
6
THE TRANSPORT LA YER

The transport layer is not just another layer. It is the heart of the whole proto­
col hierarchy. Its task is to provide reliable, cost-effective data transport from the
source machine to the destination niachine, independent of the physical network
or networks currently in use. Without the transport layer, the whole concept of
layered protocols would make little sense. In this chapter we will study the trans­
port layer in detail, including its services, design, protocols, and performance.

6.1. THE TRANSPORT SERVICE

In the following sections we will provide an introduction to the transport ser­
vice. We look at what kind of service is provided to the application layer (or ses­
sion layer, if one exists), and especially how one can characterize the quality of
service. Then we will look at how applications access the transport service, that
is, what the interface is like.

6.1.1. Services Provided to the Upper Layers

The ultimate goal of the transport layer is to provide efficient, reliable, and
cost-effective service to its users, normally processes in the application layer. To
achieve this goal, the transport layer makes use of the services provided

479

480 THE TRANSPORT LAYER CHAP. 6

by the network layer. The hardware and/or software within the transport layer
that does the work is called the transport entity. The transport entity can be in
the operating system kernel, in a separate user process, in a library package bound
into network applications, or on the network interface card. In some cases, the
carrier may even provide reliable transport service, in which case the transport
entity lives on special interface machines at the edge of the subnet to which hosts
connect. The (logical) relationship of the network, transport, and application
layers is illustrated in Fig. 6-1.

Host 1

Application

(or session) Application/transport
layer Transport interface

____- address /
1--~~~---~~~~

Network ----­
address

Network layer

TPDU

' Transport/network
interface

Transport
protocol

Host 2

Application
(or session)

layer

Network layer

Fig. 6-1. The network, transport, and application layers.

Just as there are two types of network service, connection-oriented and con­
nectionless, there are also the same two types of transport service. The
connection-oriented transport service is similar to the connection-oriented net­
work service in many ways. In both cases, connections have three phases: estab­
lishment, data transfer, and release. Addressing and flow control are also similar
in both layers. Furthermore, the connectionless transport service is also very
similar to the connectionless network service.

The obvious question is then: If the transport layer service is so similar to the
network layer service, why are there two distinct layers? Why is one layer not
adequate? The answer is subtle, but crucial, and goes back to Fig. 1-16. In this
figure we can see that the network layer is part of the communication subnet and
is run by the carrier (at least for WANs). What happens if the network layer
offers connection-oriented service but is unreliable? Suppose that it frequently
loses packets? What happens if routers crash from time to time?

Problems occur, that's what. The users have no control over the subnet, so
they cannot solve the problem of poor service by using better routers or putting
more error handling in the data link layer. The only possibility is to put another

SEC. 6.1 THE TRANSPORT SERVICE 481

layer on top of the network layer that improves the quality of the service. If a
transport entity is informed halfway through a long transmission that its network
connection has been abruptly terminated, with no indication of what has happened
to the data currently in transit, it can set up a new network connection to the
remote transport entity. Using this new network connection, it can send a query to
its peer asking which data arrived and which did not, and then pick up from where
it left off.

In essence, the existence of the transport layer makes it possible for the trans­
port service to be more reliable than the underlying network service. Lost packets
and mangled data can be detected and compensated for by the transport layer.
Furthermore, the transport service primitives can be designed to be independent of
the network service primitives which may vary considerably from network to net­
work (e.g., connectionless LAN service may be quite different than connection-­
oriented WAN service).

Thanks to the transport layer, it is possible for application programs to be
written using a standard set of primitives, and to have these programs work on a
wide variety of networks, without having to worry about dealing with different
subnet interfaces and unreliable transmission. If all real networks were flawless
and all had the same service primitives, the transport layer would probably not be
needed. However, in the real world it fulfills the key function of isolating the
upper layers from the technology, design, and imperfections of the subnet.

For this reason, many people have made a distinction between layers 1
through 4 on the one hand, and layer(s) above 4 on the other. The bottom four
layers can be seen as the transport service provider, whereas the upper layer(s)
are the transport service user. This distinction of provider versus user has a
considerable impact on the design of the layers and puts the transport layer in a
key position, since it forms the major boundary between the provider and user of
the reliable data transmission service.

6.1.2. Quality of Service

Another way of looking at the transport layer is to regard its primary function
as enhancing the QoS (Quality of Service) provided by the network layer. If the
network service is impeccable, the transport layer has an easy job. If, however,
the network service is poor, the transport layer has to bridge the gap between what
the transport users want and what the network layer provides.

While at first glance, quality of service might seem like a vague concept (get­
ting everyone to agree what constitutes "good" service is a nontrivial exercise),
QoS can be characterized by a number of specific parameters, as we saw in Chap.
5. The transport service may allow the user to specify preferred, acceptable, and
minimum values for various service parameters at the time a connection is set up.
Some of the parameters also apply to connectionless transport. It is up to the
transport layer to examine these parameters, and depending on the kind of

482 THE TRANSPORT LAYER CHAP. 6

network service or services available to it, determine whether it can provide the
required service. In the remainder of this section we will discuss some possible
QoS parameters. They are summarized in Fig. 6-2. Note that few networks or
protocols provide all of these parameters. Many just try their best to reduce the
residual error rate and leave it at that. Others have elaborate QoS architectures
(Campbell et al., 1994).

Connection establishment delay

Connection establishment failure probability

Throughput

Transit delay

Residual error ratio
--

Protection

Priority

Resilience

Fig. 6-2. Typical transport layer quality of service parameters.

The Connection establishment delay is the amount of time elapsing between a
transport connection being requested and the confirmation being received by the
user of the transport service. It includes the processing delay in the remote trans­
port entity. As with all parameters measuring a delay, the shorter the delay, the
better the service.

The Connection establishment failure probability is the chance of a connec­
tion not being established within the maximum establishment delay time, for
example, due to network congestion, lack of table space somewhere, or other
internal problems.

The Throughput parameter measures the number of bytes of user data
transferred per second, measured over some time interval. The throughput is
measured separately for each direction.

The Transit delay measures the time between a message being sent by the
transport user on the source machine and its being received by the transport user
on the destination machine. As with throughput, each direction is handled
separately.

The Residual error ratio measures the number of lost or garbled messages as
a fraction of the total sent. In theory, the residual error rate should be zero, since
it is the job of the transport layer to hide all network layer errors. In practice it
may have some (small) finite value.

The Protection parameter provides a way for the transport user to specify
interest in having the transport layer provide protection against unauthorized third
parties (wiretappers) reading or modifying the transmitted data.

SEC. 6.1 THE TRANSPORT SERVICE 483

The Priority parameter provides a way for a transport user to indicate that
some of its connections are more important than other ones, and in the event of
congestion, to make sure that the high-priority connections get serviced before the
low-priority ones.

Finally, the Resilience parameter gives the probability of the transport layer
itself spontaneously terminating a connection due to internal problems or conges­
tion.

The QoS parameters are specified by the transport user when a connection is
requested. Both the desired and minimum acceptable values can be given. In
some cases, upon seeing the QoS parameters, the transport layer may immediately
realize that some of them are unachievable, in which case it tells the caller that the
connection attempt failed, without even bothering to contact the destination. The
failure report specifies the reason for the failure.

In other cases, the transport layer knows it cannot achieve the desired goal
(e.g., 600 Mbps throughput), but it can achieve a lower, but still acceptable rate
(e.g., 150 Mbps). It then sends the lower rate and the minimum acceptable rate to
the remote machine, asking to establish a connection. If the remote machine can­
not handle the proposed value, but it can handle a value above the minimum, it
may make a counteroffer. If it cannot handle any value above the minimum, it
rejects the connection attempt. Finally, the originating transport user is informed
of whether the connection was established or rejected, and if it was established,
the values of the parameters agreed upon.

This process is called option negotiation. Once the options have been nego­
tiated, they remain that way throughout the life of the connection. To keep custo­
mers from being too greedy, most carriers have the tendency to charge more
money for better quality service.

6.1.3. Transport Service Primitives

The transport service primitives allow transport users (e.g., application pro­
grams) to access the transport service. Each transport service has its own access
primitives. In this section, we will first examine a simple (hypothetical) transport
service and then look at a real example.

The transport service is similar to the network service, but there are also some
important differences. The main difference is that the network service is intended
to model the service offered by real networks, warts and all. Real networks can
lose packets, so the network service is generally unreliable.

The (connection-oriented) transport service, in contrast, is reliable. Of course,
real networks are not error-free, but that is precisely the purpose of the transport
layer-to provide a reliable service on top of an unreliable network.

As an example, consider two processes connected by pipes in UNIX. They
assume the connection between them is perfect. They do not want to know about
acknowledgements, lost packets, congestion, or anything like that. What they

484 THE TRANSPORT LAYER CHAP. 6

want is a 100 percent reliable connection. Process A puts data into one end of the
pipe, and process B takes it out of the other. This is what the connection-oriented
transport service is all about-hiding the imperfections of the network service so
that user processes can just assume the existence of an error-free bit stream.

As an aside, the transport layer can also provide unreliable (datagram) ser­
vice, but there is relatively little to say about that, so we will concentrate on the
connection-oriented transport service in this chapter.

A second difference between the network service and transport service is
whom the services are intended for. The network service is used only by the
transport entities. Few users write their own transport entities, and thus few users
or programs ever see the bare network service. In contrast, many programs (and
thus programmers) see the transport primitives. Consequently, the transport ser­
vice must be convenient and easy to use.

To get an idea of what a transport service might be like, consider the five
primitives listed in Fig. 6-3. This transport interface is truly bare bones but it
gives the essential flavor of what a connection-oriented transport interface has to
do. It allows application programs to establish, use, and release connections,
which is sufficient for many applications.

Primitive TPDU sent Meaning

LISTEN (none) Block until some process tries to connect

CONNECT CONNECTION REQ. Actively attempt to establish a connection
--~

SEND DATA Send information

RECEIVE (none) Block until a DATA TPDU arrives

DISCONNECT DISCONNECTION REQ. This side wants to release the connection

Fig. 6-3. The primitives for a simple transport service.

To see how these primitives might be used, consider an application with a
server and a number of remote clients. To start with, the server executes a LISTEN

primitive, typically by calling a library procedure that makes a system call to
block the server until a client turns up. When a client wants to talk to the server,
it executes a CONNECT primitive. The transport entity carries out this primitive by
blocking the caller and sending a packet to the server. Encapsulated in the pay­
load of this packet is a transport layer message for the server's transport entity.

A quick note on terminology is now in order. For lack of a better term, we
will reluctantly use the somewhat ungainly acronym TPDU (Transport Protocol
Data Unit) for messages sent from transport entity to transport entity. Thus
TPDUs (exchanged by the transport layer) are contained in packets (exchanged by
the network layer). In turn, packets are contained in frames (exchanged by the
data link layer). When a frame arrives, the data link layer processes the frame
header and passes the contents of the frame payload field up to the network entity.

SEC. 6.1 THE TRANSPORT SERVICE 485

The network entity processes the packet header and passes the contents of the
packet payload up to the transport entity. This nesting is illustrated in Fig. 6-4.

Frame
header

Packet
header

TPDU
header

TPDU payload

1---·-----Packet payload--------1

Frame payload

Fig. 6-4. Nesting of TPDUs, packets, and frames.

Getting back to our client-server example, the client's CONNECT call causes a
CONNECTION REQUEST TPDU to be sent to the server. When it arrives, the trans­
port entity checks to see that the server is blocked on a LISTEN (i.e., is interested
in handling requests). It then unblocks the server and sends a CONNECTION

ACCEPTED TPDU back to the client. When this TPDU arrives, the client is
unblocked and the connection is established.

Data can now be exchanged using the SEND and RECEIVE primitives. In the
simplest form, either party can do a (blocking) RECEIVE to wait for the other party
to do a SEND. When the TPDU arrives, the receiver is unblocked. It can then pro­
cess the TPDU and send a reply. As long as both sides can keep track of whose
turn it is to send, this scheme works fine.

Note that at the network layer, even a simple unidirectional data exchange is
more complicated than at the transport layer. Every data packet sent will also be
acknowledged (eventually). The packets bearing control TPDUs are also
acknowledged, implicitly or explicitly. These acknowledgements are managed by
the transport entities using the network layer protocol and are not visible to the
transport users. Similarly, the transport entities will need to worry about timers
and retransmissions. None of this machinery is seen by the transport users. To
the transport users, a connection is a reliable bit pipe: one user stuffs bits in and
they magically appear at the other end. This ability to hide complexity is the rea­
son that layered protocols are such a powerful tool.

When a connection is no longer needed, it must be released to free up table
space within the two transport entities. Disconnection has two variants: asym­
metric and symmetric. In the asymmetric variant, either transport user can issue a
DISCONNECT primitive, which results in a DISCONNECT TPDU being sent to the
remote transport entity. Upon arrival, the connection is released.

In the symmetric variant, each direction is closed separately, independently of
the other one. When one side does a DISCONNECT, that means it has no more data

486 THE TRANSPORT LAYER CHAP. 6

to send, but it is still willing to accept data from its partner. In this model, a con­
nection is released when both sides have done a DISCONNECT.

A state diagram for connection establishment and release for these simple
primitives is given in Fig. 6-5. Each transition is triggered by some event, either a
primitive executed by the local transport user or an incoming packet. For simpli­
city, we assume here that each TPDU is separately acknowledged. We also
assume that a symmetric disconnection model is used, with the client going first.
Please note that this model is quite unsophisticated. We will look at more realis­
tic models later on.

Connection request Connect primitive

TPDU '""'''(-----------------1~--ID_L_E-~1--------..1""'"'''

PASSIVE
ESTABLISHMENT

PENDING

I
I
I
I , ________________ ,...

ESTABLISHED

ACTIVE
ESTABLISHMENT

PENDING

j
Connect primitive

executed
Connection ac cepted

d

est Disconnection requ
TPDU recei ved

PASSIVE
DISCONNECT...,. __________ _

PENDING

I
I
I

___ ...

TPDU receive
I

Disconnect primitive I

' I executed
I
I ACTIVE I

I DISCONNECT
PENDING

IDLE Discon:~""e""ci- - - - - - - - -- - - - - -I
primitive executed ~-----'

Disconnection request
TPDU received

Fig. 6-5. A state diagram for a simple connection management scheme. Transi­
tions labeled in italics are caused by packet arrivals. The solid lines show the
client's state sequence. The dashed lines show the server's state sequence.

Berkeley Sockets

Let us now briefly inspect another set of transport primitives, the socket prim­
itives used in Berkeley UNIX for TCP. They are listed in Fig. 6-6. Roughly
speaking, they follow the model of our first example but offer more features and
flexibility. We will not look at the coffesponding TPDUs here. That discussion
will have to wait until we study TCP later in this chapter.

The first four primitives in the list are executed in that order by servers. The
SOCKET primitive creates a new end point and allocates table space for it within

SEC. 6.1 THE TRANSPORT SERVICE 487

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Block the caller until a connection attempt arrives

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Fig. 6-6. The socket primitives for TCP.

the transport entity. The parameters of the call specify the addressing format to
be used, the type of service desired (e.g., reliable byte stream), and the protocol.
A successful SOCKET call returns an ordinary file descriptor for use in succeeding
calls, the same way an OPEN call does.

Newly created sockets do not have addresses. These are assigned using the
BIND primitive. Once a server has bound an address to a socket, remote clients
can connect to it. The reason for not having the SOCKET call create an address
directly is that some processes care about their address (e.g., they have been using
the same address for years and everyone knows this address), whereas others do
not care.

Next comes the LISTEN call, which allocates space to queue incoming calls for
the case that several clients try to connect at the same time. In contrast to LISTEN

in our first example, in the socket model LISTEN is not a blocking call.
To block waiting for an incoming connection, the server executes an ACCEPT

primitive. When a TPDU asking for a connection arrives, the transport entity
creates a new socket with the same properties as the original one and returns a file
descriptor for it. The server can then fork off a process or thread to handle the
connection on the new socket and go back to waiting for the next connection on
the original socket.

Now let us look at the client side. Here, too, a socket must first be created
using the SOCKET primitive, but BIND is not required since the address used does
not matter to the server. The CONNECT primitive blocks the caller and actively
starts the connection process. When it completes (i.e., when the appropriate
TPDU is received from the server), the client process is unblocked and the con­
nection is established. Both sides can now use SEND and RECEIVE to transmit and
receive data over the full-duplex connection.

Connection release with sockets is symmetric. When both sides have exe­
cuted a CLOSE primitive, the connection is released.

488 THE TRANSPORT LA YER CHAP. 6

6.2. ELEMENTS OF TRANSPORT PROTOCOLS

The transport service is implemented by a transport protocol used between
the two transport entities. In some ways, transport protocols resemble the data
link protocols we studied in detail in Chap. 3. Both have to deal with error con­
trol, sequencing, and flow control, among other issues.

However, significant differences between the two also exist. These differ­
ences are due to major dissimilarities between the environments in which the two
protocols operate, as shown in Fig. 6-7. At the data link layer, two routers com­
municate directly via a physical channel, whereas at the transport layer, this phy­
sical channel is replaced by the entire subnet. This difference has many important
implications for the protocols.

Router Router Subnet

\ ~ D o,Host
·-~------·

\Physical
communication channel

(a) (b)

Fig. 6-7. (a) Environment of the data link layer. (b) Environment of the trans­
port layer.

For one thing, in the data link layer, it is not necessary for a router to specify
which router it wants to talk to-each outgoing line uniquely specifies a particular
router. In the transport layer, explicit addressing of destinations is required.

For another thing, the process of establishing a connection over the wire of
Fig. 6-7(a) is simple: the other end is always there (unless it has crashed, in which
case it is not there). Either way, there is not much to do. In the transport layer,
initial connection establishment is more complicated, as we will see.

Another, exceedingly annoying, difference between the data link layer and the
transport layer is the potential existence of storage capacity in the subnet. When a
router sends a frame, it may arrive or be lost, but it cannot bounce around for a
while, go into hiding in a far corner of the world, and then suddenly emerge at an
inopportune moment 30 sec later. If the subnet uses datagrams and adaptive rout­
ing inside, there is a nonnegligible probability that a packet may be stored for a
number of seconds and then delivered later. The consequences of this ability of
the subnet to store packets can sometimes be disastrous and require the use of spe­
cial protocols.

A final difference between the data link and transport layers is one of amount
rather than of kind. Buffering and flow control are needed in both layers, but the
presence of a large and dynamically varying number of connections in the

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 489

transport layer may require a different approach than we used in the data link
layer. In Chap. 3, some of the protocols allocate a fixed number of buffers to each
line, so that when a frame arrives there is always a buffer available. In the trans­
port layer, the larger number of connections that must be managed make the idea
of dedicating many buffers to each one less attractive. In the following sections,
we will examine all of these important issues and others.

6.2.1. Addressing

When an application process wishes to set up a connection to a remote appli­
cation process, it must specify which one to connect to. (Connectionless transport
has the same problem: To whom should each message be sent?) The method nor­
mally used is to define transport addresses to which processes can listen for con­
nection requests. In the Internet, these end points are (IP address, local port)
pairs. In ATM networks, they are AAL-SAPs. We will use the neutral term
TSAP (Transport Service Access Point). The analogous end points in the net­
work layer (i.e., network layer addresses) are then called NSAPs. IP addresses
are examples of NSAPs.

Figure 6-8 illustrates the relationship between the NSAP, TSAP, network con­
nection, and transport connection for a connection-oriented subnet (e.g., ATM).
Note that a transport entity normally supports multiple TSAPs. On some net­
works, multiple NSAPs also exist, but on others each machine has only one NSAP
(e.g., one IP address). A possible connection scenario for a transport connection
over a connection-oriented network layer is as follows.

1. A time-of-day server process on host 2 attaches itself to TSAP 122 to
wait for an incoming call. How a process attaches itself to a TSAP is
outside the networking model and depends entirely on the local
operating system. A call such as our LISTEN might be used, for
example.

2. An application process on host 1 wants to find out the time-of-day,
so it issues a CONNECT request specifying TSAP 6 as the source and
TSAP 122 as the destination.

3. The transport entity on host 1 selects a network address on its
machine (if it has more than one) and sets up a network connection
between them. (With a connectionless subnet, establishing this net­
work layer connection would not be done.) Using this network con­
nection, host 1 's transport entity can talk to the transport entity on
host 2.

4. The first thing the transport entity on 1 says to its peer on 2 is:
"Good morning. I would like to establish a transport connection
between my TSAP 6 and your TSAP 122. What do you say?"

490 THE TRANSPORT LAYER CHAP. 6

5. The transport entity on 2 then asks the time-of-day server at TSAP
122 if it is willing to accept a new connection. If it agrees, the trans­
port connection is established.

Note that the transport connection goes from TSAP to TSAP, whereas the net­
work connection only goes part way, from NSAP to NSAP.

Host 1 Host2

Application ~ TSAP 6
process ~

Application?
layer "- Server

Network : "Transport
connection : connection
starts here : starts here

------.....!.

Transport \TSAP 122
layer

i' NSAP
I

Network
-,

layer
NSAP

Data link
layer

Physical
layer

Phys
I

\ ,
'~----------------------------''

Fig. 6-8. TSAPs, NSAPs, and connections.

The picture painted above is fine, except we have swept one little problem
under the rug: How does the user process on host 1 know that the time-of-day
server is attached to TSAP 122? One possibility is that the time-of-day server has
been attaching itself to TSAP 122 for years, and gradually all the network users
have learned this. In this model, services have stable TSAP addresses which can
be printed on paper and given to new users when they join the network.

While stable TSAP addresses might work for a small number of key services
that never change, in general, user processes often want to talk to other user
processes that only exist for a short time and do not have a TSAP address that is
known in advance. Furthermore, if there are potentially many server processes,
most of which are rarely used, it is wasteful to have each of them active and
listening to a stable TSAP address all day long. In short, a better scheme is
needed.

One such scheme, used by UNIX hosts on the Internet, is shown in Fig. 6-9 in a
simplified form. It is known as the initial connection protocol. Instead of every
conceivable server listening at a well-known TSAP, each machine that wishes to

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 491

offer service to remote users has a special process server that acts as a proxy for
less-heavily used servers. It listens to a set of ports at the same time, waiting for a
TCP connection request. Potential users of a service begin by doing a
CONNECT request, specifying the TSAP address (TCP port) of the service they
want. If no server is waiting for them, they get a connection to the process server,
as shown in Fig. 6-9(a).

Layer

4

Host 1 Host2 Host 1 Host2

(user

I
TSAP

...._____......_J
(a) (b)

Fig. 6-9. How a user process in host 1 establishes a connection with a time-of­
day server in host 2.

After it gets the incoming request, the process server spawns off the requested
server, allowing it to inherit the existing connection with the user. The new server
then does the requested work, while the process server goes back to listening for
new requests, as shown in Fig. 6-9(b).

While the initial connection protocol works fine for those servers that can be
created as they are needed, there are many situations in which services do exist
independently of the process server. A file server, for example, needs to run on
special hardware (a machine with a disk) and cannot just be created on-the-fly
when someone wants to talk to it.

To handle this situation, an alternative scheme is often used. In this model,
there exists a special process called a name server or sometimes a directory
server. To find the TSAP address corresponding to a given service name, such as
"time-of-day," a user sets up a connection to the name server (which listens to a
well-known TSAP). The user then sends a message specifying the service name,

492 THE TRANSPORT LA YER CHAP. 6

and the name server sends back the TSAP address. Then the user releases the
connection with the name server and establishes a new one with the desired ser­
vice.

In this model, when a new service is created, it must register itself with the
name server, giving both its service name (typically an ASCII string) and the
address of its TSAP. The name server records this information in its internal data­
base, so that when queries come in later, it will know the answers.

The function of the name server is analogous to the directory assistance
operator in the telephone system-it provides a mapping of names onto numbers.
Just as in the telephone system, it is essential that the address of the well-known
TSAP used by the name server (or the process server in the initial connection pro­
tocol) is indeed well known. If you do not know the number of the information
operator, you cannot call the information operator to find it out. If you think the
number you dial for information is obvious, try it in a foreign country some time.

Now let us suppose that the user has successfully located the address of the
TSAP to be connected to. Another interesting question is how does the local
transport entity know on which machine that TSAP is located? More specifically,
how does the transport entity know which network layer address to use to set up a
network connection to the remote transport entity that manages the TSAP
requested?

The answer depends on the structure of TSAP addresses. One possible struc­
ture is that TSAP addresses are hierarchical addresses. With hierarchical
addresses, the address consists of a sequence of fields used to disjointly partition
the address space. For example, a truly universal TSAP address might have the
following structure:

address = <galaxy> <star> <planet> <country> <network> <host> <port>

With this scheme, it is straightforward to locate a TSAP anywhere in the known
universe. Equivalently, if a TSAP address is a concatenation of an NSAP address
and a port (a local identifier specifying one of the local TSAPs), then when a
transport entity is given a TSAP address to connect to, it uses the NSAP address
contained in the TSAP address to reach the proper remote transport entity.

As a simple example of a hierarchical address, consider the telephone number
19076543210. This number can be parsed as 1-907-654-3210, where 1 is a coun­
try code (United States + Canada), 907 is an area code (Alaska), 654 is an end
office in Alaska, and 3210 is one of the "p01ts" (subscriber lines) in that end
office.

The alternative to a hierarchical address space is a flat address space. If the
TSAP addresses are not hierarchical, a second level of mapping is needed to
locate the proper machine. There would have to be a name server that took trans­
port addresses as input and returned network addresses as output. Alternatively,
in some situations (e.g., on a LAN), it is possible to broadcast a query asking the
destination machine to please identify itself by sending a packet.

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 493

6.2.2. Establishing a Connection

Establishing a connection sounds easy, but it is actually surprisingly tricky.
At first glance, it would seem sufficient for one transport entity to just send a CON­

NECTION REQUEST TPDU to the destination and wait for a CONNECTION

ACCEPTED reply. The problem occurs when the network can lose, store, and
duplicate packets.

Imagine a subnet that is so congested that acknowledgements hardly ever get
back in time, and each packet times out and is retransmitted two or three times.
Suppose that the subnet uses datagrams inside, and every packet follows a dif­
ferent route. Some of the packets might get stuck in a traffic jam inside the sub­
net and take a long time to arrive; that is, they are stored in the subnet and pop out
much later.

The worst possible nightmare is as follows. A user establishes a connection
with a bank, sends messages telling the bank to transfer a large amount of money
to the account of a not-entirely-trustworthy person, and then releases the connec­
tion. Unfortunately, each packet in the scenario is duplicated and stored in the
subnet. After the connection has been released, all the packets pop out of the sub­
net and arrive at the destination in order, asking the bank to establish a new con­
nection, transfer money (again), and. release the connection. The bank has no way
of telling that these are duplicates. It must assume that this is a second, indepen­
dent transaction, and transfers the money again. For the remainder of this section
we will study the problem of delayed duplicates, with special emphasis on algo­
rithms for establishing connections in a reliable way, so that nightmares like the
one above cannot happen.

The crux of the problem is the existence of delayed duplicates. It can be
attacked in various ways, none of them very satisfactory. Otie way is to use
throwaway transport addresses. In this approach, each time a transport address is
needed, a new one is generated. When a connection is released, the address is dis­
carded. This strategy makes the process server model of Fig. 6-9 impossible.

Another possibility is to give each connection a connection identifier (i.e., a
sequence number incremented for each connection established), chosen by the ini­
tiating party, and put in each TPDU, including the one requesting the connection.
After each connection is released, each transport entity could update a table listing
obsolete connections as (peer transport entity, connection identifier) pairs. When­
ever a connection request came in, it could be checked against the table, to see if
it belonged to a previously released connection.

Unfortunately, this s.cheme has a basic flaw: it requires each transport entity
to maintain a certain amount of history information indefinitely. If a machine
crashes and loses its memory, it will no longer know which connection identifiers
have already been used.

Instead, we need to take a different tack. Rather than allowing packets to live
forever within the subnet, we must devise a mechanism to kill off aged packets

494 THE TRANSPORT LAYER CHAP. 6

that are still wandering about. If we can ensure that no packet lives longer than
some known time, the problem becomes somewhat more manageable.

Packet lifetime can be restricted to a known maximum using one of the fol­
lowing techniques:

1. Restricted subnet design.

2. Putting a hop counter in each packet.

3. Times tamping each packet.

The first method includes any method that prevents packets from looping, com­
bined with some way of bounding congestion delay over the (now known) longest
possible path. The second method consists of having the hop count incremented
each time the packet is forwarded. The data link protocol simply discards any
packet whose hop counter has exceeded a certain value. The third method
requires each packet to bear the time it was created, with the routers agreeing to
discard any packet older than some agreed upon time. This latter method requires
the router clocks to be synchronized, which itself is a nontrivial task unless syn­
chronization is achieved external to the network, for example by listening to
WWV or some other radio station that broadcasts the precise time periodically.

In practice, we will need to guarantee no.t only that a packet is dead, but also
that all acknowledgements to it are also dead, so we will now introduce T, which
is some small multiple of the true maximum packet lifetime. The multiple is
protocol-dependent and simply has the effect of making T longer. If we wait a
time T after a packet has been sent, we can be sure that all traces of it are now
gone and that neither it nor its acknowledgements will suddenly appear out of the
blue to complicate matters.

With packet lifetimes bounded, it is possible to devise a foolproof way to
establish connections safely. The method described below is due to Tomlinson
(1975). It solves the problem but introduces some peculiarities of its own. The
method was further refined by Sunshine and Dalal (1978). Variants of it are
widely used in practice.

To get around the problem of a machine losing all memory of where it was
after a crash, Tomlinson proposed equipping each host with a time-of-day clock.
The clocks at different hosts need not be synchronized. Each clock is assumed to
take the form of a binary counter that increments itself at uniform intervals.
Furthermore, the number of bits in the counter must equal or exceed the number
of bits in the sequence numbers. Last, and most important, the clock is assumed
to continue running even if the host goes down.

The basic idea is to ensure that two identically numbered TPDUs are never
outstanding at the same time. When a connection is set up, the low-order k bits of
the clock are used as the initial sequence number (also k bits). Thus, unlike our
protocols of Chap. 3, each connection starts numbering its TPDUs with a different

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 495

sequence number. The sequence space should be so large that by the time
sequence numbers wrap around, old TPDUs with the same sequence number are
long gone. This linear relation between time and initial sequence numbers is
shown in Fig. 6-10.

T
2k-1

Forbidden T

~
t-

15 120 ~
E
::l
c
Q)
()
c
Q)
::l
O"
Q)
(/)

80
70 ,_________ Restart after
60 crash with 70

0o 30 60 90 120 150 180
Time

(a)

Q)
.Cl
E
::l
c
Q)
()
c
Q)
::i
O"
Q)
(/)

Time

(b)

Fig. 6-10. (a) TPDUs may not enter the forbidden region. (b) The resynchroni­
zation problem.

Once both transport entities have agreed on the initial sequence number, any
sliding window protocol can be used for data flow control. In reality, the initial
sequence number curve (shown by the heavy line) is not really linear, but a stair­
case, since the clock advances in discrete steps. For simplicity we will ignore this
detail.

A problem occurs when a host crashes. When it comes up again, its transport
entity does not know where it was in the sequence space. One solution is to
require transport entities to be idle for T sec after a recovery to let all old TPDUs
die off. However, in a complex internetwork, T may be large, so this strategy is
unattractive.

To avoid requiring T sec of dead time after a crash, it is necessary to introduce
a new restriction on the use of sequence numbers. We can best see the need for
this restriction by means of an example. Let T, the maximum packet lifetime, be
60 sec and let the clock tick once per second. As shown in Fig. 6-10, the initial
sequence number for a connection opened at time x will be x. Imagine that at
t = 30 sec, an ordinary data TPDU being sent on (a previously opened) connection
5 is given sequence number 80. Call this TPDU X. Immediately after sending
TPDU X, the host crashes and then quickly restarts. At t = 60, it begins reopening
connections 0 through 4. At t = 70, it reopens connection 5, using initial
sequence number 70 as requiredl. Within the next 15 sec it sends data TPDUs 70
through 80. Thus at t = 85, a new TPDU with sequence number 80 and connec­
tion 5 has been injected into the subnet. Unfortunately;, TPDU X still exists. If it

496 THE TRANSPORT LA YER CHAP. 6

should arrive at the receiver before the new TPDU 80, TPDU X will be accepted
and the correct TPDU 80 will be rejected as a duplicate.

To prevent such problems, we must prevent sequence numbers from being
used (i.e., assigned to new TPDU s) for a time T before their potential use as initial
sequence numbers. The illegal combinations of time and sequence number are
shown as the forbidden region ih Fig. 6-lO(a). Before sending any TPDU on any
connection, the transport entity must read the clock and check to see that it is not
in the forbidden region.

The protocol can get itself into trouble in two different ways. If a host sends
too much data too fast on a newly opened connection, the actual sequence number
versus time curve may rise more steeply than the initial sequence number versus
time curve. This means that the maximum data rate on any connection is one
TPDU per clock tick. It also means that the transport entity must wait until the
clock ticks before opening a new connection after a crash restart, lest the same
number be used twice. Both of these points argue for a short clock tick (a few
milliseconds).

Unfortunately, entering the forbidden region from underneath by sending too
fast is not the only way to get into trouble. From Fig. 6-1 O(b), it should be clear
that at any data rate less than the clock rate, the curve of actual sequence numbers
used versus time will eventually run into the forbidden region from the left. The
greater the slope of the actual sequence number curve, the longer this event will
be delayed. As we stated above, just before sending every TPDU, the transport
entity must check to see if it is about to enter the forbidden region, and if so,
either delay the TPDU for T sec or resynchronize the sequence numbers.

The clock-based method solves the delayed duplicate problem for data
TPDUs, but for this method to be useful, a connection must first be established.
Since control TPDUs may also be delayed, there is a potential problem in getting
both sides to agree on the initial sequence number. Suppose, for example, that
connections are established by having host 1 send a CONNECTION REQUEST TPDU
containing the proposed initial sequence number and destination port number to a
remote peer, host 2. The receiver, host 2, then acknowledges this request by send­
ing a CONNECTION ACCEPTED TPDU back. If the CONNECTION REQUEST TPDU
is lost but a delayed duplicate CONNECTION REQUEST suddenly shows up at host 2,
the connection will be established incorrectly.

To solve this problem, Tomlinson (197 5) introduced the three-way
handshake. This establishment protocol does not require both sides to begin
sending with the same sequence number, so it can be used with synchronization
methods other than the global clock method. The normal setup procedure when
host 1 initiates is shown in Fig. 6-ll(a). Host 1 chooses a sequence number, x,
and sends a CONNECTION REQUEST TPDU containing it to host 2. Host 2 replies
with a CONNECTION ACCEPTED TPDU acknowledging x and announcing its own
initial sequence number, y. Finally, host 1 acknowledges host 2's choice of an
initial sequence number in the first data TPDU that it sends.

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS

Ql
E
i=

l

Host 1 Host2 Host 1

Old duplicate

CR(seq,,, X)

(a) (b)

(c)

Fig. 6-11. Three protocol scenarios for establishing a connection using a three­
way handshake. CR and ACC denote CONNECTION REQUEST and CONNECTION AC­

CEPTED, respectively. (a) Normal operation. (b) Old duplicate CONNECTION RE­

QUEST appearing out of nowhere. (c) Duplicate CONNECTION REQUEST and dupli­
cate ACK.

497

Host2

Now let us see how the three-way handshake works in the presence of delayed
duplicate control TPDUs. In Fig. 6-12(b), the first TPDU is a delayed duplicate
CONNECTION REQUEST from an old connection. This TPDU arrives at host 2
without host 1 's knowledge. Host 2 reacts to this TPDU by sending host 1 a CON­

NECTION ACCEPTED TPDU, in effect asking for verification that host 1 was indeed
trying to set up a new connection. When host 1 rejects host 2's attempt to estab­
lish, host 2 realizes that it was tricked by a delayed duplicate and abandons the
connection. In this way, a delayed duplicate does no damage.

498 THE TRANSPORT LA YER CHAP. 6

The worst case is when both a delayed CONNECTION REQUEST and an
acknowledgement to a CONNECTION ACCEPTED are floating around in the subnet.
This case is shown in Fig. 6-11 (c). As in the previous example, host 2 gets a
delayed CONNECTION REQUEST and replies to it. At this point it is crucial to real­
ize that host 2 has proposed using y as the initial sequence number for host 2 to
host 1 traffic, knowing full well that no TPDUs containing sequence number y or
acknowledgements to y are still in existence. When the second delayed TPDU
arrives at host 2, the fact that z has been acknowledged rather than y tells host 2
that this, too, is an old duplicate. The important thing to realize here is that there
is no combination of old CONNECTION REQUEST' CONNECTION ACCEPTED, or
other TPDUs that can cause the protocol to fail and have a connection set up by
accident when no one wants it.

An alternative scheme for establishing connections reliably in the face of
delayed duplicates is described in (Watson, 1981). It uses multiple timers to
exclude undesired events.

6.2.3. Releasing a Connection

Releasing a connection is easier than establishing one. Nevertheless, there are
more pitfalls than one might expect. As we mentioned earlier, there are two styles
of terminating a connection: asymmetric release and symmetric release. Asym­
metric release is the way the telephone system works: when one party hangs up,
the connection is broken. Symmetric release treats the connection as two separate
unidirectional connections and requires each one to be released separately.

Q)

E
i=

Host 1

~ -;;-----
1\Jo data are

delivered after
a disconnect

request

Host2

Fig. 6-12. Abrupt disconnection with loss of data.

Asymmetric release is abrupt and may result in data loss. Consider the
scenario of Fig. 6-12. After the connection is established, host 1 sends a TPDU

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 499

that arrives properly at host 2. Then host 1 sends another TPDU. Unfortunately,
host 2 issues a DISCONNECT before the second TPDU arrives. The result is that
the connection is released and data are lost.

Clearly, a more sophisticated release protocol is required to avoid data loss.
One way is to use symmetric release, in which each direction is released
independently of the other one. Here, a host can continue to receive data even
after it has sent a DISCONNECT TPDU.

Symmetric release does the job when each process has a fixed amount of data
to send and clearly knows when it has sent it. In other situations, determining that
all the work has been done and the connection should be terminated is not so obvi­
ous. One can envision a protocol in which host 1 says: "I am done. Are you done
too?" If host 2 responds: "I am done too. Goodbye." the connection can be safely
released.

Unfortunately, this protocol does not always work. There is a famous prob­
lem that deals with this issue. It is called the two-army problem. Imagine that a
white army is encamped in a valley, as shown in Fig. 6-13. On both of the sur­
rounding hillsides are blue amties. The white army is larger than either of the
blue armies alone, but together they are larger than the white army. If either blue
army attacks by itself, it will be defeated, but if the two blue armies attack simul­
taneously, they will be victorious.

·~ White army

~

Fig. 6-13. The two-army problem.

·~ Blue
army

#2

The blue armies want to synchronize their attacks. However, their only com­
munication medium is to send messengers on foot down into the valley, where
they might be captured and the message lost (i.e., they have to use an unreliable
communication channel). The question is: Does a protocol exist that allows the
blue armies to win?

Suppose that the commander of blue army #1 sends a message reading: "I
propose we attack at dawn on March 29. How about it?" Now suppose that the

500 THE TRANSPORT LA YER CHAP. 6

message arrives, and the commander of blue army #2 agrees, and that his reply
gets safely back to blue army #1. Will the attack happen? Probably not, because
commander #2 does not know if his reply got through. If it did not, blue army #1
will not attack, so it would be foolish for him to charge into battle.

Now let us improve the protocol by making it a three-way handshake. The
initiator of the original proposal must acknowledge the response. Assuming no
messages are lost, blue army #2 will get the acknowledgement, but the com­
mander of blue army #1 will now hesitate. After all, he does not know if his
acknowledgement got through, and if it did not, he knows that blue army #2 will
not attack. We could now make a four-way handshake protocol, but that does not
help either.

In fact, it can be proven that no protocol exists that works. Suppose that some
protocol did exist. Either the last message of the protocol is essential or it is not.
If it is not, remove it (and any other unessential messages) until we are left with a
protocol in which every message is essential. What happens if the final message
does not get through? We just said that it was essential, so if it is lost, the attack
does not take place. Since the sender of the final message can never be sure of its
arrival, he will not risk attacking. Worse yet, the other blue army knows this, so it
will not attack either.

To see the relevance of the two-army problem to releasing connections, just
substitute "disconnect" for "attack." If neither side is prepared to disconnect
until it is convinced that the other side is prepared to disconnect too, the discon­
nection will never happen.

In practice, one is usually prepared to take more risks when releasing connec­
tions than when attacking white armies, so the situation is not entirely hopeless.
Figure 6-14 illustrates four scenarios of releasing using a three-way handshake.
While this protocol is not infallible, it is usually adequate.

In Fig. 6-14(a), we see the normal case in which one of the users sends a DR

(DISCONNECTION REQUEST) TPDU in order to initiate the connection release.
When it arrives, the recipient sends back a DR TPDU, too, and starts a timer, just
in case its DR is lost. When this DR arrives, the original sender sends back an ACK

TPDU and releases the connection. Finally, when the ACK TPDU arrives, the
receiver also releases the connection. Releasing a connection means that the
transport entity removes the information about the connection from its table of
open connections and signals the connection's owner (the transport user)
somehow. This action is different from a transport user issuing a DISCONNECT

primitive.
If the final ACK TPDU is lost, as shown in Fig. 6-14(b), the situation is saved

by the timer. When the timer expires, the connection is released anyway.
Now consider the case of the second DR being lost. The user initiating the

disconnection will not receive the expected response, will time out, and will start
all over again. In Fig. 6-14(c) we see how this works, assuming that the second
time no TPDUs are lost and all TPDUs are delivered correctly and on time.

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 501

Host 1 Host2

Send DR ~ + start timer

Send DR

~
+start timer

Release
connection

Send ACK ~ Release
connection

(a)

Host 1 Host2

Send DR -__DR
+ start timer ------ Send DR &

of. s1art timer

~
(Timeout) D

send ~R ~ Se,nd DR &
+ start timer 1 rt t· OP. s a 1mer

Release
connection

SendACK ~CK
------ Release

connection

(c)

Host 1

Send DR -__DR
+ start timer ------

Release
connection

Send ACK

Host 1

ACK

(b)

Host2

Send DR
+ start timer

• • • • • • • • • •
(Timeout)
release

connection

Host2

SendDR ~
+ sta~ timer Send DR &

• • • • •
(Timeout)

sendDR ---~
+start timer ~

• • • • • •
(N Timeouts)

release
connection

(d)

start timer

(Tim out)
release

connection

Fig. 6-14. Four protocol scenarios for releasing a connection. (a) Normal case
of three-way handshake. (b) Final ACK lost. (c) Response lost. (d) Response
lost and subsequent DRs lost.

Our last scenario, Fig. 6-14(d), is the same as Fig. 6-14(c) except that now we
assume all the repeated attempts to retransmit the DR also fail due to lost TPDUs.
After N retries, the sender just gives up and releases the connectiori. Meanwhile,
the receiver times out and also exits.

While this protocol usually suffices, in theory it can fail if the initial DR and
N retransmissions are all lost. The sender will give up and release the connection,
while the other side knows nothing at all about the attempts to disconnect and is
still fully active. This situation results in a half-open connection.

502 THE TRANSPORT LA YER CHAP. 6

We could have avoided this problem by not allowing the sender to give up
after N retries but forcing it to go on forever until it gets a response. However, if
the other side is allowed to time out, then the sender will indeed go on forever,
because no response will ever be forthcoming. If we do not allow the receiving
side to time out, then the protocol hangs in Fig. 6- l 4(b).

One way to kill off half-open connections is to have a rule saying that if no
TPDUs have arrived for a certain number of seconds, the connection is automati­
cally disconnected. That way, if one side ever disconnects, the other side will
detect the lack of activity and also disconnect. Of course, if this rule is intro­
duced, it is necessary for each transport entity to have a timer that is stopped and
then restarted whenever a TPDU is sent. If this timer expires, a dummy TPDU is
transmitted, just to keep the other side from disconnecting. On the other hand, if
the automatic disconnect rule is used and too many dummy TPDUs in a row are
lost on an otherwise idle connection, first one side, then the other side will
automatically disconnect.

We will not belabor this point any more, but by now it should be clear that
releasing a connection is not nearly as simple as it at first appears.

6.2.4. Flow Control and Buffering

Having examined connection establishment and release in some detail, let us
now look at how connections are managed while they are in use. One of the key
issues has come up before: flow control. In some ways the flow control problem
in the transport layer is the same as in the data link layer, but in other ways it is
different. The basic similarity is that in both layers a sliding window or other
scheme is needed on each connection to keep a fast transmitter from overrunning
a slow receiver. The main difference is that a router usually has relatively few
lines whereas a host may have numerous connections. This difference makes it
impractical to implement the data link buffering strategy in the transport layer.

In the data link protocols of Chap. 3, frames were buffered at both the sending
router ancl at the receiving router. In protocol 6, for example, both sender and
receiver are required to dedicate MaxSeq + 1 buffers to each line, half for input
and half for output. For a host with a maximum of, say, 64 connections, and a 4-
bit sequence number, this protocol would require 1024 buffers.

In the data link layer, the sending side must buffer outgoing frames because
they might have to be retransmitted. If the subnet provides datagram service, the
sending transport entity must also buffer, and for the same reason. If the receiver
knows that the sender buffers all TPDUs until they are acknowledged, the receiver
may or may not dedicate specific buffers to specific connections, as it sees fit.
The receiver may, for example, maintain a single buffer pool shared by all con­
nections. When a TPDU comes in, an attempt is made to dynamically acquire a
new buffer. If one is available, the TPDU is accepted; otherwise, it is discarded.
Since the sender is prepared to retransmit TPDUs lost by the subnet, no harm is

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 503

done by having the receiver drop TPDUs, although some resources are wasted.
The sender just keeps trying until it gets an acknowledgement.

In summary, if the network service is unreliable, the sender must buffer all
TPDUs sent, just as in the data link layer. However, with reliable network ser­
vice, other trade-offs become possible. In particular, if the sender knows that the
receiver always has buffer space, it need not retain copies of the TPDUs it sends.
However, if the receiver cannot guarantee that every incoming TPDU will be
accepted, the sender will have to buffer anyway. In the latter case, the sender
cannot trust the network layer's acknowledgement, because the acknowledgement
means only that the TPDU arrived, not that it was accepted. We will come back
to this important point later.

Even if the receiver has agreed to do the buffering, there still remains the
question of the buffer size. If most TPDUs are nearly the same size, it is natural
to organize the buffers as a pool of identical size buffers, with one TPDU per
buffer, as in Fig. 6-15(a). However, if there is wide variation in TPDU size, from
a few characters typed at a terminal to thousands of characters from file transfers,
a pool of fixed-sized buffers presents problems. If the buffer size is chosen equal
to the largest possible TPDU, space will be wasted whenever a short TPDU
arrives. If the buffer size is chosen less than the maximum TPDU size, multiple
buffers will be needed for long TPDUs, with the attendant complexity.

(a)

Unused
space

(c)

Fig. 6-15. (a) Chained fixed-size buffers. (b) Chained variable-size buffers.
(c) One large circular buffer per connection.

Another approach to the buffer size problem is to use variable-size buffers, as
in Fig. 6-15(b). The advantage here is better memory utilization, at the price of

504 THE TRANSPORT LAYER CHAP. 6

more complicated buffer management. A third possibility is to dedicate a single
large circular buffer per connection, as in Fig. 6-15(c). This system also makes
good use of memory, provided that all connections are heavily loaded but is poor
if some connections are lightly loaded.

The optimum trade-off between source buffering and destination buffering
depends on the type of traffic carried by the connection. For low-bandwidth
bursty traffic, such as that produced by an interactive terminal, it is better not to
dedicate any buffers, but rather to acquire them dynamically at both ends. Since
the sender cannot be sure the receiver will be able to acquire a buffer, the sender
must retain a copy of the TPDU until it is acknowledged. On the other hand, for
file transfer and other high-bandwidth traffic, it is better if the receiver does dedi­
cate a full window of buffers, to allow the data to flow at maximum speed. Thus
for low-bandwidth bursty traffic, it is better to buffer at the sender, and for high­
bandwidth, smooth traffic, it is better to buffer at the receiver.

As connections are opened and closed, and as the traffic pattern changes, the
sender and receiver need to dynamically adjust their buffer allocations. Conse­
quently, the transport protocol should allow a sending host to request buffer space
at the other end. Buffers could be allocated per connection, or collectively, for all
the connections running between the two hosts. Alternatively, the receiver, know­
ing its buffer situation (but not knowing the offered traffic) could tell the sender
"I have reserved X buffers for you." If the number of open connections should
increase, it may be necessary for an allocation to be reduced, so the protocol
should provide for this possibility.

A reasonably general way to manage dynamic buffer allocation is to decouple
the buffering from the acknowledgements, in contrast to the sliding window pro­
tocols of Chap. 3. Dynamic buffer management means, in effect, a variable-sized
window. Initially, the sender requests a certain number of buffers, based on its
perceived needs. The receiver then grants as many of these as it can afford.
Every time the sender transmits a TPDU, it must decrement its allocation, stop­
ping altogether when the allocation reaches zero. The receiver then separately
piggybacks both acknowledgements and buffer allocations onto the reverse traffic.

Figure 6-16 shows an example of how dynamic window management might
work in a datagram subnet with 4--bit sequence numbers. Assume that buffer allo­
cation information travels in separate TPDUs, as shown, and is not piggybacked
onto reverse traffic. Initially, A wants eight buffers, but is granted only four of
these. It then sends three TPDUs, of which the third is lost. TPDU 6 acknowl­
edges receipt of all TPDUs up to and including sequence number 1, thus allowing
A to release those buffers, and furthermore informs A that it has permission to
send three more TPDUs starting beyond 1 (i.e., TPDUs 2, 3, and 4). A knows that
it has already sent number 2, so it thinks that it may send TPDUs 3 and 4, which it
proceeds to do. At this point it is blocked and must wait for more buffer alloca­
tion. Timeout induced retransmissions (line 9), however, may occur while
blocked, since they use buffers that have already been allocated. In line 10, B

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 505

acknowledges receipt of all TPDUs up to and including 4, but refuses to let A con­
tinue. Such a situation is impossible with the fixed window protocols of Chap. 3.
The next TPDU from B to A allocates another buffer and allows A to continue.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A Message B Comments

< request 8 buffers> A wants 8 buffers

<ack = 15, buf = 4> B grants messages 0-3 only

<seq = 0, data = mO> A has 3 buffers left now

<seq = 1, data= m1 > A has 2 buffers left now

<seq = 2, data = m2> Message lost but A thinks it has 1 left

<ack = 1 , buf = 3> B acknowledges 0 and 1, permits 2-4

<seq = 3, data = m3> A has buffer left

<seq = 4, data = m4> A has 0 buffers left, and must stop

<seq = 2, data = m2> A times out and retransmits

<ack = 4, bu! = 0> Everything acknowledged, but A still blocked

<ack = 4, buf = 1> A may now send 5

<ack = 4, bu! = 2> B found a new buffer somewhere

<seq = 5, data = m5> A has 1 buffer left

<seq = 6, data = m6> A is now blocked again

<ack = 6, buf = 0> A is still blocked

<ack = 6, buf = 4> Potential deadlock

Fig. 6-16. Dynamic buffer allocation. The arrows show the direction of
transmission. An ellipsis(...) indicates a lost TPDU.

Potential problems with buffer allocation schemes of this kind can arise in
datagram networks if control TPDUs can get lost. Look at line 16. B has now
allocated more buffers to A, but the allocation TPDU was lost. Since control
TPDUs are not sequenced or timed out, A is now deadlocked. To prevent this
situation, each host should periodically send control TPDUs giving the acknowl­
edgement and buffer status on each connection. That way, the deadlock will be
broken, sooner or later.

Up until now we have tacitly assumed that the only limit imposed on the
sender's data rate is the amount of buffer space available in the receiver. As
memory prices continue to fall dramatically, it may become feasible to equip
hosts with so much memory that lack of buffers is rarely, if ever, a problem.

When buffer space no longer limits the maximum flow, another bottleneck
will appear: the carrying capacity of the subnet. If adjacent routers can exchange
at most x frames/sec and there are k disjoint paths between a pair of hosts, there is
no way that those hosts can exchange more than kx TPDUs/sec, no matter how
much buffer space is available at each end. If the sender pushes too hard (i.e.,
sends more than kx TPDUs/sec), the subnet will become congested, because it
will be unable to deliver TPDUs as fast as they are coming in.

506 THE TRANSPORT LAYER CHAP. 6

What is needed is a mechanism based on the subnet's carrying capacity rather
than on the receiver's buffering capacity. Clearly, the flow control mechanism
must be applied at the sender to prevent it from having too many unacknowledged
TPDUs outstanding at once. Belsnes (1975) proposed using a sliding window
flow control scheme in which the sender dynamically adjusts the window size to
match the network's carrying capacity. If the network can handle c TPDUs/sec
and the cycle time (including transmission, propagation, queueing, processing at
the receiver, and return of the acknowledgement) is r, then the sender's window
should be er. With a window of this size the sender normally operates with the
pipeline full. Any small decrease in network performance will cause it to block.

In order to adjust the window size periodically, the sender could monitor both
parameters and then compute the desired window size. The carrying capacity can
be determined by simply counting the number of TPDUs acknowledged during
some time period and then dividing by the time period. During the measurement,
the sender should send as fast as it can, to make sure that the network's carrying
capacity, and not the low input rate, is the factor limiting the acknowledgement
rate. The time required for a transmitted TPDU to be acknowledged can be meas­
ured exactly and a running mean maintained. Since the capacity of the network
depends on the amount of traffic in it, the window size should be adjusted fre­
quently, to track changes in the carrying capacity. As we will see later, the Inter­
net uses a similar scheme.

6.2.5. Multiplexing

Multiplexing several conversations onto connections, virtual circuits, and
physical links plays a role in several layers of the network architecture. In the
transport layer the need for multiplexing can arise in a number of ways. For
example, in networks that use virtual circuits within the subnet, each open con­
nection consumes some table space in the routers for the entire duration of the
connection. If buffers are dedicated to the virtual circuit in each router as well, a
user who left a terminal logged into a remote machine during a coffee break is
nevertheless consuming expensive resources. Although this implementation of
packet switching defeats one of the main reasons for having packet switching in
the first place-to bill the user based on the amount of data sent, not the connect
time-many carriers have chosen this approach because it so closely resembles
the circuit switching model to which they have grown accustomed over the
decades.

The consequence of a price structure that heavily penalizes installations for
having many virtual circuits open for long periods of time is to make multiplexing
of different transport connections onto the same network connection attractive.
This form of multiplexing, called upward multiplexing, is shown in Fig. 6-l 7(a).
In this figure, four distinct transport connections all use the same network connec­
tion (e.g., ATM virtual circuit) to the remote host. When connect time forms the

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 507

major component of the carrier's bill, it is up to the transport layer to group trans­
port connections according to their destination and map each group onto the
minimum number of network connections. If too many transport connections are
mapped onto one network connection, the performance will be poor, because the
window will usually be full, and users will have to wait their turn to send one
message. If too few transport connections are mapped onto one network connec­
tion, the service will be expensive. When upward multiplexing is used with
ATM, we have the ironic (tragic?) situation of having to identify the connection
using a field in the transport header, even though A TM provides more than 4000
virtual circuit numbers per virtual path expressly for that purpose.

Router lines

To router

(a) (b)

Transport address

/
Network
address

Fig. 6-17. (a) Upward multiplexing. (b) Downward multiplexing.

Multiplexing can also be useful in the transport layer for another reason,
related to carrier technical decisions rather than carrier pricing decisions. Sup­
pose, for example, that a certain important user needs a high-bandwidth connec­
tion from time to time. If the subnet enforces a sliding window flow control with
an n-bit sequence number, the user must stop sending as soon as 2n - 1 packets
are outstanding and must wait for the packets to propagate to the remote host and
be acknowledged. If the physical connection is via a satellite, the user is effec­
tively limited to 2n - 1 packets every 540 msec. With, for example, n = 8 and
128-byte packets, the usable bandwidth is about 484 kbps, even though the physi­
cal channel bandwidth is more than 100 times higher.

One possible solution is to have the transport layer open multiple network
connections and distribute the traffic among them on a round-robin basis, as indi­
cated in Fig. 6-17 (b). This modus operandi is called downward multiplexing.
With k network connections open, the effective bandwidth is increased by a factor
of k. With 4095 virtual circuits, 128-byte packets, and an 8-bit sequence number,

508 THE TRANSPORT LA YER CHAP. 6

it is theoretically possible to achieve data rates in excess of 1.6 Gbps. Of course,
this performance can be achieved only if the output line can support 1.6 Gbps,
because all 4095 virtual circuits are still being sent out over one physical line, at
least in Fig. 6-17 (b). If multiple output lines are available, downward multiplex­
ing can also be used to increase the performance even more.

6.2.6. Crash Recovery

If hosts and routers are subject to crashes, recovery from these crashes
becomes an issue. If the transport entity is entirely within the hosts, recovery
from network and router crashes is straightforward. If the network layer provides
datagram service, the transport entities expect lost TPDUs all the time and know
how to cope with them. If the network layer provides connection-oriented ser­
vice, then loss of a virtual circuit is handled by establishing a new one and then
probing the remote transport entity to ask it which TPDUs it has received and
which ones it has not received. The latter ones can be retransmitted.

A more troublesome problem is how to recover from host crashes. In particu­
lar, it may be desirable for clients to be able to continue working when servers
crash and then quickly reboot. To illustrate the difficulty, let us assume that one
host, the client, is sending a long file to another host, the file server, using a sim­
ple stop-and-wait protocol. The transport layer on the server simply passes the
incoming TPDUs to the transport user, one by one. Part way through the
transmission, the server crashes. When it comes back up, its tables are reinitial­
ized, so it no longer knows precisely where it was.

In an attempt to recover its previous status, the server might send a broadcast
TPDU to all other hosts, announcing that it had just crashed and requesting that its
clients inform it of the status of all open connections. Each client can be in one of
two states: one TPDU outstanding, SJ, or no TPDUs outstanding, SO. Based on
only this state information, the client must decide whether or not to retransmit the
most recent TPDU.

At first glance it would seem obvious: the client should retransmit only if it
has an unacknowledged TPDU outstanding (i.e., is in state SJ) when it learns of
the crash. However, a closer inspection reveals difficulties with this naive
approach. Consider, for example, the situation when the server's transport entity
first sends an acknowledgement, and then, when the acknowledgement has been
sent, performs the write up to the application process. Writing a TPDU onto the
output stream and sending an acknowledgement are two distinct indivisible events
that cannot be done simultaneously. If a crash occurs after the acknowledgement
has been sent but before the write has been done, the client will receive the
acknowledgement and thus be in state SO when the crash recovery announcement
arrives. The client will therefore not retransmit, (incorrectly) thinking that the
TPDU has arrived. This decision by the client leads to a missing TPDU.

SEC. 6.2 ELEMENTS OF TRANSPORT PROTOCOLS 509

At this point you may be thinking: "That problem can be solved easily. All
you have to do is reprogram the transport entity to first do the write and then send
the acknowledgement." Try again. Imagine that the write has been done but the
crash occurs before the acknowledgement can be sent. The client will be in state
SJ and thus retransmit, leading to an undetected duplicate TPDU in the output
stream to the server application process.

No matter how the sender and receiver are programmed, there are always
situations where the protocol fails to recover properly. The server can be pro­
grammed in one of two ways: acknowledge first or write first. The client can be
programmed in one of four ways: always retransmit the last TPDU, never
retransmit the last TPDU, retransmit only in state SO, or retransmit only in state
SJ. This gives eight combinations, but as we shall see, for each combination there
is some set of events that makes the protocol fail.

Three events are possible at the server: sending an acknowledgement (A),
writing to the output process (W), and crashing (C). The three events can occur
in six different orderings: AC(W), AWC, C(AW), C(WA), WAC, and WC(A),
where the parentheses are used to indicate that neither A nor W may follow C (i.e.,
once it has crashed, it has crashed). Figure 6-18 shows all eight combinations of
client and server strategy and the valid event sequences for each one. Notice that
for each strategy there is some sequence of events that causes the protocol to fail.
For example, if the client always retransmits, the A WC event will generate an
undetected duplicate, even though the other two events work properly.

Strategy used by receiving host

First ACK, then write First write, then ACK

Strategy used by
sending host

Always retransmit

Never retransmit

Retransmit in SO

Retransmit in S1

------·~~~~~~~-

AC(W) AWC C(AW) C(WA)

OK DUP OK OK

LOST OK LOST LOST

OK DUP LOST LOST

LOST OK OK OK

OK = Protocol functions correctly
DUP =Protocol generates a duplicate message
LOST = Protocol loses a message

WAC

DUP

OK

DUP

OK

Fig. 6-18. Different combinations of client and server strategy.

WC(A)

DUP

OK

OK

DUP

Making the protocol more elaborate does not help. Even if the client and
server exchange several TPDUs before the server attempts to write, so that the
client knows exactly what is about to happen, the client has no way of knowing
whether a crash occurred just before or just after the write. The conclusion is

510 THE TRANSPORT LA YER CHAP. 6

inescapable: under our ground rules of no simultaneous events, host crash and
recovery cannot be made transparent to higher layers.

Put in more general terms, this result can be restated as recovery from a layer
N crash can only be done by layer N + 1, and then only if the higher layer retains
enough status information. As mentioned above, the transport layer can recover
from failures in the network layer, provided that each end of a connection keeps
track of where it is.

This problem gets us into the issue of what a so-called end-to-end acknowl­
edgement really means. In principle, the transport protocol is end-to-end and not
chained like the lower layers. Now consider the case of a user entering requests
for transactions against a remote database. Suppose that the remote transport
entity is programmed to first pass TPDUs to the next layer up and then acknowl­
edge. Even in this case, the receipt of an acknowledgement back at the user's
machine does not necessarily mean that the remote host stayed up long enough to
actually update the database. A truly end-to-end acknowledgement, whose receipt
means that the work has actually been done, and lack thereof means that it has
not, is probably impossible to achieve. This point is discussed in more detail by
Saltzer et al. (1984).

6.3. A SIMPLE TRANSPORT PROTOCOL

To make the ideas discussed so far more concrete, in this section we will
study an example transport layer in detail. The example has been carefully
chosen to be reasonably realistic, yet still simple enough to be easy to understand.
The abstract service primitives we will use are the connection-oriented primitives
of Fig. 6-3.

6.3.1. The Example Service Primitives

Our first problem is how to express these transport pnm1tives concretely.
CONNECT is easy: we will just have a library procedure connect that can be called
with the appropriate parameters necessary to establish a connection. The parame­
ters are the local and remote TSAPs. During the call, the caller is blocked (i.e.,
suspended) while the transport entity tries to set up the connection. If the connec­
tion succeeds, the caller is unblocked, and can start transmitting data.

When a process wants to be able to accept incoming calls, it calls listen,
specifying a particular TSAP to listen to. The process then blocks until some
remote process attempts to establish a connection to its TSAP.

Note that this model is highly asymmetric. One side is passive, executing a
listen and waiting until something happens. The other side is active and initiates
the connection. An interesting question arises of what to do if the active side

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 511

begins first. One strategy is to have the connection attempt fail if there is no
listener at the remote TSAP. Another strategy is to have the initiator block (possi­
bly forever) until a listener appears.

A compromise, used in our example, is to hold the connection request at the
receiving end for a certain time interval. If a process on that host calls listen
before the timer goes off, the connection is established; otherwise, it is rejected
and the caller is unblocked aiid given an error return.

To release a connection, we will use a procedure disconnect. When both
sides have disconnected, the connection is released. In other words, we are using
a symmetric disconnection model.

Data transmission has precisely the same problem as connection establish­
ment: sending is active but receiving is passive. We will use the same solution for
data transmission as for connection establishment, an active call send that trans­
mits data, and a passive call receive that blocks until a TPDU arrives.

Our concrete service definition thus consists of five primitives: CONNECT,

LISTEN, DISCONNECT, SEND, and RECEIVE. Each primitive corresponds exactly
with a library procedure that executes the primitive. The parameters for the ser­
vice primitives and library procedures are as follows:

conn um
conn um
status
status
status

= LISTEN(local)
= CONNECT(local, remote)
= SEND(connum, buffer, bytes)
= RECEIVE(connum, buffer, bytes)
= DISCONNECT(connum)

The LISTEN primitive announces the caller's willingness to accept connection
requests directed at the indicated TSAP. The user of the primitive is blocked until
an attempt is made to connect to it. There is no timeout.

The CONNECT primitive takes two parameters, a local TSAP (i.e., transport
address), local, and a remote TSAP, remote, and tries to establish a transport con­
nection between the two. If it succeeds, it returns in connum a nonnegative
number used to identify the connection on subsequent calls. If it fails, the reason
for failure is put in connum as a negative number. In our simple model, each
TSAP may participate in only one transport connection, so a possible reason for
failure is that one of the transport addresses is currently in use. Some other rea­
sons are: remote host down, illegal local address, and illegal remote address.

The SEND primitive transmits the contents of the buffer as a message on the
indicated transport connection, possibly in several units if it is too big. Possible
errors, returned in status, are no connection, illegal buffer address, or negative
count.

The RECEIVE primitive indicates the caller's desire to accept data. The size of
the incoming message is placed in bytes. If the remote process has released the
connection or the buffer address is illegal (e.g., outside the user's program), status
is set to an error code indicating the nature of the problem.

512 THE TRANSPORT LA YER CHAP. 6

The DISCONNECT primitive terminates a transport connection. The parameter
connum tells which one. Possible errors are connum belongs to another process,
or connum is not a valid connection identifier. The error code, or 0 for success, is
returned in status.

6.3.2. The Example Transport Entity

Before looking at the code of the example transport entity, please be sure you
realize that this example is analogous to the early examples presented in Chap. 3:
it is more for pedagogical purposes than a serious proposal. Many of the technical
details (such as extensive error checking) that would be needed in a production
system have been omitted here for the sake of simplicity.

The transport layer makes use of the network service primitives to send and
receive TPDUs. For this example, we need to choose network service primitives
to use. One choice would have been unreliable datagram service. We have not
made that choice to keep the example simple. With unreliable datagram service,
the transport code would have been large and complex, mostly dealing with lost
and delayed packets. Furthermore, most of these ideas have already been dis­
cussed at length in Chap. 3.

Instead, we have chosen to use a connection-oriented reliable network service.
This way we can focus on transport issues that do not occur in the lower layers.
These include connection establishment, connection release, and credit manage­
ment, among others. A simple transport service built on top of an ATM network
might look something like this.

In general, the transport entity may be part of the host's operating system or it
may be a package of library routines running within the user's address space. It
may also be contained on a coprocessor chip or network board plugged into the
host's backplane. For simplicity, our example has been programmed as though it
were a library package, but the changes needed to make it part of the operating
system are minimal (primarily how user buffers are accessed).

It is worth noting, however, that in this example, the "transport entity" is not
really a separate entity at all, but part of the user process. In particular, when the
user executes a primitive that blocks, such as LISTEN, the entire transport entity
blocks as well. While this design is fine for a host with only a single user process,
on a host with multiple users, it would be more natural to have the transport entity
be a separ~te process, distinct from all the user processes.

The interface to the network layer is via the procedures to_net and from_net
(not shown). Each has six parameters. First comes the connection identifier,
which maps one-to-one onto network virtual circuits. Next come the Q and M
bits, which, when set to 1, indicate control message and more data from this mes­
sage follows in the next packet, respectively. After that we have the packet type,
chosen from the set of six packet types listed in Fig. 6-19. Finally, we have a
pointer to the data itself, and an integer giving the number of bytes of data.

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 513

Network packet Meaning

CALL REQUEST Sent to establish a connection

CALL ACCEPTED Response to CALL REQUEST

CLEAR REQUEST Sent to release a connection

CLEAR CONFIRMATION Response to CLEAR REQUEST

DATA Used to transport data

CREDIT Control packet for managing the window

Fig. 6-19. The network layer packets used in our example.

On calls to to_net, the transport entity fills in all the parameters for the net­
work layer to read; on calls to from_net, the network layer dismembers an incom­
ing packet for the transport entity. By passing information as procedure parame­
ters rather than passing the actual outgoing or incoming packet itself, the transport
layer is shielded from the details of the network layer protocol. If the transport
entity should attempt to send a packet when the underlying virtual circuit's sliding
window is full, it is suspended within to_net until there is room in the window.
This mechanism is transparent to the transport entity and is controlled by the net­
work layer using commands like enable_transport_layer and
disable_transporLlayer analogous to those described in the protocols of Chap. 3.
The management of the packet layer window is also done by the network layer.

In addition to this transparent suspension mechanism, there are also explicit
sleep and wakeup procedures (not shown) called by the transport entity. The pro­
cedure sleep is called when the transport entity is logically blocked waiting for an
external event to happen, generally the arrival of a packet. After sleep has been
called, the transport entity (and the user process, of course) stop executing.

The actual code of the transport entity is shown in Fig. 6-20. Each connection
is always in one of seven states, as follows:

1. IDLE-Connection not established yet.

2. w AITING-CONNECT has been executed and CALL REQUEST sent.

3. QUEUED-A CALL REQUEST has arrived; no LISTEN yet.

4. ESTABLISHED-The connection has been established.

5. SENDING-The user ils waiting for permission to send a packet.

6. RECEIVING-A RECEIVE has been done.

7. DISCONNECTING-A DISCONNECT has been done locally.

Transitions between states can occur when any of the following events occur: a
primitive is executed, a packet arrives, or the timer expires.

514 THE TRANSPORT LAYER CHAP. 6

#define MAX_CONN 32
#define MAX_MSG_SIZE 8192
#define MAX_PKLSIZE 512
#define TIMEOUT 20

I* maximum number of simultaneous connections */
/* largest message in bytes */

#define CRED i
#define OK 0

#define ERR_FULL -1
#define ERR_REJECT -2
#define ERR_CLOSED -3
#define LOW_ERR -3

typedef int transporLaddress;

I* largest packet in bytes */

typedef enum {CALL_REQ,CALL_ACC,CLEAR_REQ,CLEAR_CONF,DATA_PKT,CREDIT} pkUype;
typedef en um {IDLE,WAITING,QUEUED,EST ABLISHED,SENDING, RECEIVING,DISCONN} estate;

/* Global variables. */
transport_address listen_address;
int listen_conn;
unsigned char data[MAX_PKT _SIZE];

struct conn {

f* local address being listened to */
f* connection identifier for listen */
f* scratch area for packet data*/

transport_address local_address, remote_address;
estate state; /* state of this connection */
unsigned char *user_buLaddr; f* pointer to receive buffer */
int byte_count; f* send/receive count */
int clueq_received; f* set when CLEAR_REQ packet received */
int timer; /* used to time out CALL_REQ packets */
int credits; /* number of messages that may be sent */

} conn[MAX_CONN];

void sleep(void); /* prototypes */
void wakeup(void);
void to_net(int cid, int q, int m, pkUype pt, unsigned char *p, int bytes);
void from_net(int *Cid, int *q, int *m, pkUype *pt, unsigned char *p, int *bytes);

int listen(transport_address t)
{ /* User wants to listen for a connection. See if CALL_REQ has already arrived. */

int i = 1, found = O;

for (i = 1; i <= MAX_CONN; i++) /*search the table for CALLREQ */
if (conn[i].state == QUEUED && conn[i].locaLaddress == t) {

found= i;
break;

if (found == 0) {
/* No CALL_REQ is waiting. Go to sleep until arrival or timeout. */
listen_address = t; sleep(); i = listen_conn ;

}
conn[i].state =ESTABLISHED;
conn[i].timer = O;

/*connection is ESTABLISHED */
/* timer is not used */

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 515

listen_conn = O;
to_net(i, 0, 0, CALL_ACC, data, O);
return(i);

/* 0 is assumed to be an invalid address */
/* tell net to accept connection */
/* return connection identifier */

}

int connect(transporLaddress I, transport_address r)
{ /* User wants to connect to a remote process; send CALL_REQ packet. */

inti;
struct conn *Cptr;

data[O) = r; data[1 J = I; /* CALLREQ packet needs these */
i = MAX_CONN; /* search table backward */
while (conn[i].state != IDLE && i > 1) i = i - 1;
if (conn[i).state == IDLE) {

/* Make a table entry that CALLREQ has been sent. *I
cptr = &conn[i];
cptr->local_address = I; cptr->remote_address = r;
cptr->state =WAITING; cptr->clueq_received = O;
cptr->credits = O; cptr->timer == O;
to_net(i, 0, 0, CALL_REQ, data, 2);
sleep(); /* wait for CALL_ACC or CLEAR_REQ */
if (cptr->state ==ESTABLISHED) return(i);
if (cptr->clueq_received) {

}

/* Other side refused call. */
cptr->state = IDLE; /* back to IDLE state */
to_net(i, 0, 0, CLEAR_CQNF, data, O);
return(ERR_REJECT);

} else return(ERR_FULL);
}

/* reject CONNECT: no table space */

int send(int cid, unsigned char bufptr[], int bytes)
{/*User wants to send a message. */

int i, count, m;
struct conn *Cptr = &conn[cid];

/* Enter SENDING state. */
cptr->state =SENDING;
cptr->byte_count = O; /* # bytes sent so far this message */
if (cptr->clr _req_received == 0 && cptr->credits == 0) sleep();
if (cptr->clueq_received == 0) {

/* Credit available; split message into packets if need be. */
do {

if (bytes - cptr->byte_count > MAX_PKLSIZE) {/* multipacket message */
count = MAX_PKLSIZE; m = 1; /* more packets later *I

} else { /* single packet message *I
count = bytes - cptr->byte_count; m = O; /* last pkt of this message */

}
for (i = O; i <count; i++) data[i] = bufptr[cptr->byte_count + i];
to_net(cid, 0, m, DATA_PKT, data, count); /*send 1 packet*/
cptr->byte_count = cptr->byte_count + count; /* increment bytes sent so far */

} while (cptr->byte_count <bytes); /*loop until whole message sent*/

516 THE TRANSPORT LA YER CHAP. 6

cptr->credits- -; /* each message uses up one credit */
cptr->state =ESTABLISHED;
return(OK);

} else {

}
}

cptr->state =ESTABLISHED;
return(ERR_CLOSED); /* send failed: peer wants to disconnect *I

int receive(int cid, unsigned char bufptr[], int *bytes)
{ /* User is prepared to receive a message. */

struct conn *Cptr = &conn[cid];

if (cptr->clueq_received == 0) {
/* Connection still established; try to receive. */
cptr->state = RECEIVING;

}

cptr->user _buLaddr = bufptr;
cptr->byte_count = O;
data[O] = CRED;
data[1] = 1;
to_net(cid, 1, 0, CREDIT, data, 2);
sleep();
*bytes = cptr->byte_count;

cptr->state =ESTABLISHED;

/* send credit */
/* block awaiting data */

return(cptr->clr _req_received ? ERR_CLOSED : OK);
}

int disconnect(int cid)
{ /* User wants to release a connection. */
struct conn *cptr = &conn[cid];

if (cptr->clr _req_received) { /* other side initiated termination */
cptr->state =IDLE; /*connection is now released*/
to_net(cid, 0, 0, CLEAR_CONF, data, O);

} else { /* we initiated termination */
cptr->state = DISCONN; /*not released until other side agrees*/
to_net(cid, 0, 0, CLEAR_REQ, data, O);

}
return(OK);

}

void packeLarrival(void)
{ /* A packet has arrived, get and process it. */
int cid; /* connection on which packet arrived */
int count, i, q, m;
pkLtype ptype; /* CALLREQ, CALLACC, CLEAR_REQ, CLEAR_CONF, DATA_PKT, CREDIT*/
unsigned char data[MAX_PKT _SIZE]; /*data portion of the incoming packet*/
struct conn *cptr;

from_net(&cid, &q, &m, &ptype, data, &count); I* go get it*/
cptr = &conn[cid];

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 517

switch (ptype) {
case CALLREQ: /* remote user wants to establish connection *f

}
}

cptr->locaLaddress = data[O]; cptr->remote_address = data[1];
if (cptr->locaLaddress == listen_address) {

listen_conn = cid; cptr->state =ESTABLISHED; wakeup();
} else {

cptr->state = QUEUED; cptr->timer = TIMEOUT;
}
cptr->clr _req_received = O; cptr->credits = O;
break;

case CALL_ACC: /* remote user has accepted our CALL_REQ */
cptr->state =ESTABLISHED;
wakeup();
break;

case CLEAR_REQ: /* remote user wants to disconnect or reject call */
cptr->clr_req_received = 1;
if (cptr->state == DISCONN) cptr->state =IDLE; /*clear collision*/
if (cptr->state == WAITING II c:ptr->state ==RECEIVING II cptr->state ==SENDING) wakeup();
break;

case CLEAR_CONF: /* remote user agrees to disconnect */
cptr->state = IDLE;
break;

case CREDIT: /* remote user is waiting for data */
cptr->credits += data[1];
if (cptr··>state == SENDING) wakeup();
break;

case DAT A_PKT: /* remote user has sent data *f
for (i = O; i <count; i++) cptr->user_buLaddr[cptr->byte_count + i] = data[i];
cptr->byte_count += count;
if (m == O) wakeup();

void clock(void)
{ /* The clock has ticked, check for timeouts of queued connect requests. */

inti;
struct conn *Cptr;

for (i = 1; i <= MAX_CQNN; i++) {
cptr = &conn[i];

}
}

if (cptr->timer > 0) { /*timer was running */
cptr->timer--;
if (cptr->timer == 0) { /*timer has now expirE:id */

cptr->state = IDLE;
to_net(i, 0, 0, CLEAR_REQ, data, O);

Fig. 6-20 .. An example transport entity.

518 THE TRANSPORT LA YER CHAP. 6

The procedures shown in Fig. 6-20 are of two types. Most are directly call­
able by user programs. packet_arrival and clock are different, however. They are
spontaneously triggered by external events: the arrival of a packet and the clock
ticking, respectively. In effect, they are interrupt routines. We will assume that
they are never invoked while a transport entity procedure is running. Only when
the user process is sleeping or executing outside the transport entity may they be
called. This property is crucial to the correct functioning of the transport entity.

The existence of the Q (Qualifier) bit in the packet header allows us to avoid
the overhead of a transport protocol header. Ordinary data messages are sent as
data packets with Q = 0. Transport protocol control messages, of which there is
only one (CREDIT) in our example, are sent as data packets with Q = 1. These
control messages are detected and processed by the receiving transport entity.

The main data structure used by the transport entity is the array conn, which
has one record for each potential connection. The record maintains the state of
the connection, including the transport addresses at either end, the number of mes­
sages sent and received on the connection, the current state, the user buffer
pointer, the number of bytes of the current messages sent or received so far, a bit
indicating that the remote user has issued a DISCONNECT, a timer, and a permis­
sion counter used to enable sending of messages. Not all of these fields are used
in our simple example, but a complete transport entity Would need all of them, and
perhaps more. Each conn entry is assumed initialized to the IDLE state.

When the user calls CONNECT, the network layer is instructed to send a CALL

REQUEST packet to the remote machine, and the user is put to sleep. When the
CALL REQUEST packet arrives at the other side, the transport entity is interrupted
to run packet_arrival to check if the local user is listening on the specified
address. If so, a CALL ACCEPTED packet is sent back and the remote user is awak­
ened; if not, the CALL REQUEST is queued for TIMEOUT clock ticks. If a LISTEN

is done within this period, the connection is established; otherwise, it times out
and is rejected with a CLEAR REQUEST packet. This mechanism is needed to
prevent the initiator from blocking forever in the event that the remote process
does not want to connect to it.

Although we have eliminated the transport protocol header, we still need a
way to keep track of which packet belongs to which transport connection, since
multiple connections may exist simultaneously. The simplest approach is to use
the network layer virtual circuit number as the transport connection number as
well. Furthermore, the virtual circuit number can also be used as the index into
the conn array. When a packet comes in on network layer virtual circuit k, it
belongs to transport connection k, whose state is in the record conn[k]. For con­
nections initiated at a host, the connection number is chosen by the originating
transport entity. For incoming calls, the network layer makes the choice, choos­
ing any unused virtual circuit number.

To avoid having to provide and manage buffers within the transport entity, a
flow control mechanism different from the traditional sliding window is used

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 519

here. Instead, when a user calls RECEIVE, a special credit message is sent to the
transport entity on the sending machine and is recorded in the conn array. When
SEND is called, the transport entity checks to see if a credit has arrived on the
specified connection. If so, the message is sent (in multiple packets if need be)
and the credit decremented; if not, the transport entity puts itself to sleep until a
credit arrives. This mechanism guarantees that no message is ever sent unless the
other side has already done a RECEIVE. As a result, whenever a message arrives
there is guaranteed to be a buffer available into which it can be put. The scheme
can easily be generalized to allow receivers to provide multiple buffers and
request multiple messages.

You should keep the simplicity of Fig. 6-20 in mind. A realistic transport
entity would normally check all user supplied parameters for validity, handle
recovery from network layer crashes, deal with call collisions, and support a more
general transport service including such facilities as interrupts, datagrams, and
nonblocking versions of the SEND and RECEIVE primitives.

6.3.3. The Example as a Finite State Machine

Writing a transport entity is difficult and exacting work, especially for more
realistic protocols. To reduce the chance of making an error, it is often useful to
represent the state of the protocol as a finite state machine.

We have already seen that our example protocol has seven states per connec­
tion. It is also possible to isolate 12 events that can happen to move a connection
from one state to another. Five of these events are the five service primitives.
Another six are the arrivals of the six legal packet types. The last one is the
expiration of the timer. Figure 6-21 shows the main protocol actions in matrix
form. The columns are the states and the rows are the 12 events.

Each entry in the matrix (i.e., the finite state machine) of Fig. 6-21 has up to
three fields: a predicate, an action, and a new state. The predicate indicates under
what conditions the action is taken. For example, in the upper left-hand entry, if a
LISTEN is executed and there is no more table space (predicate P 1), the LISTEN

fails and the state does not change. On the other hand, if a CALL REQUEST packet
has already arrived for the transport address being listened to (predicate P2), the
connection is established immediately. Another possibility is that P2 is false, that
is, no CALL REQUEST has come in, in which case the connection remains in the
IDLE state, awaiting a CALL REQUEST packet.

It is worth pointing out that the choice of states to use in the matrix is not
entirely fixed by the protocol itself. In this example, there is no state LISTENING,
which might have been a reasonable thing to have following a LISTEN. There is
no LISTENING state because a state is associated with a connection record entry,
and no connection record is created by LISTEN. Why not? Because we have
decided to use the network layer virtual circuit numbers as the connection

520 THE TRANSPORT LA YER CHAP. 6

State
Dis-

Idle Waiting Queued Established Sending Receiving connecting

P1: -/Idle
LISTEN P2: A 1 /Estab

P2: A2/ldle
-/Es tab

CONNECT
P1: -/Idle
iJ.i: A3/Wait

en
Q)

.2: P4: AS/Idle

'E DISCONNECT P4: A6/Disc

ct PS: A 7 /Estab
SEND PS: AB/Send

RECEIVE A9/Receiving

P3: A 1/Estab
Call_req P3: A4/Queu'd

Call_acc -/Est ab

m
~

al
a.

Clear_req -/Idle A10/Estab A10/Estab A10/Estab -/Idle

Ol c:: .E Clear_conf
0

-/Idle
0

-=
Data Pkt A12/Estab

Credit A11/Estab A7/Estab

~ {Timeout -/Idle

Predicates
P1: Connection table full
P2: Call_req pending
P3: LISTEN pending
P4: Clear_req pending
P5: Credit available

Actions
A1: Send Call_acc A7: Send message
A2: Wait for Call_req AB: Wait for credit
A3: Send Call_req A9: Send credit
A4: Start timer A10: Set Clr_req_received flag
A5: Send Clear_conf A 11: Record credit
A6: Send Clear_req A12: Accept message

Fig. 6-21. The example protocol as a finite state machine. Each entry has an
optional predicate, an optional action, and the new state. The tilde indicates that
no major action is taken. An overbar above a predicate indicates the negation of
the predicate. Blank entries correspond to impossible or invalid events.

identifiers, and for a LISTEN, the virtual circuit number is ultimately chosen by the
network layer when the CALL REQUEST packet arrives.

The actions Al through Al 2 are the major actions, such as sending packets
and starting timers. Not all the minor actions, such as initializing the fields of a
connection record, are listed. If an action involves waking up a sleeping process,

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 521

the actions following the wakeup also count. For example, if a CALL REQUEST

packet comes in and a process was asleep waiting for it, the transmission of the
CALL ACCEPT packet following the wakeup counts as part of the action for CALL

REQUEST. After each action is performed, the connection may move to a new
state, as shown in Fig. 6-21.

The advantage of representing the protocol as a matrix is threefold. First, in
this form it is much easier for the programmer to systematically check each com­
bination of state and event to see if an action is required. In production imple­
mentations, some of the combinations would be used for error handling. In
Fig. 6-21 no distinction is made between impossible situations and illegal ones.
For example, if a connection is in waiting state, the DISCONNECT event is impossi­
ble because the user is blocked and cannot execute any primitives at all. On the
other hand, in sending state, data packets are not expected because no credit has
been issued. The arrival of a data packet is a protocol error.

The second advantage of the matrix representation of the protocol is in imple­
menting it. One could envision a two-dimensional array in which element a [i] [j]
was a pointer or index to the procedure that handled the occurrence of event i
when in state j. One possible implementation is to write the transport entity as a
short loop, waiting for an event at the top of the loop. When an event happens,
the relevant connection is located and its state is extracted. With the event and
state now known, the transport entity just indexes into the array a and calls the
proper procedure. This approach gives a much more regular and systematic
design than our transport entity.

The third advantage of the finite state machine approach is for protocol
description. In some standards documents, the protocols are given as finite state
machines of the type of Fig. 6-21. Going from this kind of description to a work­
ing transport entity is much easier if the transport entity is also driven by a finite
state machine based on the one in the standard.

The primary disadvantage of the finite state machine approach is that it may
be more difficult to understand than the straight programming example we used
initially. However, this problem may be partially solved by drawing the finite
state machine as a graph, as is done in Fig. 6-22.

6.4. THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP)

The Internet has two main protocols in the transport layer, a connection­
oriented protocol and a connectionless one. In the following sections we will
study both of them. The connection-oriented protocol is TCP. The connection­
less protocol is UDP. Because UDP is basically just IP with a short header added,
we will focus on TCP.

TCP (Transmission Control Protocol) was specifically designed to provide
a reliable end-to-end byte stream over an unreliable internetwork. An

522 THE TRANSPORT LAYER CHAP. 6

CONNECT
(

TIMEOUT
/ ' IDLE

(CLEAR REQ CALL REQ I
_a I-·

0 z LU LU
LU a: z

WAITING f-J z QUEUED (/)J 0 :::J <t:
(.) (.)

(/)

l CALLACC
Ci j LISTEN

EST AB-

DATA, LISHED RECEIVE

(CLEAR REQ ~)~ l DATA, SEND
SENDING z

CLEAR REQ
RECEIVING

0
()
(/)

Ci

DISCON·
NECTING

~ CLEAR REQ, CLEAR CONF

Fig. 6-22. The example protocol in graphical form. Transitions that leave the
connection state unchanged have been omitted for simplicity.

internetwork differs from a single network because different parts may have
wildly different topologies, bandwidths, delays, packet sizes, and other parame­
ters. TCP was designed to dynamically adapt to properties of the internetwork
and to be robust in the face of many kinds of failures.

TCP was formally defined in RFC 793. As time went on, various errors and
inconsistencies were detected, and the requirements were changed in some areas.
These clarifications and some bug fixes are detailed in RFC 1122. Extensions are
given in RFC 1323.

Each machine supporting TCP has a TCP transport entity, either a user pro­
cess or part of the kernel that manages TCP streams and interfaces to the IP layer.
A TCP entity accepts user data streams from local processes, breaks them up into
pieces not exceeding 64K bytes (in practice, usually about 1500 bytes), and sends
each piece as a separate IP datagram. When IP datagrams containing TCP data
arrive at a machine, they are given to the TCP entity, which reconstructs the origi­
nal byte streams. For simplicity, we will sometimes use just "TCP" to mean the

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 523

TCP transport entity (a piece of software) or the TCP protocol (a set of rules).
From the context it will be clear which is meant. For example, in "The user gives
TCP the data," the TCP transport entity is clearly intended.

The IP layer gives no guarantee that datagrams will be delivered properly, so
it is up to TCP to time out and retransmit them as need be. Datagrams that do
arrive may well do so in the wrong order; it is also up to TCP to reassemble them
into messages in the proper sequence. In short, TCP must furnish the reliability
that most users want and that IP does not provide.

6.4.1. The TCP Service Model

TCP service is obtained by having both the sender and receiver create end
points, called sockets, as discussed in Sec. 6.1.3. Each socket has a socket
number (address) consisting of the IP address of the host and a 16-bit number
local to that host, called a port. A port is the TCP name for a TSAP. To obtain
TCP service, a connection must be explicitly established between a socket on the
sending machine and a socket on the receiving machine. The socket calls are
listed in Fig. 6-6.

A socket may be used for multiple connections at the same time. In other
words, two or more connections may terminate at the same socket. Connections
are identified by the socket identifiers at both ends, that is, (socket], socket2). No
virtual circuit numbers or other identifiers are used.

Port numbers below 256 are called well-known ports and are reserved for
standard services. For example, any process wishing to establish a connection to
a host to transfer a file using FTP can connect to the destination host's port 21 to
contact its FTP daemon. Similarly, to establish a remote login session using TEL­
NET, port 23 is used. The list of well-known ports is given in RFC 1700.

All TCP connections are full-duplex and point-to-point. Full duplex means
that traffic can go in both directions at the same time. Point-to-point means that
each connection has exactly two end points. TCP does not support multicasting or
broadcasting.

A TCP connection is a byte stream, not a message stream. Message bound­
aries are not preserved end to end. For example, if the sending process does four
512-byte writes to a TCP stream, these data may be delivered to the receiving pro­
cess as four 512-byte chunks, two 1024-byte chunks, one 2048-byte chunk (see
Fig. 6-23), or some other way. There is no way for the receiver to detect the
unit(s) in which the data were written.

Files in UNIX have this property too. The reader of a file cannot tell whether
the file was written a block at a time, a byte at a time, or all in one blow. As with
a UNIX file, the TCP software has no idea of what the bytes mean and no interest
in finding out. A byte is just a byte.

When an application passes data to TCP, TCP may send it immediately or
buffer it (in order to collect a larger amount to send at once), at its discretion.

524 THE TRANSPORT LA YER CHAP. 6

IE"••'•'){ .jce "••'•m
A B C D

(a) (b)

Fig. 6-23. (a) Four 512-byte segments sent as separate IP datagrams. (b) The
2048 bytes of data delivered to the application in a single READ call.

However, sometimes, the application really wants the data to be sent immediately.
For example, suppose a user is logged into a remote machine. After a command
line has been finished and the carriage return typed, it is essential that the line be
shipped off to the remote machine immediately and not buffered until the next
line comes in. To force data out, applications can use the PUSH flag, which tells
TCP not to delay the transmission.

Some early applications used the PUSH flag as a kind of marker to delineate
messages boundaries. While this trick sometimes works, it sometimes fails since
not all implementations of TCP pass the PUSH flag to the application on the
receiving side. Furthermore, if additional PUSHes come in before the first one
has been transmitted (e.g., because the output line is busy), TCP is free to collect
all the PUSHed data into a single IP datagram, with no separation between the
vanous pieces.

One last feature of the TCP service that is worth mentioning here is urgent
data. When an interactive user hits the DEL or CTRL-C key to break off a
remote computation that has already begun, the sending application puts some
control information in the data stream and gives it to TCP along with the
URGENT flag. This event causes TCP to stop accumulating data and transmit
everything it has for that connection immediately.

When the urgent data are received at the destination, the receiving application
is interrupted (e.g., given a signal in UNlX terms), so it can stop whatever it was
doing and read the data stream to find the urgent data. The end of the urgent data
is marked, so the application knows when it is over. The start of the urgent data is
not marked. It is up to the application to figure that out. This scheme basically
provides a crude signaling mechanism and leaves everything else up to the appli­
cation.

6.4.2. The TCP Protocol

In this section we will give a general overview of the TCP protocol. In the
next one we will go over the protocol header, field by field. Every byte on a TCP
connection has its own 32-bit sequence number. For a host blasting away at full

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 525

speed on a 10-Mbps LAN, theoretically the sequence numbers could wrap around
in an hour, but in practice it takes much longer. The sequence numbers are used
both for acknowledgements and for the window mechanism, which use separate
32-bit header fields.

The sending and receiving TCP entities exchange data in the form of seg­
ments. A segment consists of a fixed 20-byte header (plus an optional part) fol­
lowed by zero or more data bytes. The TCP software decides how big segments
should be. It can accumulate data from several writes into one segment or split
data from one write over multiple segments. Two limits restrict the segment size.
First, each segment, including the TCP header, must fit in the 65,535 byte IP pay­
load. Second, each network has a maximum transfer unit or MTU, and each
segment must fit in the MTU. In practice, the MTU is generally a few thousand
bytes and thus defines the upper bound on segment size. If a segment passes
through a sequence of networks without being fragmented and then hits one
whose MTU is smaller than the segment, the router at the boundary fragments the
segment into two or more smaller segments.

A segment that is too large for a network that it must transit can be broken up
into multiple segments by a router. Each new segment gets its own IP header, so
fragmentation by routers increases the total overhead (because each additional
segment adds 20 bytes of extra header information in the form of an IP header).

The basic protocol used by TCP entities is the sliding window protocol.
When a sender transmits a segment, it also starts a timer. When the segment
arrives at the destination, the receiving TCP entity sends back a segment (with
data if any exists, otherwise without data) bearing an acknowledgement number
equal to the next sequence number it expects to receive. If the sender's timer goes
off before the acknowledgement is received, the sender transmits the segment
again.

Although this protocol sounds simple, there are many ins and outs that we will
cover below. For example, since segments can be fragmented, it is possible that
part of a transmitted segment arrives and is acknowledged by the receiving TCP
entity, but the rest is lost. Segments can also arrive out of order, so bytes
3072--4095 can arrive but cannot be acknowledged because bytes 2048-3071 have
not turned up yet. Segments can also be delayed so long in transit that the sender
times out and retransmits them. If a retransmitted segment takes a different route
than the original, and is fragmented differently, bits and pieces of both the original
and the duplicate can arrive sporadicaliy, requiring a careful administration to
achieve a reliable byte stream. Finally, with so many networks making up the
Internet, it is possible that a segment may occasionally hit a congested (or broken)
network along its path.

TCP must be prepared to deal with these problems and solve them in an effi­
cient way. A considerable amount of effort has gone into optimizing the perfor­
mance of TCP streams, even in the face of network problems. A number of the
algorithms used by many TCP implementations will be discussed below.

526 THE TRANSPORT LA YER CHAP. 6

6.4.3. The TCP Segment Header

Figure 6-24 shows the layout of a TCP segment. Every segment begins with a
fixed-format 20-byte header. The fixed header may be followed by header
options. After the options, if any, up to 65,535 - 20- 20 = 65,515 data bytes may
follow, where the first 20 refers to the IP header and the second to the TCP
header. Segments without any data are legal and are commonly used for
acknowledgements and control messages.

-------------- 32 Bits----------------.

Source port

Checksum

1

Sequence number

Acknowledgement number

U A P R S F
R C S S Y I
GKHTNN

Options (0 or more 32-bit words)

Data (optional)

Fig. 6-24. The TCP header.

Destination port

Window size

Urgent pointer

I

Let us dissect the TCP header field by field. The Source port and Destination
port fields identify the local end points of the connection. E11ch host may decide
for itself how to allocate its own ports starting at 256. A port plus its host's IP
address forms a 48-bit unique TSAP. The source and destination socket numbers
together identify the connection.

The Sequence number and Acknowledgement number fields perform their
usual functions. Note that the latter specifies the next byte expected, not the last
byte correctly received. Both are 32 bits long because every byte of data is num­
bered in a TCP stream.

The TCP header length tells how many 32-bit words are contained in the TCP
header. This information is needed because the Options field is of variable length,
so the header is too. Technically, this field really indicates the start of the data

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 527

within the segment, measured in 32-bit words, but that number is just the header
length in words, so the effect is the same.

Next comes a 6-bit field that is not used. The fact that this field has survived
intact for over a decade is testimony to how well thought out TCP is. Lesser pro­
tocols would have needed it to fix bugs in the original design.

Now come six 1-bit flags. URG is set to 1 if the Urgent pointer is in use. The
Urgent pointer is used to indicate a byte offset from the current sequence number
at which urgent data ary to be found. This facility is in lieu of interrupt messages.
As we mentioned above, this facility is a bare bones way of allowing the sender to
signal the receiver without getting TCP itself involved in the reason for the inter­
rupt.

The ACK bit is set to 1 to indicate that the Acknowledgement number is valid.
If ACK is 0, the segment does not contain an acknowledgement so the Acknowl­
edgement number field is ignored.

The PSH bit indicates PUSHed data. The receiver is hereby kindly requested
to deliver the data to the application upon arrival and not buffer it until a full
buffer has. been received (which it might otherwise do for efficiency reasons).

The RST bit is used to reset a connection that has become confused due to a
host crash or some other reason. It is also used to reject an invalid segment or
refuse an attempt to open a connection. In general, if you get a segment with the
RST bit on, you have a problem on your hands.

The SYN bit is used to establish connections. The connection request has
SYN= 1 and ACK= 0 to indicate that the piggyback acknowledgement field is not
in use. The connection reply does bear an acknowledgement, so it has SYN = 1
and ACK = 1. In essence the SYN bit is used to denote CONNECTION REQUEST and
CONNECTION ACCEPTED, with the ACK bit used to distinguish between those two
possibilities.

The FIN bit is used to release a connection. It specifies that the sender has no
more data to transmit. However, after closing a connection, a process may con­
tinue to receive data indefinitely. Both SYN and FIN segments have sequence
numbers and are thus guaranteed to be processed in the correct order.

Flow control in TCP is handled using a variable-size sliding window. The
Window field tells how many bytes may be sent starting at the byte acknowledged.
A Window field of 0 is legal and says that the bytes up to and including
Acknowledgement number - 1 have been received, but that the receiver is
currently badly in need of a rest and would like no more data for the moment,
thank you. Permission to send can be granted later by sending a segment with the
same Acknowledgement number and a nonzero Window field.

A Checksum is also provided for extreme reliability. It checksums the header,
the data, and the conceptual pseudoheader shown in Fig. 6-25. When performing
this computation, the TCP Checksum field is set to zero, and the data field is pad­
ded out with an additional zero byte if its length is an odd number. The checksum
algorithm is simply to add up all the 16-bit words in l's complement and then to

528 THE TRANSPORT LAYER CHAP. 6

take the l's complement of the sum. As a consequence, when the receiver per­
forms the calculation on the entire segment, including the Checksum field, the
result should be 0.

32 Bits---------------..-

Source address

Destination address

00000000
I

Protocol= 6
I

TCP segment length

Fig. 6-25. The pseudoheader included in the TCP checksum.

The pseudoheader contains the 32-bit IP addresses of the source and destina­
tion machines, the protocol number for TCP (6), and the byte count for the TCP
segment (including the header). Including the pseudoheader in the TCP checksum
computation helps detect misdelivered packets, but doing so violates the protocol
hierarchy since the IP addresses in it belong to the IP layer, not the TCP layer.

The Options field was designed to provide a way to add extra facilities not
covered by the regular header. The most important option is the one that allows
each host to specify the maximum TCP payload it is willing to accept. Using
large segments is more efficient than using small ones because the 20-byte header
can then be amortized over more data, but small hosts may not be able to handle
very large segments. During connection setup, each side can announce its max­
imum and see its partner's. the smaller of the two numbers wins. If a host does
not use this option, it defaults to a 536-byte payload. All Internet hosts are
required to accept TCP segments of 536 + 20 = 556 bytes.

For lines with high bandwidth, high delay, or both, the 64 KB window is often
a problem. On a T3 line (44.736 Mbps), it takes only 12 msec to output a full 64
KB window. If the round trip propagation delay is 50 msec (typical for a trans­
continental fiber), the sender will be idle 3/4 of the time waiting for acknowledge­
ments. On a satellite connection, the situation is even worse. A larger window
size would allow the sender to keep pumping data out, but using the 16-bit Win­
dow size field, there is no way to express such a size. In RFC 1323, a Window
scale option was proposed, allowing the sender and receiver to negotiate a win­
dow scale factor. This number allows both sides to shift the Window size field up
to 16 bits to the left, thus allowing windows of up to 232 bytes. Most TCP imple­
mentations now support this option.

Another option proposed by RFC 1106 and now widely implemented is the
use of the selective repeat instead of go back n protocol. If the receiver gets one
bad segment and then a large number of good ones, the normal TCP protocol will

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 529

eventually time out and retransmit all the unacknowledged segments, including all
those that were received correctly. RFC 1106 introduced NAKs, to allow the
receiver to ask for a specific segment (or segments). After it gets these, it can
acknowledge all the buffered data, thus reducing the amount of data retransmitted.

6.4.4. TCP Connection Management

Connections are established in TCP using the three-way handshake discussed
in Sec. 6.2.2. To establish a connection, one side, say the server, passively waits
for an incoming connection by executing the LISTEN and ACCEPT primitives, either
specifying a specific source or Illobody in particular.

The other side, say the client, executes a CONNECT primitive, specifying the
IP address and port to which it wants to connect, the maximum TCP segment size
it is willing to accept, and optionally some user data (e.g., a password). The CON­

NECT primitive sends a TCP segment with the SYN bit on and ACK bit off and
waits for a response.

When this segment arrives at the destination, the TCP entity there checks to
see if there is a process that has done a LISTEN on the port given in the Destination
port field. If not, it sends a reply with the RST bit on to reject the connection.

Host 1

Q)

1

Host2 Host 1

(a) (b}

Fig. 6-26. (a) TCP connection establishment in the normal case. (b) Call colli­
sion.

Host2

If some process is listening to the port, that process is given the incoming
TCP segment. It can then either accept or reject the connection. If it accepts, an
acknowledgement segment is sent back. The sequence of TCP segments sent in
the normal case is shown in Fig. 6-26(a). Note that a SYN segment consumes 1
byte of sequence space so it can be acknowledged unambiguously.

530 THE TRANSPORT LA YER CHAP. 6

In the event that two hosts simultaneously attempt to establish a connection
between the same two sockets, the sequence of events is as illustrated in Fig. 6-
26(b). The result of these events is that just one connection is established, not two
because connections are identified by their end points. If the first setup results in
a connection identified by (x, y) and the second one does too, only one table entry
is made, namely, for (x, y).

The initial sequence number on a connection is not 0 for the reasons we dis­
cussed earlier. A clock-based scheme is used, with a clock tick every 4 µsec. For
additional safety, when a host crashes, it may not reboot for the maximum packet
lifetime (120 sec) to make sure that no packets from previous connections are still
roaming around the Internet somewhere ..

Although TCP connections are full duplex, to understand how connections are
released it is best to think of them as a pair of simplex connections. Each simplex
connection is released independently of its sibling. To release a connection, either
party can send a TCP segment with the FIN bit set, which means that it has no
more data to transmit. When the FIN is acknowledged, that direction is shut down
for new data. Data may continue to flow indefinitely in the other direction, how­
ever. When both directions have been shut down, the connection is released.
Normally, four TCP segments are needed to release a connection, one FIN and
one ACK for each direction. However, it is possible for the first ACK and the
second FIN to be contained in the same segment, reducing the total count to three.

Just as with telephone calls in which both people say goodbye and hang up the
phone simultaneously, both ends of a TCP connection may send FIN segments at
the same time. These are each acknowledged in the usual way, and the connec­
tion shut down. There is, in fact, no essential difference between the two hosts
releasing sequentially or simultaneously.

To avoid the two-army problem, timers are used. If a response to a FIN is not
forthcoming within two maximum packet lifetimes, the sender of the FIN releases
the connection. The other side will eventually notice that nobody seems to be
listening to it any more, and time out as well. While this solution is not perfect,
given the fact that a perfect solution is theoretically impossible, it will have to do.
In practice, problems rarely arise.

The steps required to establish and release connections can be represented in a
finite state machine with the 11 states listed in Fig. 6-27. In each state, certain
events are legal. When a legal event happens, some action may be taken. If some
other event happens, an error is reported.

Each connection starts in the CLOSED state. It leaves that state when it does
either a passive open (LISTEN), or an active open (CONNECT). If the other side
does the opposite one, a connection is established and the state becomes ESTAB­
LISHED. Connection release can be initiated by either side. When it is complete,
the state returns to CLOSED.

The finite state machine itself is shown in Fig. 6-28. The common case of a
client actively connecting to a passive server is shown with heavy lines-solid for

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 531

State Description

CLOSED No connection is active or pending

LISTEN The server is waiting for an incoming call

SYN RCVD A connection request has arrived; wait for ACK

SYN SENT The application has started to open a connection

ESTABLISHED The normal data transfer state

FIN WAIT 1 The application has said it is finished

FIN WAIT 2 The other side has agreed to release

TIMED WAIT Wait for all packets to die off

CLOSING Both sides have tried to close simultaneously

CLOSE WAIT The other side has initiated a release

LAST ACK Wait for all packets to die off

Fig. 6-27. The states used in the TCP connection management finite state
machine.

the client, dotted for the server. The lightface lines are unusual event sequences.
Each line in Fig. 6-28 is marked by an event/action pair. The event can either be
a user-initiated system call (CONNECT, LISTEN, SEND, or CLOSE), a segment arrival
(SYN, FIN, ACK, or RST), or in one case, a timeout of twice the maximum packet
lifetime. The action is the sending of a control segment (SYN, FIN, or RST) or
nothing, indicated by-. Comments are shown in parentheses.

The diagram can best be understood by first following the path of a client (the
heavy solid line) then later the path of a server (the heavy dashed line). When an
application on the client machine issues a CONNECT request, the local TCP entity
creates a connection record, marks it as being in the SYN SENT state, and sends a
SYN segment. Note that many connections may be open (or being opened) at the
same time on behalf of multiple applications, so the state is per connection and
recorded in the connection record. When the SYN+ACK arrives, TCP sends the
final ACK of the three-way handshake and switches into the ESTABLISHED state.
Data can now be sent and received.

When an application is finished, it executes a CLOSE primitive, which causes
the local TCP entity to send a FIN segment and wait for the corresponding ACK
(dashed box marked active close). When the ACK arrives, a transition is made to
state FIN WAIT 2 and one direction of the connection is now closed. When the
other side closes, too, a FIN comes in, which is acknowledged. Now both sides
are closed, but TCP waits a time equal to the maximum packet lifetime to guaran­
tee that all packets from the connection have died off, just in case the acknowl­
edgement was lost. When the timer goes off, TCP deletes the connection record.

532 THE TRANSPORT LA YER

(Start)
CONNECT/SYN

CLOSED

I
I

LISTEN/- : CLOSE/-

CLOSE/-

r·--.:3-~~~~~~--i:_~~~----GISTEN

SYN
RCVD

I
I
I

RST/-

SYN/SYN + ACK

SEND/SYN

(simultaneous open)

: (Data transfer state)
I

CHAP. 6

SYN
SENT

; ACK/- _b
'~------------------~ABLISHED 1---------

SYN+ ACK/ACK
CLOSE/FIN

,
I
I

(Step 3 of the three-way handshake)

CLOSE/FIN

(Active close)

I
I

' '
FIN/ACK

~-----------------(Pa~~i;e-\
Close)

r--------- ---------------------------------------1 ~----------r----------1
1
I
I
I
I
I
I
I
I

FIN
WAIT1

FIN/ACK
I I I
I I I

: : CLOSE :
: : WAIT :
I I I

~LOSING
I I I

: : CLOSE/FIN:
I I I

i ACK/- ACK/-

' I
I
I
I
I
I
I
I
I

FIN
WAIT2

FIN+ ACK/ACK [
TIMED

FIN/ACK WAIT

I I I
I I I

I I CT?JJ I I I I
I I I
I I K I
I I I
I I I
l I I I

!_ ______________________________________ _ I I I I
_________ J ~----------~----------J

(Timeout/) :
I

~LOSED ---------~?~--:_ _______)

(Go back to start)

Fig. 6-28. TCP connection management finite state machine. The heavy solid
line is the normal path for a client. The heavy dashed line is the normal path for
a server. The light lines are unusual events.

Now let us examine connection management from the server's viewpoint.
The server does a LISTEN and settles down to see who turns up. When a SYN
comes in, it is acknowledged and the server goes to the SYN RCVD state. When
the server's SYN is itself acknowledged, the three-way handshake is complete and
the server goes to the ESTABLISHED state. Data transfer can now occur.

When the client has had enough, it does a CLOSE, which causes a FIN to
arrive at the server (dashed box marked passive close). The server is then

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 533

signaled. When it, too, does a CLOSE, a FIN is sent to the client. When the
client's acknowledgement shows up, the server releases the connection and
deletes the connection record.

6.4.5. TCP Transmission Policy

Window management in TCP is not directly tied to acknowledgements as it is
in most data link protocols. For example, suppose the receiver has a 4096-byte
buffer as shown in Fig. 6-29. If the sender transmits a 2048-byte segment that is
correctly received, the receiver will acknowledge the segment. However, since it
now has only 2048 of buffer space (until the application removes some data from
the buffer), it will advertise a window of 2048 starting at the next byte expected.

Sender
Application
doesa2K -
write

Application
doesa3K -

..... -----1~CK = 2048 WIN = 2048

Receiver Receiver's
buffer

0 4K

Empty I

write r------1]K / SEQ= 20~----

Sender is
blocked

Sender may
send up to 2K ---

Application , ___ reads 2K

Fig. 6-29. Window management in TCP.

Now the sender transmits another 2048 bytes, which are acknowledged, but
the advertised window is 0. The sender must stop until the application process on

534 THE TRANSPORT LA YER CHAP. 6

the receiving host has removed some data from the buffer, at which time TCP can
advertise a larger window.

When the window is 0, the sender may not normally send segments, with two
exceptions. First, urgent data may be sent, for example, to allow the user to kill
the process running on the remote machine. Second, the sender may send a I-byte
segment to make the receiver reannounce the next byte expected and window
size. The TCP standard explicitly provides this option to prevent deadlock if a
window announcement ever gets lost.

Senders are not required to transmit data as soon as they come in from the
application. Neither are receivers required to send acknowledgements as soon as
possible. For example, in Fig. 6-29, When the first 2 KB of data came in, TCP,
knowing that it had a 4-KB window available, would have been completely
correct in just buffering the data until another 2 KB came in, to be able to transmit
a segment with a 4-KB payload. This freedom can be exploited to improve per­
formance.

Consider a TELNET connection to an interactive editor that reacts on every
keystroke. In the worst case, when a character arrives at the sending TCP entity,
TCP creates a 21-byte TCP segment, which it gives to IP to send as a 41-byte IP
datagram. At the receiving side, TCP immediately sends a 40-byte acknowledge­
ment (20 bytes of TCP header and 20 bytes of IP header). Later, when the editor
has read the byte, TCP sends a window update, moving the window 1 byte to the
right. This packet is also 40 bytes. Finally, when the editor has processed the
character, it echoes it as a 41-byte packet. In all, 162 bytes of bandwidth are used
and four segments are sent for each character typed. When bandwidth is scarce,
this method of doing business is not desirable.

One approach that many TCP implementations use to optimize this situation
is to delay acknowledgements and window updates for 500 msec in the hope of
acquiring some data on which to hitch a free ride. Assuming the editor echoes
within 500 msec, only one 41-byte packet now need be sent back to the remote
user, cutting the packet count and bandwidth usage in half.

Although this rule reduces the load placed on the network by the receiver, the
sender is still operating inefficiently by sending 41-byte packets containing 1 byte
of data. A way to reduce this usage is known as Nagle's algorithm (Nagle,
1984). What Nagle suggested is simple: when data come into the sender one byte
at a time, just send the first byte and buffer all the rest until the outstanding byte is
acknowledged. Then send all the buffered characters in one TCP segment and
start buffering again until they are all acknowledged. If the user is typing quickly
and the network is slow, a substantial number of characters may go in each seg­
ment, greatly reducing the bandwidth used. The algorithm additionally allows a
new packet to be sent if enough data have trickled in to fill half the window or a
maximum segment.

Nagle's algorithm is widely used by TCP implementations, but there are times
when it is better to disable it. In particular, when an X-Windows application is

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 535

being run over the Internet, mouse movements have to be sent to the remote com­
puter. Gathering them up to send in bursts makes the mouse cursor tnove errati­
cally, which makes for unhappy users.

Another problem that can ruin TCP performance is the silly window syn­
drome (Clark, 1982). This problem occurs when data are passed to the sending
TCP entity in large blocks, but an interactive application on the receiving side
reads data 1 byte at a time. To see the problem, look at Fig. 6-30. Initially, the
TCP buffer on the receiving side is full and the sender knows this (i.e., has a win­
dow of size 0). Then the interactive application reads one character from the TCP
stream. This action makes the receiving TCP happy, so it sends a window update
to the sender saying that it is all right to send 1 byte. The sender obliges and
sends 1 byte. The buffer is now full, so the receiver acknowledges the 1-byte seg­
ment but sets the window to 0. This behavior can go on forever.

Application reads 1 byte

Window update segment sent

I Header I
i

New byte arrives

I
1 Byte

Fig. 6-30. Silly window syndrome.

Clark's solution is to prevent the receiver from sending a window update for 1
byte. Instead it is forced to wait until it has a decent amount of space available
and advertise that instead. Specifically, the receiver should not send a window
update until it can handle the maximum segment size it advertised when the con­
nection was established, or its buffer is half empty, whichever is smaller.

Furthermore, the sender can also help by not sending tiny segments. Instead,
it should try to wait until it has accumulated enough space in the window to send a
full segment or at least one containing half of the receiver's buffer size (which it
must estimate from the pattern of window updates it has received in the past).

536 THE TRANSPORT LA YER CHAP. 6

Nagle's algorithm and Clark's solution to the silly window syndrome are
complementary. Nagle was trying to solve the problem caused by the sending
application delivering data to TCP a byte at a time. Clark was trying to solve the
problem of the receiving application sucking the data up from TCP a byte at a
time. Both solutions are valid and can work together. The goal is for the sender
not to send small segments and the receiver not to ask for them.

The receiving TCP can go further in improving performance than just doing
window updates in large units. Like the sending TCP, it also has the ability to
buffer data, so it can block a READ request from the application until it has a large
chunk of data to provide. Doing this reduces the number of calls to TCP, and
hence the overhead. Of course, it also increases the response time, but for nonin­
teractive applications like file transfer, efficiency may outweigh response time to
individual requests.

Another receiver issue is what to do with out of order segments. They can be
kept or discarded, at the receiver's discretion. Of course, acknowledgements can
be sent only when all the data up to the byte acknowledged have been received. If
the receiver gets segments 0, 1, 2, 4, 5, 6, and 7, it can acknowledge everything up
to and including the last byte in segment 2. When the sender times out, it then
retransmits segment 3. If the receiver has buffered segments 4 through 7, upon
receipt of segment 3 it can acknowledge all bytes up to the end of segment 7.

6.4.6. TCP Congestion Control

When the load offered to any network is more than it can handle, congestion
builds up. The Internet is no exception. In this section we will discuss algorithms
that have been developed over the past decade to deal with congestion. Although
the network layer also tries to manage congestion, most of the heavy lifting is
done by TCP because the real solution to congestion is to slow down the data rate.

In theory, congestion can be dealt with by employing a principle borrowed
from physics: the law of conservation of packets. The idea is not to inject a new
packet into the network until an old one leaves (i.e., is delivered). TCP attempts
to achieve this goal by dynamically manipulating the window size.

The first step in managing congestion is detecting it. In the old days, detect­
ing congestion was difficult. A timeout caused by a lost packet could have been
caused by either (1) noise on a transmission line or (2) packet discard at a cong­
ested router. Telling the difference was difficult.

Nowadays, packet loss due to transmission errors is relatively rare because
most long-haul trunks are fiber (although wireless networks are a different story).
Consequently, most transmission timeouts on the Internet are due to congestion.
All the Internet TCP algqrithms assume that timeouts are caused by congestion
and monitor timeouts for signs of trouble the way miners watch their canaries.

Before discussing how TCP reacts to congestion, let us first describe what it
does to try to prevent it from occurring in the first place. When a connection is

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 537

established, a suitable window size has to be chosen. The receiver can specify a
window based on its buffer size. If the sender sticks to this window size, prob­
lems will not occur due to buffer overflow at the receiving end, but they may still
occur due to internal congestion within the network.

In Fig. 6-31, we see this problem illustrated hydraulically. In Fig. 6-31(a), we
see a thick pipe leading to a small-capacity receiver. As long as the sender does
not send more water than the bucket can contain, no water will be lost. In Fig. 6-
31 (b), the limiting factor is not the bucket capacity, but the internal carrying capa­
city of the network. If too much water comes in too fast, it will back up and some
will be lost (in this case by overflowing the funnel).

5\ ""Transmission
~~ rate adjustment

•
Transmission
network

Small-capacity
receiver~

(a) (b)

Internal
congestion

Fig. 6-31. (a) A fast network feeding a low-capacity receiver. (b) A slow net­
work feeding a high-capacity receiver.

The Internet solution is to realize that two potential problems exist-network
capacity and receiver capacity--and to deal with each of them separately. To do
so, each sender maintains two windows: the window the receiver has granted and
a second window, the congestion window. Each reflects the number of bytes the
sender may transmit. The number of bytes that may be sent is the minimum of the
two windows. Thus the effective window is the minimum of what the sender

538 THE TRANSPORT LA YER CHAP. 6

thinks is all right and what the receiver thinks is all right. If the receiver says
"Send SK" but the sender knows that bursts of more than 4K clog the network up,
it sends 4K. On the other hand, if the receiver says "Send SK" and the sender
knows that bursts of up to 32K get through effortlessly, it sends the full SK
requested.

When a connection is established, the sender initializes the congestion win­
dow to the size of the maximum segment in use on the connection. It then sends
one maximum segment. If this segment is acknowledged before the timer goes
off, it adds one segment's worth of bytes to the congestion window to make it two
maximum size segments and sends two segments. As each of these segments is
acknowledged, the congestion window is increased by one maximum segment
size. When the congestion window is n segments, if all n are acknowledged on
time, the congestion window is increased by the byte count corresponding to n
segments. In effect, each burst successfully acknowledged doubles the congestion
window.

The congestion window keeps growing exponentially until either a timeout
occurs or the receiver's window is reached. The idea is that if bursts of size, say,
1024, 204S, and 4096 bytes work fine, but a burst of S192 bytes gives a timeout,
the congestion window should be set to 4096 to avoid congestion. As long as the
congestion window remains at 4096, no bursts longer than that will be sent, no
matter how much window space the receiver grants. This algorithm is called slow
start, but it is not slow at all (Jacobson, 19SS). It is exponential. All TCP imple­
mentations are required to support it.

Now let us look at the Internet congestion control algorithm. It uses a third
parameter, the threshold, initially 64K, in addition to the receiver and congestion
windows. When a timeout occurs, the threshold is set to half of the current
congestion window, and the congestion window is reset to one maximum seg­
ment. Slow start is then used to determine what the network can handle, except
that exponential growth stops when the threshold is hit. From that point on, suc­
cessful transmissions grow the congestion window linearly (by one maximum seg­
ment for each burst) instead of one per segment. In effect, this algorithm is guess­
ing that it is probably acceptable to cut the congestion window in half, and then it
gradually works its way up from there.

As an illustration of how the congestion algorithm works, see Fig. 6-32. The
maximum segment size here is 1024 bytes. Initially the congestion window was
64K, but a timeout occurred, so the threshold is set to 32K and the congestion
window to lK for transmission 0 here. The congestion window then grows
exponentially until it hits the threshold (32K). Starting then it grows linearly.

Transmission 13 is unlucky (it should have known) and a timeout occurs. The
threshold is set to half the current window (by now 40K, so half is 20K) and slow
start initiated all over again. When the acknowledgements from transmission lS
start coming in, the first four each increment the congestion window by one seg­
ment, but after that, growth becomes linear again.

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 539

44

40

36 Threshold

(ii 32 -------------- -----------------~---
~
~ 28
g
~ 24

"O
c:
"§ 20
c:
0

~ 16
Cl
c:
0
() 12

8

4

/Timeout

Threshold

- / _________ _

O'---'---'--'-~--'-----'~'---'---'--'--~--'-----'~'--~-'--'-~-'----'-~'--~-'-~

0 2 4 6 8 10 12 14 16 18 20 22 24

Transmission number

Fig. 6-32. An example of the Internet congestion algorithm.

If no more timeouts occur, the congestion window will continue to grow up to
the size of the receiver's window. At that point, it will stop growing and remain
constant as long as there are no more timeouts and the receiver's window does not
change size. As an aside, if an ICMP SOURCE QUENCH packet comes in and is
passed to TCP, this event is treated the same way as a timeout.

Work on improving the congestion control mechanism is continuing. For
example, Brakmo et al. (1994) have reported improving TCP throughput by 40
percent to 70 percent by managing the clock more accurately, predicting conges­
tion before timeouts occur, and using this early warning system to improve the
slow start algorithm.

6.4. 7. TCP Timer Management

TCP uses multiple timers (at least conceptually) to do its work. The most
important of these is the retransmission timer. When a segment is sent, a
retransmission timer is started. If the segment is acknowledged before the timer
expires, the timer is stopped. If, on the other hand, the timer goes off before the
acknowledgement comes in, the segment is retransmitted (and the timer started
again). The question that arises is: How long should the timeout interval be?

540 THE TRANSPORT LAYER CHAP. 6

This problem is much more difficult in the Internet transport layer than in the
generic data link protocols of Chap. 3. In the latter case, the expected delay is
highly predictable (i.e., has a low variance), so the timer can be set to go off just
slightly after the acknowledgement is expected, as shown in Fig. 6-33(a). Since
acknowledgements are rarely delayed in the data link layer, the absence of an
acknowledgement at the expected time generally means the frame or the acknowl­
edgement has been lost.

0.3

0.2

~
:0
Cll
.0 e
a..

0.1

10

T

20 30 40
Round trip time (msec)

(a)

~
:0
Cll
.0 e
a..

50

0.3

0.2

0.1

10 20 30 40
Round trip time (msec)

(b)

Fig. 6-33. (a) Probability density of acknowledgement arrival times in the data
link layer. (b) Probability density of acknowledgement arrival times for TCP.

50

TCP is faced with a radically different environment. The probability density
function for the time it takes for a TCP acknowledgement to come back looks
more like Fig. 6-33(b) than Fig. 6-33(a). Determining the round-trip time to the
destination is tricky. Even when it is known, deciding on the timeout interval is
also difficult. If the timeout is set too short, say T 1 in Fig. 6-33(b), unnecessary
retransmissions will occur, clogging the Internet with useless packets. If it is set
too long, (T 2), performance will suffer due to the long retransmission delay when­
ever a packet is lost. Furthermore, the mean and variance of the acknowledge­
ment arrival distribution can change rapidly within a few seconds as congestion
builds up or is resolved.

The solution is to use a highly dynamic algorithm that constantly adjusts the
timeout interval, based on continuous measurements of network performance.
The algorithm generally used by TCP is due to Jacobson (1988) and works as fol­
lows. For each connection, TCP maintains a variable, RTT, that is the best current
estimate of the round-trip time to the destination in question. When a segment is
sent, a timer is started, both to see how long the acknowledgement takes and to

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 541

trigger a retransmission if it takes too long. If the acknowledgement gets back
before the timer expires, TCP measures how long the acknowledgement took, say,
M. It then updates RTT according to the formula

RTT = aRTT + (1 - a)M

where a is a smoothing factor that determines how much weight is given to the
old value. Typically a = 7 /8.

Even given a good value of RTT, choosing a suitable retransmission timeout is
a nontrivial matter. Normally, TCP uses PRTT, but the trick is choosing p. In the
initial implementations, P was always 2, but experience showed that a constant
value was inflexible because it failed to respond when the variance went up.

In 1988, Jacobson proposed making P roughly proportional to the standard
deviation of the acknowledgement arrival time probability density function so a
large variance means a large p and vice versa. In particular, he suggested using
the mean deviation as a cheap estimator of the standard deviation. His algorithm
requires keeping track of another smoothed variable, D, the deviation. Whenever
an acknowledgement comes in, the difference between the expected and observed
values, I RTT - M I is computed. A smoothed value of this is maintained in D by
the formula

D=aD+(l-a) IRTT-MI

where a may or may not be the same value used to smooth RTT. While D is not
exactly the same as the standard deviation, it is good enough and Jacobson
showed how it could be computed using only integer adds, subtracts, and shifts, a
big plus. Most TCP implementations now use this algorithm and set the timeout
interval to

Timeout= RTT + 4*D

The choice of the factor 4 is somewhat arbitrary, but it has two advantages. First,
multiplication by 4 can be done with a single shift. Second, it minimizes unneces­
sary timeouts and retransmissilons because less than one percent of all packets
come in more than four standard deviations late. (Actually, Jacobson initially said
to use 2, but later work has shown that 4 gives better performance.)

One problem that occurs with the dynamic estimation of RTT is what to do
when a segment times out and is sent again. When the acknowledgement comes
in, it is unclear whether the acknowledgement refers to the first transmission or a
later one.. Guessing wrong can seriously contaminate the estimate of RTT. Phil
Karn discovered this problem the hard way. He is an amateur radio enthusiast
interested in transmitting TCP/IP packets by ham radio, a notoriously unreliable
medium (on a good day, half the packets get through). He made a simple pro­
posal: do not update RTT on any segments that have been retransmitted. Instead,
the timeout is doubled on each failure until the segments get through the first
time. This fix is called Karn's algorithm. Most TCP implementations use it.

542 THE TRANSPORT LAYER CHAP. 6

The retransmission timer is not the only one TCP uses. A second timer is the
persistence timer. It is designed to prevent the following deadlock. The receiver
sends an acknowledgement with a window size of 0, telling the sender to wait.
Later, the receiver updates the window, but the packet with the update is lost.
Now both the sender and the receiver are waiting for each other to do something.
When the persistence timer goes off, the sender transmits a probe to the receiver.
The response to the probe gives the window size. If it is still zero, the persistence
timer is set again and the cycle repeats. If it is nonzero, data can now be sent.

A third timer that some implementations use is the keepalive timer. When a
connection has been idle for a long time, the keepalive timer may go off to cause
one side to check if the other side is still there. If it fails to respond, the connec­
tion is terminated. This feature is controversial because it adds overhead and may
terminate an otherwise healthy connection due to a transient network partition.

The last timer used on each TCP connection is the one used in the TIMED
WAIT state while closing. It runs for twice the maximum packet lifetime to make
sure that when a connection is closed, all packets created by it have died off.

6.4.8. UDP

The Internet protocol suite also supports a connectiortless transport protocol,
UDP (User Data Protocol). UDP provides a way for applications to send encap­
sulated raw IP datagrams and send them without having to establish a connection.
Many client-server applications that have one request and one response use UDP
rather than go to the trouble of establishing and later releasing a connection. UDP
is described in RFC 768.

--------------32 Bits----------------

Source port Destination port

UDP length UDP checksum

Fig. 6-34. The UDP header.

A UDP segment consists of an 8-byte header followed by the data. The
header is shown in Fig. 6-34. The two ports serve the same function as they do in
TCP: to identify the end points within the source and destination machines. The
UDP length field includes the 8-byte header and the data. The UDP checksum
includes the same format pseudoheader shown in Fig. 6-25, the UDP header, and
the UDP data, padded out to an even number of bytes if need be. It is optional
and stored as 0 if not computed (a true computed 0 is stored as all 1 s, which is the
same in 1 's complement). Turning it off is foolish unless the quality of the data
does not matter (e.g., digitized speech).

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 543

6.4.9. Wireless TCP and UDP

In theory, transport protocols should be independent of the technology of the
underlying network layer. In particular, TCP should not care whether IP is run­
ning over fiber or over radio. In practice, it does matter because most TCP imple­
mentations have been carefully optimized based on assumptions that are true for
wired networks but which fail for wireless networks. Ignoring the properties of
wireless transmission can lead to a TCP implementation that is logically correct
but has horrendous performance.

The principal problem is the congestion control algorithm. Nearly all TCP
implementations nowadays assume that timeouts are caused by congestion, not by
lost packets. Consequently, when a timer goes off, TCP slows down and sends
less vigorously (e.g., Jacobson's slow start algorithm). The idea behind this
approach is to reduce the network load and thus alleviate the congestion.

Unfortunately, wireless transmission links are highly unreliable. They lose
packets all the time. The proper approach to dealing with lost packets is to send
them again, and as quickly as possible. Slowing down just makes matters worse.
If, say, 20 percent of all packets are lost, then when the sender transmits 100
packets/sec, the throughput is 80 packets/sec. If the sender slows down to 50
packets/sec, the throughput drops to 40 packets/sec.

In effect, when a packet is lost on a wired network, the sender should slow
down. When one is lost on a wireless network, the sender should try harder.
When the sender does not know what the network is, it is difficult to make the
correct decision.

Frequently, the path from sender to receiver is inhomogeneous. The first
1000 km might be over a wired network, but the last 1 km might be wireless.
Now making the correct decision on a timeout is even harder, since it matters
where the problem occurred. A solution proposed by Bakne and Badrinath
(1995), indirect TCP, is to split the TCP connection into two separate connec­
tions, as shown in Fig. 6-35. The first connection goes from the sender to the base
station. The second one goes from the base station to the receiver. The base sta­
tion simply copies packets between the connections in both directions.

Sender TCP #1

Router

TCP#2

Mobile
host

Fig. 6-35. Splitting a TCP connection into two connections.

544 THE TRANSPORT LA YER CHAP. 6

The advantage of this scheme is that both connections are now homogeneous.
Timeouts on the first connection can slow the sender down, whereas timeouts on
the second one can speed it up. Other parameters can also be tuned separately for
the two connections. The disadvantage is that it violates the semantics of TCP.
Since each part of the connection is a full TCP connection, the base station
acknowledges each TCP segment in the usual way. Only now, receipt of an
acknowledgement by the sender does not mean that the receiver got the segment,
only that the base station got it.

A different solution, due to Balakrishnan et al. (1995), does not break the
semantics of TCP. It works by making several small modifications to the network
layer code in the base station. One of the changes is the addition of a snooping
agent that observes and caches TCP segments going out to the mobile host, and
acknowledgements coming back from it. When the snooping agent sees a TCP
segment going out to the mobile host but does not see an acknowledgement com­
ing back before its (relatively short) timer goes off, it just retransmits that seg­
ment, without telling the source that it is doing so. It also generates a retransmis­
sion when it sees duplicate acknowledgements from the mobile host go by, invari­
ably meaning that the mobile host has missed something. Duplicate acknowl­
edgements are discarded on the spot, to avoid having the source misinterpret them
as a sign of congestion.

One disadvantage of this transparency, however, is that if the wireless link is
very lossy, the source may time out waiting for an acknowledgement and invoke
the congestion control algorithm. With indirect TCP, the congestion control algo­
rithm will never be started unless there really is congestion in the wired part of the
network.

The Balakrishnan et al. paper also has a solution to the problem of lost seg­
ments originating at the mobile host. When the base station notices a gap in the
inbound sequence numbers, it generates a request for a selective repeat of the
missing bytes using a TCP option. Using these two fixes, the wireless link is
made more reliable in both directions, without the source knowing about it, and
without changing the semantics of TCP.

While UDP does not suffer from the same problems as TCP, wireless com­
munication also introduces difficulties for it. The main trouble is that programs
use UDP expecting it to be highly reliable. They know that no guarantees are
given, but they still expect it to be near perfect. In a wireless environment, it will
be far from perfect. For programs that are able to recover from lost UDP mes­
sages, but only at considerable cost, suddenly going from an environment where
messages theoretically can be lost but rarely are, to one in which they are con­
stantly being lost can result in a performance disaster.

Wireless communication also affects areas other than just performance. For
example, how does a mobile host find a local printer to connect to, rather than use
its home printer? Somewhat related to this is how to get the WWW page for the
local cell, even if its name is not known. Also, WWW page designers tend to

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 545

assume lots of bandwidth is available. Putting a large logo on every page
becomes counterproductive if it is going to take 30 sec to transmit at 9600 bps
every time the page is referenced, irritating the users no end.

6.5. THE ATM AAL LAYER PROTOCOLS

It is not really clear whether or not A TM has a transport layer. On the one
hand, the ATM layer has the functionality of a network layer, and there is another
layer on top of it (AAL), which sort of makes AAL a transport layer. Some
experts agree with this view (e.g., De Prycker, 1993, page 112). One of the proto­
cols used here (AAL 5) is functionally similar to UDP, which is unquestionably a
transport protocol.

On the other hand, none of the AAL protocols provide a reliable end-to-end
connection, as TCP does (although with only very minor changes they could).
Also, in most applications another transport layer is used on top of AAL. Rather
than split hairs, we will discuss the AAL layer and its protocols in this chapter
without making a claim that it is a true transport layer.

The AAL layer in ATM networks is radically different than TCP, largely
because the designers were primarily interested in transmitting voice and video
streams, in which rapid delivery is more important than accurate delivery.
Remember that the ATM layer just outputs 53-byte cells one after another. It has
no error control, no flow control, and no other control. Consequently, it is not
well matched to the requirements that most applications need.

To bridge this gap, in Recommendation I.363, ITU has defined an end-to-end
layer on top of the ATM layer. This layer, called AAL (ATM Adaptation
Layer) has a tortuous history, full of mistakes, revisions, and unfinished business.
In the following sections we will look at it and its design.

The goal of AAL is to provide useful services to application programs and to
shield them from the mechanics of chopping data up into cells at the source and
reassembling them at the destination. When ITU began defining AAL, it realized
that different applications had different requirements, so it organized the service
space along three axes:

1. Real-time service versus nonreal-time service.

2. Constant bit rate service versus variable bit rate service.

3. Connection-oriented service versus connectionless service.

In principle, with three axes and two values on each axis, eight distinct services
can be defined, as shown in Fig. 6-36. ITU felt that only four of these were of any
use, and named them classes A, B, C, and D, as noted. The others were not sup­
ported. Starting with ATM 4.0, Fig. 6-36 is somewhat obsolete, so it has been
presented here mostly as background information to help understand why the

546 THE TRANSPORT LA YER CHAP. 6

AAL protocols have been designed as they have been. Instead of these service
classes, the major distinction now is between the traffic classes we studied in
Chap. 5 (ABR, CBR, NRT-VBR, RT-VBR, and UBR).

A B c D

Real

I
None

Real

I
None

Real

I None
Real

I None
time time time time

Timing

Bit rate Constant Variable Constant Variable

Mode Connection orientated Connectionless

Fig. 6-36. Original service classes supported by AAL (now obsolete).

To handle these four classes of service, ITU defined four protocols, AAL 1
through AAL 4, respectively. However, later it discovered that the technical
requirements for classes C and D were so similar that AAL 3 and AAL 4 were
combined into AAL 3/4. Then the computer industry, which had been asleep at
the switch, realized that none of them were any good. It solved this problem by
the simple expedient of defining another protocol, AAL 5. We will look at all
four of these shortly. We will also look at an interesting control protocol used on
ATM systems.

6.5.1. Structure of the A TM Adaptation Layer

The ATM adaptation layer is divided into two major parts, one of which is
often further subdivided, as illustrated in Fig. 6-37.

The upper part of the A TM adaptation layer is called the convergence sub­
layer. Its job is to provide the interface to the application. It consists of a subpart
that is common to all applications (for a given AAL protocol) and an application
specific subpart. The functions of each of these parts are protocol dependent but
can include message framing and error detection.

In addition, at the source, the convergence sublayer is responsible for accept­
ing bit streams or arbitrary length messages from the applications and breaking
them up into units of 44 to 48 bytes for transmission. The exact size is protocol
dependent, since some protocols use part of the 48-byte A TM payload for their
own headers. At the destination, this sublayer reassembles the cells into the origi­
nal messages. In general, message boundaries are preserved, when present. In
other words, if the source sends four 512-byte messages, they will arrive as four
512-byte messages, not one 2048-byte message. For data streams, no message
boundaries exist, so they are not preserved.

The lower part of the AAL is called the SAR (Segmentation And Reassem­
bly) sublayer. It can add headers and trailers to the data units given to it by the

SEC. 6.5

ATM{ adaptation
layer

THE A TM AAL LAYER PROTOCOLS

ATM layer

!--~~~~~~-~~~~~~~~~~~~~____,

Physical layer

'---~~~~~~-~~~~~~~~~~~~~~

547

}

Discussed
in chapter 6

}

Discussed
in chapter 5

}

Discussed
in chapter 3

Fig. 6-37. The ATM model showing the ATM adaptation layer and its sublayers.

convergence sublayer to form cell payloads. These payloads are then given to the
ATM layer for transmission. At the destination, the SAR sublayer reassembles
the cells into messages. The SAR sublayer is basically concerned with cells,
whereas the convergence sublayer is concerned with messages.

The generic operation of the convergence and SAR sublayers is shown in
Fig. 6-38. When a message comes in to the AAL from the application, the con­
vergence sublayer may give it a header and/or trailer. The message is then broken
up into 44- to 48-byte units, which are passed to the SAR sublayer. The SAR sub­
layer may add its own header and trailer to each piece and pass them down to the
ATM layer for transmission as independent cells. Note that the figure shows the
most general case because some of the AAL protocols have null headers and/or
trailers.

The SAR sublayer also has some additional functions for some (but not all)
service classes. In particular, it sometimes handles error detection and multiplex­
ing. The SAR sublayer is present for all service classes but does more or less
work, depending on the specific protocol.

The communication between the application and AAL layer uses the standard
OSI request and indication primitives that we discussed in Chap. 1. The com­
munication between the sublayers uses different primitives.

6.5.2. AAL 1

AAL 1 is the protocol used for transmitting class A traffic, that is, real-time,
constant bit rate, connection-oriented traffic, such as uncompressed audio and
video. Bits are fed in by the application at a constant rate and must be delivered
at the far end at the same constant rate, with a minimum of delay, jitter, and over­
head. The input is a stream of bits, with no message boundaries. For this traffic,
error detecting protocols such as stop-and-wait are not used because the delays
that are introduced by timeouts and retransmissions are unacceptable. However,

548 THE TRANSPORT LAYER CHAP. 6

Output by application

Heade~J~Trailer
Message

convergenc~~~b~:~~r I C; ~~ CS I

~~~/LLLLLLL~\~~­
,~~~:E I ~I cs • ~I • ~I ~~~~~_,__, __ 

AT~;~~~:l~l~I cs -~11~1~~~1 ~~~~~~~~-
ATM 1/ \ / ---- 4:-;s -=-header ___ 5

3 
___ _ 

SAR Convergence SAR Bytes Convergence 
header sublayer header trailer sublayer trailer 

Fig. 6-38. The headers and trailers that can be added to a message in an A TM 
network. 

Unused 

missing cells are reported to the application, which must then take its own action 
(if any) to recover from them. 

AAL 1 uses a convergence sublayer and a SAR sublayer. The convergence 
sublayer detects lost and misinserted cells. (A misinserted cell is one that is 
delivered to the wrong destination as a result of an undetected error in its virtual 
circuit or virtual path identifiers.) It also smoothes out incoming traffic to provide 
delivery of cells at a constant rate. Finally, the convergence sublayer breaks up 
the input messages or stream into 46- or 47-byte units that are given to the SAR 
sublayer for transmission. At the other end it extracts these and reconstructs the 
original input. The AAL 1 convergence sublayer does not have any protocol 
headers of its own. 

In contrast, the AAL 1 SAR sublayer does have a protocol. The formats of its 
cells are given in Fig. 6-39. Both formats begin with a 1-byte header containing a 
3-bit cell sequence number, SN, (to detect missing or misinserted cells). This 
field is followed by a 3-bit sequence number protection, SNP, (i.e., checksum) 
over the sequence number to allow correction of single errors and detection of 
double errors in the sequence field. It uses a cyclic redundancy check with the 
polynomial x 3 + x + 1. An even parity bit covering the header byte further 
reduces the likelihood of a bad sequence number sneaking in unnoticed. AAL 1 
cells need not be filled with a full 47 bytes. For example, to transmit digitized 
voice arriving at a rate of 1 byte every 125 µsec, filling a cell with 47 bytes means 
collecting samples for 5.875 msec. If this delay before transmission is 



SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 549 

Bits 3 3 

non-P I 0 I SN I SNP I J 
""' . Even parity 

47-Byte payload 

P 1 SN SNP 46-Byte payload 

Fig. 6-39. The AAL 1 cell format. 

unacceptable, partial cells can be sent. In this case, the number of actual data 
bytes per cell is the same for all cells and agreed on in advance. 

The P cells are used when message boundaries must be preserved. The 
Pointer field is used to give the offset of the start of the next message. ·Only cells 
with an even sequence number may be P cells, so the pointer is in the range 0 to 
92, to put it within the payload of either its own cell or the one following it. Note 
that this scheme allows messages to be an arbitrary number of bytes long, so mes­
sages can be run continuously and need not align on cell boundaries. 

The high-order bit of the Pointer field is reserved for future use. The initial 
header bit of all the odd-numbered cells forms a data stream used for clock syn­
chronization. 

6.5.3. AAL 2 

AAL 1 is designed for simple, connection-oriented, real-time data streams 
without error detection, except for missing and misinserted cells. For pure 
uncompressed audio or video, or any other data stream in which having a few gar­
bled bits once in a while is not a problem, AAL 1 is adequate. 

For compressed audio or video, the rate can vary strongly in time. For exam­
ple, many compression schemes transmit a full video frame periodically and then 
send only the differences between subsequent frames and the last full frame for 
several frames. When the camera is stationary and nothing is moving, the differ­
ence frames are small, but when the camera is panning rapidly, they are large. 
Also, message boundaries must be preserved so that the start of the next full frame 
can be recognized, even in the presence of lost cells or bad data. For these rea­
sons, a fancier protocol is needed. AAL 2 has been designed for this purpose. 

As in AAL 1, the CS sublayer does not have a protocol but the SAR sublayer 
does. The SAR cell format is shown in Fig. 6-40. It has a 1-byte header and a 2-
byte trailer, leaving room for up to 45 data bytes per cell. 

The SN field (Sequence Number) is used for numbering cells in order to detect 
missing or misinserted cells. The IT field (Information Type) is used to indicate 



550 THE TRANSPORT LA YER CHAP. 6 

-1Byte- ---- 2 Bytes---~ 

I~ _s_N_~l_IT_-L._ _____ 4_s_-B_y_ie_p~~;/~o-_a-_d ____ _L__L_1_--'--___ c_R_c __ _J 

48 Bytes -------------~ 

Fig. 6-40. The AAL 2 cell format. 

that the cell is the start, middle, or end of a message. The LI (Length indicator) 
field tells how big the payload is, in bytes (it might be less than 45 bytes). 
Finally, the CRC field is a checksum over the entire cell, so errors can be 
detected. 

Strange as it may sound, the field sizes are not included in the standard. 
According to one insider, at the very end of the standardization process the com­
mittee realized that AAL 2 had so many problems that it should not be used. 
Unfortunately, it was too late to stop the standardization process. They had a 
deadline to meet. In a last ditch effort, the committee removed all the field sizes 
so that the formal standard could be issued on time, but in such a way that nobody 
could actually qse it. Such is life in the world of standardization. 

6.5.4. AAL 3/4 

Originally, ITU had different protocols for classes C and D, connection­
oriented service and connectionless service for data transport that is sensitive to 
loss or errors but is not time dependent. Then ITU discovered that there was no 
real need for two protocols, so they were combined into a single protocol, AAL 
3/4. 

AAL 3/4 can operate in two modes: stream or message. In message mode, 
each call from the application to AAL 3/4 injects one message into the network. 
The message is delivered as such, that is, message boundaries are preserved. In 
stream mode the boundaries are not preserved. The discussion below will concen­
trate on message mode. Reliable and unreliable (i.e., no guarantee) transport are 
available in each mode. 

A feature of AAL 3/4 not present in any of the other protocols is multiplexing. 
This aspect of AAL 3/4 allows multiple sessions (e.g., remote logins) from a sin­
gle host to travel along the same virtual circuit and be separated at the destination, 
as illustrated in Fig. 6-41. 

The reason that this facility is desirable is that carriers often charge for each 
connection setup and for each second that a connection is open. If a pair of hosts 
have several sessions open simultaneously, giving each one its own virtual circuit 
will be more expensive than multiplexing all of them onto the same virtual circuit. 
If one virtual circuit has sufficient bandwidth to handle the job, there is no need 



SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 

Virtual 

Three sessions {­
multiplexed / 
onto virtual 

circuit 2 circuit 2 

551 

Fig. 6-41. Multiplexing of several sessions onto one virtual circuit. 

for more than one. All sessions using a single virtual circuit get the same quality 
of service, since this is negotiated per virtual circuit. 

This issue is the real reason that there were originally separate AAL 3 and 
AAL 4 formats: the Americans wanted multiplexing and the Europeans did not. 
So each group went off and made its own standard. Eventually, the Europeans 
decided that saving 10 bits in the header was not worth the price of having the 
United States and Europe not be able to communicate. For the same money, they 
could have stuck to their guns and we would have had four incompatible AAL 
standards (of which one is broken) instead of three. 

Unlike AAL 1 and AAL 2, AAL 3/4 has both a convergence sublayer protocol 
and a SAR sublayer protocol. Messages as large as 65,535 bytes come into the 
convergence sublayer from the application. These are first padded out to a multi­
ple of 4 bytes. Then a header and a trailer are attached, as shown in Fig. 6-42. 

Bytes 1 2 0-3 

El Btag BA size I Payload (1 to 65535 bytes) Padding 

CS header 

Fig. 6-42. AAL 3/4 convergence sublayer message format. 

Etag 

2 

Length 
(0-65535) 

CS trailer 

The CF/field (Common Part Indicator) gives the message type and the count­
ing unit for the BA size and Length fields. The Btag and Etag fields are used to 
frame messages. The two bytes must be the same and are incremented by one on 
every new message sent. This mechanism checks for lost or misinserted cells. 
The BA size field is used for buffer allocation. It tells the receiver how much 
buffer space to allocate for the message in advance of its arrival. The Length field 
gives the payload length again. In message mode, it must be equal to BA size, but 
in stream mode it may be different. The trailer also contains 1 unused byte. 

After the convergence sublayer has constructed and added a header and trailer 
to the message, as shown in Fig. 6-42, it passes the message to the SAR sublayer, 



552 THE TRANSPORT LAYER CHAP. 6 

which chops the message up into 44-byte chunks. Note that to support multiplex­
ing, the convergence sublayer may have several messages constructed internally 
at once and may pass 44-byte chunks to the SAR sublayer first from one message, 
then from another, in any order. 

The SAR sublayer inserts each 44-byte chunk into the payload of a cell whose 
format is shown in Fig. 6-43. These cells are then transmitted to the destination 
for reassembly, after which checksum verification is performed and action taken 
if need be. 

Bits 2 4 10 6 10 
---) )1-------------;;-----r-----. 

I ~ I ~ I MID 44~payload I ~ CRC 
~l~~~~~~~·--,t--~~~~-~1--f--"~~ 

00 Middle 
01 End 1-44 
10 Beginning 
11 Single cell message 

48 Bytes ------------~ 

Fig. 6-43. The AAL 3/4 cell format. 

The fields in the AAL 3/4 cell are as follows. The ST (Segment Type) field is 
used for message framing. It indicates whether the cell begins a message, is in the 
middle of a message, is the last cell of a message, or is a small (i.e., single cell) 
message. Next comes a 4-bit sequence number, SN, for detecting missing and 
misinserted cells. The MID (Multiplexing ID) field is used to keep track of which 
cell belongs to which session. Remember that the convergence sublayer may 
have several messages, belonging to different sessions, buffered at once, and it 
may send pieces of these messages in whatever order it wishes. All the pieces 
from messages belonging to session i carry i in the MID field, so they can be 
correctly reassembled at the destination. The trailer contains the payload length 
and cell checksum. 

Notice that AAL 3/4 has two layers of protocol overhead: 8 bytes are added to 
every message and 4 bytes are added to every cell. All in all, it is a heavyweight 
mechanism, especially for short messages. 

6.5.5. AAL 5 

The AAL 1 through AAL 3/4 protocols were largely designed by the telecom­
munications industry and standardized by ITU without a lot of input from the 
computer industry. When the computer industry finally woke up and began to 
understand the implications of Fig. 6-43, a sense of panic set in. The complexity 
and inefficiency generated by two layers of protocol, coupled with the surpris­
ingly short checksum (only 10 bits), caused some researchers to invent a new 



SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 553 

adaptation protocol. It was called SEAL (Simple Efficient Adaptation Layer), 
which suggests what the designers thought of the old ones. After some discuss­
ion, the A TM Forum accepted SEAL and assigned it the name AAL 5. For more 
information about AAL 5 and how it differs from AAL 3/4, see (Suzuki, 1994). 

AAL 5 offers several kinds of service to its applications. One choice is reli­
able service (i.e., guaranteed delivery with flow control to prevent overruns). 
Another choice is unreliable service (i.e., no guaranteed delivery), with options to 
have cells with checksum errors either discarded or passed to the application any­
way (but reported as bad). Both unicast and multicast are supported, but multicast 
does not provide guaranteed dellivery. 

Like AAL 3/4, AAL 5 supports both message mode and stream mode. In 
message mode, an application can pass a datagram of length 1 to 65,535 bytes to 
the AAL layer and have it delivered to the destination, either on a guaranteed or a 
best efforts basis. Upon arrival in the convergence sublayer, a message is padded 
out and a trailer added, as shown in Fig. 6-44. The amount of padding (0 to 47 
bytes) is chosen to make the entire message, including the padding and trailer, be 
a multiple of 48 bytes. AAL 5 does not have a convergence sublayer header, just 
an 8-byte trailer. 

Bytes 

~i ----P-ay-lo_a_d_(_1 --1tf ~5byOOs) 
2 4 

uu Length CRC 

Fig. 6-44. AAL 5 convergence sublayer message format. 

The UU (User to User) field is not used by the AAL layer itself. Instead, it is 
available for a higher layer for its own purposes, for example, sequencing or mul­
tiplexing. The higher layer in question may be the service-specific subpart of the 
convergence sublayer. The Length field tells how long the true payload is, in 
bytes, not counting the padding. A value of 0 is used to abort the current message 
in midstream. The CRC field is the standard 32-bit checksum over the entire mes­
sage, including the padding and the trailer (with the CRC field set to 0). One 8-bit 
field in the trailer is reserved for future use. 

The message is transmitted by passing it to the SAR sublayer, which does not 
add any headers or trailers. Instead, it breaks the message into 48-byte units and 
passes each of these to the ATM layer for transmission. It also tells the A TM 
layer to set a bit in the PT! field on the last cell, so message boundaries are 
preserved. A case can be made that this is an incorrect mixing of protocol layers 
because the AAL layer should not be using bits in the A TM layer's header. Doing 
so violates the most basic principle of protocol engineering, and suggests the 
layering should have perhaps been done differently. 

The principal advantage of AAL 5 over AAL 3/4 is the much greater effi­
ciency. While AAL 3/4 adds only 4 bytes per message, it also adds 4 bytes per 



554 THE TRANSPORT LA YER CHAP. 6 

cell, reducing the payload capacity to 44 bytes, a loss of 8 percent on long mes­
sages. AAL 5 has a slightly large trailer per message (8 bytes) but has no over­
head in each cell. The lack of sequence numbers in the cells is compensated for 
by the longer checksum, which can detect lost, misinserted, or missing cells 
without using sequence numbers. 

Within the Internet community, it is expected that the normal way of interfac­
ing to ATM networks will be to transport IP packets with the AAL 5 payload 
field. Various issues relating to this approach are discussed in RFC 1483 and 
RFC 1577. 

6.5.6. Comparison of AAL Protocols 

The reader is hereby forgiven if he or she thinks that the various AAL proto­
cols seem unnecessarily similar to one another and poorly thought out. The value 
of having distinct convergence and SAR sublayers is also questionable, especially 
since AAL 5 does not have anything in the SAR sublayer. A slightly enhanced 
ATM layer header could have provided for sequencing, multiplexing, and framing 
quite adequately. 

Some of the differences between the various AAL protocols are summarized 
in Fig. 6-45. These relate to efficiency, error handling, multiplexing, and the rela­
tion between the AAL sublayers. 

Item AAL 1 AAL2 AAL 3/4 AAL5 

Service class A B CID CID 

Multiplexing No No Yes No 

Message delimiting None None BtaglEtag Bit in PTI 

Advance buffer allocation No No Yes No 

User bytes available 0 0 0 ·1 

CS padding 0 0 32-Bit word 0-47 bytes 

CS protocol overhead (bytes) 0 0 8 8 
--

CS checksum None None None 32 Bits 

SAR payload bytes 46-47 45 44 48 

SAR protocol overhead (bytes) 1-2 3 4 0 

SAR checksum None None 10 Bits None 

Fig. 6-45. Some differences between the various AAL protocols. 

The overall impression that AAL gives is of too many variants with too many 
minor differences and a job half done. The original four service classes, A, B, C, 
D, have been effectively abandoned. AAL 1 is probably not really necessary; 



SEC. 6.5 THE ATM AAL LAYER PROTOCOLS 555 

AAL 2 is broken; AAL 3 and AAL 4 never saw the light of day; and AAL 3/4 is 
inefficient and has too short a checksum. 

The future lies with AAL 5, but even here there is room for improvement. 
AAL 5 messages should have had a sequence number and a bit to distinguish data 
from control messages, so it could have been used as a reliable transport protocol. 
Unused space in the trailer was even available for them. As it stands, for reliable 
transport, the additional overhead of a transport layer is required on top of it, 
when it could have been avoided. If the full AAL committee had turned its work 
in as a class project, the professor would probably have given it back with instruc­
tions to fix it and tum it in again when it was finished. More criticism of ATM 
can be found in (Sterbenz et al., 1995). 

6.5.7. SSCOP-Service Specific Connection-Oriented Protocol 

Despite all these different AAL protocols, none of them provides for simple 
end-to-end reliable transport connections. For applications where that is required, 
another AAL protocol exists: SSCOP (Service Specific Connection Oriented 
Protocol). However, SSCOP is only used for control, not for data transmission. 

SSCOP users send messages, each of which is assigned a 24-bit sequence 
number. Messages can be up to 64K bytes and are not fragmented. They must be 
delivered in order. Unlike some other reliable transport protocols, missing mes­
sages are always retransmitted using selective repeat rather than go back n. 

SSCOP is fundamentally a dynamic sliding window protocol. For each con­
nection, the receiver maintains a window of message sequence numbers that it is 
prepared to receive, and a bit map marking the ones it already has. This window 
can change size during protocol operation. 

What makes SSCOP unusual is the way acknowledgements are handled: there 
is no piggybacking. Instead, peliodically, the sender polls the receiver and asks it 
to send back the bit map giving the window status. Based on the result, the sender 
discards messages that have been accepted and updates its window. SSCOP is 
described in detail in (Henderson, 1995). 

6.6. PERFORMANCE ISSUES 

Performance issues are very important in computer networks. When hundreds 
or thousands of computers are connected together, complex interactions, with 
unforeseen consequences, are common. Frequently, this complexity leads to poor 
performance and no one knows why. In the following sections, we will examine 
many issues related to network performance to see what kinds of problems exist 
and what can be done about them. 

Unfortunately, understanding network performance is more of an art than a 
science. There is little underlying theory that is actually of any use in practice. 



556 THE TRANSPORT LAYER CHAP. 6 

The best we can do is give rules of thumb gained from hard experience and 
present examples taken from the real world. We have intentionally delayed this 
discussion until after studying the transport layer in TCP and A TM networks in 
order to be able to point out places where they have done things right or done 
things wrong. 

The transport layer is not the only place performance issues arise. We saw 
some of them in the network layer in the previous chapter. Nevertheless, the net­
work layer tends to be largely concerned with routing and congestion control. 
The broader, system-oriented issues tend to be transport related, so this chapter is 
an appropriate place to examine them. 

In the next five sections, we will look at five aspects of network performance: 

1. Performance problems. 

2. Measuring network performance. 

3. System design for better performance. 

4. Fast TPDU processing. 

5. Protocols for future high--performance networks. 

As an aside, we need a name for the units exchanged by transport entities. The 
TCP term, segment, is confusing at best and is never used outside the TCP world 
in this context. The proper ATM terms, CS-PDU, SAR-PDU, and CPCS-PDU, 
are specific to A TM. Packets clearly refer to the network layer and messages 
belong to the application layer. For lack of a standard term, we will go back to 
calling the units exchanged by transport entities TPDUs. When we mean both 
TPDU and packet together, we will use packet as the collective term, as in "The 
CPU must be fast enough to process incoming packets in real time." By this we 
mean both the network layer packet and the TPDU encapsulated in it. 

6.6.1. Performance Problems in Computer Networks 

Some performance problems, such as congestion, are caused by temporary 
resource overloads. If more traffic suddenly arrives at a router than the router can 
handle, congestion will build up and performance will suffer. We studied conges­
tion in detail in the previous chapter. 

Performance also degrades when there is a structural resource imbalance. For 
example, if a gigabit communication line is attached to a low-end PC, the poor 
CPU will not be able to process the incoming packets fast enough, and some will 
be lost. These packets will eventually be retransmitted, adding delay, wasting 
bandwidth, and generally reducing performance. 

Overloads can also be synchronously triggered. For example, if a TPDU con­
tains a bad parameter (e.g., the port or process for which it is destined), in many 



SEC. 6.6 PERFORMANCE ISSUES 557 

cases the receiver will thoughtfully send back an error notification. Now consider 
what could happen if a bad TPDU is broadcast to 10,000 machines: each one 
might send back an error message. The resulting broadcast storm could cripple 
the network. UDP suffered from this problem until the protocol was changed to 
cause hosts to refrain from responding to errors in UDP TPDUs sent to broadcast 
addresses. 

A second example of synchronous overload is what happens after an electrical 
power failure. When the power comes back on, all the machines simultaneously 
jump to their ROMs to start rebooting. A typical reboot sequence might require 
first going to some (RARP) server to learn one's true identity, and then to some 
file server to get a copy of the operating system. If hundreds of machines all do 
this at once, the server will probably collapse under the load. 

Even in the absence of synchronous overloads and when there are sufficient 
resources available, poor performance can occur due to lack of system tuning. 
For example, if a machine has plenty of CPU power and memory, but not enough 
of the memory has been allocated for buff er space, overruns will occur and 
TPDUs will be lost. Similarly, if the scheduling algorithm does not give a high 
enough priority to processing incoming TPDU s, some of them may be lost. 

Another tuning issue is setting timeouts correctly. When a TPDU is sent, a 
timer is typically set to guard against its loss. If the timeout is set too short, 
unnecessary retransmissions will occur, clogging the wires. If the timeout is set 
too long, unnecessary delays will occur after a TPDU is lost. Other tunable 
parameters include how long to wait for data to piggyback onto before sending a 
separate acknowledgement and the number of retransmissions before giving up. 

Gigabit networks bring with them new performance problems. Consider, for 
example, sending data from San Diego to Boston when the receiver's buffer is 
64K bytes. Suppose that the link is 1 Gbps and the one-way speed-of-light-in­
fiber delay is 20 msec. Initially, at t = 0, the pipe is empty, as illustrated in 
Fig. 6-46(a). Only 500 µsec later, in Fig. 6-46(b), all the TPDUs are out on the 
fiber. The lead TPDU will now be somewhere in the vicinity of Brawley, still 
deep in Southern California. However, the transmitter must stop until it gets a 
window update. 

After 20 msec, the lead TPDU hits Boston, as shown in Fig. 6-46(c) and is 
acknowledged. Finally, 40 msec after starting, the first acknowledgement gets 
back to the sender and the second burst can be transmitted. Since the transmission 
line was used for 0.5 msec out of 40, the efficiency is about 1.25 percent. This 
situation is typical of running older protocols over gigabit lines. 

A useful quantity to keep in mind when analyzing network performance is the 
bandwidth-delay product. It is obtained by multiplying the bandwidth (in 
bits/sec) by the round-trip delay time (in sec). The product is the capacity of the 
pipe from the sender to the receiver and back (in bits). 

For the example of Fig. 6-46 the bandwidth-delay product is 40 million bits. 
In other words, the sender would have to transmit a burst of 40 million bits to be 



558 THE TRANSPORT LAYER CHAP. 6 

(a) (b) 

(c) (d) 

Fig. 6-46. The state of transmitting one megabit from San Diego to Boston. (a) 
At t = 0. (b) After 500 µsec. (c) After 20 msec. (d) After 40 msec. 

able to keep going full speed until the first acknowledgement came back. It takes 
this many bits to fill the pipe (in both directions). This is why a burst of half a 
million bits only achieves a 1.25 percent efficiency: it is only 1.25 percent of the 
pipe capacity. 

The conclusion to be drawn here is that to achieve good performance, the 
receiver's window must be at least as large as the bandwidth-delay product, 
preferably somewhat larger since the receiver may not respond instantly. For a 
transcontinental gigabit line, at least 5 megabytes are required for each connec­
tion. 

If the efficiency is terrible for sending a megabit, imagine what it is like when 
sending a few hundred bytes for a remote procedure call. Unless some other use 
can be found for the line while the first client is waiting for its reply, a gigabit line 
is no better than a megabit line, just more expensive. 

Another performance problem that occurs with time-critical applications like 
audio and video is jitter. Having a short mean transmission time is not enough. A 
small standard deviation is also required. Achieving a short mean transmission 
time along with a small standard deviation demands a serious engineering effort. 



SEC. 6.6 PERFORMANCE ISSUES 559 

6.6.2. Measuring Network Performance 

When a network performs poorly, its users often complain to the folks running 
it, demanding improvements. To improve the performance, the operators must 
first determine exactly what is going on. To find out what is really happening, the 
operators must make measurements. In this section we will look at network per­
formance measurements. The discussion below is based on the work of Mogul 
(1993). For a more thorough discussion of the measurement process, see (Jain, 
1991; and Villamizan and Song, 1995). 

The basic loop used to improve network performance contains the following 
steps: 

1. Measure the relevant network parameters and performance. 

2. Try to understand what is going on. 

3. Change one parameter. 

These steps are repeated until the performance is good enough or it is clear that 
the last drop of improvement has been squeezed out. 

Measurements can be made in many ways and at many locations (both physi­
cally and in the protocol stack). The most basic kind of measurement is to start a 
timer when beginning some activity and use it to see how long that activity takes. 
For example, knowing how long it takes for a TPDU to be acknowledged is a key 
measurement. Other measurements are made with counters that record how often 
some event has happened (e.g., number of lost TPDUs). Finally, one is often 
interested in knowing the amount of something, such as the number of bytes pro­
cessed in a certain time interval. 

Measuring network performance and parameters has many potential pitfalls. 
Below we list a few of them. Any systematic attempt to measure network perfor­
mance should be careful to avoid these. 

Make Sure that the Sample Size Is Large Enough 

Do not measure the time to send one TPDU, but repeat the measurement, say, 
one million times and take the average. Having a large sample will reduce the 
uncertainty in the measured mean and standard deviation. This uncertainty can be 
computed using standard statistical formulas. 

Make Sure that the Samples Are Representative 

Ideally, the whole sequence of one million measurements should be repeated 
at different times of the day and the week to see the effect of different system 
loads on the measured quantity. Measurements of congestion, for example, are of 



560 THE TRANSPORT LA YER CHAP. 6 

little use if they are made at a moment when there is no congestion. Sometimes 
the results may be counterintuitive at first, such as heavy congestion at 10, 11, 1, 
and 2 o'clock, but no congestion at noon (when all the users are away at lunch). 

Be Careful When Using a Coarse-Grained Clock 

Computer clocks work by adding one to some counter at regular intervals. 
For example, a millisecond timer adds one to a counter every 1 msec. Using such 
a timer to measure an event that takes less than 1 msec is not impossible, but 
requires some care. 

To measure the time to send a TPDU, for example, the system clock (say, in 
milliseconds) should be read out when the transport layer code is entered, and 
again when it is exited. If the true TPDU send time is 300 µsec, the difference 
between the two readings will be either 0 or 1, both wrong. However, if the meas­
urement is repeated one million times and the total of all measurements added up 
and divided by one million, the mean time will be accurate to better than 1 µsec. 

Be Sure that Nothing Unexpected Is Going On during Your Tests 

Making measurements on a university system the day some major lab project 
has to be turned in may give different results than if made the next day. Likewise, 
if some researcher has decided to run a video conference over your network dur­
ing your tests, you may get a biased result. It is best to run tests on an idle system 
and create the entire workload yourself. Even this approach has pitfalls though. 
While you might think nobody will be using the network at 3 A.M., that might be 
precisely when the automatic backup program begins copying all the disks to 
videotape. Furthermore, there might be heavy traffic for your wonderful World 
Wide Web pages from distant time zones. 

Caching Can Wreak Havoc with Measurements 

To measure file transfer times, the obvious way to do it is to open a large file, 
read the whole thing, close it, and see how long it takes. Then repeat the meas­
urement many more times to get a good average. The trouble is, the system may 
cache the file, so that only the first measurement actually involves network traffic. 
The rest are just reads from the local cache. The results from such a measurement 
are essentially worthless (unless you want to measure cache performance). 

Often you can get around caching by simply overflowing the cache. For 
example, if the cache is 10 MB, the test loop could open, read, and close two 10-
MB files on each pass, in an attempt to force the cache hit rate to 0. Still, caution 
is advised unless you are absolutely sure you understand the caching algorithm. 

Buffering can have a similar effect. One popular TCP/IP performance utility 
program has been known to report that UDP can achieve a performance 



SEC. 6.6 PERFORMANCE ISSUES 561 

substantially higher than the physical line allows. How does this occur? A call to 
UDP normally returns control as soon as the message has been accepted by the 
kernel and added to the transmission queue. If there is sufficient buff er space, 
timing 1000 UDP calls does not mean that all the data have been sent. Most of 
them may still be in the kernel, but the performance utility thinks they have all 
been transmitted. 

Understand What You Are Measuring 

When you measure the time to read a remote file, your measurements depend 
on the network, the operating systems on both the client and server, the particular 
hardware interface boards used, their drivers, and other factors. If done carefully, 
you will ultimately discover the file transfer time for the configuration you are 
using. If your goal is to tune this particular configuration, these measurements are 
fine. 

However, if you are making similar measurements on three different systems 
in order to choose which network interface board to buy, your results could be 
thrown off completely by the fact that one of the network drivers is truly awful 
and is only getting 10 percent of the performance of the board. 

Be Careful about Extrapolating the Results 

Suppose that you make measurements of something with simulated network 
loads running from 0 (idle) to 0.4 (40 percent of capacity), as shown by the data 
points and solid line through them in Fig. 6-47. It may be tempting to extrapolate 
linearly, as shown by the dotted line. However, many queueing results involve a 
factor of 1/(1 - p), wher pis the load, so the true values may look more like the 
dashed line. 

6.6.3. System Design for Better Performance 

Measuring and tinkering can often improve performance considerably, but 
they cannot substitute for good design in the first place. A poorly designed net­
work can be improved only so much. Beyond that, it has to be redone from 
scratch. 

In this section, we will present some rules of thumb based on experience with 
many networks. These rules relate to system design, not just network design, 
since the software and operating system are often more important than the routers 
and interface boards. Most of these ideas have been common knowledge to net­
work designers for years and have been passed on from generation to generation 
by word of mouth. They were first stated explicitly by Mogul (1993); our treat­
ment largely parallels his. Another relevant source is (Metcalfe, 1993). 



562 

5 

4 

Q) 

E 3 
:;::: 
Q) 
en c: 
0 c. 
gi 2 
a: 

THE TRANSPORT LAYER 

I 
I 

/ 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

CHAP. 6 

,,,," 

//<~---······································ 
..,,.,,,,.~: ................. .. 

............ 
·························· 

.......... ~-· 
_,..$:::.··· 

o~~~~~~~~~~~~~-~~~~~~~~~--~~~~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Load 

Fig. 6-47. Response as a function of load. 

Rule #1: CPU Speed Is More Important than Network Speed 

Long experience has shown that in nearly all networks, operating system and 
protocol overhead dominates actual time on the wire. For example, in theory, the 
minimum RPC time on an Ethernet is 102 µsec, corresponding to a minimum 
(64-byte) request followed by a minimum (64-byte) reply. In practice, getting the 
RPC time down to 1500 µsec is a considerable achievement (Van Renesse et al., 
1988). Note that 1500 µsec is 15 times worse than the theoretical minimum. 
Nearly all the overhead is in the software. 

Similarly, the biggest problem in running at 1 Gbps is getting the bits from the 
user's buffer out onto the fiber fast enough and having the receiving CPU process 
them as fast as they come in. In short, if you double the CPU speed, you often 
can come close to doubling the throughput. Doubling the network capacity often 
has no effect since the bottleneck is generally in the hosts. 

Rule #2: Reduce Packet Count to Reduce Software Overhead 

Processing a TPDU has a certain amount of overhead per TPDU (e.g., header 
processing) and a certain amount of processing per byte (e.g., doing the check­
sum). When sending 1 million bytes, the per-byte overhead is the same no matter 
what the TPDU size is. However, using 128-byte TPDUs means 32 times as 
much per-TPDU overhead as using 4K TPDUs. This overhead adds up fast. 



SEC. 6.6 PERFORMANCE ISSUES 563 

In addition to the TPDU overhead, there is overhead in the lower layers to 
consider. Each arriving packet causes an interrupt. On a modern RISC processor, 
each interrupt breaks the CPU pipeline, interferes with the cache, requires a 
change to the memory management context, and forces a substantial number of 
CPU registers to be saved. Ann-fold reduction in TPDUs sent thus reduces the 
interrupt and packet overhead by a factor of n. 

This observation argues for collecting a substantial amount of data before 
transmission in order to reduce interrupts at the other side. Nagle's algorithm and 
Clark's solution to the silly window syndrome are attempts to do precisely this. 

Rule #3: Minimize Context Switches 

Context switches (e.g., from kernel mode to user mode) are deadly. They 
have the same bad properties as interrupts, the worst being a long series of initial 
cache misses. Context switches can be reduced by having the library procedure 
that sends data do internal buffering until it has a substantial amount of them. 
Similarly, on the receiving side, small incoming TPDUs should be collected 
together and passed to the user in one fell swoop instead of individually to minim­
ize context switches. 

In the best case, an incoming packet causes a context switch from the current 
user to the kernel, and then a switch to the receiving process to give it the newly­
arrived data. Unfortunately, with many operating systems, additional context 
switches happen. For example, if the network manager runs as a special process 
in user space, a packet arrival is likely to cause a context switch from the current 
user to the kernel, then another one from the kernel to the network manager fol­
lowed by another one back to the kernel, and finally one from the kernel to the 
receiving process. This sequence is shown in Fig. 6-48. All these context 
switches on each packet are very wasteful of CPU time and will have a devastat­
ing effect on network performance. 

User process running at the 
time of the packet arrival 

Network 
manager 

Receiving 
process 

0 

Fig. 6-48. Four context switches to handle one packet with a user-space net­
work manager. 



564 THE TRANSPORT LA YER CHAP. 6 

Rule #4: Minimize Copying 

Even worse than multiple context switches is making multiple copies. It is 
not unusual for an incoming packet to be copied three or four times before the 
TPDU enclosed in it is delivered. After a packet is received by the network inter­
face in a special on-board hardware buffer, it is typically copied to a kernel buffer. 
From there it is copied to a network layer buffer, then to a transport layer buffer, 
and finally to the receiving application process. 

A clever operating system will copy a word at a time, but it is not unusual to 
require about five instructions per word (a load, a store, incrementing an index 
register, a test for end-of-data, and a conditional branch). On a 50-MIPS machine, 
making three copies of each packet at five instructions per 32-bit word copied 
requires 75 nsec per incoming byte. Such a machine can thus accept data at a 
maximum rate of about 107 Mbps. When overhead for header processing, inter­
rupt handling, and context switches is factored in, 50 Mbps might be achievable, 
and we have not even considered the actual processing of the data. Clearly, han­
dling a 1-Gbps line is out of the question. 

In fact, probably a 50-Mbps line is out of the question, too. In the computa­
tion above, we have assumed that a 50-MIPS machine can execute any 50 million 
instructions/sec. In reality, machines can only run at such speeds if they are not 
referencing memory. Memory operations are often a factor of three slower than 
register-register instructions, so actually getting 16 Mbps out of the 1 Gbps line 
might be considered pretty good. Note that hardware assistance will not help 
here. The problem is too much copying by the operating system. 

Rule #5: You Can Buy More Bandwidth but Not Lower Delay 

The next three rules deal with communication, rather than protocol process­
ing. The first rule states that if you want more bandwidth, you can just buy it. 
Putting a second fiber next to the first one doubles the bandwidth but does nothing 
to reduce the delay. Making the delay shorter requires improving the protocol 
software, the operating system, or the network interface. Even if all of these are 
done, the delay will not be reduced if the bottleneck is the transmission time. 

Rule #6: A voiding Congestion Is Better than Recovering from It 

The old maxim that an ounce of prevention is worth a pound of cure certainly 
holds for network congestion. When a network is congested, packets are lost, 
bandwidth is wasted, useless delays are introduced, and more. Recovering from it 
takes time and patience. Not having it occur in the first place is better. Conges­
tion avoidance is like getting your DTP vaccination: it hurts a little at the time you 
get it, but it prevents something that would hurt a lot more. 



SEC. 6.6 PERFORMANCE ISSUES 565 

Rule #7: A void Timeouts 

Timers are necessary in networks, but they should be used sparingly and 
timeouts should be minimized. When a timer goes off, some action is generally 
repeated. If it is truly necessary to repeat the action, so be it, but repeating it 
unnecessarily is wasteful. 

The way to avoid extra work is to be careful that timers are set a little bit on 
the conservative side. A timer that takes too long to expire adds a small amount 
of extra delay to one connection in the (unlikely) event of a TPDU being lost. A 
timer that goes off when it should not have uses up scarce CPU time, wastes 
bandwidth, and puts extra load on perhaps dozens of routers for no good reason. 

6.6.4. Fast TPDU Processing 

The moral of the story above is that the main obstacle to fast networking is 
protocol software. In this section we will look at some ways to speed up this 
software. For more information, see (Clark et al., 1989; Edwards and Muir, 1995; 
and Chandranmenon and Varghese, 1995). 

TPDU processing overhead has two components: overhead per TPDU and 
overhead per byte. Both must be attacked. The key to fast TPDU processing is to 
separate out the normal case (one-way data transfer) and handle it specially. 
Although a sequence of special TPDUs are needed to get into the ESTABLISHED 
state, once there, TPDU processing is straightforward until one side starts to close 
the connection. 

Let us begin by examining the sending side in the ESTABLISHED state when 
there are data to be transmitted. For the sake of clarity, we assume here that the 
transport entity is in the kernel, although the same ideas apply if it is a user-space 
process or a library inside the sending process. In Fig. 6-49, the sending process 
traps into the kernel to do the SEND. The first thing the transport entity does is 
make .a test to see if this is the normal case: the state is ESTABLISHED, neither 
side is trying to close the connection, a regular (i.e., not an out-of-band) full 
TPDU is being sent, and there is enough window space available at the receiver. 
If all conditions are met, no further tests are needed and the fast path through the 
sending transport entity can be taken. 

In the normal case, the headers of consecutive data TPDUs are almost the 
same. To take advantage of this fact, a prototype header is stored within the 
transport entity. At the start of the fast path, it is copied as fast as possible to a 
scratch buffer, word by word. Those fields that change from TPDU to TPDU are 
then overwritten in the buffer. Frequently, these fields are easily derived from 
state variables, such as the next sequence number. A pointer to the full TPDU 
header plus a pointer to the user data are then passed to the network layer. Here 
the same strategy can be followed (not shown in Fig. 6-49). Finally, the network 
layer gives the resulting packet to the data link layer fot transmission. 



566 THE TRANSPORT LA YER CHAP. 6 

8 _sending 
process 

- Trap into the kernel to send TPDU 

D--

Receiving process ..________ 

TPDU passed to the receiving process @ 

Network 

Fig. 6-49. The fast path from sender to receiver is shown with a heavy line. 
The processing steps on this path are shaded. 

As an example of how this principle works in practice, let us consider TCP/IP. 
Fig. 6-50(a) shows the TCP header. The fields that are the same between con­
secutive TPDUs on a one-way flow are shaded. All the sending transport entity 
has to do is copy the five words from the prototype header into the output buffer, 
fill in the next sequence number (by copying it from a word in memory), compute 
the checksum, and increment the sequence number in memory. It can then hand 
the header and data to a special IP procedure for sending a regular, maximum 
TPDU. IP then copies its five-word prototype header [see Fig. 6-50(b)] into the 
buffer, fills in the Ident(fication field, and computes its checksum. The packet is 
now ready for transmission. 

VER. IHL 

(a) (b) 

Fig. 6-50. (a) TCP header. (b) IP header. In both cases, the shaded fields are 
taken from the prototype without change. 

Now let us look at fast path processing on the receiving side of Fig. 6-49. 
Step 1 is locating the connection record for the incoming TPDU. For ATM, 



SEC. 6.6 PERFORMANCE ISSUES 567 

finding the connection record is easy: the VP/ field can be used as an index into 
the path table to find the virtual circuit table for that path and the VCI can be used 
as an index to find the connection record. For TCP, the connection record can be 
stored in a hash table for which some simple function of the two IP addresses and 
two ports is the key. Once the connection record has been located, both addresses 
and both ports must be compared to verify that the correct record has been found. 

An optimization that often speeds up connection record lookup even more is 
just to maintain a pointer to the last one used and try that one first. Clark et al. 
(1989) tried this and observed a hit rate exceeding 90 percent. Other lookup 
heuristics are described in (McKenney and Dove, 1992). 

The TPDU is then checked to see if it is a normal one: the state is ESTAB­
LISHED, neither side is trying to close the connection, the TPDU is a full one, no 
special flags are set, and the sequence number is the one expected. These tests 
take just a handful of instructions. If all conditions are met, a special fast path 
TCP procedure is called. 

The fast path updates the connection record and copies the data to the user. 
While it is copying, it also computes the checksum, eliminating an extra pass over 
the data. If the checksum is correct, the connection record is updated and an 
acknowledgement is sent back. The general scheme of first making a quick check 
to see if the header is what is expected, and having a special procedure to handle 
that case, is called header prediction. Many TCP implementations use it. When 
this optimization and all the other ones discussed in this chapter are used together, 
it is possible to get TCP to run at 90 percent of the speed of a local memory-to­
memory copy, assuming the network itself is fast enough. 

Two other areas where major performance gains are possible are buffer 
management and timer management. The issue in buffer management is avoiding 
unnecessary copying, as we mentioned above. Timer management is important 
because nearly all timers set do not expire. They are set to guard against TPDU 
loss, but most TPDUs arrive correctly and their acknowledgements also arrive 
correctly. Hence it is important to optimize timer management for the case of 
timers rarely expiring. 

A common scheme is to use a linked list of timer events sorted by expiry 
time. The head entry contains a counter telling how many ticks away from expiry 
it is. Each successive entry contains a counter telling how many ticks after the 
previous entry it is. Thus if timers expire in 3, 10, and 12 ticks, respectively, the 
three counters are 3, 7, and 2, respectively. 

At every clock tick, the counter in the head entry is decremented. When it 
hits zero, its event is processed and the next item on the list becomes the head. Its 
counter does not have to be changed. In this scheme, inserting and deleting timers 
are expensive operations, with execution times proportional to the length of the 
list. 

A more efficient approach can be used if the maximum timer interval is 
bounded and known in advance. Here an array, called a timing wheel, can be 



568 THE TRANSPORT LAYER CHAP. 6 

used, as shown in Fig. 6-51. Each slot corresponds to one clock tick. The current 
time shown is T = 4. Timers are scheduled to expire at 3, 10, and 12 ticks from 
now. If a new timer suddenly is set to expire in seven ticks, an entry is just made 
in slot 11. Similarly, if the timer set for T + 10 has to be canceled, the list starting 
in slot 14 has to be searched and the required entry removed. Note that the array 
of Fig. 6-51 cannot accommodate timers beyond T + 15. 

Slot 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Pointer to list of timers for T + 12 

-- Current time, T 

Pointer to list of timers for T + 3 

- ~-- Pointer to list of timers for T + 10 

Fig. 6-51. A timing wheel. 

When the clock ticks, the current time pointer is advanced by one slot (circu­
larly). If the entry now pointed to is nonzero, all of its timers are processed. 
Many variations on the basic idea are discussed in (Varghese and Lauck, 1987). 

6.6.5. Protocols for Gigabit Networks 

At the start of the 1990s, gigabit networks began to appear. People's first 
reaction was to use the old protocols on them, but various problems quickly arose. 
In this section we will discuss some of these problems and the directions new pro­
tocols are taking to solve them. Other information can be found in (Baransel et 
al., 1995; and Partridge, 1994). 

The first problem is that many protocols use 16-bit or 32-bit sequence 
numbers. In the old days, 232 was a pretty good approximation to infinity. It no 
longer is. At a data rate of I Gbps, it takes about 32 sec to send 232 bytes. If 
sequence numbers refer to bytes, as they do in TCP, then a sender can start 
transmitting byte 0, blast away, and 32 sec later be back at byte 0. Even assuming 
that all bytes have been acknowledged, the sender cannot safely transmit new data 



SEC. 6.6 PERFORMANCE ISSUES 569 

labeled starting at 0 because the old packets may still be floating around some­
where. In the Internet, for example, packets can live for 120 sec. If packets are 
numbered instead of bytes, the problem is less severe, unless the sequence 
numbers are 16 bits, in which case the problem is even worse. 

The problem is that many protocol designers simply assumed, without stating 
it, that the time to use up the entire sequence space would greatly exceed the max­
imum packet lifetime. Consequently there was no need to even worry about the 
problem of old duplicates still existing when the sequence numbers wrapped 
around. At gigabit speeds, that unstated assumption fails. 

A second problem is that communication speeds have improved much faster 
than computing speeds. (Note to computer engineers: Go out ~nd beat those com­
munication engineers! We are counting on you.) In the 1970s, the ARPANET 
ran at 56 kbps and had computers that ran at about 1 MIPS. Packets were 1008 
bits, so the ARPANET was capable of delivering about 56 packets/sec. With 
almost 18 msec available per packet, a host could afford to spend 18,000 instruc­
tions processing a packet. Of course, doing so would soak up the entire CPU, but 
it could devote 9000 instructions per packet and still have half the CPU left over 
to do real work. 

Compare these numbers to modem 100-MIPS computers exchanging 4-KB 
packets over a gigabit line. Packets can flow in at a rate of over 30,000 per 
second, so packet processing must be completed in 15 µsec if we want to reserve 
half the CPU for applications. In 15 µsec, a 100-MIPS computer can execute 
1500 instructions, only 116 of what the ARPANET hosts had available. Further­
more, modern RISC instructions do less per instruction than the old CISC instruc­
tions did, so the problem is even worse than it appears. The conclusion is: there is 
less time available for protocol processing than there used to be, so protocols must 
become simpler. 

A third problem is that the go back n protocol performs poorly on lines with a 
large bandwidth-delay product Consider, for example, a 4000-km line operating 
at 1 Gbps. The round-trip transmission time is 40 msec, in which time a sender 
can transmit 5 megabytes. If an error is detected, it will be 40 msec before the 
sender is told about it. If go back n is used, the sender will have to retransmit not 
just the bad packet, but also the 5 megabytes worth of packets that came after -
ward. Clearly, this is a massive waste of resources. 

A fourth problem is that gigabit lines are fundamentally different from mega­
bit lines in that long ones are delay limited rather than bandwidth limited. In 
Fig. 6-52 we show the time it takes to transfer a I-megabit file 4000 km at various 
transmission speeds. At speeds up to 1 Mbps, the transmission time is dominated 
by the rate at which the bits can be sent. By 1 Gbps, the 40-msec round-trip delay 
dominates the 1 msec it takes to put the bits on the fiber. Further increases in 
bandwidth have hardly any effect at all. 

Figure 6-52 has unfortunate implications for network protocols. It says that 
stop-and-wait protocols, such as RPC, have an inherent upper bound on their 



570 

1000 sec 

100 sec 

~ 10 sec 
:;::; 

~ 1 sec 
c 
~ 
~ 100 msec 
i.I 

10 msec 

1 msec 

THE TRANSPORT LA YER CHAP. 6 

~~-'-~~'--~-'-____J__~~-'--~-'-~~'---~-'--~___J'--~--L--
104 105 106 107 108 109 1010 1011 1012 

Data rate (bps) 

Fig. 6-52. Time to transfer and acknowledge a I-megabit file over a 4000-km 
line. 

performance. This limit is dictated by the speed of light. No amount of techno­
logical progress in optics will improve matters (new laws of physics would help, 
though). 

A fifth problem that is worth mentioning is not a technological or protocol one 
like the others, but a result of new applications. Simply stated, it is that for many 
gigabit applications, such as multimedia, the variance in the packet arrival times is 
as important as the mean delay itself. A slow-but-uniform delivery rate, is often 
preferable to a fast-but-jumpy one. 

Let us now turn from the problems to ways of dealing with them. We will 
first make some general remarks, then look at protocol mechanisms, packet lay­
out, and protocol software. 

The basic principle that all gigabit network designers should learn by heart is: 

Design for speed, not for bandwidth optimization. 

Old protocols were often designed to minimize the number of bits on the wire, 
frequently by using small fields and packing them together into bytes and words. 
Nowadays, there is plenty of bandwidth. Protocol processing is the problem, so 
protocols should be designed to minimize it. 

A tempting way to go fast is to build fast network interfaces in hardware. The 
difficulty with this strategy is that unless the protocol is exceedingly simple, 
hardware just means a plug-in board with a second CPU and its own program. To 
avoid having the network coprocessor be as expensive as the main CPU, it is often 
a slower chip. The consequence of this design is that much of the time the main 



SEC. 6.6 PERFORMANCE ISSUES 571 

(fast) CPU is idle waiting for the second (slow) CPU to do the critical work. It is 
a myth to think that the main CPU has other work to do while waiting. Further­
more, when two general-purpose CPUs communicate, race conditions can occur, 
so elaborate protocols are needed between the two processors to synchronize them 
correctly. Usually, the best approach is to make the protocols simple and have the 
main CPU do the work. 

Let us now look at the issue of feedback in high-speed protocols. Due to the 
(relatively) long delay loop, feedback should be avoided: it takes too long for the 
receiver to signal the sender. One example of feedback is governing the transmis­
sion rate using a sliding window protocol. To avoid the (long) delays inherent in 
the receiver sending window updates to the sender, it is better to use a rate-based 
protocol. In such a protocol, the sender can send all it wants to, provided it does 
not send faster than some rate the sender and receiver have agreed upon in 
advance. 

A second example of feedback is Jacobson's slow start algorithm. This algo­
rithm makes multiple probes to see how much the network can handle. With 
high-speed networks, making half a dozen or so small probes to see how the net­
work responds wastes a huge amount of bandwidth. A more efficient scheme is to 
have the sender, receiver, and network all reserve the necessary resources at con­
nection setup time. Reserving resources in advance also has the advantage of 
making it easier to reduce jitter. In short, going to high speeds inexorably pushes 
the design toward connection-oriented operation, or something fairly close to it. 

Packet layout is an important consideration in gigabit networks. The header 
should contain as few fields as possible, to reduce processing time, and these 
fields should be big enough to do the job and be word aligned for ease of process­
ing. In this context, "big enough" means that problems such as sequence 
numbers wrapping around while old packets still exist, receivers being unable to 
advertise enough window space because the window field is too small, and so on, 
do not occur. 

The header and data should be separately checksummed, for two reasons. 
First, to make it possible to checksum the header but not the data. Second, to ver­
ify that the header is correct before starting to copy the data into user space. It is 
desirable to do the data checksum at the time the data are copied to user space, but 
if the header is incorrect, the copy may be to the wrong process. To avoid an 
incorrect copy but to allow the data checksum to be done during copying, it is 
essential that the two checksums be separate. 

The maximum data size should be large, to permit efficient operation even in 
the face of long delays. Also, the larger the data block, the smaller the fraction of 
the total bandwidth devoted to headers. 

Another valuable feature is the ability to send a normal amount of data along 
with the connection request. In this way, one round-trip time can be saved. 

Finally, a few words about the protocol software are appropriate. A key 
thought is concentrating on the successful case. Many older protocols tend to 



572 THE TRANSPORT LA YER CHAP. 6 

emphasize what to do when something goes wrong (e.g., a packet getting lost). 
To make the protocols run fast, the designer should aim for minimizing processing 
time when everything goes right. Minimizing processing time when an error 
occurs is secondary. 

A second software issue is minimizing copying time. As we saw earlier, 
copying data is often the main source of overhead. Ideally, the hardware should 
dump each incoming packet into memory as a contiguous block of data. The 
software should then copy this packet to the user buffer with a single block copy. 
Depending on how the cache works, it may even be desirable to avoid a copy 
loop. In other words, to copy 1024 words, the fastest way may be to have 1024 
back-to-back MOVE instructions (or 1024 load-store pairs). The copy routine is 
so critical it should be carefully handcrafted in assembly code, unless there is a 
way to trick the compiler into producing precisely the optimal code. 

In the late 1980s, there was a brief flurry of interest in fast special-purpose 
protocols such as NETBLT (Clark et al., 1987), VTMP (Cheriton and Williamson, 
1989), and XTP (Chesson, 1989). A survey is given in (Doeringer et al., 1990). 
However, the trend now is toward simplifying general-purpose protocols to make 
them fast, too. A TM exhibits many of the features discussed above, and IPv6 
does too. 

6.7. SUMMARY 

The transport layer is the key to understanding layered protocols. It provides 
various services, the most important of which is an end-to-end, reliable, 
connection-oriented byte stream from sender to receiver. It is accessed through 
service primitives that permit the establishment, use and release of connections. 

Transport protocols must be able to do connection management over unreli­
able networks. Connection establishment is complicated by the existence of 
delayed duplicate packets that can reappear at inopportune moments. To deal 
with them, three-way handshakes are needed to establish connections. Releasing 
a connection is easier than establishing one but is still far from trivial due to the 
two-army problem. 

Even when the network layer is completely reliable, the transport layer has 
plenty of work to do, as we saw in our example. It must handle all the service 
primitives, manage connections and timers, and allocate and utilize credits. 

The main Internet transport protocol is TCP. It uses a 20-byte header on all 
segments. Segments can be fragmented by routers within the Internet, so hosts 
must be prepared to do reassembly. A great deal of work has gone into optimiz­
ing TCP performance, using algorithms from Nagle, Clark, Jacobson, Karn, and 
others. 

A TM has four protocols in the AAL layer. All of them break messages into 
cells at the source and reassemble the cells into messages at the destination. The 



SEC. 6.7 SUMMARY 573 

CS and SAR sublayers add their own headers and trailers in various ways, leaving 
from 44 to 48 bytes of cell payload. 

Network performance is typically dominated by protocol and TPDU process­
ing overhead, and this situation gets worse at higher speeds. Protocols should be 
designed to minimize the number of TPDUs, context switches, and times each 
TPDU is copied. For gigabit networks, simple protocols using rate, rather than 
credit, flow control are called for. 

PROBLEMS 

1. In our example transport primitives of Fig. 6-3, LISTEN is a blocking call. Is this 
strictly necessary? If not, explain how a nonblocking primitive could be used. What 
advantage would this have over the scheme described in the text? 

2. In the model underlying Fig. 6-5, it is assumed that packets may be lost by the net­
work layer and thus must be individually acknowledged. Suppose that the network 
layer is 100 percent reliable and never loses packets. What changes, if any, are 
needed to Fig. 6-5? 

3. Imagine a generalized n-army problem, in which the agreement of any two of the 
armies is sufficient for victory. Does a protocol exist that allows blue to win? 

4. Suppose that the clock-driven scheme for generating initial sequence numbers is used 
with a 15-bit wide clock counter. The clock ticks once every 100 msec, and the max­
imum packet lifetime is 60 sec. How often need resynchronization take place 
(a) in the worst case? 
(b) when the data consumes 240 sequence numbers/min? 

5. Why does the maximum packet lifetime, T, have to be large enough to ensure that not 
only the packet, but also its acknowledgements, have vanished? 

6. Imagine that a two-way handshake rather than a three-way handshake were used to set 
up connections. In other words, the third message was not required. Are deadlocks 
now possible? Give an example or show that none exist. 

7. Consider the problem of recovering from host crashes (i.e., Fig. 6-18). If the interval 
between writing and sending an acknowledgement, or vice versa, can be made rela­
tively small, what are the two best sender-receiver strategies for minimizing the 
chance of a protocol failure? 

8. Are deadlocks possible with the transport entity described in the text? 

9. Out of curiosity, the implementer of the transport entity of Fig. 6-20 has decid~d to put 
counters inside the sleep procedure to collect statistics about the conn array. Among 
these are the number of connections in each of the seven possible states, 
ni (i = 1, ... , 7). After writing a massive FORTRAN program to analyze the data, 
our implementer discovered that the relation L,ni = MAX_CONN appears to always 
be true. Are there any other invariants involving only these seven variables? 



574 THE TRANSPORT LA YER CHAP. 6 

10. What happens when the user of the transport entity given in Fig. 6-20 sends a zero 
length message? Discuss the significance of your answer. 

11. For each event that can potentially occur in the transport entity of Fig. 6-20, tell 
whether it is legal or not when the user is sleeping in sending state. 

12. Discuss the advantages and disadvantages of credils versus sliding window protocols. 

13. Datagram fragmentation and reassembly are handled by IP and are invisible to TCP. 
Does this mean that TCP does not have to worry about data arriving in the wrong 
order? 

14. A process on host 1 has been assigned port p and a process on host 2 has been 
assigned port q. Is it possible for there to be two or more TCP connections between 
these two ports at the same time? 

15. The maximum payload of a TCP segment is 65,515 bytes. Why was such a strange 
number chosen? 

16. Describe two ways to get into the SYN RCVD state of Fig. 6-28. 

17. Give a potential disadvantage when Nagle's algorithm is used on a badly congested 
network. 

18. Consider the effect of using slow start on a line with a 10-msec round-trip time and no 
congestion. The receive window is 24 KB and the maximum segment size is 2 KB. 
How long does it take before the first full window can be sent? 

19. Suppose that the TCP congestion window is set to 18K bytes and a timeout occurs. 
How big will the window be if the next four transmission bursts are all successful? 
Assume that the maximum segment size is 1 KB. 

20. If the TCP round-trip time, RTT, is currently 30 msec and the following acknowledge­
ments come in after 26, 32, and 24 msec, respectively, what is the new RTT estimate? 
Use a= 0.9. 

21. A TCP machine is sending windows of 65,535 bytes over a 1-Gbps channel that has a 
10-msec one-way delay. What is the maximum throughput achievable? What is the 
line efficiency? 

22. In a network that has a maximum TPDU size of 128 bytes, a maximum TPDU lifetime 
of 30 sec, and an 8-bit sequence number, what is the maximum data rate per connec­
tion? 

23. Why does UDP exist? Would it not have been enough to just let user processes send 
raw IP packets? 

24. A group of N users located in the same building are all using the same remote com­
puter via an ATM network. The average user generates L lines of traffic (input+ out­
put) per hour, on the average, with the mean line length being P bytes, excluding the 
ATM headers. The packet carrier charges C cents per byte of user data transported, 
plus X cents per hour for each ATM virtual circuit open. Under what conditions is it 
cost effective to multiplex all N transport connections onto the same ATM virtual cir­
cuit, if such multiplexing adds 2 bytes of data to each packet? Assume that even one 
A TM virtual circuit has enough bandwidth for all the users. 



CHAP. 6 PROBLEMS 575 

25. Can AAL 1 handle messages shorter than 40 bytes using the scheme with the Pointer 
field? Explain your answer. 

26. Make a guess at what the field sizes for AAL 2 were before they were pulled from the 
standard. 

27. AAL 3/4 allows multiple sessions to be multiplexed onto a single virtual circuit. Give 
an example of a situation in which that has no value. Assume that one virtual circuit 
has sufficient bandwidth to carry all the traffic. Hint: Think about virtual paths. 

28. What is the payload size of the maximum length message that fits in a single AAL 3/4 
cell? 

29. When a 1024-byte message is sent with AAL 3/4, what is the efficiency obtained? In 
other words, what fraction of the bits transmitted are useful data bits? Repeat the 
problem for AAL 5. 

30. An ATM device is transmitting single-cell messages at 600 Mbps. One cell in 100 is 
totally scrambled due to random noise. How many undetected errors per week can be 
expected with the 32-bit AAL 5 checksum? 

31. A client sends a 128-byte request to a server located 100 km away over a 1-gigabit 
optical fiber. What is the efficiency of the line during the remote procedure call? 

32. Consider the situation of the previous problem again. Compute the minimum possible 
response time both for the given 1-Gbps line and for a 1-Mbps line. What conclusion 
can you draw? 

33. Suppose that you are measuring the time to receive a TPDU. When an interrupt 
occurs, you read out the system clock in milliseconds. When the TPDU is fully pro­
cessed, you read out the clock again. You measure 0 msec 270,000 times and 1 msec 
730,000 times. How long does it take to receive a TPDU? 

34. A CPU executes instructions at the rate of 100 MIPS. Data can be copied 64 bits at a 
time, with each word copied costing six instructions. If an coming packet has to be 
copied twice, can this system handle a 1-Gbps line? For simplicity, assume that all 
instructions, even those instructions that read or write memory, run at the full 100-
MIPS rate. 

35. To get around the problem of sequence numbers wrapping around while old packets 
still exist, one could use 64-bit sequence numbers. However, theoretically, an optical 
fiber can run at 75 Tbps. What maximum packet lifetime is required to make sure that 
future 75 Tbps networks do not have wraparound problems even with 64-bit sequence 
numbers? Assume that each byte has its own sequence number, as TCP does. 

36. In the text we calculated that a gigabit line dumps 30,000 packets/sec on the host, giv­
ing it only 1500 instructions to process it and leaving half the CPU time for applica­
tions. This calculation assumed a 4-KB packet. Redo the calculation for an 
ARPANET-sized packet (128 bytes). 

37. For a I-Gbps network operating over 4000 km, the delay is the limiting factor, not the 
bandwidth. Consider a MAN with the average source and destination 20 km apart. At 
what data rate does the round-trip delay due to the speed of light equal the transmis­
sion delay for a 1-KB packet? 



576 THE TRANSPORT LAYER CHAP. 6 

38. Modify the program of Fig. 6-20 to do error recovery. Add a new packet type, reset, 
that can arrive after a connection has been opened by both sides but closed by neither. 
This event, which happens simultaneously on both ends of the connection, means that 
any packets that were in transit have either been delivered or destroyed, but in either 
case are no longer in the subnet. 

39. Write a program that simulates buffer management in a transport entity using a sliding 
window for flow control rather than the credit system of Fig. 6-20. Let higher-layer 
processes randomly qpen connections, send data, and close connections. To keep it 
simple, have all the data travel from machine A to machine B, and none the other way. 
Experiment with 9-ifferent buffer allocation strategies at B, such as dedicating buffers 
to specific connections versus a common buffer pool, and measure the total 
throughput achieved by each one. 



7 
THE APPLICATION LAYER 

Having finished all the preliminaries, we now come to the application layer, 
where all the interesting applications can be found. The layers below the applica­
tion layer are there to provide reliable transport, but they do not do any real work 
for users. In this chapter we will study some real applications. 

However, even in the application layer there is a need for support protocols to 
allow the real applications to function. Accordingly, we will look at three of these 
before starting with the applications themselves. The first area is security, which 
is not a single protocol, but a large number of concepts and protocols that can be 
used to ensure privacy where needed. The second is DNS, which handles naming 
within the Internet. The third support protocol is for network management. After 
that, we will examine four real applications: electronic mail, USENET (net news), 
the World Wide Web, and finally, multimedia. 

7.1. NETWORK SECURITY 

For the first few decades of their existence, computer networks were primarily 
used by university researchers for sending email, and by corporate employees for 
sharing printers. Under these conditions, security did not get a lot of attention. 
But now, as millions of ordinary citizens are using networks for banking, shop­
ping, and filing their tax returns, network security is looming on the horizon as a 

577 



578 THE APPLICATION LA YER CHAP. 7 

potentially massive problem. In the following sections, we will study network 
security from several angles, point out numerous pitfalls, and discuss many algo­
rithms and protocols for making networks more secure. 

Security is a broad topic and covers a multitude of sins. In its simplest form, 
it is concerned with making sure that nosy people cannot read, or worse yet, 
modify messages intended for other recipients. It is concerned with people trying 
to access remote services that they are not authorized to use. It also deals with 
how to tell whether that message purportedly from the IRS saying: "Pay by Fri­
day or else" is really from the IRS or from the Mafia. Security also deals with the 
problems of legitimate messages being captured and replayed, and with people 
trying to deny that they sent certain messages. 

Most security problems are intentionally caused by malicious people trying to 
gain some benefit or harm someone. A few of the most common perpetrators are 
listed in Fig. 7-1. It should be clear from this list that making a network secure 
involves a lot more than just keeping it free of programming errors. It involves 
outsmarting often intelligent, dedicated, and sometimes well-funded adversaries. 
It should also be clear that measures that will stop casual adversaries will have lit­
tle impact on the serious ones. 

Adversary Goal 

Student To have fun snooping on people's email 

Hacker To test out someone's security system; steal data 

Sales rep To claim to represent all of Europe, not just Andorra 

Businessman To discover a competitor's strategic marketing plan 

Ex-employee To get revenge for being fired 

Accountant To embezzle money from a company 
------

Stockbroker To deny a promise made to a customer by email 

Con man To steal credit card numbers for sale 

Spy To learn an enemy's military strength 
--~ -----

Terrorist To steal germ warfare secrets 

Fig. 7-1. Some people who cause security problems and why. 

Network security problems can be divided roughly into four intertwined areas: 
secrecy, authentication, nonrepudiation, and integrity control. Secrecy has to do 
with keeping information out of the hands of unauthorized users. This is what 
usually comes to mind when people think about network security. Authentication 
deals with determining whom you are talking to before revealing sensitive infor­
mation or entering into a business deal. Nonrepudiation deals with signatures: 



SEC. 7.1 NETWORK SECURITY 579 

How do you prove that your customer really placed an electronic order for ten 
million left-handed doohickeys at 89 cents each when he later claims the price 
was 69 cents? Finally, how can you be sure that a message you received was 
really the one sent and not something that a malicious adversary modified in tran­
sit or concocted? 

All these issues (secrecy, authentication, nonrepudiation, and integrity con­
trol) occur in traditional systems, too, but with some significant differences. 
Secrecy and integrity are achieved by using registered mail and locking docu­
ments up. Robbing the mail train is harder than it was in Jesse James' day. 

Also, people can usually tell the difference between an original paper docu­
ment and a photocopy, and it often matters to them. As a test, make a photocopy 
of a valid check. Try cashing the original check at your bank on Monday. Now 
try cashing the photocopy of the check on Tuesday. Observe the difference in the 
bank's behavior. With electronic checks, the original and the copy are indistin­
guishable. It may take a while for banks to get used to this. 

People authenticate other people by recognizing their faces, voices, and 
handwriting. Proof of signing ils handled by signatures on letterhead paper, raised 
seals, and so on. Tampering can usually be detected by handwriting, paper, and 
ink experts. None of these options are available electronically. Clearly, other 
solutions are needed. 

Before getting into the solutions themselves, it is worth spending a few 
moments considering where in the protocol stack network security belongs. There 
is probably no one single place. Every layer has something to contribute. In the 
physical layer, wiretapping can be foiled by enclosing transmission lines in sealed 
tubes containing argon gas at high pressure. Any attempt to drill into a tube will 
release some gas, reducing the pressure and triggering an alarm. Some military 
systems use this technique. 

In the data link layer, packets on a point-to-point line can be encoded as they 
leave one machine and decoded as they enter another. All the details can be han­
dled in the data link layer, with higher layers oblivious to what is going on. This 
solution breaks down when packets have to traverse multiple routers, however, 
because packets have to be decrypted at each router, leaving them vulnerable to 
attacks from within the router. Also, it does not allow some sessions to be pro­
tected (e.g., those involving on-line purchases by credit card) and others not. 
Nevertheless, link encryption., as this method is called, can be added to any net­
work easily and is often useful. 

In the network layer, firewalls can be installed to keep packets in or keep 
packets out. We looked at firewalls in Chap. 5. In the transport layer, entire con­
nections can be encrypted, end to end, that is, process to process. Although these 
solutions help with secrecy issues and many people are working hard to improve 
them, none of them solve the authentication or nonrepudiation problem in a suffi­
ciently general way. To tackle these problems, the solutions must be in the appli­
cation layer, which is why they are being studied in this chapter. 



580 THE APPLICATION LA YER CHAP. 7 

7.1.1. Traditional Cryptography 

Cryptography has a long and colorful history. In this section we will just 
sketch some of the highlights, as background information for what follows. For a 
complete history, Kahn's (1967) book is still recommended reading. For a 
comprehensive treatment of the current state-of-the-art, see (Kaufman et al., 1995; 
Schneier, 1996; and Stinson, 1995). 

Historically, four groups of people have used and contributed to the art of 
cryptography: the military, the diplomatic corps, diarists, and lovers. Of these, the 
military has had the most important role and has shaped the field. Within military 
organizations, the messages to be encrypted have traditionally been given to 
poorly paid code clerks for encryption and transmission. The sheer volume of 
messages prevented this work from being done by a few elite specialists. 

Until the advent of computers, one of the main constraints on cryptography 
had been the ability of the code clerk to perform the necessary transformations, 
often on a battlefield with little equipment. An additional constraint has been the 
difficulty in switching over quickly from one cryptographic method to another 
one, since this entails retraining a large number of people. However, the danger 
of a code clerk being captured by the enemy has made it essential to be able to 
change the cryptographic method instantly, if need be. These conflicting require­
ments have given rise to the model of Fig. 7-2. 

i:i~~~~~ t Intruder t l ~~:~v~er 
just ~ --0- can alter 

listen~s----~ ~----m~essages 

Plaintext, P-
Encryption Decryption 

method method 

Encryption 
key, k 

Ciphertext, C = Ek(P) 

Fig. 7-2. The encryption model. 

Decryption 
key 

,____ Plaintext 

The messages to be encrypted, known as the plaintext, are transformed by a 
function that is parametrized by a key. The output of the encryption process, 
known as the ciphertext, is then transmitted, often by messenger or radio. We 
assume that the enemy, or intruder, hears and accurately copies down the com­
plete ciphertext. However, unlike the intended recipient, he does not know what 
the decryption key is and so cannot decrypt the ciphertext easily. Sometimes the 



SEC. 7.1 NETWOF.K SECURITY 581 

intruder can not only listen to the communication channel (passive intruder) but 
can also record messages and play them back later, inject his own messages, or 
modify legitimate messages before they get to the receiver (active intruder). The 
art of breaking ciphers is called cryptanalysis. The art of devising ciphers ( cryp­
tography) and breaking them (cryptanalysis) is collectively known as cryptology. 

It will often be useful to have a notation for relating plaintext, ciphertext, and 
keys. We will use C = EK(P) to mean that the encryption of the plaintext P using 
key K gives the ciphertext C. Similarly, P = DK(C) represents of decryption of C 
to get the plaintext again. It then follows that 

DK(EK(P)) = P 

This notation suggests that E and D are just mathematical functions, which they 
are. The only tricky part is that both are functions of two parameters, and we 
have written one of the parameters (the key) as a subscript, rather than as an argu­
ment, to distinguish it from the message. 

A fundamental rule of cryptography is that one must assume that the crypt­
analyst knows the general method of encryption used. In other words, the crypt­
analyst knows how the encryption method, E, of Fig. 7-2 works. The amount of 
effort necessary to invent, test, and install a new method every time the old 
method is compromised or thought to be compromised has always made it 
impractical to keep this secret, and thinking it is secret when it is not does more 
harm than good. 

This is where the key enters. The key consists of a (relatively) short string 
that selects one of many potential encryptions. In contrast to the general method, 
which may only be changed every few years, the key can be changed as often as 
required. Thus our basic model is a stable and publicly known general method 
parametrized by a secret and easily changed key. 

The nonsecrecy of the algorithm cannot be emphasized enough. By publiciz­
ing the algorithm, the cryptographer gets free consulting from a large number of 
academic cryptologists eager to break the system so they can publish papers 
demonstrating how smart they are. If many experts have tried to break the algo­
rithm for 5 years after its publication and no one has succeeded, it is probably 
pretty solid. 

The real secrecy is in the key, and its length is a major design issue. Consider 
a simple combination lock. The general principle is that you enter digits in 
sequence. Everyone knows this, but the key is secret. A key length of two digits 
means that there are 100 possibilities. A key length of three digits means 1000 
possibilities, and a key length of six digits means a million. The longer the key, 
the higher the work factor the cryptanalyst has to deal with. The work factor for 
breaking the system by exhaustive search of the key space is exponential in the 
key length. Secrecy comes from having a strong (but public) algorithm and a long 
key. To prevent your kid brother from reading your email, 64-bit keys will do. 
To keep major governments at bay, keys of at least 256 bits are needed. 



582 THE APPLICATION LAYER CHAP. 7 

From the cryptanalyst's point of view, the cryptanalysis problem has three 
principal variations. When he has a quantity of ciphertext and no plaintext, he is 
confronted with the ciphertext only problem. The cryptograms that appear in the 
puzzle section of newspapers pose this kind of problem. When he has some 
matched ciphertext and plaintext, the problem becomes known as the known 
plaintext problem. Finally, when the cryptanalyst has the ability to encrypt 
pieces of plaintext of his own choosing, we have the chosen plaintext problem. 
Newspaper cryptograms could be broken trivially if the cryptanalyst were allowed 
to ask such questions as: What is the encryption of ABCDE? 

Novices in the cryptography business often assume that if a cipher can with­
stand a ciphertext only attack, it is secure. This assumption is very naive. In 
many cases the cryptanalyst can make a good guess at parts of the plaintext. For 
example, the first thing many timesharing systems say when you call them up is 
"PLEASE LOGIN." Equipped with some matched plaintext-ciphertext pairs, the 
cryptanalyst's job becomes much easier. To achieve security, the cryptographer 
should be conservative and make sure that the system is unbreakable even if his 
opponent can encrypt arbitrary amounts of chosen plaintext. 

Encryption methods have historically been divided into two categories: substi­
tution ciphers and transposition ciphers. We will now deal with each of these 
briefly as background information for modern cryptography. 

Substitution Ciphers 

In a substitution cipher each letter or group of letters is replaced by another 
letter or group of letters to disguise it. One of the oldest known ciphers is the 
Caesar cipher, attributed to Julius Caesar. In this method, a becomes D, b 
becomes E, c becomes F, ... , and z becomes C. For example, attack becomes 
DWWDFN. In examples, plaintext will be given in lowercase letters, and cipher­
text in uppercase letters. 

A slight generalization of the Caesar cipher allows the ciphertext alphabet to 
be shifted by k letters, instead of always 3. In this case k becomes a key to the 
general method of circularly shifted alphabets. The Caesar cipher may have 
fooled the Carthaginians, but it has not fooled anyone since. 

The next improvement is to have each of the symbols in the plaintext, say the 
26 letters for simplicity, map onto some other letter. For example, 

plaintext: 
ciphertext: 

abcdefghijklmnopqrstuvwxyz 
QWERTYUIOPASDFGHJKLZXCVBNM 

This general system is called a monoalphabetic substitution, with the key being 
the 26-letter string corresponding to the full alphabet. For the key above, the 
plaintext attack would be transformed into the ciphertext QZZQEA. 



SEC. 7.1 NETWORK SECURITY 583 

At first glance this might appear to be a safe system because although the 
cryptanalyst knows the general system (letter for letter substitution), he does not 
know which of the 26 ! ::::: 4 x 1026 possible keys is in use. In contrast with the 
Caesar cipher, trying all of them is not a promising approach. Even at 1 µsec per 
solution, a computer would take 1013 years to try all the keys. 

Nevertheless, given a surprisingly small amount of ciphertext, the cipher can 
be broken easily. The basic attack takes advantage of the statistical properties of 
natural languages. In English, for example, e is the most common letter, followed 
by t, o, a, n, i, etc. The most common two letter combinations, or digrams, are 
th, in, er, re, and an. The most common three letter combinations, or trigrams, 
are the, ing, and, and ion. 

A cryptanalyst trying to break a monoalphabetic cipher would start out by 
counting the relative frequencies of all letters in the ciphertext. Then he might 
tentatively assign the most common one to e and the next most common one to t. 
He would then look at trigrams to find a common one of the form tXe, which 
strongly suggests that Xis h. Similarly, if the pattern thYt occurs frequently, the Y 
probably stands for a. With this information, he can look for a frequently occur­
ring trigram of the form aZW, which is most likely and. By making guesses at 
common letters, digrams, and trigrams, and knowing about likely patterns of 
vowels and consonants, the cryptanalyst builds up a tentative plaintext, letter by 
letter. 

Another approach is to guess a probable word or phrase. For example, con­
sider the following ciphertext from an accounting firm (blocked into groups of 
five characters): 

CTBMN BYCTC BTJDS QXBNS GSTJC BTSWX CTQTZ CQVUJ 
QJSGS TJQZZ MNQJS VLNSX VSZJU JDSTS JQUUS JUBXJ 
DSKSU JSNTK BGAQJ ZBGYQ TLCTZ BNYBN QJSW 

A likely word in a message from an accounting firm is financial. Using our 
knowledge that financial has a repeated letter (i), with four other letters between 
their occurrences, we look for repeated letters in the ciphertext at this spacing. 
We find 12 hits, at positions 6, 15, 27, 31, 42, 48, 56, 66, 70, 71, 76, and 82. 
However, only two of these, 31 and 42, have the next ietter (corresponding to n in 
the plaintext) repeated in the proper place. Of these two, only 31 also has the a 
correctly positioned, so we know that financial begins at position 30. From this 
point on, deducing the key is easy by using the frequency statistics for English 
text. 

Transposition Ciphers 

Substitution ciphers preserve the order of the plaintext symbols but disguise 
them. Transposition ciphers, in contrast, reorder the letters but do not disguise 
them. Figure 7-3 depicts a common transposition cipher, the columnar 



584 THE APPLICATION LA YER CHAP. 7 

transposition. The cipher is keyed by a word or phrase not containing any 
repeated letters. In this example, MEGABUCK is the key. The purpose of the 
key is to number the columns, column 1 being under the key letter closest to the 
start of the alphabet, and so on. The plaintext is written horizontally, in rows. 
The ciphertext is read out by columns, starting with the column whose key letter 
is the lowest. 

M E G A B 

7 4 5 1 2 

p I e a s 

a n s f e 

e m 

d 0 I a 

0 m y s w 

b a n k a 

LI n t s 

0 t w 0 a 

u c 
8 3 

e t 

r 0 

0 

r s 

s 

c c 

x t 

b c 

K 

6 

r 

n 

n 

t 

s 

0 

w 

d 

Plaintext 

pleasetransferonemilliondollarsto 
myswissbankaccountsixtwotwo 

Ciphertext 

AFLLSKSOSELAWAIA TOOSSCTCLNMOMANT 
ESIL YNTWRNNTSOWDPAEDOBUOERIRICXB 

Fig. 7-3. A transposition cipher. 

To break a transposition cipher, the cryptanalyst must first be aware that he is 
dealing with a transposition cipher. By looking at the frequency of E, T, A, 0, I, 
N, etc., it is easy to see if they fit the normal pattern for plaintext. If so, the cipher 
is clearly a transposition cipher, because in such a cipher every letter represents 
itself. 

The next step is to make a guess at the number of columns. In many cases a 
probable word or phrase may be guessed at from the context of the message. For 
example, suppose that our cryptanalyst suspected the plaintext phrase milliondol­
lars to occur somewhere in the message. Observe that digrams MO, IL, LL, LA, 
IR and OS occur in the ciphertext as a result of this phrase wrapping around. The 
ciphertext letter 0 follows the ciphertext letter M (i.e., they are vertically adjacent 
in column 4) because they are separated in the probable phrase by a distance equal 
to the key length. If a key of length seven had been used, the digrams MD, IO, 
LL, LL, IA, OR, and NS would have occurred instead. In fact, for each key length, 
a different set of digrams is produced in the ciphertext. By hunting for the various 
possibilities, the cryptanalyst can often easily determine the key length. 

The remaining step is to order the columns. When the number of columns, k, 
is small, each of the k(k - 1) column pairs can be examined to see if its digram 
frequencies match those for English plaintext. The pair with the best match is 
assumed to be correctly positioned. Now each remaining column is tentatively 
tried as the successor to this pair. The column whose digram and trigram frequen­
cies give the best match is tentatively assumed to be correct. The predecessor 



SEC. 7.1 NETWORK SECURITY 585 

column is found in the same way. The entire process is continued until a potential 
ordering is found. Chances are that the plaintext will be recognizable at this point 
(e.g., if milloin occurs, it is clear what the error is). 

Some transposition ciphers accept a fixed-length block of input and produce a 
fixed-length block of output. These ciphers can be completely described by just 
giving a list telling the order in which the characters are to be output. For exam­
ple, the cipher of Fig. 7-3 can be seen as a 64 character block cipher. Its output is 
4, 12, 20, 28, 36, 44, 52, 60, 5, 13 , ... , 62. In other words, the fourth input char­
acter, a, is the first to be output, followed by the twelfth, f, and so on. 

One-Time Pads 

Constructing an unbreakable cipher is actually quite easy; the technique has 
been known for decades. First choose a random bit string as the key. Then con­
vert the plaintext into a bit string, for example by using its ASCII representation. 
Finally, compute the EXCLUSIVE OR of these two strings, bit by bit. The result­
ing ciphertext cannot be broken, because every possible plaintext is an equally 
probable candidate. The ciphertext gives the cryptanalyst no information at all. 
In a sufficiently large sample of ciphertext, each letter will occur equally often, as 
will every digram and every trigram. 

This method, known as the one-time pad, has a number of practical disadvan­
tages, unfortunately. To start with, the key cannot be memorized, so both sender 
and receiver must carry a written copy with them. If either one is subject to cap­
ture, written keys are clearly undesirable. Additionally, the total amount of data 
that can be transmitted is limited by the amount of key available. If the spy 
strikes it rich and discovers a wealth of data, he may find himself unable to 
transmit it back to headquarters because the key has been used up. Another prob­
lem is the sensitivity of the method to lost or inserted characters. If the sender and 
receiver get out of synchronization, all data from then on will appear garbled. 

With the advent of computers, the one-time pad might potentially become 
practical for some applications. The source of the key could be a special CD that 
contains several gigabits of information, and if transported in a music CD box and 
prefixed by a few songs, would not even be suspicious. Of course, at gigabit net­
wo(k speeds, having to insert a new CD every 5 sec could become tedious. For 
this reason, we will now start looking at modern encryption algorithms that can 
process arbitrarily large amounts of plaintext. 

7 .1.2. Two Fundamental Cryptographic Principles 

Although we will study many different cryptographic systems in the pages 
ahead, there are two principles underlying all of them that are important to under­
stand. The first principle is that all encrypted messages must contain some 



586 THE APPLICATION LA YER CHAP. 7 

redundancy, that is, information not needed to understand the message. An exam­
ple may make it clear why this is needed. Consider a mail-order company, The 
Couch Potato (TCP), with 60,000 products. Thinking they are being very effi­
cient, TCP' s programmers decide that ordering messages should consist of a 16-
byte customer name followed by a 3-byte data field (1 byte for the quantity and 2 
bytes for the product number). The last 3 bytes are to be encrypted using a very 
long key known only by the customer and TCP. 

At first this might seem secure, and in a sense it is because passive intruders 
cannot decrypt the messages. Unfortunately, it also has a fatal flaw that renders it 
useless. Suppose that a recently-fired employee wants to punish TCP for firing 
her. Just before leaving, she takes (part of) the customer list with her. She works 
through the night writing a program to generate fictitious orders using real custo­
mer names. Since she does not have the list of keys, she just puts random 
numbers in the last 3 bytes, and sends hundreds of orders off to TCP. 

When these messages arrive, TCP' s computer uses the customer's name to 
locate the key and decrypt the message. Unfortunately for TCP, almost every 3-
byte message is valid, so the computer begins printing out shipping instructions. 
While it might seem odd for a customer to order 137 sets of children's swings, or 
240 sandboxes, for all the computer knows, the customer might be planning to 
open a chain of franchised playgrounds. In this way an active intruder (the ex­
employee) can cause a massive amount of trouble, even though she cannot under­
stand the messages her computer is generating. 

This problem can be solved by adding redundancy to all messages. For exam­
ple, if order messages are extended to 12 bytes, the first 9 of which must be zeros, 
then this attack no longer works because the ex-employee no longer can generate 
a large stream of valid messages. The moral of the story is that all messages must 
contain considerable redundancy so that active intruders cannot send random junk 
and have it be interpreted as a valid message. 

However, adding redundancy also makes it much easier for cryptanalysts to 
break messages. Suppose that the mail order business is highly competitive, and 
The Couch Potato's main competitor, The Sofa Tuber, would dearly love to know 
how many sandboxes TCP is selling. Consequently, they have tapped TCP's tele­
phone line. In the original scheme with 3-byte messages, cryptanalysis was 
nearly impossible, because after guessing a key, the cryptanalyst had no way of 
telling whether the guess was right. After all, almost every message is technically 
legal. With the new 12-byte scheme, it is easy for the cryptanalyst to tell a valid 
message from an invalid one. 

Thus cryptographic principle number one is that all messages must contain 
redundancy to prevent active intruders from tricking the receiver into acting on a 
false message. However, this same redundancy makes it much easier for passive 
intruders to break the system, so there is some tension here. Furthermore, the 
redundancy should never be in the form of n zeros at the start or end of a message, 
since running such messages through some cryptographic algorithms gives more 



SEC. 7.1 NETWORK SECURITY 587 

predictable results, making the cryptanalysts' job easier. A random string of 
English words would be a much better choice for the redundancy. 

The second cryptographic principle is that some measures must be taken to 
prevent active intruders from playing back old messages. If no such measures 
were taken, our ex-employee could tap TCP' s phone line and just keep repeating 
previously sent valid messages. One such measure is including in every message 
a timestamp valid only for, say., 5 minutes. The receiver can then just keep mes­
sages around for 5 minutes, to compare newly arrived messages to previous ones 
to filter out duplicates. Messages older than 5 minutes can be thrown out, since 
any replays sent more than 5 minutes later will be rejected as too old. Measures 
other than timestamps will be discussed later. 

7.1.3. Secret-Key Algorithms 

Modern cryptography uses the same basic ideas as traditional cryptography, 
transposition and substitution, but its emphasis is different. Traditionally, crypto­
graphers have used simple algorithms and relied on very long keys for their secu­
rity. Nowadays the reverse is true: the object is to make the encryption algorithm 
so complex and involuted that even if the cryptanalyst acquires vast mounds of 
enciphered text of his own choosing, he will not be able to make any sense of it at 
all. 

Transpositions and substitutions can be implemented with simple circuits. 
Figure 7-4(a) shows a device, known as a P-box (P stands for permutation), used 
to effect a transposition on an 8-bit input. If the 8 bits are designated from top to 
bottom as 01234567, the output of this particular P-box is 36071245. By 
appropriate internal wiring, a P-box can be made to perform any transposition, 
and do it at practically the speed of light. 

P-box S-box Product cipher 

S1 S5 Sg 

S2 Se S10 
P1 P2 Ps P4 

Ss S7 S11 

S4 Sa S12 

(a) (b) (c) 

Fig. 7-4. Basic elements of product ciphers. (a) P-box. (b) S-box. (c) Product. 

Substitutions are performed by S-boxes, as shown in Fig. 7-4(b ). In this 
example a 3-bit plaintext is entered and a 3-bit ciphertext is output. The 3-bit 
input selects one of the eight lines exiting from the first stage and sets it to 1; all 
the other lines are 0. The second stage is a P-box. The third stage encodes the 



588 THE APPLICATION LA YER CHAP. 7 

selected input line in binary again. With the wiring shown, if the eight octal 
numbers 01234567 were input one after another, the output sequence would be 
24506713. In other words, 0 has been replaced by 2, 1 has been replaced by 4, 
etc. Again, by appropriate wiring of the P-box inside the S-box, any substitution 
can be accomplished. 

The real power of these basic elements only becomes apparent when we cas­
cade a whole series of boxes to form a product cipher, as shown in Fig. 7-4(c). 
In this example, 12 input lines are transposed by the first stage. Theoretically, it 
would be possible to have the second stage be an S-box that mapped a 12-bit 
number onto another 12-bit number. However, such a device would need 
212 = 4096 crossed wires in its middle stage. Instead, the input is broken up into 
four groups of 3 bits, each of which is substituted independently of the others. 
Although this method is less general, it is still powerful. By including a suffi­
ciently large number of stages in the product cipher, the output can be made to be 
an exceedingly complicated function of the input. 

DES 

In January 1977, the U.S. government adopted a product cipher developed by 
IBM as its official standard for unclassified information. This cipher, DES (Data 
Encryption Standard), was widely adopted by the industry for use in security 
products. It is no longer secure in its original form (Wayner, 1995), but in a modi­
fied form it is still useful. We will now explain how DES works. 

An outline of DES is shown in Fig. 7-5(a). Plaintext is encrypted in blocks of 
64 bits, yielding 64 bits of ciphertext. The algorithm, which is parametrized by a 
56-bit key, has 19 distinct stages. The first stage is a key independent transposi­
tion on the 64-bit plaintext. The last stage is the exact inverse of this transposi­
tion. The stage prior to the last one exchanges the leftmost 32 bits with the right­
most 32 bits. The remaining 16 stages are functionally identical but are 
parametrized by different functions of the key. The algorithm has been designed 
to allow decryption to be done with the same key as encryption. The steps are just 
run in the reverse order. 

The operation of one of these intermediate stages is illustrated in Fig. 7-5(b). 
Each stage takes two 32-bit inputs and produces two 32-bit outputs. The left out­
put is simply a copy of the right input. The right output is the bitwise 
EXCLUSIVE OR of the left input and a function of the right input and the key for 
this stage, Ki. All the complexity lies in this function. 

The function consists of four steps, carried out in sequence. First, a 48-bit 
number, E, is constructed by expanding the 32-bit Ri _ 1 according to a fixed trans­
position and duplication rule. Second, E and Ki are EXCLUSIVE ORed together. 
This output is then partitioned into eight groups of 6 bits each, each of which is 
fed into a different S-box. Each of the 64 possible inputs to an S-box is mapped 
onto a 4-bit output. Finally, these 8 x 4 bits are passed through a P-box. 



SEC. 7.1 

-:.0 
<D 
I.() 

64 bit plaintext 

Initial transposition 

Iteration 1 

Iteration 2 

[ Iteration 16 

32 bit swap 

Inverse transposition 

NETWORK SECURITY 589 

L;.1 EB f(Ri_1, K;) 

l!!!!!!! !!!!!!!! 
64 bit ciphertext 32 bits 32 bits 

L; R; 

(a) (b) 

Fiig. 7-5. The data encryption standard. (a) General outline. (b) Detail of one 
iteration. 

In each of the 16 iterations, a different key is used. Before the algorithm 
starts, a 56-bit transposition is applied to the key. Just before each iteration, the 
key is partitioned into two 28-bit units, each of which is rotated left by a number 
of bits dependent on the iteration number. Ki is derived from this rotated key by 
applying yet another 56-bit transposition to it. A different 48-bit subset of the 56 
bits is extracted and permuted on each round. 

DES Chaining 

Despite all this complexity, DES is basically a monoalphabetic substitution 
cipher using a 64-bit character. Whenever the same 64-bit plaintext block goes in 
the front end, the same 64-bit ciphertext block comes out the back end. A cryp­
tanalyst can exploit this property to help break DES. 

To see how this monoalphabetic substitution cipher property can be used to 
subvert DES, let us consider encrypting a long message the obvious way: by 
breaking it up into consecutive 8-byte (64-bit) blocks and encrypting them one 



590 THE APPLICATION LA YER CHAP. 7 

after another with the same key. The last block is padded out to 64 bits, if need 
be. This technique is known as electronic code book mode. 

In Fig. 7-6 we have the start of a computer file listing the annual bonuses a 
company has decided to award to its employees. This file consists of consecutive 
32-byte records, one per employee, in the format shown: 16 bytes for the name, 8 
bytes for the position, and 8 bytes for the bonus. Each of the sixteen 8-byte 
blocks (numbered from 0 to 15) is encrypted by DES. 

Name Position Bonus 

A d a m s L e s I i e C I e r k 

>-B~I ~a~c~k ~~R_,_o~b~i ~n~._l_J_ B o s s 

C o I I i n s K i m M a n a g e r 

D a v i s B o b b i e J a n i t o r 

Bytes-------16----------s--------s---

Fig. 7-6. The plaintext of a file encrypted as 16 DES blocks. 

Leslie just had a fight with the boss and is not expecting much of a bonus. 
Kim, in contrast is the boss' favorite, and everyone knows this. Leslie can get 
access to the file after it is encrypted but before it is sent to the bank. Can Leslie 
rectify this unfair situation, given only the encrypted file? 

No problem at all. All Leslie has to do is make a copy of ciphertext block 11 
(which contains Kim's bonus) and use it to replace ciphertext block 3 (which con­
tains Leslie's bonus). Even without knowing what block 11 says, Leslie can 
expect to have a much merrier Christmas this year. (Copying ciphertext block 7 is 
also a possibility, but is more likely to be detected; besides, Leslie is not a greedy 
person.) 

To thwart this type of attack, DES (and all block ciphers) can be chained in 
various ways so that replacing a block the way Leslie did will cause the plaintext 
decrypted starting at the replaced block to be garbage. One way of chaining is 
cipher block chaining. In this method, shown in Fig. 7-7, each plaintext block is 
EXCLUSIVE ORed (#) with the previous ciphertext block before being 
encrypted. Consequently, the same plaintext block no longer maps onto the same 
ciphertext block, and the encryption is no longer a big monoalphabetic substitu­
tion cipher. The first block is EXCLUSIVE ORed with a randomly chosen ini­
tialization vector, IV, that is transmitted along with the ciphertext. 

We can see how cipher block chaining works by examining the example of 
Fig. 7-7. We start out by computing C0 = E(P 0 XOR IV). Then we compute 
C 1 = E(P 1 XOR C 0), and so on. Decryption works the other way, with 
P 0 =IV XOR D(C 0), and so on. Note that the encryption of block i is a function 



SEC. 7.1 NETWORK SECURITY 591 

P1 P2 Ps Co C1 C2 Cs 

i i i b 

~ ~ ~ KeyT 
T T T""o;;c~ptioc Encryption 

/box box 

p-·· IVT T T T··· \Exclusive 

Co C1 C2 Cs Po P1 P2 Ps OR 

(a) (b) 

Fig. 7-7. Cipher block chaining 

of all the plaintext in blocks 0 through i - 1, so the same plaintext generates dif­
ferent ciphertext depending on where it occurs. A transformation of the type 
Leslie made will result in nonsense for two blocks starting at Leslie's bonus field. 
To an astute security officer, this peculiarity might suggest where to start the 
ensuing investigation. 

Cipher block chaining also has the advantage that the same plaintext block 
will not result in the same ciphertext block, making cryptanalysis more difficult. 
In fact, this is the main reason it is used. 

However, cipher block chaining has the disadvantage of requiring an entire 
64-bit block to arrive before decryption can begin. For use with interactive termi­
nals, where people can type lines shorter than eight characters and then stop, wait­
ing for a response, this mode is unsuitable. For byte-by-byte encryption, cipher 
feedback mode, shown in Fig. 7-8, can be used. In this figure, the state of the 
encryption machine is shown after bytes 0 through 9 have been encrypted and 
sent. When plaintext byte 10 arrives, as illustrated in Fig. 7-8(a), the DES algo­
rithm operates on the 64-bit shift register to generate a 64-bit ciphertext. The left­
most byte of that ciphertext is extracted and EXCLUSIVE ORed with P 10 . That 
byte is transmitted on the transmission line. In addition, the shift register is 
shifted left 8 bits, causing C 2 to fall off the left end, and C 10 is inserted in the 
position just vacated at the right end by C 9 . Note that the contents of the shift 
register depend on the entire previous history of the plaintext, so a pattern that 
repeats multiple times in the plaintext will be encrypted differently each time in 
the ciphertext. As with cipher block chaining, an initialization vector is needed to 
start the ball rolling. 

Decryption with cipher feedback mode just does the same thing as encryption. 
In particular, the contents of the shift register is encrypted, not decrypted, so the 
selected byte that is EXCLUSIVE ORed with C 10 to get P 10 is the same one that 
was EXCLUSIVE ORed with P 10 to generate C 10 in the first place. As long as 
the two shift registers remain identical, decryption works correctly. 



592 THE APPLICATION LA YER CHAP. 7 

64-bit shift register 64-bit shift register -- -
! E . 

Ke -er ncrypt1on 
Y box 

C10 

a Select i leftmost byte 

! E . 
Ke -er ncrypt1on 

Y box 
C10 

a Select i leftmost byte 

P10-~ C10 

Exclusive OR 
C10 0 P10 

(a) (b) 

Fig. 7-8. Cipher feedback mode. 

As an aside, it should be noted that if one bit of the ciphertext is accidentally 
inverted during transmission, the 8 bytes that are decrypted while the bad byte is 
in the shift register will be corrupted. Once the bad byte is pushed out of the shift 
register, correct plaintext will once again be generated. Thus the effects of a sin­
gle inverted bit are relatively localized and do not ruin the rest of the message. 

Nevertheless, there exist applications in which having a 1-bit transmission 
error mess up 64 bits of plaintext is too large an effect. For these applications, a 
fourth option, output feedback mode, exists. It is identical to cipher feedback 
mode, except that the byte fed back into the right end of the shift register is taken 
from just before the EXCLUSIVE OR box, not just after it. 

Output feedback mode has the property that a I -bit error in the ciphertext 
causes only a 1-bit error in the resulting plaintext. On the other hand, it is less 
secure than the other modes, and should be avoided for general-purpose use. 
Electronic code book mode should also be avoided except under special cir­
cumstances (e.g., encrypting a single random number, such as a session key). For 
normal operation, cipher block chaining should be used when the input arrives in 
8-byte units (e.g., for encrypting disk files) and cipher feedback mode should be 
used for irregular input streams, such as keyboard input. 

Breaking DES 

DES has been enveloped in controversy from the day it was launched. It was 
based on a cipher developed and patented by IBM, called Lucifer, except that 
IBM's cipher used a 128-bit key instead of a 56-bit key. When the U.S. federal 
government wanted to standardize on one cipher for unclassified use, it "invited" 



SEC. 7.1 NETWORK SECURITY 593 

IBM to "discuss" the matter with NSA, the government's code-breaking arm, 
which is the world's largest employer of mathematicians and cryptologists. NSA 
is so secret that an industry joke goes: 

Q: What does NSA stand for? 
A: No Such Agency. 

Actually, NSA stands for National Security Agency. 
After these discussions took place, IBM reduced the key from 128 bits to 56 

bits and decided to keep secret the process by which DES was designed. Many 
people suspected that the key length was reduced to make sure that NSA could 
just break DES, but no organization with a smaller budget could. The point of the 
secret design was supposedly to hide a trapdoor that could make it even easier for 
NSA to break DES. When an NSA employee discreetly told IEEE to cancel a 
planned conference on cryptography, that did not make people any more comfort­
able. 

In 1977, two Stanford cryptography researchers, Diffie and Hellman (1977), 
designed a machine to break DES and estimated that it could be built for 20 mil­
lion dollars. Given a small piece of plaintext and matched ciphertext, this 
machine could find the key by exhaustive search of the 256 -entry key space in 
under 1 day. Nowadays, such a machine would cost perhaps 1 million dollars. A 
detailed design for a machine that can break DES by exhaustive search in about 
four hours is presented in (Wiener, 1994). 

Here is another strategy. Although software encryption is 1000 times slower 
than hardware encryption, a high-end home computer can still do about 250,000 
encryptions/sec in software and is probably idle 2 million seconds/month. This 
idle time could be put to use breaking DES. If someone posted a message to one 
of the popular Internet newsgroups, it should not be hard to sign up the necessary 
140,000 people to check all 7 x 1016 keys in a month. 

Probably the most innovative idea for breaking DES is the Chinese Lottery 
(Quisquater and Girault, 1991). In this design, every radio and television has to 
be equipped with a cheap DES chip capable of performing 1 million 
encryptions/sec in hardware. Assuming that every one of the 1.2 billion people in 
China owns a radio or television, whenever the Chinese government wants to 
decrypt a message encrypted by DES, it just broadcasts the plaintext/ciphertext 
pair, and each of the 1.2 billion chips begins searching its preassigned section of 
the key space. Within 60 seconds, one (or more) hits will be found. To ensure 
that they are reported, the chips could be programmed to display or announce the 
message: 

CONGRATULATIONS! YOU HAVE JUST WON THE CHINESE LOTTERY. 
TO COLLECT, PLEASE CALL 1-800-BIG-PRIZE 

The conclusion that one can draw from these arguments is that DES should no 
longer be used for anything important. However, although 256 is a paltry 



594 THE APPLICATION LA YER CHAP. 7 

7 x 1016
, 2112 is a magnificent 5 x 1033

. Even with a billion DES chips doing a 
billion operations per second, it would take 100 million years to exhaustively 
search a 112-bit key space. Thus the thought arises of just running DES twice, 
with two different 56-bit keys. 

Unfortunately, Merkle and Hellman (1981) have developed a method that 
makes double encryption suspect. It is called the meet-in-the-middle attack and 
works like this (Hellman, 1980). Suppose that someone has doubly encrypted a 
series of plaintext blocks, using electronic code book mode. For a few values of i, 
the cryptanalyst has matched pairs (Pi, Ci) where 

Ci= EK2(EK1 (Pi)) 

If we now apply the decryption function, DK2 to each side of this equation, we get 

(7-1) 

because encrypting x and then decrypting it with the same key gives back x. 
The meet-in-the-middle attack uses this equation to find the DES keys, K 1 

and K2, as follows: 

1. Compute Ri = Ei(P 1) for all 256 values of i, where E is the DES 
encryption function. Sort this table in ascending order of Ri. 

2. Compute Sj = Dj( C 1) for all 256 values of j, where D is the DES 
decryption function. Sort this table in ascending order of Sj. 

3. Scan the first table looking for an Ri that matches some Sj in the 
second table. When a match is found, we then have a key pair (i,j) 
such that D/C 1) = Ei(P 1 ). Potentially, i is K 1 and j is K2. 

4. Check to see if E/Ei(P 2 )) is equal to C2 . If it is, try all the other 
(plaintext, ciphertext) pairs. If it is not, continue searching the two 
tables looking for matches. 

Many false alarms will certainly occur before the real keys are located, but even­
tually they will be found. This attack requires only 257 encryption or decryption 
operations (to construct the two tables), far less than 2112

. However it also 
requires a total of 260 bytes of storage for the two tables, so it is not currently 
feasible in this basic form, but Merkle and Hellman have shown various optimiza­
tions and trade-offs that permit less storage at the expense of more computing. 
All in all, double encryption using DES is probably not much more secure than 
single encryption. 

Triple encryption is another matter. As early as 1979, IBM realized that the 
DES key length was too short and devised a way to effectively increase it using 
triple encryption (Tuchman, 1979). The method chosen, which has since been 
incorporated in International Standard 8732, is illustrated in Fig. 7-9. Here two 



SEC. 7.1 NETWORK SECURITY 595 

keys and three stages are used. In the first stage, the plaintext is encrypted with 
K 1 . In the second stage, DES is run in decryption mode, using K 2 as the key. 
Finally, another encryption is done with K 1. 

K1 K2 K1 K1 K2 K1 

P-cb-[~J--d}-c c-ch-ch-ch-P 
(a) (b) 

Fig. 7-9. Triple encryption using DES. 

This design immediately gives rise to two questions. First, why are only two 
keys used, instead of three? Second, why is EDE used, instead of EEE? The rea­
son that two keys are used is that even the most paranoid cryptographers concede 
that 112 bits is sufficient for commercial applications for the time being. Going to 
168 bits would just add the unnecessary overhead of managing and transporting 
another key. 

The reason for encrypting, decrypting, and then encrypting again is backward 
compatibility with existing single-key DES systems. Both the encryption and 
decryption functions are mappings between sets of 64-bit numbers. From a cryp­
tographic point of view, the two mappings are equally strong. By using EDE, 
however, instead of EEE, a computer using triple encryption can speak to one 
using single encryption by just setting K 1 = K 2 . This property allows triple 
encryption to be phased in gradually, something of no concern to academic cryp­
tographers, but of considerable import to IBM and its customers. 

No method is known for breaking triple DES in EDE mode. Van Oorschot 
and Wiener (1988) have presented a method to speed up the search of EDE by a 
factor of 16, but even with their attack, EDE is highly secure. For anyone wishing 
nothing less than the very best, EEE with three distinct 56-bit keys (168 bits in all) 
is recommended. 

Before leaving the subject of DES, it is worth at least mentioning two recent 
developments in cryptanalysis. The first development is differential crypt­
analysis (Biham and Shamir, 1993). This technique can be used to attack any 
block cipher. It works by beginning with a pair of plaintext blocks that differ in 
only a small number of bits and watching carefully what happens on each internal 
iteration as the encryption proceeds. In many cases, some patterns are much more 
common than other patterns, and this observation leads to a probabilistic attack. 

The other development worth noting is linear cryptanalysis (Matsui, 1994). 
It can break DES with only 243 known plaintexts. It works by EXCLUSIVE 
ORing certain plaintext and ciphertext bits together to generate 1 bit. When done 
repeatedly, half the bits should be Os and half should be ls. Often, however, 
ciphers introduce a bias in one direction or the other, and this bias, however small, 
can be exploited to reduce the work factor. For the details, see Matsui's paper. 



596 THE APPLICATION LAYER CHAP. 7 

IDEA 

Perhaps all this hammering on why DES is insecure is like beating a dead 
horse, but the reality is that singly-encrypted DES is still widely used for secure 
applications, such as banking using automated teller machines. While this choice 
was probably appropriate when it was made, a decade or more ago, it is no longer 
adequate. 

At this point, the reader is probably legitimately wondering: "If DES is so 
weak, why hasn't anyone invented a better block cipher?" The fact is, many other 
block ciphers have been proposed, including BLOWFISH (Schneier, 1994), Crab 
(Kaliski and Robshaw, 1994), PEAL (Shimizu and Miyaguchi, 1988), KHAFRE 
(Merkle, 1991), LOKI91 (Brown et al., 1991), NEWDES (Scott, l985), REDOC­
II (Cusick and Wood, 1991), and SAFER K64 (Massey, 1994). Schneier (1996) 
discusses all of these and innumerable others. Probably the most interesting and 
important of the post-DES block ciphers is IDEA the (International Data 
Encryption Algorithm) (Lai and Massey, 1990; and Lai, 1992). Let us now 
study IDEA in more detail. 

IDEA was designed by two researchers in Switzerland, so it is probably free 
of any NSA "guidance" that might have introduced a secret trapdoor. It uses a 
128-bit key, which will make it immune to brute force, Chinese lottery, and 
meet-in-the-middle attacks for decades to come. It was also designed to withstand 
differential cryptanalysis. No currently known technique or machine is thought to 
be able to break IDEA. 

The basic structure of the algorithm resembles DES in that 64-bit plaintext 
input blocks are mangled in a sequence of parameterized iterations to produce 
64-bit ciphertext output blocks, as shown in Fig. 7-lO(a). Given the extensive bit 
mangling (for every iteration, every output bit depends on every input bit), eight 
iterations are sufficient. As with all block ciphers, IDEA can also be used in 
cipher feedback mode and the other DES modes. 

The details of one iteration are depicted in Fig. 7-lO(b ). Three operations are 
used, all on unsigned 16-bit numbers. These operations are EXCLUSIVE OR, 
addition modulo 216

, and multiplication modulo 216 + 1. All three of these can 
easily be done on a 16-bit microcomputer by ignoring the high-order parts of 
results. The operations have the property that no two pairs obey the associative 
law or distributive law, making cryptanalysis more difficult. The 128-bit key is 
used to generate 52 subkeys of 16 bits each, 6 for each of eight iterations and 4 for 
the final transformation. Decryption uses the same algorithm as encryption, only 
with different subkeys. 

Both software and hardware implementations of IDEA have been constructed. 
The first software implementation ran on a 33-MHz 386 and achieved an encryp­
tion rate of 0.88 Mbps. On a modern machine running ten times as fast, 9 Mbps 
should be achievable in software. An experimental 25-MHz VLSI chip was built 
at ETH Zurich and encrypted at a rate of 177 Mbps. 



SEC. 7.1 

64 bit plaintext 

i i i i i i i i 
Iteration 1 

Iteration 2 

Iteration 7 

l l r r r r r r 
Iteration 8 

r r r r r r r r 
Transformation 

64 bit ciphertext 

(a) 

NETWORK SECURITY 

0 
t 

Four 16-bit input blocks 

~ 
~~II~-~ 

Four 16-bit output blocks 

G) 16-Bit addition modulo 216 

Q 16-Bit multiplication modulo 216 + 1 

0 16-Bit EXCLUSIVE OR 

(b) 

Fig. 7-10. (a) IDEA. (b) Detail ofone iteration. 

7.1.4. Public-Key Algorithms 

0 
t 

597 

Historically the key distribution problem has always been the weak link in 
most cryptosystems. No matter how strong a cryptosystem was, if an intruder 
could steal the key, the system was worthless. Since all cryptologists always took 
for granted that the encryption key and decryption key were the same (or easily 
derived from one another) and the key had to be distributed to all users of the sys­
tem, it seemed as if there was an inherent built-in problem: keys had to protected 
from theft, but they also had to be distributed, so they could not just be locked up 
in a bank vault. 

In 1976, two researchers at Stanford University, Diffie and Hellman (1976), 
proposed a radically new kind of cryptosystem, one in which the encryption and 
decryption keys were different, artd the decryption key could not be derived from 
the encryption key. In their proposal, the (keyed) encryption algorithm, E, and the 



598 THE APPLICA TJON LA YER CHAP. 7 

(keyed) decryption algorithm, D, had to meet the following three requirements. 
These requirements can be stated simply as follows: 

1. D(E(P)) = P. 

2. It is exceedingly difficult to deduce D from E. 

3. E cannot be broken by a chosen plaintext attack. 

The first requirement says that if we apply D to an encrypted message, E(P), we 
get the original plaintext message, P, back. The second requirement speaks for 
itself. The third requirement is needed because, as we shall see in a moment, 
intruders may experiment with the algorithm to their hearts' content. Under these 
conditions, there is no reason that the encryption key cannot be made public. 

The method works like this. A person, say, Alice, wanting to receive secret 
messages, first devises two algorithms, EA and DA, meeting the above require­
ments. The encryption algorithm and key, EA, is then made public, hence the 
name public-key cryptography (to contrast it with traditional secret-key cryptog­
raphy). This might be done by putting it in a file that anyone who wanted to could 
read. Alice publishes the decryption algorithm (to get the free consulting), but 
keeps the decryption key secret. Thus, EA is public, but DA is private. 

Now let us see if we can solve the problem of establishing a secure channel 
between Alice and Bob, who have never had any previous contact. Both Alice's 
encryption key, EA, and Bob's encryption key, E8 , are assumed to be in a publicly 
readable file. (Basically, all users of the network are expected to publish their 
encryption keys as soon as they become network users.) Now Alice takes her first 
message, P, computes E8 (P), and sends it to Bob. Bob then decrypts it by apply­
ing his secret key D 8 fi.e., he computes D 8 (E8 (P)) = P]. No one else can read 
the encrypted message, E8 (P), because the encryption system is assumed strong 
and because it is too difficult to derive D8 from the publicly known E8 . Alice and 
Bob can now communicate securely. 

A note on terminology is perhaps useful here. Public-key cryptography 
requires each user to have two keys: a public key, used by the entire world for 
encrypting messages to be sent to that user, and a private key, which the user 
needs for decrypting messages. We will consistently refer to these keys as the 
public and private/keys, respectively, and distinguish them from the secret keys 
used for both encryption and decryption in conventional (also called symmetric 
key) cryptography. 

The RSA Algorithm 

The only catch is that we need to find algorithms that indeed satisfy all three 
requirements. Due to the potential advantages of public-key cryptography, many 
researchers are hard at work, and some algorithms have already been published. 
One good method was discovered by a group at M.I.T. (Rivest et al., 1978). It is 



SEC. 7.1 NETWORK SECURITY 599 

known by the initials of the three discoverers (Rivest, Shamir, Adleman): RSA. 
Their method is based on some principles from number theory. We will now 
summarize how to use the method below; for details, consult the paper. 

1. Choose two large primes, p and q, (typically greater than 10100
). 

2. Compute n = p x q and z = (p - 1) x (q - 1). 

3. Choose a number relatively prime to z and call it d. 

4. Find e such that e x d == 1 mod z. 

With these parameters computed in advance, we are ready to begin encryption. 
Divide the plaintext (regarded as a bit string) into blocks, so that each plaintext 
message, P, falls in the interval 0 '.S: P < n. This can be done by grouping the 
plaintext into blocks of k bits, where k is the largest integer for which 2k < n is 
true. 

To encrypt a message, P, compute C = pe (mod n). To decrypt C, compute 
P =Cd (mod n). It can be proven that for all Pin the specified range, the encryp­
tion and decryption functions are inverses. To perform the encryption, you need e 
and n. To perform the decryption, you need d and n. Therefore, the public key 
consists of the pair (e, n) and the private key consists of (d, n ). 

The security of the method is based on the difficulty of factoring large 
numbers. If the cryptanalyst could factor the (publicly known) n, he could then 
find p and q, and from these z .. Equipped with knowledge of z and e, d can be 
found using Euclid's algorithm. Fortunately, mathematicians have been trying to 
factor large numbers for at least 300 years, and the accumulated evidence sug­
gests that it is an exceedingly difficult problem. 

According to Rivest and colleagues, factoring a 200-digit number requires 4 
billion years of computer time; factoring a 500-digit number requires 1025 years. 
In both cases, they assume the best known algorithm and a computer with a 
1-µsec instruction time. Even if computers continue to get faster by an order of 
magnitude per decade, it will be centuries before factoring a 500-digit number 
becomes feasible, at which time our descendants can simply choose p and q still 
larger. 

A trivial pedagogical example of the RSA algorithm is given in Fig. 7-11. 
For this example we have chosen p = 3 and q = 11, giving n = 33 and z = 20. A 
suitable value for d is d = 7, since 7 and 20 have no common factors. With these 
choices, e can be found by solving the equation 7 e = 1 (mod 20), which yields 
e = 3. The ciphertext, C, for a plaintext message, P, is given by 
C = P 3 (mod 33). The ciphertext is decrypted by the receiver according to the 
rule P = C7 (mod 33). The figure shows the encryption of the plaintext 
"SUZANNE" as an example. 

Because the primes chosen for this example are so small, P must be less than 
33, so each plaintext block can contain only a single character. The result is a 



600 THE APPLICATION LA YER CHAP. 7 

Plaintext (P) Ciphertext (C) After decryption 
,---------"-------., ,---"----., 
Symbolic Numeric p3 ps (mod 33) C7 C7(mod 33) Symbolic 

s 19 6859 28 13492928512 19 s 
u 21 9261 21 1801088541 21 u 
z 26 17576 20 1280000000 26 z 
A 01 1 1 1 A 
N 14 2744 5 78125 14 N 
N 14 2744 5 78125 14 N 
E 05 125 26 8031810176 5 E 

'---
Sender's computation Receiver's computation 

Fig. 7-11. An example of the RSA algorithm. 

monoalphabetic substitution cipher, not very impressive. If instead we had 
chosen p and q ::::: 10100

, we would have n ::::: 10200
, so each block could be up to 

664 bits (2664 
::::: 10200

) or 83 8-bit characters, versus 8 characters for DES. 
It should be pointed out that using RSA as we have described is similar to 

using DES in ECB mode-the same input block gives the same output block. 
Therefore some form of chaining is needed for data encryption. However, in 
practice, most RSA-based systems use public-key cryptography primarily for dis­
tributing one-time session keys for use with DES, IDEA, or similar algorithms. 
RSA is too slow for actually encrypting large volumes of data. 

Other Public-Key Algorithms 

Although RSA is widely used, it is by no means the only public-key algorithm 
known. The first public-key algorithm was the knapsack algorithm (Merkle and 
Hellman, 1978). The idea here is that someone owns a large number of objects, 
each with a different weight. The owner encodes the message by secretly select­
ing a subset of the objects and placing them in the knapsack. The total weight of 
the objects in the knapsack is made public, as is the list of all possible objects. 
The list of objects in the knapsack is kept secret. With certain additional restric­
tions, the problem of figuring out a possible list of objects with the given weight 
was thought to be computationally infeasible, and formed the basis of the public­
key algorithm. 

The algorithm's inventor, Ralph Merkle, was quite sure that this algorithm 
could not be broken, so he offered a 100-dollar reward to anyone who could break 
it. Adi Shamir (the "S" in RSA) promptly broke it and collected the reward. 
Undeterred, Merkle strengthened the algorithm and offered a 1000-dollar reward 
to anyone who could break the new one. Ron Rivest (the "R" in RSA) promptly 
broke the new one and collected the reward. Merkle did not dare offer 10,000 



SEC. 7.1 NETWORK SECURITY 601 

dollars for the next version, so "A" (Leonard Adleman) was out of luck. 
Although it has been patched up again, the knapsack algorithm is not considered 
secure and is rarely used. 

Other public-key schemes are based on the difficulty of computing discrete 
logarithms (Rabin, 1979). Algorithms that use this principle have been invented 
by El Gamal (1985) and Schnorr (1991). 

A few other schemes exist, such as those based on elliptic curves (Menezes 
and Vanstone, 1993), but the three major categories are those based on the diffi­
culty of factoring large numbers, computing discrete logarithms, and determining 
the contents of a knapsack from its weight. These problems are thought to be 
genuinely difficult to solve because mathematicians have been working on them 
for many years without any great breakthroughs. 

7.1.5. Authentication Protocols 

Authentication is the technique by which a process verifies that its communi­
cation partner is who it is supposed to be and not an imposter. Verifying the iden­
tity of a remote process in the face of a malicious, active intruder is surprisingly 
difficult and requires complex protocols based on cryptography. In this section, 
we will study some of the many authentication protocols that are used on insecure 
computer networks. 

As an aside, some people confuse authorization with authentication. Authen­
tication deals with the question of whether or not you are actually communicating 
with a specific process. Authorization is concerned with what that process is per­
mitted to do. For example, a client process contacts a file server and says: "I am 
Scott's process and I want to delete the file cookbook.old." From the file server's 
point of view, two questions must be answered: 

1. Is this actually Scott's process (authentication)? 

2. Is Scott allowed to delete cookbook.old (authorization)? 

Only after both questions have been unambiguously answered in the affirmative 
can the requested action take place. The former question is really the key one. 
Once the file server knows whom it is talking to, checking authorization is just a 
matter of looking up entries in local tables. For this reason, we will concentrate 
on authentication in this section. 

The general model that all authentication protocols use is this. An initiating 
user (really a process), say, Alice, wants to establish a secure connection with a 
second user, Bob. Alice and Bob are sometimes called principals, the main char­
acters in our story. Bob is a banker with whom Alice would like to do business. 
Alice starts out by sending a message either to Bob, or to a trusted key distribu­
tion center (KDC), which is always honest. Several other message exchanges 



602 THE APPLICATION LA YER CHAP. 7 

follow in various directions. As these message are being sent, a nasty intruder, 
Trudy,t may intercept, modify, or replay them in order to trick Alice and Bob or 
just to gum up the works. 

Nevertheless, when the protocol has been completed, Alice is sure she is talk­
ing to Bob and Bob is sure he is talking to Alice. Furthermore, in most of the pro­
tocols, the two of them will also have established a secret session key for use in 
the upcoming conversation. In practice, for performance reasons, all data traffic 
is encrypted using secret-key cryptography, although public-key cryptography is 
widely used for the authentication protocols themselves and for establishing the 
session key. 

The point of using a new, randomly-chosen session key for each new connec­
tion is to minimize the amount of traffic that gets sent with the users' secret keys 
or public keys, to reduce the amount of ciphertext an intruder can obtain, and to 
minimize the damage done if a process crashes and its core dump falls into the 
wrong hands. Hopefully, the only key present then will be the session key. All 
the permanent keys should have been carefully zeroed out after the session was 
established. 

Authentication Based on a Shared Secret Key 

For our first authentication protocol, we will assume that Alice and Bob 
already share a secret key, KAB (In the formal protocols, we will abbreviate Alice 
as A and Bob as B, respectively.) This shared key might have been agreed upon 
on the telephone, or in person, but, in any event, not on the (insecure) network. 

This protocol is based on a principle found in many authentication protocols: 
one party sends a random number to the other, who then transforms it in a special 
way and then returns the result. Such protocols are called challenge-response 
protocols. In this and subsequent authentication protocols, the following notation 
will be used: 

A, B are the identities of Alice and Bob 
R/ s are the challenges, where the subscript identifies the challenger 
Ki are keys, where i indicates the owner; Ks is the session key 

The message sequence for our first shared-key authentication protocol is 
shown in Fig. 7-12. In message 1, Alice sends her identity, A, to Bob in a way 
that Bob understands. Bob, of course, has no way of knowing whether this mes­
sage came from Alice or from Trudy, so he chooses a challenge, a large random 
number, Rs, and sends it back to "Alice" as message 2, in plaintext. Alice then 
encrypts the message with the key she shares with Bob and sends the ciphertext, 
KAs(Rs), back in message 3. When Bob sees this message, he immediately 
knows that it came from Alice because Trudy does not know KAB and thus could 

t I thank Kaufman 1 et aI.23 (1995) for revealing her name. 



SEC. 7.1 NETWORK SECURITY 603 

not have generated it. Furthermore, since Rs was chosen randomly from a large 
space (say, 128-bit random numbers), it is very unlikely that Trudy would have 
seen Rs and its response from an earlier session. 

.0 >------- 0 cc 

Fig. 7-12. Two-way authentication using a challenge-response protocol. 

At this point, Bob is sure he is talking to Alice, but Alice is not sure of any­
thing. For all Alice knows, Trudy might have intercepted message 1 and sent 
back Rs in response. Maybe Bob died last night. To find out whom she is talking 
to, Alice picks a random number, RA and sends it to Bob as plaintext, in message 
4. When Bob responds with K,,i,s (RA), Alice knows she is talking to Bob. If they 
wish to establish a session key now, Alice can pick one, Ks, and send it to Bob 
encrypted with KAs. 

Although the protocol of Fig. 7-12 works, it contains extra messages. These 
can be eliminated by combining information, as illustrated in Fig. 7-13. Here 
Alice initiates the challenge-response protocol instead of waiting for Bob to do it. 
Similarly, while he is responding to Alice's challenge, Bob sends his own. The 
entire protocol can be reduced to three messages instead of five. 

Fig. 7-13. A shortened two-way authentication protocol. 

Is this new protocol an improvement over the original one? In one sense it is: 
it is shorter. Unfortunately, it is also wrong. Under certain circumstances, Trudy 
can defeat this protocol by using what is known as a reflection attack. In partic­
ular, Trudy can break it if it is possible to open multiple sessions with Bob at 



604 THE APPLICATION LA YER CHAP. 7 

once. This situation would be true, for example, if Bob is a bank and is prepared 
to accept many simultaneous connections from teller machines at once. 

Trudy's reflection attack is shown in Fig. 7-14. It starts out with Trudy claim­
ing she is Alice and sending Rr. Bob responds, as usual, with his own challenge, 
Rs. Now Trudy is stuck. What can she do? She does not know KAs(Rs). 

~ 11 I 
~ 

I A,Rr I 

21 Rs, KAs (Rr) ~ • 
} Fi<ot "'"ioo 

>, 31 -0 
A,Rs I .0 

::i I I --- 0 

i= en 
4 I Rs2, KAs (Rs) ~ .. } Sooood ''"'°' 

51 I 

- 1 KAs (Rs) 1 - } First session 

Fig. 7-14. The reflection attack. 

She can open a second session with message 3, supplying the Rs taken from 
message 2 as her challenge. Bob calmly encrypts it and sends back KAs(Rs) in 
message 4. Now Trudy has the missing information, so she can complete the first 
session and abort the second one. Bob is now convinced that Trudy is Alice, so 
when she asks for her bank account balance, he gives it to her without question. 
Then when she asks him to transfer it all to a secret bank account in Switzerland, 
he does so without a moment's hesitation. 

The moral of this story is: 

Designing a correct authentication protocol is harder than it looks. 

Three general rules that often help are as follows: 

1. Have the initiator prove who she is before the responder has to. In 
this case, Bob gives away valuable information before Trudy has to 
give any evidence of who she is. 

2. Have the initiator and responder use different keys for proof, even if 
this means having two shared keys, KAs and K' AB. 

3. Have the initiator and responder draw their challenges from different 
sets. For example, the initiator must use even numbers and the 
responder must use odd numbers. 

All three rules were violated here, with disastrous results. Note that our first 
(five-message) authentication protocol requires Alice to prove her identity first, so 
that protocol is not subject to the reflection attack. 



SEC. 7.1 NETWORK SECURITY 605 

Establishing a Shared Key: The Diffie-Hellman Key Exchange 

So far we have assumed that Alice and Bob share a secret key. Suppose that 
they do not? How can they establish one? One way would be for Alice to call 
Bob and give him her key on the phone, but he would probably start out by say­
ing: "How do I know you are Alice and not Trudy?" They could try to arrange a 
meeting, with each one bringing a passport, a drivers' license, and three major 
credit cards, but being busy people, they might not be able to find a mutually 
acceptable date for months. Fortunately, incredible as it may sound, there is a 
way for total strangers to establish a shared secret key in broad daylight, even 
with Trudy carefully recording every message. 

The protocol that allows strangers to estq.blish a shared secret key is called the 
Diffie-Hellman key exchange (Diffie and Hellman, 1976) and works as follows. 
Alice and Bob have to agree: on two large prime numbers, n, and g, where 
(n - 1)/2 is also a prime and certain conditions apply to g. These numbers may 
be public, so either one of them can just pick n and g and tell the other openly. 
Now Alice picks a large (say, 512-bit) number, x, and keeps it secret. Similarly, 
Bob picks a large secret number, y. 

Alice initiates the key exchange protocol by sending Bob a message contain­
ing (n, g, gx mod n), as shown in Fig. 7-15. Bob responds by sending Alice a 
message containing gY mod n .. Now Alice takes the number Bob sent her and 
raises it to the xth power to get (gY mod n)x. Bob performs a similar operation to 
get (gx mod n )Y. By the laws of modular arithmetic, both calculations yield 
gxy mod n. Lo and behold, Alice and Bob now share a secret key, gxy mod n. 

Alice 
picks x 

Bob 
picks y 

1---~ n, g, gx mod n 1----1 

~ , ..... 1----
2-1[ gY mod n 1-------1 ~ 

Alice computes 
(gY mod n)x 
= gxy mod n 

Bob computes 
(gx mod n)Y 
= gxy mod n 

Fig. 7-15. The Diffie-Hellman key exchange. 

Trudy, of course, has seen both messages. She knows g and n from message 
1. lf she could compute x and y, she could figure out the secret key. The trouble 
is, given only gx mod n, she cannot find x. No practical algorithm for computing 
discrete logarithms modulo a very large prime number is known. 

To make the above example more concrete, we will use the (completely 
unrealistic) values of n = 47 .and g = 3. Alice picks x = 8 and Bob picks y = 10. 



606 THE APPLICATION LA YER CHAP. 7 

Both of these are kept secret. Alice's message to Bob is (47, 3, 28) because 
38 mod 47 is 28. Bob's message to Alice is (17). Alice computes 178 mod 47, 
which is 4. Bob computes 28 10 mod 47, which is 4. Alice and Bob have 
independently determined that the secret key is now 4. Trudy has to solve the 
equation 3x mod 47 = 28, which can be done by exhaustive search for small 
numbers like this, but not when all the numbers are hundreds of bits long. All 
currently-known algorithms simply take too long, even using a massively parallel 
supercomputer. 

Despite the elegance of the Diffie-Hellman algorithm, there is a problem: 
when Bob gets the triple (47, 3, 28), how does he know it is from Alice and not 
from Trudy? There is no way he can know. Unfortunately, Trudy can exploit this 
fact to deceive both Alice and Bob, as illustrated in Fig. 7-16. Here, while Alice 
and Bob are choosing x and y, respectively, Trudy picks her own random number, 
z. Alice sends message 1 intended for Bob. Trudy intercepts it and sends mes­
sage 2 to Bob, using the correct g and n (which are public anyway) but with her 
own z instead of x. She also sends message 3 back to Alice. Later Bob sends 
message 4 to Alice, which Trudy again intercepts and keeps. 

Alice 
picks x 

Q) 

1----­
f--------i n, g, gx mod n 

~ •~~1------3-<I gz mod n ~ 

Trudy 
picks z 

Bob 
picks y 

2-----
r------< n, g, gz mod n r------• .o 

0 
al 

Fig. 7-16. The bucket brigade attack. 

Now everybody does the modular arithmetic. Alice computes the secret key 
as gxz mod n, and so does Trudy (for messages to Alice). Bob computes 
gYz mod n and so does Trudy (for messages to Bob). Alice thinks she is talking to 
Bob so she establishes a session key (with Trudy). So does Bob. Every message 
that Alice sends on the encrypted session is captured by Trudy, stored, modified if 
desired, and then (optionally) passed on to Bob. Similarly in the other direction. 
Trudy sees everything and can modify all messages at will, while both Alice and 
Bob are under the illusion that they have a secure channel to one another. This 
attack is known as the bucket brigade attack, because it vaguely resembles an 
old-time volunteer fire department passing buckets along the line from the fire 
truck to the fire. It is also called the (wo)man-in-the-middle attack, which 
should not be confused with the meet-in-the-middle attack on block ciphers. For­
tunately, more complex algorithms can defeat this attack. 



SEC. 7.1 NETWORK SECURITY 607 

Authentication Using a Key Distribution Center 

Setting up a shared secret with a stranger almost worked, but not quite. On 
the other hand, it probably was not worth doing in the first place (sour grapes 
attack). To talk ton people this way, you would need n keys. For popular people, 
key management would become a real burden, especially if each key had to be 
stored on a separate plastic chip card. 

A different approach is to introduce a trusted key distribution center (KDC). 
In this model, each user has a single key shared with the KDC. Authentication 
and session key management now goes through the KDC. The simplest known 
KDC authentication protocol involving two parties and a trusted KDC is depicted 
in Fig. 7-17. 

(]) 

.2 
<i: 

A, KA (B, Ks) l;l~ ~~~2.~i~K-6 -(A-,-K8-)---,r-~~-• S 

Fig. 7-17. A first attempt at an authentication protocol using a KDC. 

The idea behind this protocol is simple: Alice picks a session key, Ks, and 
tells the KDC that she wants to talk to Bob using Ks. This message is encrypted 
with the secret key Alice shares (only) with the KDC, KA. The KDC decrypts this 
message, extracting Bob's identity and the session key. It then constructs a new 
message containing Alice's identity and the session key and sends this message to 
Bob. This encryption is done with K8 , the secret key Bob shares with the KDC. 
When Bob decrypts the message, he learns that Alice wants to talk to him, and 
which key she wants to use. 

The authentication here happens for free. The KDC knows that message 1 
must have come from Alice, since no one else would have been able to encrypt it 
with Alice's secret key. Simillarly, Bob knows that message 2 must have come 
from the KDC, whom he trusts, since no one else knows his secret key. 

Unfortunately, this protocol has a serious flaw. Trudy needs some money, so 
she figures out some legitimate service she can perform for Alice, makes an 
attractive offer, and gets the job. After doing the work, Trudy then politely 
requests Alice to pay by bank transfer. Alice then establishes a session key with 
her banker, Bob. Then she sends Bob a message requesting money to be 
transferred to Trudy's account. 

Meanwhile, Trudy is back to her old ways, snooping on the network. She 
copies both message 2 in Fig. 7-17, and the money-transfer request that follows it. 



608 THE APPLICATION LA YER CHAP. 7 

Later, she replays both of them to Bob. Bob gets them and thinks: "Alice must 
have hired Trudy again. She clearly does good work." Bob then transfers an 
equal amount of money from Alice's account to Trudy's. Some time after the 
50th message pair, Bob runs out of the office to find Trudy to offer her a big loan 
so she can expand her obviously successful business. This problem is called the 
replay attack. 

Several solutions to the replay attack are possible. The first one is to include 
a timestamp in each message. Then if anyone receives an obsolete message, it 
can be discarded. The trouble with this approach is that clocks are never exactly 
synchronized over a network, so there has to be some interval during which a 
timestamp is valid. Trudy can replay the message during this interval and get 
away with it. 

The second solution is to put a one-time, unique message number, usually 
called a nonce, in each message. Each party then has to remember all previous 
nonces and reject any message contqining a previously used nonce. But nonces 
have to be remembered forever, lest Trudy try replaying a 5-year-old message. 
Also, if some machine crashes and it loses its nonce list, it is again vulnerable to a 
replay attack. Timestamps and nonces can be combined to limit how long nonces 
have to be remembered, but clearly the protocol is going to get a lot more compli­
cated. 

A more sophisticated approach to authentication is to use a multiway 
challenge-response protocol. A well-known example of such a protocol is the 
Needham-Schroeder authentication protocol (Needham and Schroeder, 1978), 
one variant of which is shown in Fig. 7-18. 

-

31 
K8(A, Ks), Ks (RA2) I 

I I 

41 
Ks (RA2-1), Rs I 

I I 

51 
Ks (Rs -1) I 

I I 

Fig. 7-18. The Needham-Schroeder authentication protocol. 

The protocol begins with Alice telling the KDC that she wants to talk to Bob. 
This message contains a large random number, RA, as a nonce. The KDC sends 
back message 2 containing Alice's random number, a session key, and a ticket 
that she can send to Bob. The point of the random number, RA, is to assure Alice 
that message 2 is fresh, and not a replay. Bob's identity is also enclosed in case 
Trudy gets any funny ideas about replacing B in message 1 with her own identity 



SEC. 7.1 NETWORK SECURITY 609 

so the KDC will encrypt the ticket at the end of message 2 with KT instead of Ks. 
The ticket encrypted with Ks is included inside the encrypted message to prevent 
Trudy from replacing it with something else on the way back to Alice. 

Alice now sends the ticket to Bob, along with a new random number, RAz, 
encrypted with the session key, Ks. In message 4, Bob sends back Ks(RAz - 1) to 
prove to Alice that she is talking to the real Bob. Sending back Ks(RA 2 ) would 
not have worked, since Trudy could just have stolen it from message 3. 

After receiving message 4, Alice is now convinced that she is talking to Bob, 
and that no replays could have been used so far. After all, she just generated RA 2 

a few milliseconds ago. The purpose of message 5 is to convince Bob that it is 
indeed Alice he is talking to, and no replays are being used here either. By having 
each party both generate a challenge and respond to one, the possibility of any 
kind of replay attack is eliminated. 

Although this protocol seems pretty solid, it does have a slight weakness. If 
Trudy ever manages to obtain an old session key in plaintext, she can initiate a 
new session with Bob replaying the message 3 corresponding to the compromised 
key and convince him that she is Alice (Denning and Sacco, 1981). This time she 
can plunder Alice's bank account without having to perform the legitimate service 
even once. 

Needham and Schroeder later published a protocol that corrects this problem 
(Needham and Schroeder, 1987). In the same issue of the same journal, Otway 
and Rees (1987) also published a protocol that solves the problem in a shorter 
way. Figure 7-19 shows a slightly modified Otway-Rees protocol. 

1-----------
1-1[ A, B, R, KA (A, B, R, RA) 

0 
0 ::.:: 

2 A, KA (A, 8, R, RA), 
, __ ---< B, K

8 
(A, B, R, R

8
) 

3~----

Fig. 7-19. The Otway-Rees authentication protocol (slightly simplified). 

.. 

.0 
0 en 

In the Otway-Rees protocol, Alice starts out by generating a pair of random 
numbers, R, which will be used as a common identifier, and RA which Alice will 
use to challenge Bob. When Bob gets this message, he constructs a new message 
from the encrypted part of Alice's message, and an analogous one of his own. 
Both the parts encrypted with KA and Ks identify Alice and Bob, contain the com­
mon identifier, and contain a challenge. 

The KDC checks to see if the R in both parts is the same. It might not be 
because Trudy tampered with R in message 1 or replaced part of message 2. If 



610 THE APPLICATION LA YER CHAP. 7 

the two Rs match, the KDC believes that the request message from Bob is valid. 
It then generates a session key and encrypts it twice, once for Alice and once for 
Bob. Each message contains the receiver's random number, as proof that the 
KDC, and not Trudy, generated the message. At this point both Alice and Bob are 
in possession of the same session key and can start communicating. The first time 
they exchange data messages, each one can see that the other one has an identical 
copy of Ks, so the authentication is then complete. 

Authentication Using Kerberos 

An authentication protocol used in many real systems is Kerberos, which is 
based on a variant of Needham-Schroeder. It is named for a multiheaded dog in 
Greek Mythology that used to guard the entrance to Hades (presumably to keep 
undesirables out). Kerberos was designed at M.I.T. to allow workstation users to 
access network resources in a secure way. Its biggest difference with Needham­
Schroeder is its assumption that all clocks are fairly-well synchronized. The pro­
tocol has gone through several iterations. V 4 is the version most widely used in 
industry, so we will describe it. Afterward, we will say a few words about its suc­
cessor, VS. For more information, see (Neuman and Ts'o, 1994; and Steiner et 
al., 1988). 

Kerberos involves three servers in addition to Alice (a client workstation): 

Authentication Server (AS): verifies users during login 
Ticket-Granting Server (TGS): issues "proof of identity tickets" 
Bob the server: actually does the work Alice wants performed 

AS is similar to a KDC in that it shares a secret password with every user. The 
TGS' s job is to issue tickets that can convince the real servers that the bearer of a 
TGS ticket really is who he or she claims to be. 

To start a session, Alice sits down at a arbitrary public workstation and types 
her name. The workstation sends her name to the AS in plaintext, as shown in 
Fig. 7-20. What comes back is a session key and a ticket, Krns(A, Ks), intended 
for the TGS. These items are packaged together and encrypted using Alice's 
secret key, so that only Alice can decrypt them. Only when message 2 arrives, 
does the workstation ask for Alice's password. The password is then used to gen­
erate KA, in order to decrypt message 2 and obtain the session key and TGS ticket 
inside it. At this point, the workstation overwrites Alice's password, to make sure 
that it is only inside the workstation for a few milliseconds at most. If Trudy tries 
logging in as Alice, the password she types will be wrong and the workstation will 
detect this because the standard part of message 2 will be incorrect. 

After she logs in, Alice may tell the workstation that she wants to contact Bob 
the file server. The workstation then sends message 3 to the TGS asking for a 
ticket to use with Bob. The key element in this request is Kros(A, Ks), which is 



SEC. 7.1 NETWORK SECURITY 

,__ ______ ___, A ~---------
2 ~-----~ ~ Login 

----; KA (Ks, Krns (A, Ks)) 

1---------
3
--ll Krns (A, Ks). B, Ks (t) 

4..-------------~ 
Ks (B, KAs). Ks (A, KAs) 

5 ..-------------, 
Ks (A, KAs ), KAs (t) 

6 
KAs(t+1) 

Fig. 7-20. The operation ofKerberos V4. 

(f) Get a 
~ ticket 

.. 

611 

Do the 
work 

encrypted with the TGS's secret key and is used as proof that the sender really is 
Alice. The TGS responds by creating a session key, KAB, for Alice to use with 
Bob. Two versions of it are sent back. The first is encrypted with only K5 , so 
Alice can read it. The second is encrypted with Bob's key, Ks, so Bob can read 
it. 

Trudy can copy message 3 and try to use it again, but she will be foiled by the 
encrypted timestamp, t, sent along with it. Trudy cannot replace the timestamp 
with a more recent one, because she does not know Ks, the session key Alice uses 
to talk to the TGS. Even if Trudy replays message 3 quickly, all she will get is 
another copy of message 4, which she could not decrypt the first time and will not 
be able to decrypt the second time either. 

Now Alice can send KAB to Bob to establish a session with him. This 
exchange is also timestamped. The response is proof to Alice that she is actually 
talking to Bob, not to Trudy. 

After this series of exchanges, Alice can communicate with Bob under cover 
of KAB. If she later decides she needs to talk to another server, Carol, she just 
repeats message 3 to the TGS, only now specifying C instead of B. The TGS will 
promptly respond with a ticket encrypted with Kc that Alice can send to Carol 
and that Carol will accept as proof that it came from Alice. 

The point of all this work is that now Alice can access servers all over the net­
work in a secure way, and her password never has to go over the network. In fact, 
it only had to be in her own workstation for a few milliseconds. However, note 
that each server does its own authorization. When Alice presents her ticket to 
Bob, this merely proves to Bob who sent it. Precisely what Alice is allowed to do 
is up to Bob. 

Since the Kerberos designers did not expect the entire world to trust a single 
authentication server, they made provision for having multiple realms, each with 
its own AS and TGS. To get a ticket for a server in a distant realm, Alice would 
ask her own TGS for a ticket accepted by the TGS in the distant realm. If the 



612 THE APPLICATION LAYER CHAP. 7 

distant TGS has registered with the local TGS (the same way local servers do), 
the local TGS will give Alice a ticket valid at the distant TGS. She can then do 
business over there, such as getting tickets for servers in that realm. Note, how­
ever, that for parties in two realms to do business, each one must trust the other's 
TGS. 

Kerberos V5 is fancier than V4 and has more overhead. It also uses OSI 
ASN.1 (Abstract Syntax Notation 1) for describing data types and has small 
changes in the protocols. Furthermore, it has longer ticket lifetimes, allows tick­
ets to be renewed, and will issue postdated tickets. In addition, at least in theory, 
it is not DES dependent, as V 4 is, and supports multiple realms. 

Authentication Using Public-Key Cryptography 

Mutual authentication can also be done using public-key cryptography. To 
start with, let us assume Alice and Bob already know each other's public keys (a 
nontrivial issue). They want to establish a session, and then use secret-key cryp­
tography on that session, since it is typically 100 to 1000 times faster than public­
key cryptography. The purpose of the initial exchange then is to authenticate each 
other and agree on a secret shared session key. 

This setup can be done is various ways. A typical one is shown in Fig. 7-21. 
Here Alice starts by encrypting her identity and a random number, RA, using 
Bob's public (or encryption) key, Es. When Bob receives this message, he has no 
idea of whether it came from Alice or from Trudy, but he plays along and sends 
Alice back a message containing Alice's RA, his own random number, Rs, and a 
proposed session key, Ks. 

2~---~ 
, ___ __, EA (RA, Rs. Ks) r-----1 

r----3~ Ks~ 

.0 
0 
Ill 

Fig. 7-21. Mutual authentication using public-key cryptography. 

When Alice gets message 2, she decrypts it using her private key. She sees 
RA in it, which gives her a warm feeling inside. The message must have come 
from Bob, since Trudy has no way of determining RA. Furthermore, it must be 
fresh and not a replay, since she just sent Bob RA. Alice agrees to the session by 
sending back message 3. When Bob sees Rs encrypted with the session key he 
just generated, he knows Alice got message 2 and verified RA. 

What can Trudy do to try to subvert this protocol? She can fabricate message 
1 and trick Bob into probing Alice, but Alice will see an RA that she did not send 
and will not proceed further. Trudy cannot forge message 3 convincingly because 



SEC. 7.1 NETWORK SECURITY 613 

she does not know RB or Ks and cannot determine them without Alice's private 
key. She is out of luck. 

However, the protocol does have a weakness: it assumes that Alice and Bob 
already know each other's public keys. Suppose that they do not. Alice could 
just send Bob her public key in the first message and ask Bob to send his back in 
the next one. The trouble with this approach is that it is subject to a bucket bri­
gade attack. Trudy can capture Alice's message to Bob and send her own public 
key back to Alice. Alice will think she has a key for talking to Bob, when, in fact, 
she has a key for talking to Trudy. Now Trudy can read all the messages 
encrypted with what Alice thinks is Bob's public key. 

The initial public-key exchange can be avoided by having all the public keys 
stored in a public database. Then Alice and Bob can fetch each other's public 
keys from the database. Unfortunately, Trudy can still pull off the bucket brigade 
attack by intercepting the requests to the database and sending simulated replies 
containing her own public key. After all, how do Alice and Bob know that the 
replies came from the real data base and not from Trudy? 

Rivest and Shamir (1984) have devised a protocol that foils Trudy's bucket 
brigade attack. In their interlock protocol, after the public key exchange, Alice 
sends only half of her message to Bob, say, only the even bits (after encryption). 
Bob then responds with his even bits. After getting Bob's even bits, Alice sends 
her odd bits, then Bob does too. 

The trick here is that when Trudy gets Alice's even bits, she cannot decrypt 
the message, even though Trudy has the private key. Consequently, she is unable 
to reencrypt the even bits using Bob's public key. If she sends junk to Bob, the 
protocol will continue, but Bob will shortly discover that the fully assembled mes­
sage makes no sense and realized that he has been spoofed. 

7.1.6. Digital Signatures 

The authenticity of many legal, financial, and other documents is deteq:nined 
by the presence or absence of an authorized handwritten signature. And photo­
copies do not count. For computerized message systems to replace the physical 
transport of paper and ink documents, a solution must be found to these problems. 

The problem of devising a replacement for handwritten signatures is a diffi­
cult one. Basically, what is needed is a system by which one party can send a 
"signed" message to another party in such a way that 

1. The receiver can verify the claimed identity of the sender. 

2. The sender cannot later repudiate the contents of the message. 

3. The receiver cannot possibly have concocted the message himself. 

The first requirement is needed, for example, in financial systems. When a 
customer's computer orders a bank's computer to buy a ton of gold, the bank's 



614 THE APPLICATION LA YER CHAP. 7 

computer needs to be able to make sure that the computer giving the order really 
belongs to the company whose account is to be debited. 

The second requirement is needed to protect the bank against fraud. Suppose 
that the bank buys the ton of gold, and immediately thereafter the price of gold 
drops sharply. A dishonest customer might sue the bank, claiming that he never 
issued any order to buy gold. When the bank produces the message in court, the 
customer denies having sent it. 

The third requirement is needed to protect the customer in the event that the 
price of gold shoots up and the bank tries to construct a signed me~sage in which 
the customer asked for one bar of gold instead of one ton. 

Secret-Key Signatures 

One approach to digital signatures is to have a central authority that knows 
everything and whom everyone trusts, say Big Brother (BB). Each user then 
chooses a secret key and carries it by hand to BB's office. Thus only Alice and 
BB know Alice's secret, KA, and so on. 

When Alice wants to send a signed plaintext message, P, to her banker, Bob, 
she generates KA(B, RA, t, P) and sends it as depicted in Fig. 7-22. BB sees that 
the message is from Alice, decrypts it, and sends a message to Bob as shown. The 
message to Bob contains the plaintext of Alice's message and also the signed 
message K88 (A, t, P), where t is a timestamp. Bob now carries out Alice's 
request. 

co 
ro K8 (A, RA, t, P, K88 (A, t, P)) 

Fig. 7-22. Digital signatures with Big Brother. 

.a 
0 
al 

What happens if Alice later denies sending the message? Step 1 is that every­
one sues everyone (at least, in the United States). Finally, when the case comes to 
court and Alice vigorously denies sending Bob the disputed message, the judge 
will ask Bob how he can be sure that the disputed message came from Alice and 
not from Trudy. Bob first points out that BB will not accept a message from Alice 
unless it is encrypted with KA, so there is no possibility of Trudy sending BB a 
false message from Alice. 

Bob then dramatically produces Exhibit A, K88 (A, t, P). Bob says that this is 
a message signed by BB which proves Alice sent P to Bob. The judge then asks 



SEC. 7.1 NETWORK SECURITY 615 

BB (whom everyone trusts) to decrypt Exhibit A. When BB testifies that Bob is 
telling the truth, the judge decides in favor of Bob. Case dismissed. 

One potential problem with the signature protocol of Fig. 7-22 is Trudy 
replaying either message. To minimize this problem, timestamps are used 
throughout. Furthermore, Bob can check all recent messages to see if RA was 
used in any of them. If so, the message is discarded as a replay. Note that Bob 
will reject very old messages based on the timestamp. To guard against instant 
replay attacks, Bob just checks the RA of every incoming message to see if such a 
message has been received from Alice in the past hour. If not, Bob can safely 
assume this is a new request. 

Public-Key Signatures 

A structural problem with using secret-key cryptography for digital signatures 
is that everyone has to agree to trust Big Brother. Furthermore, Big Brother gets 
to read all signed messages. The most logical candidates for running the Big 
Brother server are the government, the banks, or the lawyers. These organizations 
do not inspire total confidence in all citizens. Hence, it would be nice if signing 
documents did not require a trusted authority. 

Fortunately, public-key cryptography can make an important contribution 
here. Let us assume that the public-key encryption and decryption algorithms 
have the property that E(D(P)) = P in addition to the usual property that 
D(E(P)) = P. (RSA has this property, so the assumption is not unreasonable.) 
Assuming that this is the case, Alice can send a signed plaintext message, P, to 
Bob by transmitting EB(DA(P)). Note carefully that Alice knows her own 
(private) decryption key, DA, as well as Bob's public key, EB, so constructing this 
message is something Alice can do. 

When Bob receives the message, he transforms it using his private key, as 
usual, yielding DA(P), as shown in Fig. 7-23. He stores this text in a safe place 
and then decrypts it using EA to get the original plaintext. 

Transmission line 
Alice's computer 

j 
Bob's computer 

Moe' rn Bob's Alice's 
P - private key, - public key, private key, - public key, -P 

DA Es 

1 
Ds EA 

Fig. 7-23. Digital signatures using public-key cryptography. 

To see how the signature property works, suppose that Alice subsequently 
denies having sent the message P to Bob. When the case comes up in court, Bob 



616 THE APPLICATION LA YER CHAP. 7 

can produce both P and DA (P ). The judge can easily verify that Bob indeed has a 
valid message encrypted by DA by simply applying EA to it. Since Bob does not 
know what Alice's private key is, the only way Bob could have acquired a mes­
sage encrypted by it is if Alice did indeed send it. While in jail for perjury and 
fraud, Alice will have plenty of time to devise interesting new public-key algo­
rithms. 

Although using public-key cryptography for digital signatures is an elegant 
scheme, there are problems that are related to the environment in which they 
operate rather than with the basic algorithm. For one thing, Bob can prove that a 
message was sent by Alice only as long as DA remains secret. If Alice discloses 
her secret key, the argument no longer holds, because anyone could have sent the 
message, including Bob himself. 

The problem might arise, for example, if Bob is Alice's stockbroker. Alice 
tells Bob to buy a certain stock or bond. Immediately thereafter, the price drops 
sharply. To repudiate her message to Bob, Alice runs to the police claiming that 
her home was burglarized and her key was stolen. Depending on the laws in her 
state or country, she may or may not be legally liable, especially if she claims not 
to have discovered the break-in until getting home from work, several hours later. 

Another problem with the signature scheme is what happens if Alice decides 
to change her key. Doing so is clearly legal, and it is probably a good idea to do 
so periodically. if a court case later arises, as described above, the judge will 
apply the current EA to DA (P) and discover that it does not produce P. Bob will 
look pretty stupid at this point. Consequently, it appears that some authority is 
probably needed to record all key changes and their dates. 

In principle, any public-key algorithm can be used for digital signatures. The 
de facto industry standard is the RSA algorithm. Many security products use it. 
However, in 1991, NIST (National Institute of Standards and Technology) pro­
posed using a variant of the El Gamal public-key algorithm for their new Digital 
Signature Standard (DSS). El Gamal gets its security from the difficulty of 
computing discrete logarithms, rather than the difficulty of factoring large 
numbers. 

As usual when the government tries to dictate cryptographic standards, there 
was an uproar. DSS was criticized for being 

1. Too secret (NSA designed the protocol for using El Gamal). 

2. Too new (El Gamal has not yet been thoroughly analyzed). 

3. Too slow (10 to 40 times slower than RSA for checking signatures). 

4. Too insecure (fixed 512-bit key). 

In a subsequent revision, the fourth point was rendered moot when keys up to 
1024 bits were allowed. It is not yet clear whether DSS will catch on. For more 
details, see (Kaufman et al., 1995; Schneier, 1996; and Stinson, 1995). 



SEC. 7.1 NETWORK SECURITY 617 

Message Digests 

One criticism of signature methods is that they often couple two distinct func­
tions: authentication and secrecy. Often, authentication is needed but secrecy is 
not. Since cryptography is slow, it is frequently desirable to be able to send 
signed plaintext documents. Below we will describe an authentication scheme 
that does not require encrypting the entire message (De Jonge and Chaum, 1987). 

This scheme is based on the idea of a one-way hash function that takes an 
arbitrarily long piece of plaintext and from it computes a fixed-length bit string. 
This hash function, often called a message digest, has three important properties: 

1. Given P, it is easy to compute MD(P). 

2. Given MD(P), it is effectively impossible to find P. 

3. No one can generate two messages that have the same message digest. 

To meet criterion 3, the hash should be at least 128 bits long, preferably more. 
Computing a message digest from a piece of plaintext is much faster than 

encrypting that plaintext with a public-key algorithm, so message digests can be 
used to speed up digital signature algorithms. To see how this works, consider the 
signature protocol of Fig. 7-22 again. Instead of signing P with Kss(A, t, P), BB 
now computes the message digest by applying MD to P, yielding MD(P). BB 
then encloses Kss(A, t, MD(P)) as the fifth item in the list encrypted with Ks that 
is sent to Bob, instead of Kss(AL, t, P). 

If a dispute arises, Bob can produce both P and Kss(A, t, MD(P)). After Big 
Brother has decrypted it for the judge, Bob has MD(P), which is guaranteed to be 
genuine, and the alleged P. However, since it is effectively impossible for Bob to 
find any other message that gives this hash, the judge will easily be convinced that 
Bob is telling the truth. Using message digests in this way saves both encryption 
time and message transport and storage costs. 

Message digests work in public-key cryptosystems, too, as shown in Fig. 7-
24. Here, Alice first computes the message digest of her plaintext. She then signs 
the message digest and sends both the signed digest and the plaintext to Bob. If 
Trudy replaces P underway, Bob will see this when he computes MD(P) himself . 

P, DA (MD (P)) 
..c 
0 ro 

Fig. 7-24. Digital signatures using message digests. 

A variety of message digest functions have been proposed. The most widely 
used ones are MD5 (Rivest, 1992) and SHA (NIST, 1993). MDS is the fifth in a 



618 THE APPLICATION LAYER CHAP. 7 

series of hash functions designed by Ron Rivest. It operates by mangling bits in a 
sufficiently complicated way that every output bit is affected by every input bit. 
Very briefly, it starts out by padding the message to a length of 448 bits (modulo 
512). Then the original length of the message is appended as a 64-bit integer to 
give a total input whose length is a multiple of 512 bits. The last prccomputation 
step is initializing a 128-bit buffer to a fixed value. 

Now the computation starts. Each round takes a 512-bit block of input and 
mixes it thoroughly with the l 28-bit buffer. For good measure, a table con­
structed from the sine function is also thrown in. The point of using a known 
function like the sine is not because it is more random than a random number gen­
erator, but to avoid any suspicion that the designer built in a clever trapdoor 
through which only he can enter. IBM's refusal to disclose the principles behind 
the design of the S-boxes in DES led to a great deal of speculation about trap­
doors. Four rounds are performed per input block. This process continues until 
all the input blocks have been consumed. The contents of the 128-bit buffer form 
the message digest. The algorithm has been optimized for software implementa­
tion on 32-bit machines. As a consequence, it may not be fast enough for future 
high-speed networks (Touch, l 995). 

The other major message digest function is SHA (Secure Hash Algorithm), 
developed by NSA and blessed by NIST. Like MD5, it processes input data in 
512-bit blocks, only unlike MD5, it generates a 160-bit message digest. It starts 
out by padding the message, then adding a 64-bit length to get a multiple of 512 
bits. Then it initializes its 160-bit output buffer. 

For each input block, the output buffer is updated using the 512-bit input 
block. No table of random numbers (or sine function values) is used, but for each 
block 80 rounds are computed, resulting in a thorough mixing. Each group of 20 
rounds uses different mixing functions. 

Since SHA's hash code is 32 bits longer than MD5's, all other things being 
equal, it is a factor of 232 more secure than MD5. However, it is also slower than 
MD5, and having a hash code that is not a power of two might sometimes be an 
inconvenience. Otherwise, the two are roughly similar technically. Politically, 
MD5 is defined in an RFC and used heavily on the Internet. SHA is a govern­
ment standard, and used by companies that have to use it because the government 
tells them to, or by those that want the extra security. A revised version, SHA-1, 
has been approved as a standard by NIST. 

The Birthday Attack 

In the world of crypto, nothing is ever what it seems to be. One might think 
that it would take on the order of 2m operations to subvert an m-bit message dig­
est. In fact, 2ml2 operations will often do using the birthday attack, an approach 
published by Yuval (1979) in his now-classic paper "How to Swindle Rabin." 



SEC. 7.1 NETWORK SECURITY 619 

The idea for this attack comes from a technique that math professors often use 
in their probability courses. The question is: How many students do you need in a 
class before the probability of having two people with the same birthday exceeds 
1/2? Most students expect the answer to be way over 100. In fact, probability 
theory says it is just 23. Without giving a rigorous analysis, intuitively, with 23 
people, we can form (23 x 22)/2 = 253 different pairs, each of which has a proba­
bility of 1/365 of being a hit. In this light, it is not really so surprising any more. 

More generally, if there is some mapping between inputs and outputs with n 
inputs (people, messages, etc.) and k possible outputs (birthdays, message digests, 
etc.), there are n(n - 1)/2 input pairs. If n(n - 1)/2 > k, the chance of having at 
least one match is pretty good. Thus, approximately, a match is likely for n > "-{k. 
This result means that a 64-bit message digest can probably be broken by generat­
ing about 232 messages and looking for two with the same message digest. 

Let us look at a practical example. The Dept. of Computer Science at State 
University has one position for a tenured faculty member and two candidates, 
Tom and Dick. Tom was hired two years before Dick, so he goes up for review 
first. If he gets it, Dick is out of luck. Tom knows that the department chairper­
son, Marilyn, thinks highly of his work, so he asks her to write him a letter of 
recommendation to the Dean, who will decide on Tom's case. Once sent, all 
letters become confidential. 

Marilyn tells her secretary, Ellen, to write the Dean a letter, outlining what 
she wants in it. When it is ready, Marilyn will review it, compute and sign the 
64-bit digest, and send it to the Dean. Ellen can send the letter later by email. 

Unfortunately for Tom, Ellen is romantically involved with Dick and would 
like to do Tom in, so she writes the letter below with the 32 bracketed options. 

Dear Dean Smith, 
This [letter I message] is to give my [honest I frank] opinion of Prof. Tom 

Wilson, who is [a candidate I up] for tenure [now I this year]. I have [known I 
worked with] Prof. Wilson for [about I almost] six years. He is an [outstanding I 
excellent] researcher of great [talent I ability] known [worldwide I internationally] 
for his [brilliant I creative] insights into [many I a wide variety of] [difficult I chal­
lenging] problems. 

He is also a [highly I greatly] [respected I admired] [teacher I educator]. His 
students give his [classes I courses] [rave I spectacular] reviews. He is [our I the 
Department's] [most popular I best-loved] [teacher I instructor]. 

[In addition I Additionally] Prof. Wilson is a [gifted I effective] fund raiser. 
His [grants I contracts] have brought a [large I substantial] amount of money into 
[the I our] Department. [This money has I These funds have] [enabled I permitted] 
us to [pursue I carry out] many [special I important] programs, [such as I for 
example] your State 2000 program. Without these funds we would [be unable I 
not be able] to continue this program, which is so [important I essential] to both of 
us. I strongly urge you to grant him tenure. 



620 THE APPLICATION LA YER CHAP. 7 

Unfortunately for Tom, as soon as Ellen finishes composing and typing in this 
letter, she also writes a second one: 

Dear Dean Smith, 
This [letter I message] is to give my [honest I frank] opinion of Prof. Tom 

Wilson, ;who is [a candidate I up] for tenure [now I this year]. I have [known I 
worked with] Tom for [about I almost] six years. He is a [poor I weak] researcher 
not well known in his ffield I area]. His research [hardly ever I rarely] shows 
[insight in I understanding of] the [key I major] problems of [the I our] day. 

Furthermore, he is not a [respected I admired] [teacher I educator]. His stu­
dents give his [classes I courses] [poor I bad ] reviews. He is [our I the 
Department's] least popular [teacher I instructor], known [mostly I primarily] 
within [the I our] Department for his [tendency I propensity] to [ridicule I embar­
rass] students ffoolish I imprudent] enough to ask questions in his classes. 

[In addition I Additionally] Tom is a [poor I marginal] fund raiser. His [grants 
I contracts] have brought only a [meager I insignificant] amount of money into 
[the I our] Department. Unless new [money is I funds are] quickly located, we 
may have to cancel some essential programs, such as your State 2000 program. 
Unfortunately, under these [conditions I circumstances] I cannot in good [consci­
ence I faith] recommend him to you for [tenure I a permanent position]. 

Now Ellen sets up her computer to compute the 232 message digests of each letter 
overnight. Chances are, one digest of the first letter will match one digest of the 
second letter. If not, she can add a few more options and try again during the 
weekend. Suppose that she finds a match. Call the "good" letter A and the 
"bad" one B. 

Ellen now emails letter A to Marilyn for her approval. Marilyn, of course, 
approves, computes her 64-bit message digest, signs the digest, and emails the 
signed digest off to Dean Smith. Independently, Ellen emails letter B to the Dean. 

After getting the letter and signed message digest, the Dean runs the message 
digest algorithm on letter B, sees that it agrees with what Marilyn sent him, and 
fires Tom. (Optional ending: Ellen tells Dick what she did. Dick is appalled and 
breaks off with her. Ellen is furious and confesses to Marilyn. Marilyn calls the 
Dean. Tom gets tenure after all.) With MD5 the birthday attack is infeasible 
because even at 1 billion digests per second, it would take over 500 years to com­
pute all 264 digests of two letters with 64 variants each, and even then a match is 
not guaranteed. 

7.1.7. Social Issues 

The implications of network security for individual privacy and society in 
general are staggering. Below we will just mention a few of the salient issues. 

Governments do not like citizens keeping secrets from them. In some 



SEC. 7.1 NETWORK SECURITY 621 

countries (e.g., France) all nongovernmental cryptography is simply forbidden 
unless the government is given all the keys being used. As Kahn (1980) and Sel­
fridge and Schwartz (1980) point out, government eavesdropping has been prac­
ticed on a far more massive scale than most people could dream of, and govern­
ments want more than just a pile: of indecipherable bits for their efforts. 

The U.S. government has proposed an encryption scheme for future digital 
telephones that includes a special feature to allow the police to tap and decrypt all 
telephone calls made in the United States. The government promises not to use 
this feature without a court order, but many people still remember how former 
FBI Director J. Edgar Hoover illegally tapped the telephones of Martin Luther 
King, Jr. and other people in an attempt to neutralize them. The poiice say they 
need this power to catch criminals. The debate on both sides is vehement, to put 
it mildly. A discussion of the technology involved (Clipper) is given in (Kaufman 
et al., 1995). A way to circumvent this technology and send messages that the 
government cannot read is described in (Blaze, 1994; and Schneier, 1996). Posi­
tion statements on all sides are given in (Hoffman, 1995). 

The United States has a law (22 U.S.C. 2778) that prohibits citizens from 
exporting munitions (war materiel), such as tanks and jet fighters, without authori­
zation from the DoD. For purposes of this law, cryptographic software is classi­
fied as a munition. Phil Zimmermann, who wrote PGP (Pretty Good Privacy), an 
email protection program, has been accused of violating this law, even though the 
government admits that he did not export it (but he did give it to a friend who put 
it ort the Internet where foreigners could obtain it). Many people regarded this 
widely-publicized incident as a gross violation of the rights of an American 
citizen working to enhance people's privacy. 

Not being an American does not help. On July 9, 1986, three Israeli research­
ers working at the Weizmann Institute in Israel filed a U.S. patent application for 
a new digital signature scheme that they had invented. They spent the next 6 
months discussing their research at conferences all over the world. On Jan. 6, 
1987, the U.S. patent office told them to notify all Americans who knew about 
their results that disclosure of the research would subject them to two years in 
prison, a 10,000-dollar fine, or both. The pa.tent office also wanted a list of all 
foreign nationals who knew about the research. To find out how this story turned 
out, see (Landau, 1988). 

Patents are another hot topic. Nearly all public-key algorithms are patented. 
Patent protection lasts for 17 years. The RSA patent, for example, expires on 
Sept. 20, 2000. 

Network security is politicized to an extent few other technical issues are, and 
rightly so, since it relates to the difference between a democracy and a police state 
in the digital era. The March 1993 and November 1994 issues of Communica­
tions of the ACM have long sections on telephone and network security, respec­
tively, with vigorous arguments explaining and defending many points of view. 
Chapter 25 of Schneier' s security book deals with the politics of cryptography 



622 THE APPLICATION LA YER CHAP. 7 

(Schneier, 1996). Chapter 8 of his email book does too (Schneier, 1995). Privacy 
and computers are also discussed in (Adam, 1995). These references are highly 
recommended for readers who wish to pursue their study of this subject. 

7.2. DNS-Domain Name System 

Programs rarely refer to hosts, mailboxes, and other resources by their binary 
network addresses. Instead of binary numbers, they use ASCII strings, such as 
tana@art.ucsb.edu. Nevertheless, the network itself only understands binary 
addresses, so some mechanism is required to convert the ASCII strings to network 
addresses. In the following sections we will study how this mapping is accom­
plished in the Internet. 

Way back in the ARPANET, there was simply a file, hosts.txt, that listed all 
the hosts and their IP addresses. Every night, all the hosts would fetch it from the 
site at which it was maintained. For a network of a few hundred large timesharing 
machines, this approach worked reasonably well. 

However, when thousands of workstations were connected to the net, every­
one realized that this approach could not continue to work forever. For one thing, 
the size of the file would become too large. However, even more important, host 
name conflicts would occur constantly unless names were centrally managed, 
something unthinkable in a huge international network. To solve these problems, 
DNS (the Domain Name System) was invented. 

The essence of DNS is the invention of a hierarchical, domain-based naming 
scheme and a distributed database system for implementing this naming scheme. 
It is primarily used for mapping host names and email destinations to IP addresses 
but can also be used for other purposes. DNS is defined in RFCs 1034 and 1035. 

Very briefly, the way DNS is used is as follows. To map a name onto an IP 
address, an application program calls a library procedure called the resolver, 
passing it the name as a parameter. The resolver sends a UDP packet to a local 
DNS server, which then looks up the name and returns the IP address to the 
resolver, which then returns it to the caUer. Armed with the IP address, the pro­
gram can then establish a TCP connection with the destination, or send it UDP 
packets. 

7.2.1. The DNS Name Space 

Managing a large and constantly changing set of names is a nontrivial prob­
lem. In the postal system, name management is done by requiring letters to 
specify (implicitly or explicitly) the country, state or province, city, and street 
address of the addressee. By using this kind of hierarchical addressing, there is no 
confusion between the Marvin Anderson on Main St. in White Plains, N.Y. and 
the Marvin Anderson on Main St. in Austin, Texas. DNS works the same way. 



SEC. 7.2 DNS--Domain Name System 623 

Conceptually, the Internet is divided into several hundred top-level domains, 
where each domain covers many hosts. Each domain is partitioned into sub­
domains, and these are further partitioned, and so on. All these domains can be 
represented by a tree, as shown in Fig. 7-25. The leaves of the tree represent 
domains that have no subdomains (but do contain machines, of course) A leaf 
domain may contain a single host, or it may represent a company and contains 
thousands of hosts. 

Generic I-Countries ---

int com edu gov org net jp us nl 

I I /'\ /""'- /""'-sun yale acm 1eee ac co oce vu 

I /""'- /""'- I I I 
eng cs eng jack jill keio nee cs 

/""'- I I /""'-
ai linda cs csl flits flu it 

I I 
robot pc24 

Fig. 7-25. A portion of the Internet domain name space. 

The top-level domains come in two flavors: generic and countries. The gen­
eric domains are com (commercial), edu (educational institutions), gov (the U.S. 
federal government), int (certain international organizations), mil (the U.S. armed 
forces), net (network providers), and org (nonprofit organizations). The country 
domains include one entry for every country, as defined in ISO 3166. 

Each domain is named by the path upward from it to the (unna,med) root. The 
components are separated by periods (pronounced "dot"). Thus Sun Microsys­
tems engineering department might be eng.sun.com., rather than a UNIX-style 
name such as /com/sun/eng. Notice that this hierarchical naming means that 
eng.sun.com. does not conflict with a potential use of eng in eng.yale.edu., which 
might be used by the Yale English department. 

Domain names can be either absolute or relative. An absolute domain name 
ends with a period (e.g., eng.sun.com.), whereas a relative one does not. Relative 
names have to be interpreted in some context to uniquely determine their true 
meaning. In both cases, a named domain r~fers to a specific node in the tree and 
all the nodes under it. 

Domain names are case insensitive, so edu and EDU mean the same thing. 
Component names can be up to 63 characters long, and full path names must not 
exceed 255 characters. 

In principle, domains can be inserted into the tree in two different ways. For 
example, cs.yale.edu could equa,lly well be listed under the us country domain as 



624 THE APPLICATION LAYER CHAP. 7 

cs.yale.ct.us. In practice, however, nearly all organizations in the United States 
are under a generic domain, and nearly all outside the United States are under the 
domain of their country. There is no rule against registering under two top-level 
domains, but doing so might be confusing, so few organizations do it. 

Each domain controls how it allocates the domains under it. For example, 
Japan has domains ac.jp and co.jp that mirror edu and com. The Netherlands does 
not make this distinction and puts all organizations directly under nl. Thus all 
three of the following are university computer science departments: 

1. cs.yale.edu (Yale University, in the United States) 

2. cs. vu.nl (Vrije Universiteit, in The Netherlands) 

3. cs.keio.ac.jp (Keio University, in Japan) 

To create a new domain, permission is required of the domain in which it will 
be included. For example, if a VLSI group is started at Yale and wants to be 
known as vlsi.cs.yale.edu, it needs permission from whomever manages 
cs.yale.edu. Similarly, if a new university is chartered, say, the University of 
Northern South Dakota, it must ask the manager of the edu domain to assign it 
unsd.edu. In this way, name conflicts are avoided and each domain can keep 
track of all its subdomail1s. Once a new domain has been created and registered, 
it can create subdomains, such as cs.unsd.edu, without getting permission from 
anybody higher up the tree. 

Naming follows organizational boundaries, not physical networks. For exam­
ple, if the computer science and electrical engineering departments are located in 
the same building and share the same LAN, they can nevertheless have distinct 
domains. Similarly, even if computer science is split over Babbage Hall and Tur­
ing Hall, all the hosts in both buildings will normally belong to the same domain. 

7 .2.2. Resource Records 

Every domain, whether it is a single host or a top-level domain, can have a set 
of resource records associated with it. For a single host, the most common 
resource record is just its IP address, but many other kinds of resource records 
also exist. When a resolver gives a domain name to DNS, what it gets back are 
the resource records associated with that name. Thus the real function of DNS is 
to map domain names onto resource records. 

A resource record is a five-tuple. Although they are encoded in binary for 
efficiency, in most expositions resource records are presented as ASCII text, one 
line per resource record. The format we will use is as follows: 

Domain_name Time_to_live Type Class Value 

The DomainJlame tells the domain to which this record applies. Normally, many 
records exist for each domain and each copy of the database holds information 



SEC. 7.2 DNS-Domain Name System 625 

about multiple domains. This field is thus the primary search key used to satisfy 
queries. The order of the records in the database is not significant. When a query 
is made about a domain, all the matching records of the class requested are 
returned. 

The Time_to_live field gives an indication of how stable the record is. Infor­
mation that is highly stable is assigned a large value, such as 86400 (the number 
of seconds in 1 day). Information that is highly volatile is assigned a small value, 
such as 60 (1 minute). We will come back to this point later when we have dis­
cussed caching. 

The Type field tells what kind of record this is. The most important types are 
listed in Fig. 7-26. 

Type Meaning Value 

SOA Start of Authority Parameters for this zone 

A IP address of a host 32-Bit integer 

MX Mail exchange Priority, domain willing to accept email 

NS Name Server Name of a server for this domain 

CNAME Canonical name Domain name 

PTR Pointer Alias for an IP address 

HINFO Host description CPU and OS in ASCII 

TXT Text Uninterpreted ASCII text 

Fig. 7-26. The principal DNS resource record types. 

An SOA record provides the name of the primary source of information about 
the name server's zone (described below), the email address of its administrator, a 
unique serial number, and various flags and timeouts. 

The most important record type is the A (Address) record. It holds a 32-bit IP 
address for some host. Every Internet host must have at least one IP address, so 
other machines can communicate with it. Some hosts have two or more network 
connections, in which case they will have one type A resource record per network 
connection (and thus per IP address). 

The next most important record type is the MX record. It specifies the name 
of the domain prepared to accept email for the specified domain. A common use 
of this record is to allow a machine that is not on the Internet to receive email 
from Internet sites. Delivery is accomplished by having the non-Internet site 
make an arrangement with some Internet site to accept email for it and forward it 
using whatever protocol the two of them agree on. 

For example, suppose that Cathy is a computer science graduate student at 
UCLA. After she gets her degree in AI, she sets up a company, Electrobrain 



626 THE APPLICATION LAYER CHAP. 7 

Corporation, to commercialize her ideas. She cannot afford an Internet connec­
tion yet, so she makes an arrangement with UCLA to allow her to have her email 
sent there. A few times a day she will call up and collect it. 

Next, she registers her company with the com domain and is assigned the 
domain electrobrain.com. She might then ask the administrator of the com 
domain to add an MX record to the com database as follows: 

electrobrain.com 86400 IN MX mailserver.cs.ucla.edu 

In this way, mail will be forwarded to UCLA where she can pick it up by logging 
in. Alternatively, UCLA could call her and transfer the email by any protocol 
they mutually agree on. 

The NS records specify name servers. For example, every DNS database nor­
mally has an NS record for each of the top-level domains, so email can be sent to 
distant parts of the naming tree. We will come back to this point later. 

CNAME records allow aliases to be created. For example, a person familiar 
with Internet naming in general wanting to send a message to someone whose 
login name is paul in the computer science department at M.I.T. might guess that 
paul@cs.mit.edu will work. Actually this address will not work, because the 
domain for M.I.T.'s computer science department is lcs.mit.edu. However, as a 
service to people who do not know this, M.I.T. could create a CNAME entry to 
point people and programs in the right direction. An entry like this one might do 
the job: 

cs.mit.edu 86400 IN CNAME lcs.mit.edu 

Like CNAME, PTR points to another name. However, unlike CNAME, which 
is really just a macro definition, PTR is a regular DNS datatype whose interpreta­
tion depends on the context in which it is found. In practice, it is nearly always 
used to associate a name with an IP address to allow lookups of the IP address and 
return the name of the corresponding machine. 

HINFO records allow people to find out what kind of machine and operating 
system a domain corresponds to. Finally, TXT records allow domains to identify 
themselves in arbitrary ways. Both of these record types are for user convenience. 
Neither is required, so programs cannot count on getting them (and probably can­
not deal with them if they do get them). 

Getting back to the general structure of resource records, the fourth field of 
every resource record is the Class. For Internet information, it is always IN. For 
non-Internet information, other codes can be used. 

Finally, we come to the Value field. This field can be a number, a domain 
name, or an ASCII string. The semantics depend on the record type. A short 
description of the Value fields for each of the principal records types is given in 
Fig. 7-26. 

As an example of the kind of information one might find in the DNS database 
of a domain, see Fig. 7-27. This figure depicts part of a (semihypothetical) 



SEC. 7.2 DNS--Domain Name System 627 

database for the cs.vu.nl domain shown in Fig. 7-25. The database contains seven 
types of resource records. 

; Authoritative data for cs.vu.nl 
cs.vu.nl. 86400 IN SOA 
cs.vu.nl. 86400 IN TXT 
cs.vu.nl. 86400 IN TXT 
cs.vu.nl. 86400 IN MX 
cs.vu.nl. 86400 IN MX 

flits.cs.vu.nl. 
flits.cs.vu.nl. 
flits.cs.vu.nl. 
flits.cs.vu.nl. 
flits.cs.vu.nl. 
flits.cs.vu.nl. 
www.cs.vu.nl. 
ftp.cs.vu.nl. 

rowboat 

little-sister 

laserjet 

86400 
86400 
86400 
86400 
86400 
86400 
86400 
86400 

IN HINFO 
IN A 
IN A 
IN MX 
IN MX 
IN MX 
IN CNAME 
IN CNAME 

IN A 
IN MX 
IN MX 
IN HINFO 

IN A 
IN HINFO 

IN A 
IN HINFO 

star boss (952771,7200,7200,2419200,86400) 
"Faculteit Wiskunde en Informatica." 
"Vrije Universiteit Amsterdam." 
1 zephyr.cs.vu.nl. 
2 top.cs.vu.nl. 

Sun Unix 
130.37.16.112 
192.31.231.165 
1 flits.cs.vu.nl. 
2 zephyr.cs.vu.nl. 
3 top.cs.vu.nl. 
star.cs.vu.nl 
zephyr.cs.vu.nl 

130.37.56.201 
1 rowboat 
2 zephyr 
Sun Unix 

130.37.62.23 
Mac MacOS 

192.31.231.216 
"HP Laserjet lllSi" Proprietary 

Fig. 7-27. A portion of a possible DNS database for cs. vu.nl 

The first noncomment line of Fig. 7-27 gives some basic information about 
the domain, which will not concern us further. The next two lines give textual 
information about where the domain is located. Then come two entries giving the 
first and second places to try to deliver email sent to person@cs.vu.nl. The 
zephyr (a specific machine) should be tried first. If that fails, the top should be 
tried next. 

After the blank line, added for readability, come lines telling that the flits is a 
Sun workstation running UNIX and giving both of its IP addresses. Then three 
choices are given for handling email sent to flits.cs. vu.nl. First choice is naturally 
the flits itself, but if it is down, the zephyr and top are the second and third 
choices. Next comes an alias, www.cs.vu.nl, so that this address can be used 
without designating a specific machine. Creating this alias allows cs. vu.nl to 
change its World Wide Web server without invalidating the address people use to 
get to it. A similar argument holds for ftp.cs. vu.nl. 



628 THE APPLICATION LA YER CHAP. 7 

The next four lines contain a typical entry for a workstation, in this case, 
rowboat.cs. vu.nl. The information provided contains the IP address, the primary 
and secondary mail drops, and information about the machine. Then comes an 
entry for a non-UNIX system that is not capable of receiving mail itself, followed 
by an entry for a laser printer. 

What is not shown (and is not in this file), are the IP addresses to use to look 
up the top level domains. These are needed to look up distant hosts, but since 
they are not part of the cs. vu.nl domain, they are not in this file. They are sup­
plied by the root servers, whose IP addresses are present in a system configuration 
file and loaded into the DNS cache when the DNS server is booted. They have 
very long timeouts, so once loaded, they are never purged from the cache. 

7.2.3. Name Servers 

In theory at least, a single name server could contain the entire DNS database 
and respond to all queries about it. In practice, this server would be so overloaded 
as to be useless. Furthermore, if it ever went down, the entire Internet would be 
crippled. 

To avoid the problems associated with having only a single source of informa-· 
tion, the DNS name space is divided up into nonoverlapping zones. One possible 
way to divide up the name space of Fig. 7-25 is shown in Fig. 7-28. Each zone 
contains some part of the tree and also contains name servers holding the authori­
tative information about that zone. Normally, a zone will have one primary name 
server, which gets its information from a file on its disk, and one or more secon­
dary name servers, which get their information from the primary name server. To 
improve reliability, some servers for a zone can be located outside the zone. 

I-·--- Generic ----~--1 1--· Countries -

pc24 

Fig. 7-28. Part of the DNS name space showing the division into zones. 

Where the zone boundaries are placed within a zone is up to that zone's 
administrator. This decision is made in large part based on how many name 



SEC. 7.2 DNS-Domain Name System 629 

servers are desired, and where. For example, in Fig. 7-28, Yale has a server for 
yale.edu that handles eng.yale.edu but not cs.yale.edu, which is a separate zone 
with its own name servers. Such a decision might be made when a department 
such as English does not wish to run its own name server, but a department such 
as computer science does. Consequently, cs.yale.edu is a separate zone but 
eng. yale. edu is not. 

When a resolver has a query about a domain name, it passes the query to one 
of the local name servers. If the domain being sought falls under the jurisdiction 
of the name server, such as ai.cs.yale.edu falling under cs.yale.edu, it returns the 
authoritative resource records. An authoritative record is one that comes from 
the authority that manages the record, and is thus always correct. Authoritative 
records are in contrast to cached records, which may be out of date. 

If, however, the domain is remote and no informatibn about the requested 
domain is available locally, the name server sends a query message to the top­
level name server for the domain requested. To make this process clearer, con­
sider the example of Fig. 7-29. Here, a resolver on flits.cs. vu.nl wants to know the 
IP address of the host linda.cs.yale.edu. In step 1, it sends a query to the local 
name server, cs.vu.nl. This que:ry contains the domain name sought, the type (A) 
and the class (JN). 

vu cs Edu Yale Yale CS 
Originator 

1 
name server 

2 
name server 

3 
name server 

4 
name server 

flits.cs.vu.nl ~;jedu-server.netl, 'I yale.edu 1. 'I cs.yale.edu I 
8 7 6 5 

Fig. 7-29. How a resolver looks up a remote name in eight steps. 

Let us suppose the local name server has never had a query for this domain 
before and knows nothing about it. It may ask a few other nearby name servers, 
but if none of them know, it sends a UDP packet to the server for edu given in its 
database (see Fig. 7-29), edu-server.net. It is unlikely that this server knows the 
address of linda.cs.yale.edu, and probably does not know cs.yale.edu either, but it 
must know all of its own children, so it forwards the request to the name server 
for yale.edu (step 3). In turn, this one forwards the request to cs.yale.edu (step 4), 
which must have the authoritative resource records. Since each request is from a 
client to a server, the resource record requested works its way back in steps 5 
through 8. 

Once these records get back to the cs. vu.nl name server, they will be entered 
into a cache there, in case they are needed later. However, this information is not 
authoritative, since changes made at cs.yale.edu will not be propagated to all the 
caches in the world that may know about it. For this reason, cache entries should 
not live too long. This is the reason that the Time_to_live field is included in each 
resource record. It tells remote name servers how long to cache records. If a 



630 THE APPLICATION LA YER CHAP. 7 

certain machine has had the same IP address for years, it may be safe to cache that 
information for 1 day. For more volatile information, it might be safer to purge 
the records after a few seconds or a minute. 

It is worth mentioning that the query method described here is known as a 
recursive query, since each server that does not have the requested information 
goes and finds it somewhere, then reports back. An alternative form is also possi­
ble. In this form, when a query cannot be satisfied locally, the query fails, but the 
name of the next server along the line to try is returned. This procedure gives the 
client more control over the search process. Some servers do not implement 
recursive queries and always return the name of the next server to try. 

It is also worth pointing out that when a DNS client fails to get a response 
before its timer goes off, it normally will try another server next time. The 
assumption here is that the server is probably down, rather than the request or 
reply got lost. 

7.3. SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 

In the early days of the ARPANET, if the delay to some host became unex­
pectedly large, the person detecting the problem would just run the Ping program 
to bounce a packet off the destination. By looking at the timestamps in the header 
of the packet returned, the location of the problem could usually be pinpointed 
and some appropriate action taken. In addition, the number of routers was so 
small, that it was feasible to ping each one to see if it was sick. 

When the ARPANET turned into the worldwide Internet, with multiple back­
bones and multiple operators, this solution ceased to be adequate, so better tools 
for network management were needed. Two early attempts were defined in RFC 
1028 and RFC 1067, but these were short lived. In May 1990, RFC 1157 was 
published, defining version 1 of SNMP (Simple Network Management Proto­
col). Along with a companion document (RFC 1155) on management informa­
tion, SNMP provided a systematic way of monitoring and managing a computer 
network. This framework and protocol were widely implemented in commercial 
products and became the de facto standards for network management. 

As experience was gained, shortcomings in SNMP came to light, so an 
enhanced version of SNMP (SNMPv2) was defined (in RFCs 1441 to 1452) and 
started along the road to become an Internet standard. In the sections to follow, 
we will give a brief discussion of the SNMP (meaning SNMPv2) model and pro­
tocol. 

Although SNMP was designed with the idea of its being simple, at least one 
author has managed to produce a 600-page book on it (Stallings, 1993a). For 
more compact descriptions (450-550 pages), see the books by Rose (1994) and 
Rose and McCloghrie (1995), both of whom were among the designers of SNMP. 
Other references are (Feit, 1995; and Hein and Griffiths, 1995). 



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 631 

7.3.1. The SNMP Model 

The SNMP model of a managed network cohsists of four components: 

1. Managed nodes. 

2. Management stations. 

3. Management information. 

4. A management protocol. 

These pieces are illustrated in Fig. 7-30 and discussed below. 

Management 
Management process 

Station Host Router 

D "'/ Managed 

Printer 

nTe 

SNMP protocol Agent 

LAN 

Bridge 

Fig. 7-30. Components of the SNMP management model. 

The managed nodes can be hosts, routers, bridges, printers, or any other dev­
ices capable of communicating status information to the outside world. To be 
managed directly by SNMP, a node must be capable of running an SNMP 
management process, called an SNMP agent. All computers meet this require­
ment, as do increasingly many bridges, routers, and peripheral devices designed 
for network use. Each agent maintains a local database of variables that describe 
its state and history and affect its operation. 

Network management is done from management stations, which are, in fact, 
general-purpose computers running special management software. The manage­
ment stations contain one or more processes that communicate with the agents 
over the network, issuing commands and getting responses. In this design, all the 
intelligence is in the management stations, in order to keep the agents as simple as 
possible and minimize their impact on the devices they are running on. Many 
management stations have a graphical user interface to allow the network 
manager to inspect the status of the network and take action when required. 

Most real networks are multivendor, with hosts from one or more manufactur­
ers, bridges and routers from other companies, and printers from still other ones. 



632 THE APPLICATION LA YER CHAP. 7 

In order to allow a management station (potentially from yet another supplier) to 
talk to all these diverse components, the nature of the information maintained by 
all the devices must be rigidly specified. Having the management station ask a 
router what its packet loss rate is of no use if the router does not keep track of its 
loss rate. Therefore, SNMP describes (in excruciating detail) the exact informa­
tion each kind of agent has to maintain and the format it has to supply it in. The 
largest portion of the SNMP model is the definition of who has to keep track of 
what and how this information is communicated. 

Very briefly, each device maintains one or more variables that describe its 
state. In the SNMP literature, these variables are called objects, but the term is 
misleading because they are not objects in the sense of an object-oriented system 
because they just have state and no methods (other than reading and writing their 
values). Nevertheless, the term is so ingrained (e.g., used in various reserved 
words in the specification language used) that we will use it here. The collection 
of all possible objects in a network is given in a data structure called the MIB 
(Management InformatioJ;J. Base). 

The management station interacts with the agents using the SNMP protocol. 
This protocol allows the management station to query the state of an agent's local 
objects, and change them if necessary. Most of SNMP consists of this query­
response type communication. 

However, sometimes events happen that are not planned. Managed nodes can 
crash and reboot, lines can go down and come back up, congestion can occur, and 
so on. Each significant event is defined in a MIB module. When an agent notices 
that a significant event has occurred, it immediately reports the event to all 
management stations in its configuration list. This report is called an SNMP trap 
(for historical reasons). The report usually just states that some event has 
occurred. It is up to the management station to then issue queries to find out all 
the gory details. Because communication from managed nodes to the manage­
ment station is not reliable (i.e., is not acknowledged), it is wise for the manage­
ment station to poll each managed node occasionally anyway, checking for 
unusual events, just in case. The model of polling at long intervals with accelera­
tion on receipt of a trap is called trap directed polling. 

This model assumes that each managed node is capable of running an SNMP 
agent internally. Older devices or devices not originally intended for use on a net­
work may not have this capability. To handle them, SNMP defines what is called 
a proxy agent, namely an agent that watches over one or more nonSNMP devices 
and communicates with the management station on their behalf, possibly com­
municating with the devices themselves using some nonstandard protocol. 

Finally, security and authentication play a major role in SNMP. A manage­
ment station has the capability of learning a great deal about every node under its 
control and also has the capability of shutting them all down. Hence it is of great 
importance that agents be convinced that queries allegedly coming from the 
management station, in fact, come from the management station. In SNMPvl, the 



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 633 

management station proved who it was by putting a (plaintext) password in each 
message. In SNMPv2, security was improved considerably using modern crypto­
graphic techniques of the type we have already studied. However, this addition 
made an already bulky protocol every bulkier, and it was later thrown out. 

7.3.2. ASN.1-Abstract Syntax Notation 1 

The heart of the SNMP model is the set of objects managed by the agents and 
read and written by the management station. To make multivendor communica­
tion possible, it is essential that these objects be defined in a standard and 
vendor-neutral way. Furthermore, a standard way is needed to encode them for 
transfer over a network. While definitions in C would satisfy the first require­
ment, such definitions do not define a bit encoding on the wire in such a way that 
a 32-bit two's complement little endian management station can exchange infor­
mation unambiguously with am agent on a 16-bit one's complement big endian 
CPU. 

For this reason, a standard object definition language, along with encoding 
rules, is needed. The one used by SNMP is taken from OSI and called ASN.1 
(Abstract Syntax Notation One). Like much of OSI, it is large, complex, and 
not especially efficient. (The author is tempted to say that by calling it ASN .1 
instead of just ASN, the designers implicitly admitted that it would soon be 
replaced by ASN.2, but he will politely refrain from saying this.) The one alleged 
strength of ASN.1 (the existence of unambiguous bit encoding rules) is now really 
a weakness, because the encoding rules are optimized to minimize the number of 
bits on the wire, at the cost of wasting CPU time at both ends encoding and 
decoding them. A simpler scheme, using 32-bit integers aligned on 4-byte boun­
daries would probably have been better. Nevertheless, for better or worse, SNMP 
is drenched in ASN. l, (albeit a simplified subset of it), so anyone wishing to truly 
understand SNMP must become fluent in ASN. l. Hence the following explana­
tion. 

Let us start with the data description language, described in International 
Standard 8824. After that we will discuss the encoding rules, described in Inter­
national Standard 8825. The ASN .1 abstract syntax is essentially a primitive data 
declaration language. It allows the user to define primitive objects and then com­
bine them into more complex ones. A series of declarations in ASN.1 is function­
ally similar to the declarations found in the header files associated with many C 
programs. 

SNMP has some lexical conventions that we will follow. These are not 
entirely the same as pure ASN.l uses, however. Built-in data types are written in 
uppercase (e.g., INTEGER). User-defined types begin with an uppercase letter 
but must contain at least one character other than an uppercase letter. Identifiers 
may contain upper and lowercase letters, digits, and hyphens, but must begin with 
a lowercase letter (e.g., counter). White space (tabs, carriage returns, etc.) is not 



634 THE APPLICATION LA YER CHAP. 7 

significant. Finally, comments start with -- and continue until the end of the line 
or the next occurrence of --. 

The ASN.l basic data types allowed in SNMP are shown in Fig. 7-31. (We 
will generally ignore features of ASN. l, such as BOOLEAN and REAL types, not 
permitted in SNMP.) The use of the codes will be described later. 

Primitive type Meaning Code 

INTEGER Arbitrary length integer 2 

BIT STRING A string of O or more bits 3 

OCTET STRING A string of O of more unsigned bytes 4 

NULL A place holder 5 

OBJECT IDENTIFIER An officially defined data type 6 

Fig. 7-31. The ASN. l primitive data types permitted in SNMP. 

A variable of type INTEGER may, in theory, take on any integral value, but 
other SNMP rules limit the range. As an example of how types are used, consider 
how a variable, count, of type INTEGER would be declared and (optionally) ini­
tialized to 100 in ASN.1: 

count INTEGER::= 100 

Often a subtype whose variables are restricted to specific values or to a specific 
range is required. These can be declared as follows: 

Status::= INTEGER { up(1), down(2), unknown(3)} 

PacketSize ::=INTEGER (0 .. 1023) 

Variables of type BIT STRING and OCTET STRING contain zero or more bits 
and bytes, respectively. A bit is either 0 or 1. A byte falls in the range 0 to 255, 
inclusive. For both types, a string length and an initial value may be given. 

OBJECT IDENTIFIERs provide a way of identifying objects. In principle, 
every object defined in every official standard can be uniquely identified. The 
mechanism that is used is to define a standards tree, and place every object in 
every standard at a unique location in the tree. The portion of the tree that 
includes the SNMP MIB is shown in Fig. 7-32. 

The top level of the tree lists all the important standards organizations in the 
world (in ISO's view), namely ISO and CCITT (now ITU), plus the combination 
of the two. From the iso node, four arcs are defined, one of which is for 
identified-organization, which is ISO's concession that maybe some other folks 
are vaguely involved with standards, too. The U.S. Dept. of Defense has been 
assigned a place in this subtree, and DoD has assigned the Internet number 1 in its 
hierarchy. Under the Internet hierarchy, the SNMP MIB has code 1. 



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 635 

standard (0) 

-----~ ccitt (0) iso (1) joint-iso-ccitt (2) 

registration­
authority (1) 

internet (1) 

member­
body (2) 

identified­
organization (3) 

I 
dod (6) 

directory (1) mgmt (2) experimental (3) private (4) security (5) snmpv2 (6) 

I 
mib-2 (1) 

~~:::::::::::::::::::::---
system (1) interface (2) ip (4) icmp (5) tcp (6) udp (7) egp (8) transmission (10) sample (11) 

Fig. 7-32. Part of the ASN.1 object naming tree. 

Every arc in Fig. 7-32 has both a label and a number, so nodes can be identi­
fied by a list of arcs, using label(number) or numbers. Thus all SNMP MIB 
objects are identified by a label of the form 

{iso identified-organization(3) dod(6) internet(1) mgmt(2) mib-2(1) ... } 

or alternatively { 1 3 6 1 2 1 ... } . Mixed forms are also permitted. For example, 
the above identification can also be written as 

{internet( 1) 2 1 ... } 

In this way, every object in every standard can be represented as an OBJECT 
IDENTIFIER. 

ASN .1 defines five ways to construct new types from the basic ones. 
SEQUENCE is an ordered list of types, similar to a structure in C and a record in 
Pascal. SEQUENCE OF is a one-dimensional array of a single type. SET and 
SET OF are analogous, but unordered. CHOICE creates a union from a given list 
of types. The two set constructors are not used in any of the SNMP documents. 

Another way to create new types is to tag old ones. Tagging a type is some­
what similar to the practice in C of defining new types, say time_t and size_t, both 
of which are longs, but which are used in different contexts. Tags come in four 



636 THE APPLICATION LA YER CHAP. 7 

categories: universal, application-wide, context-specific and private. Each tag 
consists of a label and an integer identifying the tag. For example, 

Counter32 ::=[APPLICATION 1] INTEGER (0 . .4294967295) 

Gauge32 ::=[APPLICATION 2] INTEGER (0 . .4294967295) 

define two different application-wide types, both of which are implemented by 
32-bit unsigned integers, but which are conceptually different. The former might, 
for example, wrap around when it gets to the maximum value, whereas the latter 
might just continue to return the maximum value until its is decreased or reset. 

A tagged type can have the keyword IMPLICIT after the closing square 
bracket when the type of what follows is obvious from the context (not true in a 
CHOICE, for example). Doing so allows a more efficient bit encoding since the 
tag does not have to be transmitted. In a type involving a CHOICE between two 
different types, a tag must be transmitted to tell the receiver which type is present. 

ASN.1 defines a complex macro mechanism, which is heavily used in SNMP. 
A macro can be used as a kind of prototype to generate a set of new types and 
values, each with its own syntax. Each macro defines some (possibly optional) 
keywords, that are used in the call to identify which parameter is which (i.e., the 
macro parameters are identified by keyword, not by position). The details of how 
ASN. l macros work is beyond the scope of this book. Suffice it to say that a 
macro is invoked by giving its name and then listing (some of) its keywords and 
their values for this invocation. Macros are expanded at compile time, not at run 
time. Some examples of macros will be cited below. 

ASN.1 Transfer Syntax 

An ASN.l transfer syntax defines how values of ASN.l types are unambigu­
ously converted to a sequence of bytes for transmission (and unambiguously 
decoded at the other end). The transfer syntax used by ASN. l is called BER 
(Basic Encoding Rules). ASN.l has other transfer syntaxes that SNMP does not 
use. The rules are recursive, so the encoding of a structured object is just the con­
catenation of the encodings of the component objects. In this way, all object 
encodings can be reduced to a well-defined sequence of encoded primitive 
objects. The encoding of these objects, in turn, is defined by the BER. 

The guiding principle behind the basic encoding rules is that every value 
transmitted, both primitive and constructed ones, consists of up to four fields: 

1. The identifier (type or tag). 

2. The length of the data field, in bytes. 

3. The data field. 

4. The end-of-contents flag, if the data length is unknown. 



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 637 

The last one is permitted by ASN.l, but specifically forbidden by SNMP, so we 
will assume the data length is always known. 

The first field identifies the item that follows. It, itself, has three subfields, as 
shown in Fig. 7-33. The high-order 2 bits identify the tag type. The next bit tells 
whether the value is primitive (0) or not (1). The tag bits are 00, 01, 10, and 11, 
for UNIVERSAL, APPLICATION, context-specific, and PRIVATE, respectively. 
The remaining 5 bits can be used to encode the value of the tag if it is in the range 
0 through 30. If the tag is 31 or more, the low-order 5 bits contain 11111, with the 
true value in the next byte or bytes. 

Bits 2 

Tag 

I 
00 Universal 

01 Application 

1 o Context specific 

11 Private 

5 

Number 

0 Primitive type 

1 Constructed type 

Fig. 7-33. The first byte of each data item sent in the ASN.1 transfer syntax. 

The rule used to encode tags greater than 30 has been designed to handle arbi­
trarily large numbers. Each identifier byte following the first one contains 7 data 
bits. The high-order bit is set to 0 in all but the last one. Thus tag values up to 
27 

- 1 can be handled in 2 bytes, and up to 214 - 1 can be handled in 3 bytes. 
The encoding of the UNIVERSAL types is straightforward. Each primitive 

type has been assigned a code, as given in the third column of Fig. 7-31. 
SEQUENCE and SEQUENCE OF share code 16. CHOICE does not have a code, 
since any actual value sent always has a specific type. The other codes are for 
types not used in SNMP. 

Following the I-byte identifier field comes a field telling how many bytes the 
data occupy. Lengths shorter than 128 bytes are directly encoded in 1 byte whose 
leftmost bit is 0. Those that are longer use multiple bytes, with first byte contain­
ing a 1 in the high-order bit and the length field (up to 127 bytes) in the low-order 
7 bits. For example, if the data length is 1000 bytes, the first byte contains 130 to 
indicate a two byte length field follows. Then come two bytes whose value is 
1000, with the high-order byte first. 

The encoding of the data field depends on the type of data present. Integers 
are encoded in two's complement. A positive integer below 128 requires 1 byte, a 
positive integer below 32,768 requires 2 bytes, and so forth. The most significant 
byte is transmitted first. 

Bit strings are encoded as themselves. The only problem is how to indicate 
the length. The length field tells how many bytes the value has, not how many 



638 THE APPLICATION LA YER CHAP. 7 

bits. The solution chosen is to transmit I byte before the actual bit string telling 
how many bits (0 through 7) of the final byte are unused. Thus the encoding of 
the 9-bit string '010011111' would be 07, 4F, 80 (hexadecimal). 

Octet strings are easy. The bytes of the string are just transmitted in standard 
big endian style, left to right. 

The null value is indicated by setting the length field to 0. No numerical 
value is actually transmitted. 

An OBJECT IDENTIFIER is encoded as the sequence of integers it 
represents. For example; the Internet is {I, 3, 6, 1}. However, since the first 
number is always 0, 1, or 2, and the second is less than 40 (by definition-ISO 
simply will not recognize the 41 st category to show up on its doorstep), the first 
two numbers, a and b, are encoded as I byte having the value 40a + b. For the 
Internet, this number is 43. As usual, numbers exceeding 127 are encoded in mul­
tiple bytes, the first of which contains the high-order bit set to I and a byte count 
in the other 7 bits. 

Both sequence types are transmitted by first sending the type or tag, then the 
total length of the encoding for all the fields, followed by the fields themselves. 
The fields are sent in order. 

The encoding of a CHOICE value is the same as the encoding of the actual 
data structure being transferred. 

An example showing encoding of some values is given in Fig. 7-34. The 
values encoded are the INTEGER 49, the OCTET STRING '110', "xy", the only 
possible value for NULL, the OBJECT IDENTIFIER for the Internet { 1, 3, 6, 1}, 
and a Gauge32 value of 14. 

Tag Tag 
type Number 

\ l Length Value 

Integer 49 I o oioio o o 1 oi I o o o o o o o 1] Io o 1 1 o o o 1 i 

Bit String ·11 O' I o oioio o o 1 111 o o o o o o 1 o] Io o o o o 1 o 1 i i 1 1 o o o o o ~ 

Octet String 

NULL 

Internet object 

Gauge 32 14 

I o oiolo o 1 o oi Io o o o o o 1 o] Io 1 1 1 1 o o o 11 o 1 1 1 1 o o 1 I 

Io oioio o 1 o 1 i i o o o o o o o oi 

I o oioio o 1 1 oi i o o o o o o 1 1] i o o 1 o 1 o 1 111 o o o o o 1 1 o 11 o o o o o o o 1 i 

Io 1 ioio o o 1 ol Io o o o o o o 1 J Io o o o 1 1 1 o I 

Fig. 7-34. ASN. l encoding of some example values. 



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 639 

7.3.3. SMI-Structure of Management Information 

In the preceding section, we have discussed only those parts of ASN.l that are 
used in SNMP. In reality, the SNMP documents are organized differently. RFC 
1442 first says that ASN.1 will be used to describe SNMP data structures, then it 
goes on for 57 pages scratching out parts of the ASN.1 standard that it does not 
want and adding new definitions (in ASN.1) that are needed. In particular, RFC 
1442 defines four key macros and eight new data types that are heavily used 
throughout SNMP. It is this sub-super-set of ASN.1, which goes by the ungainly 
name of SMI (Structure of Management Information), that is really used to 
define the SNMP data structures. 

Although this approach is somewhat bureaucratic, some rules and regulations 
are necessary if products from hundreds of vendors are expected to talk to one 
another and actually understand what the others are saying. A few words about 
SMI are therefore now in order. 

At the lowest level, SNMP variabks are defined as individual objects. 
Related objects are collected together into groups, and groups are assembled into 
modules. For example, groups exist for IP objects and TCP objects. A router 
might support the IP group, since its manager cares about how many packets it 
has lost. On the other hand, a low-end router might not support the TCP group, 
since it need not use TCP to perform its routing functions. It is the intention that 
vendors supporting a group support all the objects in that group. However, a ven­
dor supporting a module need not support all of its groups, since not all may be 
applicable to the device. 

All MIB modules start with an invocation of the MODULE-IDENTITY macro. 
Its parameters provide the name and address of the implementer, the revision his­
tory, and other administrative information. Typically; this call is followed by an 
invocation of the OBJECT-IDENTITY macro, which tells where the module fits in 
the naming tree of Fig. 7-32. 

Later on come one or more invocations of the OBJECT-TYPE macro, which 
name the actual variables being managed and specify their properties. Grouping 
variables into groups is done by convention; there are no BEGIN-GROUP and 
END-GROUP statements in ASN. l or SMI. 

The OBJECT-TYPE macro has four required parameters and four (sometimes) 
optional ohes. The first required parameter is SYNTAX and defines the variable's 
data type from among the types listed in Fig. 7-35. For the most part, these types 
should be self explanatory, with the following comments. The suffix 32 is used 
when the implementer really wants a 32-bit number, even if all the machines in 
sight have 64-bit CPUs. Gauges differ from counters in that they do not wrap 
around when they hit their limits. They stick there. If a router has lost exactly 232 

packets, it is better to report this as 232 
- 1 than as 0. SMI also supports arrays, 

but we will not go into those here. For details, see (Rose, 1994). 
In addition to requiring a specification of the data type used by the variable 



640 THE APPLICATION LA YER CHAP. 7 

Name Type Bytes Meaning 

INTEGER Numeric 4 Integer (32 bits in current implementations) 

Counter32 Numeric 4 Unsigned 32-bit counter that wraps 

Gauge32 Numeric 4 Unsigned value that does not wrap 

lnteger32 Numeric 4 32 Bits, even on a 64-bit CPU 

Ulnteger32 Numeric 4 Like lnteger32, but unsigned 

Counter64 Numeric 8 A 64-bit counter 

Time Ticks Numeric 4 In hundredths of a second since some epoch 

BIT STRING String 4 Bit map of 1 to 32 bits 

OCTET STRING String ;:o: 0 Variable length byte string 

Opaque String ;:o: 0 Obsolete; for backward compatibility only 

OBJECT IDENTIFIER String >0 A list of integers from Fig. 7-32 

lpAddress String 4 A dotted decimal Internet address 

NsapAddress String <22 An OSI NSAP address 

Fig. 7-35. Data types used for SNMP monitored variables. 

being declared, the OBJECT TYPE macro also requires three other parameters. 
MAX-ACCESS contains information about the variable's access. The most com­
mon values are read-write and read-only. If a variable is read-write, the manage­
ment station can set it. If it is read-only, the management station can read it but 
cannot set it. 

The STATUS has three possible values. A current variable is conformant with 
the current SNMP specification. An obsolete variable is not conformant but was 
conformant with an older version. A deprecated variable is in between. It is 
really obsolete, but the committee that wrote the standard did not dare say this in 
public for fear of the reaction from vendors whose products use it. Nevertheless, 
the handwriting is on the wall. 

The last required parameter is DESCRIPTION, which is an ASCII string tell­
ing what the variable does. If a manager buys a nice new shiny device, queries it 
from the management station, and discovers that it keeps track of pktCnt, fetching 
the DESCRIPTION field is supposed to give a clue as to what kind of packets it is 
counting. This field is intended exclusively for human (as opposed to computer) 
consumption. 

A simple example of an OBJECT TYPE declaration is given in Fig. 7-36. The 
variable is called lostPackets and might be useful in a router or other device deal­
ing with packets. The value after the ::= sign places it in the tree. 



SEC. 7 .3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 641 

lostPackets OBJECT TYPE 
SYNTAX Counter32 
MAX-ACCESS read-only 
STATUS current 
DESCRIPTION 

-- use a 32-bit counter 
-- the management station may not change if 
-- this variable is not obsolete (yet) 

"The number of packets lost since the last boot" 
::={experimental 20} 

Fig. 7-36. An example SNMP variable. 

7 .3.4. The MIB-Management Information Base 

The collection of objects managed by SNMP is defined in the MIB. For con­
venience, these objects are (currently) grouped into ten categories, which 
correspond to the ten nodes under mib-2 in Fig. 7-32. (Note that mib-2 
corresponds to SNMPv2 and that object 9 is no longer present.) The ten 
categories are intended to provide a basis of what a management station should 
understand. New categories and objects will certainly be added in the future, and 
vendors are free to define additional objects for their products. The ten categories 
are summarized in Fig. 7-37. 

Group #Objects Description 

System 7 Name, location, and description of the equipment 

Interfaces 23 Network interfaces and their measured traffic 

AT 3 Address translation (deprecated) 

IP 42 IP packet statistics 

ICMP 26 Statistics about ICMP messages received 

TCP 19 TCP algorithms, parameters, and statistics 

UDP 6 UDP traffic statistics 

EGP 20 Exterior gateway protocol traffic statistics 

Transmission 0 Reserved for media-specific MIBs 

SNMP 29 SNMP traffic statistics 

Fig. 7-37. The object groups of the Internet MIB-II. 

Although space limitations prevent us from delving into the details of all 175 
objects defined in MIB-II, a few comments may be helpful. The system group 
allows the manager to find out what the device is called, who made it, what 
hardware and software it contains, where it is located, and what it is supposed to 
do. The time of the last boot and the name and address of the contact person are 



642 THE APPLICATION LAYER CHAP. 7 

also provided. This information means that a company can contract out system 
management to another company in a distant city and have the latter be able to 
easily figure out what the configuration being managed actually is and who should 
be contacted if there are problems with various devices. 

The interfaces group deals with the network adapters. It keeps track of the 
number of packets and bytes sent and received from the network, the number of 
discards, the number of broadcasts, and the current output queue size. 

The AT group was present in MIR-I and provided information about address 
mapping (e.g., Ethernet to IP addresses). This information was moved to 
protocol-specific MIBs in SNMPv2. 

The IP group deals with IP traffic into and out of the node. It is especially 
rich in counters keeping track of the number of packets discarded for each of a 
variety of reasons (e.g., no known route to the destination or lack of resources). 
Statistics about datagram fragmentation and reassembly are also available. All 
these items are particular important for managing routers. 

The ICMP group is about IP error messages. Basically, it has a counter for 
each ICMP message that records how many of that type have been seen. 

The TCP group monitors the current and cumulative number of connections 
opened, segments sent and received, and various error statistics. 

The UDP group logs the number of UDP datagrams sent and received, and 
how many of the latter were undeliverable due to an unknown port or some other 
reason. 

The EGP group is used for routers that support the exterior gateway protocol. 
It keeps track of how many packets of what kind went out, came in and were for­
warded correctly, and came in and were discarded. 

The transmission group is a place holder for media-specific MIBs. For exam­
ple, Ethernet-specific statistics can be kept here. The purpose of including an 
empty group in MIB-II is to reserve the identifier {internet 2 1 9} for such pur­
poses. 

The last group is for collecting statistics about the operation of SNMP itself. 
How many messages are being sent, what kinds of messages are they, and so on. 

MIB-II is formally defined in RFC 1213. The bulk of RFC 1213 consists of 
17 5 macro calls similar to those of Fig. 7-36, with comments delineating the ten 
groups. For each of the 175 objects defined, the data type is given along with an 
English text description of what the variable is used for. For further information 
about MIB-II, the reader is referred to this RFC. 

7.3.5. The SNMP Protocol 

We have now seen that the model underlying SNMP is a management station 
that sends requests to agents in managed nodes, inquiring about the 175 variables 
just alluded to, and many other vendor-specific variables. Our last topic is the 



SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 643 

actual protocol that the management station and agents speak. The protocol itself 
is defined in RFC 1448. 

The normal way that SNMP is used is that the management station sends a 
request to an agent asking it for information or commanding it to update its state 
in a certain way. Ideally, the agent just replies with the requested information or 
confirms that it has updated its state as requested. Data are sent using the ASN.1 
transfer syntax. However, various errors can also be reported, such as No Such 
Variable. 

SNMP defines seven messages that can be sent. The six messages from an 
initiator are listed in Fig. 7-38 (the seventh message is the response message). 
The first three request variable values to be sent back. The first format names the 
variables it wants explicitly. The second one asks for the next variable, allowing 
a manager to step through the entire MIB alphabetically (the default is the first 
variable). The third is for large transfers, such as tables. 

Message Description 

Get-request Requests the value of one or more variables 

Get-next-request Requests the variable following this one 

Get-bulk-request Fetches a large table 

Set-request Updates one or more variables 

Inform-request Manager-to-manager message describing local MIB 

SnmpV2-trap Agent-to-manager trap report 

Fig. 7-38. SNMP message types. 

Then comes a message that allows the manager to update an agent's variables, 
to the extent that the object specification permits such updates, of course. Next is 
an informational request that allows one manager to tell another one which vari­
ables it is managing. Finally, comes the message sent from an agent to a manager 
when a trap has sprung. 

7.4. ELECTRONIC MAIL 

Having finished looking at some of the support protocols used in the applica­
tion layer, we finally come to real applications. When asked: "What are you 
going to do now?" few people will say: "I am going to look up some names with 
DNS." People do say they are going to read their email or news, surf the Web, or 
watch a movie over the net. In the remainder of this chapter, we will explain in a 
fair amount of detail how these four applications work. 



644 THE APPLICATION LA YER CHAP. 7 

Electronic mail, or email, as it is known to its many fans, has been around for 
over two decades. The first email systems simply consisted of file transfer proto­
cols, with the convention that the first line of each message (i.e., file) contained 
the recipient's address. As time went on, the limitations of this approach became 
more obvious. Some of the complaints were 

1. Sending a message to a group of people was inconvenient. Managers 
often need this facility to send memos to all their subordinates. 

2. Messages had no internal structure, making computer processing dif­
ficult. For example, if a forwarded message was included in the 
body of another message, extracting the forwarded part from the 
received message was difficult. 

3. The originator (sender) never knew if a message aITived or not. 

4. If someone was planning to be away on business for several weeks 
and wanted all incoming email to be handled by his secretary, this 
was not easy to aITange. 

5. The user interface was poorly integrated with the transmission sys­
tem requiring users first to edit a file, then leave the editor and 
invoke the file transfer program. 

6. It was not possible to create and send messages containing a mixture 
of text, drawings, facsimile, and voice. 

As experience was gained, more elaborate email systems were proposed. In 
1982, the ARPANET email proposals were published as RFC 821 (transmission 
protocol) and RFC 822 (message format). These have since become the de facto 
Internet standards. Two years later, CCITT drafted its X.400 recommendation, 
which was later taken over as the basis for OSI's MOTIS. In 1988, CCITT modi­
fied X.400 to align it with MOTIS. MOTIS was to be the flagship application for 
OSI, a system that was to be all things to all people. 

After a decade of competition, email systems based on RFC 822 are widely 
used, whereas those based on X.400 have disappeared under the horizon. How a 
system hacked together by a handful of computer science graduate students beat 
an official international standard strongly backed by all the PTTs worldwide, 
many governments, and a substantial part of the computer industry brings to mind 
the Biblical story of David and Goliath. The reason for RFC 822' s success is not 
that it is so good, but that X.400 is so poorly designed and so complex that nobody 
could implement it well. Given a choice between a simple-minded, but working, 
RFC 822-based email system and a supposedly truly wonderful, but nonworking, 
X.400 email system, most organizations chose the former. For a long diatribe on 
what is wrong with X.400, see Appendix C of (Rose, 1993). Consequently, our 
discussion of email will focus on RFC 82 l and RFC 822 as used in the Internet. 



SEC. 7.4 ELECTRONIC MAIL 645 

7.4.1. Architecture and Services 

In this section we will provide an overview of what email systems can do and 
how they are organized. They normally consist of two subsystems: the user 
agents, which allow people to read and send email, and the message transfer 
agents, which move the messages from the source to the destination. The user 
agents are local programs that provide a command-based, menu-based, or graphi­
cal method for interacting with the email system. The message transfer agents are 
typically system daemons that run in the background and move email through the 
system. 

Typically, email systems support five basic functions, as described below. 
Composition refers to the process of creating messages and answers. Although 
any text editor can be used for the body of the message, the system itself can pro­
vide assistance with addressing and the numerous header fields attached to each 
message. For example, when answering a message, the email system can extract 
the originator's address from the incoming email and automatically insert it into 
the proper place in the reply. 

Transfer refers to moving messages from the originator to the recipient. In 
large part, this requires establishing a connection to the destination or some inter­
mediate machine, outputting the message, and releasing the connection. The 
email system should do this automatically, without bothering the user. 

Reporting has to do with telling the originator what happened to the message. 
Was it delivered? Was it rejected? Was it lost? Numerous applications exist in 
which confirmation of delivery is important and may even have legal significance 
("Well, Your Honor, my emai.1 system is not very reliable, so I guess the elec­
tronic subpoena just got lost somewhere"). 

Displaying incoming messages is needed so people can read their email. 
Sometimes conversion is required or a special viewer must be invoked, for exam­
ple, if the message is a Postscript file or digitized voice. Simple conversions and 
formatting are sometimes attempted as well. 

Disposition is the final step and concerns what the recipient does with the 
message after receiving it. Possibilities include throwing it away before reading, 
throwing it away after reading, saving it, and so on. It should also be possible to 
retrieve and reread saved messages, forward them, or process them in other ways. 

In addition to these basic services, most email systems provide a large variety 
of advanced features. Let us just briefly mention a few of these. When people 
move, or when they are away for some period of time, they may want their email 
forwarded, so the system should be able to do this automatically. 

Most systems allow users to create mailboxes to store incoming email. Com­
mands are needed to create and destroy mailboxes, inspect the contents of mail­
boxes, insert and delete messages from mailboxes, and so on. 

Corporate managers often need to send a message to each of their subordi­
nates, customers, or suppliers. This gives rise to the idea of a mailing list, which 



646 THE APPLICATION LA YER CHAP. 7 

is a list of email addresses. When a message is sent to the mailing list, identical 
copies are delivered to everyone on the list. 

Registered email is another important idea, to allow the originator to know 
that his message has arrived. Alternatively, automatic notification of undeliver­
able email may be desired. In any case, the originator should have some control 
over reporting what happened. 

Other advanced features are carbon copies, high-priority email, secret 
(encrypted) email, alternative recipients if the primary one is not available, and 
the ability for secretaries to handle their bosses' email. 

Email is now widely used within industry for intracompany communication. 
It allows far-flung employees to cooperate on complex projects, even over many 
time zones. By eliminating most cues associated with rank, age, and gender, 
email debates tend to focus on ideas, not on corporate status. With email, a brilli­
ant idea from a summer student can have more impact than a dumb one from an 
executive vice president. Some companies have estimated that email has 
improved their productivity by as much as 30 percent (Perry and Adam, 1992). 

A key idea in all modern email systems is the distinction between the 
envelope and its contents. The envelope encapsulates tqe message. It contains all 
the information needed for transporting the message, such as the destination 
address, priority, and security level, all of which are distinct from the message 
itself. The message transport agents use the envelope for routing, just as the post 
office does. 

The message inside the envelope contains two parts: the beader and the 
body. The header contains control information for the user agents. The body is 
entirely for the human recipient. Envelopes and messages are illustrated in 
Fig. 7-39. 

7.4.2. The User Agent 

Email systems have two basic parts, as we have seen: the user agents and the 
message transfer agents. In this section we will look at the user agents. A user 
agent is normally a program (sometimes called a mail reader) that accepts a 
variety of commands for composing, receiving, and replying to messages, as well 
as for manipulating mailboxes. Some user agents have a fancy menu- or icon­
driven interface that requires a mouse, while others expect I-character commands 
from the keyboard. Functionally, these are the same. 

Sending Email 

To send an email message, a user must provide the message, the destination 
address, and possibly some other parameters (e.g., the priority or security level). 
The message can be produced with a free-standing text editor, a word processing 



SEC. 7.4 ELECTRONIC MAIL 6417 

Envelope 

Message 

(a) (b) 

Fig. 7-39. Envelopes and messages. (a) Postal email. (b) Electronic email. 

program, or possibly with a text editor built into the user agent. The destination 
address must be in a format that the user agent can deal with. Many user agents 
expect DNS addresses of the form mailbox@location. Since we have studied 
these earlier in this chapter, we will not repeat that material here. 

However, it is worth noting that other forms of addressing exist. In partic;ular, 
X.400 addresses look radically different than DNS addresses. They are composed 
of attribute = value pairs, for example, 

/C=US/SP=MASSACHUSETTS/L=CAMBRIDGE/PA=360 MEMORIAL DR./CN=KEN SMITH/ 

This address specifies a country, state, locality, personal address and a common 
name (Tom Smith). Many other attributes are possible, so you can send email to 
someone whose name you do not know, provided you know enough other attri­
butes (e.g., company and job title). Many people feel that this form of naming is 
considerably less convenient than DNS names. 

In all fairness, however, the X.400 designers assumed that people would use 
aliases (short user-assigned strings) to identify recipients, so that they would 
never even see the full addresses. However, the necessary software was never 



648 THE APPLICATION LA YER CHAP. 7 

widely available, so people sending mail to users with X.400 addresses often had 
to type in strings like the one above. In contrast, most email systems for the Inter­
net have always allowed users to have alias files. 

Most email systems support mailing lists, so that a user can send the same 
message to a list of people with a single command. If the mailing list is main­
tained locally, the user agent can just send a separate message to each intended 
recipient. However, if the list is maintained remotely, then messages will be 
expanded there. For example, if a group of bird watchers have a mailing list 
called birders installed on meadowlark.arizona.edu, then any message sent to 
birders@meadowlark.arizona.edu will be routed to the University of Arizona and 
expanded there into individual messages to all the mailing list members, wherever 
in the world they may be. Users of this mailing list cannot tell that it is a mailing 
list. It could just as well be the personal mailbox of Prof. Gabriel 0. Birders. 

Reading Email 

Typically, when a user agent is started up, it will look at the user's mailbox 
for incoming email before displaying anything on the screen. Then it may 
announce the number of messages in the mailbox or display a one-line summary 
of each one and wait for a command. 

As an example of how a user agent works, let us take a look at a typical mail 
scenario. After starting up the user agent, the user asks for a summary of his 
email. A display like that of Fig. 7-40 then appears on the screen. Each line 
refers to one message. In this example, the mailbox contains eight messages. 

#I Flags ) Bytes ) Sender I Subject 

1 K 1030 asw Changes to MINIX 

2 KA 6348 radia Comments on material you sent me 

3 K F 4519 Amy N. Wong Request for information 

4 1236 bal Deadline for grant proposal 

5 103610 kaashoek Text of DCS paper 

6 1223 emily E. Pointer to WWW page 

7 3110 saniya Referee reports for the paper 

8 1204 dmr Re: My student's visit 

Fig. 7-40. An example display of the contents of a mailbox. 

Each display line contains several fields extracted from the envelope or 
header of the corresponding message. In a simple email system, the choice of 
fields displayed is built into the program. In a more sophisticated system, the user 
can specify which fields are to be displayed by providing a user profile, a file 



SEC. 7.4 ELECTRONIC MAIL 649 

describing the display format. In this example, the first field is the message 
number. The second field, Flags, can contain a K, meaning that the message is 
not new but was read previously and kept in the mailbox; an A, meaning that the 
message has already been answered; and/or an F, meaning that the message has 
been forwarded to someone else. Other flags are also possible. 

The third field tells how long the message is and the fourth one tells who sent 
the message. Since this field is simply extracted from the message, this field may 
contain first names, full names, initials, login names, or whatever else the sender 
chooses to put there. Finally, the Subject field gives a brief summary of what the 
message is about. People who fail to include a Subject field often discover that 
responses to their email tend not to get the highest priority. 

After the headers have been displayed, the user can perform any of the com­
mands available. A typical collection is listed in Fig. 7-41. Some of the com­
mands require a parameter. The # sign means that the number of a message (or 
perhaps several messages) is expected. Alternatively, the letter a can be used to 
mean all messages. 

Command Parameter Description 

h # Display header(s) on the screen 

c Display current header only 

t # Type message(s) on the screen 

s address Send a message 

f # Forward message(s) 

a # Answer message(s) 
-· 

d # Delete message(s) 

u # Undelete previously deleted message(s) 
m # Move message(s) to another mailbox 
k # Keep message(s) after exiting 
r mailbox Read a new mailbox 

n Go to the next message and display it 

b Backup to the previous message and display it 

g # Go to a specific message but do not display it 

e Exit the mail system and update the mailbox 

Fig. 7-41. Typical mail handling commands. 

Innumerable email programs exist. Our example email program is patterned 
after the one used by the UNIX Mmdf system, as it is quite straightforward. The h 
command displays one or more headers in the format of Fig. 7-40. The c com­
mand prints the current message's header. The t command types (i.e., displays on 
the screen) the requested message or messages. Possible commands are t 3, to 
type message 3, t 4-6, to type messages 4 through 6, and ta to type them all. 



650 THE APPLICATION LA YER CHAP. 7 

The next group of three commands deals with sending messages rather than 
receiving them. The s command sends a message by calling an appropriate editor 
(e.g., specified in the user's profile) to allow the user to compose the message. 
Spelling, grammar, and diction checkers can see if the message is syntactically 
correct. Unfortunately, the current generation of email programs do not have 
checkers to see if the sender knows what he is talking about. When the message 
is finished, it is prepared for transmission to the message transfer agent. 

The f command forwards a message from the mailbox, prompting for an 
address to send it to. The a command extracts the source address from the mes­
sage to be answered and calls the editor to allow the user to compose the reply. 

The next group of commands is for manipulating mailboxes. Users typically 
have one mailbox for each person with whom they correspond, in addition to the 
mailbox for incoming email that we have already seen. The d command deletes a 
message from the mailbox, but the u command undoes the delete. (The message 
is not actually deleted until the email program is exited.) Them command moves 
a message to another mailbox. This is the usual way to save important email after 
reading it. The k command keeps the indicated message in the mailbox even after 
it is read. If a message is read but not explicitly kept, some default action is taken 
when the email program is exited, such as moving it to a special default mailbox. 
Finally, the r command is used to finish up with the current mailbox and go read 
another one. 

The n, b, and g commands are for moving about in the current mailbox. It is 
common for a user to read message 1, answer, move, or delete it, and then type n 
to get the next one. The value of this command is that the user does not have to 
keep track of where he is. It is possible to go backward using b or to a given mes­
sage with g. 

Finally, the e command exits the email program and makes whatever changes 
are required, such as deleting some messages and marking others as kept. This 
command overwrites the mailbox, replacing its contents. 

In mail systems designed for beginners, each of these commands is typically 
associated with an on-screen icon, so that the user does not have to remember that 
a stands for answer. Instead, she has to remember that the little picture of a per­
son with his mouth open means answer and not display message. 

It should be clear from this example that email has come a long way from the 
days when it was just file transfer. Sophisticated user agents make managing a 
large volume of email possible. For people such as the author who (reluctantly) 
receive and send thousands of messages a year, such tools are invaluable. 

7.4.3. Message Formats 

Let us now turn from the user interface to the format of the email messages 
themselves. First we will look at basic ASCII email using RFC 822. After that, 
we will look at multimedia extensions to RFC 822 



SEC. 7.4 ELECTRONIC MAIL 651 

RFC 822 

Messages consist of a pnm1t1ve envelope (described in RFC 821), some 
number of header fields, a blank line, and then the message body. Each header 
field (logically) consists of a single line of ASCII text containing the field name, a 
colon, and, for most fields, a value. RFC 822 is an old standard, and does not 
clearly distinguish envelope from header fields, as a new standard would do. In 
normal usage, the user agent builds a message and passes it to the message 
transfer agent, which then uses some of the header fields to construct the actual 
envelope, a somewhat old-fashioned mixing of message and envelope. 

The principal header fields related to message transport are listed in Fig. 7-42. 
The To: field gives the DNS address of the primary recipient. Having multiple 
recipients is also allowed. The Cc: field gives the addresses of any secondary 
recipients.. In terms of delivery, there is no distinction between the primary and 
secondary recipients. It is entirely a psychological difference that may be impor­
tant to the people involved but is not important to the mail system. The term Cc: 
(Carbon copy) is a bit dated, since computers do not use carbon paper, but it is 
well established. The Bee: (Blind carbon copy) field is like the Cc: field, except 
that this lime is deleted from all the copies sent to the primary and secondary reci­
pients. This feature allows people to send copies to third parties without the pri­
mary and secondary recipients knowing this. 

Header Meaning 

To: Email address(es) of primary recipient(s) 

Cc: Email address(es) of secondary recipient(s) 

Bee: Email address(es) for blind carbon copies 

From: Person or people who created the message 

Sender: Email address of the actual sender 

Received: Line added by each transfer agent along the route 

Return-Path: Can be used to identify a path back to the sender 

Fig. 7-42. RFC 822 header fields related to message transport. 

The next two fields, From: and Sender: tell who wrote and sent the message, 
respectively. These may not be the same. For example, a business executive may 
write a message, but her secretary may be the one who actually transmits it. In 
this case, the executive would be listed in the From: field and the secretary in the 
Sender: field. The From: field is required, but the Sender: field may be omitted if 
it is the same as the From: field. These fields are needed in case the message is 
undeliverable and must be returned to the sender. 

A line containing Received: is added by each message transfer agent along the 



652 THE APPLICATION LA YER CHAP. 7 

way. The line contains the agent's identity, the date and time the message was 
received, and other information that can be used for finding bugs in the routing 
system. 

The Return-Path: field is added by the final message transfer agent and was 
intended to tell how to get back to the sender. In theory, this information can be 
gathered from all the Received: headers (except for the name of the sender's mail­
box), but it is rarely filled in as such and typically just contains the sender's 
address. 

In addition to the fields of Fig. 7-42, RFC 822 messages may also contain a 
variety of header fields used by the user agents or human recipients. The most 
common ones are listed in Fig. 7-43. Most of these are self-explanatory, so we 
will not go into all of them in detail. 

--

Header Meaning 

Date: The date and time the message was sent 

Reply-To: Email address to which replies should be sent 

Message-Id: Unique number for referencing this message later 

In-Reply-To: Message-Id of the message to which this is a reply 

References: Other relevant Message-Ids 

Keywords: User chosen keywords 

Subject: Short summary of the message for the one-line display 

Fig. 7-43. Some fields used in the RFC 822 message header. 

The Reply-To: field is sometimes used when neither the person composing the 
message nor the person sending the message wants to see the reply. For example, 
a marketing manager writes an email message telling customers about a new 
product. The message is sent by a secretary, but the Reply-To: field lists the head 
of the sales department, who can answer questions and take orders. 

The RFC 822 document explicitly says that users are allowed to invent new 
headers for their own private use, provided that these headers start with the string 
X-. It is guaranteed that no future headers will use names starting with X-, to 
avoid conflicts between official and private headers. Sometimes wiseguy under­
graduates include fields like X-Fruit-of-the-Day: or X-Disease-of-the-Week:, 
which are legal, although not always illuminating. 

After the headers comes the message body. Users can put whatever they want 
here. Some people terminate their messages with elaborate signatures, including 
simple ASCII cartoons, quotations from greater and lesser authorities, political 
statements, and disclaimers of all kinds (e.g., The ABC Corporation is not respon­
sible for my opinions; it cannot even comprehend them). 



SEC. 7.4 ELECTRONIC MAIL 653 

MIME-Multipurpose Interrnet Mail Extensions 

In the early days of the ARPANET, email consisted exclusively of text mes­
sages written in English and expressed in ASCII. For this environment, RFC 822 
did the job completely: it specified the headers but left the content entirely up to 
the users. Nowadays, on the worldwide Internet, this approach is no longer ade­
quate. The problems include sending and receiving 

1. Messages in languages with accents (e.g., French and German). 

2. Messages in nonLatin alphabets (e.g., Hebrew and Russian). 

3. Messages in languages without alphabets (e.g., Chinese and Japanese). 

4. Messages not containing text at all (e.g., audio and video). 

A solution was proposed in RFC 1341 and updated in RFC 1521. This solution, 
called MIME (Multipurpose Internet Mail Extensions) is now widely used. 
We will now describe it. For additional information about MIME, see RFC 1521 
or (Rose, 1993). 

The basic idea of MIME is to continue to use the RFC 822 format, but to add 
structure to the message body and define encoding rules for non-ASCII messages. 
By not deviating from 822, MIME messages can be sent using the existing mail 
programs and protocols. All that has to be changed are the sending and receiving 
programs, which users can do for themselves. 

MIME defines five new message headers, as shown in Fig. 7-44. The first of 
these simply tells the user agent receiving the message that it is dealing with a 
MIME message, and which version of MIME it uses. Any message not contain­
ing a MIME-Version: header is assumed to be an English plaintext message, and 
is processed as such. 

Header Meaning 

MIME-Version: Identifies the MIME version 

Content-Description: Human-readable string telling what is in the message 

Content-Id: Unique identifier 

Content-Transfer-Encoding: How the body is wrapped for transmission 

Content-Type: Nature of the message 

Fig. 7-44 .. RFC 822 headers added by MIME. 

The Content-Description: header is an ASCII string telling what is in the mes­
sage. This header is needed so the recipient will know whether it -is worth decod­
ing and reading the message. If the string says: "Photo of Barbara's gerbil" and 
the person getting the message is not a big gerbil fan, the message will probably 
be discarded rather than decoded into a high-resolution color photograph. 



654 THE APPLICATION LA YER CHAP. 7 

The Content-Id: header identifies the content. It uses the same format as the 
standard Message-Id: header. 

The Content-Transfer-Encoding: tells how the body is wrapped for transmis­
sion through a network that may object to most characters other than letters, 
numbers, and punctuation marks. Five schemes (plus an escape to new schemes) 
are provided. The simplest scheme is just ASCII text. ASCII characters use 7 
bits, and can be carried directly by the email protocol provided that no line 
exceeds 1000 characters. 

The next simplest scheme is the same thing, but using 8-bit characters, that is, 
all values from 0 up to and including 255. This encoding scheme violates the (ori­
ginal) Internet email protocol but is used by some parts of the Internet that imple­
ment some extensions to the original protocol. While declaring the encoding does 
not make it legal, having it explicit may at least explain things when something 
goes wrong. Messages using the 8-bit encoding must still adhere to the standard 
maximum line length. 

Even worse are messages that use binary encoding. These are arbitrary binary 
files that not only use all 8 bits but also do not even respect the 1000 character 
line limit. Executable programs fall into this category. No guarantee is given that 
messages in binary will arrive correctly, but many people send them anyway. 

The correct way to encode binary messages is to use base64 encoding, some­
times called ASCII armor. In this scheme, groups of 24 bits are broken up into 
four 6-bit units, with each unit being sent as a legal ASCII character. The coding 
is "A" for 0, "B" for 1, and so on, followed by the 26 lowercase letters, the ten 
digits, and finally+ and I for 62 and 63, respectively. The== and= sequences are 
used to indicate that the last group contained only 8 or 16 bits, respectively. Car­
riage returns and line feeds are ignored, so they can be inserted at will to keep the 
lines short enough. Arbitrary binary text can be sent safely using this scheme. 

For messages that are almost entirely ASCII, but with a few non-ASCII char­
acters, base64 encoding is somewhat inefficient. Instead, an encoding known as 
quoted-printable encoding is used. This is just 7-bit ASCII, with all the charac­
ters above 127 encoded as an equal sign followed by the character's value as two 
hexadecimal digits. 

In summary, binary data should be sent encoded in base64 or quoted printable 
form. When there are valid reasons not to use one of these schemes, it is possible 
to specify a user-defined encoding in the Content-Transfer-Encoding: header. 

The last header shown in Fig. 7-44 is really the most interesting one. It speci­
fies the nature of the message body. Seven types are defined in RFC 1521, each 
of which has one or more subtypes. The type and subtype are separated by a 
slash, as in 

Content-Type: video/mpeg 

The subtype must be given explicitly in the header; no defaults are provided. The 
initial list of types and subtypes specified in RFC 1521 is given in Fig. 7-45. 



SEC. 7.4 ELECTRONIC MAIL 655 

Many new ones have been added since then, and additional entries are being 
added all the time as the need arises. 

Type Subtype Description 

Plain Unformatted text 
Text 

Richtext Text including simple formatting commands 

Gif Still picture in GIF format 
Image 

Jpeg Still picture in JPEG format 

Audio Basic Audible sound 

Video Mpeg Movie in MPEG format 

Octet-stream An uninterpreted byte sequence 
Application 

Postscript A printable document in Postscript 

Rfc822 A MIME RFC 822 message 

Message Partial Message has been split for transmission 

External-body Message itself must be fetched over the net 

Mixed Independent parts in the specified order 

Alternative Same message in different formats 
Multipart 

Parallel Parts must be viewed simultaneously 

Digest Each part is a complete RFC 822 message 

Fig. 7-45. The MIME types and subtypes defined in RFC 1521. 

Let us now go through the list of types. The text type is for straight text. The 
text/plain combination is for ordinary messages that can be displayed as received, 
with no encoding and no further processing. This option allows ordinary mes­
sages to be transported in MIME with only a few extra headers. 

The text/richtext subtype allows a simple markup language to be included in 
the text. This language provides a system-independent way to express boldface, 
italics, smaller and larger point sizes, indentation, justification, sub- and super­
scripting, and simple page layout.· The markup language is based on SGML, the 
Standard Generalized Markup Language also used as the basis for the World 
Wide Web's HTML. For exampl~, the message 

The <bold> time </bold> has come the <italic> walrus </italic> said ... 

would be displayed as 

The time has come the walrus said ... 

It is up to the receiving system to choose the appropriate rendition. If boldface 
and italics are available, they can be used; otherwise, colors, blinking, 



656 THE APPLICATION LA YER CHAP. 7 

underlining, reverse video, etc. can be used for emphasis. Different systems can, 
and do, make different choices. 

The next MIME type is image, which is used to transmit still pictures. Many 
formats are widely used for storing and transmitting images nowadays, both with 
and without compression. Two of these, GIF and JPEG, are official subtypes, but 
no doubt others will be added later. 

The audio and video types are for sound and moving pictures, respectively. 
Note that video includes only the visual information, not the soundtrack. If a 
movie with sound is to be transmitted, the video and audio portions may have to 
be transmitted separately, depending on the encoding system used. The only 
video format defined so far is the one devised by the modestly-named Moving 
Picture Experts Group (MPEG). 

The application type is a catchall for formats that require external processing 
not covered by one of the other types. An octet-stream is just a sequence of unin­
terpreted bytes. Upon receiving such a stream, a user agent should probably 
display it by suggesting to the user that it be copied to a file and prompting for a 
file name. Subsequent processing is then up to the user. 

The other defined subtype is postscript, which refers to the PostScript 
language produced by Adobe Systems and widely used for describing printed 
pages. Many printers have built-in Postscript interpreters. Although a user agent 
can just call an external PostScript interpreter to display incoming PostScript files, 
doing so is not without danger. PostScript is a full-blown programming language. 
Given enough time, a sufficiently masochistic person could write a C compiler or 
a database management system in PostScript. Displaying an incoming PostScript 
message is done by executing the PostScript program contained in it. In addition 
to displaying some text, this program can read, modify, or delete the user's files, 
and have other nasty side effects. 

The message type allows one message to be fully encapsulated inside another. 
This scheme is useful for forwarding email, for example. When a complete RFC 
822 message is encapsulated inside an outer message, the rfc822 subtype should 
be used. 

The partial subtype makes it possible to break an encapsulated message up 
into pieces and send them separately (for example, if the encapsulated message is 
too long). Parameters make it possible to reassemble all the parts at the destina­
tion in the correct order. 

Finally, the external-body subtype can be used for very long messages (e.g., 
video films). Instead of including the MPEG file in the message, an FTP address 
is given and the receiver's user agent can fetch it over the network at the time it is 
needed. This facility is especially useful when sending a movie to a mailing list 
of people, only a few of whom are expected to view it (think about electronic junk 
mail containing advertising videos). 

The final type is multipart, which allows a message to contain more than one 
part, with the beginning and end of each part being clearly delimited. The mixed 



SEC. 7.4 ELECTRONIC MAIL 657 

subtype aHows each part to be different, with no additional structure imposed. In 
contrast, with the alternative subtype, each part must contain the same message 
but expressed in a different medium or encoding. For example, a message could 
be sent in plain ASCII, in richtext, and in PostScript. A properly-designed user 
agent getting such a message would display it in PostScript if possible. Second 
choice would be richtext. If neither of these were possible, the flat ASCII text 
would be displayed. The parts should be ordered from simplest to most complex 
to help recipients with pre--MIME user agents make some sense of the message 
(e.g., even a pre-MIME user can read flat ASCII text). 

The alternative subtype can also be used for multiple languages. In this con­
text, the Rosetta Stone can be thought of as an early multipart/alternative mes­
sage. 

A multimedia example is shown in Fig. 7-46. Here a birthday greeting is 
transmitted both as text and as a song. If the receiver has an audio capability, the 
user agent there will fetch the sound file, birthday.snd, and play it. If not, the lyr­
ics are displayed on the screen in stony silence. The parts are delimited by two 
hyphens followed by the (user-defined) string specified in the boundary parame­
ter. 

Note that the Content-Type header occurs in three positions within this exam­
ple. At the top level, it indicates that the message has multiple parts. Within each 
part, it gives the type and subtype of that part. Finally, within the body of the 
second part, it is required to tell the user agent what kind of an external file it is to 
fetch. To indicate this slight difference in usage, we have used lowercase letters 
here, although all headers are case insensitive. The content-transfer-encoding is 
similarly required for any external body that is not encoded as 7-bit ASCII. 

Getting back to the subtypes for multipart messages, two more possibilities 
exist. The parallel subtype is used when all parts must be "viewed" simultane­
ously. For example, movies often have an audio channel and a video channel. 
Movies are more effective if these two channels are played back in parallel, 
instead of consecutively. 

Finally, the digest subtype is used when many messages are packed together 
into a composite message. For example, some discussion groups on the Internet 
collect messages from subscribers and then send them out as a single 
multipart/digest message. 

7 .4.4. Message Transfer 

The message transfer system is concerned with relaying messages from origi­
nator to the recipient. The simplest way to do this is to establish a transport con­
nection from the source machine to the destination machine and then just transfer 
the message. After examining how this is normally done, we will examine some 
situations in which this does not work and what can be done about them. 



658 

From: elinor@abc.com 
To: carolyn@xyz.com 
MIME-Version: 1.0 

THE APPLICATION LAYER 

Message-Id: <0704760941.AA00747@abc.com> 

CHAP. 7 

Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm 
Subject: Earth orbits sun integral number of times 

This is the preamble. The user agent ignores it. Have a nice day. 

--qwertyuiopasdfghjklzxcvbnm 
Content-Type: text/richtext 

Happy birthday to you 
Happy birthday to you 
Happy birthday dear <bold> Carolyn </bold> 
Happy birthday to you 

--qwertyuiopasdfghjklzxcvbnm 
Content-Type: message/external-body; 

access-type=" anon-ftp"; 
site="bicycle.abc.com"; 
di rectory=" pub"; 
name="birthday.snd" 

content-type: audio/basic 
content-transfer-encoding: base64 
--qwertyuiopasdfghjklzxcvbnm--

Fig. 7-46. A multipart message containing richtext and audio alternatives. 

SMTP-Simple Mail Transfer Protocol 

Within the Internet, email is delivered by having the source machine establish 
a TCP connection to port 25 of the destination machine. Listening to this port is 
an email daemon that speaks SMTP (Simple Mail Transfer Protocol). This 
daemon accepts incoming connections and copies messages from them into the 
appropriate mailboxes. If a message cannot be delivered, an error report contain­
ing the first part of the undeliverable message is returned to the sender. 

SMTP is a simple ASCII protocol. After establishing the TCP connection to 
port 25, the sending machine, operating as the client, waits for the receiving ma­
chine, operating as the server, to talk first. The server starts by sending a line of 
text giving its identity and telling whether or not it is prepared to receive mail. If 
it is not, the client releases the connection and tries again later. 

If the server is willing to accept email, the client announces whom the email 
is corning from and whom it is going too. If such a recipient exists at the 



SEC. 7.4 ELECTRONIC MAIL 659 

destination, the server gives the client the go-ahead to send the message. Then the 
client sends the message and the server acknowledges it. No checksums are gen­
erally needed because TCP provides a reliable byte stream. If there is more 
email, that is now sent. When all the email has been exchanged in both direc­
tions, the connection is released. A sample dialog for sending the message of 
Fig. 7-46, including the numerical codes used by SMTP, is shown in Fig. 7-47. 
The lines sent by the client are marked C:; those sent by the server are marked S:. 

A few comments about Fig. 7-47 may be helpful. The first command from 
the client is indeed HELO. Of the two four-character abbreviations for HELLO, 
this one has numerous advantages over its competitor. Why all the commands 
had to be four characters has been lost in the mists of time. 

In Fig. 7-47, the message is sent to only one recipient, so only one RCPT 
command is used. Multiple such commands are allowed to send a single message 
to multiple receivers. Each one is individually acknowledged or rejected. Even if 
some recipients are rejected (because they do not exist at the destination), the 
message can be sent to the remainder. 

Finally, although the syntax of the four-character commands from the client is 
rigidly specified, the syntax of the replies is less rigid. Only the numerical code 
really counts. Each implementation can put whatever string it wants after the 
code. 

Even though the SMTP protocol is well defined (by RFC 821), a few prob­
lems can still arise. One problem relates to message length. Some older imple­
mentations cannot handle messages exceeding 64KB. Another problem relates to 
timeouts. If the client and server have different timeouts, one of them may give 
up while the other is still busy, unexpectedly terminating the connection. Finally, 
in rare situations, infinite mailstorms can be triggered. For example, if host l 
holds mailing list A and host 2 holds mailing list B and each list contains an entry 
for the other one, then any message sent to either list will generate a never-ending 
amount of email traffic. 

To get around some of these problems, extended STMP (ESMTP) has been 
defined in RFC 1425. Clients wanting to use it should send an EHLO message 
instead of HELO initially. If this is rejected, then the server is a regular SMTP 
server, and the client should proceed in the usual way. If the EHLO is accepted, 
then new commands and parameters are allowed. The standardization of these 
commands and parameters is an ongoing process. 

Email Gateways 

Email using SMTP works best when both the sender and the receiver are on 
the Internet and can support TCP connections between sender and receiver. How­
ever, many machines that are not on the Internet still want to send and receive 
email from Internet sites. For example, many companies intentionally do not 



660 THE APPLICATION LA YER CHAP. 7 

S: 220 xyz.com SMTP service ready 
C: HELO abc.com 

S: 250 xyz.com says hello to abc.com 
C: MAIL FROM: <elinor@abc.com> 

S: 250 sender ok 
C: RCPT TO: <Carolyn@xyz.com> 

S: 250 recipient ok 
C:DATA 

S: 354 Send mail; end with "."on a line by itself 
C: From: elinor@abc.com 
C: To: carolyn@xyz.com 
C: MIME-Version: 1.0 
C: Message-Id: <0704760941.AA00747@abc.com> 
C: Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm 
C: Subject: Earth orbits sun integral number of times 
C: 
C: This is the preamble. The user agent ignores it. Have a nice day. 
C: 
C: --qwertyuiopasdfghjklzxcvbnm 
C: Content-Type: text/richtext 
C: 
C: Happy birthday to you 
C: Happy birthday to you 
C: Happy birthday dear <bold> Carolyn </bold> 
C: Happy birthday to you 
C: 
C: --qwertyuiopasdfghjklzxcvbnm 
C: Content-Type: message/external-body; 
C: access-type=" anon-ftp"; 
C: site="bicycle.abc.com"; 
C: directory=" pub"; 
C: name="birthday.snd" 
C: 
C: content-type: audio/basic 
C: content-transfer-encoding: base64 
C: --qwertyuiopasdfghjklzxcvbnm 
C:. 

S: 250 message accepted 
C: QUIT 

S: 221 xyz.com closing connection 

Fig. 7-47. Transferring a message from elinor@abc.com to carolyn@xyz.com. 

want to be on the Internet for security reasons. Some of them even remove them­
selves from the Internet by erecting firewalls between themselves and the Internet. 

Another problem occurs when the sender speaks only RFC 822 and the 



SEC. 7.4 ELECTRONIC MAIL 661 

receiver speaks only X.400 or some proprietary vendor-specific mail protocol. 
Since all these worlds differ in message formats and protocols, direct communica­
tion is impossible. 

Both of these problems are solved using application layer email gateways. In 
Fig. 7-48 ho~t 1 speaks only TCP/IP and RFC 822, whereas host 2 speaks only 
OSI TP4 and X.400. Nevertheless, they can exchange email using an email gate­
way. The procedure is for host 1 to establish a TCP connection to the gateway 
and then use SMTP to transfer a message (1) there. The daemon on the gateway 
then puts the message in a buffer of messages destined for host 2. Later, a TP4 
connection (the OSI equivalent to TCP) is established with host 2 and the message 
(2) is transferred using the OSI equivalent of SMTP. All the gateway process has 
to do is to extract incoming messages from one queue and deposit them in 
another. 

Host 1 Gateway 

TCP connection 

Message 
buffer 

Host 2 

TP4 connection 

Network 

Fig. 7-48. Transferring email using an application layer email gateway. 

It looks easy, but it is not. The first problem is that Internet addresses and 
X.400 addresses are totally different. An elaborate mapping mechanism is needed 
between them. The second problem is that envelope or header fields that are 
present in one system may not be present in the other. For example, if one system 
requires priority classes and the other does not have this concept at all, in one 
direction valuable information must be dropped and in the other it must be gen­
erated out of thin air. 

An even worse concept is what to do if body parts are incompatible. What 
should a gateway do with a message from the Internet whose body holds a refer­
ence to a:n audio file to be obtained by FTP if the destination system does not sup­
port this concept? What should it do when an X.400 system tells it to deliver a 
message to a certain address, but if that fails, to send the contents by fax? Using 
fax is not part of the RFC 822 model. Clearly, there are no simple solutions here. 
For simple unstructured text messages in ASCII, gatewaying is a reasonable solu­
tion, but for anything fancier, the idea tends to break down. 



662 THE APPLJCA TION LA YER CHAP. 7 

Final Delivery 

Up until now, we have assumed that all users work on machines that are capa­
ble of sending and receiving email. Frequently this situation is false. For exam­
ple, at many companies, users work at desktop PCs that are not on the Internet and 
are not capable of sending or receiving email from outside the company. Instead, 
the company has one or more email servers that can send and receive email. To 
send or receive messages, a PC must talk to an email server using some kind of 
delivery protocol. 

A simple protocol used for fetching email from a remote mailbox is POP3 
(Post Office Protocol), which is defined in RFC 1225. It has commands for the 
user to log in, log out, fetch messages, and delete messages. The protocol itself 
consists of ASCII text and has something of the flavor of SMTP. The point of 
POP3 is to fetch email from the remote mailbox and store it on the user's local 
machine to be read later. 

A more sophisticated delivery protocol is IMAP (Interactive Mail Access 
Protocol), which is defined in RFC 1064. It was designed to help the user who 
uses multiple computers, perhaps a workstation in the office, a PC at home, and a 
laptop on the road. The basic idea behind IMAP is for the email server to main­
tain a central repository that can be accessed from any machine. Thus unlike 
POP3, IMAP does not copy email to the user's personal machine because the user 
may have several. 

IMAP has many features, such as the ability to address mail not by arrival 
number as is done in Fig. 7-40, but by using attributes (e.g., Give me the first 
message from Sam). In this view, a mailbox is more like a relational database 
system than a linear sequence of messages. 

Yet a third delivery protocol is DMSP (Distributed Mail System Protocol), 
which is part of the PCMAIL system and described in RFC 1056. This one does 
not assume that all email is on one server, as do POP3 and IMAP. Instead, it 
allows users to download email from the server to a workstation, PC, or laptop 
and then disconnect. The email can be read and answered while disconnected. 
When reconnection occurs later, email is transferred and the system is resyn­
chronized. 

Independent of whether email is delivered directly to the user's workstation or 
to a remote server, many systems provide hooks for additional processing of 
incoming email. An especially valuable tool for many email users is the ability to 
set up filters. These are rules that are checked when email comes in or when the 
user agent is started. Each rule specifies a condition and an action. For example, 
a rule could say that any message from Andrew S. Tanenbaum should be 
displayed in a 24-point flashing reel boldface font (or alternatively, be discarded 
automatically without comment). 

Another delivery feature often provided is the ability to (temporarily) forward 
incoming email to a different address. This address can even be a computer 



SEC. 7.4 ELECTRONIC MAIL 663 

operated by a commercial paging service, which then pages the user by radio or 
satellite, displaying the Subject: line on his beeper. 

Still another common feature of final delivery is the ability to install a vaca­
tion daemon. This is a program that examines each incoming message and sends 
the sender an insipid reply such as 

Hi. I'm on vacation. I'll be back on the 24th of August. Have a nice day. 

Such replies can also specify how to handle urgent matters in the interim, other 
people to contact for specific problems, etc. Most vacation daemons keep track of 
whom they have sent canned replies to and refrain from sending the same person a 
second reply. The good ones also check to see if the incoming message was sent 
to a mailing list, and if so, do not send a canned reply at all. (People who send 
messages to large mailing lists during the summer probably do not want to get 
hundreds of replies detailing everyone's vacation plans.) 

The author recently ran into a most extreme form of delivery processing when 
he sent an email message to a person who claims to get 600 messages a day. His 
identity will not be disclosed here, lest half the readers of this book also send him 
email. Let us call him John. 

John has installed an email robot that checks every incoming message to see if 
it is from a new correspondent. If so, it sends back a canned reply explaining that 
John can no longer personally read all his email. Instead he has produced a per­
sonal FAQ (Frequently Asked Questions) document that answers many questions 
he is commonly asked. Normally, newsgroups have FAQs, not people. 

John's FAQ gives his address, fax, and telephone numbers and tells how to 
contact his company. It explains how to get him as a speaker and describes where 
to get his papers and other documents. It also provides pointers to software he has 
written, a conference he is running, a standard he is the editor of, and so on. 
Perhaps this approach is necessary, but maybe a personal FAQ is the ultimate 
status symbol. 

7.4.5. Email Privacy 

When an email message is sent between two distant sites, it will generally 
transit dozens of machines on the way. Any of these can read and record the mes­
sage for future use. Privacy is nonexistent, despite what many people think 
(Weisband and Reinig, 1995). Nevertheless, many people would like to be able to 
send email that can be read by the intended recipient and no one else: not their 
boss, not hackers, not even the government. This desire has stimulated several 
people and groups to apply the cryptographic principles we studied earlier to 
email to produce secure email. In the following sections we will study two widely 
used secure email systems, POP and PEM. For additional information, see (Kauf­
man et al., 1995; Schneier, 1995; Stallings, 1995b; and Stallings, 1995c). 



664 THE APPLICATION LA YER CHAP. 7 

PGP-Pretty Good Privacy 

Our first example, PGP (Pretty Good Privacy) is essentially the brainchild 
of one person, Phil Zimmermann (Zimmermann, l 995a, l 995b ). It is a complete 
email security package that provides privacy, authentication, digital signatures, 
and compression, all in easy-to-use form. Furthermore, the complete package, 
including all the source code, is distributed free of charge via the Internet, bulletin 
boards, and commercial networks. Due to its quality, price (zero), and easy avai­
lability on MS-DOS/Windows, UNIX, and Macintosh platforms, it is widely used 
today. A commercial version is also available for those companies requiring sup­
port. 

It has also been embroiled in various controversies (Levy, 1993). Because it 
is freely available over the Internet, the U.S. government has claimed the ability 
of foreigners to obtain it constitutes a violation of the laws concerning the export 
of munitions. Later versions were produced outside the United States to get 
around this restriction. Another problem has involved an alleged infringement of 
the RSA patent, but that problem was settled with releases starting at 2.6. 
Nevertheless, not everyone likes the idea of people being able to keep secrets 
from them, so PGP' s enemies are always lurking in the shadows, waiting to 
pounce. Accordingly, Zimmermann's motto is: "If privacy is outlawed, only 
outlaws will have privacy." 

PGP intentionally uses existing cryptographic algorithms rather than inventing 
new ones. It is largely based on RSA, IDEA, and MD5, all algorithms that have 
withstood extensive peer review and were not designed or influenced by any 
government agency trying to weaken them. For people who tend to distrust 
government, this property is a big plus. 

PGP supports text compression, secrecy, and digital signatures and also pro­
vides extensive key management facilities. To see how PGP works, let us con­
sider the example of Fig. 7-49. Here, Alice wants to send a signed plaintext mes­
sage, P, to Bob in a secure way. Both Alice and Bob have private (Dx) and public 
(Ex) RSA keys. Let us assume that each one knows the other's public key; we 
will cover key management later. 

Alice starts out by invoking the PGP program on her computer. PGP first 
hashes her message, P, using MD5 and then encrypts the resulting hash using her 
private RSA key, DA- When Bob eventually gets the message, he can decrypt the 
hash with Alice's public key and verify that the hash is com::ct. Even if someone 
else (e.g., Trudy) could acquire the hash at this stage and decrypt it with Alice's 
known public key, the strength of MD5 guarantees that it would be computation­
ally infeasible to produce another message with the same MD5 hash. 

The encrypted hash and the original message are now concatenated into a sin­
gle message, P 1, and compressed using the ZIP program, which uses the Ziv­
Lempel algorithm (Ziv and Lempel, 1977). Call the output of this step Pl.Z. 

Next, PGP prompts Alice for some random input. Both the content and the 



SEC. 7.4 ELECTRONIC MAIL 

KM : One-time message key for IDEA 

: Concatenation 

Bob's public 
RSA key, Es 

\ 
Alice's private KM -I RSA I 

665 

RSA key, DA l ! 
\ ASCII text to 

1.::1 _ C::l vi::l Pt Z ~ ~ the""""'' 
P_ ft'.~''._~-~-_r~- I ~~-7-~ 
\\-- / P1 compressed 

Original 
plaintext 
message 
from Alice 

Concatenation of 
P and the signed 
hash of P 

Concatenation of 
P1 .Z encrypted 
with IDEA and KM 
encrypted with Es 

Fig. 7-49. PGP in operation for sending a message. 

typing speed are used to generate a 128-bit IDEA message key, KM (called a ses­
sion key in the PGP literature, but this is really a misnomer since there is no ses­
sion). KM is now used to encrypt Pl.Z with IDEA in cipher feedback mode. In 
addition, KM is encrypted with Bob's public key, Es. These two components are 
then concatenated and converted to base64, as we discussed in the section on 
MIME. The resulting message then contains only letters, digits, and the symbols 
+, I and=, which means it can be put into an RFC 822 body and be expected to 
an-ive unmodified. 

When Bob gets the message, he reverses the base64 encoding and decrypts 
the IDEA key using his private RSA key. Using this key, he decrypts the message 
to get Pl .Z. After decompressing it, Bob separates the plaintext from the 
encrypted hash and decrypts the hash using Alice's public key. If the plaintext 
hash agrees with his own MD5 computation, he knows that P is the con-ect mes­
sage and that it came from Alice. 

It is worth noting that RSA is only used in two places here: to encrypt the 
128-bit MD5 hash and to encrypt the 128-bit IDEA key. Although RSA is slow, it 
has to encrypt only 256 bits, not a large volume of data. Furthermore, all 256 
plaintext bits are exceedingly random, so a considerable amount of work will be 
required on Trudy's part just to determine if a guessed key is correct. The heavy­
duty encryption is done by IDEA, which is orders of magnitude faster than RSA. 
Thus PGP provides security, compression, and a digital signature and does so in a 
much more efficient way than the scheme illustrated in Fig. 7-23. 



666 THE APPLICATION LA YER CHAP. 7 

PGP supports three RSA key lengths. It is up to the user to select the one that 
is most appropriate. The lengths are 

1. Casual (384 bits): can be broken today by folks with large budgets. 

2. Commercial (512 bits): might be breakable by three-letter organizations. 

3. Military (1024): Not breakable by anyone on earth. 

There has been some discussion about a fourth category: alien (2048 bits), which 
could not be broken by anyone or anything in the universe, but this has not yet 
been adopted. Since RSA is only used for two small computations, probably 
everyone should use military strength keys all the time, except perhaps on aged 
PC-XTs. 

The format of a PGP message is shown in Fig. 7-50. The message has three 
parts, containing the IDEA key, the signature, and the message, respectively. The 
key part contains not only the key, but also a key identifier, since users are permit­
ted to have multiple public keys. 

Encrypted 
by 

,____________ Base64 I 
Message 1------ Compressed, encrypted by IDEA • 
key part Signature part Message part 
~~--~-----,~------~------~ 

ID T 
Sig. 

of KM i 
hdr 

Es m 
e 

T 
ID y 
of p 
EA e 

s 

MOS 
hash 

1----1 
DA 

Msg File 
hdr name 

Fig. 7-50. A PGP message. 

:J 
( 

) 

T 
i Me 
m 
e 

( 

) 

The signature part contains a header, which will not concern us here. The 
header is followed by a timestamp, the identifier for the sender's public key that 
can be used to decrypt the signature hash, some type information that identifies 
the algorithms used (to allow MD6 and RSA2 to be used when they are invented), 
and the encrypted hash itself. 

The message part also contains a header, the default name of the file to be 
used if the receiver writes the file to the disk, a message creation timestamp, and, 
finally, the message itself. 

Key management has received a large amount of attention in PGP as it is the 
Achilles heel of all security systems. Each user maintains two data structures 
locally: a private key ring and a public key ring. The private key ring contains 
one or more personal private-public key pairs. The reason for supporting multiple 
pairs per user is to permit users to change their public keys periodically or when 
one is thought to have been compromised, without invalidating messages 



SEC. 7.4 ELECTRONIC MAIL 667 

currently in preparation or in transit. Each pair has an identifier associated with it, 
so that a message sender can tell the recipient which public key was used to 
encrypt it. Message identifiers consist of the low-order 64 bits of the public key. 
Users are responsible for avoiding conflicts in their public key identifiers. The 
private keys on disk are encrypted using a special (arbitrarily long) password to 
protect them against sneak attacks. 

The public key ring contains public keys of the user's correspondents. These 
are needed to encrypt the message keys associated with each message. Each entry 
on the public key ring contains not only the public key, but also its 64-bit identif­
ier and an indication of how strongly the user trusts the key. 

The problem being tackled here is the following. Suppose that public keys 
are maintained on bulletin boards. One way for Trudy to read Bob's secret email 
is to attack the bulletin board and replace Bob's public key with one of her choice. 
When Alice later fetches the key so-called belonging to Bob, Trudy can mount a 
bucket brigade attack on Bob. 

To prevent such attacks, or at least minimize the consequences of them, Alice 
needs to know how much to trust the item called "Bob's key" on her public key 
ring. If she knows that Bob personally handed her a floppy disk containing the 
key, she can set the trust value to the highest value. 

However, in practice, people often receive public keys by querying a trusted 
key server, a number of which are already in operation on the Internet. When a 
key server receives a request for someone's public key, it generates a response 
containing the public key, a timestamp, and the expiration date of the key. It then 
hashes this response with MD5 and signs the response with its own private key so 
the requesting party can verify who sent it. It is up to the user to assign a trust 
level to keys maintained by the local system administrator, the phone company, 
ACM, the Bar Association, the government, or whoever else decides to get into 
the business of maintaining keys. 

PEM-Privacy Enhanced Mail 

In contrast to PGP, which was initially a one-man show, our second example, 
PEM (Privacy Enhanced Mail), is an official Internet standard and described in 
four RFCs: RFC 1421 through RFC 1424. Very roughly, PEM covers the same 
territory as PGP: privacy and authentication for RFC 822-based email systems. 
Nevertheless, it also has some differences with PGP in approach and technology. 
Below we will describe PEM and then compare and contrast it to PGP. For more 
information about PEM, see (Kent, 1993). 

Messages sent using PEM are first converted to a canonical form so they all 
have the same conventions about white space (e.g., tabs, trailing spaces) and the 
use of carriage returns and line feeds. This transformation is done to eliminate the 
effects of message transfer agents that modify messages not to their liking. 



668 THE APPLICATION LA YER CHAP. 7 

Without canonicalization, such modifications might affect hashes made from mes­
sages at their destinations. 

Next, a message hash is computed using MD2 or MD5. It is not optional, as it 
is in PGP. Then the concatenation of the hash and the message is encrypted using 
DES. In light of the known weakness of a 56-bit key, this choice is certainly 
suspect. The encrypted message can then be encoded with base64 coding and 
transmitted to the recipient. Mailing lists are explicitly supported. 

As in PGP, each message is encrypted with a one-time key that is enclosed 
along with the message. The key can be protected either with RSA or with triple 
DES using EDE. In practice, everyone uses RSA, so we will concentrate on that. 
In fact, we have to: PEM does not tell how to do key management with DES. 

Key management is more structured than in PGP. Keys are certified by cer­
tification authorities in the form of certificates stating a user's name, public key, 
and the key's expiration date. Each certificate has a unique serial number for 
identifying it. Certificates include an MD5 hash signed by the certification 
authority's private key. These certificates conform to the ITU X.509 recommen­
dation for public key certificates, and as such, use X.400 names like the Tom 
Smith example given earlier. 

PGP has a similar scheme (without the use of X.509), but has a problem: 
Should a user believe a certification authority? PEM solves this problem by certi­
fying the certification authorities using what are called PCAs (Policy Certifica­
tion Authorities). These, in turn, are certified by the IPRA (Internet Policy 
Registration Authority), the ultimate arbiter of who's naughty and who's nice. 

Each PCA must define an official policy on registration and file it with IPRA. 
These statements are then signed by IPRA and made public. For exmnple, one 
PCA may insist on having users under its jurisdiction show up in person with a 
birth certificate, drivers' license, passport, two major credit cards, a live witness, 
and a public key on floppy disk. Another PCA may accept email registrations 
from strangers. By making the policy statements public, users have some basis 
for deciding which authorities to trust. No provision has been made for seeing if 
the policies are actually enforced. 

Three different kinds of certification authorities are planned. An organiza­
tional one can issue certificates for its employees. Most companies will run their 
own. A residential one will operate on behalf of private citizens, much as current 
Internet service providers will provide service to anyone willing to pay for it. 
Finally, a scheme is planned for anonymous registration. With all these certifica­
tion authorities running around, the need for the PCAs to ride herd on them should 
now be clear. 

While rigidly hierarchical and bureaucratic, this scheme has the advantage 
over PGP of making certificate revocation potentially practical. Revocation is 
needed if a user wants to change his public key, for example, because it has been 
compromised or his certification authority has been burglarized (or stolen). Revo­
cation is accomplished by a user telling his certification authority that his public 



SEC. 7.4 ELECTRONIC MAIL 669 

key has been compromised (or possibly vice versa). The certification authority 
then adds the serial number of the now-invalid certificate to a list of revoked certi­
ficates, signs it, and spreads the list far and wide. 

Anyone wanting to send a PEM message to a user must therefore first check 
the most recent revocation list to see if the cached public key is still valid. This 
process is analogous to a merchant checking the list of stolen credit cards before 
accepting one. Critics of PEM argue that checking all the time is too much work 
so nobody will bother. Supporters argue that computers do not get bored; if they 
are programmed to check all the time, th,ey will check all the time. 

Some of the similarities and differences between PGP and PEM are listed in 
Fig. 7-51. Most of these points have already been covered, but a few are worth 
commenting on. Authentication seems more important in PEM than in PGP since 
it is mandatory in PEM and optional in PGP. PEM also carries the authentication 
information outside the encryption wrapper, which means that the network can 
verify the origin of every message. As a consequence, eavesdroppers can log who 
is sending to whom, even if they cannot read the messages. 

All these technical differences aside, there is a surprising cultural difference 
as well. PGP, which is not an official internet standard, has the Internet culture. 
PEM, which is an official Internet standard, does not. PGP was based on what 
Dave Clark calls "rough consensus and running code." Somebody (Zimmermann) 
thought of a solution to a well-known problem, implemented it well, and released 
the source code for everyone to use. PEM began as a four-part official standard, 
using ASN.1 to define layouts, X.400 to define names, and X.509 to define certifi­
cates. It uses a rigid three-layer organizational hierarchy for multiple kinds of 
certification authorities, complete with officially certified policy statements and a 
requirement that everyone trust the IPRA. Implementations came later and are far 
behind PGP in quality, quantity, and availability on many platforms. In short, 
PGP looks like a typical Internet package, whereas PEM exhibits most of the 
characteristics of an OSI standard that Internet people hate and PTTs love. You 
figure. 

7.5. USENET NEWS 

One of the more popular applications of computer networking is the world­
wide system of newsgroups called net news. Often net news is referred to as 
USENET, which harks back to a separate UNIX-to-UNIX physical network that 
once carried the traffic using a program called uucp. Nowadays, much of the 
traffic is carried on the Internet, but USENET and the Internet are not the same. 
Some Internet sites do not get net news, and other sites get net news without being 
on the Internet. 

In the follow sections we will describe USENET. First we will look at it from 
the users' viewpoint. Then we will describe how it is implemented. 



670 THE APPLICATION LA YER CHAP. 7 

Item PGP PEM 

Supports encryption? Yes Yes 

Supports authentication? Yes Yes 

Supports nonrepudiation? Yes Yes 

Supports compression? Yes No 

Supports canonicalization? No Yes 

Supports mailing lists? No Yes 

Uses base64 coding? Yes Yes 

Current data encryption algorithm IDEA DES 

Key length for data encryption (bits) 128 56 

Current algorithm for key management RSA RSA or DES 

Key length for key management {bits) 384/512/1024 Variable 

User name space User defined X.400 

X.509 conformant? No Yes 

Do you have to trust anyone? No Yes (IPRA) 

Key certification Ad hoc IPRA/PCA/CA hierarchy 

Key revocation Haphazard Better 

Can eavesdroppers read messages? No No 

Can eavesdroppers read signatures? No Yes 

Internet Standard? No Yes 

Designed by Small team Standards committee 

Fig. 7-51. A comparison of PGP and PEM. 

7.5.1. The User View of USENET 

A newsgroup is a worldwide discussion forum on some specific topic. People 
interested in the subject can "subscribe" to the newsgroup. Subscribers can use a 
special kind of user agent, a news reader, to read all the articles (messages) posted 
to the newsgroup. People can also post articles to the newsgroup. Each article 
posted to a newsgroup is automatically delivered to all the subscribers, wherever 
they may be in the world. Delivery typically takes between a few seconds and a 
few hours, depending how far off the beaten path the sender and receiver are. In 
effect, a newsgroup is somewhat like a mailing list, but internally it is imple­
mented differently. It can also be thought of as a kind of high-level multicast. 

The number of newsgroups is so large (probably over 10,QOO) that they are 



SEC. 7.5 USENET NEWS 671 

arranged in a hierarchy to make them manageable. Figure 7-52 shows the top lev­
els of the "official" hierarchies. Other hierarchies also exist, but these are typi­
cally intended for regional consumption or are in languages other than English. 
One of the other hierarchies alt, is special. Alt is to the official groups as a flea 
market is to a department store. It is a chaotic, unregulated mishmash of news­
groups on all topics, some of which are very popular, and most of which are 
worldwide. 

Name Topics covered 

Comp Computers, computer science, and the computer industry 

Sci The physical sciences and engineering 

Humanities Literature and the humanities 

News Discussion of USENET itself 

Rec Recreational activities, including sports and music 

Misc Everything that does not fit in somewhere else 

Soc Socializin!~ and social issues 

Talk Diatribes, polemics, debates and arguments galore 

Alt Alternative tree covering virtually everything 

Fig. 7-52. USENET hierarchies in order of decreasing signal-to-noise ratio. 

The comp groups were the original USENET groups. These groups are popu­
lated by computer scientists, computer professionals, and computer hobbyists. 
Each one features technical discussions on a topic related to computer hardware 
or software. 

The sci and humanities groups are populated by scientists, scholars, and ama­
teurs with an interest in physics, chemistry, biology, Shakespeare, and so on. Not 
entirely surprisingly, the sci hierarchy is much larger than the humanities hierar­
chy because the very concept of instant electronic communication with colleagues 
all over the world is something most scientists like, and most humanists are at 
least skeptical about. C.P. Snow was right. 

The news hierarchy is used to discuss and manage the news system itself. 
System administrators can get help here, and discussions about whether to create 
new newsgroups occurs here. 

The hierarchies covered so far have a professional, somewhat academic tone. 
That changes with rec which is about recreational activities and hobbies. 
Nevertheless, many of the people who post here are fairly knowledgeable about 
their respective interests. 

As we drift downward, we come to soc, which has many newsgroups concern­
ing, politics, gender, religion, various national cultures, and genealogy. Talk 



672 THE APPLICATION LA YER CHAP. 7 

covers controversial topics and is populated by people who are strong on opinions, 
weak on facts. Alt is a complete alternative tree which operates under its own 
rules. 

Each of the categories listed in Fig. 7-52 is broken into subcategories, recur­
sively. For example, rec.sport is about sports, rec.sport.basketball is about 
basketball, cind rec.sport.basketball.women is about women's basketball. Asam­
ple of some of the newsgroups in each category is given in Fig. 7-53. In many 
cases, the existence of additional groups can be inferred by changing the obvious 
parameters. For example, comp.lang.c is about the C programming language, but 
the .c can be replaced by just about every other programming language to gen­
erate the name of the corresponding newsgroup. 

Numerous news readers exist. Like email readers, some are keyboard based; 
others are mouse based. In nearly all cases, when the news reader is started, it 
checks a file to see which newsgroups the user subscribes to. It then typically 
displays a one-line summary of each as-yet-unread article in the first newsgroup 
and waits for the user to select one or more for reading. The selected articles are 
then displayed one at a time. After being read, they can be discarded, saved, 
printed, and so on. 

News readers also allow users to subscribe and unsubscribe to newsgroups. 
Changing a subscription simply means editing the local file listing which news­
groups the user is subscribed to. To make an analogy, subscribing to a newsgroup 
is like watching a television program. If you want to watch some program every 
week, you just do it. You do not have to register with some central authority first. 

News readers also handle posting. The user composes an article and then 
gives a command or clicks on a icon to send the article on its way. Within a day, 
it will reach almost everyone in the world subscribing to the newsgroup to which 
it was posted. It is possible to crosspost an article, that is, to send it to multiple 
newsgroups with a single command. It is also possible to restrict the geographic 
distribution of a posting. An announcement of Tuesday's colloquium at Stanford 
will probably not be of much interest in, say, Hong Kong, so the posting can be 
restricted to California. 

The sociology of USENET is unique, to put it mildly. Never before has it 
been possible for thousands of people who do not know each other to have world­
wide discussions on a vast variety of topics. For example, it is now possibk for 
someone with a problem to post it to the net. The next day, the poster may have 
18 solutions, and with a little bit of luck, only 17 of them are wrong. 

Unfortunately, some people use their new-found power to communicate to a 
large group irresponsibly. When someone posts a message saying: "People like 
you should be shot" tempers flare and a torrent of abusive postings, called a 
flamewar, typically follows. 

This situation can be attacked in two ways, one individual and one collective. 
Individual users can install a killfile, which specifies that articles with a certain 
subject or from a certain person are to discarded upon arrival, prior to being 



SEC. 7.5 USENET NEWS 673 

Name Topics covered 

Comp.ai Artificial intelligence 

Comp.databases Design and implementation of database systems 

Comp.lang.c The C programming language 

Comp.os.minix Tanenbaum's educational MINIX operating system 

Comp.os.ms-windows.video Video hardware and software for Windows 

Sci. bio. entomology. I epidoptera Research on butterflies and moths 

Sci.geo.earthquakes Geology, seismology, and earthquakes 

Sci.med.orthopedics Orthopedic surgery 

Humanities. lit. authors.shakespeare Shakespeare's plays and poetry 

News.groups Potential new newsgroups 

News.lists Lists relating to USENET 

Rec.arts.poems Free poetry 

Rec.food.chocolate Yum yum 

Rec.humor.funny Did you hear the joke about the farmer who ... 

Rec. music. folk Folks discussing folk music 

Misc. jobs. offered Announcements of positions available 

Misc.health.diabetes Day-to-day living with diabetes 

Soc.culture.estonia Life and culture in Estonia 

Soc.singles Single people and their interests 

Soc.couples Graduates of soc.singles 

Talk.abortion No signal, all noise 
Talk.rumors This is where rumors come from 

Alt.alien. visitors Place to report flying saucer rides 

Alt.bermuda.triangle If you read this, you vanish mysteriously 

Alt. sex.voyeurism Take a peek and see for yourself 

Alt.tv.simpsons Bart et al. 

Fig. 7-53. A small selection .of the newsgroups. 

displayed. Most news readers also allow an individual discussion thread to be 
killed, too. This feature is useful when a discussion looks like it is starting to get 
into an infinite loop. 

If enough subscribers to a group get annoyed with newsgroup pollution, they 
can propose having the newsgroup be moderated. A moderated newsgroup is 
one in which only one person, the moderator, can post articles to the newsgroup. 
All postings to a moderated newsgroup are automatically sent to the moderator, 
who posts the good ones and discards the bad ones. Some topics have both a 
moderated newsgroup and an unmoderated one. 



674 THE APPLICATION LA YER CHAP. 7 

Since thousands of people subscribe to USENET for the first time every day, 
the same beginner's questions tend to be asked over and over. To reduce this 
traffic, many newsgroups have constructed a FAQ (Frequently Asked Ques­
tions) document that tries to answer all the questions that beginners have. Some 
of these are highly authoritative and run to over 100 pages. The maintainer typi­
cally posts them once or twice a month. 

USENET is full of jargon such as BTW (By The Way), ROFL (Rolling On 
the Floor Laughing), and IMHO (In My Humble Opinion). Many people also use 
little ASCII symbols called smileys or emoticons. A few of the more interesting 
ones are reproduced in Fig. 7-54. For most, rotating the book 90 degrees clock­
wise will make them clearer. For a minibook giving over 650 smileys, see 
(Sanderson and Dougherty, 1993). 

- --~~-

Smiley Meaning Smiley Meaning Smiley Meaning 
----·--

:-) I'm happy =I:-) Ab e Lincoln :+) Big nose 
---

: -( I'm sad/angry =):-) Un c le Sam :-)) Double chin 

: - I I'm apathetic ;'<: - ) San ta Claus : -{) Mustache 
--~-

;-) I'm winking <:-( Du n cc #: -) Matted hair 
-- --

:-(0) I'm yelling (-: Au: tralian 8-) Wears glasses 

: -('~) I'm vomiting :-)X Mai 1 with bowtie C:-) Large brain 
-- ~---

Fig. 7-54. Some smileys. 

Although most people use their real names in postings, some people wish to 
remain totally anonymous, especially when posting to controversial newsgroups 
or when posting personal ads to newsgroups dealing with finding partners. This 
desire has led to the creation of anonymous remailers, which are servers that 
accept email messages (including postings) and change the From:, Sender:, and 
Reply-To: fields to make them point to the remailer instead of the sender. Some 
of the remailers assign a number to each user and forward email addressed to 
these numbers, so people can send email replies to anonymous postings like 
"SWF 25 seeks SWM/DWM 20-30 .... " Whether these remailers can keep their 
secrets when the local police become curious about the identity of some user is 
doubtful (Barlow, 1995). 

As more and more people subscribe to USENET, there is a constant demand 
for new and more specialized newsgroups. Consequently, a procedure has been 
established for creating new ones. Suppose that somebody likes cockroaches and 
wants to talk to other cockroach fans. He posts a message to news.groups naming 
the proposed group, say rec.animals. wildlife.cockroaches, and describing why it is 
so important (cockroaches are fascinating; there are 3500 species of them; they 
come in red, yellow, green, brown, and black; they appeared on earth long before 



SEC. 7.5 USENET NEWS 675 

the first dinosaurs; they were probably the first flying animals, and so on). He 
also specifies whether or not it should be moderated. 

Discussion then ensues. When it settles down, an email vote is taken. The 
votes are posted, identifying who voted which way (to prevent fraud). If the yeas 
outnumber the nays by more than 2: 1 and there were at least 100 more yeas than 
nays, the moderator of news.groups posts a message accepting the new news­
group. This message is the signal to system administrators worldwide that the 
new newsgroup has been blessed by the powers that be and is now official. 

New group creation is less formal in the alt hierarchy and this is, in fact, the 
reason alt exists. Some of the newsgroups there are so close to the legal and 
moral edge of what is tolerable that they would never have been accepted in a 
public vote. In effect, the people who supported them, just bypassed the normal 
procedure and created their own hierarchy. Nevertheless, much of the alt hierar­
chy is fairly conventional. 

7.5.2. How USENET Is Implemented 

Some of the smaller news groups are implemented as mailing lists. To post 
an article to such a mailing list, one sends it to the mailing list address, which 
causes copies to be sent to each address on the mailing list. 

However, if half the undergraduates at a large university subscribed to alt.sex, 
the servers there would collapse under the weight of the incoming email. Conse­
quently, USENET is not generally implemented using mailing lists. Instead each 
site (campus, company, or Internet service provider) stores incoming mail in a sin­
gle directory, say, news, with subdirectories for comp, sci, etc. These, in turn 
have subdirectories such as news/comp/os/minix. All incoming news is deposited 
in the appropriate directory. News readers just fetch the articles from there as 
they need them. This arrangement means that each site needs only one copy of 
each news article, no matter how many people subscribe to its newsgroup. After a 
few days, articles time out and are removed from the disk. 

To get on USENET, a site must have a newsfeed from another site on 
USENET. One can think of the set of all sites that get net news as the nodes of a 
directed graph. The transmission lines connecting pairs of nodes form the arcs of 
the graph. This graph is USENET. Note that being on the Internet is neither 
necessary nor sufficient for being on USENET. 

Periodically, each site that wants news can poll its newsfeed(s), asking if any 
new news has arrived since the previous contact. If so, that news is collected and 
stored in the appropriate subdirectory of news. In this manner, news diffuses 
around the network. It is equally possible for the newsfeed, rather than the 
receiver, to take the initiative and make contact when there is enough new news. 
Initially, most sites polled their newsfeeds, but now it is mostly the other way. 

Not every site gets all newsgroups. There are several reasons here. First, the 
total newsfeed exceeds 500 MB per day and is growing rapidly. Storing it all 



676 THE APPLICATION LA YER CHAP. 7 

would require a very large amount of disk space. Second, transmission time and 
cost are issues. At 28.8 kbps, it takes 39 hours and a dedicated telephone line to 
transmit 24 hours worth of news. Even at 56 kbps, getting everything requires 
having a dedicated line for almost 20 hours a day. In fact, the total volume has 
now gotten so large that newsfeeds via satellite have been created. 

Third, not every site is interested in every topic. For example, it is unlikely 
that many people at companies in Finland want to read rec.arts.manga (about 
Japanese comic books). Finally, some newsgroups are a bit too funky for the 
tastes of many system administrators, who then ban them, despite considerable 
local interest. In Dec. 1995, the worldwide CompuServe network (temporarily) 
stopped carrying all newsgroups with "sex" in the name because some minor 
German official thought this would be a good way to combat pornography. The 
ensuing uproar was predictable, instantaneous, worldwide, and very loud. 

News articles have the same format as RFC 822 email messages, but with the 
addition of a few extra headers. This property makes them easy to transport and 
compatible with most of the existing email software. The news headers are 
defined in RFC 1036 An example article is shown in Fig. 7-55. 

From: Vogel@nyu.edu 
Message-Id: <54731@nyu.edu> 
Subject: Bird Sighting 
Path: cs. vu.nl!sun4nl ! EU .net!news.sprintlink.net!in2 .uu .net!pc144.nyu .edu!news 
Newsgroups: rec.birds 
Followup-To: rec.birds 
Distribution: world 
Nntp-Posting-host: nuthatch.bio.nyu.edu 
References: 
Organization: New York University 
Lines: 4 
Summary: Guess what I saw 

I just saw an ostrich on 52nd St. and Fifth Ave. in New York. Is this their migration 
season? Did anybody else see it? 

Jay Vogel 

Fig. 7-55. A sample news article. 

A few words about the news headers are perhaps in order. The Path: header 
is the list of nodes the message traversed to get from the poster to the recipient. 
At each hop, the forwarding machine puts its name at the front of the list. This 
list gives a path back to the poster. The use of exclamation marks (pronounced: 
bang) go back to USENET addresses, which predate DNS. 

The Newsgroups: header tells which newsgroups the message belongs to. It 
may contain more than one newsgroup name. Any message crossposted to 



SEC. 7.5 USENET NEWS 677 

multiple newsgroups will contain all of their names. Because multiple names are 
allowed here, the Followup-To: header is needed to tell people where to post com­
ments and reactions to put all of the subsequent discussion in one newsgroup. 

The Distribution: header tellls how far to spread the posting. It may contain 
one or more state or country codes, the name of a specific site or network, or 
"world." 

The Nntp-Posting-Host: header is analogous to the RFC 822 Sender: header. 
It tells which machine actually posted the article, even if it was composed on a 
different machine (NNTP is the news protocol, described below). 

The References: header indicates that this article is a response to an earlier 
article and gives the ID of that article. It is required on all follow-up articles and 
prohibited when starting a new discussion. 

The Organization: header can be used to tell what company, university, or 
agency the poster is affiliated with. Articles that fill in this header often have a 
disclaimer at the end saying that if the article is goofy, it is not the organization's 
fault. 

The Lines: header gives the length of the body. The header lines and the 
blank line separating the header from the body do not count. 

The Subject: lines tie discussion threads together. Many news readers have a 
command to allow the user to see the next article on the current subject, rather 
than the next article that came in. Also, killfiles and kill commands use this 
header to know what to reject. 

Finally, the Summary: is normally used to summarize the follow-up article. 
On follow-up articles, the Subject: header contains "Re: " followed by the origi­
nal subject. 

NNTP-Network News Transfer Protocol 

Now let us look at how articles diffuse around the network. The initial algo­
rithm just flooded articles onto every line within USENET. While this worked for 
a while, eventually the volume of traffic made this scheme impractical, so some­
thing better had to be worked out. 

Its replacement was a protocol called NNTP (Network News Transfer Pro­
tocol), which is defined in RFC 977. NNTP has something of the same flavor as 
SMTP, with a client issuing commands in ASCII and a server issuing responses as 
decimal numbers coded in ASCII. Most USENET machines now use NNTP. 

NNTP was designed for two purposes. The first goal was to allow news arti­
cles to propagate from one machine to another over a reliable connection (e.g., 
TCP). The second goal was to allow users whose desktop computers cannot 
receive news to read news remotely. Both are widely used, but we will concen­
trate on how news articles spread out over the networ~ using NNTP. 

As mentioned above, two general approaches are possible. In the first one, 
news pull, the client calls one of its newsfeeds and asks for new news. In the 



678 THE APPLICATION LA YER CHAP. 7 

second one, news push, the newsfeed calls the client and announces that it has 
news. The NNTP commands support both of these approaches, as well as having 
people read news remotely. 

To acquire recent articles, a client must first establish a TCP connection with 
port 119 on one of its newsfeeds. Behind this port is the NNTP daemon, which is 
either there all the time waiting for clients or is created on the fly as needed. 
After the connection has been established, the client and server communicate 
using a sequence of commands and responses. These commands and responses 
are used to ensure that the client gets all the articles it needs, but no duplicates, no 
matter how many newsfeeds it uses. The main ones used for moving articles 
between news daemons are listed in Fig. 7-56. 

Command Meaning 

LIST Give me a list of all newsgroups and articles you have 

NEWGROUPS date time Give me a list of newsgroups created after date/time 

GROUP grp Give me a list of all articles in grp 

NEWNEWS grps date time Give me a list of new articles in specified groups 

ARTICLE id Give me a specific article 

POST I have an article for you that was posted here 

IHAVE id I have article id. Do you want it? 

QUIT Terminate the session 

Fig. 7-56. The principal NNTP commands for news diffusion. 

The LIST and NEWGROUPS commands allow the client to find out which 
groups the server has. The former gives the complete list. The latter gives only 
those groups created after the date and time specified. If the client knows the list 
is long, it is more efficient for the client to keep track of what each of its 
newsfeeds has and just ask for updates. The responses to each of these commands 
is a list, in ASCII, one newsgroup per line, giving the name of the newsgroup, the 
number of the last article the server has, the number of the first article the server 
has, and a flag telling whether posting to this newsgroup is allowed. 

Once the client knows which newsgroups the server has, it can begin asking 
about what articles the server has (e.g., for old newsgroups when NEWGROUPS 
is used). The GROUP and NEWNEWS commands are used for this purpose. 
Again, the former gives the full list and the latter gives only updates subsequent to 
the indicated date and time, normally the time of the last connection to this 
newsfeed. The first parameter may contain asterisks, meaning all of them. For 
example, comp.as.* means all the newsgroups that start with the string comp.as. 

After the client has assembled a complete list of which articles exist in which 
groups (or even before it has the full list), it can begin to ask for the articles it 



SEC. 7.5 USENET NEWS 679 

needs using the ARTICLE command. Once all the required articles are in, the 
client can off er articles it has acquired from other newsfeeds using the IHA VE 
command and articles that were posted locally using the POST command. The 
server can accept or decline these, as it wishes. When the client is done, it can 
terminate the session using QUIT. In this way, each machine has complete con­
trol over which articles it gets from which newsfeeds, eliminating all duplicate 
articles. 

As an example of how NNTP works, consider an information provider, 
wholesome.net that wants to avoid controversy at all costs, so the only news­
groups it offers are soc.couples and misc.kids. Nevertheless, management is open 
minded and willing to carry other newsgroups, provided they contain no material 
potentially offensive to anyone. Therefore, it wants to be informed of all newly 
created groups so it can make an informed decision for its customers. A possible 
scenario between wholesome.com acting as the client and its newsfeed, 
feeder.com, acting as the server, is shown in Fig. 7-57. This scenario uses the 
news pull approach (the client initiates the connection to ask for news). The 
remarks in parentheses are comments and not part of the NNTP protocol. 

In this session, wholesome.com first asks if there is any news for soc.couples. 
When it is told there are two articles, it fetches both of them and stores them in 
news/soc/couples as separate files. Each file is named by its article number. 
Then wholesome.com asks about misc.kids and is told there is one article. It 
fetches that one and puts it in news/misc/kids. 

Having gotten all the news about the groups it carries, it now checks for new 
groups and is told that two new groups have appeared since the last session. One 
of them looks promising, so its articles are fetched. The other looks scary, so it is 
not taken. (Wholesome.com has made a big investment in AI software to be able 
to figure out what to carry just by looking at the names.) 

After having acquired all the articles it wants, wholesome.com offers 
feeder.com a new article posted by someone at its site. The offer is accepted and 
the articl~ is transferred. Now wholesome.com offers another article, one that 
came from its other newsfeed. Since feeder.com already has this one, it declines. 
Finally, wholesome.com ends the session and releases the TCP connection. 

The news push approach is similar. It begins with the newsfeed calling the 
machine that is to receive the news. The newsfeed normally keeps track of which 
newsgroups its customers subscribe to and begins by announcing its first article in 
the first of these newsgroups using the IHA VE command. The potential recipient 
then checks its tables to see whether it already has the article, and can accept or 
reject it. If the article is accepted, it is transmitted, followed by a line containing 
a period. Then the newsfeed advertises the second article, and so forth, until all 
the news has been transferred. 

A problem with both news pull and news push is that they use stop and wait. 
Typically 100 msec are lost waiting for an answer to a question. With 100,000 or 
more news articles per day, this lost time adds up to a substantial overhead. 



680 THE APPLICATION LA YER CHAP. 7 

S: 200 feeder.com NNTP server at your service(response to new connection) 
C: NEWNEWS soc.couples 960901 030000 (any new news in soc.couples?) 

S: 230 List of 2 articles follows 
S: <13281@psyc.berkeley.edu> (article 1 of 2 in soc.couples is from Berkeley) 
S: <162721@aol.com> (article 2 of 2 in soc.couples is from AOL) 
S: . (end of list) 

C: ARTICLE <13281@psyc.berkeley.edu> (please give me the Berkeley article) 
S: 220 <13281@psyc.berkeley.edu> follows 
S: (entire article <13281@psyc.berkeley.edu> is sent here) 
S:. (end of article) 

C: ARTICLE <162721@aol.com> (please give me the AOL article) 
S: 220 <162721@aol.com> follows 
S: (entire article <162721@aol.com> is sent here) 
S: . (end of article) 

C: NEWNEWS misc.kids 960901 030000 (any new news in misc.kids?) 
S: 230 List of 1 article follows 
S: <43222@bio.rice.edu> (1 article from Rice) 
S: . (end of list) 

C: ARTICLE <43222@bio.rice.edu>(please give me the Rice article) 
S: 220 <43222@bio.rice.edu> follows 
S: (entire article <43222@bio.rice.edu> is sent here) 
S: . (end of article) 

C: NEWGROUPS 960901 030000 
S: 231 2 new groups follow 
S: rec.pets 
S: rec.nude 
S:. 

C: NEWNEWS rec.pets 0 0 (list everything you have) 
S: 230 List of 1 article follows 
S: <124@fido.net> (1 article from fido.net) 
S:. (end of list) 

C: ARTICLE <124@fido.net> (please give me the fido.net article) 
S: 220 <124@fido.net> follows 
S: (entire article is sent here) 
S:. 

C:POST 
S: 340 (please send your posting) 

C: (article posted on wholesome.com sent here) 
S: 240 (article received) 

C: IHAVE <5321 @foo.com> 
S: 435 (I already have it, please do not send it) 

C: QUIT 
S: 205 (Have a nice day) 

Fig. 7-57. How wholesome.com might acquire news articles from its newsfeed. 



SEC. 7.6 THE WORLD WIDE WEB 681 

7.6. THE WORLD WIDE WEB 

The World Wide Web is an architectural framework for accessing linked 
documents spread out over thousands of machines all over the Internet. In 5 
years, it went from being a way to distribute high-energy physics data to the appli­
cation that millions of people think of as being "The Internet." Its enormous 
popularity stems from the fact that it has a colorful graphical interface that is easy 
for beginners to use, and it provides an enormous wealth of information on almost 
every conceivable subject, from aboriginals to zoology. 

The Web (also known as WWW) began in 1989 at CERN, the European 
center for nuclear research. CERN has several accelerators at which large teams 
of scientists from the participating European countries carry out research in parti­
cle physics. These teams often have members from half a dozen or more coun­
tries. Most experiments are highly complex, and require years of advance plan­
ning and equipment construction. The Web grew out of the need to have these 
large teams of internationally dispersed researchers collaborate using a constantly 
changing collection of reports, blueprints, drawings, photos, and other documents. 

The initial proposal for a web of linked documents came from CERN physi­
cist Tim Berners-Lee in March 1989. The first (text-based) prototype was opera­
tional 18 months later. In December 1991, a public demonstration was given at 
the Hypertext '91 conference in San Antonio, Texas. Development continued 
during the next year, culminating in the release of the first graphical interface, 
Mosaic, in February 1993 (Vetter et al., 1994). 

Mosaic was so popular that a year later, its author, Marc Andreessen left the 
National Center for Supercomputing Applications, where Mosaic was developed, 
to form a company, Netscape Communications Corp., whose goal was to develop 
clients, servers, and other Web software. When Netscape went public in 1995, 
investors, apparently thinking this was the next Microsoft, paid 1.5 billion dollars 
for the stock. This record was all the more surprising because the company had 
only one product, was operating deeply in the red, and had announced in its pros­
pectus that it did not expect to make a profit for the foreseeable future. 

In 1994, CERN and M.I.T. signed an agreement setting up the World Wide 
Web Consortium, an organization devoted to further developing the Web, 
standardizing protocols, and encouraging interoperability between sites. Berners­
Lee became the director. Since then, hundreds of universities and companies 
have joined the consortium. M.I.T. runs the U.S. part of the consortium and the 
French research center, INRIA, runs the European part. Although there are more 
books about the Web than you can shake a stick at, the best place to get up-to-date 
information about the Web is (naturally) on the Web itself. The consortium's 
home page can be found at http://www.w3.org . Interested readers are referred 
there for links to pages covering all of the consortium's documents and activities. 

In the following sections we will describe how the Web appears to the user, 
and, especially, how it works inside. Since the Web is basically a client-server 



682 THE APPLICATION LA YER CHAP. 7 

system, we will discuss both the client (i.e., user) side and the server side. Then 
we will examine the language in which Web pages are written (HTML and Java). 
Finally, comes an examination of how to find information on the Web. 

7.6.1. The Client Side 

From the users' point of view, the Web consists of a vast, worldwide collec­
tion of documents, usually just called pages for short. Each page may contain 
links (pointers) to other, related pages, anywhere in the world. Users can follow a 
link (e.g., by clicking on it), which then takes them to the page pointed to. This 
process can be repeated indefinitely, possibly traversing hundreds of linked pages 
while doing so. Pages that point to other pages are said to use hypertext. 

Pages are viewed with a program called a browser, of which Mosaic and 
Netscape are two popular ones. The browser fetches the page requested, inter­
prets the text and formatting commands that it contains, and displays the page, 
properly formatted, on the screen. An example is given in Fig. 7-58(a). Like 
many Web pages, this one starts with a title, contains some information, and ends 
with the email address of the page's maintainer. Strings of text that are links to 
other pages, called hyperlinks, are highlighted, either by underlining, displaying 
them in a special color, or both. To follow a link, the user places the cursor on the 
highlighted area (using the mouse or the arrow keys) and selects it (by clicking a 
mouse button or hitting ENTER). Although nongraphical browsers, such as Lynx, 
exist, they are not as popular as graphical browsers, so we will concentrate on the 
latter. Voice-based browsers are also being developed. 

Users who are curious about the Department of Animal Psychology can learn 
more about it by clicking on its (underlined) name. The browser then fetches the 
page to which the name is linked and displays it, as shown in Fig. 7-58(b). The 
underlined items here can also be clicked on to fetch other pages, and so on. The 
new page can be on the same machine as the first one, or on a machine halfway 
around the globe. The user cannot tell. Page fetching is done by the browser, 
without any help from the user. If the user ever returns to the main page, the links 
that have already been followed may be shown with a dotted underline (and possi­
bly a different color) to distinguish them from links that have not been followed. 
Note that clicking on the Campus Information line in the main page does nothing. 
It is not underlined, which means that it is just text and is not linked to another 
page. 

Most browsers have numerous buttons and features to make it easier to navi­
gate the Web. Many have a button for going back to the previous page, a button 
for going forward to the next page (only operative after the user has gone back 
from it), and a button for going straight to the user's own home page. Most 
browsers have a button or menu item to set a bookmark on a given page and 
another one to display the list of bookmarks, making it possible to revisit any of 



SEC. 7.6 THE WORLD WIDE WEB 

WELCOME TO THE UNIVERSITY OF EAST PODUNK'S WWW HOME PAGE 

• Campus Information 

o Admissions information 

o Campus map 

o Directions to campus 

o The UEP student body 

• Academic Departments 

o Q_fillartment of Animal Psychology 

o Department of Alternative Studies 

o Department of Microbiotic Cooking 

o Department of Nontraditional Studies 

o Department of Traditional Studies 

Webmaster@ eastpod u n k. edu 

(a) 

THE DEPARTMENT OF ANIMAL PSYCHOLOGY 

• Information for prospective majors 

• Personnel 

o Faculty members 

o Graduate students 

o Nonacademic staff 

• Research Projects 

• Positions available 

• Our most popular courses 

o Dealing with herbivores 

o Horse management 

o l'-lfillotiating with your pet 

o User-friendly doghouse construction 

• Full list of courses 

Webmaster@animalpsyc.eastpodunk.edu 

(b) 

Fig. 7-58. (a) A Web page. (b) The page reached by clicking on 
Department of Animal Psychology 

683 



684 THE APPLICATION LA YER CHAP. 7 

them with a single mouse click. Pages can also be saved to disk or printed. 
Numerous options are generally available for controlling the screen layout and 
setting various user preferences. A comparison of nine browsers is given in (Ber­
ghel, 1996). 

In addition to having ordinary text (not underlined) and hypertext (under­
lined), Web pages can also contain icons, line drawings, maps, and photographs. 
Each of these can (optionally) be linked to another page. Clicking on one of these 
elements causes the browser to fetch the linked page and display it, the same as 
clicking on text. With images such as photos and maps, which page is fetched 
next may depend on what part of the image was clicked on. 

Not all pages are viewable in the conventional way. For example, some pages 
consist of audio tracks, video clips, or both. When hypertext pages are mixed 
with other media, the result is called hypermedia. Some browsers can display all 
kinds of hypermedia, but others cannot. Instead they check a configuration file to 
see how to handle the received data. Normally, the configuration file gives the 
name of a program, called an external viewer, or a helper application, to be run 
with the incoming page as input. If no viewer is configured, the browser usually 
asks the user to choose one. If no viewer exists, the user can tell the browser to 
save the incoming page to a disk file, or to discard it. Helper applications for pro­
ducing speech are making it possible for even blind users to access the Web. 
Other helper applications contain interpreters for special Web languages, making 
it possible to download and run programs from Web pages. This mechanism 
makes it possible to extend the functionality of the Web itself. 

Many Web pages contain large images, which take a long time to load. For 
example, fetching an uncompressed 640 x 480 (VGA) image with 24 bits per 
pixel (922 KB) takes about 4 minutes over a 28.8-kbps modem line. Some 
browsers deal with the slow loading of images by first fetching and displaying the 
text, then getting the images. This strategy gives the user something to read while 
the images are coming in and also allows the user to kill the load if the page is not 
sufficiently interesting to warrant waiting. An alternative strategy is to provide an 
option to disable the automatic fetching and display of images. 

Some page writers attempt to placate potentially bored users by displaying 
images in a special way. First the image quickly appears in a coarse resolution. 
Then the details are gradually filled in. For the user, seeing the whole image after 
a few seconds, albeit at low resolution, is often preferable to seeing it built up 
slowly from the top, scan line by scan line. 

Some Web pages contain forms that request the user to enter information. 
Typical applications of these forms are searching a database for a user-supplied 
item, ordering a product, or participating in a public opinion survey. Other Web 
pages contain maps that allow users to click on them to zoom in or get informa­
tion about some geographical area. Handling forms and active (clickable) maps 
requires more sophisticated processing than just fetching a known page. We will 
describe later how these features are implemented. 



SEC. 7.6 THE WORLD WIDE WEB 685 

Some browsers use the local disk to cache pages that they have fetched. 
Before a page is fetched, a check is made to see if it is in the local cache. If so, it 
is only necessary to check if the page if still up to date. If so, the page need not be 
loaded again. As a result, clicking on the BACK button to see the previous page is 
normally very fast. 

To host a Web browser, a machine must be directly on the Internet, or at least 
have a SLIP or PPP connection to a router or other machine that is directly on the 
Internet. This requirement exists because the way a browser fetches a page is to 
establish a TCP connection to the machine where the page is, and then send a 
message over the connection asking for the page. If it cannot establish a TCP 
connection to an arbitrary machine on the Internet, a browser will not work. 

Sometimes the lengths that people will go to get Web access are amazing. At 
least one company is offering Web-by-Fax service. A client without Internet 
access calls up the Web-by-Fax server and logs in using the telephone keypad. 
He then types in a code identifying the Web page desired and it is faxed to the 
caller's fax machine. 

7 .6.2. The Server Side 

Every Web site has a server process listening to TCP pbrt 80 for incoming 
connections from clients (normally browsers). After a connection has been esta­
blished, the client sends one request and the server sends one reply. Then the con­
nection is released. The protocol that defines the legal requests and replies is 
called HTTP. We will study it in some detail below, but a simple example using 
it may provide a reasonable idea of how Web servers work. Figure 7-59 shows 
how the various parts of the Web model fit together. 

For this example, we can imagine that the user has just clicked on some piece 
of text or perhaps on an icon that points to the page whose name (URL-Uniform 
Resource Locator) is http://www.w3.org/hypertext!WWW!I'heProject.html. We 
will also explain URLs later on in this chapter. For the moment, it is sufficient to 
know that a URL has three parts: the name of the protocol (http), the name of the 
machine where the page is located (www.w3.org), and the name of the file con­
taining the page (hypertext/WWW!I'heProject.html). The steps that occur between 
the user's click and the page beilng displayed are as follows: 

1. The browser determines the URL (by seeing what was selected). 

2. The browser asks DNS: for the IP address of www.w3.org. 

3. DNS replies with 18.23.0.23. 

4. The browser makes a TCP connection to port 80 on 18.23.0.23. 

5. It then sends a GET lhypertext/WWW!I'heProject.html command. 

6. The www.w3.org server sends the file TheProject.html. 



686 

Client 

THE APPLICATION LA YER 

Current page 
displayed by 
browser 

Browser 
program 

HTTP used over 
~ this TCP connection 

Server 
abc.com 

Hyperlink 

to xyz.com 

HTTP 
Server 

Server 
xyz.com 

= 

Iii!.!'..!!. 
JI/ii/} 

The lnterne"-'-t _______ _ 

Fig. 7-59. The parts of the Web model. 

7. The TCP connection is released. 

8. The browser displays all the text in TheProject.html. 

9. The browser fetches and displays all images in TheProject.html. 

CHAP. 7 

HTTP 
Server 

Many browsers display which step they are currently executing in a status line 
at the bottom of the screen. In this way, when the performance is poor, the user 
can see if it is due to DNS not responding, the server not responding, or simply 
network congestion during page transmission. 

It is worth noting that for each in-line image (icon, drawing, photo, etc.) on a 
page, the browser establishes a new TCP connection to the relevant server to fetch 
the image. Needless to say, if a page contains many icons, all on the same server, 
establishing, using, and releasing a new connection for each one is not wildly effi­
cient, but it keeps the implementation simple. Future revisions of the protocol 
will address the efficiency issue. One proposal is given in (Mogul, 1995). 

Because HTTP is an ASCII protocol like SMTP, it is quite easy for a person 
at a terminal (as opposed to a browser) to directly talk to Web servers. All that is 
needed is a TCP connection to port 80 on the server. The simplest way to get 
such a connection is to use the Telnet program. Figure 7-60 shows a scenario of 
how this can be done. In this example, the lines marked C: are typed in by the 
user (client), the lines marked T: are produced by the Telnet program, and the 
lines marked S: are produced by the server at M.I.T. 



SEC. 7.6 

C: telnet www.w3.org 80 
T: Trying 18.23.0.23 ... 

THE WORLD WIDE WEB 

T: Connected to www.w3.org. 
T: Escape character is '"]'. 
C: GET /hypertext/WWW/TheProject.html HTTP/1.0 
C: 

S: HTTP/1.0 200 Document follows 
S: MIME-Version: 1.0 
S: Server: CERN/3.0 
S: Content-Type: text/html 
S: Content-Length: 8247 
S: 

687 

S: .<HEAD> <TITLE> The World Wide Web Consortium (W3C) <!TITLE> </HEAD> 
S: <BODY> 
S: <H1 > <IMG ALIGN=MIDDLE ALT ="W3C" SRC="lcons/WWW/w3c_96x67.gif"> 
S: The World Wide Web Consortium </H1 > <P> 
S: 
S: The World Wide Web is the universe of network-accessible information. 
S: The <A HREF="Consortium/"> World Wide Web Consortium <IA> 
S: exists to realize the full potential of the Web. <P> 
S: 
S: W3C works with the global community to produce 
S: <A HREF="#Specifications"> specifications </A> and 
S: <A HREF="#Reference"> reference software <IA> . 
S: W3C is funded by industrial 
S: <A HREF="Consortium/Member/List.html"> members <IA> 
S: but its products are freely available to all. <P> 
S: 
S: In this document: 
S: <menu> 
S: <Li> <A HREF="#Specifications"> Web Specifications and Development Areas <IA> 
S: <Li> <A HREF="#Reference"> Web Software <IA> 
S: <Li> <A HREF="#Community"> The World Wide Web and the Web Community <IA> 
S: <Li> <A HREF="#Joining"> Getting involved with the W3C <IA> 
S: </menu> 
S: <P> <HR> 
S: <P> W3C is hosted by the 
S: <A HREF="http://www.lcs.mit.edu/"> Laboratory for Computer Science </A> at 
S: <A HREF="http://web.mit.edu/"> MIT <IA> , and 
S: in Europe by <A HREF="http://www.inria.fr/"> INRIA <IA> . 
S: </BODY> 

Fig. 7-60. A sample scenario for obtaining a Web page. 



688 THE APPLICATION LAYER CHAP. 7 

Readers are encouraged to try this scenario personally (preferably from a 
UNIX system, because some other systems do not return the connection status). 
Be sure to note the spaces and the protocol version on the GET line, and the blank 
line following the GET line. As an aside, the actual text that will be received will 
differ from what is shown in Fig. 7-60 for three reasons. First, the example output 
here has been abridged and edited to make it fit on one page. Second, it has been 
cleaned up somewhat to avoid embarrassing the author, who no doubt expected 
thousands of people to examine the formatted page, but zero people to scrutinize 
the HTML that produced it. Third, the contents of the page are constantly being 
revised. Nevertheless, this example should give a reasonable idea of how HTTP 
works. 

What the example shows is the following. The client, in this case a person, 
but normally a browser, first connects to a particular host and then sends a com­
mand asking for a particular page and specifying a particular protocol and version 
to use (HTTP/LO). On line 7, the server responds with a status line telling the 
protocol it is using (the same as the client) and the code 200, meaning OK. This 
line is followed by an RFC 822 MIME message, of which five of the header lines 
are shown in the figure (several others have been omitted to save space). Then 
comes a blank line, followed by the message body. For sending a picture, the 
Content-Type field might be 

Content-Type: lmage/GIF 

In this way, the MIME types allow arbitrary objects to be sent in a standard way. 
As an aside, the MIME Content-Transfer-Encoding header is not needed because 
TCP allows arbitrary byte streams, even pictures, to be sent without modification. 
The meaning of the commands within angle brackets used in the sample page will 
be discussed later in this chapter. 

Not all servers speak HTTP. In particular, many older servers use the FTP, 
Gopher, or other protocols. Since a great deal of useful information is available 
on FTP and Gopher servers, one of the design goals of the Web was to make this 
information available to Web users. One solution is to have the browser use these 
protocols when speaking to an FTP or Gopher server. Some of them, in fact, use 
this solution, but making browsers understand every possible protocol makes them 
unnecessarily large. 

Instead, a different solution is often used: proxy servers (Luotonen and Altis, 
1994). A proxy server is a kind of gateway that speaks HTTP to the browser but 
FTP, Gopher, or some other protocol to the server. It accepts HTTP requests and 
translates them into, say, FTP requests, so the browser does not have to under­
stand any protocol except HTTP. The proxy server can be a program running on 
the same machine as the browser, but it can also be on a free-standing machine 
somewhere in the network serving many browsers. Figure 7-61 shows the differ­
ence between a browser that can speak FTP and one that uses a proxy. 



SEC. 7.6 THE WORLD WIDE WEB 

HTTP 

Browser FTP Reply 

FTP Request B 
1--~~~-~~~---- s:;:er 

~--~ 

FTP Request 
FTP 

HTTP HTTP Request 

Browser 
HTTP Reply 

Proxy 
FTP Reply 

Fig. 7-61. (a) A browser that speaks FTP. (b) A browser that does not. 

689 

FTP 
Server 

Often users can configure their browsers with proxies for protocols that the 
browsers do not speak. In this way, the range of information sources to which the 
browser has access is increased. 

In addition to acting as a go-between for unknown protocols, proxy servers 
have a number of other important functions, such as caching. A caching proxy 
server coHects and keeps all the pages that pass through it. When a user asks for a 
page, the proxy server checks to see if it has the page. If so, it can check to see if 
the page is still current. In the event that the page is still current, it is passed to 
the user. Otherwise, a new copy is fetched. 

Finally, an organization can put a proxy server inside its firewall to allow 
users to access the Web, but without giving them full Internet access. In this con­
figuration,, users can talk to the proxy server, but it is the proxy server that con­
tacts remote sites and fetches pages on behalf of its clients. This mechanism can 
be used, for example, by high schools, to block access to Web sites the principal 
feels are inappropriate for tender young minds. 

For information about one of the more popular Web servers (NCSA's HTTP 
daemon) and its performance, see (Katz et al., 1994; and Kwan et al., 1995). 

HTTP-HyperText Transfer Protocol 

The standard Web transfer protocol is HTTP (HyperText Transfer Proto­
col). Each interaction consists of one ASCII request, followed by one RFC 822 
MIME-like response. Although the use of TCP for the transport connection is 
very common, it is not formally required by the standard. If ATM networks 
become reliable enough, the HTTP requests and replies could be carried in AAL 5 
messages just as well. 

HTTP is constantly evolving. Several versions are in use and others are under 
development. The material presented below is relatively basic and is unlikely to 
change in concept, but some details may be a little different in future versions. 



690 THE APPLICATION LA YER CHAP. 7 

The HTTP protocol consists of two fairly distinct items: the set of requests 
from browsers to servers and the set of responses going back the other way. We 
will now treat each of these in turn. 

All the newer versions of HTTP support two kinds of requests: simple 
requests and full requests. A simple request is just a single GET line naming the 
page desired, without the protocol version. The response is just the raw page, 
with no headers, no MIME, and no encoding. To see how this works, try making 
a Telnet connection to port 80 of www.w3.org (as shown in the first line of 
Fig. 7-60) and then type 

GET /hypertext/WWW/TheProject.html 

but without the HTTP/1.0 this time. The page will be returned with no indication 
of its content type. This mechanism is needed for backward compatibility. Its use 
will decline as browsers and servers based on full requests become standard. 

Full requests are indicated by the presence of the protocol version on the GET 
request line, as in Fig. 7-60. Requests may consist of multiple lines, followed by 
a blank line to indicate the end of the request, which is why the blank line was 
needed in Fig. 7-60. The first line of a full request contains the command (of 
which GET is but one of the possibilities), the page desired, and the 
protocol/version. Subsequent lines contain RFC 822 headers. 

Although HTTP was designed for use in the Web, it has been intentionally 
made more general than necessary with an eye to future object-oriented applica­
tions. For this reason, the first word on the full request line is simply the name of 
the method (command) to be executed on the Web page (or general object). The 
built-in methods are listed in Fig. 7-62. When accessing general objects, addi­
tional object-specific methods may also be available. The names are case sensi­
tive, so, GET is a legal method but get is not. 

Method Description 

GET Request to read a \ Neb page 

HEAD Request to read a \ Neb page's header 
~---

PUT Request to store a Web page 

POST Append to a namec l resource (e.g., a Web page) 

DELETE Remove the Web p 1age 

LINK Connects two exist ing resources 

UNLINK Breaks an existing connection between two resources 

Fig. 7-62. The built-in HTTP request methods. 

The GET method requests the server to send the page (by which we mean 
object, in the most general case), suitably encoded in MIME. However, if the 



SEC. 7.6 THE WORLD WIDE WEB 691 

GET request is followed by an If-Modified-Since header, the server only sends the 
data if it has been modified since the date supplied. Using this mechanism, a 
browser that is asked to display a cached page can conditionally ask for it from 
the server, giving the modification time associated with the page. If the cache 
page is still valid, the server just sends back a status line announcing that fact, 
thus eliminating the overhead of transferring the page again. 

The HEAD method just asks for the message header, without the actual page. 
This method can be used to get a page's time of last modification, to collect infor­
mation for indexing purposes, or just to test a URL for validity. Conditional 
HEAD requests do not exist. 

The PUT method is the reverse of GET: instead of reading the page, it writes 
the page. This method makes it possible to build a collection of Web pages on a 
remote server. The body of the request contains the page. It may be encoded 
using MIME, in which case the lines following the PUT might include Content­
Type and authentication headers, to prove that the caller indeed has permission to 
perform the requested operation. 

Somewhat similar to PUT is the POST method. It too bears a URL, but 
instead of replacing the existing data, the new data is "appended" to it in some 
generalized sense. Posting a message to a news group or adding a file to a bul­
letin board system are examples of appending in this context. It is clearly the 
intention here to have the Web take over the functionality of the USENET news 
system. 

DELETE does what you might expect: it removes the page. As with PUT, 
authentication and permission play a major role here. There is no guarantee that 
DELETE succeeds, since even if the remote HTTP server is willing to delete the 
page, the underlying file may have a mode that forbids the HTTP server from 
modifying or removing it. 

The LINK and UNLINK methods allow connections to be established between 
existing pages or other resources. 

Every request gets a response consisting of a status line, and possibly addi­
tional information (e.g., all or part of a Web page). The status line can bear the 
code 200 (OK), or any one of a variety of error codes, for example 304 (not modi­
fied), 400 (bad request), or 403 (forbidden). 

The HTTP standards describe message headers and bodies in considerable 
detail. Suffice it to say that these are very close to RFC 822 MIME messages, so 
we will not look at them here. 

7.6.3. Writing a Web Page in HTML 

Web pages are written in a language called HTML (HyperText Markup 
Language). HTML allows users to produce Web pages that include text, graph­
ics, and pointers to other Web pages. We will begin our study of HTML with 
these pointers, since they are the glue that holds the Web together. 



692 THE APPLICATION LA YER CHAP. 7 

URLs-Uniform Resource Locators 

We have repeatedly said that Web pages may contain pointers to other Web 
pages. Now it is time to see how these pointers are implemented. When the Web 
was first created, it was immediately apparent that having one page point to 
another Web page required mechanisms for naming and locating pages. In partic­
ular, there were three questions that had to be answered before a selected page 
could be displayed: 

1. What is the page called? 

2. Where is the page located? 

3. How can the page be accessed? 

If every page were somehow assigned a unique name, there would not be any 
ambiguity in identifying pages. Nevertheless, the problem would not be solved. 
Consider a parallel between people and pages. In the United States, almost every­
one has a social security number, which is a unique identifier, as no two people 
have the same one. Nevertheless, armed only with a social security number, there 
is no way to find the owner's address, and certainly no way to tell whether you 
should write to the person in English, Spanish, or Chinese. The Web has basically 
the same problems. 

The solution chosen identifies pages in a way that solves all three problems at 
once. Each page is assigned a URL (Uniform Resource Locator) that effec­
tively serves as the page's worldwide name. URLs have three parts: the protocol 
(also called a scheme), the DNS name of the machine on which the page is 
located, and a local name uniquely indicating the specific page (usually just a file 
name on the machine where it resides). For example, the URL for the author's 
department is 

http://www.cs.vu.nl/welcome.html 

This URL consists of three parts: the protocol (http), the DNS name of the host 
(www.cs.vu.nl), and the file name (welcome.html), with certain punctuation 
separating the pieces. 

Many sites have certain shortcuts for file names built in. For example, -user/ 
might be mapped onto user's WWW directory, with the convention that a refer­
ence to the directory itself implies a certain file, say, index.html. Thus the 
author's home page can be reached at 

http://www.cs.vu.nl/-ast/ 

even though the actual file name is different. At many sites, a null file name 
defaults to the organization's home page. 

Now it should be clear how hypertext works. To make a piece of text click­
able, the page writer must provide two items of information: the clickable text to 



SEC. 7.6 THE WORLD WIDE WEB 693 

be displayed and the URL of the page to go to if the text is selected. When the 
text is selected, the browser looks up the host name using DNS. Now armed with 
the host's IP address, the browser then establishes a TCP connection to the host. 
Over that connection, it sends the file name using the specified protocol. Bingo. 
Back comes the page. This is precisely what we saw in Fig. 7-60. 

This URL scheme is open-ended in the sense that it is straightforward to have 
protocols other than HTTP. In fact, URLs for various other common protocols 
have been defined, and many browsers understand them. Slightly simplified 
forms of the more common ones are listed in Fig. 7-63. 

Name Used for Example 

http Hypertext (HTML) http://www.cs.vu.nl/-ast/ 

ftp FTP ftp://ftp.cs.vu.nl/pub/minix/README 

file Local file /usr/suzanne/prog.c 

news News group news:comp.os.rriinix 

news News article news:AA0134223112@cs.utah.edu 

gopher Gopher gopher://gopher.tc.umn.edu/11 /libraries 

mailto Sending email mailto:kim@acm.org 

telnet Remote login telnet://www.w3.org:80 

Fig. 7-63. Some commori URLs. 

Let us briefly go over the list. The http protocol is the Web's native language, 
the one spoken by HTTP servers. It supports all the methods of Fig. 7-62, as well 
as whatever object-specific methods are needed. 

The ftp protocol is used to access files by FTP, the Internet's file transfer pro­
tocol. FTP has been around more than two decades and is well entrenched. 
Numerous FTP servers all over the world allow people anywhere on the Internet 
to log in and download whatever files have been placed on the FTP server. The 
Web does not change this; it just makes obtaining files by FTP easier, as FTP has 
a somewhat arcane interface. In due course, FTP will probably vanish, as there is 
no particular advantage for a site to run an FTP server instead of an HTTP server, 
which can do everything that the FTP server can do, and more (although there are 
some arguments about efficiency). 

It is possible to access a local file as a Web page, either by using the jlle pro­
tocol, or more simply, by just naming it. This approach is similar to using FTP 
but does not require having a server. Of course, it only works for local files. 

The news protocol allows a Web user to call up a news article as though it 
were a Web page. This means that a Web browser is simultaneously a news 
reader. In fact, many browsers have buttons or menu items to make reading 
USENET news even easier than using standard news readers. 



694 THE APPLICATION LA YER CHAP. 7 

Two formats are supported for the news protocol. The first format specifies a 
newsgroup and can be used to get a list of articles from a preconfigured news site. 
The second one requires the identifier of a specific news article to be given, in this 
case AAOl34223112@cs.utah.edu. The browser then fetches the given article 
from its preconfigured news site using the NNTP protocol. 

The gopher protocol is used by the Gopher system, which was designed at the 
University of Minnesota and named after the school's athletic teams, the Golden 
Gophers (as well as being a slang expression meaning "go for", i.e., go fetch). 
Gopher predates the Web by several years. It is an information retrieval scheme, 
conceptually similar to the Web itself, but supporting only text and no images. 
When a user logs into a Gopher server., he is presented with a menu of files and 
directories, any of which can be linked to another Gopher menu anywhere in the 
world. 

Gopher's big advantage over the Web is that it works very well with 25 x 80 
ASCII terminals, of which there are still quite a few around, and because it is text 
based, it is very fast. Consequently, there are thousands of Gopher servers all 
over the world. Using the gopher protocol, Web users can access Gopher and 
have each Gopher menu presented as a clickable Web page. If you are not fami­
liar with Gopher, try the example given in Fig. 7-63 or have your favorite Web 
search engine look for "gopher." 

Although the example given does not illustrate it, it is also possible to send a 
complete query to a Gopher server using the gopher+ protocol. What is displayed 
is the result of querying the remote Gopher server. 

The last two protocols do not really have the flavor of fetching Web pages, 
and are not supported by all browsers, but are useful anyway. The mailto protocol 
allows users to send email from a Web browser. The way to do this is to click on 
the OPEN button and specify a URL consisting of mailto: followed by the 
recipient's email address. Most browsers will respond by popping up a form con­
taining slots for the subject and other header lines and space for typing the mes­
sage. 

The telnet protocol is used to establish an on-line connection to a remote 
machine. It is used the same way as the Telnet program, which is not surprising, 
since most browsers just call the Telnet program as a helper application. As an 
exercise, try the scenario of Fig. 7-60 again, but now using a Web browser. 

In short, the URLs have been designed to not only allow users to navigate the 
Web, but to deal with FTP, news, Gopher, email, and telnet as well, making all 
the specialized user interface programs for those other services unnecessary, and 
thus integrating nearly all Internet access into a single program, the Web browser. 
If it were not for the fact that this scheme was designed by a physics researcher, it 
could easily pass for the output of some software company's advertising depart­
ment. 

Despite all these nice properties, the growing use of the Web has turned up an 
inherent weakness in the URL scheme. A URL points to one specific host. For 



SEC. 7.6 THE WORLD WIDE WEB 695 

pages that are heavily referenced, it is desirable to have multiple copies far apart, 
to reduce the network traffic. The trouble is that URLs do not provide any way to 
reference a page without simultaneously telling where it is. There is no way to 
say: "I want page xyz, but I do not care where you get it." To solve this problem 
and make it possible to replicate pages, the IETF is working on a system of URis 
(Universal Resource Identifiers). A URI can be thought of as a generalized 
URL. This topic is the subject of much current research. 

Although we have discussed only absolute URLs here, relative URLs also 
exist. The difference is analogous to the difference between the absolute file 
name !usr/ast/foobar and just foobar when the context is unambiguously defined. 

HTML-HyperText Markup Language 

Now that we have a good idea of how URLs work, it is time to look at HTML 
itself. HTML is an application of ISO standard 8879, SGML (Standard Gen­
eralized Markup Language), but specialized to hypertext and adapted to the 
Web. 

As mentioned earlier, HTML is a markup language, a language for describing 
how documents are to be formatted. The term "markup" comes from the old days 
when copyeditors actually marked up documents to tell the printer-in those days, 
a human being-which fonts to use, and so on. Markup languages thus contain 
explicit commands for formatting. For example, in HTML, <B> means start 
boldface mode, and <IB> means leave boldface mode. The advantage of a 
markup language over one with no explicit markup is that writing a browser for it 
is straightforward: the browser simply has to understand the markup commands. 
TeX and troff are other well-known examples of markup languages. 

Documents written in a markup language can be contrasted to documents pro­
duced with a WYSIWYG (What You See Is What You Get) word processor, such 
as MS-Word® or WordPerfect®. These systems may store their files with hidden 
embedded markup so they can reproduce them later, but not all of them work this 
way. Word processors for the Macintosh, for example, keep the formatting infor­
mation in separate data structures, not as commands embedded in the user files. 

By embedding the markup commands within each HTML file and standardiz­
ing them, it becomes possible for any Web browser to read and reformat any Web 
page. Being able to reformat Web pages after receiving them is crucial because a 
page may have been produced full screen on a 1024 x 768 display with 24-bit 
color but may have to be displayed in a small window on a 640 x 480 screen with 
8-bit color. Proprietary WYSIWYG word processors cannot be used on the Web 
because their internal markup languages (if any) are not standardized across ven­
dors, machines and operating systems. Also, they do not handle reformatting for 
different-sized windows and different resolution displays. However, word pro­
cessing program can offer the option of saving documents in HTML instead of in 
the vendor's proprietary format, and some of them already do. 



696 THE APPLICATION LA YER CHAP. 7 

Like HTTP, HTML is in a constant state of flux. When Mosaic was the only 
browser, the language it interpreted, HTML 1.0, was the de facto standard. When 
new browsers came along, there was a need for a formal Internet standard, so the 
HTML 2.0 standard was produced. HTML 3.0 was initially created as a research 
effort to add many new features to HTML 2.0, including tables, toolbars, 
mathematical formulas, advanced style sheets (for defining page layout and the 
meaning of symbols), and more. 

The official standardization of HTML is being managed by the WWW Con­
sortium, but various browser vendors have added their own ad hoc extensions. 
These vendors hope to get people to write Web pages using their extensions, so 
readers of these pages will need the vendor's browser to properly interpret the 
pages. This tendency does not make HTML standardization any easier. 

Below we will give a brief introduction to HTML, just to give an idea of what 
it is like. While it is certainly possible to write HTML documents with any stand­
ard editor, and many people do, it is also possible to use special HTML editors 
that do most of the work (but correspondingly give the user less control over all 
the details of the final result). 

A proper Web page consists of a head and a body enclosed by <HTML> and 
</HTML> tags (formatting commands), although most browsers do not complain 
if these tags are missing. As can be seen from Fig. 7-64(a), the head is bracketed 
by the <HEAD> and </HEAD> tags and the body is bracketed by the <BODY> 
and </BODY> tags. The commands inside the tags are called directives. Most 
HTML tags have this format, that is, <SOMETHING> to mark the beginning of 
something and </SOMETHING> to mark its end. Numerous other examples of 
HTML are easily available. Most browsers have a menu item VIEW SOURCE or 
something like that. Selecting this item displays the current page's HTML source, 
instead of its formatted output. 

Tags can be in either lowercase or uppercase. Thus <HEAD> and <head> 
mean the same thing, but the former stands out better for human readers. Actual 
layout of the HTML document is irrelevant. HTML parsers ignore extra spaces 
and carriage returns since they have to reformat the text to make it fit the current 
display area. Consequently, white space can be added at will to make HTML 
documents more readable, something most of them are badly in need of. As 
another consequence, blank lines cannot be used to separate paragraphs, as they 
are simply ignored. An explicit tag is required. 

Some tags have (named) parameters. For example 

<IMG SRC="abc" ALT ="foobar"> 

is a tag, <IMG>, with parameter SRC set equal to abc and parameter ALT set 
equal to foobar. For each tag, the HTML standard gives a list of what the permit­
ted parameters, if any, are, and what they mean. Because each parameter 1s 
named, the order in which the parameters are given is not significant. 



SEC. 7.6 THE WORLD WIDE WEB 697 

<HTML> <HEAD> <TITLE> AMALGAMATED WIDGET, INC. <!TITLE> </HEAD> 
<BODY> <H1> Welcome to AWi's Home Page </H1> 
<IMG SRC="http://www.widget.com/images/logo.gif" ALT ="AWi Logo"> <BR> 
We are so happy that you have chosen to visit <B> Amalgamated Widget's</B> 
home page. We hope <I> you <II> will find all the information you need here. 
<P>Below we have links to information about our many fine products. 
You can order electronically (by WWW), by telephone, or by fax. <HR> 
<H2> Product information </H2> 
<UL> <LI> <A HREF="http://widget.com/products/big"> Big widgets <IA> 

<LI> <A HREF="http://wiclget.com/products/little"> Little widgets <IA> 
</UL> 
<H2> Telephone numbers </H~~> 
<UL> <LI> By telephone: 1-800-WIDGETS 

<LI> By fax: 1-415-765-4321 
</UL> </BODY> </HTML> 

(a) 

Welcome to A Wl's Home Page 

We are so happy that you have chosen to visit Amalgamated Widget's home page. We hope 
you will find all the information you need here. 

Below we have links to information about our many fine products. You can order electronically 
(by WWW), by telephone, or by FAX. 

Product Information 

• Big widgets 

• Little widgets 

Telephone numbers 

• 1-800-WIDGETS 

• 1-415-765-4321 

(b) 

Fig. 7-64. (a) The HTML for a sample Web page. (b) The formatted page. 



698 THE APPLICATION LAYER CHAP. 7 

Technically, HTML documents are written in the ISO 8859-1 Latin- I charac­
ter set, but for users whose keyboards only support ASCII, escape sequences are 
present for the special characters, such as e. The list of special characters is given 
in the standard. All of them begin with an ampersand and end with a semicolon. 
For example, &egrave; produces e and &eacute; produces e. Since <, >, and & 
have special meanings, they can be expressed only with their escape sequences, 
&lt; &gt; and &amp; respectively. 

The main item in the head is the title, delimited by <TITLE> and </TITLE>, 
but certain kinds of meta-information may also be present. The title itself is not 
displayed on the page. Some browsers use it to label the page's window. 

Let us now take a look at some of the other features illustrated in Fig. 7-64. 
All of the tags used in Fig. 7-64 and some others are shown in Fig. 7-65. Head­
ings are generated by an <Hn> tag, where n is a digit in the range 1 to 6. <Hl> is 
the most important heading; <H6> is the least important one. It is up to the 
browser to render these appropriately on the screen. Typically the lower num­
bered headings will be displayed in a larger and heavier font. The browser may 
also choose to use different colors for each level of heading. Typically <Hl> 
headings are large and boldface with at least one blank line above and below. In 
contrast, <H2> headings are in a smaller font, and with less space above and 
below. 

The tags <B> and <I> are used to enter boldface and italics mode, respec­
tively. If the browser is not capable of displaying boldface and italics, it must use 
some other method of rendering them, for example, using a different color for 
each or perhaps reverse video. Instead of specifying physical styles such as bold­
face and italics, authors can also use logical styles such as <DN> (define), <EM> 
(weak emphasis), <STRONG> (strong emphasis), and <VAR> (program vari­
ables). The logical styles are defined in a document called a style sheet. The 
advantage of the logical styles is that by changing one definition, all the variables 
can be changed, for example, from italics to a constant width font. 

HTML provides various mechanisms for making lists, including nested lists. 
The <UL> tag starts an unordered list. The individual items, which are marked 
with the <LI> tag in the source, appear with bullets ( •) in front of them. A vari­
ant of this mechanism is <OL>, which is for ordered lists. When this tag is used, 
the <LI> items are numbered by the browser. A third option is <MENU>, which 
typically produces a more compact list on the screen, with no bullets and no 
numbers. Other than the use of different starting and ending tags, <UL>, <OL>, 
and <MENU> have the same syntax and similar results. 

In addition to the list mechanisms shown in Fig. 7-65, there are two others 
that are worth mentioning briefly. <DIR> can be used for making short tables. 
Also, <DL> and </DL> can make definition lists (glossaries) with two-part 
entries, whose parts are defined by <DT> and <DD> respectively. The first is for 
the name, the second for its meaning. These features are largely superseded by 
the (more general and complex) table mechanism, described below. 



SEC. 7.6 THE WORLD WIDE WEB 699 

Tag Description 

<HTML> ... </HTML> Declares the Web page to be written in HTML 

<HEAD> ... </HEAD> Delimits the page's head 

<TITLE> ... <!TITLE> Defines the title (not displayed on the page) 

<BODY> ... </BODY> Delimits the page's body 

<Hn> ... <IHn> Delimits a level n heading 

<B> ... </B> Set ... in boldface 

<I> ... </I> Set ... in italics 

<UL> ... </UL> Brackets an unordered (bulleted) list 

<OL> ... </OL> Brackets a numbered list 

<MENU> ... </MENU> Brackets a menu of <Li> items 

<LI> Start of a list item (there is no </LI>) 

<BR> Force a break here 

<P> Start of paragraph 

<HR> Horizontal rule 

<PRE> ... </PRE> Preformatted text; do not reformat 

<IMG SRC=" ... "> Load an image here 

<A HREF=" ... "> ... <IA> Defines a hyperlink 

Fig. 7-65. A selection of common HTML tags. Some have additional parameters. 

The <BR>, <P>, and <HR> tags all indicate a boundary between sections of 
text. The precise format can be determined by the style sheet associated with the 
page. The <BR> tag just forces a line break. Typically, browsers do not insert a 
blank line after <BR>. In contrast, <P> starts a paragraph, which might, for 
example, insert a blank line and possibly some indentation. (Theoretically, <IP> 
exists to mark the end of a paragraph, but it is rarely used; most HTML authors do 
not even know it exists.) Finally, <HR> forces a break and draws a horizontal 
line across the screen. 

HTML 1.0 had no ability to display tables or other formatted information. 
Worse yet, if the HTML writer carefully formatted a table by judicious use of 
spaces and carriage returns, browsers would ignore all the layout and display the 
page as if all the formatted material were unformatted. To prevent browsers from 
messing up carefully laid out text, the <PRE> and </PRE> tags were provided. 
They are instructions to the browser to just display everything in between literally, 
character for character, without changing anything. As the table and other fancy 
layout features become more widely implemented, the need for <PRE> will 



700 THE APPLICATION LA YER CHAP. 7 

diminish, except for program listings, for which most programmers will tolerate 
no formatting other than their own. 

HTML allows images to be included in-line on a Web page. The <IMG> tag 
specifies that an image is to be loaded at the current position in the page. It can 
have several parameters. The SRC parameter gives the URL (or URI) of the 
image. The HTML standard does not specify which graphic formats are permit­
ted. In practice, all browsers support GIF files and many support JPEG files as 
well. Browsers are free to support other formats, but this extension is a two-edged 
sword. If a user is accustomed to a browser that supports, say, BMP files, he may 
include these in his Web pages and later be surprised when other browsers just 
ignore all of his wonderful art. 

Other parameters of <IMG> are ALIGN, which controls the alignment of the 
image with respect to the text baseline (TOP, MIDDLE, BOTTOM), ALT, which 
provides text to use instead of the image when the user has disabled images, and 
ISMAP, a flag indicating that the image is an active map. 

Finally, we come to hyperlinks, which use the <A> (anchor) and <IA> tags. 
Like <IMG>, <A> has various parameters, including HREF (the URL), NAME 
(the hyperlink's name), and METHODS (access methods), among others. The text 
between the <A> and <IA> is displayed. If it is selected, the hyperlink is fol­
lowed to a new page. It is also permitted to put an <IMG> image there, in which 
case clicking on the image also activates the hyperlink. 

As an example, consider the following HTML fragment: 

<A HREF="http:llwww.nasa.gov"> NASA's home page <IA> 

When a page with this fragment is displayed, what appears on the screen is 

NASA's home page 

If the user subsequently clicks on this text, the browser immediately fetches the 
page whose URL is http://www.nasa.gov and displays it. 

As a second example, now consider 

<A HREF="http:llwww.nasa.gov"> <IMG SRC="shuttle.gif" ALT ="NASA"> <IA> 

When displayed, this page shows a picture (e.g., of the space shuttle). Clicking on 
the picture switches to NASA's home page, just as clicking on the underlined text 
did in the previous example. If the user has disabled automatic image display, the 
text NASA will be displayed where the picture belongs. 

The <A> tag can take a parameter NAME to plant a hyperlink, so it can be 
ref erred to from within the page. For example, some Web pages start out with a 
clickable table of contents. By clicking on an item in the table of contents, the 
user jumps to the corresponding section of the page. 

One feature that HTML 2.0 did not include and which many page authors 
missed, was the ability to create tables whose entries could be clicked on to active 
hyperlinks. As a consequence, a large amount of work was done to add tables to 



SEC. 7.6 THE WORLD WIDE WEB 701 

HTML 3.0. Below we give a very brief introduction to tables, just to capture the 
essential flavor. 

An HTML table consists of one or more rows, each consisting of one or more 
cells. Cells can contain a wide range of material, including text, figures, and even 
other tables. Cells can be merged, so, for example, a heading can span multiple 
columns. Page authors have limited control over the layout, including alignment, 
border styles, and cell margins, but the browsers have the final say in rendering 
tables. 

An HTML table definition is listed in Fig. 7-66(a) and a possible rendition is 
shown in Fig. 7-66(b ). This example just shows a few of the basic features of 
HTML tables. Tables are started by the <TABLE> tag. Additional information 
can be provided to describe general properties of the table. 

The <CAPTION> tag can be used to provide a figure caption. Each row is 
started with a <TR> (Table Row) tag. The individual cells are marked as <TH> 
(Table Header) or <TD> (Table Data). The distinction is made to allow browsers 
to use different renditions for them, as we have done in the example. 

Numerous other tags are also allowed in tables. They include ways to specify 
horizontal and vertical cell alignments, justification within a cell, borders, group­
ing of cells, units, and more. 

Forms 

HTML 1.0 was basically one way. Users could call up pages from informa­
tion providers, but it was difficult to send information back the other way. As 
more and more commercial organizations began using the Web, there was a large 
demand for two-way traffic. For example, many companies wanted to be able to 
take orders for products via their Web pages, software vendors wanted to distri­
bute software via the Web and have customers fill out their registration cards 
electronically, and companies offering Web searching wanted to have their custo­
mers be able to type in search keywords. 

These demands led to the inclusion of forms starting in HTML 2.0. Forms 
contain boxes or buttons that allow users to fill in information or make choices 
and then send the information back to the page's owner. They use the <INPUT> 
tag for this purpose. It has a variety of parameters for determining th\;:: size, 
nature, and usage of the box displayed. The most common forms are blank fields 
for accepting user text, boxes that can be checked, active maps, and SUBMIT but­
tons. The example of Fig. 7-67 illustrates some of these choices. 

Let us start our discussion of forms by going over this example. Like all 
forms, this one is enclosed between the <FORM> and </FORM> tags. Text not 
enclosed in a tag is just displayed. All the usual tags (e.g., <B>) are allowed in a 
form. Three kinds of input boxes are used in this form. 

The first kind of input box follows the text "Name". The box is 46 characters 
wide and expects the user to type in a string, which is then stored in the variable 



702 THE APPLICATION LA YER CHAP. 7 

<HTML> <HEAD> <TITLE> A sample page with a table <!TITLE> </HEAD> 
<BODY> 
<TABLE BORDER=ALL RULES=ALL> 
<CAPTION> Some Differences between HTML Versions </CAPTION> 
<COL ALIGN=LEFT> 
<COL ALIGN=CENTER> 
<COL ALIGN=CENTER> 
<COL ALIGN=CENTER> 
<TR> <TH>ltem <TH>HTML 1.0 <TH>HTML 2.0 <TH>HTML 3.0 
<TR> <TH> Active Maps and Images <TD> <TD> x <TD> x 
<TR> <TH> Equations <TD> <TD> <TD> x 
<TR> <TH> Forms <TD> <TD> x <TD> x 
<TR> <TH> Hyperlinks x <TD> <TD> x <TD> x 
<TR> <TH> Images <TD> x <TD> x <TD> x 
<TR> <TH> Lists <TD> x <TD> x <TD> x 
<TR> <TH> Toolbars <TD> <TD> <TD> x 
<TR> <TH> Tables <TD> <TD> <TD> x 
<!TABLE> </BODY> </HTML> 

(a) 

Some Differences between HTML Versions 
-~· 

Item HTML 1.0 HTML 2.0 HTML 3.0 
Active Maps and Images x x 
Equations x 

t------·-

Forms x x 
Hyperlinks x x x 
Images x x x 
Lists x x x 
Toolbars x 
Tables x 

Fig. 7-66. (a) An HTML table. (b) A possible rendition of this table. 

customer for later processing. The <P> tag instructs the browser to display subse­
quent text and boxes on the next line, even if there is room on the current line. By 
using <P> and other layout tags, the author of the page can control the look of the 
form on the screen. 

The next line of the form asks for the user's street address, 40 columns wide, 
also on a line by itself. Then comes a line asking for the city, state, and country. 
No <P> tags are used between the fields here, so the browser displays them all on 
one line if they will fit. As far as the browser is concerned, this paragraph just 
contains six items: three strings alternating with three boxes. It displays them 
linearly from left to right, going over to a new line whenever the current line 



SEC. 7.6 THE WORLD WIDE WEB 703 

<HTML> <HEAD> <TITLE> AWi CUSTOMER ORDERING FbRM <fflTLE> </HEAD> 
<BODY> 
<H1 >Widget Order Form </H1 > 
<FORM ACTION="http://widget.com/cgi-bin/widgetorder" M ETHOD=POST > 
Name <INPUT NAME="customer" SIZE=46> <P> 
Street Address <INPUT NAME="address" SIZE=40> <P> 
City <INPUT NAME="city" SIZE=20> State <INPUT NAME="state" SIZE =4> 
Country <INPUT NAME="country" SIZE=10> <P> 
Credit card# <INPUT NAME="cardno" SIZE=10> 
Expires <INPUT NAME="expires" SIZE=4> 
M/C <INPUT NAME="cc" TYPE=RADIO VALUE="mastercard"> 
VISA <INPUT NAME="cc" TYPE=RADIO VALUE="visacard"> <P> 
Widget size Big <INPUT NAME="product" TYPE=RADIO VALUE="expensive"> 
Little <INPUT NAME="product" TYPE=RADIO VALUE="cheap"> 
Ship by express courier <INPUT NAME="express" TYPE=CHECKBOX> <P> 
<INPUT TYPE=SUBMIT VALUE="Submit order"> <P> 
Thank you for ordering an AWi widget, the best widget money can buy! 
</FORM> </BODY> </HTML> 

(a) 

Widget Order Form 
Name I I 

~------------------------~ 

Street address I I '-----------------------------' 

City [ ____________ ~! State~ Countr~'-------------'I 

Credit card # I J Expires ~ M/C 0 Visa 0 
Widget size Big 0 Little 0 Ship by express courier 

[Sllb""mit orderlj 

Thank you tor ordering an AWi widget, the best widget money can buy! 

(b) 

Fig. 7-67. (a) The HTML for an order form. (b) The formatted page. 

cannot hold the next item. Thus it is conceivable that on a 1024 x 768 screen all 
three strings and their corresponding boxes will appear on the same line, but on a 
640 x 480 screen they might be split over two lines. In the worst scenario, the 
word "Country" is at the end of one line and its box is at the beginning of the 
next line. There is no way to tell the browser to force the box adjacent to the text. 



704 THE APPLICATION LA YER CHAP. 7 

The next line asks for the credit card number and expiration date. Transmit­
ting credit card numbers over the Internet should only be done when adequate 
security measures have been taken. For example, some, but not all, browsers 
encrypt information sent by users. Even then, secure communication and key 
management are complicated matters and are subject to many kinds of attacks, as 
we saw earlier. 

Following the expiration date we encounter a new feature: radio buttons. 
These are used when a choice must be made among two or more alternatives. The 
intellectual model here is a car radio with half a dozen buttons for choosing sta­
tions. The browser displays these boxes in a form that allows the user to select 
and deselect them by clicking on them (or using the keyboard). Clicking on one 
of them turns off all the other ones in the same group. The visual presentation 
depends on the graphical interface being used. It is up to the browser to choose a 
form that is consistent with Windows, Motif, OS/2 Warp, or whatever windowing 
system is being used. The widget size also uses two radio buttons. The two 
groups are distingqished by their NAME field, not by static scoping using some­
thing like <RADIQBUTTON> ... </RADIOBUTTON>. 

The VALUE parameters are used to indicate which radio button was pushed. 
Depending on which of the credit card options the user has chosen, the variable cc 
will be set to either the string "mastercard" or the string "visacard". 

After the two sets of radio buttons, we come to the shipping option, 
represented by a box of type CHECKBOX. It can be either on or off. Unlike 
radio buttons, where exactly one out of the set must be chosen, each box of type 
CHECKBOX can be on or off, independently of all the others. For example, when 
ordering a pizza via Electropizza's Web page, the user can choose sardines and 
onions and pineapple (if she can stand it), but she cannot choose small and 
medium and large for the same pizza. The pizza toppings would be represented 
by three separate boxes of type CHECKBOX, whereas the pizza size would be a 
set of radio buttons. 

As an aside, for very long lists from which a choice must be made, radio but­
tons are somewhat inconvenient. Therefore, the <SELECT> and </SELECT> 
tags are provided to bracket a list of alternatives, but with the semantics of radio 
buttons (unless the MULTIPLE parameter is given, in which case the semantics 
are those of checkable boxes). Some browsers render the items between 
<SELECT> and </SELECT> as a pop-up menu. 

We have now seen two of the built-in types for the <INPUT> tag: RADIO and 
CHECKBOX. In fact, we have already seen a third one as well: TEXT. Because 
this type is the default, we did not bother to include the parameter TYPE= TEXT, 
but we could have. Two other types are PASSWORD and TEXTAREA. A PASS­
WORD box is the same as a TEXT box, except that the characters are not 
displayed as they are typed. A TEXTAREA box is also the same as a TEXT box, 
except that it can contain multiple lines. 

Getting back to the example of Fig. 7-67, we now come across an example of 



SEC. 7.6 THE WORLD WIDE WEB 705 

a SUBMIT button. When this is clicked, the user information on the form is sent 
back to the machine that provided the form. Like all the other types, SUBMIT is a 
reserved word that the browser understands. The VALUE string here is the label 
on the button and is displayed. All boxes can have values; we only needed that 
feature here. For TEXT boxes, the contents of the VALUE field are displayed 
along with the form, but the user can edit or erase it. CHECKBOX and RADIO 
boxes can also be initialized, but with a field called CHECKED (because VALUE 
just gives the text, but does not indicate a preferred choice). 

The browser also understands the RESET button. When clicked, it resets the 
form to it~ initial state. 

Two more types are worth noting. The first is the HIDDEN type. This is out­
put only; it cannot be clicked or modified. For example, when working through a 
series of pages throughout which choices have to be made, previously made 
choices might be of HIDDEN type, to prevent them from being changed. 

Our last type is IMAGE, which is for active maps (and other clickable 
images). When the user clicks on the map, the (x, y) coordinates of the pixel 
selected (i.e., the current mouse position) are stored in variables and the form is 
automatically returned to the owner for further processing. 

Forms can be submitted in three ways: using the submit button, clicking on an 
active map, or typing ENTER on a one-item TEXT form. When a form is submit­
ted, some action must be taken. The action is specified by the parameters of the 
<FORM> tag. The ACTION parameter specifies the URL (or URI) to tell about 
the submilssion, and the METHOD parameter tells which method to use. The 
order of these (and all other) parameters is not significant. 

The way the form's variables are sent back to the page's owner depends on 
the value of the METHOD parameter. For GET, the only way to return values is 
to cheat: they are appended to the URL, separated by a question mark. This 
approach can result in URLs that are thousands of characters long. Nevertheless, 
this method is frequently used because it is simple. 

If the POST method (see Fig. 7-62) is used, the body of the message contains 
the form's variables and their values. The & is used to separate fields; the + 
represents the space character.. For example, the response to the widget form 
might be 

customer=John+Doe&address==1 OO+Main+St.&city=White+Plains& 
state=NY &country=USA&cardno= 1234567890&expires=6/98&cc=mastercard& 
product=cheap&express=on 

The string would be sent back to the server as one line, not three. If a CHECK­
BOX is not selected, it is omitted from the string. It is up to the server to make 
sense of this string. 

Fortunately, a standard for handling forms' data is already available. It is 
called CGI (Common Gateway Interface). Let us consider a common way of 



706 THE APPLICATION LAYER CHAP. 7 

using it. Suppose that someone has an interesting database (e.g., an index of Web 
pages by keyword and topic) and wants to make it available to Web users. The 
CGI way to make the database available is to write a script (or program) that 
interfaces (i.e., gateways) between the database and the Web. This script is given 
a URL, by convention in the directory cgi-bin. HTTP servers know (or can be 
told) that when they have to invoke a method on a page located in cgi-bin, they 
are to interpret the file name as being an executable script or program and start it 
up. 

Eventually, some user opens the form associated with our widget script and 
has it displayed. After the form has been filled out, the user clicks on the SUB­
MIT button. This action causes the browser to establish a TCP connection to the 
URL listed in the form's ACTION parameter-the script in the cgi-bin directory. 
Then the browser invokes the operation specified by the form's METHOD, usu­
ally POST. The result of this operation is that the script is started and presented 
(via the TCP connection, on standard input) with the long string given above. In 
addition, several environment variables are set. For example, the environment 
variable CONTENLLENGTH tells how long the input string is. 

At this point, most scripts need to parse their input to put it in a more con­
venient form. This goal can be accomplished by calling one of the many libraries 
or script procedures available. The script can then interact with its database in 
any way it wishes. For example, active maps normally use CGI scripts to take 
different actions depending on where the user pointed. 

CGI scripts can also produce output and do many other things as well as 
accepting input from forms. If a hyperlink points to a CGI script, when that link 
is invoked, the script is started up, with several environment variables set to pro­
vide some information about the user. The script then writes a file (e.g. an HTML 
page) on standard output, which is shipped to the browser and interpreted there. 
This mechanism makes it possible for the script to generate custom Web pages on 
the spot. 

For better or worse, some Web sites that answer queries have a database of 
advertisements that can be selectively included in the Web page being con­
structed, depending on what the user is looking for. If the user is searching for 
"car" a General Motors ad might be displayed, whereas a search for "vacation" 
might produce an ad from United Airlines. These ads usually include clickable 
text and pictures. 

7.6.4. Java 

HTML makes it possible to describe how static Web pages should appear, 
including tables and pictures. With the cgi-bin hack, it is also possible to have a 
limited amount of two-way interaction (forms, etc.). However, rapid interaction 
with Web pages written in HTML is not possible. To make it possible to have 



SEC. 7.6 THE WORLD WIDE WEB 707 

highly interactive Web pages, a different mechanism is needed. In this section we 
will describe one such mechanism, the Java TM language and interpreter. 

Java originated when some people at Sun Microsystems were trying to 
develop a new language that was suitable for programming information-oriented 
consumer appliances. Later it was reoriented toward the World Wide Web. 
Although Java borrows many ideas and some syntax from C and C++, it is a new 
object-oriented language, compatible with neither. It is sometimes said that in the 
large, Java is like Smalltalk, but that in the small it is like C or C++. 

The main idea of using Java for interactive Web pages is that a Web page can 
point to a small Java program, called an applet (SAT I verbal analogy question: 
Pig is to piglet as application is to ?). When the browser reaches it, the applet is 
downloaded to the client machine and executed there in a secure way. It must be 
structurally impossible for the applet to read or write any files that it is not author­
ized to access. It must also be impossible for the applet to introduce viruses or 
cause any other damage. For these reasons, and to achieve portability across 
machines, applets are compiled to a bytecode after being written and debugged. It 
is these bytecode programs that are pointed to by Web pages, similar to the way 
images are pointed to. When an applet arrives, it is executed interpretively in a 
secure environment. 

Before getting into the details of the Java language, it is worth saying a few 
words about what the whole Java system is good for and why people want to 
include Java applets in their Web pages. For one thing, applets allow Web pages 
to become interactive. For example, a web page can contain a board for tic tac 
toe, othello, or chess, and play a game with the user. The game-playing program 
(written in Java) is just downloaded along with its Web page. As a second exam­
ple, complex forms (e.g., spreadsheets) can be displayed, with the user filling in 
items and seeing calculations made instantly. 

It is entirely possible that in the long run, the model of people buying pro­
grams, installing them, and running them locally will be replaced by a model in 
which people click on Web pages, get applets downloaded to do work for them, 
possibly in conjunction with a remote server or data base. Instead of filling out 
the income tax form by hand or using a special program, people may be able to 
click on the IRS home page to get a tax applet downloaded. This applet might ask 
some questions, then contact the person's employer, bank, and stockbroker to col­
lect the required salary, interest, and dividend information, fill the tax form in, and 
then display it for verification and submission. 

Another reason for running applets on the client machine is they make it pos­
sible to add animation and sound to Web pages without having to spawn external 
viewers. The sound can be played when the page is loaded, as background music, 
or when some specific event happens (e.g., clicking on the cat makes it meow). 
The same is true for animation. Because the applet is running locally, even if it is 
being interpreted, it can write all over (its portion) of the screen any way it wants 
to, and at very high speed (compared to a remote cgi-bin shell script). 



708 THE APPLICATION LA YER CHAP. 7 

The Java system has three parts: 

1. A Java-to-bytecode compiler. 

2. A browser that understands applets. 

3. A bytecode interpreter. 

The developer writes the applet in Java, then compiles it to bytecode. To include 
this compiled applet on a Web page, a new HTML tag, <APPLET>, has been 
invented. A typical use is 

<APPLET CODE=game.class WIDTH=100 HEIGHT=200> </APPLET> 

When the browser sees the <APPLET> tag, it fetches the compiled applet 
game.class from the current Web page's site (or if another parameter, CODE­
BASE, is present, from the URL it specifies). The browser than passes the applet 
to the local bytecode interpreter for execution (or interprets the applet itself, if it 
has an internal interpreter). The WIDTH and HEIGHT parameters give the size of 
the applet's default window, in pixels. 

In a sense, the <APPLET> tag is analogous to the <IMG> tag. In both cases, 
the browser goes and gets a file and then hands it off to a (possibly internal) inter­
preter for display within a bounded area of the screen. Then it continues process­
ing the Web page. 

For applications that need very high performance, some Java interpreters have 
the ability to compile bytecode programs to actual machine language on··the-fly, 
as needed. 

As a consequence of this model, Java-based browsers are extensible in a way 
that first-generation browsers are not. First generation browsers are basically 
HTML interpreters that have built-in modules for speaking the various protocols 
needed, such as HTTP 1.0, FTP, etc., as well as decoders for various image for­
mats. An example is shown in Fig. 7-68(a). If someone invents or popularizes a 
new format, such as audio or MPEG-2, these old browsers are not able to read 
pages containing them. At best, the user has to find, download, and install an 
appropriate external viewer. 

With a Java-based browser, the situation is different. At startup, the browser 
is effectively an empty Java virtual machine, as shown in Fig. 7-68(b). By load­
ing HTML and HTTP applets, it becomes able to read standard Web pages. How­
ever, as new protocols and decoders are required, their classes are loaded dynami­
cally, possibly over the network from sites specified in Web pages. After a while, 
the browser might look like Fig. 7-68( c ). 

Thus if someone invents a new format, all that person has to do is include the 
URL of an applet for handling it in a Web page, and the browser will automati­
cally fetch and load the applet. No first-generation browser is capable of automat­
ically downloading and installing new external viewers on-the-fly. The ability to 



SEC. 7.6 THE WORLD WIDE WEB 

0... 
f- 0... 
f- f-
I LL 

"5. 
(jj ·5 

0... 0... ..c 'ID Cf) 
f- f- 0. c t5 LL 2 z 0 Qi 0 i3 (/) z ('.) f- 0... 

HTML interpreter 

Operating system 

(a) 

~ 

('.) 6 
UJ UJ 
0... 0... 
-; 2 

(No protocol or image 
interpreters built in) 

Java interpreter 

Operating system 

(b) 

Java interpreter 

Operating system 

(c) 

Fig. 7-68. (a) A first generation browser. (b) A Java-based browser at startup. 
(c) The browser of (b) after running for a while. 

709 

load applets dynamically means that people can easily experiment with new for­
mats without first having to have endless standardization meetings to reach a con­
sensus. 

This extensibility also applies to protocols. For some applications, special 
protocols are needed, for example, secure protocols for banking and commerce. 
With Java, these protocols can be loaded dynamically as needed, and there is no 
need to achieve universal standardization. To communicate with company X, you 
just download its protocol applet. To talk to company Y, you get its protocol 
applet. There is no need for X and Y to agree on a standard protocol. 

Introduction to the Java Language 

The objectives listed above have led to a type-safe, object-oriented language 
with built-in multithreading and no undefined or system dependent features. 
What follows is a highly simplified description of Java, just to give a feel for it. 
Many features, details, options, and special cases have been omitted for the sake 
of brevity. The complete language specification, and much more about Java, is 
available on the Web itself (naturally) at http://java.sun.com. For tutorials on 
Java, see (Campione and Walrath, 1996; and Van der Linden, 1996). For the full 
story, see (Arnold and Gosling, 1996; and Gosling et al., 1996). For a brief com­
parison between Java and Microsoft's answer to it (Blackbird), see (Singleton, 
1996). 

As we mentioned above, in the small, Javil is similar to C and C++. The lexi­
cal rules, for example, are pretty much the same (e.g., tokens are delimited by 
white space, and new lines can be inserted between any two tokens). Comments 
can be inserted using either the C syntax (/* ... */) or the C++ syntax (// ... ). 

Java has eight primitive data types, as listed in Fig. 7-69. Each type has a 
specific size, independent of the local implementation. Thus unlike C, where an 
integer may be 16, 32, or 64 bits, depending on the underlying machine 



710 THE APPLICATION LA YER CHAP. 7 

architecture, a Java int is always 32 bits, no more and no less, no matter what kind 
of machine the interpreter is running on. This consistency is essential since the 
same applet must run on 16-bit, 32-bit, and 64-bit machines, and give the same 
result on all of them. 

Type Size Description 

Byte 1 Byte A signed integer between -128 and + 127 

Short 2 Bytes A signed 2-byte integer 

Int 4 Bytes A signed 4-byte integer 

Long 8 Bytes A signed 8-byte integer 

Float 4 Bytes A 4-byte IEEE floating-point number 

Double 8 Bytes An 8-byte IEEE floating-point number 

Boolean 1 Bit The only values are true and false 

Char 2 Sytes A character in Unicode 

Fig. 7-69. The basic Java data types. 

Arithmetic variables (the first 6 types) can be combined using the usual arith­
metic operators (including ++ and - - ) and compared using the usual relational 
operators (e.g., <, <=, ==, !=). Conversions between types are permitted where 
they make sense. 

Java uses the 16-bit Unicode instead of ASCII for characters, so character 
variables are 2 bytes long. The first 127 Unicode characters are the same as 
ASCII for backward compatibility. Above these are some graphic symbols, and 
then the characters needed for Russian, Arabic, Hebrew, Japanese (kanji, kata­
kana, and hiragana), and virtually every other language. Characters not present in 
ASCII can be represented with \u followed by four hexadecimal digits. For exam­
ple, \u0ae6 is the Gujarati zero. 

Java allows one dimensional arrays to be declared. For example, 

int[] table; 

declares an array, table, but does not allocate any space for it. That can be done 
later on, as in C++, for example, by 

table= new int [1024]; 

to allocate an array with 1024 entries. It is not necessary (or even possible) to 
return arrays that are no longer needed; the garbage collector reclaims them. Thus 
the highly error-prone malloc and free library routines are not needed for storage 
management. Arrays can be initialized, and arrays of arrays can be used to get 
higher dimensionality, as in C. Strings are available, but they are defined in a 
class, rather than being simply character arrays ending with a null byte. 



SEC. 7.6 THE WORLD WIDE WEB 711 

The Java control statements are shown in Fig. 7-70. The first nine have 
essentially the same syntax and semantics as in C, except that where a Boolean 
expression is required, the language actually insists upon a Boolean expression. 
Also, the break and continue statements now can take labels indicating which of 
the labeled loops to exit or repeat. 

Statement Description Example 

Assignm~nt Assign a value n = i + j; 

If Boolean choice if (k < 0) k = O; else k = 2*k; 

Switch Select a case switch (b) {case 1: n++; case 2: n-;} 

For Iteration for (i = O; i < n; i++) a[i] = b[i]; 

While Repetition while (n < k) n += i; 

Do Repetition do {n = n + n} while (n < m); 

Break Exit statement break label; 

Return Return return n; 

Continue Next iteration continue label; 

Throw Raise exception throw new lllegalArgumentException(); 

Try Exception scoping try { ... } catch (Exception e) {return -1 }; 

Synchronized Mutual exclusion synchronized void update(int s) { ... } 

Fig. 7-70. The Java statements. The notation { ... } indicates a block of code. 

The next two statements are in C++ but not in C. The throw and try state­
ments deal with exception handling. Java defines a variety of standard excep­
tions, such as attempting to divide by zero, and allows programmers to define and 
raise their own exceptions. Programmers can write handlers to catch exceptions, 
making it unnecessary to constantly test if something has gone wrong (e.g., when 
reading from a file). The throw statement raises an exception, and the try state­
ment defines a scope to associate exception handlers with a block of code in 
which an exception might occur. 

The synchronized statement is new to Java and has to do with the fact that 
Java programs can have multiple threads of control. To avoid race conditions, 
this statement is used to delimit a block of code (or a whole procedure) that must 
not have more than one thread active in it at once. Such blocks of code are usu­
ally called critical regions. When the synchronized statement is executed, the 
thread executing it must acquire the lock associated with the critical region, exe­
cute the code, and then release the lock. If the lock is not available, the thread 
waits until it is free. By guarding entire procedures this way and using condition 
variables, programmers have the full power of monitors (Hoare, 1974). 



712 THE APPLICATION LA YER CHAP. 7 

Java programs can be called with arguments. Command-line processing is 
similar to C, except that the argument array is called args instead of argv and 
args[O] is the first parameter, not the program name. Figure 7-71 illustrates a 
small Java program that computes a table of factorials, just to give an idea of what 
a small Java program looks like. 

class Factorial {/*This program consists of a single class with two methods. *I 

public static void main (int argc, String args[]) {II main program 
long i, f, lower= 1, upper= 20; II declarations of four longs 

for (i = lower; i <= upper; i++) { 

} 
} 

f = factorial(i); 
System.out.println(i + 11 11 + f); 

static long factorial (long k) { 
if (k == 0) 

} 
} 

return 1; 
else 

return k * factorial(k-1); 

II loop from lower to upper 
II f = i! 
II print i and f 

II recursive factorial function 

II O! = 1 

II kl= k * (k-1)! 

Fig. 7-71. A Java program for computing and printing O! to 20!. 

Despite both being object-oriented languages based on C, Java and C++ differ 
in some ways. Some features were removed from Java to make it typesafe or 
easier to read. These include #define, typedef, enums, unions, structs, operator 
overloading, explicit pointers, global variables, standalone functions, and friend 
functions. It almost goes without saying that the goto statement has been sent to 
that special place reserved for obsolete programming language features. Other 
features were added to give the language more power. The features added include 
garbage collection, multithreading, object interfaces, and packages. 

Object Orientation in Java 

In traditional procedural languages such as Pascal or C, a program consists of 
a collection of variables and procedures, without any general organizing principle. 
In contrast in object-oriented languages, (almost) everything is an object. An 
object normally contains some internal (i.e., hidden) state variables along with 
some public procedures, called methods, for accessing them. Programs that use 
the object are expected (and can be forced) to invoke the methods to manipulate 
the object's state. In this way, the object writer can control how programs use the 



SEC. 7.6 THE WORLD WIDE WEB 713 

information inside the object. This principle is called encapsulation, and is the 
basis of all object-oriented programming. 

Java tries to capture the best of both worlds. It can be used as a traditional 
procedural language or as an object-oriented language. The Java example of 
Fig. 7-71, for example, could equally well have been written in C, and in essen­
tially the same way. In this view, a subset of Java can be regarded as a cleaned­
up version of C. However, for writing Web pages, Java is better regarded as an 
object-oriented language, so we will study its object orientation in this section. 

A Java program consists of one or more packages, each of which contains 
some class definitions. Packages can be accessed remotely over a network, so 
those intended for use by a wide audience must have unique names. Normally, 
hierarchical names are used, starting with the reverse of their machine's DNS 
name, for example 

EDU.univ.cs.catie.games.chess 

A class definition is a template for stamping out object instances, each of 
which contains the same state variables and same methods as all the other object 
instances of its class. The values of the state variables within different objects are 
independent, however. Classes are thus like cookie cutters: they are not cookies 
themselves, but are used to stamp out structurally identical cookies, with each 
cookie cutter producing a different shape of cookie. Once produced, different 
cookies (objects) are independent of one another. 

Java objects can be produced dynamically during execution, for example by 

object = new ClassName() 

These objects are stored on the heap and removed by the garbage collector when 
no longer needed. In this way, storage management in Java is handled by the sys­
tem, with no need for the dreaded malloc and free procedures, or even for explicit 
pointers, for that matter. 

Each class is based on another class. A newly defined class is said to be a 
subclass of the class on which it is based, the superclass. A (sub)class always 
inherits the methods of its superclass. It may or may not have direct access to the 
superclass' internal variables, depending on whether or not the superclass wants 
that. For example, if a superclass, A, has methods Ml, M2, and M3, and a sub­
class, B, defines a new method, M4, then objects created from B, will have 
methods Ml, M2, M3, and M4. The property of a class automatically acquiring all 
the methods of its superclass is called inheritance, and is an important property 
of Java. Adding new methods to the superclass' methods is called extending the 
superclass. As an aside, some object-oriented languages allow classes to inherit 
methods from two or more superclasses (multiple inheritance), but the Java 
designers thought this property to be too messy and intentionally left it out. 

Since every class has exactly one immediate superclass, the set of all classes 
in a Java program form a tree. The class at the top of the tree is called Object. 



714 THE APPLICATION LA YER CHAP. 7 

All other classes inherit its methods. Any class whose superclass is not explicitly 
mentioned in its definition defaults to being a subclass of the Object class. The 
Factorial class of Fig. 7-71, for example, is thus a subclass of Object. 

Let us now take a look at an example of the object-oriented concepts 
presented so far. In Fig. 7-72 we have a package defining two classes, Complex­
Number, for defining and using complex numbers (i.e., numbers with a real part 
and an imaginary part), and test, for showing how ComplexNumber can be used. 

class ComplexNumber { 
II Hidden data. 
protected double re, im; 

II Define a subclass of Object called ComplexNumber 

II real and imaginary parts 

} 

II Five methods that manage the hidden data. 
public void Complex(double x, double y) {re= x; im = y;} 
public double Real() {return re;} 
public double Imaginary() {return im;} 
public double Magnitude() {return Math.sqrt(re*re + im*im);} 
public double Angle() {return Math.atan(imlre);} 

class test { II A second class, for testing ComplexNumber 
public static void main (String args[]) { 

} 
} 

ComplexNumber c; II declare an object of class ComplexNumber 

c =new ComplexNumber(); II actually allocate storage for c 
c.Complex(3.0, 4.0); II invoke the Complex method to initialize c 
System.out.println("The magnitude of c is " + c.Magnitude() ); 

Fig. 7-72. A package defining two classes. 

Like Factorial, the class ComplexNumber is based on Object, because no 
other superclass is named in its definition. Each object of class ComplexNumber 
represents one complex number. Each object of this class contains two hidden 
variables, re, and im, both 64-bit floating-point numbers, for representing the real 
and imaginary parts, respectively. They cannot be accessed outside the class 
definition (and its subclasses), because they have been declared protected. Had 
they been declared private, then they would have been visible only to Complex­
Number and not to any subclasses. For the moment, private would have been fine, 
but we will soon define a subclass. Had they been declared public, they would 
have been visible everywhere the package was visible, thus destroying much of 
the value of object-oriented programming. Nevertheless, situations do exist in 
which having the internal state of an object be public is sometimes needed. 



SEC. 7.6 THE WORLD WIDE WEB 715 

Five methods are defined on objects belonging to class ComplexNumber. 
Users of the class are thus restricted to the operations provided by these five 
methods, and cannot get at the state directly. An example of how objects of class 
ComplexNumber are created, initialized, and used is given in test. 

When this package is compiled, the Java compiler produces two binary 
(bytecode) files, one containing each of the classes and named after its class. 
Typing the command 

java test 

results in invoking the Java interpreter with class test as parameter. The inter­
preter then looks for a method called main, and upon finding it, executes it. The 
result of execution is that the line 

The magnitude of c is 5 

is printed out. 
Now let us define a subclass of ComplexNumber, just to see how that works. 

It starts out by importing the original class, to learn what it does and what its 
methods are. Then it defines an extension of ComplexNumber, which we will call 
HairyNumber. The new class automatically inherits the five methods present in 
the superclass. To make things interesting, we will define a sixth method, AddTo, 
in the subclass, which adds a complex number to the object, increasing its real and 
imaginary parts. 

The subclass definition is shown in Fig. 7-73, along with another test program 
showing how an object belonging to class HairyNumber can be used. When the 
new test program is run, it will print out 

h = (-0.5,6) 

Remember that the six methods are usable on the objects a and h, without regard 
to which method was defined where. If we now define yet another subclass based 
on HairyNumber and give it, say, three new methods, objects produced from it 
will have nine valid methods. 

In addition to adding new methods to its superclass, a subclass can override 
(replace) existing methods by simply redefining them. Thus it is possible for a 
subclass to redefine all the methods inherited from its superclass, so objects 
belonging to the two classes have nothing in common. Doing so, however, is in 
poor taste, and should be avoided. 

Finally, a Java class may define multiple methods with the same name but dif­
ferent parameters and different definitions. When the compiler sees a method 
invocation using this name, it has to use the parameter types to determine which 
method to use. This property is called overloading or polymorphism. Unlike 
C++, where operators can also be overloaded, in Java, only methods, not opera­
tors, can be overloaded, to make programs easier to understand. 



716 THE APPLICATION LA YER 

import ComplexNumber; II import the ComplexNumber package 

class HairyNumber extends ComplexNumber { 
public void AddTo(ComplexNumber z) { 

II define a new class 
II with one method 

} 
} 

re= re+ z.Real(); 
im = im + z.lmaginary(); 

class test2 { II test program for HairyNumber 
public static void main(String args[]) { 

} 
} 

HairyNumber a, h; II declare two HairyNumbers 

a= new HairyNumber(); II allocate storage for a 
h = new HairyNumber(); II allocate storage for h 
a.Complex(1.0, 2.0); II assign a value to a 
h.Complex(-1.5, 4.0); II assign a value to h 
h.AddTo(a); II invoke the AddTo method on h 
System.out.println("h = (" + h.Real() + "," + h.lmaginary() + ")" ); 

Fig. 7-73. A subclass of ComplexNumber defining a new method. 

The Application Programmers Interface 

CHAP. 7 

In addition to the bare language, the Java designers have defined and imple­
mented about 200 classes with the initial release. The methods contained in these 
classes form a kind of standard environment for Java program developers. The 
classes are written in Java, so they are portable to all platforms and operating sys­
tems. 

While a detailed discussion of all these classes and methods is clearly beyond 
the scope of this book, a brief description may be of some interest. The 200 
classes are grouped into seven packages of uneven size, each of which is focused 
on some central theme. Applets that need a particular package can include it 
using the Java import statement. The methods contained within can just be used 
as needed. This mechanism replaces the need for including header files in C. It 
also replaces the need for libraries, since the packages are dynamically loaded 
during execution when they are invoked. 

The seven packages are summarized in Fig. 7-74. Thejava.lang package con­
tains classes that can be viewed as part of the language, but are technically not. 
These include classes for managing the classes themselves, threads, and exception 
handling. The standard mathematical and string libraries are also here. 



SEC. 7.6 THE WORLD WIDE WEB 717 

Package Example functionality 

Java.lang Classes, threads, exceptions, math, strings 

Java.io 1/0 on streams and random access files, printing 

Java.net Sockets, IP addresses, URLs, datagrams 

Java.util Stacks, hash tables, vectors, time, date 

Java.applet Getting and displaying Web pages, audio, Object class 

Java.awt Events, dialog, menus, fonts, graphics, window management 

Java.awt.image Colors, image cropping, filtering, and conversion 

Java.awt.peer Access to the underlying window system 

Fig. 7-74. The packages included in the standard APL 

Like C, the Java language contains no I/O primitives. I/O is done by loading 
and using the java. io package. It is analogous to the standard I/O library in C. 
Methods are provided for reading and writing streams, random access files, and 
doing the formatting needed for printing. In Fig. 7-71 we saw one of these 
methods, println, which does formatted printing. 

Closely related to I/O is network transport. Methods that look up and manage 
IP addresses are located here. Access to sockets is also part of this package. So is 
datagram preparation. The actual transmission is handled injava.io. 

The next class is java.util. It contains classes and methods for common data 
structures, such as stacks and hash tables, so programmers do not constantly have 
to reinvent the wheel. Time and date management is also here. 

The java.applet package contains some of the basic machinery for applets, 
including methods for getting Web pages starting from their URLs. It also has 
methods for displaying Web pages and playing audio clips (e.g., background 
music). The java.applet package also contains the Object class. All objects 
inherit its methods, unless they are overridden. These methods include cloning an 
object, comparing two objects for equality, converting an object to a string, and 
various others. 

Finally, we come to java.awt and its two subpackages. AWT stands for 
Abstract Window Toolkit, and is designed to make applets portable across win­
dow systems. For example, how should an applet draw a rectangle on the screen 
in such a way that the same compiled (bytecode) version of the applet can run on 
UNIX, Windows, and the Macintosh, even though each one has its own window 
system? Part of the package deals with drawing on the screen, so there are 
methods for placing lines, geometric figures, text, menus, buttons, scroll bars, and 
many other items on the screen. Java programmers call these methods to write on 
the screen. It is up to the java.awt package to make the appropriate calls to the 
local operating system to get the job done. This strategy means that java.awt has 



718 THE APPLICATION LA YER CHAP. 7 

to be rewritten for each new platform, but that applets are then platform indepen­
dent, which is far more important 

Another important task of this class is event management. Most window sys­
tems are fundamentally event driven. What this means is that the operating sys­
tem detects keystrokes, mouse motion, button pushes and releases, and other 
events, and converts these into calls to user procedures. In the case of Java, a 
large library of methods for dealing with these events is provided in java.awt. 
Using them makes it easier to write programs that interact with the local window 
system and still be l 00 percent portable to machines with different operating sys­
tems and different window systems. 

Some of the work of this package is done in java.awt.image, such as image 
management, and injava.awt.peer, which allows access to the underlying window 
system. 

Security 

One of the most important aspects of Java is its security properties. When a 
Web page containing an applet is fetched, the applet is automatically executed on 
the client's machine. Ideally, it should not crash or otherwise bring down the 
client's machine. 

Furthermore, it does not take much imagination to envision some enterprising 
undergraduate producing a Web page containing some nifty new game, then pub­
licizing its URL widely (e.g., crossposting it to every newsgroup). Not mentioned 
in the posting is the small detail that the page also contains an applet that upon 
arrival immediately encrypts all the files on the user's hard disk. When it is fin­
ished, the applet announces what it has done and politely mentions that us~rs 
wishing to purchase the decryption key can do so by sending 1000 dollars in small 
unmarked bills to a certain post office box in Panama. 

In addition to the above get-rich-quick scheme, there are other dangers 
inherent in letting foreign code run on your machine. An applet could hunt 
around for interesting information (saved email, the password file, the local 
environment strings, etc.) and send or email them back over the network. It could 
also consume resources (e.g., filling up the disk), display naughty pictures or pol­
itical slogans on the screen, or make an earsplitting racket using the sound card. 

The Java designers were well aware of these problems, of course, and erected 
a series of barriers against them. The first line of defense is a typesafe language. 
Java has strong typing, true arrays with bounds checking and no pointers. These 
restrictions make it impossible for a Java program to construct a pointer to read 
and write arbitrary memory locations. 

However, Trudy, who has given up on trying to break cryptographic protocols 
and gotten into the much more interesting business of writing malicious Java 
applets, can just write or modify a C compiler to produce Java bytecode, thus 
bypassing all the safeguards provided by the Java language and compiler. 



SEC. 7.6 THE WORLD WIDE WEB 719 

The second line of defense is that before an incoming applet is executed, it \s 
run through a bytecode verifier. The bytecode verifier looks for attempts to 
manufacture pointers, execute instructions or call methods with invalid parame­
ters, use variables before they are initialized, and so on. These checks are sup­
posed to guarantee that only legal applets get executed, but Trudy will certainly 
work hard on finding tricks the verifier does not check for. 

The third line of defense is the class loader. Since classes can be loaded on 
the fly, there is a danger that an applet could load one of its own classes to replace 
a critical system class, thus bypassing that class' security checks. This Trojan 
horse attack has been rendered impossible by virtue of giving each class its own 
name space (like a kind of abstract directory), and carefully searching for system 
classes before looking for user classes. In other words, if the user loads a mali­
cious version of println, it will never be used because the official println will 
always be found first. 

The fourth line of defense is that some standard classes have their own secu­
rity measures built in. For example, the file access class maintains a list of files 
that may be accessed by applets, and pops up a dialog box any time an applet tries 
to do something that violates the protection rules. 

Despite all these measures, security problems are to be expected. First, there 
can be bugs in the Java software that clever programmers can exploit to bypass 
the security. The infamous Internet worm of 1988 used a bug in the UNIX Finger 
daemon to bring thousands of machines all over the Internet to a grinding halt 
(Hafner and Markoff, 1991; and Spafford, 1989). 

Second, while it may ]Je possible to prevent an applet from doing anything 
except writing to the screen, many applets will need more power, so when they 
ask for additional privileges, users may grudgingly (or naively) grant them. For 
example, applets may need to write temporary files, so users may give them 
access to the /tmp directory, thinking that nothing important is there. Unfor­
tunately, most editors keep the temporary versions of documents and email being 
edited there, so malicious applets can copy them and try to send them over the 
network. Of course, it may be possible to block applets' access to the network, 
but many may not work then, so they will have to be granted this power too. 

But even in the unlikely event that applets are allowed no network access at 
all, they may be able to transmit information using covert channels (Lampson, 
1973). For example, after acquiring some information, an applet can form a bit 
stream by using the local system's real time clock. To send a I, it computes very 
hard for tiT; to send a 0, it just waits for tiT. 

To acquire this information, the applet's owner can establish a connection to 
the client's machine to read some of its public Web pages or FTP some of its pub­
lic files. By carefully monitoring the incoming data rate, the applet owner's can 
see whether the applet is computing (and thus slowing down the observed output 
stream) or resting. Of course, this channel is noisy, but that can be handled by 
standard techniques. The stream can be divided into frames delimited by flag 



720 THE APPLICATION LA YER CHAP. 7 

bytes, individual frames can use a strong error-correcting code, and all frames can 
be sent two or three times. Many other covert channels exist, and it is extremely 
difficult to discover and block them all. For more information about the security 
problems in Java see (Dean and Wallach, 1995). 

In short, Java introduces many new possibilities and opportunities into the 
World Wide Web. It allows Web pages to be interactive, and to contain anima­
tion and sound. It also permits browsers to be infinitely extensible. However, the 
Java model of downloading applets also introduces some serious new security 
problems that have not been entirely solved yet. 

7.6.5. Locating Information on the Web 

Although the Web contains a vast amount of information, finding the right 
item is hot always easy. To make it easier for people to find pages that are useful 
to them, several researchers have written programs to index the Web in various 
ways. Some of these have become so popular that they have gone commercial. 
Programs that search the Web are sometimes called search engines, spiders, 
crawlers, worms, or knowbots (knowledge robots). In this section we will give a 
brief introduction to this subject. For more information, see (Pinkerton, 1994; and 
McBryan, 1994 ). 

Although the Web is huge, reduced to its barest essentials, the Web is a big 
graph, with the pages being the nodes and the hyperlinks being the arcs. Algo­
rithms for visiting all the nodes in a graph are well known. What makes Web 
indexing difficult is the enormous amount of data that must be managed and the 
fact that it is constantly changing. 

Let us start our discussion with a simple goal: indexing all the keywords in 
Web pages' titles. For our algorithm, we will need three data structures. First, we 
need a large, linear array, urLtahle, that contains millions of entries, ultimately 
one per Web page. It should be kept in virtual memory, so parts not heavily used 
will automatically be paged to disk. Each entry contains two pointers, one to the 
page's URL and one to the page's title. Both of these items are variable length 
strings and can be kept on a heap (a large unstructured chunk of virtual memory to 
which strings can be appended). The heap is our second data structure. 

The third data structure is a hash table of size n entries. It is used as follows. 
Any URL can be run through a hash function to produce a nonnegative integer 
less than n. All URLs that hash to the value k are hooked together on a linked list 
starting at entry k of the hash table. Whenever a URL is entered into urLtable, it 
is also entered into the hash table. The main use of the hash table is to start with a 
URL and be able to quickly determine whether it is already present in url__table. 
These three data structures are illustrated in Fig. 7-75. 

Building the index requires two phases: searching and indexing. Let us start 
with a simple engine for doing the searching. The heart of the search engine is a 
recursive procedure process_url, which takes a URL string as input. It operates as 



SEC. 7.6 

Pointers Pointers 
to URLS to titles 

,-----A-., ,-----A-., 

Url_table 

THE WORLD WIDE WEB 

Hash 
code 

0 
1 
2 
3 

~""' 

f-1 IT] 

Overflow 
chains 

721 

-
-
0 
[D--@]-[IJ 

-@TI-~ 
~""' 

nT~---~T 
Heap Hash table 

Fig. 7-75. Data structures used in a simple search engine. 

follows. First, it hashes the URL to see if it is already present in urLtable. If so, 
it is done and returns immediately. Each URL is processed only once. 

If the URL is not already known, its page is fetched. The URL and title are 
then copied to the heap and pointers to these two strings are entered in urLtable. 
The URL is also entered into the hash table. 

Finally, process_url extracts all the hyperlinks from the page and calls 
process_url once per hyperlink, passing the hyperlink' s URL as the input parame­
ter. 

To run the search engine, process_url is called with some starting URL. 
When it returns, all pages reachable from that URL have been entered into 
url_table and the search phase has been completed. 

Although this design is simple and theoretically correct, it has a serious prob­
lem in a system as large as the Web. The problem is that this algorithm does a 
depth-first search, and will ultimately go into recursion as many times as the long­
est noncyclic path on the Web. No one knows how long this path is, but it is 
probably thousands of hyperlinks long. As a consequence, any search engine that 
uses this depth-first search will probably hit stack overflow before finishing the 
job. 

In practice, actual search engines first collect all the hyperlinks on each page 
they read, remove all the ones that have already been processed, and save the rest. 
The Web is then searched breadth-first; that is, each link on a page is followed 
and all the hyperlinks on all the pages pointed to are collected, but they are not 
traced in the order obtained. 

The second phase does the keyword indexing. The indexing procedure goes 
down urLtable linearly, processing each entry in turn. For each entry, it exam­
ines the title and selects out all words not on the stop list. (The stop list prevents 
indexing of prepositions, conjunctions, articles, and other words with many hits 
and little value.) For each word selected, it writes a line consisting of the word 



722 THE APPLICATION LA YER CHAP. 7 

followed by the current urLtable entry number to a file. When the whole table 
has been scanned, the file is sorted by word. 

The index will have to be stored on disk and can be used as follows. The user 
fills in a form listing one or more keywords and clicks on the SUBMIT button. 
This action causes a POST request to be done to a CGI script on Lhe machine 
where the index is located. This script (or, more likely, program) then looks up 
the keywords in the index to find the set of urLtable indices for each one. If the 
user wants the BOOLEAN AND of the keywords, the set intersection is com­
puted. If the BOOLEAN OR is desired., the set union is computed. 

The script now indexes into urLtable to find all the titles and URLs. These 
are then combined to form a Web page and are sent back to the user as the 
response to the POST. The browser now displays the page, allowing the user to 
click on any items that appear interesting. 

Sounds easy? It's not. The following problems have to be solved in any prac-
tical system: 

1. Some URLs are obsolete (i.e., point to pages that no longer exist). 

2. Some machines will be temporarily unreachable. 

3. Not all pages may be reachable from the starting URL. 

4. Some pages may be reachable only from active maps. 

5. Some documents cannot be indexed (e.g., audio clips). 

6. Not all documents have (useful) titles. 

7. The search engine could run out of memory or disk space. 

8. The entire process might take too long. 

Obsolete URLs waste time but are mostly a nuisance because the server on which 
they are supposed to be located replies immediately with an error code. In con­
trast, when the server is down, all the search engine observes is a long delay in 
establishing the TCP connection. To prevent it from hanging indefinitely, it must 
have a timeout. If the timeout is too short, valid URLs will be missed. If it is too 
long, searching will be slowed down appreciably. 

Choosing the starting URL is clearly a major issue. If the search engine starts 
with the home page of some astrophysicist, it may eventually find everything on 
astronomy, physics, chemistry and space science, but it may miss pages about 
veterinary medicine, Middle English, and rock 'n roll completely. These sets may 
simply be disjoint. One solution is to gather as large a set of URLs as possible, 
and use each of them as a starting page. Starting URLs can be gathered from 
USENET news articles and last week's version of the urLtable, since some of 
these pages may have changed recently (e.g., one of the astrophysicists married a 
veterinarian and they solemnly updated their home pages to point to each other). 



SEC. 7.6 THE WORLD WIDE WEB 723 

Indexing works well on text, but increasingly, many pages contain items other 
than text, including pictures, audio, and video. One approach here is to probe 
each new-found URL with the HEAD method, just to get back its MIME header. 
Anything not of type text is not searched. 

About 20 percent of all Web pages have no title, and many of those that do 
have a title have a quasi-useless one ("Joe's page"). A big improvement to the 
basic index is to not only include titles, but also all the hypertext. In this 
approach, when a page is scanned, all the hyperlinks are also recorded, along with 
the page they came from and the page they point to. After the search phase has 
been completed, all the hyperwords can be indexed too. 

Even more ambitious is to index all the important words in each page. To 
determine the important words, the occurrence frequency of all words not on the 
stop list can be computed (per Web page). The top 10 or 20 words are probably 
worth indexing. After all, if the word "liver" is the most common word on a 
page, there is a chance that the page will be of interest to biliary surgeons (or to 
cooks). Some search engines (e.g., Lycos) use this strategy. 

Finally, the search engine can run out of memory or time. One attack is to 
redesign the algorithms more carefully. A completely different approach is to do 
what Harvest does and offload the work (Bowman et al., 1994, 1996). In particu­
lar, Harvest provides a program to run on cooperating servers. This program does 
all the searching locally and transmits back the finished local index. At the cen­
tral site, all the local indices are merged into the master index. This approach 
reduces by orders of magnitude the amount of memory, CPU time, and network 
bandwidth required but has the major disadvantage of requiring all Web servers to 
cooperate by running foreign software. Given the potential problems with viruses 
and worms, when a system administrator is approached with the request: "Will 
you please run this program on your machine for me?" it should not be surprising 
if many of them decline. 

One small request is in order. Although writing a search engine sounds easy, 
a buggy one can wreak havoc with the network by generating vast numbers of 
spurious requests, not only wasiting bandwidth but bringing many servers to their 
knees due to the load. If you cannot resist the temptation to write your own 
search engine, proper netiquette requires restricting it to your own local DNS 
domain until it is totally debugged. 

7.7. MULTIMEDIA 

Multimedia is the holy grail of networking. When the word is mentioned, 
both the propeller heads and the suits begin salivating as if on cue. The former 
see immense technical challenges in providing (interactive) video on demand to 
every home. The latter see equally immense profits in it. No book on networking 
would be complete without at least an introduction to the subject. Given the 



724 THE APPLICATION LA YER CHAP. 7 

length of this one so far, our introduction will of necessity be brief. For additional 
information about this fascinating and potentially profitable subject, see (Buford, 
1994; Deloddere et al., 1994; Dixit and Skelly, 1995; Fluckiger, 1995; Minoli, 
1995; and Steinmetz and Nahrstedt, 1995). 

Literally, multimedia is just two or more media. If the publisher of this book 
wanted to join the current hype about multimedia, it could advertise the book as 
using multimedia technology. After all, it contains two media: text and graphics 
(the figures). Nevertheless, when most people refer to multimedia, they generally 
mean the combination of two or more continuous media, that is, media that have 
to be played during some well-defined time interval, usually with some user 
interaction. In practice, the two media are normally audio and video, that is, 
sound plus moving pictures. For this reason, we will begin our study with an 
introduction to audio and video technology. Then we will combine them and 
move on to true multimedia systems, including video on demand and the 
Internet's multimedia system, MBone. 

7.7.1. Audio 

An audio (sound) wave is a one-dimensional acoustic (pressure) wave. When 
an acoustic wave enters the ear, the eardrum vibrates, causing the tiny bones of 
the inner ear to vibrate along with it, sending nerve pulses to the brain. These 
pulses are perceived as sound by the listener. In a similar way, when an acoustic 
wave strikes a microphone, the microphone generates an electrical signal, 
representing the sound amplitude as a function of time. The representation, pro­
cessing, storage, and transmission of such audio signals are a major part of the 
study of multimedia systems. 

The frequency range of the human ear runs from 20 Hz to 20,000 Hz, 
although some animals, notably dogs, can hear higher frequencies. The ear hears 
logarithmically, so the ratio of two sounds with amplitudes A and Bis convention­
ally expressed in dB (decibels) according to the formula 

dB= 20 log 10 (A /B) 

If we define the lower limit of audibility (a pressure of about 0.0003 dyne/cm2
) 

for a I-kHz sine wave as 0 dB, an ordinary conversation is about 50 dB and the 
pain threshold is about 120 dB, a dynamic range of a factor of 1 million. To avoid 
any confusion, A and B above are amplitudes. If we were to use the power level, 
which is proportional to the square of the amplitude, the coefficient of the loga­
rithm would be 10, not 20. 

The ear is surprisingly sensitive to sound variations lasting only a few mil­
liseconds. The eye, in contrast, does not notice changes in light level that last 
only a few milliseconds. The result of this observation is that jitter of only a few 
milliseconds during a multimedia transmission affects the perceived sound quality 
more than it affects the perceived image quality. 



SEC. 7.7 MULTIMEDIA 725 

Audio waves can be converted to digital form by an ADC (Analog Digital 
Converter). An ADC takes an electrical voltage as input and generates a binary 
number as output. In Fig. 7-76(a) we see an example of a sine wave. To 
represent this signal digitally, we can sample it every !1T seconds, as shown by the 
bar heights in Fig. 7-76(b ). If a sound wave is not a pure sine wave, but a linear 
superposition of sine waves where the highest frequency component present is f, 
then the Nyquist theorem (see Chap. 2) states that it is sufficient to make samples 
at a frequency 2f Sampling more often is of no value since the higher frequencies 
that such sampling could detect are not present. 

1.00 

0.75 

0.50 

0.25 

0 

-0.25 

-0.50 

-0.75 

-1.00 

T T 

(a) (b) (c) 

Fig. 7-76. (a) A sine wave. (b) Sampling the sine wave. (c) Quantizing the sam­
ples to 3 bits. 

T 

Digital samples are never exact. The 3-bit samples of Fig. 7-76(c) allow only 
eight values, from -1.00 to + 1.00 in steps of 0.25. An 8-bit sample would allow 
256 distinct values. A 16-bit sample would allow 65,536 distinct values. The 
error introduced by the finite number of bits per sample is called the quantizatiOn 
noise. If it is too large, the ear detects it. 

Two well-known examples of sampled sound are the telephone and audio 
compact discs. Pulse code modulation, as used within the telephone system, uses 
7-bit (North America and Japan) or 8-bit (Europe) samples 8000 times per second. 
This system gives a data rate of 56,000 bps or 64,000 bps. With only 8000 
samples/sec, frequencies above 4 kHz are lost. 

Audio CDs are digital with a sampling rate of 44, 100 samples/sec, enough to 
capture frequencies up to 22,050 Hz, which is good for people, bad for dogs. The 
samples are 16 bits each, and are linear over the range of amplitudes. Note that 
16-bit samples allow only 65,536 distinct values, even though the dynamic range 
of the ear is about 1 million when measured in steps of the smallest audible sound. 
Thus l!Sing only 16 bits per sample introduces some quantization noise (although 
the full dynamic range is not covered-CDs are not supposed to hurt). With 
44,100 samples/sec of 16 bits each, an audio CD needs a bandwidth of 705.6 kbps 



726 THE APPLICATION LA YER CHAP. 7 

for monaural and l.411 Mbps for stereo. While this is lower than what video 
needs (see below), it still takes almost a full Tl channel to transmit uncompressed 
CD quality stereo sound. 

Digitized sound can be easily processed by computers in software. Dozens of 
programs exist for personal computers to allow users to record, display, edit, mix, 
and store sound waves from multiple sources. Virtually all professional sound 
recording and editing are digital nowadays. 

Many musical instruments even have a digital interface now. When digital 
instruments first came out, each one had its own interface, but after a while, a 
standard, MIDI (Music Instrument Digital Interface), was developed and 
adopted by virtually the entire music industry. This standard specifies the connec­
tor, the cable, and the message format. Each MIDI message consists of a status 
byte followed by zero or more data bytes. A MIDI message conveys one musi­
cally significant event. Typical events are a key being pressed, a slider being 
moved, or a foot pedal being released. The status byte indicates the event, and the 
data bytes give parameters, such as which key was depressed and with what velo­
city it was moved. 

Every instrument has a MIDI code assigned to it. For example, a grand piano 
is 0, a marimba is 12, and a violin is 40. This is needed to avoid having a flute 
concerto be played back as a tuba concerto. The number of "instruments" 
defined is 127. However, some of these are not instruments, but special effects 
such as chirping birds, helicopters, and the canned applause that accompanies 
many television programs. 

The heart of every MIDI system is a synthesizer (often a computer) that 
accepts messages and generates music from them. The synthesizer understands 
all 127 instruments, so it generates a different power spectrum for middle C on a 
trumpet than for a xylophone. The advantage of transmitting music using MIDI 
compared to sending a digitized waveform is the enormous reduction in 
bandwidth, often by a factor of 1000. The disadvantage of MIDI is that the 
receiver needs a MIDI synthesizer to reconstruct the music again, and different 
ones may give slightly different renditions. 

Music, of course, is just a special case of general audio, but an important one. 
Another important special case is speech. Human speech tends to be in the 600-
Hz to 6000-Hz range. Speech is made up of vowels and consonants, which have 
different properties. Vowels are produced when the vocal tract is unobstructed, 
producing resonances whose fundamental frequency depends on the size and 
shape of the vocal system and the position of the speaker's tongue and jaw. These 
sounds are almost periodic for intervals of about 30 msec. Consonants are pro­
duced when the vocal tract is partially blocked. These sounds are Jess regular 
than vowels. 

Some speech generation and transmission systems make use of models of the 
vocal system to reduce speech to a few parameters (e.g., the sizes and shapes of 
various cavities), rather than just sampling the speech waveform. 



SEC. 7.7 
MULTIMEDIA 

727 

7 .7 .2. Video 

The human eye has the property that when an image is flashed on the retina, it 
is retained for some number of milliseconds before decaying. If a sequence of 
images is flashed at 50 or more images/sec, the eye does not notice that it is look­
ing at discrete images. All video (i.e., television) systems exploit this principle to 

produce moving pictures. 

Analog Systems 

To understand video systems, it is best to start with simple, old-fashioned 
black-and-white television. To represent the two-dimensional image in front of it 
as a one-dimensional voltage as a function of time, the camera scans an electron 
beam rapidly across the image and slowly down it, recording the light intensity as 
it goes. At the end of the scan, called a frame, the beam retraces. This intensity 
as a function of time is broadcast, and receivers repeat the scanning process to 
reconstruct the image. The scanning pattern used by both the camera and the 
receiver is shown in Fig. 7-77. (As an aside, CCD cameras integrate rather than 

scan, but some cameras and all monitors do scan.) 

Fig. 7-77. The scanning pattern used for NTSC video and television. 

Q) 

E 
i= 

~ 

The exact scanning parameters vary from country to country. The system 
used in North and South America and Japan has 525 scan lines, a horizontal to 



728 THE APPLICATION LA YER CHAP. 7 

vertical aspect ratio of 4:3, and 30 frames/sec. The European system has 625 scan 
lines, the same aspect ratio of 4:3, and 25 frames/sec. In both systems, the top 
few and bottom few lines are not displayed (to approximate a rectangular image 
on the original round CRTs). Only 483 of the 525 NTSC scan lines (and 576 of 
the 625 PAL/SECAM scan lines) are displayed. The beam is turned off during 
the vertical retrace, so many stations (especially in Europe) use this interval to 
broadcast TeleText (text pages containing news, weather, sports, stock prices, 
etc.). 

While 25 frames/sec is enough to capture smooth motion, at that frame rate 
many people, especially older ones, will perceive the image to flicker (because 
the old image has faded off the retina before the new one appears). Rather than 
increase the frame rate, which would require using more scarce bandwidth, a dif­
ferent approach is taken. Instead of displaying the scan lines in order, first all the 
odd scan lines are displayed, then the even ones are displayed. Each of these half 
frames is called a field. Experiments have shown that although people notice 
flicker at 25 frames/sec, they do not notice it at 50 fields/sec. This technique is 
called interlacing. Noninterlaced television or video is said to be progressive. 

Color video uses the same scanning pattern as monochrome (black and white), 
except that instead of displaying the image with one moving beam, three beams 
moving in unison are used. One beam is used for each of the three additive pri­
mary colors: red, green, and blue (RGB). This technique works because any color 
can be constructed from a linear superposition of red, green, and blue with the 
appropriate intensities. However, for transmission on a single channel, the three 
color signals must be combined into a single composite signal. 

When color television was invented, various methods for displaying color 
were technically possible, and different countries made different choices, leading 
to systems that are still incompatible. (Note that these choices have nothing to do 
with VHS versus Betamax versus P2000, which are recording methods.) In all 
countries, a political requirement was that programs transmitted in color had to be 
receivable on existing black-and-white television sets. Consequently, the simplest 
scheme, just encoding the RGB signals separately, was not acceptable. RGB is 
also not the most efficient scheme. 

The first color system was standardized in the United States by the National 
Television Standards Committee, which lent its acronym to the standard: NTSC. 
Color television was introduced in Europe several years later, by which time the 
technology had improved substantially, leading to systems with greater noise 
immunity and better colors. These are called SECAM (SEquentiel Couleur 
Avec Memoire), which is used in France and Eastern Europe, and PAL (Phase 
Alternating Line) used in the rest of Europe. The difference in color quality 
between the NTSC and P AL/SECAM has led to an industry joke that NTSC really 
stands for Never Twice the Same Color. 

To allow color transmissions to be viewed on black-and-white receivers, all 
three systems linearly combine the RGB signals into a luminance (brightness) 



SEC. 7.7 MULTIMEDIA 729 

signal, and two chrominance (color) signals, although they all use different coef­
ficients for constructing these signals from the RGB signals. Interestingly 
enough, the eye is much more sensitive to the luminance signal than to the chrom­
inance signals, so the latter need not be transmitted as accurately. Consequently, 
the luminance signal can be broadcast at the same frequency as the old hlack­
and-white signal, so it can be received on black-and-white television sets. The 
two chrominance signals are broadcast in narrow bands at higher frequencies. 
Some television sets have controls labeled brightness, hue, and saturation (or 
brightness, tint and color) for controlling these three signals separately. Under­
standing luminance and chrominance is necessary for understanding how video 
compression works. 

In the past few years, there has been considerable interest in HDTV (High 
Definition TeleVision), which produces sharper images by roughly doubling the 
number of scan lines. The United States, Europe, and Japan have all developed 
HDTV systems, all different and all mutually incompatible. The basic principles 
of HDTV in terms of scanning, luminance, chrominance, and so on, are similar to 
the existing systems. However, all three formats have a common aspect ratio of 
16:9 instead of 4:3 to match them better to the format used for movies (which are 
recorded on 35 mm film). 

For an introduction to television technology, see (Buford, 1994). 

Digital Systems 

The simplest representation of digital video is a sequence of frames, each con­
sisting of a rectangular grid of picture elements, or pixels. Each pixel can be a 
single bit, to represent either black or white. The quality of such a system is simi­
lar to what you get by sending a color photograph by fax-awful. (Try it if you 
can; otherwise photocopy a color photograph on a copying machine that does not 
rasterize.) 

The next step up is to use 8 bits per pixel to represent 256 gray levels. This 
scheme gives high-quality black-and-white video. For color video, good systems 
use 8 bits for each of the RGB colors, although nearly all systems mix these into 
composite video for transmission. While using 24 bits per pixel limits the number 
of colors to about 16 million, the human eye cannot even distinguish this many 
colors, let alone more. Digital color images are produced using three scanning 
beams, one per color. The geometry is the same as for the analog system of 
Fig. 7-77 except that the continuous scan lines are now replaced by neat rows of 
discrete pixels. 

To produce smooth motion, digital video, like analog video, must display at 
least 25 frames/sec. However, since good quality computer monitors often rescan 
the screen from images stored in memory at 75 times per second or more, interlac­
ing is not needed and consequently is not normally used. Just repainting (i.e., 
redrawing) the same frame three times in a row is enough to eliminate flicker. 

---r 



730 THE APPLICATION LA YER CHAP. 7 

In other words, smoothness of motion is determined by the number of dif­
ferent images per second, whereas flicker is determined by the number of times 
the screen is painted per second. These two parameters are different. A still 
image painted at 20 frames/sec will not show jerky motion but it will flicker 
because one frame will decay from the retina before the next one appears. A 
movie with 20 different frames per second, each of which is painted four times in 
a row, will not flicker, but the motion will appear jerky. 

The significance of these two parameters becomes clear when we consider the 
bandwidth required for transmitting digital video over a network. Current com­
puter monitors all use the 4:3 aspect ratio so they can use inexpensive, mass­
produced picture tubes designed for the consumer television market. Common 
configurations are 640 x 480 (VGA), 800 x 600 (SVGA), and I 024 x 768 (XGA). 
An XGA display with 24 bits per pixel and 25 frames/sec needs to be fed at 472 
Mbps. Even OC-9 is not quite good enough, and running an OC-9 SONET carrier 
into everyone's house is not exactly on the agenda. Doubling this rate to avoid 
flicker is even less attractive. A better solution is to transmit 25 frames/sec and 
have the computer store each one and paint it twice. Broadcast television does 
not use this strategy because television sets do not have memory, and in any 
event, analog signals cannot be stored in RAM without first converting them to 
digital form, which requires extra hardware. As a consequence, interlacing is 
needed for broadcast television but not for digital video. 

7.7.3. Data Compression 

It should be obvious by now that transm1ttmg multimedia material in 
uncompressed form is completely out of the question. The only hope is that mas­
sive compression is possible. Fortunately, a large body of research over the past 
few decades has led to many compression techniques and algorithms that make 
multimedia transmission feasible. In this section we will study some methods for 
compressing multimedia data, especially images. For more detail, see (Fluckiger, 
1995; and Steinmetz and Nahrstedt, 1995). 

All compression systems require two algorithms: one for compressing the data 
at the source, and another for decompressing it at the destination. In the literature, 
these algorithms are referred to as the encoding and decoding algorithms, respec­
tively. We will use this terminology here, too. 

These algorithms have certain asymmetries that are important to understand. 
First, for many applications, a multimedia document, say, a movie will only be 
encoded once (when it is stored on the multimedia server) but will be decoded 
thousands of times (when it is viewed by customers). This asymmetry means that 
it is acceptable for the encoding algorithm to be slow and require expensive 
hardware provided that the decoding algorithm is fast and does not require expen­
sive hardware. After all, the operator of a multimedia server might be quite will­
ing to rent a parallel supercomputer for a few weeks to encode its entire video 



SEC. 7.7 MULTIMEDIA 731 

library, but requiring consumers to rent a supercomputer for 2 hours to view a 
video is not likely to be a big success. Many practical compression systems go to 
great lengths to make decoding fast and simple, even at the price of making 
encoding slow and complicated. 

On the other hand, for real-time multimedia, such as video conferencing, slow 
encoding is unacceptable. Encoding must happen on-the-fly, in real time. Conse­
quently, real-time multimedia uses different algorithms or parameters than storing 
videos on disk, often with appreciably less compression. 

A second asymmetry is that the encode/decode process need not be invertible. 
That is, when compressing a file, transmitting it, and then decompressing it, the 
user expects to get the original back, accurate down to the last bit. With mul­
timedia, this requirement does not exist. It is usually acceptable to have the video 
signal after encoding and then decoding be slightly different than the original. 
When the decoded output is not exactly equal to the original input, the system is 
said to be lossy. If the input and output are identical, the system is lossless. 
Lossy systems are important because accepting a small amount of information 
loss can give a huge payoff in terms of the compression ratio possible. 

Entropy Encoding 

Compression schemes can be divided into two general categories: entropy 
encoding and source encoding. We will now discuss each in turn. 

Entropy encoding just manipulates bit streams without regard to what the 
bits mean. It is a general, lossless, fully reversible technique, applicable to all 
data. We will illustrate it by means of three examples. 

Our first example of entropy encoding is run-length encoding. In many 
kinds of data, strings of repeated symbols (bits, numbers, etc.) are common. 
These can be replaced by a special marker not otherwise allowed in the data, fol­
lowed by the symbol comprising the run, followed by how many times it 
occurred. If the special marker itself occurs in the data, it is duplicated (as in 
character stuffing). For example, consider the following string of decimal digits: 

3150000000000008458711111111111116354674000000000000000000000065 

If we now introduce A as the marker and use two-digit numbers for the repetition 
count, we can encode the above digit string as 

315A01284587Al1316354674A02265 

Here run-length encoding has cut the data string in half. 
Runs are common in multimedia. In audio, silence is often represented by 

runs of zeros. In video, runs of the same color occur in shots of the sky, walls, 
and many flat surfaces. All of these runs can be greatly compressed. 

Our second example of entropy encoding is statistical encoding. By this we 
mean using a short code to represent common symbols and long ones to represent 



732 THE APPLJCA TION LA YER CHAP. 7 

infrequent ones. Morse code uses this principle, with E being • and Q being - - • -
and so on. Huffman coding and the Ziv-Lempel algorithm used by the UNIX 

Compress program also use statistical encoding. 
Our third example of entropy encoding is CLUT (Color Look Up Table) 

encoding. Consider an image using RGB encoding with 3 bytes/pixel. In theory, 
the image might contain as many as 224 different color values. In practice, it will 
normally contain many fewer values, especially if the image is a cartoon or 
computer-generated drawing, rather than a photograph. Suppose that only 256 
color values are actually used. A factor of almost three compression can be 
achieved by building a 768-byte table listing the RGB values of the 256 colors 
actually used, and then representing each pixel by the index of its RGB value in 
the table. Here we see a clear example where encoding is slower than decoding 
because encoding requires searching the table whereas decoding can be done with 
a single indexing operation. 

Source Encoding 

Now we come to source encoding, which takes advantage of properties of the 
data to produce more (usually lossy) compression. Here, too, we will illustrate 
the idea with three examples. Our first example is differential encoding, in 
which a sequence of values (e.g., audio samples) are encoded by representing 
each one as the difference from the previous value. Differential pulse code modu­
lation, which we saw in Chap. 2, is an example of this technique. It is lossy 
because the signal might jump so much between two consecutive values that the 
difference does not fit in the field provided for expressing differences, so at least 
one incolTect value will be recorded and some information lost. 

Differential encoding is a kind of source encoding because it takes advantage 
of the property that large jumps between consecutive data points are unlikely. 
Not all sequences of numbers have this property. An example lacking this pro­
perty is a computer-generated list of random telephone numbers to be used by 
telemarketers for bothering people during dinner. The differences between con­
secutive telephone numbers in the list will take as many bits to represent as the 
numbers themselves. 

Our second example of source encoding consists of transformations. By 
transforming signals from one domain to another, compression may become much 
easier. Consider, for example, the Fourier transformation of Fig. 2-] ( e ). Here a 
function of time is represented as a list of amplitudes. Given the exact values of 
all the amplitudes, the original function can be reconstructed perfectly. However, 
given only the values of the first, say, eight amplitudes rounded off to two decimal 
places, it may still be possible to reconstruct the signal so well that the listener 
cannot tell that some information has been lost. The gain is that transmitting eight 
amplitudes requires many fewer bits than transmitting the sampled waveform. 



SEC. 7.7 MULTIMEDIA 733 

Transformations are also applicable to two-dimensional image data. Suppose 
that the 4 x 4 matrix of Fig. 7-78(a) represents the gray-scale values of a mono­
chrome image. We can transform these data by subtracting the value in the upper 
left-hand corner from all elements except itself, as shown in Fig. 7-78(b ). This 
transformation might be useful if variable-length encoding is used. For example, 
values between - 7 and + 7 could be encoded with 4-bit numbers and values 
between 0 and 255 could be encoded as a special 4-bit code (-8) followed by an 
8-bit number. 

Pixel value 4 pixels 

/ , 
160 160 161 160 160 0 1 0 

161 165 166 158 1 5 6 -2 

160 167 165 161 0 7 5 1 

159 160 160 160 -1 0 1 0 

(a) (b) 

Fig. 7-78. (a) Pixel values for part of an image. (b) A transformation in wqich 
the upper left-hand element is subtracted from all elements except itself. 

Although this simple transformation is lossless, other, more useful ones are 
not. An especially important two-dimensional spatial transformation is the DCT 
(Discrete Cosine Transformation) (Feig and Winograd, 1992). This transforma­
tion has the property that for images without sharp discontinuities, most of the 
spectral power is in the first f~w terms, allowing the later ones to be ignored 
without much information loss .. We will come back to DCT shortly. 

Our third example of source encoding is vector quantization, which is also 
directly applicable to image data. Here, the image is divided up into fixed-size 
rectangles. In addition to the image itself, we also need a table of rectangles of 
the same size as the image rectangles (possibly constn:icted from the image). This 
table is called the code book. Each rectangle is transmitted by looking it up in the 
code book and just sending the index instead of the rectangle. If the code book is 
created dynamically (i.e., per image), it must be transmitted, too. Clearly, if a 
small number of rectangles dominate the image, large savings in bandwidth are 
possible here. 

An example of vector quantization is shown in Fig. 7-79. In Fig. 7-79(a) we 
have a grid of rectangles of unspecified size. In Fig. 7-79(b) we have the code 
book. The output stream is just the list of integers 001022032200400 shown in 
Fig. 7-79(c). Each one represents an entry from the code book. 



734 THE APPLTCA TION LA YER CHAP. 7 

Square with many pixels Code 
~book / 

0 0 

2 2 

3 2 

0 4 

1 0 0 0 0 1 0 2 2 0 3 2 2 0 0 4 0 0 

2 0 

2 0 2 

0 0 3 

4 

(a) (b) (c) 

Fig. 7-79. An example of vector quantization. (a) An image divided into 
squares. (b) A code book for the image. (c) The encoded image. 

In a sense, vector quantization is just a two-dimensional generalization of 
CLUT. The real difference, however, is what happens if no match can be found. 
Three strategies are possible. The first one is just to use the best match. The 
second one is to use the best match, and append some information about how to 
improve the match (e.g., append the true mean value). The third one is use the 
best match and append whatever is necessary to allow the decoder to reconstruct 
the data exactly. The first two strategies are lossy but exhibit high compression. 
The third is lossless but less effective as a compression algorithm. Again, we see 
that encoding (pattern matching) is far more time consuming than decoding 
(indexing into a table). 

The JPEG Standard 

The JPEG (Joint Photographic Experts Group) standard for compressing 
continuous-tone still pictures (e.g., photographs) was developed by photographic 
experts working under the joint auspices of ITU, ISO, and IEC, another standards 
body. It is important for multimedia because, to a first approximation, the mul­
timedia standard for moving pictures, MPEG, is just the JPEG encoding of each 
frame separately, plus some extra features for interframe compression and motion 
detection. JPEG is defined in International Standard 10918. 

JPEG has four modes and many options. It is more like a shopping list than a 
single algorithm. For our purposes, though, only the lossy sequential mode is 
relevant, and that one is illustrated in Fig. 7-80. Furthermore, we will concentrate 
on the way JPEG is normally used to encode 24-bit RGB video images and will 
leave out some of the minor details for the sake of simplicity. 

Step 1 of encoding an image with JPEG is block preparation. For the sake of 
specificity, let us assume that the JPEG input is a 640 x 480 RGB image with 24 
bits/pixel, as shown in Fig. 7-8 J (a). Since using luminance and chrominance 



SEC. 7.7 MULTIMEDIA 735 

Block 
Discrete 

preparation -- cosine --
transform 

Input - Differential 
Run- Statistical Output 

uantization -- c- length .... output -quantization 
encoding encoding 

Fig. 7-80. The operation of JPEG in lossy sequential mode. 

gives better compression, we first cbmpute the luminance, Y, and the two chromi­
nances, I and Q (for NTSC), according to the following formulas: 

Y = 0.30R + 0.59G + 0.1 lB 
I = 0.60R - 0.28G - 0.32B 
Q = 0.21R - 0.52G + 0.31B 

For PAL, the chrominances are called U and V and the coefficients are different, 
but the idea is the same. SECAM is different from both NTSC and PAL. 

0 
00 
'<!" 

RGB y 

---- 640 ---- ---- 640 ---- -- 320 -

1 
t--!!_!i~m,.....! _!!~_J!_,,!~.,...! _ .. _. ______ N~+ l''''1"rn,1 ··· I 
:::::::: :::::·:: 'I 

: 8-Bit pixel 
o 1 Block 

~ =~§if; ~t l''''l'''I ··· I j :::::::: 
~,.....__......_ 

(a) 24-Bit pixel Block 4799 (b} Q 

Fig. 7-81. (a) RGB input data. (b) After block preparation. 

Separate matrices are constructed for Y, I, and Q, each with elements in the 
range 0 to 255. Next, square blocks of four pixels are averaged in the I and Q 
matrices to reduce them to 320 x 240. This reduction is lossy, but the eye barely 
notices it since the eye responds to luminance more than to chrominance. 
Nevertheless, it compresses the data by a factor of two. Now 128 is subtracted 
from each element of all three matrices to put 0 in the middle of the range. 
Finally, each matrix is divided up into 8 x 8 blocks. The Y matrix has 4800 
blocks; the other two have 1200 blocks each, as shown in Fig. 7-8l(b). 

Step 2 of JPEG is to apply a discrete cosine transformation to each of the 
7200 blocks separately. The output of each DCT is an 8 x 8 matrix of DCT coef­
ficients. DCT element (0, 0) is the average value of the block. The other ele­
ments tell how much spectral power is present at each spatial frequency. In 
theory, a DCT is lossless, but in practice using floating-point numbers and 



736 THE APPLIC'A TION LA YER CHAP. 7 

transcendental functions always introduces some roundoff error that results in a 
little information loss. Normally, these elements decay rapidly with distance from 
the origin, (0, 0), as suggested by Fig. 7-82. 

x 

f­
() 
0 

Fx 

Fig. 7-82. (a) One block of the Y matrix. (b) The DCT coefficients. 

Once the DCT is complete, JPEG moves on to step 3, called quantization, in 
which the less important DCT coefficients are wiped out. This (lossy) transfor­
mation is done by dividing each of the coefficients in the 8 x 8 DCT matrix by a 
weight taken from a table. If all the weights are 1, the transformation does noth­
ing. However, if the weights increase sharply from the origin, higher spatial fre­
quencies are dropped quickly. 

An example of this step is given in Fig. 7-83. Here we see the initial DCT 
matrix, the quantization table, and the result obtained by dividing each DCT ele­
ment by the corresponding quantization table element. The values in the quanti­
zation table are not part of the JPEG standard. Each application must supply its 
own, allowing it to control the loss-compression trade-off. 

Step 4 reduces the (0, O) value of each block (the one in the upper left-hand 
corner) by replacing it with the amount it differs from the corresponding element 
in the previous block. Since these elements are the averages of their respective 
blocks, they should change slowly, so taking the differential values should reduce 
most of them to small values. No differentials are computed from the other 
values. The (0, 0) values are referred to as the DC components; the other values 
are the AC components. 

Step 5 linearizes the 64 elements and applies run-length encoding to the list. 
Scanning the block from left to right and then top to bottom will not concentrate 
the zeros together, so a zig zag scanning pattern is used, as shown in Fig. 7-84. In 
this example, the zig zag pattern ultimate produces 38 consecutive Os at the end of 
the matrix. This string can be reduced to a single count saying there are 38 zeros. 

Now we have a list of numbers that represent the image (in transform space). 
Step 6 Huffman encodes the numbers for storage or transmission. 



SEC. 7.7 MULTIMEDIA 737 

DCT Coefficiemts Quantized coefficients 

150 BO 40 14 4 2 1 0 150 80 20 4 1 0 0 0 

92 75 36 10 6 1 0 0 92 75 18 3 1 0 0 0 

52 38 26 8 7 4 0 0 26 19 13 2 1 0 0 0 

12 8 6 4 2 1 0 0 3 2 2 1 0 0 0 0 

4 3 2 0 0 0 0 0 1 0 0 0 0 0 0 0 

2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Quantization table 

·1 1 2 4 8 16 32 64 
·1 1 2 4 8 16 32 64 

~~ 2 2 4 8 16 32 64 

4 4 4 4 8 16 32 64 

13 8 8 8 8 16 32 64 

16 16 16 16 16 16 32 64 

3:~ 32 32 32 32 32 32 64 

64 64 64 64 64 64 64 64 

Fig. 7-83. Computation of the quantized DCT coefficients. 

Fig. 7-84. The order in which the quantized values are transmitted. 



738 THE APPLICATION LA YER CHAP. 7 

JPEG may seem complicated, but that is because it is complicated. Still, 
since it often produces a 20: l compression or better, it is widely used. Decoding a 
JPEG image requires running the algorithm backward. Unlike some of the other 
compression algorithms we have seen, JPEG is roughly symmetric: decoding 
takes as long as encoding. 

Interestingly enough, due to the mathematical properties of the DCT, it is pos­
sible to perform certain geometric transformations (e.g. image rotation) directly 
on the transformed matrix, without regenerating the original image. These 
transformations are discussed in (Shen and Sethi, 1995). Similar properties also 
apply to MPEG compressed audio (Broadhead and Owen, 1995). 

The MPEG Standard 

Finally, we come to the heart of the matter: the MPEG (Motion Picture 
Experts Group) standards. These are the main algorithms used to compress 
videos and have been international standards since 1993. Because movies contain 
both images and sound, MPEG can compress both audio and video, but since 
video takes up more bandwidth and also contains more redundancy than audio, we 
will primarily focus on MPEG video compression below. 

The first standard to be finalized was MPEG-1 (International Standard 
11172). Its goal was to produce video recorder-quality output (352 x 240 for 
NTSC) using a bit rate of 1.2 Mbps. Since we saw earlier that uncompressed 
video alone can run to 472 Mbps, getting it down to 1.2 Mbps is not entirely 
trivial, even at this lower resolution. MPEG-1 can be transmitted over twisted 
pair transmission lines for modest distances. MPEG-1 is also used for storing 
movies on CD-ROM in CD-I and CD-Video format. 

The next standard in the MPEG family was MPEG-2 (International Standard 
13818), which was originally designed for compressing broadcast quality video 
into 4 to 6 Mbps, so it could fit in a NTSC or PAL broadcast channel. Later, 
MPEG-2 was expanded to support higher resolutions, including HDTV. MPEG-4 
is for medium-resolution videoconferencing with low frame rates (10 frames/sec) 
and at low bandwidths (64 kbps). This will permit videoconferences to be held 
over a single N-ISDN B channel. Given this numbering, one might think that the 
next standard will be MPEG-8. Actuallly, ISO is numbering them linearly, not 
exponentially. Originally MPEG-3 existed. It was intended for HDTV, but that 
project was later canceled, and HDTV was added to MPEG-2. 

The basic principles of MPEG-1 and MPEG-2 are similar, but the details are 
different. To a first approximation, MPEG-2 is a superset of MPEG-1, with addi­
tional features, frame formats and encoding options. It is likely that in the long 
run MPEG-1 will dominate for CD-ROM movies and MPEG-2 will dominate for 
long-haul video transmission. We will discuss MPEG-1 first and then MPEG-2. 

MPEG-1 has three parts: audio, video, and system, which integrates the other 
two, as shown in Fig. 7-85. The audio and video encoders work independently, 



SEC. 7.7 MULTIMEDIA 739 

which raises the issue of how the two streams get synchronized at the receiver. 
This problem is solved by having a 90-kHz system clock that outputs the current 
time value to both encoders. These values are 33 bits, to allow films to run for 24 
hours without wrapping around. These timestamps are included in the encoded 
output and propagated all the way to the receiver, which can use them to syn­
chronize the audio and video streams. 

Audio signal Audio 

encoder 

~ System 
~ 1 multiplexer 

v;deo ,;goal ~ / 
~;J 

MPEG -1 output 

Fig. 7-85. Synchronization of the audio and video streams in MPEG-1. 

MPEG audio compression is done by sampling the waveform at 32 kHz 44.1 
kHz, or 48 kHz. It can handle monaural, disjoint stereo (each channel compressed 
separately), or joint stereo (interchannel redundancy exploited). It is organized as 
three layers, each one applying additional optimizations to get more compression 
(and at greater cost). Layer 1 is the basic scheme. This layer is used, for exam­
ple, in the DCC digital tape system. Layer 2 adds advanced bit allocation to the 
basic scheme. It is used for CD-ROM audio and movie soundtracks. Layer 3 
adds hybrid filters, nonuniform quantization, Huffman coding, and other advanced 
techniques. 

MPEG audio can compress a rock 'n roll CD down to 96 kbps with no percep­
tible loss in quality, even for rock 'n roll fans with no hearing loss. For a piano 
concert, at least 128 kbps are needed. These differ because the signal-to-noise 
ratio for rock 'n roll is much higher than for a piano concert (in an engineering 
sense, anyway). 

Audio compression is carried out by performing a fast Fourier transformation 
on the audio signal to transform it from the time domain to the frequency domain. 
The resulting spectrum is then divided up into 32 frequency bands, each of which 
is processed separately. When two stereo channels are present, the redundancy 
inherent in having two highly overlapping audio sources is also exploited. The 
resulting MPEG-1 audio stream is adjustable from 32 kbps to 448 kbps. An intro­
duction to the process is given in (Pan, 1995). 

Now let us consider MPEG-1 video compression. Two kinds of redundancies 
exist in movies: spatial and temporal. MPEG-1 uses both. Spatial redundancy 
can be utilized by simply coding each frame separately with JPEG. This approach 
is sometimes used, especially when random access to each frame is needed, as in 



740 THE APPLICATION LA YER CHAP. 7 

editing video productions. In this mode, a compressed bandwidth in the 8- to 10-
Mbps range is achievable. 

Additional compression can be achieved by taking advantage of the fact that 
consecutive frames are often almost identical. This effect is smaller than it might 
first appear since many movie makers cut between scenes every 3 or 4 seconds 
(time a movie and count the scenes). Nevertheless, even a run of 75 highly simi­
lar frames offers the potential of a major reduction over simply encoding each 
frame separately with JPEG. 

For scenes where the camera and background are stationary and one or two 
actors are moving around slowly, nearly all the pixels will be identical from frame 
to frame. Here, just subtracting each frame from the previous one and running 
JPEG on the difference would do fine. However, for scenes where the camera is 
panning or zooming, this technique fails badly. What is needed is some way to 
compensate for this motion. This is precisely what MPEG does; it is the main 
difference between MPEG and JPEG. 

MPEG-1 output consists of four kinds of frames: 

1. I (Intracoded) frames: Self-contained JPEG-encoded still pictures. 

2. P (Predictive) frames: Block-by-block difference with the last frame. 

3. B (Bidirectional) frames: Differences with the last and next frame. 

4. D (DC-coded) frames: Block averages used for fast forward. 

I-frames are just still pictures coded using JPEG, also using full-resolution 
luminance and half-resolution chrominance along each axis. It is necessary to 
have I-frames appear in the output stream periodically for three reasons. First, 
MPEG-1 can be used for a multicast transmission, with viewers tuning it at will. 
If all frames depended on their predecessors going back to the first frame, any­
body who missed the first frame could never decode any subsequent frames. 
Second, if any frame were received in error, no further decoding would be possi­
ble. Third, without I-frames, while doing a fast forward or rewind, the decoder 
would have to calculate every frame passed over so it would know the full value 
of the one it stopped on. For these reasons, I-frames are inserted into the output 
once or twice per second. 

P-frames, in contrast, code interframe differences. They are based on the idea 
of macroblocks, which cover 16 x 16 pixels in luminance space and 8 x 8 pixels 
in chrominance space. A macroblock is encoded by searching the previous frame 
for it or something only slightly different from it. 

An example of where P-frames would be useful is given in Fig. 7-86. Here 
we see three consecutive frames that have the same background, but differ in the 
position of one person. The macroblocks containing the background scene will 
match exactly, but the macroblocks containing the person will be offset in posi­
tion by some unknown amount and will have to be tracked down. 



SEC. 7.7 MULTIMEDIA 741 

Fig. 7··86. Three consecutive frames. 

The MPEG-1 standard does not specify how to search, how far to search, or 
how good a match has to be to count. This is up to each implementation. For 
example, an implementation might search for a macroblock at the current position 
in the previous frame, and all other positions offset ±Ax in the x direction and ±L1 y 
in the y direction. For each position, the number of matches in the luminance 
matrix could be computed. The position with the highest score would be declared 
the winner, provided it was above some predefined threshold. Otherwise, the 
macroblock would be said to be missing. Much more sophisticated algorithms are 
also possible, of course. 

If a macroblock is found, it is encoded by taking the difference with its value 
in the previous frame (for luminance and both chrominances). These difference 
matrices are then subject to the discrete cosine transformation, quantization, run­
length encoding, and Huffman encoding, just as with JPEG. The value for the 
macroblock in the output stream is then the motion vector (how far the macro­
block moved from its previous position in each direction), followed by the Huff­
man encoded list of numbers. If the macroblock is not located in the previous 
frame, the current value is encoded with JPEG, just as in an I-frame. 

Clearly, this algorithm is highly asymmetric. An implementation is free to try 
every plausible position in the previous frame if it wants to, in a desperate attempt 
to locate every last macroblock. This approach will minimize the encoded 
MPEG-1 stream at the expense of very slow encoding. This approach might be 
fine for a one-time encoding of a film library put would be terrible for real-time 
videoconferencing. 

Similarly, each implementation is free to decide what constitutes a "found" 
macroblock. This freedom allows implementers to compete on the quality and 
speed of their algorithms, but always produce compliant MPEG-1. No matter 
what search algorithm is used, the final oµtput is either the JPEG encoding of the 
current macroblock, or the JPEG encoding of the difference between the current 
macroblock and one in the previous frarne at a specified offset from the current 
one. 

So far, decoding MPEG-1 is straightforward. Decoding I-frames is the same 
as decoding JPEG images. Decoding P-frames requires the decoder to buffer the 
previous frarne and then build up the new one in a second buffer based on fully 



742 THE APPLICATION LA YER CHAP. 7 

encoded macroblocks and macroblocks containing differences with the previous 
frame. The new frame is assembled macroblock by macroblock. 

B-frames are similar to P-frames, except that they allow the reference 
macroblock to be in either a previous frame or in a succeeding frame. This addi­
tional freedom allows improved motion compensation, and is also useful when 
objects pass in front of, or behind, other objects. To do B-frame encoding, the 
encoder needs to hold three decoded frames in memory at once: the past one, the 
current one, and the future one. Although B-frames give the best compression, 
not all implementations support them. 

D-frames are only used to make it possible to display a low-resolution image 
when doing a rewind or fast forward. Doing the normal MPEG-1 decoding in real 
time is difficult enough. Expecting the decoder to do it when slewing through the 
video at ten times normal speed is asking a bit much. Instead, the D-frames are 
used to produce low-resolution images. Each D-frame entry is just the average 
value of one block, with no further encoding, making it easy to display in real 
time. This facility is important to allow people to scan through a video at high 
speed in search of a particular scene. 

Having finished our treatment of MPEG-1, let us move on to MPEG-2. 
MPEG-2 encoding is fundamentally similar to MPEG-1 encoding, with I-frames, 
P-frames, and B-frames. D-frames are not supported, however. Also, the discrete 
cosine transformation is 10 x 10 instead of 8 x 8, to give 50 percent more coeffi­
cients, hence better quality. Since MPEG-2 is targeted at broadcast television as 
well as CD-ROM applications, it supports both progressive and interlaced images, 
whereas MPEG-1 supports only progressive images. Other minor details also 
differ between the two standards. 

Instead of supporting only one resolution level, MPEG-2 supports four: low 
(352 x 240), main (720 x 480), high-1440 (1440 x 1152), and high (1920 x 1080). 
Low resolution is for VCRs and backward compatibility with MPEG-1. Main is 
the normal one for NTSC broadcasting. The other two are for HDTV. 

In addition to having four resolution levels, MPEG-2 also supports five pro­
files. Each profile targets some application area. The main profile is for general­
purpose use, and probably most chips will be optimized for the main profile and 
the main resolution level. The simple profile is similar to the main one, except 
that it excludes the use of B-frames, to make software encoding and decoding 
easier. The other profiles deal with scalability and HDTV. The profiles differ in 
terms of the presence or absence of B-frames, chrominance resolution, and scala­
bility of the encoded bit stream to other formats. 

The compressed data rate for each combination of resolution and profile is 
different. These range from about 3 Mbps up to 100 Mbps for HDTV. The nor­
mal case is about 3 to 4 Mbps. Some performance data for MPEG are given in 
(Pancha and El Zarki, 1994). 

MPEG-2 has a more general way of multiplexing audio and video than the 
MPEG-1 model of Fig. 7-85. It defines an unlimited number of elementary 



SEC. 7.7 MULTIMEDIA 743 

streams, including video and audio, but also including data streams that must be 
synchronized with the audio and video, for example, subtitles in multiple 
languages. Each of the streams is first packetized with timestamps. A simple 
two-stream example is shown in Fig. 7-87. 

Video [ Video 
- encoder 

Clock 

Audio [ Video 
- encoder 

Packetized 
elementary 
stream 

E TS TS 
- Packetizer i----,-----~-M-ul-ti-~---- (Fixed-length packets, 

_plexor no common time base) 

Packetized 
elementary 
stream 

Fig. 7-87. Multiplexing of two streams in MPEG-2. 

The output of each pack~tizer is a PES (Packetized Elementary Stream). 
Each PBS packet has about 30 header fields and flags, including lengths, stream 
identifiers, encryption control, copyright status, timestamps, and a CRC. 

The PBS streams for audio, video, and possibly data are then multiplexed 
together on a single output stream for transmission. Two types of streams are 
defined. The MPEG-2 program stream is similar to the MPEG-1 systems stream 
of Fig. 7-85. It is used for multiplexing together elementary streams that have a 
common time base and have to be displayed in a synchronized way. The program 
stream uses long variable-length packets. 

The other MPEG-2 stream is the transport stream. It is used for multiplex­
ing together streams (including program streams) that do not use a common time 
base. The transport stream packets are fixed length (188 bytes), to make it easier 
to limit the effect of packets damaged or lost during transmission. 

It is worth noting that all the encoding schemes we have discussed are based 
on the model of lossy encoding followed by lossless transmission. Neither JPEG 
nor MPEG, for example, can recover from lost or damaged packets in a graceful 
way. A different approach to image transmission is to transform the images in a 
way that separates the important information from the less important information 
(as the DCT does, for example). Then add a considerable amount of redundancy 
(even duplicate packets) to the important information and none to the less 



744 THE APPLICATION LA YER CHAP. 7 

important information. If some packets are lost or garbled, it may still be possible 
to display reasonable images without retransmission. These ideas are described 
further in (Danskin et al., 1995). They are especially applicable to multicast 
transmissions, where feedback from each receiver is impossible anyway. 

7. 7.4. Video on Demand 

Video on demand is sometimes compared to an electronic video rental store. 
The user (customer) selects any one of a large number of available videos and 
takes it home to view. Only with video on demand, the selection is made at home 
using the television set's remote control, and the video starts immediately. No 
trip to the store is needed. Needless to say, implementing video on demand is a 
wee bit more complicated than describing it. In this section, we will give an over­
view of the basic ideas and their implementation. A description of one real imple­
mentation can be found in (Nelson and Linton, 1995). A more general treatment 
of interactive television is in (Hodge, 1995). Other relevant references are (Chang 
et al., 1994; Hodge et al., 1993; and Little and Venkatesh, 1994). 

Is video on demand really like renting a video, or is it more like picking a 
movie to watch from a 500- or 5000·-channel cable system? The answer has 
important technical implications. In particular, video rental users are used to the 
idea of being able to stop a video, make a quick trip to the kitchen or bathroom, 
and then resume from where the video stopped. Television viewers do not expect 
to put programs on pause. 

If video on demand is going to compete successfully with video rental stores, 
it may be necessary to allow users to stop, start, and rewind videos at will. Giving 
users this ability virtually forces the video provider to transmit a separate copy to 
each one. 

On the other hand, if video on demand is seen more as advanced television, 
then it may be sufficient to have the video provider start each popular video, say, 
every 10 minutes, and run these nonstop. A user wanting to see a popular video 
may have to wait up to 10 minutes for it to start. Although pause/resume is not 
possible here, a viewer returning to the living room after a short break can switch 
to another channel showing the same video but 10 minutes behind. Some material 
will be repeated, but nothing will be missed. This scheme is called near video on 
demand. It offers the potential for much lower cost, because the same feed from 
the video server can go to many users at once. The difference between video on 
demand and near video on demand is similar to the difference between driving 
your own car and taking the bus. 

Watching movies on (near) demand is but one of a vast array of potential new 
services possible once wideband networking is available. The general model that 
many people use is illustrated in Fig. 7-88. Here we see a high-bandwidth, 
(national or international) wide area backbone network at the center of the system. 
Connected to it are thousands of local distribution networks, such as cable TV or 



SEC. 7.7 MULTIMEDIA 745 

telephone company distribution systems. The local distribution systems reach into 
people's houses, where they terminate in set-top boxes, which are, in fact, power­
ful, specialized personal computers. 

Video 
server 

Audio 
server 

ATM orSONET 
backbone network 

Switch 

spooling 

Local distribution 
network 

Fig. 7-88. Overview of a video-on-demand system. 

Customer's 

Attached to the backbone by high-bandwidth optical fibers are thousands of 
information providers. Some of these will offer pay-per-view video or pay-per­
hear audio CDs. Others will offer specialized services, such as home shopping 
(with the ability to rotate a can of soup and zoom in on the list of ingredients or 
view a video clip on how to drive a gasoline-powered lawn mower). Sports, 
news, reruns of "I Love Lucy," WWW access, and innumerable other possibili­
ties will no doubt quickly become available. 

Also included in the system are local spooling servers that allow videos to be 
prepositioned closer to the users, to save bandwidth during peak hours. How 
these pieces will fit together and who will own what are matters of vigorous 
debate within the industry. Below we will examine the design of the main pieces 
of the system: the video servers, the distribution network, and the set-top boxes. 

Video Servers 

To have (near) video on demand, we need video servers capable of storing 
and outputting a large number of movies simultaneously. The total number of 
movies ever made is estimated at 65,000 (Minoli, 1995). When compressed in 



746 THE APPLICATION LA YER CHAP. 7 

MPEG-2, a normal movie occupies roughly 4 GB of storage, so 65,000 of them 
would require something like 260 terabytes. Add to this all the old television pro­
grams ever made, sports films, newsreels, talking shopping catalogs, etc., and it is 
clear that we have an industrial-strength storage problem on our hands. 

The cheapest way to store large volumes of information is on magnetic tape. 
This has always been the case and probably always will be. A DAT tape can 
store 8 GB (two movies) at a cost of about 5 dollars/gigabyte. Large mechanical 
tape servers that hold thousands of tapes and have a robot arm for fetching any 
tape and inserting it into a tape drive are commercially available now. The prob­
lem with these systems is the access time (especially for the second movie on a 
tape), the transfer rate, and the limited number of tape drives (to serve n movies at 
once, the unit would need n drives). 

Fortunately, experience with video rental stores, public libraries, and other 
such organizations shows that not all items are equally popular. Experimentally, 
when there are N movies available, the fraction of all requests being for the kth 
most popular one is approximately C/k (Chervenak, 1994). Here C is computed 
to normalize the sum to 1, namely 

C = 11(1+112 + 1/3 + 1/4 + 115 + · · · + l/N) 

Thus the most popular movie is seven times as popular as the number seven 
movie. This result is known as Zipf's law (Zipf, 1949). 

The fact that some movies are much more popular than others suggests a pos­
sible solution in the form of a storage hierarchy, as shown in Fig. 7-89. Here, the 
performance increases as one moves up the hierarchy. 

RAM 

RAID 

Optical disk 

Tape archive 

Fig. 7-89. A video server storage hierarchy. 

An alternative to tape is optical storage. Current CD-ROMs hold only 650 
MB, but the next generation will hold about 4 GB, to make them suitable for dis­
tributing MPEG-2 movies. Although seek times are slow compared to magnetic 
disks (100 msec versus 10 msec), their low cost and high reliability make optical 
juke boxes containing thousands of CD-ROMs a good alternative to tape for the 
more heavily used movies. 

Next come magnetic disks. These have short access times (10 msec), high 
transfer rates (10 MB/sec), and substantial capacities (10 GB), which makes them 
well suited to holding movies that are actually being transmitted (as opposed to 



SEC. 7.7 MULTIMEDIA 747 

just being stored in case somebody ever wants them). Their main drawback is the 
high cost for storing movies that are rarely accessed. 

At the top of the pyramid of Fig. 7-89 is RAM. RAM is the fastest storage 
medium, but also the most expensive. It is best suited to movies for which dif­
ferent parts are being sent to different destinations at the same time (e.g., true 
video on demand to 100 users who all started at different times). When RAM 
prices drop to 10 dollars/megabyte, a 4-GB movie will occupy 40,000 dollars 
worth of RAM, so having 100 movies in RAM will cost 4 million dollars for the 
400 GB of memory. Still, for a 10 million dollar video server, this expense might 
well be worthwhile if each movie has enough simultaneous paying customers. 

Since a video server is really just a massive real-time I/O device, it needs a 
different hardware and software architecture than a PC or a UNIX workstation. 
The hardware architecture of a typical video server is illustrated in Fig. 7-90. The 
server has one or more high-performance RISC CPUs, each with some local 
memory, a shared main memory, a massive RAM cache for popular movies, a 
variety of storage devices for holding the movies, and some networking hardware, 
normally an optical interface to an ATM (or SONET) network at OC-3 or higher. 
These subsystems are connected by an extremely high-speed bus (at least 1 
GB/sec). 

Lo~ ••• L~ Main 
Movie 

CPU CPU Cache 
RAM RAM RAM (RAM) 

I High-speed bus 

-~ 

Tape 
Optical Magnetic 

Network 
disk disk controller 

controller controller 
interface 

/ / 

~~ 
/ / To ATM ,/ 88 8 8 Switch 
88 8 8 
88 8 8 
88 8 8 v 

Tape archive Optical juke box RAID 

Fig. 7-90. The hardware architecture of a typical video server. 

Now let us take a brief look at video server software. The CPUs are used for 
accepting user requests, locating movies, moving data between devices, customer 
billing, and many other functions. Some of these are not time critical, but many 
others are, so some, if not all, the CPUs will have to run a real-time operating sys­
tem, such as a real-time microkernel. These systems normally break work up into 



748 THE APPLICATION LA YER CHAP. 7 

small tasks, each with a known deadline. The scheduler can then run an algorithm 
such as nearest deadline next or the rate monotonic algorithm (Liu and Layland, 
1973). 

The CPU software also defines the nature of the interface that the server 
presents to the clients (spooling servers and set-top boxes). Two designs are 
popular. The first one is a traditional file system, in which the clients can open, 
read, write, and close files. Other than the complications introduced by the 
storage hierarchy and real-time considerations, such a server can have a file sys­
tem modeled after that of UNIX. 

The second kind of interface is based on the video recorder model. The com­
mands to the server request it to open, play, pause, fast forward, and rewind files. 
The difference with the UNIX model is that once a PLAY command is given, the 
server just keeps pumping out data at a constant rate, with no new commands 
required. 

The heart of the video server software is the disk management software. It 
has two main jobs: placing movies on the magnetic disk when they have to be 
pulled up from optical or tape storage, and handling disk requests for the many 
output streams. Movie placement is important because it can greatly affect per­
formance. 

Two possible ways of organizing disk storage are the disk farm and the disk 
array. With the disk farm, each drive holds a few entire movies. For perfor­
mance and reliability reasons, each movie should be present on at least two drives, 
maybe more. The other storage organization is the disk array or RAID (Redun­
dant Array of Inexpensive Disks), in which each movie is spread out over multi­
ple drives, for example, block 0 on drive 0, block 1 on drive 1, and so on, with 
block n - 1 on drive n - l. After that, the cycle repeats, with block n on drive 0, 
and so forth. This organizing is called striping. 

A striped disk array has several advantages O'/er a disk farm. First, all n 
drives can be running in parallel, increasing the performance by a factor of n. 
Second, it can be made redundant by adding an extra drive to each group of n, 
where the redundant drive contains the block-by-block EXCLUSIVE OR of the 
other drives, to allow full data recover in the event one drive fails. Finally, the 
problem of load balancing is solved (manual placement is not needed to avoid 
having all the popular movies on the same drive). On the other hand, the disk 
array organization is more complicated than the disk farm and highly sensitive to 
multiple failures. It is also ill-suited to video recorder operations such as rewind­
ing or fast forwarding a movie. A simulation study comparing the two organiza­
tions is given in (Chervenak et al., 1995). 

Closely related to block placement is finding disk blocks. The UNIX scheme 
of having an unbalanced tree of disk blocks pointed to by the i-node is usually 
unacceptable because video files are huge, so most blocks can only be located by 
going through a triple indirect block, which means many extra disk accesses 
(Tanenbaum, 1992). Instead, it is common to link the blocks together on a singly-



SEC. 7.7 MULTIMEDIA 749 

or doubly-linked list. Sometimes a UNIX-style index (i-node) is also used to allow 
random access. 

The other job of the disk software is to service all the real-time output streams 
and meet their timing constraints. An MPEG-2 video stream at 25 frames/sec 
needs to fetch and transmit about 14 KB every 40 msec, but the actual amount 
varies considerably because I-·, P-, and B-frames have different compression 
ratios. Consequently, to maintain a uniform output rate, buffering is needed at 
both ends of the stream. 

In Fig. 7-91 we see a staircase showing the total amount of data fetched from 
the disk for a given video stream (assuming that the movie is on disk). It moves 
up in discrete jumps, one jump for each block read. Nevertheless, transmission 
must occur at a more uniform rate, so the disk reading process must keep ahead of 
the transmission process. The shaded area in the figure shows data that have been 
fetched from disk but not yet transmitted. 

(/) 
Q) 

>. .c 
t1l 
Cl 
Q) 

::2: 

Amouht of data 

rnad"o~ 

Transmission 

Time-
Buffered 
data 

Fig. 7-91. Disk buffering at the server. 

Normally, disks are scheduled using the elevator algorithm, which starts the 
arm moving inward and keeps going until it hits the innermost cylinder, process­
ing all requests it hits in cylinder order. When it gets as far in as it can, the arm 
reverses and starts moving outward, again processing all pending requests along 
the way in order. While this algorithm minimizes seek time, it makes no guaran­
tees about real-time performance, so is not useful for a video server. 

A better algorithm is to keep track of all video streams and make a list of the 
next block needed by each one. These block numbers are then sorted and the 
blocks read in cylinder order. When the last block is read, the next round begins 
by collecting the number of the block now at the head of each stream. These are 
also sorted and read in cylinder order, and so on. This algorithm maintains real­
time performance for all streams but also minimizes seek time compared to a pure 
first-come, first-served algorithm. 

Another software issue is admission control. If a request for a new stream 
comes in, can it be accepted without ruining the real-time performance of the 



750 THE APPLICATION LA YER CHAP. 7 

existing streams? One algorithm that can be used for making a decision examines 
the worst case to see if going from k streams to k + l streams is guaranteed to be 
possible, based on the known properties of the CPU, RAM, and disk. Another 
algorithm just looks at the statistical properties. 

Another server software issue is how to manage the display during a fast for­
ward or fast backward (so people can search visually). The D-frames provide the 
necessary information for MPEG-1, but unless they are marked and stored in 
some special way, the server will not be able to find them without decoding the 
entire stream, and normally servers do not perform MPEG decoding during 
transmission. For MPEG-2, some other mechanism will be needed, at the very 
least to make it easy to find and decode I-frames. 

Finally, encryption is an issue. When movies are multicast (e.g., if the local 
distribution network is a cable TV system), encryption is needed to ensure that 
only paying customers can watch movies. Two approaches are possible: pre­
encryption and encryption on the fly. If movies are stored encrypted, then anyone 
learning a movie's key may be able to watch it for free because the same key is 
used every time. Separate encryption for each stream is more secure, but also 
more costly of computing resources. 

Key management is also an issue. The usual approach is to encrypt on the fly 
with a simple algorithm, but change the key often, so even if an intruder can break 
the key in 10 minutes, it will be obsolete by then. 

The Distribution Network 

The distribution network is the set of switches and lines between the source 
and destination. As we saw in Fig. 7-88, it consists of a SONET or ATM (or 
ATM over SONET) backbone, connected to a local distribution network. Usu­
ally, the backbone is switched and the local distribution network is not. 

The main requirements imposed on the backbone are high bandwidth and low 
jitter. For a pure SONET backbone, these are trivial to achieve-the bandwidth is 
guaranteed and the jitter is zero because the network is synchronous. For an A TM 
backbone, or ATM over SONET, the quality of service is very important. It is 
managed by the leaky bucket algorithm and all the other techniques we studied in 
great detail in Chap. 5, so we will not repeat that discussion here. For additional 
information about real-time MPEG over ATM backbones, see (Dixit and Skelly, 
1995; and Morales et al., 1995). Below we will focus on the local distribution 
network, a topic we have barely touched upon so far. 

Local distribution is highly chaotic, with different companies trying out dif­
ferent networks in different regions. Telephone companies, cable TV companies, 
and new entrants are all convinced that whoever gets there first will be the big 
winner, so we are now seeing a proliferation of technologies being installed. The 
four main local distribution schemes for video on demand go by the acronyms 
ADSL, FTTC, FTTH, and HFC. We will now explain each of these in turn. 



SEC. 7.7 MULTIMEDIA 751 

ADSL (Asymmetric Digital Subscriber Line) was the telephone industry's 
first entrant in the local distribution sweepstakes (Chen and Waring, 1994). The 
idea is that virtually every house in the United States, Europe, and Japan already 
has a copper twisted pair going into it (for analog telephone service). If these 
wires could be used for video on demand, the telephone companies could clean 
up. 

The problem, of course, is that these wires cannot support even MPEG-1 over 
their typical 10-km length, let alone MPEG-2. The ADSL solution takes advan­
tage of advances in digital signal processing to eliminate echoes and other line 
noise electronically. As shown in Fig. 7-92, each ADSL subscriber is given an 
in-house ADSL subscriber unit containing a digital signal processing chip. The 
telephone and set-top box plug into the ADSL unit. At the other end of the local 
loop, another ADSL unit is attached. This one may either be in the telephone 
company end office, or, if the local loop is too long, at the end of an optical fiber 
in the neighborhood of the house. 

\ 
Fiber 

connection 
to the 

end office 

ASDL 1-----1.536 Mbps--- ASPL 
network 16 Kbps ----1 subscription 

unit ___,.._ 4 KHz analog unit 

This connection uses the 
existing twisted pair 

-----~-1isa 

Fig. 7.92. ADSL as the local distribution network. 

ADSL-1 offers a 1.536-Mbps downlink channel (Tl minus the 193rd bit), but 
only a 16-kbps uplink channel. In addition, the old 4-kHz analog telephone chan­
nel (or in some cases, two N-ISDN digital channels) is also on there. The idea is 
that the uplink has enough bandwidth for the user to order movies, and the down­
link has enough bandwidth to send them encoded in MPEG-1. ADSL should be 
regarded more as a quick-and-dirty hack than a long-term solution, but it is being 
installeq in various cities. Improved versions, called ADSL-2 and ADSL-3 are 
also being worked on. The latter allows MPEG-2 over local loops of up to about 
2km. 

The second telephone company design is FTTC (Fiber To The Curb). We 
saw this design in Fig. 2-23(a). In FTTC, the telephone company runs optical 
fiber from the end office into each residential neighborhood, terminating in a de­
vice called an ONU (Optical Network Unit). The ONU is labeled "junction 



752 THE APPLICATION LA YER CHAP. 7 

box" in Fig. 2-23(a). On the order of 16 copper local loops can terminate in an 
ONU. These loops are now so short that it is possible to run full-duplex Tl or T2 
over them, allowing MPEG-1 and MPEG-2 movies, respectively. In addition, 
videoconferencing for home workers and small businesses is now possible 
because FTTC is symmetric. 

The third telephone company solution is to run fiber into everyone's house. It 
is called FTTH (Fiber To The Home). In this scheme, everyone can have an 
OC-1, OC-3, or even higher carrier if that is required. FTTH is very expensive 
and will not happen for years but clearly will open a vast range of new possibili­
ties when it finally happens. 

ADSL, FTTC, and FTTH are all point-to-point local distribution networks, 
which is not surprising given how the current telephone system is organized. A 
completely different approach is HFC (Hybrid Fiber Coax), which is the pre­
ferred solution currently being irtstalled by cable TV providers. It is illustrated in 
Fig. 2-23(b). The story goes something like this. The current 300- to 450-MHz 
coax cables will be replaced by 750-MHz coax cables, upgrading the capacity 
from 50 to 75 6-MHz channels to 125 6-MHz channels. Seventy-five of the 125 
channels will be used for transmitting analog television. 

The 50 new channels will each be modulated using QAM-256, which pro­
vides about 40 Mbps per channel, giving a total of 2 Gbps of new bandwidth. The 
head-ends will be moved deeper into the neighborhoods, so each cable runs past 
only 500 houses. Simple division show that each house can then be allocated a 
dedicated 4 Mbps channel, which can be used for some combination of MPEG-1 
programs, MPEG-2 programs, upstream data, analog and digital telephony, and so 
on. 

While this sounds wonderful, it does require the cable providers to replace all 
the existing cables with 750 MHz coax,. install new head-ends, and remove all the 
one-way amplifiers-in short, replace the entire cable TV system. Consequently, 
the amount of new infrastructure here is comparable to what the telephone com­
panies need for FTTC. In both cases the local network provider has to run fiber 
into residential neighborhoods. Again, in both cases, the fiber terminates at an 
optoelectrica] converter. In FTTC, the final segment is a point-to-point local loop 
using twisted pairs. In HFC, the final segment is a shared coaxial cable. Techni­
cally, these two systems are hot really as different as their respective proponents 
often make out. 

Nevertheless, there is one real difference that is worth pointing out. HFC uses 
a shared medium without switching and routing. Any information put onto the 
cable can be removed by any subscriber without further ado. FTTC, which is 
fully switched, does not have this property. As a result, HFC operators want 
video servers to send out encrypted streams, so customers who have not paid for a 
movie cannot see it. FTTC operators do not especially want encryption because it 
adds complexity, lowers performance, and provides no additional security in their 
system. From the point of view of the company running a video server, is it a 



SEC. 7.7 MULTIMEDIA 753 

good idea to encrypt or not? A server operated by a telephone company or one of 
its subsidiaries or partners might intentionally decide not to encrypt its videos, 
claiming efficiency as the reason but really to cause economic losses to its HFC 
competitors. 

For all these local distributilon networks, it is likely that each neighborhood 
will be outfitted with one or more spooling servers. These are, in fact, just 
smaller versions of the video servers we discussed above. The big advantage of 
these local servers is that since the local distribution networks are short and gen­
erally not switched, they do not introduce jitter as an A TM backbone network 
would. 

They can be preloaded with movies either dynamically or by reservation. For 
example, when a user selects a movie, the first minute could be transmitted to the 
local server in under 2 seconds at OC-3. After 55 seconds, the next minute could 
be shipped to the local server in 2 seconds, and so on. In this way, the traffic over 
the ATM backbone no longer has to be jitter free, making it possible to use ABR 
service instead of the more expensive CBR service. 

If people tell the provider which movies they want well in advance, they can 
be downloaded to the local server during off-peak hours, giving even bigger sav­
ings. This observation is likely to lead the network operators to lure away airline 
executives to do their pricing. One can envision tariffs in which movies ordered 
24 to 72 hours in advance for viewing on a Tuesday or Thursday evening before 6 
P.M, or after 11 P.M. get a 27 percent discount. Movies ordered on the first Sun­
day of the month before 8 A.M. for viewing on a Wednesday afternoon on a day 
whose date is a prime number get a 43 percent discount, and so on. 

The choice of the protocol stack to use for video on demand is still up in the 
air. ATM is clearly the technology of choice, but which adaptation protocol 
should be used? AAL 1 was designed for video, so it is a strong candidate, but it 
corresponds to the CBR service category. Dedicating the maximum possible 
bandwidth needed is expensive, especially since MPEG is inherently VBR traffic 
so the virtual circuit will have to be overdimensioned. 

AAL 2 is not finished (and probably never will be) and AAL 3/4 is too 
clumsy, so AAL 5 is the only remaining contender. It is not tied to CBR service, 
and sending a large block of MPEG in each message would be extremely effi­
cient, getting nearly 100 percent of the user bandwidth for the video stream. On 
the downside, AAL 5 does error detection. Having an entire block discarded due 
to a 1-bit error is highly unattractive, especially since most errors are single bit 
errors in the middle of the data. As a consequence, there is some movement 
toward changing AAL 5 to allow applications to ask for all blocks, along with a 
bit telling whether or not the checksum was correct. 

The video on demand protocol stack we have sketched above is illustrated in 
Fig. 7-93. Above the AAL layer, we see the MPEG program and transport stream 
layer. Then come the encoding and decoding of MPEG audio and video, respec­
tively. Finally, we have the application on top. 



754 THE APPLICATION LA YER CHAP. 7 

Applications 

I MPEG audio] I MPEG video I 

@] @] 

I AAL 1 I I AAL5 I 

ATM ATM layer 

ATM physical layer 

Fig. 7-93. A video-on-demand protocol stack. 

Set-Top Boxes 

All of the above local distribution methods ultimately bring one or more 
MPEG streams into the home. To decode and view them, a network interface, 
MPEG decoder, and other electronic components are needed. Two approaches 
are possible here. 

In approach one, people use their personal computers for decoding and view­
ing movies. Doing this requires buying a special plug-in board containing a few 
special chips and a connector for interfacing to the local distribution network. 
The movies then appear on the computer's monitor, possibly even in a window. 
One might call this the set-bottom box since with computers, the box is usually 
under the monitor instead of on top of it. This approach is cheaper (all that is 
needed is one plug-in board and the software), uses a high--resolution noninter­
laced monitor, has a sophisticated mouse-oriented user interface, and can easily 
be integrated with the WWW and other computer-oriented information and enter­
tainment sources. On the other hand, PCs usually have small screens, are located 
in studies or dens rather than in living rooms, and are traditionally used by one 
person at a time. They also emit significantly less light than television sets. 

In approach two, the local network operator rents or sells the user a set-top 
box to which the network and television set are connected. This approach has the 
advantage that everyone has a television but not everyone has a PC, and many of 
the PCs that people do have are old, peculiar, or otherwise unsuited to MPEG 
decoding. Furthermore, the television is often located in a room intended for 
group viewing. 

On the down side, the monitor has a low-resolution interlaced display (making 
it unsuited for text-oriented material, such as the WWW). In addition, it has a 
dreadful user interface (the remote control), making it virtually impossible for the 
user to do anything except select items from simple menus. Even typing in the 
name of a movie is painful, let alone engaging in a dialog asking the server to 



SEC. 7.7 MULTIMEDIA 755 

search for all the films made by a certain actor, director, or production company 
during a certain time period. Finally, set-top boxes with the required performance 
are not easy to produce for an acceptable price (thought to be a few hundred dol­
lars). 

All these factors considered, most video-on-demand systems have opted for 
the set-top box model, primarily because mass marketeers hate to exclude any 
potential customers (people without a PC). Also, there may be money to be made 
renting or selling set-top boxes. Nevertheless, the PC plug-in board market is 
large enough so no doubt these boards will be produced, too. 

The primary functions of the set-top box are interfacing with the local distri­
bution network, decoding the MPEG signal, synchronizing the audio and video 
streams, producing a composite NTSC, PAL, or SECAM signal for the television 
set, listening to the remote control, and handling the user interface. Additional 
functions might include interfacing with stereos, telephones, and other devices. A 
major battle is raging within the industry about how much functionality should be 
put in the set-top box and how much should be in the network. How that turns out 
remains to be seen. 

A possible architecture for a simple set-top box is shown in Fig. 7-94. The 
device consists of a CPU, ROM, RAM, I/O controller, MPEG decoder, and net­
work interface. Optionally, a security chip can also be added for decryption of 
incoming movies and encryption of outgoing messages (credit card numbers for 
home shopping, etc.). 

CPU 

Television set 

ROM RAM 

MPEG Network 

Remote 
control 

To network 

Fig. 7-94. The hardware architecture of a simple set-top box. 

An important issue for video on demand is audio/video synchronization and 
jitter management. Adding an additional 500 KB of RAM allows for 1 second of 
MPEG-2 buffering, but at additional expense in a device that the manufacturers 
are hoping to sell for a few hundred dollars, at most. 



756 THE APPLICATION LA YER CHAP. 7 

Since the set-top box is just a computer, it will need software, probably a 
microkernel-based real-time operating system kept in the ROM. To provide flexi­
bility and adaptability, it is probably a good idea to make it possible to download 
other software from the network. This possibility then raises the problem of what 
happens when the owner of a MIPS-based set-top box wants to play a game writ­
ten for a SPARC-based set-top box? Using an interpreted language such as Java 
solves the compatibility problem but severely lowers performance in a real-time 
environment in which high performance is crucial. 

Standards 

The economics of video on demand cannot be ignored. A large video server 
can easily cost more than a mainframe, certainly 10 million dollars. Suppose that 
it serves 100,000 homes, each of which has rented a 300-dollar set-top box. Now 
throw in 10 million dollars worth of networking equipment and a 4-year deprecia­
tion period, and the system has to generate 10 dollars per home per month. At 5 
dollars/movie, everyone has to buy two movies a month for the operator to break 
even (excluding salaries, marketing, and all other costs). Whether this will actu­
ally happen is far from obvious. 

The numbers given above can be rearranged in many ways (e.g., charging 6 
dollars per month rental for the set-top box and 2 dollars per movie), and the costs 
are changing all the time, but it should be clear that without a mass market, there 
is no way that video on demand makes economic sense. For a mass market to 
develop, it is essential that all parts of the system be standardized. If each video 
provider, network operator, and set-top box manufacturer designs its own inter­
face, nothing will interwork with the rest of the system. So far, the only standard 
that everyone agrees on is the use of MPEG-2 for video encoding. Everything 
else is up for grabs. A few of the many questions that have to be answered before 
a national system can be built are listed in Fig. 7-95. 

If all these areas can be standardized, we can easily imagine many vendors 
producing products consisting of a box with a telephone jack, monitor, keyboard, 
and mouse that can be used for watching videos, computing, or maybe doing both 
at once. The much-discussed convergence of the computing, communication, and 
entertainment industries will then be a reality. 

7.7.5. MBone-Multicast Backbone 

While all these industries are making great-and highly publicized-plans for 
future (inter)national digital video on demand, the Internet community has been 
quietly implementing its own digital multimedia system, MBone (Multicast 
Backbone). In this section we will give a brief overview of what it is and how it 
works. For an entire book on MBone, see (Kumar, 1996). For articles on MBone, 
see (Eriksson, 1994; and Macedonia and Brutzman, 1994). 



SEC. 7.7 MULTIMEDIA 757 

What technology will the backbone use (SONET, ATM, SONET +ATM)? 

What speed will the backbone run at (OC-3, OC-12)? 

How will local distribution be done (HFC, FTTC)? 

How much upstream banclwidth will there be (16 kbps, 1.5 Mbps)? 

Will movies be encrypted, and if so, how? 

Will error correction be present (mandatory, optional, absent)? 

Who will own the set-top box (user, network operator)? 

Will telephony be part of tile system (analog, N-ISDN)? 

Will high-resolution hypertext applications be supported (e.g., WWW)? 

Fig. 7-95. A few areas in which standards are needed. 

MBone can be thought of as Intetnet radio and television. Unlike video on 
demand, where the emphasis is on calling up and viewing precompressed movies 
stored on a server, MBone is used for broadcasting live audio and video in digital 
form all over the world via the Internet. It has been operational since early 1992. 
Many scientific conferences, especially IETF meetings, have been broadcast, as 
well as newsworthy scientific events, such as space shuttle launches. A Rolling 
Stones concert was once broadcast over MBone. Whether this qualifies as a 
newsworthy scientific event is arguable. For people who want to digitally record 
an MBone broadcast, software for accomplishing that is also available (Holfelder, 
1995). 

Most of the research concerning MBone has been about how to do multicast­
ing efficiently over the (datagram-oriented) Internet. Little has been done on 
audio or video encoding. MBone sources are free to experiment with MPEG or 
any other encoding technology they wish. There are no Internet standards on con­
tent or encoding. 

Technically, MBone is a virtual overlay network on top of the Internet. It 
consists of multicast-capable islands connected by tunnels, as shown in Fig. 7-96. 
In this figure, MBone consists of six islands, A through F, connected by seven 
tunnels. Each island (typically a LAN or group of interconnected LANs) supports 
hardware multicast to its hosts. The tunnels propagate MBone packets between 
the islands. Some day in the future, when all the routers are capable of handling 
multicast traffic directly, this superstructure will no longer be needed, but for the 
moment, it does the job. 

Each island contains one or more special routers called mrouters (multicast 
routers). Some of these are actually normal routers, but most are just UNIX 

workstations running special user-level software (but as the root). The mrouters 
are logically connected by tunnels. In the past, MBone packets were tunneled 
from mrouter to mrouter (usually through one or more routers that did not know 



758 THE APPLICATION LA YER CHAP. 7 

M router 

F 

Fig. 7-96. MBone consists of multicast islands connected by tunnels. 

about MBone) using loose source routing. Nowadays, MBone packets are encap­
sulated within IP packets and sent as regular unicast packets to the destination 
mrouter's IP address. If all the intervening routers support multicast, however, 
tunneling is not needed. 

Tunnels are configured manually. Usually, a tunnel runs above a path for 
which a physical connection exists, but this is not a requirement. If, by accident, 
the physical path underlying a tunnel goes down, the mrouters using the tunnel 
will not even notice it, since the Internet will automatically reroute all the IP 
traffic between them via other lines. 

When a new island appears and wishes to join MBone, such as Gin Fig. 7-96, 
its administrator sends a message announcing its existence to the MBone mailing 
list. The administrators of nearby sites then contact him to arrange to set up tun­
nels. Sometimes existing tunnels are reshuffled to take advantage of the new 
island to optimize the topology. After all, tunnels have no physical existence. 
They are defined by tables in the mrouters and can be added, deleted, or moved 
simply by changing these tables. Typically, each country on MBone has a back­
bone, with regional islands attached to it. Normally, MBone is configured with 
one or two tunnels crossing the Atlantic and Pacific oceans, making MBone glo­
bal in scale. 

Thus at any instant, MBone consists of a specific topology consisting of 
islands and tunnels, independent of the number of multicast addresses currently in 
use and who is listening to them or watching them. This situation is very similar 
to a normal (physical) subnet, so the normal routing algorithms apply to it. Con­
sequently, MBone initially used a routing algorithm, DVMRP (Distance Vector 
Multicast Routing Protocol) based on the Bellman-Ford distance vector 



SEC. 7.7 MULTIMEDIA 759 

algorithm. For example, in Fig. 7-96, island C can route to A either via B or via E 
(or conceivably via D). It makes its choice by taking the values those nodes give 
it about their respective distances to A and then adding its distance to them. lii 
this way, every island determines the best route to every other island. The routes 
are not actually used in this way, however, as we will see shortly. 

Now let us consider how multicasting actually happens. To multicast an 
audio or video program, a source must first acquire a class D multicast address, 
which acts like a station frequency or channel number. Class D addresses are 
reserved by using a program that looks in a database for free multicast addresses. 
Many multicasts may be going on at once, and a host can "tune" to the one it is 
interested in by listening to the appropriate multicast address. 

Periodically, each mrouter sends out an IGMP broadcast packet limited to its 
island asking who is interested in which channel. Hosts wishing to (continue to) 
receive one or more channels send another IGMP packet back in response. These 
responses are staggered in time, to avoid overloading the local LAN. Each 
mrouter keeps a table of which channels it must put out onto its LAN, to avoid 
wasting bandwidth by multicasting channels that nobody wants. 

Multicasts propagate through MBone as follows. When an audio or video 
source generates a new packet, it multicasts it to its local island using the 
hardware multicast facility. This packet is picked up by the local mrouter, which 
then copies it into all the tunnels to which it is connected. 

Each mrouter getting such a packet via a tunnel then checks to see if the 
packet came along the best route, that is, the route that its table says to use to 
reach the source (as if it were a destination). If the packet came along the best 
route, the mrouter copies the packet to all its other tunnels. If the packet arrived 
via a suboptimal route, it is discarded. Thus, for example, in Fig. 7-96, if C's 
tables tell it to use B to get to A, then when a µrnlticast packet from A reaches C 
via B, the packet is copied to D and E. Howev~r, when a multicast packet from A 
reaches C via E (not the best path), it is simply discarded. This algorithm is just 
the reverse path forwarding algorithm that we saw in Chap. 5. While not perfect, 
it is fairly good and very simple to implement. 

In addition to using reverse path forwarding to prevent flooding the Internet, 
the IP Time to live field is also used to limit the scope of multicasting. Each 
packet starts out with some value (determined by the source). Each tunnel is 
assigned a weight. A packet is only passed through a tunnel if it has enough 
weight. Otherwise it is discarded. For example, transoceanic tunnels are nor­
mally configured with a weight of 128, so packets can be limited to the continent 
of origin by giving them an initial Time to live of 127 or less. After passing 
through a tunnel, the Time to live field is decremented by the tunnel's weight. 

While the MBone routing algorithm works, much research has been devoted 
to improving it. One proposal keeps the idea of distance vector routing, but 
makes the algorithm hierarchical by grouping MBone sites into regions and first 
routing to them (Thyagarajan and Deering, 1995). 



760 THE APPLICATION LA YER CHAP. 7 

Another proposal is to use a modified form of link state routing instead of dis­
tance vector routing. In particular, an IETF working group is busy modifying 
OSPF to make it suitable for multicasting within a single autonomous system. 
The resulting multicast OSPF is called MOSPF (Moy, 1994). What the modifica­
tions do is have the full map built by MOSPF keep track of multicast islands and 
tunnels, in addition to the usual routing information. Armed with the complete 
topology, it is straightforward to compute the best path from every island to every 
other island using the tunnels. Dijkstra's algorithm can be used, for example. 

A second area of research is inter-AS routing. Here an algorithm called PIM 
(Protocol Independent Multicast) is being developed by another IETF working 
group (Huitema, 1995). PIM comes in two versions, depending one whether the 
islands are dense (almost everyone wants to watch) or sparse (almost nobody 
wants to watch). Both versions use the standard unicast routing tables, instead of 
creating an overlay topology as DVMRP and MOSPF do. 

In PIM-dense, the idea is to prune useless paths. Pruning works as follows. 
When a multicast packet arrives via the "wrong" tunnel, a prune packet is sent 
back through the tunnel telling the sender to stop sending it packets from the 
source in question. When a packet arrives via the "right" tunnel, it is copied to 
all the other tunnels that have not previously pruned themselves. If all the other 
tunnels have pruned themselves and there is no interest in the channel within the 
local island, the mrouter sends a prune message back through the "right" channel. 
In this way, the multicast adapts automatically and only goes where it is wanted. 

PIM-sparse works differently. The idea here is to prevent saturating the Inter­
net because three people in Berkeley want to hold a conference call over a class D 
address. PIM-sparse works by setting up rendezvous points. Each of the sources 
in a PIM-sparse multicast group send their packets to the rendezvous points. Any 
site interested in joining up asks one of the rendezvous points to set up a tunnel to 
it. In this way, all PIM-sparse traffic is transported by unicast instead of by multi­
cast. 

All in all, multimedia is an exciting and rapidly moving field. New technolo­
gies and applications are announced daily, but the area as a whole is likely to 
remain important for decades to come. 

7.8. SUMMARY 

Computer networks are inherently insecure. To keep information secret, it 
must be encrypted. Encryption protocols fall into two general classes: secret key 
(e.g., DES, IDEA), and public key (e.g., RSA). Using these protocols is straight­
forward; the hard part is key management. 

In addition to providing secrecy, cryptographic protocols can also provide 
authentication, so that when Alice thinks she is communicating with Bob, she 
really is communicating with Bob, and not with Trudy. Finally, cryptography can 



SEC. 7.8 SUMMARY 761 

also be used to allow messages to be signed in such a way that the sender cannot 
repudiate them after they have been sent. 

Naming in the Internet uses a distributed database system, DNS. DNS holds 
records with IP addresses, mail exchanges, and other information. By querying a 
DNS server, a process can map an Internet domain name onto the IP address used 
to communicate with that domain. 

As networks grow larger, they become harder to manage. For this reason, 
special network management systems and protocols have been devised, the most 
popular of which is SNMP. This protocol allows managers to communicate with 
agents inside devices to read out their status and issue commands to them. 

Four major network applications are electronic mail, USENET news, the 
World Wide Web, and multimedia (video on demand and MBone). Most email 
systems use the mail system defined in RFCs 821 and 822. Messages sent in this 
system use system ASCII headers to define message properties. These messages 
are sent using SMTP. Two systems for securing email exist, PGP and PEM. 

USENET news consists of thousands of newsgroups on all manner of topics. 
People can join newsgroups locally, and can then post messages all over the world 
using the NNTP protocol, which has some resemblence to SMTP. 

The World Wide Web is a system for linking up hypertext documents. Each 
document is a page written in HTML, possible with hyperlinks to other docu­
ments. A browser can display a document by establishing a TCP connection to its 
server, asking for the document, and then closing the connection. When a hyper­
link is selected by the user, that document can also be fetched in the same way. In 
this manner, documents all over the world are linked together in a giant web. 

Multimedia is the rising star in the networking firmament. It allows audio and 
video to be digitized and transported electronically for display. Most multimedia 
projects use the MPEG standards and transmit the data over ATM connections. 
The MBone is an experimental worldwide digital radio and television service on 
the Internet. 

PROBLEMS 

1. Break the following monoalphabetic cipher. The plaintext, consisting of letters only, 
is a well-known excerpt from a poem by Lewis Carroll. 

kfd ktbd fzm eubd kfd pzyiom mztx ku kzyg ur bzha kfthcm 
ur mfudm zhx mftnm zhx mdzythc pzq ur ezsszcdm zhx gthcm 
zhx pfa kfd mdz tm sutythc fuk zhx pfdkfdi ntcm fzld pthcm 
sok pztk z stk kfd uamkdim eitdx sdruid pd fzld uoi efzk 
rui mu bd ur om zid uok ur sidzkf zhx zyy ur om zid rzk 
hu foiia mztx kfd ezindhkdi kfda kfzhgdx ftb boef rui kfzk 



762 THE APPLICATION LAYER CHAP. 7 

2. Break the following columnar transposition cipher. The plaintext is taken from a 
popular computer textbook, so "computer" is a probable word. The plaintext consists 
entirely of letters (no spaces). The ciphertext is broken up into blocks of five charac­
ters for readability. 

aauan cvlre rurnn dltme aeepb ytust iceat npmey iicgo gorch srsoc 
nntii imiha oofpa gsivt tpsit lbolr otoex 

3. In Fig. 7-4, the P-boxes and S-boxes alternate. Although this arrangement is estheti­
cally pleasing, is it any more secure than first having all the P-boxes and then all the 
S-boxes? 

4. Suppose that a message has been encrypted using DES in ciphertext block chaining 
mode. One bit of ciphertext in block C; is accidentally transformed from a 0 to a 1 
during transmission. How much plaintext will be garbled as a result? 

S. Now consider ciphertext block chaining again. Instead of a single 0 bit being 
transformed into a l bit, an extra 0 bit is inserted into the ciphertext stream after block 
C;. How much plaintext will be garbled as a result? 

6. Design an attack on DES based on the knowledge that the plaintext consists 
exclusively of uppercase ASCII letters, plus space, comma, period, semicolon, car­
riage return, and line feed. Nothing is known about the plaintext parity bits. 

7. Compare cipher block chaining with cipher feedback mode in terms of the number of 
encryption operations needed to transmit a large file. Which one is more efficient and 
by how much? 

8. Using the RSA public key cryptosystern, with a = 1, b = 2, etc., 
(a) If p = 7 and q = 11, list five legal values ford. 
(b) If p = 13, q = 31 and d = 7, find e. 
(c) Using p = 5, q = 11, and d = 27, find e and encrypt "abcdefghij" 

9. The Diffie-Hellman key exchange is being used to establish a secret key between 
Alice and Bob. Alice sends Bob (719, 3, 191). Bob responds with (543). Alice's 
secret number, x, is 16. What is the secret key? 

10. Change one message in protocol of Fig. 7-14 in a minor way to make it resistant to the 
reflection attack. Explain why your change works. 

11. In the protocol of Fig. 7-17, why is A sent in plaintext along with the encrypted ses­
sion key? 

12. In the protocol of Fig. 7-17, we pointed out that starting each plaintext message with 
32 zero bits is a security risk. Suppose that each message begins with a per-user ran­
dom number, effectively a second secret key known only to its user and the KDC. 
Does this eliminate the known plaintext attack? 

13. In the Needham-Schroeder protocol, Alice generates two challenges, RA and RA 2 • 

This seems like overkill. Would one not have done the job? 

14. In the public-key authentication protocol of Fig. 7-21, in message 3, R8 is encrypted 
with K5 . Is this encryption necessary, or would it have been adequate to send it back 
in plaintext? 



CHAP. 7 PROBLEMS 763 

15. The signature protocol of Fig. 7-22 has the following weakness. If Bob crashes, he 
may lose the contents of his RAM. What problems does this cause and what can he do 
to prevent them? 

16. After Ellen confessed to Marilyn about tricking her in the matter of Tom's tenure, 
Marilyn resolved to avoid this problem by dictating the contents of future messages 
into a dictating machine and having her new secretary just type them in. Marilyn then 
planned to examine the messages on her terminal after they have been typed in to 
make sure they contain her exact words. Can the new secretary still use the birthday 
attack to falsify a message, and if so, how? Hint: She can. 

17. Point-of-sale terminals that use magnetic-stripe cards and PIN codes have a fatal flaw: 
a malicious merchant can modify his card reader to capture and store all the informa­
tion on the card as well as the PIN code in order to post additional (fake) transactions 
in the future. The next generation of point-of-sale terminals will use cards with a 
complete CPU, keyboard, and tiny display on the card. Devise a protocol for this sys­
tem that malicious merchants cannot break. 

18. According to the information given in Fig. 7-27, is little-sister.cs.vu.nl on a class A, B, 
or C network? 

19. In Fig. 7-27, there is no period after rowboat? Why not? 

20. What is the OBJECT IDENTIFIER for the tcp object? 

21. An SNMP integer whose value is 200 has to be transmitted. Show the binary 
representation of the bits sent in the ASN .1 transfer syntax. 

22. What is the representation of lthe 11-bit binary bit string '11100001111' in the ASN.l 
transfer syntax? 

23. Suppose that you are hired by a bridge vendor to write SNMP-conformant code for 
one of their bridges. You read all the RFCs and still have questions. You suggest to 
IAB that a complete, formal grammar of the language used to describe SNMP vari­
ables be given in one place. IAB's reaction is to agree and appoint you to do the job. 
Should the grammar be added to RFC 1442 or RFC 1213? Why? Hint: You do not 
need to fetch the RFCs; enough information is given in the text. 

24. Some email systems support a header field Content Return:. It specifies whether the 
body of a message is to be returned in the event of nondelivery. Does this field belong 
to the envelope or to the header? 

25. Electronic mail systems need directories so people's email addresses can be looked 
up. To build such directories, names should be broken up into standard components 
(e.g., first name, last name) to make searching possible. Discuss some problems that 
must be solved for a worldwide standard to be acceptable. 

26. A binary file is 3072 bytes long. How long will it be if encoded using base64 encod­
ing, with a CR+LF pair inserted after every 80 bytes sent and at the end? 

27. Consider the quoted-printable MIME encoding scheme. Mention a problem not dis­
cussed in the text and propose a solution. 

28. Give two reasons why PGP compresses messages. 



764 THE APPLICATION LA YER CHAP. 7 

29. Suppose that someone sets up a vacation daemon and then sends a message just before 
logging out. Unfortunately, the recipient has been on vacation for a week and also has 
a vacation daemon in place. What happens next? Will canned replies go back and 
forth until somebody returns? 

30. Assuming that everyone on the Internet used POP, could a POP message be sent to an 
arbitrary Internet address and be decoded correctly by all concerned? Discuss your 
answer. 

31. POP does not support canonicalization as does PEM. Why not? 

32. Make a guess about what the smiley : -X (sometimes written as : -#)might mean. 

33. How long does it take to distribute a days' worth of news over a 50-Mbps satellite 
channel? 

34. Which of the commands listed in Fig. 7-56 are theoretically redundant? 

35. A large network consists of an /1 x n grid of machines. All the interior nodes have 
four neighbors; the ones on the edges (corners) have three (two) neighbors. If an m­
byte article is posted on some machine using NNTP, how many bytes of bandwidth 
are consumed getting it to all other machines (ignoring the NNTP overhead and just 
counting the message bytes)? 

36. Repeat the previous problem, but now compute the approximate bandwidth that would 
be needed to distribute the message using a mailing list. How much more is it than in 
the previous problem? 

37. When Web pages are sent out, they are prefixed by MIME headers. Why? 

38. When are external viewers needed? How does a browser know which one to use? 

39. Imagine that someone in the CS Department at Stanford has just written a new pro­
gram that he wants to distribute by FTP. He puts the program in the FTP directory 
ftplpub!freebies!newprog.c. What is the URL for this program likely to be? 

40. In Fig. 7-60, the ALT parameter is set in the <IMO> tag. Under what conditions does 
the browser use it, and how? 

41. How do you make an image clickable in HTML? Given an example. 

42. Show the <A> tag that is needed to make the string "ACM" be a hyperlink to 
http://www.acm.org. 

43. Design a form for a new company, Jnterburger, that allows hamburgers to be ordered 
via the Internet. The form should include the customer's name, address, and city, as 
well as a choice of size (either gigantic or immense) and a cheese option. The burgers 
are to be paid for in cash upon delivery, so no credit card information is needed. 

44. Java does not have structures as in C or records as in Pascal. Is there some other way 
to achieve the same effect of bundling a group of dissimilar variables together to form 
a single data type? If so, what is it? 

45. Using the data structures of Fig. 7-75, list the exact steps needed to check a new URL 
to see if it is already in url_table. 



CHAP. 7 PROBLEMS 765 

46. Suppose that in its effort to become more market oriented, the KGB goes commercial 
and hires an advertising agency that designs a Web page for it. Your company has 
been hired as an outside consultant to implement it. Write the HTML to produce the 
Web page below. 

WELCOME TO THE KGB'S WWW HOME PAGE 

As a consequence of its n3cent privatization, the KGB is pleased to announce 
the commercial availability of many fine products and services previously 
available only to major governments. 

Competitive prices! Discreet service ensured! 

• Products 
o Nuclear weapons (small, medium, large, jumbo) 
o Spy satellites (keep tabs on your neighbors) 
o Low-radar-profile supersonic aircraft (buzz your friends' houses unseen) 

•Services 
o Mole placement in the organization of your choice 
o Coups (corporate as well as governmental) 
o Assistance in setting up your very own germ-warfare laboratory 

• Bargain basement specials 
o The collected works of Felix Dzerzhinsky (limited edition) 
o Aerial photographs of Afghanistan (ca. 1984) 
o Quality Bulgarian-made tanks (95 percent discount) 

Webmaster@kgb.ru 

47. In C and C++, the size of an integer is not specified by the language. In Java it is. 
Give an argument for the C way and one for the Java way. 

48. Suppose that the Web contains 10 million pages, each with an average of 10 hyper -
links. Fetching a page averages 100 msec. What is the minimum time to index the 
entire Web? 

49. A compact disc holds 650 MB of data. Is compression used for audio CDs? Explain 
your reasoning. 

50. What is the bit rate for transmitting uncompressed VGA color with 8 bits/pixel at 40 
frames/sec? 

51. In Fig. 7-76(c) quantization noise occurs due to the use of 3-bit samples. The first 
sample, at 0, is exact, but the next few are not. What is the percent error for the sam­
ples at 1132, 2/32, and 3/32 of the period? 

52. Can a 1-bit error in an MPEG frame affect more than the frame in which the error 
occurs? Explain your answer. 

53. Consider the 100,000 customer video server example given in the text. Suppose that 
half of all movies are served from 8 P.M to 10 P.M. How many movies does the server 
have to transmit at once during this time period? If each movie requires 4 Mbps, how 
many OC-12 connections does the server need to the network? 



766 THE APPLICATION LAYER CHAP. 7 

S4. Suppose that Zipf's Jaw holds for accesses to a 10,000-movie video server. If the 
server holds the most popular I 000 movies on magnetic disk and the remaining 9000 
on optical disk, give an expression for the fraction of all references that will be to 
magnetic disk. Write a little program to evaluate this expression numerically. 

SS. MPEG PES packets contain a field giving the copyright status of the current transmis­
sion. Of what conceivable use is this field? 



8 
READING LIST AND BIBLIOGRAPHY 

We have now finished our study of computer networks, but this is only the 
beginning. Many interesting topics have not been treated in as much detail as 
they deserve, and others have been omitted altogether for lack of space. In this 
chapter we provide some suggestions for further reading and a bibliography, for 
the benefit of readers who wish to continue their study of computer networks. 

8.1. SUGGESTIONS FOR FURTHER READING 

There is an extensive literature on all aspects of computer networks and distri­
buted systems. Four journals that frequently publish papers in this area are IEEE 
Transactions on Communications, IEEE Journal on Selected Areas in Communi­
cations, Computer Communication Review, and Computer Networks and ISDN 
Systems. Many other journals also publish occasional papers on the subject. 

IEEE also publishes two magazines, IEEE Network Magazine and IEEE Com­
munications Magazine, that contain surveys, tutorials, and case studies on net­
working. The former emphasizes architecture, standards, and software, and the 
latter tends toward communications technology (fiber optics, satellites, and so on). 

In addition, there are several annual or biannual conferences that often attract 
many papers on networks and distributed systems, in particular, SIGCOMM '9x, 
The International Conference on Distributed Computer Systems, The Symposium 
on Operating Systems Principles and The N-th Data Communications Symposium. 

767 



768 READING LIST AND BIBLIOGRAPHY CHAP. 8 

Furthermore, IEEE has published several volumes of network paper reprints in 
convenient paperback form. 

Below we list some suggestions for supplementary reading, keyed to the 
chapters of this book. 

8.1.1. Introduction and General Works 

Bell, "Communications'' 
For an excellent overview of trends in communication, including telephone, 

ATM, ISDN, wireless LANs, the Internet, and pagers, this article is a must. 

Comer, The Internet Book 
Anyone looking for an easy-going introduction to the Internet should look 

here. Comer describes the history, growth, technology, protocols, and services of 
the Internet in terms that novices can understand, but so much material is covered 
that the book is also of interest to more technical readers as well. 

Jabbari et al., "Network Issues for Wireless Communication" 
This introduction to cellular radio systems covers call control, routing, signal­

ing, and other aspects of modern mobile communication systems. 

Kwok, "A Vision for Residential Broadband Service" 
If you want to know how Microsoft thinks video on demand should be organ­

ized, this article is for you. In it, Microsoft's chief ATM architect explains his 
company's vision. Briefly summarized, Microsoft's idea is: ATM to the home is 
the way to go. Forget all the "realistic" (i.e., ad hoc) solutions, like ADSL and do 
it right. 

Le Boudec, "The Asynchronous Transfer Mode: A tutorial" 
ATM is an up-and-coming technology, and this paper gives a thorough intro­

duction to it. The physical layer, ATM layer, and AAL layer are all covered. In 
addition, the final section discusses the debate about ATM. 

Pahlavan et al., "Trends in Local Wireless Networks" 
Wireless LANs will no doubt become increasingly important in the future. In 

this paper, the authors discuss the state of the art and trends in spectrum use and 
technologies for wireless LANs. 

Siu and Jain, "A Brief Overview of A TM" 
Many features of ATM systems are covered in this introductory paper, but the 

focus is on LAN emulation and traffic management. It also serves as the intro­
duction to a special issue of Computer Communication Review devoted to ATM 
technology. 



SEC. 8.1 SUGGESTIONS FOR FURTHER READING 769 

8.1.2. The Physical Layer 

Awdeh and Mouftah, "Survey of ATM Switch Architectures" 
Anyone interested in learning more about A TM switch design should look 

here. After introducing switches in general and buffering strategies, the authors 
discuss many kinds of crossbar, disjoint-path, and banyan switches. The paper 
also provides over 200 references to other papers. 

Bellamy, Digital Telephony 
Everything you ever wanted to know about the telephone system and more is 

contained in this authoritative book. Particularly interesting are the chapters on 
transmission and multiplexing, digital switching, fiber optics, and ISDN. 

De Prycker, Asynchronous Transfer Mode, 2nd ed. 
Chapter 4 contains a wealth of information on ATM switches. The principles 

are illustrated by numerous example switches, including the knockout, Roxanne, 
Coprin, and Athena switches. 

Held, The Complete Modem Reference, 2nd ed. 
Everything you might conceivably want to know about modems is here, from 

the U.S. and Canadian governments' compliance rules, through modulation tech­
niques and standards, to how to troubleshoot a sick modem. 

IEEE Communications Mag., Jan. 1995, "Wireless Personal Communications" 
This special issue contains seven papers on different aspects of wireless per­

sonal communication. Collectively they cover propagation, access methods, 
receiver principles, system aspects, and network issues. 

Metcalfe, "Computer/Network Interface Design: Lessons from Arpanet & Ethernet" 
Although engineers have been building network interfaces for decades now, 

one often wonders if they have learned anything from all this experience. In this 
paper, the designer of the Ethernet tells how to build a network interface, and 
what to do with it once you have built it. He pulls no punches, telling what he did 
wrong as well as what he did right. 

Padgett et al., "Overview of Wireless Personal Communications" 
An introduction to cellular and cordless communication systems and a com­

parison of the two. Both the American and European standards are covered. 

Palais, Fiber Optic Communication, 3rd ed. 
Books on fiber optic technology tend to be aimed at the specialist, but this one 

is more accessible than most. It covers waveguides, light sources, light detectors, 
couplers, modulation, noise, and many other topics. 



770 READING LIST AND BIBLIOGRAPHY CHAP. 8 

Pandya, "Emerging Mobile and Personal Communications Systems" 
For a short and sweet introduction to hand-held personal communication sys­

tems, this article is worth looking at. One of the nine pages contains a list of 70 
acronyms used on the other eight pages. 

Partridge, Gigabit Networking 
In addition to describing several kinds of A TM switches, Chap. 5 also com­

pares input buffering and output buffering and derives formulas for the perfor­
mance of each. 

Spragins et al., Telecommunications Protocols and Design 
Chapter 2 contains a good introduction to transmission technology, including 

copper wires, fiber optics, cellular radio, and satellites. It also has extended dis­
cussions of the Nyquist and Shannon limits and their implications. 

8.1.3. The Data Link Layer 

Black, Data Link Protocols 
Here is an entire book on the data link layer. It has a practical emphasis, with 

a large amount of material on HDLC, LLC, PPP, and other commercially impor­
tant protocols. 

Holzmann, Design and Validation of Computer Protocols 
Readers interested in the more formal aspects of data link (and similar) proto­

cols should look here. The specification, modeling, correctness, and testing of 
such protocols are all covered in this book. 

Spragins et al., Telecommunications Protocols and Design 
Readers interested in learning more about error-detecting and error-correcting 

codes should look at Chap. 6 of this book. It also covers the principles of elemen­
tary data link protocols at about the same level as this book does. Chapter 7 con­
tinues the discussion and discusses various data link protocols in detail. 

Walrand, Communication Networks: A First Course 
Chapter 4 covers data link protocols, with an emphasis on performance 

analysis. The finite state machine and Petri net approaches to protocol correct­
ness are also treated. 

8.1.4. The Medium Access Control Sublayer 

Abeysundara and Kamal, "High-Speed Local Area Networks and Their Perfor­
mance" 

Since high-speed LANs are of interest due to their high speed, a paper 



SEC. 8.1 SUGGESTIONS FOR FURTHER READING 771 

discussing and analyzing the performance is welcome. In this one, the focus is on 
different kinds of bus, ring, tree, and star LANs, and their delay and utilization 
characteristics. 

Jain, FDDI Handbook-High-Speed Networking Using Fiber and other Media 
For a thorough treatment of FDDI (including nice tutorials on fiber optics and 

SONET), this book is a good choice. In addition to long sections on FDDI 
hardware and software, it has a section on performance and even advice on shop­
ping for fiber optic cables. 

Perlman, Interconnections: Bridges and Routers 
For an authoritative, but entertaining, treatment of bridges (and routers), 

Perlman's book is the place to look. The author designed the algorithms used in 
the IEEE 802 spanning tree bridge as well as the DECnet routing algorithms and 
is clearly an expert on the subject. 

Stallings, Local and Metropolitan Area Networks, 4th ed. 
The three IEEE 802 LAN s form the core of this book, but material on other 

LANs and MANs is also present. 

Walrand, Communication Networks: A First Course 
Like Stallings book above, Chap. 5 of this one covers the basic 802 material, 

plus FDDI and DQDB. The emphasis is on analyzing protocol performance. 

8.1.5. The Network Layer 

Comer, Internetworking with TCP/IP, Vol. 1, 3rd ed. 
Comer has written the definitive work on the TCP/IP protocol suite. Chapters 

4 through 11 deal with IP and related protocols in the network layer. The other 
chapters deal primarily with the higher layers, and are also worth reading. 

Huitema, Routing in the Internet 
If you want to know everything there is to know about routing in the Internet, 

this is the book for you. Both pronounceable algorithms (e.g., RIP, CIDR, and 
MBONE) and unpronounceable algorithms (e.g., OSPF, IGRP, EGP, and BGP) 
are treated in great detail. New features, such as multicast, mobile IP, and 
resource reservation, are also here. 

Perlman, Interconnections: Bridges and Routers 
In Chap. 9, Perlman describes many of the issues involved in unicast and mul­

ticast routing algorithm design, both for WAN s and networks of LAN s, and their 
implementation in various devices. The author clearly cares about the subject, 
having entitled Sec. 9.13.10 "My Opinion on IP-Style Network Layer Multicast." 



772 READING LIST AND BIBLIOGRAPHY CHAP. 8 

Sterbenz et al., "Report on the IEEE ComSoc Gigabit Networking Workshop" 
Before gigabit networking is usable, a number of basic questions have to be 

resolved. A key one is whether these networks will use ATM, TCP/IP, or both. 
To better understand these issues, IEEE organized a workshop in April 1995, a 
summary of which is presented here. The critique of ATM by Schulzrinne is 
worth reading by anyone who believes that ATM is the solution to the world's 
telecommunication problems. 

Stevens, TCP/IP Illustrated, Vol. 1 
Chapters 3-10 provide a comprehensive treatment of IP and related protocols 

(ARP, RARP, and ICMP) illustrated by examples. 

Yang and Reddy, "A Taxonomy for Congestion Control Algorithms in Packet 
Switching Networks" 

The authors have devised a taxonomy for congestion control algorithms. The 
main categories are open loop with source control, open loop with destination 
control, closed loop with explicit feedback, and closed loop with implicit feed­
back. They use this taxonomy to describe and classify 23 existing algorithms. 

8.1.6. The Transport Layer 

Comer, Internetworking with TCP/IP, Vol. l, 3rd ed. 
As mentioned above, Comer has written the definitive work on the TCP/IP 

protocol suite. Chap. 12 is about UDP; Chap. 13 is about TCP. 

Mogul, "IP Network Performance" 
Despite the title of this article, it is at least, if not more, about TCP and net­

work performance in general, than about IP performance in particular. It is full of 
useful guidelines and rules of thumb. 

Stallings, Data and Computer Communications, 4th ed. 
Chapter 12 is about transport protocols and covers services and mechanisms 

in the abstract, as well as the OSI and TCP transport protocols in detail. 

Stevens, TCP/IP Illustrated, Vol. 1 
Chapters 17-24 provide a comprehensive treatment of TCP illustrated by 

examples. 

8.1.7. The Application Layer 

Anderson, R., "Why Cryptosystems Fail" 
According to Anderson, security in banking systems is poor, but not due to 

clever intruders breaking DES on their PCs. The real problems range from 



SEC. 8.1 SUGGESTIONS FOR FURTHER READING 773 

dishonest employees (a bank clerk's changing a customer's mailing address to his 
own to intercept the bank card and PIN number) to programming errors (giving all 
customers the same PIN code). What is especially interesting is the response 
banks give when confronted with an error: our systems are perfect and therefore 
all errors must be due to customer errors or fraud. 

Berghel, "'The Client Side of the Web" 
An easygoing introduction to Web browsers and the features they (can) sup­

port. The main topics are HTML/HTTP compliance, performance, reconfigura­
bility, integration with the desktop, and navigational aids. Nine popular browsers 
are compared on these issues. 

Berners-Lee et al., "The World Wide Web" 
A perspective on the Web and where it is going by the person who invented it. 

The article focuses on the Web architecture, HTTP, and HTML, as well as future 
directions. 

Carl-Mitchell and Quarterman, Practical Internetworking with TCP/IP and UNIX 
Chapter 5 presents a nice introduction to naming and DNS, including naming 

authorities, the operational architecture, and the DNS database. 

Choudhury et al., "Copyright Protection for Electronic Publishing on Computer 
Networks" 

Although numerous books and articles describe cryptographic algorithms, few 
describe how they could be used to prevent users from further distributing docu­
ments which they are allowed to decrypt. This paper describes a variety of 
mechanisms that might help protect authors' copyrights in the electronic era. 

Furht et al., "Design Issues for Interactive Television Systems" 
Video on demand raises many complex technical issues related to the system 

architecture, network topology, server design, and set-top box design. In this 
paper, the authors present a tutorial on some of the key problems and some solu­
tions that are being investigated. 

Handley and Crowcroft, The World Wide Web-Beneath the Surf 
While 99 percent of WWW books just tell you how to use some browser or 

list interesting URLs, this one explains how the Web works inside. The client 
side, the server side, and HTML are all explained in nice bite-sized chunks. 

Kaufman et al., Network Security 
This authoritative and frequently witty book is the first place to look for more 

information on network security. Secret and public key algorithms and protocols, 
message hashes, authentication, Kerberos, and email are all explained at length. 



774 READING LIST AND BIBLIOGRAPHY CHAP. 8 

The best parts are the interauthor (and even intra-author) discussions, labeled by 
subscripts, as in: "I

2 
could not get me

1 
to be very specific ... " 

Kumar, MBone: Interactive Multimedia on the Internet 
The cover of this book says: "Discover how you can broadcast, advertise, and 

display your products on the Internet." Fortunately, this subject is not mentioned 
anywhere else in the book. What is covered is the architecture and implementa­
tion of the MBone, including a lot of material about how it works and how to use 
it. 

Nemeth et al., UNIX System Administration Handbook 
Chapter 16 is a long introduction to DNS. It gets into all the nitty-gritty 

details, illustrating the various files and resource records with numerous exam­
ples. Programs and other tools used for managing a DNS server are also covered 
in some detail. 

Rose, The Internet Message 
If you like your email served with a dash of iconoclasm, this book is a good 

bet. The author is not above getting up on a soapbox from time to time to 
announce what is wrong with the world. When you come right down to it, his 
taste is hot bad. 

Schneier, Applied Cryptography, 2nd ed .. 
This monumental compendium is NSA's worst nightmare: a single book that 

describes every known cryptographic algorithm. To make it worse (or better, 
depending on your point of view), the book contains most of the algorithms as 
runnable programs (in C). Furthermore, over 1600 references to the crypto­
graphic literature are provided. If you really want to keep your files secret, read 
this book. 

Steinmetz and Nahrstedt, Multimedia: Computing, Communications and Applica­
tions 

Although somewhat chaotic, this book does cover a lot of ground in mul­
timedia. Topics treated at length include audio, still pictures, moving pictures, 
compression, optical storage, multimedia operating systems, networking, hyper­
text, synchronization of streams, and multimedia applications. 

Van der Linden, Just Java 
When Chap. 1 of a book is entitled ''Come into my parlor, said the spider to 

the fly," it is a safe bet that it is either a children's fairy tale or about the World 
Wide Web. This one is about the Web, specifically about the Java language and 
its environment. For people who want to play with Java, the book comes com­
plete with the full Java system on CD-ROM. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 775 

8.2. ALPHABETICAL BIBLIOGRAPHY 

ABEYSUNDARA, B.W., and KAMAL, A.E.: "High-Speed Local Area Networks and Their Per­
formance" Computing Surveys, vol. 23, pp. 221-264, June 1991. 

ABRAMSON, N.: "Development of the ALOHANET," IEEE Trans. on Inform(ltion Theory, 
vol. IT-31, pp. 119-123, March 1985. 

ADAM,J.A.: "Privacy and Computers," IEEE Spectrum, vol. 32, pp. 46-52, Dec. 1995. 

ADAMS, N., GOLD, R., SCHILIT, B.N., TSO, M.M., and WANT, R.: "An Infrared Network for 
Mobile Computers," Proc. USENIX Mobile and Location-Independent Computing 
Symposium, USENIX, pp. 41-51, 1993. 

ANDERSON, R.J.: "Why Cryptosystems Fail," Commun. of the ACM, vol. 37, pp. 32-40, 
Nov. 1994. 

ARMBRUSTER, H.: "The Flexibility of ATM: Supporting Future Multimedia and Mobile 
Communications," IEEE Commun. Magazine, vol. 33, pp. 76-84, Feb. 1995. 

ARMITAGE, G.J., and ADAMS, K.M.: "How Efficient is IP over ATM Anyway?" IEEE Net­
work Magazine, vol. 9, pp. 18--26, Jan./Feb. 1995. 

ARNOLD, K., and GOSLING, J.: The Java Programming Language, Reading, MA: Addison­
Wesley, 1996. 

AT&T and BELLCOJIB: "Observations of Error Characteristics of Fiber Optic Transmission 
Systems," CCITT SG XVIII, San Diego, Jan. 1989. 

AWDEH, R.Y., and MOUFTAH, H.T.: "Survey of ATM Switch Architectures," Computer Net­
works and ISDN Systems, vol. 27, pp. 1567-1613, Nov. 1995. 

BAKNE, A., and BADRINATH, B.R.: "I-TCP: Indirect TCP for Mobile Hosts," Proc. Fifteenth 
Int'!. Conj on Distr. Computer Systems, IEEE, pp. 136-143, 1995. 

BALAKRISHNAN, H., SESHAN, S, and KATZ, R.H.: "Improving Reliable Transport and Hand­
off Performance in Cellular Wireless Networks," Proc. ACM Mobile Computing and 
Networking Conj, ACM, pp. 2-11, 1995. 

BALLARDIE, T., FRANCIS, P., and CROWCROFT, J.: "Core Based Trees (CBT)," Proc. 
SIGCOMM '93 Conj, ACM, pp. 85-95, 1993. 

BANTZ, D .. F., and BAUCHOT, F.J.: "Wireless LAN Design Alternatives," IEEE Network 
Magazine, vol. 8, pp. 43-53, March/April, 1994. 

BARANSEL, C., DOBOSIEWICZ, W., and GBURZYNSKI, P.: "Routing in Multihop Packet 
Switching Networks: Gb/s Challenge," IEEE Network Magazine, vol. 9, pp. 38-61, 
May/June, 1995. 

BARLOW, J.P.: "Property and Speech: Who Owns What You Say in Cyberspace," Com­
mun. of the ACM, vol. 38, pp. 19-22, Dec. 1995. 

BATCHER, K.E.: "Sorting Networks and Their Applications," Proc. AF/PS Spring Joint 
Computer Conj, vol. 32, pp. 307-315, 1968. 



776 READING LIST AND BIBLIOGRAPHY CHAP. 8 

BATES, R.J.: Wireless Networked Communications, New York: McGraw-Hill, 1994. 

BERGHEL, H.L.: "The Client Side of the Web," Commun. of the ACM, vol. 39, pp. 33-40, 
Jan. 1996. 

BELL, T.E. "Communications," IEEE Spectrum, vol. 33, pp. 30-41, Jan 1996. 

BELLAMY, J.: Digital Telephony, New York: John Wiley, 1991. 

BELLMAN, R.E.: Dynamic Programming, Princeton, NJ: Princeton University Press, 1957. 

BELSNES, D.: "Flow Control in the Packet Switching Networks," Communications Net­
works, Uxbridge, England: Online, pp. 349-361, 1975. 

BERNERS-LEE, T., CAILLAU, A., LOUTONEN, A., NIELSEN, H.F., and SECRET, A.: "The World 
Wide Web," Commun. of the ACM, vol 37, pp. 76-82, Aug. 1994. 

BERTSEKAS, D., and GALLAGER, R.: Data Networks, 2nd ed., Englewood Cliffs, NJ: Pren­
tice Hall, 1992. 

BHARGHAVAN, V., DEMERS, A., SHENKER, S., and ZHANG, L.: "MACAW: A Media Access 
Protocol for Wireless LANs," Proc. SIGCOMM '94 Conf, ACM, pp. 212-225, 1994. 

BIHAM, E., and SHAMIR, A.: Differential Cryptanalysis of the Data Encryption Standard, 
New York: Springer-Verlag, 1993. 

BINDER, R.: "A Dynamic Packet Switching System for Satellite Broadcast Channels," 
Proc. Int'l. Conf on Commun., pp. 41-1to41-5a, 1975. 

BLACK, U.D.: TCP/JP and Related Protocols, New York: McGraw-Hill, 1995. 

BLACK, U.D.: Emerging Commun. Technol., Englewood Cliffs, NJ: Prentice Hall, 1994. 

BLACK, U.D.: Data Link Protocols, Englewood Cliffs, NJ: Prentice Hall, 1993. 

BLAZE, M.: "Protocol Failure in the Escrowed Encryption Standard," Proc. Second ACM 
Conf on Computer and Commun. Security, ACM, pp. 59-67, 1994. 

BOGINENI, K., SIVALINGAM, K.M., and DOWD, P.W.: "Low-Complexity Multiple Access Pro­
tocols for Wavelength-Division Multiplexed Photonic Networks," IEEE Journal on 
Selected Areas in Commun., vol. 11, pp. 590-604, May 1993. 

BONOMI, F., and FENDICK, K.W.: "The Rate-Based Flow Control Framework for the Avail­
able Bit-rate ATM Service," IEEE Network Magazine, vol. 9, pp. 25-39, March/April 
1995. 

BOWMAN, C.M., DANZIG, P.B., HARDY, D.R., MANBER, U., and SCHWARTZ, M.F.: "The Harvest 
Information Discovery and Access System," Computer Networks and ISDN Systems, 
vol. 28, pp. 119-125, Dec. 1995. 

BOWMAN, C.M., DANZIG, P.B., MANBER, u., and SCHWARTZ, M.F.: "Scalable Internet 
Resource Discovery: Research Problems and Approaches," Commun. of the ACM, 
vol. 37, pp. 98-107, Aug. 1994. 

BRAKMO, L.S., O'MALLEY, S.W., and PETERSON, L.L.: "TCP Vegas: New Techn. for Conges­
tion Detection and Avoidance," Proc. SJGCOMM '94 Conf, ACM, pp. 24-35, 1994. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 777 

BROADHEAD, M.A. and OWEN, C.B.: "Direct Manipulation of MPEG Compressed Digital 
Audio," Proc. of ACM Multimedia '95, ACM, pp. 499-507, 1995. 

BROWN, L., KWAN, M., PIEPRZYK, JI., and SEBERRY, J.: "Improving Resistance to Differen­
tial Cryptanalysis and the Redesign of LOKI," ASIACRYPT '91 Abstracts, pp. 25-30, 
1991. 

BUFORD, J.F.K. (Ed.): Multimedia Systems, Reading, MA: Addison-Wesley, 1994. DEC 
System Research Center Report, Feb. 1989. 

CAMPBELL, A., COULSON, G., and HUTCHISON, D.: "A Quality of Service Architecture," 
Computer Commun. Rev., vol. 24, pp. 6-27, April 1994. 

CAMPIONE, M., and WALRATH, K.: The Java Language Tutorial: Object-Oriented Program­
ming for the Internet, Reading, MA: Addison-Wesley, 1996. 

CAPETANAKIS, J.I.: "Tree Algorithms for Packet Broadcast Channels," IEEE Trans. on 
Information Theory, vol. IT-25, pp. 505-515, Sept. 1979. 

CARL-MITCHELL, S., and QUARTERMAN, J.S.: Practical Internetworking with TCP/IP and 
UNIX, Reading, MA: Addison-Wesley, 1993. 

CATLETT, C.E.: "In Search of Gigabit Applications," IEEE Commun. Magazine, vol. 30, 
pp. 42-51, April 1992. 

CERF, v., and KAHN, R.: "A Protocol for Packet Network Interconnection," IEEE Trans. on 
Commun., vol. COM-22, pp. 637-648, May 1974. 

CHANDRANMENON, G.P., and VARGHESE, G.: "Trading Packet Headers for Packet Process­
ing," Proc. SIGCOMM '95 Conf, ACM, pp. 162-173, 1995. 

CHANG, Y.-H., COGGINS, D., PITT, D., SKELLERN, D., THAPAR, M., and VENKATRAMAN, C.: 

"An Open-System Approach to Video on Demand," IEEE Commun. Magazine, vol. 
32, pp. 68-80, May 1994. 

CHAO, J.J., GHOSAL, D., SAHA, D., and TRIPATHI, S.K.: "IP on ATM Local Area Networks," 
IEEE Commun. Magazine, vol. 32, pp. 52-59, Aug. 1994. 

CHAPMAN, D.E., and ZWICKY, E.D.: Building Internet Firewalls, Sebastopol, CA: O'Reilly, 
1995. 

CHEN, K.-IC.: "Medium Access Control of Wireless LANs for Mobile Computing," IEEE 
Network Magazine, vol. 8, pp. 50-63, Sept./Oct. 1994. 

CHEN, M., and YUM, T.-S.: "A Conflict-Free Protocol for Optical WDMA Networks," Proc. 
Globecom '91, pp. 1276-1281, 1991. 

CHEN, W.Y., and WARING, D.L.: "Applicability of ADSL to Support Video Dial Tone in the 
Copper Loop," IEEE Commun. Magazine, vol. 32, pp. 102-106, May 1994. 

CHERITON, D., and WILLIAMSON, C.: "VMTP as the Transport Layer for High-Performance 
Distributed Systems," IEEE Commun. Magazine, vol. 27, pp. 37-44, June 1989. 



778 READING LIST AND BIBLIOGRAPHY CHAP. 8 

CHERVENAK, A.L.: Tertiary Storage: An Evaluation of New Applications, Ph.D. thesis, 
CSD, Univ. of California at Berkeley, 1994. 

CHERVENAK, A.L., PATTERSON, D.A., and KATZ, R.H.: "Choosing the Best Storage System 
for Video Service," Proc. of ACM Multimedia '95, ACM, pp. 109-119, 1995. 

CHESSON, G.L.: "XTP/PE Design Considerations," IFIP Workshop on Protocols for 
High-Speed Networks, IFIP, pp. 27-33, 1989. 

CHESWICK, W.R. and BELLOVIN, S.M.: Firewalls and Interwalls-Repelling the Wily 
Hacker, Reading, MA: Addison-Wesley, 1994. 

CHOUDBURY, A.K., MAXEMCHUK, N.F., PAUL, S., and SCHULZRINNE, H.G.: "Copyright Pro­
tection for Electronic Publishing on Computer Networks," IEEE Network Magazine, 
vol. 9, pp. 12-20, May/June, 1995. 

CLARK, D.D.: "The Design Philosophy of the DARPA Internet Protocols," Proc. 
SIGCOMM '88 Conj, ACM, pp. 106-114, 1988. 

CLARK, D.D.: "NETBLT: A Bulk Data Transfer Protocol," RFC 998, 1987. 

CLARK, D.D.: "Window and Acknowledgement Strategy in TCP," RFC 813, July 1982. 

CLARK, D.D., DAVIE, B.S., FARBER, D . .J., GOPAL, I.S., KADABA, B.K., SINCOSKIE, W.D., SMITH, 

J.M., and TENNENHOUSE, D.L.: "The Aurora Gigabit Testbed," Computer Networks 
and ISDN Systems, vol. 25, pp. 599-621, Jan. 1993. 

CLARK, D.D., JACOBSON, V., ROMKEY, J., and SAL WEN, H.: "An Analysis of TCP Processing 
Overhead," IEEE Commun. Magazine, vol. 27, pp. 23-29, June 1989. 

CLARK, D.D., LAMBERT, M., and ZHANG, L.: "NETBLT: A High Throughput Transport Pro­
tocol," Proc. SIGCOMM '87 Conj, ACM, pp. 353-359, 1987. 

CLOS, C.: "A Study of Non-Blocking Switching Networks," Bell System Tech. J., vol. 32, 
pp. 406-424, March 1953. 

COMER, D.E.: The Internet Book, Englewood Cliffs, NJ: Prentice Hall, 1995. 

COMER, D.E.: Internetworking with TCP/IP, vol. 1, 3rd ed., Englewood Cliffs, NJ: Prentice 
Hall, 1995. 

COOK, A., and STERN, J.: "Optical Fiber Access-Perspectives Toward the 21st Century," 
IEEE Commun. Magazine, vol. 32, pp. 78-86, Feb. 1994. 

COOPER, E.: Broadband Network Technology, Englewood Cliffs, NJ: Prentice Hall, 1986. 

COULOURIS, G.F., DOLLIMORE, J., and KINDBERG, T.: Distributed Systems Concepts and 
Design, 2nd ed. Reading, MA: Addison-Wesley, 1994. 

CRESPO, P.M., HONIG, M.L., and SALEHI, J.A.: "Spread-Time Code-Division Multiple 
Access," IEEE Trans. on Commun., vol. 43, pp. 2139-2148, June 1995. 

CRONIN, W.J., HUTCHINSON, J.D., RAMAKRISHNAN, K.K., and YANG, H.: "A Comparison of 
High Speed LANs," Proc. Nineteenth Conf on Local Computer Networks, IEEE, pp. 
40-49, 1994. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 779 

CROWCROFT, J., WANG, Z., SMITH, A., and ADAMS, J.: "A Rough Comparison of the IETF 
and ATM Service Models," IEEE Network Magazine, vol. 9, pp. 12-16, Nov./Dec. 
1995. 

CROWTHER, W., RETTBERG, R., WALDEN, D., ORNSTEIN, S., and HEART, F.: "A System for 
Broadcast Communication: Reservation-Aloha," Proc. Sixth Hawaii Int. Conf System 
Sci., pp. 371-374, 1973. 

CUSICK, T.W., and WOOD, M.C.: "The REDOC-11 Cryptosystem," Advances in 
Cryptology-CRYPTO '90 Proceedings, NY: Springer-Verlag, pp. 545-563, 1991. 

DAGDEVIREN, N., NEWELL, J.A., SPINDEL, L.A., and STEFANICK, M.J.: "Global Networking 
with ISDN," IEEE Commun. Magazine, vol. 32, pp. 26-32, June 1994. 

DANSKIN, J.M., DA VIS, G.M., and SONG, X.: "Fast Lossy Internet Image Transmission," Proc. 
of ACM Multimedia '95, ACM, pp. 321-332, 1995. 

DANTHINE, A.A.S.: "Protocol Representation with Finite-State Models," IEEE Trans. on 
Commun., vol. COM-28, pp. 632-643, April 1980. 

DAVIS, P.T., and McGUFFIN, C.R.: Wireless Local Area Networks, New York: McGraw-Hill, 
1995. 

DAY, J.D.: "The (Un)Revised OSI Reference Model," Computer Commun. Rev., vol. 25, 
pp. 39-55, Oct. 1995. 

DAY, J.D., and ZIMMERMANN, H.: "The OSI Reference Model," Proc. of the IEEE, vol. 71, 
pp. 1334-1340, Dec. 1983. 

DEJONGE, W., and CHAUM, D.: "Some Variations on RSA Signatures and Their Security," 
in Advances in Cryptology-CRYPTO '86 Proceedings, Odlyzko, A.M. (Ed.), New 
York: Springer Verlag, 1987. 

DE PRYCKER, M.: Asynchronous Transfer Mode, 2nd. ed., New York: Ellis Horwood, 
1993. 

DEAN, D., and WALLACH, D.S.: "Security Flaws in the HotJava Web Browser," Technical 
Report 502, Dept. of Computer Science, Princeton Univ., 1995. 

DEERING, S.E.: "SIP: Simple Internet Protocol," IEEE Network Magazine, vol. 7, pp. 16-
28, May/June 1993. 

DEERING, S.E., and CHERITON, D.R.: "Multicast Routing in Datagram lntemetworks and 
Extended LANs," ACM Trans. on Computer Systems, vol. 8, pp. 85-110, May 1990. 

DEERING, S.E., ESTRIN, D., FARINACCI, D., JACOBSON, V., LIU, C.-G., and WEI, L.: "An Archi­
tecture for Wide-Area Multicast Routing," Proc. SIGCOMM '94 Conf, ACM, pp. 
126-135, 1994. 

DELODDERE, D., VERBIEST, W., and VERHILLE, H.: "Interactive Video on Demand," IEEE 
Commun. Magazine, vol. 32, pp. 82-88, May 1994. 

DEMERS, A., KESHAV, S., and SHENKER, S.: "Analysis and Simulation of a Fair Queueing 
Algorithm," Internetwork: Research and Experience, vol. 1, pp. 3-26, Sept. 1990. 



780 READING LIST AND BIBLIOGRAPHY CHAP. 8 

DENNING, D.E., and SACCO, G.M.: "Timestamps in Key Distribution Protocols," Commun. 
of the ACM, vol. 24, pp. 533-536, Aug. 1981. 

DIFFIE, W., and HELLMAN, M.E.: "Exhaustive Cryptanalysis of the NBS Data Encryption 
Standard," IEEE Computer Magazine, vol. 10, pp. 74-84, June 1977. 

DIFFIE, W., and HELLMAN, M.E.: "New Directions in Cryptography," IEEE Trans. on Infor­
mation Theory, vol. IT-22, pp. 644-654, Nov. 1976. 

DUKSTRA, E.W.: "A Note on Two Problems in Connexion with Graphs," Numer. Math., 
vol. 1, pp. 269-271, Oct. 1959. 

DIRVIN, R.A., and MILLER, A.R.: "The MC68824 Token Bus Controller: VLSI for the Fac­
tory LAN," IEEE Micro Magazine, vol. 6, pp. 15-25, June 1986. 

DIXIT, S., and SKELLY, P.: "MPEG-2 over ATM for Video Dial Tone Network," IEEE Net­
work Magazine, vol. 9, pp. 30-40, Sept/Oct. 1995. 

DIXON, R.C.: "Lore of the Token Ring," IEEE Network Magazine, vol. 1, pp. 11-18, 
Jan./Feb. 1987. 

DOERINGER, W.A., DYKEMAN, D., KAISERSW~RTH, M., MEISTER, B.W., RUDIN, H., and WILLI­

AMSON, R.: "A Survey of Light-Weight Transport Protocols for High-Speed Net­
works," IEEE Trans. on Commun., vol. 38, pp. 2025-2039, Nov. 1990. 

DORFMAN, R.: "Detection of Defective Members of a Large Population," Annals Math. 
Statistics, vol. 14, pp. 436-440, 1943. 

ECKBERG, A.E.: "B-ISDN/ATM Traffic and Congestion Control," IEEE Network Maga­
zine, vol. 6, pp. 28-37, Sept/Oct. 1992. 

ECKBERG, A.E., DOSHI, B.T., and ZOCCOLILLO, R.: "Controlling Congestion in B­
ISDN/ ATM: Issues and Strategies," IEEE Commun. Magazine, vol. 29, pp. 64-70, 
Sept. 1991. 

EDWARDS, A., and MUIR, S.: "Experience Implementing a High-Performance TCP in User­
Space," Proc. SIGCOMM '95 ConJ, ACM, pp. 197-205, 1995. 

EL GAMAL, T.: "A Public-Key Cryptosystem and a Signature Scheme Based on Discrete 
Logarithms," IEEE Trans. on Information Theory, vol. IT-31, pp. 469-472, July 1985. 

ERIKSSON, H.: "MBone: The Multicast Backbone," Commun. of the ACM, vol. 37, pp. 54-
60, Aug. 1994. 

ESTRIN, D., REKHTER, Y., and HOTZ, S.: "Scalable Inter-Domain Routing Architecture," 
Proc. SIGCOMM '92 Conj, ACM, pp. 40-52, 1992. 

FEIG, E., and WINOGRAD, S.: "Fast Algorithms for Discrete Cosine Transformations," IEEE 
Trans. on Signal Processing, vol. 40, Sept. 1992. 

FEIT, S.: SNMP-A Guide to Network Management, New York: McGraw-Hill, 1995. 

FIORINI, D., CHIANI, M., TRALLI, V., and SALATI., C.: "Problems with HDLC," Computer 
Commun. Rev., vol. 25, pp. 61-80, Oct. 1995. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 781 

FISCHER, W., WALLMEIER, E., WOJRSTER, T., DAVIS, S.P., HAYTER, A.: "Data Communica­
tions Using ATM: Architectures, Protocols, and Resource Management," IEEE Com­
mun. Magazine, vol. 32, pp. 24-33, Aug. 1994. 

FLOYD, s., and JACOBSON, v.: "Random Early Detection for Congestion Avoidance," 
IEEE/ACM Trans. on Networking, vol. 1, pp. 397-413, Aug. 1993. 

FLUCKIGER, F.: Understanding Networked Multimedia, Englewood Cliffs, NJ: Prentice 
Hall, 1995. 

FORD, L.R., Jr., and FULKERSON, D.JR.: Flows in Networks, Princeton, NJ: Princeton Univer­
sity Press, 1962. 

FORD, P.S., REKHTER, Y., and BRAUN, H.-W.: "Improving the Routing and Addressing of 
IP," IEEE Network Magazine., vol. 7, pp. 10-15, May/June 1993. 

FORMAN, G.H., and ZAHORJAN, J.: "The Challenges of Mobile Computing," IEEE Com­
puter Magazine, vol. 27, pp. 38-47, April 1994. 

FRANCIS, P.: "A Near-Term Architecture for Deploying Pip," IEEE Network Magazine, 
vol. 7, pp. 30-37, May/June 1993. 

FRASER, A.G.: "Early Experiments with Asynchronous Time Division Networks," IEEE 
Network Magazine, vol. 7, pp. 12-27, Jan./Feb. 1993. 

FRASER, A.G.: "Towards a Universal Data Transport System," in Advances in Local Area 
Networks, Kummerle, K., Tobagi, F., and Limb, J.O. (Eds.), New York: IEEE Press, 
1987. 

FURHT, B., KALRA, D., KITSON, F.L., RODRIGUEZ, and WALL, W.E.: "Design Issues for 
Interactive Televisions Systems," IEEE Computer Magazine, vol. 28, pp. 25-39, May 
1995. 

GARCIA-HARO, J., and JAJSZCZYK, A.: "ATM Shared-Memory Switching Architectures," 
IEEE Network Magazine, voL 8., pp. 18-26, July/Aug. 1994. 

GARG, V., and WILKES, J.E.: Wireless and Personal Communication Systems, Englewood 
Cliffs, NJ: Prentice Hall, 1996. 

GASMAN, L.: Broadband Networking, New York: Van Nostrand Reinhold, 1994. 

GIACOPELLI, J.N.; HICKEY, J.J., MARCUS, W.S., SINCOSKIE, W.D., and LITTLEWOOD, M.: 

"Sunshine: A High-Performance Self-Routing Broadband Packet Switch Architec­
ture," IEEE Journal on Selected Areas in Commun., vol. 9, pp. 1289-1298, Oct. 1991. 

GOODMAN, D.J.: "Trends in Cellular and Cordless Communications," IEEE Commun. 
Magazine, vol. 29, pp. 31-40, June 1991. 

GORALSKI, W.J.: Introduction to ATM Networking, New York: McGraw-Hill, 1995. 

GOSLING, J., JOY, B., and STEELE, G.: The Java Language Specification, Reading, MA: 
Addison-Wesley, 1996. 

GREEN, P.E., Jr.: Fiber Optic Networks, Englewood Cliffs, NJ: Prentice Hall, 1993. 



782 READING LIST AND BIBLIOGRAPHY CHAP. 8 

HAC, ANNA: "Wireless and Cellular Architecture and Services," IEEE Commun. Maga­
zine, vol. 33, pp. 98-104, Nov. 1995. 

HAFNER, K., and MARKOFF, J.: Cyberpunk, New York: Simon and Schuster, 1991. 

HAMMING, R.W.: "Error Detecting and Error Correcting Codes," Bell System Tech. J., vol. 
29, pp. 147-160, April 1950. 

HANDEL, R., HUBER, M.N., and SCHRODER, S.: ATM Concepts, Protocols, and Applications, 
2nd ed., Reading, MA: Addison-Wesley, 1994. 

HANDLEY, M., and CROWCROFT, J.: The World Wide Web~Beneath the Surf, London: UCL 
Press, 1994. 

HAWLEY, G.T.: "Historical Perspectives on the U.S. Telephone System," IEEE Commun. 
Magazine, vol. 29, pp. 24-28, March 1991. 

HEIN, M., and GRIFFITHS, D.: SNMP, London: Thompson, 1995. 

HELD, G.: The Complete Modem Reference, 2nd ed., New York: John Wiley, 1994. 

HELLMAN, M.E.: "A Cryptanalytic Time-Memory Tradeoff," IEEE Trans. on Information 
Theory, vol. IT-26, pp. 401-406, July 1980. 

HENDERSON, T.R.: "Design Principles and Performance Analysis of SSCOP: A New ATM 
Adaptation Layer Protocol," Computer Commun. Review, vol. 25, pp. 47-59, April 
1995. 

HOARE, C.A.R.: "Monitors, An Operating System Structuring Concept," Commun. of the 
ACM, vol. 17, pp. 549-557, Oct. 1974; Erratum in Commun. of the ACM, vol. 18, p. 
95, Feb. 1975. 

HODGE, W.W.: Interactive Television, New York: McGraw-Hill, 1995. 

HODGE, W.W., Martin, S., POWERS, J.T., Jr.: "Video on Demand: Architectures, Systems, and 
Applications," Society of Motion Picture and Television Engineers Journal, vol. 102, 
pp. 791-803, Sept. 1993. 

HOFFMAN, L.J. (ed.): Building in Big Brother: The Cryptographic Policy Debate, New 
York: Springer-Verlag, 1995. 

HOLFELDER, W.: "MBone VCR-Video Conference Recording on the MBone," Proc. of 
ACM Multimedia '95, ACM, pp. 237-238, 1995. 

HOLZ.MANN, G.J.: Design and Validation of Computer Protocols, Englewood Cliffs, NJ: 
Prentice Hall, l 991. 

HONG, D., and SUDA, T.: "Congestion Control and Prevention in ATM Networks," IEEE 
Network Magazine, vol. 5, pp. 10-16, July/Aug. 1991. 

HUANG, A., and KNAUER, S.: "Starlite: A Wideband Digital Switch," Proc. Globecom '84, 
pp. 121-125, 1984. 

HUGHES, J.P., and FRANTA, W.R.: "Geographic Extension of HIPPI Channels," IEEE Net­
work Magazine, vol. 8, pp. 42-53, May/June 1994. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 783 

HUI, J.: "A Broadband Packet Switch for Multi-rate Services," Proc. Int'l. Conj on Com-
munications, IEEE, pp. 782-788, 1987. 

HUITEMA, C.: IPv6: The New Internet Protocol, Englewood Cliffs, NJ: Prentice Hall, 1996. 

HUITEMA, C.: Routing in the Internet, Englewood Cliffs, NJ: Prentice Hall, 1995. 

HUMBLET, P.A., RAMASWAMI, R., arnd SIVARAJAN, K.N.: "An Efficient Communication Pro-
tocol for High-Speed Packet-Switched Multichannel Networks," Proc. SIGCOMM 
'92 Conj, ACM, pp. 2-13, 1992. 

IEEE: Communications Magazine, vol. 33, Jan. 1995. 

IEEE: 802.3: Carrier Sense Multiple Access with Collision Detection, New York: IEEE, 
1985a. 

IEEE: 802.4: Token-Passing Bus Access Method, New York: IEEE, 1985b. 

IEEE: 802.5: Token Ring Access Method, New York: IEEE, 1985c. 

IOANNIDIS, J., and MAQUIRE, G.Q., Jr.: "The Design and Implementation of a Mobile Inter­
networking Architecture," Proc. Winter USENIX Conj, USENIX, pp. 491-502, Jan. 
1993. 

IRMER, T.: "Shaping Future Telecommunications: The Challenge of Global Standard­
ization," IEEE Commun. Magazine, vol. 32, pp. 20-28, Jan. 1994. 

IVANCIC, W.D., SHALKHAUSER, M.J., and QUINTANA, J.A.: "A Network Architecture for a 
Geostationary Communication Satellite," IEEE Commun. Magazine, vol. 32, pp. 72-
84, July 1994. 

JABBARI, B., COLOMBO, G., NAKAJIMA, A., and KULKARNI, J. "Network Issues for Wireless 
Communications," IEEE Commun. Magazine, vol. 33, pp. 88-98, Jan. 1995. 

JACOBSON, V.: "Congestion Avoidance and Control," Proc. SIGCOMM '88 Conj, ACM, 
pp. 314-329, 1988. 

JAIN, R.: "Congestion Control and Traffic Management in ATM Networks: Recent 
Advances and a Survey," Computer Networks and ISDN Systems, vol. 27, Nov. 1995. 

JAIN, R.: FDDI Handbook-High-Speed Networking Using Fiber and other Media, Read­
ing, MA: Addison-Wesley, 1994. 

JAIN, R.: The Art of Computer Systems Peiformance Analysis, New York: John Wiley, 
1991. 

JAIN, R.: "Congestion Control in Computer Networks: Issues and Trends," IEEE Network 
Magazine, vol. 4, pp. 24-30, May/June 1990. 

JIA, F., and MUKHERJEE, B.: "The Receiver Collision Avoidance (RCA) Protocol for a 
Single-Hop WDM Lightwave Network," Journal of Lightwave Technology, vol. 11, 
pp. 1053-1065, May/June 1993. 

JOHNSON, D.B.: "Scalable Support for Transparent Mobile Host Intemetworking," Wire­
less Networks, vol. 1, pp. 311-321, Oct. 1995. 



784 READING LIST AND BIBLIOGRAPHY CHAP. 8 

JOHNSON, H.W.: Fast Ethernet-Dawn of a New Network, Englewood Cliffs, NJ: Prentice 
Hall, 1996. 

KAHN, D.: "Cryptology Goes Public," IEEE Commun. Magazine, vol. 18, pp. 19-28, 
March 1980. 

KAHN, D.: The Codebreakers, New York: Macmillan, 1967. 

KALISKI, B.S., and ROBSHAW, M.J.B.: "Fast Block Cipher Proposal," Proc. Cambridge 
Security Workshop, Springer-Verlag, pp. 26-39, 1994. 

KAMOUN, F., and KLEINROCK, L.: "Stochastic Performance Evaluation of Hierarchical 
Routing for Large Networks," Computer Networks, vol. 3, pp. 337-353, Nov. 1979. 

KARN, P.: "MACA-A New Channel Access Protocol for Packet Radio," ARRVCRRL 
Amateur Radio Ninth Computer Networking Conf, pp. 134-140, 1990. 

KAROL, M.J., HLUCHYJ, M.G., and MORGAN, S.P.: "Input Versus Output Queueing on a 
Space-Division Packet Switch," IEEE Trans. on Commun., vol. 35, pp. 1347-1356, 
Dec. 1987. 

KARSHMER, A.I., and THOMAS, J.N.: "Computer Networking on Cable TV Plants," IEEE 
Commun. Magazine, vol. 30, pp. 32-40, Nov. 1992. 

KATZ, D., and FORD, P.S.: "TUBA: Replacing IP with CLNP," IEEE Network Magazine, 
vol. 7, pp. 38-47, May/June 1993. 

KATZ, E.D., BUTLER, M., and McGRATH, R.: "A Scalable HTTP Server: The NCSA Proto­
type," Computer Networks and ISDN Systems, vol. 27, pp. 155-164, Nov. 1994. 

KAUFMAN, C., PERLMAN, R., and SPECINER, M.: Network Security, Englewood Cliffs, NJ: 
Prentice Hall, 1995. 

KAYAK, N.: "Data Communication in ATM Networks," IEEE Network Magazine, vol. 9, 
pp. 28-37, May/June 1995. 

KENT, C.A., and MOGUL, J.C.: "Fragmentation Considered Harmful," Proc. SIGCOMM '87 
Conf, ACM, pp. 390-401, 1987. 

KENT, S.T.: "Internet Privacy Enhanced Mail," Commun. of the ACM, vol. 36, pp. 48-60, 
Aug. 1993. 

KESSLER, G.C.: ISDN, 2nd ed., New York: McGraw-Hill, 1993. 

KESSLER, G.C., and TRAIN, D.: Metropolitan Area Networks: Concepts, Standards, and Ser­
vices, New York: McGraw-Hill, 1992. 

KIM, J.B., SUDA, T., and YOSHIMURA, M.: "International Standardization of B-ISDN," Com­
puter Networks and JSDN Systems, vol. 27, pp. 5-27, Oct. 1994. 

KLEINROCK, L., and TOBAGI, F.: "Random Access Techniques for Data Transmission over 
Packet-Switched Radio Channels," Proc. Nat. Computer Conf, pp. 187-201, 1975. 

KOHNO, R., MEIDAN, R., and MILSTEIN, L.B.: "Spread Spectrum Access Methods for Wire­
less Communication," IEEE Commun. Magazine, vol. 33, pp. 58-67, Jan. 1995. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 785 

KUMAR, V.: MBone: Interactive Multimedia on the Internet, Indianapolis, IN: New Riders, 
1996. 

KUNG, H.T., and MORRIS, R.: "Credit-Based Flow Control for ATM Networks," IEEE Net­
work Magazine, vol. 9, pp. 40-48, March/April 1995. 

KWAN, T.T., McGRATH, R.E., and REED, D.A.: "NCSA's WWW Server: Design and Perfor­
mance," IEEE Computer Magazine, vol. 28, pp. 68-74, Nov. 1995. 

KWOK, T.: ''A Vision for Residential Broadband Service: ATM to the Home," IEEE Net­
work Magazine, vol. 9, pp. 14-28, Sept./Oct. 1995. 

KYAS, o.: ATM Networks, London: International Thomson Publishing, 1995. 

LAI, X.: On the Design and Security of Block Ciphers, Konstanz, Germany: Hartung-Gorre, 
1992. 

LAI, X., and MASSEY, J.: "A Proposal for a New Block Encryption Standard," Advances in 
Cryptology-Eurocrypt '90 Proceedings, New York: Springer-Verlag, pp. 389-404, 
1990. 

LAMPSON, B.W.: "A Note on the Confinement Problem," Commun. of the ACM, vol. 10, 
pp. 613-615, Oct. 1973. 

LANDAU, S.: "Zero-Knowledge and the Department of Defense," Notices of the American 
Mathematical Society, vol. 35, pp. 5-12, Jan. 1988. 

LANGSFORD, A.: "The Open System User's Programming Interfaces," Computer Net­
works, vol. 8, pp. 3-12, 1984. 

LA PORTA, T.F., VEERARAGHAVAN, M., AYANOGLU, E., KAROL, M., and GITLIN, R.D.: "B­
ISDN: A Technological Discontinuity," IEEE Commun. Magazine, vol. 32, pp. 84-97, 
Oct. 1994. 

LATIF, A., ROWLANCE, E.J., and ADAMS, R.H.: "The IBM 8209 LAN Bridge," IEEE Net­
work Magazine, vol. 6, pp. 28-37, May/June 1992. 

LAUDON, K.C.: "Ethical Concepts and Information Technology," Commun. of the ACM, 
vol. 38, pp. 33-39, Dec. 1995. 

LE BOUDEC, J.-Y.: "The Asynchronous Transfer Mode: A Tutorial," Computer Networks 
and ISDN Systems, vol. 24, pp .. 279-309, May 1992. 

LEINER, B.M., COLE, R., POSTEL, J., and MILLS, D.: "The DARPA Internet Protocol Suite," 
IEEE Commun. Magazine, vol. 23, pp. 29-34, March 1985. 

LEVINE, D.A., and AKYILDIZ, I.A.: "PROTON: A Media Access Control Protocol for Optical 
Networks with Star Topology," IEEE/ACM Trans. on Networking, vol. 3, pp. 158-
168, April 1995. 

LEVY, S.: "Crypto Rebels," Wired, pp. 54-61, May/June 1993. 

LIN, F., CHU, P., and LIU, M.: "Protocol Verification Using Reachability Analysis: The State 
Space Explosion Problem and Relief Strategies," Proc. SIGCOMM '87 Conj, ACM, 
pp. 126-135, 1987. 



786 READING LIST AND BIBLIOGRAPHY CHAP. 8 

LIPPER, E.H., and RUMSEWICZ, M.P.: "Teletraffic Considerations for Widespread Deploy­
ment of PCS," IEEE Network Magazine, vol. 8, pp. 40-49, Sept./Oct. 1994. 

LITTLE, T.D.C., and VENKATESH, D.: "Prospects for Interactive Video on Demand," IEEE 
Multimedia Magazine, vol. 1, pp. 14-24, Fall 1994. 

LIU, C.L., and LAYLAND, J.W.: "Scheduling Algorithms for Multiprogramming in a Hard 
Real-Time Environment," Journal of the ACM, vol. 20, pp. 46-61, Jan. 1973. 

LUOTONEN, A., and ALTIS, K.: "World Wide Web Proxies," Computer Networks and ISDN 
Systems, vol. 27, pp. 147-154, Nov. 1994. 

MACARIO, R.C.V.: Cellular Radio-Principles and Design, New York: McGraw-Hill, 1993. 

MACEDONIA, M.R., and BRUTZMAN, D.P.: "MBone Provides Audio and Video Across the 
Internet," IEEE Computer Magazine, vol. 27, pp. 30-36, April 1994. 

MASSEY, J.L.: "SAFER K-64: A Byte-Oriented Block Ciphering Algorithm," Proc. Cam­
bridge Security Workshop, Springer-Verlag, pp. 1-17, 1994. 

MATSUI, M.: "Linear Cryptanalysis Method for DES Cipher," Advances in Cryptology­
Eurocrypt '93 Proceedings, New York: Springer-Verlag, pp. 386-397, 1994. 

McBRYAN, 0.: "GENVL and WWWW: Tools for Taming the Web," Proc. First Int'l. 
WWW Conference, pp. 79-90, 1994. 

McDYSAN, D.E., and SPOHN, D.L.: ATM-Theory and Application, NY: McGraw-Hill, 1995. 

McKENNEY, P.E., and DOVE, K.F.: "Efficient Demultiplexing of Incoming TCP Packets," 
Proc. SIGCOMM '92 Conj, ACM, pp. 269-279, 1992. 

MENEZES, A.J., and VANSTONE, S.A.: "Elliptic Curve Cryptosystems and Their Implementa­
tion," Journal of Cryptology, vol. 6, pp. 209-224, 1993. 

MERKLE, R.C.: "Fast Software Encryption Functions," Advances in Cryptology-CRYPTO 
'90 Proceedings, New York: Springer-Verlag, pp. 476-501, 1991. 

MERKLE, R.C., and HELLMAN, M.: "On the Security of Multiple Encryption," Commun. of 
the ACM, vol. 24, pp. 465-467, July 1981. 

MERKLE, R.C., and HELLMAN, M.: "Hiding and Signatures in Trapdoor Knapsacks," IEEE 
Trans. on Information Theory, vol. IT-24, pp. 525-530, Sept. 1978. 

METCALFE, R.M.: "On Mobile Computing," Byte, vol. 20, p. 110, Sept. 1995. 

METCALFE, R.M.: "Computer/Network Interface Design: Lessons from Arpanet and Ether­
net," IEEE Journal on Selected Areas in Commun., vol. 11, pp. 173-179, Feb. 1993. 

METCALFE, R.M., and BOGGS, D.R.: "Ethernet: Distributed Packet Switching for Local 
Computer Networks," Commun. of the ACM, vol. 19, pp. 395-404, July 1976. 

MIKI, T.: "The Potential of Photonic Networks," IEEE Commun. Magazine, vol. 32, pp. 
23-27, Dec. 1994a. 

MIKI, T.: "Toward the Service-Rich Era," IEEE Commun. Magazine, vol. 32, pp. 34-39, 
Feb. 1994b. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 787 

MINOLI, D.: Video Dialtone Technology, New York: McGraw-Hill, 1995 

MINOLI, D., and VITELLA, M.: ATM & Cell Relay for Corporate Environments, New York: 
McGraw-Hill, 1994. 

MIRCHANDANI, S., and KHANNA, R. (eds): FDDI Technologies and Applications, New York: 
John Wiley, 1993. 

MISHRA, P.P. and KANAKIA, H.: "A Hop by Hop Rate-Based Congestion Control Scheme," 
Proc. SIGCOMM '92 Conj, ACM, pp. 112-123, 1992. 

MOCHIDA, Y.: "Technologies for Local-Access Fibering," IEEE Commun. Magazine, vol. 
32,pp.64-73,Feb. 1994. 

MOGUL, J.C.: "The Case for Persistent-Connection HTTP," Proc. SIGCOMM '95 Conj, 
ACM, pp. 299-314, 1995. 

MOGUL, J.C.: "IP Network Performance," in Internet System Handbook, Lynch, D.C. and 
Rose, M.T. (eds.), Reading, MA: Addison-Wesley, pp. 575-675, 1993. 

MOK, A.K., and WARD, S.A.: "Distributed Broadcast Channel Access," Computer Networks, 
vol. 3, pp. 327-335, Nov. 1979 .. 

MORALES, J., PATKA, A., CHOA, P., and KUI, J.: "Video Dial Tone Sessions," IEEE Network 
Magazine, vol. 9, pp. 42-47, Sept./Oct. 1995. 

MOY, J.: "Multicast Routing Extensions," Commun. of the ACM, vol. 37, pp. 61-66, Aug. 
1994. 

MULLENDER, S.J. (ed.): Distributed Systems, 2nd ed., New York: ACM Press, 1993. 

MYLES, A., and SKELLERN, D.: "Comparison of Mobile Host Protocols for IP," Computer 
Networks and ISDN Systems, vol. 26, pp. 349-355, Dec. 1993. 

NAGLE, J.: "On Packet Switches with Infinite Storage," IEEE Trans. on Commun., vol. 
COM-35, pp. 435-438, April 1987. 

NAGLE, J.: "Congestion Control in TCP/IP Internetworks," Computer Commun. Rev., vol. 
14, pp. 11-17, Oct. 1984. 

NEEDHAM, R.M., and SCHROEDER, M.D.: "Authentication Revisited," Operating Systems 
Rev., vol. 21, p. 7, Jan. 1987. 

NEEDHAM, R.M., and SCHROEDER, M.D.: "Using Encryption for Authentication in Large 
Networks of Computers," Commun. of the ACM, vol. 21, pp. 993-999, Dec. 1978. 

NELSON, M.N., and LINTON, M.: "A Highly Available, Scalable ITV System," Proc. 
Fifteenth Symp. on Operating Systems Prin., ACM, pp. 54-67, 1995. 

NEMETH, E., SNYDER, G., SEEBASS, S., and HEIN, T.R.: UNIX System Administration Hand­
book, Englewood Cliffs, NJ: Prentice Hall, 1995. 

NEMZOW, M.: Implementing Wireless Networks, New York: McGraw-Hill, 1995. 

NEUMAN, B.C., and TS'O, T.: "Kerberos: An Authentication Service for Computer Net­
works," IEEE Commun. Magazine, vol. 32, pp. 33-38, Sept. 1994. 



788 READING LIST AND BIBLIOGRAPHY CHAP. 8 

NEWMAN, P.: "Traffic Management for ATM Local Area Networks," IEEE Commun. 
Magazine, vol. 32, pp. 44-50, Aug. 1994. 

NEWMAN, P.: "ATM Local Area Networks," IEEE Commun. Magazine, vol. 32, pp. 86-98, 
March 1994. 

NIST: "Secure Hash Algorithm," U.S. Government Federal Information Processing Stan­
dard 180, 1993. 

OMIDYAR, C.G., and ALDRIDGE, A.: "Introduction to SDH/SONET," IEEE Commun. Maga­
zine, vol. 31, pp. 30-33, Sept. 1993. 

OTWAY, D., and REES, 0.: "Efficient and Timely Mutual Authentication," Operating Sys­
tems Rev., pp. 8-10, Jan. 1987. 

PADGETT, J.E., GUNTHER, C.G., and HATTORI, T.: "Overview of Wireless Personal Com­
munications," IEEE Commun. Magazine, vol. 33, pp. 28-41, Jan. 1995. 

PAFF, A.: "Hybrid Fiber/Coax in the Public Telecommunications Infrastructure," IEEE 
Commun. Magazine, vol. 33, pp. 40-45, April 1995. 

PAHLAVAN, K., PROBERT, T.H., and CHASE, M.E.: "Trends in Local Wireless Networks," 
IEEE Commun. Magazine, vol. 33, pp. 88-95, March 1995. 

PALAIS, J.C.: Fiber Optic Commun., 3rd ed., Englewood Cliffs, NJ: Prentice Hall, 1992. 

PALMER, L.C., and WHITE, L.W.: "Demand Assignment in the ACTS LBR System," IEEE 
Trans. on Commun., vol. 38, pp. 684-692, May 1990. 

PAN, D.: "A Tutorial on MPEG/Audio Compression," IEEE Multimedia Magazine, vol. 2, 
pp.60-74, Summer J 995. 

PANCHA, P., and EL ZARKI, M.: "MPEG Coding for Variable Bit Rate Video Transmis­
sion," IEEE Commun. Magazine, vol. 32, pp. 54-66, May 1994. 

PANDYA, R.: "Emerging Mobile and Personal Communication Systems," IEEE Commun. 
Magazine, vol. 33, pp. 44-52, June 1995. 

PARTRIDGE, C.: Gigabit Networking, Reading, MA: Addison-Wesley, 1994. 

PARTRIDGE, C.: "A Proposed Flow Specification," Internet RFC 1363, Sept. 1992. 

PARTRIDGE, c., HUGHES, J., and STONE, J.: "Performance of Checksums and CRCs over 
Real Data," Proc. SIGCOMM '95 Conf, ACM, pp. 68-76, 1995. 

PARULKAR, G., SCHMIDT, D.C., and TURNER, J.S.: "AITPM: A Strategy for Integrating IP 
with ATM," Proc. SIGCOMM '95 Conf:, ACM, pp. 49-58, 1995. 

PAXSON, V.: "Growth Trends in Wide-Area TCP Connections," IEEE Network Magazine, 
vol. 8, pp. 8-17, July/ Aug. l 994. 

PAXSON, V., and FLOYD, S.: "Wide-Area Traffic: The Failure of Poisson Modeling," Proc. 
SIGCOMM '94 Conj, ACM, pp. 257-268, 1995. 

PERKINS, c.: "Providing Continuous Network Access to Mobile Hosts Using TCP/IP," 
Computer Networks and ISDN Systems, vol. 26, pp. 357-370, Nov. 1993. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 789 

PERLMAN, R.: Interconnections: Bridges and Routers, Reading, MA: Addison-Wesley, 
1992. 

PERLMAN, R.: Network Layer Protocols with Byzantine Robustness, Ph.D. thesis, M.l.T., 
1988. 

PERRY, T.S., and ADAM, J.A.: "E-Mail: Pervasive and Persuasive," IEEE Spectrum, vol. 29, 
pp. 22-28, Oct. 1992. 

PETERSON, W.W., and BROWN, D.T.: "Cyclic Codes for Error Detection," Proc. IRE, vol. 
49,pp.228-235,Jan. 1961. 

PICKHOL TZ, R.L., SCHILLING, D.L., and MILSTEIN, L.B.: "Theory of Spread Spectrum 
Communication-A Tutorial," IEEE Trans. on Commun., vol. COM-30, pp. 855-884, 
May 1982. 

PIERCE, J.: "How Far Can Data Loops Go?" IEEE Trans. on Commun., vol. COM-20, pp. 
527-530, June 1972. 

PINKERTON, B.: "Finding What People Want: Experiences with the WebCrawler," Proc. 
First Int'l. WorldWide Web Conference, 1994. 

PISCITELLO, D.M., and CHAPIN, A.L.: Open Systems Networking: TCP/IP and OSI, Reading, 
MA: Addison-Wesley, 1993. 

PITT, D.A.: "Bridging-The Double Standard," IEEE Network Magazine, vol. 2, pp. 94-95, 
Jan. 1988. 

QUICK, R. F., Jr., and BALACHANDRAN, K.: "An Overview of the Cellular Digital Packet 
Data (CDPD) System," Fourth Int'l. Symp. on Personal, Indoor, and Mobile Radio 
Commun., pp. 338-343, 1993. 

QUISQUATER, J.-J., and GIRAULT., M.: "Chinese Lotto as an Exhaustive Code-Breaking 
Machine," IEEE Computer Magazine, vol. 24, pp. 14-22, Nov. 1991. 

RABIN, M.O.: "Digital Signatures and Public-Key Functions as Intractable as Factoriza­
tion," Technical Report LCS-TR-212, M.l.T., Jan 1979. 

RAHNEMA, M.: "Overview of the GSM System and Protocol Architecture," IEEE Com­
mun. Magazine, vol. 31, pp. 92-100, April 1993. 

RAJAGOPALAN, B.: "Reliability and Scaling Issues in Multicast Communication," Proc. 
SIGCOMM '92 Conj, ACM, pp. 188-198, 1992. 

RANSOM, M.N.: "The VISTAnet Gigabit Network Testbed," Journal of High Speed Net­
works, vol. 1, pp. 49-60, 1992. 

RAO, S.K., and HATAMIAN, M.: "The ATM Physical Layer," Computer Commun. Rev., vol. 
25, pp. 73-81, April 1995. 

RIVEST, R.L.: "The MD5 Message-Digest Algorithm," RFC 1320, April 1992. 

RIVEST, R.L., and SHAMIR, A.: "How to Expose an Eavesdropper," Commun. of the ACM, 
vol. 27, pp. 393-395, April 1984. 



790 READING LIST AND BIBLIOGRAPHY CHAP. 8 

RIVEST, R.L., SHAMIR, A., and ADLEMAN, L.: "On a Method for Obtaining Digital Signatures 
and Public Key Cryptosystems,"' Commun. of the ACM, vol. 21, pp. 120-126, Feb. 
1978. 

ROBERTS, L.: "Dynamic Allocation of Satellite Capacity through Packet Reservation," 
Proc. NCC, AFIPS, pp. 711-716, 1973. 

ROBERTS, L.: "Extensions of Packet Communication Technology to a Hand Held Personal 
Terminal," Proc. Spring Joint Computer Conference, AFIPS, pp. 295-298, 1972. 

ROMANOW, A., and FLOYD, S.: "Dynamics of TCP Traffic over ATM Networks," Proc. 
SIGCOMM '84 Conf, ACM, pp. 79-88., 1994. 

ROSE, M.T.: The Simple Book, Englewood Cliffs, NJ: Prentice Hall, 1994. 

ROSE, M.T.: The Internet Message, Englewood Cliffs, NJ: Prentice Hall, 1993. 

ROSE, M.T., and McCLOGHRIE, K.: How to Manage Your Network Using SNMP, Englewood 
Cliffs, NJ: Prentice Hall, 1995. 

ROSS, F.E., and HAMSTRA, J.R.: "Forging FDDI," IEEE Journal on Selected Areas in Com­
mun., vol. 11, pp. 181-190, Feb. 1993. 

SADIKU, M.N.O., and ARVIND, A.S.: "Annotated Bibliography on Distributed Queue Dual 
Bus (DQDB)," Computer Commun. Rev., vol. 24, pp. 21-36, Jan. 1994. 

SALTZER, J.H., POGRAN, K.T., and CLARK, D.D.: "Why a Ring?" Computer Networks, vol. 7, 
pp. 223-230, Aug. 1983. 

SALTZER, J.H., REED, D.P., and CLARK, D.D.: "End-to-End Arguments in System Design," 
ACM Trans. on Computer Systems, vol. 2, pp. 277-288, Nov. 1984. 

SANDERSON, D.W., and DOUGHERTY, D.: Smileys, Sebastopol, CA: O'Reilly, 1993. 

SANTIFALLER, M.: "TCP/IP and ONC/NFS," Reading, MA: Addison-Wesley, 1994. 

SCHNEIER, B.: Applied Cryptography, 2nd ed., New York: John Wiley, 1996. 

SCHNEIER, B.: E-Mail Security, New York: John Wiley, 1995. 

SCHNEIER, B.: "Description of a New Variable-Length Key, 64-Bit Block Cipher [Blow­
fish]," Proc. of the Cambridge Security Workshop, Springer-Verlag, pp. 191-204, 
1994. 

SCHNORR, C.P.: "Efficient Signature Generation for Smart Cards," Journal of Cryptology, 
vol.4,pp.161-174, 1991. 

SCHOLTZ, R.A.: "The Origins of Spread-Spectrum Communications," IEEE Trans. on 
Commun., vol. COM-30, pp. 822-854, May 1982. 

SCOTT, R.: "Wide Open Encryption Design Offers Flexible Implementations," Cryptolo­
gia, vol. 9, pp. 75-90, Jan. 1985. 

SELFRIDGE, O.G., and SCHWARTZ, R.T.: "Telephone Technology and Privacy," Technology 
Rev., vol. 82, pp. 56-65, May 1980. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 791 

SEYBOLD, A.M.: Using Wireless Communications in Business, New York: Van Nostrand 
Reinhold, 1994. 

SHACHAM, N., and McKENNEY, P.: "Packet Recovery in High-Speed Networks Using Cod­
ing and Buffer Management," Proc. INFOCOM '90, IEEE, pp. 124-130, 1990. 

SHAH, A., and RAMAKRISHNAN, G.: FDDI-A High Speed Network, Englewood Cliffs, NJ: 
Prentice Hall, 1994. 

SHANNON, C.: "A Mathematical Theory of Communication," Bell System Tech. J., vol. 27, 
pp. 379-423, Juiy 1948; and pp. 623-656, Oct. 1948. 

SHEN, B., and SETHI, I.K.: "Inner-Block Operations on Compressed Images," Proc. of ACM 
Multimedi4 '95, ACM, pp. 489-498, 1995. 

SHIMIZU, A., and MIYAGUCHI, S.: "Fast Data Encipherment Algorithm FEAL," Advances in 
Cryptology-Eurocrypt '87 Proceedings, NY: Springer-Verlag, pp. 267-278, 1988. 

SHREEDHAR, M., and VARGHESE, G.: "Efficient Fair Queueing Using Deficit Round 
Robin," Proc. SIGCOMM '95 Conj, ACM, pp. 231-243, 1995. 

SINGLETON, A.: "Wired on the Web," Byte, vol. 21, pp. 77-80, Jan. 1996. 

SIPIOR, J.C., and WARD, B.T.: "The Ethical and Legal Quandary of Email Privacy," Com­
mun. of the ACM, vol. 38, pp. 48-54, Dec. 1995. 

SIU, K.-Y., and JAIN, R.: "A Brief Overview of ATM: Protocol Layers, LAN Emulation, and 
Traffic Management," Computer Commun. Rev., vol. 25, pp. 6-20. April 1995. 

SMITH, P.: Frame Relay, Reading, MA: Addison-Wesley, 1993. 

SOHA, M., and PERLMAN, R.: "Comparison of Two LAN Bridge Approaches," IEEE Net­
work Magazine, vol. 2, pp. 37-43, Jan./Feb. 1988. 

SPAFFORD, E.H.: "The Internet Worm: Crisis and Aftermath," Commun. of the ACM, vol. 
32, pp. 678-687, Jµne 1989. 

SPRAGINS, J.D., with HAMMOND, J.L., and PAWLIKOWSKI, K.: Telecommunications Protocols 
and Design, Reading, MA: Addison-Wesley, 1991. 

STALLINGS, W.: ISDN and Broadband ISDN with Frame Relay and ATM, Englewood 
Cliffs, N1: Prentice Hall, 1995a. 

STALLINGS, W.: Network and Internetwork Security, Englewood Cliffs, NJ: Prentice Hall, 
1995b. 

STALLINGS, W.: Protect Your Privacy: The PGP User's Guide, Englewood Cliffs, NJ: 
Prentice Hall, 1995c. 

STALLINGS, w.: Data and Computer Communications, 4th ed., New York: Macmillan, 
1994. 

STALLINGS, W.: SNMP, SNMPv2, and CMIP, Reading, MA: Addison-Wesley, 1993a 

STALLINGS, W.: Local and Metropolitan Area Networks, 4th ed., New York: Macmillan, 
1993b. 



792 READING LIST AND BIBLIOGRAPHY CHAP. 8 

STEELE, R., WHITEHEAD, J., and WONG, W.C.: "System Aspects of Cellular Radio," IEEE 
Commun. Magazine, vol. 33, pp. 80-86, Jan. 1995a. 

STEELE, R., WILLIAMS, J., CHANDLER, D., DEHGHAN, s., and COLLARD, A.: "Teletraffic Per­
formance of GSM900/DCS 1800 in Street Microcells," IEEE Commun. Magazine, vol. 
33, pp. 102-108, March l 995b. 

STEINER, J.G., NEUMAN, B.C., and SCHILLER, J.I.: "Kerberos: An Authentication Service for 
Open Network Systems," Proc. Winter USJ;,""'NIX Conj, USENIX, pp. 191-201, 1988. 

STEINMETZ, R., and NAHRSTEDT, K.: Multimedia: Computing, Communications and Appli­
cations, Englewood Cliffs, NJ: Prentice Hall, 1995. 

STEPHENS, W.E., and BANWELL, T.C.: "155.52 Mb/s Data Transmission on Category 5 
Cable Plant," IEEE Commun. Magazine, vol. 33, pp. 62-69, April 1995. 

STERBENZ, J.P.G., SCHULZRINNE, H.G., and TOUCH, J.D.: "Report and Discussion of the 
IEEE ComSoc TCGN Gigabit Networking Workshop 1995," IEEE Network Maga­
zine, vol. 9, pp. 9-29, July/Aug. 1995. 

STEVENS, W.R.: TCP/IP Illustrated, Vol. 1, Reading, MA: Addison-Wesley, 1994. 

STILLER, B.: "A Survey of UNI Signaling Systems and Protocols," Computer Commun. 
Rev., vol. 25, pp. 21-33, April 1995. 

STINSON, D.R.: Cryptography Theory and Practice, Boca Raton, FL: CRC Press, 1995. 

SUNSHINE, C.A., and DALAL, Y.K.: "Connection Management in Transport Protocols," Com­
puter Networks, vol. 2, pp. 454-473, 1978. 

SUZUKI, T.: "ATM Adaptation Layer Protocol," IEEE Commun. Magazine, vol. 32., pp. 
80-83, April 1994. 

TANENBAUM, A.S.: Distributed Operating Systems, Englewood Cliffs, NJ: Prentice Hall, 
1995. 

TANENBAUM, A.S.: Modern Operating Systems, Englewood Cliffs, NJ: Prentice Hall, 1992. 

TERAOKA, F., YOKTE, Y., and TOKORO, M.: "Host Migration Transparency in IP Networks," 
Computer Commun. Rev., vol. 23, pp. 45-65, Jan. 1993. 

THYAGARAJAN, A.S., and DEERING, S.E.: "Hierarchical Distance-Vector Multicast Routing 
for the MBone," Proc. SIGCOMM '95 Conf, ACM, pp. 60-66, 1995. 

TQJWRO, M., and TAMARU, K.: "Acknowledging Ethernet," Compean, IEEE, pp. 320-325, 
Fall 1977. 

TOLMIE, D.E.: "Gigabit LAN lssues-HIPPI, Fibre Channel, and ATM," in Proc. High­
Performance Computing and Networking, Hertzberger, B., and Serazzi, G. (Eds.), 
Berlin: Springer Verlag, pp. 45-53, 1995. 

TOLMIE, D.E.: "Gigabit Networking," IEEE LTS, vol. 3, pp. 28-36, May 1992. 

TOLMIE, D.E., and RENWICK, J.: "HIPPI: Simplicity Yields Success," IEEE Network Maga­
zine, vol. 7, pp. 28-32, Jan./Feb. 1993. 



SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 793 

TOMLINSON, R.S.: "Selecting Sequence Numbers," Proc. SIGCOMM/SIGOPS Interpro­
cess Commun. Workshop, ACM, pp. 11-23, 1975. 

TOUCH, J.D.: "Performance Analysis of MD5," Proc. SIGCOMM '95 Conj, ACM, pp. 
77-86, 1995. 

TRUONG, H.L., ELLINGTON, W.W. Jr., LE BOUDEC, J.-Y., MEIER, A.X., and PACE, J.W.: "LAN 
Emulation on an ATM Network," IEEE Commun. Magazine, vol. 33, pp. 70-85, May 
1995. 

TUCHMAN, w.: "Hellman Presents No Shortcut Solutions to DES," IEEE Spectrum, vol. 
16, pp. 40-41, July 1979. 

TURNER, J.S.: "New Directions in Communications (or Which Way to the Information 
Age),"' IEEE Commun. Magazine, vol. 24, pp. 8-15, Oct. 1986. 

VAN DER LINDEN, P.: Just Java, Englewood Cliffs, NJ: Prentice Hall, 1996. 

VAN OORSCHOT, P.C., and WIENER, M.J.: "A Known-Plaintext Attack on Two-Key Triple 
Encryption," Advances in Cryptology-CRYPTO '88 Proceedings, New York: 
Springer-Verlag, pp. 119-131, 1988. 

VAN RENESSE, R., VAN STAVEREN, H., and TANENBAUM, A.S.: "Performance of the World's 
Fastest Distributed Operating System," Operating Systems Rev., vol. 22, pp. 25-34, 
Oct. 1988. 

VARGHESE, G., and LAUCK, T.: "Hashed and Hierarchical Timing Wheels: Data Structures 
for the Efficient Implementation of a Timer Facility," Proc. Eleventh Symp. on 
Operating Systems Prin., ACM, pp. 25-38, 1987. 

VENKATRAMANI, c., and CHIUEH, T.: "Design, Implementation, and Evaluation of a 
Software-Based Real-Time Ethernet Protocol," Proc. SIGCOMM '95 Conf, ACM, 
pp. 27-37, 1995. 

VETTER, RJ., SPELL, C., and WARD, C.: "Mosaic and the World-Wide Web," IEEE Com­
puter Magazine, vol. 27, pp. 49-57, Oct. 1994. 

VILLAMIZAN, C., and SONG, C.: "High Performance TCP in ANSNET," Computer Com­
mun. Rev., vol. 25, pp. 45-60, Oct. 1995. 

VITERBI, A.J.: CDMA Principles of Spread Spectrum Communication, Reading, MA: 
Addison-Wesley, 1995. 

WADA, H., YOZA WA, T., OHNISHI, T., and TANAKA, Y.: "Mobile Computing Environment 
Based on Internet Packet Forwarding," Proc. Winter USENIX Conj, USENIX, pp. 
503-517, Jan. 1993. 

WALRAND,J.: Communication Networks: A First Course, Homewood, IL: Irwin, 1991. 

WATSON, R.W.: "Timer-Based Mechanisms in Reliable Transport Protocol Connection 
Management," Computer Networks, vol. 5, pp. 47-56, Feb. 1981. 

WAYNER,P.: "Picking the Crypto Lock," Byte, pp. 77,80, Oct. 1995. 



794 READING LIST AND BIBLIOGRAPHY CHAP. 8 

WEISBAND, S.P., and REINIG, B.A.: "Managing User Perceptions of Email Privacy," Com­
mun. of the ACM, vol. 38, pp. 40-47, Dec. 1995. 

WIENER, M.J.: "Efficient DES Key Search," Technical Report TR-244, School of Com­
puter Science, Carleton Univ., Ottawa, 1994. 

WILLIAMS, K.A., DAM, T.Q., and DU, D.H.-C.: "A Media Access Protocol for Time and 
Wavelength-Division Multiplexed Passive Star Networks," IEEE Journal on Selected 
Areas in Commun., vol. 11, pp. 560-567, May 1993. 

WILLINGER, W., TAQQU, M.S., SHERMAN, R., and WILSON, D.V.: "Self-Similarity through 
High Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level," 
Proc. SIGCOMM '95 Conj, ACM, pp. 100-113, 1995. 

WOLTER, M.S.: "Fiber Distributed Data Interface-A Tutorial," ConneXions, pp. 16-26, 
Oct. 1990. 

YANG, C.-Q., and REDDY, A.V.S.: "A Taxonomy for Congestion Control Algorithms in 
Packet Switching Networks," IEEE Network Magazine, vol. 9, pp. 34-45, July/Aug. 
1995. 

YEH, Y.-S., HLUCHYJ, M.G., and ACAMPORA, A.S.: "The Knockout Switch: A Simple, Modu­
lar Architecture for High-Performance Packet Switching," IEEE Journal on Selected 
Areas in Commun., vol. 5, pp. 1274-1283, Oct. 1987. 

YOUSSEF, A.M., KALMAN, E., BENZONI, L.: "Technico-Economic Methods of Radio Spec­
trum Assignment," IEEE Commun. Magazine, vol. 33, pp. 88-94, June 1995. 

YUVAL,G.: "How to Swindle Rabin," Cryptologia, vol. 3, pp. 187-190, July 1979. 

ZHANG, L.: "Comparison of Two Bridge Routing Approaches," IEEE Network Magazine, 
vol. 2, pp. 44-48, Jan./Feb. 1988. 

ZHANG, L.: "RSVP A New Resource ReSerVation Protocol," IEEE Network Magazine, 
vol. 7, pp. 8-18, Sept./Oct. 1993. 

ZIMMERMANN, P.R.: The Official PGP User's Guide, Cambridge, MA: M.I.T. Press, 
1995a. 

ZIMMERMANN, P.R.: PGP: Source Code and Internals, Cambridge, MA: M.l.T. Press, 
1995b. 

ZIPF, G.K.: Human Behavior and the Principle of Least Effort: An Introduction to Human 
Ecology, Cambridge, MA: Addison-Wesley, 1949. 

ZIV, J., and LEMPEL, z.: "A Universal Algorithm for Sequential Data Compression," IEEE 
Trans. on Information Theory, vol. IT-23, pp. 337-343, May 1977. 



INDEX 

A 

A-side carrier, 160 
AAL (see ATM Adaptation Layer) 
AAL 1, 547-549, 753 
AAL 2, 549-550, 753 
AAL 3/4, 550-552, 753 
AAL 5, 552-554, 753 
AAL Layer, 64, 545-555 
AAL protocols, comparison, 554-555 
ABR (see Available Bit Rate service) 
Abstract Syntax Notation-I, 633-636 
Abstract window toolkit, 717-718 
Acknowledgement frame, 30 
ACR (see Actual Cell Rate) 
Active map, 684 
Active repeater, 91 
ACTS (see Advanced Communication 

Technology Satellite) 
Actual cell rate, 471 
Adaptive routing, 347 
ADC (see Analog Digital Converter) 

795 

ADCCP (see Advanced Data 
Communications Control Procedure) 

Addenda, 42, 322 
Address resolution protocol, 420-423 

gratuitous ARP, 433 
Address, 492 

transport, 489-492 
Admission control, 386, 468 
ADSL (see Asymmetric Digital 

Subscriber Line) 
Advanced Communication Technology 

Satellite, 331 
Advanced Data Communications Control 

Procedure, 226 
Advanced mobile phone system, 158-161 
Advertisements, mobile IP, 433 
Agent, SNMP, 631 
Alias, email, 647-648 
ALOHA, 246-250 

pure, 247-249, 
satellite, 329 
slotted, 249-250 



796 INDEX 

American National Standards Institute, 70 
Amplitude modulation, 110 
AMPS (see Advanced Mobile Phone System) 
Analog cellular telephone, 157-161 
Analog digital converter, 725 
Anonymous remailer, 674 
ANSI (see American National Standards 

Institute) 
ANSNET, 51 
Anycasting, 442 
Apocalypse of the two elephants, 40-41 
Applet, 707-709 
Application gateway, 398, 411 
Application layer, 33-34, 37, 577--766 

domain name system, 622-630 
email, 643-669 
multimedia, 723-760 
net news, 669-680 
network management, 630-643 
network security, 577-622 
World Wide Web, 681-723 

Architecture, network, 18 
Area, OSPF, 425 
ARP (see Address Resolution Protocol) 
ARPANET, 35, 47-50, 71, 355, 569, 622 
ARQ (see Automatic Repeat reQuest) 
ASCII armor, 654 
ASN. l (see Abstract Syntax Notation-]) 
ASN.1 transfer syntax, 637-638 
Asymmetric digital subscriber line, 751 
Asynchronous transfer mode, 61-65 

congestion control, 467-471 
control plane, 64 
CS sublayer, 65 
cell format, 450-452 
connection setup, 452-455 
data link layer, 235-239 
leaky bucket, 466 
NNI, 450-451 
perspective, 65 
PMD sublayer, 64 
quality of service, 460-463 
routing and switching, 455-458 
SAR sublayer, 65 
service categories, 458-460 
TC sublayer, 64-65 
traffic shaping, 463-468 
UNI, 450-451 

Asynchronous transfer mode (cont.) 
user plane, 64 
virtual channel, 450 
virtual path, 450 

ATM (see Asynchronous Transfer Mode) 
ATM adaptation layer, 545-555 
ATM Forum, 65 
ATM LAN, 471-473 
ATM layer, 449-473, 63 
ATM network, 144-155 
ATM switch, 147-155 
A TMARP server, 4 73 
Attenuation, 109 

in fiber, 89 
Audio CD, 724-725 
Audio, digital, 724-726 
Aurora, 55 
Authentication protocol, 601-613 

Kerberos, 610-612 
using KDC, 607-620 
public-key, 612-613 

Authoritative record, 629 
Automatic repeat request, 200-202 
Autonomous system, 406, 412 
Available bit rate service, 459-460 

B 

B-frame, MPEG, 742 
B-side carrier, 160 
Backbone, OSPF, 425 
Backward learning algorithm, 311-312 
Balanced transmission, 115 
Bandwidth-delay product, 557 
Base64, 654 
Baseband cable, 85,86, 276, 277, 280 
Basic rate, ISDN, 142-143 
Batcher-banyan switch, 151-155 
Baud, 79 
Bell Operating Company, 106 
Bell System, 103 
Bellman-Ford routing, 355 
BGP (see Border Gateway Protocol) 
Big endian computer, 413 
Binary countdown, 255-256 
Binary exponential backoff, 282-283 
Birthday attack, 618-620 



Bit pipe, 140 
Bit stuffing, 181 
Bit-map protocol, 254-255 
BITNET, 53 
Blanca, 56 
Block cipher, 585, 590, 595-596 
BOC (see Bell Operating Company) 
Body, email, 646 
BOOTP,424 
Border gateway protocol, 429-431 
Bridge, 304-318, 398 

between IEEE 802 LANs, 307-310 
remote, 317-318 
source routing, 314-316 
spanning tree, 310-313 
transparent, 310-313 

Broadband cable, 85-86 
Broadband ISDN, 61-65, 144-155 
Broadcast address, 280 
Broadcast network, 7-8 
Broadcast routing, 370-372 
Broadcast storm, 557 
Broadcast/unknown server, 472 
Broadcasting, 8 
Browser, World Wide Web, 682 
Bucket brigade attack, 606 
BUS (see Broadcast/Unknown Server) 

c 

Cable TV, 85-86, 107, 144, 172 
Care-of address, 433 
Carnegie-Mellon University, 7 
Carrier 

common, 67, 119 
modem, 110-111, 114 

Carrier sense multiple access protocols, 
250-254 

CASA, 56 
Caesar cipher, 582-583 

INDEX 

CBR (see Constant Bit Rate service) 
CCITT,68, 119, 121, 122, 124, 142,644 
CDMA (see Code Division Multiple Access) 
CDPD (see Cellular Digital Packet Data) 
CDV (see Cell Delay V~iation) 

Cell 
ATM, 62 
cellular radio, 158 
HTML, 701 

Cell delay variation, 462 
Cell error rate, 463 
Cell loss ratio, 462 
Cell misinsertion rate, 463 
Cell relay, 62 
Cell transfer delay, 462 

797 

Cell variation delay tolerance, 462 
Cellular digital packet data, 15, 269-271 
Cellular radio, 155-163 

digital, 266-275 
Cellular telephone 

AMPS, 158-161 
analog, 157-161 
call management, 160-161 
digital, 162 
security, 161 

Censorship 
byCMU, 7 
by CompuServe, 676 

Central office, 104 
CER (see Cell Error Rate) 
Certification authority, 668 
CGI (see Common Gateway Interface) 
Challenge-response protocol, 602-604 
Channel, 11 
Channel allocation in LANs, 244-246 
Channel associated signaling, 122 
Character stuffing, 180-181 
Checksum, 179, 182, 187-191, 235 
Chinese lottery, 593 
Chip, 272 
Chip sequence, 272 
Choke packet, 387-391 
Chosen plaintext attack, 582 
Chrominance, 728-729 
CIDR (see Classless InterDomain Routing) 
Cipher 

block, 588-597 
Caesar, 582-583 
substitution, 582-583 
transposition, 583c585 

Cipher block chaining, 590-591 
Cipher feedback mode, 591-592 
Ciphertext, 580 



798 

Ciphertext only attack, 582 
Circuit, 11 
Circuit switching, 130-134 
Classless interdomain routing, 434-437 
Client-server model, 3-4 
CLR (see Cell Loss Ratio) 
CLUT (see Color Look Up Table) 
CMR (see Cell Misinsertion rate) 
Coaxial cable, 84-86 

baseband, 84-85 
broadband, 85-86 

INDEX 

Code division multiple access, 271-275, 333 
Codec, 121 
Collision-free protocol, 254-256 
Color look up table, 732 
Common carrier, 67 
Common gateway interface, 705-706 
Common-channel signaling, 122 
Communication satellite, 163-170 
Communication subnet, 1 1 
Composite video, 728 
CompuServe, 676 
Computer network, 2 

use, 3-7 
Concatenated virtual circuits, 401-402 
Confirm, 25-27 
Confirmed service, 26-27 
Congestion control algorithm, 374-395 

choke packets, 387-391 
general principles, 376-378 
in virtual circuit networks, 386-387 
leaky bucket, 380-381 
multicasting, 393-395 
token bucket, 381-384 
weighted fair queueing, 388-389 
ATM, 467-471 
rate-based, 469-471 
TCP, 536-539 

Congestion prevention, 378-379 
Congestion threshold, 538 
Congestion window, 537-538 
Connection establishment, 493-498 

TCP, 529-530 
Connection release, 498-502, 530-533 
Connection-oriented service, 23-25 
Connectionless service, 23-25 
Constant bit rate service, 458-459 
Constellation pattern, 111-112 

Contention system, 246-247, 252-258 
Continuous media, 724 
Control plane, ATM, 64 
Convergence sublayer, AAL, 546 
Copper wire, compared to fiber, 92-94 
Cordless telephone, 157 
Core-based tree, 374 
Count-to-infinity problem, 357-358 
Covert channel, 719-720 
Crash recovery, 508-510 
Crawler, 720 
Credit message, 519 
Crossbar switch, 135-138 
Crosspoint, 136 
Crosspoint switch, 135-138 
Crossposting news, 672 
Cryptanalysis, 581 
Cryptography, 577-622 

public-key, 597-601 
secret-key, 587-597 
traditional, 580-585 

Cryptology, 581 
CS sublayer, ATM, 65 
CSMA (see Carrier Sense Multiple Access 

protocols) 
CSMA/CD, 252-254 
CSNET, 50 
CTD (see Cell Transfer Delay) 
CVDT (see Cell Variation Delay Tolerance) 
Cyclic redundancy code, 187 

D 

Data circuit-terminating equipment, 114 
Data compression, 730-744 

CLUT, 732 
differential encoding, 732 
discrete cosine transformation, 733 
entropy encoding, 731-732 
lossless, 731-732 
lossy, 732-734 
run-length encoding, 731 
source encoding, 732-734 
statistical encoding, 731-732 
transformation encoding, 732 
vector quantization, 733 



Data encryption standard, 588-595 
attacking, 592-595 
chaining, 589-592 
controversy, 593 

Data flow machine, 8 
Data link layer, 175-242 

ATM, 235-239 
bit stuffing, 181 
character stuffing, 180-181 
design issues, 17 6-183 
elementary protocols, 190-202 
example protocols, 225-239 
error control, 182-183 
flow control, 183 
framing, 179-182 
HDLC protocol, 225-228 
LLC, 275, 302-304 
OSI, 30 
services provided, 17 6-179 
sliding window protocols, 202--219 

Data switching exchange, 12 
Data terminating equipment, 114 
Datagram, 342 

compared to virtual circuit, 344-345 
Datagram service, 24-25 
DCE (see Data Circuit-Terminating 

Equipment) 
Dt:S 1800, 266 
De facto standard, 67 
De jure standard, 67 
Deadlock, protocol, 222 
Decibel, 81, 724 
Decoding, 730 
Delay distortion, 109 
Delta modulation, 123-124 
DES (see Data Encryption Standard) 
Designated router, 428 
Differential cryptanalysis, 595 
Differential encoding, 732 

INDEX 

Differential Manchester encoding, 279-280 
Differential PCM, 123 
Diffie-Hellman key exchange, 605-606 
Digital cellular radio, 266-275 
Digital cellular telephone, 162 
Digital sense multiple access, 270-271 
Digital signature, 613-620 

public-key, 615-616 
secret-key, 614-615 

Digital signature standard, 616 
Digram, 583 
Directive, HTML, 696-699 
Directory server, 491 
Discrete cosine transformation, 733 
Disk farm, 7 48 
Disk striping, 748 
Dispersion, in fiber, 89 
Distance vector multicast routing 

protocol, 758-759 

799 

Distance vector routing, 355-359 
Distributed mail system protocol, 662 
Distributed queue dual bus, 11, 301-303 
Distributed system, 2 
Distribution network, 750-754 
DMSP (see Distributed Mail System Protocol) 
DNS (see Domain Name System) 
Domain, 623 
Domain name system, 421, 622-630 
Dotted decimal notation, 417 
DQDB (see Distributed Queue Dual Bus) 
DSl, 121, 
DSMA (see Digital Sense Multiple Access) 
DSS (see Digital Signature standard) 
DTE (see Data Terminating Equipment) 
DVMRP (see Distance Vector Multicast 

Routing Protocol) 

E 

EARN, 53 
Establishing a connection, TCP, 529-530 
Echo canceller, 113 
Echo suppressor, 112-113 
Electromagnetic spectrum, 94-97 
Electronic code book mode, 590 
Electronic mail (see Email) 
Elephants, apocalypse, 40 
Email, 5, 53, 643-670 

architecture and services, 645-646 
body,646 
early systems, 644 
envelope, 646 
filter, 662 
final delivery, 662-663 
functions, 645 
gateway, 659-661 



800 

Email (cont.) 
header, 646 
message format, 650-658 
message transfer agent, 645 
message transfer, 657-663 
MIME format, 653-657 
privacy, 663-669 
reading, 648-650 
RFC 822 format, 651-653 
sending, 646-648 
user agent, 645, 646-648 
user commands, 648-650 

Emoticon, 674 
Encapsulation, Java, 713 
Encoding, 730 

entropy, 731-732 
source, 732-734 

Encryption (see cryptography) 
End office, 104 
End system, 11 
Entity, 22 
Entropy encoding, 731-732 
Envelope, email, 646 
ER (see Explicit Rate) 
Error control, 182-190 
Error correction, 184-190 
Error detection, 183-184 
Error-correcting code, 184 
Error-detecting code, 184, 186-190 
Establishing a connection, 493-498 

TCP, 529-531 
Ethernet, 10, 276 (see also IEEE 802.3) 
Explicit rate, 4 71 
Exposed station problem, 264 
Extended SMTP, 659 
Exterior gateway protocol, 405-406, 424, 

429-431 
External viewer, 684 

F 

Fabry-Perot interferometer, 91, 261 
FAQ (see Frequently Asked Questions) 
Fast Ethernet, 322-324 
Fast TPDU processing, 565-568 
FCC (see Federal Communications 

Commission) 

INDEX 

FDDI (see Fiber Distributed Data Interface) 
FDM (see Frequency Division Multiplexing) 
Federal Communications Commission, 96, 

100, 167 
Fiber cable, 90-91 
Fiber channel (see Fibre channel) 
Fiber distributed data interface, 319-322 
Fiber optic network, 91-94 
Fiber optics, 87-94 

attenuation, 88-89 
basic principles, 87-88 
compared to copper, 92-94 
compared to satellite, 168-170 
dispersion, 89 
FDDI, 319-322 
multimode, 88 
single-mode, 88 
SONET, 125-130 
system components, 86 
WDM, 119-121 

Fiber to the curb, 116-118, 120, 751-752 
Fiber to the home, 116-118, 752-753 
Fibre channel, 326-327 
Field, video, 728 
File server, 3 
File transfer, 53 
File transfer protocol, 693 
Finite state machine, 219-223, 519-521 
Firewall, 410-412 
Flamewar, 672 
Flat address, 492 
Flooding, 351 
Flow control, 183, 502-506 
Flow specification, 384-386 
Flow-based routing, 353-355 
Flying LAN, 15 
Ford-Fulkerson routing, 355 
Foreign agent, 368 
Form, HTML, 701-706 
Fourier analysis, 78 
Fragmentation, internetwork, 406-409 
Frame 

acknowledgement, 30 
data, 30 
video, 727 

Frame header, 192 
Frame relay, 60-61 
Framing, 179-182 



Frequency, 94 
Frequency band, 95 

INDEX 

Frequency division multiplexing, 118-121, 330 
Frequency modulation, 110 
Frequently asked questions, 674 
FTP (see File Transfer Protocol) 
FTTC (see Fiber To The Curb) 
FTTH (see Fiber To The Home) 
Full-duplex communication, 21, 113 
Fuzzball, 50 

G 

Gateway, 16 
GCRA (see Generic Cell Rate Algorithm) 
Generator polynomial, 187 
Generic cell rate algorithm, 463-466 
Geosynchronous satellite, 164-167 
Gigabit network, 54-56, 568-572 
Global system for mobile 

communications, 266-275 
Go back n protocol, 207-213 
Gopher, 693 
Gratuitous ARP, 433 
Group, 119 
GSM (see Global System for Mobile 

Communications) 

H 

Half-duplex communication, 21, 113 
Half-gateway, 398 
Hamming distance, 184 
Handoff, cellular, 169 
HDLC (see High-Level Data Link Control) 
HDTV (see High Definition Tele Vision) 
Head-end, cable, 85-86 
Head-of-liine blocking, 149 
Header, 19 

email, 646 
frame, 192 

Header error control, ATM, 235-238 
Header prediction, 567 
HEC (see Header Error Control, ATM) 
Helper application, 684 
HEPNET, 53 

801 

HFC (see Hybrid Fiber Coax) 
Hidden station problem, 264 
Hierarchical address, 492 
Hierarchical routing, 365-367 
High definition television, 729 
High-level data link control, 225-228 
High-performance parallel interface, 325-326 
High-speed LAN, 318-327 
HIPPI (see Hlgh-Performance Parallel 

Interface) 
Home agent, 368 
Host, 11 
Host-to-network layer, 38 
HTML (see HyperText Markup Language) 
HTTP (see HyperText Transfer Protocol) 
Hub, satellite, 165 
Hybrid fiber coax, 752 
Hyperlink, 682 
Hypermedia, 684 
Hypertext, 682 
Hypertext markup language, 691-706 

forms, 701-706 
versions, 699-701 

Hypertext transfer protocol, 689-691 

I 

I Love Lucy, 745 
I-frame, MPEG, 740 
IAB (see Internet Architecture Board) 
IBM,41,226,307,588,593-594 
ICMP (see Internet Control Message Protocol) 
IDEA (see International Data Encryption 

Algorithm) 
IDU (see Interface Data Unit) 
IEEE, 70 
IEEE 802, 275-301 

comparison of LANs, 299-301 
IEEE 802.2, 302-304 
IEEE 802.3, 276-287 

cabling, 276-279 
fast Ethernet, 322-324 
frame format, 281 
performance, 283-285 
protocol, 280-283 
signal encoding 
switched, 285-287 



802 

IEEE 802.3u, 322-324 
IEEE 802.4, 287-292 

protocol, 288-290 
ring maintenance, 290-292 

IEEE 802.5, 292-299 
protocol, 296-298 
ring maintenance, 298-299 

IEEE 802.6, 301-303 

INDEX 

IETF (see Internet Engineering Task Force) 
IGMP (see Internet Group Management 

Protocol) 
IMAP (see Interactive Mail Access Protocol) 
IMP (see Interface Message Processor) 
Improved Mobile Telephone Service, 157 
IMTS (see Improved Mobile Telephone 

Service) 
In-band signaling, 113 
Indication, 25-27 
Indirect TCP, 543-544 
Industrial/Scientific/Medical band, 99 
Information frame, 226-227 
Infrared transmission, 100 
Inheritance, Java, 713 
Initial connection protocol, 490 
Initialization vector, 590 
Integrated Services Digital Network, 61, 

139-155 
Interactive mail access protocol, 662 
Interexchange carrier, 106-107 
Interface, between layers, 18 
Interface data unit, 22 
Interface message processor, 47 
Interferometer 

Fabry-Perot, 91, 261 
Mach-Zehnder, 91, 261 

Interior gateway protocol, 405-406, 424-429 
Interlaced video, 728 
Intermediate system, 12 
International data encryption algorithm, 

596-597 
International standard, 70 
International Standards Organization, 69 
International Telecommunication Union, 68 

453,471,545,634,668, 734 
Internet, 16 

CIDR, 434-437 
connection management, 529-533 
data link layer, 229-235 

Internet (cont.) 
history, 52-54 
internet layer, 35-36, 412-449 
IP, 36, 412-419 
1Pv6,437-449 
mobile IP, 432-434 
multicasting, 431-432 
routing protocols, 424-431 
TCP, 36-37, 521-542 

Internet applications 
email, 643-670 
MBone, 756-760 
net news, 669-680 
World Wide Web, 681-723 

Internet Architecture Board, 71 
Internet control message protocol, 419-420 
Internet Engineering Task Force, 71 
Internet group management protocol, 

431-432, 759 
Internet layer, 35-36 
Internet policy registration authority, 668 
Internet protocols 

ARP, 420-423, 433 
BGP, 429-431 
DVMRP, 758-759 
HTTP, 689-691 
ICMP, 419-420 
IGMP, 431-432, 759 
IP, 36, 412-419 
NNTP 677-680 
OSPF, 424-429 
PIM, 760 
PPP, 231-235, 685 
RARP, 423-424 
RSVP, 394-395 
SLIP, 229-230,685 
SMTP 658-660 
TCP 36-37, 521-542, 658, 678, 685 
UDP 37, 542-544 

Internet service provider, 229 
Internet Society, 53, 71 
Internet transport protocol, 521-545 
Internetwork routing, 405-406 
Internetwork, 16 
Internetworking, 396-412 

connection-oriented, 401-402 
connectionless, 401-402 
why needed, 399-400 



Interoffice trunk, 104 
Intertoll trunk, 104 
Intruder, 580 
IP (see Internet Protocol) 
IP address., 416-419 
IPRA (see Internet Policy Registration 

Authority) 
IPv4, 413-419 
IPv5, 438 
IPv6, 437-449 

addresses, 441 
controversies, 447-449 
extension header, 443-446 
jumbogram, 445 
main header, 439-443 

IPX, 46 
IS-IS routing, 365 
ISDN (see Integrated Services Digital 

Network) 

INDEX 

ISM band (see Industrial/Scientific/Medical 
band) 

ISO (see International Standards Organization) 
ISO standards 

ISO 3166, 623 
ISO 8802, 70, 275 
ISO 8859-1, 696 

ITU (see International Telecommunication 
Union) 

ITU-R, 68 
ITU-T, 68 
IXC (see IntereXchange Carrier) 

J 
Jacobson's slow start algorithm, 538-539 
Java, 706-720 

abstract window toolkit, 717-718 
API, 716-718 
class, 713-716 
language description, 709-718 
object orientation, 712-716 
polymorphism, 715 
security, 718-720 

Jitter, 385, 724 
Jitter control, 392-393 
JPEG standard, 734-738 
Jumbogram, 445 

K 

Karn's algorithm, 541 
KDC (see Key Distribution Center) 
Keepalive timer, TCP, 542 
Kerberos, 610-612 
Key, cryptographic, 580 
Key distribution center, 607-610 
Killfile, 672 
Knockout switch, 150-151 
Knowbot, 720 
Known plaintext attack, 582 

L 

LAN (see Local Area Network) 
LAN Emulation Server, 472 
LANs, comparison, 299-301 
LAP (see Link Access Procedure) 

803 

LATA (see Local Access and Transport Area) 
Layer, 17 

application, 33-34, 37, 577-766 
data link, 175-242 
network, 31, 35-36, 339-478 
physical, 29-30, 77-174 
presentation, 33 
session, 32-33 
transport, 31-32, 36-37, 479-576 

LCP (see Link Control Protocol) 
Leaky bucket algorithm, 380-381 
LEC (see Local Exchange Carrier) 
LES (see LAN Emulation Server) 
Lightwave transmission, 100-102 
Limited contention protocol, 256-259 
Line, SONET, 126 
Line sublayer, SONET, 129-130 
Linear cryptanalysis, 595 
Link access procedure, 226 
Link control protocol, 231 
Link encryption, 579 
Link state routing, 359-365 
LIS (see Logical IP Subnet) 
Little endian computer, 413 
LLC (see Logical Link Control) 
Load shedding, 390-392 
Local Access and Transport Area, 106 



804 

Local area network, 9-10 
ATM, 471-473 
channel allocation, 244-246 
Ethernet, 10, 276-287 
fast Ethernet, 322-324 
IEEE 802, 275-304 
high-speed, 318-327 
token bus, 287-292 
token ring, 292-299 

Local central office, 104 
Local exchange carrier, 106-107 
Local loop, 104, 108-118 

fiber, 115-118 
Logical IP subnet, 473 
Logical Link Control, 275, 302-304 
Low-orbit satellite, 167-170 
Luminance, 728-729 
Lurniniferous ether, 276 

M 

INDEX 

MAC sublayer (see Medium Access Control 
sublayer) 

MACA (see Multiple Access with Collision 
Avoidance) 

MACAW, 265 
Mach-Zehnder interferometer, 91, 261 
Macroblock, 740-741 
Mailbox, 645 
Mailing list, 645-646 
Mailto, 693 
MAN (see Metropolitan Area Network) 
Man-in-the-middle attack, 606 
Management information base, 632, 641-642 
Management station, 631 
Manchester encoding, 279-280 
Markuplanguage,695 
Mastergroup, 119 
Maxirnurn transfer unit, 525 
MBone (see Multicast Backbone) 
MCR (see Minirnurn Cell Rate) 
MD5, 618, 665 
Medium access sublayer, 243-335 
Meet-in-the-middle attack, 594 
Message digest, 617-618 
Message switching, 131-133 
Message transfer agent, 645 

Method, HTTP, 690 
Metropolitan area network, 10-11 
MIB (see Management Information Base) 
Microwave transmission, 98-99 
MIDI (see Music Instrument Digital Interface) 
Midsplit cable, 86 
Milk policy, 390 
Millimeter wave, l 00 
MILNET, 50 
MIME (see Multipurpose Internet Mail 

Extensions) 
Minirnurn cell rate, 461 
MNP 5, 112 
Mobile host, routing algorithm, 367-370 
Mobile IP, 432-434 
Mobile switching center, 159 
Mobile telephone switching office, 159 
Modern, 109-113 
Moderated newsgroup, 673 
Modified final judgment, 104 
Modulation, 110-112 

amplitude, 110 
frequency, 110 
phase, 110 

Monoalphabetic substitution cipher, 582-583 
Mosaic, 696 
MOSPF (see Multicast OSPF) 
MOTIS, 644 
MPEG standard, 738-744, 753-754 

B-frarne, 742 
I-frame, 740 
rnacroblock, 740-741 
MPEG-1, 738-742 
MPEG-2, 742-744 
P-frarne, 740-741 
profiles, 742 
streams, 743 

Mrouter (see Multicast router) 
MSC (see Mobile Switching Center) 
MTSO (see Mobile Telephone Switching 

Office) 
MTU (see Maximum Transfer Unit) 
Multiaccess channel, 243 
Multiaccess network, 425 
Multicast addresses, 280 
Multicast backbone, 756-760 
Multicast OSPF, 760 
Multicast router, 757-758 



Multicast routing, 372-374 
Multicasting, 8, 372, 393-395 

Internet, 431-432 
Multicomputer, 8 
Multidestination routing, 370 
Multimedia, 723-760 

audio, 724-726 
data compression, 730-744 
MBone, 756-760 
video, 727-730 
video on demand, 744-756 

Multimode fiber, 88 
Multipath fading, 99 
Multiple access protocols, 246-275 
Multiple access with collision avoidance, 

264-265 
Multiplexing, 118-130, 506-508 

downward, 507 
upward, 506 

Multiprotocol router, 398 
Multipurpose internet mail extensions, 

653-657 
Music instrument digital interface, 726 

N 

N-ISDN (see Narrowband ISDN) 
Nagle's algorithm, 534-535 
NAK (see Negative AcKnowledgement) 
Name server, 491, 628-630 
NAP (see Network Access Point) 
Narrowband ISDN, 139-144 
National Institute of Standards and 

Technology, 70 
National Security Agency, 593 
National Television Standards 

Committee, 728-729 
NCP (see Network Control Protocol) 
NCP (see Network Core Protocol) 
Near video on demand, 744 
Nectar, 56 
Needham-Schroeder protocol, 608-609 
Negative acknowledgement, 215 
Negotiation, 26 
NETBLT, 572 
NetWare, Novell, 45-47 
Network access point, 52 

INDEX 

Network architecture, 18 
Network control protocol, 231 
Network core protocol, 46 
Network information center, 417 
Network layer, 339-478 

ATM networks, 449-473 
congestion control, 374-395 
design issues, 339-345 
internal organization, 342-345 
Internet, 412-449 
internetworking, 396-412 
OSI, 31 
routing algorithms, 345-374 
services provided, 340-342 

Network news (see USENET) 

805 

Network news transfer protocol, 677-680 
Network performance, 555-572 

IEEE 802.3, 283-285 
Network security, 577-622 
Network service access point, 489 
Network standardization; 66-72 
Network virtual terminal, 33 
Network, fiber optic, 91-94 
News, 53, 669-680, 693, 694 
News article, example, 676 
News headers, 676-677 
Newsfeed, 675 
Newsgroup 

creation, 674-675 
example, 673 

NIC (see Network Information Center) 
NIST (see National Institute of Standards 

and Technology) 
NNTP (see Network News Transfer Protocol) 
Noise, 109 
Nonadaptive routiµg, 347 
Nonce, 608 
Novell NetWare, 45-47 
NREN, 51-52 
NSA (see National Security Agency) 
NSAP (see Network Service Access Point) 
NSFNET, 50-52 
NTl, 140-142 
NT2 141,142 
NTSC (see National Television Standards 

Committee) 
Null modem, 114 
Nyquist limit, 81 



806 

0 

INDEX 

OAM cell (see Operation And Maintenance 
cell) 

Object 
Java, 713 
SNMP, 632, 641-642 

OC-n (see Optical Carrier) 
One-bit sliding window protocol, 205-207 
One-time pad, 585 
ONU (see Optical Network Unit) 
Open shortest path first, 424-429 
Operation and maintenance cell, 236 
Optical carrier, 128-129 
Optical fiber (see also Fiber optics) 

multimode, 88 
single-mode, 88 

Optical network urtit, 751-752 
Optimality principle, 347-348 
Option negotiation, 483 
Oryctolagus cuniculus, 18 
OSI reference mode, 28-35 

compared to TCP/IP, 38-39 
critique, 40-43 

OSPF (see Open Shortest Path First) 
Otway-Rees protocol, 609-610 
Output feedback mode, 593 
Overloading, Java, 715 

p 

P-box, 587-588 
P-frame, MPEG, 740-741 
Package, Java, 713 
Packet, 7 
Packet assembler disassembler, 60 
Packet filter, 411 
Packet switching, 133-134 
Packet switching node, 12 
Packet-switched subnet, 12 
Packetized elementary stream, 743 
PAD (see Packet Assembler Disassembler) 
Paging system, 155-156 
PAL (see Phase Alternating Line) 
Parity bit, 185 
Passive star, 92 
Path, SONET, 126 

Path sublayer, SONET, 129-130 
PBX (see Private Branch eXchange) 
PCA (see Policy Certification Authority) 
PCM (see Pulse Code Modulation) 
PCN (see Personal Communications Network) 
PCR (see Peak Cell Rate) 
PCS (see Personal Communications Services) 
PDU (see Protocol Data Unit) 
Peak cell rate, 461 
Peer, 17 
Peer entity, 22 
PEM (see Privacy Enhanced Mail) 
Performance issues, 555-572 
Permanent virtual circuit, 60, 145-146 
Persistence timer, TCP, 542 
Personal communications network, 162-163 
Personal communications services, 162-163 
PES (see Packetized Elementary Stream) 
Petri net model, 223-224 
PGP (see Pretty Good Privacy) 
Phase altemating line, 728-729 
Phase modulation, 110 
Photonic sublayer, SONET, 129 
Physical layer, 77-174 

cellular radio, 155-163 
communication satellites, 163-170 
OSI, 29-30 
telephone system, 102-163 
transmission media, 82-94 
wireless transmission, 94-102 

Physical medium, 18 
Piggybacking, 202-203 
PIM (see Protocol Independent Multicast) 
Pipelining, 209 
Pixel, 729 
Plain old telephone service, 142 
Plaintext, 580 
PMD sublayer, ATM, 64, 147, 235-239 
Point of presence, 107 
Point-to-point network, 8 
Point-to-point protocol, 231-235, 685 
Point-to-point subnet, 12 
Policy certification authority, 668 
Politics, 43 
Polling, 328 
Polymorphism, Java, 715 
Polynomial code, 187 
POP (see Point of Presence) 



POP3 (see Post Office Protocol-3) 
Port, TCP, 523 

well-known, 523 
Portapotty, 15 
Post office protocol-3, 662 
Post Telegraph and Telephone 

Administration, 67 
POTS (see Plain Old Telephone Service) 
PPP (see Point-to-Point Protocol) 
Predictive encoding, 124 
Presentation layer, 33 
Pretty good privacy, 664-667 

compared to PEM, 669-670 
Primary rate, ISDN, 142-143, 
Primitives, service, 25-27 
Principal, 601 
Privacy enhanced mail, 667-669 

compar~d to PGP, 669-670 
Private branch exchange, 142 
Private key ring, PGP, 666 
Process server, 491 
Program stream, MPEG, 743 
Promiscuous mode, 306 
Protocol, 17 

1-bit, 205-207 
802.5, 296-298 
AAL, 545-555 
ADCCP, 226 
ARP, 420-423 
ARQ, 200-202 
ATM AAL, 547-554 
authentication, 601-613 
BGP, 429-431 
binary countdown, 255-256 
bit-map, 254-255 
BOOTP, 424 
challenge-response, 602-604 
collision-free, 254-256 
CSMA, 250-254 
DMSP, 662 
DSMA, 270-271 
DVMRP, 758-759 
elementary data link, 190-202 
exterior gateway, 405-406 
gigabit network, 568-572 
go back n, 207-213 
HDLC, 225-228 
HTTP, 689-691 

INDEX 

Protocol (cont.) 
ICMP, 419-420 
IEEE 802.3, 280-283 
IEEE 802.4, 288-290 
IEEE 802.S, 296-298 
IGMP, 431-432 
IMAP, 662 
interior gateway, 405-406 
IP, 36, 412-419 
IPX, 46 
LAP, 226 
LCP, 231 
limited contention, 256-259 
MACA, 264-265 
MACAW, 265 
multiple access, 246-275 

807 

NCP (Network Contrdl Protocol), 231 
NCP (Network Core Protocol), 46 
Needham-Schroeder, 608-609 
NNTP, 677-680 
noisy channel, 197-200 
Otway-Rees, 609-610 
PAR, 200-202 
PIM, 760 
POP3, 662 
PPP, 231-235 
Q.2931, 453 
RARP, 423-424 
RSVP, 394-396 
SSCOP, 555 
SDLC, 226-227 
selective repeat, 213-219 
sliding window, 202-219 
SLIP, 229-230 
SMTP, 658-660 
SNMP, 642-643 
TCP, 36-37, 521-542 
tree walk, 258-259 
UDP, 37, 542-544 
unrestricted simplex, 195-197 
WDMA, 260-262 
wireless LAN, 262-265 

Protocol data unit, 22-23 
Protocol hierarchy, 17-20 
Protocol independent multicast, 760 
Protocol stack, 18 
Protocol verification, 219-224 
Proxy ARP, 423 



808 

Proxy server, 688 
Pruning, 760 
PSTN (see Public Switched Telephone 

Network) 

INDEX 

PTT (see Post, Telegraph, and Telephone) 
Public key ring, 667 
Public switched telephone network, 102 
Public-key cryptography, 597-601 
Pulse code modulation, 121 
Push-to-talk system, 157 
PVC (see Permanent Virtual Circuit) 

Q 

Q.2931, 453 
QAM (see Quadrature Amplitude Modulation) 
QoS (see Quality of Service) 
Quadrature amplitude modulation, 111 
Quality of service, 23, 460-463, 481-483 

A TM, 460-463 
Quantization noise, 725 
Quoted printable encoding, 654 

R 

Radio transmission, 97-98 
RAID (see Redundant Array of Inexpensive 

Disks) 
Random access channel, 243 
RARP (see Reverse Address Resolution 

Protocol) 
Rate-based congestion control, 469-471 
Reachability analysis, 20 
Realm, Kerberos, 611 
Receiving window, 203 
Recursive query, 630 
Redundant array of inexpensive disks, 748 
Reference model, 28-44 

B-ISDN, 63-65 
comparison of OSI and TCP/IP, 38-39 
OSI 28-35 
TCP/IP, 35-38 

Reference point, ISDN, 142 
Reference station, 329 
Reflection attack, 603 

Releasing a connection, 498-502 
TCP, 530-533 

Remote login, 53 
Repeater, 91-94, 279, 398 
Replay attack, 608 
Request, 25-27 
Request for comment, 71 
Request-reply service, 24-25 
Resolver, DNS, 622 
Resource management cell, 470 
Resource record, 624-628 
Resource reservation, 468-469 
Resource reservation protocol, 394-395 
Response, 25-27 
Retransmission timer, TCP, 539-540 
Reverse address resolution protocol, 423-424 
Reverse path forwarding, 371-372 
RFC (see also Request For Comment) 

RFC 768, 542 
RFC 792, 420 
RFC 793, 522 
RFC 821, 651, 659, 761, 644 
RFC 822 644, 650, 651-653, 655, 660, 

661,665,667,676,677,688,689 
690,691, 761 

RFC 826, 422 
RFC 903, 423 
RFC 951, 424 
RFC 977, 677 
RFC 1028, 630 
RFC 1034, 622 
RFC 1035, 622 
RFC 1036, 676 
RFC 1048, 424 
RFC 1055, 229 
RFC 1056, 662 
RFC 1064, 662 
RFC 1067, 630 
RFC 1084, 424 
RFC 1106, 528, 529 
RFC 1112, 432 
RFC 1122, 522 
RFC 1144, 230 
RFC 1155, 630 
RFC 1157, 630 
RFC 1213, 642 
RFC 1225, 662 
RFC 1247, 424 



RFC (cont.) 
RFC 1268, 431 
RFC 1323, 522, 528 
RFC 1421, 667 
RFC 1422, 667 
RFC 1423, 667 
RFC 1424, 667 
RFC 1425, 659 
RFC 1441, 630 
RFC 1442, 630, 639 
RFC 1443, 630 
RFC 1444, 630 
RFC 1445, 630 
RFC 1446, 630 
RFC 1447, 630 
RFC 1448, 630, 643 
RFC 1449, 630 
RFC 1450, 630 
RFC 1451, 630 
RFC 1452, 630 
RFC 1483, 473, 554 
RFC 1519, 435 
RFC 1521, 653, 654, 655 
RFC 1550, 437 
RFC 1577, 342, 473, 554 
RFC 1654, 431 
RFC 1661, 231, 234 
RFC 1662, 231 
RFC 1663, 231 
RFC 1700, 415, 523 
RFC 1715, 443 
RFC 1883, 438 
RFC 1884, 438 
RFC 1885, 438 
RFC 1886, 438 
RFC 1887, 438 

Ring, star-shaped, 295 
RM cell (see Resource Management cell) 
Rock 'n roll, signal-to-noise ratio, 739 
Routing algorithm, 345-374 

adaptive, 347 
broadcast, 370-372 
distance vector, 355-359 
flooding, 351 
flow-based, 353-355 
hierarchical, 365-367 
internetwork, 405-406 
link state, 359-365 

INDEX 

Routing algorithm (cont.) 
Mobile host, 367-370 
multicast, 372-374 
nonadaptive, 347 

809 

reverse path forwarding, 371-372 
shortest path 

RS-232, 114-116 
RS-422-A, 115 
RS-423-A, 115 
RS-449, 115-116 
RSA algorithm, 598-600, 665-666 
RSVP (see Resource reSerVation Protocol) 
Run-length encoding, 731 

s 

S-box, 587-588 
SABME (see Set Asynchronous Balanced 

Mode Extended) 
SAP (see Service Access Point) 
SAR sublayer, ATM, 65, 546 
Satellite network, 327-333 

communication, 163-179 
compared to fiber, 168-170 
geosynchronous, 164-167 
low-orbit, 167-70 

SCR (see Sustained Cell Rate) 
SDH (see Synchronous Digital Hierarchy) 
SDLC (see Synchronous Data Link Control) 
SDU (see Service Data Unit) 
SEAL (see Simple Efficient Adaptation 

Layer) 
Search engine, World Wide Web, 720-723 
SECAM (see SEquentiel Couleur A vec 

Memoire) 
SECBR (see Severely-Errored Cell Block 

Ratio) 
Secret-key cryptography, 587-597 
Section, SONET, 126 
Section sublayer, SONET, 129-130 
Secure hash algorithm, 618 
Security 

cellular telephone, 161 
Java, 718-720 

Segment, TCP, 525 
Selective flooding, 351 



810 

Selective repeat, 209 
Selective repeat protocol, 213-219 
Sending window, 203 

INDEX 

Sequentiel couleur avec memoire, 728-729 
Serial line IP, 229-230, 685 
Service 

connection-oriented, 23-25 
connectionless, 23-25 
datagram, 24-25 
request-reply, 24-25 

Service access point, 22 
Service data unit, 22 
Service primitive, 25-27 

example, 510-512 
Service provider, 22 
Service user, 22 
Service-specific connection-oriented 

protocol, 555 
Session key, 602 
Session layer, OSI, 32-33 
Session routing, 346 
Set-top box, 754-756 
Set asynchronous balanced mode extended, 

228 
Set normal response mode extended, 228 
Severely-errored cell block ratio, 463 
SGML (see Standard Generalized Markup 

Language) 
SHA (see Secure Hash Algorithm) 
Shannon limit, 81-82 
Shell account, 229 
Shortest path routing, 348-352 
Signal-to-noise ratio, 81 
Signature, digital, 613-620 
Silly window syndrome, 534-535 
Simple Efficient Adaptation Layer, 

552-554 
Simple internet protocol plus, 438 
Simple mail transfer protocol, 658-660 
Simple network management protocol, 

632-643 
Simplex communication, 21 
Single-mode fiber, 88 
SIPP (see Simple Internet Protocol Plus) 
Sliding window protocol, 202-219 

1-bit, 205-207 
SLIP (see Serial Line IP) 
Slow start algorithm, 538-539 

SMDS (see Switched Multimegabit Data 
Service) 

SMI (see Structure of Management 
Information) 

Smiley, 674 
SMTP (see Simple Mail Transfer Protocol) 
SNA (see Systems Network Architecture) 
SNMP (see Simple Network Management 

Protocol) 
SNMP agent, 631 
SNMP protocol, 642-643 
SNRME (see Set Normal Response 

Mode Extended) 
Social issues, 6-7 

related to cryptography, 620-622 
Socket, 486-487 
Software, network, 16-28 
Soliton, 89 
SONET (see Synchronous Optical Network) 
Source encoding, 732-734 
Source routing, 415-416 
Source routing bridge, 314-316 
Space division switch, 136-138 
SPADE, 330 
SPAN, 53 
Spanning tree, 371 
SPE (see Synchronous Payload Envelope) 
Speed of light, 94 
Spider, 720 
Split horizon, 358-359 
Spot beam, 165 
Spread spectrum, 96 

direct sequence, 96 
SPX, 46 
SSCOP (see Service-Specific 

Connection-Oriented 
Protocol) 

Standard generalized markup language, 695 
Standardization 

Internet, 70-72 
ISO, 69-70 
network, 66-72 
telecommunications, 67-69 
video on demand, 756-757 

Star-shaped ring, 295 
Statistical encoding, 731-732 
Storage hierarchy, 746-747 
Store-and-forward subnet, 12 



Store-and-forward switching, 133 
Striping, 748 

INDEX 

Structure of management information, 639-641 
STS-1 (see Synchronous Transport Signal-1) 
Stub network, 430 
Style sheet, 698 
Subclass, Java, 713 
Subnet, 11 

Internet, 417 -419 
Subnet mask, 419 
Subsplit cable, 85 
Substitution cipher, 582-583 
Superclass, Java, 713 
Supergroup, 119 
Supervisory frame, 226-228 
Sustained cell rate, 461 
Switch 

crossbar, 135-138 
space division, 136-138 
time division, 138-139 

Switch hierarchy, telephone, 134-135 
Switched Ethernet, 285-287 
Switched Multimegabit Data Service, 57-59 
Switched virtual circuit, 60, 145-146 
Switching 

circuit, 130-134 
message, 131-133 
packet, 133-134 
store-and-forward, 133 
telephone, 130-139 

Switching fabric, ATM, 148 
Symmetric key cryptography, 598 
Synchronization, 33 
Synchronous data link control, 226-227 
Synchronous digital hierarchy, 125-130 
Synchronous optical network, 125--130 
Synchronous payload envelope, 126-127 
Synchronous transport signal-I, 126 
Systems Network Architecture, 41 

T 

Tl carrier, 121-122 
T2 carrier, 124 
T3 carrier, 124 
T4 carrier, 124 

Tag, HTML, 696-699 
Tandem office, 104 
Tariff, 67 
TC sublayer, ATM, 64-65, 235-239 

811 

TCP (see Transmission Control Protocol) 
TCP/IP reference model, 35-38, 43-44 

compared to OSI, 38-39 
TDM (see Time Division Multiplexing) 
Telecommunications standardization, 67-69 
Telephone, cellular, 157-163 
Telephone system, 102-163 

local loop, 108-118 
politics, 106-108 
SONET, 125-130 
switching, 130-139 
Tl carrier, 121-122 
trunks and multiplexing, 118-130 

Television 
analog, 727-729 
digital, 729-730 

Telnet, 686-687, 693, 694 
Terminal interface processor, 48 
Thin Ethernet, 277 
Three-way handshake, 496-498 
Time division multiplexing, 118, 121-124, 

330-333 
Time division switch, 138-139 
Time domain reflectometry, 277 
Timer, token, 321 
Timing wheel, 567-568 
TIP (see Terminal Interface Processor) 
Toaster-on-a-pole, 168 
Token,287-288,293 
Token bucket algorithm, 381-384 
Token bus LAN (see IEEE 802.4) 
Token management, 32 
Token ring LAN, 292-299 
Token-holding time, 296 
Toll connecting trunk, 104 
Toll office, 104 
Tom tape office, 133 
TPDU (see Transport Protocol Data Unit) 
Traffic descriptor, 461 
Traffic policing, 379-380 
Traffic shaping, 379-380, 463-468 
Transceiver, 277 
Transformation encoding, 732-733 
Transit network, 430 



812 

Transmission control protocol, 36-37, 
521-542,658,678,685 

congestion control, 536-539 
connection management, 529-533 
Karn's algorithm, 541 
Nagle's algorithm, 534-535 
segment header, 526-529 
service model, 523-524 
silly window syndrome, 534-535 
timer management, 539-542 
transmission policy, 533-536 
wireless networks, 543-545 

Transmission 
infrared, 100 
lightwave, 100-102 

Transmission media, 82-94 
Transponder, satellite, 164 
Transport entity, 480 
Transport gateway, 398 
Transport layer, 479-576 

ATM AAL, 545-555 
example, 510-521 
Internet, 521-545 
network performance, 555-572 
OSI, 31 
protocol elements, 488-510 
service provided, 479-487 

Transport protocol, 488 
addressing, 489-492 
elements, 488-510 
flow control, 502-506 
Internet, 521-545 
multiplexing, 506-508 

Transport protocol data unit, 484 
Transport service access point, 489 
Transport service primitives, 483-486 
Transport service provider, 481 
Transport service user, 481 
Transport stream, 743 
Transposition cipher, 583-585 
Trap, SNMP, 632 
Trap directed polling, 632 
Tree walk protocol, 258-259 
Trellis coding, 112 
Tributary, SONET, 127 
Trigram, 583 
Triple X, 60 
Trunk, 11, 118-130 

INDEX 

TSAP (see Transport Service Access Point) 
Tunneling, 404-405 
Twisted pair, 83-84 

category 3, 83 
category 5, 84 

Two-army problem, 499-500 

u 
UBR (see Unspecified Bit Rate service) 
UDP (see User Datagram Protocol) 
Unbalanced transmission, 115 
Unconfirmed service, 26-27 
Uniform resource locator, 692-695 

schemes, 692-693 
Universal resource identifier, 695 
Unnumbered frame, 226-228 
Unshielded twisted pair, 84 
Unspecified bit rate service, 460 
Urgent data, 524 
URI (see Universal Resource Identifier) 
URL (see Uniform Resource Locator) 
USENET, 669-680, 693 

implementation, 675-680 
relationship to the Internet, 669 
user view, 670-675 

USENET hierarchies, 671 
User agent, 645, 646-648 
User datagram protocol, 37, 542-544 
User plane, ATM, 64 
User profile, 648 
UTP (see Unshielded Twisted Pair) 
UUCP, 669 

v 

V.24, 114 
V.32 111 
V.32 bis, 111 
V.34 111 
V.42 bis, 112 
Vacation daemon, 663 
Variable bit rate service, 459 
VBR (see Variable Bit Rate service) 
Vector quantization, 733 



Very high frequency band, 95, 97-98 
Very low frequency band, 95, 97 
Very small aperture terminal, 165 

INDEX 

VHF band (see Very High Frequency band) 
Video, 727-730 

analog, 727-729 
digital, 729-730 
interlaced, 728 
progressive, 728 

Video on demand, 744-756 
distribution network, 750-754 
server, 745-750 
set-top box, 754-756 

Video server, 745-750 
software, 747-749 

Videoconference, 5 
Virtual channel, ATM, 450 
Virtual circuit, 342-345 

compared to datagram, 344-345 
Virtual path, ATM, 450 
Virtual scheduling algorithm, 466 
VIST Anet, 56 
VLF band (see Very low frequency band) 
Voice-grade line, 79 
VSAT (see Very Small Aperture Terminal) 
VTMP, 572 

w 

WAN (see Wide Area Network) 
W ARC (see World Administrative Radio 

Conference) 
Wavelength, 94 
Wavelength division multiple access, 260-262 
Wavelength division multiplexing, 119-121 
WDM (see Wavelength Division 

Multiplexing) 
WDMA (see Wavelength Division Multiple 

Access) 
Web (see World Wide Web) 
Web page, 682, 683, 697 
Weighted fair queueing, 388-389 
Well-known port, 523 
Wide area network, 11-13 
Wine policy, 390 

Wireless networking, 13-15 
analog radio, i55-163 
digital radio, 266-275 
electromagnetic waves, 94-101 
mobile hosts, 367-370, 432-434 
wireless LANs, 262-265 
wireless TCP, 543-545 

Wireline carrier, 160 
Wiring closet, 83 
Work factor, 581 

813 

World administrative radio conference, 95 
World Wide Web, 54, 681-723 

browser, 682 
CGI, 705-706 
external viewer 
fetching a page, 685-687 
HTML language, 691-706 
HTTP protocol, 689-691 
hyperlink, 682 
hypermedia, 684 
hypertext, 682 
Java, 706-720 
search engine, 720-723 
server, 685-689 
URL, 692-695 

Worm, 720 
WWV,494 
WWW (see World Wide Web) 
WYSIWYG, 695 

x 
X.3, 60 
X.21, 59 
X.25, 59-60 
X.28, 60 
X.29, 60 
X.400, 644, 661 
X.509, 668-669 
XTP, 572 

z 
Zipf's law, 746 
Zone, DNS, 628 



About the Author 

Andrew S. Tanenbaum has an S.B. degree from M.I.T. and a Ph.D. from the 
University of California at Berkeley. He is currently a Professor of Computer 
Science at the Vrije Universiteit in Amsterdam, The Netherlands, where he heads 
the Computer Systems Group. He is also Dean of the Advanced School for Com­
puting and Imaging, an interuniversity graduate school doing research on ad­
vanced parallel systems, distributed systems, and imaging systems. Nevertheless, 
he is trying very hard to avoid turning into a bureaucrat. 

In the past, he has done research on compilers, operating systems, networking, 
and local-area distributed systems. His current research focuses primarily on the 
design of wide-area distributed systems that scale to millions of users. These 
research projects have led to over 70 refereed papers in journals and conference 
proceedings. He is also the author of five books (see page ii). 

Prof. Tanenbaum has also produced a considerable volume of software. He 
was the principal architect of the Amsterdam Compiler Kit, a widely-used toolkit 
for writing portable compilers, and MINIX, a small UNIX-like operating system 
for operating systems courses. Together with his Ph.D. students and program­
mers, he helped design the Amoeba distributed operating system, a high­
performance microkernel-based distributed operating system. MINIX and 
Amoeba are now available for free for education and research via the Internet. 

His Ph.D. students have gone on to greater glory after getting their degrees. 
He is very proud of them. In this respect he resembles a mother hen. 

Prof. Tanenbaum is a Fellow of the ACM, a Senior Member of the IEEE, a 
member of the Royal Netherlands Academy of Arts and Sciences, and winner of 
the 1994 ACM Karl V. Karlstrom Outstanding Educator Award. He is also listed 
in Who's Who in the World. His home page on the World Wide Web is located at 
http://www.cs.vu.nl/-ast/ . 



H 

I COMPUTER NETWORKING I 

THIRD EDITION 

OMPUTER NETWORKS 
ANDREW S. TANENBAUM 

ISBN 0-13-349945-b I 90000 

9 780133 499452 

~!ii iili¥!'M !Vi J~~, 

,~~ 



REB120/107/ I

THIRD EDITION W

Computer Nettorks
Andrew S.Tanenbaum



Computer Networks
Third Edition

Andrew S. Tanenbaum
Vrije Universiteit 

Amsterdam, The Netherlands

For book and bookstore information

http://www.prenhall.com

Prentice Hail PTR
Upper Saddle River, New Jersey 07458

http://www.prenhall.com
http://www.prenhall.com
http://www.prenhall.com
http://www.prenhall.com
http://www.prenhall.com
http://www.prenhall.com
http://www.prenhall.com
http://www.prenhall.com


hT)D'L-
eA)Ci

Library of Congress Cataloging in Publication Data

Tanenbaum, Andrew S. 1944-.
Computer networks / Andrew S. Tanenbaum. - 3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-13-349945-6 
I .Computer networks. I. Title.

TK5105.5.T36 1996 96-4121
004.6-dc20

Editorial/production manager: Camille Trentacoste 
Interior design and composition: Andrew S. Tanenbaum 
Cover design director: Jerry Votta 
Cover designer: Don Martinetti, DM Graphics, Inc.
Cover concept: Andrew S. Tanenbaum, from an idea by Marilyn Tremaine
Interior graphics: Hadel Studio
Manufacturing manager: Alexis R. Heydt
Acquisitions editor: Mary Franz
Editorial Assistant: Noreen Regina

© 1996 by Prentice Hall PTR 
Prentice-Hall, Inc.
A Simon & Schuster Company 
Upper Saddle River, New Jersey 07458

The publisher offers discounts on this book when ordered in bulk quantities. For more information,

aJl^Sate Sales Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458. 
Phone: (800) 382-3419; Fax: (201) 236-7141. E-mail: corpsales@prenhall.com

All rights reserved. No part of this book may be reproduced, in any form or by any means, without 
permission in writing from the publisher.

All product names mentioned herein are the trademarks of their respective owners.

Printed in the United States of America 
10 987654321

ISBN 0-13-349945-6

Prentice-Hall International (UK) Limited, London 
Prentice-Hall of Australia Pty. Limited, Sydney 
Prentice-Hall Canada Inc., Toronto 
Prentice-Hall Hispanoamericana, S.A., Mexico 
Prentice-Hall of India Private Limited, New Delhi 
Prentice-Hall of Japan, Inc., Tokyo 
Simon & Schuster Asia Pte. Ltd., Singapore 
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

mailto:corpsales@prenhall.com
mailto:corpsales@prenhall.com
mailto:corpsales@prenhall.com
mailto:corpsales@prenhall.com
mailto:corpsales@prenhall.com
mailto:corpsales@prenhall.com
mailto:corpsales@prenhall.com
mailto:corpsales@prenhall.com


CONTENTS

PREFACE

1 INTRODUCTION 1

1.1 USES OF COMPUTER NETWORKS 3
1.1.1 Networks for Companies 3
1.1.2 Networks for People 4
1.1.3 Social Issues 6

\J 1.2 NETWORK HARDWARE 7 ,
1.2.1 Local Area Networks 9
1.2.2 Metropolitan Area Networks 10
1.2.3 Wide Area Networks 11
1.2.4 Wireless Networks 13
1.2.5 Internetworks 16

V 1.3 NETWORK SOFTWARE 16
1.3.1 Protocol Hierarchies 17
1.3.2 Design Issues for the Layers 21
1.3.3 Interfaces and Services 22
1.3.4 Connection-Oriented and Connectionless Services 23
1.3.5 Service Primitives 25
1.3.6 The Relationship of Services to Protocols 27

\j 1.4 REFERENCE MODELS 28
1.4.1 The OSI Reference Model 28
1.4.2 The TCP/IP Reference Model 35
1.4.3 A Comparison of the OSI and TCP Reference Models 38
1.4.4 A Critique of the OSI Model and Protocols 40
1.4.5 A Critique of the TCP/IP Reference Model 43

1.5 EXAMPLE NETWORKS 44
1.5.1 Novell Netware 45
1.5.2 The ARPANET 47
1.5.3 NSFNET 50
1.5.4 The Internet 52
1.5.5 Gigabit Testbeds 54

vi



CONTENTS vii

1.6 EXAMPLE DATA COMMUNICATION SERVICES 56
1.6.1 SMDS—Switched Multimegabit Data Service 57
1.6.2 X.25 Networks 59
1.6.3 Frame Relay 60
1.6.4 Broadband ISDN and ATM 61
1.6.5 Comparison of Services 66

1.7 NETWORK STANDARDIZATION 66
1.7.1 Who’s Who in the Telecommunications World 67
1.7.2 Who’s Who in the International Standards World 69
1.7.3 Who’s Who in the Internet Standards World 70

1.8 OUTLINE OF THE REST OF THE BOOK 72 

1.9. SUMMARY 73

THE PHYSICAL LAYER 77

2.1 THE THEORETICAL BASIS FOR DATA COMMUNICATION 77 '
2.1.1 Fourier Analysis 78
2.1.2 Bandwidth-Limited Signals 78
2.1.3 The Maximum Data Rate of a Channel 81

2.2 TRANSMISSION MEDIA 82
2.2.1 Magnetic Media 82
2.2.2 Twisted Pair 83
2.2.3 Baseband Coaxial Cable 84
2.2.4 Broadband Coaxial Cable 85
2.2.5 Fiber Optics 87

2.3 WIRELESS TRANSMISSION 94
2.3.1 The Electromagnetic Spectrum 94
2.3.2 Radio Transmission 97
2.3.3 Microwave Transmission 98
2.3.4 Infrared and Millimeter Waves 100
2.3.5 Lightwave Transmission 100

2.4 THE TELEPHONE SYSTEM 102
2.4.1 Structure of the Telephone System 103
2.4.2 The Politics of Telephones 106
2.4.3 The Local Loop 108
2.4.4 Trunks and Multiplexing 118
2.4.5 Switching 130



viii CONTENTS

2.5 NARROWBAND ISDN 139
2.5.1 ISDN Services 140
2.5.2 ISDN System Architecture 140
2.5.3 The ISDN Interface 142
2.5.4 Perspective on N-ISDN 143

2.6 BROADBAND ISDN AND ATM 144
2.6.1 Virtual Circuits versus Circuit Switching 145
2.6.2 Transmission in ATM Networks 146
2.6.3 ATM Switches 147

2.7 CELLULAR RADIO 155
2.7.1 Paging Systems 155
2.7.2 Cordless Telephones 157
2.7.3 Analog Cellular Telephones 157
2.7.4 Digital Cellular Telephones 162
2.7.5 Personal Communications Services 162

2.8 COMMUNICATION SATELLITES 163
2.8.1 Geosynchronous Satellites 164
2.8.2 Low-Orbit Satellites 167
2.8.3 Satellites versus Fiber 168

2.9 SUMMARY 170

3 THE DATA LINK LAYER

3.1 DATA LINK LAYER DESIGN ISSUES 176
3.1.1 Services Provided to the Network Layer 176
3.1.2 Framing 179
3.1.3 Error Control 182
3.1.4 Flow Control 183

3.2 ERROR DETECTION AND CORRECTION 183
3.2.1 Error-Correcting Codes 184
3.2.2 Error-Detecting Codes 186

3.3 ELEMENTARY DATA LINK PROTOCOLS 190
3.3.1 An Unrestricted Simplex Protocol 195
3.3.2 A Simplex Stop-and-Wait Protocol 195
3.3.3 A Simplex Protocol for a Noisy Channel 197

175



CONTENTS ix

3.4 SLIDING WINDOW PROTOCOLS 202
3.4.1 A One Bit Sliding Window Protocol 206
3.4.2 A Protocol Using Go Back n 207
3.4.3 A Protocol Using Selective Repeat 213

3.5 PROTOCOL SPECIFICATION AND VERIFICATION 219
3.5.1 Finite State Machine Models 219
3.5.2 Petri Net Models 223

3.6 EXAMPLE DATA LINK PROTOCOLS 225
3.6.1 HDLC—High-level Data Link Control 225
3.6.2 The Data Link Layer in the Internet 229
3.6.3 The Data Link Layer in ATM 235

3.7. SUMMARY 239

4 THE MEDIUM ACCESS SUBLAYER

4.1 THE CHANNEL ALLOCATION PROBLEM 244
4.1.1 Static Channel Allocation in LANs and MANs 244
4.1.2 Dynamic Channel Allocation in LANs and MANs 245

4.2 MULTIPLE ACCESS PROTOCOLS 246
4.2.1 ALOHA 246
4.2.2 Carrier Sense Multiple Access Protocols 250
4.2.3 Collision-Free Protocols 254
4.2.4 Limited-Contention Protocols 256
4.2.5 Wavelength Division Multiple Access Protocols 260
4.2.6 Wireless LAN Protocols 262
4.2.7 Digital Cellular Radio 266

4.3 IEEE STANDARD 802 FOR LANS AND MANS 275
4.3.1 IEEE Standard 802.3 and Ethernet 276
4.3.2 IEEE Standard 802.4: Token Bus 287
4.3.3 IEEE Standard 802.5: Token Ring 292
4.3.4 Comparison of 802.3, 802.4, and 802.5 299
4.3.5 IEEE Standard 802.6: Distributed Queue Dual Bus 301
4.3.6 IEEE Standard 802.2: Logical Link Control 302

243



X CONTENTS

4.4 BRIDGES 304
4.4.1 Bridges from 802.x to 802.y 307
4.4.2 Transparent Bridges 310
4.4.3 Source Routing Bridges 314
4.4.4 Comparison of 802 Bridges 316
4.4.5 Remote Bridges 317

4.5 HIGH-SPEED LANS 318
4.5.1 FDDI 319
4.5.2 Fast Ethernet 322
4.5.3 HIPPI—High-Performance Parallel Interface 325
4.5.4 Fibre Channel 326

4.6 SATELLITE NETWORKS 327
4.6.1 Polling 328
4.6.2 ALOHA 329
4.6.3 EDM 330
4.6.4 TDM 330
4.6.5 CDMA 333

4.7 SUMMARY 333

5 THE NETWORK LAYER

5.1 NETWORK LAYER DESIGN ISSUES 339
5.1.1 Services Provided to the Transport Layer 340
5.1.2 Internal Organization of the Network Layer 342
5.1.3 Comparison of Virtual Circuit and Datagram Subnets 344

5.2 ROUTING ALGORITHMS 345
5.2.1 The Optimality Principle 347
5.2.2 Shortest Path Routing 349
5.2.3 Flooding 351
5.2.4 Flow-Based Routing 353
5.2.5 Distance Vector Routing 355
5.2.6 Link State Routing 359
5.2.7 Hierarchical Routing 365
5.2.8 Routing for Mobile Hosts 367 >■
5.2.9 Broadcast Routing 370
5.2.10 Multicast Routing 372

339



CONTENTS xi

5.3 CONGESTION CONTROL ALGORITHMS 374
5.3.1 General Principles of Congestion Control 376
5.3.2 Congestion Prevention Policies 378
5.3.3 Traffic Shaping 379
5.3.4 Flow Specifications 384
5.3.5 Congestion Control in Virtual Circuit Subnets 386
5.3.6 Choke Packets 387
5.3.7 Loadshedding 390
5.3.8 Jitter Control 392
5.3.9 Congestion Control for Multicasting 393

5.4 INTERNETWORKING 396
5.4.1 How Networks Differ 399 2- :x ^^'2
5.4.2 Concatenated Virtual Circuits 401 o -t>
5.4.3 Connectionless Internetworking 402
5.4.4 Tunneling 404
5.4.5 Internetwork Routing 405
5.4.6 Fragmentation 406
5.4.7 Firewalls 410

5.5 THE NETWORK LAYER IN THE INTERNET 412
5.5.1 The IP Protocol 413
5.5.2 IP Addresses 416
5.5.3 Subnets 417
5.5.4 Internet Control Protocols 419
5.5.5 The Interior Gateway Routing Protocol: OSPF 424
5.5.6 The Exterior Gateway Routing Protocol: BGP 429
5.5.7 Internet Multicasting 431
5.5.8 Mobile IP 432
5.5.9 CIDR—Classless InterDomain Routing 434
5.5.10 IPv6 437

5.6 THE NETWORK LAYER IN ATM NETWORKS 449
5.6.1 Cell Formats 450
5.6.2 Connection Setup 452
5.6.3 Routing and Switching 455
5.6.4 Service Categories 458
5.6.5 Quality of Service 460
5.6.6 Traffic Shaping and Policing 463
5.6.7 Congestion Control 467
5.6.8 ATM LANs 471

5.7 SUMMARY 473



XU CONTENTS

6 THE TRANSPORT LAYER 479

6.1 THE TRANSPORT SERVICE 479
6.1.1 Services Provided to the Upper Layers 479
6.1.2 Quality of Service 481
6.1.3 Transport Service Primitives 483

6.2 ELEMENTS OF TRANSPORT PROTOCOLS 488
6.2.1 Addressing 489
6.2.2 Establishing a Connection 493
6.2.3 Releasing a Connection 498
6.2.4 Flow Control and Buffering 502
6.2.5 Multiplexing 506
6.2.6 Crash Recovery 508

6.3 A SIMPLE TRANSPORT PROTOCOL 510
6.3.1 The Example Service Primitives 510
6.3.2 The Example Transport Entity 512
6.3.3 The Example as a Finite State Machine 519

6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 521
6.4.1 The TCP Service Model 523
6.4.2 The TCP Protocol 524
6.4.3 The TCP Segment Header 526
6.4.4 TCP Connection Management 529
6.4.5 TCP Transmission Policy 533
6.4.6 TCP Congestion Control 536
6.4.7 TCP Timer Management 539
6.4.8 UDP 542
6.4.9 Wireless TCP and UDP 543

6.5 THE ATM AAL LAYER PROTOCOLS 545
6.5.1 Structure of the ATM Adaptation Layer 546
6.5.2 AALl 547
6.5.3 AAL 2 549
6.5.4 AAL 3/4 550
6.5.5 AAL 5 552
6.5.6 Comparison of AAL Protocols 554
6.5.7 SSCOP—Service Specific Connection-Oriented Protocol 555

6.6 PERFORMANCE ISSUES 555
6.6.1 Performance Problems in Computer Networks 556
6.6.2 Measuring Network Performance 559



CONTENTS Xlll

6.6.3 System Design for Better Performance 561
6.6.4 Fast TPDU Processing 565
6.6.5 Protocols for Gigabit Networks 568

6.7 SUMMARY 572

7 THE APPLICATION LAYER 577

7.1 NETWORK SECURITY 577
7.1.1 Traditional Cryptography 580
7.1.2 Two Fundamental Cryptographic Principles 585
7.1.3 Secret-Key Algorithms 587
7.1.4 Public-Key Algorithms 597
7.1.5 Authentication Protocols 601
7.1.6 Digital Signatures 613
7.1.7 Social Issues 620

7.2 DNS—DOMAIN NAME SYSTEM 622
7.2.1 The DNS Name Space 622
7.2.2 Resource Records 624
7.2.3 Name Servers 628

7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 630
7.3.1 The SNMP Model 631
7.3.2 ASN.l—Abstract Syntax Notation 1 633
7.3.3 SMI—Structure of Management Information 639
7.3.4 The MIB—Management Information Base 641
7.3.5 The SNMP Protocol 642

7.4 ELECTRONIC MAIL 643
7.4.1 Architecture and Services 645
7.4.2 The User Agent 646
7.4.3 Message Formats 650
7.4.4 Message Transfer 657
7.4.5 Email Privacy 663

7.5 USENET NEWS 669
7.5.1 The User View of USENET 670
7.5.2 How USENET is Implemented 675



7.6 THE WORLD WIDE WEB 681
7.6.1 The Client Side 682
7.6.2 The Server Side 685
7.6.3 Writing a Web Page in HTML 691
7.6.4 Java 706
7.6.5 Locating Information on the Web 720

7.7 MULTIMEDIA 723
7.7.1 Audio 724
7.7.2 Video 727
7.7.3 Data Compression 730
7.7.4 Video on Demand 744
7.7.5 MBone—Multicast Backbone 756

7.8 SUMMARY 760

Xiv CONTENTS

8 READING LIST AND BIBLIOGRAPHY

8.1 SUGGESTIONS FOR FURTHER READING 767
8.1.1 Introduction and General Works 768
8.1.2 The Physical Layer 769
8.1.3 The Data Link Layer 770
8.1.4 The Medium Access Control Sublayer 770
8.1.5 The Network Layer 771
8.1.6 The Transport Layer 772
8.1.7 The Application Layer 772

8.2 ALPHABETICAL BIBLIOGRAPHY 775

767

INDEX 795




