
• t

let a highly-active interface lock out the others (which would happen with a single
queue).
The transmit request may be a segment that is less than the MSS, or it may be as.much as
a full 64K SMB READ. Obviously the fonner request will go out as one segment, the
latter as a number ofMSS-sized segments. The transmitting TCB must hold on tp the
request until all data in it has been transmitted and acked. Appropriate pointers to do this
will be kept in the TCB. A large buffer is acquired from the free buffer fifo, and the MAC
and TCP/IP headers are created in it. It may be quicker/simpler to keep a basic frame
header set up in the TCB and either dma directly this into the frame each time. Then data
is dmad from host memory into the frame to create an MSS-sized segment. This dma also
checksums the data. Then the checksum is adjusted for the pseudo-header and placed into
the TCP header, and the frame is queued to the MAC transmit interface which may be
controlled by the third sequencer. The final step is to update various window fieids etc in
the TCB. Eventually either the entire request will have been sent and acked, or a
retransmission timer will expire in which case the context is flushed to the host. In either
case, the INIC will place a command response in the Response queue containing the
command buffer handle from the original transmit command and appropriate st&tus.
The above discussion has dealt how an actual transmit occurs. However the real
challenge in the transmit processor is to determine whether it is appropriate to transmit at
the time a transmit request arrives. There are many reasons not to transmit: the receiver's
window size is <= 0, the Persist timer has expired, the amount to send is less thap a full
segment and an ACK is expected I outstanding, the receiver's window is not half-open
etc. Much of the transmit processing will be in determining these conditions.

5.3.4 Transmit Details - No Valid Context

The main difference between this and a context-based transmit is that the queued request
here will already have the appropriate MAC and TCP/IP (or whatever) headers in the
frame to be output. Also the request is guaranteed not to be greater than MSS-sized in
length. So the processing is fairly simple. A large buffer is acquired and the frame is
dmad into it, at which time the checksum is also calculated. If the frame is TCP/IP, the
checkswn will be appropriately adjusted ifnecessary (pseudo-header etc) and pfaced in
the TCP header. The frame is then queued to the appropriate MAC transmit intepace.
Then the command is immediately responded to with appropriate status through the
Response queue.

5.3.5 Transmit Notes

1. Slow-start: the INIC will handle the slow-start algorithm that is now a part of the
TCP standard. This obviates waiting until the connection is sending a full-rate
before passing it to the INIC.

2. Window Probe vs Window Update: an explanation for posterity
A Window Probe is sent from the sending TCB to the receiving TCB, and it means the
sender has the receiver in PERSIST state. Persist state is entered when the receiver
advertises a zero window. It is tbus the state of the transmitting TCB. In this state, be
sends periodic window probes to the receiver in case an ACK from the receiver bas been
lost The receiver will return his latest window size in the ACK.

Provisional Pat. App. of Alacritech, Inc. 57
Inventors Laurence B. Boucher et al.

Express Mail Label# EH756230105US

ALA00138443

Ex.1031.061DELL

A Window Update is sent from the receiving TCB to the sending TCB, usually to tell him
that the receiving window has altered. It is mostly triggered by the upper layer when it
accepts some data. This probably means the sending TCB is viewing the receiving TCB
as being in PERSIST state.

3. Persist state: it is designed to handle Persist state on the INIC. It seems
unreasonable to throw a TCB back to the host just because its receiver advertised a
zero window. This would nonnally be a transient situation, and would tent-1 to
happen mostly with clients that do not support slow-start. Alternatively, tl:i.e code
can easily be changed to throw the TCB back to the host as soon as a receiver
advertises a zero window.

4. MSS-sized frames: the INIC code will expect all transmit requests for which it has
no TCB to not be greater than the MSS. If any request is, it will be dropped and an
appropriate response status posted.

S. Silly Window avoidance: as a receiver, the INIC will do the right thing here and
not advertise small windows - this is easy. However it is necessary to also do
things to avoid this as a sender, for the cases where a stupid client does advertise
small windows. Without getting into too much detail here, the mechanism requires
the INIC code to calculate the largest window advertisement ever advertised by the
other end. It is an attempt to guess the size of the other end's receive buffer and
assumes the other end never reduces the size of its receive buffer. See Stevens Vol.
l pp. 325-326.

6 The Utility Processor

6.1 Summary

The following is a summary of the main functions of the utility sequencer of the
microprocessor:

• look at the event queues: Eventl3Type & Event23Type (we assume there will be an
event status bit for this - USE_EV13 and USE_EV23) in the events register; these
are events from sequencers 1 and 2; they will mainly be XMIT requests from the XMT
sequencer. Dequeue request and place the frame on the appropriate interface.
• RCV-frame support: in the model, RCV is done through VinicReceiveO which is
registered by the lower-edge driver, and is called at dispatch-level. This routine calls
VinicTransferDataCompleteO to check if the xfer (possibly DMA) of the frame into host
buffers is complete. Tue latter rtne is also called at dispatch level on a DMA-coi;npletion
interrupt. It queues complete buffers to the RCV sequencer via the nonnal queue
mechanism.
• Other processes may also be employed here for supporting the RCV sequencer.
• service the following registers: (this will probably involve micro-interrupts)

Header Buffer Address register:
buffers are 256 bytes long on 2?6-byte boundaries.
31-8 - physical addr in host of a set of

contiguous hddr buffers
7-0 - number ofhddr buffers passed.
Use contents to add to SmallHType queue

Provisional Pat. App. of Alacritech, Inc. 58
Inventors Laurence B. Boucher et al.

Express Mail Label# EH75623010SUS

ALA001 38444

Ex.1031.062DELL

...

Data Buffer Handle & Data Buffer Address registers:
buffers are 4K long aligned on 4K boundaries ...
Use contents to add to the FreeType queue.

Command Buffer Address register:
buffers are multiple of32 bytes up to lK long (2**5 • 32)
31-5 - physical add.r in host of cmd buffer
4-0 - length of cmd in bytes/32

(i.e. multiples of32 bytes)
Points to host cmd; get FreeSType buffer and move
command into it; queue to Xmit0-Xmit31'ype queues.

Response Buffer Address register:
buffers are 32 bytes long on 32-byte boundaries
31-8 - physical addr in host of a set of

contiguous resp buffers
7-0 - number of resp buffers passed.
Use contents to add to the ResponseType queue.

• low buffer threshold support: set approp bits in the ISR when the available-buffers
count in the various queues filled by the host falls below a threshold.

6.2 Further Operations of the Utility Processor

The utility processor of the microprocessor housed on the INIC is responsible for setting
up and implementing all configuration space and memory mapped operations, and also as
described below, for managing the debug interface.

All data transfers, and other INlC initiated transfers will be done via OMA.
Configuration space for both the network processor function and the utility processor
function will define a single memory space for each. This memory space will d~fine the
basic commwtlcation structure for the host. In general, writing to one of these memory
locations will perform a request for service from the INIC. This is detailed in t.l1e
memory description for each function. This section defines much of the operatibn of the
Host interface, but should be read in conjunction with the Host lnterface Strategy for the
Alacritech INIC to fully define the Host/INIC interface.

Two registers, DMA hardware and an interrupt function comprise the INIC interface to
the Host through PCI. The interrupt function is implemented via a four bit register
(PCl_INT) tied to the PCI interrupt lines. This register is directly accessed by the
microprocessor.

THE MICROPROCESSOR uses two registers, the PCI_Data_Reg and the
PCI_Address_Reg, to enable the Host to access Configuration Space and the memory
space allocated to the INIC. These registers are not available to the HosL but are used by
THE MICROPROCESSOR to enable Host reads and writes. The function of these two
registers is as follows.

Provisional Pat. App. of Alacritecb, Inc. 59
Inventors Laurence B. Boucher et al .

Express Mail Label# EH756230105US

ALA001 38445

Ex.1031.063DELL

PCl_ Data_ Reg

This register can be both read and written by THE MICROPROCESSOR. On write
operations from the host. this register contains the data being sent from the host. . On read
operations, this register contains the data to be sent to the host.

PCT_ Address_ Reg

This is the control register for memory reads and writes from the host. The structure of
the register is as follows:

Bit 31 - 24 Byte enable 7 - 0. Only the low order four bits are
valid for 32 bit addressing mode.

Bit 23 - 0 Memory access
1 Configuration access

Bit 22 - 0 Read (to Host)
I Write (from Host)

1 Bit 21 - 1 Data Valid

Bit 20 - 16 Reserved
Bit 15 - 0 Address

During a write operation from the Host the PCI_Data_Reg contains valid data after Data
Valid is set in the PCI_Address_Reg. Both registers are locked until THE
MICROPROCESSOR writes the PCI_Data_Reg, which resets Data Valid.

All read operations will be direct from SRAM. Memory space based reads will return 00.
Configuration space reads will be mapped as follows:

Confi~on Space 1
00

SMM Adciress Offset
00

04
08
oc
10
3C

Confii'Jration Space 2

00
04
08
oc
10
3C

All other reads to configuration space will return 00.

Provisional Pat. App. of Alacritecb, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label fl EH75623010SUS

04
08
oc
10
14

00
18
08
IC
20
24

60

ALA00138446

Ex.1031.064DELL

AOohTOT”SDBTSa0g

GesYoo

PCLDataReg

This register can be both read and written by THE MICROPROCESSOR. On write
operations from the host, this register contains the data being sent from the host. On read
operations, this register contains the data to be sent to the host.

PCLAddressReg

This is the control register for memory reads and writes from the host. The structure of
the register is as follows:

Bit31— 24 Byte enable 7—0. Only the low order four bits are
valid for 32 bit addressing mode.

Bit23-— 0 Memory access
1 Configuration access

Bit22— 0 Read (to Host)
1 Write (from Host)

1 Bit 21 - 1 Data Valid

Bit20— 16 Reserved

Bit15— 0 Address

During a write operation from the Host the PCI_Data_Reg contains valid data after Data
Valid is set in the PCI_AddressReg. Both registers are locked until THE
MICROPROCESSORwrites the PCI_Data_Reg, which resets Data Valid.

All read operations will be direct from SRAM. Memory space based reads will return 00.
Configuration space reads will be mapped as follows:

ConfigurationSpace}SRAMAddressOffset
00 00

04 04
08 08
oc 0c
10 10

3C 14

ConfigurationSpace2

00 00
04 18
08 08

oc 1C

10 20
3C 24

All other reads to configuration space will return 00.

Provisional Pat. App. of Alacritech, Inc. 60
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

JOSH Hat

ALA00138446

DELL Ex.1031.064

..
6.2.l CONFIGURATION SPACE

The INIC is implemented as a multi-function device. The first device is the network
controller, and the second device is the debug interface. An alternative production
embodiment may implement only the network controller function. Both configuration
space headers will be the same, except for the differences noted in the following'
description.

Vendor ID -This field will contain the Alacritech Vendor ID. One field will be•used for
both functions. The Alacritech Vendor ID is hex 139A.

Device ID - Chosen at Alacritech on a device specific basis. One field will be used for
both functions.

Command - Initialized to 00. All bits defined below as not enabled (0) will remain 0.
Those that are enabled will be set to 0 or 1 depending on the state of the system: Each
function (network and debug) will have its own command field.

Bit 0 - 0 1/0 accesses are not enabled
Bit 1 - 1 Memory accesses are enabled
Bit 2 - 1 Bus master is enabled
Bit 3 - 0 Special Cycle is not enabled
Bit 4 - l Memory Write and Invalidate is enabled
Bit 5 - 0 VGA palette snooping is not enabled
Bit 6 - 1 Parity checking is enabled
Bit 7 - 0 Address data stepping is not enabled
Bit 8 - SERR# is enabled
Bit 9 - 0 Fast back to back is not enabled

Status - This is not initialized to zero. Each function will have its own field. The
configuration is as follows:

Bit 5 - 1 66 MHz capable is enabled. This bit will be set if the INIC
Detects the system running at 66 MHz on reset

Bit 6 - 0 User Definable Features is not enabled
Bit 7 - I Fast Back-to-Back slave transfers enabled
Bit 8 - 1 Parity Error enabled - This bit is initialized to 0
Bit 9,10 - 00 - Fast device select will be set if we are at 33 MHz

01 - Medium device select will be set if we are at

Bit 11 - 1
Bit 12 - 1
Bit 13 - 1
Bit 14 - 1
Bit 15 - 1

66MHz
Target Abort is implemented. Initialized to 0.
Target Abort is implemented. Initialized to 0.
Master Abort is implemented. Initialized to 0.

· SERR# is implemented. Initialized to 0.
Parity error is implemented. Initialized to O.

Revision ID - The revision field will be shared by both functions.

Class Code - This is 02 00 00 for the network controller, and for the debug interface.
The field will be shared.

Provisional Pat. App. of Alacritecb, Inc.
Inventors Laurence B. Boucher et al.

Express Mail Label# EH756230105US

61

ALA00138447

Ex.1031.065DELL

6.2.1 CONFIGURATION SPACE

The INIC is implemented as a multi-function device. The first device is the network
controller, and the second device is the debug interface. An alternative production
embodiment may implement only the network controller function. Both configuration
space headers will be the same, exceptfor the differences noted in the following’
description.

Vendor ID — Thisfield will contain the Alacritech Vendor ID. One field will beused for
both functions. The Alacritech VendorID is hex 139A.

Device ID — Chosen at Alacritech on a device specific basis. Onefield will be used for
both functions.

Command — Initialized to 00. All bits defined below as not enabled (0) will remain 0.
Those that are enabled will be set to 0 or 1 depending on thestate ofthe system. Each
function (network and debug) will have its own commandfield.

BitO-0O JO accesses are not enabled

Bit1—1 Memory accesses are enabled
Bit2-—1 Bus master is enabled

Bit3-0 Special Cycle is not enabled
Bit4—1 Memory Write and Invalidate is enabled
BitS-0 VGA palette snooping is not enabled
Bit6—1 Parity checking is enabled
Bit7—0 Address data stepping is not enabled
Bit 8 — SERR# is enabled

Bit9-0 Fast back to back is not enabled

Status — This is notinitialized to zero. Each function will haveits own field. The

configuration is as follows:
Bit 5-1 66 MHz capableis enabled. This bit will be set if the INIC

Detects the system running at 66 MHz onreset
Bit6-—0 User Definable Features is not enabled

Bit7—1 Fast Back-to-Back slave transfers enabled

Bit8-—1 Parity Error enabled — This bit is initialized to 0
Bit 9,10 — 00 — Fast device select will be set if we are at 33 MHz

01 — Medium device select will be set ifwe are at
66 MHz

Bitl1—1 Target Abort is implemented. Initialized to 0.
Bit!12—1 Target Abort is implemented. Initialized to 0.
Biti3—1 Master Abort is implemented. Initialized to 0.
Bit 14-1 SERR#is implemented. Initialized to 0.
Bit15—1 Parity error is implemented. Initialized to 0.

2SaEO"aesIeeycbcocy
Revision ID — The revision field will be shared by both functions.

Class Code — This is 02 00 00 for the network controller, and for the debug interface.
The field will be shared.

Provisional Pat. App. of Alacritech, Inc. 6l
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

Pitayenoswiran

ALA00138447

DELL Ex.1031.065

•

Cache Line Size -This is initialized to zero. Supported sizes are 16, 32, 64 and ·128
bytes. This hardware register is replicated in SRAM and supported separately for each
function, but THE MICROPROCESSOR will implement the value set in Configuration
Space l (the network processor).

Latency Timer - This is initialized to zero. The function is supported. This hardware
register is replicated in SRAM. Each function is supported separately, but THE '
MICROPROCESSOR will implement the value set in Configuration Space I (the
network processor).

Header TYPe -This is set to 80 for both functions, but will be supported separately.

BIST - Is implemented. In addition to responding to a request to run self test, if test after
reset fails, a code will be set in the BISI register. This will be implemented separately
for each function.

Base Address Register - A single base address register is implemented for each function.
It is 64 bits in length, and the bottom four bits are configured as follows:

Bit 0 - 0 Indicates memory base address
Bit 1,2 - 00 Locate base address anywhere in 32 bit memory space
Bit 3 - 1 Memory is prefetchable

CardBus CIS Pointer - Not implemented- initialized to 0.

Subsystem Vendor ID - Not implemented-initialized to 0.

Subsystem ID - Not implemented-initialized to 0 .

Expansion ROM Base Address - Not implemented-initialized to 0.

Interrupt Line - Implemented-initialized to 0. Thls is implemented separately for each
function.

Interrupt Pin - This is set to 01, corresponding to INTA# for the network controller, and
02, corresponding to INTB# for the debug interface. This is implemented separately for
each function.

Min_ Ont - This can be set at a value in the range of 10, to allow reasonably long bursts
on the bus. This is implemented separately for each function.

Max _Lat - This can be set to 0 to indicate no particular requirement for frequency of
access to PCI. This is implemented separately for each function.

6.2.2 MEMORY SPACE

Because each of the following functions may or may not reside in a single location, and
may or may not need to be in SRAM at all, the address for each is really only used as an
identifier (label). There is, therefore, no control block anywhere in memory that
represents this memory space. When the host writes one of these registers, the utility

Provisional Pat. App. of Alacritech, Inc. 62
Inventors Laurence B. Boucher et al.

Express Mail Label# EH756230105US

ALA00138448

Ex.1031.066DELL

ShOEaeRSySy

Cache Line Size — Thisis initialized to zero. Supported sizes are 16, 32, 64 and 128
bytes. This hardware register is replicated in SRAM and supported separately for each
function, but THE MICROPROCESSORwill implementthe value set in Configuration
Space 1 (the network processor).

Latency Timer — Thisis initialized to zero. The function is supported. This hardware
register is replicated in SRAM. Each function is supported separately, but THE
MICROPROCESSORwill implementthe value set in Configuration Space 1 (the
network processor).

Header Type — Thisis set to 80 for both functions, but will be supported separately.

BIST —Is implemented. In addition to responding to a request to run self test, if test after
reset fails, a code will be set in the BIST register. This will be implemented separately
for each function.

Base Address Register — A single base address register is implemented for each function.
It is 64 bits in length, and the bottom four bits are configured as follows:

BitO— 0 Indicates memory base address
Bit 1,2-—00 Locate base address anywhere in 32 bit memory space
Bit3— 1 Memory is prefetchable

CardBus CIS Pointer — Not implemented—initialized to 0.

Subsystem Vendor ID — Not implemented—initialized to 0.

Subsystem ID — Not implemented—initialized to 0.

Expansion ROM Base Address — Not implemented—initialized to 0.

Interrupt Line — Implemented—initialized to 0. This is implemented separately for each
function.

Interrupt Pin — This is set to 01, corresponding to INTA# for the network controller, and
02, corresponding to INTB# for the debuginterface. This is implemented separately for
each function.

Min_Gnt— This can be set at a value in the range of 10, to allow reasonably long bursts
on the bus. This is implemented separately for cach function.

Max_Lat — This can be set to 0 to indicate no particular requirement for frequency of
access to PCI. This is implemented separately for each function.

6.2.2 MEMORY SPACE

Because each ofthe following functions may or may not reside in a single location, and
may or may not need to be in SRAM atall, the address for each is really only used as an
identifier (label). There is, therefore, no control block anywhere in memory that
represents this memory space. When the host writes one of these registers, the utility

Provisional Pat. App. of Alacritech, Inc. 62
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

2easmosefat

ALA00138448

DELL Ex.1031.066

Ex.1031.067DELL

processorwill construct the data required and transfer it. Reads to this memory will
generate 00 for data.

6.2.2.1 Network Processor

The following four byte registers, beginning at location h00 of the network processor’s
allocated memory, are defined.

00— Interrupt Status Pointer -- Initialized by the hostto point to a four byte area
wherestatus is stored

04— Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Oncestatus has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:

Bit 31 -ERR - Errorbits are set
Bit 30 — RCV — Receive has occurred

Bit 29 — XMT — Transmit command complete
Bit 25 — RMISS — Receive drop occurred due to no buffers

08— Interrupt Mask — Written by the host. Interrupts are masked for each
of the bits in the interrupt status when the samebit in the mask
register is set. When the Interrupt Mask register is written and as
a result a status bit is unmasked, an interruptis generated. Also,
whenthe Interrupt Status Register is written, enabling new status
to be stored, when it is stored if a bit is stored that is not masked

by the Interrupt Mask,an interrupt is generated.

OC— Header Buffer Address — Written by host to pass a set ofheader buffers to the
INIC.

LohTOT"ensraooag
10- Data Buffer Handle — First register to be written by the Hostto transfer a receive

data buffer to the INIC. This data is Host reference data. It is not used by the
INIC,it is returned with the data buffer. However,to insure integrity of the
buffer, this register must be interlocked with the Data Buffer Addressregister.
Once the Data Buffer Addressregister has been written, neither register can be
written until after the Data Buffer Handle register has been read by THE
MICROPROCESSOR.

14— Data Buffer Address -— Pointer to the data buffer being sent to the INIC by the
Host. Must be interlocked with the Data Buffer Handle

register.

18— Command Buffer Address XMTO — Pointer to a set of command

buffers sent by the Host. THE MICROPROCESSORwill DMA the buffers to
local DRAM found on the FreeSType queue and queue the Command

Provisional Pat. App. of Alacritech, Inc. 63
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

wSMoSeinaG an

ALA00138449

DELL Ex.1031.067

Ex.1031.068DELL

Buffer Address XMTO with the local address replacing the host
Address.

1C— Command Buffer Address SMT1

20— Command Buffer Address SMT2

24-— Command Buffer Address SMT3

28— Response Buffer Address -- Pointer to a set ofresponse buffers sent
by the Host. These will betreated in the same fashion as the
Command Buffer Address registers.

6.2.2.2 Utility Processor

Ending status will be handled by theutility processorin the samefashion as it is handled
by the network processor. At present two ending status conditions are defined B31 —
command complete, and B30 -— error. Whenendstatus is stored an interrupt is
generated.

Two additional registers are defined, Command Pointer and Data Pointer. The Host is
responsible for insuring that the Data Pointer is valid and points to sufficient memory
before storing a commandpointer. Storing a command pointer initiates command decode
and execution by the debug processor. The Host must not modify either command or
Data Pointer until ending status has been received, at which point a new command may
be initiated. Memory space is write only by the Host, reads will receive 00. The format
is as follows:

00-— InterruptStatus Pointer -- Initialized by the host to pointto a four byte area
where status is stored

04— Interrupt Status — Returned status from host. Sent after one or more
status conditions have been reset. Also an interlock for storing any
new status. Once status has been stored at the Interrupt Status Pointer
location, no new status will be stored until the host writes the Interrupt
Status Register. New status will be ored with any remaining
uncleared status (as defined by the contents of the returned status)
and stored again at the Interrupt Status Pointer location. Bits are
as follows:

Bit 31 — CC —- Command Complete
Bit 30 - ERR -- Error
Bit29 — Transmit Processor Halted

Bit28 — Receive Processor Halted

Bit27 — Utility Processor Halted

eeaa|
08— Interrupt Mask — Written by the host. Interrupts are masked for each

of the bits in the interrupt status when the samebit in the mask
register is set. When the Interrupt Mask register is written and as
a result a status bit is unmasked, an interrupt is generated. Also,

Provisional Pat. App. of Alacritech, Inc. 64
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

2Gane”Sosnat

ALA00138450

DELL Ex.1031.068

Ex.1031.069DELL

i

Zaher"oRese

MCIcRvec |

when the Interrupt Status Register is written, enabling new status
to be stored, when itis stored if a bit is stored that is not masked

by the Interrupt Mask, an interrupt is generated.

0C— CommandPointer — Points to commandto be executed. Storing
this pointer initiates command decode and execution.

10-— Data Pointer — Points to the data buffer. This is used for both read and write data,

determined by the command function.

7 Debug Interface

In order to provide a mechanism to debug the microcode running on the microprocessor
sequencers, a debug process has been defined which will run on the utility sequencer.
This processor will interface with a control program on the host processor over PCI.

71 PCI Interface

This interface is defined in the combination ofthe Utility Processor and the Host
Interface Strategy sections, above.

7.2 Command Format

The first byte of the command, the commandbyte,defines the structure of the remainder
of the command. The first five bits of the command byte are the commanditself. The
nextbit is used to specify an alternate processor, and thelast two bits specify which
processors are intended for the command.

7.2.1. Command Byte

7-3 2 1-0
Command Alt. Proc. Processor

7.2.2 Processor Bits

00 — Any Processor
01 — Transmit Processor
10 — Receive Processor

11 — Utility Processor

Provisional Pat. App. of Alacritech, Inc. 65
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

HOE Hk

ALA00138451

DELL Ex.1031.069

Ex.1031.070DELL

q aFRESaCaaSh

seae"ey

2Gap) 42M

7.2.3 Alternate Processor

This bit defines which processor should handle debug processingifthe utility processor
is defined as the processor in debug.

0— Transmit Processor

1 — Receive Processor

7.24 Single Byte Commands

00 — Halt

This command asynchronously halts the processor.

08 — Run

This commandstarts the processor.

10 —Step

This command steps the processor.

7.2.5 Eight Byte Commands

18 — Break

0 1 2-3 4-7

Command Reserved Count Address

This command sets a stop at the specified address, A count of 1 causes the specified
processorto halt the first time it executes the instruction. A count of 2 or more'causes the
processorto halt after that number of executions. The processoris halted just before
executingthe instruction. A count of 0 does not halt the processor, but causes a sync
signal to be generated. If a second processoris set to the same break address, the count
data from the first break request is used, and each time either processor executes the
instruction the count is decremented.

20 — Reset Break

Command Reserved Address

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B, Boucheretal.

Express Mail Label # EH756230105US

O88 Hawt

66

ALA00138452

DELL Ex.1031.070

Ex.1031.071DELL

This command resets a previously set break point at the specified address. Reset break
fully resets that address. Ifmultiple processors were setto that break point, all will be
reset.

28 — Dump

0 1 2-3 4-7

Command Descriptor Count Address

This commandtransfers to the host the contents of the descriptor. For descriptors larger
than four bytes, a count, in four byte increments is specified. For descriptors utilizing an
address the address field is specified.

7.2.6 Descriptor

00 — Register

This descriptor uses both count and address fields. Both fields are four byte based (a
count of 1 transfers four bytes).a

AhTae"BSSat
01 —Sram

This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, butif it is not four byte aligned, it is forced to the lower four byte aligned
address.

02 —Dram

This descriptor uses both count and address fields. Countis in four byte blocks. Address
is in bytes, butif it is not four byte aligned, it is forced to the lower four byte aligned
address

03 — Cstore

This descriptor uses both count and address fields. Countis in four byte blocks. Address
is in bytes, but if it is not four byte aligned,it is forced to the lower four byte aligned
address

Stand-alone descriptors:

The following descriptors do not use either the count or address fields. They transfer the
contents of the referenced register.

04 — CPU_STATUS

05-—PC

Provisional Pat. App. of Alacritech, Inc. 67
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

Pegs”smoebeibatt-

ALA00138453

DELL Ex.1031.071

Ex.1031.072DELL

06 —- ADDR_REGA

07 -ADDR_REGB

08 -RAM_BASE

09 — FILE_BASE

0A-—INSTR_REG_L

0B —INSTR_REGH

0C~MAC_DATA

0D —DMA_EVENT

OE ~ MISC_EVENT

OF -Q_IN_RDY

10~QOUT_RDY

11-LOCK STATUS

12 —STACK- This returns 12 bytes

13—Sense_ Reg

This register contains four bytes of data. If error status is posted for a command, if the
next commandthat is issued reads this register, a code describing the error in more detail
may be obtained. If any commandother than a dumpofthis register is issued after error
status, sense information will be reset.

ACSAOC"UESoo
30 — Load

0 1 2-3 4-7

Command Descriptor Count Address

This commandtransfers from the host the contents of the descriptor. For descriptors
larger than four bytes, a count, in four byte incrementsis specified. For descriptors
utilizing an address the address field is specified.

7.2.7 Descriptor

00 — Register

This descriptor uses both countand address fields. Both fields are four byte based.

Provisional Pat. App. of Alacritech, Inc. i 68
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

2eb?"Sosa

ALA00138454

DELL Ex.1031.072

Ex.1031.073DELL

AisTOT"SOSTfaooS

01 -—Sram

This descriptor uses both count and address fields. Countis in four byte blocks. ; Address
is in bytes, but if it is not four byte aligned,it is forced to the lowerfour byte aligned
address.

02 - Dram

This descriptor uses both count and addressfields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned,it is forced to the lower four byte aligned
address

03 — Cstore

This descriptor uses both count and address fields. Count is in four byte blocks. Address
is in bytes, but if it is not four byte aligned, it is forced to the lower four byte aligned
address. This applies to WCS only.

Stand-alone descriptors:

The following descriptors do not use either the count or address fields. They transfer the
contents of the referenced register.

04—- ADDR_REGA

05 —- ADDR_REGB

06 -RAM_BASE

07 — FILE_BASE

08 -MAC_DATA

09~-QINRDY

0A-Q_OUT_RDY

0B —- DBG_ADDR

38 — Map

This commandallowsan instruction in ROM to be replaced by an instruction in WCS.
The new instruction will be located in the Host buffer. It will be stored in the first eight
bytes of the buffer, with the high bits unused. To reset a mapped out instruction, map it
to location 00.

0 l=3 4-7
Command Address to Address to

Map To Map Out

Provisional Pat, App. of Alacritech, Inc. 69
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

 2Gah”soeaawt

ALA00138455

DELL Ex.1031.073

Ex.1031.074DELL

8 HARDWARE SPECIFICATION

FEATURES

* Peripheral Component Interconnect (PCI) Interface

- Universal PCI interface supports both 5,0V and 3,3¥ signaling environments,

- Supports both 32-bit and 64 bit PCI interface.

- Supports PCI clock frequencies from 15MHz to 66MHz

- High performance bus mastering architecture.

- Host memory based communications reduce register accesses,

- Host memory based interruptstatus word reduces register reads.

- Plug and Play compatible.

- PCIspecification revision 2.1 compliant.

- PCIbursts up to 512 bytes.

- Supports cache line operations up to 128 bytes.

- Both big-endian andlittle-endian byte alignments supported.

- Supports Expansion ROM.

4

T°OEPSire « Network Interface

- Four internal 802.3 and ethernet compliant Macs.

- Media Independent Interface (MII) supports external PHYs.

- 1OBASE-T, 100BASE-TX/FX and 100BASE-T4 supported.

- Full and half-duplex modes supported.

- Automatic PHY status polling notifies system of status change.

~ Provides SNMPsialistics counters.

- Supports broadcast and multicast packets.

- Provides promiscuous mode for network monitoring or multiple unicast address detection.

- Supports “huge packets” up to 32KB.

- Mac-layer loop-back test mode.

tinto

- Supports auto-negotiating Phys.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

2ean?”sMosaehant

70

ALA00138456

DELL Ex.1031.074

Ex.1031.075DELL

* Memory Interface

- External Dram buffering of transmit and receive packets.

- Buffering configurable as 4MB, 8MB, 16MB or 32MB.

- 32-bit interface supports throughput of 224MB/s

- Supports external FLASH ROM upto 4 MB, for diskless boot applications.

~ Supports external serial EEPROM for custom configuration and Mac addresses,

* Protocol Processor

- High speed, custom, 32-bit processor executes 66 million instructions per second.

- Processes IP, TCP and NETBIOSprotocols.

- Supports up to 256 resident TCP/IP contexts.

- Writable control store (WCS)allows field updates for feature enhancements.

« Power

- 3.3V chip operation.

- PCI controlled 5.0V/3.3V I/O cell operation.

¢ Packaging

- 272-pin plastic ball grid array.

- 91 PCIsignals.

- 68 MII signals.

- 58 external memory signals.

- 1 clock signal.

- 54 signals split between power and ground.

StainCRE"ROGERIESpphSy
i 0

he

- 272 total pins.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US$

sap?’sMosasihat

71

ALA00138457

DELL Ex.1031.075

Ex.1031.076DELL

BraooS
oh

LonFOE"€

2)BpS|2

GENERAL DESCRIPTION

The microprocessor is a 32-bit, full-duplex, four channel, 10/100-Megabit per second (Mbps),Intelligent
Network Interface Controller, designed to provide high-speed protocol processing for server applications.It
combines the functions of a standard network interface controller and a protocol processor within a single
chip. Although designed specifically for server applications, The microprocessor can be used by: PCs,
workstations and routers or anywhere that TCP/IP protocols are being utilized.

When combined with four 802.3/MII compliant Phys and Synchronous Dram (SDram), the INIC comprises
four complete ethernet nodes. It contains four 802.3/ethernet compliant Macs, a PCI Bus Interface Unit (BIU),
a Memory controller, transmit fifos, receive fifos and a custom TCP/IP/NETBIOSprotocol processor. The
INIC supports 10Base-T , 100Base-TX, 100Base-FX and 100Base-T4 via the MII interface attachment of
appropriate Phys.

The INIC Macs provide statistical information that may be used for SNMP. The Macs operate in promiscuous
mode allowing the [NIC to function as a network monitor, receive broadcast and multicast packets and
implement multiple Mac addresses for each node.

Any 802.3/MII compliant PHY can be utilized, allowing the INIC to support 1OBASE-T, 1OBASE-T2,
100BASE-TX, 100Base-FX and 100BASE-T4 as well as future interface standards. PHY identification and

initialization is accomplished through host driver initialization routines. PHY status registers can be polled
continuously by the INIC and detected PHY status changes reported to the host driver. The Mac can be
configured to support a maximum frame size of 1518 bytes or 32768 bytes.

The 64-bit, multiplexed BIU provides a direct interface to the PCI busfor both slave and master functions.
The INICis capable of operating in either a 64-bit or 32-bit PCI environment, while supporting 64-bit
addressing in either configuration. PCI bus frequencies up to 66MHz are supported yielding instantaneous bus

. transfer rates of 533MB/s. Both 5.0V and 3.3V signaling environments can be utilized by the INIC.
Configurable cache-line size up to 256B will accommodate future architectures, and Expansion ROM/Flash
support allows for diskless system booting. Non-PC applications are supported via programmablebig and little
endian modes. Host based communication has been utilized to provide the best system performance possible.

The INIC supports Plug-N-Play auto-configuration through the PCI configuration space. External pull-up and
pull-down resistors, on the memory I/Opins, allow selection of various features during chip reset. Support of
an external eeprom allows for local storage of configuration information such as Mac addresses.

External SDram provides frame buffering, which is configurable as 4MB, 8MB, 16MB or 32MB usingthe
appropriate SIMMs. Use of -10 speed grades yields an external buffer bandwidth of 224MB/s. The buffer
provides temporary storage of both incoming and outgoing frames. The protocol processor accesses the frames
within the buffer in order to implement TCP/IP and NETBIOS. Incoming frames are processed, assembled
then transferred to host memory under the control of the protocol processor. For transmit, data is moved from
host memory to buffers where various headers are created before being transmitted out via the Mac.

Provisional Pat. App. of Alacritech, Inc. 72
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

obese Hawt

ALA00138458

DELL Ex.1031.076

Ex.1031.077DELL

BLOCK DIAGRAM

MITA MIIB MIIC MIID

XmtA XmtB XmtC XmtD

& & & &
RevA RevB RevC RevD

Sec Seq Seq Seq

EXTERNAL

MEMORY

BUS2GTieBoeEeagcs
1KB X 128 Sram

uPROC & DMA Ctrl
PCI BUS

INTERFACE UNIT
PCI BUS

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

Peep”sobe im

73

ALA00138459

DELL Ex.1031.077

Ex.1031.078DELL

FROSa ie
ra

Fi

iheOE"Gig

OUTLINE

e Cores/Cells

LSI Logic Ethernet-110 Core, 100Base & 10Base Mac with MII interface.

LSI Logic single port Sram,triple port Sram and ROM available.

LSI Logic PCI 66MHz, SV compatible I/O cell.

LSI Logic PLL

« Die Size / Pin Count

LSI Logic G10 process.

MODULE DESCR SPEED AREA

Scratch RAM, 1Kx128 sport, 4.37 ns nom., 06.77 mm?

Wcs, 8Kx49 sport, 6.40 ns nom., 18.29 mm*

MAP, 128x7 sport, 3.50 ns nom., 00.24 mm?

ROM, 1Kx49 32col, 5.00 ns nom., 00.45 mm?*

REGs, 512x32 tport, 6.10 ns nom., 03.49 mm*

Macs, 75 mn’ x 4 = 03.30 mm*

PLL, Smm = 00.55 mm?

MISC LOGIC, 117,260 gates / (5035 gates /mm? = 23.29 mm?

OTALCORE|S56.22mmz=°°=

(Core side)* = 56.22 mm’
Core side = 07.50 mm

Die side = core side + 1.0mm (I/O cells) = 08.50 mm

Die area = 8.5 mmx 8.5 mm = 72.25 mom

Pads needed = 220 signals x 1.25 (vss, vdd) = 275 pins

LSI PBGA = 272 pins

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al-

Express Mail Label # EH756230105US

74

epsvsSMose|hat

ALA00138460

DELL Ex.1031.078

Ex.1031.079DELL

e Datapath Bandwidth

(10MB/s/100Base) x 2 (full duplex) x 4 connections =

Average frame size =

Frame rate = 80MB/s / 512B =

Cpu overhead / frame = (256 B context read) + (64B header read) +
(128B context write) + (128B misc.) =

Total bandwidth = (512B in) + (512B out) + (512B Cpu) -

Dram Bandwidth required = (1536B/frame) x (156,250 frames/s) =

Dram Bandwidth @ 60MHz = (32 bytes / 167ns) =

Dram Bandwidth @ 66MHz = (32 bytes / 150ns) =

PCI Bandwidth required =

PCI Bandwidth available @ 30 MHz, 32b, average =

PCI Bandwidth available @ 33 MHz, 32b, average =

PCI Bandwidth available @ 60 MHz, 32b, average =

PCI Bandwidth available @ 66 MHz, 32b, average ==

PCI Bandwidth available @ 30 MHz, 64b, average =

PCI Bandwidth available @ 33 MHz, 64b, average =

PCI Bandwidth available @ 60 MHz, 64b, average -

PCI Bandwidth available @ 66 MHz, 64b, average =

we

£GhTOT"sosTtsog e Cpu Bandwidth

Receive frame interval = 512B / 40MB/s 4

Instructions / frame @ GOMHz = (12.8us/frame) / (50ns/instruction)

instructions/frame

Instructions / frame @ 66MHz = (12.8us/frame) / (45ns/instruction)

instructions/frame

Required instructions / frame (per Clive) =

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

OS60 Hawt (2 Spe) Y2

80 MB/s

512B

156,250 frames / s

512B / frame

1536B / frame

240MB/s

202MB/s

224MB/s

80MB/s

46MB/s

S0MB/s

92MB/s

100MB/s

92MB/s

100MB/s

184MB/s

200MB/s

250 instructions/frame

75

ALA00138461

DELL Ex.1031.079

Ex.1031.080DELL

e Performance Features

- 512 registers improve performance through reduced scratch ram accesses and reduced instructions.

- Register windowing eliminates context-switching overhead.

- Separate instruction and data paths eliminate memory contention.

- Totally resident control store eliminates stalling during instruction fetch.

- Multiple logical processors eliminate context switching and improve real-time response.

- Pipelined architecture increases operating frequency.

- Shared register and scratch ram improve inter-processor communication.

- Fly-by state-Machine assists address compare and checksum calculation.

- TCP/TP-context caching reduces latency.

- Hardware implemented queues reduce Cpu overhead and latency.

- Horizontal microcode greatly improves instruction efficiency.
- Automatic frame DMA and status between Mac and dram buffer.

- Deterministic architecture coupled with context switching eliminates processorstalls.

m
=
-id

fr
te

a

=

be
o

~~

&

Provisional Pat. App. of Alacritech, Inc. 76
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

2«dh?SMostihat

ALA00138462

DELL Ex.1031.080

Ex.1031.081DELL

PROCESSOR

The processoris a convenient means to provide a programmable state-machine which is capable of processing
incoming frames, processing host commands,directing networktraffic and directing PCIbus traffic. Three
processors are implemented using shared hardware in a three-level pipelined architecture which launches and
completes a single instruction for every clock cycle. The instructions are executed in three distinct phases
corresponding to each of the pipeline stages where each phase is responsible for a different function.

The first instruction phase writes the instruction results of the last instruction to the destination operand,
modifies the program counter (Pc), selects the address source for the instruction to fetch, then fetches the
instruction from the control store. The fetched instruction is then stored in the instruction register at the end of
the clock cycle.

The processorinstructions reside in the on-chip control-store, which is implemented as a mixture of ROM and
Sram. The ROM contains 1K instructions starting at address 0x0000 and aliases each 0x0400 locations
throughoutthe first 0x8000of instruction space. The Sram (WCS)will hold up to 0x2000 instructions starting
at address 0x8000 and aliasing each 0x2000 locations throughoutthe last 0x8000 of instruction space. The
ROMand Sram are both 49-bits wide accounting for bits [48:0] of the instruction microword. A separate
mapping ram provides bits [55:49] of the mictoword (MapAddr) to allow replacementof faulty ROM based
instructions. The mapping ram has a configuration of 128x7 which is insufficient to allow a separate map
address for each of the 1K ROM locations. To allow re-mappingof the entire 1K ROM space, the map ram
address lines are connected to the address bits Fetch[9:3]. Theresult is that the ROM is re-mapped in blocks
of 8 contiguous locations.
The second instruction phase decodes the instruction which was stored in the instruction register.It is at this

v . point that the map address is checked for a non-zero value which will cause the decoder to force a Jmp
Em instruction to the map address. If a non-zero value is detected then the decoder selects the source operands for
= the Alu operation based on the values of the OpdASel, OpdBSel and AluOp fields. These operands are then
it stored in the decoderegister at the end of the clock cycle. Operands may originate from File, Sram,or flip-
Ce flop based registers. The second instruction phase is also where the results of the previous instruction are
= written to the Sram.

a The third instruction phase is when the actual Alu operation is performed, the test condition is selected and the
it Stack push and pop are implemented. Results of the Alu operation are stored in the results register at the end
a of the clock cycle.
Ww

“gd Following is a block diagram which shows the hardware functions associated with each ofthe instruction
phases. Note that various functions have been distributed across the three phases of the instruction execution in
order to minimize the combinatorial delays within any given phase.

Provisional Pat. App. of Alacritech, Inc. 77
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

Paqpe|~smoeswaan

ALA00138463

DELL Ex.1031.081

Ex.1031.082DELL

Cpu BLOCK-DIAGRAM

caaLOAD - aa raLOADuf

oT STOREa.
addr dini i ot

INSTRUCTION DECODER

AND
OPERAND MULTIPLEXER

eH)ad
Goleat=

ee
in

ha
7]
msos

=

pe|bal
Lads

 bs
LIT STAck

Cul

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheretal.

Express Mail Label # EH75623010SUS

2eh?”smo sSeihan

78

ALA00138464

DELL Ex.1031.082

Ex.1031.083DELL

LhhTOE"Boeraoos

SeaYoon

INSTRUCTION SET

The micro-instructions are divided into six types according to the program control directive. The micro-
instruction is further divided into sub-fields for which the definitions are dependent upon the instruction type.
The six instruction types are listed below.

ANSTRUCTION-WORDFORMAT

TYRE AS55149) [48:47] (46:42)_[41:53]___132:24) [23:16] [15:00]
Jce ob0000000 oboo, Aluop, OpdAsel, Opdssel, TatSel, Literal
Jmp Obooo0000 Obol. Aluop, Opdasel, OpdBsel, Flgsel, Literal
Isr 0b0000000 0b1l0, Aludp, OpdaAsel, OpdBsel, FlgSel, Literal

Rts Odbooo0000 Ob11, Aluop, OpdAsel, OpdBsel, Ohfé, Literal
Nxt 0b0000000 Obl1, Aludp, OpdAsel, OpdBsel, ¥lgSel, Literal
Map MapAddr Obxx, ObIKX, ObXXXXXXXKX, ObXXXXXXXXX, Ohxx, Ohnxxxx

All instructions include the Alu operation (AluOp), operand “A” select (OpdASel), operand “B” select
(OpdBSel) and Literal fields. Other field usage depends upon the instruction type.

The “jump condition code” (Jec) instruction causes the program counter to be altered if the condition selected
by the “test select” (TstSel) field is asserted. The new program counter (Pc) value is loaded from either the
Literal field or the AluOut as described in the following section and the Literal field may be used as a source
for the Alu or the ram address if the new Pe value is sourced by the Alu.

The “jump” (Jmp)instruction causes the program counter to be altered unconditionally. The new program
counter (Pc) value is loaded from either the Literal field or the AluOut as described in the following section.
The format allowsinstruction bits 23:16 to be used to perform a flag operation and the Literal field may be
used as a source for the Alu or the ram address if the new Pe value is sourced by the Alu.

The “jump subroutine” (Jsr) instruction causes the program counterto be altered unconditionally. The new
program counter (Pe) value is loaded from either the Literal field or the AluOut as described in the following
section. The old program counter value is stored on the top location of the Pc-Stack which is implemented as a
LIFO memory. The formatallows instruction bits 23:16 to be used to perform a flag operation ‘and the Literal
field may be used as a source for the Alu or the ram addressif the new Pe value is sourced by the Alu.

The “Nxt” (Nxt) instruction causes the program counter to increment. The format allows instruction bits
23:16 to be used to perform a flag operation and the Literal field may be used as a source for the Alu or the
ram address.

The “return from subroutine” (Rts) instruction is a special form of the Nxt instruction in which the “flag
operation” (FlgSel) field is set to a value of Ohff. The current Pe value is replaced with the last value stored in
the stack. The Literal field may be used as a source for the Alu or the ram address.

The Mapinstruction is provided to allow replacementof instructions which have been stored in ROM and is
implemented any time the “map enable” (MapEn) bit has been set and the contentof the “map address”
(MapAddr)field is non-zero. The instruction decoder forces a jump instruction with the Alu operation and
destination fields set to pass the MapAddr field to the program control block.

The program control is determined by a combination of PgmCtrl, DstOpd, FlgSel and TstSel. The behavior
of the program controlis defined with the following "C-like" description.

Provisional Pat. App. of Alacritech, Inc. 79
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

O86Oat

ALA00138465

DELL Ex.1031.083

Ex.1031.084DELL

SEQUENCERBEHAVIOR

if (MapEn & (MapAddr != 0b0000000)){ //re-map instr
Stackec = Stackc;
StackB = StackB;
StackA = StackA;

ImstrAddr = oh8000 | Pe[2:0] | (MapAddr << 3);
Pc = InstrAddr + (Execute & -DbgMd) ;

Petch = DbgMd ? DbgAddr: InstrAddr;
DbgAddr = pbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Jac) { //conditional jump
Stacke = Stackc;
StackB = StackB;
StackA = Stacka;

InstrAddr = -Tst@TstSel ? Pc:(AluDst==Pc) ? AluOut:Literal;
Pe = InstrAddr + (Execute & ~DbgMd)

Fetch = DbgMd ? DbgAddr:InstrAddr;
DbgAddr = DbgAddr + (Execute & DbgMd);}

else if (PgmCtrl == Imp) { //jamp
Stacke = Stackc;
StackB = StackB;
StackA = StackaA;

oi InstrAddr = (AluDst == Pc) ? AluOut:Literal;
o Pc = ImstrAddr + (Execute & ~DbgMd)
i Petch = DbgMd ? DbgAddr:InstrAddr;
mi DbgaAddr = DbgAddr + (Execute & DbgMd);}

he else if (PgmCtrl == Jar) { //jump subroutine
ans Stacke = Stacks;
iad StackB = StackA;
iB StackA = Pa;
5 Instraddr = (AluDst == Pc) ? AluOut:Literal;

heb Pe = ImstrAddr + (Execute & -DbgMd)
oy Fetch = DbgMd ? DbgAddr: InstrAddr;

be Dbgaddr = DbgAddx + (Execute & DbgMd);}
a else if (FlgSel == Rts) { //return subroutine
Ga InstrAddr = StackA;
eal StackA = StackB;

- StackB = Stackc;
Stackc = Errvec;

Pe = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddx = DbhgAddr + (Execute & DbgMd);}

else {
InstrAddr = Pc; //continue

StackA = StackA;
StackB = StackB;
Stacke = Stackc;

Poe = InstrAddr + (Execute & ~DbgMd)
Fetch = DbgMd ? DbgAddr:InstrAddr;

DbgAddx = DbgAddr + (Execute & DbgMd) ;}

Provisional Pat, App. of Alacritech, Inc. 80
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

2ep?”sosHawt

ALA00138466

DELL Ex.1031.084

Ex.1031.085DELL

//bit clear

//legical and

/{/legical and

//legical and not

//bit set

/flegical or

/flegical or

/flegical or not

//priority enc

/flegical xor

/flegical xor

//logical xor not

/fmove

//swap bytes

//swap doublets

ALU_OPERATIONS

Aluop OPERATION

obo0000 As (A & ~(1 << B));
C= O; V= (B >= 32) 7? 1:0;

obo0001 A= (A & B);
C= 0; V = 0;

obo0010 A= (Literal & B);
C= 0; V= 0;

0b00011 A= (-Literal & B);
C= 0; V= 0;

0b00100 A= (A | (1 << B));
C= 0; V = (B s= 32) ? 1:0;

oboo101 A= (A | B);
C=O; V = OQ;

Obo0110 A = (Literal | B);
C = 0; V = oO;

ci o0boo111 A = (~Literal | B);
= C= 0; V= 0;

ba 0b01000 for (i=31; i>=0; i--) if B[i] continue; A=i;
an C= 0; V = (B) ? 0:1;

S obo1001 A= (A ~ B);
0 C=0; V=0;

7" 0bo1010 A= ({Literal} * B);
a C= 0; Ve= Qa;

= 0b01011 A= ({~Literal} * B);
i= C #2 OG; Vs 0;

“ad 0b01100 A= 5;
C= 0; V= 0;

0b01101 A = B[31:24] * B[23:16] * B({15:08] * B[07:00];//hash
c= 0; V = 0;

0bo01110 A = {B[23:16],B([31:24] ,B(07:00] ,B[15:08] };
C= 0; Ve= 0;

0b01111 A= {B(15:00], B[31:16]};
Cs 0; V = O;

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

81

PitaneysMogwiaas
ALA00138467

DELL Ex.1031.085

Ex.1031.086DELL

AluOp FUNCTION

0b10000 = (A + B); /fadd B
= (A + B)(32); V = 0;

0b10001 = (A + B + C); /fadd B, carry
= (A + B+ C) (32); V = 0;

0b10010 = (Literal + B); /fada constant
= (Literal + B) [32]; Vv = 0;

0b10011 = (-Literal + B); //sub constant
= (-Literal + B) [32]; Vv = 0;

0b10100 = (A - B); //sub B
= (A - B) (32); V = 0;

0b10101 = (A - B - -C); //sub B, borrow
= (A - B - ~C)(32]; V = 0;

0b10110 = (-A + B); /fsub A
= (-A + B)(32); V = 0;

0b10111 = (-A + B - +C); //sub A, borrow

mn = (-A +B - ~C)(32); V= 0;

= ob11000 = (A << B); //sbift left A
= = A(31); V = (B >= 32) ? 0:1;7

me 0b11001 = (B << Literal); //shift left B
a B[31]; V = (Literal s= 32) ? 0:1;

= 0b11010 = (B << 1); //shift left B
ad = B(31]; V = 0;

& ob11011 = (A - B); //compare
a = (A - B)(32]; V = 0;

= 0b11100 = (A >> B); //shift right A
ty = AO]; V = (B >= 32) ? 1:0;w

“ad 0b11101 = (B >> Literal); //shift right B
= A([O]; V = (Literal >= 32) 7 1:0;

0b11110 = (B >> 1); //shift right B
= A[0O]; V = 0;

0b11111 = (B - A); //compare
= (B - A}(32]; V = 0;

Provisional Pat. App. of Alacritech, Inc. 82
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

OSDat
ALA00138468

DELL Ex.1031.086

Ex.1031.087DELL

Opdsel__

Ob0000aaaaa

Obo000laaaaa

ObOOLXXXXXX

0b0100000xx

0b0100001xx

0b0100010xX

a
fi—
oa

rE

e ObOLOOOLIXX
o

je
&

a}
ag

ObO1L001XXxKK

0b010100000

SELECTEDOPERANDS

File File@(OpdSel[4:0] | FileBase);
Allows paged access to any part of the register file.

CpuReg File@{2'bll, Cpuld, Opdsel [4:0] };
Allows direct access to Cpu specific registers.

reserved Reserved for future expansion.

CpuStatus ObOOODO00NOOO0OBHDOOOOONOOOOOOONCC
This is a read-only register providing information about the Cpu executing
(OpdSel[1:0)) cycles after the current cycle. "CC" represents a value
indicating the Cpu. Currently, only Cpuld values of 0, 1 and 2 are returned.
“H"represents the current state of Hit, “D" indicates DbgMd and “B"
indicates BigMd. Writing this register has no effect.

reserved Reserved for future expansion.

Pe OxO000AAAA

Writing to this address causes the program controllogic to use AluOut as the
new Pe value in the event of a Jmp, Jee or Jsr instruction for the Cpu
executing during the current cycle. If the current instruction is Nxt, Map, or
Rts, the register write has no effect. Reading this register returns the value in
Pe for the Cpu executing (OpdSel[1:0]) cycles after the current cycle.

DbgAddr 0xDOOOAAAA
Writing to this register alters the contents of the debug address register
(DbgAddr)for the Cpu executing (OpdSel[1:0]) cycles after the current
cycle. DbgAddr provides the fetch address for the control-store when
DbgMdhas been selected and the Cpu is executing. DbgAddr is also used
as the control-store address when performing a WrWcs@DbgAddr or
RdWes@DbgAddr operation. “D” represents bit 31 of the register. It is a general
purpose flag that is used for event indication during simulation. Reading this
register returns a value of 0x00000000.

reserved Reserved for future expansion.

RamAddr {0b1CCC, 0x000, Ob1, AAAA}
RamAddr = AluOut[15] ? AluOut : (AluOut | RamBase);
PrevCC = AluOut(31]7CCC : AluCC;

A read/write register. When reading this register, the Alu condition codes from the previous
instruction are returned together with RamAddr.

Always 1.
30 PrevC Previous Alu Carry.
29 PrevV Previous Alu Overflow.
28 PrevZ Previous Alu Zero.
27:16 Always 0.
15 Always 1.
14:0 RamAddr Contents of last Sram address used.

When writing this register, if alu_out{31] is set, the previous condition codes will be overwritten with
bits 30:28 of AluOut. If AluOut[15] is set, bits 14:0 will be written to the RamAddr, If AluOut [15]
is not set, bits 14:0 will be ored with the contents of the RamBase and written to the RamAddr,

Provisional Pat. App. of Alacritech, Inc. 83
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

Seah“smogha

ALA00138469

DELL Ex.1031.087

Ex.1031.088DELL

iRO"eeCS

OpdSel____

06010100001

SELECTEDOPERANDS

AddrRegA Ox0000AAAA
AddrRegA = AluOut;

A read/write operand which loads AddrRegA used to provide the address for read and write

the

06010100010

When AddrRegaA(15]is set, the contents will be presented directly to the ram. When AddrRegA[l5]is
reset, the contents will first be ored with the contents of the RamBase register before presentation to

ram. Writing to this register takes priority over Literal loads using FlgOp. Reading this'register returns
the current value of the register.

AddrRegB OxOO000AAAA
AddrRegB = AluOut;

A read/write operand which loads AddrRegB used to provide the address for read and write
operations.

the

060190100011

read

0b010100100

0b010100101

0b010100110

0b010100111

no

When AddrRegB[15]is set, the contents will be presented directly to the ram, When AddrRegB[15]is
reset, the contents will first be ored with the contents of the RamBaseregister before presentation to

tam. Writing to this register takes priority over Literal loads using FigOp. Reading this register returns
the current value ofthe register.

AddrRegAb OxOO00AAAA
AddrRegA = AluOut; AddrRegB = AluOut;

A destination only operand which loads AddrRegB and AddrRegA used to provide the address for

and write operations Writing to this register takes priority over Literal loads using FlgOp. Reading this
register returns the value 0x00000000.

RamBase Ox0000AAAA
RamBase = AluOut;

A read/write register which provides the base address for ram read and write cycles. When
RamAddr[15] is set, the contents will not be used, When RamAddr[15] is reset, the contents will first
be ored with the contents of the RamBase register before presentation to the ram. Reading this register
returns the value for the current Cpu,

FileBase ObO0000000000000000000000AAAAAAAAA
FileBase = AluOut;
FileAddr = OpdSel[8] ? OpdSel:(OpdSel + FileBase);

A read/write register which provides the base address for file read and write cycles. When OpdSel[8]
is

set, the contents will not be used and OpdSel will be presented directly to the address lines ofthe file.
When OpdSel[8] is reset, the contents will first be ored with the contents of the FileBase register
before presentation to the file. Reading this register returns the value for the current Cpu.

InstrRegL OxITITIIII
This is a read-only register which returns the contents of InstrReg[31;0]. Writing to this register has no
effect.

InstrRegH OxOOIIIIII
This is a read-only register which returns the contents of InstrReg[55:32]. Writing to this register has

effect.

Provisional Pat. App. of Alacritech, Inc. 84
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

2Sqh"|YsMose\aat
ALA00138470

DELL Ex.1031.088

Ex.1031.089DELL

Opdsel__.SELECTEDOPERANDs

0b010101000

0bO10101001

0b010101010

0b010101011

0b010101100

a

HO4

2BeleTYE"Deeee

Minus1

FreeTime

LiteralL

LiteralH

Oxffffffft

This is a read-only register which supplies a value Oxffffffff.. Writing to this
register has no effect.

A free-running timer with a resolution of 1.00 microseconds and a maximum count
of 71 minutes. This timer is cleared during reset.

Instr[15:0]
A read-only register. Writing to this register has no effect

Instr[15:0] < < 16;
A read-only register. Writing to this register has no effect

MacData - Writing to this address loads the AluOutdata into the MacData register for use
during Mac operations. The Mac operation, resulting from writing to the MacOp register,
determines the definition of the MacData register contents as follows.

MacOp
Mstop

WrMefg

WrMrng

RdPhy

WrPhy

MacDatadefinition
ODKXXXXXAXARXAAKARKAKARKAKAAKARAR

MacData is not used for the StopM operation.

hrstl, revd, rsvd, ercen, fulld, hrstl, hugen, nopre, paden, prtyl, xdl10, ipgr1(6-:0),
ipgr2[6-0], ipgt{6-0}.
Loads the MacCfg register with the contents of the MacData register. Refer to LSI Logics
Ethernet-110 Core Technical Manual for detailed definitions of these bits.

OMOQRCOOTONQUONGOUGKAXSSSSSSSSSSS

Loads seed[10:0) into the Mac's random number generator.

ObSOOORRRRKXXXPPPPIOOOGOOOOOOKKEK

Reads register[R] of phy(P].

ObXXXXRRRRXXXXPPPPDDDDDDDDDDDPPDDD
Writes register[R} of phy[P} with MacData(15:0).

Reading this register returns prsd[15:0] of Mac0 which contains phy status data returned to the
Mac at the completion of a RdPhy command. This data is invalid while MacBsy is asserted
as a result of a RdPhy command. Refer to the appropriate phy technical manual for a —
definition of the phy register contents.

Provisional Pat. App. of Alacritech, Inc. 85
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

2«ap’sMoaathatt

ALA00138471

DELL Ex.1031.089

Ex.1031.090DELL

OpdSel__.SELECTEDOPERANDS

06010101101 MacOp- A write only register. Writing to this address loads the MacSel register and staRts
execution of the specified operation as follows.

AluOut
OxxXXOCKKOXM

O20OCXK1KM

OxXXXXX2EM

flag.

07:05 reservedAhhe”Boekoo

description
Mstop - Halts execution of a MacOp for Mac[M]. The user must wait for MacBsy tw be
deasserted before issuing another command or changing the contents of MacData.
WrMefg - Writes the contents of MacData to the MacCfg register of Mac(M]. The user
must wait for MacBsy to be deasserted before issuing another command or changing the
contents of MacData.
WrMing - Writes the contents of MacData to the seed register of Mac[M]. The user must
wait for MacBsy to be deasserted before issuing another command or changing the contents
of MacData.
RdPhy - Reads the contents of reg{R) for phy[P] on the MIL management bus of Mac[M].
The contents may be read from MacData after MacBsy has been de-asserted.
WrPhy ~ Writes the contents of MacData{15:0] to the reg(R] of phy[P] on the MIT
management bus of Mac{M]. The user must wait for MacBsy to be deasserted before issuing
another command or changing the contents of MacData.
WrAddrAL - Writes the contents of MacData[)5:0] to MacAddrA[15:0) for Mac[M].
WrAddrAd - Writes the contents of MacData[1 1:0) to MacAddrA[47:16] for Mac[M).
WrAddrBL - Writes the contents of MacData[15:0] to MacAddrB[15:0] for. Mac{M].
WrAddrBH - Writes the contents of MacData{11:0] to MacAddrB[47:16] for Mac[M].

6b010101110 ChCmd A write-only register.

bi ay =
S411 reserved Data written to these bits is ignored.
10:8 command 0 - Stops execution of the current operation and clears the corresponding event

1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from Pci to ExtMem.
3 - Transfer data from ExtMem to Pei.
4 - Transfer data from Sram to ExtMem.
5 - Transfer data from ExtMem to Sram.
6 - Transfer data from Pci to Sram.
7 - Transfer data from Sram to Pci.
Data written to these bits is ignored.

04:00 Chid Provides the channel number for the channel command.

0b010101110 ChEvnt A read-only register.

bit name__
31:00 ChDn Each bit represents the done flag for the respective dma channel. These

bits are set by a dma sequencer upon completion of the channel
command. Cleared when the processor writes 0 to the corresponding
ChCmdregister.

0b010101111 GenEvnt A read-only register.

bit name__. -
31 PciRdEvat Indicates that a PCI initiator is attempting to read a proc. register.
30 PciWrEvat Indicates that a PC] initiator has posted a write to a pproc. register.
29 TimeEvnt An event which occurs once every 2.00 milliseconds.
28:00=reserved Reserved for future use.

Provisional Pat. App. of Alacritech, Inc. 86
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

24ah® “shoseitat
ALA00138472

DELL Ex.1031.090

Ex.1031.091DELL

4a

ee
teaTk=

CeEEEtag

06010110000

0b010110001

9b010110010

0b010110011

when

0b010110100

0b010110101

QOCtrl A write-only register used to select and manipulate a Q.

bit_ name :
31:11 reserved Data written to these bits are ignored.
10:8 QSz Used only during InitQ operations to specify the size of the QBdy in Dram.

7 ~ Queue depth is 32K entries (128KB).
6 - Queue depth is 16K entries (64KB).
5 - Queuedepth is 8K entries (32K5).
4 - Queue depth is 4K entries (16KB).
3 - Queue depth is 2K entries (SKB).
2 - Queue depth is 1K entries (4KB).
1 - Queue depth is $12 entries KB).
0 - Queue depth is 256 entries (IKB).

TS QOp=Specifies the queue operation to perform.
7-DbIQ Disables all queues.
6-EnQ~~Enables all queues.
5 - RdBdy Increments the QBdyRdPtr and incremenis the QTIWrPtr.
4 - WrBdy Decrements the QBdyWrPtr and increments the QHdRdPtr.
3-RdQ Returns a queue entry in register QData..
2-rsvd Reserved. Not to be used.

1-InitQ Set the queue status to empty and initializes QSz.
O-SeQ Selects the Qld to be utilized during writes 1 QData.

40 Qld Specifies the queue on which to perform all operations except DbIQ or EnQ.

QData A read/write register. Writing this register will result in the data being pushed on to
the selected queue, Reading this register fetches queue data popped off during the
previous RdQ operation.

reserved Reserved for future expansion.

XevCtrl A write-only register used to enable and disable Mac transmit and receive
sub-channels.

bit mame__
31:09 reserved Data written to these bits are ignored.
8 enable Whenset, indicates to the Mac transmit or receive sequencer that the subchannel

contains a transmit or receive descriptor.
07:05 reserved Data written to these bits is ignored.
04 RevCh Selects a Mac receive subchannel when set. Selects a Mac transmit subchannel

cleared,

03 reserved Data written to this bit are ignored.
02 SubCh Selects subchannel B when set or A when reset.
01:00 Maeld Provides the Mac number for the subchannel enable bit.

Lru Ox0000000A

A read/write operand indicating which ofthe 16 entries is least recently used. When
Reading This register the least recently used entry is returned,after which it is
automatically made the most recently used entry. This register should only be read
in conjunction with a Move’ operation of the ALU,else the results are
unpredictable. Writing to this register forces the addressed entry to become the least
recently used entry.

Mru 0x0000000A

A write only operand forcing the addressed entry to become the most recently used
entry.

Provisional Pat. App. of Alacritech, Inc. 87
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

Pea)"smoeseiban
ALA00138473

DELL Ex.1031.091

Ex.1031.092DELL

0b010111000

0b010111001

065010111010

0b010111011

0b0101111xx

0b0110XxXxXxx

ObO1LLLOXXXX

USE“UESESati
=*

EntraE
a

afin,

7Seaey@

QInRay

Constants

reserved

A read-only register comprising QHdnot full flags for each of the 32 queues.

A read-only register comprising QTI not empty flags for each of the 32 queues.

A read-only register comprising QEmpty flags for cach of the 32 queues.

A read-only register comprising QFull flags for each of the 32 queues.

Reserved for future expansion.

{0b000, OpdSel[4:0] }

Reserved for future expansion.

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

NeoseHhat

88

ALA00138474

DELL Ex.1031.092

Ex.1031.093DELL

oH
th€

onTEBSSanh
uehal

eePy

etaFE

Opdsel___SELECTEDOPERANDs

ODO1LI1XXXXSramOPERATIONS

Opdgel(31PostaddrOp
0 nop
i

Opdsel(21transposeCtrl
o don't transpose
Z transpose bytes

Qpdsel(1:0)Ramopdsz
o quadiet
iL triplet
2 doublet
3 byte

=RAM_READATTRIBUTES

endian trans- byte Sram
~Mode. pose. offs data
little o 0 abed
little o 1 abcX
little 0 a abxx
little 0 3 ak
little a: 0 abed
little 1 2 abcx
little L 2 abxx
little 1 3 axxxt

BIG 9 6 abed
BIG 0 i Xbed
BIG 0 2 ¥Xed.
BIG 9 3 xxxXd
BIG 2 9 abed
BIG 1 ZL Xbed
BIG 1 2 xXed
BIG 1 3 KXXd

—RAM_WRITEATTRIBUTES

endian trans- Opd Alu
mode. pose size out
little 0 Q abed
little o Tt Xbed
little 0 DB XXed
litrle 0 B KANG
little 1 Q abed
little 1 T Xbed
little 1 D XXed
little 1 B xkKXd
big o Q abed
big 0 T Xbed
big 0 BD XXcd
big 0 B xxxd
big L Q abed
big 1 T Xbed
big 1 DB xXed
big 1 Bo xXxxd

Oblaaaaaaaa File

Bey|

File@Opdsel (8:0);
Allowsdirect, non-paged, access to the top half of the register file.

RamAddr = RamAddr + (OpdSel([1:01]) ;

aeSOUBSE,OPBSAND

az=0 SzsT Si=D S258
abed Obed 00ca 9008
trap Qabc 00bc o00c
trap trap Q0ab 000b
trap trap trap od0a
deba Odeb O0de oood
trap Ocha o0cb o00c
trap trap 00ba 000b
trap trap trap o00a
abed dabe O0ab 000a
trap Obed o0bc 900b
trap trap 00cd 000c
trap trap trap oood
dcba Ocha o0ba 000a
trap Odcb o0cb o00b
trap trap o0dc 900c
trap trap trap 000d

———SQURCE_OPERAND

OF=0 OF=1 OF=2 Qr=3
abed trap trap trap
-bed bed- trap trap
--ed -cd- cd-~- trap
-oed --d- -d-- a---
dcba trap trap trap
-dcb dcb- trap trap
--de -de- de-- trap
---d --d- -d-- a---
abed trap trap trap
bed- -bed trap trap
ed-- -ed- --ed trap
d--- -d-- --i- word
dcba trap trap trap
deb- -deb trap trap
de-- -de- --de trap
d--- -d-- --d- ---d

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

 OSKN Dat

89

ALA00138475

DELL Ex.1031.093

Ex.1031.094DELL

TstSel__-SBLECTEDTEST0111111

ObXOOXXEXX

Obx0100000

Obx0100001

0bx0100010

ObXOLOO011

0bx0100100

Obx0100101

0bx0100110

0bxX0100111

0bX0101000

Obx0101001

af 0bx010101X

ObXO1011XX

bt ObXOLLOAKK

~~ ObxXO1L11KXXK

5 ObXOLXXXXX
hee

CG ObX1XXXXXX
be

= FigSel_.
obooo00000

obooo000001

oboo000010

0b00000011

0b00000100

0b00000101

ObooooO1L1LA

ObOOGOLAAX

ObO00010XxXX

Obooo1L1XkxX

eae”200

Tst = TstSel(7] * AluOut[TstSel[4:0)] //Alu bit

Tst = TstSel(7) * c //earry

Tst = TstSel({7]) * v //error

Tst = TetSel[(7) *~ Zz /fzere

Tst = TstSel(7] ~ (Zz | ~¢c) //less or equal

Tst = TstSel(7] * Prevc /fprevious carry

Tst = TstSel(7] ~ PrevV //previous error

Tst = TstSel[7]) *~ PrevZ /{previous zero

Tst = TstSel[7] * (PrevZ & Z) //64b zero

Tst = TstSel[7] ~ QOpDn //queue op okay

Tst =- reserved

Tat = reserved

Tat = reserved

Tat = TstSel(7) ~* Lock[TstSel[2:0)} [tests the current value of
Lock(TstSel[2:0]) = 1; ‘ithe Lock then set it.

Tst = TstSel[(7] * Lock[TstSel{2:0)) {tests the value of Lock.

Tat = reserved

Tat = reserved

No operation.

SelfRst Forces a self reset for the entire chip excluding the PCI configuration
registers

SelBigEnd Selects big-endian mode for ram accesses for the current Cpu.

SelLitEnd Selects little-endian mode for ram accesses for the current Cpu.

DbIMap Disable instruction re-mapping for the current Cpu.

EnbMap Enable instruction re-mapping for the current Cpu.

reserved

reserved

ClrLck Lock[FigSel[2:0]] = 0;
Clears the semaphore register bit for the current Cpu only.

reserved

Provisional Pat. App. of Alacritech, Inc. 90
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

OBHat

ALA00138476

DELL Ex.1031.094

Ex.1031.095DELL

ObOO10xXXxX

ObOO11XXXxX

0b01000000

60b01000001

Obo1000010

0601000011

Obo1000100

ObO1L0001KX

aHTOT"Boaesos
ObOLOOGLOXX

0b010011xx

0b010100Xx

0b010101xxX

ObO1011Xxx

ObO11X¥XxX

Ob1XXXXxXXX

wnNro

RamAdar = Literal(15} ? Literal —: (Literal | RamBase);
RamAddr = AddrRegA(I5] ? AddrRega : (AddrRegA | RamBase);
RamAddr = AddrRegB[15] ? AddrRegB : (AddrRegB | RamBase);
if (OpdA = = RamAddr)

RamAddr = AluOut{i5) =? AluOut —_; (AlnOut | RamBase);
else if (OpdA == ram)

RamAddr = AddrRegB{15] ? AddrRegB : (AddrRegB | RamBase);else
RamAddr = AddrRegA[15] ? AddrRegA : (AddrRegA | RamBase);

addrreqload
nep
AddrRegA = Literal;
AddrRegB = Literal;
AddrRegA = Literal; AddrRegB = Literal;

note: When specifying the same register for both the load and select fields, the currentvalue ofthe
register, before it is loaded with the new value, will be used for the ram address.

reserved

WrWesL@Dbg

WrWesH@Dbg

RdWesL@Dbg

RdWesH@Dbg

reserved

Step

PeMd

DbgMd

Run

Causes the bits (31:0] of the control-store at address DbgAddr to be
written with the current AluOut data.

Causes the bits [63:32] of the control-store at address DbgAddr to be
written with the current AluOut data then increments DbgAddr.

Causes the bits [31:0] of the control-store at address DbgAddr to be
moved to file address Ox1 ff.

Causes the bits [63:32] of the control-store at address DbgAddr to be
moved to file address Ox1 ff then increments DbgAddr.

Allows the Cpu (FlgSel[]:0)) cycles after the current cycle to execute a single
instruction. There is no effect if the Cpu is not halted. Anoffset of 0 is not allowed.

Selects the Pe as the address source for the control-store during
instruction fetches for the Cpu (FlgSel{1:0)) cycles after the current cycle.

Selects the DbgAddr address register as the address source for the
control-store during instruction fetches for the Cpu (FlgSel[1:0])
cycles after the current cycle.

Halts the Cpu (FigSel[1:0]) cycles after the current cycle.

Clears Halt for the Cpu (FigSel{1:0]) cycles after the current cycle.

Provisional Pat. App. of Alacritech, Inc. 91
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

Gane”smosbehat
ALA00138477

DELL Ex.1031.095

Ex.1031.096DELL

DATA FLOW

ZOHhTOEK"so0sTranog
Provisional Pat. App. of Alacritech, Inc. 92

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

OSHat
ALA00138478

DELL Ex.1031.096

Ex.1031.097DELL

“AhTAL”"BoOBT30n0g

SRAM CONTROL SEQUENCER (SramCtrl)

Sram is the nexus for data movementwithin the INIC. A hierarchy of sequencers, working in concert,
accomplish the movement of data between dram, Sram, Cpu, ethernet and the Pci bus. Slave sequencers,
provided with stimulus from master sequencers, request data movement operations by way of the Sram, Pci
bus, Dram and Flash. The slave sequencers prioritize, service and acknowledge the requests

The preceding block diagram shows all of the master and slave sequencers of the INIC product. Request
information such as r/w, address, size, endian and alignment are represented by each request line.
Acknowledge information to master sequencers include only the size of the transfer being acknowledged.

The following block diagram illustrates how data movement is accomplished for a Pci slave write to Dram.
Note that the Psi (Pci slave in) module functions as both a master sequencer. Psi sends a write request to the
SramCtrl module. Psi requests Xwr to move data from Sram to dram, Xwr subsequently sends a read request
to the SramCtrl module then writes the data to the dram via the Xetrl module. As each piece of data is moved
from the Sram to Xwr, Xwr sends an acknowledge to the Psi module.

PCI BUS

93Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

Sean*\ 9sMoswane

ALA00138479

DELL Ex.1031.097

Ex.1031.098DELL

AonTOE*SOReStraon

SRAM CONTROL SEQUENCER (SramCtrl)

Addi oe... Addr/
ce Req N Cel Cyl’

Data 0 Data N

133MHz CLK

Arbiter

\/ V

133MHz_ pa

Register

Align

adr DIN

Register Sram

133MHz

Register

i

Partial Align

Ack Sram
/ Rd

Ack_sz Data

eoS
Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucheret al.

Express Mail Label # EH75623010SUS

@ 4ah* | ¥sosfat
ALA00138480

DELL Ex.1031.098

Ex.1031.099DELL

The Sram control sequencer services requests to store to, or retrieve data from an Sram organized as 1024
locations by 128 bits (16KB). The sequencer operates at a frequency of 133MHz, allowing both a Cpu access
and a dma access to occur during a standard 66MHz Cpu cycle. One 133MHz cycle is reserved for Cpu
accesses during each 66MHz cycle while the remaining 133MHz cycle is reserved for dma accesses on a
prioritized basis.

The preceding block diagram shows the major functions of the Sram control sequencer. A slave sequencer
begins by asserting a request along with r/w, ram address, endian, data path size, data path alignment and
request size. SramCtrlprioritizes the requests. The request parameters are then selected by a multiplexer
which feeds the parameters to the Sram via a register. The requestor provides the Sram address which when
coupled with the other parameters controls the input and outputalignment. Sram outputs are fed to the output
aligner via a register. Requests are acknowledged in parallel with the returned data.

Following is a timing diagram depicting two ram accesses during a single 66MHz clock cycle.

Cpu
CLOCK

GebLece

SecwtXXXKXXX
DMA

Gnt | | |2hFOE"PUBSaoog
fi

;¢k j3it
RO;t f5EiFI APPLY TED CreAda

i AIM FT Cpe Lal ALIGN (ORLASOPUT Daet READ D8 WATE Cpe Dm WITH FMA Date EAD OR WHITE 2Cpa [its READ On WRITE 2OMA tami
. ALAN ANE RETUICE 1 Cp Dan ALCS ANT RETURN FEMA Dan ALAGM ANID RETURN2"Cpa Ti

Provisional Pat. App. of Alacritech, Inc. 95
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

OS”Sweseihat

ALA00138481

DELL Ex.1031.099

Ex.1031.100DELL

EXTERNAL MEMORY CONTROL(Xctrl)

Xctrl provides the facility whereby Xwr, Xrd, Defg and Eectrl access external Flash and Dram. Xctrl
includes an arbiter, i/o registers, data multiplexers, address multiplexers and control multiplexers. Ownership
of the external memory interface is requested by each block and granted to each of the requesters by the
arbiter function. Once ownership has been granted the multiplexers select the address, data and control signals
from owner, allowing access to external memory.

. Arbiter | Grant 3
XrdReq
XrdAddr

XrdState
XrdCirl

XrdData / ;
XKwrReq
XwrAddr
XwrState

XwrCtrl
XwrData

_ Mux

DefgReq

ASEE"ekeooo
DefgState

DefgCul
DefgData

EectriReq
EectrlAddr
EectriState

— Xcurl
EectriData

Provisional Pat. App. of Alacritech, Inc. 96

Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

1020 Daw2Gee2

ALA00138482

DELL Ex.1031.100

Ex.1031.101DELL

MACY

CCBEH
ehCEC*

EXTERNAL MEMORY READ SEQUENCER(Xrd)

The Xrd sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Xrd
sequencer moves data from external sdram or flash to the Sram,via the Xctrl module, in blocks of 32 bytes
orless. The nature of the sdram requires fixed burst sizes for each ofit's internal banks with ras precharge
intervals between each access. By selecting a burst size of 32 bytes for sdram reads and interleaving bank
accesses on a 16 byte boundary, we can ensure that the ras precharge interval for the first bank is. satisfied
before burst completion for the second bank,allowing us to re-instruct the first bank and continue with
uninterrupted dram access. Sdrams require a consistent burst size be utilized each and every time'the sdram is
accessed. For this reason, if an sdram access does not begin or end on a 32 byte boundary, sdram bandwidth
will be reduced due to less than 32 bytes of data being transferred during the burst cycle.

The following block diagram depicts the major functional blocks of the Xrd sequencer. The first step in
servicing a request to move data from sdram to Sram is the prioritization of the master sequencer requests.
Next the Xrd sequencer takes a snapshotof the dram read address and applies configuration information to
determine the correct bank, row and column address to apply. Once sufficient data has been read, the Xrd
sequencerissues a write request to the SramCtrl sequencer which in turn sends an acknowledge to the Xrd
sequencer. The Xrd sequencer passes the acknowledge alongto the level two master with a size code
indicating how much data was written during the Sram cycle allowing the update of pointers and'counters. The
dram read and Sram write cycles repeat until the original burst request has been completed at which point the
Xrd sequencerprioritizes any remaining requests in preparation for the next burst cycle,

Contiguous dram burst cycles are not guaranteed to the Xrd sequencer as an algorithm is implemented which
ensures highest priority to refresh cycles followed by flash accesses, dram writes then dram reads,

Following is a timing diagram illustrating how data is read from sdram. The dram has been configured for a
burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a read
command two clock cycles later. The bank select/activate for bank B is next issued as read data begins
returning two clocks after the read command was issued to bank A. Two clock cycles before we need to
receive data from bank B we issue the read command. Once all 16 bytes have been received from bank A we
begin receiving data from bank B.

66MHz PILL PLL SLL SL SLL LLL LL

controls wrb sela da selb tdb

read data KNXTKAXEKOXNYKEKEY

write data KXTKXHY XXX)

Provisional Pat. App. of Alacritech, Inc. 97
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

2Gh?”smoseaat

ALA00138483

DELL Ex.1031.101

Ex.1031.102DELL

EXTERNAL MEMORY READ SEQUENCER(Xrd)

a | =“
D2p XAddr 4 To Xetri
D2s

D2d EN
ptSramG ttD2q :

Pso XData - SramData
XmtA.
XmtB

a XmtC
5 XmtD XCtrl 4 To Xctrl
bet

i)
iG

js
Co
beons

ad

= SEQ
State To Xetrl

Ack To requester

XetrlReg

XetrlDin SramReq
XetrlGnt

SramGnt

SramAck

Sram AckSz =
SramParams

PTOVIsional Pat. App. of Alacritech, Inc. 98
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

HOSe Hat
ALA00138484

DELL Ex.1031.102

Ex.1031.103DELL

EXTERNAL MEMORYWRITE SEQUENCER (Xwr)

The Xwr sequencer is a slave sequencer, Servicing requests issued by master sequencers, the Xwr sequencer
moves data from Sram to the external sdram orflash, via the Xctrl module, in blocks of 32 bytesjorless while
accumulating a checksum of the data moved. The nature of the sdram requires fixed burst sizes for each ofit's
internal banks with ras precharge intervals between each access. By selecting a burst size of 32 bytes for
sdram writes and interleaving bank accesses on a 16 byte boundary, we can ensure that the ras prechage
interval for the first bank is satisfied before burst completion for the second bank, allowing us to re-instruct
the first bank and continue with uninterrupted dram access. Sdrams require a consistent burst size be utilized
each and every time the sdram is accessed. For this reason, if an sdram access does not begin or end on a 32
byte boundary, sdram bandwidth will be reduced due to less than 32 bytes of data being transferred during the
burst cycle.

The following block diagram depicts the major functional blocks of the Xwr sequencer. The first step in
servicing a request to move data from Sram to sdram is the prioritization of the level two master requests.
Next the Xwr sequencer takes a Snapshot of the dram write address and applies configuration information to
determine the correct dram, bank, row and column address to apply. The Xwr sequencer immediately issues a
read command to the Sram to which the Sram responds with both data and an acknowledge. TheXwr
sequencer passes the acknowledgeto the level two master along with a size code indicating how much data
was read during the Sram cycle allowing the update of pointers and counters. Once sufficient data has been
read from Sram, the Xwr sequencer issues a write command to the dram starting the burst cycle and

a computing a checksum as the data flies by. The Sram read cycle repeats until the original burst request has
2 been completed at which point the Xwr sequencer prioritizes any remaining requests in preparation for the
& next burst cycle.
in

= Contiguous dram burst cycles are not guaranteed to the Xwr sequencer as an algorithm is implemented which
ensures highestpriority to refresh cycles followed by flash accesses then dram writes.=

“ Followingis a timing diagram illustrating how data is written to sdram. The dram has been configured for a
. burst of four with a latency of two clock cycles. Bank A is first selected/activated followed by a write
re command two clock cycles later. The bank select/activate for bank B is next issued in preparation for issuing
“ the second write command. As soon as the first 16 byte burst to bank A completes we issue the write
fe command for bank B and begin supplying data.

af
vii

controls 3e wra sel sela a Se rdb

PeaKKON

read data. XDOYPIYHEY KeXX)

Provisional Pat. App. of Alacritech, Inc. 99
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

Pia?’smo se nam

ALA00138485

DELL Ex.1031.103

Ex.1031.104DELL

i"PoseoomSy
ro"

Extt
a

the,

EXTERNAL MEMORY WRITE SEQUENCER (Xwr)

P2d

S2d

D2d

Q2d
Psi
RevA

RevB

RevC

RevD

XcetriGnt

SramGnt
SramAck

Sram AckSz
SramRdData

XDataaaefilegA

FtUtXCul

a
el

f

a

ional Pat, App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

TO Requester

TO Xctr]

TO Xetrl

TO Xetrl

TO D2d

TO P2d

TO Xcetrl

Ack TO requester

XctrlReq

SramReq

SramGnt

SramParams

100

O20Hat

ALA00138486

DELL Ex.1031.104

Ex.1031.105DELL

AhPOT"oeraCs

GaneYs

PCI MASTER-OUT SEQUENCER (Pmo)

The Pmo sequencer acts only as a slave sequencer, Servicing requests issued by master sequencers, the Pmo
sequencer moves data from an Sram based fifo to a Pci target, via the PeiMstrIO module, in bursts of up to
256 bytes. The nature of the PCI bus dictates the use of the write line command to ensure optimal system
performance. The write line command requires that the Pmo sequencerbe capable of transferring a whole
multiple (1X, 2X, 3X, ...) of cache lines of which the size is set through the Pci configuration registers. To
accomplish this end, Pmo will automatically perform partial bursts until it has aligned the transfers on a cache
line boundary at which time it will begin usage of the write line command. The Sram fifo depth, of 256 bytes,
has been chosen in order to allow Pmo to accommodate cache line sizes up to 128 bytes. Provided the cache
line size is less than 128 bytes, Pmo will perform multiple, contiguous cacheline bursts until it has exhausted
the supply of data.

Pmo receives requests from two separate sources; the dram to Pci (D2p) module and the Sram to Pci (S2p)
module. An operation first begins with prioritization of the requests where the S2p module is given highest
priority. Next, the Pmo module takes a Snapshot of the Sram fifo address and uses this to generate read
requests for the SramCtrl sequencer. The Pmo modulethen proceeds to arbitrate for ownership of the Pci bus
via the PeiMstrIO module. Once the Pmo holding registers have sufficient data and Pci bus mastership has
been granted, the Pmo module begins transferring data to the Pci target. For each successful transfer, Pmo
sends an acknowledge and encoded size to the master sequencer, allow it to update it’s internal pointers,
counters and status. Once the Pci burst transaction has terminated, Pmo parks on the Pci bus unless another
initiator has requested ownership. Pmo again prioritizes the incoming requests and repeats the process.

PCI BUS

101
Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

Nobohat ~

ALA00138487

DELL Ex.1031.105

Ex.1031.106DELL

PCI MASTER-IN SEQUENCER(Pini)

The Pmi sequencer acts only as a slave sequencer. Servicing requests issued by master sequencers, the Pmi
sequencer moves data from a Pcitarget to an Sram based fifo, via the PeiMstrIO module, in bursts of up to
256 bytes, The nature of the PCI bus dictates the use of the read multiple commandto ensure optimal system
performance. The read multiple command requires that the Pmi sequencer be capable of transferring a cache
line or more of data. To accomplish this end, Pmi will automatically perform partial cache line bursts untilit
has aligned the transfers on a cache line boundary at which timeit will begin usage of the read multiple
command. The Sram fifo depth, of 256 bytes, has been chosen in order to allow Pmi to accommodate cache
line sizes up to 128 bytes. Provided the cache line size is less than 128 bytes, Pmi will perform multiple,
contiguous cacheline bursts until it has filled the fifo.

Pmi receive requests from two separate sources; the Pci to dram (P2d) module and the Pci to Sram (P2s)
module. An operation first begins with prioritization of the requests where the P2s module is given highest
priority. The Pmi module then proceeds to arbitrate for ownership of the Pci bus via the PeiMstrIO module.
Once the Pci bus mastership has been granted and the Pmi holding registers have sufficient data, the Pmi
module begins transferring data to the Sram fifo. For each successful transfer, Pmi sends an acknowledge and
encoded size to the master sequencer, allowing it to update it's internal pointers, counters and status. Once the
Pci burst transaction has terminated, Pmi parks on the Pci bus unless another initiator has requested
ownership. Pmi again prioritizes the incoming requests and repeats the process.

PCI BUS

Provisional Pat. App. of Alacritech, Inc, 102
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

2<ab® “sMose\hat
ALA00138488

DELL Ex.1031.106

Ex.1031.107DELL

‘ Dram TO PCI SEQUENCER (D2p)

The D2p sequencer acts is a master sequencer. Servicing channel requests issued by the Cpu, the D2p
sequencer Manages movement of data from dram to the Pci bus by issuing requests to both the Xrd sequencer
and the Pmo sequencer. Data transfer is accomplished using an Sram based fifo through which data is staged.

D2p can receive requests from any ofthe processor's thirty-two dma channels. Once a command ‘request has
been detected, D2p fetches a dma descriptor from an Sram location dedicated to the requesting channel] which
includes the dram address, Pci address, Pci endian and request size. D2p then issues a request to the D2s
sequencer causing the Sram based fifo to fill with dram data. Once the fifo contains sufficient data for a Pci
transaction, D2s issues a request to Pmo which in turn moves data from the fifo to a Pci target. The process
repeats until the entire request has been satisfied at which time D2p writes ending status in to the Sram dma
descriptor arca andsets the channel done bit associated with that channel. D2p then monitors the dma channels
for additional requests. Following is an illustration showing the major blocks involved in the movementof data
from dram to Pcitarget.

AhTOE"eeeS

103
Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

NoOoSaehat — Bsaa2
ALA00138489

DELL Ex.1031.107

Ex.1031.108DELL

* "Dram TO PCI SEQUENCER(D2p)

CHANNEL

TO Xrd

TO Pmo

a5
3

mR
= COUNT TO Xrd
3

i RD_Ptr

ue XrdAck

ia FIFO
= WR_Ptr TO Xrd= —_

= Xrd Status
XFR

a OPTIONS

Pmo Ack

SEQ
State

Pmo Status
FifoCnt

Pmo Req

Sram Ack Xrd Req
SramReq

EN

-t#—_—_From Sram

Sram Rd Data ‘SramParams

Provisional Pat. App. of Alacritech, Inc. 104
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

YVESMOStHhat

ALA00138490

DELL Ex.1031.108

Ex.1031.109DELL

PCI TO DRAM SEQUENCER(P2d)

The P2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the P2d sequencer manages movementof data from Pci bus to dram by issuing requests to both
the Xwr sequencer and the Pmi sequencer. Data transfer is accomplished using an Sram based fifo through
which data is staged.

P2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, P2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Pei address, Pci endian and request size. P2d then
issues a request to Pmo which in turn moves data from the Pci target to the Sram fifo. Next, P2d issues a
request to the Xwr sequencer causing the Sram based fifo contents to be written to the dram. The process
repeats until the entire request has been satisfied at which time P2d writes ending stats in to the Sram dma
descriptor area and sets the channel done bit associated with that channel. P2d then monitors the dma channels
for additional requests. Followingis an illustration showing the major blocks involved in the movementof data
from a Pci target to dram.

aeESTCCycy
% al LierLOVE"E

105
; Provisional Pat, App. of Alacritech, Inc.Inventors Laurence B, Boucher et al.

Express Mail Label # EH756230105US

HOR Hkt Gas)Y26
ALA00138491

DELL Ex.1031.109

Ex.1031.110DELL

"PCI TO DRAM SEQUENCER (P2d)

CHANNEL
ID

 EF XwrChksum
Bi

_ XwrAck

=
=

ae XwrStatus
G
4 XFR

: OPTIONS

PmiAck

PmiStatus

SramAck

SramRdData

Provisional Pat. App. of Alacritech, Inc. 106

Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

O60Dail
ALA00138492

DELL Ex.1031.110

Ex.1031.111DELL

SRAM TO PCI SEQUENCER(S2p)

The SZp sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the $2p sequencer manages movement of data from Sram to the Pci bus by issuing requests to the
Pmo sequencer

S2p can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2p, operating as a slave sequencer. fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. S2p then
issues a request to Pmo which in turn moves data from the Sram to a Pci target. The process repeats until the
entire request has been satisfied at which time S2p writes ending status in to the Sram dma descriptor area and
sets the channel done bit associated with that channel. S2p then monitors the dma channels for additional
requests. Followingis an illustration showing the major blocks involved in the movementof data from Sram to
Pci target.

= EoERTwho

 {GhEO”OORT

Provisional Pat. App. of Alacritech, Inc. 107
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

GahYsMostihat

ALA00138493

DELL Ex.1031.111

Ex.1031.112DELL

SRAM TO PCI SEQUENCER(S2p)

S09
i

PmoAckShTOT"soet
PmoStatus

SramAck

SramRdData

Provisional Pat. App. of Alacritech, Inc. 108

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

Of86@ Hawt
ALA00138494

DELL Ex.1031.112

Ex.1031.113DELL

PCI TO SRAM SEQUENCER(P2s)

The P2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued by
the Cpu, the P2s sequencer manages movement of data from Pei bus to Sram by issuing requests to the Pmi
sequencer,

P2s can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, P2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the Sram address, Pci address, Pci endian and request size. P2s then
issues a request to Pmo which in turn moves data from the Pci target to the Sram. The process repeats until
the entire request has been satisfied at which time P2s writes ending status in to the dma descriptor area of
Sram and sets the channel!done bit associated with that channel. P2s then monitors the dma channels for
additional requests. Following is an illustration showing the major blocks involved in the movementof data
from a Pci target to dram.

 fhToT”SRCAOOS

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

 2ane|Ya0

109

ALA00138495

DELL Ex.1031.113

Ex.1031.114DELL

: PCI TO SRAM SEQUENCER(P2s)

PmiAckAthFOF"soaragoy
PmiStatus

SramAck

SramRdData

110Provisional Pat, App. of Alacritech, Inc.

Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

Pleghe|”sole i

ALA00138496

DELL Ex.1031.114

Ex.1031.115DELL

DRAM TO SRAM SEQUENCER(D2s)

The D2s sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the D2s sequencer manages movement of data from dram to Sram by issuing requests to the Xrd
sequencer,

D2s can receive requests from any ofthe processor's thirty-two dma channels. Once a command request has
been detected, D2s, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address and request size. D2s then issues a
request to the Xrd sequencer causing the transfer of data to the Sram. The process repeats until the entire
request has been satisfied at which time D2s writes ending status in to the Sram dma descriptor area and sets
the channel done bit associated with that channel. D2s then monitors the dma channels for additional requests.
Following is an illustration showing the major blocks involved in the movement of data from dram to Sram.

Provisional Pat. App. of Alacritech, Inc. 111
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

2ap”sMostiaat

ALA00138497

DELL Ex.1031.115

Ex.1031.116DELL

DRAM TO SRAM SEQUENCER (D2s)

CHANNEL

XrdAck

LaOT!Beeons
XrdStatus

SramAck

SramRdData

Provisional Pat. App. of Alacritech, Inc. 112

Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

Pen?sosaa
ALA00138498

DELL Ex.1031.116

Ex.1031.117DELL

SRAM TO DRAM SEQUENCER(82d)

The S2d sequencer acts as both a slave sequencer and a master sequencer. Servicing channel requests issued
by the Cpu, the $2d sequencer manages movement of data from Sram to dram by issuing requests to the Xwr
sequencer.

S2d can receive requests from any of the processor's thirty-two dma channels. Once a command request has
been detected, S2d, operating as a slave sequencer, fetches a dma descriptor from an Sram location dedicated
to the requesting channel which includes the dram address, Sram address, checksum reset and requestsize.
$2d then issues a request to the Xwr sequencer causing the transfer of data to the dram. The process repeats
until the entire request has been satisfied at which time S2d writes ending status in to the Sram dma descriptor
area and sets the channel done bit associated with that channel, $2d then monitors the dma channels for

additional requests. Following is an illustration showing the major blocks involved in the movementof data
from Sram to dram,

CSSito
ihy oeCe

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

HOSaeHat 2ah®) Yof

113

ALA00138499

DELL Ex.1031.117

Ex.1031.118DELL

SRAM TO DRAM SEQUENCER(S2d)

CHANNEL

mTr
=

5

a=

rm

ne

Pa XwrAck

XwrStatus

SramAck

SramRdData

Provisional Pat. App. of Alacritech, Inc. 114

Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

O80 Dat 2apa»p
ALA00138500

DELL Ex.1031.118

Ex.1031.119DELL

AOe"ASESeoo

2Gene Y a1

PCI SLAVE INPUT SEQUENCER(Psi)

The Psi sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pei
master, the Psi sequencer manages movementof data from Pci bus to Sram and Pci bus to dram via Sram by
issuing requests to the SramCtrl and Xwr sequencers.

Psi manages write requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Psi separates these Pci bus operations in to two categories with different action taken for each. Dram accesses
result in Psi generating write request to an Sram buffer followed with a write request to the Xwr|sequencer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied. An event
notification is set for the processor allowing message passing to occur through dram space.

All other Pci write transactions result in Psi posting the write information including Pci address, Pci byte
marks and Pci data to a reserved location in Sram, then setting an event flag which the event processor
monitors. Subsequent writes or reads of configuration, expansion rom, Sram or registers are terminated with
retry until the processor clears the eventflag. This allows the INIC to keep pipelining levels to a minimum for
the posted write and give the processor ample time to modify data for subsequent Pci read operations.

Thefollowing diagram depicts the sequence of events when Psi is the target of a Pci write operation. Note that
events 4 through 7 occur only when the write operation targets the dram.

EVENT NOTIFY

EVENT CLEAR
_p PCIBUS

Provisional Pat. App. of Alacritech, Inc. 113
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

hoseasas

ALA00138501

DELL Ex.1031.119

Ex.1031.120DELL

3

fTOT"POTooo

PCI SLAVE OUTPUT SEQUENCER(Pso)

The Pso sequencer acts as both a slave sequencer and a master sequencer. Servicing requests issued by a Pci
master, the Pso sequencer manages movement ofdata to Pci bus form Sram and to Pci bus from dram via
Sram by issuing requests to the SramCtrl and Xrd sequencers.

Pso manages read requests to configuration space, expansion rom, dram, Sram and memory mapped registers.
Pso separates these Pci bus operations in to two categories with different action taken for each. Dram accesses
result in Pso generating read request to the Xrd sequencer followed with a read request to Sram buffer.
Subsequent write or read dram operations are retry terminated until the buffer has been emptied.

All other Pci read transactions result in Pso posting the read request information including Pci address and Pci
byte marks to a reserved location in Sram,then setting an event flag which the event processor monitors.
Subsequent writes or reads of configuration, expansion rom, Sram orregisters are terminated with retry until
the processorclears the eventflag. This allows the INIC to use a microcoded response mechanism to return
data for the request. The processor decodes the request information, formulates or fetches the requested data
and stores it in Sram then clears the event flag allowing Pso to fetch the data and return it on the Pci bus.

The following diagram depicts the sequence of events when Pso is the target of a Pci read operation.

EVENT NOTIFY
EVENT CLEAR

PCI BUS

116Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

2«ap?Smosaeihn

ALA00138502

DELL Ex.1031.120

Ex.1031.121DELL

FRAME RECEIVE SEQUENCER(RevX)

The receive sequencer (RevSeq) analyzes and managesincoming packets,stores the result in dram
buffers, then notifies the processor through the receive queue (RevQ) mechanism. The process begins
whena buffer descriptor is available at the outputof the FreeQ. RevSeq issues a request to the Qmg
which responds by supplying the buffer descriptor to RevSeq. RevSeq then waits for a receive packet.
The Mac, network, transport and session information is analyzed as each byte is received and stored
in the assembly register (AssyReg). Whenfourbytes of information is available, RevSeq requests a
write of the data to the Sram. When sufficient data has been stored in the Sram based receivefifo, a

dram write requestis issued to Xwr, The process continues until the entire packet has been received
at which point RevSeq stores the results of the packet analysis in the beginning of the dram buffer.
Once the buffer and status have both been stored, RcvSeq issues a write-queue request to Qmg.
Qmgrespondsbystoring a buffer descriptor provided by RevSeq. The process then repeats.If
RevSeq detects the arrival of a packetbefore a free buffer is available,it ignores the packet and sets
the FrameLoststatusbit for the next received buffer.

Thefollowing diagram depicts the sequence of events for successful reception of a packet followed by
a definition of the receive buffer and the buffer descriptor as stored on the RevQ.

Mac Ctrl
OPTIONSr’soereoo9

Provisional Pat. App. of Alacritech, Inc. 117

Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

Pea?)soeBeha

ALA00138503

DELL Ex.1031.121

Ex.1031.122DELL

MacDataIn

MacCtriin

MacStatus_IN

MacAddrA

& MacAddrB
o

BE

oS

z SramAck
is

a SramRdData

- FREEQID

RCV_QID

Ctrl_Q_ID

PauseDetEn
FRAME RECEIVE SEQUENCER(RevX)

Provisional Pat. App. of Alacritech, Inc.
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

(2 Ap791D Ob" w

118

ALA00138504

DELL Ex.1031.122

Ex.1031.123DELL

RECEIVE BUFFER DESCRIPTOR

31:30 reserved

29:28 size A copyof the bits in the FreeBufDser.
27:00 address Represents the last address +1 to which frame data was transferred. The address

wraps around at the boundary dictated by the S bits. This can be used to determine
the size of the frame received.

RECEIVE BUFFER FORMAT

FRAMEStatus A OFFSET 0x0000:0x0003

bit__
31

30

29
28
27
26
25
24
23

og
aC
te

DE"6oE BER
hs

_a

SET os

Pisaweiy2

name______
attention

CompositeErr

CtrlFrame

IpDn
802.3Dn
MacADet
MacBDet
MacMest
MacBest

IpMcst
IpBest
Frag
IpOffst
IpFigs
IpOpts
TepFigs
TepOpts
TepUrg
CarrierEvnt

LongEvnt
FrameLost

reserved
NoAck

FrameTyp
NwkTyp
TrnsptTyp
NetBios
reserved
channel

Indicates one or more ofthe following: CompositeErr, !IpDn, !MacADet &
!MacBDet, IpMest, IpBest, !ethernet & !802.3Snap, 'Ip4, !Tcp .
Set when any of the error bits of ErrStatus are set or if frame processing stops
while receiving a Tcp or Udp header.
A control frame was received at our unicast or special MltCst address.
Frame processing Hlted due to exhaustion of the IP4 length counter.
Frame processing Hited due to exhaustion of the 802.3 length counter.
Frame's destination address matched the contents of MacAddrA.
Frame's destination address matched the contents of MacAddrB.
The Mac detected a MltCst address.
The Mac detected a BrdCst address.

The frame processor detected an IP MltCst address.
The frame processor detected an IP BrdCst address.
The frame processor detected a Frag IP datagram.
The frame processor detected a non-zero IP datagram offset.
The frame processor detected flags within the IP datagram.
The frame processor detected a header length greater than 20 for the IP datagram.
The frame processor detected an abnormal header flag for the TCP segment.
The frame processor detected a header length greater than 20 for the TCP segment.
The frame processor detected a non-zero urgent pointer for the TCP segment.
Refer to E/10 Technical Manual.
Refer to EJ10 Technical Manual,

Set when an incoming frame could not be processed as a result of an outstanding
frame completion event not yet serviced by the utility processor.

The frame processor detected a
00- Reserved. 01- ethernet. 10 - 802.3. 11 - 802.3 Snap.
00- Unknown, 01- Ip4, 10 - Ip6 11 - ip other.
00- Unknown. 01- reserved. 10 - Tep 11 - Udp
A NetBios frame was detected.

The Mac on whichthis frame was received.

Provisional Pat. App. of Alacritech, Inc. 119
Inventors Laurence B. Boucher etal.

Express Mail Label # EH756230105US

ON DET

ALA00138505

DELL Ex.1031.123

Ex.1031.124DELL

FRAMEStatus B

bit__
31 802.3Shrt

30 BufOvr
29 BadPkt
28 InvidPrmbl
27 CreErr
26 DrbINbbl
25 CodeErr

24 IpHadrShrt
3 IpIncmplt
22 JpSumErr
21 TepSumErr
20. TepHdrShrt
19:16 PressCd

Par
o

mi
bs 15:08 MacHsh
8 07:00 CtxHsh
a|
@

a TIME STAMP
H bit_ name___31:00 RevTime“ CHECKSUM

15:00 TepChksum

RESERVED

FRAMEData

2Gaya %2

OFFSET 0x0004:0x0007

End of frame was encountered before the 802.3 length count was exhausted.
The frame length exceded the buffer space available.
Refer to EJJO Technical Manual.
Refer to EJJ0 Technical Manual.
Refer to EJJO Technical Manual.
Refer to E710 Technical Manual.
Refer to E10 Technical Manual.

The IP4 header length field contained a value less than Ox5.
The frame terminated before the IP length counter was exhausted.
The IP header checksum was not Oxffff at the completion of the IP header read.
The session checksum was not Oxffff at the termination of session processing.
The TCP header length field contained a value less than 0x5.
The state of the frame processorat the time the frame processing terminated.
0b0000 Processing Mac header.
0b0001 Processing 802.3 LLC header.
O0b0010 Processing 802.3 SNAP header.
0b0011 Processing unknown network data.
0b0100 Proceasing IP header.
O0b0101 Processing IP data (unknown transport).
0b0110 Processing transport header (IP data).
0b0111 Processing transport data (IP data).
0b1000 Processing IP processing complete.Ob1001 Reserved.
Obi01x Reserved.
Oblixx Reserved.
The Mac destination-address hash. Refer to E710 Technical Manual.

The 8-bit context-hash generated by exclusive-oring all bytes of the IP source
address, IP destination-address, transport source port and the transport destination
port.

OFFSET 0x0008:0x000B

The contents of FreeClk at the completion of the frame receive operation.

OFFSET 0x000C:0x000F

eSCrlLDULlOn

Reflects the value of the IP header checksum at frame completion or IP header
completion. If an IP datagram was notdetected, the checksum provides a total for
the entire data portion of the received frame. The data area is defined as those bytes
received after the type field of an ethernet frame, the LLC header of an 802.3 frame
or the SNAP header of an 802.3-SNAP frame.

Reflects the value of the transport checksum at IP completion or frame completion.
If IP was detected but session was unknown, the checksum will not include the

psuedo-header. If IP was not detected, the checksum will be 0x0000.

OFFSET 0x0010:0x0011

OFFSET 0x0012:END OF BUFFER

Provisional Pat. App. of Alacritech, Inc. 120
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

ONDat

ALA00138506

DELL Ex.1031.124

Ex.1031.125DELL

FRAME TRANSMIT SEQUENCER(Xmtx)

The transmit sequencer (XmtSeq) analyzes and manages outgoing packets, using buffer descriptors
retrieved from the transmit queue (XmtQ)then storing the descriptor for the freed buffer in the free
buffer queue (FreeQ). The process begins when a buffer descriptoris available at the outputof the
XmtQ. XmtSeq issues a request to the Qmg which responds by supplying the buffer descriptor to
XmtSeq. XmtSeq then issues a read request to the Xrd sequencer. Next, XmtSeq issues a read
request to SramCtri then instructs the Mac to bagin frame transmission. The Mac accepts data from
XmtSeq which analyzes the packet asit flys-by in order to generate checksumstoinsert in the data
stream. Once the frame transmission has completed, XmtSeqstores the buffer descriptor on the
FreeQ thereby recycling the buffer.

The following diagram depicts the sequence of events for successful transmission of a packet followed
by a definition of the receive buffer and the buffer descriptor as stored on the XmtQ.

ohTOE"Bieraga
121Provisional Pat. App. of Alacritech, Inc.

Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

O20Hat ©saneyoo
ALA00138507

DELL Ex.1031.125

Ex.1031.126DELL

FRAME TRANSMIT SEQUENCER(XmtX)

MacData_IN

MacCtrlIN

MacStatus_IN

= MacAddrAi

E
& MacAddrB
fi:

& SramAck

i SramRdData

iB FREEQID

ctrl_QID

XmtQ_ID

PauseClr

PauseDet

Cpu_PauseReq

Provisional Pat. App. of Alacritech, Inc. 122

Inventors Laurence B. Boucheretal.

Express Mail Label # EH756230105US

OSHDat
ALA00138508

DELL Ex.1031.126

Ex.1031.127DELL

TRANSMIT BUFFER DESCRIPTOR

 bit__mame_____ ipti =31 ChksumEn When set, XmtSeq ‘will ipsert a calculated checksum. Whenrreset, XmtSeqwwill
not alter the outgoing data stream.

30 reserved

29:28 size Represents the size of the buffer by indicating at what boundary the buffer should
start and terminate. This is used in combination with EndAddr to determine the
starting address of the buffer :

s= ° 256B boundary. A[7:0) ignored.S= 2KB boundary. A[10:0) ignored.5 a 4KB boundary, A[11;0) ignored.
S=3 32KB boundary. A[14:0) ignored.

27:00 EndAddr The address of the last byte to transmit plus one.

TRANSMIT BUFFER FORMAT

fm CHECKSUM PRIMER OFFSET 0x0000:0x0003

= Wel RRan, ASNcpaeeeneni
pad 31:00 Primer A value to be added during checksum accumulation. For [PV4., this should include
ee the psuedo-header values, protocol and Tep-length.
ife

= RESERVED OFFSET 0x0004:0x0005

® FRAMEData OFFSET 0x0006:END OF BUFFER
a

f
& TRANSMIT Status VECTOR

ae) bit name___.deseription Sa See — aaaaaLokErr Indicates that a link status error occuredbeftbefore or during transmit.8 15 reserved
14 ExcessDeferral Refer to EI]0 Technical Manual.
13 LateAbort Refer to E110 Technical Manual.
12 ExcessColl Refer to E110 Technical Manual.
11 UnderRun Refer to E110 Technical Manual.

10 ExcessLgth Refer to E110 Technical Manual.
09 Okay Refer to E110 Technical Manual.
08 deferred Refer to E] 10 Technical Manual.
07 BrdCst Refer to E110 Technical Manual.
06 MitCst Refer to E110 Technical Manual.
0s CreErr Refer to £110 Technical Manual.
04 LateColl Refer to £10 Technical Manual.
03:00 CollCnt Refer to E110 Technical Manual.

Provisional Pat. App. of Alacritech, Inc. 123
Inventors Laurence B. Boucheret al.

Express Mail Label # BH756230105US

ON Hat Pieana\ee
ALA00138509

DELL Ex.1031.127

Ex.1031.128DELL

QUEUE MANAGER (Qmg)
The INIC includes special hardware assist for the implementation ofmessage and pointer queues. The

hardware assistis called the queue manager (Qmg) and manages the movementof queueentries between Cpu
and Sram, between dma sequencers and Sram as well as between Sram and dram. Queues comprise three distinct
entities; the queue head (QHd), the queuetail (QT) and the queue body (QBdy). QHdresides in 64 bytes of
scratch ram and provides the area to which entries will be written (pushed). QTI resides in 64 bytes ofscratch
ram and contains queuelocations from whichentries will be read (popped) . QBdy resides in dram and contains
locations for expansion of the queue in order to minimize the Sram space requirements. The QBdy size depends
upon the queue being accessed and the initialization parameters presented during queue initialization.

Qmg accepts operations from both Cpu and dma sources. Executing these operations at a frequency of
133MHz, Qmg reserves even cycles for dma requests and reserves odd cycles for Cpu requests. Valid Cpu
operations include initialize queue (InitQ), write queue (WrQ) and read queue (RdQ). Valid dma requests
include read body (RdBdy) and write body (WrBdy). Qmg working in unison with Q2d and D2q generate
requests to the Xwr and Xrd sequencers to control the movement of data between the QHd, QT] and QBdy.

The preceding block diagram shows the major functions of Qmg. The arbiter selects the next operation to be
performed. The dual-ported Sram holds the queue variables HdWrAddr, HdRdAddr, TlWrAddr,
TIRdAddr, BdyWrAddr, BdyRdAddr and QSz. Qmg accepts an operation request, fetches the queue
variables from the queue ram (Qram), modifies the variables based on the current state and the requested
operation then updates the variables and issues a read or write request to the Sram controller, The Sram

= controller services the requests by writing the tail or reading the head and returning an acknowledge.
&
ii
i
ig
me sicee ems eseCoenen rte ceeeeelatoem

i Miz DmaChngReq AND QmgDmaAck AND
= CLK Dest WriDase

je te eee wee ee ee ee ee eee eee ene eer ese meester
= | : 1 Return Qdataat i | Rewurn QdaraforCpu=| for Dma
i i
- i t ji Write i i
= Sram i qianfor | | ada to i
@ Ctrl i i Cpu pa | i
mg | SramQmg Grant for Cpa i SramQeng Grant for Dra. | i

i i SramOmg Ack for Cpa i SramOQmg Ack for Dma i
cae eee Seinen hence See feee Ln emeenea

133MHz
CLK

ses oniiem onpee ee ee ee ee ee ee ee eeeeeeeeee
| Qmg Fetch for Cpudp | QmgSramReq forCpudp | QmgSramfteq for DmOp j | i
t i 1 . i < 5

Pot EE fe me |
Qmg | | Cpde | | Dmop

| | i |
| | | |

geLe re ene reed eae as wea ear re ES aac ol cer ree aaa sla ean ewe ms Pele owe Poesy

66MHz onusCLK! CesepundDen

Provisional Pat. App. of Alacritech, Inc. 124
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

2eamYoMoswiaan

ALA00138510

DELL Ex.1031.128

Ex.1031.129DELL

GreSEE
"ty hall

Boney

Paape)y2 Oo

QUEUE MANAGER(Qmg)

D2qg Q2d Xm Q

— Seq Seq SEQ poy Write
4 Req Req Req SEQ Data

Mux

Req

PRIORITIZE

a
register

ade OUT

~ Qram

eae register

133M

Qmg ALU

133MHz register

Sram Sram Q 0 Q Q BODY BODY Sram
Req Addr Empty Full IN OUT WR_ RD Write

RDY RDY Req Req Data

Provisional Pat. App. of Alacritech, Inc. 125
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

ALA00138511

DELL Ex.1031.129

Ex.1031.130DELL

-

-

DMA OPERATIONS

DMAoperations are accomplished through a combination of thirtytwo dma channels (DmaCh) and seven dma
sequencers (DmaSeq). Each dma channel provides a mechanism whereby a Cpu can issue a command to any
of the seven dma sequencers. Where as the dma channels are multi-purpose, the dma sequencers they
command are single purpose as follows.

dmaseq#name i
0 none This is a no operation address.
1 D2dSeq Moves data from ExtMem to ExtMem.
2 D2sSeq Moves data from ExtMem bus to sram.
3 D2pSeq Moves data from ExtMem to Pci bus.
4 §2dSeq Moves data from sram to ExtMem.
5 S2pSeq Moves data from sram to Pci bus.
6 P2dSeq Moves data from Pci bus to ExtMem.
7 P2sSeq Moves data from Pci bus to sram.

The processors manage dma in the following way. The processor writes a dma descriptor to an Sram location
reserved for the dma channel. The format of the dma descriptor is dependent upon the targeted dma sequencer.
The processor then writes the dma sequencer number to the channel command register.

Each of the dma sequencers polls all thirtytwo dma channelsin search of commands to execute. Once a
command request has been detected, the dma sequencer fetches a dma descriptor from a fixed location in
Sram. The Sram location is fixed and is determined by the dma channel number. The dma sequencer loads the
dma descriptor in to it's own registers, executes the command, then overwrites the dma descriptor with ending
Status. Once the command has halted, due to completion or error, and the ending status has been written, the
dma sequencer sets the done bit for the current dma channel.

The done bit appears in a dma event register which the Cpu can examine. The Cpu fetches ending status from
Sram, then clears the done bit by writing zeroes to the channel command (ChCmd)register. The channel is
now ready to accept another command.

“AESo
The format of all channel command registersis as follows.

eo

ohEnte bit_ name i
31:11 reserved Data written to these bits is ignored.
10:8 ChCmd 0 - Stops execution of the current operation and clears the corresponding event flag.

1 - Transfer data from ExtMem to ExtMem.
2 - Transfer data from ExtMem busto sram.
3 - Transfer data from ExtMem to Pci bus.
4- Transfer data from sram to ExtMem.
5 - Transfer data from sram to Pci bus.
6 - Transfer data from Pci bus to ExtMem.
7 - Transfer data from Pci bus to Sram.

07:05 reserved Data written to these bits is ignored.
04:00 Chid Provides the channel number for the channel command.

Provisional Pat, App. of Alacritech, Inc. 126
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

2epVvshoes Ww

ALA00138512

DELL Ex.1031.130

Ex.1031.131DELL

a ~

-

The format of the P2d or P2s descriptoris as follows.

bit__
127;96
95:64
59:32,
31
30
22
15:00

ae

PciAddrH Bits [63:32] of the Pci address.
PeciAddrL Bits [31:00] of the Pci address.
MemAddr Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address,
PciEndian Whenset, selects big endian mode for Pci transfers.
WideDbl Whenset, disables Pci 64-bit mode.

DstFlash Selects Flash for the external memory destination of P2d.
XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the S2p or D2p descriptoris as follows.

bit__
123:96
95:64
63:32
30
23
22
15:00

bit_.
127:124
123-96
95:60
59:32
30
22
15:00

ES
it

bit__127:64
63:32

2iTae*
31:24
23:20
19:16
15:00

name i
MemAddr Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address.
PciAddrH Bits [63:32] of the Pci address.
PeiAddrL Bits [31:00] of the Pci address.

SreFlash Selects Flash for the external memory source of D2p.
PciEndian When set, selects big endian mode for Pci transfers.
WideDbl When set, disables Pci 64-bit mode.
XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the S2d, D2d or D2s descriptoris as follows.

mame.=deseription
reserved Reserved for future use.
SreAddr Bits [27:00] of the ExtMem address or bits [15:00] of the Sram address.
reserved Reserved for future use.

DstAddr Bits [27:00] of the ExtMem address orbits [15:00] of the Sram address.
FlashSel Selects Flash for the external memory source of D2d or D2s.
FlashSel Selects Flash for the external memory destination of S2p or D2d.
XfrSz Bits [15:00] of the requested dma size expressed in bytes.

The format of the endingstatus or all channels is as follows.

NAMnsI
reserved Not used.

ChkSum Represents the L's compliment sum ofall halfwords transferred during a P2d or D2d
operation only.

reserved Reserved for future use.
SrcStatus TED.
DstStatus TBD,

XfrSz Bits [15:00] of the residual dma size expressed in bytes. This value will be zero if the dma
operation was successful

The format of the ChEvntregister is as follows.

bit__
31:00

PieanMry2

ie

ChDn Each bit represents the done flag for the respective dma channel, These bits are set by a
dma sequencer upon completion of the channel command. Cleared when the processor
writes 0 to the corresponding ChCmdregister ChCmdOp field.

Provisional Pat. App. of Alacritech, Inc. 127
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

MobtHat

ALA00138513

DELL Ex.1031.131

Ex.1031.132DELL

MAC CONTROL (Macctrl)

 YOST Soc
hWt

Bee
Mic BUSY TO Cpu

Provisional Pat. App. of Alacritech, Inc. 128
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

2eeeSMosaenat

ALA00138514

DELL Ex.1031.132

Ex.1031.133DELL

Appendix A

The following load calculations are based on the following basic formulae:

N=X*R (Little’s Law) where
N = numberofjobsin the system (either in progressor in a queue),
X = system throughput,
R = response time (which includes time waiting in queues).

U=X* § (from Little’s Law) where
S = service time,
U = utilization.

R=S/(1-V) for exponential service times (which is the worst-case assumption).

A 256 byte frame at 100Mb/sec takes 20 pssec per frame.
4 * 100 Mbit ethernets receiving at full framerateis:

51200 (4 * 12800) frames/sec @ 1024 bytes/frame
102000 frames/sec @ 512 bytes/frame
204000 frames/sec @ 256 bytes/frame.

The following calculations assume 250 instructions/frame, 45nsec clock. Thus
S = 250 * 45 nsecs = 11.2 psecs.

Ay. Frame Size Thruput Utilization Response Nbr. in system
(xX) (R) (N)

1024 51200 57 26 usecs 1.3
512 102000 >1 - _
256 204000 >1 - --£6hTOT"BORTIOOS
Lets lookat it for varying instructions per frame assuming 512 bytes per frame average.

Instns Service Thruput Utilization Response Nbr.in system
Per Frame Time(S) (xX) (U) (R) (N)
250 11.2usec 102000 >1 -- =

250 11.2 85000 (*) .95 224 usecs 19
250 11.2 80000 (**) .89 101 8
225 10 102000 1.0 -- ~

225 10 95000(*) 95 200 19
225 10 89000 (**) .89 90 8
200 9 102000 5 90 9
150 6.7 102000 68 20 2,

(*) shows what frame rate can be supported to get a utilization of less than 1.
(**) shows what frame rate can be supported with 8 SRAM TCB buffers and at least 8
process contexts.

Provisional Pat. App. of Alacritech, Inc. 129
Inventors Laurence B. Boucheret al.

Express Mail Label # EH756230105US

2abe’sosnat

ALA00138515

DELL Ex.1031.133

Ex.1031.134DELL

frLe

G

=

ie
re
at=
wl
a
bs
=
=
a

=

a=
2ng

If 100 instructions/ frame is used, S = 100 * 45 nsecs = 4.5 usecs, and we can support
256 byte frames:
100 4.5 204000 91 50 10

Firstly note that these calculations assume that response times increase exponentially as
utilization increases. This is the worst-case assumption, and probably may notbe true for
our system.
The figures show that to support a theoretical full 4 * 100 Mbit receive load with an
average frame size of 512 bytes, there will need to be 19 active “jobs” in the system,
assuming 250 instructions per frame. Due to SRAM limitations, the current design
specifies 8 SRAM buffers for active TCBs, and not to swap a TCB out of SRAM onceit
is active. So underthese limitations, the INIC will not be able to keep up with the full
frame rate. Note that the initial implementationis trying to use only 8KB of SRAM,
although 16KB maybe available, in which case 19 TCB SRAM buffers could be used.
This is a cost trade-off.

Thereal point here is the effect of instructions/frame on the throughput that can be
maintained.If the instructions/frame drops to 200, then the INIC is capable of handling
the full theoretical load (102000 frames/second) with only 9 active TCBs. If it drops to
100 instructions per frame, then the INIC can handle full bandwidth at 256 byte frames
(204000 frames/second) with 10 active TCBs. The bottom line is that ALL hardware-
assist that reduces the instructions/frameis really worthwhile. If header-assist hardware
can save us 50 instructions per framethen it goes straight to the throughput bottom line.

CERTIFICATE OF MAILING UNDER37 CFR 1.10

[herebycertify that this Provisional Patent Application is being deposited with the
United States Postal Service as “Express Mail Post Office to Addressee”, label number
EH756230105US,in an envelope addressed to: Assistant Commissionerfor Patents,
Washington, D.C. 20231, on October 14, 1997.

Date:ber 41957 KEE
Mark Lauer

(person mailing Application)

Provisional Pat. App. of Alacritech, Inc. 130
Inventors Laurence B. Boucher et al.

Express Mail Label # EH756230105US

JOS0Dat

ALA00138516

DELL Ex.1031.134

