sending more smaller packets.
(This assumes the packets are not large enough to cause fragmentation, since that intro-
duces another set of problems.) The reduced cost is that associated with the network
(packet header overhead), routers (routing decisions), and hosts (protocol processing
and device interrupts). Not everyone agrees with this [Bellovin 1993].

Consider the following example. We send 8192 bytes through four routers, each
connected with a T1 telephone line (1,544,000 bits/sec). First we use two 4096-byte
packets, as shown in Figure 24.3.

Section 24.2 Path MTU Discovery 343

time 0-----<--~096bPtes
t~me 0

time1 -----~tes~ - - ~Ytes t imel

time 2 ~ - ~109~a-----’-~- - - ~qO9~k time 2

t~me 3 ~ - - time3

tm~e 4 ~ time 4

Figure 24.3 Sendtng two 4096-byte packets through four routers.

The basic problem is that routers are store-and-forward devices. They normally receive
the entire input packet, validate the IP header including the IP checksum, make their
routing decision, and start sending the output packet. In this figure we’re assuming the
ideal case where it takes no time for these operations to occur at the router (the horizon-
tal dashed lines). Nevertheless, it takes four units of time to send all 8192 bytes from R1
to R4. The time for each hop is

(4096 + 40 bytes) x 8 bits/byte
1,544, 000 bits/sec

= 21.4 ms per hop

(We account for the 40 bytes of IP and TCP header.) The total time to send the data is
the number of packets plus the number of hops, minus one, which we can see visually
in this example is four units of time, or 85.6 ms. Each link is idle for two units of time,
or 42.8 ms.

Figure 24.4 shows what happens if we send sixteen 512-byte packets.

t~me 0 ~

~

time 0
- - tm~e 1time 1

tes
~-- ~b_~tes-’~- - - ~ timeR

"’" ~ - - t~me 3

time 14 ~

~

~ time 4

time 15 - -
ooo

t~me 16 ~

t~me 17 - -~~ t~me 17

time 18 ~ t~me 18

Figure 24.4 Sending sixteen 512-byte packets through four touters

344 TCP Futures and Performance Chapter 24

It takes more units of time, but the units are shorter since a smaller packet is being sent.

(512 + 40 bytes) x 8 bits/byte
1,544, 000 bits/sec

= 2.9 ms per hop

The total time is now (18 x 2.9) = 52.2 ms. Each link is again idle for two units of time,
which is now 5.8 ms.

In this example we have ignored the time required for the ACKs to be returned, the
connection establishment and termination times, and the possible sharing of the links
with other traffic. Nevertheless, measurements in [Bellovin 1993] indicate that bigger is
not always better. More research is required in this area on various networks.

24.3 Long Fat Pipes

In Section 20.7 we showed the capacity of a connection as

capacity (bits) = bandwidth (bits/sec) x round-trip time (sec)

and called this the bandwidth-delay product. This is also called the size of the pipe
between the end points.

Existing limits in TCP are being encountered as this product increases to larger and
larger values. Figure 24.5 shows some values for various types of networks.

Bandwidth Round-trip Bandwidth-delayNetwork
(bits/sec) time (ms) product (bytes)

Ethernet LAN 10,000,000 3 3,750
T1 telephone line, transcontinental 1,544,000 60 11,580
T1 telephone line, satellite 1,544,000 500 96,500
T3 telephone line, transcontinental 45,000,000 60 337,500
gigabit, transcontinental 1,000,000,000 60 7,500,000

Figure 24.5 Bandwidth-delay product for various networks.

We show the bandwidth-delay product in bytes, because that’s how we typically mea-
sure the buffer sizes and window sizes required on each end.

Networks with large bandwidth-delay products are called long fat networks (LFNs,
pronounced "elefan(t)s"), and a TCP connection operating on an LFN is called a Iongfat
pipe. Going back to Figure 20.11 and Figure 20.12 (p. 291), the pipe can be stretched in
the horizontal direction (a longer RTT), or stretched in the vertical direction (a higher
bandwidth), or both. Numerous problems are encountered with long fat pipes.

The TCP window size is a 16-bit field in the TCP header, limiting the window to
65535 bytes. As we can see from the final column in Figure 24.5, existing net-
works already require a larger window than this, for maximum throughput.

The window scale option described in Section 24.4 solves this problem.

Packet loss in an LFN can reduce throughput drastically. If only a single seg-
ment is lost, the fast retransmit and fast recovery algorithm that we described in

Section Long Fat Pipes 345

o

Section 21.7 is required to keep the pipe from draining. But even with this algo-
rithm, the loss of more than one packet within a window typically causes the
pipeline to drain. (If the pipe drains, slow start gets things going again, but that
takes multiple round-trip times to get the pipe filled again.)

Selective acknowledgments (SACKs) were proposed in RFC 1072 [Jacobson and
Braden 1988] to handle multiple dropped packets within a window. But this
feature was omitted from RFC 1323, because the authors felt several technical
problems needed to be worked out before including them in TCP.

We saw in Section 21.4 that many TCP implementations only measure one
round-trip time per window. They do not measure the RTT of every segment.
Better RTT measurements are required for operating on an LFN.

The timestamp option, which we describe in Section 24.5, allows more segments
to be timed, including retransmissions.

TCP identifies each byte of data with a 32-bit unsigned sequence number.
What’s to prevent a segment that gets delayed in the network from reappearing
at a later time, after the connection that it was associated with has been termi-
nated, and after a new connection has been established between the same two
hosts and port numbers? First recall that the TTL field in the IP header puts an
upper bound on the lifetime of any IP datagram--255 hops or 255 seconds,
whichever comes first. In Section 18.6 we defined the maximum segment life-
time (MSL) as an implementation parameter used to prevent this scenario from
happening. The recommended value of the MSL is 2 minutes (giving a 2MSL of
240 seconds), but we saw in Section 18.6 that many implementations use an
MSL value of 30 seconds.

A different problem with TCP’s sequence numbers appears with LFNs. Since
the sequence number space is finite, the same sequence number is reused after
4,294,967,296 bytes have been transmitted. What if a segment containing the
byte with a sequence number N gets delayed in the network and then reappears
later, while the connection is still up? This is only a problem if the same
sequence number N is reused within the MSL period, that is, if the network is so
fast that sequence number wrap occurs in less than MSL. On an Ethernet it
takes almost 60 minutes to send this much data, so there is no chance of this
happening, but the time required for the wrap to occur drops as the bandwidth
increases: a T3 telephone line (45 Mbits/sec) wraps in 12 minutes, FDDI (100
Mbits/sec) in 5 minutes, and a gigabit network (1000 Mbits/sec) in 34 seconds.
The problem here is not the bandwidth-delay product, but the bandwidth itself.

In Section 24.6 we describe a way to handle this: the PAWS algorithm (protec-
tion against wrapped sequence numbers), which uses the TCP timestamp
option.

4.4BSD contains all the options and algorithms that we describe in the following sections: the
window scale option, the timestamp option, and the protection against wrapped sequence
numbers. Numerous vendors are also starting to support these options.

346 TCP Futures and Performance Chapter 24

Gigabit Networks

When networks reach gigabit speeds, things change. [Partridge 1994] covers gigabit
networks in detail. Here we’ll look at the differences between latency and bandwidth
[Kleinrock 1992].

Consider sending a one million byte file across the United States, assuming a 30-ms
latency. Figure 24.6 shows two scenarios, the top illustration uses a T1 telephone line
(1,544,000 bits/sec) and the bottom uses aol gigabit/sec network. Time is shown along
the x-axis, with the sender on the left and the receiver on the right, and capacity on the
y-axis. The shaded area in both pictures is the one million bytes to send.

994,210 bytes
still to send direction of

file transfer

5,790 bytes in the pipe

30 ms latency

8 ms

1,000,000 byte~

1,544,000 bits/sec

IIGbit/sec

Figure 24.6 Sending a 1-Mbyte file across networks with a 30-ms latency.

Figure 24.6 shows the status of both networks after 30 ms. With both networks the first
bit of data reaches the other end after 30 ms (the latency), but with the T1 network the
capacity of the pipe is only 5,790 bytes, so 994,210 bytes are still at the sender, waiting to
be sent. The capacity of the gigabit network, however, is 3,750,000 bytes, so the entire
file uses just over 25% of the pipe. The last bit of the file reaches the receiver 8 ms after
the first bit.

The total time to transfer the file across the T1 network is 5.211 seconds. If we
throw more bandwidth at the problem, a T3 network (45,000,000 bits/sec), the total time
decreases to 0.208 seconds. Increasing the bandwidth by a factor of 29 reduces the total
time by a factor of 25.

With the gigabit network the total time to transfer the file is 0.038 seconds: the
30-ms latency plus the 8 ms for the actual file transfer. Assuming we could double the
bandwidth to 2 gigabits/sec, we only reduce the total time to 0.034 seconds: the same
30-ms latency plus 4 ms to transfer the file. Doubling the bandwidth now decreases the
total time by only 10%. At gigabit speeds we are latency limited, not bandwidth
limited.

Section 24.4 Window Scale Option 347

The latency is caused by the speed of light and can’t be decreased (unless Einstein
was wrong). The effect of this fixed latency becomes worse when we consider the pack-
ets required to establish and terminate a connection. Gigabit networks will cause sev-
eral networking issues to be looked at differently.

24.4 Window Scale Option

The window scale option increases the definition of the TCP window from 16 to 32 bits.
Instead of changing the TCP header to accommodate the larger window, the header still
holds a 16-bit value, and an option is defined that applies a scaling operation to the
16-bit value. TCP then maintains the "real" window size internally as a 32-bit value.

We saw an example of this option in Figure 18.20 (p. 253). The 1-byte shift count is
between 0 (no scaling performed) and 14. This maximum value of 14 is a window of
1,073,725,440 bytes (65535 x 214).

This option can only appear in a SYN segment; therefore the scale factor is fixed in
each direction when the connection is established. To enable window scaling, both ends
must send the option in their SYN segments. The end doing the active open sends the
option in its SYN, but the end doing the passive open can send the option only if the
received SYN specifies the option. The scale factor can be different in each direction.

If the end doing the active open sends a nonzero scale factor, but doesn’t receive a
window scale option from the other end, it sets its send and receive shift count to 0.
This lets newer systems interoperate with older systems that don’t understand the new
option.

The Host Requirements RFC requires TCP to accept an option in any segment. (The only pre-
viously defined option, the maximum segment size, only appeared m SYN segments.) It fur-
ther requires TCP to ignore any option it doesn’t understand. This is made easy since all the
new options have a length field (Figure 18.20, p. 253).

Assume we are using the window scale option, with a shift count of S for sending
and a shift count of R for receiving. Then every 16-bit advertised window that we
receive from the other end is left shifted by R bits to obtain the real advertised window
size. Every time we send a window advertisement to the other end, we take our real
32-bit window size and right shift it S bits, placing the resulting 16-bit value in the TCP
header.

The shift count is automatically chosen by TCP, based on the size of the receive buff-
er. The size of this buffer is set by the system, but the capability is normally provided
for the application to cl~ange it. (We discussed this buffer in Section 20.4.)

An Example

If we initiate a connection using our sock program from the 4.4BSD host
vangoqh, cs .berke3_ey. edu, we can see its TCP calculate the window scale factor.
The following interactive output shows two consecutive runs of the program, first spec-
ifying a receive buffer of 128000 bytes, and then a receive buffer of 220000 bytes:

348 TCP Futures and Performance Chapter 24

vangogh % sock -v -R128000 bsdi.tuc.noao.edu echo
SO RCVBUF = 128000
connected on 128.32.130.2.4107 to 140.252.13.35.7
TCP MAXSEG = 512
hello, world [oe type this hne

hello, world and zt’s echoed here
^D type end-of-file character to terminate

vangogh % sock -v -R220000 bsdi.tuc.noao.edu echo
SO RCVBUF = 220000
connected on 128.32.130.2.4108 to ~400252.13.35.7
TCP MAXSEG : 512
bye, bye type thls line
bye, bye and tt’s echoed here
^D type end-of-file character to terminate

Figure 24.7 shows the tcpdump output for these two connections. (We have deleted the
final 8 lines for the second connection, because nothing new is shown.)

0.0

0.003078 (0.0031)

3 0.300255 (0.2972)

4 16.920087 (16.6198)
5 16.923063 (0.0030)
6 17.220114 (0.2971)

7 26.640335 (9.4202)
8 26.642688 (0.0024)
9 26.643964 (0.0013)

10 26.880274 (0.2363)

vangogh.4107 > bsdi.echo: S 462402561:462402561(0)
win 65535
<mss 512,nop,wscale l,nop, nop,timestamp 995351 0>

bsdi.echo > vangogh.4107: S 177032705:177032705(0)
ack 462402562 win 4096 <mss 512>

vangogh.4107 > bsda.echo:

vangogh.4107 > bsdi.echo:
bsdi.echo > vangogh.4107:
vangogh.4107 > bsdi.echo:

vangogh.4107 > bsdi.echo:
bsdi.echo > vangogh.4107:
bsdi.echo > vangogh.4107:
vangogh.4107 > bsdi.echo:

ack 1 win 65535

P 1:14(13) ack 1 win 65535
P 1:14(13) ack 14 win 4096

ack 14 win 65535

F 14:14(0) ack 14 win 65535
ack 15 wan 4096

F 14:14(0) ack 15 wan 4096
ack 15 wan 65535

11 44.400239 (17.5200)

12 44.403358 (0.0031)

13 44.700027 (0.2967)

vangogh.4108 > bsdi.echo: S 468226561:468226561(0)
wan 65535
<mss 512,nop, wscale 2,nop, nop, timestamp 995440 O>

bsdi.echo > vangogh.4108: S 182792705:182792705(0)
ack 468226562 wan 4096 <mss 512>

vangogh.4108 > bsdi.echo: . ack 1 wan 65535

mmamder ~th~sconnect~ndeleted

Figure 24.7 Example of window scale option.

In line 1 vangogh advertises a window of 65535 and specifies the window scale option
with a shift count of 1. This advertised window is the largest possible value that is less
than the receive buffer size (128000), because the window field in a SYN segment is
never scaled.

The scale factor of i means vangogh would like to send window advertisements up
to 131070 (65535 x 21). This will accommodate our receive buffer size (128000). Since
bsdi does not send the window scale option in its SYN (line 2), the option is not used.

Section 24.5 Timestamp Option 349

24.5

Notice that vangogh continues to use the largest window possible (65535) for the
remainder of the connection.

For the second connection vangogh requests a shift count of 2, meaning it would
like to send window advertisements up to 262140 (65535 x 22), which is greater than our
receive buffer size (220000).

Timestamp Option

The timestamp option lets the sender place a timestamp value in every segment. The
receiver reflects this value in the acknowledgment, allowing the sender to calculate an
RTT for each received ACK. (We must say "each received ACK" and not "each seg-
ment" since TCP normally acknowledges multiple segments per ACK.) We said that
many current implementations only measure one RTT per window, which is OK for
windows containing eight segments. Larger window sizes, however, require better RTT
calculations.

Sectton 3.1 of RFC 1323 gives the signal processing reasons for requiring better RTT estimates
for bigger windows. Basically the RTT is measured by sampling a data signal (the data seg-
ments) at a lower frequency (once per window) This introduces aliasmg into the estimated
RTT. When there are eight segments per window, the sample rate is one-eighth the data rate,
which is tolerable, but with 100 segments per window, the sample rate is 1/100th the data rate.
This can cause the estimated RTT to be inaccurate, resulting m u~mecessary retransmissions. If
a segment is lost, it only gets worse.

Figure 18.20 showed the format of the timestamp option. The sender places a 32-bit
value in the first field, and the receiver echoes this back in the reply field. TCP headers
containing this option will increase from the normal 20 bytes to 32 bytes.

The timestamp is a monotonically increasing value. Since the receiver echoes what
it receives, the receiver doesn’t care what the timestamp units are. This option does not
require any form of clock synchronization between the two hosts. RFC 1323 recom-
mends that the timestamp value increment by one between I ms and i second.

4.4BSD increments the timestamp clock once every 500 ms and this timestamp clock ~s reset to
0 on a reboot.

In Figure 24.7, if we look at the hmestamp in segment 1 and the timestamp in segment 11, the
d~fference (89 umts) corresponds to 500 ms per unit for the time difference of 44 4 seconds.

The specification of this option during connection establishment is handled the
same way as the window scale option in the previous section. The end doing the active
open specifies the option in its SYN. Only if it receives the option in the SYN from the
other end can the option be sent in future segments.

We’ve seen that a receiving TCP does not have to acknowledge every data segment
that it receives. Many implementations send an ACK for every other data segment. If
the receiver sends an ACK that acknowledges two received data segments, which
received timestamp is sent back in the timestamp echo reply field?

350 TCP Futures and Performance Chapter 24

To minimize the amount of state maintained by either end, only a single timestamp
value is kept per connection. The algorithm to choose when to update this value is
simple.

1. TCP keeps track of the timestamp value to send in the next ACK (a variable
named tsrecent) and the acknowledgment sequence number from the last ACK
that was sent (a variable named lastack). This sequence number is the next
sequence number the receiver is expecting.

2. When a segment arrives, if the segment contains the byte numbered Iastack, then
the timestamp value from the segment is saved in tsrecent.

3. Whenever a timestamp option is sent, tsrecent is sent as the timestamp echo
reply field and the sequence number field is saved in lastack.

This algorithm handles the following two cases:

If ACKs are delayed by the receiver, the timestamp value returned as the echo
value will correspond to the earliest segment being acknowledged.

For example, if two segments containing bytes 1-1024 and 1025-2048 arrive,
both with a timestamp option, and the receiver acknowledges them both with
an ACK 2049, the times~amp in the ACK will be the value from the first segment
containing bytes 1-1024. This is correct because the sender must calculate its
retransmission timeout taking the delayed ACKs into consideration.

If a received segment is in-window but out-of-sequence, implying that a previ-
ous segment has been lost, when that missing segment is received, its time-
stamp will be echoed, not the timestamp from the out-of-sequence segment.

For example, assume three segments, each containing 1024 bytes, are received in
the following order: segment 1 with bytes 1-1024, segment 3 with bytes
2049-3072, then segment 2 with bytes 1025-2048. The ACKs sent back will be
ACK 1025 with the timestamp from segment 1 (a normal ACK for data that was
expected), ACK 1025 with the timestamp from segment 1 (a duplicate ACK in
response to the in-window but the out-of-sequence segment), then ACK 3073
with the timestamp from segment 2 (not the later timestamp from segment 3).
This has the effect of overestimating the RTT when segments are lost, which is
better than underestimating it. Also, if the final ACK contained the timestamp
from segment 3, it might include the time required for the duplicate ACK to be
returned and segment 2 to be retransmitted, or it might include the time for the
sender’s retransmission timeout for segment 2 to expire. In either case, echoing
the timestamp from segment 3 could bias the sender’s RTT calculations.

Although the timestamp option allows for better RTT calculations, it also provides a
way for the receiver to avoid receiving old segments and considering them part of the
existing data segment. The next section describes this.

Section 24.7 T/TCP: A TCP Extension for Transactions351

24.6 PAWS: Protection Against Wrapped Sequence Numbers

Consider a TCP connection using the window scale option with the largest possible
window, 1 gigabyte (230). (The largest window is just smaller than this, 65535 x 214, not
216 × 214, but that doesn’t affect this discussion.) Also assume the timestamp option is
being used and that the timestamp value assigned by the sender increments by one for
each window that is sent. (This is conservative. Normally the timestamp increments
faster than this.) Figure 24.8 shows the possible data flow between the two hosts, when
transferring 6 gigabytes. To avoid lots of 10-digit numbers, we use the notation G to
mean a multiple of 1,073,741,824. We also use the notation from ~.cpdurap that J:K
means byte J through and including byte K-1.

Time Bytes sent Receive

A
B
C
D
E
F

0G:IG
tG 2G
2G:3G
3G:4G
4G:5G
5G6G

Send
sequence#

0G 1G
1G:2G
2G:3G
3G:4G
0G:IG
1G:2G

Send
timestamp

1
2
3
4
5
6

OK
OK but one segment lost and retransmitted
OK
OK
OK
OK but lost segment reappears

Figure 24.8 Transferring 6 gigabytes in six 1-gigabyte windows.

The 32-bit sequence number wraps between times D and E. We assume that one seg-
ment gets lost at time B and is retransmitted. We also assume that this lost segment
reappears at time F.

This assumes that the time difference between the segment getting lost and reap-
pearing is less than the MSL; otherwise the segment would have been discarded by
some router when its TTL expired. As we mentioned earlier, it is only with high-speed
connections that this problem appears, where old segments can reappear and contain
sequence numbers currently being transmitted.

We can also see from Figure 24.8 that using the timestamp prevents this problem.
The receiver considers the timestamp as a 32-bit extension of the sequence number.
Since the lost segment that reappears at time F has a timestamp of 2, which is less than
the most recent valid timestamp (5 or 6), it is discarded by the PAWS algorithm.

The PAWS algorithm does not require any form of time synchronization between
the sender and receiver. All the receiver needs is for the timestamp values to be mono-
tonically increasing, and to increase by at least one per window.

24.7 T/TCP: A TCP Extension for Transactions

TCP provides a virtual-circuit transport service. There are three distinct phases in the
life of a connection: establishment, data transfer, and termination. Applications such as
remote login and file transfer are well suited to a virtual-circuit service.

352 TCP Futures and Performance Chapter 24

Other applications, however, are designed to use a transaction service. A transaction
is a client request followed by a server response with the following characteristics:

o

o

The overhead of connection establishment and connection termination should
be avoided. When possible, send one request packet and receive one reply
packet.

The latency should be reduced to RTT plus SPT, where RTT is the round-trip
time and SPT is the server processing time to handle the request.

The server should detect duplicate requests and not replay the transaction when
a duplicate request arrives. (Avoiding the replay means the server does not pro-
cess the request again. The server sends back the saved reply corresponding to
that request.)

One application that we’ve already seen that uses this type of service is the Domain
Name System (Chapter 14), although the DNS is not concerned with the server replay-
ing duplicate requests.

Today the choice an application designer has is TCP or UDP. TCP provides too
many features for transactions, and UDP doesn’t provide enough. Usually the applica-
tion is built using UDP (to avoid the overhead of TCP connections) but many of the
desirable features (dynamic timeout and retransmission, congestion avoidance, etc.) are
placed into the application, where they’re reinvented over and over again.

A better solution is to provide a transport layer that provides efficient handling of
transactions. The transaction protocol we describe in this section is called T/TCP. Our
description is from its definition, RFC 1379 [Braden 1992b] and [Braden 1992c].

Most TCPs require 7 segments to open and close a connection (see Figure 18.13, p.
242). Three more segments are then added: one with the request, another with the reply
and an ACK of the request, and a third with the ACK of the reply. If additional control
bits are added onto the segments--that is, the first segment contains a SYN, the client
request, and a FIN--the client still sees a minimal overhead of twice the RTT plus SPT.
(Sending a SYN along with data and a FIN is legal; whether current TCPs handle it cor-
rectly is another question.)

Another problem with TCP is the TIME_WAIT state and its required 2MSL wait. As
shown in Exercise 18.14, this limits the transaction rate between two hosts to about 268
per second.

The two modifications required for TCP to handle transactions are to avoid the
three-way handshake and shorten the TIME_WAIT state. T/TCP avoids the three-way
handshake by using an accelerated open:

°

It assigns a 32-bit connection count (CC) value to connections it opens, either
actively or passively. A host’s CC value is assigned from a global counter that
gets incremented by 1 each time it’s used.

Every segment between two hosts using T/TCP includes a new TCP option
named CC. This option has a length of 6 bytes and contains the sender’s 32-bit
CC value for the connection.

Section 24.7 T/TCP: A TCP Extension for Transactions 353

o

°

A host maintains a per~host cache of the last CC value received in an acceptable
SYN segment from that host.

When a CC option is received on an initial SYN, the receiver compares the value
with the cached value for the sender. If the received CC is greater than the
cached CC, the SYN is new and any data in the segment is passed to the receiv-
ing application (the server). The connection is called half-synchronized.

If the received CC is not greater than the cached CC, or if the receiving host
doesn’t have a cached CC for this client, the normal TCP three-way handshake
is performed.

The SYN, ACK segment in response to an initial SYN echoes the received CC
value in another new option named CCECHO.

The CC value in a non-SYN segment detects and rejects any duplicate segments
from previous incarnations of the same connection.

The accelerated open avoids the need for a three-way handshake unless either the client
or server has crashed and rebooted. The cost is that the server must remember the last
CC received from each client.

The TIME_WAIT state is shortened by calculating the TIME_WAIT delay dynami-
cally, based on the measured RTT between the two hosts. The TIME_WAIT delay is set
to 8 times RTO, the retransmission timeout value (Section 21.3).

Using these features the minimal transaction sequence is an exchange of three
segments:

°

o

Client to server, caused by an active open: client-SYN, client-data (the request),
client-FIN, and client-CC.

When the server TCP with the passive open receives this segment, if the client-
CC is greater than the cached CC for this client host, the client-data is passed to
the server application, which processes the request.

Server to client: server-SYN, server-data (reply), server-FIN, ACK of client-FIN,
server-CC, and CCECHO of client-CC. Since TCP acknowledgments are cumu-
lative, this ACK of the client FIN acknowledges the client’s SYN, data, and FIN.

When the client TCP receives this segment it passes the reply to the client appli-
cation.

Client to server: ACK of server-FIN, which acknowledges the server’s SYN,
data, and FIN.

The client’s response time to its request is RTT plus SPT.
There are many fine points to the implementation of this TCP option that are cov-

ered in the references. We summarize them here:

¯ The server’s SYN, ACK (the second segment) should be delayed, to allow the
reply to piggyback with it. (Normally the ACK of a SYN is not delayed.) It can’t
delay too long, or the client will time out and retransmit.

354 TCP Futures and Performance Chapter 24

The request can require multiple segments, but the server must handle their pos-
sible out-of-order arrival. (Normally when data arrives before the SYN, the data
is discarded and a reset is generated. With T/TCP this out-of-order data should
be queued instead.)

The API must allow the server process to send data and close the connection in a
single operation to allow the FIN in the second segment to piggyback with the
reply. (Normally the application would write the reply, causing a data segment
to be sent, and then close the connection, causing the FIN to be sent.)

The client is sending data in the first segment before receiving an MSS
announcement from the server. To avoid restricting the client to an MSS of 536,
the MSS for a given host should be cached along with its CC value.

The client is also sending data to the server without receiving a window adver-
tisement from the server. T/TCP suggests a default window of 4096 bytes and
also caching the congestion threshold for the server.

With the minimal three-segment exchange there is only one RTT that can be
measured in each direction. Plus the client’s measured RTT includes the server’s
processing time. This means the smoothed RTT value and its variance also must
be cached for the server, similar to what we described in Section 21.9.

The appealing feature of T/TCP is that it is a minimal set of changes to an existing
protocol but allows backward compatibility with existing implementations. It also
takes advantage of existing engineering features of TCP (dynamic timeout and retrans-
mission, congestion avoidance, etc.) instead of forcing the application to deal with these
issues.

An alternative transaction protocol is VMTP, the Versatile Message Transaction
Protocol. It is described in RFC 1045 [Cheriton 1988]. Unlike T/TCP, which is a small
set of extensions to an existing protocol, VMTP is a complete transport layer that uses
IP. VMTP handles error detection, retransmission, and duplicate suppression. It also
supports multicast communication.

24.8 TCP Performance

Published numbers in the mid-1980s showed TCP throughput on an Ethernet to be
around 100,000 to 200,000 bytes per second. (Section 17.5 of [Stevens 1990] gives these
references.) A lot has changed since then. It is now common for off-the-shelf hardware
(workstations and faster personal computers) to deliver 800,000 bytes or more per
second.

It is a worthwhile exercise to calculate the theoretical maximum throughput we
could see with TCP on a 10 Mbits/sec Ethernet [Warnock 1991]. We show the basics for
this calculation in Figure 24.9. This figure shows the total number of bytes exchanged
for a full-sized data segment and an ACK.

Section 24.8 TCP Performance 355

Data ACKField #bytes #bytes

Ethernet preamble 8 8
Ethernet destination address 6 6
Ethernet source address 6 6
Ethernet type field 2 2
IP header 20 20
TCP header 20 20
user data 1460 0
pad (to Ethernet minimum) 0 6
Ethernet CRC 4 4
interpacket gap (9.6 microsec) 12 12

total 1538 84

Figure 24.9 Field s~zes for Ethernet theoretical maximum throughput calculation.

We must account for all the overhead: the preamble, the PAD bytes that are added to the
acknowledgment, the CRC, and the minimum interpacket gap (9.6 microseconds, which
equals 12 bytes at 10 Mbits/sec).

We first assume the sender transmits two back~to-back full-sized data segments,
and then the receiver sends an ACK for these two segments. The maximum throughput
(user data) is then

2 x 1460 bytes 10, 000, 000 bits/sec
throughput = x = 1,155, 063 bytes/sec

2 x 1538 + 84 bytes 8 bits/byte

If the TCP window is opened to its maximum size (65535, not using the window scale
option), this allows a window of 44 1460-byte segments. If the receiver sends an ACK
every 22nd segment the calculation becomes

22 x 1460 bytes 10, 000, 000 bits/sec
throughput = 22 x 1538 + 84 bytes x

8 bits/byte
= 1,183, 667 bytes/sec

This is the theoretical limit, and makes certain assumptions: an ACK sent by the
receiver doesn’t collide on the Ethernet with one of the sender’s segments; the sender
can transmit two segments with the minimum Ethernet spacing; and the receiver can
generate the ACK within the minimum Ethernet spacing. Despite the optimism in these
numbers, [Warnock 1991] measured a sustained rate of 1,075,000 bytes/sec on an Ether-
net, with a standard multiuser workstation (albeit a fast workstation), which is 90% of
the theoretical value.

Moving to faster networks, such as FDDI (100 Mbits/sec), [Schryver 1993] indicates
that three commercial vendors have demonstrated TCP over FDDI between 80 and 98
Mbits/sec. When even greater bandwidth is available, [Borman 1992] reports up to 781
Mbits/sec between two Cray Y-MP computers over an 800 Mbits/sec HIPPI channel,
and 907 Mbits/sec between two processes using the loopback interface on a Cray Y-MP.

The following practical limits apply for any real-world scenario [Borman 1991].

356 TCP Futures and Performance Chapter 24

24.9

You can’t run any faster than the speed of the slowest link.

You can’t go any faster than the memory bandwidth of the slowest machine.
This assumes your implementation makes a single pass over the data. If not
(i.e., your implementation makes one pass over the data to copy it from user
space into the kernel, then another pass over the data to calculate the TCP
checksum), you’ll run even slower. [Dalton et al. 1993] describe performance
improvements to the standard Berkeley sources that reduce the number of data
copies to one. [Partridge and Pink 1993] applied the same "copy-and-
checksum" change to UDP, along, with other performance improvements, and
improved UDP performance by about 30%.

You can’t go any faster than the window size offered by the receiver, divided by
the round-trip time. (This is our bandwidth-delay product equation, using the
window size as the bandwidth-delay product, and solving for the bandwidth.)
If we use the maximum window scale factor of 14 from Section 24.4, we have a
window size of I Gbyte, so this divided by the RTT is the bandwidth limit.

The bottom line in all these numbers is that the real upper limit on how fast TCP can
run is determined by the size of the TCP window and the speed of light. As concluded
by [Partridge and Pink 1993], many protocol performance problems are implementation
deficiencies rather than inherent protocol limits.

Summary

This chapter has looked at five new TCP features: path MTU discovery, window scale
option, timestamp option, protection against wrapped sequence numbers, and
improved transactional processing using TCP. We saw that the middle three features
are required for optimal performance on long fat pipes--networks with a large band-
width-delay product.

Path MTU discovery allows TCP to use windows larger than the default of 536 for
nonlocal connections, when the path MTU is larger. This can improve performance.

The window scale option takes the maximum TCP window size from 65535 bytes to
just over I gigabyte. The timestamp option lets more segments be accurately timed, and
also lets the receiver provide protection against wrapped sequence numbers (PAWS).
This is essential for high-speed connections. These new TCP options are negotiated at
connection establishment, and ignored by older systems that don’t understand them,
allowing newer systems to interoperate with older systems.

The TCP extensions for transactions, T/TCP, allow a client-server request-reply
sequence to be completed using only three segments in the usual case. It avoids the
three-way handshake and shortens the TIME_WAIT state by caching a small amount of
information for each host with which it has established a connection. It also overloads
the data segments with the SYN and FIN flags.

We finished the chapter with a look at TCP performance, since there is still much
inaccurate folklore about how fast TCP can run. For a well-tuned implementation using
the newer features described in this chapter, TCP performance is limited only by the
maximum 1-gigabyte window and the speed of light (i.e., the round-trip time).

Chapter 24 Exercises 357

Exercises

24.1

24.2

24.3

24.4

24.5

24.6

24.7

24.8

24.9

24.10

24.11

24.12

What does it mean when a system sends an initial SYN segment with a window scale fac-
tor of 0?

If the host bsd~- in Figure 24.7 supported the window scale option, what is the expected
value of the 16-bit window size field in the TCP header from vangogh in segment 3? Sim-
ilarly, if the option were in use for the second connection in that figure, what would be the
advertised window in segment 13?

Instead of fixing the window scale factor when the com~ection is established, could the
window scale option have been defined to also appear when the scaling factor changes?

At what data rate does sequence number wrap become a problem, assuming an MSL of 2
minutes?

PAWS is defined to operate within a single connection only. What modifications would
have to be made to TCP to use PAWS as a replacement for the 2MSL wait (the TIME_WAIT
state)?

In our example at the end of Section 24.4, why did our sock program output the size of
the receive buffer before the line that followed (with the IP addresses and port numbers)?

Redo the calculations of the throughput in Section 24.8 assuming an MSS of 1024.

How does the timestamp option affect Karn’s algorithm (Section 21.3)?

If TCP sends data with the SYN segment that’s generated by an active open (without using
the extensions we described in Section 24.7), what does the receiving TCP do with the
data?

In Section 24.7 we said that without the T/TCP extensions, even if the active open is sent
with data and a FIN, the client delay in receiving the server’s response is still twice the
RTT plus SPT. Show the segments to account for this.

Redo Exercise 18.14 assuming T/TCP support and the minimum RTO supported by Berke-
ley-derived systems of one-half second.

If we implement T/TCP and measure the transaction time between two hosts, what can we
compare it to, to determine its efficiency?

25

SNMP: Simple Network

Management Protocol

25.1 Introduction

As the number of networks within an organization grows, along with the diversity of
systems comprising this internet (touters from various vendors, hosts with embedded
router functionality, terminal servers, etc.), managing all these systems within a coher-
ent framework becomes important. This chapter looks at the standards used within the
Internet protocol suite for network management.

Network management of a TCP/IP internet consists of network management stations
(managers) communicating with network elements. The network elements can be any-
thing that runs the TCP/IP protocol suite: hosts, routers, X terminals, terminal servers,
printers, and so on. The software in the network element that runs the management
software is called the agent. Management stations are normally workstations with color
monitors that graphically display relevant facts about the elements being monitored
(which links are up and down, volume of traffic across various links over time, etc.).

The communication can be two way: the manager asking the agent for a specific
value ("how many ICMP port unreachables have you generated?"), or the agent telling
the manager that something important happened ("an attached interface has gone
down"). Also, the manager should be able to set variables in the agent ("change the
value of the default IP TTL to 64"), in addition to reading variables from the agent.

TCP/IP network management consists of three pieces.

A Management Information Base (MIB) that specifies what variables the network
elements maintain (the information that can be queried and set by the manager).
RFC 1213 [McCloghrie and Rose 1991] defines the second version of this, called
MIB-II.

359

360 SNMP: Simple Network Management Protocol Chapter 25

2. A set of common structures and an identification scheme used to reference the
variables in the MIB. This is called the Structure of Management Information (SMI)
and is specified in RFC 1155 [Rose and McCloghrie 1990]. For example, the SMI
specifies that a Counter is a nonnegative integer that counts from 0 through
4,294,967,295 and then wraps around to 0.

3. The protocol between the manager and the element, called the Simple Network
Management Protocol (SNMP). RFC 1157 [Case et al. 1990] specifies the protocol.
This details the format of the packets exchanged. Although a wide variety of
transport protocols could be used, UDP is normally used with SNMP.

These RFCs define what is now called SNMPvl, or just SNMP, which is the topic of this
chapter. During 1993 additional RFCs were published specifying SNMP Version 2
(SNMPv2), which we describe in Section 25.12.

Our approach to SNMP in this chapter is to describe the protocol between the man-
ager and the agent first, and then look at the data types for the variables maintained by
the agent. We describe the database of information maintained by the agent (the MIB),
looking at the groups that we’ve described in this text: IP, UDP, TCP, and so on. We
show examples at each point along the way, tying network management back to the
protocol concepts from earlier chapters.

25.2 Protocol

SNMP defines only five types of messages that are exchanged between the manager and
agent.

1. Fetch the value of one or more variables: the get-request operator.

2. Fetch the next variable after one or more specified variables: the
get-next-request operator. (We describe what we mean by "next" later in
this chapter.)

3. Set the value of one or more variables: the set-request operator.

4. Return the value of one or more variables: the get-response operator. This is
the message returned by the agent to the manager in response to the
get-request, get-next-request, and set-request operators.

5. Notify the manager when something happens on the agent: the trap operator.

The first three messages are sent from the manager to the agent, and the last two are
from the agent to the manager. (We’ll refer to the first three as the get, get-next, and
set: operators.) Figure 25.1 summarizes these five operators.

Since four of the five SNMP messages are simple request-reply protocols (the man-
ager sends a request, the agent sends back a reply) SNMP uses UDP. This means that a
request from the manager may not arrive at the agent, and the agent’s reply may not
make it back to the manager. The manager probably wants to implement a timeout and
retransmission.

Section 25.2 Protocol 361

SNMPmanager

UDP port 162

get-request ~:

~
get-response

get-next-request

~
get-response

set-request
~

~
get-response

trap

SNMP agent

UDP port 161

UDP port 161

UDP port 161

Figure 25.1 Summary of the five SNMP operators.

The manager sends its three requests to UDP port 161. The agent sends traps to
UDP port 162. By using two different port numbers, a single system can easily run both
a manager and an agent. (See Exercise 25.1.)

Figure 25.2 shows the format of the five SNMP messages, encapsulated in a UDP
datagram.

common SNMP header

IP UDP version
header header (0)

20 bytes 8 bytes

IP datagram

UDP datagram

SNMP message

~1_ get/set header ~l_ variables to get/set

PDU error
community type re~st-"- status mr, or name value name value ...

(0-3) ~ (0-5) lnaex

PDU I . agent trap]specificl time I
type lenrerpnsel .. Itypel . I . I name

](4)I]acmr](0_6)I coae I stampl

,̄~ trap header .~ -~ interest~ngvanables

Figure 25.2 Format of the five SNMP messages.

In this figure we specify the size in bytes of the IP and UDP headers only. This is
because the encoding used for the SNMP message--called ASN.1 and BER, which we

362 SNMP: Simple Network Management Protocol Chapter 25

describe later in this chapter--varies depending on the type of variable and its value.
The version is 0. This value is really the version number minus one, as the version of

SNMP that we describe is called SNMPvl.
Figure 25.3 shows the values for the PDU type. (PDU stands for Protocol Data Unit, a

fancy word for "packet.")

PDUtype Name

0 get-request
1 get-next-request
2 Set-response
3 set-request
4 trap

Figure 25.3 PDU types for SNMP messages.

The community is a character string that is a cleartext password between the man-
ager and agent. A common value is the 6-character string Dubl ± c.

For the get, get-next, and set operators, the request ID is set by the manager,
and returned by the agent in the get-response message. We’ve seen this type of vari-
able with other UDP applications. (Recall the DNS identification field in Figure 14.3, and
the transaction ID field in Figure 16.2.) It lets the client (the manager in this case) match
the responses from the server (the agent) to the queries that the client issued. This field
also allows the manager to issue multiple requests to one or more agents, and then be
able to sort out the returned replies.

The error status is an integer returned by the agent specifying an error. Figure 25.4
shows the values, names, and descriptions.

error status

0
1
2
3
4
5

Name

noError
tooBig
noSuchName
badValue
readOnly
genErr

Description

all is OK
agent could not fit reply into a single SNMP message
operation specified a nonexistent variable
a set operation specified an invalid value or syntax
manager tried to modify a read-only variable
some other error

Figure 25.4 SNMP error status values.

If an error occurred, the error index is an integer offset specifying which variable was
in error. It is set by the agent only for the noSuchName, badValue, and read0nly
errors.

A list of variable names and values follows in the get, get-next, and set
requests. The value portion is ignored for the gee and get-next operators.

For the trap operator (a PDU type of 4), the format of the SNMP message changes.
We describe the fields in the trap header when we describe this operator in Sec-
tion 25.10.

Section 25.3 Structure of Management Information 363

25.3 Structure of Management Information

SNMP uses only a few different types of data. In this section we’ll look at those data
types, without worrying about how the data is actually encoded (that is, the bit pattern
used to store the data).

INTEG~’.R. Some variables are declared as an integer with no restrictions (e.g.,
the MTU of an interface), some are defined as taking on specific values (e.g., the
IP forwarding flag is 1 if forwarding is enabled or 2 if forwarding is disabled),
and others are defined with a minimum and maximum value (e.g., UDP and
TCP port numbers are between 0 and 65535). "

¯ OCTET STRING. A string of 0 or more 8-bit bytes. Each byte has a value
between 0 and 255. In the BER encoding used for this data type and the next, a
count of the number of bytes in the string precedes the string. These strings are
not null-terminated strings.

¯ DisplayString. i string of 0 or more 8-bit bytes, but each byte must be a
character from the NVT ASCII set (Section 26.4). All variables of this type in the
MIB-II must contain no more than 255 characters. (A 0-1ength string is OK.)

OB~IECT IDENTIFIER. We describe these in the next section.

NULL. This indicates that the corresponding variable has no value. It is used,
for example, as the value of all the variables in a get or get-next request,
since the values are being queried, not set.

IpAddress. An OCTET STRING of length 4, with 1 byte for each byte of the IP
address.

¯ PhysAddress. An OCTET STRING specifying a physical address (e.g., a 6-byte
Ethernet address).

¯ Counter. A nonnegative integer whose value increases monotonically from 0
to 232 - i (4,294,967,295), and then wraps back to 0.

¯ Gauge. A nonnegative integer between 0 and 232 - 1, whose value can increase
or decrease, but latches at its maximum value. That is, if the value increments to
232 - 1, it stays there until reset. The MIB variable tcpCurrEstab is an exam-
ple: it is the number of TCP connections currently in the ESTABLISHED or
CLOSE WAIT state.

¯ TimeTicks. A counter that counts the time in hundredths of a second since
some epoch. Different variables can specify this counter from a different epoch,
so the epoch used for each variable of this type is specified when the variable is
declared in the MIB. For example, the variable sysUpTime is the number of
hundredths of a second that the agent has been up.

¯ SEQUENCE. This is similar to a structure in the C programming language. For
example, we’11 see that the MIB defines a SEQUENCE named UdpEntry contain-
ing information about an agent’s active UDP end points. (By "active" we mean
ports currently in use by an application.) Two entries are in the structure:

364 SNMP: Simple Network Management Protocol Chapter 25

1. udpLocalAddress, of type IpAddress, containing the local IP address.

2. udpLocalPort, of type INTEGER, in the range 0 through 65535, specifying
the local port number.

SEQUENCE OF. This is the definition of a vector, with all elements having the
same data type. If each element has a simple data type, such as an integer, then
we have a simple vector (a one-dimensional array). But we’ll see that SNMP
uses this data type with each element of the vector being a SEQUENCE (struc-
ture). We can then think of it asoa two-dimensional array or table.

For example, the UDP listener table is named udpTable and it is a SEQUENCE
OF the 2-element SEQUENCE (structure) UdpEntry that we just described. Fig-
ure 25.5 shows this two-dimensional array.

udpLocalAddress udpLocalPort
an INTEGERan IpAddress between0-65535 SEQUENCE

(UdpEntry)

SEQUENCE OF
UdpEntry

25.4

Figure 25.5 UDP hstener table (udpTable) as a two-dimensional array in SNMP.

The number of rows in these tables is not specified by SNMP, but we’ll see that a man-
ager using the get-next operator (Section 25.7) can determine when the final row of a
table has been returned. Also, in Section 25.6 we’ll see how the manager specifies which
row of a table it wants to get or set.

Object Identifiers

An object identifier is a data type specifying an authoritatively named object. By "author-
itative" we mean that these identifiers are not assigned randomly, but are allocated by
some organization that has responsibility for a group of identifiers.

An object identifier is a sequence of integers separated by decimal points. These
integers traverse a tree structure, similar to the DNS (Figure 14.1) or a Unix filesystem.
There is an unnamed root at the top of the tree where the object identifiers start. (This is
the same direction of tree traversal that’s used with a Unix filesystem.)

Figure 25.6 shows the structure of this tree when used with SNMP. All variables in
the MIB start with the object identifier 1.3.6.1.2.1.

Each node in the tree is also given a textual name. The name corresponding to the
object identifier 1.3.6.1.2.1 is iso. org. dod. internet, mgmt. raib. These names are
for human readability. The names of the MIB variables that are in the packets exchanged
between the manager and agent (Figure 25.2) are the numeric object identifiers, all of
which begin with 1.3.6.1.2.1.

Section 25.5 Introduction to the Management Information Base 365

root

ccitt(O) iso(l) joint-iso-ccitt(2)

org(3)

dod(6)

±nternet(1) ~-136.1

directory(l) mgrat(2) experimental(3)

mib(1) ~- 1.3 6 1.2.1

private(4)

enterpri ses(1)

system(l) interfaces(2) at(3) ip(4) icmp(5) tcp(6) udp(7)

/\ /\ /\ /I\ /\ /\ /\
Internet SMI

Figure 25.6 Object identifiers m the Management Information Base.

Besides the mib object identifiers in Figure 25.6 we also show one named
iso.org.dod.±nternet.private.enterpr±ses (1.3.6.1.4.1). This is where
vendor-specific MIBs are located. The Assigned Numbers RFC lists around 400 identi-
fiers registered below this node.

25.5 Introduction to the Management Information Base

The Management Information Base, or MIB, is the database of information maintained by
the agent that the manager can query or set. We describe what’s called MIB-II, specified
in RFC 1213 [McCloghrie and Rose 1991].

As shown in Figure 25.6, the MIB is divided into groups named system,
interfaces, at (address translatiol~), ip, and so on.

366 SNMP: Simple Network Management Protocol Chapter 25

In this section we describe only the variables in the UDP group. This is a simple
group with only a few variables and a single table. In the next sections we use this
group to show the details of instance identification, lexicographic ordering, and some
simple examples of these features. After these examples we return to the MIB in Sec-
tion 25.8 and describe some of the other groups in the MIB.

In Figure 25.6 we showed the group named udto beneath ra±b. Figure 25.7 shows
the structure of the UDP group.

mib(])

udp(7) ~- 1.3.6.1.2.1.7

udpInDatagrams(1) udpNoPorts(2) udpInErrors(3) udpOutDatagrams(4) udpTable(5)

udpEntry(1)

udpLocalAddress(l) udpLocalPor t(2)

Figure 25.7 Tree structure of UDP group.

There are four simple variables and a table containing two simple variables. Figure 25.8
describes the four simple variables.

Name

udpInDatagrams
udpNoPorts

udpInErrors

udpOutDatagrams Counter

Datatype R/W I Description

counter Number of UDP datagrams dehvered to user processes.
Counter Number of received UDP datagrams for which no application

process was at the destination port.
Counter Number of undeliverable UDP datagrams for reasons other than no

application at destination port (e g., UDP checksum error).
, Number of UDP datagrams sent.

Figure 25.8 Simple variables in udp group.

We’ll use this format to describe all the MIB variables in this chapter. The column
labeled "R/W" is empty if the variable is read-only, or contains a bullet (o) if the vari-
able is read-write. We always include this column, even if all the variables in a group
are read-only (as they are in the udp group) to reiterate that none of the variables can be
set by the manager. Also, when the data type is an INTEGER with bounds, we specify
the lower limit and upper limit, as we do for the UDP port number in the next
figure.

Section 25.6 Instance Identification 367

Figure 25.9 describes the two simple variables in the udpTable.

UDP hstener table, index = < udpLocalAddress > < udpLocalPort >
Name Datatype R/W Description

udpLocalAddress IpAddress Local IP address for this listener. 0.1a.0.0 indicates the hstener is
willing to receive datagrams on any interface.

udpLocalPort [0.. 65535] Local port number for this listener

Figure 25.9 Variables in udpTable.

Each time we describe the variables in an SNMP table, the first row of the figure indi-
cates the value of the "index" used to reference each row of the table. We show some
examples of this in the next section.

Case Diagrams

There is a relationship between the first three counters in Figure 25.8. Case Diagrams
[Case and Partridge 1989] visually illustrate the relationships between the various MIB
variables in a given group. Figure 25.10 is a Case Diagram for the UDP group.

Application layer

udplnDatagrams--

udpNoPorts-~-~

udpInErrors-~-

IP layer

--udpOutDatagrams

Figure 25.10 Case Diagram for UDP group.

What this diagram shows is that the number of UDP datagrams delivered to applica-
tions (udpInDatagraras) is the number of UDP datagrams delivered from IP to UDP,
minus udpInErrors, minus udpNoPorts. Also, the number of UDP datagrams deliv-
ered to IP (udpOutDatagraras) is the number passed to UDP from the applications.
This illustrates that udpInDatagrams does not include udpInErrors or
udpNoPort s.

These diagrams were used during the development of the MIB to verify that all data
paths for a packet were accounted for. [Rose 1994] shows Case Diagrams for all the
groups in the MIB.

25.6 Instance Identification

Every variable in the MIB must be identified when SNMP is referencing it, to fetch or
set its value. First, only leaf nodes are referenced. SNMP does not manipulate entire
rows or columns of tables. Returning to Figure 25.7, the leaf nodes are the four that we

368 SNMP: Simple Network Management Protocol Chapter 25

described in Figure 25.8 and the two in Figure 25.9. mib, udp, udpTable, and
udpEntry are not leaf nodes.

Simple Variables

Tables

Simple variables are referenced by appending ".0" to the variable’s object identifier. For
example, the counter udpInDatagrams from Figure 25.8, whose object identifier is
1.3.6.1.2.1.7.1, is referenced as 1.3.6.1.2.1.7.1.0. The textual name of this reference is
iso. org. dod. internet, mgmt. mib. udp. udpInDat agrams. 0.

Although references to this v.ariable are normally abbreviated as just
udpInDatagraras. 0, we reiterate that the name of the variable that appears in the
SNMP message (Figure 25.2) is the object identifier 1.3.6.1.2.1.7.1.0.

Instance identification of table entries is more detailed. Let’s return to the UDP listener
table (Figure 25.7).

One or more indexes are specified in the MIB for each table. For the UDP listener
table, the MIB defines the index as the combination of the two variables
udpLocalAddress, which is an IP address, and udpLocalPort, which is an integer.
(We showed this index in the top row in Figure 25.9.)

Assume there are three rows in the UDP listener table: the first row is for IP address
0.0.0.0 and port 67, the second for 0.0.0.0 and port 161, and the third for 0.0.0.0 and port
520. Figure 25.11 shows this table.

udpLocalAddres s

0 0.0.0

0.0.0.0

0.0.0.0

udpLocalPort

67

16]

52O

Figure 25.11 Sample UDP listener table.

This implies that the system is willing to receive UDP datagrams on any interface for
ports 67 (BOOTP server), 161 (SNMP), and 520 (RIP). The three rows in the table are
referenced as shown in Figure 25.12.

Lexicographic Ordering

There is an implied ordering in the MIB based on the order of the object identifiers. All
the entries in MIB tables are lexicographically ordered by their object identifiers. This
means the six variables in Figure 25.12 are ordered in the MIB as shown in Figure 25.13.
Two key points result from this lexicographic ordering.

Section 25.6 Instance Identification 369

Row Object idenhfier Abbreviated name Value

1.3.6.1.2.1,7.5.1.1.0.0.0.0.67 udpLocalAddress. 0.0.0.0.67 0.0.0.01 1.3.6.1.2.1.7.5.1.2.0.0.0 0.67 udpLocalPort. 0.0.0.0.6? 67
1.3.6.1.2.1.7.5.1.1.0.0 0.0.161 udpLocalAddress. 0.0.0.0.163_ 0.0.0.0

2 1.3.6.1.2.1.7.5.1.2.0.0.0 0 161 udpT,ocaXPort. 0.0.0.0.3_ 61 161
1.3.6.1.2.1.7.5.1.1.0.0.0.0.520 udpLocalAddress. 0.0.0.0. 520 0.0 0.03 1.3.6.1.2.1.7.5.1.2.0 0.0.0.520 udpLocalPort. 0.0.0.0. 520 520

Figure 25.12 Instance identihcation for rows m UDP listener table.

Column Object identiher Abbreviated name Value(lexicographically ordered)

1,3.6.1.2.1.7.5.1.1.0.0.0.0 67 udpLocalAddress. 0.0.0.0.67 0.0.0.0
1 1.3.6.1.2.1.7.5.1.1.0.0.0.0.161 udpLocaZAddress. 0.0.0.0.3_ 63_0.0.0.0

1.3.6.1.2.1.7.5.1.1.0.0.0.0.520 udpLocalAddress. 0.0.0.0. 5200.0.0.0
1.3 6.1.2.1.7.5.1,2.0.0.0.0.67 udpT.ocalPort. 0.0.0.0o 67 67

2 1.3.6.1.2,1.7.5.1.2.0.0.0.0.161 udpLocalPort. 0.0.0.0.163_ 161
1.3.6.1.2.1 7.5.1.2.0.0.0.0.520 udpT,ocalPort. 0.0.0.0,520 520

Figure 25.13 Lexicographic ordering of UDP listener table.

1. Since all instances for a given variable (udpT.ocalAddress) appear before all
instances for the next variable in the table (udpLocalPor¢), this implies that
tables are accessed in a column-row order. This results from the lexicographic
ordering of the object identifiers, not the human-readable names.

2. The ordering of the rows in a table depends on the values of the indexes for the
table. In Figure 25.13, 67 is lexicographically less than 161, which is lexicograph-
ically less than 520.

Figure 25.14 shows this column-row order for our sample UDP listener table.

udpLocalAddress

0,0.0.0

0.0.0,0

udpLocalPort

67 ~.

0.0.0.0 ~ ~ 520

Figure 25.14 UDP listener table, showing column-row ordering.

We’ll also see this column-row ordering when we use the 9e¢-nex¢ operator in the
next section.

370 SNMP: Simple Network Management Protocol Chapter 25

25.7 Simple Examples

Simple

In this section we’ll show some examples that fetch the values of variables from an
SNMP agent. The software used to query the agent is called snmp± and is from the
ISODE system. Both are described briefly in [Rose 1994].

Variables

We’ll query a router for two simple variables from the UDP group:

sun % snmpi -a gateway -c secret

snmpi> get udpInDatagrams.0 udpNoPorts.0
udpInDatagrams.0=616168
udpNoPorts.0=33

snmpi> quit

The -a option identifies the agent we want to communicate with, and the -c option
specifies the SNMP community. It is a password supplied by the client (snmp± in this
case) and if the server (the agent in the system gateway) recognizes the community
name, it honors the manager’s request. An agent could allow clients within one com-
munity read-only access to its variables, and clients in another community read-write
access.

The program outputs its snmpi > prompt, and we can type commands such as get,
which translates into an SNMP get-request message. When we’re done, we type
qu± t. (In all further examples we’ll remove this final qu± t command.)

Figure 25.15 shows the two lines of tcpdurap output for this example.

1 0.0 sun. 1024 > gateway. 161: GetRequest(42)
1.3.6.1.2.1.7.1.0 1.3.6.1.2.1.7.2.0

2 0.348875 (0.3489) gateway. 161 > sun. 1024: GetResponse(46)
1.3.6.1.2.1.7.1.0:616168
1.3.6.1.2.1.7 .2.0=33

Figure 25.15 tcpdump output for simple SNMP query.

The request for the two variables is sent in a single UDP datagram, and the response is
also a single UDP datagram.

We show the variables as their respective object identifiers, because that is what’s
sent in the SNMP messages. We had to specify the instance of the two variables as 0.
Notice also that the name of the variable (its object identifier) is always returned in the
response. We’ll see below that this is required for the get-next operator to work.

get-next Operator

The operation of the get-next operator is based on the lexicographic ordering of the
MIB. We start the following example by asking for the next object identifier after udp
(without specifying any instance, since this is not a leaf object). This returns the first

Section 25.7 Simple Examples 371

object in the UDP group. We then ask for the next entry after this one, and the second
entry is returned. We repeat this one more time to get the third entry:

sun % snmpi -a gateway -c secret

snmpl> next udp
udpInDatagrams. 0=616318

snmpl> next udpInDatagrams. 0
udpNoPort s. 0=33

snmpi> next udpNoPorts.0
udpInErrors. 0=0

This example shows why a get-next operator must return the name of the variable:
we ask the agent for the next variable, and the agent returns its name and value.

Using the get-next operator in this fashion, one could imagine a manager with a
loop that starts at the beginning of the MIB and queries the agent for every variable that
the agent maintains. Another use of this operator is to iterate through tables.

Table Access

We can reiterate the column-row ordering of tables using our simple query program to
step through the entire UDP listener table. We start by asking for the next variable after
udpTable. Since this is not a leaf object we can’t specify an instance, but the
get-next operator still returns the next object in the table. We then work our way
through the table, with the agent returning the next variable, in column-row order:

sun % snmpi -a gateway -c secret

snmpi> next udpTable
udpLocalAddress. 0.0.0.0.67=0.0.0.0

snmpl> next udpLocalAddress. 0.0.0.0.67
udpLocalAddress. 0.0.0.0. 161=0.0.0.0

snmpi> next udpLocalAddress. 0.0.0.0. 161
udpLocalAddress. 0.0.0.0. 520=0.0.0.0

snmpi> next udpLocalAddress.0.0.0.0.520
udpLocalPort. 0.0.0.0.67=67

snmpi> next udpLocalPort.0.0.0.0.67
udpLocalPort. 0.0.0.0. 161=161

snmpi> next udpLocalPort.0.0.0.0.161
udpLocalPort. 0.0.0.0. 520=520

snmpi> next udpLocalPort. 0.0.0.0. 520
snmpInPkts. 0=59 we’re f~nished w~th the UDP hstener table

We see that the order returned corresponds to Figure 25.14.
How does a manager know when it reaches the end of a table? Since the response

to the get-next operator contains the name of the next entry in the MIB after the table,
the manager can tell when the name changes. In our example the last entry in the UDP
listener table is followed by the variable s nmp TnP kt s.

372 SNMP: Simple Network Management Protocol Chapter 25

25.8 Management Information Base (Continued)

We now return to the description of the MIB. We describe only the following groups:
system (system identification), ±f (interfaces), at (address translation), ±p, ±crop, and
top. Additional groups are defined.

system Group

The system group is simple; it consists of seven simple variables (i.e., no tables). Fig-
ure 25.16 shows their names, data types; and descriptions.

Name

sysDescr
sysOhjectID
sysUpTime

sysContact
sysName
sysLocatlon
sysServices

Datatype ~/W Descripti~o~

i D~.s~ay~rzng| ITextual descript,on of entity. --
IOb3ectID / IVend°r’s ID within the subtree 1.3 6.1.4.1.
TimeTicks ! ITime in hundredths of a second since network management

’ | I portion of system was rebooted.
D~splayStrxngI

¯ I Name of contact person and how to contact them.
D~-splayStrn_ngI

¯ {Node’s fully qualified domainname (FQDN).
D±splaystr~nql ¯ { Physical location of node.
[0.. 12 7] [I Value indicating services provided by node. It is the sum of

| ! the layers in the OSI model supported by the node. The
following values are added together, depending on the
services provided: 0x01 (physical), 0x02 (datalink), 0x04
(internet), 0x08 (end-to-end), 0x40 (application).

Figure 25.16 Simple variables in system group.

We can query the router netb for some of these variables:

sun % snmpi -a netb -c secret

snmpi> get sysDescr.0 sysObjectID.0 sysUpTime.0 sysServices.0
sysDescr.0="Epilogue Technology SNMP agent for Telebit NetBlazer"
sysObjectID.0=l.3.6.1.4.1.12.42.3.1
sysUpTime.0=22 days, ii hours, 23 minutes, 2 seconds (194178200 tzmetlcks)
sysServices.0=0xc<internet,transport>

The system’s object identifier is in the internet.private.enterprises group
(1.3.6.1.4.1) from Figure 25.6 (p. 365). From the Assigned Numbers RFC we can deter-
mine that the next object identifier (12) is assigned to the vendor (Epilogue).

We can also see that the sysServices variable is the sum of 4 and 8: this element
supports the lnternet layer (i.e., routing) and the transport layer (i.e., end-to-end).

interface Group

Only one simple variable is defined for this group: the number of interfaces on the sys-
tem, shown in Figure 25.17.

Section 25.8 Management Information Base (Continued)373

Name] Datatype R/W~ Description

ifNumber INTEGER ~ Number of network interfaces on system.

Figure 25.17 Simple variable m xf group.

This group also defines a table with 22 columns. Each row of the table defines the
characteristics for each interface, as shown in Figure 25.18.

Name

if Index
IfDescr
if Type

ifMtu
~fSpeed
ifPhysAddress

ifAdminStatus
ifOperStatus
ifLastChange

ifInOctets

ifInUcastPkts
ifInNUcastPkts

zfInDzscards

~fInErrors
ifInUnknownProtos

ifOutOctets

lfOutUcastPkts
ifOutNUcastPkts

lfOutDiscards

ifOutErrors
lfOutQLen
ifSpecific

Datatype

INTEGER
DlsplayString
INTEGER

INTEGER
Gauge
PhysAddress

[1..3]
[1..3]
TlmeTicks

Counter

Counter
Counter

Counter

Counter
Counter

Counter

Counter
Counter

Counter

Counter
Gauge
Ob3ectID

Interface table, index : < Iflndex >
R/W Description

Index of interface, between one and i fNumbe r.
Textual description of interface.
Type, for example: 6 : Ethernet, 7 = 802.3 Ethemet,

9 = 802.5 token ring, 23 = PPP, 28 = SLIP, and many
other values.

MTU of mterface.
Speed in bits/sec.
Physical address, or string of 0 length for interfaces

without physical addresses (e.g, serial links).
Desired state of mterface: 1 : up, 2 = down, 3 = testing.
Current state of interface: 1 = up, 2 = down, 3 = testing.
Value of sysUpTime when interface entered current

operational state.
Total number of bytes received, including framing

characters.
Number of unicast packets delivered to higher layers
Number of nonunicast (i.e., broadcast or multicast)

packets delivered to higher layers.
Number of received packets discarded even though no

error in packet 0.e., out of buffers).
Number of received packets discarded because of errors.
Number of received packets discarded because of

unknown protocol.
Number of bytes transmitted, including framing

characters.
Number of unicast packets received from higher layers.
Number of nonunicast 0.e., broadcast or multicast)

packets received from higher layers
Number of outbound packets discarded even though no

error in packet 0.e., out of buffers).
Number of outbound packets discarded because of errors
Number of packets in output queue.
A reference to MIB definitions specific to this particular

type of media.

Figure 25.18 Variables ~n interface table: ~_fTable.

374 SNMP: Simple Network Management Protocol Chapter 25

We can query the host sun for some of these variables for all its interfaces. We
expect to find three interfaces, as in Section 3.8, if the SLIP interface is up:

sun % snmpi -a sun

snmpi> next ifTable ~rst see what index of.first interface is
if Index. i=i

snmpi> get ifDescr.l ifType.l ifMtu.l ifSpeed.l ifPhysAddress.l
ifDescr.l="le0"
ifType.l=ethernet-csmacd(6)
ifMtu.l=1500
ifSpeed.l=10000000
ifPhysAddress.l=0x08:00:20:03:f6:42

snmpi> next ifDescr.l ifType.l ifMtu.l ifSpeed.l ifPhysAddress.l
ifDescr.2="sl0"
ifType.2=propPointToPointSerial(22)
ifMtu.2=552
ifSpeed.2=0
ifPhysAddress.2=0x00:00:00:00:00:00

snmpi> next ifDescr.2 ifType.2 ifMtu.2 ifSpeed.2 ifPhysAddress.2
ifDescr.3="lo0"
ifType.3=softwareLoopback(24)
ifMtu.3=1536
ifSpeed.3=0
ifPhysAddress.3=0x00:00:00:00:00:00

We first get five variables for the first interface using the get operator, and then get the
same five variables for the second interface using the get-next operator. The last
command gets these same five variables for the third interface, again using the
get-next command.

The interface type for the SLIP link is reported as proprietary point-to-point serial,
not SLIP. Also, the speed of the SLIP link is not reported.

It is critical to understand the relationship between the get-next operator and the
column-row ordering. When we say next ±fDeser. 1 it returns the next row of the
table for this variable, not the next variable in the same row. If tables were stored in a
row-column order instead, we wouldn’t be able to step to the next occurrence of a given
variable this way.

at Group

The address translation group is mandatory for all systems, but was deprecated by
MIB-II. Starting with MIB-II, each network protocol group (e.g., IP) contains its own
address translation tables. For IP it is the ±pNetToMed±aTable.

Only a single table with three columns is defined for the at group, shown in Fig-
ure 25.19.

We can use a new command within the snmp± program to dump an entire table.
We’ll query the router named k±net±es (which routes between a TCP/IP network and
an AppleTalk network) for its entire ARP cache. This output reiterates the lexicographic
ordering of the entries in the table:

Section 25.8 Management Information Base (Continued)375

Address translation table, index = < atlflndex >.1.< atNetAddress >
Name Datatype R/W Description

at If Index INTEGER ¯ Interface number: Iflndex.
atPhysAddress PhysAddress ¯ Physical address. Setting this to a string of 0 length

invalidates the entry.
atNetAddress NetworkAddres s ¯ IP address.

Figure 25.19 Address translahon table: atTable.

sun % snmpi -a kinetics -c secret dump at

atIfIndex.l.l.140.252.1.4=l
atIfIndex.l.l.140.252.1.22=l
atIfIndex.l.l.140.252.1.183=l
atIfIndex.2.1.140.252.6.4=2
atIfIndex.2.1.140.252.6.6=2

atPhysAddress.l.l
atPhysAddress.l.l
atPhysAddress.l.l
atPhysAddress.2.1
atPhysAddress.2.1

atNetAddress.l.l.
atNetAddress.l.l.
atNetAddress.l.l.
atNetAddress.2.1.
atNetAddress.2.1.

.140.252.1.4=0xaa:00:04:00:f4:14

.140.252.1.22=0x08:00:20:0f:2d:38

.140.252.1.183=0x00:80:ad:03:6a:80

.140.252.6.4=0x00:02:16:48

.140.252.6.6=0x00:02:3c:48

140.252.1.4=140.252.1.4
140.252.1.22=140.252.1.22
140.252.1.183=140.252.1.183
140.252.6.4=140.252.6.4
140.252.6.6=140.252.6.6

If we watch the packet exchange using tcpdump, when snmpi dumps an entire
table it first issues a get-next for the table name (at in this example) to get the first
entry. It prints the first entry and issues another get-next. This continues until the
entire table has been dumped.

Figure 25.20 shows the arrangement of this table.

atIfIndex atPhysAddress atNetAddress

I 0xaa:00:04:00:f4:14 140.252.1.4
1 0x08:00:20:0f:2d:38 140.252.1.22
1 0x00:80:ad:03:6a:80 140.252.1.183
2 0x00 : 02 : 16 : 48 140.252.6.4
2 0x00 : 02 : 3c : 48 140.252.6.6

Figure 25.20 Example of at table (ARP cache).

The AppleTalk physical addresses on interface number 2 are 32-bit values, not the 48-bit
Ethernet addresses to which we’re accustomed. Also note that an entry exists for our
router (netb at 140.252.1.183), which we expect, since kinetics and netb are on the
same Ethernet (140.252.1) and kinetics must use ARP to send the SNMP responses
back to us.

376 SNMP: Simple Network Management Protocol Chapter 25

±p Group

The ±p group defines numerous variables and three tables. Figure 25.21 defines the
simple variables.

Name Datatype R/W

±g ward~nq [1..2J ¯

~g aultTTL ,INTEGER ¯

iF ~ceives ,Counter
iF drErrors Counter

iF JdrErrors Counter

iF wDatagrams Counter

iF aknownProtos Counter

i~ tscards Counter

i~ 91ivers Counter

ipOutRequests Counter

l~ 31scards Counter

i[~oRoutes Counter

i~ ~mTimeout INTEGER

i~ ~mReqds Counter

i~ ~mOKs Counter

i~ ~mFalls Counter
ipFragOKs Counter

ipFragFails Counter

ipFragCreates Counter
ipRoutzngDiscards Counter

Description

1 means the system is forwarding IP datagrams, and 2 means it
is not.

Default TTL value when transport layer doesn’t provide one.
Total number of received IP datagrams from all interfaces
Number of IP datagrams discarded because of header errors

(e.g., checksum error, version number mismatch, TTL
exceeded, etc.).

Number of IP datagrams discarded because of incorrect
destination addr

Number of IP datagrams for which an attempt was made to
forward.

Number of locally addressed IP datagrams with an mvalid
protocol held.

Number of received IP datagrams discarded because of a lack
of buffer space.

Number of IP datagrams delivered to appropriate protocol
module.

Total number of IP da mgrams passed to IP for transmission
Does not includ(those counted in ~_pForwDatagrams.

Number of output IP datagrams discarded because of a lack of
buffer space.

Number of IP datagrams discarded because no route could be
found.

Maximum number of seconds that received fragments are held
while awaiting reassembly.

Number of IP fragments received that needed to be
reassembled.

Number of IP datagrams successfully reassembled.
Number of failures b} IP reassembly algorithm.
Number of IP datagrams that have been successfully

fragmented.
Number of IP datagrams that needed to be fragmented but

couldn’t because t fragment" flag was set.
Number of IP fragments generated by fragmentation.
Number of routing entries chosen to be discarded even though

they were valid

Figure 25.21 S~mple variables m ip group.

The first table in the ip group is the IP address table. It contains one row for each
IP address on the system. Each row contains five variables, described in Figure 25.22.

Section 25.8 Management Information Base (Continued)377

Name

ipAdEntAddr
ipAdEntIfIndex
ipAdEntNetMask
ipAdEntBcastAddr

IpAdEntReasmMaxSize

IP address table, index : < ipAdEntAddr >

Datatype

IpA~dress
INTEGER
IpAddress
[o..1]

[0.,65535]

R/W Description

IP address for this row,
Corresponding interface number: ±fZndex.
Subnet mask for this IP address.
Value of least-significant bit of the IP broadcast address.

Normally 1.
:Size of largest IP datagram received on this interface that can

be reassembled.

Figure 25.22 IP address table: lpAddrTable.

We can query the host sun for its entire IP address table:
sun % snmpi -a sun dump ipAddrTable

ipAdEntAddr.127.0.0.1=127.0.0.1
ipAdEntAddr.140.252.1.29=140.252.1.29
ipAdEntAddr.140.252.13.33=140.252.13.33

ipAdEntIfIndex.127.0.0
zpAdEntIfIndex.140.252
ipAdEntIfIndex.140.252

ipAdEntNetMask.127.0.0
ipAdEntNetMask.140.252
lpAdEntNetMask.140.252

ipAdEntBcastAddr.127.0

.1=3

.1.29=2

.13.33=1

loopback interface, lo0
SLIP znterface, sl0
Ethernet interface, le0

.i=255.0.0.0

.1.29=255.255.255.0

.13.33=255.255.255.224

.0.i=i all three use one bits for broadcast
KpAdEntBcastAddr.140.252.1.29=l
ipAdEntBcastAddr.140.252.13.33=l

ipAdEntReasmMaxSize.127.0.0.1=65535
ipAdEntReasmMaxSize.140.252.1.29=65535
ipAdEntReasmMaxSize.140.252.13.33=65535

The interface numbers can be compared with the output following Figure 25.18, and the
IP addresses and subnet masks can be compared with the values output by the
ifconfig command in Section 3.8.

The next table, Figure 25.23, is the IP routing table. (Recall our description of rout-
ing tables in Section 9.2.) The index used to access each row of the table is the destina-
tion IP address.

Figure 25.24 is the IP routing table on the host sun obtained with the dump
ipRouteTable command using snmpi. We have deleted all five of the routing met-
rics, since they are all -1. In the column headings we’ve also removed the prefix
ipRoute from each variable name.

378 SNMP: Simple Network Management Protocol Chapter 25

Name

ipRouteDest

ipRouteIfIndex
ipRouteMetricl

ipRouteMetric2
ipRouteMetric3
ipRouteMetrlc4
ipRouteNextHop
ipRouteType

ipRouteProto

ipRouteAge

ipRouteMask

ipRouteMetric5
ipRouteInfo

iIpAddress

INTEGER
INTEGER

INTEGER
INTEGER
INTEGER
IpAddress
INTEGER

INTEGER

INTEGER

IpAddress

INTEGER
ObjectID

IP routing table, index = < ipRouteDest >
Datatype R/V,7 Description

¯ Destination IP address. A value of 0.0.0.0 indicates a default
entry.

¯ Interface number: if Index.
¯ Primary routing metric. The meaning of the metric depends

on the routing protocol (ipRouteProto). A value of
-1 means it’s not used.

¯ Alternative routing metric.
¯ Alternative routing metric.
¯ Alternative routing metric.
¯ IP address of next-hop routen
¯ Route type: 1 = other, 2 = invalidated route, 3 = direct,

4 = indirect.
Routing protocol: 1 = other, 4 = ICMP redirect, 8 = RIP,

13 = OSPF, 14 = BGP, and others.
¯ Number of seconds since route was last updated or

determined to be correct.
¯ Mask to be logically ANDed with destination IP address

before being compared w~th :~pRouteDest.
¯ Alternative routing metric.

Reference to MIB definitions specific to this particular
routing protocol.

Figure 25.23 IP routing table: lpRouteTable.

Dest

0 0.0.0
127.0.0.1
140.252.1.183
140.252.13.32
140 252.13.65

IfIndex

2
3

NextHop

140.252.1.183
127.0,0.1
140.252.1.29
140.252.13.33
140.252.13.35

Type Proto Mask

indirect(4) othe~(1) I 0.0.0.0
direct(3) other(l)] 255.255.255,255
direct(3) other(l) I 255.255.255.255
direct(3) other(1) 255.255.0.0

indirect(4) other(l) 255.255.255.255

Figure 25.24 IP routing table for the router sun.

For comparison, here is the IP routing table in the format output by netstat (which
we discussed in Section 9.2). Figure 25.24 is lexicographically ordered, unlike the
netstat output:

sun % netstat -rn
Routing tables
Destination
140.252.13.65
127.0.0.1
140.252.1.183
default
140.252.13.32

Gateway Flags Refcnt Use Interface
140.252.13.35 UGH 0 115 leO
127.0.0.1 UH 1 1107 lo0
140.252.1.29 UH 0 86 sl0
140.252.1.183 UG 2 1628 sl0
140.252.13.33 U 8 68359 le0

Section 25.8 Management Information Base (Continued)379

The final table in the ±p group is the address translation table, Figure 25.25. As we
said earlier, the at group is now deprecated, and this IP table replaces it.

IP address translation table, index = < ~pNetToMe&alflndex >.< ipNetToMed~aNetAddress >
Name Datatype R/W

ipNetToMedialflndex INTEGER *
ipNetToMediaPhysAddress PhysAddress ¯
ipNetToMediaNetAddress IpAddress ¯
ipNetToMediaType [1..4] ¯

Description

Corresponding interface: ± £ z ndex.
Physical address.
IP address.
Type of mapping: 1 = other, 2 = invalidated,

3 = dynamic, 4 = static.

Figure 25.25 IP address translation table: ipNetToMediaTable

Here is the ARP cache on the system sun:

sun % amp -a
svr4 (140.252.13.34) at 0:0:c0:c2:9b:26
bsdi (140.252.13.35) at 0:0:c0:6f:2d:40

and the corresponding SNMP output:

sun % snmpi -a sun dump ipNetToMediaTable

lpNetToMediaIfIndex.l.140.252.13.34:l
ipNetToMediaIfIndex.l.140.252.13.35:l
lpNetToMediaPhysAddress.l.140.252.13.34:0x00:00:c0:c2:9b:26
ipNetToMediaPhysAddress.l.140.252.13.35=0x00:00:c0:6f:2d:40
ipNetToNediaNetAddress.l.140.252.13.34=140.252.13.34
ipNetToMediaNetAddress.l.140.252.13.35:140.252.13.35
ipNetToMediaType.l.140.252.13.34=dynamic(3)
ipNetToMediaType.l.140.252.13.35:dynamic(3)

icmp Group

The icmp group consists of four general counters (total number of input and output
ICMP messages, and number of input and output ICMP messages with errors) and 22
counters for the different ICMP message types: 11 input counters and 11 output coun-
ters. These are shown in Figure 25.26.

For the ICMP messages with additional codes (recall from Figure 6.3 that there are
16 different codes for destination unreachable), a separate counter is not maintained by
SNMP for each code.

tcp Group

Figure 25.27 describes the simple variables in the tcp group. Many of these refer to the
TCP states that we showed in Figure 18.12.

380 SNMP: Simple Network Management Protocol Chapter 25

Name

mpInMsgs
mpInErrors

mpInDestUnreachs
mpInTlmeExcds
mplnParmProbs
mpInSrcQuenchs
mpInRedlrects
mpInEchos
mpInEchoReps
mpInTlmestamps
mpInTimestampReps
mpInAddrMasks
mpInAddrMaskReps

mpOutMsgs
mpOutErrors

mpOutDestUnreachs

Datatype

Counter
Counter

Counter
Counter
Counter
ICounter
Counter
Counter
Counter
Counter
Counter

Counter
Counter

Counter

R/W Description

Total number of received ICMP messages
Number of received ICMP messages w~th errors (e.g., invalid

ICMP checksum)
Number of received ICMP destination unreachable message.
Number of received ICMP time exceeded message.
Number of received IC~ parameter problem message.
Number of received
Number of received
Number of received
Number of received
Number of received

ICMP source quench messages.
ICi~ edirect messages.
ICMP echo request messages,
ICMP echo reply messages.
ICMP timestamp request messages.

Number of received IC~ timestamp reply messages.
Number of received ICMP address mask request messages.
Number of received ICMP address mask reply messages.
Total number of output [CMP messages.
Number of ICMP messages not sent because of a problem

within ICMP (e.g., lack of buffers).
Number of ICMP destination unreachable messages sent.

mpOutT~meExcds
mpOutParmProbs
mpOutSrcQuenchs
mpOutRedirects
mpOutEchos
apOutEchoReps
mpOutTimestamps
mpOutTlmestampReps
apOutAddrMasks

icmpOutAddrMaskReps

Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter
Counter

Number of ICMP
Number of ICMP
Number of ICMP
Number of ICMP
Number of ICMP
Number of ICMP
Number of ICMP
Number of ICMP
i Number of ICMP
I Number of ICMP

time ,exceeded messages sent.
paran)roblem messages sent.
sourc{ cluench messages sent.
redirect messages sent.
echo request messages sent.
echo ~ply messages sent.
timesl ~p requests sent.
timestamp reply messages sent.
address mask request messages sent.
address mask reply messages sent.

Figure 25.26 S~mple variables in ~_cmp group,

We can query some of these variables on the system sun:

sun % snmpi -a sun

snmpi> get tcpRtoAlgorithm.0 tcpRtoMin.0 tcpRtoMax.0 tcpMaxConn.0
tcpRtoAlgorithm.0=vanj(4)
tcpRtoMin.0=200
tcpRtoMax.0=12800
tcpMaxConn.0=-i

This system (SunOS 4.1.3) uses the Van Jacobson retransmission timeout algorithm, uses
timeouts between 200 ms and 12.8 seconds, and has no fixed limit on the number of
TCP connections. (This upper limit of 12.8 seconds appears wrong, since most imple-
mentations use an upper limit of 64 seconds, as we saw in Chapter 21.)

The tcp group has a single table, the TCP connection table, shown in Figure 25.28.
This contains one row for each coimection. Each row contains five variables: the state of
the connection, local IP address, local port number, remote IP address, and remote port
number.

Section 25.8 Management Information Base (Continued)381

Name Datatype R/W

t cpRtoAlgorithm INTEGER

tcpRtoMln INTEGER
tcpRtoMax INTEGER
tcpMaxConn INTEGER
tcpActiveOpens Counter
tcpPassiveOpens Counter
tcpAttemptFails Counter

tcpEstabResets Counter

tcpCurrEstab Gauge

tcpInSegs Counter
tcpOutSegs Counter

tcpRetransSegs Counter
tcpInErrs Counter

tcpOutRsts Counter

Description

Algorithm used to calculate retransmission timeout value: 1 = none
of the following, 2 = a constant RTO, 3 = MIL-STD-1778
Appendix B, 4 = Van Jacobson’s algorithm.

Minimum retransmission timeout value, in milliseconds.
Maximum retransmission timeout value, in milliseconds.
Maximum number of TCP cotmect,ons. Value is -1 if dynam,c.
Number of transitions from CLOSED to SYN_SENT states.
Number of transitions from LISTEN to SYN_RCVD states.
Number of transitions from SYN_SENT or SYN_RCVD to CLOSED,

plus number of transitions from SYN_RCVD to LISTEN.
Number of transitions from ESTABLISHED or CLOSE_WAIT states

to CLOSED.
Number of connections currently in ESTABLISHED or

CLOSE_WAIT states.
Total number of segments received.
Total number of segments sent, excluding those containing only

retransmitted bytes.
Total number of retransmitted segments.
Total number of segments rece,ved wtth an error (such as invalid

checksum)
Total number of segments sent w~th RST flag set.

Figure 25.27 Simple variables in tcp group.

index : < tcpConnLocalAddress >.< tcpConnLocalPort >.< tcpConnRemAddress >.< tcpConnRemPort >
Name

tcpConnState

Datatype R/W

[1..12]

IpAddress

[0..65535]
IpAddress
[0..65535]

tcpConnLocalAddress

tcpConnLocalPort
tcpConnRemAddress
tcpConnRemPort

Description

State of connection: 1 = CLOSED, 2 = LISTEN, 3 =
SYN_SENT, 4 = SYN_RCVD, 5 = ESTABLISHED, 6 =
FIN_WAIT_l, 7 = FIN_WAIT_2, 8 = CLOSE_WAIT,

9 = LAST_ACK, 10 = CLOSING, 11 = TIME_WAIT,
12 = delete TCB. The only value that the manager can
set this variable to is 12 (e.g., immediately terminate
the connection)

Local IP address. 0.0.0.0 indicates the hstener is willing to
accept connections on any interface.

Local port number.
Remote IP address.
Remote port number.

Figure 25.28 TCP connection table: tcpConnTable.

Let’s look at this table on the system sun. We show only a portion of the table,
since there are many servers listening for connections. Before dumping this table two
TCP connections were established:

sun % rlogin gemini IPaddress of gemini ~s 140.252 1 11

and
sun % telnet localhost IP address should be 127 0.0 1

382 SNMP: Simple Network Management Protocol Chapter 25

The only listening server that we show is the FTP server, on port 21:

sun % snmpi -a sun dump tcpConnTable

tcpConnState.0.0.0.0.21.0.0.0.0.0=listen(2)
tcpConnState.127.0.0.1.23.127.0.0.1.1415=established(5)
tcpConnState.127.0.0.1.1415.127.0.0.1.23=established(5)
tcpConnState.140.252.1.29.1023.140.252.1.11.513=established(5)

tcpConnLocalAddress.0.0.0.0.21.0.0.0.0.0=0.0.0.0
tcpConnLocalAddress.127.0.0.1.23.127.0.0.1.1415=127.0.0.1
tcpConnLocalAddress.127.0.O.l.1415.127.0.O.l.23=127.0.O.l
tcpConnLocalAddress.140.252.1.29.1023.140.252.1.11.513=140.252.1.29

tcpConnLocalPort.0.0.0.0.21.0.0.0.0.0=21
tcpConnLocalPort.127.0.0.1.23.127.0.0.1.1415=23
tcpConnLocalPort.127.0.0.1.1415.127.0.0.1.23=1415
tcpConnLocalPort.140.252.1.29.1023.140.252.1.11.513=1023

tcpConnRemAddress.0.0.0.0.21.0.0.0.0.0=0.0.0.0
tcpConnRemAddress.127.0.0.1.23.127.0.0.1.1415=127.0.0.1
tcpConnRemAddress.127.0.0.1.1415.127.0.0.1.23=127.0.0.1
tcpConnRemAddress.140.252.1.29.1023.140.252.1.11.513=140.252.1.11

tcpConnRemPort.0.0.0.0.21.0.0.0.0.0=0
tcpConnRemPort.127.0.0.1.23.127.0.0.1.1415=1415
tcpConnRemPort.127.0.0.1.1415.127.0.0.1.23=23
tcpConnRemPort.140.252.1.29.1023.140.252.1.11.513=513

For the rlogin to gemini only one entry appears, since gemini is a different host. We
only see the client end of the connection (local port 1023), but both ends of the Telnet
connection appear (client port 1415 and server port 23), since the connection is through
the loopback interface. We can also see that the listening FTP server has a local IP
address of 0.0.0.0, indicating it will accept connections on any interface.

25.9 Additional Examples

We now return to some earlier problems we encountered in the text, and use SNMP to
understand what’s happening.

Interface MTU

Recall our experiment in Section 11.6, in which we tried to determine the MTU of the
SLIP link from netb to sun. We can now use SNMP to obtain this MTU. We first
obtain the interface number (ipRoute I fIndex) of the SLIP link (140.252.1.29) from the
IP routing table. Using this we go into the interface table and fetch the MTU (along
with the description and type) of the SLIP link:

sun % snmpi -a netb -c secret

snmpi> get ipRouteIfIndex.140.252.1.29
ipRouteIfIndex.140.252.1.29=12

Section 25.9 Additional Examples 383

snmpl> get ifDescr.12 ifType.12 ifMtu.12
ifDescr.12:"Teleblt NetBlazer dynamic dlal virtual interface"
lfType.12-other(1)
lfMtu.12-1500

We see that even though the link is a SLIP link, the MTU is set to the Ethernet value of
1500, probably to avoid fragmentation.

Routing Tables

Recall our discussion of address sorting performed by the DNS in Section 14.4 (p. 194).
We showed how the first IP address returned by the name server was the one that
shared a subnet with the client. We also mentioned that using the other IP address
would probably work, but could be less efficient. Let’s look at using the alternative IP
address and see what happens. We’ll use SNMP to look at a routing table entry, and tie
together many concepts from earlier chapters dealing with IP routing.

The host gemini is multihomed, with two Ethernet interfaces. First let’s verify that
we can Telnet to both addresses:

sun % telnet 140.252.1.ii daytime
Trying 140.252.1.11 ...
Connected to 140.252.1.Ii.
Escape character is ’^]’.
Sat Mar 27 09:37:24 1993
Connection closed by foreign host.

sun % telnet 140.252.3.54 daytime
Trylng 140.252.3.54 ...
Connected to 140.252.3.54.
Escape character is ’^]’.
Sat Mar 27 09:37:35 1993
Connection closed by foreign host.

So there is no connectivity difference between the two addresses.
traceroute to see if there is a different route for each address:

sun % traceroute 140.252.1.ii
traceroute to 140.252.1.11 (140.252.1.ii),
1 netb (140.252.~i.183) 299 ms 234 ms
2 geminl (140.252.1.ii) 233 ms 228 ms

Now we’ll use

30 hops max, 40 byte packets
233 ms

234 ms

sun % traceroute 140.252.3.54
traceroute to 140.252.3.54 (140.252.3.54), 30 hops max, 40 byte packets

1 netb (140.252.1.183) 245 ms 212 ms 234 ms
2 swnrt (140.252.1.6) 233 ms 229 ms 234 ms
3 gemlni (140.252.3.54) 234 ms 233 ms 234 ms

There is an extra hop if we use the address on subnet 140.252.3. Let’s find the reason for
the extra hop. (The router swnrt is R3 from Figure 3.6, p. 43.)

Figure 25.29 shows the arrangement of the systems. We can tell from the
traceroute output that the host gemini and the router swnrt are both connected to
two networks: 140.252.1 and 140.252.3.

384 SNMP: Simple Network Management Protocol Chapter 25

140.252.3

140.252.1

Figure 25.29 Topology of systems being used for example.

Recall in Figure 4.6that we explained how proxy ARP is used by the router netb to
make it appear as though sun was directly connected to the Ethernet 140.252.1. We’ve
also omitted the modems on the SLIP link between sun and netb, since they’re not rel-
evant to this discussion.

In Figure 25.29 we show the path of the Telnet data using dashed arrows, when the
address 140.252.3.54 is specified. How do we know that the return packets go directly
from gemini to netb, and don’t go back the way they came? We use our version of
t race route with loose source routing from Section 8.5:

sun % traceroute -g 140.252.3.54 sun
traceroute to sun (140.252.13.33), 30 hops max, 40 byte packets

1 netb (140.252.1o183) 244 ms 256 ms 234 ms

3 gemini (140.252.3.54) 285 ms 227 ms 234 ms
4 netb (140.252.1.183) 263 ms 259 ms 294 ms
5 sun (140.252.13.33) 534 ms 498 ms 504 ms

When we specify loose source routing, the router swnrt never responds. If we look at
the earlier output from traeeroute, without source routing, we see that swnrt is
indeed the second hop. The reason for the timeouts must be that the router does not
generate the ICMP time exceeded errors when the datagram specifies loose source rout-
ing. What we are looking for in this traeeroute output is that the return path from
gemini (TTLs 3, 4, and 5) goes directly to netb, arid not through the router swnrt.

The question that we need SNMP to answer is what does the routing table entry on
netb look like for the destination network 140.252.3? It is netb that sends the packets
to swnrt and not directly to gemini. We use the get command to fetch the value of
the next-hop router for this destination:

Section 25.10 Traps 385

Sun % snmpi -a netb -c secret get ipRouteNextHop.140.252.3.0

ipRouteNextHop.140.252.3.0:140.252.1.6

This routing table entry tells netb to send the packets to swnrt, which is what we see
happen.

Why does gemini send the packets directly back through netb? Because on
gemini the destination address of the return packets is 140.252.1.29, and that network
(140.252.1) is on a directly connected interface.

What we’re seeing in this example is a policy routing decision. The default route to
network 140.252.3 is through the router swnrt because gemini is intended to be a mul-
tihomed host, not a router. This is an example of a multihomed host that does not want
to be a router.

25.10 Traps

All the examples we’ve looked at so far in this chapter have been from the manager to
the agent. As shown in Figure 25.1, it’s also possible for the agent to send a trap to the
manager, to indicate that something has happened on the agent that the manager might
want to know abou.t. Traps are sent to UDP port 162 on the manager.

In Figure 25.2 we showed the format of the trap PDU. We’ll go through all the
fields in this message when we look at some tcpdump output below.

Six specific traps are defined, with a seventh one allowing a vendor to implement
an enterprise-specific trap. Figure 25.30 describes the values for the trap type in the trap
message (Figure 25.2).

tmp
type

0 coldStart
1 warmStart
2 linkDown

4

5

Name Description

linkUp

authenticationFailure

egpNeighborLoss

enterpriseSpecific

Agent is initializing itself.
Agent is re~nitializing ~tself.
An interface has changed from the up to the down state

(Figure 25.18). The first variable in the message
ident~fies the interface.

An interface has changed from the down to the up state
(Figure 25.18). The first variable in the message
identifies the interface.

A message was received from an SNMP manager w~th an
invalid community.

An EGP peer has changed to the down state. The f~rst
variable in the messages contains the IP address of the
peer.

Look in the spec~’c code field for information on the trap

Figure 25.30 Trap types.

We can see some traps using tcpdump. We’ll start the SNMP agent on the system
sun and see it generate a coldStart trap. (We tell the agent to send traps to the host
bsd±. Although we’re not running a manager on ~sdi to handle the traps, we can run

386 SNMP: Simple Network Management Protocol Chapter 25

tcpdump and see what packets get generated. Recall from Figure 25.1 that a trap is sent
from the agent to the manager, but there is no acknowledgment sent by the manager, so
we don’t need a manager to handle the traps.) We then send a request using the snmpi
program, but with an invalid community name. This should generate an
authenticationFailure trap. Figure 25.31 shows the output.

1 0.0 sun.snmp > bsdi.snmp-trap: C=traps Trap(28)
E:unix.l.2.5 [140.252.13.33] coldStart 20

2 18.86 (18.86) sun.snmp > bsdi.snmp-trap: C=traps Trap(29)
E:unix.l.2.5 [140.252.13.33] authenticationFailure 1907

Figure 25.31 tcpdump output of traps generated by SNMP agent,

First we notice that both UDP datagrams are from the SNMP agent (port 161,
printed as the name snrap) with a destination port of 162 (printed as the name
snmp-t rap).

The notation C=traps is the community name of the trap message. This is a con-
figuration option with the ISODE SNMP agent being used.

The next notation, Trap (28) in line 1 and Trap (29) in line 2 is the PDU type and
length.

The next field of output for both lines is E : unix. 1.2.5. This is the enterprise: the
agent’s sysObjeetID. It falls under the 1.3.6.1.4.1 node of the tree in Figure 25.6
(iso. org. dod. internet .private. enterprises), so this agent’s object identifier
is 1.3.6.1.4.1.4.1.2.5. Its abbreviated name is unix.agents, fourBSD-isode. 5. The
final number (5) is the version number of this release of the ISODE agent. This enter-
prise value identifies the agent software generating the trap.

The next field output by tcpdump is the IP address of the agent (140.252.13.33).
The trap type is printed as coldStart on line 1, and authenticationFailure

on line 2. These correspond to trap type values of 0 and 4, respectively (Figure 25.30).
Since these are not enterprise-specific traps, the specific code must be 0, and is not
printed.

Next comes the timestamp field, printed as 20 and 1907. This is a TimeTieks value,
representing the number of hundredths of a second since the agent initialized. In the
case of the cold start trap, the trap was generated 200 ms after the agent was initialized.
The tcpdump output indicates that the second trap occurred 18.86 seconds after the first
one, which corresponds to the printed value of 1907 hundredths of a second, minus 200
ms.

. Figure 25.2 indicates that a trap message can contain interesting variables that the
agents wants to send to the manager, but there aren’t any in our examples.

25.11 ASN.1 and BER

The formal specification of SNMP uses Abstract Syntax Notation 1 (ASN.1) and the actual
encoding of the bits in the SNMP messages (Figure 25.2) uses the corresponding Basic
Encoding Rules (BER). Unlike most texts that describe SNMP, we have purposely left a

Section 25.12 SNMP Version 2 387

discussion of ASN.1 and BER until the end. When they’re discussed first, it can confuse
the reader and obfuscate the real purpose of SNMP--network management. In this sec-
tion we only give an overview of these two topics. Chapter 8 of [Rose 1990] covers
ASN. 1 and BER in detail.

ASN.1 is a formal language for describing data and the properties of the data. It
says nothing about how the data is stored or encoded. All the fields in the MIB and the
SNMP messages are described using ASN.1. For example, the ASN.1 definition of the
data type IpAddres s from the SMI looks like:

IpAddress ::=
[APPLICATION 0] -- in network-byte order

IMPLICIT OCTET STRING (SIZE (4))

Similarly, from the MIB we find the following definition of a simple variable:

udpNoPorts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The total number of recelved UDP datagrams for which
there was no applicatlon at the destlnation port."

::= { udp 2 }

Thedefinition of tables using SEQUENCE and SEQUENCE OF is more complex.
Given these ASN.1 definitions, there are many ways to encode the data into a

stream of bits for transmission. SNMP uses BER. The representation of a small integer,
such as 64, requires 3 bytes using BER. One byte says the value is an integer, the next
byte says how many bytes are used to store the integer (1), and the final byte contains
the binary value.

Fortunately the details of ASN.1 and BER are only important to implementors of
SNMP. They are not fundamental to the understanding and use of network manage-
ment.

25.12 SNMP Version 2

During 1993 11 RFCs were published defining revisions to SNMP. The first of these,
RFC 1441 [Case et al. 1993], provides an introduction to SNMP Version 2 (SNMPv2).
Two books also describe SNMPv2 [Stallings 1993; Rose 1994]. Two publicly available
implementations already exist (see Appendix B.3 of [Rose 1994]), but vendor implemen-
tations probably won’t be widely available until 1994.

In this section we describe the maior differences from SNMPvl to SNMPv2.

1. A new packet type get-bulk-request allows the manager to retrieve large
blocks of data efficiently.

2. Another new packet type inform-request allows one manager to send infor-
mation to another manager.

388 SNMP: Simple Network Management Protocol Chapter 25

3. Two new MIBs are defined: the SNMPv2 MIB and the SNMPv2-M2M MIB
(Manager-to-Manager).

4. SNMPv2 provides security enhancements over SNMPvl. In SNMPvl the com-
munity name passed from the manager to the agent is a cleartext password.
SNMPv2 can provide authentication and privacy.

As vendors start to provide SNMPv2-capable agents, management stations will also
appear that can handle both. [Routhier 1993] describes extending an implementation of
SNMPvl to support SNMPv2.

25.13 Summary

SNMP is a simple request-reply protocol between an SNMP manager and an SNMP
agent. The management information base (MIB) defines the variables that are main-
tained by the agent, for the manager to query or set. Only a limited number of data
types are used to define these variables.

All the variables are identified by object identifiers, a hierarchical naming scheme
consisting of long strings of numbers that are normally abbreviated into a simple name,
for human readability. A specific instance of a variable is identified by appending an
instance to the object identifier.

Many SNMP variables are contained in tables, with a fixed number of columns, but
a variable number of rows. Fundamental to SNMP is the identification scheme used to
identify each row in a table (when we don’t know how many rows are in the table), and
the lexicographic ordering (column-row order). The end result, SNMP’s get-next
operator, is basic to any SNMP manager.

We then described the following groups of SNMP variables: system, interface,
address translation, IP, ICMP, TCP, and UDP. This was followed by two examples, one
to determine the MTU of an interface, and the other to look at the routing table of a
router.

We completed the chapter by looking at SNMP traps, a way for the agent to notify
the manager that something significant has occurred, and a brief mention of ASN.1 and
BER. These latter two topics are probably the most confusing aspects of SNMP, but for-
tunately their details are needed only by implementors.

Exercises

25.1 We said that using two different ports (161 and 162) allows a system to run both a manager
and agent. What would happen if the same port number were used for both?

25.2 How would you list an entire routing table using get-next:?

2O

Telnet and Rlogin:

Remote Login

26.1 Introduction

Remote login is one of the most popular Internet applications. Instead of having a hard-
wired terminal on each host, we can login to one host and then remote login across the
network to any other host (that we have an account on, of course).

Two popular applications provide remote login across TCP/IP internets.

1. Telnet is a standard application that almost every TCP/IP implementation pro-
vides. It works between hosts that use different operating systems. Telnet uses
option negotiation between the client and server to determine what features
each end can provide.

2. Rlogin is from Berkeley Unix and was developed to work between Unix systems
only, but it has been ported to other operating systems also.

In this chapter we look at both Telnet and Rlogin. We start with Rlogin because it’s
simpler.

TeLnet is one of the oldest of the Internet applications, dating back to 1969 on the ARPANET.
Its name is actually an acronym that stands for "telecommunications network protocol."

Remote login uses the client-server paradigm. Figure 26.1 shows the typical
arrangement of the Telnet client and server. (We could draw a similar picture for an
Rlogin client and server.)

389

390 Telnet and Rlogin: Remote Login Chapter 26

Telnetclient 1

termmaldriver TCP/IP I

~
e__rn~l _ _ t

TCI~ connection

Telnet server] login shell

.... __/_
i TCP/IP tPe2r re.ml~!i

~

~ kernel

Figure 26.1 Overview of Telnet client-server.

There are numerous points in this figure.

1. The Telnet client interacts with both the user at the terminal and the TCP/IP
protocols. Normally everything we type is sent across the TCP connection, and
everything received from the connection is output to our terminal.

2. The Telnet server often deals with what’s called a pseudo-terminal device, at least
under Unix systems. This makes it appear to the login shell that’s invoked on
the server, and to any programs run by the login shell, that they’re talking to a
terminal device. Some applications, such as full-screen editors, assume they’re
talking to a terminal device. Indeed, making the login shell on the server think
that it’s talking to a terminal is often one of the hardest programming aspects
involved in writing a remote login server.

3. Only a single TCP connection is used. Since there are times when the Telnet
client must talk to the Telnet server (and vice versa) there needs to be some way
to delineate commands that are sent across the connection, versus user data.
We’ll see how both Telnet and Rlogin handle this.

4. We show dashed boxes in Figure 26.1 to note that the terminal and pseudo-
terminal drivers, along with the TCP/IP implementation, are normally part of
the operating system kernel. The Telnet client and server, however, are often
user applications.

5. We show the login shell on the server host to reiterate that we have to login to
the server. We must have an account on that system to login to it, using either
Telnet or Rlogin.

It is interesting to compare the complexity of Telnet and Rlogin by looking at the
number of lines of source code required to implement tl~e client and server for each.
Figure 26.2 shows these counts for the standard Telnet and Rlogin client and server, as
distributed in different versions from Berkeley (Figure 1.10).

Section 26.2 Rlogin Protocol 391

hnes of
source code

11000--

10000--

9000--

8000

7000--

6000

5000--

4000--

3000--

2000--

1000--

0

~_~__--~ Telnet client

Telnet server

~ Rlogm chent
__ , Rlogin server

I I I
Net/1 Net/2 4.4BSD

Figure 26.2 Comparison of Telnet/Rlogin/client/server, number of lines of source code.

It is the continuing addition of new options to Telnet that causes its implementation to
grow, while Rlogin remains simple and stable.

Remote login is not a high-volume data transfer application. As we’ve mentioned
earlier, lots of small packets are normally exchanged between the two end systems.
[Paxson 1993] found that the ratio of bytes sent by the client (the user typing at the ter-
minal) to the number of bytes sent back by the server is about 1:20. This is because we
type short commands that often generate lots of output.

26.2 Rlogin Protocol

Rlogin appeared with 4.2BSD and was intended for remote login only between Unix
hosts. This makes it a simpler protocol than Telnet, since option negotiation is not
required when the operating system on the client and server are known in advance.
Over the past few years, Rlogin has also been ported to several non-Unix environments.

RFC 1282 [Kantor 1991] specifies the Rlogin protocol. As with the Routing Informa-
tion Protocol (RIP) RFC, however, this one was written after Rlogin had been in use for
many years. Chapter 15 of [Stevens 1990] describes programming remote login clients
and servers, and provides the complete source code for the Rlogin client and server.
Chapters 25 and 26 of [Comer and Stevens 1993] provide the implementation details
and source code for a Telnet client.

Application Startup

Rlogin uses a single TCP connection between the client and server. After the normal
TCP connection establishment is complete, the following application protocol takes
place between the client and server.

392 Telnet and Rlogin: Remote Login Chapter 26

The client writes four strings to the server: (a) a byte of 0, (b) the login name of
the user on the client host, terminated by a byte of 0, (c) the login name of the
user on the server host, terminated by a byte of 0, (d) the name of the user’s ter-
minal type, followed by a slash, followed by the terminal speed, terminated by a
byte of 0. Two login names are required because users aren’t required to have
the same login name on each system.

The terminal type is passed from the client to the server because many full-
screen applications need to know it. The terminal speed is passed because some
applications operate differently depending on the speed. For example, the v±
editor works with a smaller window when operating at slower speeds, so it
doesn’t take forever to redraw the window.

The server responds with a byte of 0.

The server has the option of asking the user to enter a password. This is han-
dled as normal data exchange across the Rlogin connection--there is no special
protocol. The server sends a string to the client (which the client displays on the
terminal), often Password:. If the client does not enter a password within
some time limit (often 60 seconds), the server closes the connection.

We can create a file in our home directory on the server (named . rhosts) with
lines containing a hostname and our username. If we login from the specified
host with that username, we are not prompted for a password. Most security
texts, such as [Curry 1992], strongly suggest never using this feature because of
the security hole it presents.

If we are prompted by the server for a password, what we type is sent to the
server as cleartext. Each character of the password that we type is sent as is.
Anyone who can read the raw network packets can read the characters of our
password. Newer implementations of the Rlogin client, such as 4.4BSD, first try
to use Kerberos, which avoids sending cleartext passwords across the network.
This requires a compatible server that also supports Kerberos. ([Curry 1992]
describes Kerberos in more detail.)

The server normally sends a request to the client asking for the terminal’s win-
dow size (described later).

The client sends 1 byte at a time to the server and all echoing is done by the server. We
saw this in Section 19.2. Also, the Nagle algorithm is normally enabled (Section 19.4),
causing multiple input bytes to be sent as a single TCP segment across slower networks.
The operation is simple: everything typed by the user is sent to the server, and every-
thing sent by the server to the client is displayed on the terminal.

Additional commands exist that can be sent from the client to the server and from
the server to the client. Let’s first describe the scenarios that require these commands.

Section 26.2 Rlogin Protocol 393

Flow Control

By default, flow control is done by the Rlogin client. The client recognizes the ASCII
STOP and START characters (Control-S and Control-Q) typed by the user, and stops or
starts the terminal output.

If this isn’t done, each time we type Control-S to stop the terminal output, the
Control-S character is sent across the network to the server, and the server stops writing
to the network--but up to a window’s worth of output may have been already written
by the server and will be displayed before the output is stopped. Hundreds or thou-
sands of bytes of data will scroll down the screen before the output stops. Figm-c 26.3
shows this scenario.

Rlogin
client

full window of data to display on terminal

Control-S -~

Rlogin
server

Figure 26.3 Rlogin connection if server performs STOP/START processh~g.

To an interactive user this delayed response to the Control-S character is bad.
Sometimes, however, the application running on the server needs to interpret each

byte of input, and doesn’t want the client looking at the input bytes and treating
Control-S and Control-Q specially. (The emacs editor is an example of an application
that uses these two characters for its own commands.) To handle this, the capability is
provided for the server to tell the client whether or not to perform flow control.

Client Interrupt

A problem similar to flow control occurs when we type the interrupt key (often
DELETE or Control-C), to abort the process currently running on the server. The sce-
nario is similar to what we show in Figure 26.3, with up to one window full of data in
the pipe from the server to the client, while the interrupt key makes its way across the
connection in the other direction. We want the interrupt key to terminate what’s being
displayed on the screen as quickly as possible.

In both this case and the flow control scenario, it is rare for the flow of data from the
client to the server to be stopped by flow control. This direction contains only charac-
ters that we type. Therefore it is not necessary for these special input characters
(Control-S or interrupt) to be sent from the client to the server using TCP’s urgent
mode.

Window Size Changes

With a windowed display we can dynamically change the size of the window while an
application is running. Some applications (typically those that manipulate the entire

394 Telnet and Rlogin: Remote Login Chapter 26

Server

window, such as a full-screen editor) need to know these changes. Most current Unix
systems provide the capability for an application to be told of these window size
changes.

With remote login, however, the change in the window size occurs on the client, but
the application that needs to be told is running on the server. Some form of notification
is required for the Rlogin client to tell the server that the window size has changed, and
what the new size is.

to Client Commands

We can now summarize the four commands that the Rlogin server can send to the client
across the TCP connection. The problem is that only a single TCP connection is used, so
the server needs to mark these command bytes so the client knows to interpret them as
commands, and not display the bytes on the terminal. TCP’s urgent mode is used for
this (Section 20.8).

When the server sends a command to the client, the server enters urgent mode with
the last byte of urgent data being the command byte from the server. When the client
receives the urgent mode notification, it reads from the connection, saving the data until
the command byte (the last byte of urgent data) is encountered. The data that’s saved
by the client can be displayed on the terminal, or discarded, depending on the com-
mand. Figure 26.4 describes the four command bytes.

I Byte
I ox02

!Ox20
!Ox80

Description

Flush output. The chent discards all the data received from the server, up through the
command byte (the last byte of urgent data). The client also discards any pending
terminal output that may be buffered. The server sends this command when it
receives the interrupt key from the client.

The chent stops performing flow control.

The client resumes flow control processing.

The client responds immediately by sending the current window size to the server, and
notifies the server in the future if the window size changes. This command is
normally sent by the server immediately after the connechon is established

Figure 26.4 Rlogin commands from the server to the chent.

One reason for sending these commands using TCP’s urgent mode is that the first
command ("flush output") needs to be sent to the client even if the flow of data from
the server to the client is stopped by TCP’s windowed flow control. This
condition--the server’s output to the client being flow control stopped--is likely to
occur, since processes running on the server can usually generate output faster than the
client’s terminal can display it. Conversely, it is rare for the flow of data from the client
to the server to be flow control stopped, since this direction of data flow contains the
characters that we type.

Recall our example in Figure 20.14 where we saw the urgent notification go across
the connection even though the window size was 0. (We’ll see another example of this
in the next section.) The remaining three commands aren’t time critical, but they use the
same technique for simplicity.

Section 26.2 Rlogin Protocol 395

Client to Server Commands

Only one command from the client to the server is currently defined: sending the cur-
rent window size to the server. Window size changes from the client are not sent to the
server unless the client receives the command 0x8 0 (Figure 26.4) from the server.

Again, since a single TCP connection is used, the client must have some way of
marking the commands that it sends across the connection, so that the server doesn’t
pass them to the application running on the server. The client does this by sending 2
bytes of 0xff followed by two special flag bytes.

For the window size command, the two flag bytes are each the ASCII character s.
Following this are four 16-bit values (in network byte order): the number of rows (e.g.,
25), the number of characters per row (e.g., 80), the number of pixels in the X direction,
and the number of pixels in the Y direction. Often the final two 16-bit values are 0,
because most applications invoked by the Rlogin server deal with the size of the screen
in characters, not pixels.

This form of command that we’ve described from the client to the server is called
in-band signaling since the command bytes are sent in the normal stream of data. The
bytes used to denote these in-band commands, 0xff, are chosen because we are
unlikely to type keys that generate these bytes. But the Rlogin method is not perfect. If
we could generate two consecutive bytes of 0x~ ~ from our keyboard, followed by two
ASCII s’s, the next 8 bytes we type will be interpreted as window sizes.

The Rlogin commands from the server to the client, which we described in Fig-
ure 26.4, are termed out-of-band signaling since the technique used is called "out-of-band
data" by most APIs. But recall our discussion of TCP’s urgent mode in Section 20.8
where we said that urgent mode is not out-of-band data, and the command byte is sent
in the normal stream of data, pointed to by the urgent pointer.

Since in-band signaling is used from the client to the server, the server must exam-
ine every byte that it receives from the client, looking for two consecutive bytes of 0xi~ f.
But with out-of-band signaling used from the server to the client, the client does not
need to examine the data that it receives from the server, until the server enters urgent
mode. Even in urgent mode, the client only needs to look at the byte pointed to by the
urgent pointer. Since the ratio of bytes from the client to server, versus from the server
to client, is about 1:20, it makes sense to use in-band signaling for the low-volume data
flow (client to server) and out-of-band signaling for the higher volume data flow (server
to client).

Client Escapes

Normally everything we type to the Rlogin client is sent to the server. Occasionally,
however, we want to talk directly to the Rlogin client program itself, and not have what
we type sent to the server. This is done by typing a tilde (-) as the first character of a
line, followed by one of the following four characters:

1. A period terminates the client.

2. The end-of-file character (often Control-D) terminates the client.

396 Telnet and Rlogin: Remote Login Chapter 26

o The job control suspend character (often Control-Z) suspends the client.

The job-control delayed-suspend character (often Control-Y) suspends only the
client input. Everything we type is now interpreted by whatever program we
run on the client host, but anything sent to the Rlogin client by the Rlogin server
is output to our terminal. This can be used when we start a long running job on
the server and we want to know when it outputs something, but we want to
continue running other programs on the client.

The last two commands are supported only if the client Unix system supports job
control.

26.3 Rlogin Examples

We’ll look at two examples: the first shows the client-server protocol at the start of an
Rlogin session, and the second shows what happens when we type our interrupt key to
abort a running process on the server that is generating lots of output. In Figure 19.2 we
showed the normal flow of data across an Rlogin session.

Initial Client-Server Protocol

Figure 26.5 shows the time line for an Rlogin connection from the host bsdi to the
server on svr4. (We have removed the normal TCP connection establishment, the win-
dow advertisements, and the type-of-service information.)

The protocol we described in the previous section can be seen in segments 1-9. The
client sends a single byte of 0 (segment 1) followed by three strings (segment 3). In this
example the three strings are rstevens (the login name on the client), rst:ever~s (the
login name on the server), and ibmpc3/9600 (the terminal type and speed). The
server authenticates this and responds with a byte of 0 (segment 5).

The server then sends the window request command (segment 7). It is sent using
TCP’s urgent mode and again we see an implementation (SVR4) that uses the older, but
more common interpretation, where the urgent pointer specifies the sequence number
plus one of the last byte of urgent data. The client responds with 12 bytes of data: 2
bytes of 0xff, 2 bytes of s, and 4 16-bit values.

The next four segments from the server (10, 12, 14, and 16) are the operating system
greeting from the server. This is followed by the 7-byte shell prompt on the server:
"svr4 % " in segment 18.

The data entered by the client is then sent l byte at a time, as shown in Figure 19.2.
The connection can be closed by either end. If we type a command that causes the shell
running on the server to terminate, the server’s er~d does the active close. If we type an
escape to the Rlogin client (normally a tilde), followed by a period or our end-of-file
character, the client does the active close.

The c|ient port number in Figure 26.5 is 1023, which is within the range controlled by the
IANA (Section 1.9). The Rlogin protocol requires the client to have a port number less than
1024, termed a reserved port. On Unix systems, a client cannot obtain a reserved port unless the

Section 26.3 Rlogin Examples 397

0.0

0.137929 (0.1379)

0.139411 (0.0015)

0.328655 (0.1892)

0.339579 (0.0109)

0.489537 (0.1500)

0.499287 (0.0098)

0,502656 (0,0034)

0.538629 (0.0360)

0.795155 (0.2565)

0.889631 (0.0945)

0.894041 (0.0044)

1.089584 (0.1955)

1.093862 (0.0043)

1.289561 (0.1957)

1.304196 (0.0146)

1.489565 (0.1854)

3.077380 (1.5878)

3.089593 (0.0122)

bsdi.1023

1

3

6

8

11

13

15

svr4.1ogin

PSH 1:2(1) ack 1
(one byte of 0) ~’-

ack 2 ~

PSH2:32(30) ack 1
(rstevens\0rstevens\0~bmpc3/9600\0) ~-

ack 32 ~

PSH 1:2(1) ack 32 ~

17

ack 2

PSH 2:3(1) ack 32, urg 3 ,~ indow si~e request)

PSH 32:44(12) ack3
(window size information)

ack 44 ~

PSH 3:251(248)ack44

ack 251

PSH 251:296(45) ack 44

ack 296

PSH 296:298(2) ack44

ack 298

PSH 298:333(35) ack 44

ack 333

4

5

10

¸12

14

16

7

191

ack 340

Figure 26.5 Time line for an Rlogin connection

398 Telnet and Rlogin: Remote Login Chapter 26

process has superuser privilege. This is part of the authentication between the client and
server, which allows the user to login without entering a password. [Stevens 19901 discusses
these reserved ports and the authentication used between the client and server in more detail.

Client Interrupt Key

Let’s look at another example, this one involving TCP’s urgent mode, when the flow of
data has been stopped and we type the interrupt key. This example brings together
many of the TCP algorithms we described earlier: urgent mode, silly window avoid-
ance, windowed flow control, and the persist timer. We start the client on the host sun.
We login to bsd±, output a big text file to the terminal, and then stop the output by typ-
ing Control-S. When the output stops we type our interrupt key (DELETE) to abort the
program:

sun % rlogin bsdi

all the operating system greetings

bsdi % cat /usr/share/misc/termcap output bigfileto terminal

lots of terminal output
we type Control-S to stop the output,
and wmt until the output stops

A ~ type our interrupt key, and th~s ~s echoed

bsdz % then our prompt is output

The following points summarize the state of the client, the server, and the connection.

1. We stop the terminal output by typing Control-S.

2. The Rlogin client is blocked from writing to the terminal, since the terminal’s
output buffer will fill.

3. The Rlogin client therefore cannot read from the network, so the client’s TCP
receive buffer fills.

4. The client’s TCP advertises a window of 0 to stop the sender (the Rlogin
server’s TCP) when the receive buffer fills.

5. The server’s TCP send buffer fills when its output is stopped by the client’s win-
dow of 0.

6. The Rlogin server is stopped, since the send buffer is full. Therefore, the Rlogin
server cannot read from the application that’s ru~ming on the server (cat).

7. The cat application stops when its output buffer fills.

8. We then type the interrupt key to terminate the cat application on the server.
This is sent from the client TCP to the server TCP because this direction of data
flow has not been flow-control stopped.

9. The cat application receives the interrupt, and terminates. This causes its out-
put buffer (which the Pdogin server is reading) tO be flushed, which wakes up
the Rlogin server. The Rlogin server then enters urgent mode and sends the
"flush output" command (0x02) to the client.

Section 26.3 Rlogin Examples 399

Figure 26.6 is a summary of the data flow from the server to the client. (The sequence
numbers are taken from the time line that we show next.)

Rlogin
client TCP

~.e.c;ive buffer i /

seq#’. 22631 26726

data received and acknowledged
by client TCP, waiting for

Rlogin chent to read

TCP Rlogin
server

~l 4096-bytesend buffers /

seq#: 26727 30145
~
!~ -~- urgent

data written by Rlogin potnter
server, which server TCP

is waiting to send

Figure 26.6 Summary of data flow from server to client in Rlogm example.

The shaded portion of the send buffer is the unused portion of the 4096-byte buffer.
Figure 26.7 is the time line for this example.

In segments 1-3 the server sends full-sized segments to the client. The ACK in seg-
ment 4 only advertises a window of 1024 because the output is stopped: since the client
can’t write to the terminal, it can’t read from the network. Segment 5 is not full sized,
and the ACK in segment 6 advertises only the remaining space in the 4096-byte receive
buffer. The client must advertise a window of 349 bytes, because if it advertised a win-
dow of 0 (which we might expect from silly window avoidance, Section 22.3), it would
be moving the right edge of the window to the left, which must not happen (Sec-
tion 20.3). Since the server can’t send a full-sized buffer when it receives segment 6, it
performs silly window avoidance, sends nothing, and sets a 5-second persist timer.
When the timer expires it sends 349 bytes (segment 7) and since the client’s output is
still stopped, the acknowledgment in segment 8 advertises a window of 0.

At this point we type our interrupt key and it is transmitted in segment 9. A win-
dow of 0 bytes is still advertised. When the Rlogin server receives the interrupt key it
passes it to the application (cat) and the application terminates. Since the application
was terminated by a terminal interrupt, its output is flushed and this is passed to the
Rlogin server. This causes the server to send the "flush output" command to the client
using TCP’s urgent mode. We see this in segment 10. Notice, however, that the com-
mand byte of 0x02 is at sequence number 30146 (the urgent pointer minus one). There
are 3419 bytes ahead of the command byte (sequence numbers 26727:30145) buffered at
the server that the server wants to send.

Segment 10, with the urgent notification, contains the next byte of data from the
server to the client (sequence number 26727). It does not contain the "flush output"
command byte. The server can send this single byte in segment 10 because we saw in
Section 22.2 that a sender with data can always probe a closed window by sending 1
byte of data. The client’s TCP responds immediately in segment 11 with a zero window,
but the receipt of the urgent notification in segment 10 causes the client’s TCP to notify
the Rlogin client that the other end of the connection has entered urgent mode.

400 Telnet and Rlogin: Remote Login
Chapter 26

0.0

0.016015 (0.0160)

0 032272 (0.0163)

0.198020 (0.1657)

0.202015 (0.0040)

0.397930 (0.1959)

5.103974 (4.7060)

5.197768 (0.0938)

7.066859 (1.8691)

7.080527 (0.0137)

7.081445 (0.0009)

7082759 (0.0013)

7.085015 (0.0023)

7.089772 (0.0048)

7.093828 (0.0041)

7.095692 (0.0019)

7 100377(0.0047)

7 102663 (0.0023)

7.108754 (0.0061)

7.197779(0.0890)

7.199307 (0.0015)

7.397798 (0.1985)

sun.1023

22631:23655(1024) ack 7, win 4096

23655.24679(1024) ack 7, win 4096

24679:25703(1024) ack 7, win 4096

4 ~ ack 25703, wm 1024

PSH 25703:26378(675) ack 7, win 4096

ack 26378, win 349

’ terrupt key -~ 9 ~

26378:26727(349) ack 7, win 4096

ack 26727, win 0

PSH 7.8(1) ack 26727, win 0

26727:26728(1) ack 8, win 4096 urg 30147

ack 26727, win 0

ack 8, win 4096 urg 30147

ack 26727, wm 4096

26727:27751(1024) ack 8, win 4096 urg 30147

27751:28775(1024) ack 8, win 4096 urg 30147

2O

22

ack 28775, w~n 4096

28775:29799(1024) ack 8, win 4096 urg 30147

PSH 29799.30147(348) ack 8, win 4096 urg 30147

PSH 30147:30149(2) ack 8, win 4096

ack 30149, win 4096

PSH 30149:30157(8) ack 8, w~n 4096

ack 30157, win 4096

bsdi.login

1

2

3

10

12

14

15

17

18

19

21

Figure 26.7 Rlogin example when client stops output and then aborts program on server.

Section 26.4 Telnet Protocol 401

Once the Rlogin client receives the urgent notification from its TCP, and starts read-
ing the data that’s already waiting for it, the window opens up (segment 13). The data
buffered by the server is then sent (segments 14, 15, 17, and 18). The last of these con-
tains the final byte of urgent data (sequence number 30146), which contains the com-
mand byte from the server to the client. When the client reads this byte it discards all
the data that it read in segments 14, 15, 17, and 18, and flushes its terminal output
queue. The next 2 bytes, in segment 19, are the echo of the interrupt key: "^ ?". The
final segment we show (21) contains the shell prompt from the client.

This example shows how data can be buffered at both ends of the connection when
the client types the interrupt key. If this action only discarded the 3419 bytes buffered at
the server, without discarding the 4096 bytes at the client, these 4096 bytes of data,
along with whatever was buffered in the terminal output queue on the client, would be
output.

26.4 Telnet Protocol

Telnet was designed to work between any host (i.e., any operating system) and any ter-
minal. Its specification in RFC 854 [Postel and Reynolds 1983a] defines tee lowest com-
mon denominator terminal, called the network virtual terminal (NVT). The NVT is an
imaginary device from which both ends of the connection, the client and server, map
their real terminal to and from. That is, the client operating system must map whatever
type of terminal the user is on to the NVT. The server must then map the NVT into
whatever terminal type the server supports.

The NVT is a character device with a keyboard and printer. Data typed by the user
on the keyboard is sent to the server, and data received from the server is output to the
printer. By default the client echoes what the user types to the printer, but we’ll see that
options are normally supported to change this.

NVT ASCII

The term NVT ASCII refers to the 7-bit U.S. variant of the ASCII character set used
throughout the Internet protocol suite. Each 7-bit character is sent as an 8-bit byte, with
the high-order bit set to 0.

An end-of-line is transmitted as the 2-character sequence CR (carriage return) fol-
lowed by an LF (linefeed). We show this as \r\n. A carriage return is transmitted as
the 2-character sequence CR followed by a NUL (byte of 0). We show this as \r\ 0.

In the following chapters we’ll see that FTP, SMTP, Finger, and Whois all use NVT
ASCII for client commands and server responses.

Telnet Commands

Telnet uses in-band signaling in both directions. The byte 0x£f (255 decimal) is called
IAC, for "interpret as command." The next byte is the command byte. To send the data

402 Telnet and Rlogin: Remote Login Chapter 26

byte 255, two consecutive bytes of 255 are sent. (In the previous paragraph we said that
the data stream is NVT ASCII, which are 7-bit values, implying a data byte of 255 can-
not be sent by Telnet. There is a binary option for Telnet, RFC 856 [Postel and Reynolds
1983b], which we don’t discuss, that allows 8-bit data transmission.) Figure 26.8 lists all
the Telnet commands.

Name

EOF
SUSP
ABORT
EOR
SE
NOP
DM
BRK
IP
AO
AYT
EC
EL
GA
SB
WILL
WONT
DO
DONT
IAC

Code
(decimal)

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Description

end-of-f~le
suspend current process (job control)
abort process
end of record
suboption end
no operation
data mark
b~eak
interrupt process
abort output
are you there?
escape character
erase line
go ahead
suboption begin
option negotlat~on (Figure 26.9)
option negotiation
option negotiation
option negotiation
data byte 255

Figure 26.8 Telnet commands, when preceded by IAC (255).

Since many of these commands are rarely used, we describe the important commands
when we encounter them in the discussion below and in the examples in the next
section.

Option Negotiation

Although Telnet starts with both sides assuming an ~, the first exchange that nor-
mally takes place across a Telnet connection is option negotiation. The option negotia-
tion is symmetric--either side can send a request to the other.

Either side can send one of four different requests for any given option.

1. WILL. The sender wants to enable the option itself.

2. DO. The sender wants the receiver to enable the option.

3. WONT. The sender wants to disable the option itself.

4. DONT. The sender wants the receiver to disable the option.

Section 26.4 Telnet Protocol 403

Since the rules of Telnet allow a side to either accept or reject a request to enable an
option (cases 1 and 2 above), but require a side to always honor a request to disable an
option (cases 3 and 4 above), these four cases lead to the six scenarios shown in Fig-
ure 26.9.

Sender Receiver Description

1. WILL -~ sender wants to enable option
~- DO receiver says OK

2. WILL -~ sender wants to enable option
~ DONT receiver says NO

3. DO ---> sender wants receiver to enable option
<-- WILL receiver says OK

4. DO -> sender wants receiver to enable option
~ WONT recetver says NO

5. WONT + sender wants to disable option
~- DONT receiver must say OK

6. DONT --> sender wants receiver to disable option
4-- WONT receiver must say OK

Figure 26.9 Six scenarios for TeNet option negotiation.

Option negotiation requires 3 bytes: the IAC byte, followed by the byte for WILL,
DO, WONT, or DONT, followed by an ID byte specifying the option to enable or dis-
able. Currently more than 40 different options can be negotiated. The Assigned Num-
bers RFC specifies the value for the option byte and the relevant RI~C that describes the
option. Figure 26.10 shows the option codes that we’ll see in this chapter.

Option ID
(decimal)

1
3
5
6

24
31
32
33
34
36

Name RFC

echo 857
suppress go ahead 858
status 859
timing mark 860
terminal type 1091
window size 1073
terminal speed 1079
remote flow control 1372
hnemode 1184
environment variables 1408

Figure 26.10 Tehnet option codes discussed in the text.

Telnet option negotiation, like most of the Te|net protocol, is intended to be sym-
metrical. Either end can initiate the negotiation of an option. But remote login is not a
symmetrical application. The client performs some tasks, and the server performs oth-
ers. We’ll see as we look at some of the Telnet options that some are intended only for
the client (asking to enable linemode, for example), and some are only for the server.

404 Telnet and Rlogin: Remote Login Chapter 26

Suboption Negotiation

Some options require more information than just "enable" or "disable." Specifying the
terminal type is an example: an ASCII string must be sent by the client identifying the
type of terminal. To handle these options, suboption negotiation is defined.

RFC 1091 [VanBokkelen 1989] defines the suboption negotiation for the terminal
type. First one side (normally the client asks to enable the option by sending the 3-byte
sequence

<IAC, WILL, 24>

where 24 (decimal) is the option ID for the terminal type option. If the receiver (the
server) says OK, its response is

<IAC, DO, 24>

The server then sends

<IAC, SB, 24, 1, IAC, SE>

asking the client for its terminal type. SB is the suboption-begin command. The next
byte of 24 identifies that this is a suboption for the terminal type option. (SB is always
followed by the option number to which the suboption refers.) The next byte of 1
means "send your terminal type." The suboption-end command must be prefixed by
an IAC, just like the SB command. The client responds with the command

<IAC, SB, 24, 0, ’2’, ’B’, ’M’, ’P’, ’C’, IAC, SE>

if its terminal type is the string ±brapc. The fourth byte, 0, means "my terminal type is."
(The "official" list of acceptable terminal types is in the Assigned Numbers RFC, but on
Unix systems at least, any name that is acceptable to the server is OK. This is normally
the terminals supported by either the tex:r~cap or t÷~’ra±nfo database.) The terminal
type is specified in the Telnet suboption as all uppercase, and normally converted to
lowercase by the server.

Half-Duplex, Character at a Time, Line at a Time, or Linemode?

There are four modes of operation for most Telnet clients and servers.

1. Half-duplex.

This is the default mode, but it is rarely used today. The default NVT is a half-
duplex device that requires a GO AHEAD command (GA) from the server
before accepting user input. The user input is echoed locally from the NVT key-
board to the NVT printer so that only completed lines are sent from the client to
the server.

While this provides the lowest common denominator for terminal support, it
doesn’t adequately handle full-duplex terminals communicating with hosts that
support full-duplex communications, which is the norm today. RFC 857 [Postel
and Reynolds 1983c] defines the ECHO option and RFC 858 [Postel and Rey-
nolds 1983d] defines the SUPPRESS GO AHEAD option. The combination of

Section 26.4 Telnet Protocol 405

these two options provides support for the next mode, character at a time, with
remote echo.

2. Character at a time.

This is what we saw with Rlogin. Each character we type is sent by itself to the
server. The server echoes most characters, unless the application on the server
turns echoing off.

The problems with this mode are perceptible delays in echoing across long
delay networks and the high volume of network traffic. Nevertheless, we’ll see
this is the common default for most implementations today.

We’ll see that the way to enter this mode is for the server to have the SUPPRESS
GO AHEAD option enabled. This can be negotiated by having the client send a
DO SUPPRESS GO AHEAD (asking to enable the option at the server), or the
server sending a WILL SUPPRESS GO AHEAD to the client (asking to enable
the option itself). The server normally follows this with a WILL ECHO, asking
to do the echoing.

Line at a time.

This is often called "kludge line mode," because its. implementation comes from
reading between the lines in RFC 858. This RFC states that both the ECHO and
SUPPRESS GO AHEAD options must be in effect to have character-at-a-time
input with remote echo. Kludge line mode takes this to mean that when either
of these options is not enabled, Telnet is in a line-at-a-time mode. In the next
section we’ll see an example of how this mode is negotiated, and how it is dis-
abled when a program that needs to receive every keystroke is run on the server.

Linemode.

We use this term to refer to the real linemode option, defined in RFC 1184 [Bor-
man 1990]. This option is negotiated between the client and server and corrects
all the deficiencies in the kludge line mode. Newer implementations support
this option.

Figure 26.11 shows the default operating mode between various Telnet clients and
servers. The entry "char" means character at a time, "kludge" means the kludge line
mode, and "linemode" means the real RFC 1184 linemode.

Client BSD/386 4.4BSD

SunOS 4.1.3
Solaris 2.2
SVR4
AIX 3.2.2
BSD/386
4.4BSD

SunOS 4.1.3

char
char
char
char
char
char

Solaris 2.2

char
char
char
char
char
char

Server

SVR4 AIX 3.2.2

char char
char char
char char
char char
char char
char char

kludge
kludge
kludge
kludge

linemode
linemode

kludge
kludge
kludge
kludge

linemode
linemode

Figure 26.11 Default modes of operation between various Telnet clients and servers.

406 Telnet and Rlogin: Remote Login Chapter 26

The only two implementations in this figure that support real linemode are BSD/386
and 4.4BSD. These two servers are also the only ones that attempt to negotiate kludge
line mode if real linemode isn’t supported by the client. All the clients and servers
shown in this figure do support kludge line mode, but they don’t select it by default,
unless negotiated by the server.

Synch Signal

Telnet defines its synch signal as the Data Mark command (DM in Figure 26.8) sent as
TCP urgent data. The DM command is the synchronization mark in the data stream
that tells the receiver to return to normal processing. It can be sent in either direction
across a Telnet connection.

When one end receives notification that the other end has entered urgent mode, it
starts reading the data stream, discarding all data other than Telnet commands. The
final byte of urgent data is the DM byte. The reason for using TCP’s urgent mode is to
allow the Telnet commands to be sent across the connection, even if the TCP data flow
has been stopped by TCP’s flow control.

We’ll see examples of Telnet’s synch signal in the next section.

Client Escapes

As with the Rlogin client, the Telnet client also lets us talk to it, instead of sending what
we type to the server. The normal client escape character is Control-] (control and the
right bracket, commonly printed as "^] "). This causes the client to print its prompt,
normally ’%e]_net> ". There are lots of commands that we can type at this point to
change characteristics of the session or to print information. A help command is pro-
vided by most Unix clients that displays the available commands.

We’ll see examples of the client escape, and some of the commands we can issue, in
the next section.

26.5 Telnet Examples

We’ll now look at Telnet option negotiation, along with the three different modes of
operation: character at a time, real linemode, and kludge line mode. We also see what
happens when an interactive user aborts a running process on the server with the inter-
rupt key.

Character-at-a-Time Mode

We start with the basic character-at-a-time mode, similar to Rlogin. Each character we
type on the terminal is sent by itself to the server, and the server echoes the character.
But we’ll run a newer client (BSD/386) that tries to enable many newer options, and see
them refused by the older server (SVR4).

To see what’s negotiated between the client and server we’ll enable a client option
that displays all the option negotiation, and we’ll also run ~:cpdurnp to obtain a time

Section 26.5 Tetnet Examples 407

lineof the packet exchange. Figure 26.12 shows the interactive session.

bsdz % telnet revoke chent w~thout any cornmand-hne optmns

tell client to d~splay all the optzon processzngtelnet> toggle options
Will show option processing.

telnet> open svr4
Trying 140.252.13.34...
Connected to svr4.
Escape character is ’^]’

now estabhsh connectmn wzth server

SENT DO SUPPRESS GO AHEAD 1.(hnenumbers~rdzscussionthatfollows)
SENT WILL TERMINAL TYPE 2o
SENT WILL NAWS
SENT WILL TSPEED 4.
SENT WILL LFLOW 5.
SENT WILL LINEMODE 6.
SENT WILL ENVIRON 7.
SENT DO STATUS 8.
RCVD DO TERMINAL TYPE
RCVD WILL SUPPRESS GO AHEAD I0.
RCVD DONT NAWS 11.
RCVD DONT TSPEED 12.
RCVD DONT LFLOW 13.
RCVD DONT LINEMODE 14.
RCVD DONT ENVIRON 15.
RCVD WONT STATUS 16.
RCVD IAC SB TERMINAL-TYPE SEND 17.
SENT IAC SB TERMINAL-TYPE IS "IBMPC3" 18.
RCVD WILL ECHO 19.
SENT DO ECHO 20.
RCVD DO ECHO 21.
SENT WONT ECHO 22.

UNIX(r) System V Release 4.0

RC%rD DONT ECHO
login: rstevens
Password:

(svr4)

23.
we type our logm name
and password, which the server does not echo
operating system greeting zs then output ._
then shell prompt

Figure 26.12 Initial option negotiation by Telnet chent and server.

We’ve numbered the option negotiation lines that begin with SENT or RCVD, for the
discussion that follows.

The client initiates the negotiation of the SUPPRESS GO AHEAD option. This
option starts with a DO since the GO AHEAD command is normally sent by the
server to the client, and the client wants the server to enable the option. (This is
confusing since enabling the option disables the GA commands from being
sent.) The server OKs this option in line 10.

408 Telnet and Rlogin: Remote Login Chapter 26

The client wants to send its terminal type as specified in RFC 1091 [VanBokkelen
1989]. This is common with Unix clients. This option starts with a WILL since
the client wants to enable the option at its end.

3. NAWS stands for "negotiate about window size" and is defined in RFC 1073
[Waitzman 1988]. If the server agrees (which it doesn’t, in line 11), the client
then sends a suboption with the number of rows and columns in the terminal
window. Additionally, the client will send this suboption at any time later if the
window size changes. (This is similar to what we saw with the Rlogin 0xS0
command in Figure 26.4.)

4. The TSPEED option lets the send6r (normally the client) send its terminal speed,
as defined in RFC 1079 [Hedrick 1988b]. If the server agrees (which it doesn’t,
in line 12), the client then sends a suboption with its transmit speed and receive
speed.

o

°

o

LFLOW stands for "local flow control," and is defined in RFC 1372 [Hedrick
and Borman 1992]. The client sends this option to the server stating that it is
willing to enable and disable flow control on command. If the server agrees
(which it doesn’t in line 13), the server would send a suboption to the client
whenever the processing of ControloS and Control-Q needs to switch between
the client and server. (This is similar to what we saw with the Rlogin 0xX 0 and
0x20 commands in Figure 26.4.) As we said in our discussion of Rlogin, the
interactive user obtains better response to flow control when it’s done by the
client, not by the server.

LINEMODE is the real linemode that we mentioned in Section 26.4. All the ter-
minal character processing is done by the Telnet client (backspace, erase line,
etc.) and complete lines are sent to the server. We’ll see an example of it later in
this section. This option is refused in line 14.

The ENVIRON option lets the client send environment variables to the server, as
defined in RFC 1408 [Borman 1993a]. This can automatically propagate vari-
ables in the user’s environment on the client host to the server. The server
refuses this option in line 15. (An environment variable in Unix is often an
uppercase name, followed by an equals sign, followed by a string value, but this
is only a convention.) By default the BSD/386 Telnet client sends only the two
variables DISPI~AY and PRINTI~R, if they’re defined and if the option is enabled.
The Telnet user can specify additional environment variables to be sent.

The STATUS option (RFC 859 [Postel and Reynolds 1983e]) lets one end ask the
other for its perception of the current status of the Telnet options. In this exam-
ple the client is asking the server to enable the option (DO). If the server agreed
(which it doesn’t in line 16), the client could ask the server in a suboption to
send its status.

This is the first response from the server. The server agrees to enable the termi-
nal type option. (Almost every Unix server supports this option.) The client,
however, cannot send its terminal type until the server asks for it with a subop-
tion (line 17).

Section 26.5 Telnet Examples 409

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

The server agrees to suppress sending the GO AHEAD command.

The server does not agree to let the client send its window size.

The server does not agree to let the client send its terminal speed.
The server does not agree to let the client perform flow control.

The server does not agree to let the client enable the linemode option.

The server does not agree to let the client send environment variables.
The server will not send status information.

This is a suboption with the server asking the client to send its terminal type.

The client sends its terminal type as the 6-character string IBMPC3.

The server asks the client to let the server perform echoing. This is the first
time the server has initiated the negotiation of an option.

20. The client agrees to let the server perform echoing.
21. The server asks the client to perform echoing. This command seems superflu-

ous, given the exchange in the previous two lines, and it is. This is yet another
kludge in most Unix Telnet servers to determine if the client is a 4.2BSD host or
a later BSD release. If the client responds with WILL ECHO, it is probably an
older 4.2BSD host and does not support TCP’s urgent mode correctly. (In that
case urgent mode won’t be used.)

22. The client responds with WONT ECHO, implying it is not a 4.2BSD host.

23. The server responds to the received WONT ECHO with a DONT ECHO.

Figure 26.13 shows the time line for this client-server exchange. (We have removed the
connection establishment.)

Segment i contains lines 1-8 from Figure 26.12. Each option occupies 3 bytes, for a
segment containing 24 bytes. It is the client that starts the option negotiation. This seg-
ment shows that multiple Telnet options can appear in a single TCP segment.

Segment 3 is line 9 from Figure 26.12, the DO TERMINAL TYPE command. Seg-
ment 5 contains the next eight option responses from the server, lines 10-17 from Fig-
ure 26.12. The length of this segment is 27 bytes because lines 10-16 are regular
options, each requiring 3 bytes, along with the suboption (line 17), which requires 6
bytes. The 12 bytes in segment 6 correspond to line 18, the client sending the suboption
with its terminal type.

Segment 8 (53 bytes) is a combination of two Telnet commands with 47 bytes of data
to be output on the terminal. The first 6 bytes are the two commands from the server:
WILL ECHO and DO ECHO (lines 19 and 21). The next 47 bytes are:

\r\n\r\nUNIX(r) System V Release 4.0 (svr4)\r\n\r\0\r\n\r\0

The first 4 bytes produce the two blank lines before the string is output. The 2-byte
sequence \r\n is considered a newline by Telnet. The 2-byte sequence \r\0 is consid-
ered a carriage return. This segment shows that data and commands can appear in the
same segment. The Telnet client and Telnet server must scan every byte they receive,
looking for the IAC byte and then processing what follows.

410 Telnet and Rlogin: Remote Login
Chapter 26

bsdi.1049 svr4.telnet

0.0

0.017790 (0.0178)

0.327576 (0.3098)

0.446925 (0.1193)

0.451361 (0.0044)

0.597461 (0.1461)

0.637692 (0.0402)

0.763506 (0.1258)

0.799814 (0.0363)

0.807708 (0.0079)

0.846969 (0.0393)

0.851704 (0.0047)

1.046951 (0.1952)

2.560179 (1.5132)

2.571687 (0.0115)

2.647017 (0.0753)

1l

13

16

1 PSH 1:25(24) ack 1, win 4096 [tos 0xl0J

ack 25, win 4096

PSH 1:4(3) ack 25, win 4096

~ ~ ack 4, win 4096 [tos 0xl0J

PSH 4:31(27) ack 25, win 4096

P~H 25:37(12) ack 31, win 4096 [tos 0xl0]

ack 37, win 4096

PSH 31:84(53) ack 37, win 4096

PSH 37:43(6) ack 84, win 4096 {tos 0xl0]

PSH 84:87(3) ack 43, win 4096

~ ack 87, win 4093 [tos OxlO]

PSH 87:94(7) ack 43° win 4096

~ ack 94, win 4096/tos 0xl0J

PSH 43:44(1) ack 94 win 4096 [tos 0xl0]

PSH 94:95(1) ack 44, win 4096

~ ack 95, win 4096 [tos 0xl0J

10

12

Figure 26.13 Initial option negotiation by Telnet client and server.

Segment 9 contains the final two options from the client: lines 20 and 22. The
response in segment 10 is line 23, the final option from the server.

From this point in the time line user data is exchanged across the connection. There
is nothing to prevent additional option negotiation, we just don’t see any in this exam-
ple. Segment 12 is the 3_o~j±n : prompt from the server. Segment 14 is the first character
we type of our login name, with its echo returned in segment 15. This is the type of
interactive traffic we saw in Section 19.2 with Rlogin: one character at a time sent by the
client, with the server performing the echo.

Section 26.5 Telnet Examples 411

Linemode

The option negotiation m Figure 26 12 is initiated by the client, but throughout this text we’ve
been using the Telnet client to connect to standard servers such as the daytime server and the
echo server, to demonstrate various feature of TCR When we watched the packet exchange in
these examples, such as Figure 18.1, we never saw the client initiate option negotmtion Why?
The Unix Telnet chent does not initiate any option negotiation if a port number other than the
standard Telnet port (23) is specified This lets the Telnet client, using the standard NVT,
exchange data with other, non-Telnet servers. We’ve used it with the daytime, echo, and dis-
card servers throughout the text, and we’ll use it with the FTP and SMTP servers ,n later
chapters.

To see Telnet’s linemode option in action we’ll run the client on our host bsdi, connect-
ing to the 4.4BSD server on vangogh, cs. berkeley, edu. Both BSD/386 and 4.4BSD
support this option.

We won’t go through all the packets and option and suboption negotiations,
because they’re similar to the previous example and the linemode option is quite
detailed. Instead we’ll note the following differences with the option negotiation.

1. The 4.4BSD server supports more of the options that the BSD/386 tries to nego-
tiate: window size, local flow control, status, accepting environment variables,
and terminal speed.

2. The 4.4BSD server tries to negotiate a newer option that the BSD/386 client
doesn’t support: authentication (to avoid sending the user’s password in clear-
text across the connection).

3. The client sends the WILL LINEMODE option, as before, but the server
responds with DO LINEMODE, since it’s supported. This causes the client to
send its 16 special characters to the server as a suboption. These are the current
values of the special terminal characters in effect at the client: the interrupt char-
acter, the end-of-file character, and so on.

The server sends a suboption to the client telling the client to process all input
lines, performing any editing functions (erase character, erase line, etc.). The
client sends only completed lines to the server. The server also tells the client to
translate any interrupt keys or signal keys into the corresponding Telnet charac-
ter. For example, if the interrupt key is Control-C, and we type Control-C to
interrupt a running process on the server, the client sends the Telnet IP com-
mand (<IAC, IP>) to the server.

Another difference occurs when we type our password. With Rlogin and char-
acter-at-a-time Telnet, the server is responsible for echoing, so when the server
reads the password, it doesn’t echo the characters. In tinemode, however, the
client does the echoing. To handle this, the following exchange takes place:

(a) The server sends WILL ECHO, telling the client that the server will echo.

(b) The client responds with DO ECHO.

(c) The server sends the string password: to the client, and the client outputs
the string to the terminal.

412 Chapter 26Telnet and Rlogin: Remote Login

(d)

(e)

(f)
(g)

We type our password and the client sends it to the server when we type
the RETURN key. The password is not echoed, since the client thinks the
server will echo it.

The server sends the 2-byte sequence CR, LF, to move the cursor, since the
RETURN that completed the password was not echoed.

The server sends WONT ECHO.

The client responds with DONT ECHO. The client resumes echoing.

Once we login, the client builds complete, lines and sends them to the server. This is the
intent of the linemode option. It reduces the number of segments exchanged between
the client and server, and provides faster response to client keystrokes (i.e., echoing and
editing). Figure 26.14 shows the packet exchange when we type the command

vangogh % date

across a Telnet connection using linemode. (We have removed the type-of-service infor-
mation, along with the window advertisements.)

bsdi.1067 vangogh.telnet

0.0

0.299777 (0.2998)

0 330011 (0.0302)

0.384374 (0.0544)

0.599973 (0.2156)

0.784322 (0.1843)

ack 8

PSH 11:41(30) ack 8

~ ack 41

PSH 41:51(10) ack 8

~ ack 51

2

3

Figure 26.14 Sending a command from client to server using Telnet linemode.

If we compare this with the same command typed to Rlogin (Figure 19.2) we see that
Telnet’s linemode uses two segments (one with data, one for the ACK, total of 86 bytes
including the IP and TCP headers), while 15 segments are used with Rlogin (5 with
typed data, 5 with echoed data, 5 ACKs, total of 611 bytes). That is an enormous
savings!

What if we run an application on the server that needs to use the single-character
mode? (The vi editor is an example.) The following steps take place.

Section 26.5 Telnet Examples 413

When the application starts on the server and changes the mode of its pseudo-
terminal, the Telnet server is notified that single-character mode is required.
The server sends WILL ECHO to the client, along with the linemode suboption
that tells the client not to build complete lines, but to send one character at a
time.

2. The client responds with DO ECHO and acknowledges the linemode suboption.

3. The application runs on the server. Each character we type is sent to the server
by itself (constrained by the Nagle algorithm, of course), and the server does
any required echoing.

4. When the application terminates, and restores the mode of its pseudo-terminal,
the Telnet server is notified. The server sends WONT ECHO to the client, along
with the linemode suboption telling the client to build complete lines.

5. The client responds with DONT ECHO and acknowledges the linemode subop-
tion.

The difference between this scenario and typing our password shows that the echo
function and character-at-a-time versus line-at-a-time are independent features. When
we type our password, echo must be off but line-at-a-time is OK. For a full-screen
application such as an editor, echo is off and character-at-a-time is required.

Figure 26.15 summarizes the different modes we’ve seen with Telnet and Rlogin.

Apphcatlon

Rlogin
Telnet, character at a time

Telnet, linemode
Telnet, linemode
Telnet, linemode

Client sends
character line
area-time at-a-time

Client
echo? Example

no

no

yes normal commands
no typing our password
no v~_ editor

Figure 26.15 Comparison of Rlogm and Telnet modes of operation.

Line-at-a-Time Mode (Kludge Line Mode)

We saw in Figure 26.11 that newer servers that support the linemode option go into
kludge line-at-a-time mode, if the client doesn’t support linemode. We also mentioned
that all the clients and servers in that figure supported the kludge line mode, but it
wasn’t the default, and must be explicitly enabled by the server or by the user. Let’s see
how the kludge line mode is enabled, using Telnet options.

We first describe how the BSD/386 server negotiates this mode, when the client
doesn’t support real linemode.

1. When the client rejects the server’s request to enable linemode, the server sends
the DO TIMING MARK option. RFC 860 [Postel and Reynolds 1983f] defines

414 Telnet and Rlogin: Remote Login Chapter 26

this Telnet option. It is intended for the two ends to synchronize with each
other, as we’ll see later in this section when we look at user interrupts. This use
of the option is just to determine if the client supports the kludge line mode.

The client responds with a WILL TIMING MARK, indicating it supports the
kludge line mode.

The server sends the WONT SUPPRESS GO AHEAD option along with the
WONT ECHO option, saying that it wants to disable these two options. We
mentioned earlier that character-at-a-time mode assumes that both SUPPRESS
GO AHEAD and ECHO are both on, so turning off these options is the kludge
that starts line mode.

4. The client responds with DONT SUPPRESS GO AHEAD and DONT ECHO.

5. The login : prompt is sent by the server and we type our login name. It is sent
to the server as a complete line and echoed locally by the client.

6. The server sends the string Password: along with the WILL ECHO option.
This turns off echoing of the password we type by the Telnet client, because it
thinks the server will echo. The client responds with DO ECHO.

7. We type our password. It is sent by the client to the server as a complete line.

8. Echoing is turned back on by the server sending WONT ECHO, which the client
responds to with DONT ECHO.

At this point normal commands are handled similar to the linemode option. The client
performs all editing and echoing, sending complete lines to the server.

We mentioned earlier that all the clients and servers in Figure 26.11 with an entry of
"char" support the kludge line mode, but start by default in character-at-a-time mode.
We can easily watch the negotiation that takes place when we tell the client to enter line
mode:

svr4 %
client is sun, server ~s svr4
type ControL} to tatk to Telnet client (not echoed)

telnet> status verify currently in character-at-a-time mode
Connected to svr4.tuc.noao.edu
Operating in character-at-a-time mode.
Escape character is ’^]’ .

telnet> toggle options
Will show option processing.

telnet> mode line
SENT dont SUPPRESS GO AHEAD
SENT dont ECHO
RCVD wont SUPPRESS GO AHEAD
RCVD wont ECHO

let’s watch the optwn processing

and sw~tch to kludge line mode
chent sends these two options

and server responds to both with WONT

This puts the Telnet session in the kludge line mode, with both the SUPPRESS GO
AHEAD and ECHO options disabled.

Section 26.5 Telnet Examples 415

If we run an application such as the v± editor on the server, we have the same prob-
lem we had with the linemode option. The server needs to tell the client to switch from
kludge line mode to character-at-a-time mode while the application runs, and then
switch back when it’s finished. The following technique is used.

The Telnet server knows it must change to character-at-a-time mode because the
application changes the mode of its pseudo-terminal, which notifies the server.
The server sends WILL SUPPRESS GO AHEAD and WILL ECHO. This puts
the client into character-at-a-time mode.

2. The client responds with DO SUPPRESS GO AHEAD and DO ECHO.

3. The application runs on the server.

4. When the application terminates and changes the mode of its pseudo-terminal,
the Telnet server puts the client back into kludge line mode. It sends WONT
SUPPRESS GO AHEAD and WONT ECHO.

o The client responds with DONT SUPPRESS GO AHEAD and DONT ECHO,
indicating that it’s back in kludge line mode.

Figure 26.16 summarizes the various settings of the SUPPRESS GO AHEAD and ECHO
options for character-at-a-time mode and kludge line mode.

Mode

character at a time
kludge line mode
kludge line mode

SUPPRESS ECHOGO AHEAD

on on
off off
off on

Example

vi editor during kludge line mode
normal commands
typing our password

Figure 26.16 Settings of Telnet options during kludge hne mode

Linemode: Client Interrupt Key

Let’s see what Telnet does when the client types the interrupt key. We establish a ses-
sion between the client bsd± and the server vangogln.cs.be~:keJ_e¥.edu. Fig-
ure 26.17 shows the time line when the interrupt key is typed. (We have removed the
window advertisements and the type-of-service.)

In segment 1 the interrupt key (often Control-C or DELETE) is converted into Tel-
net’s IP (interrupt process) command: <IAC, 1P>. The next 3 bytes, <IAC, DO, TM>,
comprise Telnet’s DO TIMING MARK option. This mark is sent by the client and must
be responded to with either a WILL or a WONT. In either case, all data received from
the server before that response is thrown away (except for Telnet commands). This is a
synchronization mark from the client to the server and back. Segment 1 is not sent
using TCP’s urgent mode.

416 Telnet and Rlogin: Remote Login Chapter 26

bsdi.1086 vangogh.telnet

0.0

0.294903 (0 2949)

0 324730 (0.0298)

0.325137 (0.0004)

0.443874 (0.1187)

0.654953 (0.2111)

0 843881 (0.1889)

type interrupt --~ 1 PSH 6:11(5) ack 41

PSH 41:44(3) ack 11
<IAC, WILL, TM>

PSH 44:45(1) ack 11 urg 45
<IAC>

PSH 45-46(1) ack 11
<DM>

ack 46

PSH 46:60(14) ack 11
\r\O\r\nvangogh %

ack 60

2

3

4

Figure 26.17 Typing interrupt key during linemode operation.

The Host Requirements RFC states that the IP command should be sent using Teh~et’s synch
s~gnal. If it were, the <IAC, IP> would be followed by <IAC, DM>, with the urgent pointer
pointing at the DM byte. Most Unix Telnet clients have an option that sends the IP command
with the synch signal, but the option defaults off (as we see here).

Segment 2 is the server’s reply to the DO TIMING MARK option. It is followed in
segments 3 and 4 by a Telnet synch signal: <IAC, DM>. The urgent pointer in segment
3 points to the DM byte, which is sent in segment 4.

If there had been a window full of data queued or in flight from the server to the
client, all this data would have been thrown away by the client after sending the IP
command in segment 1. Even if the server were stopped by TCP’s flow control from
sending the data in segments 2, 3, and 4, the urgent pointer is still sent. This is similar
to what we saw with Rlogin in Figure 26.7.

Why is the synch signal sent as two segments (3 and 4)? The reason is the problem
we detailed in Section 20.8 dealing with TCP’s urgent pointer. The Host Requirements
RFC says it should point to the last byte of urgent data, while most Berkeley-derived
implementations have it point 1 byte beyond the last byte of urgent data. (Recall in Fig-
ure 26.6 that the urgent pointer pointed 1 byte beyond the command byte.) The Telnet
server purposely writes the first byte of the synch signal as urgent data, knowing the
urgent pointer will (incorrectly) point to the next byte that it writes (the data mark,
DM), but this first write with the IAC byte is sent immediately, along with the urgent
pointer, followed in the next segment by the DM byte.

The final segment of data, segment 6, is just the next shell prompt from the server.

Section 26.6 Summary 417

26.6 Summary

This chapter has shown the operation of the Rlogin and Telnet applications. Both pro-
vide remote login from a client host to a server host, to let us run programs on the
server.

The two applications are different. Rlogin was written assuming both ends of the
connection are Unix hosts, so only one option is provided. It is a simple protocol. Tel-
net, on the other hand, has been around longer and makes no assumptions about the
type of host at each end. Telnet is intended to work between different operating
systems.

To support a heterogeneous environment, Telnet provides option negotiation
between the client and server, to add capabilities if both ends support it. This provides
a bare bones implementation for simple clients or servers, but can take advantage of
newer features when supported by both ends.

We watched Telnet option negotiation and saw the three types of data transfer:
character-at-a-time, kludge line mode, and real linemode. Today the trend is toward
line-at-a-time input, when possible, to reduce network traffic and provide better
response to the interactive user for line editing and echoing.

Figure 26.18 summarizes and compares the different features provided by Rlogin
and Tetnet.

Feature

transport protocol
packet mode

Rlogin

One TCP connection. Uses urgent mode.
Always character-at-a-time, remote echo.

flow control Normally done by client, can be disabled
by server.

terminal type Always provided.
terminal speed Always provided.
window size Option supported by most servers.
environment variables Not supported.
automatic login Default May be prompted for password,

which is sent as cleartext. Newer
versions support Kerberos login.

Tetnet

One TCP connection. Uses urgent mode
Common default is character-at-a-time,

remote echo. Kludge line mode with
client echo commonly supported.
New option for real linemode with
client echo. Always character-at-a-
time when apphcation on server
requires it

Normally done by server, option allows
cltent to do it.

Option, commonly supported.
Option.
Option.
Option.
Default is to type login name and

password. Password is sent as
cleartext. Authentication option
provided by newer verstons.

Figure 26.18 Summary of features provided by Rlogin and Telnet.

Both the Telnet server and the Rlogin server normally set TCP’s keepalive option
(Chapter 23), if supported by the server’s TCP implementation, to detect if the client
host crashes. Both applications also use TCP’s urgent mode to send server commands
to the client even if the flow of data in this direction has been flow control stopped.

418 Telnet and Rlogin: Remote Login Chapter 26

Exercises

26.1 Identify all the delayed ACKs in Figure 26.5.

26.2 Why was segment 12 in Figure 26.7 sent?

26.3 We said that the Rlogin client must use a reserved port (Section 1.9). (Normally the Rlogin
client only uses reserved ports in the range 512-1023.) What limitation does this present to
a host? Is there a way around this?

26.4 Read RFC 1097, describing the Telnet subliminal-message option.

FTP: File Transfer Protocol

27.1 Introduction

FTP is another commonly used application. It is the Internet standard for file transfer.
We must be careful to differentiate between file transfer, which is what FTP provides,
and file access, which is provided by applications such as NFS (Sun’s Network File Sys-
tem, Chapter 29). The file transfer provided by FTP copies a complete file from one sys-
tem to another system. To use FTP we need an account to login to on the server, or we
need to use it with a server that allows anonymous FTP (which we show an example of
in this chapter).

Like Telnet, FTP was designed from the start to work between different hosts, run-
ning different operating systems, using different file structures, and perhaps different
character sets. Telnet, however, achieved heterogeneity by forcing both ends to deal
with a single standard: the NVT using 7-bit ASCII. FTP handles all the differences
between different systems using a different approach. FTP supports a limited number
of file types (ASCII, binary, etc.) and file structures (byte stream or record oriented).

RFC 959 [Postel and Reynolds 1985] is the official specification for FTP. This RFC
contains a history of the evolution of file transfer over the years.

27.2 FTP Protocol

FTP differs from the other applications that we’ve described because it uses two TCP
connections to transfer a file.

1. The control connection is established in the normal client-server fashion. The
server does a passive open on the well-known port for FTP (21) and waits for a

419

420 FTP: File Transfer Protocol Chapter 27

client connection. The client does an active open to TCP port 21 to establish the
control connection. The control connection stays up for the entire time that the
client communicates with this server. This connection is used for commands
from the client to the server and for the server’s replies.

The IP type-of-service for the control connection should be "minimize delay"
since the commar~ds are normally typed by a human user (Figure 3.2).

A data connection is created each time a file is transferred between the client and
server. (It is also created at other times, as we’ll see later.)

The IP type-of-service for the data connection should be "maximize through-
put" since this connection is for file transfer.

Figure 27.1 shows the arrangement of the client and server and the two connections
between them.

V-
client

user
interface

protocol
interpreter

data transfer
function

control connection
(FTP commands)

(FTP replies)

data connection

server

server
protocol

interpreter

S~lwer

data transfer
function

Figure 27.1 Processes involved in file transfer.

This figure shows that the interactive user normally doesn’t deal with the com-
mands and replies that are exchanged across the control connection. Those details are
left to the two protocol interpreters. The box labeled "user interface" presents whatever
type of interface is desired to the interactive user (full-screen menu selection, line-at-a-
time commands, etc.) and converts these into FTP commands that are sent across the
control connection. Similarly the replies returned by the server across the control con-
nection can be converted to any format to present to the interactive user.

This figure also shows that it is the two protocol interpreters that invoke the two
data transfer functions, when necessary.

Section 27.2 FTP Protocol 421

Data Representation

Numerous choices are provided in the FTP protocol specification to govern the way the
file is transferred and stored. A choice must be made in each of four dimensions.

File

(a)

type.

ASCII file type.
(Default) The text file is transferred across the data connection in NVT
ASCII. This requires the sender to convert the local text file into NVT
ASCII, and the receiver to convert NVT ASCII to the local text file type.
The end of each line is transferred using the NVT ASCII representation of a
carriage return, followed by a linefeed. This means the receiver must scan
every byte, looking for the CR, LF pair. (We saw the same scenario with
TFTP’s ASCII file transfer in Section 15.2.)

(b) EBCDIC file type.
An alternative way of transferring text files when both ends are EBCDIC
systems.

(c) Image file type. (Also called binary.)
The data is sent as a contiguous stream of bits. Normally used to transfer
binary files.

(d) Local file type.
A way of transferring binary files between hosts with different byte sizes.
The number of bits per byte is specified by the sender. For systems using
8-bit bytes, a local file type with a byte size of 8 is equivalent to the image
file type.

Format control. This choice is available only for ASCII and EBCDIC file types.

(a) Nonprint.
(Default) The file contains no vertical format information.

(b) Telnet format control.
The file contains Telnet vertical format controls for a printer to interpret.

(c) Fortran carriage control.
The first character of each line is the Fortran format control character.

Structure.

(a) File structure.
(Default) The file is considered as a contiguous stream of bytes. There is no
internal file structure.

(b) Record structure.
This structure is only used with text files (ASCII or EBCDIC).

422 FTP: File Transfer Protocol Chapter 27

(c) Page structure.
Each page is transmitted with a page number to let the receiver store the
pages in a random order. Provided by the TOPS-20 operating system. (The
Host Requirements RFC recommends against implementing this structure.)

Transmission mode. This specifies how the file is transferred across the data
connection.

(a) Stream mode.
(Default) The file is transferred as a stream of bytes. For a file structure, the
end-of-file is indicated by the sender closing the data co~mection. For a
record structure, a special 2-byte sequence indicates the end-of-record and
end-of-file.

(b)

(c)

Block mode.
The file is transferred as a series of blocks, each preceded by one or more
header bytes.

Compressed mode.
A simple run-length encoding compresses consecutive appearances of the
same byte. In a text file this would commonly compress strings of blanks,
and in a binary file this would commonly compress strings of 0 bytes. (This
is rarely used or supported. There are better ways to compress files for
FTP.)

If we calculate the number of combinations of all these choices, there could be 72 differ-
ent ways to transfer and store a file. Fortunately we can ignore many of the options,
because they are either antiquated or not supported by most implementations.

Common Unix implementations of the FTP client and server restrict us to the fol-
lowing choices:

¯ Type: ASCII or image.
¯ Format control: nonprint only.
¯ Structure: file structure only.
¯ Transmission mode: stream mode only.

This limits us to one of two modes: ASCII or image (binary).

This implementation meets the minimum requirements of the Host Requirements RFC. (This
RFC also requires support for the record structure, but only if the operating system supports it,
which Unix doesn’t.)

Many non-Unix implementations provide FTP capabilities to handle their own file formats.
The Host Requirements RFC states "The FTP protocol includes many features, some of which
are not commonly implemented. However, for every feature in FTP, there exists at least one
implementation.’"

Section 27.2 FTP Protocol 423

FTP Commands

The commands and replies sent across the control connection between the client and
server are in NVT ASCII. This requires a CR, LF pair at the end of each line (i.e., each
command or each reply).

The only Telnet commands (those that begin with IAC) that can be sent by the client
to the server are interrupt process (<IAC, IP>) and the Telnet synch signal (<IAC, DM>
in urgent mode). We’ll see that these two Telnet commands are used to abort a file
transfer that is in progress, or to query the server while a transfer is in progress. Addi-
tionally, if the server receives a Telnet option command from the client (WILL, WONT,
DO, or DONT) it responds with either DONT or WONT.

The commands are 3 or 4 bytes of uppercase ASCII characters, some with optional
arguments. More than 30 different FTP commands can be sent by the client to the
server. Figure 27.2 shows some of the commonly used commands, most of which we’ll
encounter in this chapter.

Command

ABOR
LIST filelist
PASS password
PORT nl,n2,n3,n4,n5,n6
QUIT
RETR ahlenarae
STOR filenatne
SYST
TYPE type
USER username

Description

abort previous FTP command and any data transfer
list files or directories
password on server
client IP address (nl.n2.n3.n4) and port (n5 x 256 + n6)
logoff from server
retrieve (get) a file
store (put) a file
server returns system type
specify file type: A for ASCII, I for image
username on server

Figure 27.2 Common FTP commands.

We’ll see in the examples in the next section that sometimes there is a one-to-one
correspondence between what the interactive user types and the FTP command sent
across the control connection, but for some operations a single user command results in
multiple FTP commands across the control connection.

FTP Replies

The replies are 3-digit numbers in ASCII, with an optional message following the num-
ber. The intent is that the software needs to look only at the number to determine how
to process the reply, and the optional string is for human consumption. Since the clients
normally output both the numeric reply and the message string, an interactive user can
determine what the reply says by just reading the string (and not have to memorize
what all the numeric reply codes mean).

Each of the three digits in the reply code has a different meaning. (We’ll see in
Chapter 28 that the Simple Mail Transfer Protocol, SMTP, uses the same conventions for
commands and replies.)

424 FTP: File Transfer Pr0~ocol Chapter 27

Figure 27.3 shows the meanings of the first and second digits of the reply code.

Reply

lyz

2yz
3yz

4yz

5yz

x0z
xlz I
x2z I
x3z [
x4z]
xSz

Description

Positive preliminary reply. The action is being started but expect another reply before
sending another command.

Positive completion reply. A new command can be sent.
Positive intermediate reply. The command has been accepted but another command must

be sent.
Transient negative completion reply. The requested action did not take place, but the error

condition is temporary so the command can be reissued later.
Permanent negative completion reply. The command was not accepted and should not be

retried.
Syntax errors.
Information.
Connections. Replies referring to the control or data connections.
Authentication and accounting. Replies for the login or accounting commands.
Unspecified.
Filesystem status.

Figure 27.3 Meanings of hrst and second digits of 3-d~git reply codes.

The third digit gives additional meaning to the error message. For example, here are
some typical replies, along with a possible message string.

¯ 125 Data connection already open; transfer starting.
¯ 200 Command OK.
¯ 214 Help message (for human user).
¯ 331 Username OK, password required.
¯ 425 Can’t open data connection.
¯ 452 Error writing file.
¯ 500 Syntax error (unrecognized command).
¯ 501 Syntax error (invalid arguments).
¯ 502 Unimplemented MODE type.

Normally each FTP command generates a one-line reply. For example, the QUIT
command could generate the reply:

221 Goodbye.

If a multiline reply is needed, the first line contains a hyphen instead of a space after the
3-digit reply code, and the final line contains the same 3-digit reply code, followed by a
space. For example, the HELP command could generate the reply:

214- The following commands are recognlzed (* =>’s unimplemented) .
USER PORT STOR MSAM* RNTO NLST MKD CDUP
PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP
ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU
SMNT* STRU MAIL* ALLO CWD STAT XRF~D SIZE
REIN* MODE MSND* REST XCWD HELP PWD MDTM
QUIT RETR MSOM* RNFR LIST NOOP XPWD

214 Direct comments to ftp-bugs@bsdl.tUConOao.edu.

Section 27.2 FTP Protocol 425

Connection Management

There are three uses for the data connection.

1. Sending a file from the client to the server.

2. Sending a file from the server to the client.

3. Sending a listing of files or directories from the server to the client.

The FTP server sends file listings back across the data connection, rather than as nLd~*i-
line replies across the control connection. This avoids any line limits that restrict the
size of a directory listing and makes it easier for the client to save the output of a direc-
tory listing into a file, instead of printing the listing to the terminal.

We’ve said that the control connection stays up for the duration of the client-server
connection, but the data connection can come and go, as required. How are the port
numbers chosen for the data connection, and who does the active open and passive
open?

First, we said earlier that the common transmission mode (under Unix the only
transmission mode) is the stream mode, and that the end-of-file is denoted by closing
the data connection. This implies that a brand new data connection is required for
every file transfer or directory listing. The normal procedure is as follows:

1. The creation of the data coxmection is under control of the client, because it’s the
client that issues the command that requires the data connection (get a file, put a
file, or list a directory).

2. The client normally chooses an ephemeral port number on the client host for its
end of the data connection. The client issues a passive open from this port.

3. The client sends this port number to the server across the control codnection
using the PORT command.

4. The server receives the port number on the control connection,~ and issues an
active open to that port on the client host. The server’s end of the data connec-
tion always uses port 20.

Figure 27.4 shows the state of the connections while step 3"is being performed. We
assume the client’s ephemeral port for the control connection is 1173, and the client’s
ephemeral port for the data connection is 1174. The command sent by the client is the
PORT command and its arguments are six decimal numbers in ASCII, separated by
commas. The first four numbers specify the IP address on the client that the server
should issue the active open to (140.252.13.34 in this example), and the next two specify
the 16-bit port number. Since the 16-bit port number is formed from two numbers, its
value in this example is 4 x 256 + 150 = 1174.

Figure 27.5 shows the state of the connection when the server issues the active open
to the client’s end of the data connection. The server’s end point is at port 20.

426 FTP: File Transfer Protocol Chapter 27

FTP chent
port 1173 l~

port 1174
(passive open)

IP addr 140.252 13.34

Figure 27.4

(control co~mectton)
PORT 140,252, 13, 34, 4, 150\r\n --~

FTP server

port 21

PORT command going across FTP control connection.

FTP client

port 1173 ~

port 1174 ~
(passive open) }

tP addr 140.252.13.34

Figure 27.5

(control co~mectlon)

SYN to 140.252.13.34,
port 1174

FTP server

~port 21

port 20
(active open)

FTP server doing active open of data connection.

The server always does the active open of the data connection. Normally the server
also does the active close of the data connection, except when the client is sending a file
to the server in stream mode, which requires the client to close the connection (which
gives the server the end-of-file notification).

It is also possible for the client to not issue the PORT command, in which case the
server issues the active open to the same port number being used by the client for its
end of the control connection (1173 in this example). This is OK, since the server’s port
numbers for the two connections are different: one is 20 and the other is 21. Neverthe-
less, in the next section we’ll see why current implementations normally don’t do this.

27.3 FTP Examples

We now look at some examples using FTP: its management of the data connection, how
text files are sent using NVT ASCII, FTP’s use of the Telnet synch signal to abort an in-
progress transfer, and finally the popular "anonymous FTP."

Connection Management: Ephemeral Data Port

Let’s first look at FTP’s connection management with a simple FTP session that just lists
a file on the server. We run the client on the host svr4 with the -d flag (debug). This
tells it to print the commands and replies that are exchanged across the control connec-
tion. All the lines preceded by ---> are sent by the client to the server, and the lines
that begin with a 3-digit number are the server’s replies. The client’s interactive prompt
is ftp>.

Section 27.3 FTP Examples 427

svr4 % ftp -d bsdi
Connected to bsdi.
220 bsdi FTP server (Version 5.60)-ready.

Name (bsdi:rstevens) :

---> USER rstevens
331 Password required for rstevens.

Password:

---> PASS XXXXXXX
230 User rstevens logged in.

ftp> dir hello.c

---> PORT 140,252,13,34,4,150
200 PORT command successful.

-d ophon for debug output
client does active open of contro! connectmn
server responds it is ready

chent prompts us for a login name

we type RETURN, so chent sends default

we type our password; ~t’s not echoed

chent sends ~t as cleartext

ask for directory hsting of a single file

see F~gure 27.4

---> LIST hello.c
150 Opening ASCII mode data connection for /bin/is.

-rw-r--r-- 1 rstevens staff 38 Jul 17 12:47 hello.c

226 Transfer complete.

remote: hello.c
56 bytes received in 0.03 seconds

ftp> quit

---> QUIT
221 Goodbye.

outputbyclient
(1.8 Kbytes/s)

we’re done

When the FTP client prompts us for a login name, it prints the default (our login
name on the client). When we type the RETURN key, this default is sent.

Asking for a directory listing of a single file causes a data connection to be estab-
lished and used. This example follows the procedure we showed in Figures 27.4
and 27.5. The client asks its TCP for an ephemeral port number for its end of the data
connection, and sends this port number (1174) to the server in a PORT command. We
can also see that a single interactive user command (d±r) becomes two FTP commands
(PORT and LIST).

Figure 27.6 is the time line of the packet exchange across the control connection.
(We have removed the establishment and termination of the control connection, along
with all the window size advertisements.) We note in this figure where the data connec-
tion is opened, used, and then closed.

Figure 27.7 is the time line for the data connection. The times in this figure are from
the same starting point as Figure 27.6. We have removed all window advertisements,
but have left in the type-of-service field, to show that the data connection uses a differ-
ent type-of-service (maximize throughput) than the control connection (minimize
delay). (The TOS values are in Figure 3.2.)

In this time line the FTP server does the active open of the data connection, from
port 20 (called ftp-data), to the port number from the PORT command (1174). Also in
this example, where the server writes to the data connection, the server does the active
close of the data cormection, which tells the client when the listing is complete.

428 FTP: File Transfer Protocol Chapter 27

0.0

0.050161 (0.0502)

1.718817 (1.6687)

1.743346 (0.0245)

1.939768 (0.1964)

svr4.1173

2

type RETURN -~ 3..

5

8

type dir ~ 9~

11.

13

15

type qult ~]6 ¯

5 024268 (3.0845) type password --> 6

5.131819 (0.1076)

5.279926 (0.1481)

13.551255 (8.2713)

13.555493 (0.0042)

13.604858 (0.0494)

13.664514 (0.0597)

13.859774 (0.1953)

13.861178 (0.0014)

14.069851 (0.2087)

18.042302 (3.9725)

18.045989 (0.0037)

PSH l:45(44) ack 1
220 bsdi FTP server ... \r\n

ack 45

PSH 1:16(15) ack 45
USER rstevens\r\n

PSH 45:82(37) ack 16
331 Password required for rstevens.\rkn

ack 82

PSH 16:30(14) ack 82
PASS XXXXXXX\r\n

PSH 82:112(30) ack 30
230 User rstevens logged in.\r\n

ack 112

PSH 30:56(26) ack 112
PORT 140,252,13,34,4,150\r\n

PSH 112:142(30) ack56
200 PORT command successful.\rXn

PSH 56:70(14) ack 142
LIST hello.c\r\n

(open data connection)

PSH 142.195(53) ack 70
150 Opening ASCII mode ... \r\n

(use data connection, then close)

ack 195

PSH 195:219(24) ack 70
226 Transfer complete.\rXn

ack 219

PSH 70:76(6) ack 219
QUIT\r\n

PSH 219:233(14) ack 76
221 Goodbye. \r\n

bsdi.ftp
1

4

7

10

12

!4

17

Figure 27.6 Control connection for FTP example.

Section 27.3 FTP Examples 429

svr4.1174 bsdi.ftp-data

13.653721

13.659015 (0.0053)

13,660614 (0.0016)

13.716103 (0.0555)

13.718103 (0.0020)

13.723786 (0.0057)

13.796211 (0.0724)

13.797590 (0.0014)

6

7

SYN 52435457:52435457(0)
<ross 1024> ~ 0x8]

SYN 1929360385:1929360385(0)
ack 5243)-~5~, <mss 1024>

ack 1 [tos 0x8]

PSH 1:57(56) ack I [tos 0x81
-rw-r--r-- 1 rstevens -.. \r\n

FIN 57:57(0) ack I [tos 0x8]

ack 58

FIN 1:1(0) ack 58

ack 2 [tos 0x8]

active open

active close

Figure 27.7 Data connection for FTP example.

Connection Management: Default Data Port

If the client does not send a PORT command to the server, to specify the port number
for the client’s end of the data connection, the server uses the same port number for the
data connection that is being used for the control connection. This can cause problems
for clients that use the stream mode (which the Unix FTP clients and server always use),
as we show below.

The Host Requirements RFC recommends that an FTP client using the stream mode send a
PORT command to use a nondefault port number before each use of the data connection.

Returning to the previous example (Figure 27.6), what if we asked for another direc-
tory listing a few seconds after the first? The client would ask its kernel to choose
another ephemeral port number (perhaps 1175) and the next data connection would be
between svr4 port 1175 and bsd± port 20. But in Figure 27.7 the server did the active
close of the data connection, and we showed in Section 18.6 that the server won’t be
able to assign port 20 to the new data connection, because that local port number was
used by an earlier connection that is still in the 2MSL wait state.

The server gets around this by specifying the SO_REUSEADDR option that we men-
tioned in Section 18.6. This lets it assign port 20 to the new connection, and the new
connection will have a different foreign port number (1175) from the one that’s in the
2MSL wait (1174), so everything is OK.

430 I’ll’P: File Transfer Protocol Chapter 27

This scenario changes if the client does not send the PORT command, specifying an
ephemeral port number on the client. We can force this to happen by executing the user
command senctpor~: to the FTP client. Unix FTP clients use this command to turn off
sending PORT commands to the server before each use of a data connection.

Figure 27.8 shows the time line only for the data connections for two consecutive
LIST commands. The control connection originates from port 1176 on host svr4, so in
the absence of PORT commands, the client and server use this same port number for the
data connection. (We have removed the window advertisements and type-of-service
values.)

svr4.1176 bsdi.ftp-data

0.0

0.007540 (0.0075)

0.009121 (00016)

0.063206 (0.0541)

0.065210 (0.0020)

0.070637 (0 0054)

0.149219 (0.0786)

0 150578 (0.0014)

64.633535 (64.4830)

64.638647 (0.0051)

64.640258 (0.0016)

64.648391 (0.0081)

64.650399(0.0020)

64 655060 (0.0047)

64 767727 (0.1127)

64.769141 (0.0014)

14

15

IC

SYN 303187457:303187457(0)
<mss 1024>

SYN 2175696385:2175696385(0)
ack 30~, <mss 1024>

ack 1

PSH 1:57(56) ack I
(out-put of first L1ST command)

FIN 57:57(0) ack 1

ack 58

FIN 1:1(0) ack 58

ack 2

(all attempts to open TCP connection
from bs&.ftp-data to svr4.1176 in here fad)

SYN 311507457:311507457(0)
<mss 1024>

SYN 2183888385:2183888385(0)
ack Jl~-0~4-~8,,~ss 1024>

ack 1

PSH 1:58(57) ack 1
(output of second LIST command)

FIN 58:58(0) ack 1

ack 59

FIN 1:1(0) ack 59

ack 2

1 ~- active open

4

5 ~- active close

8

9 ~- active open

11

12

13 ~- active close

16

Figure 27.8 Data connection for two consecutive LIST commands.

Section 27.3 FTP Examples 431

The sequence of events is as follows.

1. The control connection is established from the client port 1176 to the server port
21. (We don’t show this.)

2. When the client does the passive open for the data connection on port 1176, it
must specify the SO REUSEADDR option since that port is already in use by the
control connection o~ the client.

The server does the active open of the data connection (segment 1) from port 20
to port 1176. The client accepts this (segment 2), even though port 1176 is
already in use on the client, because the two socket pairs

<svr4, 1176, bsdl, 21>
<svr4, 1176, bsdz, 20>

are different (the port numbers on bsd± are different). TCP demultiplexes
incoming segments by looking at the source IP address, source port number,
destination IP address, and destination port number, so as long as one of the
four elements differs, all is OK.

The server does the active close of the data connection (segment 5), which puts
the socket pair

<svr4, 1176, bsdi, 20>

in a 2MSL wait on the server.

The client sends another LIST command across the control connection. (We
don’t show this.) Before doing this the client does a passive open on port 1176
for its end of the data connection. The client must specify the SO_REUSEADDR
option again, since the port number 1176 is already in use.

The server issues an active open for the data connection from port 20 to port
1176. Before doing this the server must specify SO_REUSEADDR, since the local
port (20) is associated with a cormection that is in the 2MSL wait, but from what
we showed in Section 18.6, the connection won’t succeed. The reason is that the
socket pair for the connection request equals the socket pair from step 4 that is
still in a 2MSL wait. The rules of TCP forbid the server from sending the SYN.
There is no way for the server to override this 2MSL wait of the socket pair
before reusing the same socket pair.

At this point the BSD server retries the connection request every 5 seconds, up
to 18 times, for a total of 90 seconds. We see that segment 9 succeeds about 1
minute later. (We mentioned in Chapter 18 that SVR4 uses an MSL of 30 sec-
onds, for a 2MSL wait of 1 minute.) We don’t see any SYNs from these failures
in this time line because the active opens fail and the server’s TCP doesn’t even
send a SYN.

The reason the Host Requirements RFC recommends using the PORT command is to
avoid this 2MSL wait between successive uses of a data connection. By continually
changing the port number on one end, the problem we just showed disappears.

432 FTP: File Transfer Protocol Chapter 27

Text File Transfer: NVT ASCII Representation or Image?

Let’s verify that the transmission of a text file uses NVT ASCII by default. This time we
don’t specify the -d flag, so we don’t see the client commands, but notice that the client
still prints the server’s responses:

sun % ftp bsdi
Connected to bsdi.
220 bsdi FTP server (Version 5.60)

Name (bsdl:rstevens):
331 Password required for rsteyens.

ready.

toe type RETURN

Password:
230 User rstevens logged in.

we type our password

ftp> get hello.c ~tchafile
200 PORT command successful.

150 Openlng ASCII mode data connection for hello.c (38 bytes).
226 Transfer complete, server says file contains 38 bytes

local : hello, c remote: hello, c output by cl&nt
42 bytes received in 0.0037 seconds (11 Kbytes/s) 42byt~ac~ssda~connect~n

ftp> quit
221 Goodbye.

sun % is -i hello.c
-rw-rw-r-- 1 rstevens

sun % wc -i hello.c
4 hello.c

38 Jul 18 08:48 hello.c but f~le contains 38 bytes

count the lines m thejqle

Forty-two bytes are transferred across the data connection because the file contains four
lines. Each Unix newline character (in) is converted into the NVT ASCII 2-byte end-of-
line sequence (\r\n) by the server for transmission, and then converted back by the
client for storage.

Newer clients attempt to determine if the server is of the same system type, and if
so, transfer files in binary (image file type) instead of ASCII. This helps in two ways.

1. The sender and receiver don’t have to look at every byte (a big savings).

2. Fewer bytes are transferred if the host operating system uses fewer bytes for the
end-of-line than the 2-byte NVT ASCII sequence (a smaller savings).

We can see this optimization using a BSD/386 client and server. We’ll enable the debug
mode, to see the client FTP commands:

bsdi % ftp -d slip
Connected to slip.
220 slip FTP server (Version 5.60)

Name (slip:rstevens) :
---> USER rstevens
331 Password required for rstevens.

Password:

ready.

specify -d to see chent commands

we type RETURN

we type our password

Section 27.3 FTP Examples 433

---> PASS XXXX
230 User rstevens logged in.

---> SYST
215 UNIX Type: L8 Version: BSD-199103

Remote system type is UNIX.
Uslng blnary mode to transfer files.

ftp> get hello.c
---> TYPE I
200 Type set to I.

---> PORT 140,252,13,66,4,84
200 PORT command successful.

---> RETR hello.c
150 Opening BINARY mode data connection
226 Transfer complete.

38 bytes received in 0.035 seconds

ftp> quit

---> QUIT
221 Goodbye.

th~s ~s sent automatically by chent
server’s reply

mformatmn output by chent
information output by chent

fetch a file
sent automatically by chent

port number : 4 x 256 + 84 : 1108

for hello.c (38 bytes).

(1.1 Kbytes/s) only 38 bytes th~s time

After we login to the server, the client FTP automatically sends the SYST command,
which the server responds to with its system type. If the reply begins with the string
"215 UNIX Type: LS", and if the client is running on a Unix system with 8 bits per
byte, binary mode (image) is used for all file transfers, unless changed by the user.

When we fetch the file hello, c the client automatically sends the command TYPE
I to set the file type to image. Only 38 bytes are transferred across the data connection.

The Host Requirements RFC says an FTP server must support the SYST command 0t was an
ophon in RFC 959). But the only systems used in the text (see inside front cover) that support
~t are BSD/386 and AIX 3.2.2. SunOS 4.1.3 and Solaris 2.x reply w~th 500 (command not under-
stood). SVR4 has the extremely unsocial behavior of replying w~th 500 and closing the control
com~ection~

Aborting A File Transfer: Telnet Synch Signal

We now look at how the FTP client aborts a file transfer from the server. Aborting a file
transfer from the client to the server is easy--the client stops sending data across the
data connection and sends an ABOR to the server on the control com~ection. Aborting a
receive, however, is more complicated, because the client wants to tell the server to stop
sending data immediately. We mentioned earlier that the Telnet synch signal is used, as
we’ll see in this example.

We’ll initiate a receive and type our interrupt key after it has started. Here is the
interactive session, with the initial login deleted:

ftp> get a.out

---> TYPE I
200 Type set to I.

---> PORT 140,252,13,66,4,99
200 PORT command successful.

fetch a large Jile

client and server are both 8-b~t byte Unix systems

434 FTP: File Transfer Protocol Chapter 27

---> RETR a.out
150 Opening BINARY mode data connection for a.out (28672 bytes).

^ ? type our interrupt key
receive aborted output by client
waiting for remote to finish abort output byclient
426 Transfer aborted. Data connectlon closed.
226 Abort successful

1536 bytes received in 1.7 seconds (0.89 Kbytes/s)

After we type our interrupt key, the client immediately tells us it initiated the abort and
is waiting for the server to complete. The server sends two replies: 426 and 226. Both
replies are sent by the Unix server when it receives the urgent data from the client with
the ABOR command.

Figures 27.9 and 27.10 show the time line for this session. We have combined the
control connection (solid lines) and the data connection (dashed lines) to show the rela-
tionship between the two.

bsdi.1121 slip.ftp

0.0

0.049758 (0.0498)

0.064051 (0.0143)

0.145114 (0.0811)

0.153730 (0.0086)

0.232536 (0.0788)
0.234623 (0.0021) open data

connection

0.328907 (0.0943)

0.405995 (0.0771)

0.513139 (0.1071)

0.682908 (0.1698)

0.713129 (0.0302)
start data

transfer

PSH 6:14(8) ack 40
TYPE I\r\n

PSH 40:60(20) ack 14
200 Type set to I.\r\n

PSH 14:39(25) ack 60
PORT 140,252,13,66,4,99\r\n

PSH 60:90(30) ack 39
200 PORT command successful.\r\n

PSH 39:51(12) ack 90
RETR a.out\r\n

SYN 2772971521:2772971521(0)
<mss 256>

....... S_Y_N _I I_10564865:1110564865(0)
ack 277~ ~-7 i-5 ~27 ~rr~s ~- 2~ g->

ack 1

PSH90:156(66)ack51
150 Opening BINARY mode ...\r\n

~ ack 156

1:257(256) ack 1
(first segment [f’-d[t[)

ack 257

8

9

11

Figure 27.9 Aborting a file transfer (first half).

Section 27.3 FTP Examples 435

The first 12 segments in Figure 27.9 are what we expect. The commands and replies
across the control connection set up the file transfer, the data connection is opened, and
the first segment of data is sent from the server to the client.

bsdi.1121 slip.ftp

2.142893 (1.4298)

2 155657 (0.0128) type interrupt --~ 14

2 157554 (0.0019) 15

2.313182 (0.1556) 16

2,417728 (0.1045)

2.474992 (0.0573)

2.515127 (0.0401) 19

2,516258 (0.0011) 20

2.750857 (0 2346)

2.780032 (0.0292)

2 913212 (0.1332) 23

2.914354 (0.0011) 24

3.052740 (0.1384)

3.113208 (0.0605)data transfer 26continues

z

close data 28

connection 29

1281:1537(256) ack

PSH 51:54(3) ack 156 urg 54
<IAC, IP, IAC>

, PSH 54:61(7) ack 156
<DM, A, B, 0, R, \r, \n> ~

_ _ ack 1537

6.087193 (2.9740)

6,088664 (0.0015)

6.100902 (0.0122)

6.158283 (0.0574)

1537:1793(256) ack 1

PSH 156:203(47) ack 61
426 Transfer aborted \r\n

............ _a_ck]793

ack 203

1793:2049(256) ack 1

PSH 203:225(22) ack 61
226 Abort successful\r\n

............ _a_ck_2_04_9
ack 225

2049:2305(256) ack 1

_ ack 2305

13

17

18

- 21

22

25

FIN,PSH 4865:5121(256)ack i 27

ack 5122

FIN 1:1(0) ack 5122

ack 2 - 30

Figure 27.10 Aborting a file transfer (second half).

In Figure 27.10, segment 13 is the receipt of the sixth data segment from the server
on the data connection, followed by segment 14, which is generated by our typing the
interrupt key. Ten bytes are sent by the client to abort the transfer:

436 FTP: File Transfer Protocol Chapter 27

<IAC, IP, IAC, DM, A, B, O, R, \r, \n>

We see two segments (14 and 15) because of the problem we detailed in Section 20.8
dealing with TCP’s urgent pointer. (We saw the same handling of this problem in Fig-
ure 26.17 with Telnet.) The Host Requirements RFC says the urgent pointer should
point to the last byte of urgent data, while most Berkeley-derived implementations have
it point 1 byte beyond the last byte of urgent data. The FTP client purposely writes the
first 3 bytes as urgent data, knowing the urgent pointer will (incorrectly) point to the
next byte that is written (the data mark, DM, at sequence number 54). This first write
with 3 bytes of urgent data is sent immediately, along with the urgent pointer, followed
by the next 7 bytes. (The BSD FTP server does not have a problem with which interpre-
tation of the urgent pointer is used by the client. When the server receives urgent data
on the control connection it reads the next FTP command, looking for ABOR or STAT,
ignoring any embedded Telnet commands.)

Notice that despite the server saying the transfer was aborted (segment 18, on the
control connection), the client receives 14 more segments of data (sequence numbers
1537 through 5120) on the data connection. These segments were probably queued in
the network device driver on the server when the abort was received, but the client
prints "1536 bytes received" meaning it ignores all the segments of data that it receives
(segments 17 and later) after sending the abort (segments 14 and 15).

In the case of a Telnet user typing the interr.upt key, we saw in Figure 26.17 that by
default the Unix client does not send the interrupt process command as urgent data.
We said this was OK because there is little chance that the flow of data from the client to
the server is stopped by flow control. With FTP the client is also sending an interrupt
process command across the control connection, and since two connections are being
used there is little chance that the control connection is stopped by flow control. Why
does FTP send the interrupt process command as urgent data when Telnet does not?
The answer is that FTP uses two connections, whereas Telnet uses one, and on some
operating systems it may be hard for a process to monitor two connections for input at
the same time. FTP assumes that these marginal operating systems at least provide
notification that urgent data has arrived on the control connection, allowing the server
to then switch from handling the data connection to the control cormection.

Anonymous FTP

One form of FTP is so popular that we’ll show an example of it. It’s called anonymous
FTP, and when supported by a server, allows anyone to login and use FTP to transfer
files. Vast amounts of free information are available using this technique.

How to find which site has what you’re looking for is a totally different problem.
We mention it briefly in Section 30.4.

We’ll use anonymous FTP to the site ftp. uu. net (a popular anonymous FTP site)
to fetch the errata file for this book. To use anonymous FTP we login with the username
of "’anonymous" (you learn to spell it correctly after a few times). When prompted for a
password we type our electronic mail address.

Section 27.3 FTP Examples 437

sun % ftp ftp.uu.net
Connected to ftp.uu.net.
220 ftp. UU.NET FTP server (Version 2.0WU(13) Frl Apt 9 20:44:32 EDT 1993) ready.

Name (ftp.uu.net:rstevens) : anonymous
331 Guest login ok, send your complete e-mail address as password.

Password:

230-
230-
230-
230-
230-

we type rstevens@noao, edu; it’s not echoed

Welcome to the UUNET archive.
A service of UUNET Technologles Inc, Falls Church, Virginia
For informatlon about UUNET, call +I 703 204 8000, or see the files
in /uunet-info

more greeting lines

230 Guest login ok, access restrictions apply.

ftp> cd published/books change to the desired directory
250 CWD command successful.

ftp> binary we’ll transfer a bznary f!le
200 Type set to I.

ftp> get stevens, tepipivl, errata. Z fetch thefile
200 PORT command successful.
150 Opening BINARY mode data connection for stevens.tcpipivl.errata. Z (105 bytes).
226 Transfer complete. (you may get a different file s~ze)

local: stevens.tcpipzvl.errata. Z remote: stevens.tcplpivl.errata. Z
105 bytes received ~n 4.1 seconds (0.83 Kbytes/s)

ftp> quit
221 Goodbye.

sun % uncompress stevens.tcpipivl.errata. Z

sun % more stevens.tcpipivl.errata

The uncompress is because many files available for anonymous FTP are compressed
using the Unix compress(I) program, resulting in a file extension of . z. These files
must be transferred using the binary file type, not the ASCII file type.

Anonymous FTP from an Unknown IP Address

We can tie together some features of routing and the Domain Name System using
anonymous FTP. In Section 14.5 we talked about pointer queries in the DNS--taking an
IP address and returning the hostname. Unfortunately not all system administrators set
up their name servers correctly with regard to pointer queries. They often add new
hosts to the file required for name-to-address mapping, but forget to add them to the
file for address-to-name mapping. We often see this with traceroute, when it prints
an IP address instead of a hostname.

Some anonymous FTP servers require that the client have a valid domain name.
This allows the server to log the domain name of the host that’s doing the transfer.
Since the only client identification the server receives in the IP datagram from the client

438 FTP: File Transfer Protocol Chapter 27

is the IP address of the client, the server can call the DNS to do a pointer query, and
obtain the domain name of the client. If the name server responsible for the client host
is not set up correctly, this pointer query can fail.

To see this error we’ll do the following steps.

Change the IP address of our host sl±p (see the figure on the inside front cover)
to 140.252.13.67. This is a valid IP address for the author’s subnet, but not
entered into the name server for the noao. edu domain.

2. Change the destination IP address of the SLIP link on bsdi to 140.252.13.67.

3. Add a routing table entry on sun that directs datagrams for 140.252.13.67 to the
router bsdi. (Recall our discussion of this routing table in Section 9.2.)

Our host slip is still reachable across the Internet, because we saw in Section 10.4 that
the routers gateway and netb just sent any datagram destined for the subnet
140.252.13 to the router sun. Our router sun knows what to do with these datagrams
from the routing table entry we made in step 3 above. What we have created is a host
with complete Internet connectivity, but without a valid domain name. That is, a
pointer query for the IP address 140.252.13.67 will fail.

We now use anonymous FTP to a server that we know requires a valid domain
name:

slip % ftp ftp.uu.net
Connected to ftp.uu.net.

220 ftp. UU.NET FTP server (Verslon 2.0WU(13) Frl Apt 9 20:44:32 EDT 1993) ready.
Name (ftp.uu.net:rstevens) : anonymous

530- Sorry, we’re unable to map your IP address 140.252.13.67 to a hostname
530- in the DNS. This xs probably because your nameserver does not have a
530- PTR record for your address in its tables, or because your reverse
530- nameservers are not registered. We refuse service to hosts whose
530- names we cannot resolve. If thls ~s slmply because your nameserver is
530- hard to reach or slow to respond then try again in a minute or so, and
530- perhaps our nameserver will have your hostname in its cache by then.
530- If not, try reaching us from a host that is in the DNS or have your
530- system administrator flx your servers.
530 User anonymous access denied..

Logln failed.
Remote system type is UNIX.
Using binary mode to transfer files.

ftp> quit
221 Goodbye.

The error reply from the server is self-explanatory.

Chapter 27 Exercises 439

27.4 Summary

FTP is the Internet standard for file transfer. Unlike most other TCP applications, it uses
two TCP connections between the client and server--a control connection that is left up
for the duration of the client-server session, and a data connection that is created and
deleted as necessary.

The connection management used by FTP for the data connection has let us exam-
ine in more detail the connection management requirements of TCP. We saw the inter-
action of TCP’s 2MSL wait state on clients that don’t issue PORT commands.

FTP uses NVT ASCII from Telnet for all commands and replies across the control
connection. The default data transfer mode is often NVT ASCII also. We saw that
newer Unix clients automatically send a command to see if the server is an 8-bit byte
Unix host, and if so, use binary mode for all file transfers, which is more efficient.

We also showed an example of anonymous FTP, a popular form of software distri-
bution on the Internet.

Exercises

27.1

27.2

In Figure 27.8, what would change if the client did the active open of the second data con-
nection instead of the server?

In the FTP client examples in this chapter we added the notation to lines such as

local: hello.c remote: hello.c
42 bytes received in 0.0037 seconds (Ii Kbytes/s)

that the lines were output by the client. Without looking at the source code, how are we
certain these are not from the server?

28

SMTP: Simple Mail

Transfer Protocol

28.1 Introduction

Electronic mail (e-mail) is undoubtedly one of the most popular applications. [Caceres
et al. 1991] shows that about one-half of all TCP connections are for the Simple Mail
Transfer Protocol, SMTP. (On a byte count basis, FTP connections carry more data.) [Pax-
son 1993] found that the average mail message contains around 1500 bytes of data, but
some messages contain megabytes of data, because electronic mail is sometimes used to
send files.

Figure 28.1 shows an outline of e-mail exchange using TCP/IP.

sender

F

~~ message client
user ~ queue of mail
agent

]
~i to be sent transfer

L j ag, ~nt

user I~ ~ user
agent ~ ~ mailboxes

receiver

TCP :onnection

~, TCP port 25
message

servertransfer
agent

Figure 28.1 Outline of Internet electronic mail.

Users deal with a user agent, of which there are a multitude to choose from. Popular
user agents for Unix include MH, Berkeley Mail, Elm, and Mush.

441

442 SMTP: Simple Mail Transfer Protocol Chapter 28

The exchange of mail using TCP is performed by a message transfer agent (MTA).
The most common MTA for Unix systems is Sendmail. Users normally don’t deal with
the MTA. It is the responsibility of the system administrator to set up the local MTA.
Users often have a choice, however, for their user agent.

This chapter examines the exchange of electronic mail between the two MTAs using
TCP. We do not look at the operation or design of user agents.

RFC 821 [Postel 1982] specifies the SMTP protocol. This is how two MTAs commu-
nicate with each other across a single TCP connection. RFC 822 [Crocker 1982] specifies
the format of the electronic mail message that is transmitted using RFC 821 between the
two MTAs.

28.2

Simple

SMTP Protocol

The communication between the two MTAs uses NVT ASCII. Commands are sent by
the client to the server, and the server responds with numeric reply codes and optional
human-readable strings. This is similar to what we saw with FTP in the previous
chapter.

There are a small number of commands that the client can send to the server: less
than a dozen. (By comparison, FTP has more than 40 commands.) Rather than describ-
ing each one, we’ll start with a simple example to show what happens when we send
mail.

Example

We’ll send a simple one-line message and watch the SMTP connection. We invoke our
user agent with the -v flag, which is passed to the mail transport agent (Sendmail in
this case). This MTA displays what is sent and received across the SMTP connection
when this flag is specified. Lines beginning with >>> are commands sent by the SMTP
client, and lines beginning with a 3-digit reply code are from the SMTP server. Here is
the interactive session:

sun % mail -v rstevens@noao.edu
To: rstevens@noao.edu
Subject: testing

i, 2, 3.

Sending letter ...

invoke our user agent
this is output by user agent
we’re then prompted for a subject
user agent adds one blank hne between headers and body
this is what we type as the body of the message
we type a period on a line by itself to say we’re done

rstevens@noao, edu.., verbose output from user agent
following zs output by MTA (Sendmail)

Connectlng to mailhost via ether...
Trying 140.252.1.54..o connected.
220 noao.edu Sendmail 4.1/SAG-Noao. G89 ready at Mon, 19 Jul 93 12:47:34 MST

>>> HELO sun.tuc.noao.edu.
250 noao.edu Hello sun.tuc.noao.edu., pleased to meet you

>>> MAIL From:<rstevens@sun.tuc.noao.edu>
250 <rstevens@sun.tuc.noao.edu>... Sender ok

Section 28.2 SMTP Protocol 443

>>> RCPT To:<rstevens@noao.edu>
250 <rstevens@noao.edu> .. Reclpient ok

>>> DATA
354 Enter mall, end wlth "." on a llne by itself

>>> .

250 Mail accepted

>>> QUIT
221 noao.edu deliverlng mall

rstevens@noao.edu... Sent
sent. th~s ~s output by user agent

Only five SMTP commands are used to send the mail: HELO, MAIL, RCPT, DATA, and
QUIT.

We type ma±l to invoke our user agent. We’re then prompted for a subject, and
after typing that, we type the body of the message. Typing a period on a line by itself
completes the message and the user agent passes the mail to the MTA for delivery.

The client does the active open to TCP port 25. When this returns, the client waits
for a greeting message (reply code 220) from the server. This server’s response must
start with the fully qualified domain name of the server’s host: noao. edu in this exam-
ple. (Normally the text that follows the numeric reply code is optional. Here the
domain name is required. The text beginning with Sendma± t is optional.)

Next the client identifies itself with the HELO command. The argument must be
the fully qualified domain name of the client host: sun. tuc. noao. edu.

The MAIL command identifies the originator of the message. The next command,
RCPT, identifies the recipient. More than one RCPT command can be issued if there are
multiple recipients.

The contents of the mail message are sent by the client using the DATA command.
The end of the message is specified by the client sending a line containing just a period.
The final command, QUIT, terminates the mail exchange.

Figure 28.2 is a time line of the SMTP connection between the sender SMTP (the
client) and the receiver SMTP (the server). We have removed the connection establish-
ment and termination, and the window size advertisements.

The amount of data we typed to our user agent was a one-line message ("1, 2, 3."),
yet 393 bytes of data are sent in segment 12. The following 12 lines comprise the 393
bytes that are sent by the client:

Received: by sun.tuc.noao.edu. (4.1/SMI-4.1)

id AA00502; Mort, 19 Jul 93 12:47:32 MST
Message-Id: <9307191947.AA00502@sun.tuc.noao.edu.>
From: rstevens@sun.tuc.noao.edu (Richard Stevens)
Date: Mon, 19 Jul 1993 i2:47:31 -0700
Reply-To: rstevens@noao.edu
X Phone: ÷] 602 676 1676
X-Mallet: Ma~! User’s Shell (7.2.5 10/14/92)
To: rstevens@noao.edu
Subject: testlng

1, 2, 3,

444 SMTP: Simple Mail Transfer Protocol Chapter 28

sun.1064 noao.smtp

0.0

0.053197 (0 0532)

0.300095 (0.2469)

0.349297 (0.0492)

0.659995 (0 3107)

0.710105 (0.0501)

0.990064 (0.2800)

0.997129 (0 0071)

1.259758 (0.2626)

1.319947 (0.0602)

1.359949 (0.0400) 1l

1.371820 (0.0119) 12

1.859756 (04879)

1.860323 (0.0006)

2.040167 (0.1798)

2.061677 (0.0215)

2.249888 (0.1882)

14

16

PSH 1’78(77) ack 1
220 noao.edu Sendma~l 4.1/ ... \r\n

PSH L25(24) ack 78
HELO sun.tuc.noao.edu.\r\n

PSH 78:]37(59) ack 25
250 noao.edu Hello ..- \rkn

PSH 25:64(39) ack 137
MAIL gr°m:<rstevensOsun.tuc.noao.edu>\rkn~

PSH]37"183(46) ack 64
250 <rstevens@sun.tuc.noao.edu>’’" \r\n

PSH 64:93(29) ack]83
RCPT T°:<rstevens@noao.edu>\r\n

PSH 183:224(41) ack93
250 <rstevens@noao.edu>-.- \r\n

PSH 93’99(6) ack 224
DATA\rkn

ack 99

PSH 224274(50)ack 99
354 Znter ma~l, end with ... \r\n

ack 274

_ PSH 99 492(393) ack 274
(body of mail message)

ack 492

PSH 492495(3) ack 274
o\r\n

PSH 274.293(19) ack 495
250 Mall accepted\r\n

PSH 495.501(6) ack 293
QUIT\r\n ~

PSH 293:323(30) ackS0] -
221 noao.edu dellver>ng mall\r\n

9

10

13

15

17

Figure 28.2 Basic SMTP mail delivery

The first three lines, Received: and Message-Id:, are added by the MTA, and the
next nine are generated by the user agent.

Section 28.2 SMTP Protocol 445

SMTP Commands

The minimal SMTP implementation supports eight commands. We saw five of them in
the previous example: HELO, MAIL, RCPT, DATA, and QUIT.

The RSET command aborts the current mail transaction and causes both ends to
reset. Any stored information about sender, recipients, or mail data is discarded.

The VRFY command lets the client ask the sender to verify a recipient address,
without sending mail to the recipient. It’s often used by a system administrator, by
hand, for debugging mail delivery problems. We’ll show an example of this in the next
section.

The NOOP command does nothing besides force the server to respond with an OK
reply code (200).

There are additional, optional commands. EXPN expands a mailing list, and is
often used by the system administrator, similar to VRFY. Indeed, most versions of
Sendmail handle the two identically.

Version 8 of Sendmail in 4.4BSD no longer handles the two identically. VRFY does not expand
aliases and doesn’t follow . forward files.

The TURN command lets the client and server switch roles, to send mail in the
reverse direction, without having to take down the TCP connection and create a new
one. (Sendmail does not support this command.) There are three other commands
(SEND, SOML, and SAML), which are rarely implemented, that replace the MAIL com-
mand. These three allow combinations of the mail being delivered directly to the user’s
terminal (if logged in), or sent to the recipient’s mailbox.

Envelopes, Headers, and Body

Electronic mail is composed of three pieces.

The envelope is used by the MTAs for delivery. In our example the envelope was
specified by the two SMTP commands:

MAIL From:<rstevens@sun.tuc.noao.edu>
RCPT To:<rstevens@noao.edu>

RFC 821 specifies the contents and interpretation of the envelope, and the proto-
col used to exchange mail across a TCP connection.

2. Headers are used by the user agents. We saw nine header fields in our example:
Received, Message-Id, From, Date, Reply-To, X-Phone, X-Mailer, To,
and Subject. Each header field contains a name, followed by a colon, fol-
lowed by the field value. RFC 822 specifies the format and interpretation of the
header fields. (Headers beginning with an x- are user-defined fields. The oth-
ers are defined by RFC 822.) Long header fields, such as Received in the
example, are folded onto multiple lines, with the additional lines starting with
white space.

3. The body is the content of the message from the sending user to the receiving
user. RFC 822 specifies the body as lines of NVT ASCII text. When transferred

446 SMTP: Simple Mail Transfer Protocol Chapter 28

using the DATA command, the headers are sent first, followed by a blank line,
followed by the body. Each line transferred using the DATA command must be
less than 1000 bytes.

The user agent takes what we specify as the body, adds some headers, and passes the
result to the MTA. The MTA adds a few headers, adds the envelope, and sends the
result to another MTA.

The term content is often used to describe the combination of headers and the body.
The content is sent by the client with the DATA command.

Relay Agents

The first line of informational output by our local MTA in our example is "Connecting
to mailhost via ether." This is because the author’s system has been configured to send
all nonlocal outgoing mail to a relay machine for delivery.

This is done for two reasons. First, it simplifies the configuration of all MTAs other
than the relay system’s MTA. (Configuring an MTA is not simple, as anyone who has
ever worked with Sendmail can attest to.) Second, it allows one system at an organiza-
tion to act as the mail hub, possibly hiding all the individual systems.

In this example the relay system has a hostname of mailhost in the local domain
(. tuc. noao. edu) and all the individual systems are configured to send their mail to
this host. We can execute the host command to see how this name is defined to the
DNS:

sun % host m~ilhost
mailhost, tuc. noao. edu CNAME noao. edu canomcal name
noao. edu A 140. 252 o 1.54 ~ts real IP address

If the host used as the relay changes in the future, only its DNS name need change--the
mail configuration of all the individual systems does not change.

Most organizations are using relay systems today. Figure 28.3 is a revised picture of
Internet mail (Figure 28.1), taking into account that both the sending host and the final
receiving host probably use a relay host.

In this scenario there are four MTAs between the sender and receiver. The local
MTA on the sender’s host just delivers the mail to its relay MTA. (This relay MTA could
have a hostname of raa±lhost in the organization’s domain.) This communication uses
SMTP across the organization’s local internet. The relay MTA in the sender’s organiza-
tion then sends the mail to the receiving organization’s relay MTA across the Internet.
This other relay MTA then delivers the mail to the receiver’s host, by communication
with the local MTA on the receiver’s host. All the MTAs in this example use SMTP,
although the possibility exists for other protocols to be used.

NVT ASCII

One feature of SMTP is that it uses NVT ASCII for everything: the envelope, the head-
ers, and the body. As we said in Section 26.4, this is a 7-bit character code, transmitted
as 8-bit bytes, with the high-order bit set to 0.

Section 28.2 SMTP Protocol 447

sending host

user i
agent

queue of mail
to be sent

local
MTA

queue ~_~
of mail

user
agent

queue
I of mall

local
MTA

user
mailboxes

local
MTA

local
MTA

relay
MTA

relay
MTA

local
MTA

l across the Internet

local
MTA

receiving host

one organization

one orgamzat~on

Figure 28.3 Internet electronic mail, with a relay system at both ends

In Section 28.4 we discuss some newer features of Internet mail, extended SMTP
and multimedia mail (MIME), that allow the sending and receiving of data such as
audio and video. We’ll see that MIME works with NVT ASCII for the envelope, head-
ers, and body, with changes required only in the user agents.

448 SMTP: Simple Mail Transfer Protocol Chapter 28

Retry Intervals

When a user agent passes a new mail message to its MTA, delivery is normally
attempted immediately. If the delivery fails, the MTA must queue the message and try
again later.

The Host Requirements RFC recommends an initial timeout of at least 30 minutes.
The sender should not give up for at least 4-5 days. Furthermore, since delivery fail-
ures are often transient (the recipient has crashed or there is a temporary loss of net-
work connectivity), it makes sense to try two connection attempts during the first hour
that the message is in the queue.

28.3 SMTP Examples

We showed normal mail delivery in the previous section, so here we’ll show how MX
records are used for mail delivery, and illustrate the VRFY and EXPN commands.

MX Records: Hosts Not Directly Connected to the Internet

In Section 14.6 we mentioned that one type of resource record in the DNS is the mail
exchange record, called MX records. In the following example we’ll show how MX
records are used to send mail to hosts that are not directly connected to the Internet.
RFC 974 [Partridge 1986] describes the handling of MX records by MTAs.

The host rnl£arra, cora is not directly connected to the Internet, but has an MX
record that points to a mail forwarder that is on the Internet:

sun % host -a -v -t mx mlfarm.com
The followlng answer is not authoritative:
mlfarm.com 86388 IN MX i0 mercuryohsi.com
mlfarm.com 86388 IN MX 15 hsi86.hsi.com
Additional information:
mercury.hsi.com 86388 IN A 143.122.1.91
hsi86.hsl.com 172762 IN A 143.122.1.6

There are two MX records, each with a different preference. We expect the MTA to start
with the lower of the two preference values.

The following script shows mail being sent to this host:

sun % mail -v ron@mlfarm.com
To: ron@mlfarm.com
Subject: MX test message

Sending letter ... ron@mlfarm, com...
Connecting to mlfarm.com via tcp...
mail exchanger is mercury.hsi.com
Trying 143.122.1.91... connected.

220 mercury.hsi.com ...

-v flag to see what the MTA does

the body of the message ~s typed here (not shown)

period on a line by itself to terminate message

the MX records are found
first tries the one w~th lower preference

remainder is normal SMTP mail transfer

Section 28.3 SMTP Examples 449

We can see in this output that the MTA discovered that the destination host had an MX
record and used the MX record with the lowest preference value.

Before running this example from the host sun, it was configured not to use its nor-
mal relay host, so we could see the mail exchange with the destination host. It was also
configured to use the name server on the host noao. edu (which is across its dialup
SLIP link), so we could capture both the mail transfer and the DNS traffic using
tcpdump on the SLIP link. Figure 28.4 shows the starting portion of the tcpdump
output.

1 0.0
2 0.445572 (0.4456)

3 0.505739 (0.0602)

4 0.985428 (0.4797)

5 0.986003 (0.0006)
6 1.735360 (0.7494)

sun.1624 > noao.edu.53: 2+ MX? mlfarm.com. (28)
noao.edu.53 > sun.1624: 2* 2/0/2 MX

mercury.hsl.com, i0 (113)

sun.l143 > mercury.hsl.com.25: S 1617536000:1617536000(0)
win 4096

mercury.hsi.com.25 > sun.l143: S 1832064000:1832064000{0)
ack 1617536001 win 16384

sun.l143 > mercury.hsi.com.25: ack 1 win 4096
mercury.hsi.com.25 > sun.l143: P 1:90(89) ack 1 win 16384

Figure 28.4 Sending mail to a host that uses MX records.

In line 1 the MTA queries its name server for an MX record for mlfiarm, com. The plus
sign following the 2 means the recursion-desired flag is set. The response in line 2 has
the authoritative bit set (the asterisk following the 2) and contains 2 answer RRs (the
two MX host names), 0 authority RRs, and 2 additional RRs (the IP addresses of the two
hosts).

In lines 3-5 a TCP connection is established with the SMTP server on the host
mercury, hsi. com. The server’s initial 220 response is shown in line 6.

Somehow the host mercury, hsi. corn must deliver this mail message to the desti-
nation, mlfarm, com. The UUCP protocols are a popular way for a system not con-
nected to the Internet to exchange mail with its MX site.

In this example the MTA asks for an MX record, gets a positive result, and sends the
mail. Unfortunately the interaction between an MTA and the DNS can differ between
implementations. RFC 974 specifies that an MTA should ask for MX records first, and if
none are found, attempt delivery to the destination host (i.e., ask the DNS for an A
record for the host, for its IP address). MTAs must also deal with CNAME records in
the DNS (canonical names).

As an example, if we send mail to rstevens@mailhost, tuc. noao. edu from a
BSD/386 host, the following steps are executed by the MTA (Sendmail).

Sendmail asks the DNS for CNAME records for mailhost, tuc. noao. edu.
We see that a CNAME record exists:

sun % host -t cname mailhost.tuc.noao.edu
mallhost.tuc.noao.edu CNAME noao.edu

2. A DNS query is issued for CNAME records for noao.edu and the response
says none exist.

450 SMTP: Simple Mail Transfer Protocol Chapter 28

Sendmail then asks the DNS for MX records for noao. edu and gets one MX
record:

sun % host -t mx noao.edu
noao.edu MX noao.edu

Sendmail queries the DNS for an A record (IP address) for noao. edu and gets
back the value 140.252.1.54. (This A record was probably returned by the name
server for noao. edu as an additional RR with the MX reply in step 3.)

5. An SMTP connection is initiated to 140.252,1.54 and the mail is sent.

A CNAME query is not tried for the data returned in the MX record (noao. edu). The
data in the MX record cannot be an alias--it must be the name of a host that has an A
record.

The version of Sendrnail distributed with SunOS 4 1.3 that uses the DNS only queries for MX
records, and glves up if an MX record isn’t found

MX Records: Hosts That Are Down

Another use of MX records is to provide an alternative mail receiver when the destina-
tion host is down. If we look at the DNS entry for our host sun we see that it has two
MX records:

sun % host -a -v -t mx sun.tuc.noao.edu
sun.tuc.noao.edu 86400 IN MX 0 sun.tuc.noao.edu
sun.tuc.noao.edu 86400 IN MX i0 noao.edu
Additional informatlon:
sun.tuc.noao.edu 86400 IN A 140,252.1,29
sun.tuc.noao.edu 86400 IN A 140,252.13.33
noao.edu 86400 IN A 140,252.1.54

The MX record with the lowest preference indicates that direct delivery to the host itself
should be tried first, and the next preference is to deliver the mail to the host
noao. edu.

In the following script we send mail to ourself at the host sun. tuc. noao. edu,
from the host vangogh, cs. berkeley, edu, after turning off the destination’s SMTP
server. When a connection request arrives for port 25, TCP should respond with an
RST, since no process has a passive open pending for that port.

vangogh % mail -v rstevens@sun.tuc.noao.edu
A test to a host that’s down.

EOT

rstevens@sun.tuc.noao.edu.o. Connecting to sun.tuc.noao.edu. (smtp) ...
rstevens@sun.tuc.noao.edu.,. Connecting to noao.edu. (smtp)...

220 noao.edu ...
~ma~nder ~s normal SMTP ma~l transfer

We see that the MTA tries to contact sun. Cue. noao. edu and then gives up and con-
tacN noao. edu instead.

Section 28.3 SMTP Examples 451

Figure 28.5 is the tcpdurap output that shows that TCP responds to the incoming
SYNs with an RST.

1 0.0 vangogh.3873 > 140.252.1.29.25: S 2358303745:2358303745(0) ...
2 0.000621 (0.0006) 140.252.1.29.25 > vangogh.3873: R 0:0(0) ack 2358303746 win 0

3 0.300203 (0.2996) vangogh.3874 > 140.252.13.33.25: S 2358367745:2358367745(0) ...
4 0.300620 (0.0004) 140.252.13.33.25 > vangogh.3874: R 0:0(0) ack 2358367746 win 0

Figure 28.5 Attempt to connect to an SMTP server that ~s not running.

In line 1 vangogh sends a SYN to port 25 at the primary IP address for sun:
140.252.1.29. This is rejected in line 2. The SMTP client on vangogh then tries the next
IP address for sun: 140.252.13.33 (line 3), and it also causes an RST to be returned
(line 4).

The SMTP client doesn’t try to differentiate between the different error returns from
its active open on line 1, which is why it tries the other IP address on line 3. If the error
had been something like "host unreachable" for the first attempt, it’s possible that the
second attempt could work.

If the reason the SMTP client’s active open fails is because the server host is down,
we would see the client retransmit the SYN to IP address 140.252.1.29 for a total of 75
seconds (similar to Figure 18.6), followed by the client sending another three SYNs to IP
address 140.252.13.33 for another 75 seconds. After 150 seconds the client would move
on to the MX record with the next higher preference.

VRFY and EXPN Commands

The VRFY command verifies that a recipient address is OK, without actually sending
mail. EXPN is intended to expand a mailing list, without sending mail to the list. Many
SMTP implementations (such as Sendmail) consider the two the same, but we men-
tioned that newer versions of Sendmail do differentiate between the two.

As a simple test we can connect to a newer version of Sendmail and see the differ-
ence. (We have removed the extraneous Telnet client output.)

sun % telnet vangogh.cs.berkeley.edu 25
220-vangogh. CS.Berkeley. EDU Sendmail 8.1C/6.32 ready at Tue, 3 Aug 1993 14:
59:12 -0700
220 ESMTP spoken here

helo bsdi. tuc. noao. edu
250 vangogh. CS.Berkeley. EDU Hello sun.tuc.noao.edu [140.252.1.29], pleased
to meet you

vrfy nosuchname
550 nosuchname... User unknown

vrfy rstevens
250 Richard Stevens <rstevens@vangogh. CS.Berkeley. EDU>

e~n rstevens
250 Richard Stevens <rstevens@noao.edu>

First notice that we purposely typed the wrong hostname on the HELO command:
bsdi instead of sun. Most SMTP servers take the IP address of the client and perform

452 SMTP: Simple Mail Transfer Protocol Chapter 28

a DNS pointer query (Section 14.5) and compare the hostnames. This allows the server
to log the client connection based on the IP address, not the name that a user might
have mistyped. Some servers respond with humorous messages, such as "You are a
charlatan," or "why do you call yourself ...". We see in this example that this server just
prints our real domain name from the pointer query along with our IP address.

We then type a VRFY command for an invalid name, and the server responds with
a 550 error. Next we type a valid name, and the server responds with the username on
the local host. Next we try the EXPN command and get a different response. The
EXPN command determines that the mail for this user is being forwarded, and prints
the forwarding address.

Many sites disable the VRFY and EXPN commands, sometimes for privacy, and
sometimes in the belief that it’s a security hole. For example, we can try these com-
mands with the SMTP server at the White House:

sun % telnet whitehouse.gov 25
220 whitehouse.gov SMTP/smap Ready,

helo sun.t~c.noao.edu
250 (sun.tuc.noao.edu) pleased to meet you.

vrfy clinton
500 Command unrecognized

expn clinton
500 Command unrecognized

28.4 SMTP Futures

Changes are taking place with Internet mail. Recall the three pieces that comprise Inter-
net mail: the envelope, headers, and body. New SMTP commands are being added that
affect the envelope, non-ASCII characters can be used in the headers, and structure is
being added to the body (MIME). In this section we consider the extensions to each of
these three pieces in order.

Envelope Changes: Extended SMTP

RFC 1425 [Klensin et al. 1993a] defines the framework for adding extensions to SMTP.
The result is called extended SMTP (ESMTP). As with other new features that we’ve
described in the text, these changes are being added in a backward compatible manner,
so that existing implementations aren’t affected.

A client that wishes to use the new features initiates the session with the server by
issuing an EHLO command, instead of HELO. A compatible server responds with a 250
reply code. This reply is normally multiline, with each line containing a keyword and
an optional argument. These keywords specify the SMTP extensions supported by the
server. New extensions will be described in an RFC and will be registered with the
IANA. (In a multiline reply all lines except the last have a hyphen after the numeric
reply code. The last line has a space after the numeric reply code.)

Section 28.4 SMTP Futures 453

We’ll show the initial connection to four SMTP servers, three of which support
extended SMTP. We connect to them using Telnet, but have removed the extraneous
Telnet client output.

sun % telnet vangogh.cs.berkeley.edu 25
220-vangogh. CS.Berkeley. EDU Sendmail 8.1C/6.32 ready at Mon,
47:48 -0700
220 ESMTP spoken here

2 Aug 1993 15:

ehlo sun.tuc.noao.edu
250-vangogh. CS.Berkeley. EDU Hello sun.tuc.noao.edu [140.252.1.29], pleased
to meet you
250 EXPN
250-SIZE
250 HELP

This server gives a multiline 220 reply for its greeting message. The extended com-
mands listed in the 250 reply to the EHLO command are EXPN, SIZE, and HELP. The
first and last are from the original RFC 821 specification, but they are optional com-
mands. ESMTP servers state which of the optional RFC 821 commands they support, in
addition to newer commands.

The SIZE keyword that this server supports is defined in RFC 1427 [Klensin, Freed,
and Moore 1993]. It lets the client specify the size of the message in bytes on the MAIL
FROM command line. This lets the server verify that it will accept a message of that
size, before the client starts to send it. This command was added since the size of Inter-
net mail messages is growing, with the support for message content other than ASCII
lines (i.e., images, audio, etc.).

The next host also supports ESMTP. Notice that the 250 reply specifying that the
SIZE keyword is supported contains an optional argument. This indicates that this
server will accept a message size up to 461 Mbytes.

sun % telnet ymir.claremont.edu 25
220 ymir.claremont.edu - Server SMTP (PMDF V4.2 13 #4220)

ehlo sun.tuc.noao.edu
250-ymir.claremont.edu
250-8BITMIME
250-EXPN
250-HELP
250-XADR
250 SIZE 461544960

The keyword 8BITMIME is from RFC 1426 [Klensin et al. 1993b]. This allows the client
to add the keyword BODY to the MAIL FROM command, specifying whether the body
contains NVT ASCII characters (the default) or 8-bit data. Unless the client receives the
8BITMIME keyword from the server in response to an EHLO command, the client is
forbidden from sending any characters other than NVT ASCII. (When we talk about
MIME in this section, we’ll see that an 8-bit SMTP transport is not required by MIME.)

This server also advertises the XADR keyword. Any keyword that begins with an X
refers to a local SMTP extension.

454 SMTP: Simple Mail Transfer Protocol Chapter 28

The next server also supports ESMTP, advertising the HELP and SIZE keywords
that we’ve already seen. It also supports three local extensions that begin with an X.

sun % telnet dbc.mtview.ca.us 25
220 dbc.mtview.ca.us Sendmall 5.65/3.1.090690, it’s Mon, 2 Aug 93 15:48:50
-0700

ehlo sun.tuc.noao.edu
250-Hello sun.tuc.noao.edu, pleased to meet you
250-HELP
250-SIZE
250-XONE
250-XVRB
250 XQUZ

Finally we see what happens when the client tries to use ESMTP by issuing the
EHLO command to a server that doesn’t support it.

sun % telnet relayl.uu.net 25
220 relayI.UU.NET Sendmall 5.61/UUNET-internet-prlmary ready at Mon, 2 Aug
93 18:50:27 -0400

ehlo sun.tuc.noao.edu
500 Command unrecognized

rset
250 Reset state

Instead of receiving a 250 reply to the EHLO command, the client receives a 500 reply.
The client should then issue the RSET command, followed by a HELO command.

Header Changes: Non-ASCII Characters

RFC 1522 [Moore 1993] specifies a way to send non-ASCII characters in RFC 822 mes-
sage headers. The main use of this is to allow additional characters in the sender and
receiver names, and in the subject.

The header fields can contain encoded words. They have the following format:

=? charset ? encoding ? encoded-text ?=

charset is the character set specification. Valid values are the two strings us-as ci ± and
iso-8859-x, where x is a single digit, as in ±so-8859-1.

encoding is a single character to specify the encoding method. Two values are
supported.

Q encoding means quoted-printable, and is intended for Latin character sets.
Most characters are sent as NVT ASCII (with the high-order bit set to 0, of
course). Any character to be sent whose eighth bit is set is sent instead as three
characters: first the character =, followed by two hexadecimal digits. For exam-
ple, the character 6 (whose binary 8-bit value is 0xe 9) is sent as the three charac-
ters =~.9. Spaces are always sent as either an underscore or the three characters
=2 0. This encoding is intended for text that is mostly ASCII, with a few special
characters.

Section 28.4 SMTP Futures 455

2. B means base-64 encoding. Three consecutive bytes of text (24 bits) are encoded
as four 6-bit values. The 64 NVT ASCII characters used to represent each of the
possible 6-bit values are shown in Figure 28.6.

6-b~t ASCII
value char

0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H
8 I
9 J
a K
b L
c M
d N
e O
f P

6-bit ASCII 6-bit ASCII 6-blt ASCII
value char value char value char

10 Q 20 g 30 w
11 R 21 h 31 x
12 S 22 1 32 y
13 T 23 j 33 z
14 U 24 k 34 0
15 V 25 1 35 1
16 W 26 m 36 2
17 X 27 n 37 3
18 Y 28 o 38 4
19 Z 29 p 39 5
la a 2a q 3a 6
lb b 2b r 3b 7
lc c 2c s 3c 8
ld d 2d t 3d 9
le e 2e u 3e +
If f 2f v 3f /

Figure 28.6 Encoding of 6-bit values (base-64 encoding).

When the number of characters to encode is not a multiple of three, equal signs
are used as the pad characters.

The following example of these two encodings is from RFC 1522:
From: =?US-ASCII?O?Keith Moore?= <moore@cs.utk.edu>
To: =?ISO-8859-1?Q?Keld_J=F8rn_Simonsen?= <keld@dkuug.dk>
CC: =?ISO-8859-1?Q?Andr=E9_?= Pirard <PIRARD@vml.ulg.ac.be>
Sub3ect: =?ISO-8859-1?B?SWYgeW91IGNhbIByZWFkIHRoaXMgeW8=?:

=?ISO-8859-2?B?dSBIbmRIcnNOYWSkIHRoZSBIeGFtcGxlLg==?=

A user agent capable of handling these headers would output:
From: Keith Moore <moore@cs.utk.edu>
To: Keld Jzrn Slmonsen <keld@dkuug.dk>
CC: Andr@ Pirard <PIRARD@vml.ulg.ac.be>
Subject: If you can read this you understand the example.

To see how base-64 encoding works, look at the first four encoded characters in the sub-
ject line: SWYg. Write out the 6-bit values for these four characters from Figure 28.6
(S=0xl2, W=0xl 6, ¥=0x18, and g=0x20) in binary:

010010 010110 011000 i00000

Then regroup these 24 bits into three 8-bit bytes:

01001001 01100110 00100000
=0x49 =0x66 =0x20

which are the ASCII representations for I, f, and a space.

456 SMTP: Simple Mail Transfer Protocol Chapter 28

Body Changes: Multipurpose Internet Mail Extensions (MIME)

We’ve said that RFC 822 specifies the body as lines of NVT ASCII text, with no struc-
ture. RFC 1521 [Borenstein and Freed 1993] defines extensions that allow structure in
the body. This is called MIME, for Multipurpose Internet Mail Extensions.

MIME does not require any of the extensions that we’ve described previously in this
section (extended SMTP or non-ASCII headers). MIME just adds some new headers (in
accordance with RFC 822) that tell the recipient the structure of the body. The body can
still be transmitted using NVT ASCII, regardless of the mail contents. While some of
the extensions we’ve just described might be nice to have along with MIME--the
extended SMTP SIZE command, since MIME messages can become large, and non-
ASCII headers--these extensions are not required by MIME. All that’s required to
exchange MIME messages with another party is for both ends to have a user agent that
understands MIME. No changes are required in any of the MTAs.

MIME defines the five new header fields:

Mime-Verslon:
Content-Type:
Content-Transfer-Encoding:
Content-ID:
Content-Descriptlon:

As an example, the following t~4o header lines can appear in an Internet mail message:

Mlme-Vers±on: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII

The current MIME version is 1.0 and the content type is plain ASCII text, the default for
Internet mail. The word PLATN is considered a subtype of the content type (TEXT), and
the string charset=US-ASCI I is a parameter.

Text is just one of MIME’s seven defined content types. Figure 28.7 summarizes
the 16 different content types and subtypes defined in RFC 1521. Numerous parameters
can be specified for certain content types and subtypes.

The content type and the transfer encoding used for the body are independent. The
former is specified by the Content-Type header field, and the latter by the
Content-Transfer-Encoding header field. There are five different encoding for-
mats defined in RFC 1521.

1. 7bit, which is NVT ASCII, the default.

2. quoted-printable, which we saw an example of earlier with non-ASCII
headers. It is useful when only a small fraction of the characters have their
eighth bit set.

3. base64, which we showed in Figure 28.6.

4. 8bit containing lines of characters, some of which are non-ASCII and have
their eighth bit set.

5. binary encoding, which is 8-bit data that need not contain lines.

Section 28.4 SMTP Futures 457

Content-Type

text

multlpart

message

appllcatlon

image

audio

video

Subtype

plaxn

rlchtext
enriched

mlxed

parallel
dlgest
alternative

rfc822
partial
external-body

octet stream
postscript

]peg
gif

baslc

mpeg

Description

Unformatted text.
Text with slmple formatting, such as bold, ~talic, underhne, and so on
A clamficahon, simplificahon, and refinement of rlcheext

Mulhple body parts to be processed sequentmlly
Multiple body parts that can be processed m parallel
An electromc marl digest.
Multiple body parts are present, all w~th ~dent~cal semantic content.

Content ~s another RFC 822 mall message.
Content ~s a fragment of a mail message.
Content is a pointer to the actual message.
Arbitrary binary data
A PostScript program.
ISO 10918 format
CompuServe’s Graphic Interchange Format
Encoded using &bit ISDN ~,-law format
ISO 11172 format.

Figure 28.7 MIME content types and subtypes

Only the first three of these are valid for an RFC 821 MTA, since these three generate a
body containing only NVT ASCII characters. Using extended SMTP with 8BITMIME
support allows 8bit encoding to be used.

Although the content type and encoding are independent, RFC 1521 recommends
quoted-printable for text with non-ASCII data, and base64 for image, audio,

video, and octet-stream application data. This allows maximum interoperabil-
ity with RFC 821 conformant MTAs. Also, the multipart and message content types
must be encoded as 7bit.

As an example of a multipart content type, Figure 28.8 shows a mail message
from the RFC distribution list. The subtype is mixed, meaning each of the parts should
be processed sequentially, and the boundary between the parts is the string NextPart,
preceded by two hyphens at the start of a line.

Each boundary can be followed with a line specifying the header fields for the next
part. Everything in the message before the first boundary is ignored, as is everything
following the final boundary.

Since a blank line follows the first boundary, and not header fields, the content type
of the data between the first and second boundaries is assumed to be text/plain with
a character set of us-ascii. This is a textual description of the new RFC.

The second boundary, however, is followed by header fields. It specifies another
multipart message, with a boundary of OtherAccess. The subtype is
alternative, and two different alternatives are present. The first OtherAccess
alternative is to fetch the RFC using electronic mail, and the second is to fetch it using
anonymous FTP. A MIME user agent would list the two alternatives, allow us to choose
one, and then automatically fetch a copy of the RFC using either mail or anonymous
FTP.

458 SMTP: Simple Mail Transfer Protocol Chapter 28

To: rfc-dist@nic.ddn.mzl
Sub]ect: RFC1479 on IDPR Protocol
Mime-Version: 1.0
Content-Type: Multipart/Mlxed; Boundary=’’NextPart"

Date: Fri, 23 Jul 93 12:17:43 PDT
From: "Joyce K. Reynolds" <jkrey@isl.edu>

--NextPart the j~rst boundary

A new Request for Comments is now available in online RFC l~brarles.

(detmls here on the new RFC)

Below is the data whlch will enable a MIME compliant Mail Reader
implementation to automatlcally retrieve the ASCII version
of the RFCs.

--NextPart the second boundary
Content-Type: Multipart/Alternative; Boundary="OtherAccess"

a nested mult~part message w~th a new boundary

--OtherAccess
Uontent-Type: Message/External-body;

access-type="mall-server";
server="mail-server@nlsc.sri.com’’

Content-Type: text/plain

SEND rfc1479.txt

--OtherAccess
Content-Type: Message/External-body;

name=,,rfc1479.txt";
slte:"ds.lnternic.net";
access-type="anon-ftp";
dlrectory="rfc’’

Content-Type: text/plain

--OtherAccess--
--NextPart-- the.final boundary

Figure 28.8 Example of a MIME multtpart message.

This section has been a brief overview of MIME. For additional details and exam-
ples of MIME, see RFC 1521 and [Rose 1993].

Chapter 28 Exerclses 459

28.5 Summary

Electronic mail involves a user agent at both ends (the sender and receiver) and two or
more message transfer agents. We can divide a mail message into three parts: the enve-
lope, the headers, and the body. We’ve seen how all three parts are exchanged using
SMTP, the Internet standard. All three are exchanged as NVT ASCII characters.

We’ve also looked at newer extensions for all three parts: extended SMTP for the
envelope, non-ASCII headers, and the addition of structure to the body using MIME.
The structure and encoding used by MIME allow arbitrary binary data to be exchanged,
using existing 7-bit SMTP MTAs.

Exercises

28.1 Read RFC 822 to find out what a domain hteral is. Try sending mail to yourself using one.

28.2 Excluding the coru~ection establishment and termination, what is the minimum number of
network round trips to send a small mail message?

28.3 TCP is a full-duplex protocol, yet SMTP uses TCP in a half-duplex fashion. The client
sends a command then stops and waits for the reply. Why doesn’t the client send multiple
commands at once, for example, a single write that contains the HELO, MAIL, RCPT,
DATA, and QUIT commands (assuming the body isn’t too large)?

28.4 How can this half-duplex operation of SMTP fool the slow start mechamsm when the net-
work is running near capacity?

28.5 When multiple MX records exist with the same preference value, should they always be
returned by a name server in the same order?

NFS: Network File System

29.1 Introduction

In this chapter we describe NFS, the Network File System, another popular application
that provides transparent file access for client applications. The building block of NFS is
Sun RPC: Remote Procedure Call, which we must describe first.

Nothing special need be done by the client program to use NFS. The kernel detects
that the file being accessed is on an NFS server and automatically generates the RPC
calls to access the file.

Our interest in NFS is not in all the details on file access, but in its use of the Internet
protocols, especially UDP.

29.2 Sun Remote Procedure Call

Most network programming is done by writing application programs that call system-
provided functions to perform specific network operations. For example, one function
perforrns a TCP active open, another performs a TCP passive open, another sends data
across a TCP connection, another sets specific protocol options (enable TCP’s keepalive
timer), and so on. In Section 1.15 we mentioned that two popular sets of functions for
network programming (called APIs) are sockets and TLI. The API used by the client
and the API used by the server can be different, as can the operating systems running
on the client and server. It is the communication protocol and application protocol that
determine if a given client and server can communicate with each other. A Unix client
written in C using sockets and TCP can communicate with a mainframe server written
in COBOL using some other API and TCP, if both hosts are connected across a network
and both have a TCP/IP implementation.

461

462 NFS: Network File System Chapter 29

Typically the client sends commands to the server, and the server sends replies back
to the client. All the applications we’ve looked at so far--Ping, Traceroute, routing dae-
mons, and the clients and servers for the DNS, TFTP, BOOTP, SNMP, Telnet, FTP, and
SMTP--are built this way.

RPC, Remote Procedure Call, is a different way of doing network programming. A
client program is written that just calls functions in the server program. This is how it
appears to the programmer, but the following steps actually take place.

1. When the client calls the remote procedure, it’s really calling a function on the
local host that’s generated by the RPC package. This function is called the client
stub. The client stub packages the procedure arguments into a network mes-
sage, and sends this message to the server.

2. A server stub on the server host receives the network message. It takes the argu-
ments from the network message, and calls the server procedure that the appli-
cation programmer wrote.

3. When the server function returns, it returns to the server stub, which takes the
return values, packages them into a network message, and sends the message
back to the client stub.
The client stub takes the return values from the network message and returns to
the client application.

The network programming done by the stubs and the RPC library routines uses an API
such as sockets or TLI, but the user application--the client program, and the server pro-
cedures called by the client--never deal with this APL The client application just calls
the server procedures and all the network programming details are hidden by the RPC
package, the client stub, and the server stub.

An RPC package provides numerous benefits.

1. The programming is easier since there is little or no network programming
involved. The application programmer just writes a client program and the
server procedures that the client calls.

2. If an unreliable protocol such as UDP is used, details like timeout and retrans-
mission are handled by the RPC package. This simplifies the user application.

3. The RPC library handles any required data translation for the arguments and
return values. For example, if the arguments consist of integers and floating
point numbers, the RPC package handles any differences in the way integers
and floating point numbers are stored on the client and server. This simplifies
coding clients and servers that can operate in heterogeneous environments.

Details of RPC programming are provided in Chapter 18 of [Stevens 1990]. Two
popular RPC packages are Sun RPC and the RPC package in the Open Software Foun-
dation’s (OSF) Distributed Computing Environment (DCE). Our interest in RPC is to
see what the procedure call and procedure return messages look like for the Sun RPC
package, since it’s used by the Network File System, which we describe in this chapter.
Version 2 of Sun RPC is defined in RFC 1057 [Sun Microsystems 1988a].

Section 29.2 Sun Remote Procedure Call 463

Sun RPC

Sun RPC comes in two flavors. One version is built using the sockets API and works
with TCP and UDP. Another, called TI-RPC (for "transport independent"), is built
using the TLI API and works with any transport layer provided by the kernel. From
our perspective the two are the same, although we talk only about TCP and UDP in this
chapter.

Figure 29.1 shows the format of an RPC procedure call message, when UDP is used.

common for
all Sun RPC

procedure calls

depends on specific
procedure being called

IP header

UDP header

transaction ID (XID)

call (0)

RPC version (2)

program number

version number

procedure number

credentials

verifier

procedure
parameters

20 bytes

4

4

4

4

4

4

up to 408 bytes

up to 408 bytes

N

Figure 29.1 Format of RPC procedure call message as a UDP datagram.

The IP and UDP headers are the standard ones we showed earlier (Figures 3.1 and 11.2).
What follows after the UDP header is defined by the RPC package.

The transaction ID (XID) is set by the client and returned by the server. When the
client receives a reply it compares the XID returned by the server with the XID of the
request it sent. If they don’t match, the client discards the message and waits for the
next one from the server. Each time the client issues a new RPC, it changes the XID.
But if the client retransmits a previously sent RPC (because it hasn’t received a reply),
the XID does not change.

464 NFS: Network File System Chapter 29

The call variable is 0 for a call, and 1 for a reply. The current RPC version is 2. The
next three variables, program number, version number, and procedure number, identify the
specific procedure on the server to be called.

The credentials identify the client. In some instances nothing is sent here, and in
other instances the numeric user ID and group IDs of the client are sent. The server can
look at the credentials and determine if it will perform the request or not. The ver~’er is
used with Secure RPC, which uses DES encryption. Although the credentials and veri-
fier are variableqength fields, their length is encoded as part of the field.

Following this are the procedure parameters. The format of these depends on the
definition of the remote procedure by the application. How does the receiver (the
server stub) know the size of the parameters? Since UDP is being used, the size of the
UDP datagram, minus the length of all the fields up through the verifier, is the size of
the parameters. When TCP is used instead of UDP, there is no inherent length, since
TCP is a byte stream protocol, without record boundaries. To handle this, a 4-byte
length field appears between the TCP header and the XID, telling the receiver how
many bytes comprise the RPC call. This allows the RPC call message to be sent in mul-
tiple TCP segments, if necessary. (The DNS uses a similar technique; see Exercise 14.4.)

Figure 29.2 shows the format of an RPC reply. This is sent by the server stub to the
client stub, when the remote procedure returns.

common for
all Sun RPC

procedure replies

depends on
specific procedure

IP header

UDP header

transaction ID (XID)

reply (1)

status (0=accepted)

verifier

accept status (0=success)

procedure
results

20 bytes

4

4

4

up to 408 bytes

N

Figure 29.2 Format of RPC procedure reply message as a UDP datagram

The XID in the reply is just copied from the XID in the call. The reply is 1, which we said
differentiates this message from a call. The status is 0 if the call message was accepted.
(The message can be rejected if the RPC version number isn’t 2, or if the server cannot
authenticate the client.) The verifi’er is used with secure RPC to identify the server.

Section 29.4 Port Mapper 465

The accept status is 0 on success. A nonzero value can indicate an invalid version
number or an invalid procedure number, foK example. As with the RPC call message, if
TCP is used instead of UDP, a 4-byte length field is sent between the TCP header and
the XID.

29.3 XDR: External Data Representation

XDR, External Data Representation, is the standard used to encode the values in the RPC
call and reply messages--the RPC header fields (XID, program number, accept status,
etc.), the procedure parameters, and the procedure results. Having a standard way of
encoding all these values is what lets a client on one system call a procedure on a sys-
tem with a different architecture. XDR is defined in RFC 1014 [Sun Microsystems 1987].

XDR defines numerous data types and exactly how they are transmitted in an RPC
message (bit order, byte order, etc.). The sender must build an RPC message in XDR
format, then the receiver converts the XDR format into its native representation. We
see, for example, in Figures 29.1 and 29.2, that all the integer values we show (XID, call,
program number, etc.) are 4-byte integers. Indeed, all integers occupy 4 bytes in XDR.
Other data types supported by XDR include unsigned integers, booleans, floating point
numbers, fixed-length arrays, variable-length arrays, and structures.

29.4 Port Mapper

The RPC server programs containing the remote procedures use ephemeral ports, not
well-known ports. This requires a "registrar" of some form that keeps track of which
RPC programs are using which ephemeral ports. In Sun RPC this registrar is called the
port mapper.

The term "port" in this name originates from the TCP and UDP port numbers, features of the
Internet protocol suite. Since TI-RPC works over any transport layer, and not just TCP and
UDP, the name of the port mapper in systems using TI-RPC (SVR4 and Solaris 2.2, for exam-
ple) has become rpcb±nd. We’ll continue to use the more familiar name of port mapper

Naturally, the port mapper itself must have a well-known port: UDP port 111 and
TCP port 111. The port mapper is also just an RPC server program. It has a program
number (100000), a version number (2), a TCP port of 111, and a UDP port of 111.
Servers register themselves with the port mapper using RPC calls, and clients query the
port mapper using RPC calls. The port mapper provides four server procedures:

1. PMAPPROC_SET. Called by an RPC server on startup to register a program
number, version number, and protocol with a port number.

2. PMAPPROC_UNSET. Called by server to remove a previously registered
mapping.

3. PMAPPROC_GETPORT. Called by an RPC client on startup to obtain the port
number for a given program number, version number, and protocol.

466 NFS: Network File System Chapter 29

4. PMAPPROC_DUMP. Returns all entries (program number, version number,
protocol, and port number) in the port mapper database.

When an RPC server program starts, and is later called by an RPC client program,
the following steps take place.

1. The port mapper must be started first, normally when the system is boot-
strapped. It creates a TCP end point and does a passive open on TCP port 111.
It also creates a UDP end point and waits for a UDP datagram to arrive for UDP
port 111.

2. When the RPC server program stdrts, it creates a TCP end point and a UDP end
point for each version of the program that it supports. (A given RPC program
can support multiple versions. The client specifies which version it wants when
it calls a server procedure.) An ephemeral port number is bound to both end
points. (It doesn’t matter whether the TCP port number is the same or different
from the UDP port number.) The server registers each program, version, proto-
col, and port number by making a remote procedure call to the port mapper’s
PMAPPROC_SET procedure.

3. When the RPC client program starts, it calls the port mapper’s PMAP-
PROC_GETPORT procedure to obtain the ephemeral port number for a given
program, version, and protocol.

4. The client sends an RPC call message to the port number returned in step 3. If
UDP is being used, the client just sends a UDP datagram containing an RPC call
message (Figure 29.1) to the server’s UDP port number. The server responds by
sending a UDP datagram containing an RPC reply message (Figure 29.2) back to
the client.

If TCP is being used, the client does an active open to the server’s TCP port
number, and then sends an RPC call message across the connection. The server
responds with an RPC reply message across the connection.

The program rpc±nfo(8) prints out the port mapper’s current mappings. (It calls the
port mapper’s PMAPPROC_DUMP procedure.) Here is some typical output:

sun % /usr/etc/rpcinfo -p
program vers proto port

100005 1 tcp 702 mountd
100005 1 udp 699 mountd
100005 2 tcp 702 mountd
100005 2 udp 699 mountd

100003 2 udp 2049 nfs

100021 1 tcp 709 nlockmgr
100021 1 udp 1036 nlockmgr
100021 2 tcp 721 nlockmgr
100021 2 udp 1039 nlockmgr
100021 3 tcp 713 nlockmgr
100021 3 udp 1037 nlockmgr

mount daemon for NFS

NFS itself
NFS lock manager

Section 29.5 NFS Protocol 467

We see that some programs do support multiple versions, and each combination of a
program number, version number, and protocol has its own port number mapping
maintained by the port mapper.

Both versions of the mount daemon are accessed through the same TCP port num-
ber (702) and the same UDP port number (699), but each version of the lock manager
has its own port number.

29.5 NFS Protocol

NFS provides transparent file access for clients to files and filesystems on a server. This
differs from FTP (Chapter 27), which provides file transfer. With FTP a complete copy of
the file is made. NFS accesses only the portions of a file that a process references, and a
goal of NFS is to make this access transparent. This means that any client application
that works with a local file should work with an NFS file, without any program changes
whatsoever.

NFS is a client-server application built using Sun RPC. NFS clients access files on
an NFS server by sending RPC requests to the server. While this could be done using
normal user processes--that is, the NFS client could be a user process that makes
explicit RPC calls to the server, and the server could also be a user process--NFS is nor-
mally not implemented this way for two reasons. First, accessing an NFS file must be
transparent to the client. Therefore the NFS client calls are performed by the client
operating system, on behalf of client user processes. Second, NFS servers are imple-
mented within the operating system on the server for efficiency. If the NFS server were
a user process, every client request and server reply (including the data being read or
written) would have to cross the boundary between the kernel and the user process,
which is expensive.

In this section we look at version 2 of NFS, as documented in RFC 1094 [Sun
Microsystems 1988b]. A better description of Sun RPC, XDR, and NFS is given in
IX/Open 1991]. Details on using and administering NFS are in [Stern 1991]. The speci-
fications for version 3 of the NFS protocol were released in 1993, which we cover in Sec-
tion 29.7.

Figure 29.3 shows the typical arrangement of an NFS client and an NFS server.
There are many subtle points in this figure.

1. It is transparent to the client whether it’s accessing a local file or an NFS file.
The kernel determines this when the file is opened. After the file is opened, the
kernel passes all references to local files to the box labeled "local file access,"
and all references to an NFS file are passed to the "NFS client" box.

2. The NFS client sends RPC requests to the NFS server through its TCP/IP mod-
ule. NFS is used predominantly with UDP, but newer implementations can also
use TCP.

The NFS server receives client requests as UDP datagrams on port 2049.
Although the NFS server could use an ephemeral port that it then registers with
the port mapper, UDP port 2049 is hardcoded into most implementations.

468 NFS: Network File System Chapter 29

user

local NFS
file access chent

TCP/UDP
IP

client kernel

NFS

~ UDP port
~/ 2049

TCP/UDP
IP

server kernel

local
file access

Figure 29.3 Typical arrangement of NFS client and NFS server.

When the NFS server receives a client request, the requests are passed to its local
file access routines, which access a local disk on the server.

5. It can take the NFS server a while to handle a client’s request. The local file-
system is normally accessed, which can take some time. During this time, the
server does not want to block other client requests from being serviced. To han-
dle this, most NFS servers are multithreaded--that is, there are really multiple
NFS servers running inside the server kernel. How this is handled depends on
the operating system. Since most Unix kernels are not multithreaded, a com-
mon technique is to start multiple instances of a user process (often called nfsd)
that performs a single system call and remains inside the kernel as a kernel
process.

6. Similarly, it can take the NFS client a while to handle a request from a user pro-
cess on the client host. An RPC is issued to the server host, and the reply is
waited for. To provide more concurrency to the user processes on the client host
that are using NFS, there are normally multiple NFS clients running inside the
client kernel. Again, the implementation depends on the operating system.
Unix systems often use a technique similar to the NFS server technique: a user
process named b±od that performs a single system call and remains inside the
kernel as a kernel process.

Most Unix hosts can operate as either an NFS client, an NFS server, or both. Most PC
implementations (MS-DOS) only provide NFS client implementations. Most IBM main-
frame implementations only provide NFS server functions.

Section 29.5 NFS Protocol 469

NFS really consists of more than just the NFS protocol. Figure 29.4 shows the vari-
ous RPC programs normally used with NFS.

Program Version Number ofApplication number m~mbers procedures

port mapper 100000 2 4
NFS 100003 2 15
mount 100005 1 5
lock manager 100021 1, 2, 3 19
status momtor 100024 1 6

Figure 29.4 Various RPC programs used with NFS.

The versions we show m this figure are the ones found on systems such as SunOS 4 1.3.
Newer implementations are providing newer versions of some of the programs. Solans 2.2,
for example, also supports versions 3 and 4 of the port mapper, and version 2 of the mount
daemon. SVR4 also supports verslon 3 of the port mapper

The mount daemon is called by the NFS client host before the client can access a
filesystem on the server. We discuss this below.

The lock manager and status monitor allow clients to lock portions of files that
reside on an NFS server. These two programs are independent of the NFS protocol
because locking requires state on both the client and server, and NFS itself is stateless on
the server. (We say more about NFS’s statelessness later.) Chapters 9, 10, and 11 of
IX/Open 1991] document the procedures used by the lock manager and status monitor
for file locking with NFS.

File Handles

A fundamental concept in NFS is thef!le handle. It is an opaque object used to reference a
file or directory on the server. The term opaque denotes that the server creates the file
handle, passes it back to the client, and then the client uses the file handle when access-
ing the file. The client never looks at the contents of the file handle--its contents only
make sense to the server.

Each time a client process opens a file that is really a file on an NFS server, the NFS
client obtains a file handle for that file from the NFS server. Each time the NFS client
reads or writes that file for the user process, the file handle is sent back to the server to
identify the file being accessed.

Normal user processes never deal with file handles--it is the NFS client code and
the NFS server code that pass them back and forth. In version 2 of NFS a file handle
occupies 32 bytes, although with version 3 this changes from a fixed-length field to a
variable-length field of up to 68 bytes.

Umx servers normally store the following information in the file handle the filesystem identi-
fier (the major and minor dewce numbers of the filesystem), the i-node number (a unique
number within a ~esystem), and an i-node generation number (a number that changes each
time an i-node is reused for a different file).

47{) NFS: Network File System Chapter 29

Mount Protocol

The client must use the NFS mount protocol to mount a server’s filesystem, before the
client can access files on that filesystem. This is normally done when the client is boot-
strapped. The end result is for the client to obtain a file handle for the server’s file-
system.

Figure 29.5 shows the sequence of steps that takes place when a Unix client issues
the mount(8) command, specifying an NFS mount.

user process

Imount
command

(6) mount
system

call

client kernel

(2) get port# RPC request

(3) RPC reply w/port#

user process

I port I (1) register

mapper11~ at start

(4) mount RPC request

(5) RPC reply w/file handle

I_

user process

mountd
daemon

server kernel

-q

Figure 29.5 Mount protocol used by Unix mount command.

The following steps take place.

0. The port mapper is started on the server, normally when the server bootstraps.

1. The mount daemon (mountd) is started on the server, after the port mapper. It
creates a TCP end point and a UDP end point, and assigns ephemeral port num-
ber to each. It then registers these port numbers with the port mapper.

2. The mount command is executed on the client and it issues an RPC call to the
port mapper on the server to obtain the port number of the server’s mount dae-
mon. Either TCP or UDP can be used for this client exchange with the port
mapper, but UDP is normally used.

3. The port mapper replies with the port number.

4. The mount command issues an RPC call to the mount daemon to mount a file-
system on the server. Again, either TCP or UDP can be used, but UDP is typi-
cal. The server can now validate the client, using the client’s IP address and
port.number, to see if the server lets this client mount the specified filesystem.

5. The mount daemon replies with the file handle for the given filesystem.

6. The mount command issues the mount system call on the client to associate the
file handle returned in step 5 with a local mount point on the client. This file

Section 29.5 NFS Protocol 471

handle is stored in the NFS client code, and from this point on any references by
user processes to files on that server’s filesystem will use that file handle as the
starting point.

This implementation technique puts all the mount processing, other than the mount
system call on the client, in user processes, instead of the kernel. The three programs
we show--the mount command, the port mapper, and the mount daemon--are all user
processes.

As an example, on our host sun (the NFS client) we execute
sun # mount -t nfs bsdi:/usr /nfs/bsdi/usr

This mounts the directory /usr on the host bsdi (the NFS server) as the local file-
system / n f s/b s di / u s r. Figure 29.6 shows the result.

sun client

NFS mount

bsdl server

Figure 29.6 Mounting the bsdi :/usr directory as/nfs/bsdl/usr on the host sun.

When we reference the file /nfs/bsdi/usr/rstevens/hello. c on the client sun
we are really referencing the file/usr/rstevens/hello, c on the server bsd±.

NFS Procedures

The NFS server provides 15 procedures, which we now describe. (The numbers we use
are not the same as the NFS procedure numbers, since we have grouped them according
to functionality.) Although NFS was designed to work between different operating sys-
tems, and not just Unix systems, some of the procedures provide Unix functionality that

472 NFS: Network File System Chapter 29

might not be supported by other operating systems (e.g., hard links, symbolic links,
group owner, execute permission, etc.). Chapter 4 of [Stevens 1992] contains additional
information on the properties of Unix filesystems, some of which are assumed by NFS.

GETATTR. Return the attributes of a file: type of file (regular file, directory,
etc.), permissions, size of file, owner of file, last-access time, and so on.

2. SETATTR. Set the attributes of a file. Only a subset of the attributes can be set:
permissions, owner, group owner, size, last-access time, and last-modification
time.

3. STATFS. Return the status of a fil’esystem: amount of available space, optimal
size for transfer, and so on. Used by the Unix df command, for example.

o

8.

9.

10.

11.

12.

13.

14.

15.

LOOKUP. Lookup a file. This is the procedure called by the client each time a
user process opens a file that’s on an NFS server. A file handle is returned,
along with the attributes of the file.

READ. Read from a file. The client specifies the file handle, starting byte off-
set, and maximum number of bytes to read (up to 8192).

WRITE. Write to a file. The client specifies the file handle, starting byte offset,
number of bytes to write, and the data to write.

NFS writes are required to be synchronous. The server cannot respond OK until
it has successfully written the data (and any other file information that gets
updated) to disk.

CREATE. Create a file.

REMOVE. Delete a file.

RENAME. Rename a file.

LINK. Make a hard link to a file. A hard link is a Unix concept whereby a
given file on disk can have any number of directory entries (i.e., names, also
called hard links) that point to the file.

SYMLINK. Create a symbolic link to a file. A symbolic link is a file that con-
tains the name of another file. Most operations that reference the symbolic link
(e.g., open) really reference the file pointed to by the symbolic link.

READLINK. Read a symbolic link, that is, return the name of the file to which
the symbolic link points.

MKDIR. Create a directory.

RMDIR. Delete a directory.

READDIR. Read a directory. Used by the Unix 1 s command, for example.

These procedure names actually begin with the prefix NFSPROC_, which we’ve
dropped.

Section 29.5 NFS Protocol 473

UDP or TCP?

NFS was originally written to use UDP, and that’s what all vendors provide. Newer
implementations, however, also support TCP. TCP support is provided for use on wide
area networks, which are getting faster over time. NFS is no longer restricted to local
area use.

The network dynamics can change drastically when going from a LAN to a WAN.
The round-trip times can vary widely and congestion is more frequent. These charac-
teristics of WANs led to the algorithms we examined with TCP--slow start and conges-
tion avoidance. Since UDP does not provide anything like these algorithms, either the
same algorithms must be put into the NFS client and server or TCP should be used.

NFS Over TCP

The Berkeley Net/2 implementation of NFS supports either UDP or TCP. [Macklem
1991] describes this implementation. Let’s look at the differences when TCP is used.

When the server bootstraps, it starts an NFS server that does a passive open on
TCP port 2049, waiting for client connection requests. This is usually in addi-
tion to the normal NFS UDP server that waits for incoming datagrams to UDP
port 2049.

When the client mounts the server’s filesystem using TCP, it does an active open
to TCP port 2049 on the server. This results in a TCP connection between the
client and server for this filesystem. If the same client mounts another file-
system on the same server, another TCP connection is created.

Both the client and server set TCP’s keepalive option on their ends of the con-
nection (Chapter 23). This lets either end detect if the other end crashes, or
crashes and reboots.

All applications on the client that use this server’s filesystem share the single
TCP connection for this filesystem. For example, in Figure 29.6 if there were
another directory named smith beneath /usr on bsdi, references to files in
/nfs/bsdi/usr/rstevens and /nfs/bsdi/usr/smith would share the
same TCP connection.

If the client detects that the server has crashed, or crashed and rebooted (by
receiving a TCP error of either "’connection timed out" or "connection reset by
peer"), it tries to reconnect to the server. The client does another active open to
reestablish the TCP connection with the server for this filesystem. Any client
requests that timed out on the previous connection are reissued on the new
connection.

If the client crashes, so do the applications that are running when it crashes.
When the client reboots, it will probably remount the server’s filesystem using
TCP, resulting in another TCP connection to the server. The previous connection

474 NFS: Network File System Chapter 29

between this client and server for this filesystem is half-open (the server thinks
it’s still open), but since the server set the keepalive option, this half-open con-
nection will be terminated when the next keepalive probe is sent by the server’s
TCP.

Over time, additional vendors plan to support NFS over TCP.

29.6 NFS Examples

Let’s use tcpdump to see which NFS procedures are invoked by the client for typical file
operations. When tcpdump detects a UDP datagram containing an RPC call (call equals
0 in Figure 29.1) with a destination port of 2049, it decodes the datagram as an NFS
request. Similarly if the UDP datagram is an RPC reply (reply equals 1 in Figure 29.2)
with a source port of 2049, it decodes the datagram as an NFS reply.

Simple Example: Reading a File

Our first example just copies a file to the terminal using the cat(l) command, but the
file is on an NFS server:

sun %
maln ()
{

cat /nfs/bsdi/usr/rstevens/hello.c

printf("hello, world\n");

copy flle to termznal

On the host sun (the NFS client) the filesystem/nfs/bsdi/usr is really the/usr file-
system on the host bsdi (the NFS server), as shown in Figure 29.6. The kernel on sun
detects this when cat opens the file, and uses NFS to access the file. Figure 29.7 shows
the t cpdump output.

1 0.0
2 0

3 0
4 0

5
6

7
8

9
10

0
0

0
0

¯ 003587 (0.0036)

.005390 (0.0018)

.009570 (0.0042)

.011413 (0.0018)

.015512 (0.0041)

.018843 (0.0033)

.022377 (0.0035)

0.027621 (0.0052)
0.032170 (0.0045)

sun.7aa6 > bsdi.nfs:
bsdi.nfs > sun.7aa6:

sun.7aa7 > bsdi.nfs:
bsdionfS > sun.7aa7:

sun.7aa8 > bsdi.nfs:
bsdi.nfs > sun.7aaS:

sun.7aa9 > bsdl.nfs:
bsdi.nfs > sun.7aa9:

sun.7aaa > bsdi.nfs:
bsdi.nfs > sun.7aaa:

104 getattr
reply ok 96

116 lookup "rstevens"
reply ok 128

116 lookup "hello.c"
reply ok 128

104 getattr
reply ok 96

116 read 1024 bytes @ 0
reply ok 140

Figure 29.7 NFS operations to read a file.

When tcpdump decodes an NFS request or reply, it prints the XID field for the client,
instead of the port number. The XID field in lines I and 2 is 0x7aa6.

Section 29.6 NFS Examples 475

Simple

The filename /nfs/bsdi/usr/rstevens/hello.c is processed by the open
function in the client kernel one element at a time. When it reaches/nfs/bsdi/usr it
detects that this is a mount point to an NFS mounted filesystem.

In line 1 the client calls the GETATTR procedure to fetch the attributes of the
server’s directory that the client has mounted (/usr). This RPC request contains 104
bytes of data, exclusive of the IP and UDP headers. The reply in line 2 has a return
value of OK and contains 96 bytes of data, exclusive of the IP and UDP headers. We see
in this figure that the minimum NFS message contains around 100 bytes of data.

In line 3 the client calls the LOOKUP procedure for the file rstevens and receives
an OK reply in line 4. The LOOKUP specifies the filename rstevens and the file han-
dle that was saved by the kernel when the remote filesystem was mounted. The reply
contains a new file handle that is used in the next step.

In line 5 the client does a LOOKUP of hello, c using the file handle from line 4. It
receives another file handle in line 6. This new file handle is what the client uses in lines
7 and 9 to reference the file /nfs/bsdi/usr/rstevens/hello. c. We see that the
client does a LOOKUP for each component of the pathname that is being opened.

In line 7 the client does another GETATTR, followed by a READ in line 9. The client
asks for 1024 bytes, starting at offset 0, but receives less. (After subtracting the sizes of
the RPC fields, and the other values returned by the READ procedure, 38 bytes of data
are returned in line 10. This is indeed the size of the file hello, c.)

In this example the user process knows nothing about these NFS requests and
replies that are being done by the kernel. The application just calls the kernel’s open
function, which causes 3 requests and 3 replies to be exchanged (lines 1-6), and then
calls the kernel’s read function, which causes 2 requests and 2 replies (lines 7-10). It is
transparent to the client application that the file is on an NFS server.

Example: Creating a Directory

As another simple example we’ll change our working directory to a directory that’s on
an NFS server, and then create a new directory:

sun % cd /nfs/bsdi/usr/rstevens change working directory
sun % mkdir Mail and create a directory

Figure 29.8 shows the t cpdump output.

1 0.0
2 0.004912

3 0.007266
4 0.010846

5 35.769875
6 35.773432

7 35.775236
8 35.780914

9 35.782339
10 35.992354

0.0049)

0.0024)
0.0036)

(35.7590)
0.0036)

0.0018)
O.OO57)

0.0014)
0.2100)

sun.7ad2 > bsdi.nfs
bsdi.nfs > sun.7ad2

suno7ad3 > bsdi.nfs
bsdl.nfs > sun.7ad3

sun.7ad4 > bsdi.nfs
bsdi.nfs > sun.7ad4

sun.7ad5 > bsdi.nfs
bsdi.nfs > sun.7ad5

sun.7ad6 > bsdi.nfs
bsdi.nfs > sun.7ad6

: 104 getattr
: reply ok 96

: 104 getattr
: reply ok 96

: 104 getattr
: reply ok 96

: 112 lookup "Mall"
: reply ok 28

: 144 mkdir "Mail"
: reply ok 128

Figure 29.8 NFS operahons for cd to NFS directory, then mkdir.

476 NFS: Network File System Chapter 29

Changing our directory causes the client to call the GETATTR procedure twice (lines
1-4). When we create the new directory, the client calls the GETATTR procedure (lines
5 and 6), followed by a LOOKUP (lines 7 and 8, to verify that the directory doesn’t
already exist), followed by a MKDIR to create the directory (lines 9 and 10). The reply
of OK in line 8 doesn’t mean that the directory exists. It just means the procedure
returned, tcpdump doesn’t interpret the return values from the NFS procedures. It
normally prints OK and the number of bytes of data in the reply.

Statelessness

One of the features of NFS (critics of NFS would call this a wart, not a feature) is that the
NFS server is stateless. The server does not keep track of which clients are accessing
which files. Notice in the list of NFS procedures shown earlier that there is not an open
procedure or a close procedure. The LOOKUP procedure is similar to an open, but the
server never knows if the client is really going to reference the file after the client does a
LOOKUP.

The reason for a stateless design is to simplify the crash recovery of the server after
it crashes and reboots.

Example: Server Crash

In th~ following example we are reading a file from an NFS server when the server
crashes and reboots. This shows how the stateless server approach lets the client "not
know" that the server crashes. Other than a time pause while the server crashes and
reboots, the client is unaware of the problem, and the client application is not affected.

On the client sun we start a cat of a long file (/usr/share/lib/termcap on the
NFS server svr4), disconnect the Ethernet cable during the transfer, shut down and
reboot the server, then reconnect the cable. The client was configured to read 1024 bytes
per NFS read. Figure 29.9 shows the tcpdump output.

Lines 1-10 correspond to the client opening the file. The operations are similar to
those shown in Figure 29.7. In line 11 we see the first READ of the file, with 1024 bytes
of data returned in line 12. This continues (a READ of 1024 followed by a reply of OK)
through line 129.

In lines 130 and 131 we see two requests that time out and are retransmitted in lines
132 and 133. The first question is why are there two read requests, one starting at offset
65536 and the other starting at 73728? The client kernel has detected that the client
application is performing sequential reads, and is trying to prefetch data blocks. (Most
Unix kernels do this read-ahead.) The client kernel is also running multiple NFS block
I/O daemons (biod processes) that try to generate multiple RPC requests on behalf of
clients. One daemon is reading 8192 bytes starting at 65536 (in 1024-byte chunks) and
the other is performing the read-ahead of 8192 bytes starting at 73728.

Client retransmissions occur in lines 132-168. In line 169 we see the server has
rebooted, and it sends an ARP request before it can reply to the client’s NFS request in
line 168. The response to line 168 is sent in line 171. The client READ requests continue.

Section 29.6 NFS Examples 477

1
2

3
4

5
6

7
8

9
10

11
12

0.0
0.007653

0.009041
0.017237

0.018518
0.026802

0.028096
0.036434

0.038060
0.045821

0.050984
0.084995

0.0077)

0.0014)
0.0082)

0.0013)
0.0083)

0.0013)
0.0083)

0.0016)
O.0O78)

0.0052)
0.0340)

128
129

130
131

132
133

134
135

136
137

138
139

140
141

142
143

144
145

3.430313
3.441828

4.125031
4.868593

4.993021
5.732217

6.732084
° 7.472098

10.211964
10.951960

17.171767
17.911762

31.092136
31.831432

51.090854
51.830939

71.090305
71.830155

0.0013)
0.0115)

0.6832)
0.7436)

0.1244)
0.7392)

0.9999)
0.7400)

2.7399)
0.7400)

6.2198)
0.7400)

13.1804)
0.7393)

19.2594)
0.7401)

19.2594)
0.7398)

167 291.824285 0.7400)
168 311.083676 (19.2594)

169 311.149476
170 311.150004

171 311.154852

172 311.156671
173 311.168926

0.0658)
0.0005)

0.0048)

0.0018)
0.0123)

sun.7ade > svr4.nfs
svr4 nfs > sun 7ade

sun.7adf > svr4.nfs
svr4 nfs > sun 7adf

sun.7aeO > svr4.nfs
svr4 nfs > sun 7aeO

sun.7ael > svr4.nfs
svr4 nfs > sun 7ael

sun.7ae2 > svr4.nfs
svr4 nfs > sun 7ae2

sun.7ae3 > svr4.nfs
svr4 nfs > sun 7ae3

readmg continues

sun.7b22 > svr4.nfs
svr4.nfs > sun.7b22

sun.7b23 > svr4.nfs
sun.7b24 > svr4.nfs

sun. Tb23 >
sun.7b24 >

sun.7b23 >
sun.7b24 >

sun.7b23 >
sun.7b24 >

svr4.nfs
svr4.nfs

: 104 getattr
: reply ok 96

: 116 lookup "share"
: reply ok 128

: 112 lookup "l±b"
: reply ok 128

116 lookup "termcap"
reply ok 128

104 getattr
reply ok 96

116 read 1024 bytes @ 0
reply ok 1124

116 read 1024 bytes @ 64512
reply ok 1124

116 read 1024 bytes @ 65536
116 read 1024 bytes @ 73728

svr4.nfs
svr4.nfs:

svr4.nfs:
svr4.nfs:

sun.7b23 > svr4.nfs:
sun.7b24 > svr4.nfs:

sun.7b23 > svr4.nfs:
sun.7b24 > svr4.nfs:

sun.7b23 > svr4.nfs:
sun.7b24 > svr4.nfs:

sun.7b23 > svr4.nfs:
sun.7b24 > svr4.nfs:

retransmzsszons corltltlue

116 read 1024 bytes @ 65536
116 read 1024 bytes @ 73728

116 read 1024 bytes @ 65536
116 read 1024 bytes @ 73728

116 read 1024 bytes @ 65536
116 read 1024 bytes @ 73728

116 read 1024 bytes @ 65536
116 read 1024 bytes @ 73728

116 read 1024 bytes @ 65536
116 read 1024 bytes @ 73728

116 read 1024 bytes @ 65536
116 read 1024 bytes @ 73728

116 read 1024 bytes @ 65536
116 read 1024 bytes @ 73728

sun.7b24 > svr4.nfs: 116 read 1024 bytes @ 73728
sun.7b23 > svr4.nfs: 116 read 1024 bytes @ 65536

server reboots

arp who-has sun tell svr4
arp reply sun is-at 8:0:20:3:f6:42

svr4.nfs > sun.7b23: reply ok 1124

sun.7b25 > svr4.nfs: 116 read 1024 bytes @ 66560
svr4.nfs > sun.7b25: reply ok 1124
readmg contznues

Figure 29.9 Chent reading a file when an NFS server crashes and reboots

478 NFS: Network File System Chapter 29

The client application never knows that the server crashes and reboots, and except for
the 5-minute pause between lines 129 and 171, this server crash is transparent to the
client.

To examine the timeout and retransmission interval in this example, realize that
there are two client daemons with their own timeouts. The intervals for the first dae-
mon (reading at offset 65536), rounded to two decimal points, are: 0.68, 0.87, 1.74, 3.48,
6.96, 13.92, 20.0, 20.0, 20.0, and so on. The intervals for the second daemon (reading at
offset 73728) are the same (to two decimal points). It appears that these NFS clients are
using a timeout that is a multiple of 0.875 seconds with an upper bound of 20 seconds.
After each timeout the retransmission interval is doubled: 0.875, 1.75, 3.5, 7.0, and 14.0.

How long does the client retransmit? The client has two options that affect this.
First, if the server filesystem is mounted hard, the client retransmits forever, but if the
server filesystem is mounted soft, the client gives up after a fixed number of retransmis-
sions. Also, with a hard mount the client has an option of whether to let the user inter-
rupt the infinite retransmissions or not. If the client host specifies interruptibility when
it mounts the server’s filesystem, if we don’t want to wait 5 minutes for the server to
reboot after it crashes, we can type our interrupt key to abort the client application.

Idempotent Procedures

An RPC proce~lure is called idempotent if it can be executed more than once by the server
and still return the same result. For example, the NFS read procedure is idempotent.
As we saw in Figure 29.9, the client just reissues a given READ call until it gets a
response. In our example the reason for the retransmission was that the server had
crashed. If the server hasn’t crashed, and the RPC reply message is lost (since UDP is
unreliable), the client just retransmits and the server performs the same READ again.
The same portion of the same file is read again and sent back to the client.

This works because each READ request specifies the starting offset of the read. If
there were an NFS procedure asking the server to read the next N bytes of a file, this
wouldn’t work. Unless the server is made stateful (as opposed to stateless), if a reply is
lost and the client reissues the READ for the next N bytes, the result is different. This is
why the NFS READ and WRITE procedures have the client specify the starting offset.
The client maintains the state (the current offset of each file), not the server.

Unfortunately, not all filesystem operations are idempotent. For example, consider
the following steps: the client NFS issues the REMOVE request to delete a file; the
server NFS deletes the file and responds OK; the server’s response is lost; the client NFS
times out and retransmits the request; the server NFS can’t find the file and responds
with an error; the client application receives an error saying the file doesn’t exist. This
error return to the client application is wrong--the file did exist and was deleted.

The NFS operations that are idempotent are: GETATTR, STATFS, LOOKUP, READ,
WRITE, READL1NK, and READDIR. The procedures that are not idempotent are: CRE-
ATE, REMOVE, RENAME, LINK, SYMLINK, MKDIR, and RMDIR. SETATTR is nor-
mally idempotent, unless it’s being used to truncate a file.

Section 29.7 NFS Version 3 479

Since lost responses can always happen with UDP, NFS servers need a way to han-
dle the nonidempotent operations. Most servers implement a recent-reply cache in
which they store recent replies for the nonidempotent operations. Each time the server
receives a request, it first checks this cache, and if a match is found, returns the previous
reply instead of calling the NFS procedure again. [Juszczak 1989] provides details on
this type of cache.

This concept of idempotent server procedures applies to any UDP-based applica-
tion, not just NFS. The DNS, for example, provides an idempotent service. A DNS
server can execute a resolver’s request any number of times with no ill effects (other
than wasted network resources).

29.7 NFS Version 3

During 1993 the specifications for version 3 of the NFS protocol were released [Sun
Microsystems 1994]. Implementations are expected to become available during 1994.

Here we summarize the major differences between versions 2 and 3. We’ll refer to
the two as V2 and V3.

1. The file handle in V2 is a fixed-size array of 32 bytes. With V3 it becomes a vari-
able-length array of up to 64 bytes. A variable-length array in XDR is encoded
with a 4-byte count, followed by the actual bytes. This reduces the size of the
file handle on implementations such as Unix that only need about 12 bytes, but
allows non-Unix implementations to maintain additional information.

2. V2 limits the number of bytes per READ or WRITE RPC to 8192 bytes. This
limit is removed in V3, meaning an implementation over UDP is limited only by
the IP datagram size (65535 bytes). This allows larger read and write packets on
faster networks.

3. File sizes and the starting byte offsets for the READ and WRITE procedures are
extended from 32 to 64 bits, allowing larger file sizes.

4. A file’s attributes are returned on every call that affects the attributes. This
reduces the number of GETATTR calls required by the client.

5. WRITEs can be asynchronous, instead of the synchronous WRITEs required by
V2. This can improve WRITE performance.

6. One procedure was deleted (STATFS) and seven were added: ACCESS (check
file access permissions), MKNOD (create a Unix special file), READDIRPLUS
(returns names of files in a directory along with their attributes), FSINFO
(returns the static information about a filesystem), FSSTAT (returns the dynamic
information about a filesystem), PATHCONF (returns the POSIX.1 information
about a file), and COMMIT (commit previous asynchronous writes to stable
storage).

480 NFS: Network File System Chapter 29

29.8 Summary

RPC is a way to build a client-server application so that it appears that the client just
calls server procedures. All the networking details are hidden in the client and server
stubs, which are generated for an application by the RPC package, and in the RPC
library routines. We showed the format of the RPC call and reply messages, and men-
tioned that XDR is used to encode the values, allowing RPC clients and servers to run
on machines with different architectures.

One of the most widely used RPC applications is Sun’s NFS, a heterogeneous file
access protocol that is widely implemented on hosts of all sizes. We looked at NFS and
the way that it uses UDP and TCP. Fi.fteen procedures define the NFS Version 2
protocol.

A client’s access to an NFS server starts with the mount protocol, returning a file
handle to the client. The client can then access files on the server’s filesystem using that
file handle. Filenames are looked up on the server one element at a time, returning a
new file handle for each element. The end result is a file handle for the file being refer-
enced, which is used in subsequent reads and writes.

NFS tries to make atl its procedures idempotent, so that the client can just reissue a
request if the response gets lost. We saw an example of this with a client reading a file
while the server crashed and rebooted.

Exercises

29.1 In Figure 29.7 we saw that ~cpdump interpreted the packets as NFS requests and replies,
printing the XID. Can kcpdum~ do this for any RPC request or reply?

29.2 On a Unix system, why do you think RPC server programs use ephemeral ports and not
well-known ports?

29.3 An RPC client calls two server procedures. The first server procedure takes 5 seconds to
execute, and the second procedure takes 1 second to execute. The client has a timeout of 4
seconds. Draw a time line of what’s exchanged between the client and server. (Assume it
takes no time for messages from the client to the serve~; and vice versa.)

29.4 What would happen in the example shown in Figure 29.9 if, while the NFS server were
down, its Ethernet card were replaced?

29.5 When the server reboots in Figure 29.9, it handles the request starting at byte offset 65536
(lines 168 and 171), and then handles the next request starting at offset 66560 (lines 172 and
173). What happened to the request starting at offset 73728 (line 167)?

29.6 When we described idempotent NFS procedures we gave an example of a REMOVE reply
being lost in the network. What happens in this case if TCP is used, instead of UDP?

29.7 If the NFS server used an ephemeral port instead of 2049, what would happen to an NFS
client when the server crashes and reboots?

29.8 Reserved port numbers (Section 1.9) are scarce, since there are a maximum of 1023 per
host. If an NFS server requires its clients to have reserved ports (which is common) and an
NFS client using TCP mounts N filesystems on N different servers, does the client need a
different reserved port number for each connection?

3O

Other TCP/IP Applications

30.1 Introduction

In this chapter we describe additional TCP/IP applications that many implementations
support. Some are simple and easy to cover completely (Finger and Whois), while
another is complex (the X Window System). We provide only a brief overview of this
complex application, focusing on its use of the TCP/IP protocols.

Additionally we provide an overview of some Internet resource discovery tools.
These are tools to help us navigate our way around the Internet, searching for items
whose location and exact name we don’t know.

30.2 Finger Protocol

The Finger protocol returns information on one or more users on a specified host. It’s
commonly used to see if someone is currently logged on, or to figure out someone’s
login name, to send them mail. RFC 1288 [Zimmerman 1991] specifies the protocol.

Many sites do not run a Finger server for two reasons. First, a programming error
in an earlier version of the server was one of the entry points used by the infamous
Internet worm of 1988. (RFC 1135 [Reynolds 1989] and [Curry 1992] describe the worm
in more detail.) Second, the Finger protocol can reveal detailed information on users
(login names, phone numbers, when they last logged in, etc.) that many administrators
consider private. Section 3 of RFC 1288 details the security aspects of this service.

From a protocol perspective, the Finger server has a well-known port of 79. The
client does an active open to this port and sends a one-line query. The server processes
the query, sends back the output, and closes the connection. The query and response
are NVT ASCII, similar to what we saw with FTP and SMTP.

481

482 Other TCP/IP Applications Chapter 30

While most Unix users access the Finger server using the f±nger(1) client, we’ll
start by using the Telnet client to connect directly to the server and see the one-line com-
mands issued by the client. If the client query is an empty line (which in NVT ASCII is
transmitted as a CR followed by an LF), it is a request for information on all online
users.

sun % telnet slip finger
Tryzng 140.252.13.65 ...
Connected to slip.
Escape character is ,4],

Login Name
rstevens Richard Stevens
rstevens Richard Stevens

first three hnes are output by Telnet client

here wetypeRETURN astheFingerchentcommand
Tty Idle Login Time Office Office Phone
*co 45 Jul 31 09:13
*c2 45 Aug 5 09:41

Connection closed by foreign host. output by Telnet chent

The blank output fields for the office and office phone are taken from optional fields in
the user’s password file entry (which aren’t present in this example).

The server must be the end that does the active close, since a variable amount of
information is returned by the server, and the reception of the end-of-file by the client is
how the client knows when the output is complete.

When the client request consists of a username, the server responds with informa-
tion only about that user. Here’s another example, with the Telnet client output
removed:

sun % telnet vangogh.cs.berkeley.edu finger
rstevens thts~sthechentrequestwetype
Login: rstevens Name: R~chard Stevens
Directory: /a/guest/rstevens Shell: /bln/csh
Last login Thu Aug 5 09:55 (PDT) on ttyq2 from sun.tuc.noaooedu
Mail forwarded to: rstevens@noao.edu
No Plan.

When a system has the Finger service completely disabled, the client’s active open
will receive an RST from the server, since no process has a passive open on port 79:

sun % finger @svr4
[svr4.tuc.noao.edu] connect: Connect±on refused

Some sites provide a server on port 79, but it just outputs information to the client, and
doesn’t honor any client requests:

sun % finger @att.com

[att.com] thlshneoutputbyFzngerchent;remalnder~omserver

There are no user accounts on the AT&T Internet gateway.
To send email to an AT&T employee, send email to their name
separated by periods at att.com. If the employee has an email
address registered in the employee database, they will receive
emazl - otherwise, you’ll receive a non-delzvery notice.
For example: John.Q.Publ~c@att.com

Section 30.3 Whois Protocol 483

sun % finger clinton@whitehouse.gov
[whitehouse.gov]

Finger service for arbitrary addresses on whitehouse.gov is not
supported. If you wish to send electronic mail, valid addresses are
"PRESIDENT@WHITEHOUSE.GOV", and "VICE-PRESIDENT@WHITEHOUSE.GOV".

Another possibility is for an organization to implement a]irewaI! gateway: a router
between the organization and the Internet that filters out (i.e., discards) certain IP data-
grams. ([Cheswick and Bellovin 1994] discuss firewall gateways in detail.) The firewall
gateway can be configured to discard incoming datagrams that are TCP segments for
port 79. In this case the Finger client times out after about 75 seconds.

There are additional options for the Finger server, and for the Unix finger client.
Refer to RFC 1288 and the finger(i) manual page for the details.

RFC 1288 states that vending machines with TCP/IP connections that provide a Finger server
should reply to a client request consisttng of a blank line w~th a list of all ~tems currently avail-
able. They should reply to a client request consmhng of a name with a count or list of available
items for that product.

30.3 Whois Protocol

The Whois protocol is another information service. Although any site can provide a
Whois server, the one at the InterNIC, rs. internic, net, is most commonly used.
This server maintains information about all registered DNS domains and many system
administrators responsible for systems connected to the Internet. (Another server is
provided at nic. ddn. rail, but contains information only about the MILNET.) Unfor-
tunately the information can be out of date or incomplete. RFC 954 [Harrenstien, Stahl,
and Feinler 1985] documents the Whois service.

From a protocol perspective, the Whois server has a well-known TCP port of 43. It
accepts connection requests from clients, and the client sends a one-line query to the
server. The server responds with whatever information is available and then closes the
connection. The requests and replies are transmitted using NVT ASCII. This is almost
identical to the Finger server, although the requests and replies contain different infor-
mation.

The common Unix client is the whois(1) program, although we can use Telnet and
type in the commands ourself. The starting place is to send a request consisting of just a
question mark, which returns more detailed information on the supported client
requests.

When the NIC moved to the InterNIC in I993, the site for the Whois server moved from
nic. ddn.mil to rs. internic, net. Many vendors still ship versions of the whois client
with the name nic. ddn.mil built in You may need to specify the command-line argument
-hrs. internic, net to contact the correct ser~rer.

Alternately, we can Telnet to rs. internic, net and login as whois.

484 Other TCP/IP Applications Chapter 30

We’ll use the Whois server to track down the author. (We’ve removed the extraneous
Telnet client output.) Our first request is for all names that match "stevens."

sun % telnet rs.internic.net whois
stevens this is the cheat command we type

informatzon on 25 other "stevens" that we omit
Stevens, W. Richard (WRS28) stevens@kohalaocom +i 602 297 9416

The InterNIC Registration Services Host ONLY contains Internet
Information (Networks, ASN’s, Domains, and POC’s).
Please use the whois server at nic.ddn.mil for MILNET Information.

The three uppercase letters followed by a number in parentheses after the name,
(WRS2 8), are the person’s NIC handle. The next query contains an exclamation point
and a NIC handle, to fetch more information about this person.

sun % telnet rs.internic.net whois
!wrs28 client~questthatwetype
Stevens, W. Richard (WRS28) stevens@kohala.com

Kohala Software
1202 E. Paseo del Zorro
Tucson, AZ 85718
+i 602 297 9416

Record last updated on ll-Jan-91.

Lots of additional information about Internet variables can also be queried. For exam-
ple, the request net 14 0.2 52 returns information about the class B address 140.252.

White Pages

Using the VRFY command of SMTP, along with the Finger protocol and the Whois
protocol to locate users on the Internet is similar to using the white pages of a telephone
book to find someone’s phone number. At the present time ad hoc tools such as these
are all that’s widely available, but research is under way to improve this type of service.

[Schwartz and Tsirigotis 1991] contains additional information on various white
pages services being tried on the Internet. The particular tool, called Netfind, can be
accessed by using Telnet to either bruno, cs. colorado, edu or ds. internic, net
and logging in as net find.

RFC 1309 [Weider, Reynolds, and Heker 1992] provides an overview of the OSI
directory service, called X.500, and compares and contrasts it with current Internet tech-
niques (Finger and Whois).

30.4 Archie, WAIS, Gopher, Veronica, and WWW

The tools that we described in the previous two sections--Finger, Whois, and a white
pages service--are for locating information on people. Other tools exist to locate files
and documents, and this section gives an overview of these tools. We only provide an

Section 30.4 Archie, WAIS, Gopher, Veronica, and WWW 485

overview, because examining the details of each tool is beyond the scope of this book.
Methods are given for accessing these tools across the Internet, and you are encouraged
to do so, to find which tool can help you. Additional tools are continually being devel-
oped. [Obraczka, Danzig, and Li 1993] provide an overview of resource discovery ser-
vices on the Internet.

Archie

Many of the resources used in this text were obtained using anonymous FTP. The prob-
lem is finding which FTP site has the program we want. Sometimes we don’t even
know the exact filename, but we know some keywords that probably appear in the file-
name.

Archie provides a directory of thousands of FTP servers across the Internet. We can
access this directory by logging into an Archie server and searching for files whose
name contains a specified regular expression. The output is a list of servers with match-
ing filenames. We then use anonymous FTP to that site to fetch the file.

There are many Archie servers across the world. One starting point is to use Telnet
to ds. ±ntern±c. net, login as archie, and execute the command servers. This
provides a list of all the Archie servers, and their location.

WAIS: Wide Area Information Servers

Archie helps us locate filenames that contain keywords, but sometimes we’re looking
for a file or database that contains a keyword. That is, we want to search for a file that
contains a keyword, not a filename containing a keyword.

kVAIS knows about hundreds of databases that contain information on both com-
puter-related topics and other general topics. To use WAIS we select the databases to
search and specify the keywords. To try WAIS Telnet to quake, think, corn and login
as wais,

Gopher

Gopher is a menu-driven front end to other Internet resource services, such as Archie,
WAIS, and anonymous FTP. Gopher is one of the easiest to use, since its user interface
is the same, regardless of which resource service it’s using.

To use Gopher, Telnet into is. internic, net and login as gopher,

Veronica: Very Easy Rodent-Oriented Netwide Index to Computerized Archives

Just as Archie is an index of anonymous FTP servers, Veronica is an index of titles of
Gopher items. A Veronica search typically searches hundreds of Gopher servers.

To access Veronica we must go through a Gopher client. Select the Gopher menu
item "Beyond InterNIC: Virtual Treasures of the Internet" and then select Veronica from
the next menu.

486 Other TCP/IP Applications Chapter 30

WWW: World Wide Web

World Wide Web lets us browse a large, worldwide set of services and documents using
a tool called hypertext. As information is displayed, certain keywords are highlighted,
and we can select more information on those keywords.

To access WWW, Telnet to ±n£o. tern. oh.

30.5 X Window System

The X Window System, or just X, is a client-server application that lets multiple clients
(applications) use the bit-mapped display managed by a server. The server is the soft-
ware that manages a display, keyboard, and mouse. The client is an application pro-
gram that runs on either the same host as the server or on a different host. In the latter
case the common form of communication between the client and server is TCP,
although other protocols such as DECNET can be used. In some instances the server is
a dedicated piece of hardware (an X terminal) that communicates with clients on other
hosts. In another instance, a stand-alone workstation, the client and server are on the
same host and communicate using interprocess communication on that host, without
any network involvement at all. Between these two extremes is a workstation that sup-
ports clients on the same host and clients on other hosts.

X requires a reliable, bidirectional stream protocol, such as TCP. (X was not
designed for an unreliable protocol such as UDP.) The communication between the
client and server consists of 8-bit bytes exchanged across this coimection. [Nye 1992]
gives the format of the more than 150 messages exchanged between the client and
server across their TCP connection.

On a Unix system, when the X client and X server are on the same host, the Unix
domain protocols are normally used instead of TCP, because there is less protocol pro-
cessing than if TCP were used. The Unix domain protocols are a form of interprocess
communication that can be used between clients and servers on the same host. Recall in
Figure 2.4 (p. 28) that when TCP is used for communication between two processes on
the same host, the loopback of this data takes place below the IP layer, implying that all
the TCP and IP processing takes place.

Figure 30.1 shows one possible scenario with three clients using one display. One
client is on the same host as the server, using the Unix domain protocols. The other two
clients are on different hosts, using TCP. One client is normally a window manager that
has authority for the layout of windows on the display. The window manager allows us
to move windows around the screen, or change their size, for example.

On first glance the terms client and server appear backward. With applications such
as Telnet and FTP we think of the client as the interactive user at the keyboard and dis-
play. But with X, the keyboard and display belong to the server. Think of the server as
the end providing the service. The service provided by X is access to a window, key-
board, and mouse. With Telnet the service is logging in to the remote host. With FTP
the service is the filesystem on the server.

The X server is normally started when the X terminal or workstation is boot-
strapped. The server creates a TCP end point and does a passive open on port 6000 + n,

Section 30.5 X Window System 487

co~ .

¯
host A

~ ~ TCP connection

host B

d~splay

window

window

window client
process

host C

Figure 30.1 Three X clients using one display

where n is the display number (normally 0). Most Unix servers also create a Unix
domain socket with the name /trap/.XlX-un±x/Xn, where n is again the display
number.

When a client is started on another host, it creates a TCP end point and performs an
active open to port 6000 + n on the server. Each client gets its own TCP connection to
the server. It is the server’s responsibility to multiplex all the clients. From this point
on the client sends requests to the server across the TCP connection (e.g., create a win-
dow), the server sends back replies, and the server also sends events to the client
(mouse button pushed, keyboard key pressed, window exposed, window resized, etc.).

Figure 30.2 is a redo of Figure 30.1, emphasizing that the clients communicate with
the X server process, which in turn manages the windows on the display. Not shown
here is that the X server also manages the keyboard and mouse.

X server process

host C

chent
process

Figure 30.2 Three clients using one display.

488 Other TCP/IP Applications Chapter 30

This design, where a single server handles multiple clients, differs from the normal
TCP concurrent server design that we described in Section 18.11. The FTP and Telnet
servers, for example, spawn a new process each time a new TCP connection request
arrives, so each client communicates with a different server process. With X, however,
all clients, running on the same host or on a different host, communicate with a single
server.

Lots of data can be exchanged across the TCP connection between an X client and
its server. The amount depends on the specific application design. For example, if we
run the Xclock client, which displays the current time and date on the client in a win-
dow on the server, specifying an update of once a second, an X message is sent across
the TCP connection from the client to the server once a second. If we run the X terminal
emulator, Xterm, each keystroke we type beconies a 32-byte X message (72 bytes with
the standard IP and TCP headers), with a larger X message in the reverse direction with
the character echo. [Droms and Dyksen 1990] measure the TCP traffic between various
X clients and one particular server.

Xscope Program

A handy program for examining what’s exchanged between an X client and its server is
Xscope. It’s provided with most X window implementations. It sits between a client
and server, passing everything in both directions, and also deciphering all the client
requests and server replies. Figure 30.3 shows the setup.

L~
host A

display

window

windo~

window

~-- TCP’~,6000 X server process

,,
host C

description of
requests and replies

Figure 30.3 Using xscope to monitor an X connection.

We first start the xscope process on the same host as the server, but xscope listens for
TCP connection requests on port 6001, not 6000. We then start a client on another host

Section 30.5 X Window System 489

and specify display number 1, not 0, so the client connects to xscope, not directly to the
server. When the connection request from the client arrives, xscope creates a TCP con-
nection to the real server at port 6000, and copies everything between the client and
server, and produces a readable description of the requests and replies.

We’ll start xscope on our host sun and then run the xclock client on the host
svr4.

svr4 % DISPLAY=sun:I xclock -digital -update 5

This displays the time and date in the digital format

Thu Sep 9 10:32:55 1993

in a window on the host sun. We specify an update time of once every 5 seconds.
We specify the -q option for xseope to produce minimal output. Various levels of

verbosity are available, to see all the fields in each message. The following output
shows the first three requests and replies.

sun % xscope -q
0.00: Client --> 12 bytes
0.02: 152 bytes <-- XII Server
0°03: Client --> 48 bytes

............ REQUEST: CreateGC

............ REQUZST: GetProperty
0.20: 396 bytes <-- Xll Server

0.30: Client --> 8 bytes
0.38: Client --> 20 bytes

............ REQUEST:
0.43:

.............. REPLY: GetProperty

InternAtom
32 bytes <-- XII Server

.............. REPLY: InternAtom

The first client message at time 0.00 and the server’s response at time 0.02 are the stan-
dard connection setup between the client and server. The client identifies its byte order-
ing and the version of the server that it expects. The server responds with various
information about itself.

The next message at time 0.03 contains two client requests. The first request creates
a graphics context in the server in which the client will draw. The second gets a prop-
erty from the server (the RESOURCE_MANAGER property). Properties provide for
communication between clients, often between an application and the window man-
ager. The server’s 396-byte reply at time 0.20 contains this property.

The next two messages from the client at times 0.30 and 0.38 form a single request
to return an atom. (Each property has a unique integer ID called an atom.) The server
replies at time 0.43 with the atom.

It is impossible to delve farther into this example without providing lots of details
about the X window system, which isn’t the purpose of this section. In this example a
total of 12 segments comprising 1668 bytes is sent by the client and a total of 10 seg-
ments comprising 1120 bytes is sent by the server, before the window is displayed. The
elapsed time was 3.17 seconds. From this point the client sent a small request every 5
seconds, averaging 44 bytes, with an update to the window. This continued until the
client was terminated.

490 Other TCP/IP Applications Chapter 30

LBX: Low Bandwidth X

The encoding used by the X protocol is optimized for LANs, where the time spent
encoding and decoding the data is more important than minimizing the amount of data
transmitted. While this is OK for an Ethernet, it becomes a problem for slow serial lines,
such as SLIP and PPP links (Sections 2.4 and 2.6).

Work is progressing to define a standard called Low Bandwidth X (LBX) that uses the
following techniques to reduce the amount of network traffic: caching, sending differ-
ences from previous packets, and compression. Specifications should appear early in
1994 with a sample implementation in the X window system Release 6.

30.6 Summary

The first two applications that we covered, Finger and Whois, are for obtaining informa-
tion on users. Finger clients query a server, often to find someone’s login name (for
sending them mail) or to see if someone is currently logged in. The Whois client nor-
mally contacts the server run by the InterNIC, looking for information on a person,
institution, domain, or network number.

The other Internet resource discovery services that we briefly described, Archie,
WAIS, Gopher, Veronica, and WWW, help us locate files and documents across the
Internet. Other resource discovery tools are currently being developed.

This chapter finished with a brief look at the X Window System, another heavy user
of TCP/IP. We saw that the X server manages multiple windows on a display, and han-
dles the communication between a client and its window. Each client has its own TCP
connection to the server and a single server manages all the clients for a given display.
With the Xscope program we saw how it’s possible to place another program between a
client and server to output information about the messages exchanged between the two.

Exercises

30.1

30.2

30.3

Use Whois to find the owner of the class A network ID 88.

Use Whois to find the DNS servers for the wh±celaouse.gov domain. Does the reply
match the answer given by the DNS?

In Figure 30.3, do you think the xscope process must be run on the same host as the X
server?

Appendix A

The t cpdump Program

The t cpdump program was written by Van Jacobson, Craig Leres, and Steven McCanne,
all of Lawrence Berkeley Laboratory, University of California, Berkeley. Version 2.2.1
(June 1992) is used in this text.

tcpdump operates by putting the network interface card into promiscuous mode so
that every packet going across the wire is captured. Normally interface cards for media
such as Ethernet only capture link level frames addressed to the particular interface or
to the broadcast address (Section 2.2).

The underlying operating system must allow an interface to be put into promiscu-
ous mode and let a user process capture the frames, tcpdurap support is provided or
can be added to the following Unix systems: 4.4BSD, BSD/386, SunOS, Ultrix, and
HP-UX. Consult the README file that accompanies the tcpdurap distribution for the
details on what operating system and which versions are supported.

There are alternatives to tcpdump. In Figure 10.8 (p. 135) we use the Solaris 2.2 pro-
gram snoop to look at some packets. AIX 3.2.2 provides the program iptrace, which
provides similar features.

A.1 BSD Packet Filter

Current BSD-derived kernels provide the BSD Packet Filter (BPF), which is one method
used by tcpdurap to capture and filter packets from a network interface that has been
placed into promiscuous mode. BPF also works with point-to-point links, such as SLIP
(Section 2.4), which require nothing special to capture all packets going through the
interface, and with the loopback interface (Section 2.7).

491

492 The tcpdump Program Appendix A

BPF has a long history. The Enet packet filter was created ~n 1980 by Mike Accetta and Rick
Rashld at Carnegie Mellon University. Jeffrey Mogul at Stanford ported the code to BSD and
continued its development from 1983 on. Since then, it has evolved into the Ultrix Packet Fil-
ter at DEC, a STREAMS NIT module under SunOS 4.1, and BPF. Steven McCanne, of
Lawrence Berkeley Laboratory, implemented BPF m Summer 1990. Much of the design is from
Van Jacobson. Details of the latest version, and a comparison with Sun’s NIT, are g~ven in
[McCarme and Jacobson 1993]

Figure A.1 shows the features of BPF when used with an Ethernet.

user process user process riser process

| BPFdriver ~ copy of
transmitted packets

TCP, UDP

IP, ICMP, tGMP

Ethernet
device driver

~kernel

Figure A.1 BSD Packet Filter.

BPF places the Ethernet device driver into promiscuous mode and then receives a copy
from the driver of each received packet and each transmitted packet. These packets are
run through a user-specified filter, so that only packets that the user process considers
interesting are passed to the process.

Multiple processes can be monitoring a given interface, and each process specifies
its own filter. Figure A.1 shows two instances of ~:cpdurap and an RARP daemon (Sec-
tion 5.4) both monitoring the same Ethernet. Each instance of ~:cpdurap specifies its
own filter. The filter for ~:cpdurap can be specified by the user on the command line,
while rarpd always uses the same filter to capture only RARP requests.

In addition to specifying a filter, each user of BPF also specifies a timeout value.
Since the data rate of the network can easily outrun the processing power of the CPU,
and since it’s costly for a user process to issue small reads from the kernel, BPF tries to

Section A.2 SunOS Network Interface Tap 493

pack multiple frames into a single read buffer and return only when the buffer is full, or
the user-specified timeout has expired, t epdurap sets the timeout to 1 second since it
normally receives lots of data from BPF, while the RARP daemon receives few frames,
so rarpd sets the timeout to 0 (which returns when a frame is received).

The user-specified filter to tell BPF what frames the process considers interesting is
a list of instructions for a hypothetical machine. These instructions are interpreted by
the BPF filter in the kernel. Filtering in the kernel, and not in the user process, reduces
the amount of data that must pass from the kernel to the user process. The RARP dae-
mon always uses the same filter program, which is built into the program, tepctump,
on the other hand, lets the user specify a filter expression on the command line each
time it’s run. tepdurap converts the user-specified expression into the corresponding
sequence of instructions for BPF. Examples of the tepdump expressions are:

% tcpdump tcp port 25
% tcpdump ’icmp[O] != 8 and icmp[O] != O’

The first prints only TCP segments with a source or destination port of 25. The second
prints only ICMP messages that are not echo requests or echo replies (i.e., not ping
packets). This expression specifies that the first byte of the ICMP message, the type field
from Figure 6.2, not equal 8 or 0, an echo request or echo reply from Figure 6.3. As you
can see, fancy filtering requires knowledge of the underlying packet structure. The
expression in the second example has been placed in single quotes to prevent the-Unix
shell from interpreting the special characters.

Refer to the tcpdurap(1) manual page for complete details of the expression that the
user can specify. The bpf(4) manual page details the hypothetical machine instructions
used by BPF. [McCanne and Jacobson 1993] compare the design and performance of
this machine against other approaches.

A.2 SunOS Network Interface Tap

SunOS 4.1.x provides a STREAMS pseudo-device driver called the Network Interface Tap
or NIT. ([Rago 1993] contains additional details on streams device drivers. We’ll call
the feature "streams.") NIT is similar to the BSD Packet Filter, but not as powerful or as
efficient. Figure A.2 shows the streams modules involved in using NIT. One difference
between this figure and Figure A.1 is that BPF can capture packets received from and
transmitted through the network interface, while NIT only captures packets received
from the interface. Using tcpdurap with NIT means we only see packets sent by other
hosts on the network--we never see packets transmitted by our own host. (Although
BPF works with SunOS 4.1.x, it requires source code changes to the Ethernet device
driver, which are impossible for most users who don’t have access to the source code.)

When the device/dev/nit is opened, the streams driver nit_if is opened. Since
NIT is built using streams, processing modules can be pushed on top of the nit_if
driver, tcpdump pushes the module nit_buf onto the STREAM. This module aggre-
gates multiple network frames into a single read buffer, with the user process specifying
a timeout value. This is similar to what we described with BPF. The RARP daemon
doesn’t push this module onto its stream, since it deals with a low volume of packets.

494 The tcpdump Program Appendix A

A.3

user process

tcpdump

filter

user process

nlt_buf nlt_pf
streams module streams module

\, /
streams driver

copy of
received packets

TCP, UDP

IE ICMP, IGMP

Ethernet
device driver

kernel

Figure A.2 SunOS Network Interface Tap.

The user-specified filtering is done by the streams module n±t_pf. Notice in Fig-
ure A.2 that this module is used by the RARP daemon, but not by tcpdump. Instead,
under SunOS tcpdump performs its own filtering in the user process. The reason is that
the hypothetical machine instructions used by n±t__pf are different (and not as power-
ful) as those supported by BPF. This means that when the user specifies a filter expres-
sion to tcpdump more data crosses the kernel-to-user boundary with NIT than with
BPF.

SVR4 Data Link Provider Interface

SVR4 supports the Data Link Provider Interface (DLPI) which is a streams implementation
of the OSI Data Link Service Definition. Most versions of SVR4 still support version I of
the DLPI, SVR4.2 supports both versions 1 and 2, and Sun’s Solaris 2.x supports version
2, with additional enhancements.

Network monitoring programs such as tcpdurap must use the DLPI for raw access
to the data-link device drivers. In Solaris 2.x the packet filter streams module has been
renamed pfmod and the buffer module has been renamed bu£raod.

Section A.4 t cpdump Output 495

Although Solaris 2.x is still new, an implementation of tcpdump should appear
someday. Sun also supplies a program named snoop that performs functions similar to
tcpdump. (snoop replaces the SunOS 4.x program named etherf±nd.) The author is
not aware of any port of tcpdurap to vanilla SVR4.

A.4 t cpdump Output
The output produced by tcpdump is "raw." We’ll modify it for inclusion in the text to
make it easier to read.

First, it always outputs the name of the network interface on which it is listening.
We’ll delete this line.

Next, the timestamp output by tcpdump is of the form 09 : 11 : 22. 642008 on a
system with microsecond resolution, or 09 : 11 : 22.64 on a system with only 10-ms
clock resolution. (In Appendix B we talk more about computer clock resolution.) In
either case the HH:MM:SS format is not what we want. Instead we are interested in
both the relative time of each packet from the start of the dump, and the time difference
between successive packets. We’ll modify the output to show these two differences.
The first difference we print with six digits to the right of the decimal point when
microsecond resolution is available (two digits when only 10-ms resolution is pro-
vided), and the second difference we print with either four digits or two digits to the
right of the decimal point (depending on the clock resolution).

In this text most tcpdump output was collected on the host sun, which provides m~crosecond
resolution. Some output was collected on the host bsd± rum~ing BSD/386 Verslon 0.9.4,
which only provided 10-ms resolution (e.g., Figure 5.1). Some output was also collected on
bsd~_ when it was running BSD/386 Version 1.0, which provides mlcrosecond resoluhon.

tcpdump always prints the name of the sending host, then a greater than sign, then
the name of the destination host. This makes it hard to follow the flow of packets
between two hosts. Although our tcpdurap output will still show the direction of data
flow like this, we’ll often take this output and produce a time line instead. (The first of
these in the text is Figure 6.11, p. 80.) In our time lines one host will be on the left, and
the other on the right. This makes it easier to see which side sends and which side
receives each packet.

We add line numbers to the tepdurap output, allowing us to reference specific lines
in the text. We also add additional space between certain lines, to separate some packet
exchanges.

Finally, tcpdump output can exceed the width of the page. We wrap long lines
around at convenient points in the line.

As an example, the output produced by tcpdurap corresponding to Figure 4.4
(p. 58) is shown in Figure A.3, assuming an 80-column terminal window.

We won’t show our typing the interrupt key (which terminates tcpdurap) and we
won’t show the number of packets received and dropped. (Dropped packets are those
that arrived faster than tcpdurap could keep up with. Since the examples in the text
were often run on an otherwise idle network, this is always 0.)

496 The tcpdump Program Appendix A

sun % tcpdump -e
tcpdump: listening on leo
09:11:22.642008 O:O:cO:6f:2d:40 ff:ff:f f:ff:ff:ff arp 60: arp who-has svr4 tell
bsdl
09:11:22 .644182 0:0:c0:c2:9b:26 O:O:cO:6f:2d:40 arp 60: arp reply svr4 is-at 0:0
:c0:c2:9b:26
09:11:22.644839 O:O:cO:6f:2d:40 0:0:c0:c2:9b:26 ip 60: bsdl.lO30 > svr4.discard:
S 596459521:596459521(0) win 4096 <mss 1024> [tos OxlO]

09:11:22. 6498q2 0:0:c0:c2:9b:26 O:O:cO:6f:2d:40 ip 60: svr4.discard > bsdl.1030:
S 3562228225:3562228225(0) ack 596459522 win 4096 <mss 1024>

09:1 1:22.651623 O:O:cO:6f:2d:40 0:0:c0:c2:9b:26 ip 60: bsdi.1030 > svr4.discard:
ack 1 wln 4096 [tos OxlO]

4otherpac~tsthatwedon’tshow
~? typeourinterruptkeytoterminate
9 packets received by fllter
0 packets dropped by kernel

Figure A.3 gcpdctmt9 output for Figure 4.4 (p. 58).

A.5 Security Considerations

It should be obvious that tapping into a network’s traffic lets you see many things you
shouldn’t see. For example, the passwords typed by users of applications such as Telnet
and FTP are transmitted across the network exactly as the user enters them. (This is
called the cleartext representation of the password, in comparison to the encrypted repre-
sentation. It is the encrypted representation that is stored in the Unix password file,
normally / e t c/pas swd or / et c / shadow.) Nevertheless, there are many times when
a network administrator needs to use a tool such as tcpdump to diagnose network
problems.

Our use of Lcpdump is as a learning tool, to see what really gets transmitted across
the network. Access to Lcpdump, and similar vendor-supplied utilities, depends on the
system. Under SunOS, for example, access to the NIT device is restricted to the super-
user. The BSD Packet Filter uses a different technique: access is controlled by the per-
missions on the devices /dev/bpfXX. Normally these devices are readable and
writable only by the owner (which should be the superuser) and readable by the group
(often the system administration group). This means normal users can’t run programs
such as e cpdump, unless the system administrator makes the program set-user-ID.

A.6 Socket Debug Option

Another way to see what’s going on with a TCP connection is to enable socket debug-
ging, on systems that support this feature. This feature works only with TCP (not with
other protocols) and requires application support (to enable a socket option when it’s
started).

Most Berkeley-derived implementations support th~ s, including SunOS, 4.4BSD, and SVR4.

Section A.6 Socket Debug Option 497

The program enables a socket option, and the kernel then keeps a trace record of
what happens on that connection. At some later time all this information can be output
by running the program trpt(8). It doesn’t require special permission to enable the
socket debug option, but it requires special privileges to run trp¢, since it accesses the
kernel’s memory.

Our sock program (Appendix C) supports this feature with its -D option, but the
information output is harder to decipher and understand than the corresponding
tcpdurnp output. We do, however, use it in Section 21.4 to look at kernel variables in
the TCP connection block that tcpdump cannot access.

Appendix B

Computer Clocks

Since most of the examples in this text measure a time inter.val, we need to describe in
more detail the type of timekeeping used by current Unix systems. The following
description applies to the systems being used for the examples in this book, and for
most Unix systems. Additional details are given in Sections 3.4 and 3.5 of [Leffler et
al. 1989].

The hardware generates a clock interrupt at some frequency. For Sun SPARCs and
Intel 80386s the interrupts occur every 10 ms.

It should be noted that most computers use an uncompensated crystal oscillator to
generate these interrupts. As noted in Table 7 of RFC 1305]Mills 1992], you don’t want
to ask what the drift per day of such an oscillator is. This means few computers keep
accurate time (i.e., the interrupts don’t occur exactly every 10 ms). A 0.01% tolerance
gives an error of 8.64 seconds per day. To keep better time requires (1) a better oscilla-
tor, (2) an external time source with greater precision (e.g., the time source supplied by
the Global Positioning Satellites), or (3) access across the Internet to systems with more
precise clocks. The latter is provided by the Network Time Protocol, as described in
detail in RFC 1305, which is beyond the scope of this book.

Another common source of time errors in Unix systems is that the 10-ms clock inter-
rupts only cause the kernel to increment a variable that keeps track of the time. If the
kernel loses an interrupt (i.e., it’s too busy for the 10 ms between two consecutive inter-
rupts), the clock will lose 10 ms. Lost interrupts of this type often cause Unix systems to
lose time.

Even though the clock interrupts arrive approximately every 10 ms, newer systems
such as SPARCs provide a higher resolution timer to measure time differences.
tepdurap, through the NIT driver (described in Appendix A) has access to this higher
resolution timer. On SPARCs this timer provides microsecond resolution. Access to this
higher resolution timer is also provided for user processes through the
gettimeo fday(2) function.

499

SO0 Computer Clocks Appendix B

The author ran the following experiment. A program was run that called the
gett±meofday function 10,000 times in a loop, saving each return value in an array.
At the end of the loop the 9,999 differences were printed out. For a SPARC ELC the dis-
tribution of the differences are shown in Figure B. 1.

Microseconds Count

36 4,914
37 4,831
38 167
39 8

other 79

Figure B.1 Distribution of t~me required to call gett ~_meofday 10,000 times on SPARC ELC.

The total clock time required to run the program was 0.38 seconds, on an otherwise idle
system. From this we can say that the time for the process to call gett±meofday is
about 37 microseconds. Since the ELC is rated around 21 MIPS (million instructions per
second), 37 microseconds corresponds to about 800 instructions. This seems reasonable
for the kernel to handle a system call from a user process, execute the system call, copy
back 8 bytes of results, and return to the user process. (MIPS ratings are questionable,
and it’s hard to try to measure instruction times on current systems. All we’re trying to
do is get a rough idea and see if the values make sense.).

From this simple experiment we can say that the values returned by
gett imeo fday do contain microsecond resolution.

If we run similar tests under SVR4/386, however, the results are different. This is
because many 386 Unix systems, such as SVR4, only count the 10-ms clock interrupts,
and don’t try to provide any higher resolution. Figure 13.2 is the distribution of the 9,999
differences under SVR4 on an 25 Mhz 80386.

Figure B.2

Microseconds Count

0 I 9’8711
lo,ooo

D{stribution of time required to call gett zmeo£day 10,000 times under SVR4/386.

These values are worthless, since the differences are normally less than 10 ms, which is
treated as 0. About all we can do on these systems is measure the clock time on an idle
system, and divide by the number of loops. This provides an upper bound, since it
includes the time required to call pr±ntf 9,999 times, writing the results to a file. (In
the SPARC case, Figure B.1, the differences did not include the pr±ntf times since all
10,000 values were first obtained, and then the results were printed.) Under SVR4 the
clock time was 3.15 seconds, yielding 315 microseconds per system call. This system
call time, about 8.5 times slower than the SPARC, seems about right.

BSD/386 Version 1.0 provides microsecond resolution similar to the SPARC. It
reads the 8253 clock register and calculates the number of microseconds since the last
clock tick. This is made available to processes that call gett±meofday and to kernel
modules such as the BSD Packet Filter.

Computer Clocks Appendix B 501

In relation to tcpdump these numbers mean that we can believe the millisecond
and submillisecond values that are printed on the SPARC and BSD/386 systems, but the
values printed by tcpdump under SVR4/386 will always be a multiple of 10 ms. For
other programs that print round-trip times, such as ping (Chapter 7) and traeeroute
(Chapter 8), on the SPARC and BSD/386 systems we can believe the millisecond values
that are output, but the values printed under SVR4/386 wi!l always be multiples of
To measure anything like the ping time on a LAN, which we show in Chapter 7 to be
around 3 ms, requires running ping on the SPARC or BSD/386.

Some of the examples m this text were run under BSD/386 Version 0.9.4, which was similar to
SVR4 in that it provided only 10-ms clock resolution. When we show tcpdump output from
this system, we show only two numbers to the right of the decimal point, since that’s the reso-
lution provided.

Appendix C

The sock Program

A simple test program named sock is used throughout the book to generate TCP and
UDP data. It is used as both a client and server process. Having a test program like
this, which is executable from a shell prompt, prevents us from having to write new
client and server C programs for each specific feature that we want to examine. Since
the purpose of this book is to understand the networking protocols, and not network
programming, in this Appendix we only describe the program and its various options.

There are numerous other programs with functionality similar to sock. Juergen N~ckelsen
wrote a program named socket and Dave Yost wrote a program named sock~_o. Both con-
ta~n many similar features Pieces of the sock program have also been respired by the public
domain t t cp program, written by Mike Muuss and Terry Slattery.

The sock program operates in one of four modes:

1. Interactive client: the default. The program connects to a server and then copies
standard input to the server and copies everything received from the server to
standard output. This is shown in Figure C.1.

sock

stdm ~

~
stdout ~- --~.~ - +

TCP connection server

Figure C.1 Default operation of sock as interactive client.

We must specify the name of the server host and the name of the service to con-
nect to. The host can also be specified as a dotted-decimal number, and the ser-
vice can be specified as an integer port number. Connecting to the standard
echo server (Section 1.12), from sun to bsd± echoes everything we type:

503

504 The sock Program Appendix C

sun % sock bsdi echo
a test line
a test line
^D

we type this line
and the echo server returns a copy
type our end-of-/ile character to terminate

Interactive server: the -s option is specified. The service name (or port number)
is required:

sun % sock -s 5555 act as server listening on port 5555

The program waits for a connection from a client and then copies standard
input to the client and copies everything received from the client to standard
output. An Internet address can precede the port number on the command line,
to specify on which local interface connections are accepted:

sun % sock -s 140. 252.13.33 5555 accept connections only on Ethernet

The default mode is to accept a connection request on any local interface.

Source client: the -i option is specified. By default a 1024-byte buffer is written
to the network 1024 times. The -n and -w options can change these defaults.
For example,

sun % sock -i -n12 -w4096 bsdi discard

writes 12 buffers, each containing 4096 bytes of data, to the discard server on
host bsdi.

Sink server: the -i and -s options are specified. Data is read from the network
and discarded.

Although these examples used TCP (the default), the -u option specifies UDP.
There are a multitude of options that provide finer control over exactly how the pro-

gram operates. These options are needed to generate all the test conditions used
throughout the text.

-b n

-c

-f

-h

Bind n as the client’s local port number. (By default an ephemeral port number
assigned by the system is used by the client.)

Convert newline characters that are read on standard input into a carriage return
and a linefeed. Similarly, when reading from the network, convert the sequence
<carriage return, linefeed> into a single newline character. Many Internet appli-
cations expect NVT ASCII (Section 26.4), which uses the carriage return and line-
feed to terminate each line.

a.b.c.d.p
Specify the foreign IP address (a.b.c.d) and the foreign port number (p) for a UDP
end point (Section 11.12).
Implement TCP’s half-close facility (Section 18.5). That is, do not terminate
when an end-of-file is encountered on standard input. Instead, issue a half-close
on the TCP connection but continue reading from the network until the pee.r
closes the connection.

The sock Program Appendix C 505

-i

-p n

-q n

-r n

-A

-B

-D

-E

-F

Source client or sink server. Either write data to the network (default) or if used
in conjunction with the -s option, read data from the network. The -n option
can specify the number of buffers to write (or read), the -w option can specify
the size of each write, and the -r option can specify the size of each read.

When used with the -± option, n specifies the number of buffers to read or
write. The default value of n is 1024.

Specify the number of seconds to pause between each read or write. This can be
used with the source client (-i) or sink server (-±s) to delay between each read
or write of network. Also see the -P option to pause before the first read or
write.

Specify the size of the pending connection queue for the TCP server: the number
of accepted connections that TCP will queue for the application (Figure 18.23).
The default is 5.

When used with the -Ks options, n specifies the size of each read from the net-
work. The default is 1024 bytes per read.

Operate as a server instead of as a client.

Use UDP instead of TCP.

Verbose. Print additional details (such as the client and server ephemeral port
numbers) onto standard error.

When used with the -± option, specifies the size of each write to the network.
The default is 1024 bytes per write.

Enable the SO_REUSEADDR socket option. With TCP this allows the process to
assign itself a port number that is part of a connection that is in the 2MSL wait.
With UDP on a system that supports multicasting, it allows multiple processes
to use the same local port to receive broadcast or multicast datagrams.

Enable the SO_BROADCAST socket option to allow UDP datagrams to be sent to
a broadcast IP address.

Enable the SO_DEBUG socket option. This causes additional debugging informa-
tion to be maintained by the kernel for this TCP connection (Section A.6). This
information can be output later by running the t rpt(8) program.

Enable the IP_RECVDSTADDR socket option, if supported by the implementation
(Section 11.12). This is intended for UDP servers, to print the destination IP
address of the received UDP datagram.

Specifies a concurrent TCP server. That is, the server creates a new process using
the fork function for each client connection.

Enable TCP’s SO_KEEPALIVE socket option (Chapter 23).

Set the linger time (SO_LINGER socket option) for a TCP end point to n. A
linger time of 0 means when the network connection is closed, any data still
queued for sending is discarded and a reset is sent to the peer (Section 18.7).

506 The sock Program Appendix C

-N

-O n

-P n

-Q n

-S n

-U n

A positive linger time is the time (in 100ths of a second) that a close on the net-
work connection should wait for all outstanding data to be sent and acknowl-
edged. If, after closing the network connection, all the pending data has not
been sent and acknowledged when this timer expires, the close will return an
error.

Set the TCP_NODELAY socket option to disable the Nagle algorithm (Sec-
tion 19.4).

Specify the number of seconds for a TCP server to pause before accepting the
first client connection.

Specify the number of seconds to pause before the first read or write of the net-
work. This can be used with the sink server (-is) to delay after accepting the
connection request from the client but before performing the first read from the
network. When used with the source client (-±) it delays after the connection
has been established, but before the first write to the network. Also see the -~
option to pause between each successive read or write.

Specify the number of seconds for a TCP client or server to pause after receiving
an end-of-file from the other end, but before closing its end of the connection.

Set the socket’s receive buffer (SO_RCVBrJF socket option) to n. This can directly
affect the size of the receive window advertised by TCP. With UDP this specifies
the largest UDP datagram that can be received.

Set the socket’s send buffer (SO_SNDBUF socket option) to n. With UDP this
specifies the largest UDP datagram that can be sent.

Enter TCP’s urgent mode after write number n to the network. One byte of data
is written to initiate urgent mode (Section 20.8).

Appendix D

Solutions to Selected Exercises

Chapter 1

1.1 The value is 27- 2 (126) plus 214- 2 (16,382) plus 221- 2 (2,097,150) for a total of
2,113,658. We subtract 2 in each calculation since a network ID of all zero bits or
aH one bits is invalid.

1.2 Figure D.1 shows a plot of the values through August 1993.

2,000,000 --
1,000,000 -

100,000-

total
number of 20,000--
networks 10,000--

5,000--

1,000--

t50 -- --l I i 1 T l 1 T { 1 1 T
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Figure D.1 Number of networks announced to NSFNET.

The dashed line estimates that the maximum number of networks will be reached
in the year 2000, if the exponential growth continues.

507

508 Solutions to Selected Exercises Appendix D

1.3 "Be liberal in what you accept, and conservative in what you send."

Chapter 3

3.1

3.2

3.3

No, any class A address with a network ID of 127 is OK, although most systems
use 127.0.0.1.

kpno has five interfaces: three point-to-point links and two Ethernets. R10 has
four Ethernet interfaces, gateway has three interfaces: two point-to-point links
and one Ethernet. Finally, net:b has one Ethernet interface and two point-to-point
links.

There’s no difference: both have.a subnet mask of 255.255.255.0, as does a class C
address that is not subnetted.

3.5 It’s valid and it’s called a noncontiguous subnet mask since the 16 bits for the subnet
mask are not contiguous. The RFCs, however, recommend against using noncon-
tiguous subnet masks.

3.6 It’s a historical artifact. The value is 1024+512 but the MTU values printed
include any required headers. Solaris 2.2 sets the MTU of the loopback interface
to 8232 (8192 + 40), which allows room for 8192 bytes of user data along with the
normal 20-byte IP header and 20-byte TCP header.

3.7 First, datagrams eliminate the need for connection state in the routers. Second,
datagrams provide the basic building block on which unreliable (UDP) and reli-
able (TCP) transport layers can be built. Third, datagrams represent the minimal
network layer assumption, allowing a wide range of dataqink layers to be used.

Chapter 4

4.1 Issuing an rsh command establishes a TCP connection with the other host.
Doing that causes IP datagrams to be exchanged between the two hosts. This
requires the ARP cache on the other host to have an entry for our host. Therefore,
even if the ARP cache was empty before we executed the rsh command, it’s guar-
anteed to have an entry for our host when the rsh server executes the arp
command.

4.2 Make sure that your host does not have an entry in its ARP cache for some other
host on its Ethernet, say £oo. Make sure foo sends a gratuitous ARP request
when it bootstraps, perhaps running ~:cpdurnp on another host when foo boot-
straps. Then shut down the host foo and enter an incorrect entry into the ARP
cache on your system for £oo, using the arp command and being sure to specify
the ~:er~p option. Bootstrap foo and when it’s up, look at your host’s ARP cache
entry for it to see whether the incorrect entry has been corrected.

4.3 Read Section 2.3.2.2 of the Host Requirements RFC and Section 11.9 of this text.

4.4 Assuming that a completed ARP entry existed for the server on the client when
the server was taken down, if we continually try to contact the (down) server, the

Solutions to Selected Exercises Appendix D 509

Chapter 5

5.1

ARP timeout gets extended for another 20 minutes. When the server finally
reboots with a new hardware address, if it doesn’t issue a gratuitous ARP, the old,
invalid ARP entry will still exist on the client. We won’t be able to contact the
server at its new hardware address until we either manually delete the ARP cache
entry or stop trying to contact it for 20 minutes.

A separate frame type is not an absolute requirement, since the op field in Fig-
ure 4.3 has a different value for all four operations (ARP request, ARP reply,
RARP request, and RARP reply). But the implementation of an RARP server, sep-
arate from the kernel’s ARP server, is made easier with the different frame type
field.

5.2 Each RARP server can delay for a small random time before sending a response.

As a refinement, one RARP server can be designated the primary and the others
as secondaries. The primary server can respond without a dela~ and the secon-
daries with random delays.

As yet another refinement, with a primary and secondaries, the secondaries can
be programmed to respond only to a duplicate request received in a short time
frame. This assumes that the reason for the duplicate request is that the primary
is down.

Chapter 6

6.1

6.2

6.3

6.4

If there were one hundred hosts on the local cable, each could try to send an ICMP
port unreachable at about the same time. Many of these transmissions could lead
to collisions (if an Ethernet is being used), which can render the network useless
for a second or two.

It is a "should."

An ICMP error is always sent with a TOS of 0, as we indicated in Figure 3.2. An
ICMP query request can be sent with any TOS, and the corresponding reply
should be sent with the same TOS.

netstat -s is the common way to see the per-protocol statistics. On a SunOS
4.1.1 host (gem±n±) that has received 48 million IP datagrams, the ICMP statistics
are:

Output histogram:
echo reply: 1757
destination unreachable: 700
time stamp reply: 1

Input histogram:
echo reply: 211
destination unreachable: 3071
source quench: 249

510 Solutions to Selected Exercises Appendix D

Chapter 7

7.2

7.3

7.4

7.5

Chapter 8

routing redirect: 2789
echo: 1757
#i0: 21
tlme exceeded: 56
tlme stamp: 1

The 21 input messages of type 10 are router solicitations that SunOS 4.1.1 doesn’t
support.

SNMP can also be used (Figure 25.26) and some systems, such as Solaris 2.2, gen-
erate net:stat -s output that uses SNMP variable names.

86 bytes divided by 960 bytes/sec, times 2 gives 179.2 ms. When ping is run at
this speed, the printed values are 180 ms.

(86 + 48) bytes divided by 960 bytes/sec, times 2 gives 279.2 ms. The additional 48
bytes are because the final 48 bytes of the 56 bytes in the data portion must be
escaped: 0xc0 is the SLIP END character.

CSLIP only compresses the TCP and IP headers for TCP segments. It has no effect
on the ICMP messages used by ping.

On a SPARCstation ELC a ping of the loopback address yields an RTT of 1.310 ms,
while a ping of the host’s Ethernet address yields an RTT of 1.460 ms. This differ-
ence is the additional processing done by the Ethernet driver, to determine that
the datagram is really destined for the local host. You need a version of ping that
outputs microsecond resolution to measure this.

8.1

8.2

8.3

If an incoming datagram has a TTL of 0, doing the decrement and then test would
set the TTL to 255 and let the datagram continue. Although a router should never
receive a datagram with a TTL of 0, it has occurred.

We noted that traceroute stores 12 bytes of data in the data portion of the UDP
datagram, part of which is the time the datagram was sent. From Figure 6.9, how-
ever, we see that ICMP only returns the first 8 bytes of the IP datagram that was in
error, and we noted there that this is the 8-byte UDP header. Therefore the time
value stored by traceroute is not returned in the ICMP error message.
traceroute saves the time when it sends a packet, and when an ICMP reply is
received, fetches the current time and subtracts the two value to get the RTT.

Recall from Chapter 7 that ping stored the time in the outgoing ICMP echo
request and this data was echoed by the server. This allowed ping to print the
correct RTT, even if the packets were returned out of order.

The first line of output is correct and identifies R1. The next probe starts with a
TTL of 2, and this is decremented by R1. When R2 receives this it decrements the

Solutions to Selected Exercises Appendix D 511

8.4

8.5

8.7

TTL from i to 0 but incorrectly forwards it to R3. R3 sees that the incoming TTL is
0 and sends back the time exceeded. This means the second line of output (for the
TTL of 2) identifies R3, not R2. The third line of output correctly identifies R3.
The clue that this bug is present is two consecutive lines of output that identify
the same router.

In this case the TTL of 1 identifies R1, the TTL of 2 identifies R2, and the TTL of 3
identifies R3; but when the TTL is 4 the UDP datagram gets to the destination
with an incoming TTL of 1. The ICMP port unreachable is generated, but its TTL
is 1 (incorrectly copied from the incoming TTL). This ICMP message goes to R3
where the TTL is decremented and the message discarded. An ICMP time
exceeded is not generated, since the datagram that was discarded was an ICMP
error message (port unreachable). A similar scenario occurs for the probe with a
TTL of 5, but this time the outgoing port unreachable starts with a TTL of 2 (the
incoming TTL) and makes it back to R2, where it’s discarded. The port unreach-
able corresponding to the probe with a TTL of 6 makes it back to R1, where it’s
discarded. Finally the port unreachable for the probe with a TTL of 7 makes it all
the way back, where it arrives with an incoming TTL of 1. (traceroute consid-
ers an arriving ICMP message with a TTL of 0 or 1 to be suspicious, so it prints an
exclamation point after the RTT.) In summary, the lines for a TTL of 1, 2, and 3
correctly identify R1, R2, and R3, followed by three lines each containing three
timeouts, followed by the line for a TTL of 7 that identifies the destination.

It appears that all these routers initialize the outgoing TTL of an ICMP message to
255. This is common. The incoming value of 255 from netb is what we expect,
but the value of 253 from butch means there is probably a missing router
between it and netb. Otherwise we would expect an incoming TTL of 254 at this
point. Similarly, from enss142. UT .westnet. net we expect a value of 252, not
249. It appears these missing touters are not handling the outbound UDP data-
gram correctly, but they are decrementing the TTL on the returned ICMP message
correctly.

We must be careful when looking at the incoming TTL, since sometimes a value
other than what we expect can be caused by the return ICMP message taking a
different path from the outbound UDP datagram. In this example, however, it
confirms what we suspect--there are missing touters that traceroute is not
finding when the loose source routing option is used.

The ping client sets the identifier field in the ICMP echo request message (Fig-
ure 7.1, p. 86) to its process ID. The ICMP echo reply contains this identifier field.
Each client looks at this returned identifier field and handles only those that it
sent.

The traceroute client sets its UDP source port number to the logical-OR of its
process ID and 32768. Since the returned ICMP message always contains the first
8 bytes of the IP datagram that generated the error (Figure 6.9, p. 78), which
includes the entire UDP header, this source port number is returned in the ICMP
error.

512 Solutions to Selected l~xercises Appendix D

8.8

8.9

The ping client sets the optional data portion of the ICMP echo request message
to the time at which the packet is sent. This optional data must be returned in the
ICMP echo reply. This allows ping to calculate the accurate round-trip time, even
if packets are returned out of order.

The traceroute client can’t operate this way because all that’s returned in the
ICMP error is the UDP header (Figure 6.9, p. 78), none of the UDP data. Therefore
traceroute must remember when it sends a request, wait for the reply, and cal-
culate the time difference.

This illustrates another difference between Ping and Traceroute: Ping sends one
packet a second, regardless of whether it receives any replies, while Traceroute
sends a request and then waits for either a reply or a timeout before sending the
next request.

Since Solaris 2.2 starts ephemeral UDP port numbers at 32768 by default, there is a
much greater chance that the destination port is in use on the destination host.

Chapter 9

9.1

9.2

9.3

9.4

When the ICMP standard was first specified, RFC 792 [Postel 1981b], subnetting
was not in use. Also, using a single network redirect instead of N host redirects
(for all N hosts on the destination network) saves some space in the routing table.

The entry is not required, but if it is removed, all IP datagrams to sl±p are sent to
the default router (sun), which then forwards them to the router bsd±. Since sun
is forwarding a datagram out the same interface on which it was received, it sends
an ICMP redirect to svr4. This creates the same routing table entry on svr4 that
we removed, although this time it is created by a redirect instead of being added
at bootstrap time.

When the 4.2BSD host receives the datagram destined for 140.1.255.255 it finds
that it has a route to the network (140.1) so it tries to forward the datagram. To do
this it sends an ARP broadcast looking for 140.1.255.255. No reply is received for
this ARP request, so the datagram is eventually discarded. If there are many of
these 4.2BSD hosts on the cable, every one sends out this ARP broadcast at about
the same time, swamping the network temporarily.

This time a reply is received for each ARP request, telling each 4.2BSD host to
send the datagram to the specified hardware address (the Ethernet broadcast). If
there are k of these 4.2BSD hosts on the cable, all receive their own ARP reply,
causing each one to generate another broadcast. Each host receives each broad-
cast IP datagram destined to 140.1.255.255, and since every host now has an ARP
cache entry, the datagram is forwarded again to the broadcast address. This con-
tinues and generates an Ethernet meltdown. [Manber 1990] describes other forms
of chain reactions in networks.

Solutions to Selected Exercises Appendix D 513

Chapter 10

10.1

10.2

10.3

Thirteen of the routes came from kpno: all except 140.252.101.0 and
140.252.104.0, the other networks to which gateway is directly connected.

Sixty seconds will pass before the 25 routes advertised in the lost datagram are
updated. This isn’t a problem because RIP normally requires 3 minutes without
an update before it declares a route dead.

RIP runs on top of UDP, and UDP provides an optional checksum for the data
portion of the UDP datagram (Section 11.3). OSPF, however, runs on top of IP.
The IP checksum covers only the IP header, so OSPF must add its own checksum
field.

10.4 Load balancing increases the chances of packets being delivered out of order, and
possibly distorts the round-trip times calculated by the transport layer.

10.5 This is called simple split horizon.

10.6 In Figure 12.1 we show that each of the 100 hosts processes the broadcast UDP
datagram through the device driver, IP layer, and UDP layer, where it’ll finally be
discarded when it’s discovered that UDP port 520 is not in use.

Chapter 11

11.1

11.3

11.4

11.5

11.6

11.7

Since there are 8 additional bytes of header when IEEE 802 encapsulation is used,
1465 bytes of user data is the smallest size that causes fragmentation.

There are 8200 bytes of data for IP to send, the 8192 bytes of user data and the
8-byte UDP header. Using the tcpdump notation, the first fragment is 1480@0+
(1480 bytes of data, offset of 0, with the "more fragments" bit set). The second is
1480@1480+, the third is 1480@2960+, the fourth is 1480@4440+, the fifth is
1480@5920+, and the sixth is 800@7400. 1480 x 5 + 800 = 8200, which is the num-
ber of bytes to send.

Each 1480-byte fragment is divided into three pieces: two 528-byte fragments
and one 424-byte fragment. The largest multiple of 8 less than 532 (552 - 20) is
528. The 800-byte fragment is divided into two pieces: a 528-byte fragment and a
272-byte fragment. Thus, the original 8192-byte datagram becomes 17 frames
across the SLIP link.

No. The problem is that when the application times out and retransmits, the IP
datagram generated by the retransmission has a new identification field.
Reassembly is done only for fragments with the same identification field.

The identification field in the IP header (47942) is the same.

First, from Figure 11.4 we see that gem±n± does not have outgoing UDP check-
sums enabled. It’s highly probable that the operating system on this host (SunOS
4.1.1) is one that never verifies an incoming UDP checksum unless outgoing UDP

514 Solutions to Selected Exercises Appendix D

checksums are enabled. Second, it could be that most of the UDP traffic is local
traffic, instead of WAN traffic, and therefore not subject to all the vagaries of
WANs.

11.8 The loose and strict source routing options are copied into each fragment. The
timestamp option and the record route option are not copied into each
fragment--they appear only in the first fragment.

11.9 No. We saw in Section 11.12 that many implementations can filter incoming
datagrams destined for a given UDP port number based on the destination IP
address, source IP address, and source port number.

Chapter 12

12.1 Broadcasting by itself does not add to network traffic, but it adds extra host pro-
cessing. Broadcasting can lead to additional network traffic if the receiving hosts
incorrectly respond with errors such as ICMP port unreachables. Also, routers
normally don’t forward broadcast packets, whereas bridges normally do, so
broadcasts on a bridged network can travel much farther than they would on a
routed network.

12.2 Every host receives a copy of every broadcast. The interface layer receives the
frame, and passes it to the device driver. If the type field is for some other proto-
col, it is the device driver that discards the frame.

12.3 First execute net:s~:at -r to see the routing table. This shows the names of all
the interfaces. Then execute J_feonf±g (Section 3.8) for each interface: the flags
tell if the interface supports broadcasting, and if so the broadcast address is also
output.

12.4 Berkeley-derived implementations do not allow a broadcast datagram to be frag-
mented. When we specified the length of 1472 bytes, the resulting IP datagram
was exactly 1500 bytes, the Ethernet MTU. Refusing to allow a broadcast data-
gram to be fragmented is a policy decision--there is no technical reason (other
than a desire to reduce the number of broadcast packets).

12.5 Depending on the multicasting support in the various Ethernet interface cards in
the 100 hosts, the multicast datagram can be ignored by the interface card, or dis-
carded by the device driver.

Chapter 13

13.1

13.2

Use some host-unique value when generating the random value. The IP address
and link-layer address are two values that should differ on every host. The time-
of-day is a bad choice, especially if all the hosts run a protocol such as NTP to
synchronize their clocks.

They added an application protocol header that included a sequence number
and a timestamp.

Solutions to Selected Exercises Appendix D 515

Chapter 14

14,1 A resolver is always a client, but a name server is both a client and server.

14.2 The question is returned, which accounts for the first 44 bytes. The single answer
occupies the remaining 31 bytes: a 2-byte pointer for the domain name (i.e., a
pointer to the domain name in the question), 10 bytes for the fixed-size fields
(type, class, TTL, and resource length), and 19 bytes for the resource data (a
domain name). Notice that the domain name in the resource data
(svr4. tuc. noao. edu.) doesn’t share a suffix with the domain name in the
question (34.13. 252. 140. in-addr, arpa.) so a pointer can’t be used.

14.3 Reversing the order means using the DNS first, and if that fails, trying to convert
the argument as a dotted-decimal number. This means every time a dotted-
decimal number is specified, the DNS is used, involving a name server. This is a
waste of resources.

14.5

14.4 Section 4.2.2 of RFC 1035 specifies that a 2-byte length precedes the actual DNS
message.

When a name server starts it normally reads the (possibly out of date) list of root
servers from a disk file. It then tries to contact one of these root servers, request-
ing the name server records (a query type of NS) for the root domain. This
returns the current up-to-date list of root servers. Minimally this requires one of
the root server entries in the start-up disk file to be current.

14.6 The registration services of the InterNIC updates the root servers three times a
week.

14.7 Since the resolver comes and goes, as applications come and go, if the system is
configured to use multiple name servers and the resolver maintains no state, the
resolver cannot keep track of the round-trip times to its various name servers.
This can lead to timeouts for resolver queries that are too short, causing unneces-
sary retransmissions.

14.8 Sorting the A records should be done by the resolver, not the name server, since
the resolver normally knows more than the server about the network topology of
the client. (Newer releases of BIND provide for resolver sorting of A records.)

Chapter 15

15.1

15.2

TFTP requests sent to the broadcast address should be ignored. As stated in the
Host Requirements RFC, responding to a broadcast request can create a signifi-
cant security hole. A problem, however, is that not all implementations and APIs
provide the destination address of a UDP datagram to the process that receives
the datagram (Section 11.12). For this reason many TFTP servers don’t enforce
this restriction.

Unfortunately, the RFC says nothing about this block number wrap. Implemen-
tations should be able to transfer files up through 33,553,920 bytes (65535 x 512).

516 Solutions to Selected Exercises Appendix D

15.3

15.4

Chapter 16

Many implementations fail when the size of the file exceeds 16,776,704
(32767 x 512) since they incorrectly maintain the block number as a signed 16-bit
integer instead of an unsigned integer.

This simplifies coding a TFTP client to fit in read-only memory, because the
server is the sender of the bootstrap files, so the server must implement the time-
out and retransmission.

With its stop-and-wait protocol, TFTP can transfer a maximum of 512 bytes per
client-server round trip. The maximum throughput of TFTP is then 512 bytes
divided by the round-trip time between the client and server. On an Ethernet,
assuming a round-trip time of 3 ms, the maximum throughput is around 170,000
bytes/sec.

16.1

16.2

Chapter 17

A router could forward an RARP request to some other host on one of the
router’s other attached networks, but sending a reply then becomes a problem.
The router would also have to forward RARP replies.

BOOTP doesn’t have this reply problem since the address to reply to is a normal
IP address that the routers know how to forward anyway. The problem is that
RARP uses only link-layer addresses, and routers don’t normally know these
values for hosts on other, nonattached, networks.

It could use its own hardware address, which should be unique, and which is set
in the request and returned in the reply.

17.1

17.2

17.3

17.4

17.5

All are mandatory except the UDP checksum. The IP checksum covers only the
IP header, while the others start immediately after the IP header.

The source IP address, source port number, or protocol field might have been
corrupted.

Many Internet applications use a carriage return and linefeed to mark the end of
each application record. This is NVT ASCII coding (Section 26.4). An alternative
technique is to prefix each record with a byte count, which is used by the DNS
(Exercise 14.4) and Sun RPC (Section 29.2).

As we saw in Section 6.5, an ICMP error must return at least the first 8 bytes
beyond the IP header of the IP datagram that caused the error. When TCP
receives an ICMP error it needs to examine the two port numbers to determine
which connection the error corresponds to, so the port numbers must be in the
first 8 bytes of the TCP header.

There are options at the end of the TCP header, but there are no options in the
UDP header.

Solutions to Selected Exercises Appendix D 517

Chapter 18

18.1 The ISN is a 32-bit counter that wraps around from 4,294,912,000 to 8,704 approx-
imately 9.5 hours after the system was bootstrapped. After approximately
another 9.5 hours it will wrap around to 17,408, then 26,112 after another 9.5
hours, and so on. Since the ISN starts at 1 when the system is bootstrapped, and
since the lowest order digit cycles through 4, 8, 2, 6, and 0, the ISN should always
be an odd number.

18.2 In the first case we used our sock program, and by default it transmits the Unix
newline character as itself--the single ASCII character 012 (octal). In the second
case we used the Tetnet client and it converts the Unix newline into two ASCII
characters--a carriage return (octal 015) followed by a linefeed (octal 012).

18.3 On a half-closed connection one end has sent a FIN and is waiting for either data
or a FIN from the other end. A half-open connection is when one end crashes,
unbeknown to the other end.

18.4

18.5

18.6

18.7

18.8

18.9

The 2MSL wait state is only entered for a connection that has gone through the
ESTABLISHED state.

First, the daytime server does the active close of the TCP connection after writing
the time and date to the client. This is indicated by the message printed by our
sock program: "connection closed by peer." The client’s end of the cormection
goes through the passive close states. This puts the socket pair in the
TIME_WAIT state on the server, not the client.

Next, as shown in Section 18.6, most Berkeley-derived implementations allow a
new connection request to arrive for a socket pair currently in the TIME_WAIT
state, which is exactly what’s happening here.
A reset is sent in response to the FIN, because the FIN arrived for a connection
that was CLOSED.

The party that dials the number does the active open. The party whose tele-
phone rings does the passive open. Simultaneous opens are not permitted, but a
simultaneous dose is OK.

We would only see ARP requests, not TCP SYN segments, but the ARP requests
would have the same timing as in the figure.
The client is on the host solaris and the server is on the host bsdi. The
client’s ACK of the server’s SYN is combined with the first data segment from
the client (line 3). This is perfectly legal under the rules of TCP, although most
implementations don’t do this. Next, the client sends its FIN (line 4) before wait-
ing for the ACK of its data. This allows the server to acknowledge both the data
and the FIN in line 5.

This exchange (sending one segment of data from the client to the server)
requires seven segments. The normal connection establishment and termination
(Figure 18.13), along with a single data segment and its acknowledgment,
requires nine segments.

518 Solutions to Selected Exercises Appendix D

18.10

18.11

18.12

18.13

18.14

18.15

18.16

18.17

18.18

First, the server’s ACK of the client’s FIN is normally not delayed (we discuss
delayed ACKs in Section 19.3) but sent as soon as the FIN arrives. It takes the
application a while to receive the EOF and tell its TCP to dose its end of the con-
nection. Second, the server that receives the FIN does not have to close its end of
the connection on receiving the FIN from the client. As we saw in Section 18.5,
data can still be sent.

If an arriving segment that generates an RST has an ACK field, the sequence
number of the RST is the arriving ACK field. The ACK value of i in line 6 is rela-
tive to the ISN of 26368001 in line 2.

See [Crowcroft et al. 1992] for comments on layering.

Five queries are issued. Assume there are three packets to establish the connec-
tion, one for the query, one to ACK the query, one for the response, one to ACK
the response, and four to terminate the connection. This means 11 packets per
query, for a total of 55 packets. Using UDP reduces this to 10 packets.

This can be reduced to 10 packets per query if the ACK of the query is combined
with the response (Section 19.3).

The limit is about 268 connections per second: the maximum number of TCP port
numbers (65536- 1024 = 64512, ignoring the well-known ports) divided by the
TIME_WAIT state of 2MSL.

The duplicate FIN is acknowledged and the 2MSL timer is restarted.

The receipt of an RST while in the TIME_WAIT state causes the state to be pre-
maturely terminated. This is called TIME_WAIT assassination. RFC 1337 [Braden
1992a] discusses this in detail and shows the potential problems. The simple fix
proposed by this RFC is to ignore RST segments while in the TIME_WAIT state.

It’s when the implementation does not support a half-close. Once the application
causes a FIN to be sent, the application can no longer read from the connection.

No. Incoming data segments are demultiplexed using the source IP address,
source port number, destination IP address, and destination port number. For
incoming connection requests we saw in Section 18.11 that a TCP server can nor-
mally prevent connections from being accepted based on the destination IP
address.

Chapter 19

19.1

19.2

Two application writes, followed by a read, cause a delay because the Nagle
algorithm will probably be invoked. The first segment (with 8 bytes of data) is
sent and its ACK is waited for before sending the 12 bytes of data. If the server
implements delayed ACKs, there can be a delay of up to 200 ms (plus the RTT)
before this ACK is received.

Assuming 5-byte CSLIP headers (IP and TCP) and 2 bytes of data, the RTT across
the SLIP link for these segments is about 14.5 ms. We have to add to this the RTT

Solutions to Selected Exercises Appendix D 519

19.3

Chapter 20

across the Ethernet (normally 5-10 ms), plus the routing time on sun and
So yes, the observed times do appear correct.

In Figure 19.6 the time difference between segments 6 and 9 is 533 ms. In Fig-
ure 19.8 the time difference between segments 8 and 12 is 272 ms. (we measured
the time for the F2 key, not the F1 key, since the first echo of the F1 key was lost
in the second figure.)

20.1

20.2

20.3

20.4

20.5

20.6

Chapter 21

Byte number 0 is the SYN and byte number 8193 is the FIN. The SYN and FIN
each occupy 1 byte in the sequence number space.

The first application write causes the first segment to be sent with the PUSH flag.
Since BSD/386 always uses stow start, it waits for the first ACK before sending
any more data. During this time the next three application writes occur, and the
sending TCP buffers the data to send. The next three segments do not contain
the PUSH flag since there is more data in the buffer to send. Eventually slow
start catches up with the application writes and every application write causes a
segment to be sent, and since that segment is the last one in the buffer, the PUSH
flag is set.

Solving the bandwidth-delay equation for the capacity, it is 1,920 bytes for the
first case, and 2,062 for the satellite case. It appears that the receiving TCP is only
advertising a window of 2,048 bytes.

A window greater than 16,000 bytes should be able to saturate the satellite link.

No, because TCP can repacketize data after a timeout, as we’ll see in Sec-
tion 21.11.

Segment 15 is a window update sent automatically by the TCP module as a
result of the application reading data, which causes the window to open. This is
similar to segment 9 in that figure. Segment 16, however, is a result of the appli-
cation closing its end of the connection.

This can cause the sender to inject packets into the network at a rate faster than
the network can really handle. This is called ACK compression or ACK smashing
[Mogul 1993, Sec. 15.8.13]. This reference indicates that ACK compression occurs
on the Internet, although it rarely leads to congestion.

21.1 The next timeout is for 48 seconds: 0 + 4 x 12. The factor of 4 is the next multi-
plier in the exponential backoffo

21.2 It appears SVR4 still uses the factor 2D instead of 4D in the calculation of RTO.

21.3 The stop-and-wait protocol used by TFTP is limited to 512 bytes of data per
round trip. 32768/512 x I. 5 is 96 seconds.

520 Solutions to Selected Exercises Appendix D

21.4 Show four segments, numbered 1, 2, 3, and 4. Assume the order of receipt is 1, 3,
2, and 4. The ACKs generated by the receiver will be ACK 1 (a normal ACK),
ACK 1 (a duplicate ACK when segment 3 is received out of order), ACK 3 when
segment 2 is received (acknowledging both segments 2 and 3), and then ACK 4.
Here one duplicate ACK is generated. If the order of receipt were 1, 3, 4, 2, two
duplicate ACKs would be generated.

21.5 No, because the slope is still up and to the right, not downward.
21.6 See Figure E.1, p. 526.

21.7 In Figure 21.2 the segments contain 256 bytes of data, which takes approximately
250 ms to transfer across the 9600 bits/sec CSLIP link between slip and bsd±.
Assuming the data segments are .not queued somewhere between bsd± and
vangogh, they arrive at vangogh about 250 ms apart. Since this exceeds the
200-ms delayed ACK timer, each segment is acknowledged when the next
delayed ACK timer expires.

Chapter 22

22.1

22.2

Chapter 23

The ACKs are probably all delayed on the host bsdi, because there is no reason
to send them immediately. That’s why the relative times have 0.170 and 0.370 as
the fractional part. It also appears that the 200-ms timer on bsdi is running
about 18 ms behind the same timer on sun.

The FIN flag, just like the SYN flag, occupies 1 byte in the sequence number
space. The advertised window appears to be 1 byte smaller because TCP allows
room for the I byte of sequence number space occupied by the FIN flag.

23.1

23.2

Chapter 24

It is usually simpler to invoke the keepalive option than explicitly coding appli-
cation probes; the keepative probes take less network bandwidth than applica-
tion probes (since keepalive probes and answers contain no data); no probes are
sent unless the connection is idle.

The keepalive option can cause a perfectly good connection to be dropped
because of a temporary network outage; the probe interval (2 hours) is normally
not configurable on an application basis;

24.1

24.2

It means the sending TCP supports the window scale option, but doesn’t need to
scale its window for this connection. The other end (that receives this SYN) can
then specify a window scale factor (that can be 0 or nonzero).

64000: the receive buffer size (128000) right shifted 1 bit. 55000: the receive buffer
size (220000) right shifted 2 bits.

Solutions to Selected Exercises Appendix D 521

24.3

24.4

24.5

24.6

24.7

24.8

24.9

24.10

No. The problem is that acknowledgments are not reliably delivered (unless
they’re piggybacked with data) so a scale change appearing on an ACK could get
lost.

232 × 8 / 120 equals 286 Mbits/sec, 2.86 times the FDDI data rate.

Each TCP would have to remember the last timestamp received on any connec-
tion from each host. Read Appendix B.2 of RFC 1323 for additional details.

The application must set the size of the receive buffer before establishing the con-
nection with the other end, since the window scale option is sent in the hdtial
SYN segment.

If the receiver ACKs every second data segment, the throughput is 1,118,881
bytes/sec. Using a window of 62 segments, with an ACK for every 31 segments,
the value is 1,158,675.

With this option the timestamp echoed in the ACK is always from the segment
that caused the ACK. There is no ambiguity about which retransmitted segment
the ACK is for, but the other part of Karn’s algorithm, dealing with the exponen-
tial backoff on retransmission, is still required.

The receiving TCP queues the data, but it cannot be passed to the application
until the three-way handshake is complete: when the receiving TCP moves into
the ESTABLISHED state.

Five segments are exchanged:

Client to server: SYN, data (request), and FIN. The server must queue the
data as described in the previous exercise.

Server to client: SYN and ACK of client’s SYN.

Client to server: ACK of server’s SYN and client FIN (again). This causes the
server to move to the ESTABLISHED state, and the queued data from seg-
ment i is passed to the server application.

Server to client: ACK of client FIN (which also acknowledges client data),
data (server’s reply), and server’s FIN. This assumes that the SPT is short
enough to allow this delayed ACK. When the client TCP receives this seg-
ment, the reply is passed to the client application, but the total time has been
twice the RTT plus the SPT.

5. Client to server: ACK of server’s FIN.

24.11

24.12

16,128 transactions per second (64,512 divided by 4).

The transaction time using T/TCP cannot be faster than the time required to
exchange a UDP datagram between the two hosts. T/TCP should always take
longer, since it still involves state processing that UDP doesn’t do.

522 Solutions to Selected Exercises Appendix D

Chapter 25

25.1 If a system is running both a manager and agent, they are probably different pro-
cesses. The manager listens on UDP port 162 for traps, and the agent listens on
UDP port 161 for requests. If the same port were used for both traps and
requests, separating the manager from the agent would be hard.

25.2 Refer to the section "Table Access" in Section 25.7.

Chapter 26

26.1

26.2

26.3

We expect segments 2, 4, and 9 from the server to be delayed. The time differ-
ence between segments 2 and 4 is 190.7 ms and the time difference between seg-
ments 2 and 9 is 400.7 ms.

All the ACKs from the client to the server appear to be delayed: segments 6, 11,
13, 15, 17, and 19. The time differences of the last five from segment 6 are 400.0,
600.0, 800.0, 1000.0, and 2600 ms.

If one end of a connection is in TCP’s urgent mode, then every time a segment is
received, one is sent. This segment does not tell the receiver anything new (it is
not acknowledging new data, for example), and it contains no data, it just reiter-
ates that urgent mode has been entered.

There are only 512 of these reserved ports (512-1023), limiting a host to 512
Rlogin clients. The limit is normally less than 512 in real life, since some of the
port numbers in this range are used as well-known ports by various servers,
such as the Rlogin server.

TCP’s limitation is that the socket pair defining a connection (the 4-tuple) must
be unique. Since the Rlogin server always uses the same well-known port (513)
multiple Rlogin clients on a given host can use the same reserved port only if
they’re com~ected to different server hosts. Rlogin clients, however, don’t use
this technique of trying to reuse reserved ports. If this technique were used, the
theoretical limit is a maximum of 512 Rlogin clients at any one time that are all
connected to the same server host.

Chapter 27

27.1

27.2

Theoretically the connection cannot be established while the socket pair is in the
2MSL wait on either end. Realistically, however, we saw in Section 18.6 that
most Berkeley-derived implementations do accept a new SYN for a connection in
the TIME_WAIT state.

These lines are not part of a server reply that begins with a 3-digit reply code, so
they cannot be from the server.

Solutions to Selected Exercises Appendix D 523

Chapter 28

28.1

28.2

28.3

28.4

28.5

Chapter 29

29.1

29.2

29.3

A domain literal is a dotted-decimal IP address within square brackets. For exam-
ple: mail rstevens@ [140. 252.1.54].

Six round trips: the HELO command, MAIL, RCPT, DATA, body of the message,
and QUIT.

This is legal and is called pipelining [Rose 1993, Sec. 4.4.4]. Unfortunately there
exist brain-damaged SMTP receiver implementations that clear their input buffer
after each command is processed, causing this technique to fail. If this technique
is used, naturally the client can,~ot discard the message until all the replies have
been checked to verify that the message was accepted by the server.
Consider the first five network round trips from Exercise 28.2. Each is a small
command (probably a single segment) that places little load on the network. If
all five make it through to the server without retransmission, the congestion win-
dow could be six segments when the body is sent. If the body is large, the client
could send the first six segments at once, which the network might not be able to
handle.
Newer releases of BIND shuffle the MX records with the same value, as a form of
load balancing.

No, because tepdump cannot distinguish an RPC request or reply from any other
UDP datagram. The only time it interprets the contents of UDP datagrams as
NFS packets is when the source or destination port number is 2049. Random
RPC requests and replies can use an ephemeral port number on each end.
From Section 1.9 recall that a process must have superuser privileges to assign
itself a port number less than 1024 (a well-known port). While this is OK for sys-
tem-provided servers, such as the Telnet server, the FTP server, and the Port
Mapper, we wouldn’t want this restriction for all RPC servers.
Two concepts in this example are that the client ignores any server reply that
doesn’t have the XID that the client is waiting for, and UDP queues received
datagrams (up to some limit) until the application reads the datagram. Also, the
XID does not change on a timeout and retransmission, it changes only when
another server procedure is called.

The events performed by the client stub are as follows: time 0: send request 1;
time 4: time out and retransmit request 1; time 5: receive server’s reply 1, return
reply to application; time 5: send request 2; time 9: time out and retransmit
request 2; time 10: receive server’s reply 1, but ignore it since we’re waiting for
reply 2; time 11: receive server’s reply 2, return reply to application.

The events at the server are as follows: time 0: receive request 1, start operation;
time 5: send reply 1; time 5: receive request 1 (from client’s retransmission at time
4), start operation; time 10: send reply 1; time 10: receive request 2 (from client’s

524 Solutions to Selected Exercises Appendix D

transmission at time 5), start operation; time 11: send reply 2; time 11: receive
request 2 (from client’s retransmission at time 9), start operation; time 12: send
reply 2. This final server reply is just queued by the client’s UDP for the next
receive done by the client. When the client reads it, the XID will be wrong, and
the client will ignore it.

29.4 Changing the server’s Ethernet card changes its physical address. Even though
we noted in Section 4.7 that SVR4 does not send a gratuitous ARP on bootstrap,
it still must send an ARP request for the physical address of sun before it can
reply to its NFS requests. Since sun already has an ARP entry for svr4, it
updates this entry with the sender’s (new) hardware address from the ARP
request.

29.5 The second of the client’s block I/O daemons (reading at offset 73728) is out of
sync with the first by about 0.74 seconds. That is, this second daemon times out
0.74 seconds after the first in lines 131-145. It appears the server never saw the
request in line 167, but did see the request in line 168. The second block I/O dae-
mon won’t retransmit until 0.74 seconds after line 168, and in the mean time the
first block I/O daemon continues issuing requests.’

29.6 If TCP is used, and the TCP segment containing the server’s reply is lost in the
network, the server’s TCP will time out and retransmit the reply when it doesn’t
receive an ACK from the client’s TCP. Eventually the segment will arrive at the
client’s TCP. The difference here is that the two TCP modules do the timeout and
retransmission, not the NFS client and server. (When UDP is used, the NFS
client code performs the timeout and retransmission.) Therefore the NFS client
never knows that the reply was lost and had to be retransmitted.

29.7 It is possible for the NFS server to obtain a different port number after the reboot.
This would complicate the client, because it would have to know that the server
crashed and contact the server’s port mapper after the reboot to find the NFS
server’s new port number.

29.8

Chapter 30

30.1
30.2

30.3

This scenario, where the server crashes and reboots and a server RPC application
obtains a new ephemeral port, can happen to any RPC application that doesn’t
use a well-known port.
No. The NFS client can reuse the same local, reserved port number for different
servers. TCP requires the 4-tuple of local IP address, local port, foreign IP
address, and foreign port to be unique, and the foreign IP address is different for
each server host.

Type who ± s "net 8 8 ". Class A network IDs 64 through 95 are reserved.
Type whois whitehouse-dom. Either the host command or nslookup can
query the DNS.
No, xscope can run on a different host from the server. If the hosts are different,
then xscope can also use TCP port 6000 for its incoming connection.

Appendix E

Configurable Options

We’ve seen many features of TCP/IP that we’ve had to describe with the qualifier "it
depends on the configuration." Typical examples are whether or not UDP checksums
are enabled (Section 11.3), whether destination IP addresses with the same network ID
but a different subnet ID are local or nonlocal (Section 18.4), and whether directed
broadcasts are forwarded or not (Section 12.3). Indeed, many operating characteristics
of a given TCP/IP implementation can be modified by the system administrator.

This appendix lists some of the configurable options for the various TCP/IP imple-
mentations that have been used throughout the text. As you might expect, every ven-
dor does things differently from all others. Nevertheless, this appendix gives an idea of
the types of parameters different implementations allow one to modify. A few options
that are highly implementation specific, such as the low-water mark for the memory
buffer pool, are not described.

These variables are described for informational purposes only. Their names, default values,
or interpretation can change from one release to the next. Always check your vendor’s docu-
mentation (or bug them for adequate documentation)for the final word on these variables.

This appendix does not cover the initialization that takes place every time the sys-
tem is bootstrapped: the initialization of each network interface using ± f¢on f±g (set-
ting the IP address, the subnet mask, etc.), entering static routes into the routing table,
and the like. Instead, this appendix focuses on the configuration options that affect how
TCP/IP operates.

525

526 Configurable Options Appendix E

E.1 BSD/386 Version 1.0

This system is an example of the "classical" BSD configuration that has been used since
4.2BSD. Since the source code is distributed with the system, configuration options are
specified by the administrator, and the kernel is recompiled. There are two types of
options: constants that are defined in the kernel configuration file (see the conf±g(8)
manual page), and variable initializations in various C source files. Brave and knowl-
edgeable administrators can also change the values of these C variables in either the
running kernel or the kemel’s disk image, using a debugger, to avoid rebuilding the
kernel.

Here are the constants that can be char~ged in the kemel’s configuration file.

I P FORWARD I NG
The value of this constant initializes the kernel variable ipforwarding. If 0
(default), IP datagrams are not forwarded. If 1, forwarding is always enabled.

GATEWAY
If defined, causes IPFORWARDING to be set to l. Additionally, defining this constant
causes certain system tables (the ARP cache and the routing table) to be larger.

SUBNETSARELOCAL
The value of this constant initializes the kernel variable subnetsarelocal. ~f 1
(default), a destination IP address with the same network ID as the sending host but
a different subnet ID is considered local. If 0, only destination IP addresses on an
attached subnet are considered local. This is summarized in Figure E.1.

Network IDs

same
same

different

Subnet IDs

same
different

subnet sarelocal

1 0

local local
local nonlocal

nonlocal non!ocal

Comment

always local
depends on configuration
always nonlocal

Figure E.1 Interpretation of subnetsarelocal kernel variable.

This affects the MSS selected by TCP. When sending to local destinations, TCP
chooses the MSS based on the MTU of the outgoing interface. When sending to
nonlocal destinations, TCP uses the variable t cp__ms s dflt as the MSS.

IPSENDREDIRECTS
The value of this constant initializes the kernel variable ipsendredirects. If 1
(default), the host will send ICMP redirects when forwarding IP datagrams. If 0,
ICMP redirects are not sent.

DIRECTED BROADCAST
If 1 (de~-ault), received datagrams whose destination address is the directed broad-
cast address of an attached interface are forwarded as a linkqayer broadcast. If 0,
these datagrams are silently discarded.

Section E.2 SunOS 4.1.3 527

The following variables can also be modified. These variables are spread throughout
different files in the/u s r / s rc / sy s/net inet directory.

tcprexmtthresh

tcp_ttl

The number of consecutive ACKs that triggers the fast retransmit
and fast recovery algorithm. The default value is 3.

The default value for the TTL field for TCP segments. Default
value is 60.

tcp_mssdflt The default TCP MSS for nonlocal destinations. Default value
is 512.

tcp_keepidle

tcp_keepintvl

tcp_sendspace

tcp_recvspace

Number of 500-ms clock ticks before sending a keepalive probe.
Default value is 14400 (2 hours).

Number of 500-ms clock ticks between successive keepalive
probes, when no response is received. Default value is 150 (75
seconds)4

The default size of the TCP send buffer. Default value is 4096.

The default size of the TCP receive buffer. This affects the win-
dow size that is offered. Default value is 4096.

udpcksum If nonzero, UDP checksums are calculated for outgoing UDP
datagrams, and incoming UDP datagrams containing nonzero
checksums have their checksum verified. If 0, outgoing UDP
datagrams do not contain a checksum, and no checksum verifica-
tion is performed on incoming UDP datagrams, even if the
sender calculated a checksum. Default is 1.

udp_ttl The default value for the TTL field in UDP datagrams. Default
value is 30.

udp_sendspace

udp_recvspace

The default size of the UDP send buffer. Defines the maximum
UDP datagram that can be sent. Default is 9216.

The default size of the UDP receive buffer. The default is 41600,
allowing for 40 1024-byte datagrams.

E.2 SunOS 4.1.3

The method used with SunOS 4.1.3 is similar to what we saw with BSD/386. Since
most of the kernel sources are not distributed, all the C variable initializations are con-
tained in a single C source file that is provided.

The administrator’s kernel configuration file (see the config(8) manual page) can
define the following variables. After modifying your configuration file, a new kernel
must be made and rebooted.

528 Configurable Options Appendix E

IPFORWARDING
The value of this constant initializes the kernel variable ip_forwarding. If -1, IP
datagrams are never forwarded. Furthermore, the variable is never changed. If 0
(default), IP datagrams are not forwarded, but the variable’s value is changed to 1 if
multiple interfaces are up. If 1, forwarding is always enabled.

SUBNETSARELOCAL
The value of the kernel variable ip_subnetsarelocal is initialized from this con-
stant. If i (default), a destination IP address with the same network ID as the send-
ing host but a different subnet ID is considered local. If 0, only destination IP
addresses on an attached subnet are considered local. This is summarized in Figure
E.1. When sending to local destinations,.TCP chooses the MSS based on the MTU of
the outgoing interface. When sending to nonlocal destinations, TCP uses the vari-
able t cp_de fau i t_ms s.

IPSENDREDIRECTS
The value of this constant initializes the kernel variable ip_sendredirects. If 1
(default), the host will send ICMP redirects when forwarding IP datagrams. If 0,
ICMP redirects are not sent.

DIRECTED BROADCAST
The value of this constant initializes the kernel variable ip_dirbroadcast. If 1
(default), received datagrams whose destination address is the directed broadcast
address of an attached interface are forwarded as a link-layer broadcast. If 0, these
datagrams are silently discarded.

The file /usr/kvm/sys/netinet/in_proto. c defines the following variables that
can be changed. Once these variables are changed, a new kernel must be made and
rebooted.

tcp_default_mss

tcp_sendspace

tcp_recvspace

tcp_keeplen

tcp_ttl

tcp_nodelack

tcp_keepidle

The default TCP MSS for nonlocal destinations. Default value
is 512.

The default size of the TCP send buffer. Default value is 4096.

The default size of the TCP receive buffer. This affects the win-
dow size that is offered. Default value is 4096.

A keepalive probe to a 4.2BSD host must contain a single byte of
data to get a response. Set the variable to I for compatibility with
these older implementations. Default value is 1.

The default value for the TTL field for TCP segments. Default
value is 60.

If nonzero, ACKs are not delayed. Default value is 0.

Number of 500-ms clock ticks before sending a keepalive probe.
Default value is 14400 (2 hours).

Section E.4 Solaris 2.2 529

tcp_keepintvl

udp_cksum

udp_ttl

udp_sendspace

udp_recvspace

Number of 500-ms clock ticks between successive keepalive
probes, when no response is received. Default value is 150 (75
seconds).

If nonzero, UDP checksums are calculated for outgoing UDP
datagrams, and incoming UDP datagrams containing nonzero
checksums have their checksum verified. If 0, outgoing UDP
datagrams do not contain a checksum, and no checksum verifica-
tion is performed on incoming UDP datagrams, even if the
sender calculated a checksum. Default is 0.

The default value for the TTL field in UDP datagrams. Default
value is 60.

The default size of the UDP send buffer. Defines the maximum
UDP datagram that can be sent. Default is 9000.

The default size of the UDP receive buffer. The default is 18000,
allowing for two 9000-byte datagrams.

E.3 System V Release 4

The TCP/IP configuration of SVR4 is similar to the previous two systems, but fewer
options are available. In the file/etc/conf/pack, d/ip/space, c two constants can
be defined, and the kernel must then be rebuilt and rebooted.

IPFORWARDING
The value of this constant initializes the kernel variable ipforwarding. If 0
(default), IP datagrams are not forwarded. If 1, forwarding is always enabled.

IPSENDREDIRECTS
The value of this constant initializes the kernel variable ipsendredirects. If 1
(default), the host will send ICMP redirects when forwarding IP datagrams. If 0,
ICMP redirects are not sent.

Many of the variables that we’ve described in the previous two sections are defined in
the kernel, but one must patch the kernel to modify them. For example, there is a vari-
able named tcp_keepidle with a value of 14400.

E.4 Solaris 2.2

Solaris 2.2 is typical of the newer Unix systems that provide a program for the adminis-
trator to run to change the configuration options of the TCP/tP system. This allows
reconfiguration without having to modify source files and rebuild a kernel.

The configuration program is ndd(1). We can run the program to see what parame-
ters we can examine or modify in the UDP module:

530 Configurable Options Appendix E

/dev/ip

solaris % ndd /dev/udp \?
udp_wroff_extra
udp_def_ttl
udp_first_anon_port
udp_trust_optlen
udp do checksum
udp_status

(read and write)
(read and write)
(read and write)
(read and write)
(read and write)
(read only)

There are five modules we can specify: /dev/ip, /dev/icmp, /dev/arp, /dev/udp,
and/dev/tcp. The question mark argument (which we have to prevent the shell from
interpreting by preceding it with a backslash) tells the program to list all the parameters
for that module. An example that queries the value of a variable is:

solaris % ndd /dev/tcp tcp_mss_de~
536

To change the value of a variable we need superuser privilege and type:

solaris # ndd -set /dev/ip ip_forwarding 0

These variables can be divided into three categories:

1. Configuration variables that a system administrator can change (e.g.,
ip_forwarding).

2. Status variables that can only be displayed (e.g., the ARP cache). Normally this
information is provided in an easier to understand format by the commands
ifconfig, netstat, and arp.

3. Debugging variables intended for those with kernel source code. Enabling
some of these generates kernel debug output at runtime, which can degrade
performance.

We now describe the parameters in each module. All parameters are read-write,
unless marked "(Read only)." The read-only parameters are the status variables from
case 2 above. We also mark the "(Debug)" variables from case 3. Unless otherwise
noted, all the timing variables are specified in milliseconds, which differs from the other
systems that normally specify times as some number of 500-ms clock ticks.

ip_cksum_choice

(Debug) Selects between two independent implementations of the IP checksum
algorithm.

ip_debug
(Debug) Enables printing of debug output by the kernel, if greater than 0. Larger
values generate more output. Default is 0.

ip_def_ttl
Default TTL for outgoing IP datagrams, if not specified by transport layer. Default
is 255.

Section E.4 Solaris 2.2 531

ip_forward_direct ed broadcasts
If 1 (default), receive~-datagrams whose destination address is the directed broad-
cast address of an attached interface are forwarded as a link-layer broadcast. If 0,
these datagrams are silently discarded.

ip_forward_s rc_rout ed
If 1 (default), received datagrams containing a source route option are forwarded.
If 0, these datagrams are discarded.

ip_forwarding
Specifies whether the system forwards incoming 1P datagrams: 0 means never for-
ward, 1 means always forward, and 2 (default) means only forward when two or
more interfaces are up.

ip_icmp_return_dat a_byt es
The number of bytes of data beyond the IP header that are returned in an ICMP
error. Default is 64.

~p_ignore_delet e_t ime
(Debug) Minimum lifetime of an IP routing table entry (IRE). Default is 30 sec-
onds. (This parameter is in seconds, not milliseconds.)

zp_ill_status
(Read only) Displays the status of each IP lower layer data structure. There is one
lower layer structure for each interface.

ip_ipif_status
(Read only) Displays the status of each IP interface data structure (IP address, sub-
net mask, etc.). There is one of these structures for each interface.

ip_ire_cleanup_int erval
(Debug) The interval at which the IP routing table entries are scanned for possible
deletions. Default is 30000 ms (30 seconds).

~p_ire_f lu sh_int erval
The interval at which ARP information in unconditionally flushed from the IP rout-
ing table. Default is 1200000 ms (20 minutes).

ip_i re_pat hmt u_int e rval
The interval at which the path MTU discovery algorithm tries to increase the MTU.
Default is 30000 ms (30 seconds).

~p_ire_redirect_int erval
The interval at which IP routing table entries that are from ICMP redirects are
deleted. Default is 60000 ms (60 seconds).

ip_ire_status
(Read only) Displays all the IP routing table entries.

ip_local_cksum
If 0 (default), IP does not calculate the IP checksum or the higher layer protocol
checksum (i.e., TCP, UDP, ICMP, or IGMP) for datagrams sent or received through
the loopback interface. If 1, these checksums are calculated.

532 Configurable Options Appendix E

ip_mr tdebug
(Debug) Enables printing of debug output concerning multicast routing by the ker-
nel, if 1. Default is 0.

ip_path_mtu_di scovery
If I (default), path MTU discovery is performed by IP. If 0, IP never sets the "don’t
fragment" bit in outgoing datagrams.

¯ p_respond to address_mask
If 0 (default), the host does not respond to ICMP address mask requests. If 1, it does
respond.

¯ p_respond to echo_broadcast
If 1 (default), the host responds to ICMP echo requests that are sent to a broadcast
address. If 0, it does not respond.

¯ p_respond to timestamp
If 0 (default), the host does not respond to ICMP timestamp requests. If 1, the host
responds.

lp_respond to timestamp_broadcast
If 0 (default), the host does not respond to ICMP timestamp requests that are sent to
a broadcast address. If 1, it responds if i~)_respond to timestamto is also set.

~p_rput_pu i lup s
(Debug) Count of number of buffers from the network interface driver that needed
to be pulled up to access the full IP header. Initialized to 0 at bootstrap time, and
can be reset to 0.

ip_send_redirects
If 1 (default), the host sends ICMP redirects when acting as a router. If 0, these are
not sent.

ip_s end_s ource_quench
If 1 (default), the host generates ICMP source quench errors when incoming data-
grams are discarded. If 0, these are not generated.

ip_wr o f f_extra
(Debug) Number of bytes of extra space to allocate in buffers for IP headers.
Default is 32.

/dev/icmp

icmp_bsd_compat
(Debug) If I (default), the length field in the IP header of received datagrams is
adjusted to exclude the length of the IP header. This is compatible with Berkeley-
derived implementations and is for applications reading raw IP or raw ICMP pack-
ets. If 0, the length field is not changed.

icmp_de f_t tl
The default TTL for outgoing ICMP messages. Default is 255.

Section E.4 Solaris 2.2 533

i cmp_wro f f_ext ra
(Debug) Number of bytes of extra space to allocate in buffers for IP options and
data-link headers. Default is 32.

/dev/arp

arp_cache_report
(Read only) The ARP cache.

arp_cleanup_interval
The interval after which ARP entries are discarded from ARP’s cache. Default is
300000 ms (5 minutes). (IP maintains its own cache of completed ARP translations;
see ip_ire_f lush_int erval.)

arp_debug
(Debug) If 1, enables printing of debug output by the ARP driver. Default is 0.

/dev/udp

udp_de f_t t 1
The default TTL for outgoing UDP datagrams. Default value is 255.

udp do checksura
If I (default), UDP checksums are calculated for outgoing UDP datagrams. If 0, out-
going UDP datagrams do not contain a checksum. (Unlike most other implementa-
tions, this UDP checksum flag does not affect incoming datagrams. If a received
datagram has a nonzero checksum, it is always verified.)

udp_l arge s t_ano n_po rt
Largest port number to allocate for UDP ephemeral ports. Default is 65535.

udp_smalle st_anon_port
Starting port number to allocate for UDP ephemeral ports. Default is 32768.

udp_smal lest_nonp riv_por t
A process requires superuser privilege to assign itself a port number less than this.
Default is 1024.

udp_status
(Read only) The status of all local UDP end points: local IP address and port, for-
eign IP address and port.

udp_trust_opt len
(Debug) No longer used.

udp_wr o f f_ext ra
(Debug) Number of bytes of extra space to allocate in buffers for IP options and
data-link headers. Default is 32.

534 Configurable Options Appendix E

/dev/tcp

t cp_clo se_wait_inte rval
The 2MSL value: the time spent in the TIME_WAIT state. Default is 240000 ms (4
minutes).

t cp_c o nn_gr ace_pe r iod
(Debug) Additional time added to the timer interval when sending a SYN. Default
is 500 ms.

t cp_conn_r e q__max
The maximum number of pending c.onnection requests queued for any listening
end point. Default is 5.

t cp_cwnd_max
The maximum value of the congestion window. Default is 32768.

t cp_debug
(Debug) If 1, enables printing of debug output by TCP. Default is 0.

t cp_de ferred_ack_int erval
The time to wait before sending a delayed ACK. Default is 50 ms.

t cp_dupack_f as t_ret ransmit
The number of consecutive duplicate ACKs that triggers the fast retransmit, fast
recovery algorithm. Default is 3.

tcp_eager_listeners
(Debug) If 1 (default), TCP completes the three-way handshake before returning a
new connection to an application with a pending passive open. This is the way
most TCP implementations operate. If 0, TCP passes an incoming connection
request (received SYN) to the application, and does not complete the three-way
handshake until the application accepts the connection. (Setting this to 0 might
break many existing applications.)

t cp_ignore_path_mtu
(Debug) If 1, path MTU discovery ignores received ICMP fragmentation needed
messages. If 0 (default), path MTU discovery is enabled for TCP.

tcp ip abort cinterval
The total retransmit timeout value when TCP is performing an active open. Default
is 240000 ms (4 minutes).

tcp ip abort interval
The total retransmit timeout value for a TCP connection after it is established.
Default is 120000 ms (2 minutes).

tcp ip notify_cinterval
The timeout value when TCP is performing an active open after which TCP notifies
IP to find a new route. Default is 10000 ms (10 seconds).

tcp ip notify_interval
The timeout value for an established connection after which TCP notifies IF to find
a new route. Default is 10000 ms (10 seconds).

Section E.4 Solaris 2.2 535

tcp ip ttl
The TTL to use for outgoing TCP segments. Default is 255.

t cp_keepalive_int erval
The time that a connection must be idle before a keepalive probe is sent. Default is
7200000 ms (2 hours).

t cp_larges t_anon_po rt
Largest port number to allocate for TCP ephemeral ports. Default is 65535.

t cp_maxps z_mult iplier
(Debug) Specifies the multiple of the MSS into which the stream head packetizes
the application’s write data. Default is 1.

t cp_ms s_de f
Default MSS for nonlocal destinations. Default is 536.

t cp_ms s_max
The maximum MSS. Default is 65495.

t cp_ms s_min
The minimum MSS. Default is 1.

t cp_naglim_de f
(Debug) Maximum value of the per-cormection Nagle algorithm threshold. Default
is 65535. The per-connection value starts out as the minimum of the MSS or this
value. The per-connection value is set to 1 by the TCP_NODELAY socket option,
which disables the Nagle algorithm.

t cp_old_urp_int erpret at ion
(Debug) If 1 (default), the older (but more common) BSD interpretation of the
urgent pointer is used: it points 1 byte beyond the last byte of urgent data. If 0, the
Host Requirements RFC interpretation is used: it points to the last byte of urgent
data.

t cp_rcv_push_wait
(Debug) Maximum number of bytes received without the PUSH flag set before the
data is passed to the application. Default is 16384.

t cp_rexmit_int erval_init ial
(Debug) Initial retransmit timeout interval. Default is 500 ms.

tcp_rexmit_int erval_max
(Debug) Maximum retransmit timeout interval. Default is 60000 ms (60 seconds).

t cp_rexmit_interval min
(Debug) Minimum re~ransmit timeout interval. Default is 200 ms.

t cp_rwin_credit_pct
(Debug) Percentage of receive window that must be buffered before flow control is
checked on every received segment. Default is 50%.

t cp_smal i est_anon_po rt
Starting port number to allocate for TCP ephemeral ports. Default is 32768.

536 Configurable Options Appendix E

t cp_smal los t_nonpr fv_por t
A process requires superuser privilege to assign itself a port number less than this.
Default is 1024.

t cp_snd_lowat_f faction
(Debug) If nonzero, the send buffer low-water mark is the send buffer size divided
by this value. Default is 0 (disabled).

tcp_status
(Read only) Information on all TCP endpoints.

t cp_s t h_r cv_hiwat
(Debug) If nonzero, the value to set the’stream head high-water mark to. Default
is O.

t cp_s t h_r cv_l owa t
(Debug) If nonzero, the value to set the stream head low-water mark to. Default
is 0.

t cp_wro f f_xt ra
(Debug) Number of bytes of extra space to allocate in buffers for IP options and
data-link headers. Default is 32.

E.5 AIX 3.2.2

AIX 3.2.2 allows network options to be set at runtime using the no command. It can
display the value of an option, set the value of an option, or set an option value back to
its default. For example, to display an option we type:

aix % no -o u~l~_ttl
udp_ttl : 30

The following options can be tnodified.

arpt_killc
The time (in minutes) before an inactive completed ARP entry is removed. Default
is 20.

ip forwarding
If I (default), IP datagrams are always forwarded. If 0, forwarding is disabled.

ipfragttl
The time to live (in seconds) for IP fragments awaiting reassembly. Default is 60.

ipsendredirects
If 1 (default), the host will send ICMP redirects when forwarding IP datagrams.
If 0, ICMP redirects are not sent.

loop_check_sum
If 1 (default), the IP checksum is calculated for datagrams sent through the loop-
back interface. If 0, this checksum is not calculated.

Section E.6 4.4BSD 537

E.6

nonlocsrcroute
If 1 (default), received datagrams containing a source route option are forwarded.
If 0, these datagrams are discarded.

subnetsarelocal
If 1 (default), a destination IP address with the same network ID as the sending host
but a different subnet ID is considered local. If 0, only destination IP addresses on
an attached subnet are considered local. This is summarized in Figure E.1. When
sending to local destinations, TCP chooses the MSS based on the MTU of the outgo-
ing interface. When sending to nonlocal destinations, TCP uses the default (536) as
the MSS.

t cp_keepidle
Number of 500-ms clock ticks before sending a keepalive probe. Default value is
14400 (2 hours).

tcp_keepintvl
Number of 500-ms clock ticks between successive keepalive probes, when no
response is received. Default value is 150 (75 seconds).

tcp_recvspace
The default size of the TCP receive buffer. This affects the window size that is
offered. Default value is 16384.

tcp_sendspace
The default size of the TCP send buffer. Default value is 16384.

tcp_ttl
The default value for the TTL field for TCP segments. Default value is 60.

udp_recvspace
The default size of the UDP receive buffer. The default is 41600, allowing for 40
1024-byte datagrams.

udp_sendspace

The default size of the UDP send buffer. Defines the maximum UDP datagram that
can be sent. Default is 9216.

udp_ttl
The default value for the TTL field in UDP datagrams. Default value is 30.

4.4BSD

4.4BSD is the first of the Berkeley releases to provide dynamic configuration for numer-
ous kernel parameters. The sysctl(8) command is used. The names for the parame-
ters were chosen to look like MIB names from SNMP. To examine a parameter we type:

vangogh % sysctl net.inet.ip.forwarding
net.lnet.ip.forwarding = 1

To change a parameter we need superuser privilege and then type:

vangogh # sysctl -w net.inet.ip.ttl=128

538 Configurable Options Appendix E

The following parameters can be changed.
net. inet. ip. forwarding

If 0 (default), IP datagrams are not forwarded. If 1, forwarding is enabled.

net. inet. ip. redirect
If 1 (default), the host will send ICMP redirects when forwarding IP datagrams. If
0, ICMP redirects are not sent.

net. inet. ip. ttl
The default TTL for both TCP and UDP. The default is 64.

net. inet. icmp. maskrepl
If 0 (default), the host does not respond to ICMP address mask requests. If 1, it does
respond.

net. inet. udp. checksum
If 1 (default), UDP checksums are calculated for outgoing UDP datagrams, and
incoming UDP datagrams containing nonzero checksums have their checksum veri-
fied. If 0, outgoing UDP datagrams do not contain a checksum, and no checksum
verification is performed on incoming UDP datagrams, even if the sender calculated
a checksum.

Additionally, numerous variables that we’ve described earlier in this appendix are scat-
tered among various source files (tcp_keepidle, subnetsarelocal, etc.) and can be
modified.

Appendix F

Source Code Availability

This book uses many publicly available software packages. This appendix provides
additional details on how to obtain this software.

The technique used to obtain tl~is software is called anonymous FTP, where FTP is
the standard Internet File Transfer Protocol (Chapter 27). Section 27.3 shows an exam-
ple of anonymous FTP. For a background on internet resources in general, and specifi-
cally anonymous FTP, refer to any of the recently available books on the Internet, such
as [LaQuey 1993] or [Krol 1992].

The hosts listed here are believed to be the primary site where the package is avail-
able. There may be many other sites where the software is also available. The Internet
Archie service can locate additional versions. Also, the versions listed below are the
ones used for the examples in the text.

Newer versions may have been released by the time you read this.

You should use the FTP d±:c command to see if newer versions exist on that specified
host.

This appendix is ordered by the chapter or section number where the resource was
used in this text.

RFCs (Section 1.11)

Section 1.11 provides the electronic mail address to send a request to. The reply details
numerous sites from which the RFCs can be obtained using either e-mail or anonymous
FTP.

Remember that the starting place is to obtain the current index and look up the RFC
that you want in the index. This entry tells you if that RFC has been obsoleted or
updated by a newer RFC.

539

540 Source Code Availability Appendix F

BSD Net/2 Source Code (Section 1,14)

The BSD Net/2 source code, which includes the kernel implementation of the TCP/IP
protocols, along with the standard utilities (Telnet client and server, FTP client and
server, etc.), is available from ftp.uu.net in the directory tree starting at
systems/unix/bsd-sources.

SLIP (Section 2.4)

The version of SLIP used in this text is available from ftp. ee. lbl. gov. The filename
begins with cslip, since it supports compressed SLIP (Section 2.5).

iempaddrmask Program (Section 6.3)

Refer to the final entry of this section.

±cmptime Program (Section 6.4)

Refer to the final entry of this section.

ping Program (Chapter 7)

The BSD version of ping normally has more options and features than the version sup-
plied by many vendors. The host ftp. uu. net contains the latest BSD version in the
file systems/unix/bsd-sources/sbin/ping.

traceroute Program (Chapter 8)

The traceroute program is available from ftp. ee. ibl. gov. Refer to the final entry
of this section for the version used in Section 8.5 that allows loose and strict source
routing.

Router Discovery Daemon (Section 9.6)

A program is available that provides host support and router support for the router dis-
covery messages. The host is gregorio.stanford.edu and the file is
gw-discovery/nordmark-rdisc, tar. The program was written by Sun Microsys-
terns and made publicly available.

gated Daemon (Section 10.3)

The gated routing daemon, mentioned in Section 10.3, is available from the host
gated, cornell, edu.

Source Code Availability Appendix F 541

traceroute, pmtu Program (Section 11.7)

Refer to the final entry of this section.

IP Multicasting Software (Chapter 13)

The modifications required to support IP multicasting for SunOS 4.x and Ultrix are
available from gregorio, stanford, edu in the directory vmtp-ip. This directory
also contains the source code modifications required to implement IP multicasting in a
Berkeley Unix system.

BIND Name Server (Chapter 14)

The BIND name server, the named daemon, is available from the host ftp. uu. net in
the file network±ng/±p/dns/b±nd/b±nd. 4.8.3. tar. Z.

A newer version, 4.9, is available from gatekeeper, dec. com in the directory
pub/BSD/bind/4.9. J

host Program (Chapter 14)

The host program is available from the host nikhefh.nikhef.nl in the file
host. tar. Z.

dig and doc Programs (Chapter 14)

The dig and doc programs mentioned in Chapter 14 are available from the host
isi.edu in the files dig.2.0.tar. Z and doc. 2.0.tar. Z.

BOOTP Server (Chapter 16)

Various versions of the commonly used Unix BOOTP server are available from the host
lancaster, andrew, cmu. edu, in the pub directory.

TCP High-Speed Extensions (Chapter 24)

A publicly available source code implementation of the TCP window scale option, time-
stamp option, and PAWS algorithm is available as a set of patches to the BSD Net/2
release from the host uxc. cso. uiuc. edu in the file pub/tcplw, sEar. Z.

ISODE SNMP Manager and Agent (Chapter 25)

The SNMP manager and agent described in Section 25.7 are part of the ISODE 8.0 distri-
bution. This is available from many FTP archive sites, such as ftp. uu. net in the
networking/o s i / i s ode directory.

542 Source Code Availability Appendix F

MIME Software and Examples (Section 28.4)

A program named MetaMail that provides MIME capabilities for many different user
agents is available on the host thumper.bellcore, corn in the pub/nsb directory.
Also in this directory is additional information on MIME.

Sun RPC (Section 29.2)

A version of the RPC 4.0 sources (which use the sockets API) is available from the host
ftp.uu.net in the systems/sun/sextape/rpc4.0 directory. A version of the
TI-RPC sources (which use the TLI API) is available from the host ftp. uu. net in the
networking/rpc directory.

Sun NFS (Chapter 29)

A publicly available implementation of an NFS client and server is provided as part of
the BSD Net/2 Source Code described earlier in this appendix.

tcpdump Program (Appendix A)

The version of t cpdurap used in this text is from the host ftp. ee. lbl. gov in the file
tcpdump-2.2.1.tar. Z.

BSD Packet Filter (Section A.1)

The BSD packet filter is part of the t cpdump distribution.

sock Program (Appendix C)

Refer to the final entry of this section.

ttcp Program

(This program was not used in the text, but is a useful tool of which readers should be
aware.) ttcp is a benchmarking tool for measuring TCP and UDP performance
between two systems. It was created at the U.S. Army Ballistics Research Lab (BRL) and
is in the public domain. Copies are available from many anonymous FTP sites but an
enhanced version is available from ftp. s g i. corn in the directory s g i/s re/tt cp.

Author-Written Software

The author-written software used in the book is available from the host ftp. uu. net in
the file published/books/stevens, t cpipivl, tar. Z.

Bibliography

All the RFCs are available at no charge through electronic mail or using anonymous
FTP across the Internet as described in Section 1.11.

Albitz, P., and Liu, C. 1992. DNS ancl BIND. O’Reilly & Associates, Sebastopol, Calif.

Lots of details on the administrative tasks required to configure and run a name server.

Alexander, S., and Droms, R. 1993. "DHCP Options and BOOTP Vendor Extensions," RFC 1533,
30 pages (Oct.).

Almquist, P. 1992. "Type of Service in the Internet Protocol Suite," RFC 1349, 28 pages (July).

How to use the type-of-service field in the IP header.

Almquist, P., ed. 1993. "Requirements for IP Routers," Internet Draft (Mar.).

This is the draft of an RFC to replace RFC 1009 [Braden and Postel 1987]. The new RFC will
probably appear in four volumes. Volume 1: Internet architecture, terminology, and general
considerations. Volume 2: hnk layer, lnternet layer, transport layer, and application layer.
Volume 3: forwarding and routing protocols. Volume 4: operations and maintenance, and net-
work management.

This draft is available via anonymous FTP from the host 3ess~.ca.st:an£ord.edu in the
directory rreq. Ignore this draft once the final RFC is published.

Bellovin, S. M. 1993. Private Communication.

Bhide,A., Elnozahy, E. N., and Morgan, S. P. 1991. "A Highly Available Network File Server,"
Proceedings of the 1991 Winter USENIX Conference, pp. 199-205, Dallas, Tex.

Describes a use of gratuitous ARP (Section 4.7).

Borertstein, N., and Freed, N. 1993. "MIME (Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the Format of Internet Message Bodies,"
RFC 1521, 81 pages (Sept.).

This RFC obsoletes the earlier RFC 1341. Appendix H of tl~s RFC hsts the differences from
RFC 1341.

543

544 TCP/IP Illustrated Bibliography

Borman, D. A., ed. 1990. "Telnet Linemode Option," RFC 1184, 23 pages (Oct.).

Borman, D. A. 1991. "IP Bandwidth Limits," Message-ID <91011437.AA17276@berserkly.
cray.com>, Usenet, comp.protocols.tcp-ip Newsgroup (Jan.).

States the three practical limits on TCP performance that we hsted at the end of Section 24 8.

Borman, D. A. 1992. "TCP/IP Performance at Cray Research," Proceedings of the Twenty-third
Internet Engineering Task Force, pp. 492-493 (Mar.), San Diego Supercomputer Center, San
Diego, Calif.

Borman, D. A., ed. 1993a. "Telnet Environment Option," RFC t408, 7 pages (Jan.).
The Telnet optton for passing environment variables from the client to the server.

Borman, D. A. 1993b. "A Practical Perspective on Host Networking," in Internet System Hand-
book, eds. D. C. Lynch and M. T. Rose, pp. 309-367. Addison-Wesley, Reading, Mass.

A practical look at the Host Requirements RFCs (1122 and 1123).

Braden, R. T., ed. 1989a. "Requirements for Internet Hosts--Communication Layers," RFC 1122,
116 pages (Oct.).

The first half of the Host Requirements RFC This half covers the link layer, IP, TCP, and UDP.

Braden, R. T., ed. 1989b. "Requirements for Internet Hosts--Application and Support,"
RFC 1123, 98 pages (Oct.).

The second half of the Host Requirements RFC. Th~s half covers Telnet, FTP, TFTP, SMTP, and
the DNS.

Braden, R. T. 1989c. "Perspective on the Host Requirements RFCs," RFC 1127, 20 pages (Oct.).

An informal summary of the discussions and conclusions of the IETF working group that devel-
oped the Host Requirements RFC.

Braden, R. T. 1992a. "TIME-WAIT Assassination Hazards in TCP," RFC 1337, 11 pages (May).
Shows how the receipt of an RST while in the TIME WAIT state can lead to problems.

Braden, R. T. 1992b. "Extending TCP for Transactions--Concepts," RFC 1379, 38 pages (Nov.).

The concepts and history behind the development of T/TCP.

Braden, R. T. 1992c. "Extending TCP for Transactions--Functional Specification," Internet Draft,
32 pages (Dec.).

The functional specification and a d~scussion of the implementation issues in T/TCP.

Braden, R. T., Borman, D. A., and Partridge, C. 1988. "Computing the Internet Checksum,"
RFC 1071, 24 pages (Sept.).

Provides techniques and algorithms for calculating the checksum used by IP, ICMP, IGMP, UDP,
and TCP.

Braden, R. T., and Postel, J. B. 1987. "Requirements for Internet Gateways," RFC 1009, 55 pages
(June).

The equivalent of the Host Requirements RFC for touters This RFC is being replaced; see
[Almquist 1993].

Caceres, R., Danzig, P. B., Jamin, S., and Mitzel, D.J. 1991. "Characteristics of Wide-Area TCP/IP
Conversations," Computer Communication Review, vol. 21, no. 4, pp. 101-112 (Sept.).

Callon, R, 1992. "TCP and UDP with Bigger Addresses (TUBA), A Simple Proposal for Internet
Addressing and Routing," RFC 1347, 9 pages (June).

TCP/IP Illustrated Bibliography 545

Case, J. D., Fedor, M. S., Schoffstall, M. L., and Davin, C. 1990. "Simple Network Management
(SNMP)," RFC 1157, 36 pages (May).

The protocol specification for SNMP.

Case, J. D., McCloghrie, K., Rose, M. T., and Waldbusser, S. 1993. "An Introduction to Version 2
of the Intemet-Standard Network Management Framework," RFC 1441, 13 pages (Apr.).

An mtroduchon to SNMPv2 along w~th references to the other 11 Rt:Cs dehnmg SNMPv2

Case, J. D., and Partridge, C. 1989. "Case Diagrams: A First Step to Diagrammed Management
Information Bases," Computer Commumcation Rewew, vol. 19, no. 1, pp. 13-16 (Jan.).

Defines diagrams that are useful for vlsuahzing the relationship between SNMP variables in a
given module

Casner, S., and Deering, S. E. 1992. "First IETF Internet Audiocast," Computer Communicatmn
Review, vol. 22, no. 3, pp. 92-97 (July).

Describes how hve audio for an IETF meeting was audiocast using mult~castmg over the Inter-
net. A PostScript copy of this paper ~s available wa anonymous FTP from the host
venera. 3_sz. edu in the file pub/~etf-aud~ocast-art~cle, ps. Also, the
mbone/faq, txt on that host contains the frequently asked queshons regarding the Intemet
multicast backbone (MBONE).

Cheriton, D. P. 1988. "VMTP: Versatile Message Transaction Protocol," RFC 1045, 123 pages
(Feb.).

Cheswick, W. R., and Bellovin, S. M. 1994. Firewa]ls and Internet Security: Repelhng; the Wily Hacker.
Addison-Wesley, Reading, Mass.

Describes how to set up and administer a firewall gateway and the security ~ssues involved.

Clark, D. D. 1982. "Window and Acknowledgment Strategy in TCP," RFC 813, 22 pages (July).

The original RFC that identihed the silly window syndrome and how to avoid ~t.

Clark,D. D. 1988. "The Design Philosophy of the DARPA Internet Protocols," Co~nputer Commu
nicatmn Review, vol. 18, no. 4, pp. 106-114 (Aug.).

Describes the early reasoning that shaped the Intemet protocols.

Comer, D. E., and Stevens, D. L. 1993. Internetworking with TCP/IP: VoI. III: Client-Server Program-
ruing and Applications, BSD Socket Version. Prentice-Hall, Englewood Cliffs, N.J.

Cooper, A. W., and Postel, J. B. 1993. "The US Domain," RFC 1480, 47 pages (June).
Describes the . us domain m the DNS.

Crocker, D. H. 1982. "Standard for the Format of ARPA Internet Text Messages," RFC 822,
47 pages (Aug.).

Defines the format of electronic mail messages transmitted using SMTP.

Crocker, D. H. 1993. "Evolving the System," in Internet System Handbook, eds D. C. Lynch and M.
T. Rose, pp. 41-76. Addison-Wesley, Reading, Mass.

Some history on the development of standards ~n the ARPANET, along with details on the cur-
rent structure of the Internet technical community Also dehnes the current Internet standards
process.

Croft, W., and Gilmore, J. 1985. "Bootstrap Protocol (BOOTP),’" RFC 951, 12 pages (Sept.).

Crowcroft, J., Wakeman, I., Wang, Z., and Sirovica, D. 1992. "Is Layering Harmful?," IEEE Net-
work, vol. 6, no. 1, pp. 20-24 (Jan.).

The seven missing figures from this paper appear in the next ~ssue, vol. 6, no. 2 (March)

546 TCP/IP Illustrated Bibliography

Curry,D. A. 1992. UNIX System Security: A Guide for Users and System Administrators. Addison-
Wesley, Reading, Mass.

A book on Unix security. Chapters 4 and 5 deal with network security
Dalton, C., Watson, G., Banks, D., Calamvokis, C., Edwards, A., and Lumley, J. 1993. "After-

burner," IEEE Network, vol. 7, no. 4, pp. 36-43 (July)~

Describes how to speed up TCP by reducing the number of data copies performed, and a spe~
cial purpose interface card that supports this design.

Danzig, P. B., Obraczka, K., and Kumar, A. 199Z "An Analysis of Wide-Area Name Server Traf-
fic," Computer Communication Review, vol. 22, no. 4, pp. 281-292 (Oct.).

An analysis of the traffic to one of the root name servers over two 24-hour periods. Shows how
DNS traffic from faulty implementations can consume 20 times more WAN bandwidth than
necessary. A PostScript copy of this paper ~s available wa anonymous FTP from the host
caldera, usc. edu in the file pub/danz ~g/dns. ps. Z.

Deering, S. E. 1989. "Host Extensions for]P Multicastingi’ RFC 11!2, 17 pages (Aug.).
The specification of IP multicasting and IGMP.

Deering, S. E., ed. 1991. "ICMP Router Discovery Messages," RFC 1256, 19 pages (Sept.).

Deering, S. E., and Cheriton, D. P. 1990. "Multicast Routing in Datagram Internetworks and
Extended LANs," ACM Transactions on Computer Systems, vol. 8, no. 2, pp. 85-110 (May).

Proposes extensions to common routing techniques to support multicasting.
Dixon, T. 1993. "Comparison of Proposals for Next Version of IP,’" RFC 1454, 15 pages (May).

A comparison and summary of SIP, PIP, and TUBA.
Droms, R. !993. "Dynamic Host Configuration Protocol," RFC 1541, 39 pages (Oct.).

Droms, R., and Dyksen, W. R. 1990. "Performance Measurements of the X Window System Com~
munication Protocol," Software Practice & Experience, vol. 20, pp. 119-136 (Oct.).

Measurements of the TCP commumcation revolved when using various X clients.

Fedor,M. S. 1988. "GATED: A Multi-routing Protocol Daemon for UNIX," Proceedings of the 1988
Summer USENIX Conference, pp. 365-376, San Francisco, Calif.

Finlayson, R. 1984. "Bootstrap Loading using TFTP," RFC 906, 4 pages (June).

Einlayson, R., Mann, T., Mogul, J. C., and Theimer, M. 1984. "A Reverse Address Resolution
Protocol," RFC 903, 4 pages (June).

Floyd, S. 1994. Private Communication.

Ford, P. S., Rekhter, Y., and Braun, H-W. 1993. "Improving the Routing and Addressing of IP,"
IEEE Network, vol. 7, no. 3, pp. 10-15 (May).

A descriphon of CIDR (classless interdomain routing).

Fuller,V., Li, T., Yu, J. Y., and Varadhan, K. 1993. "Classless Inter-Domain Routing (CIDR): An
Address Assignment and Aggregation Strategy," RFC 1519, 24 pages (Sept.).

The specification of CIDR (classless interdomain routing).

Gerich, E. 1993. "Guidelines for Management of IP Address Space," RFC 1466, 10 pages (May).

The specification of how IP addresses will be allocated in the future (i.e., class B addresses wilt
be hard to obtain and normally a block of class C addresses will be allocated instead)

Gurwitz, R., and Hinden, R. 1982. "IP--Local Area Network Addressing Issues," IEN 212,
11 pages (Sept.).

One of the earliest references to IP broadcast addresses.

TCP/IP Illustrated Bibliography 547

Harrenstien, K., Stahl, M. K., and Feh~ler, E. J. 1985. "NICNAME/WHOIS," RFC 954, 4 pages
(Oct.).

Hedrick, C. L. 1988a. "Routing Information Protocol," RFC 1058, 33 pages (June).

Hedrick, C. L. 1988b. "Telnet Terminal Speed Option," RFC 1079, 3 pages (Dec.).

Hedrick, C. L., and Borman, D. A. 1992. "Telnet Remote Flow Control Option," RFC 1372,
6 pages (Oct.).

Hornig, C. 1984. "Standard for the Transmission of IP Datagrams over Ethernet Networks,"
RFC 894, 3 pages (Apr.).

Huitema, C. 1993. "IAB Recommendation for an Intermediate Strategy to Address the Issue of
Scaling," RFC 1481, 2 pages (July).

The IAB recommendation for the implementation of CIDR.

Jacobson, V. 1988. "Congestion Avoidance and Control," Computer Communication Review, vol. 18,
no. 4, pp. 314-329 (Aug.).

A classic paper describing the slow start and congestlon avoidance algorithms for TCP. A
PostScript copy of this paper is available via anonymous FTP from the host £~p. ee. ~.b2~. gov
in the file congavoid, ps. Z.

Jacobson, V. 1990a. "Compressing TCP/IP Headers for Low-Speed Serial Links," RFC 1144,
43 pages (Feb.).

Describes CSLIP, a version of SLIP w~th the TCP and IP headers compressed.

Jacobson, V. 1990b. "Modified TCP Congestion Avoidance Algorithm," April 30, 1990, end2end-
interest mailing list (Apr.).

Describes the fast retransmxt and fast recovery algorithms.

Jacobson, V. 1990c. "Berkeley TCP Evolution from 4.3-Tahoe to 4.3-Reno," Proceedings of the Eigh-
teenth Internet Engineering Task Force, p. 365 (Sept.), University of British Columbia, Van-
couver, B.C.

Jacobson, V., and Braden, R. T. 1988. "’TCP Extensions for Long-Delay Paths," RFC 1072, 16 pages
(Oct.).

Describes the selective acknowledgment option for TCP, which was removed from the later
RFC 1323.

Jacobson, V., Braden, R. T., and Borman, D. A. 1992. "TCP Extensions for High Performance,"
RFC 1323, 37 pages (May).

Describes the window scale option, the timestamp option, and the PAWS algorithm, along with
the reasons these modifications are needed.

Jacobson, V., Braden, R. T,, and Zhang, L. 1990. "TCP Extensions for High-Speed Paths,"
RFC 1185, 21 pages (Oct.).

Despite this RFC being obsoleted by RFC 1323, the appendix on protection against old duplicate
segments in TCP is worth reading.

Juszczak, C. 1989. "Improving the Performance and Correctness of an NFS Server," Proceedings of
the 1989 Winter USENIX Conference, pp. 53-63, San Diego, Calif.

Provides fmplementat~on details on an NFS server cache.

548 TCP/IP Illustrated Bibliography

Kantor, B. 1991. "BSD Rlogin," RFC 1282, 5 pages (Dec.).
The specification of the Rlogm protocol.

Karn, P., and Partridge, C. 1987. "Improving Round-Trip Time Estimates in Reliable Transport
Protocols," Computer Communication Review, vol. 17, no. 5, pp. 2-7 (Aug.).

Details of Kam’s algorithm to handle the retransm~ssion tlmeout for segments that have been
retransmltted. A PostScript copy of this paper is available via anonymous FTP from the host
s~cs. se in the file pub/cra~g/karn-partr~dge.ps.

Katz, D. 1990. "Proposed Standard for the Transmissxon of IP Datagrams Over FDDI Networks,"
RFC 1188, 11 pages (Oct.).

Specifies the encapsulahon of IP °datagrams and ARP requests and replies on FDDI networks,
including multicast~ng.

Kent, C. A., and Mogul, J. C. 1987. "Fragmentation Considered Harmful," Computer Communica-
tmn Review, vol. 17, no. 5, pp. 390-401 (Aug.).

Kent, S. T. 1991. "U.S. Department of Defense Security Options for the Internet Protocol,"
RFC 1108, 17 pages (Nov.).

Kleinrock, L. 1992. "The Latency/Bandwidth Tradeoff in Gigabit Networks," IEEE Communica-
tions Magazine, vol. 30, no. 4, pp. 36-40 (Apr.).

Klensin, J., Freed, N., and Moore, K. 1993. "SMTP Service Extension for Message Size Declara-
tion," RFC 1427, 8 pages (Feb.).

Klensin, J., Freed, N., Rose, M. T., Stefferud, E. A., and Crocker, D. 1993a. "SMTP Service Exten-
sions," RFC 1425, 10 pages (Feb.).

Klensin, J., Freed, N., Rose, M. T., Stefferud, E. A., and Crocker, D. 1993b. "SMTP Service Exten-
sion for 8bit-MIME Transport," RFC 1426, 6 pages (Feb.).

Krol, E. 1992. The Whole h~ternet. O’Reilly & Associates, Sebastopol, Calif.
A beginner’s introduction to the Internet.

LaQuey, T. 1993. The Internet Compamon: A Beginner’s Guide to Global Networking. Addison-
Wesley, Reading, Mass.

A beginner’s introduction to the Internet.

Leffler, S. J., and Karels, M.J. 1984. "Trailer Encapsulations," RFC 893, 3 pages (Apr.).

Leffler,S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S. 1989. The Design and Implemen-
tation of the 4.3BSD UNIX Operating System. Addison-Wesley, Reading, Mass.

An entire book on the 4.3BSD Unix system Th~s book describes the Tahoe release of 4.3BSD.

Lougheed, K., and Rekhter, Y. 1991. "A Border Gateway Protocol 3 (BGP-3)," RFC 1267, 35 pages
(Oct.).

Lynch, D. C. 1993. "Historical Perspective," in Internet System Handbook, eds. D. C. Lynch and M.
T. Rose, pp. 3-14. Addison-Wesley, Reading, Mass.

A description of the early days of the Internet. the ARPANET.

Macklem, R. 1991. "Lessons Learned Tuning the 4.3BSD Reno hnplementation of the NFS Proto-
col," Proceedings of the 1991 Winter USEN1X Conference, pp. 53-64, Dallas, Tex.

Describes an implementation of NFS that uses both UDP and TCP.

TCP/IP Illustrated Bibliography 549

Malkin, G. S. 1993a. "RIP Version 2: Carrying Additional Information," RFC 1388, 7 pages (Jan.).

Malkin, G. S. 1993b. "Traceroute Using an IP Option," RFC 1393, 7 pages (Jan.).
Proposed modifications to ICMP for a new version of traceroute

Mallory, T., and Kullberg, A. 1990. "Incremental Updating of the Internet Checksum," RFC 1141,
2 pages (Jan.).

Describes an implementation technique for incrementally updating the internet checksum.

Manber, U. 1990. "Chain Reactions in Networks," IEEE Computer, vol. 23, no. 10, pp. 57-63
(Oct.).

Describes types of broadcast storms and network meltdowns, similar to those demonstrated in
Exercises 9.3 and 9.4.

McCanne, S., and Jacobson, V. 1993. "The BSD Packet Filter: A New Architecture for User-Level
Packet Capture," Proceedings of the 1993 Winter USENIX Conference, pp. 259-269, San
Diego, Calif.

A detailed description of the BSD Packet Filter (BPF) and comparisons with Sun’s Network
Interface Tap (NIT). A PostScript copy of this paper is available via anonymous FTP from the
host f tp. ee. ibl. gov in the file papers/bp f-usenzx9 3. ps. Z.

McCloghrie, K., and Rose, M. T. 1991. "Management Information Base for Network Management
of TCP/IP-based Internets: MIB-II," RFC 1213 (Mar.).

McGregor, G. 1992. "PPP Internet Protocol Control Protocol (IPCP)," RFC 1332, 12 pages (May).
A description of the NCP for PPP that is specific to TCP/IP.

Mills, D. L. 1992. "Network Time Protocol (Version 3): Specification, Implementation, and Analy-
sis," RFC 1305, 113 pages (Mar.).

Mockapetris, P. V. 1987a. "Domain Names: Concepts and Facilities," RFC 1034, 55 pages (Nov.).

An introduction to the DNS.

Mockapetris, P. V. 1987b. "Domain Names: Implementation and Specification," RFC 1035,
55 pages (Nov.),

The specification of the DNS.

Mogul, J. C. 1990. "Efficient Use of Workstations for Passive Monitoring of Local Area Net-
works," Computer Communication Review, vo!. 20, no. 4, pp. 253-263 (Sept.).

Describes the use of workstations to monitor local area networks, instead of purchasing dedi-
cated network analyzer hardware.

Mogul, J. C. 1992. "Holy Turbocharger Batman, (evil cheating), NFS async writes," Message-ID
<1992Mar2.191711.9935@PA.dec.com>, Usenet, comp.protocols.nfs Newsgroup (Mar.).

Some interesting statistics on internet checksum errors collected on a busy NFS server over 40
days.

Mogul, J. C. 1993. "IP Network Performance," in Internet System Handbook, eds. D. C. Lynch and
M. T. Rose, pp. 575-675. Addison-Wesley, Reading, Mass.

Covers numerous topics in the TCP/IP protocols that are candidates for tuning to obtmn opti-
mal performance.

Mogul, J. C., and Deering, S. E. 1990. "Path MTU Discovery," RFC 1191, 19 pages (Apr.).

Mogul, J. C., and Postel, J. B. 1985. "Internet Standard Subnetting Procedure," RFC 950, 18 pages
(Aug.).

550 TCP/IP Illustrated Bibliography

Moore, K. 1993. "MIME (Multipurpose Internet Mail Extensions) Part Two: Message Header
Extensions for Non-ASCII Text," RFC 1522, 10 pages (Sept.).

Describes a way to send non-ASCII characters in RFC 822 mail headers, using 7-bit ASCII.

Moy, J. 1991. "OSPF Version 2," RFC 1247, 189 pages (July).

Nagle, J. 1984. "Congestion Control in IP/TCP Internetworks," RFC 896, 9 pages (Jan.).
Description of the Nagle algorithm.

Nye, A., ed. 1992. The X Window System, Volume O: X Protocol Reference Manual, Third Edition.
O’Reilly & Associates, Sebastopol, Calif.

Obraczka, K., Danzig, P. B., and Li, S. 1993. ~’Internet Resource Discovery Services," IEEE Com-
puter, vol. 26, no. 9, pp. 8-22 (Sept.).

Presents an overview of current Internet resource discovery tools: Alex, Archie, Gopher, Indie,
Knowbot Information Service, Netfind, Prospero, WAIS, WWW, and X.500. A PostScript copy
of this paper is available via anonymous FTP from the host caldera.usc.edu in the file
/pub/kobraczk/ieeecomputer. ps. Z

Papadopoulos,C., and Parulkar, G. M. 1993. "Experimental Evaluation of SunOS IPC and
TCP/IPProtocol Implementation," IEEE/ACM Transactions on Networking, vol. 1, no. 2,
pp. 199-216 (Apr.).

Measures the overhead involved at different layers of the protocol suite as data is sent and
received.

Partridge, C. 1986. "Mail Routing and the Domain System," RFC 974, 7 pfiges (Jan.).
How to use DNS MX records for mail routing

Partridge, C. 1994. Gigabit Networking. Addison-Wesley, Reading, Mass.

Describes the issues involved when network speeds exceed one gigabit per second.

Partridge, C., and Pink, S. 1993. "A Faster UDP," IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 429-440 (Aug.).

Describes implementation improvements to the Berkeley sources to speed up UDP performance
about 30%.

Paxson, V. 1993. "Empirically-Derived Analytic Models of Wide-Area TCP Connections:
Extended Report," LBL-34086, Lawrence Berkeley Laboratory and EECS Division, Univer-
sity of California, Berkeley (June).

Contains an analysis of 2,5 million TCP connections that occurred during 14 wide-area traffic
traces. A PostScript copy of this report is available wa anonymous FTP from the host
ftp. ee. ibl. gov in the files WAN-TCP-models. 1. ps. Z and WAN-TCP-models. 2. ps. Z.

Perlman, R. 1992. Interconnections: Bridges and Routers. Addison-Wesley, Reading, Mass.
A book with lots of details on ways to interconnect networks (bridges and routers) along with
various routing algorithms.

Plummer, D. C. 1982. "An Ethernet Address Resolution Protocol," RFC 826, 10 pages (Nov.).

Postel, J. B. 1980. "User Datagram Protocol," RFC 768, 3 pages (Aug.).

Postel, J. B., ed. 1981a. "Internet Protocol," RFC 791, 45 pages (Sept.).

Postel, J. B. 1981b. "Internet Control Message Protocol," RFC 792, 21 pages (Sept.).

Postel, J. B., ed. 1981c. "Transmission Control Protocol," RFC 793, 85 pages (Sept.).

TCP/IP Illustrated Bibliography 551

Postel, J. B. 1982. "Simple Mail Transfer Protocol," RFC 821, 68 pages (Aug.).

Postel, J. B. 1987. "TCP and IP Bake Off," RFC 1025, 6 pages (Sept.).

Describes some of the procedures and scoring performed between different implementations of
TCP/IP during its early development phases to test for interoperabihty.

Postel, J. B., ed. 1994. "Internet Official Protocol Standards," RFC 1600, 36 pages (Mar.).
The status of all Internet protocols. This RFC is updated regularly--check the latest RFC index
for the current version.

Postel, J. B., and Reynolds, J. K. 1983a. "Telnet Protocol Specification," RFC 854, 15 pages (May).
The basic Telnet protocol specification. Many later RFCs describe specific Telnet options.

Postel, J. B., and Reynolds, J. K. 1983b. "Telnet Binary Transmission," RFC 856, 4 pages (May).

Postel, J. B., and Reynolds, J. K. 1983c. "Telnet Echo Option," RFC 857, 5 pages (May).

Postel,J. B., and Reynolds, J. K. 1983d. "Telnet Suppress Go Ahead Option," RFC 858, 3 pages
(May).

Postel, J. B., and Reynolds, J. K. 1983e. "Telnet Status Option," RFC 859, 3 pages (May).

Postel, J. B., and Reynolds, J. K. 1983f. "Telnet Timing Mark Option," RFC 860, 4 pages (May).

Postel, J. B., and Reynolds, J. K. 1985. "File Transfer Protocol (FTP)," RFC 959, 69 pages (Oct.).

Postel,J. B., and Reynolds, J. K. 1988. "Standard for the Transmission of IP Datagrams over IEEE
802 Networks," RFC 1042, 15 pages (Apr.).

The specification for the encapsulation of IP datagrams and ARP requests and replies on IEEE
802 networks.

Pusateri, T. 1993. "’IP Multicast Over Token-Ring Local Area Networks," RFC 1469, 4 pages
(June).

Rago, S. A. 1993. UNIX System V Network Programming. Addison-Wesley, Reading, Mass.
A book on TLI and the streams subsystem.

Rekhter, Y., and Gross, P. 1991. "Application of the Border Gateway Protocol in the Internet,"
RFC 1268, 13 pages (Oct.).

Rekhter, Y., and Li, T. 1993. "An Architecture for IP Address Allocation with CIDR," RFC 1518,
27 pages (Sept.).

Reynolds, J. K. 1989. "The Helminthiasis of the Internet," RFC 1135, 33 pages (Dec.).
Contains a detailed discussion of the Internet worm of 1988.

Reynolds, J. K., and Postel, J. B. 1992. "Assigned Numbers," RFC 1340, !38 pages (July).

All the magic numbers in the Internet protocol suite. This RFC is updated regularly--check the
latest RFC index for the current version.

Romkey, J. L. 1988. "A Nonstandard for Transmission of IP Datagrams Over Serial Lines: SLIP,"
RFC 1055, 6 pages (June).

Rose, M. T. 1990. The Open Book: A Practical Perspective on OSI. Prentice-Hall, Englewood Cliffs,
N.J.

A book on the OSI protocols. Chapter 8 provides additional details on ASN.I and BER.

552 TCP/IP Illustrated

Rose, M.T. 1993. The Internet Message: Closing the Book with Electronic Mail. Prentice-]
wood Cliffs, N.J.

A book on Internet mail, with details on MIME.

Rose, M. T. 1994. The Simple Book: An Introduction to Internet Management, Second Ed
rice-Hall, Englewood Cliffs, N.J.

A book on SNMPv2. The first edition of this book covered SNMPvl.

Rose, M. T., and McCloghrie, K. 1990. "Structure and Identification of Management
for TCP/IP-based Intemets," RFC 1155, 22 pages (May).

Defines the SMI for SNMPvl.

Rosenberg, W., Kenney, D., and Fisher, G. 1992. Understanding DCE. O’Reilly &
Sebastopol, Calif.

Provides an overview of OSF’s Distributed Computing Environment.

Routhier, S. A. 1993. "Implementation Experience for SNMPv2," The Simple Times, v
pp. 1-4 (July-Aug.).

Describes modifying an SNMPvl implementation to support SNMPv2.

This journal is distributed electronically at no charge. Send e-mail with a subject
st-subscr~_ptions @sn_mple-t:traes. org to receive subscription information.

Schryver, V. J. 1993. "fnfo on High Speed Transport Protocols Requested," Ix
<i0imr8g@rhyolite.wpd.sgi.com>, Usenet, comp.protocols.tcp-ip Newsgroup (M

Provides TCP performance numbers for some FDDI implementations.

Schwartz, M. F., and Tsirigotis, P. G. 1991. "Experience with a Semantically Cogniza
White Pages Directory ~Ibol," Journal of lnternetworking Research and Experzence, v,
pp. 23-50 (Mar.).

Also available by anonymous FTP from the host £tp.es.colorado.edu
pub/cs/techreports/schwartz/PostScript/Wh±te. Pages.ps. Z.

Simpson, W. A. 1993. "The Point-to-Point Protocol (PPP)," RFC 1548, 53 pages (Dec.).

Defines PPP and its link control protocol.

Sollins, K. R. 1992. "The TFTP Protocol (Revision 2)," RFC 1350, 11 pages (July).

Stallings, W. 1987. Handbook of Computer-Communicatzons Standards, Volume 2: Local
dards. Macmillan, New York.

Contains details on the IEEE 802 local area network standards.

Stallings, W. 1993. SNMP, SNMPv2, and CMIP: The Practical Guzde to Network-Manage
dards. Addison-Wesley, Reading, Mass.

Describes the differences between SNMPvl and SNMPv2.

Stern, H. 1991. Managing NFS and NIS. O’Reilly & Associates, Sebastopol, Calif.
Contains lots of details on installing, using, and administering NFS.

Stevens, W. R. 1990. UNIX Network Programming. Prentice-Hall, Englewood Cliffs, N.J.
A detailed book on network programming under Unix, using sockets and TLI.

Stevens, W. R. 1992. Advanced Programming in the UNIX Environment. Addison-Wesley
Mass.

A detailed book on Unix programming.

TCP/IP Illustrated Bibliography 553

Sun Microsystems. 1987. "XDR: External Data Representation Standard,’" RFC 1014, 20 pages
(June).

Sun Microsystems. 1988a. "RPC: Remote Procedure Call, Protocol Specification, Version 2,"
RFC 1057, 25 pages (Jtme).

Sun Microsystems. 1988b. "NFS: Network File System Protocol Specification," RFC 1094,
27 pages (Mar.).

The specification of version 2 of Sun NFS.

Sun Microsystems. 1994. NFS: Network File System Version 3 Protocol Speciftcation. Sun Microsys-
terns, Mountain View, Calif.

A PostScript copy of this document is available by anonymous FTP from the host £t13. uu. net
in the file networking/ip/nfs/NFS3, spec. ps. Z.

Tanenbaum,A. S. 1989. Computer Networks, Second Edition. Prentice-Hall, Englewood Cliffs, N.J.

A general text on computer networks.

Topolcic, C. 1993. "Status of CIDR Deployment in the Internet," RFC 1467, 9 pages (Aug.).

Tsuchiya, R F. 1991. "’On the Assignment of Subnet Numbers," RFC 1219, 13 pages (Apr.).

Recommends assigning subnet IDs from the highest order bit down, and host [Ds from the low-
est order bit up. This makes it easier to change the subnet mask at some point in the future
without having to renumber all the systems.

Ullmann, R. 1993. "TP/IX: The Next Internet," RFC 1475, 35 pages (June).

Another proposal for the next generation of Internet protocols.

VanBokkelen, J. 1989. "Telnet Terminal-Type Option," RFC 1091, 7 pages (Feb.).

Waitzman, D. 1988. "Telnet Window Size Option," RFC 1073, 4 pages (Oct.).

Waitzman, D., Partridge, C., and Deering, S. E. 1988. "Distance Vector Multicast Routing Proto-
col," RFC 1075, 24 pages (Nov.).

Warnock, R. P. 1991. "Need Help Selecting Ethernet Cards for Very High Performance Through-
put Rates," Message-ID <lbhall0@sgi.sgi.com>, Usenet, comp.protocols.tcp-ip Newsgroup
(Sept.).

Provides the TCP performance numbers we calculated from Figure 24.9.

Weider, C., Reynolds, J. K., and Heker, S. 1992. "Technical Overview of Directory Services Using
the X.500 Protocol," RFC 1309, 16 pages (Mar.).

Wimer, W. 1993. "Clarifications and Extensions for the Bootstrap Protocol," RFC 1542, 23 pages
(Oct.).

X/Open. 1991. Protocols for X/Open Internetworking: XNFS. X/Open, Reading, Berkshire, U.K.

A better description of Sun RPC, XDR, and NFS. Also contains a description of the NFS lock
manager and status monitor protocols, along with appendices detaihng the semantic differences
that can be encountered using NFS, versus local file access. X/Open document number
XO/CAE/91/030.

Zimmerman, D. P. 1991. "Finger User Information Protocol," RFC 1288, 12 pages (Dec.).

Index

Rather than provide a separate glossary (with most of the entries being acronyms), this
index also serves as a glossary for all the acronyms used in the book. The primary entry
for the acronym appears under the acronym name. For example, all references to the
Network Time Protocol appear under NTP. The entry under the compound term "Net-
work Time Protocol" refers the reader back to the main entry under NTP. This is
because you are more likely to look up the acronym than the compound term. Addi-
tionally, a list of all these acronyms with their compound terms is found in the inside
back cover.

2MSL
timer, TCP, 297, 345
wait, TCP, 242-246, 261,352, 357, 429, 431,505,

517-518, 522, 534
4.2BSD, xviii, 17, 25, 119, 126, 172, 282, 335, 391,

409, 512, 528
4.3BSD, xviii, 17, 126, 172, 282, 335, 548

Reno, xviii, 17, 35, 160, 311
Tahoe, 17, 311,548

4.4BSD, xviii, 17, 29, 48, 63, 81-82, 116, 118, 123,
163, 167, 232, 251, 253, 282, 345, 347, 349, 392,
406, 411, 445, 491, 496

configuration options, 537-538
8-bit encoding, SMTP, 456

A record, DNS, 193, 201,204-205, 446
abortive release, 247, 505
absolute domain name, DNS, 189
Abstract Syntax Notation One, see ASN.1

Accetta, M., 492
ACK (acknowledgment flag, TCP header), 227

compression, 519
number, TCP, 226
smashing, 519
TCP delayed, 265-267, 277, 312, 350, 353, 418,

528, 534
acknowledgment flag, TCP header, see ACK
active

close, 233
open, 232

Adams, R., 25
address

all-subnets-directed broadcast, 45, 172
broadcast, 73
class A IP, 8
class B 1P, 8
class C IP, 8
class DIP, 8, 175, 177-178, 180

555

5S6 TCP/IP Illustrated Index

class E IP, 8
hardware, 22, 57
IP, 7-9
limited broadcast, 45, 136, 171, 173, 217-218
multicast group, 175-176
net-directed broadcast, 45, 171
protocol, 57
special case IP, 45
subnet, 42-45, 550, 553
subnet-directed broadcast, 45, 47, 136, 172-174,

178
address mask request-reply, ICMP, 72-73, 222,

532, 538
picture of, ICMP, 72

Address Resolution Protocol, see ARP
Adelman, K., 97
Advanced Research Projects Agency network, see

ARPANET
agent, SNMP, 359
AIX, xviii, 81, 116, 123, 159, 163, 237, 244, 282, 406,

433, 491
3.2.2 configuration options, 536-537

Albitz, P., 197, 543
Alex, 550
Alexander, S., 221,543
alias, DNS, 201
aliasing, 349
all-hosts group address, 183
all-subnets-directed broadcast address, 45, 172
Almquist, P., 15, 35, 46, 83, 98, 128, 151,161,172,

543-544
American Standard Code for Information

Interchange, see ASCII
anonymous, FTP, 436-438, 539
ANY record, DNS, 193
API (application program interface), 17-18
AppleTalk, 26, 374-375
application

gateway, 4
layer, 3
program interface, see API

Archie, 485, 539, 550
ARP (Address Resolution Protocol), 53-64, 550

and RARP, request-reply, picture of, 56
cache, 56, 374, 379, 533
example, 54-60
flooding, 158
gratuitous, 62-63, 543
hack, 62
interaction, UDP and, 157-159
nonexistent host, 59-60
packet format, 56-57
promiscuous° 62
proxy, 60-62, 120-121

ARPANET (Advanced Research Projects Agency
network), 15, 9t, 98, 138, 389, 545, 548

arp program, 56, 60-61, 63-64, 126, 220, 508, 530
-a option, 56, 63-64
-d option, 63
-s option, 63, 220

arpa domain, DNS, 189, 198
arp_cache_report variable, 533
arp_cleanup_interval variable, 533
arp_debug variable, 533
arpt_killc variable, 536
AS (autonomous system), 128

multihomed, 139
stub, 139
transit, 139

ASCII (American Standard Code for Information
Interchange)

NVT, 363, 401-402, 421,423, 426, 432, 442,
445-447, 453-457, 481-483, 504, 516

ASN.1 (Abstract Syntax Notation One), 386-387,
551

assassination, TCP TIME_WAIT, 518, 544
Assigned Numbers RFC, 14, 19, 98, 176, 365, 372,

403 -404
asynchronous

link, PPP, 26
WRITE, NFS, 479

at group, SNMP, 374-375
audiocast, 545
authoritative answer, DNS, 192, 196, 199
autonomous system, see AS
AXFR record, DNS, 193

backoff, exponential, 81, 299, 301, 305, 318, 325,
519, 521

bake-off, TCP/IP, 230, 551
bandwidth-delay product, TCP, 289-291,317,

344-345,356, 519
Banks, D., 356, 546
base-64 encoding, SMTP, 455-456
Basic Encoding Rules, see BER
Bellovin, S. M., xix, 342, 344, 483, 543, 545
BER (Basic Encoding Rules), 386-387, 551
Berkeley Intemet Name Domain, see BIND
Berkeley Software Distribution, see BSD
Berkeley-derived implementations, 16
BGP (Border Gateway Protocol), 129, 138-139, 548,

551
keepalive message, 139

Bhide, A., 63, 543
bibliography, alphabetical, 543-553
big packets or small packets?, TCP, 342-344
big-endian byte order, 34

TCP/IP Illustrated Index 557

binary
encoding, SMTP, 456
transmission option, Telnet, 403, 551

BIND (Berkeley lnternet Name Domain), 188, 196,
515, 523, 541, 543

body, see SMTP body
BOOTP (Bootstrap Protocol), 215-222, 543, 545,

553
chicken and egg, 220
example, 218-219
message, picture of, 216
packet format, 215-217
server, 541
server design, 219-220
through a router, 220
transaction ID, 217-218, 222
vendor-specific information, 221-222

Bootstrap Protocol, see BOOTP
Border Gateway Protocol, see BGP
Borenstem, N., 456, 543
Borman, D. A., xix, 15, 37, 253, 339, 355, 405, 408,

544, 547
Bostic, K., xix
BPF (BSD Packet Filter), 68, 491-493, 542, 549
Braden, R. T., 15, 19, 37, 46, 83, 98, 161, 245, 253,

339, 345, 352, 518, 543-544, 547
Braun, H-W., 119, 140-141, 546
bridge, 6, 514, 550
broadcast, 8, 54, 17!-172, 505

examples, 172-175
IP address, 169, 546
storm, 71,549

broadcast address, 73
all-subnets-directed, 45, 172
hmited, 45, 136, 171, 173, 217-218
net-directed, 45, 171
subnet~directed, 45, 47, 136, 172-174, 178

BSD (Berkeley Software Distribution), 16
Networking Release 1.0, 17
Networking Release 2.0, xvii, 17, 540
Networking Release 3.0, 17
packet filter, 491-493

BSD/386, xvii, 48, 73, 87-88, 93, 116, 119, 159, 163,
236-237, 244, 264, 282, 406, 408, 411,413,
432-433, 449, 491,495, 500-501,519

configuration options, 526-527
19ufraod streams module, 494
bulk data

flow, TCP, 275-296
throughput, TCP, 286-292

byte order, 465, 489
big-endian, 34
little-endian, 34
network, 34, 395

byte stream service, 224

Caceres, R., 263, 441,544
cache

ARP, 56, 374, 379, 533
DNS, 194, 203-206, 208
NFS server, 479

Calamvokis, C., 356, 546
Callon, R., 50, 544
carrier sense multiple access, see CSMA
Case d~agrams, 367, 545
Case, J. D., 360, 367, 387, 545
Casner, S., 186, 545
cat: program, 398-399, 474, 476
character-at-a-time mode, Telnet, 404, 406-411
chargen server, 16
checksum

algorithm, 36, 544, 549
errors, 147, 168, 513, 549
Ethernet, 147, 170
ICMP, 69, 228, 380, 531
1GMP, 180, 228, 531
IP, 36, 147, 170, 228, 343, 376, 513, 516, 530-531,

536
link layer, 22, 24
modem, 90
OSPE 142, 513
TCP, 147, 224, 227-228, 356, 381,531
UDP, 144-147, 170, 211,228, 356, 366, 513, 516,

527, 529, 531,533, 538
Cheriton, D. P., 186, 354, 545-546
Chesw~ck, W. R., 483, 545
chicken and egg, BOOTP, 220
Christmas tree packet, 230
CIDR (classless lnterdomain routing), 50, 140-141,

546-547, 551,553
CIX (Commercial Internet Exchange), 119
Clark, D. D., 51,325, 545
Clark, J. J., x~x
class

A IP address, 8
B IP address, 8
C IP address, 8
DIP address, 8, 175, 177-178, 180
E IP address, 8

classless interdomain routing, see CIDR
cleartext password, 137-138, 362, 388, 392, 411,

417, 427, 496
client, 3

escapes, Rlogm, 395-396
escapes, Telnet, 406
interrupt, Rlogm, 393
stub, RPC, 462
to server commands, Rlogin, 395

client-server model, 12
CLNP (Connectionless Network Protocol), 50, 141

558 TCP/IP Illustrated Index

clock synchronization, 74-77, 349, 351
clocks, computer, 499-501
close

achve, 233
passive, 233
TCP half-duplex, 262

close function, 238
CLOSED state, TCP, 240-241,246, 261,381,517
CLOSE_WAIT state, TCP, 240-241,246, 261,363,

381
CLOSING state, TCP, 241,252, 381
CNAME record, DNS, 193, 201,205-206, 446,

449-45O
Comer, D. E., 391, 545
Commercial Internet Exchange, see CIX
community, SNMP, 362, 370
compress program, 437
compressed SLIP, see CSLIP
computer clocks, 499-501
concurrent server, 12, 213, 254, 257-258, 488, 505
conf~.g program, 526-527
configuration options, 525-538

4.4BSD, 537-538
AIX 3.2.2, 536-537
BSD/386, 526-527
Solaris 2.2, 529-536
SunOS 4.1.3, 527-529
SVR4, 529

congestion
avoidance algorithm, TCP, 310-312, 547
example, TCP, 306-309, 313-316
TCE 291-292
window, 285

connection
establishment, TCP, 229-234
estabhshment timer, TCP, 235-236, 534
incarnation, 243
management, FTP, 425-431
termination, TCP, 229-234

connectionless, 33, 229
Connectionless Network Protocol, see CLNP
coimection-oriented, 223, 229
content, see SMTP content
control connection, FTP, 419
convergence, routing, 138
cookie, magic, 221
Cooper, A. W., 189, 545
Coordmated Universal Time, see UTC
Counter datatype, SNMP, 363
country domains, DNS, 189
CRC (cyclic redundancy check), 22, 27
credentials, RPC, 464
cretin, 48
Crocker, D. H., 14, 442, 452-453, 545, 548
Croft, W., 215, 545

Crowcroft, J., xix, 518, 545
CSLIP (compressed SLIP), 25, 27, 31-32, 48, 96,

274, 510, 518, 540, 547
encapsulation, 25

CSMA (carrier sense multiple access), 21, 176
Curry, D. A., 392, 481,546
cwnd variable, 285, 310-317, 534
cyclic redundancy check, see CRC

daemon, 111
routing, 127
Unix routing, 128-129

Dalton, C., 356, 546
Danzig, P. B., 188, 263, 441,485, 544, 546, 550
data com~ection, FTP, 420
Data Link Provider Interface, see DLPI
data mark command, Teh~et, 406
data representation, I~TP, 421-422
datagram, 2, 7

size, UDP maximum, 159-160
truncation, UDP, 160

data-link layer, 2
date program, 60, 264
Davm, C., 360, 545
dayt±me server, 16,411
DCE (Distributed Computing Environment), 77,

462, 552
DDN (Defense Data Network), 8
debug option, socket, 301,303-304, 313, 496-497,

505
DECnet, 26
Deering, S. E., 29-30, 97, 123, 153, 179, 185-186,

340, 545-546, 549, 553
Defense Data Network, see DDN
delay

propagation, 289
transmission, 289

delayed ACK, TCP, 265-267, 277, 312, 350, 353,
418, 528, 534

demultiplexing, 11, 36, 168, 213, 255, 262, 431,518
design

BOOTP server, 219-220
RARP server, 67-68
TCP server, 254-260
TFTP server, 212
UDP server, 162-167

DeSimone, A., xix
Destinahon Service Access Point, see DSAP
/dev/arp device, 530
/dev/~_cmp device, 530
/dev/J_p device, 530
/dev/n~t device, 493
/dev/tcp devine, 530
/dev/udp dewce, 530

TCP/IP Illustrated Index 559

DF (don’t fragment flag, IP header), 149, 151-153,
155,340, 532

DHCP (Dynamic Host Configuration Protocol),
222, 543, 546

d~_g program, 197, 541
dinosaur, 421,461
direct route, 113
directed broadcasts, forwarding, 174-175, 526,

528, 531
DIRECTED BROADCAST constant, 526, 528
d~_scard server, 16, 411
DISPLAY environment variable, 408, 489
O~_splayStr~ng datatype, SNMP, 363
D~stance-Vector Multicast Routing Protocol, see

DVMRP
distance-vector routing protocol, 137
Distributed Computing Environment, see DCE
Distributed Time Service, see DTS
Dixon, T., 50, 546
DLPI (Data Link Provider Interface), 68, 494-495
DNS (Domain Name System), 9,187-208

A record, 193, 201,204-205, 446
absolute domain name, 189
alias, 201
ANY record, 193
arpa domain, 189, 198
authoritative answer, 192, 196, 199
AXFR record, 193
cache, 194, 203-206, 208
CNAME record, 193, 201,205-206, 446,

449 -450
country domains, 189
example, 194-198, 206-207
generic domains, 189
geographical domains, 189
HINFO record, 193, 201
hostname spoofing, 200
iterative query, 192, 204-205
label, 192
message, 191-194
message, picture of, 191
MX record, 193, 201-202, 448-451,550
MX record preference value, 202, 448-451, 459
NS record, 193, 202, 204, 515
organizational domains, 189
pointer, 197
pointer query, 198-200
primary name server, 190
PTR record, 193, 199-201,438
query class, 193
recursive query, 192, 196, 204-205, 207
root name server, 190-191, 204-205, 208, 515,

546
RR, 194, 201-202
RR, picture of, 193

secondary name server, 190
timeout and retransmiss~on, 206
truncated response, 192, 206
TTL, 194, 202
UDP or TCP, 206
zone, 190
zone transfer, 190

doc program, 197, 541
dogfight, 176
domain directive, 195, 203
domain literal, 459, 523
domain name, DNS absolute, 189
Domain Name System, see DNS
don’t fragment flag, IP header, see DF
dotted-decimal notation, 7
Droms, R., 221-222, 488, 543, 546
DSAP (Destination Service Access Point), 22
ds. internic, net, 8, 484-485
DTS (Distributed Time Service), 77
DVMRP (Distance-Vector Multicast Routing

Protocol), 185, 553
Dyksen, W. R., 488, 546
Dynamic Host Conhgurahon Protocol, see DHCP
dynamic routing, 127-142

EBONE (European IP Backbone), 119
echo option, Telnet, 403, 551
echo request-reply, ICMP, 85-96, 175,493,

510-512, 532
picture of, ICMP, 86

echo server, 16, 411
Edwards, A., 356, 546
EGP (Exterior Gateway Protocol), 128-129
Einstein, A., 347
Elnozahy, E. N., 63, 543
emacs program, 393
encapsulation, 9-10

CSLIP, 25
Ethernet, 21-23, 168, 237, 547
FDDI, 548
IEEE 802, 21-23, 168, 237, 513, 551
PPP, 26-27
SLIP, 24-25
trailer, 23-24, 548

encoding
SMTP 8-bit, 456
SMTP base-64, 455-456
SMTP binary, 456
SMTP quoted-pnntable, 454-456

encrypted password, 496
end of option list, see EOL
end system, 4
end-to-end protocol, 4
enterprise, SNMP, 386

560 TCP/IP Illustrated

envelope, see SMTP envelope
environment

option, Telnet, 403, 408, 544
variable, D I S PBAY, 408, 489
variable, pRINTRR, 408

EOL (end of option list), 93, 108
ephemeral port number, 13, 533, 535
errata, 437
ESTABLISHED state, TCP, 240-241,250, 252,

254-255, 330, 363, 381,517, 521
/etc/conf/pack. fl/lp/space, c file, 529
/etc/defaultrouter file, 116
/etc/ethers file, 67
/etc/hosts file, 54
/etc/inet/rc.inet file, 116
/etc/netstart file, 116
/etc/networks file, 113
/etc/passwd file, 496
/etc/rc2.d/S69inet file, 116
/etc/rc.local file, 116
/etc/rc.net file, 116
/ etc / resolv, con f file, 195, 200
/etc/services file, 13
/etc/shadow file, 496
ether find program, 495
Ethernet, 21

checksum, 147, 170
encapsulation, 21-23, 168, 237, 547
frame, picture of, 23
frame type field, 22, 57-58, 65, 68
meltdown, 512
MTU, 30
multicasting, 176-177

European IP Backbone, see EBONE
exercises, solutions to, 507-524
expanding ring search, 182
EXPN command, SMTP, 451-452
exponential backoff, 81,299, 301,305, 318, 325, 519,

521
extended SMTP, SMTP futures, 452-454
Exterior Gateway Protocol, see EGP
external data representation, see XDR

fast retransmit and fast recovery algorithms, TCP,
309, 312-313, 344, 527, 534, 547

FCS (frame check sequence), 22
FDDI (Fiber Distributed Data Interface), 4, 178,

345, 355, 521,548
encapsulation, 548
MTU, 30
multicasting, 178, 548

Fedor, M. S., 128, 360, 545-546
Feinler, E. J., 483, 547
Fiber Distributed Data Interface, see FDDI
FIFO (first in, first out), 164, 259

file
format contro!, E!?P, ,~7
handle, NFS, 469
structure, FTP, 421
transmission mode, FTt~ t
type, FTP, 421

File Transfer Protocol, see F
FIN (finish flag, TCP header],
Finger protocol, 481-483.
finish flag, TCP header, 5.-.
Finlayson, R., 65, 172, 54(.
FIN_WAIT_I state, TCP, 24t,
FIN_WAIT_2 state, TCP,
firewall gateway, 8~,
first in, first out, see
Fisher, G., 77, 552
flooding, ARP, 158
Florence, R., 449
flow control

Rlogin, 393
TCP, 22,i, 52,,
Telnet, 408

Floyd, S., 546
Ford, P. S., 1]9, 140 ~ ~,
fork function, ~’ v~
o forward fie,
forwarding

directed broadc~_ ~:t<,
IP, 119.526, 598 ~". 9

FQDN (fu!W q<,
]9q 9, ,

fragmcn~m ~ou, .’
II< 148- 15¢,
offset field, ~]% I ’ ,

fragmentation ~’e,~,~ ~’
340, ’334

p~cture ot, iCMI-, , :
frame, 9

check sequence, ~c, ~ (
type field, fftherm.’

Freed, k(, %2-,; ,

aborting file trans<<-,
anonymous, 4~(,-
commands,
co~Dec[lo~ htana,~ <,, ,
control connection *I
data connection,
data representat,o~, -~
examples, 426-438
file format cont~o] 42!
file structure, 42 I
file [ral]Sll]lSblO!1 ,~o~{.

file type, 421
protocol, 419 42~ ~51
replies, 422-

TCP/IP Illustrated

ftp program, -d option, 426-427
full-duplex, TCP, 15, 226, 233, 239, 459
Fuller, V., 140, 546
fully qualified domain name, see FQDN
futures

extended SMTP, SMTP, 452-454
IP, 49-50
MIME, SMTP, 456-458, 542
non-ASCII headers, SMTP, 454-455
SMTP, 452-458
TCP, 339-354

garbage byte, 335
gated program, 111, 128, 132, 201,540, 546
gateway, 4

application, 4
GATEWAY constant, 526
gateway, firewall, 85, 201,483, 545
Gateway Requirements RFC, 15, 544
Gauge datatype, SNMP, 363
generic domains, DNS, 189
geographical domains, DNS, 189
Gerich, E., 140, 546
get-bulk-rec~uest operator, SNMP, 387
gethostbyaddr function, 187, 199-200, 207
gethostbyname function, 54, 187, 198
get next-request operator, SNMP, 360
get- r eque s t operator, SNMP, 360, 370- 371
get-response operator, SNMP, 360
gettimeofday function, 499-500
gigabit network, 345-347, 548, 550
Gilhgan, R., xix
Gilmore, J., 215, 545
Gitlin, J., xix
Godsil, J. M., xix
Gopher, 485, 550
Grand[, S., xix
gratuitous ARP, 62-63, 543
Gross, P., 139, 551
group address

all-hosts, 183
multicast, 175-176

Gulbenkian, J., xix
Gurwitz, R., 172, 546

hack, 35
ARP, 62

half-close, TCP, 233, 238-240, 504
half-duplex

close, TCP, 262
mode, Telnet, 404

half-open, TCP, 248
handshake, TCP three-way, 231,352
hard mount, NFS, 478

Index 561

hardware address, 22, 57
Harrenstien, K., 483, 547
Haverlock, P. M., xix
HDLC (high-level data link control), 26
header, see SMTP header

length field, IP, 34, 36-37, 91,144
length field, TCP, 226, 228

Hedrick, C. L., 129, 132, 408, 547
Heker, S., 484, 553
HELLO (routing protocol), 128-129
helminth~asis, 551
Herbert, T., xix
high-level data link control, see HDLC
Hinden, R., 172, 546
HINFO record, DNS, 193, 201
HIPPI, 355
Hogue, J. E., xix
hop-by-hop protocol, 4
Hornig, C., 22, 172, 547
host group, 176

permanent, 176
host program, 196, 199, 203-206, 446, 524, 541

-t option, 201
-v option, 202, 204

Host Requirements RFC, 15, 19, 22, 60, 64, 73, 81,
83, 105, 114, 146, 158, 163, 171,213, 222-223,
232, 262, 267, 270, 280, 293, 331,333, 347, 416,
422, 429, 431,433, 436, 448, 508, 515, 535, 544

host m~reachable, ICMP, 117-119, 317-319
hostname spoofing, DNS, 200
HP-UX, 491
Huitema, C., 140, 547
Hyperchannel MTU, 30
hypertext, 486

IAB (Internet Architecture Board), 14, 140
IANA (Internet Assigned Number Authority), 13,

16, 176, 396, 452
ICMP (lnternet Control Message Protocol), 69-83,

179-186, 550
4.4BSD processing of, 81-82
address mask request-reply, 72-73, 222, 532,

538
address mask request-reply, picture of, 72
checksum, 69, 228, 380, 531
echo request-reply, 85-96, 175, 493, 510-512,

532
echo request-reply, picture of, 86
errors, TCP, 317-318
fragmentation required, 79, 149, 151-157, 340,

534
fragmentation required, picture of, 151
host unreachable, 117-119, 317-319

562 TCP/IP Illustrated Index

message types, 70-71
network unreachable, 117-119, 317, 336
port unreachable, 77-81, 83, 98, 100, 165, 170,

247, 509,511,514
redirect, 39, 93, 95, 119-123, 126, 510, 512, 526,

528-529, 531-532, 536, 538
redirect, picture of, 122
router advertisement, picture of, 124
router discovery, 123-125, 510, 540, 546
router solicitation, picture of, 124
RTT measurement, 75
source quench, 160-162, 164, 317, 510, 532
source quench, p~cture of, 161
time exceeded, 98, 100, 106-107, 158, !82, 384,

510-511
time exceeded, picture of, 100
hmestamp request-reply, 74-77, 96, 510, 532
timestamp request-reply, picture of, 74
unreachable, 510
unreachable, picture of, 79

±crop group, SNMP, 379
±cmpaddrmask program, 72, 540
icmp bsd_compat variable, 532
icmp_def_ttl variable, 532
icmptime program, 74, 540
icmp_wroff_extra variable, 533
idempotent procedures, NFS, 478-479
identification field, IP, 36, 149-150, 513
IDRP (Interdomain Routing Protocol), 141
IEEE(Institute of Electrical and Electronics

Engineers), 21,176
802 encapsulation, 21-23, 168, 237, 513, 551
802.3/802.2 MTU, 30

IEN (Internet Experiment Notes), 172
IESG (Internet Engineering Steering Group), 14
IETF (Intemet Engineering Task Force), 14, 545
ifconfig program, 29, 33, 47-49, 51, 61,

116-117, 173, 377, 514, 525, 530
-a option, 48

IGMP (Internet Group Management Protocol), 546
checksum, 180, 228, 531
message, 180
message, picture of, 180
protocol, 180-183
reports and queries, 181
TTL, 182

IGP (interior gateway protocol), 128
implementations, Berkeley-derived, 16

TCP/IP, 16-17
in-addr.arpa domain, 198-200
m-band s~gnaling, 395
~ncarnation, connection, 243
incoming connection request queue, TCP, 257-260,

505, 534
Indue, 550

indirect route, 113
inet_addr funchon, 173
inform-request operator, SNMP, 387
initial sequence number, see ISN
input queue, UDP, 163-164
in. rdisc program, 125
instance identification

simple variables, SNMP, 368
tables, SNMP, 368

Institute of Electrical and Electronics Engineers, see
IEEE

INTEGER datatype, SNMP, 363
interactive

data flow, TCP, 263-274
input, TCP, 263-265

Interdomain Routing Protocol, see IDRP
inte~face group, SNMP, 372-374
interface, loopback, 28-29, 48, 51, 73, 96, 114-117,

159, 183, 355, 382, 486, 491,510, 531,536
intertor gateway protocol, see IGP
intermediate system, 4
Interme&ate System to Intermediate System

Protocol, see IS-IS
International Organization for Standardization,

see ISO
internet, 4, 16

layer, 2
Internet, 1, 8, 16, 19, 102, 154, 485-486, 548

worm, 481,546, 551
Internet Architecture Board, see IAB
lnternet Assigned Number Authority, see IANA
Internet Control Message Protocol, see ICMP
Internet Engineering Steering Group, see IESG
Internet Engineering Task Force, see IETF
Internet Experiment Notes, see IEN
Internet Group Management Protocol, see IGMP
lnternet Official Protocol Standards, 15
Internet Protocol, see IP
Internet Research Task Force, see IRTF
Internet Society, see ISOC
InterNIC, 8, 20, 102, 191, 208, 458, 483-485
ioctl function, 220
IP (Internet Protocol), 33-51,550

checksum, 36, 147, 170, 228, 343, 376, 513, 516,
530-531,536

datagram, 9, 150
forwarding, 119, 526, 528-529, 531,536, 538
fragment offset field, 149, 158
fragment retransmiss~on, 149
fragmentation, 148-150, 168
futures, 49-50
header, 34-37
header length held, 34, 36-37, 91, 144
header, picture of, 34
identification field, 36, 149-150, 513
opttons, 37, 91-96, 168

TCP/IP Illustrated Index 563

packet, 9, 150
protocol field, 36, 38, 70, 79, 516
reassembly, 36, 148-150
reassembly timer, 100, 158-159, 168, 536
record route option, 91-95, 97, 101,110, 168,

514
router, 4
routh~g, 37-41
security option, 37, 548
source routing LSRR option, 105-109, 511
source routing option, 104-109, 168, 384, 514,

531,537, 540
source routing SSRR option, 107-108
timestamp option, 95-96, 168, 514
total length held, 36, 144, 149
TTL, 36-37, 82, 87, 93, 97-110, 154, 182, 184,

243, 345, 351,510-511,527-530, 532-533,
535, 537-538

IPaddress, 7-9
broadcast, 169, 546
class A, 8
class B, 8
class C, 8
class D, 8, 175, 177-178, 180
class E, 8
loopback, 45, 51, 115
multicast, 169
nonlocal, 237
special case, 45
unicast, 169
wildcard, 164, 254

~_p group, SNMP, 376-379
IpAddress datatype, SNMP, 363
~p_cksum_cho~ce variable, 530
ip_debug variable, 530
±p_def_ttl variable, 530
xp_d~_rbroadcast variable, 528
±p_f orward_d± rect ed_broadcast s variable,

531
IPFORWARDING constant, 526, 528-529
ipforward~ng variable,]19, 526, 529, 536
ip_forwardlng variable, 528, 530-53]
lp_forward src routed variable, 53]
ipfragttl ~ariab~e, 536
ip_icmp_return_data_bytes variable, 79, 53]
~p_ignore_delete tlme variable, 53]
ip_zll_status variable, 53]
ip_ipzf_status variable, 53]
rap_ire_cleanup_interval variable, 53]
lp ire flush_interval variable, 531,533
ip_~re_pathmtu_znterval variable, 156, 531
xp_Ire_redirect_~nterval variable, 531
~p_ire_status variable, 531
ip_local_cksum variable, 531
~p_mrtdebug variable, 532

IPng, 50, 546
~_p_path mtu discovery variable, 156, 532
IP_RECVDSTADDR socket option, 163, 505
ip_respond to address_mask variable, 532
~_p_respond to echo_broadcast variable,

532
ip_respond to tiraestamp variable, 532
¯ p_respond to tlmestamp_broadcast

variable, 532
ip_rput_pullups variable, 532
IPSENDREDIRECTS constant, 526, 528-529
ip_sendredirects variable, 123, 528
~_psendredirects variable, 526, 529, 536
xp_send_red~_rects variable, 532
ip_send_source_quench variable, 532
~_p_subnetsarelocal variable, 528
iptrace program, 491
IPv4, 34
ip_wroff_extra variable, 532
IRTF (Internet Research Task Force), 14
IS-IS (Intermediate System to Intermediate System

Protocol), 141
is.~ntern~c.net, 8, 20, 485
ISN (initial sequence number)

TCP, 226, 231-232, 245, 247, 261,517-518
ISO (International Organization for

Standardization), 26, 189
ISOC (Internet Society), 14, 20
ISODE, 370, 386, 541
iterative

query, DNS, 192, 204-205
server, 12, 162-163, 190

Jacobson, V., xix, 25,27,31,97,104,245,253,285,
300,309-310, 312, 339, 345, 380-381,
491-493,54~ 549

Jamin, S., 263,441,544
Juszczak, C., 479,547

Kackeg M., xix
Kamikaze packeL 230
Kantog B., 391,548
Karels, M. J., xix, 23-24, 311,499, 548
Karn, R, 301,548
Karn’s algorithm, TCE 301,304-305,357,521,548
Katz, D., 178,548
keepalive

example, TCE 333-336
message, BGE 139
timeg TCE 297,331-337, 417,473-474,505,

520,527-529,535,537
Kenne~D., 77,552
Kent, C. A., 149,548
Kent, S.T., 37,548

564 TCP/IP Illustrated Index

Kerberos, 392, 417
Kernighan, B. W., v, xix
Kleinrock, L., 346, 548
Klensin, J., 452-453, 548
kludge line mode, Telnet, see line at a time mode,

Telnet
Knowbots, 550
Krol, E., 539, 548
Kullberg, A., 37, 549
Kumar, A., 188, 546

label, DNS, 192
lamp test segment, 230
LAN (local area network), 3
LaQuey, T., 539, 548
last in, first out, see LIFO
LAST_ACK state, TCP, 240-241,381
layer

application, 3
dataqink, 2
internet, 2
network, 2
network interface, 2
transport, 2

layering, 1-7, 545
LBX (low bandwidth X)

X Window System, 490
LCP (link control protocol), 26, 552
Leffler, S.J., 23-24, 311,499, 548
Leres, C., 491
lexicographic ordering, SNMP, 368-369
LFN (long fat network), 344
Li, S., 485, 550
Li, T., 140, 546, 551
LIFO (last in, first out), 164, 259
limited broadcast address, 45, 136, 171, 173,

217-218
line-at-a-time mode (kludge line mode), Telnet,

404, 413-415
linemode option, Telnet, 403, 408, 544
linemode, Telnet, 404, 411-413, 415-416
link control protocol, see LCP
link layer, 2, 21-32

checksum, 22, 24
~LINK0 constant, 48
LINK1 constant, 48
LINK2 constant, 48
link-state routing protocol, 137
LISTEN state, TCP, 240-241,254-255, 381
little-endian byte order, 34
Liu, C., 197, 543
LLC (logical link control), 22
load balancing, 138
local area network, see LAN

localhost hostname, 28
lock manager, NFS, 469, 553
logical link control see LLC
long fat network, see LFN
long fat pipe, 344

TCP, 344-347, 547
longest match, 140
loopback

interface, 28-29, 48, 51, 73, 96, 114-117, 159,
183, 355, 382, 486, 491, 510, 531,536

IP address, 45, 51, 115
MTU, 51,508

loop_check_sum variable, 536
loose source and record route, see LSRR
Lougheed, K., 138, 548
low bandwidth X, see LBX
LSRR (loose source and record route), 104

IP source routing, 105-109, 511
Lucchina, P., xix
Lumley, J., 356, 546
Lynch, D. C., 1,548

Macklem, R., 473, 548
magic cookie, 221
Malkin, G. S., 110, 136, 549
Mallory, T., 37, 549
management information base, see MIB
Manber, U., 512, 549
Mann, T., 65, 546
manual pages, Unix, xviii
Margolin, B., xix
mask, noncontiguous subnet, 508

subnet, 43-45, 136
match, longest, 140
maximum segment lifetime, see MSL
maximum segment size, see MSS
maximum transmission unit, see MTU
MBONE (multicast backbone), 186, 545
McCanne, S., 491-493, 549
McCloghrie, K., 359-360, 365, 387, 545, 549, 552
McGregor, G., 26, 549
McKusick, M. K., xix, 24, 311,499, 548
mechanism, routing, 112, 128
meltdown, Ethernet, 512
message transfer agent, see MTA
MetaMail program, 542
metrics

RIP, 131-132
TCP per-route, 316-317, 322, 340

MIB (management information base)
SNMP, 359, 365-367, 372-382, 549

Military Network, see MILNET
Mills, D. L., 77, 499, 549
MILNET (Military Network), 483-484

TCP/IP Illustrated Index 565

MIME (multipurpose Intemet mail extensions),
456

SMTP futures, 456-458, 542
Mitzel, D.J., 263, 441,544
Mockapetris, P. V., xix, 188, 549
modem

checksum, 90
latency, 90

Mogul, J. C, xv, 29-30, 42, 65, 147, 149, 153, 237,
282, 340, 342, 492, 519, 546, 548-549

Moore, K, 453-455, 548, 550
Morgan, S. P., 63, 543
mount

NFS hard, 478
NFS soft, 478
protocol, NFS, 470-471

mount program, 470-47l
mountd program, 470
Moy, J., 137, 550
MSL (maximum segment lifetime), 242-244, 246,

262, 345, 351, 357
MSS (maximum segment size)

option, TCP, 227, 231,236-238, 253, 276, 341,
354, 526-528, 535, 537

TCP, 236-238, 285, 313, 320, 325, 340-341,357
MTA (message transfer agent), 442
MTU (maximum transmission unit), 29, 49

discovery, TCP path, 340-344, 534
discovery, UDP path, 151, 155-157
Ethernet, 30
FDDI, 30
Hyperchannel, 30
IEEE 802.3/802.2, 30
loopback, 51,508
path, 30, 531-532, 549
PPP, 30
SLIP, 30
token ring, 30
traceroute program, path, 153-154, 541
X.25, 30

multicast, 8
backbone, see MBONE
group address, 175-176
IP address, 169

multicasting, 175-178, 545-546
Ethernet, 176-177
examples, 183-186
FDDI, 178, 548
token ring, 178, 551

multihomed, 5, 47, 73, 92, 171, 196, 254-255, 383,
385

AS, 139
multipurpose Internet marl extensions, see MIME
Muuss, M., 85, 503

MX record, DNS, 193, 201-202, 448-451, 550
preference value, DNS, 202, 448-451,459

Nagle algorithm, TCP, 267-274, 506, 535, 550
disabling, TCP, 269-274

Nagle, J, 267, 550
name server, 187, 543

DNS primary, 190
DNS root, 190-191,204-205, 208, 515, 546
DNS secondary, 190

named program, 188, 541
nameserver directive, 195,203
NASA Science Internet, see NSI
nastygram, 230
National Optical Astronomy Observatories, see

NOAO
National Science Foundation network, see

NSFNET
NCP (Network Control Protocol), 15, 26, 549
ndd program, 529
Nelson, B., xix
Net/l, see BSD Networking Release 1.0
Net/2, see BSD Networking Release 2 0
Net/3, see BSD Networking Release 3 0
net-directed broadcast address, 45, 171
Netfind program, 484, 550
net. inet. icmp.maskrepl variable, 538
net. inet. ip. forwarding variable, 538
net. inet. ip. redirect variable, 538
net. inet. ip. ttl variable, 538
net. inet. udp. checksum variable, 538
netstat program, 32-33, 49, 51, 83, 111, 113-114,

117-118, 152,]64-166, 168, 183-184, 240,
244, 254-256, 378, 509-5]0, 514, 530

-a option, 164,]83, 254
-f option,]65,254
-i option, 49,]83
-n ophon, 49, 113,]64, 183, 254
-r ophon, 113,514
-s option, 509-510

network
byte order, 34, 395
element, SNMP, 359
interface layer, 2
interface tap, see NIT
layer, 2
management stahon, 359
unnumbered, 138
unreachable, ICMP, 1!7-119, 317, 336
vlrtual terminal, see NVT

Network Control Protocol, see NCP
Network File System, see NFS
Network Information Center, see NIC
Network News Transfer Protocol, see NNTP

566 TCP/IP Illustrated Index

Network Time Protocol, see NTP
next-hop router, 38, 54, 104, 113, 119, 384
NFS (Network File System), 461-480, 542

asynchronous WRITE, 479
examples, 474-479
hle handle, 469
hard mount, 478
idempotent procedures, 478-479
lock manager, 469, 553
mount protocol, 470-471
over TCP, 473-474
procedures, 471-472
protocol, 467-474, 553
server cache, 479
soft mount, 478
statelessness, 476-478
status monitor, 469,553
synchronous WRITE, 472, 479
timeout and retransmission, 159, 476, 478
UDP or TCP?, 473
Version 3, 479, 553

n£sd program, 468
NIC (Network Information Center), 8, 102
hie. c/dn .mil, 8, 102, 191,483
Nickelsen, J., 503
NIT (network interface tap), 68, 493-494, 549
nit buf streams module, 493
n~_t if streams module, 493
no_t_pf streams module, 494
NNTP (Network News Transfer Protocol), 35
no operation, see NOP
no program, 536
NOAO (National Optical Astronomy

Observatories), xix, 18
noao. edu networks, 18-19, 44, 134, 190, 438
non-ASCII headers, SMTP futures, 454-455
noncontiguous subnet mask, 508
nonlocal IP address, 237
nonlocsrcroute variable, 537
NOP (no operation), 93, 253, 402
NS record, DNS, 193, 202, 204, 515
NSFNET (National Science Foundation network),

19, 103, 106-107, 118-119, 128, 507
NSI (NASA Science Internet), 103, 119
nslookup program, 197,524
NTP (Network Time Protocol), 76-77, 176, 549
NVT (network virtual terminal), 401

ASCII, 363, 401-402, 421,423, 426, 432, 442,
445-447, 453-457, 481-483, 504, 516

Nye, A., 486, 550

OBJECT IDENTIFIER datatype, SNMP, 363
object identifiers, SNMP, 364-365
Obraczka, K., 188, 485, 546, 550

octet, 9
OCTET STRING datatype, SNMP, 363
offered w~ndow, 280
Official Protocol Standards, Internet, 15
opaque, XDR, 469
open

active, 232
passive, 232

open shortest path first, see OSPF
Open Software Foundation, see OSF
open system, 1
open systems interconnect~on, see OSI
options

IP, 37, 168
IP record route, 91-95, 97, 101, 110, 168, 514
IP source routing, 104-109, 168, 384, 514, 531,

537, 540
IP source routing LSRR, 105-109, 511
IP source routing SSRR, 107-108
IP timestamp, 95-96, 168, 514
negotiation, Telnet, 402-403
TCP, 253-254

orderly release, 247
organizational domains, DNS, 189
OSF (Open Software Fom~dation), 77, 462, 552
OSI (open systems intercormection), 26, 50, 141,

250, 260, 484, 494, 551
OSPF(open shortest path first), 128-129, 137-138,

550
checksum, 142, 513

out-of-band
data, 293
signaling, 395

packet filter, BSD, 491-493
Papadopoulos, C., 282, 550
Partridge, C, xxx, 37, 185, 301,346, 356, 367, 448,

544-545, 548, 550, 553
Parulkar, G. M., 282, 550
passive

close, 233
open, 232

password
cleartext, 137-138, 362, 388, 392, 411,417, 427,

496
encrypted, 496

path MTU, 30, 531-532, 549
discovery, TCP, 340-344, 534
discovery, UDP, 151, 155-157
traceroute program, 153-154, 541

PAWS (protection agatnst wrapped sequence
numbers)

TCP, 351,541,547
Paxson, V., 391,441,550

TCP/IP Illustrated Index 567

PDU (protocol data unit), 362
peer, 3
performance, TCP, 354-356, 544, 546, 552-553
Perlman, R., 6, 50, 111, 138, 141,186, 550
permanent host group, 176
per-route metrics, TCP, 316-317, 322, 340
persist

example, TCP, 323-325
timer, TCP, 297, 323-330, 399

pfmod streams module, 494
PhysAddress datatype, SNMP, 363
piggyback, 265
ping program, 85-96, 110, 114, 118, 121, 152,

173-175, 178, 501,510-512, 540
-1 option, 110
-R option, 91, 110
-s option, 86,89
-v option, 121

Pink, S., 356, 550
PIP, 50, 546
pipelining, 523
Pirard, A., 455
Plummer, D. C, 53, 63, 550
pointer

DNS, 197
query, DNS, 198-200

Point-to-Point Protocol, see PPP
policy, routing, 112, 128
policy-based routing, 139
port mappe~, 465-467
port number, 10, 12-13

ephemeral, 13, 533, 535
reserved, 13, 396, 418, 480, 522, 524, 533, 536
TCP, 226
TCP server, 254-255
UDP, 144
well-known, 12

port unreachable, ICMP, 77-81, 83, 98, 100, 165,
170, 247, 509, 511,514

Portable Operating System Interface, see POSIX
POSIX (Portable Operating System Interface), 479
Postel, J. B., 15, 22, 33, 35-36, 42, 46, 69, 92, 98, 143,

161, 167-168, 189, 223, 230, 232, 243,
401-402, 404, 408, 413, 419, 442, 512,
543 -545, 549 -55 l

PPP (Point-to-Point Protocol), 26-27, 29, 490, 549,
552

asynchronous link, 26
encapsulation, 26-27
encapsulation, picture of, 26
MTU, 30
synchronous link, 26

p~e%rence value, DNS MX record, 202, 448-451,
459

primary name serx, er, DNS, 190
principle, robustness, 19, 508
PR:CNTER environment variable, 408
process, 180
promiscuous

ARP, 62
mode, 169, 177, 491

propagation delay, 289
Prospero, 550
protection against wrapped sequence numbers, see

PAWS
protocol

address, 57
data unit, see PDU
held, IP, 10, 36, 38, 70, 79, 516
suite, 1
Unix domain, 486

proxy ARP, 60-62, 120-121
pseudo-header

TCP, 227
UDP, 145

pseudo-terminal, 390
PSH (push flag, TCP header), 227

TCP, 284-285, 535
PTR record, DNS, 193, 199-201,438
Pusateri, T., 178, 551
push flag, TCP header, see PSH

Quarterman, J S., 24, 311,499, 548
query class, DNS, 193
queueing, SLIP, TOS, 30, 35
qmet time, TCP, 246
quoted-printable encoding, SMTP, 454-456

Rago, S A., xi×, 493, 551
RARP (Reverse Address Resolution Protocol),

65-68, 546
example, 66-67
packet format, 65
request-reply, picture of, ARP and, 56
server design, 67-68
tlmeout and retransmission, 66

rarpd program, 66, 492-493
Rashid, R., 492
rdaee program, 74, 76
read-ahead, 476
reassembly

IP, 36, 148-150
timer, IP, 100, 158-159, 168, 536

receive buffer
TCP, 280, 282-283, 326, 329, 347-349, 357, 398,

506, 520-521,527-528, 537
UDP, 159, 163, 506, 527, 529, 537

record route option, IP, 91-95, 97, 101,110, 168, 514

568 TCP/IP Illustrated Index

recursive query, DNS, 192, 196, 204-205, 207
redirect, ICMP, 39, 93, 95, 119-123, 126, 510, 512,

526, 528-529, 531-532, 536, 538
picture of, ICMP, 122

Rekhter, Y., 119, 138-141,546, 548, 551
relay agents, SMTP, 446
release

abortive, 247, 505
orderly, 247

religious issue, 331, 476
remote flow control option, Telnet, 403, 408, 547
remote procedure call, see RPC
remote terminal protocol, see Telnet
repacketization, TCP, 272, 296, 320, 519
replay, transaction, 352
Request for Comment, see RFC
reserved port number, 13, 396, 418, 480, 522, 524,

533, 536
reset flag, TCP header, see RST
reset segment, TCP, see RST
resolver, 54, 187
resource record, see RR
restricting

foreign IP address, TCP, 256
foreign IP address, UDP, 166, 504
local IP address, TCP, 256
local IP address, UDP, 164-16~

retransmission
ambiguity problem, 301, 521
DNS timeout and, 206
IP fragment, 149
NFS timeout and, 159, 476, 478
RARP timeout and, 66
RPC timeout and, 463, 523
SNMP timeout and, 360
TFTP timeout and, 81,211,213
time out, see RTO
hmer, TCP, 297

retry intervals, SMTP, 448
Reverse Address Resolution Protocol, see RARP
Reynolds, J. K., !5, 22, 35, 401-402, 404, 408, 413,

419, 458, 481,484, 551,553
RFC (Request for Comment), 14-15, 539

Assigned Numbers, 14, 19, 98, 176, 365, 372,
403 -404

Gateway Requirements, 15, 544
Host Requirements, 15, 19, 22, 60, 64, 73, 81, 83,

105, 114, 146, 158, 163, 171,213, 222-223, 232,
262, 267, 270, 280, 293, 331, 333, 347, 416, 422,
429, 431,433, 436, 448, 508, 515, 535, 544

Router Requirements, 15, 46, 98, 128, 151, 161,
543

¯ rhosts file, 200, 392
ring search, expanding, 182

RIP (Routing Information Protocol), 128-136, 547
example, 132-136
message format, 129
message, picture of, 130
metrics, 131-132
problems, 132
protocol, 130-131
version 2, 136-137, 176, 549

rlpquery program, 132-133
-n option, 132

Risner, J., xix
Rlogin

chent escapes, 395-396
client interrupt, 393
client to server commands, 395
examples, 396-401
flow control, 393
protocol, 391-396, 548
server to client commands, 394
window size changes, 393-394

rlogJ_n program, 270-271,382
robustness pnnciple, 19, 508
Romkey, J. L., 24, 551
root name server, DNS, 190-191,204-205, 208,

515, 546
root-servers .txt file, 191
Rose, M. T., 359-360, 365, 367, 370, 387, 452-453,

458, 523, 545, 548-549, 55]-552
Rosenberg, W., 77, 552
round-trip hme, see RTT
route

direct, 113
indirect, 113

route program, 111, 116, 126-128, 317
routed program, 111, 128, 130, 171
router, 4

advertisement, picture of, ICMP, 124
discovery, ICMP, 123-125, 510, 540, 546
IP, 4
next-hop, 38, 54, 104, 113, 119, 384
sohcitahon, picture of, ICMP, 124

Router Requirements RFC, 15, 46, 98, 128, 151,161,
543

Routh~er, S. A., 388, 552
routing, 111-142

daemon, 127
daemon, Unix, 128-129
domain, 136
domain, top-level, 119
dynamic, 127-142
IP, 37-41
mechanism, 112, 128
policy, 112, 128
policy-based, 139
principles, 112-117

TCP/IP Illustrated Index 569

protocol, 127
protocol, distance-vector, 137
protocol, lmk-state, 137
tables, SNMP, 383-385

Routing Information Protocol, see RIP
RPC (remote procedure call)

client stub, 462
credentials, 464
server stub, 462
Sun, 461-465, 542, 553
tlmeout and retransmission, 463, 523
transport independent, Sun, 463
verifier, 464
XID, 463-464, 474, 480, 523-524

rpcblnd program, 465
rpc3_nfo program, 466
RR (resource record)

DNS, 194, 201-202
picture of, DNS, 193

rsh program, 64, 239, 508
rs. 3_nternic. net, 8, 102, 191,483-484
RST (reset flag, TCP header), 227

TCP, 246-250
RTO (retransmiss~on time out)
RTO variable, 299-301,304-306, 353, 357, 519
RTT (round-trip time)

example, TCP, 301-306
measurement, ICMP, 75
measurement, TCP, 299-301,345, 349

rwho program, 171
rwhod program, 171

SACK (selective acknowledgment), 345
TCP, 226, 254, 547

Schmidt, D. C., xix
Schoffstall, M. L., 360, 545
Schryver, V. J., 355, 552
Schwartz, M. F., 484, 552
Seaver, T, 97
secondary name server, DNS, 190
security, 546

option, IP, 37, 548
t cpdump, 496
TFTP, 213

segment, TCP, 9, 224
selective acknowledgment, see SACK
self-clockmg behavior, TCP, 289
send buffer

TCP, 282, 284-285, 294, 398-399, 506, 527-528,
536-537

UDP, 159, 506, 527, 529, 537
SEQUENCE datatype, SNMP, 363
sequence number, TCP, 226
SEQUENCE OF datatype, SNMP, 364

Serial Line Internet Protocol, see SLIP
serial line throughput, 30-31, 89
server, 3

cache, NFS, 479
concurrent, 12, 213, 254, 257-258, 488, 505
design, BOOTP, 219-220
design, RARP, 67-68
design, TCP, 254-260
design, TFTP, 212
design, UDP, 162-167
iteratlve, 12, 162-163, 190
port number, TCP, 254-255
stub, RPC, 462
to chent commands, Rlog~n, 394

services, standard, s~mple, 15
set-request operator, SNMP, 360
shutdown function, 238
signaling

in-band, 395
out-of-band, 395

silly window syndrome, see SWS
Simonsen, K. J., 455
Simple Mall Transfer Protocol, see SMTP
Simple Network Management Protocol, see SNMP
simple services, standard, 15
SIMPLEX constant, 48
Simpson, W A., 26, 552
simultaneous

close, TCP, 252
open, TCP, 250-251

SIP, 50, 546
Sirovica, D., 518, 545
Sktbo, T., XlX
Slattery, T., 503
sliding wmdow, TCP, 275, 280-282
SLIP (Serial Line Internet Protocol), 29, 32, 490,

540, 551
dialup, 90
encapsulation, 24-25
encapsulation, picture of, 25
hardwired, 89
MTU, 30
TOS queueing, 30, 35

slow start, TCP, 285-286, 306, 547
SMI (structure of management information)

SNMP, 360, 363-364, 552
SMTP (Simple Mail Transfer Protocol), 441-459,

551
&bit encoding, 456
base-64 encoding, 455-456
binary encoding, 456
body, 445-446
commands, 445
content, 446
envelope, 445-446

57O TCP/IP Illustrated

examples, 442-444, 448-452
EXPN command, 451-452
futures, 452-458
futures, extended SMTP, 452-454
futures, MIME, 456-458, 542
futures, non-ASCII headers, 454-455
headers, 445-446
protocol, 442-448
quoted-printable encoding, 454-456
relay agents, 446
retry intervals, 448
VRFY command, 451-452

SNMP (Simple Network Management Protocol),
359-388

agent, 359
at group, 374-375
commumty, 362, 370
Counter datatype, 363
DisplayStrlng datatype, 363
enterprise, 386
examples, 370-371,382-385
Gauge datatype, 363
get-bulk-request operator, 387
get-next-request operator, 360
get-request operator, 360, 370-371
get-response operator, 360
icmp group, 379
inform-request operator, 387
instance identification, simple variables, 368
instance identification, tables, 368
INTEGER datatype, 363
interface group, 372-374
ip group, 376-379
IpAddress datatype, 363
lexicographic ordering, 368-369
MIB, 359, 365-367, 372-382, 549
network element, 359
OBJECT IDENTIFIER datatype, 363
object identifiers, 364-365
OCTET STRING datatype, 363
PhysAddress datatype, 363
protocol, 360-362
routing tables, 383-385
SEQUENCE datatype, 363
SEQUENCE OF datatype, 364
set-request operator, 360
SMI, 360, 363-364, 552
system group, 372
table access, 371
tcp group, 379-382
tlmeout and retransmission, 360
TlmeTlcks datatype, 363
trap operator, 360
traps, 385-386
Version 2, 387-388, 545, 552

Index

snmpl program, 370, 374-375, 377, 386
-a option, 370
-c option, 370

snoop program, 134-136, 491,495
-P option, 135
-r option, 135
-t option, 135
-v option, 135

SO_BROADCAST socket option, 174, 505
sock program, 146-147, 149, 157, 159, 161-162,

165-166, 243, 247, 251,261, 275, 282, 294, 301,
318, 320, 324, 326, 333, 341,347, 357, 497,
503-506, 517, 542

-A option, 165, 167, 245, 505
-B option, 505
-b option, 244, 251, 504
-c option, 504
-D option, 301,497, 505
-E option, 163-164,505
-F option, 505
-f option, 166,504
-h option, 504
-i option, 148, 275, 505
-K option, 333, 505
-L option, 247-248, 505
-N option, 506
-n option, 148, 294, 505
-O option, 258, 506
-P option, 163, 294, 324, 506
-p option, 505
-Q option, 506
-q option, 258, 505
-R option, 163, 506
-r option, 163, 505
-S option, 283, 294, 506
-s option, 133, 163, 275, 505
-U option, 294, 506
-u option, 147, 163, 505
-v option, 147, 163, 244, 251,505
-w option, 148, 505

socket
debug option, 301,303-304, 313, 496-497, 505
definition of, 226
pair, 226, 243-245, 431,517, 522
Unix domain, 487

socket option
IP_RECVDSTADDR, 163, 505
SO BROADCAST, 174, 505
SO_DEBUG, 505
SO KEEPALIVE, 505
SO_LINGER, 247, 505
SO_RCVBUF, 348, 506
SO_REUSEADDR, 165, 167, 243-245, 429, 431,

505
SO_REUSEPORT ,]67

TCP/IP Illustrated Index 571

SO_SNDBUF, 294, 506
TCP_MAXSEG, 251,294, 348
TCP_NODELAY, 270, 506, 535

socket program, 503
sockets API, 17, 159-160, 174, 180, 238, 282, 284,

293, 461,463, 542, 545, 552
sockio program, 503
SO DEBUG socket option, 505
sof~-mount, NFS, 478
so KEEPALIVE socket option, 505
So~aris, xviii, 13, 79, 81, 93,]10,]14, 116, 119, 123,

125, 134, 152, 155-156, 159-160, 163,]80,
237, 244, 257-258, 260, 282, 299, 340, 406, 433,
465, 469, 491,494-495, 508, 510, 512

2.2 configuration options, 529-536
SO LINGER socket option, 247, 505
So~ns, K. R., 209, 552
solutions to exercises, 507-524
SO_RCVBUF socket option, 348, 506
SO_REUSEADDR socket option, 165, 167, 243-245,

429, 431,505
SO_REUSEPORT socket option, 167
SO_SNDBUF socket option, 294, 506
source code availability, 539-542
source quench, ICMP, 160-162, 164, 317, 510, 532

picture of, ICMP, 161
source routing, option, IP, 104-109, 168, 384, 514,

531,537, 540
LSRR option, IP, 105-109, 511
SSRR option, IP, 107-108

source service access point, see SSAP
special case IP address, 45
spoofing, DNS hostname, 200
SprintLink, 119
SSAP (source service access point), 22
SSRR (strict source and record route), 104

IP source routing, 107-108
ssthresh variable, 310-314, 316-317
Stahl, M. K., 483, 547
Stallings, W., 22, 387, 552
standard, simple services, 15
standardization process, 14
state transition diagram, TCP, 240-246
statelessness, NFS, 476-478
status monitor, NFS, 469, 553
status option, TeLnet, 403, 408, 551
Stefferud, E. A., 452-453, 548
Stern, H., 467, 552
Stevens, D. A., xix
Stevens, D. L., 391,545
Stevens, E. M., xix
Stevens, S. H., xix
Stevens, W. R., 18, 85, 162, 209, 211,239, 354, 391,

398, 462, 472, 484, 552
Stevens, W. R., xix

stop-and-wait protocol, 211,213, 219, 275, 321,516,
519

streams, 493, 551
streams module

bufmod, 494
n~_t_buf, 493
nit_if, 493
n±t_pf, 494
pfmod, 494

strict source and record route, see SSRR
structure of management information, see SM!
stub

AS, 139
RPC client, 462
RPC server, 462

subnet
address, 42-45, 550, 553
example, 46-47
mask, 43-45, 136
mask, noncontiguous, 508
variable-length, 46, 138

subnet-directed broadcast address, 45, 47, 136,
172-174, 178

SUBNETSARELOCAL constant, 526, 528
subnetsarelocal variable, 526, 537-538
suboption negotiation, Telnet, 404
summarization, 140
Sun Microsystems, 462, 465, 467, 479, 540, 553
Sun RPC, 461-465, 542, 553

transport independent, 463
SunOS, xviii, 48, 63, 110, 116, 119, 123, 159, 163,

167, 172, 200, 237, 244, 259, 282, 295, 380, 406,
433, 450, 469, 491-493, 495-496, 509, 513, 541

4.1.3 configuration options, 527-529
supernetting, 140, 546
suppress go ahead option, Telnet, 403, 407, 551
SVR4, xviii, 49, 63, 68, 72, 75, 89, 93, 110, 116, 119,

123, 160, 163, 237, 244, 282, 321,325, 396, 406,
431,433,465, 469, 496, 500-501,519, 524

configuration options, 529
SWS (silly wfi~dow syndrome)

TCP, 325-330, 545
SYN (synchronize sequence numbers flag, TCP

header), 227
synch signal, Telnet, 406, 433-436
synchronization, clock, 74-77, 349, 351
synchronize sequence numbers flag, TCP header,

see SYN
synchronous

link, PPP, 26
WRITE, NFS, 472, 479

SYN_RCVD state, TCP, 240-241,250-251,381
SYN_SENT state, TCP, 240-241,250-251,381
sysctl program, 537
system group, SNMP, 372

572 TCP/IP Illustrated Index

T1 carrier, definition of, 290
T3 carrier, defimtion of, 290
Tanenbaum, A. S., 27, 553
TCP (Transmission Control Protocol), 223-357, 551

2MSL timer, 297, 345
2MSL wait, 242-246, 261,352, 357, 429, 431,

505, 517-518, 522, 534
ACK number, 226
and UDP with b~gger addresses, see TUBA
bandwidth-delay product, 289-291,317,

344-345, 356, 519
big packets or small packets?, 342-344
bulk data flow, 275-296
bulk data throughput, 286-292
checksum, 147, 224, 227-228, 356, 381,531
CLOSED state, 240-241,246, 261,381,517
CLOSE_WAIT state, 240-241,246, 261,363,381
CLOSING state, 241,252, 381
congestion, 291-292
congestion avoidance algorithm, 310-312, 547
congestion example, 306-309, 313-316
connection establishment, 229-234
connection establishment timer, 235-236, 534
connection termination, 229-234
delayed ACK, 265-267, 277, 312, 350, 353, 418,

528, 534
DNS UDP or, 206
ESTABLISHED state, 240-241,250, 252,

254-255, 330, 363, 381,517, 521
fast retransm~t and fast recovery algorithm,

309, 312-313, 344, 527, 534, 547
FIN_WAIT_I state, 241,252, 330, 381
FIN_WAIT_2 state, 241,246, 261,330, 381
flow control, 224, 227, 280-282, 310
full-duplex, 15, 226, 233, 239, 459
futures, 339-354
half-close, 233, 238-240, 504
half-duplex close, 262
half-open, 248
header, 225-227
header length field, 226, 228
header, pxcture of, 225
ICMP errors, 317-318
~ncoming connection request queue, 257-260,

505, 534
interactive data flow, 263-274
interactive ~nput, 263-265
ISN, 226, 231-232, 245, 247, 261,517-518
Karn’s algorithm, 301,304-305, 357, 521,548
keepalive example, 333-336
keepahve timer, 297, 331-337, 417, 473-474,

505, 520, 527-529, 535, 537
LAST_ACK state, 240-241,381
LISTEN state, 240-241,254-255, 381

long fat p~pe, 344-347, 547
MSS, 236-238, 285, 313, 320, 325, 340-341,357
MSS option, 227, 231,236-238, 253, 276, 341,

354, 526-528, 535, 537
Nagle algorithm, 267-274, 506, 535, 550
Nagle algorithm, d~sablmg, 269-274
options, 253-254
path MTU discovery, 340-344, 534
PAWS, 351,541,547
performance, 354-356,544, 546, 552-553
per-route metrics, 316-317, 322, 340
persist example, 323-325
persist t~mer, 297, 323-330, 399
port number, 226
pseudo-header, 227
PSH, 284-285, 535
quiet time, 246
receive buffer, 280, 282-283, 326, 329, 347-349,

357, 398, 506, 520-521,527-528, 537
repacket~zat~on, 272, 296, 320, 519
restricting foreign IP address, 256
restricting local IP address, 256
retransm~ssion timer, 297
RST, 246-250
RTT example, 301-306
RTT measurement, 299-301,345, 349
SACK, 226, 254, 547
segment, 9, 224
self-clocking behavior, 289
send buffer, 282, 284-285, 294, 398-399, 506,

527-528, 536-537
sequence number, 226
server design, 254-260
server port number, 254-255
services, 223-225
s~multaneous close, 252
simultaneous open, 250-251
sliding window, 275, 280-282
slow start, 285-286, 306, 547
state transition diagram, 240-246
SWS, 325-330, 545
SYN_RCVD state, 240-241,250-251,381
SYN_SENT state, 240-241,250-251,381
three-way handshake, 231,352
t~meout and retransmission, 297-322
t~mestamp option, 253, 349-350, 541,547
TIME_WAIT assassination, 518, 544
TIME_WAIT state, 241-246, 252, 260, 262, 297,

352-353, 356-357, 381,517-51~3, 522, 534, 544
transactxon, 351-354, 544
urgent mode, 292-296, 393-394, 396, 398-399,

406, 409, 415, 4t7, 434, 436, 506, 522, 535
urgent pointer, 227, 292, 416, 436
window advertisement, 274

TCP/IP Illustrated Index 573

window probe, 323
window scale ophon, 253, 347-349, 541,547
window size, 227, 282-284
window update, 279
zero window, 281,324-325, 399

tep group, SNMP, 379-382
tcp_close_wait_±nterval variable, 534
tcp_conn_grace_perlod variable, 534
tcp_conn_req_max varlable, 534
tcp_cwnd_max variable, 534
tcp_debug varmble, 534
tcp_default_mss variable, 528
tcp_deferred_ack interval variable, 534
tcpdump program, 5~-60, 62, 66, 72, 77-78,

80-8], 83, 87, 93, 99, 107-]08, 110, 118,
]33-]34,]46-150, 152, 155,]57-]58,]6],
]69, 174, 184,]94-196, 199-200, 203-206,
212, 218-219, 222, 230-23], 234-235, 238,
248-249, 253, 256, 258, 260-261,270-272,
274, 277, 294, 298, 30], 303-305, 307, 309, 3]3,
318, 320, 324, 329, 334-336, 341,348, 351,370,
375, 385-386, 406, 449, 451,474-476, 480,
491-497, 499,501,508, 513, 523, 542

-e option, 58, 66, 72, 78, 89, 496
-z option, 133
-n option, 59, 62
-r option, 203
-s option, 133
-$ option, 234
-v option, 93, 107, 110
-w option, 203

tcpdump, output, 495
security, 496
time line, 80-81

tcp_dupack_fast_retransm~t variable, 534
tcp_eager_listeners variable, 260,534
tcp_ignore_path_mtu variable, 534
TCP/IP implementations,]6-]7
tcp_zp_abort_c~nterval variable, 534
tcp_ip_abort_znterval variable, 299, 534
tcp_ip_notlfy_c±nterval variable, 534
tcp_~p_notify_~nterval variable, 534
tcp_±p_ttl varlable, 535
tcp_keepalive_znterval variable, 535
tcp_keepidle variable, 527-529, 537-538
tcp_keepintvl varmble, 527, 529, 537
tcp_keeplen variable, 528
tcp_largest_anon_port variable, 535
tcp_maxpsz_multzpller variable, 535
TCP_MAXSEG socket option, 251,294, 348
top_mss_def variable, 535
tcp_mssdflt variable, 526-527
tcp_mss_max variable, 535
tcp_mss_min variable, 535

tcp_nagllm_def variable, 535
tcp_nodelack varmble, 528
TCP_NODELAY socket option, 270, 506, 535
tcp_old_urp_nnterpretat~on variable, 535
tcp_rcv_push_walt variable, 535
tcp_recvspace varmble, 527-528, 537
tcp_rexmit_znterval_.in~t±al varmble, 535
tcp_rexmlt_znterval_max variable, 535
tcp_rexmlt_znterval_mzn varlable, 535
tcprexmtthresh variable, 527
tcp_rwln_credlt_pct varlable, 535
tcp_sendspace variable, 527-528, 537
tcp_smallest_anon_port variable, 535
tcp_sraallest_nonprlv_port variable, 536
tcp_snd_lowat_fractlon variable, 536
tcp_status varmble, 536
tcp_sth_rcv_hlwat variable, 536
tcp sth rcv lowat variable, 536
t cp~tt l~varid-ble, 527-528, 537
tcp wroff xtra variable, 536
Teln~t (remo~e terminal protocol)

binary transmission option, 403, 551
character-at-a-time mode, 404, 406-411
client escapes, 406
commands, 401-402
data mark command, 406
echo option, 403, 551
environment ophon, 403, 408, 544
examples, 406-416
flow control, 408
half-duplex mode, 404
line-at-a-time mode (kludge hne mode), 404,

413-415
linemode, 404, 411-413, 415-416
hnemode option, 403,408,544
option negotiation, 402-403
protocol, 401-406, 551
remote flow control option, 403, 408, 547
status option, 403, 408, 551
suboption negotiation, 404
suppress go ahead ophon, 403, 407, 551
synch signal, 406, 433-436
terminal speed option, 403, 408, 547
terminal type option, 403-404, 408, 553
timing mark ophon, 403, 551
window size option, 403, 553

telnet program, 57, 60, 76, 229, 233, 235-236
terminal

speed option, Telnet, 403, 408, 547
type option, Telnet, 403-404, 408, 553

test network, 18-19
TFTP (Trivial File Transfer Protocol), 66, 77-78,

80-81,163, 174, 209-213, 215, 219,321,546
example, 211-212

574 TCP/IP Illustrated Index

message, picture oL 210
protocol, 209-211,552
security, 213
server design, 212
tlmeout and retransmission, 81,211,213

/tftpboot file, 213
The[mer, M., 65, 546
three-way handshake, TCP, 231,352
throughput serial line, 30 3], 89
time exceeded, ICMP, 98, 100, 106-107, 158, 182,

384, 510-511
picture of, ICMP, 100

time line, tcpdump, 80-81
t±me program, 162
t ±rae server, 16
time to live, see TTL
t±raed program, 77
timeout and retransmission

DNS, 206
NFS, 159, 476, 478
RARP, 66
RPC, 463, 523
SNMP, 360
TCP, 297-322
TFTP, 81,211,213

timer
IP reassembly, 100, 158-159, 168, 536
TCP 2MSL, 297, 345
TCP connection estabhshment, 235-236, 534
TCP keepalive, 297, 331-337, 417, 473-474, 505,

520, 527-529, 535, 537
TCP persist, 297, 323-330, 399
TCP retransmission, 297

hmestamp option
IP, 95-96, 168, 514
TCP, 253, 349-350, 541,547

timestamp request-reply, ICMP, 74-77, 96, 510,
532

picture of, ICMP, 74
TiraeT±eks datatype, SNMP, 363
TIME_WAtT

assassination, TCP, 518, 544
state, TCP, 241-246, 252, 260, 262, 297, 352-353,

356-357, 381,517-518, 522, 534, 544
timing mark option, Telnet, 403, 551
tinygram, 267
TI-RPC, 463, 542
TLI (Transport Layer Interface), 17, 461,463, 542,

551-552
token ring

MTU, 30
multicasting, 178, 551

top-level routing domain, 119
Topolcic, C., 139-140, 553
Toporek, J., xix

TOS (type of service), 34-35, 83, 122, 138, 236, 420,
427, 429, 509, 543

queueing, SLIP, 30, 35
total length field, IP, 36, 144, 149
TP/IX, 50, 553
traceroute program, 30, 87, 89, 97-110,

153-154, 197, 340, 383-384, 437, 501,
510-512, 540, 549

-g option, 105, 107, 384
-G option, 107-108
path MTU, 153-154, 541

trailer encapsulation, 23-24, 548
transaction, 352

ID, see XID
ID, BOOTP, 217-218,222
replay, 352
TCP, 351-354, 544

transit AS, 139
Transmission Control Protocol, see TCP
transmission delay, 289
transport independent, Sun RPC, 463
transport layer, 2
Transport Layer Interface, see TLI
trap operator, SNMP, 360
traps, SNMP, 385-386
Trivial File Transfer Protocol, see TFTP
trpt program, 301,497, 505
truncated response, DNS, 192, 206
truncation, UDP datagram, 160
Tmrigotis, P. G., 484, 552
Tsuchiya, P. E, 51,553
T/TCP, 351-354, 544
ttcp program, 503, 542
TTL (time to live)

DNS, 194, 202
IGMP, 182
IP, 36-37, 82, 87, 93, 97-110, 154, 182, 184, 243,

345, 351,510-511,527-530, 532-533, 535,
537-538

TUBA (TCP and UDP with bigger addresses), 50,
544, 546

type of service, see TOS
typographical conventions, xvii~

UDP (User Datagram Protocol), 143-168, 550
and ARP interaction, 157-159
checksum, 144-147, 170, 211,228, 356, 366, 513,

516, 527, 529, 531,533, 538
client IP address and port number, 162
datagram truncation, 160
destination IP address, 163, 505
header, 144
header, picture of, 144
input queue, 163-164

TCP/IP Illustrated Index 575

maximum datagram size, 159-160
multiple recipients per port, 167
or TCP, DNS, 206
path MTU discovery, 151, 155-157
port number, 144
pseudo-header, 145
receive buffer, 159, 163, 506, 527, 529, 537
restricting foreign IP address, 166, 504
restricting local IP address, 164-166
send buffer, 159, 506, 527, 529, 537
server design, 162-167

udpcksum variable, 527
udp_cksum variable, 529
udp_def_LL1 variable, 533
udp_do_checksum variable, 533
udp_largest_anon_port variable, 533
udp_recvspace variable, 527, 529, 537
udp_sendspace variable, 527, 529, 537
udp_sraallest_anon_port variable, 533
udp_sraallest_nonprzv_port variable, 533
udp_status variable, 533
udp_trust_optlen variable, 533
udp_ttl variable, 527, 529, 537
udp_wroff_extra variable, 533
Ullmarm, R., 50, 553
Ultrix, 491-492, 541
uncompress program, 437
unicast, 8

IP address, 169
Unix

domain protocol, 486
domain socket, 487
manual pages, xviii
routing daemon, 128-129

Unix-to-Unix Copy, see UUCP
unnumbered network, 138
unreachable, ICMP, 510

ptcture of, ICMP, 79
unreliable, 5, 33, 162
update, TCP window, 279
URG (urgent pointer flag, TCP header), 227
urgent

mode, TCP, 292-296, 393-394, 396, 398-399,
406, 409, 415, 417, 434, 436, 506, 522, 535

pointer flag, TCP header, see URG
pointer, TCP, 227, 292, 416, 436

usable window, 280
useloopback variable, 29
user agent, 441
User Datagram Protocol, see UDP
/usr/kvm/sys/netinet/in_proto. c file, 528
/usr/src/sys/netinet directory, 527
UTC (Coordinated Universal Time), 74
UUCP (Unix-to-Unix Copy), 201,449

VanBokkelen, J., 404, 408, 553
Varadhan, K., 140, 546
variable-length subnet, 46, 138
vendor-specific information, BOOTP, 221-222
veriher, RPC, 464
Veromca, 485
virtual circmt service, 351
VMTP, 545
VRFY command, SMTF, 451-452

WAIS, 485, 550
Walt, J. W., v, xlx
Waitzman, D., 185, 408, 553
Wakeman, 1., 518, 545
Waldbusser, S., 387, 545
Walquist, C., xlx
WAN (wide area network), 1
Wang, Z., 518, 545
Warnock, R. P., 354-355, 553
Watson, G., 356, 546
wc program, 211
Weider, C., 484, 553
well-known port number, 12
white pages, 484, 552
whozs program, 483,524

-h option, 483
Whois protocol, 483-484, 547
wide area network, see WAN
wildcard IP address, 164, 254
Wimer, W., 215, 553
window

advertisement, TCP, 274
close, 280
manager, X Window System, 486
open, 280
probe, TCP, 323
scale option, TCP, 253, 347-349, 541, 547
shrink, 280
size changes, Rlogin, 393-394
size option, Telnet, 403, 553
size, TCP, 227, 282-284
TCP sliding, 275, 280-282
update, TCP, 279

Wmterbottom, P., xix
Wolff, R., x~x
Wolff, S., xix
Wood, C. P., 97
World Wide Web, see WWW
worm, Internet, 481,546, 551
Wright, G A., xix
WWW (World Wide Web), 486, 550

576

X Window System, 269, 486-490, 546
LBX, 490
w~ndow manager, 486
Xscope program, 488-489

X.25 MTU, 30
X.500, 484, 550, 553
×clock program, 489
XDR (external data representation), 465, 553

opaque, 469
XID (transaction ID)

RPC, 463-464, 474, 480, 523-524
X/Open, 17, 467, 469, 553

Transport Layer Interface, see XTI
Xscope program, X Window System, 488-489
XTI (X/Open Transport Layer Interface), 17

Yost, D., 503
Yu, J. Y., 140, 546

zero windo~; TCP, 281,324-325, 399
Zhang, L., 245, 547
Zimmerman, D. P, 481,553
zone, DNS, 190

transfer, DNS, 190

at w’ w.aw.com/csen register

You may be eligible to receive:
¯ Advance notice of forthcoming editions of the book

I book recommendations
¯Chapter excerpts and supplements of forthcoming titles
¯Information about special contests and

promotions throughout the year
¯Notices and reminders about author appearances,

tradeshows, and online chats with spedal guests

Contact us
If you are. interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.aw.com/cseng

ACK
API
ARP
ARPANET
AS
ASCII
ASN.1
BER
BGP
BIND
BOOTP
BPF
BSD
CIDR
CIX
CLNP
CRC
CSLIP
CSMA
DCE
DDN
DF
DHCP
DLPI
DNS
DSAP
DTS
DVMRP
EBONE
EGP
EOL
FCS
FDDI
FIFO
FIN
EQDN
FFP
HDLC
HELLO
IAB
iANA
ICMP
IDRP
!I~EE
iEN
IESG
tETF
IGMP
IGP
IP
IRTF
IS-IS
ISN
ISO
ISOC
LAN
LBX
LCP
LFN
LIFO
LLC

ACRONYMS

acknowledgment flag, TCP header, p. 227
application progra_m interface, p. 17
Address Resolution Protocol, p. 53
Advanced Research Projects Agency network, p. 548
autonomous system, p. 128
American Standard Code for Information Interchange, p 401
Abstract Syntax Notation One, p. 386
Basic Encoding Rules, p 386
Border Gateway Protocol, p. 138
Berkeley Internet Name Domain, p. 188
Bootstrap Protocol, p. 215
BSD Packet Filter, p. 49!
Berkeley Software Dlstr~bt~t~on, p. 16
classless interdornain routing, p !40
Commercial Internet Exchange, p 1!9
Connectionless Network Protocol, p. 50
cychc redundancy check, p 22
compressed SLIP, p. 25
carrier sense multiple access, p. 2!
Distributed Computing Enw_ronment, p 462
Defense Data Network, p. 8
don’t fragment flag, IP header, p 149
Dynarmc Host Conflg~aration Protocol, p. 222
Data Link Provider Interface, p 494
Domain Name System, p. 187
Destination Service Access Point, p. 22
D~strlbuted T~me Serwce, p. 77
Distance-Vector Multicast Routing Protocol, p 185
European IP Backbone, p 119
Exterior Gateway Protocol, p. 128
end of option hst, p. 93
frame check sequence, p 22
Fiber D~stributed Data Interface, p 4
first m, first out, p. 259
finish flag, TCP heade~_; p. 227
fully qualified domain name, p. 189
File Transfer Protocol, p. 419
high-level data hnk control, p 26
ro~t~ng protocol, p 128
Internet Architecture Board, p. 14
]nternet Assigned Number Authority, p 13
Inte~net Control Message Protocol, p. 69
Interdomain Routing Protocol, p. 14!
Institute of Electrical and Electronics Engineers, p. 21
Internet Expemnent Notes, p. !72
Internet Engmeenng Steering Group, p 14
Internet Engineering Task Force, p. !4
Internet Group Management Protocol, p. !79
interior gateway protocol, p 128
Internet Protocol, p. 33
Internet Research Task Force, p. 14
intermedlate System to Intermediate System Protocol, p. !41
initial sequence nu.mber, p. 226
International Orgamzation for Standar&zation, p. 26
Internet Society, p 14
loca! area network, p 3
low bandwidth X, p 490
hnk control protocol, p 26
long fat network, p. 344
last in, first out, p. 259
logical hnk control, p. 22

LSRR
MBONE
MIB
MILNET
MIME
MSL
MSS
MTA
MTU
NCP
NFS
NtC
NIT
NNTP
NOAO
NOP
NSFNET
NSi
NTP
NVT
OSF
OSI
OSPF
PAWS
PDU
POSiX
PPP
PSH
RARP
RFC
R!P
RPC
RR
RST
RTO
RTT
SACK
SLIP

SMTP
SNMP
SSAP
SSRR
SWS
SYN
TCP
TFTP
TLI
TOS
T]TL
TUBA
Telnet
UDP
URG
UTC
UUCP
WAN
WWW
XDR
XID
XTI

ACRONYMS

loose source and record route, p 104
multlcast backbone, p. !86
management information base, p. 365
MllitaW Network, p. 483
multipurpose Internet mail extensions, p. 456
maximum segment lifetime, p 242
maximum segment size, p. 236
message transfer agent, p. 442
maximum transmission unit, p. 29
Network Control Protocol, p. 15
Network File System, p. 461
Network Information Center, p. 8
network interface tap, p 493
Net-work News Transfer Protocol, p. 35
Nat~ona! Optical Astronomy Observatories, p i8
no operation, p. 93
Natior~al Science Foundation network, p 103
NASA Scmnce internet, p. 103
Network T~me Protocol, p. 77
network virtual terminal, p 401
Open Software Foundation, p 462
open systems ~nterconnection, p. 26
open shortest path first, p. 137
protection against wrapped sequence numbers, p. 351
protocol data unit, p. 362
Portable Operating System Interface, p. 479
Point-to-Point Protocol, p. 26
push flag, TCP headm; p. 227
Reverse Address Resolution Protocol, p. 65
Request for Comment, p. 14
Routing Information Protocol, p 129
remote procedure call, p. 461
resource record, p. 201
reset flag, TCP header, p. 246
retransmission t~me out, p. 299
round-trip time, p. 299
selective acknowledgment, p. 345
Serial Line Internet Protocol, p. 24
structure of management ~nformation, p 363
S~mple Mail Transfer Protocol, p. 44!
Simple Network Management Protoco!, p. 359
source service access point, p. 22
strict source and record route, p 104
silly window syndrome, p. 325
synchromze sequence numbers flag, TCP header, p. 23!
Transmission Control Protocol, p. 223
Trivial F~le Transfer Protocol, p. 209
Transport Layer Interface, p. 17
type-of-service, p. 34
time-to-live, p. 36
TCP and UDP with bigger addresses, p. 50
rempte terminal protocol, p 401
User Datagram Pro.tocol, p. 143
urgent pointer flag, TCP header, p 292
Coordinated Universal Time, p 74
Unix-to-Unix Copy, p 201
wMe area network, p. 1
World W~de Web, p. 486
external data representation, p. 465
transaction ID, p. 463
X/Open Transport Layer Interface, p. 17

ISB~....... 6-9

$65.95 US
$98.95 CANADA

