let a highly-active interface lock out the others (which would happen with a single
queue).

The transmit request may be a segment that is less than the MSS, or it may be as much as
a full 64K SMB READ. Obviously the former request will go out as one segment, the
latter as a number of MSS-sized segments. The transmitting TCB must hold on to the
request until all data in it has been transmitted and acked. Appropriate pointers to do this
will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC
and TCP/IP headers are created in it. It may be quicker/simpler to keep a basic frame
header set up in the TCB and either dma directly this into the frame each time. Then data
is dmad from host memory into the frame to create an MSS-sized segment. This dma also
checksums the data. Then the checksum is adjusted for the pseudo-header and placed into
the TCP header, and the frame is queued to the MAC transmit interface which may be
controlled by the third sequencer. The final step is to update various window fields etc in
the TCB. Eventually either the entire request will have been sent and acked, ora
retransmission timer will expire in which case the context is flushed to the host. In either
case, the INIC will place a command response in the Response queue containing the
command buffer handle from the original transmit command and appropriate status.

The above discussion has dealt how an actual transmit occurs. However the real
challenge in the transmit processor is to determine whether it is appropriate to transmit at
the time a transmit request arrives. There are many reasons not to transmit: the receiver’s
window size is <= 0, the Persist timer has expired, the amount to send is less than a full
segment and an ACK is expected / outstanding, the receiver’s window is not half-open
etc. Much of the transmit processing will be in determining these conditions.

5.3.4 Transmit Details — No Valid Context

The main difference between this and a context-based transmit is that the queued request
here will already have the appropriate MAC and TCP/IP (or whatever) headers in the
frame to be output. Also the request is guaranteed not to be greater than MSS-sized in
length. So the processing is fairly simple. A large buffer is acquired and the frame is
dmad into it, at which time the checksum is also calculated. If the frame is TCP/IP, the
checksum will be appropriately adjusted if necessary (pseudo-header etc) and placed in
the TCP header, The frame is then queued to the appropriate MAC transmit interface.
Then the command is immediately responded to with appropriate status through the
Response queue.

B TENTE " BT Rrn e

5.3.5 Transmit Notes

1. Slow-start: the INIC will handle the slow-start algorithm that is now a part of the
TCP standard. This obviates waiting until the connection is sending a full-rate
before passing it to the INIC.

2. Window Probe vs Window Update: an explanation for posterity....

A Window Probe is sent from the sending TCB to the receiving TCB, and it means the
sender has the receiver in PERSIST state. Persist state is entered when the receiver
advertises a zero window. It is thus the state of the transmitting TCB. In this state, he
sends periodic window probes to the receiver in case an ACK from the receiver has been
lost. The receiver will return his latest window size in the ACK.

Provisional Pat. App. of Alacritech, Inc. 57
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

ARSI [OX=Y | W=l xhu

ALA00138443
DELL Ex.1031.061

Ex EREST SREBTHSY

A et TERT

A Window Update is sent from the receiving TCB to the sending TCB, usually to tell him
that the receiving window has altered. It is mostly triggered by the upper layer when it
accepts some data. This probably means the sending TCB is viewing the receiving TCB
as being in PERSIST state.

3. Persist state: it is designed to handle Persist state on the INIC. It seems
unreasonable to throw a TCB back to the host just because its receiver advertised a
zero window. This would normally be a transient situation, and would tend to
happen mostly with clients that do not support slow-start. Alternatively, the code
can easily be changed to throw the TCB back to the host as soon as a receiver
advertises a zero window.

4. MSS-sized frames: the INIC code will expect all transmit requests for which it has
no TCB to not be greater than the MSS. If any request is, it will be dropped and an
appropriate response status posted.

5. Silly Window avoidance: as a receiver, the INIC will do the right thing here and
not advertise small windows — this is easy. However it is necessary to also do
things to avoid this as a sender, for the cases where a stupid client does advertise
small windows. Without getting into too much detail here, the mechanism requires
the INIC code to calculate the largest window advertisement ever advertised by the
other end. It is an attempt to guess the size of the other end’s receive buffer and
assumes the other end never reduces the size of its receive buffer. See Stevens Vol.
1 pp. 325-326.

6 The Utility Processor

6.1 Summary

The following is a summary of the main functions of the utility sequencer of the
MiCTOPTOCEsSOT:

e look at the event queues: Event13Type & Event23Type (we assume there will be an
event status bit for this - USE_EV13 and USE_EV23) in the events register; these
are events from sequencers 1 and 2; they will mainly be XMIT requests from the XMT
sequencer. Dequeue request and place the frame on the appropriate interface.
e RCV-frame support: in the model, RCV is done through VinicReceive() which is
registered by the lower-edge driver, and is called at dispatch-level. This routine calls
VinicTransferDataComplete() to check if the xfer (possibly DMA) of the frame into host
buffers is complete. The latter rtne is also called at dispatch level on a DMA-completion
interrupt. It queues complete buffers to the RCV sequencer via the normal queue
mechanism.
s Other processes may also be employed here for supporting the RCV sequencer.
* service the following registers: (this will probably involve micro-interrupts)
Header Buffer Address register:
buffers are 256 bytes long on 256-byte boundaries.
31-8 - physical addr in host of a set of
contiguous hddr buffers
7-0 - number of hddr buffers passed.
Use contents to add to SmallHType queue

Provisional Pat. App. of Alacritech, Inc. 58
Inventors Laurence B, Boucher et al.
Express Mail Label # EH756230105US

EARISCIRYFI N [OrEY |, Wl

ALA00138444
DELL Ex.1031.062

Data Buffer Handle & Data Buffer Address registers:
buffers are 4K long aligned on 4K boundaries...
Use contents to add to the FreeType queue.

Command Buffer Address register:
buffers are multiple of 32 bytes up to 1K long (2**5 * 32)
31-5 - physical addr in host of cmd buffer
4-0 -length of cmd in bytes/32
(i.e. multiples of 32 bytes)
Points to host emd; get FreeSType buffer and move
command into it; queue to Xmit0-Xmit3Type queues.

Response Buffer Address register:
buffers are 32 bytes long on 32-byte boundaries
31-8 - physical addr in host of a set of
contiguous resp buffers
7-0 - number of resp buffers passed.
Use contents to add to the ResponseType queue.

* low buffer threshold support: set approp bits in the ISR when the available-buffers
count in the various queues filled by the host falls below a threshold.

6.2 Further Operations of the Utility Processor

The utility processor of the microprocessor housed on the INIC is responsible for setting
up and implementing all configuration space and memory mapped operations, and also as
described below, for managing the debug interface.

All data transfers, and other INIC initiated transfers will be done via DMA.
Configuration space for both the network processor function and the utility processor
function will define a single memory space for each. This memory space will define the
basic communication structure for the host. In general, writing to onc of these memory
locations will perform a request for service from the INIC. This is detailed in the
memory description for each function. This section defines much of the operation of the
Host interface, but should be read in conjunction with the Host Interface Strategy for the
Alacritech INIC to fully define the Host/INIC interface.

AERTOT" D8 T900 5

Two registers, DMA hardware and an interrupt function comprise the INIC interface to
the Host through PCI. The interrupt function is implemented via a four bit register
(PCI_INT) tied to the PCI interrupt lines. This register is directly accessed by the
MICroprocessor.

THE MICROPROCESSOR uses two registers, the PCI_Data_Reg and the
PCI_Address_Reg, to enable the Host to access Configuration Space and the memory
space allocated to the INIC. These registers are not available to the Host, but are used by
THE MICROPROCESSOR to cnable Host reads and writes. The function of these two

registers is as follows.

Provisional Pat. App. of Alacritech, Inc. 59
Inventors Laurence B. Boucher et al.,
Express Mail Label # EH756230105US

WY VL0 EN EORT

ALA00138445
DELL Ex.1031.063

PCl_Data Reg

This register can be both read and written by THE MICROPROCESSOR. On write
operations from the host, this register contains the data being sent from the host. On read
operations, this register contains the data to be sent to the host.

PCI_Address Reg

This is the control register for memory reads and writes from the host. The structure of
the register is as follows:

Bit31—~ 24 Byte enable 7—0. Only the low order four bits are
valid for 32 bit addressing mode.
Bit 23 - 0 Memory access
1 Configuration access
Bit22 ~ 0 Read (to Host)
1 Write (from Host)

1 Bit 21— 1 Data Valid

Bit20~ 16 Reserved
Bit15— 0 Address

During a write operation from the Host the PCI_Data_Reg contains valid data after Data
Valid is set in the PCI_Address Reg. Both registers are locked until THE
MICROPROCESSOR writes the PCI_Data_Reg, which resets Data Valid.

All read operations will be direct from SRAM. Memory space based reads will return 00.
Configuration space reads will be mapped as follows:

LHhTOT" @RBTSO09

Configuration Space 1 SRAM Address Offsct
00 00
04 04
08 08
oC oc
10 10
3C 14
Configuration Space 2
00 00
04 18
08 08
oC 1C
10 20
3C 24
All other reads to configuration space will return 00.
Provisional Pat. App. of Alacritech, Inc. 60

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

) W v S INOE M uf

ALA00138446
DELL Ex.1031.064

6.2.1 CONFIGURATION SPACE

The INIC is implemented as a multi-function device. The first device is the network
controller, and the second device is the debug interface. An alternative production
embodiment may implement only the network controller function. Both configuration
space headers will be the same, except for the differences noted in the following'
description. i

Vendor ID — This field will contain the Alacritech Vendor ID. One field will bewused for
both functions. The Alacritech Vendor ID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. One field will be used for
both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.
Those that are enabled will be set to 0 or 1 depending on the state of the system. Each
function (network and debug) will have its own command field.

Bit0-0 VO accesses are not enabled

Bit1-1 Memory accesses are enabled

Bit2-1 Busmaster is enabled

Bit3-0 Special Cycle is not enabled

Bit4—-1 Memory Write and Invalidate is enabled
Bit5-0 VGA palette snooping is not enabled
Bit6 -1 Parity checking is enabled

Bit7-0 Address data stepping is not enabled
Bit 8 — SERR# is enabled

Bit9-0 Fast back to back is not enabled

Status — This is not initialized to zero. Each function will have its own field. The
configuration is as follows:

Bit5 -1 66 MHz capable is enabled. This bit will be set if the INIC

Detects the system running at 66 MHz on reset

Bit6 -0 User Definable Features is not enabled

Bit7-1 Fast Back-to-Back slave transfers enabled

Bit8—1 Parity Error enabled — This bit is initialized to 0

Bit 9,10 — 00 — Fast device select will be set if we are at 33 MHz

01 — Medium device select will be set if we are at
66 MHz

Bit11-1 Target Abort is implemented. Initialized to 0.

Bit 12—1 Target Abort is implemented. Initialized to 0.

Bit 13—1 Master Abort is implemented. Initialized to 0.

Bit 14 -1 ~ SERR# is implemented. Initialized to 0.

Bit 15—1 Parity error is implemented. Initialized to 0.

S W T O " ST S e

Revision ID — The revision field will be shared by both functions.

Class Code — This is 02 00 00 for the network controller, and for the debug interface.
The field will be shared.

Provisional Pat. App. of Alacritech, Inc. 61
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

P EWPP YL NOENERE

ALA00138447
DELL Ex.1031.065

A0 B O B NET SR

Cache Line Size — This is initialized to zero. Supported sizes are 16, 32, 64 and 128
bytes. This hardware register is replicated in SRAM and supported separately for each
function, but THE MICROPROCESSOR will implement the value set in Configuration
Space 1 (the network processor).

Latency Timer — This is initialized to zero. The function is supported. This hardware
register is replicated in SRAM. Each function is supported separately, but THE
MICROPROCESSOR will implement the value set in Configuration Space 1 (the
network processor).

Header Type — This is set to 80 for both functions, but will be supported separately.

BIST —Is implemented. In addition to responding to a request to run self test, if test after
reset fails, a code will be set in the BIST register. This will be implemented separately
for each function.

Base Address Register — A single base address register is implemented for each function.
It is 64 bits in length, and the bottom four bits are configured as follows:

Bit0—~ 0 Indicates memory base address

Bit 1,2 -00 Locate base address anywhere in 32 bit memory space

Bit3—~ 1 Memory is prefetchable

CardBus CIS Pointer — Not implemented—initialized to 0.
Subsystem Vendor ID — Not implemented—initialized to 0.
Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address — Not implemented—initialized to 0.

Interrupt Line — Implemented—initialized to 0. This is implemented separately for each
function.

Interrupt Pin — This is set to 01, corresponding to INTA# for the network controller, and
02, corresponding to INTB# for the debug interface. This is implemented separately for
each function.

Min_Gnt — This can be set at a value in the range of 10, to allow reasonably long bursts
on the bus. This is implemented separately for each function.

Max_Lat — This can be set to 0 to indicate no particular requirement for frequency of
access to PCI. This is implemented separately for each function.

6.2.2 MEMORY SPACE

Because each of the following functions may or may not reside in a single location, and
may or may not need to be in SRAM at all, the address for each is really only used as an
identifier (label). There is, therefore, no control block anywhere in memory that
represents this memory space. When the host writes one of these registers, the utility

Provisional Pat. App. of Alacritech, Inc. 62
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

SRS [Or=Y | =< Rul

ALA00138448
DELL Ex.1031.066

processor will construct the data required and transfer it. Reads to this memory will
generate 00 for data.

6.2.2.1 Network Processor

The following four byte registers, beginning at location h00 of the network processor’s
allocated memory, are defined.

00~ Interrupt Status Pointer -- Initialized by the host to point to a four byte area
where status is stored

04— Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:
Bit 31 — ERR -- Error bits are set
Bit 30 - RCV - Receive has occurred
Bit 29 — XMT - Transmit command complete
Bit 25 — RMISS — Receive drop occurred due to no buffers

08 — Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the same bit in the mask
register is set. When the Interrupt Mask register is written and as
aresult a status bit is unmasked, an interrupt is generated. Also,
when the Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked
by the Interrupt Mask, an interrupt is generated.

0C — Header Buffer Address — Written by host to pass a set of header buffers to the
INIC.

LBNhTOT GNBTY009

10— Data Buffer Handle — First register to be written by the Host to transfer a receive
data buffer to the INIC. This data is Host reference data. It is not used by the
INIC, it is returned with the data buffer. However, to insure integrity of the
buffer, this register must be interlocked with the Data Buffer Address register.
Once the Data Buffer Address register has been written, neither register can be
written until after the Data Buffer Handle register has been read by THE
MICROPROCESSOR.

14— Data Buffer Address — Pointer to the data buffer being sent to the INIC by the
Host. Must be interlocked with the Data Buffer Handle
register.

18 -~ Command Buffer Address XMTO — Pointer to a set of command
buffers sent by the Host. THE MICROPROCESSOR will DMA the buffers to
local DRAM found on the FreeSType queue and queue the Command

Provisional Pat. App. of Alacritech, Inc. 63
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

EARIISEIRYES IR [Er=Y | W=l xhu

ALA00138449
DELL Ex.1031.067

o Bl T BT R S0 S

Buffer Address XMT0 with the local address replacing the host
Address.

1C~ Command Buffer Address SMT1
20—~ Command Buffer Address SMT2
24 - Command Buffer Address SMT3

28 — Response Buffer Address -- Pointer to a set of response buffers sent
by the Host. These will be treated in the same fashion as the
Command Buffer Address registers.

6.2.2.2 Utility Processor

Ending status will be handled by the utility processor in the same fashion as it is handled
by the network processor. At present two ending status conditions are defined B31 —
command complete, and B30 — error. When end status 1s stored an interrupt is
generated.

Two additional registers are defined, Command Pointer and Data Pointer. The Host is
responsible for insuring that the Data Pointer is valid and points to sufficient memory
before storing a command pointer. Storing a command pointer initiates command decode
and execution by the debug processor. The Host must not modify either command or
Data Pointer until ending status has been received, at which point a new command may
be initiated. Memory space is write only by the Host, reads will receive 00. The format
is as follows:

00— Interrupt Status Pointer — Initialized by the host to point to a four byte area
where status is stored

04 — Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:

Bit 31 — CC — Command Complete
Bit 30 — ERR -- Error

Bit29 — Transmit Processor Halted
Bit28 — Receive Processor Halted
Bit27 - Utility Processor Halted

08 - Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the same bit in the mask
register is set. When the Interrupt Mask register is written and as
aresult a status bit is unmasked, an interrupt is generated. Also,

Provisional Pat. App. of Alacritech, Inc. 64

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

PP Y APILOENERT

ALA00138450
DELL Ex.1031.068

[RENR=

AEhTOT " OB

when the Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked
by the Interrupt Mask, an interrupt is generated.

0C - Command Pointer — Points to command to be executed. Storing
this pointer initiates command decode and execution.

10— Data Pointer — Points to the data buffer. This is used for both read and write data,
determined by the command function.

7 Debug Interface

In order to provide a mechanism to debug the microcode running on the microprocessor
sequencers, a debug process has been defined which will run on the utility sequencer.
This processor will interface with a control program on the host processor over PCL

7.1 PCI Interface

This interface is defined in the combination of the Utility Processor and the Host
Interface Strategy sections, above.

7.2 Command Format

The first byte of the command, the command byte, defines the structure of the remainder
of the command. The first five bits of the command byte are the command itself. The
next bit is used to specify an alternate processor, and the last two bits specify which
processors are intended for the command.

7.2.1 Command Byte

7-3 2 1-0
Command Alt. Proc. Processor

7.2.2 Processor Bits

00 — Any Processor

01 - Transmit Processor
10 — Receive Processor
11 — Utility Processor

Provisional Pat. App. of Alacritech, Inc. 65
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

RISV [OFEY |

ALA00138451
DELL Ex.1031.069

BTSN

[l
i

A B LT

7.2.3 Alternate Processor

This bit defines which processor should handle debug processing if the utility processor

is defined as the processor in debug.

0 — Transmit Processor
1 — Receive Processor

7.2.4 Single Byte Commands

00 — Halt

This command asynchronously halts the processor.

08 — Run
This command starts the processor.
10 - Step

This command steps the processor.

7.2.5 Eight Byte Commands

18 — Break
0 1
Command Reserved Count

4-7

Address

This command sets a stop at the specified address. A count of 1 causes the specified
processor to halt the first time it executes the instruction. A count of 2 or more causes the
processor to halt after that number of executions. The processor is halted just before
executing the instruction. A count of 0 does not halt the processor, but causes a sync
signal to be generated. If a second processor is set to the same break address, the count
data from the first break request is used, and each time either processor executes the

instruction the count is decremented.

20 — Reset Break

Command Reserved

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

4-7
Address

66

= W@ dp® YL INOEN ERT

ALA00138452
DELL Ex.1031.070

This command resets a previously set break point at the specified address. Reset break
fully resets that address. If multiple processors were set to that break point, all will be

reset.
28 — Dump
0 1 2-3 4-7
Command Descriptor Count Address

This command transfers to the host the contents of the descriptor. For descriptors larger
than four bytes, a count, in four byte increments is specified. For descriptors utilizing an
address the address field is specified.

7.2.6 Descriptor

00 - Register

This descriptor uses both count and address fields. Both fields are four byte based (a
count of 1 transfers four bytes).

19

LB T ST EE

01 — Sram
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address.

02 —Dram
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

Stand-alone descriptors:

The following descriptors do not use cither the count or address fields. They transfer the
contents of the referenced register.

04 — CPU_STATUS

05-PC

Provisional Pat. App. of Alacritech, Inc. 67
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

FERP Y LIOEW ERT

ALA00138453
DELL Ex.1031.071

A Bt T T " B DTS

06 — ADDR_REGA
07 - ADDR_REGB
08 - RAM BASE
09 - FILE_BASE
0A—-INSTR_REG L
0B —-INSTR_REG _H
0C-MAC_DATA
0D -DMA_EVENT
OE — MISC_EVENT
OF - Q_IN_RDY
10-Q OUT RDY
11 -LOCK STATUS
12 — STACK - This returns 12 bytes
13 - Sense _ Reg
This register contains four bytes of data. If error status is posted for a command, if the
next command that is issued reads this register, a code describing the error in more detail

may be obtained. If any command other than a dump of this register is issued after error
status, sense information will be reset.

30 -~ Load
0 1 2-3 4-7
Command Descriptor Count Address

This command transfers from the host the contents of the descriptor. For descriptors
larger than four bytes, a count, in four byte increments is specified. For descriptors
utilizing an address the address field is specified.

7.2.7 Descriptor
00 — Register

This descriptor uses both count and address fields. Both fields are four byte based.
Provisional Pat. App. of Alacritech, Inc. ; 68

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

SIS TR [OFEY] Wi

ALA00138454
DELL Ex.1031.072

AT OT" GORTS0DS

01 — Sram

This descriptor uses both count and address fields. Count is in four byte blocks. . Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address.

02 — Dram
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore
This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address. This applies to WCS only.
Stand-alone descriptors:

The following descriptors do not use either the count or address fields. They transfer the
contents of the referenced register.

04 - ADDR_REGA

05 - ADDR_REGRB

06 -RAM_BASE

07 - FILE_BASE

08 - MAC_DATA

09-Q IN_RDY

0A-Q_OUT_RDY

0B -DBG_ADDR

38 — Map
This command allows an instruction in ROM to be replaced by an instruction in WCS.
The new instruction will be located in the Host buffer. It will be stored in the first eight

bytes of the buffer, with the high bits unused. To reset a mapped out instruction, map it
to location 00.

0 1=-3 4-7
Command Address to Address to
Map To Map Out
Provisional Pat. App. of Alacritech, Inc. 69

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

EAISEIRVES IR Er=Y | W=l xhu

ALA00138455
DELL Ex.1031.073

8 HARDWARE SPECIFICATION
FEATURES

» Peripheral Component Interconnect (PCI) Interface

- Universal PCI interface supports both 5.0V and 3.3V signaling environments,
- Supports both 32-bit and 64 bit PCI interface.

- Supports PCI clock frequencies from 15MHz to 66MHz

- High performance bus mastering architecture.

- Host memory based communications reduce register accesses,

- Host memory based interrupt status word reduces register reads.

- Plug and Play compatible.

- PCI specification revision 2.1 compliant.

- PCI bursts up to 512 bytes.

- Supports cache line operations up to 128 bytes.

2|

= - Both big-endian and little-endian byte alignments supported.
o - Supports Expansion ROM.

‘i s Network Interface

. - Four internal 802.3 and ethernet compliant Macs.

; - Media Independent Interface (MII) supports external PHYSs.
i - 10BASE-T, 100BASE-TX/FX and 100BASE-T4 supported.
E - Full and half-duplex modes supported.

- Automatic PHY status polling notifies system of status change.

- Provides SNMP statistics counters.

- Supports broadcast and multicast packets.

- Provides promiscuous mode for network monitoring or multiple unicast address detection.
- Supports “huge packets™ up to 32KB.

- Mac-layer loop-back test mode.

- Supports auto-negotiating Phys.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

ISR INOr=Y | N=<lufl

70

ALA00138456
DELL Ex.1031.074

e Memory Interface

- External Dram buffering of transmit and receive packets.

- Buffering configurable as 4MB, 8MB, 16MB or 32MB.

- 32-bit interface supports throughput of 224MB/s

- Supports external FLASH ROM up to 4 MB, for diskless boot applications.

- Supports external serial EEPROM for custom configuration and Mac addresses.

= Protocol Processor

- High speed, custom, 32-bit processor executes 66 million instructions per second.
- Processes IP, TCP and NETBIOS protocols.

- Supports up to 256 resident TCP/IP contexts.

- Writable control store (WCS) allows field updates for feature enhancements.

* Power

- 3.3V chip operation.
- PCI controlled 5.0V/3.3V /O cell operation.

+ Packaging

- 272-pin plastic ball grid array.

- 91 PCI signals.

- 68 MII signals.

- 58 external memory signals.

- 1 clock signal.

- 54 signals split between power and ground.
- 272 total pins.

Eeby T EE Y B TRER T S

ol
-.

W

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

@ LINOEW ERT

71

ALA00138457
DELL Ex.1031.075

BTO00w

‘TR

LENTOT" E

GENERAL DESCRIPTION

The microprocessor is a 32-bit, full-duplex, four channel, 10/100-Megabit per second (Mbps), Intelligent
Network Interface Controller, designed to provide high-speed protocol processing for server applications. It
combines the functions of a standard network interface controller and a protocol processor within a single
chip. Although designed specifically for server applications, The microprocessor can be used by PCs,
workstations and routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous Dram (SDram), the INIC comprises
four complete ethernet nodes. It contains four 802.3/ethernet compliant Macs, a PCI Bus Interface Unit (BIU),
a memory controller, transmit fifos, receive fifos and a custom TCP/IP/NETBIOS protocol processor. The
INIC supports 10Base-T , 100Base-TX, 100Base-FX and 100Base-T4 via the MII interface attachment of

appropriate Phys.

The INIC Macs provide statistical information that may be used for SNMP. The Macs operate in promiscuous
mode allowing the INIC to function as a network monitor, receive broadcast and multicast packets and
implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support 10BASE-T, 10BASE-T2,
100BASE-TX, 100Base-FX and 100BASE-T4 as well as future interface standards. PHY identification and
initialization is accomplished through host driver initialization routines. PHY status registers can be polled
continuously by the INIC and detected PHY status changes reported to the host driver. The Mac can be
configured to support a maximum frame size of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU provides a direct interface to the PCI bus for both slave and master functions.
The INIC is capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-bit
addressing in either configuration. PCI bus frequencies up to 66MHz are supported yielding instantaneous bus

. transfer rates of 533MB/s. Both 5.0V and 3.3V signaling environments can be utilized by the INIC.

Configurable cache-line size up to 256B will accommodate future architectures, and Expansion ROM/Flash
support allows for diskless system booting. Non-PC applications are supported via programmable big and little
endian modes. Host based communication has been utilized to provide the best system performance possible.

The INIC supports Plug-N-Play auto-configuration through the PCI configuration space. External pull-up and
pull-down resistors, on the memory I/0 pins, allow selection of various features during chip reset. Support of
an external eeprom allows for local storage of configuration information such as Mac addresses.

External SDram provides frame buffering, which is configurable as 4MB, 8MB, 16MB or 32MB using the
appropriate SIMMs. Use of -10 speed grades yields an external buffer bandwidth of 224MB/s. The buffer
provides temporary storage of both incoming and outgoing frames. The protocol processor accesses the frames
within the buffer in order to implement TCP/IP and NETBIOS. Incoming frames are processed, assembled
then transferred to host memory under the control of the protocol processor. For transmit, data is moved from
host memory to buffers where various headers are created before being transmitted out via the Mac.

Provisional Pat. App. of Alacritech, Inc. 72
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

= @ d® Y LINOEN ERET

ALA00138458
DELL Ex.1031.076

BLOCK DIAGRAM

MIIA MIIB MIIC MIID
MacA MacB MacC MacD
XmtA XmtB XmtC XmtD
& & & &
RevA RevB RevC RevD
2 REG FILE J ,
L =
0 1KI ROM BUS
!
PROC 1KB X 128 Sram E&Tﬁg&
u > &DMACtd ["N
] !
v
PCI BUS
INTERFACE UNIT
PCI BUS

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

RSN [OF=Y | uf

73

ALA00138459
DELL Ex.1031.077

OUTLINE

e Cores/Cells

LSI Logic Ethernet-110 Core, 100Base & 10Base Mac with MII interface.
LSI Logic single port Sram, triple port Stam and ROM available.

LSI Logic PCI 66MHz, 5V compatible /O cell.

LSI Logic PLL

» Die Size / Pin Count

LSI Logic G10 process.

MODULE DESCR AREA
Scratch RAM, 1Kx128 sport, 4.37 ns nom., 06.77 mm*
T WCS, 8Kx49 sport, 6.40 ps nom., 18.29 mm®
= MAP, 128x7 sport, 3.50 ns nom., 00.24 mm?
E-i ROM, 1Kx49 32col, 5.00 ns nom., 00.45 mm*
: REGs, 512x32 tport, 6.10 ns nom., 03.49 mm’
= Macs, 75 mnt x 4 = 03.30 mm?
%L: PLL, Smm? = 00.55 mm*
" MISC LOGIC, 117,260 gates / (5035 gates / mm? = 23.29 mm?
o TOTAL CORE 56.22 mm?
o
-=
by (Core side)? = 5622 ma?
Core side = 07.50 mm
Die side = core side + 1.0 mm (I/O cells) = 08.50 mm
Die area = 8.5 mm x 8.5 mm = 72.25 mm*
Pads needed = 220 signals x 1.25 (vss, vdd) = 275 pins
LSI PBGA = 272 pins

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

EARRISCRVSSTI N Or=Y | W=l <Auls

74

ALA00138460
DELL Ex.1031.078

¢ Datapath Bandwidth

(10MB/s/100Base) x 2 (full duplex) x 4 connections = 80 MB/s
Average frame size = 512B
Frame rate = 80MB/s / 512B = 156,250 frames / s
Cpu overhead / frame = (256 B context read) + (64B header read) +
(128B context write) + (128B misc.) = 512B / frame
Total bandwidth = (512B in) + (512B out) + (512B Cpu) = 1536B / frame
Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) = 240MB/s
Dram Bandwidth @ 60MHz = (32 bytes / 167ns) = 202MB/s
Dram Bandwidth @ 66MHz = (32 bytes / 150ns) = 224MB/s
PCI Bandwidth required = 80MB/s
PCI Bandwidth available @ 30 MHz, 32b, average = 46MB/s
PCI Bandwidth available @ 33 MHz, 32b, average = S0MB/s
PCI Bandwidth available @ 60 MHz, 32b, average - 92MB/s
by PCI Bandwidth available @ 66 MHz, 32b, average = 100MB/s
= PCI Bandwidth available @ 30 MHz, 64b, average = 9MBis
:j: PCI Bandwidth available @ 33 MHz, 64b, average = 100MB/s
e PCI Bandwidth available @ 60 MHz, 64b, average = 184MB/s
:': PCI Bandwidth available @ 66 MHz, 64b, average = 200MB/s
= * Cpu Bandwidth
: Receive frame interval = 512B / 40MB/s = 12.8us
.} Instructions / frame @ 60MHz = (12.8us/frame) / (50ns/instruction) = 256
instructions/frame
Instructions / frame @ 66MHz = (12.8us/frame) / (45ns/instruction) - 284
instructions/frame
Required instructions / frame (per Clive) = 250 instructions/frame
Provisional Pat. App. of Alacritech, Inc. 75

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

= @ dp® Y LAINOENERET

ALA00138461
DELL Ex.1031.079

» Performance Features

- 512 registers improve performance through reduced scratch ram accesses and reduced instructions.
- Register windowing eliminates context-switching overhead.

- Separate instruction and data paths eliminate memory contention.

- Totally resident control store eliminates stalling during instruction fetch.

- Multiple logical processors eliminate context switching and improve real-time response.
- Pipelined architecture increases operating frequency.

- Shared register and scratch ram improve inter-processor communication.

- Fly-by state-Machine assists address compare and checksum calculation.

- TCP/IP-context caching reduces latency.

- Hardware implemented queues reduce Cpu overhead and latency.

- Horizontal microcode greatly improves instruction efficiency.

- Automatic frame DMA and status between Mac and dram buffer.

- Deterministic architecture coupled with context switching eliminates processor stalls.

o
b
=
i
re
i
5
&

Le
=
'=
)

Provisional Pat. App. of Alacritech, Inc. 76
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

| @dp® Y LAINOEWERT
ALA00138462
DELL Ex.1031.080

PROCESSOR

The processor is a convenient means to provide a programmable state-machine which is capable of processing
incoming frames, processing host commands, directing network traffic and directing PCI bus traffic. Three
processors are implemented using shared hardware in a three-level pipelined architecture which launches and
completes a single instruction for every clock cycle. The instructions are executed in three distinct phases
corresponding to each of the pipeline stages where each phase is responsible for a different function.

The first instruction phase writes the instruction results of the last instruction to the destination operand,
modifies the program counter (Pc), selects the address source for the instruction to fetch, then fetches the
instruction from the control store. The fetched instruction is then stored in the instruction register at the end of
the clock cycle.

The processor instructions reside in the on-chip control-store, which is implemented as a mixture of ROM and
Sram. The ROM contains 1K instructions starting at address 0x0000 and aliases each 0x0400 locations
throughout the first 0x8000 of instruction space. The Sram (WCS) will hold up to 0x2000 instructions starting
at address 0x8000 and aliasing each 0x2000 locations throughout the last 0x8000 of instruction space. The
ROM and Sram are both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate
mapping ram provides bits [55:49] of the microword (Mapaadr) to allow replacement of faulty ROM based
instructions, The mapping ram has a configuration of 128x7 which is insufficient to allow a separate map
address for each of the 1K ROM locations. To allow re-mapping of the entire 1K ROM space, the map ram
address lines are connected to the address bits Fetch[9:3]. The result is that the ROM is re-mapped in blocks
of 8 contiguous locations.

The second instruction phase decodes the instruction which was stored in the instruction register. It is at this

‘ . point that the map address is checked for a non-zero value which will cause the decoder to force a Jmp

: instruction to the map address. If a non-zero value is detected then the decoder selects the source operands for
g the Alu operation based on the values of the OpdASel, OpdBSel and AluOp fields. These operands are then
ifj stored in the decode register at the end of the clock cycle. Operands may originate from File, Sram, or flip-
£ flop based registers. The second instruction phase is also where the results of the previous instruction are
written to the Sram.

= The third instruction phase is when the actual Alu operation is performed, the test condition is selected and the
= Stack push and pop are implemented. Results of the Alu operation are stored in the results register at the end
L of the clock cycle.

&;"l

e Following is a block diagram which shows the hardware functions associated with each of the instruction

phases. Note that various functions have been distributed across the three phases of the instruction execution in
order to minimize the combinatorial delays within any given phase.

Provisional Pat. App. of Alacritech, Inc. 77
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

B @@ms ¢ SNOS N ERT

ALA00138463
DELL Ex.1031.081

Cpu BLOCK-DIAGRAM

CLK -
~ o -‘__I- -
v r lv v A :
! | sram |LOAD | LOAD FLAG ”‘:‘:“;‘" FETCH| LOAD LOAD | LOAD
] ir
il on | cn | cm DEC STORE| ¢y | cm cul | cul
]
1 /2 l
] A Y Y N \ A S h 4 y 4
\ 1 | Adar | FE | PP | ALU [FLAG| ¥ % [insTR [FETCH Sram |DEBUG
' & BASED PC |STAck| Addr
! | pam | CTX | REGs | CC's |REG's REG | Addr &BASE| Addr
. 512x32
A . 1 FmE oL __ i
. A J Y
1
i V| 4Kx32 sddr dout dout
o \ |seratch addr INCR INCR
!;3 i Sram A
e i
s 1
= i A A h 4 Yy Yy v v
& 2l INSTRUCTION DECODER LOAD
b N AND
0 H OPERAND MULTIPLEXER Cul
e H
i . A A A 4 A A X A A Y ¥
il N_! o FILE | ALU | ALU | ALU | TEST | FLAG | QCH PGM Sram [DEBU
i 1 & | ur PC | STAck| Addr
= E CTX [OPD's| ©C's | OP | SEL | SEL |QcmD cul &BASE| Addr
) ~
fﬁ)..._I.._--..,. L o TUTE S - ———r—— ———
- g Y h 4 h 4 A A A Y A
i TEST QRAM STAck LOAD
: ALU < & [INCR
i MUX QALU EXCHANGE Curl
1)
3 _,J
{
3) 4) 4 Y 4 4 4 h 4 A Y \ 4
_ | .| FILE | ALU | ALU | DEST | TEST | FLAG | QFLGS PGM Sram |DEBUG
: OPD & | ur PC |STAck| Addr
y | crx | our | cc's | SEL | RSLT | SEL | QAddr Cul &BASE| Addr
I\\\
Provisional Pat. App. of Alacritech, Inc. 78

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US8

= Ep® YL INOEN ERET

ALA00138464
DELL Ex.1031.082

Wi TR E ™ W CRER T S B

INSTRUCTION SET

The micro-instructions are divided into six types according to the program control directive. The micro-
instruction is further divided into sub-fields for which the definitions are dependent upon the instruction type.
The six instruction types are listed below.

INSTRUCTION-WORD FORMAT

TYRE A55:49] [(48:47] [46:42] _ _(42:331 _ _ [32:24] __ [23:16] [15:00]1
Jee 0b0000000 oboo, Alulp, OpdAsel, OpdBsel, TstSel, Literal
Jop 0b000000D 0bo1, Aluop, OpdAsSel, OpdBsel, FlgSel, Literal
JIsx 0b000000O0 0bLO, Alulp, OpdASel, opdegel, FlgSel, Literal
Rts 00000000 ob11, Alulp, OpdAsel, OpdBEsel, OhEf, Literal
Nxt 0L0000000 obll, Alulp, OpdAsSel, OpdBSel, ¥lgsSel, Literal
Map MapAddr O0bXX, OhICODIX, ObXCOOUCOON, OhXDODOOOOX, OhXX, [1): Ve el

All instructions include the Alu operation (AluOp), operand “A” select (OpdASel), operand “B” select
(OpdBSel) and Literal fields. Other field usage depends upon the instruction type.

The “jump condition code™ (Jec) instruction causes the program counter to be altered if the condition selected
by the “test select” (TstSel) field is asserted. The new program counter (Pc) value is loaded from either the
Literal field or the AluOut as described in the following section and the Literal field may be used as a source
for the Alu or the ram address if the new Pc value is sourced by the Alu.

The “jump” (Jmp) instruction causes the program counter to be altered unconditionally. The new program
counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following section.
The format allows instruction bits 23:16 to be used to perform a flag operation and the Literal field may be
used as a source for the Alu or the ram address if the new Pe value is sourced by the Alu.

The “jump subroutine™ (Jsr) instruction causes the program counter to be altered unconditionally. The new
program counter (Pe) value is loaded from either the Literal field or the AluOut as described in the following
section. The old program counter value is stored on the top location of the Pc-Stack which is implemented as a
LIFO memory. The format allows instruction bits 23:16 to be used to perform a flag operation ‘and the Literal
field may be used as a source for the Alu or the ram address if the new Pc value is sourced by the Alu.

The “Nxt” (Nxt) instruction causes the program counter to increment. The format allows instruction bits
23:16 1o be used to perform a flag operation and the Literal field may be used as a source for the Alu or the
ram address.

The “return from subroutine™ (Rts) instruction is a special form of the Nxt instruction in which the “flag
operation” (FlgSel) field is set to a value of Ohff. The current Pc value is replaced with the last value stored in
the stack. The Literal field may be used as a source for the Alu or the ram address.

The Map instruction is provided to allow replacement of instructions which have been stored in ROM and is
implemented any time the “map enable” (MapEn) bit has been set and the content of the “‘mpi address”
{(MapAddr) field is non-zero. The instruction decoder forces a jump instruction with the Alu operation and
destination fields set to pass the MapAddr field to the program control block.

The program control is determined by a combination of PgmCitrl, DstOpd, FigSel and TstSel. The behavior
of the program control is defined with the following "C-like" description.

Provisional Pat. App. of Alacritech, Inc. 79
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

EIISERYE N ErEY | N <kl

ALA00138465
DELL Ex.1031.083

SEQUENCER BEHAVIOR
if (MapEn & (MapAddr != 0b0000000)) { //re-map instr
Stacke = Stacke;
StackB = StackB;
Stackh = StackA;
InstrAddr = 0h8000 | Pe[2:0] | (MapAddr << 3);
Pc = InstrAddr + (Execute & -DbgMd) ;
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbghAddr + (Execute & Dbgmd) ;)
else if (PgmCtrl == Jeec){ //conditional jump
Stackc = Stacke;
StackB = StackB;
StackA = Stacki;
InstrAddr = -Tst@TstSel ? Pc: (AluDst==Pc) ? AluCut:Literal;
Pc = InstrAddr + (Execute & -DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbghAddr = DbgAddr + (Execute & Dbgmd);}
else if (PgmCtrl == Jmp) { //jump
Stackc = Stacke;
StackB = StackB;
StackA = StackA;
& InstrAddr = (AluDst == Pe) ? AluCut:Literal;
O Pc = InstrAddr + (Execute & ~DbghMd)
o Fetch = DbgMd ? DbgAddr:InstrAddr;
i DbgAddr = DbgAddr + (Execute & Dbghd);}
z: else if (PgmCtrl == Jsr){ //jump subroutine
EE stacke = Stacks;
i StackB = Stacka;
o StackA = Pec;
5 Instraddr = (AluDst == Pc) ? AluOut:Literal;
3 Pc = InstrAddr + (Execute & -DbgMd)
|
s
=
-
=

else

-

o

o

else

Petch = DbgMd ? DbgAddr:InstrAddr;
Dbgaddr = Dbgaddr + (Execute & DbgMd);}
if (FlgSel == Rts){ //return subroutine
InstrAddr = StackA;
StackhA = StackB;
StackB = Stackc;
Stackc = ErrVec;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}
{
InstrAddr = Pc; //continue
StackA = Stackh;
StackB = StackB;
Stackc = Stackc;
Pc = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr:;
Dbghddr - DbghAddr + (Execute & DbgMd);}

Provisional Pat. App. of Alacritech, Inc. 80
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

EIRIISCRVS N [OF=Y iy

ALA00138466
DELL Ex.1031.084

//bit clear

//logical and

//logical and

//logical and not

//bit set

f/logical or

//logical or

//logical or not

//priority enc

//logical xor

//logical xor

//logical xor not

/ fmove

//swap bytes

{//{swap doublets

ALU OPERATIONS
AluOp OPERATION
0b00000 A= (A& ~(1 << B));
Cm 0; V= (B >= 32) ? 1:0;
0b00001 A= (A &B);
C=0; V= 0;
0b0o0010 A = (Literal & B);
C=0;V=20;
0b00011 A = (-Literal & B);
C=20; V=20;
0b00100 A= (A] (1 << B));
C=0; V= (B >=32) 2 1:0;
0b00101 A= (aA] B);
C=0; VY= 0;
oboo110 A = (Literal | B);
. C=20; V=20;
| 0bo0111 A = (~Literal | B);
& C=0; V=20;
La 0b01000 for (i=31; i»=0; i--) if B[i] continue; A=i;
P C=10; V= (B) ? 0:1;
= 0b01001 A= (a" B);
4 C=0; V=0;
;ﬂ obo1010 A = ({Literal} * B);
3 C=0; V=20;
= 0b01011 A = ({-niteral} " B);
n_:' C=0; V= 0;
% 0b01100 A = B;
C=0; V=20;
0501101 A = B[31:24] ™ B[23:16] ~ B(15:08] ™ B[07:00];//hash
C=0; V=20;
0b01110 A = {B[23:16],B[31:24],B[07:00],B[15:08]};
Cm0; V= 0;
0b01111 A = {B[15:00], B([31:16]};
C=0; V= 0;

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

81

ALA00138467
DELL Ex.1031.085

AluOp
0b10000
0b10001
0b10010
0b10011
0b10100
0b10101
0b10110
0b10111

&5

[]

—~ 0b11000

E 3

s

= obl1i001

7

o

p 0b11010

B

= obl1011

=

= 0b11100

o

= 0b11101
0b11110
0bl1111

FUNCTION .
A= (A + B);

C= (A + B)[232]; V = O

A= (A+B+ Q)

C=(A+ B+ C)[32); V= 0;

A = (Literal + B);

C = (Literal + B)[32); V = 0;

A = (-Literal + B);

C = (-Literal + B) [32]; Vv = 0;
A = (A - B);

C = (A - B)[32]; V= 0;

A= (A-B- =-C);

c (A -B - ~-C)[32]; V=0;

A= (-A + B);

C= (-A + B)[32); V= 0O;

A= (-A+B--C;

C= (-A+B - ~C)[32); V= 0;

A = (A << B);

C= A[31]; V= (B >= 32) 7 0:1;
A = (B << Literal);

c B[31]; V = (Literal >= 32) ? 0:1;
A= (B << 1);

C= BEB[31]; V= 0;

n= (A~ B);

C= (A - B)[32]; V=0;

A= (A >> B);

(o] Al0)l; V= (B >= 32) ? 1:0;
A = (B >> Literal);

C= A[0]l; V = (Literal >= 32) ? 1:0;
A= (B > 1);

C= A[0]; V=0;

n = (B - A);

C= (B -A[32]; V= 0;

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

ISR I IOr=Y | Ji=

//add B

//add B, carry
//add constant
//sub constant
//sub B

//sub B, borrow
//sub A

//sub A, borrow
//shift left A
//shift left B
//shift left B
/ fcompare
//shift right A
//shift right B
//shift right B

//compare

82

]

ALA00138468
DELL Ex.1031.086

OpdSel
0b0000aaaaa
0b000laaaaa
0b001XXXXXX
0b0100000XX
0bQ100001XX
0b0100010XX
&
f‘_;
=
-
i
f_ﬁ 0b0100011XX
e
s
b
iﬁ
.;1__&3
0b01001XXXX
0b010100000

SELECTED OPERANDs

File File®(OpdSel(4:0] | FileBase);

Allows paged access to any part of the register file.
CpuReg File@{2'bll, CpuId, OpdsSel([4:0]};

Allows direct access to Cpu specific registers.
reserved Reserved for future expansion.
CpuStatus 0b0000000000000BHDOOO00000000000CC

This is a read-only register providing information about the Cpu executing
(OpdSel[1:0]) cycles after the current cycle. "CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
"H" represents the current state of Hit, "D" indicates DbgMd and “B"
indicates BigMd. Writing this register has no effect.

reserved Reserved for future expansion.

Pc 0x0000AAAR
Writing to this address causes the program control logic to use AluQut as the
new Pe value in the event of a Jmp, Jee or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rts, the register write has no effect. Reading this register returns the value in
Pc for the Cpu executing (OpdSel[1:0]) cycles after the current cycle.

DbgAddr 0xDOOOARAA
‘Writing to this register alters the contents of the debug address register
(DbgAddr) for the Cpu executing (OpdSel[1:0]) cycles after the current
cycle. DbgAddr provides the fetch address for the control-store whien
DbgMd has been selected and the Cpu is executing. DbgAddr is also used
as the control-store address when performing a WrWes@DbgAddr or
RdWcs@DbgAddr operation. “D” represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

reserved Reserved for future expansion.

RamAddr {0b1CCC, 0x000, Ob1, AAAA}
RamAddr = AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut[31]7CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr,

bit_ pame

31 Always 1.

30 PrevC Previous Alu Carry.

29 PrevV Previous Alu Overflow.

28 PrevZ Previous Alu Zero.

716 Always 0.

15 Always 1.

14:0 RamAddr Contents of last Sram address used.

When writing this register, if alu_out[31] is set, the previous condition codes will be overwritten with
bits 30:28 of AluQut. If AluOut[15] is set, bits 14:0 will be written to the RamAddr. If AluOut [15]
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr.

Provisional Pat. App. of Alacritech, Inc. 83
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

[EGRP Y LIOEN ERT

ALA00138469
DELL Ex.1031.087

o Bl B0 BTS00

OpdSel

0b010100001

SELECTED OPERANDg

AddrRegA 0x0000AAMA
AddrRegA = AluOut;

A read/write operand which loads AddrRegA used to provide the address for read and write

the

0b010100010

When AddrRegA[15] is set, the contents will be presented directly to the ram. When AddrRegA[l5] is
reset, the contents will first be ored with the contents of the RamBase register before presentation to

ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this'register returns
the current value of the register.

AddrRegB 0x0000ARAA
AddrRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and write

operations.

the

0b010100011

read

0b010100100

0b010100101

0b010100110

0b010100111

no

When AddrRegB[15] is set, the contents will be presented directly to the ram. When AddrRegB[15] is
reset, the contents will first be ored with the contents of the RamBase register before presentation to

ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this register returns
the current value of the register,

AddrRegAb 0x0000ARAA
AddrRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegA used to provide the address for

and write operations Writing to this register takes priority over Literal loads using FlgOp. Reading this
register returns the value 0x00000000.

RamBase 0x0000ARRA
RamBase = AluQut;

A read/write register which provides the base address for ram read and write cycles. When
RamAddr[15] is set, the contents will not be used, When RamAddr([15] is reset, the contents will first
be ored with the contents of the RamBase register before presentation to the ram. Reading this register
returns the value for the current Cpu,

FileBase 0b00000000000000000000000ARARARARA
FileBase = AluOut;
FileAddr = OpdSel[8] ? OpdSel:(OpdSel + FileBase);

A read/write register which provides the base address for file read and write cycles. When OpdSel[8]
is

set, the contents will not be used and OpdSel will be presented directly to the address lines of the file.
When OpdSel(8] is reset, the contents will first be ored with the contents of the FileBase register
before presentation 1o the file. Reading this register returns the value for the current Cpu.

InstrRegL OxITIIIITII
This is a read-only register which returns the contents of InstrReg[31:0]. Writing to this register has no
effect.

InstrRegH 0xX00ITIIXII
This is a read-only register which returns the contents of InstrReg(55:32). Writing to this register has

effect.

Provisional Pat. App. of Alacritech, Inc. 84
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

EATISEIRYSS I IOrEY | Wl xhu

ALA00138470
DELL Ex.1031.088

Opdsel _ SELECTED OPERANDs

0b010101000

0b010101001

0b010101010

0b010101011

0b010101100

=

Jrin

ot

A ERTIOE " BT

Minusl

FreeTime

LiteralL

LiteralH

Oxffffffff
This is a read-only register which supplies a value OxfFffffff.. Writing to this
register has no effect.

A free-running timer with a resolution of 1.00 microseconds and a maximum count
of 71 minutes. This timer is cleared during reset.

Instr([15:0]
A read-only register. Writing to this register has no effect

Instr[15:0] < < 16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOut data into the MacData register for use
during Mac operations. The Mac operation, resulting from writing to the MacOp register,
determines the definition of the MacData register contents as follows.

MacOp
Mstop

WrMefg

WrMrng

RdPhy

WrPhy

MacData definition
[Jevrevrrevrivivrsrorereiorioresed
MacData is not used for the StopM operation.

hrstl, rsvd, rsvd, ercen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10, ipgrl[6:0],

ipgr2[6:0], ipgtl6:0].
Loads the MacCfg register with the contents of the MacData register. Refer to LSI Logic's
Ethernet-110 Core Technical Manual for detailed definitions of these bits.

(11} 9 0809880080008 seese s

Loads seed[10:0] into the Mac's random number generator.

ObXXXYRRRRXICX PP P PO
Reads register{R] of phy[P].

ObXXXXRRRRXXXXPPPEDDDDDDDDDDDDDDDD
Writes register[R] of phy[P] with MacData[15:0].

Reading this register returns prsd[15:0] of Mac0 which contains phy status data returned to the
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted

as a result of a RdPhy command. Refer to the appropriate phy technical manual fora -
definition of the phy register contents.

Provisional Pat. App. of Alacritech, Inc. 85
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Y Y LAIOENERT

ALA00138471
DELL Ex.1031.089

OpdSel =~ SELECTED OPERANDS

0b010101101 MacOp - A write only register. Writing to this address loads the MacSel register and staRts
execution of the specified operation as follows.

AluOut description

DX OXM Mstop - Halts executon of a MacOp for Mac[M]. The user must wait for MacBsy © be
deasserted before issuing another ¢ 1 or changing the of MacDiata.

OxIOTEKKLKM WrMcfg - Writes the contents of MacData to the MacCfg register of Mac[M]. The user
must wait for MacBsy 1o be deasserted before issuing another command or changing the
contents of MacData.

O3ICURK KM WrMmmg - Writes the contents of MacData to the seed register of Mac[M]. The user must
wait for MacBsy to be deasserted before issuing another command or changing the contents
of MacData.

OHXXAXKIXM RdPhy - Reads the coments of reg{R) for phy[F] on the MII management bus of Mac[M].
The contents may be read from MacData after MacBsy has been de-asserted.

DXXHKKKSEKM ‘WrPhy - Writes the contents of MacData[15:0] o the reg[R] of phy[P] on the MII
management bus of Mac[{M]. The user must wait for MacBsy to be deasserted before issuing
another command or changing the contents of MacData.

000NN BAM WrAddrAL - Writes the contents of MacData[15:0] to MacAddrA[15:0) for Mac[M].

OXRXKKKKIKM WrAddrAH - Writes the contents of MacData[11:0] o MacAddrA[47:16] for Mac[M].

0xXXXXKaXM ‘WrAddrBL - Writes the contents of MacDataf15:0) to MacAddrB[15:0] for. Mac[M].

0xXIODXM WrAddrBH - Writes the contents of MacData{11:0] 0 MacAddrB[47:16] for Mac[M].

00010101110 ChCmd A write-only register.
bi lescripti =1
3111 reserved Data written to these bits is ignored.
10:8 command 0 - Stops exccution of the current operation and clears the corresponding event
flag.
1 - Transfer data from ExtMem to ExtMem.

2 - Transfer data from Pei to ExtMem.
3 - Transfer data from ExtMem to Pa.
4 - Transfer data from Sram to ExtMem.
5 - Transfer data from ExtMem to Sram.
6 - Transfer data from Pei to Sram.

7 - Transfer data from Sram to Pci.

ABhTOT" BORT90D 0

07:05 reserved Data written to these bits is ignored.
04:00 Chid Provides the channel number for the channel command.
00010101110 ChEvmt A read-only register.
bit pame _ description
31:00 ChDn Each bit represents the done flag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding

ChCmd register.
0b010101111 GenEvnt A read-only register.
bt name deseription —
31 PciRdEvnt Indicates that a PCI initiator is aempting to read a pproc. register.
30 PcWrEvnt Indicates that a PCI initiator has posted a wrile 10 @ pproc. register.
29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00 reserved Reserved for future use.
Provisional Pat. App. of Alacritech, Inc. 86

[nventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

@ P Y LINOEMWM ENET

ALA00138472
DELL Ex.1031.090

TR T B0

E B) %

i

"

b e W

0b010110000

0b010110001

0b010110010

0010110011

when

0b010110100

0b010110101

QCitrl

bit__
31:11
10:8

75

4:0

QData

Lru

Mru

A write-only register used to select and manipulate a Q.

pame__ description
reserved Data written to these bits are ignored.
QSz Used only during InitQ} operations to specify the size of the QBdy in Dram.
7 - Queue depth is 32K entries (128KB).
6 - Queue depth is 16K entries (64KB).
5 - Queuc depth is 8K entries (32KB).
4 - Queue depth is 4K entries (16KB).
3 - Queue depth is 2K entries (8KB).
2 - Quene depth is 1K entries (4KB).
1 - Queue depth is 512 entries (2KB).
0 - Quene depth is 256 entries (1KB).
QOp Specifies the queue operation to perform.
7 -DhIQ Disables all queues.
6-EnQ Enables all queues.
5 - RdBdy Increments the QBdyRdPtr and increments the QTIWrPLr.
4 - WrBdy Decrements the QBdyWrPtr and increments the QHdRdPr.
3-RdQ Rewrns a queue entry in register QData..
2-rsvd Reserved. Not to be used.
1-InitQ Set the queue status to empty and initializes QSz.
0-5Q Selects the QId to be utilized during writes w0 QData.

QId Specifies the queve on which to perform all operations except DbIQ or EnQ.

A read/write register, Writing this register will result in the data being pushed on to
the selected queve, Reading this register fetches queue data popped off during the
previous RAQ operation.

Reserved for future expansion.

A write-only register used to enable and disable Mac transmit and receive
sub-channels.

name,__ description_

reserved Data written to these bits are ignored.

enable When set, indicates to the Mac transmit or receive sequencer that the subchannel
contains a transmit or receive descriptor.

reserved Data written to these bits is ignored.

RevCh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel

cleared.
reserved Daia written to this bit are ignored.
SubCh Selects subchannel B when set or A when reset,
Macld Provides the Mac number for the subchannel enable bit.

0x0000000A

A read/write operand indicating which of the 16 entries is least recently used. When
Reading This register the least recently used entry is returned, after which it is
auwtomatically made the most recently used entry. This register should only be read
in conjunction with a *Move' operation of the ALU, else the results arc
unpredictable. Writing to this register forces the addressed entry to become the least
recently used entry.

0x0000000A

A writc only operand forcing the addressed entry to become the most recently used
entry.

Provisional Pat. App. of Alacritech, Inc. 87
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

EIISERY I IOr=]T | Nl <R

ALA00138473
DELL Ex.1031.091

00010111000

0b010111001

0b010111010

0b010111011

0b0101111XX

0b0110XXXXX

0b01110XXXX

I B DER T Swy

-
| A

By

a
bl

QIoRdy
QOutRdy
QEmpty

Constants

reserved

A read-only register comprising QHd not full flags for each of the 32 queues.

A read-only register comprising QTI not empty flags for each of the 32 queues.

A rcad-only register comprising QEmpty flags for cach of the 32 queues.
A read-only register comprising QFull flags for each of the 32 queues.
Reserved for future expansion.

{obooo, opdsSel(4:0]}

Reserved for future expansion.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EHT56230105US

T H @Ry LMNOENERNT

&8

ALA00138474
DELL Ex.1031.092

QOpdgel = SELECTED OPERANDg
0DO1111XXXX Sram OPERATIONS
Opdgel (3] PostAddrOp

[)
1
Opdsel (21
0
1
Qpdsel(l:0] RamopdSz
[}
1
2
3

nop

RamAddr = Ramhddr + (OpdSel([1:01);

transpose_Ctrl
don't transpose
transpose bytes

quadlet
triplet
doublet
byte
e BAM _READ ATTRIBUTES
endian trans- byte Sram
mode _pose offs data
little] 0 abed
litkle] 1 abeX
little 0 2 abXx
: little 0 3 amx
[little 1 0 abed
far little 1 1 abeX
= little 1 2 abxx
L little 1 3 axxx
= BIG o 0 abed
i BIG [} 1 Xbed
= BIG [} 2 XXed
s BIG 0 3 Xxxd
b BIG 8 [] abed
- BIG 2 1 Xbed
i BIG 1 2 XXed
By BIG 1 3 Xxxd
ES
= —R2M WRITE ATTRIBUTES
d
d endian trans- Opd Alu
-mode _pose size out
little [Q abed
little o T Xbed
litele L] D XXed
little 0 B XixXd
litele 1 Q@ abed
little 1 T Xbed
little 1 D XXed
little 1 B Xxxd
big 0 Q@ abed
big 0 T ¥bed
big 0 D XXed
big o B Xwd
big 1 0 abed
big 1 T Xbed
big 1 D Xxed
big 1 B Xmxd

Oblaaaaaaaa File

i

@6ERP Y AMOSNEARE

FPile@OpdSel(8:0];

Allows direct, non-paged, access to the top half of the register file.

e SOURCE_COPERAND
Bz=Q 8zsT BE=D pz=RB
abcd Obed 00cd 0004
trap Oabc 00bc 000c
trap trap 00ab 000b
trap trap trap 000a
dcba 0dch oode coed
trap Ocha ooch 000¢
trap trap 00ba 000b
trap trap trap ocoa
abed oabe 002b 000a
trap Obcd Gobe 000b
trap trap 00cd 000c
Lrap trap trap ocood
dcba Oocha 00ba ooba
trap odch 00ch 000b
trap trap 0odc 000c
trap trap trap oood
e SQURCE_OPERAND _____
QF=0 OF=1 QOF=32 QF=3
abed trap trap trap
-bed bed- trap trap
--cd -cd~- cd-=- trap
===d --d- -d=-= a---
dcba trap trap trap
-dcb dcb- trap trap
--dc -de- de-- trap

---d --d- -d-~ a---
abed trap trap trap
bed- -bed trap trap
ed-- -cd- --cd trap
a--- === -=d- -==-d
deba trap trap trap
dcb- -dechb trap trap
de-- -de- --de trap
d--- -d-- -=el~- ---d

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

89

ALA00138475
DELL Ex.1031.093

TstSel

ObX00XXXXX
0bX0100000
0bX0100001
0bX0100010
0bX0100011
0bX0100100
0bX0100101
0bX0100110
0bX0100111
O0bX0101000
0bX0101001
it 0bX010101X
ObX01011XX

bt 0bX0110XXX

- ObXO111XXX
5 ObXO1XKXXX
L
o ObX1XNXXXK
L

= FlgSel
%W 0b00000000

0boo000001

0bo00000L10
0b00000011
0b00000100
0b00000101
0B0O0000OLLX
0b00GOLXXX

0b00010XXX

0b00011XXX

SELECTED TEST
Tst = TstSel(7]
Tst = TstSel[7)
Tst = TstSel[7]
Tst = TotSel(7]
Tst = TstSel(7]
Tst = TsatSel([7]
Tst = TstSel[7]
Tst = TstSel([7]
Tst = TstSel([7]
Tst = TstSell7]
Tst - reserved
Tat = reserved
Tat = reserved
Tst = TstSel(7]

A

-

a

-

-

-

Lock(TstSel[2:0]) = 1;

Tst

Tst

Tet

FLAG OPERATION

AluOut [TstSel[4:0]]
c
v
4
(z | -@
PrevC
Prevv
Previ
(PrevZ & 2)

QOpDn

Lock([TstSel[2:0]]

Tstsel (7] * Lock[TstSel[2:0]]

reserved

reserved

No operation,

SelfRst

DbiMap
EnbMap

//Mlu bit
//caxxy

//error

//zexo

f/less or equal
//previous carry
//previous error
//previous zero
//64b zero

//queue op okay

Itests the current value of
{fthe Lock then set it.

I1tests the value of Lock.

Forces a self reset for the entire chip excluding the PCI configuration
registers

reserved

reserved

Lock[FlgSel[2:0]] = 0;
Clears the semaphore register bit for the current Cpu only.

reserved

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

Selects big-endian mode for ram accesses for the current Cpu.
Selects little-endian mode for ram accesses for the current Cpu.
Disable instruction re-mapping for the current Cpu.

Enable instruction re-mapping for the current Cpu.

90

(AR SEIRVECT IR [OX=Y . M=

ALA00138476
DELL Ex.1031.094

' ' FlgSel _ FLAG OPERATION

0b0010XXXX AddrOp

FlgSel[3:2] AddrSelect

0 RamAddr = Literal(15] ? Literal : (Literal | RamBase);
1 RamAddr = AddrRegA[15] ? AddrRegA : (AddrRegA | RamBase);
2 RamAddr = AddrRegB[15] ? AddrRegB : (AddrRegB | RamBase);
3 if (OpdA == RamAddr)
RamAddr = AluQut[15) 7 AluOut : (AlOut | RamBase);
els¢ if (OpdA == ram)
RamAddr = AddrRegB{15] ? AddrRegB : (AddrRegB | RamBase);
else
RamAddr = AddrRegA[15] ? AddrRegA : (AddrRegA | RamBase);
Flgsel(1:0]1 addr reg load
[+] nep
1 AddrRegA = Literal;
2 AddrRegB = Literal;
3 AddrRegA = Literal; AddrRegB = Literal;

note: When specifying the same register for both the load and select fields, the current value of the
register, before it is loaded with the new value, will be vsed for the ram address.

Ob0O11XXXX reserved

0b01000000 WrWesL@Dbg Causes the bits [31:0] of the control-store at address DbgAddr to be
written with the current AluOut data.

0b01000001 WrWesH@Dbg Causes the bits [63:32] of the control-store at address DbgAddr to be
written with the current AluQut data then increments DbgAddr,

0b01000010 RdWesL@Dbg Causes the bits [31:0] of the control-store at address DbgAddr to be
moved to file address Ox1ff.

0b01000011 RdWesH@Dbg Causes the bits [63:32] of the control-store at address DbgAddr to be
moved to file address Ox11f then increments DbgAddr.

0b01000100 reserved

0b010001XX Step Allows the Cpu (FlgSel[1:0]) cycles after the current cycle to execute a single
instruction. There is no effect if the Cpu is pot halted. An offset of 0 is not allowed.

SABhTOT" GORTY009

0b010010XX PeMd Selects the Pc as the address source for the control-store during
instruction fetches for the Cpu (FlgSel[1:0]) cycles after the current cycle.

o0bo10011xXx DbgMd Selects the DbgAddr address register as the address source for the
control-store during instruction fetches for the Cpu (FlgSel[1:0])
cycles after the current cycle.

0b010100XX HIt Halts the Cpu (FlgSel[1:0]) cycles after the current cycle.

0b0101D1XX Run Clears Halt for the Cpu (FlgSel[1:0]) cycles after the current cycle.

0b01011XXX reserved
ObO11XXXXX reserved

Ob1XXXXXX reserved

Provisional Pat. App. of Alacritech, [nc. 91
! Inventors Laurence B. Boucher et al.
! Express Mail Label # EH756230105US

AN EIRSSI N [OY=Y | = <huf
ALA00138477
DELL Ex.1031.095

DATA FLOW

Eectrl > B I,
A
S2p
3 Y
Cpu
Pmo |4
Cfg Y
Eeprom| CT| Xrd I
<+—» D2p <>
o D2s
Q
i ¢ XmtX
i <>
}: <+—» D2q —1—»
2 Dram [¢—pje—p{ XCtrl < 7] p2d [e—ple—> Omg [«
E <+—» Q2d
b « >
¥~ » RovX [_
b 4> S2d &>
<4—» P2d
Y
Flash [« > vor A4
Pmi
«—p| Sram
A A
P2s
A 4
Dcfg b
e Psi |,
Provisional Pat. App. of Alacritech, Inc. 92

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

| EmP ¥ 2100 2 W T
ALA00138478
DELL Ex.1031.096

EBHHTOTY" GOBRTI0O09

SRAM CONTROL SEQUENCER (SramCtrl)

Sram is the nexus for data movement within the INIC. A hierarchy of sequencers, working in concert,
accomplish the movement of data between dram, Sram, Cpu, ethernet and the Pei bus. Slave sequencers,
provided with stimulus from master sequencers, request data movement operations by way of the Sram, Pci
bus, Dram and Flash. The slave sequencers prioritize, service and acknowledge the requests

The preceding block diagram shows all of the master and slave sequencers of the INIC product. Request
information such as r/w, address, size, endian and alignment are represented by each request line.
Acknowledge information to master sequencers include only the size of the transfer being acknowledged.

The following block diagram illustrates how data movement is accomplished for a Pci slave write to Dram.
Note that the Psi (Pci slave in) module functions as both a master sequencer. Psi sends a write request to the
SramCtrl module. Psi requests Xwr to move data from Sram to dram. Xwr subsequently sends a read request
to the SramCtrl module then writes the data to the dram via the Xetrl module. As each piece of data is moved
from the Sram to Xwr, Xwr sends an acknowledge to the Psi module.

aa :. r & "“;'
o s srm -
P Citrl P
PCI BUS = Xwr ctrl
R e X Daa ' o
Psi 2
| . 7 .
rg;h »~
—_— g ——
DrramAuddr
SramAddr Ack

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

V=S EIRYFNINIOr=Y | W=l xhuj

93

ALA00138479
DELL Ex.1031.097

SRAM CONTROL SEQUENCER (SramCtrl)

M ... Addr/
feat e N D
133MHz l l
——pfCK)
Arbiter
el“ N
i) 133MHz [v
= Register
o Align
:é 133MHz — 4 R Dt
ot Register I Sram
= Dout
Ly L
) Partial Align
133MHz y *
__.+m
Register
v
» Partial Align
v ¢
Ack Sram
/ Rd
Ack_sz Data

Provisional Pat. App. of Alacritech, Inc. 94

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

P EWRE Y LOEMNERT
ALA00138480
DELL Ex.1031.098

The Sram control sequencer services requests to store to, or retrieve data from an Sram organized as 1024
locations by 128 bits (16KB). The sequencer operates at a frequency of 133MHz, allowing both a Cpu access
and a dma access to occur during a standard 66MHz Cpu cycle. One 133MHz cycle is reserved for Cpu
accesses during each 66MHz cycle while the remaining 133MHz cycle is reserved for dma accesses on a
prioritized basis.

The preceding block diagram shows the major functions of the Sram control sequencer. A slave sequencer
begins by asserting a request along with r/w, ram address, endian, data path size, data path alignment and
request size. SramCtrl prioritizes the requests. The request parameters are then selected by a multiplexer
which feeds the parameters to the Sram via a register. The requestor provides the Sram address which when
coupled with the other parameters controls the input and output alignment. Sram outputs are fed to the output
aligner via a register. Requests are acknowledged in parallel with the returned data.

Following is a timing diagram depicting two ram accesses during a single 66MHz clock cycle.

Cpu

CLOCK
=L T T
CLOCK

AVAYLAY] .

DMA

Gnt

T DR BOBTY00Sg

5
|
|
:

] 1 CpaPumem SELICTED GIRANT T I DWA SEQUINCER 7 G SILECTID DRANT T0 7 DMA SQUDNCER
[SELECTED AT

1 ik AN Ak SEFY PO Cpm ak ANTS Ak STEE BOR 1% Dhia By halk AN Ak SETE FOR S
i i i 1
AFPUY 1 Oy At E APPLY 1 Dok, A APTLY THD e Al | APYLY 7 Dl A H
i ALIGH " Cya B H ALYOH | DAL PUT Duin ALIE INDCpe [H ALICIN T Dl BOTUT Do i
¢ EAD DR WHITH 1 Cye Do i WRITE P 048 Dt i READ OR WRITE 7 Cis D REEAD O WRITE £ DA Dum i
i i i
L ALCNANDAETURE " e | ALION AV LETURN 1 DNA Do ALIGH AND RETURN 7 Cpa Tnin

Provisional Pat. App. of Alacritech, Inc. 95

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

N Ep» LSO EWERTE
ALA00138481
DELL Ex.1031.099

EXTERNAL MEMORY CONTROL (Xctrl)

Xectrl provides the facility whereby Xwr, Xrd, Defg and Eectrl access external Flash and Dram. Xetrl
includes an arbiter, i/o registers, data multiplexers, address multiplexers and control multiplexers. Ownership
of the external memory interface is requested by each block and granted to each of the requesters by the
arbiter function. Once ownership has been granted the multiplexers select the address, data and control signals
from owner, allowing access to external memory.

Arbiter Grant o »TO requestors

Y

XrdRegq
XrdAddr
XrdState
XrdCirl
XrdData

XAddr g pTO Xmem
XwrReq

XwrAddr
XwrState
XwrCtrl

XwrData

LETTOT " HIDSTOn0nS

DefgReq
DefgAddr
DefgState
DefgCtrl
DefgData

XData Vi »TO Xmem

Y

EectriReq
EectrlAddr
EectriState
EectrlCtrl
EectriData

XCul £ 10O Xmem

bYbYY bYbvy vvvvd byviy

Provisional Pat. App. of Alacritech, Inc. 96
Inventors Laurence B. Boucher et al.

i Express Mail Label # EH756230105US

T EAPP LA INOEW ENT
ALA00138482
DELL Ex.1031.100

Gt Y

ChEY &

GOET o

EXTERNAL MEMORY READ SEQUENCER (Xrd)

The Xrd sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Xrd
sequencer moves data from external sdram or flash to the Sram, via the Xctrl module, in blocks of 32 bytes
or less. The nature of the sdram requires fixed burst sizes for each of it's internal banks with ras precharge
intervals between each access. By selecting a burst size of 32 bytes for sdram reads and interleaving bank
accesses on a 16 byte boundary, we can ensure that the ras precharge interval for the first bank is satisfied
before burst completion for the second bank, allowing us to re-instruct the first bank and continue with
uninterrupted dram access. Sdrams require a consistent burst size be utilized each and every time the sdram is
accessed. For this reason, if an sdram access does not begin or end on a 32 byte boundary, sdram bandwidth
will be reduced due to less than 32 bytes of data being transferred during the burst cycle.

The following block diagram depicts the major functional blocks of the Xrd sequencer. The first step in
servicing a request to move data from sdram to Sram is the prioritization of the master sequencer requests.
Next the Xrd sequencer takes a snapshot of the dram read address and applies configuration information to
determine the correct bank, row and column address to apply. Once sufficient data has been read, the Xrd
sequencer issues a write request to the SramCtrl sequencer which in turn sends an acknowledge o the Xrd
sequencer. The Xrd sequencer passes the acknowledge along to the level two master with a size code
indicating how much data was written during the Sram cycle allowing the update of pointers and:counters. The
dram read and Sram write cycles repeat until the original burst request has been completed at which point the
Xrd sequencer prioritizes any remaining requests in preparation for the next burst cycle.

Contiguous dram burst cycles are not guaranteed to the Xrd sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash accesses, dram writes then dram reads.

Following is a timing diagram illustrating how data is read from sdram. The dram has been configured for a
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a read
command two clock cycles later. The bank select/activate for bank B is next issued as read data begins
returning two clocks after the read command was issued to bank A. Two clock cycles before we need to
receive data from bank B we issue the read command. Once all 16 bytes have been received from bank A we

begin receiving data from bank B.

66MHz

controls

rend dae COCDEXEXEXIXZXEN

weitedata)} POX S X2 XE) S ASAS)

Provisional Pat. App. of Alacritech, Inc. 97

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

EARISEIRVF N [Or=Y | N=<ui

ALA00138483
DELL Ex.1031.101

EXTERNAL MEMORY READ SEQUENCER (Xrd)

TN
p| Grant 4 »To Requester
sz > » XAddr A pTo Ketrl
D2s —p
D2d — EN
E(—SmmG t
D2q -) =
Pso — = pi XDaa SramData
XmtA —
XmtB —
o XentC —»
= XmtD —» p{ XCil v »To Xctrl
e
=5
'_TZ
=
]
o
L—:;
-
a SE
- Sm?, a »To Xetrl
e]
—»Ack To requester
—p-XetrlReg
KetrlDin —» P-SramReq
XetrlGnt —p
SramGnt —
SramAck e
SramGnt
Sram AckSz —
SramParams
Provisional Pat. App. of Alacritech, Inc. 98

Inventors Laurence B. Boucher et al.
| Express Mail Label # EH756230105US

2 EWRP Y LINOEMERT
ALA00138484
DELL Ex.1031.102

L

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

The Xwr sequencer is a slave sequencer. Servicing requests issued by master sequencers, the Xwr sequencer
moves data from Sram to the external sdram or flash, via the Xctrl module, in blocks of 32 bytes/or less while
accumulating a checksum of the data moved. The nature of the sdram requires fixed burst sizes for each of it's
internal banks with ras precharge intervals between each access. By selecting a burst size of 32 bytes for
sdram writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras prechage
interval for the first bank is satisfied before burst completion for the second bank, allowing us to re-instruct
the first bank and continue with uninterrupted dram access. Sdrams require a consistent burst size be utilized
each and every time the sdram is accessed. For this reason, if an sdram access does not begin or end on a 32
byte boundary, sdram bandwidth will be reduced due to less than 32 bytes of data being transferred during the
burst cycle.

The following block diagram depicts the major functional blocks of the Xwr sequencer. The first step in
servicing a request to move data from Sram to sdram is the prioritization of the level two master requests.
Next the Xwr sequencer takes a Snapshot of the dram write address and applies configuration information to
determine the correct dram, bank, row and column address to apply. The Xwr sequencer inumediately issues a
read command to the Sram to which the Sram responds with both data and an acknowledge. The Xwr
sequencer passes the acknowledge to the level two master along with a size code indicating how much data
was read during the Sram cycle allowing the update of pointers and counters. Once sufficient data has been
read from Sram, the Xwr sequencer issues a write command to the dram starting the burst cycle and

g computing a checksum as the data flies by. The Sram read cycle repeats until the original burst request has
() been completed at which point the Xwr sequencer prioritizes any remaining requests in preparation for the
e next burst cycle.

?ii

; Contiguous dram burst cycles are not guaranteed to the Xwr sequencer as an algorithm is implemented which
;;" ensures highest priority to refresh cycles followed by flash accesses then dram writes.

L

o Following is a timing diagram illustrating how data is written to sdram. The dram has been configured for a
. burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a write

s command two clock cycles later. The bank select/activate for bank B is next issued in preparation for issuing
;=- the second write command. As soon as the first 16 byte burst to bank A completes we issue the write

= command for bank B and begin supplying data.

R

b

Provisional Pat. App. of Alacritech, Inc. 99
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

ARSI Or=Y | H=l<Aul
ALA00138485
DELL Ex.1031.103

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

\
p» Grant V4 »TO Requester
P2d —p XAddr 4 »TO Xctrl
S2d —
D2d —
Q2d —
Psi . p{ XData 2 »TO Xctrl
RevA —]
i RevB - =
= RevC —
o RevD —> p{ XCul 4 »TO Xctrl
it
£
&
o p{ D2dChkSum 2 »TO D2d
B »| P2dChkSum £ »TO P2d
e
s
> s:‘,g < »TO Xetrl
—p=Ack TO requester
P XctrlReq
—pSramReq
XctrlGnt —
SramGnt —»
SramAck e
Sram AckSz — S.mm(}nt
SramRdData — SramParams
fional Pat. App. of Alacritech, Inc. 100

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

P EWRE Y LMOENENE

ALA00138486
DELL Ex.1031.104

BT Y BT e 15

PCI MASTER-OUT SEQUENCER (Pmo)

The Pmo scquencer acts only as a slave sequencer, Servicing requests issued by master sequencers, the Pmo
sequencer moves data from an Sram based fifo to a Pci target, via the PeiMstrIO module, in bursts of up to
256 hytes. The nature of the PCI bus dictates the nse of the write line command to ensure optimal system
performance. The write line command requires that the Pmo sequencer be capable of transferring a whole
multiple (1X, 2X, 3X, ...} of cache lines of which the size is set through the Pci configuration registers. To
accomplish this end, Pmo will automatically perform partial bursts until it has aligned the transfers on a cache
line boundary at which time it will begin usage of the write line command. The Sram fifo depth, of 256 bytes,
has been chosen in order to allow Pmo to accommodate cache line sizes up to 128 bytes. Provided the cache
line size is less than 128 bytes, Pmo will perform multiple, contiguous cache line bursts until it has exhausted

the supply of data.

Pmo receives requests from two separate sources; the dram to Pci (D2p) module and the Sram to Pci (S2Zp)
module. An operation first begins with prioritization of the requests where the S2p module is given highest
priority. Next, the Pmo module takes a Snapshot of the Sram fifo zddress and uses this to generate read
requests for the SramCtrl sequencer. The Pmo module then proceeds to arbitrate for ownership of the Pci bus
via the PeiMstrIO module. Once the Pmo holding registers have sufficient data and Pci bus mastership has
been granted, the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo
sends an acknowledge and encoded size to the master sequencer, allow it to update it's internal pointers,
counters and status. Once the Pci burst transaction has terminated, Pmo parks on the Pci bus unless another
initiator has requested ownership. Pmeo again prioritizes the incoming requests and repeats the process.

Sram
M el

S2p Pmo Pmstt | PCI BUS
- «——>
5

I

B
x
E
A

ki 1 WeReq ‘ 4 .

PriAddr 6 Ak

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

B EARP UL IIOEN BRE

101

ALA00138487
DELL Ex.1031.105

PCI MASTER-IN SEQUENCER (Pmi)

The Pmi sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmi
sequencer moves data from a Pci target to an Sram based fifo, via the PciMstrIO module, in bursts of up to
256 bytes. The nature of the PCI bus dictates the use of the read multiple command to ensure optimal system
performance. The read multiple command requires that the Pmi sequencer be capable of transferring a cache
line or more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts until it
has aligned the transfers on a cache line boundary at which time it will begin usage of the read multiple
command. The Sram fifo depth, of 256 bytes, has been chosen in order to allow Pmi to accommodate cache
line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmi will perform multiple,
contiguous cache line bursts until it has filled the fifo.

Pmi receive requests from two separate sources; the Pci to dram (P2d) module and the Pci to Sram (P2s)
module. An operation first begins with prioritization of the requests where the P2s module is given highest
priority. The Pmi module then proceeds to arbitrate for ownership of the Pci bus via the PeiMstrIO module.
Once the Pci bus mastership has been granted and the Pmi holding registers have sufficient data, the Pmi
module begins transferring data to the Sram fifo. For each successful transfer, Pmi sends an acknowledge and
encoded size to the master sequencer, allowing it to update it's internal pointers, counters and status. Once the
Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator has requested
ownership. Pmi again prioritizes the incoming requests and repeats the process.

W el oy
Sram -
fudde Ctrl 3 g
Din PeiAddr [
P2s Pmi Pmstt | PCI BUS
Data < ‘)
3
Req 1
RdReg 1-—2+
SramAddr Gt
SramAddr
Peidddr P peinddr
da 6 Ack
Provisional Pat. App. of Alacritech, Inc, 102

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

AN EIRFE =] , M=l xRu

ALA00138488
DELL Ex.1031.106

' Dram TO PCI SEQUENCER (D2p)

The D2p sequencer acts is a master sequencer. Servicing channel requests issued by the Cpu, the D2p
sequencer manages movement of data from dram to the Pci bus by issuing requests to both the Xrd sequencer
and the Pmo sequencer. Data transfer is accomplished using an Sram based fifo through which data is staged.

D2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, D2p feiches a dma descriptor from an Sram location dedicated to the requesting channel which
includes the dram address, Pci address, Pci endian and request size. D2p then issues a request to the D2s
sequencer causing the Sram based fifo to fill with dram data. Once the fifo contains sufficient data for a Pei
transaction, D2s issues a request to Pmo which in turn moves data from the fifo to a Pei target. The process
repeats until the entire request has been satisfied at which time D2p writes ending status in to the Sram dma
descriptor arca and sets the channel done bit associated with that channel, D2p then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movement of data

from dram to Pci target.

o
B
&
S
2 Adk DIN
k__: DOwt Sram DOs DI
i 5 Ak gy Ack Plack Addr
3 <« s iy Pmo
el Xrd Ry AD D Ack
Xetrl - Dua Pmstr
H D Ack heq Gul
5, 4 o Req
= a3 R Reg{ 9, SrmAddr 412p
- el i o Adde PeiAdde
e} DramAddr rddr Adds o
b § Ack g Ak Ak '
* 8 4

Provisional Pat. App. of Alaeritech, Inc. 103

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

FEWRE YL INOEN ERNT

ALA00138489
DELL Ex.1031.107

‘" Dram TO PCI SEQUENCER (D2p)

CHANNEL }
> D
Dram
PTR £ »TO Xrd
PCI
PTR 4 —-TO Pmo
XFR
o » COUNT [— P10 Xrd
=
- FIFO
& > RDPr [»TO Prmo
= 2
> XrdAck - M e
ia FIFO p
- P WR Pur »TO Xrd
= -
£ Xrd Status —p
£ XFR
i » opTIONS [
Pmo Ack —p
SEQ
! State et
Pmo Status -
»FifoCnt
»Pmo Req
Sram Ack — —»Xrd Req
PSramReq
EN
ﬂ——-——-me Sram
Sram Rd Data — SramParams
Provisional Pat. App. of Alacritech, Inc. 104

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

WD Yoo EMW EBRE
ALA00138490
DELL Ex.1031.108

2B T Q00

S ErRTOT " B

PCI TO DRAM SEQUENCER (P2d)

The P2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the P2d sequencer manages movement of data from Pci bus to dram by issuing requests to both
the Xwr sequencer and the Pmi sequencer. Data transfer is accomplished using an Sram based fifo through

which data is staged.

P2d can receive requests from any of the processor's thirty-two dma channels. Once a2 command request has
been detected, P2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Pci address, Pci endian and request size. P2d then
issues a request to Pmo which in turn moves data from the Pci target to the Sram fifo. Next, P2d issues a
request to the Xwr sequencer causing the Sram based fifo contents 1o be written to the dram. The process
repeats uniil the entire request has been satisfied at which time P2d writes ending status in to the Sram dma
descriptor area and sets the channel done bit associated with that channel. P2d then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movement of data

from a Pci target to dram.

10 Req
- o =
Pt cor
Puddr DOut
|Addr s
DOt Cont ‘_—l*"‘
< e 1L b T gplrses =
Xetrl i ek Pmi Pmstr
o P € - XWr 1,14 s | < «5ip
Lo Tq AD D Ak
‘_13_ %—,——h P2d 3 Req ad e
- = I Carl
phdr »
i SramAddr
M m 7| PoAdkds
[SranAddr]3:5.“: al ack

Provisional Pat, App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

FEARP Y LIOE W N E

105

ALA00138491
DELL Ex.1031.109

' " PCI TO DRAM SEQUENCER (P2d)

CHANNEL
L D ——
Dram
P PTR »TO Xwr
PCI
o PTR - TO Pmi
XFR)
P COUNT »TO Pmi
XwrChksum — P
. FIFO
= WR Prr —TO Pmi
2
= XwrAck —»
- FIFO
t:‘ » RD Pur —p-TO Xwr
= XwrStatus —»
i
. » OPTIONS
PmiAck —P
SEQ
—» State
PmiStatus —
—FifoCnt
P PmiReq
SramAck —» P XwrReq
p-SramReq
EN
(#—From Sram
SramRdData —p SramParams

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

EITSERE P A [OF=Y | W=lxhu

106

ALA00138492
DELL Ex.1031.110

SRAM TO PCI SEQUENCER (S2p)

The SZp sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the S2p sequencer manages movement of data from Sram to the Pci bus by issuing requests to the

Pmo sequencer

$2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2p, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. S2p then
issues a request to Pmo which in turn moves data from the Sram to a Pci target. The process repeats until the
entire request has been satisfied at which time S2p writes ending status in to the Sram dma descriptor area and
sets the channel done bit associated with thar channel. $2p then monitors the dma channels for additional
requests. Following is an illustration showing the major blocks involved in the movement of data from Sram to

Pci target.
o1
o
=~
= 4 [Req
Lt <
A |Addr Sram jIN
Y Ctrl Plack
= IDOut St »
& Pmo Pmstr
:5 3 19 - .‘_l_’,
-~ AD D Adk
~
bl 510 a b
L o
g Curl
= Slp
e Addr 3 SramAddr
L Addr
oo addr g
= < {Ack

Provisional Pat. App. of Alacritech, Inc. 107

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

ARSI OYEY | Wl <hul

ALA00138493
DELL Ex.1031.111

SRAM TO PCI SEQUENCER (S2p)

R CHANNEL
ID =
PCI g
> PTR —»TO Pmo

_ XFR F
& » COUNT »TO Pmo
}:é Sram J
£ PTR »TO Pmo
G
“ XFR
- | OPTIONS [
b PmoAck —»
£
o SEQ
's__é Ll State ——

PmoStatus P

»PmoReq
SramAck —
»SramR
EN
From Sram
SramRdData — ramParams

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

EATSEREFY A [Or=Y | W=lxhu

108

ALA00138494
DELL Ex.1031.112

PCI TO SRAM SEQUENCER (P2s)

The F2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued by

the Cpu, the P2s sequencer manages movement of data from Pei bus to Sram by issuing requests fo the Pmi
sequencer,

P2s can receive requests from any of the processor’s thirty-two dma channels. Once a command request has
been detected, P2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. P2s then
issues a request to Pmo which in tum moves data from the Pei target to the Sram. The process repeats until
the entire request has been satisfied at which time P2s writes ending status in to the dma descriptor area of
Sram and sets the channel done bit associated with that channel. P2s then monitors the dma channels for
additional requests. Following is an illustration showing the major blocks involved in the movement of data

from a Pci target to dram.

=
ul [§

™~

P PR

4 [Wifeq Addr

ey o

LJ; bhadr o 5 DOt

5 Cerl Ack

ﬁ iin Addr

iy .

o Pmi Pmstr
.-

b 19 R < SEEY
5 Rq AD D Ak

Ls:

f‘j - _}—hg PEEN

i P2s

Inddr SrmAddr

= P Pendr

e hddr 8 Ack

i

=i

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

FEURR Y LNOENERT

109

ALA00138495
DELL Ex.1031.113

‘) PCI TO SRAM SEQUENCER (P2s)

\
CHANNEL
D —
PCI
> PTR] »TO Pmi

XFR)
o COUNT »TO Pmi
e |
=]
% |
5
e Sram y .
e PTR »TO Pmi
. XFR
- » OPTIONS [—]
b PmiAck —»
==
= SEQ
b
i s State __—/J

PmiStatus —P
»PmiReq
SramAck -
P SramReq
EN
{#&——From Sram
SramRdData —P SramParams

Provisional Pat. App. of Alacritech, Inc. 110

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

EIEISEIRF =Y |)]
ALA00138496
DELL Ex.1031.114

DRAM TO SRAM SEQUENCER (D2s)

The D2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the D2s sequencer manages movement of data from dram to Sram by issuing requests to the Xrd
sequencer.

D2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, D2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address and request size. D2s then issues a
request to the Xrd sequencer causing the transfer of data to the Sram. The process repeats until the entire
request has been satisfied at which time D2s writes ending status in to the Sram dma descriptor area and sets
the channel done bit associated with that channel. D2s then monitors the dma channels for additional requests.
Following is an illustration showing the major blocks involved in the movement of data from dram to Sram.

[Wikieq
Req Addr
»
Ll
Flack Cirl
D -...—5
Rq AD D Ak
Addr
Xectrl Ack
1
<) » Xrd s A A . *2’
Rq AD D Ack
Data
& 3 _|Req
PAddr
Cat s D2S
Req L ks
|SramAddr 7

Provisional Pat. App. of Alacritech, Inc. 111
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

ISR =Y | uf

ALA00138497
DELL Ex.1031.115

DRAM TO SRAM SEQUENCER (D2s)

XrdAck

LBRTDT " &OB TS0 =

XrdStatus
SramAck

SramRdData

R=lbrsE

CHA{NNEL
D —
Dram
» PR »TO Xrd
XFR
COUNT »TO Xrd
Sram
> PR »T0 Xnd
XFR
» OPTIONS [
- >
SEQ /
State
—
P XrdReq
—
-SramReq
EN
iq-——-————From Sram
I SramParams

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U0S8

WOMOEMW EORT

112

ALA00138498
DELL Ex.1031.116

AEMTDT" AOBTYSO0DY

SRAM TO DRAM SEQUENCER (S2d)

The S2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the S2d sequencer manages movement of data from Sram to dram by issuing requests to the Xwr

sequencer.

$2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address, checksum reset and request size,
S2d then issues a request to the Xwr sequencer causing the transfer of data to the dram. The process repeats
until the entire request has been satisfied at which time S2d writes ending status in to the Sram dma descriptor
area and sets the channel done bit associated with that channel, S2d then monitors the dma channels for
additional requests. Following is an illustration showing the major blocks involved in the movement of data

from Sram to dram,

Req |acar
(Add 'b Sram
“'5 Cerl
Xetrl ek wt v
<> «— %9
D“XWI" ,Ifn!x
‘2 al
IAddr
cu o S2d
i Ack
[SramAddr 6' |

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

B E(pR Y LIOEN D NT

113

ALA00138499
DELL Ex.1031.117

SRAM TO DRAM SEQUENCER (S2d)

‘
CHANNEL
L » m I
Dram
PTR L4 »TOXwr
T
g
- XFR]
o P COUNT »TO Xwr
T
Fis)
v Sram
= > PTR = »TO Xwr
2
"
b OPTIONS [—]
3 XwrAck o
X 00
Ll State —
XwrStatus —
P XwrReq
SramAck P~
»SramReq
EN
ld-—Fmrn Sram
SramRdData —> SramParams

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

EIESEREFIN =Y) @

114

ALA00138500
DELL Ex.1031.118

SBhTOT" SO TYN0Y

@ Y LINOEW ST

PCI SLAVE INPUT SEQUENCER (Psi)

The Psi sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pei
master, the Psi sequencer manages movement of data from Pci bus to Sram and Pci bus to dram via Sram by
issuing requests to the SramCtrl and Xwr sequencers.

Psi manages write requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Psi separates these Pci bus operations in to two categories with different action taken for each. Dram accesses
result in Psi generating write request to an Sram buffer followed with a write request to the Xwr sequencer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. An event
notification is set for the processor allowing message passing 10 occur through dram space.

All other Pci write transactions result in Psi posting the write information including Pci address, Pci byte
marks and Pci data to a reserved location in Sram, then setting an event flag which the event processor
monitors. Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with
retry until the processor clears the event flag. This allows the INIC to keep pipelining levels 10 a minimum for
the posted write and give the processor ample time to modify data for subsequent Pci read operations.

The following diagram depicts the sequence of events when Psi is the target of a Pci write operation. Note that
events 4 through 7 cccur only when the write operation targets the dram.

L
Req " lasar
| Addr r:& s
. b Ctrl

P, Rg AD D Ack

Xectrl Ack 5 A

< p <
- Xwr Ra AD D Ak
i 4—4-—3 —29 EVENT NOTIFY
Cut i PS5 €% EVENT CLEAR
N Ack
SramAddr 7
Pmstr |gLlp PCIBUS

Provisional Pat. App. of Alacritech, Inc. 115

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

ALA00138501
DELL Ex.1031.119

EAEhTOT" HOBETIN0DD

PCI SLAVE OUTPUT SEQUENCER (Pso)

The Pso sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pei
master, the Pso sequencer manages movement of data to Pei bus form Sram and to Pci bus from dram via

Sram by issuing requests to the SramCitrl and Xrd sequencers.

Pso manages read requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Pso separates these Pci bus operations in to two categories with different action taken for each, Dram accesses
result in Pso generating read request to the Xrd sequencer followed with a read request to Sram buffer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information including Pci address and Pci
byte marks to a reserved location in Sram, then setting an event flag which the event processor monitors.
Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with retry until
the processor clears the event flag. This allows the INIC to use a microcoded response mechanism to return
data for the request. The processor decodes the request information, formulates or fetches the requested data
and stores it in Sram then clears the event flag allowing Pso to fetch the data and return it on the Pci bus.

The following diagram depicts the sequence of events when Pso is the target of a Pci read operation.

4y, |WiReq
o Ircde
Addr o
< Sram
s [om
Rq AD D Ack
Xetrl po X ET
<+ <
- er Rg AD D Ack
2 Lg—2 e L » EVENT NOTIFY
e " Pso l¢— EVENTCLEAR
Req o o
SramAddr 6
Pmstr |qL% PCIBUS
Provisional Pat. App. of Alacritech, Inc. 116

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

EARISCRYEE N Or=Y | W=lx

ALA00138502
DELL Ex.1031.120

E GBO8TS00n

FRAME RECEIVE SEQUENCER (RcvX)

The receive sequencer (RcvSeq) analyzes and manages incoming packets, stores the result in dram
buffers, then notifies the processor through the receive queue (RevQ) mechanism. The process begins
when a buffer descriptor is available at the output of the FreeQ. RcvSeq issues a request to the Qmg
which responds by supplying the buffer descriptor to RevSeq. RevSeq then waits for a receive packet.
The Mac, network, transport and session information is analyzed as each byte is received and stored
in the assembly register (AssyReg). When four bytes of information is available, RevSeq requests a
write of the data to the Sram. When sufficient data has been stored in the Sram based receive fifo, a
dram write request is issued to Xwr, The process continues until the entire packet has been received
at which point RevSeq stores the resuits of the packet analysis in the beginning of the dram buffer.
Once the buffer and status have both been stored, RcvSeq issues a write-gueue request to Qmg.
Qmg responds by storing a buffer descriptor provided by RevSeq. The process then repeats. If
RcvSeq detects the arrival of a packet before a free buffer is available, it ignores the packet and sets
the Framelost status bit for the next received buffer.

The following diagram depicts the sequence of events for successful reception of a packet followed by

a definition of the receive buffer and the buffer descriptor as stored on the RevQ.

Mac Ctrl
OPTIONS OPTIONS
A
ProsDet —TO Xmt_Mac
Y
1 Req
_M o [Sram AD AD
s s rumAddr ¥ Iorm AD D
Mac 4 Lm m— . e TS Xetrl
a9 Xwr 3
& Rq Ack L
RevX
®q AD D Ack |
1,10 [Ra Ra| 5 [ra
R4 Qmg « v Sram
) 43612pf, Ctr
Ack]
A D
AD »
|Addr
P Llﬂck
3,12
211 -
ru L
—_—

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

P Y LAINOEN ST

117

ALA00138503
DELL Ex.1031.121

MacDataln
MacCtrlln
MacStatus_IN
MacAddrA
- MacAddrB
=
=
c
SramAck
iﬁé
?": SramRdData
) FREEQ_ID
RCV Q ID
Ctrl_Q ID
PauseDetEn

FRAME RECEIVE SEQUENCER (RevX)

L \
UEBUE
C§MMAND . 710 QugR

BUFFER | |

DESCR
r——— From Sram
Data TO Sram

From Sram

Sram A
Addr TO Sram

Dram
PTR

FIFO WR
PTR

FIFO RD
PTR

Data
ASSY REG

RCV SEQ
State

ANALYZER
State

FRAME
POINTER

IP
POINTER

TRANSPORT

POINTER

P
CHECKSUM

PAYLOAD
CHECKSUM

CONTEXT

HASH

N

»TO Xwr

v

»-TO Xwr

LN NN

v

Y VvV Vv Vv vV Vv v VY VvV ¥V VvV VvV Vv ¥V V¥V V¥
L L L S 8

Y Vv v ¥

p- XwiReq

—pPauseDet

P QmgRReq

P SramReq

From Sram
ramParams

Provisional Pat. App. of Alacritech, Inc. 118
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

P EWRE v eIlNoE W @

ALA00138504
DELL Ex.1031.122

RECEIVE BUFFER DESCRIPTOR

bit_ npame_______ description

31:30 reserved

29:28 size A copy of the bits in the FreeBufDscr.

27:00 address Represents the last address + 1 to which frame data was transferred. The address
wraps around at the boundary dictated by the S bits. This can be used to determine
the size of the frame received.

RECEIVE BUFFER FORMAT

FRAME Status A OFFSET 0x0000:0x0003

bit_ Jescripti

31 attention Indicates one or more of the following: CompositeErr, !IpDn, MacADet &
MacBDet, IpMcst, IpBest, lethernet & !802.3Snap, !Ip4, !Tep .

30 CompositeErr Set when any of the error bits of ErrStatus are set or if frame processing stops
while receiving a Tep or Udp header.

29 CtrlFrame A control frame was received at our unicast or special MItCst address.

- 28 IpDn Frame processing Hlted due to exhaustion of the IP4 length counter.
ity 27 802.3Dn Frame processing Hited due to exhaustion of the 802.3 length counter.
= 26 MacADet Frame's destination address matched the contents of MacAddrA.
; 25 MacBDet Frame's destination address matched the contents of MacAddrB.
= 24 MacMcst The Mac detected a MItCst address.
= 23 MacBest The Mac detected a BrdCst address.
o 22 IpMest The frame processor detected an IP MItCst address.
&= 21 IpBest The frame processor detected an IP BrdCst address.
L= 20 Frag The frame processor detected a Frag IP datagram.
3 19 IpOffst The frame processor detected a non-zero IP datagram offset.
18 IpFlgs The frame processor detected flags within the IP datagram.
s 17 IpOpts The frame processor detected a header length greater than 20 for the IP datagram.
= 16 TepFlgs The frame processor detected an abnormal header flag for the TCP segment.
- 15 TepOpts The frame processor detected a header length greater than 20 for the TCP segment.
i 14 TepUrg The frame processor detected a non-zero vrgent pointer for the TCP segment.
b 13 CarrierEvnt Refer to E110 Technical Manual.
12 LongEvnt Refer to E110 Technical Manual.
11 FrameLost Set when an incoming frame could not be processed as a result of an outstanding
frame completion event not yet serviced by the utility processor.
10 reserved
10 NoAck The frame processor detected a
09:08 FrameTyp 00 - Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap.
07:06 NwkTyp 00 - Unknown. 01- Ip4. 10 - Ip6 11 - ip other.
05:04 TrosptTyp 00 - Unknown. 01- reserved. 10 - Tcp 11 - Udp
03 NetBios A NetBios frame was detected.
02 reserved
01:00 channel The Mac on which this frame was received.

Provisional Pat. App. of Alacritech, Inc. 119
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

@ R LA IOEW ERT

ALA00138505
DELL Ex.1031.123

FRAME Status B
bit

31 802.3Shrt
30 BufOvr

29 BadPkt

28 InvidPrmbl
27 CrcErr

26 DrbiNbbl
25 CodeErr

24 IpHdrShrt
23 IpIncmplt
22 IpSumErr
21 TepSumErr
20 TepHdrShrt

19:16 PressCd
&
|
o
W
s 15:08 MacHsh
P 07:00 CtxHsh
o
o
? TIME STAMP
k2 bit_ name
b= 31:00 RcvTime
iﬁ‘-“'-‘_a';

CHECKSUM

bit . npame
31:16 IpChksum

15:00 TepChksum

RESERVED

FRAME Data

OFFSET 0x0004:0x0007

Jescrinti
End of frame was encountered before the 802.3 length count was exhausted.
The frame length exceded the buffer space available.

Refer to E110 Technical Manual.

Refer to E] 10 Technical Manual.

Refer to E110 Technical Manual.

Refer to E110 Technical Manual.

Refer to E]10 Technical Manual.

The IP4 header length field contained a value less than 0x5.

The frame terminated before the IP length counter was exhausted.

The IP header checksum was not Oxffff at the completion of the IP header read.
The session checksum was not Oxffff at the termination of session processing.
The TCP header length field contained a value less than 0x5.

The state of the frame processor at the time the frame processing terminated.
0b0000 Processing Mac header.

0b0001l Processing 802.3 LLC header.

0b0010 Processing 802.3 SNAP header.

0b0011 Processing unknown network data.

0b0100 Pr ing IP header.

0b0101 Processing IP data (unknown transport).

0b0110 Processing transport header (IP data).

0b0111 Processing transport data (IP data).

0b1000 Processing IP processing complete.

0b1001 Reserved.

0b101x Reserved.

Obllxx Reserved.

The Mac destination-address hash. Refer to E110 Technical Manual.

The 8-bit context-hash generated by exclusive-oring all bytes of the IP source
address, IP destination-address, transport source port and the transport destination
port.

OFFSET 0x0008:0x000B

description
The contents of FreeClk at the completion of the frame receive operation.

OFFSET 0x000C:0x000F

description

Reflects the value of the IP header checksum at frame completion or IP header
completion. If an IP datagram was not detected, the checksum provides a total for
the entire data portion of the received frame. The data area is defined as those bytes
received after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAP frame.

Reflects the value of the transport checksum at IP completion or frame completion.

If IP was detected but session was unknown, the checksum will not include the
psuedo-header. If IP was not detected, the checksum will be 0x0000.

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

Provisional Pat. App. of Alacritech, Inc. 120
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

AN I Or=Y | Wl xR

ALA00138506
DELL Ex.1031.124

FRAME TRANSMIT SEQUENCER (XmtX)

The transmit sequencer (XmtSeq) analyzes and manages outgoing packets, using buffer descriptors
retrieved from the transmit queue (XmtQ) then storing the descriptor for the freed buffer in the free
buffer queue (FreeQ). The process begins when a buffer descriptor is available at the output of the
XmtQ. XmtSeq issues a request to the Qmg which responds by supplying the buffer dascrfiptor to
XmtSeq. XmtSeq then issues a read request to the Xrd sequencer. Next, XmtSeq issues a read
request to SramCitrl then instructs the Mac to begin frame transmission. The Mac accepts data from
XmtSeq which analyzes the packet as it flys-by in order to generate checksums to insert in the data
stream. Once the frame transmission has completed, XmtSeq stores the buffer descriptor on the

FreeQ thereby recycling the buffer.

The following diagram depicts the sequence of events for successful transmission of a packet followed
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ.

Mac Citrl J
OPTIONS OPTIONS

_~
s
5
=
o
&=
11}
fr
E 1% Pruse PROCESSOR
ke —————From RCV_SEQ
= emn | §———From PROCESSOR
r: paseReq L TO PROCESSOR
=
W PaseD _.4_-_._"&
g Sram AD
ad 2 e |
}m Mae < Req P0ran AD Xetrl
. Stams D
<2 s < . JAck bwr
Car! DramAddr =
D
XmtX
po vvvh
Rq AD D Ak
g 1,10 -] -r..llq
i
-
:.: Ack
Qmg 22
g lager Sram
FTR Ctrl
lReq
Req t
Addr 211
ae Sery < a2
%

Provisional Pat. App, of Alacritech, Inc. 121

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

&P Y LIOEN ONE

ALA00138507
DELL Ex.1031.125

FRAME TRANSMIT SEQUENCER (XmtX)

(_’ ‘
QUEUE | J »
|COMMAND »TO QmgR
MacData_IN P |-D- BDESCR =
S WR From Sram
MacCtrlIN > Ly r“l;‘ y TO Sram
3 From Sram
MacStatus_IN —» — ;ﬁ Vi TO Sram
From Xwr
L o 4
FIFO RD
~ MacAddrA —» N »
o B PTR
=
& MacAddrB —p - F[FP?.;W 4 »TO Xwr
T
ot Daa | |
e | HOLD REG
C SramAck J > Xms: s‘ EE Q LA
; SramRdData — e ANASLELZBR -4
= FRAME
- »
o | POINTER
= P |
v FREEQ ID - | POINTER
) TRANSPORT
Crl Q ID ™| POINTER []
P
XmiQ_ID = | crecksum [~
PAYLOAD _J
| cHECKSUM
PauseClr -
p XmtData
PauseDet - p XwrReq
» PauseD
Cpu_PauseReq - p QmgRReq
- SramReq
From Sram
ramParams
Provisional Pat. App. of Alacritech, Inc. 122

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

ALA00138508
DELL Ex.1031.126

TRANSMIT BUFFER DESCRIPTOR

bit__ nnm:==,, description
31 When set, XmtSeq will insert a calculated checksum. When reset, XmtSeq will

not alter the outgoing data stream.

30 reserved
20:28 size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer :
S=0 256B boundary. A[7:0] ignored.
S =1 2KB boundary. A[10:0] ignored.
S =2 4KB boundary. A[11:0] ignored.
§=3 32KB boundary. A[14:0] ignored.
27:00 EndAddr The address of the last byte to transmit plus one.
TRANSMIT BUFFER FORMAT
o CHECKSUM PRIMER OFFSET 0x0000:0x0003
=
= bit . pame ___ description
boad 31:00 Primer A value to be added during checksum accumulation. For IPV4, this should include
:: the psuedo-header values, protocol and Tep-length.
s
i
= RESERVED OFFSET 0x0004:0x0005
E FRAME Data OFFSET 0x0008:END OF BUFFER
g
i_;
£ TRANSMIT Status VECTOR
.
¥

lu!.:nmn&::_,_slﬁmm

al

Indicates that a link status error occured before or during transmit,
30: 15 reservul
14 ExcessDeferral Refer to EI10 Technical Manual.
13 LateAbort Refer to E110 Technical Manual.
12 ExcessColl Refer to EI110 Technical Manual.
11 UnderRun Refer to E110 Technical Manual.
10 ExcessLgth Refer to E110 Technical Manual.

09 Okay Refer to E110 Technical Manual.
08 deferred Refer to E110 Technical Manual.,
07 BrdCst Refer to E110 Technical Manual.
06 MitCst Refer to E110 Technical Manual.
05 CrcErr Refer to EI10 Technical Manual.
04 LateColl Refer to E110 Technical Manual.
03:00 CollCnt Refer to E110 Technical Manual.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

NI INOYEN |, W=l >N

123

ALA00138509
DELL Ex.1031.127

QUEUE MANAGER (Qmg)
The INIC includes special hardware assist for the implementation of message and pointer queues. The

hardware assist is called the queue manager (Qmg) and manages the movement of queue entries between Cpu

and Sram, between dma sequencers and Sram as well as between Sram and dram. Queues comprise three distinct

entities; the queue head (QHd), the queue tail (QTI) and the queue body (QBdy). QHd resides in 64 bytes of
scratch ram and provides the area to which entries will be written (pushed). QTI resides in 64 bytes of scratch

ram and contains queue locations from which entries will be read (popped) . QBdy resides in dram and contains
locations for expansion of the queue in order to minimize the Sram space requirements. The QBdy size depends

upon the queue being accessed and the initialization parameters presented during queue initialization.

Qmg accepts operations from both Cpu and dma sources. Executing these operations at a frequency of

133MHz, Qmg reserves even cycles for dma requests and reserves odd cycles for Cpu requests. Valid Cpu
operations include initialize queue (InitQ), write queve (WrQ) and read queue (RAQ). Valid dma requests
include read body (RdBdy) and write body (WrBdy). Qmg working in unison with Q2d and D2q generate

requests to the Xwr and Xrd sequencers to control the movement of data between the QHd, QT and QBdy.

The preceding block diagram shows the major functions of Qmg. The arbiter selects the next operation to be

performed. The dual-ported Sram holds the queue variables HAWrAddr, HdRdAddr, TIWrAddr,
TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request, fetches the queue

variables from the queue ram (Qram), modifies the variables based on the current state and the requested

operation then updates the variables and issues a read or write request to the Sram controller. The Sram

g controller services the requests by writing the tail or reading the head and returning an acknowledge.

=

;T"

Bt

1

i T S S R - - - =

N DrmaQmgReq AND —] QmigDmaAck AND |

: CT]‘:Z DmaQWrData QmgDmaRdDaa

.i"k _______ - e - = e . i e e e | e) e

e 1 H i Return Qdata

= i | RewmQémforCpu | forDma

= f | E

- i i Wri i

b Sram i | Qs fr ! | qumir | i

fer Crrl i E o E D | !

g 3 SramQmg Grant for Cpa ScamQmpg Grant for Dima E i

3 Sramdng Ack for Cpu E SramQmg Ack for Dema |

______________________ R (SR IR S

. Qmg Feach for CpuOp 5 QmgSramieq for CpuOp | QgSramileg for DrnaQp ‘[i
Qmg | i i : i | cmop | i Dmop
| |
g | e

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

FEWpP YLMOENERT

124

ALA00138510
DELL Ex.1031.128

QUEUE MANAGER (Qmg)

1)2q QZd le wQ'
nte
TTI115 1
PRIORITIZE Mux
v
133MHz— register
] [adde_ouT DIN Addr_IN
7% 133MHz—» Qram
& 133MHe—— register
s .
f: \ 4
£ Qmg ALU
ul - ;
R Y Y
133MHz—— register
IR
Regq Addr Empty I-'ull ouT WR RD Write
RDY RDY Req Req Data

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

125

IS EIRYSS N Or=EY | W=l xhu

ALA00138511
DELL Ex.1031.129

-

B TNET S0

e

o Endn B LT

DMA OPERATIONS

DMA operations are accomplished through a combination of thirtytwo dma channels (DmaCh) and seven dma
sequencers (DmaSeq). Each dma channel provides a mechanism whereby a Cpu can issue a command to any
of the seven dma sequencers. Where as the dma channels are multi-purpose, the dma sequencers they
command are single purpose as follows.

dma seq # name description,
0 none This is a no operation address.
1 D2dSeq Moves data from ExtMem to ExtMem.
2 D2sSeq Moves data from ExtMem bus to sram.
3 D2pSeq Moves data from ExtMem to Pci bus.
4 S2dSeq Moves data from sram to ExtMem.
5 S2pSeq Moves data from sram to Pci bus.
6 P2dSeq Moves data from Pci bus to ExtMem.
7 P2sSeq Moves data from Pci bus to sram.

The processors manage dma in the following way. The processor writes a dma descriptor to an Sram location
reserved for the dma channel. The format of the dma descriptor is dependent upon the targeted dma sequencer.
The processor then writes the dma sequencer number to the channel command register.

Each of the dma sequencers polls all thirtytwo dma channels in search of commands to execute. Once a
command request has been detected, the dma sequencer fetches a dma descriptor from a fixed location in
Sram. The Sram location is fixed and is determined by the dma channel number. The dma sequencer loads the
dma descriptor in to it's own registers, executes the command, then overwrites the dma descriptor with ending
status. Once the command has halted, due to completion or error, and the ending status has been written, the
dma sequencer sets the done bit for the current dma channel.

The done bit appears in a dma event register which the Cpu can examine. The Cpu fetches ending status from
Sram, then clears the done bit by writing zeroes to the channel command (ChCmd) register. The channel is
now ready to accept another command.

The format of all channel command registers is as follows.

bit _ npame ____ description
31:11 reserved Data written to these bits is ignored.
10:8 ChCmd 0 - Stops execution of the current operation and clears the corresponding event flag.
1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from ExtMem bus to sram.
3 - Transfer data from ExtMem to Pci bus.
4 - Transfer data from sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pei bus to Sram.
07:05 reserved Data written to these bits is ignored.
04:00 Chld Provides the channel number for the channel command.

Provisional Pat, App. of Alacritech, Inc. 126
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

FERR @ LIN0 E MW @

ALA00138512
DELL Ex.1031.130

-
v

-
1])
The format of the P2d or P2s descriptor is as follows.
Bit_ tescripti
127:96 PciAddrH Bits [63:32] of the Pci address.
95:64 PciAddrL Bits [31:00] of the Pci address.
59:32 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address,
31 PciEndian ‘When set, selects big endian mode for Pci transfers.
30 WideDbl When set, disables Pci 64-bit mode.
22 DstFlash Selects Flash for the external memory destination of P2d.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.
The format of the S2p or D2p descriptor is as follows.
bit . name______ description
123:96 MemAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
95:64 PciAddrH Bits [63:32] of the Pci address.
63:32 PeiAddrL Bits [31:00] of the Pci address.
30 SrcFlash Selects Flash for the external memory source of D2p.
23 PciEndian When set, selects big endian mode for Peci transfers.
2 WideDbl When set, disables Pci 64-bit mode.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.
%f The format of the §2d, D2d or D2s descriptor is as follows.
& bit . mame_ . description
s 127:124 reserved Reserved for future use,
= 123:96 SrcAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
o 95:60 reserved Reserved for future use,
= 59:32 DstAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
= 30 FlashSel Selects Flash for the external memory source of D2d or D2s.
B 2 FlashSel Selects Flash for the external memory destination of S2p or D2d.
15:00 XfrSz Bits [15:00] of the requested dma size expressed in bytes.
bk
= The format of the ending status or all channels is as follows.
) bit _ mame______ description
wd 127:64 reserved Not used.
" 63:32 ChkSum Represents the 1's compliment sum of all halfwords transferred during a P2d or D2d
operation only.
31:24 reserved Reserved for future use.
23:20 SrcStatus TBD.
19:16 DsiStatus TBD.
15:00 XfrSz Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the dma
operation was successful

The format of the ChEwnt register is as follows.

31:00 ChDn Each bit represents the done flag for the respective dma channel, These bits arc set by a

dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmd register ChCmdOp field.

Provisional Pat. App. of Alacritech, Inc. 127
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

FEPE Y LAINOEWN ERT
ALA00138513
DELL Ex.1031.131

MAC CONTROL (Macctrl)

Cpu_CLK l I I I I I

—————pf puy | puy »{ rNG »| crG Bl Regs Mac
WR | RD WR WR TO OTHER
Req0 | Req0 | —pof Reqd | gl Req0 Macs Data
| | TO OTHER Macs
i Y A
2 * .
= i CLK REG | rEG
S
=
= Xmt_CLK
= » >
e REG REG
-: A1
B v
P
REG
A
g A A J Y A
g LCTLD RStatus LRNG cPe
WD,
MachA
p
-
L—.;. OR
>
v
Mzc BUSY T0 Cpu
Provisional Pat. App. of Alacritech, Inc. 128

Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

FEERP Y LAMNOEN ERT
ALA00138514
DELL Ex.1031.132

Appendix A
The following load calculations are based on the following basic formulae:

N=X*R (Little’s Law) where
N =number of jobs in the system (either in progress or in a queue),
X = system throughput,
R =response time (which includes time waiting in queues).

U =X * S (from Little’s Law) where
S = service time,
U = utilization.
R =8/ (1-U) for exponential service times (which is the worst-case assumption).
A 256 byte frame at 100Mb/sec takes 20 psec per frame.
4 * 100 Mbit ethernets receiving at full frame rate is:
51200 (4 * 12800) frames/sec @ 1024 bytes/frame

102000 frames/sec @ 512 bytes/frame
204000 frames/sec @ 256 bytes/frame.

The following calculations assume 250 instructions/frame, 45nsec clock. Thus
S =250 * 45 nsecs = 11.2 psecs.

Av. Frame Size Thruput Utilization Response Nbr. in system

X) ®) ™)
1024 51200 .y 26 usecs 13
512 102000 >1 - -
256 204000 >1 - -

LERTDT " GOBTODOS

Lets look at it for varying instructions per frame assuming 512 bytes per frame average.

Instns Service Thruput Utilization Response Nbr. in system
Per Frame Time(S) (X) (0)] (R) ™)

250 11.2 usec 102000 >1 -- -

250 11.2 85000(*) .95 224 usecs 19

250 11.2 80000 (**) .89 101 8

225 10 102000 1.0 - -

225 10 95000 (*) .95 200 19

225 10 89000 (**) .89 90 8

200 9 102000 9 90 9

150 6.7 102000 68 20 2

(*) shows what frame rate can be supported to get a utilization of less than 1.
(**) shows what frame rate can be supported with 8 SRAM TCB buffers and at least 8

process contexts.

Provisional Pat. App. of Alacritech, Inc. 129
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105U8

""" FEWRP Y A0S ERT

ALA00138515
DELL Ex.1031.133

If 100 instructions / frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support
256 byte frames:
100 4.5 204000 91 50 10

Firstly note that these calculations assume that response times increase cxponentially as
utilization increases. This is the worst-case assumption, and probably may not be true for
our system.
The figures show that to support a theoretical full 4 * 100 Mbit receive load with an
average frame size of 512 bytes, there will need to be 19 active “jobs” in the system,
assuming 250 instructions per frame. Due to SRAM limitations, the current design
specifies 8 SRAM buffers for active TCBs, and not to swap a TCB out of SRAM once it
is active. So under these limitations, the INIC will not be able to keep up with the full
frame rate. Note that the initial implementation is trying to use only 8KB of SRAM,
although 16KB may be available, in which case 19 TCB SRAM buffers could be used.
This is a cost trade-off.
The real point here is the effect of instructions/frame on the throughput that can be
maintained. If the instructions/frame drops to 200, then the INIC is capable of handling
the full theoretical load (102000 frames/second) with only 9 active TCBs. If it drops to
100 instructions per frame, then the INIC can handle full bandwidth at 256 byte frames
(204000 frames/second) with 10 active TCBs. The bottom line is that ALL hardware-
assist that reduces the instructions/frame is really worthwhile. If header-assist hardware
can save us 50 instructions per frame then it goes straight to the throughput bottom line.

CERTIFICATE OF MAILING UNDER 37 CFR 1.10

[hereby certify that this Provisional Patent Application is being deposited with the
United States Postal Service as “Express Mail Post Office to Addressee”, label number
EH756230105US, in an envelope addressed to: Assistant Commissioner for Patents,
Washington, D.C. 20231, on October 14, 1997.

Date: Lets ber /7 1557 %
Mark Lauer
(person mailing Application)

LEMTOT" GOBT Y00

Provisional Pat. App. of Alacritech, Inc. 130
Inventors Laurence B. Boucher et al.
Express Mail Label # EH756230105US

T EARP YAINOENW BERT

ALA00138516
DELL Ex.1031.134

