SEC. 7.2 DNS—Domain Name System 625

about multiple domains. This field is thus the primary search key used to satisfy
queries. The order of the records in the database is not significant. When a query
is made about a domain, all the matching records of the class requested are
returned.

The Time_to_live field gives an indication of how stable the record is. Infor-
mation that is highly stable is assigned a large value, such as 86400 (the number
of seconds in 1 day). Information that is highly volatile is assigned a small value,
such as 60 (1 minute). We will come back to this point later when we have dis-
cussed caching. ‘

The Type field tells what kind of record this is. The most important types are
listed in Fig. 7-26.

Type Meaning Value
SOA Start of Authority Parameters for this zone
A IP address of a host | 32-Bit integer
MX Mail exchange Priority, domain willing to accept email |
NS Name Server ' Name of a server for this domain
CNAME | Canonical name Domain name
PTR Pointer Alias for an [P address
HINFO Host description CPU and OS in ASCII |
TXT Text Uninterpreted ASCH text

Fig. 7-26. The principal DNS resource record types.

An SOA record provides the name of the primary source of information about
the name server’s zone (described below), the email address of its administrator, a
unique serial number, and various flags and timeouts.

The most important record type is the A (Address) record. It holds a 32-bit IP
address for some host. Every Internet host must have at least one IP address, so
other machines can communicate with it. Some hosts have two or more network
connections, in which case they will have one type A resource record per network
connection (and thus per IP address).

The next most important record type is the MX record. It specifies the name
of the domain prepared to accept email for the specified domain. A common use
of this record is to allow a machine that is not on the Internet to receive email
from Internet sites. Delivery is accomplished by having the non-Internet site
make an arrangement with some Internet site to accept email for it and forward it
using whatever protocol the two of them agree on.

For example, suppose that Cathy is a computer science graduate student at
UCLA. After she gets her degree in Al, she sets up a company, Electrobrain

DELL Ex.1006.643

626 THE APPLICATION LAYER CHAP. 7

Corporation, to commercialize her ideas. She cannot afford an Internet connec-
tion yet, so she makes an arrangement with UCLA to allow her to have her email
sent there. A few times a day she will call up and collect it.

Next, she registers her company with the com domain and is assigned the
domain electrobrain.com. She might then ask the administrator of the com
domain to add an MX record to the com database as follows:

electrobrain.com 86400 IN MX 1 mailserver.cs.ucla.edu

In this way, mail will be forwarded to UCLA where she can pick it up by logging
in. Alternatively, UCLA could call her and transfer the email by any protocol
they mutually agree on.

The NS records specify name servers. For example, every DNS database nor-
mally has an NS record for each of the top-level domains, so email can be sent to
distant parts of the naming tree. We will come back to this point later.

CNAME records allow aliases to be created. For example, a person familiar
with Internet naming in general wanting to send a message to someone whose
login name is paul in the computer science department at M.I.T. might guess that
paul@cs.mit.edu will work. Actually this address will not work, because the
domain for M.I.T.’s computer science department is [cs.mit.edu. However, as a
service to people who do not know this, M.I.T. could create a CNAME entry to
point people and programs in the right direction. An entry like this one might do
the job:

cs.mit.edu 86400 IN CNAME Ics.mit.edu

Like CNAME, PTR points to another name. However, unlike CNAME, which
is really just a macro definition, P7R is a regular DNS datatype whose interpreta-
tion depends on the context in which it is found. In practice, it is nearly always
used to associate a name with an IP address to allow lookups of the IP address and
return the name of the corresponding machine.

HINFO records allow people to find out what kind of machine and operating
system a domain corresponds to. Finally, 7XT records allow domains to identify
themselves in arbitrary ways. Both of these record types are for user convenience.
Neither is required, so programs cannot count on getting them (and probably can-
not deal with them if they do get them).

Getting back to the general structure of resource records, the fourth field of
every resource record is the Class. For Internet information, it is always IN. For
non-Internet information, other codes can be used.

Finally, we come to the Value field. This field can be a number, a domain
name, or an ASCII string. The semantics depend on the record type. A short
description of the Value fields for each of the principal records types is given in
Fig. 7-26.

As an example of the kind of information one might find in the DNS database
of a domain, see Fig.7-27. This figure depicts part of a (semihypothetical)

DELL Ex.1006.644

SEC. 7.2 DNS—Domain Name System 627

database for the cs.vu.nl domain shown in Fig. 7-25. The database contains seven
types of resource records.

: Authoritative data for cs.vu.nl

cs.vu.nl. 86400 IN SOA star boss (952771,7200,7200,2419200,86400)
cs.vu.nl. 86400 IN TXT "Faculteit Wiskunde en Informatica."
cs.vu.nl. 86400 IN TXT "Vrije Universiteit Amsterdam."
cs.vu.nl. 86400 IN MX 1 zephyr.cs.vu.nl.
cs.vu.nl. 86400 IN MX 2 top.cs.vu.nl.
flits.cs.vu.nl. 86400 IN HINFO Sun Unix
flits.cs.vu.nl. 86400 iIN A 130.37.16.112
flits.cs.vu.nl. 86400 IN A 192.31.231.165
flits.cs.vu.nl. 86400 IN MX 1 flits.cs.vu.nl.
flits.cs.vu.nl. 86400 IN MX 2 zephyr.cs.vu.nl.
flits.cs.vu.nl. 86400 IN MX 3 top.cs.vu.nl.
www.cs.vu.nl. 86400 IN CNAME star.cs.vu.ni
ftp.cs.vu.nl. 86400 IN CNAME zephyr.cs.vu.n!
rowboat IN A 130.37.56.201
IN MX 1 rowboat
IN MX 2 zephyr

IN HINFO Sun Unix

little-sister IN A 130.37.62.23
IN HINFO Mac MacOS

laserjet IN A 192.31.231.216
IN HINFO "HP Laserjet IlISi" Proprietary

Fig. 7-27. A portion of a possible DNS database for cs.vu.nl

The first noncomment line of Fig. 7-27 gives some basic information about
the domain, which will not concern us further. The next two lines give textual
information about where the domain is located. Then come two entries giving the
first and second places to try to deliver email sent to person@cs.vu.nl. The
zephyr (a specific machine) should be tried first. If that fails, the top should be
tried next.

After the blank line, added for readability, come lines telling that the flits is a
Sun workstation running UNIX and giving both of its IP addresses. Then three
choices are given for handling email sent to flits.cs.vu.nl. First choice is naturally
the flits itself, but if it is down, the zephyr and top are the second and third
choices. Next comes an alias, www.cs.vu.nl, so that this address can be used
without designating a specific machine. Creating this alias allows cs.vu.nl to
change its World Wide Web server without invalidating the address people use to
getto it. A similar argument holds for fip.cs.vu.nl.

DELL Ex.1006.645

628 THE APPLICATION LAYER CHAP. 7

The next four lines contain a typical entry for a workstation, in this case,
rowboat.cs.vu.nl. The information provided contains the IP address, the primary
and secondary mail drops, and information about the machine. Then comes an
entry for a non-UNIX system that is not capable of receiving mail itself, followed
by an entry for a laser printer.

What is not shown (and is not in this file), are the IP addresses to use to look
up the top level domains. These are needed to look up distant hosts, but since
they are not part of the ¢s.vu.nl domain, they are not in this file. They are sup-
plied by the root servers, whose IP addresses are present in a system configuration
file and loaded into the DNS cache when the DNS server is booted. They have
very long timeouts, so once loaded, they are never purged from the cache.

7.2.3. Name Servers

In theory at least, a single name server could contain the entire DNS database
and respond to all queries about it. In practice, this server would be so overloaded
as to be useless. Furthermore, if it ever went down, the entire Internet would be
crippled.

To avoid the problems associated with having only a single source of informa-
tion, the DNS name space is divided up into nonoverlapping zones. One possible
way to divide up the name space of Fig. 7-25 is shown in Fig. 7-28. Each zone
contains some part of the tree and also contains name servers holding the authori-
tative information about that zone. Normally, a zone will have one primary name
server, which gets its information from a file on its disk, and one or more secon-
dary name servers, which get their information from the primary name server. To
improve reliability, some servers for a zone can be located outside the zone.

[Generic ‘ \ Countrieg ————

Fig. 7-28. Part of the DNS name space showing the division into zones.

Where the zone boundaries are placed within a zone is up to that zone’s
administrator. This decision is made in large part based on how many name

DELL Ex.1006.646

SEC. 7.2 DNS-—Domain Name System 629

servers are desired, and where. For example, in Fig. 7-28, Yale has a server for
yale.edu that handles eng.yale.edu but not cs.yale.edu, which is a separate zone
with its own name servers. Such a decision might be made when a department
such as English does not wish to run its own name server, but a department such
as computer science does. Consequently, cs.yale.edu is a separate zone but
eng.yale.edu is not.

When a resolver has a query about a domain name, it passes the query to one
of the local name servers. If the domain being sought falls under the jiirisdiction
of the name server, such as ai.cs.yale.edu falling under cs.yale.edu, it returns the
authoritative résource records. An authoritative record is one that comes from
the authority that manages the record, and is thus always correct. Authoritative
records are in contrast to cached records, which may be out of date.

If, however, the domain is remote and no information about the requested
domain is available locally, the name server sénds a query message to the top-
level name server for the domain requested. To make this process clearer, con-
sider the example of Fig. 7-29. Here, a resolver on flits.cs.vu.nl wants to know the
IP address of the host linda.cs.yale.edu. In step 1, it sends a query to the local
name server, cs.vu.nl. This query contains the domain name sought, the type (A)
and the class (IN).

VU CSs Edu Yale Yale CS
Originator 1 name server o name setver 3 name server 4 name server
flits.cs.vu.nl cs.vu.ni edu-server.net yale.edu cs.yale.edu
8 7 6 5

Fig. 7-29. How a resolver looks up a remote name in eight steps.

Let us suppose the local name server has never had a query for this domain
before and knows nothing about it. It may ask a few other nearby name servers,
but if none of them know, it sends a UDP packet to the server for edu given in its
database (see Fig. 7-29), edu-server.net. It is unlikely that this server knows the
address of linda.cs.yale.edu, and probably does not know cs.yale.edu either, but it
must know all of its own children, so it forwards the request to the name server
for yale.edu (step 3). In turn, this one forwards the request to cs.yale.edu (step 4),
which must have the authoritative resource records. Since each request is from a
client to a server, the resource record requested works its way back in steps 5
through 8.

Once these records get back to the cs.vu.nl name server, they will be entered
into a cache there, in case they are needed later. However, this information is not
authoritative, since changes made at cs.yale.edu will not be propagated to all the
caches in the world that may know about it. For this reason, cache entries should
not live too long. This is the reason that the Time_to_live field is included in each
resource record. It tells remote name servers how long to cache records. If a

DELL Ex.1006.647

630 THE APPLICATION LAYER CHAP. 7

certain machine has had the same IP address for years, it may be safe to cache that
information for 1 day. For more volatile information, it might be safer to purge
the records after a few seconds or a minute.

It is worth mentioning that the query method described here is known as a
recursive query, since each server that does not have the requested information
goes and finds it somewhere, then reports back. An alternative form is also possi-
ble. In this form, when a query cannot be satisfied locally, the query fails, but the
name of the next server along the line to try is returned. This procedure gives the
client more control over the search process. Some servers do not implement
recursive queries and always return the name of the next server to try.

It is also worth pointing out that when a DNS client fails to get a response
before its timer goes off, it normally will try another server next time. The
assumption here is that the server is probably down, rather than the request or
reply got lost.

7.3. SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL

In the early days of the ARPANET, if the delay to some host became unex-
pectedly large, the person detecting the problem would just run the Ping program
to bounce a packet off the destination. By looking at the timestamps in the header
of the packet returned, the location of the problem could usually be pinpointed
and some appropriate action taken. In addition, the number of routers was so
small, that it was feasible to ping each one to see if it was sick.

When the ARPANET turned into the worldwide Internet, with multiple back-
bones and multiple operators, this solution ceased to be adequate, so better tools
for network management were needed. Two early attempts were defined in RFC
1028 and RFC 1067, but these were short lived. In May 1990, RFC 1157 was
published, defining version 1 of SNMP (Simple Network Management Proto-
col). Along with a companion document (RFC 1155) on management informa-
tion, SNMP provided a systematic way of monitoring and managing a computer
network. This framework and protocol were widely implemented in commercial
products and became the de facto standards for network management.

As experience was gained, shortcomings in SNMP came to light, so an
enhanced version of SNMP (SNMPv2) was defined (in RFCs 1441 to 1452) and
started along the road to become an Internet standard. In the sections to follow,
we will give a brief discussion of the SNMP (meaning SNMPv2) model and pro-
tocol.

Although SNMP was designed with the idea of its being simple, at least one
author has managed to produce a 600-page book on it (Stallings, 1993a). For
more compact descriptions (450-550 pages), see the books by Rose (1994) and
Rose and McCloghrie (1995), both of whom were among the designers of SNMP.
Other references are (Feit, 1995; and Hein and Griffiths, 1995).

DELL Ex.1006.648

SEC. 7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 631

7.3.1. The SNMP Model

The SNMP model of a managed network consists of four components:
1. Managed nodes.
2. Management stations.
3. Management information.
4.

A management protocol.
These pieces are illustrated in Fig. 7-30 and discussed below.

Management
Management process
Station Host Router

\ / Printer
L—__] Managed {.
node :
6] | A
SNMP protocol j /\ Agent

K‘* -
LAN

Bridge

T1

Fig. 7-30. Components of the SNMP management model.

The managed nodes can be hosts, routers, bridges, printers, or any other dev-
ices capable of communicating status information to the outside world. To be
managed directly by SNMP, a node must be capable of running an SNMP
management process, called an SNMP agent. All computers meet this require-
ment, as do increasingly many bridges, routers, and peripheral devices designed
for network use. Each agent maintains a local database of variables that describe
its state and history and affect its operation.

Network management is done from management stations, which are, in fact,
general-purpose computers running special management software. The manage-
ment stations contain one or more processes that communicate with the agents
over the network, issuing commands and getting responses. In this design, all the
intelligence is in the management stations, in order to keep the agents as simple as
possible and minimize their impact on the devices they are running on. Many
management stations have a graphical user interface to allow the network
manager to inspect the status of the network and take action when required.

Most real networks are multivendor, with hosts from one or more manufactur-
ers, bridges and routers from other companies, and printers from still other ones.

DELL Ex.1006.649

632 THE APPLICATION LAYER CHAP. 7

In order to allow a management station (potentially from yet another supplier) to
talk to all these diverse components, the nature of the information maintained by
all the devices must be rigidly specified. Having the management station ask a
router what its packet loss rate is of no use if the router does not keep track of its
loss rate. Therefore, SNMP describes (in excruciating detail) the exact informa-
tion each kind of agent has to maintain and the format it has to supply it in. The
largest portion of the SNMP model is the definition of who has to keep track of
what and how this information is communicated.

Very briefly, each device maintains one or more variables that describe its
state. In the SNMP literature, these variables are called objects, but the term is
misleading because they are not objects in the sense of an object-oriented system
because they just have state and no methods (other than reading and writing their
values). Nevertheless, the term is so ingrained (e.g., used in various reserved
words in the specification language used) that we will use it here. The collection
of all possible objects in a network is given in a data structure called the MIB
(Management Information Base).

The management station interacts with the agents using the SNMP protocol.
This protocol allows the management station to query the state of an agent’s local
objects, and change them if necessary. Most of SNMP consists of this query-
response type communication.

However, sometimes events happen that are not planned. Managed nodes can
crash and reboot, lines can go down and come back up, congestion can occur, and
so on. Each significant event is defined in a MIB module. When an agent notices
that a significant event has occurred, it immediately reports the event to all
management stations in its configuration list. This report is called an SNMP trap
(for historical reasons). The report usually just states that some event has
occurred. It is up to the management station to then issue queries to find out all
the gory details. Because communication from managed nodes to the manage-
ment station is not reliable (i.e., is not acknowledged), it is wise for the manage-
ment station to poll each managed node occasionally anyway, checking for
unusual events, just in case. The model of polling at long intervals with accelera-
tion on receipt of a trap is called trap directed polling.

This model assumes that each managed node is capable of running an SNMP
agent internally. Older devices or devices not originally intended for use on a net-
work may not have this capability. To handle them, SNMP defines what is called
a proxy agent, namely an agent that watches over one or more nonSNMP devices
and communicates with the management station on their behalf, possibly com-
municating with the devices themselves using some nonstandard protocol.

Finally, security and authentication play a major role in SNMP. A manage-
ment station has the capability of learning a great deal about every node under its
control and also has the capability of shutting them all down. Hence it is of great
importance that agents be convinced that queries allegedly coming from the
management station, in fact, come from the management station. In SNMPv1, the

DELL Ex.1006.650

SEC. 7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 633

management station proved who it was by putting a (plaintext) password in each
message. In SNMPv2, security was improved considerably using modern crypto-
graphic techniques of the type we have already studied. However, this addition
made an already bulky protocol every bulkier, and it was later thrown out.

7.3.2. ASN.1—Abstract Syntax Notation 1

The heart of the SNMP model is the set of objects managed by the agents and
read and written by the management station. To make multivendor communica-
tion possible, it is essential that these objects be defined in a standard and
vendor-neutral way. Furthermore, a standard way is needed to encode them for
transfer over a network. While definitions in C would satisfy the first require-
ment, such definitions do not define a bit encoding on the wire in such a way that
a 32-bit two’s complement little endian management station can exchange infor-
mation unambiguously with an agent on a 16-bit one’s complement big endian
CPU.

For this reason, a standard object definition language, along with encoding
rules, is needed. The one used by SNMP is taken from OSI and calied ASN.1
(Abstract Syntax Notation One). Like much of OSI, it is large, complex, and
not especially efficient. (The author is tempted to say that by calling it ASN.1
instead of just ASN, the designers implicitly admitted that it would soon be
replaced by ASN.2, but he will politely refrain from saying this.) The one alleged
strength of ASN.1 (the existence of unambiguous bit encoding rules) is now really
a weakness, because the encoding rules are optimized to minimize the number of
bits on the wire, at the cost of wasting CPU time at both ends encoding and
decoding them. A simpler scheme, using 32-bit integers aligned on 4-byte boun-
daries would probably have been better. Nevertheless, for better or worse, SNMP
is drenched in ASN.1, (albeit a simplified subset of it), so anyone wishing to truly
understand SNMP must become fluent in ASN.1. Hence the following explana-
tion.

Let us start with the data description language, described in International
Standard 8824. After that we will discuss the encoding rules, described in Inter-
national Standard 8825. The ASN.1 abstract syntax is essentially a primitive data
declaration language. It allows the user to define primitive objects and then com-
bine them into more complex ones. A series of declarations in ASN.1 is function-
ally similar to the declarations found in the header files associated with many C
programs.

SNMP has some lexical conventions that we will follow. These are not
entirely the same as pure ASN.1 uses, however. Built-in data types are written in
uppercase (e.g., INTEGER). User-defined types begin with an uppercase letter
but must contain at least one character other than an uppercase letter. Identifiers
may contain upper and lowercase letters, digits, and hyphens, but must begin with
a lowercase letter (e.g., counter). White space (tabs, carriage returns, etc.) is not

DELL Ex.1006.651

634 THE APPLICATION LAYER CHAP. 7

significant. Finally, comments start with -- and continue until the end of the line
or the next occurrence of --.

The ASN.1 basic data types allowed in SNMP are shown in Fig. 7-31. (We
will generally ignore features of ASN.1, such as BOOLEAN and REAL types, not
permitted in SNMP.) The use of the codes will be described later.

Primitive type Meaning Code
INTEGER , Arbitrary length integer 2
BIT STRING A string of 0 or more bits

string rm
OCTET STRING

NULL
OBJECT IDENTIFIER | An officially defined data type

A string of 0 of more unsigned bytes

A place holder

(o) &) B I S R ¥

Fig. 7-31. The ASN.] primitive data types permitted in SNMP.

A variable of type INTEGER may, in theory, take on any integral value, but
other SNMP rules limit the range. As an example of how types are used, consider
how a variable, count, of type INTEGER would be declared and (optionally) ini-
tialized to 100 in ASN.1:

count INTEGER ::= 100

Often a subtype whose variables are restricted to specific values or to a specific
range is required. These can be declared as follows:

Status ::= INTEGER { up(1), down(2), unknown(3) }

PacketSize ::= INTEGER (0..1023)

Variables of type BIT STRING and OCTET STRING contain zero or more bits
and bytes, respectively. A bit is either O or 1. A byte falls in the range 0 to 255,
inclusive. For both types, a string length and an initial value may be given.

OBJECT IDENTIFIERs provide a way of identifying objects. In principle,
every object defined in every official standard can be uniquely identified. The
mechanism that is used is to define a standards tree, and place every object in
every standard at a unique location in the tree. The portion of the tree that
includes the SNMP MIB is shown in Fig. 7-32.

The top level of the tree lists all the important standards organizations in the
world (in ISO’s view), namely ISO and CCITT (now ITU), plus the combination
of the two. From the iso node, four arcs are defined, one of which is for
identified-organization, which is ISO’s concession that maybe some other folks
are vaguely involved with standards, too. The U.S. Dept. of Defense has been
assigned a place in this subtree, and DoD has assigned the Internet number 1 in its
hierarchy. Under the Internet hierarchy, the SNMP MIB has code 1.

DELL Ex.1006.652

SEC. 7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 635

_—

ccitt (0) iso (1) joint-iso-ccitt (2)
standard (0) registration- member- identified-
authority (1) body (2) organization (3)
dod (6)

I

internet (1)

TS

directory (1) mgmt (2) experimental (3) private (4) security (5) snmpv2 (6)

mib-2 (1)

/IW

system (1) interface (2) ip (4) icmp (5) tcp (6) udp (7) egp (8) transmission (10)sample (11)

Fig. 7-32. Part of the ASN.1 object naming tree.

Every arc in Fig. 7-32 has both a label and a number, so nodes can be identi-
fied by a list of arcs, using label(number) or numbers. Thus all SNMP MIB
objects are identified by a label of the form

{iso identified-organization(3) dod(6) internet(1) mgmt(2) mib-2(1) ...}

or alternatively {1 3612 1 ...}. Mixed forms are also permitted. For example,
the above identification can also be written as

{internet(1) 21 ...}

In this way, every object in every standard can be represented as an OBJECT
IDENTIFIER.

ASN.1 defines five ways to construct new types from the basic ones.
SEQUENCE is an ordered list of types, similar to a structure in C and a record in
Pascal. SEQUENCE OF is a one-dimensional array of a single type. SET and
SET OF are analogous, but unordered. CHOICE creates a union from a given list
of types. The two set constructors are not used in any of the SNMP documents.

Another way to create new types is to tag old ones. Tagging a type is some-
what similar to the practice in C of defining new types, say time_t and size_t, both
of which are longs, but which are used in different contexts. Tags come in four

DELL Ex.1006.653

636 THE APPLICATION LAYER CHAP. 7

categories: universal, application-wide, context-specific and private. Each tag
consists of a label and an integer identifying the tag. For example,

Counter32 ::= [APPLICATION 1] INTEGER (0..4294967295)

Gauge32 = [APPLICATION 2] INTEGER (0..4294967295)

define two different application-wide types, both of which are implemented by
32-bit unsigned integers, but which are conceptually different. The former might,
for example, wrap around when it gets to the maximum value, whereas the latter
might just continue to return the maximum value until its is decreased or reset.

A tagged type can have the keyword IMPLICIT after the closing square
bracket when the type of what follows is obvious from the context (not true in a
CHOICE, for example). Doing so allows a more efficient bit encoding since the
tag does not have to be transmitted. In a type involving a CHOICE between two
different types, a tag must be transmitted to tell the receiver which type is present.

ASN.1 defines a complex macro mechanism, which is heavily used in SNMP.
A macro can be used as a kind of prototype to generate a set of new types and
values, each with its own syntax. Each macro defines some (possibly optional)
keywords, that are used in the call to identify which parameter is which (i.e., the
macro parameters are identified by keyword, not by position). The details of how
ASN.1 macros work is beyond the scope of this book. Suffice it to say that a
macro is invoked by giving its name and then listing (some of) its keywords and
their values for this invocation. Macros are expanded at compile time, not at run
time. Some examples of macros will be cited below.

ASN.1 Transfer Syntax

An ASN.1 transfer syntax defines how values of ASN.1 types are unambigu-
ously converted to a sequence of bytes for transmission (and unambiguously
decoded at the other end). The transfer syntax used by ASN.1 is called BER
(Basic Encoding Rules). ASN.1 has other transfer syntaxes that SNMP does not
use. The rules are recursive, so the encoding of a structured object is just the con-
catenation of the encodings of the component objects. In this way, all object
encodings can be reduced to a well-defined sequence of encoded primitive
objects. The encoding of these objects, in turn, is defined by the BER.

The guiding principle behind the basic encoding rules is that every value
transmitted, both primitive and constructed ones, consists of up to four fields:

1. The identifier (type or tag).

2. 'The length of the data field, in bytes.
3. The data field.
4

. The end-of-contents flag, if the data length is unknown.

DELL Ex.1006.654

SEC. 7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 637

The last one is permitted by ASN.1, but specifically forbidden by SNMP, so we
will assume the data length is always known.

The first field identifies the item that follows. It, itself, has three subfields, as
shown in Fig. 7-33. The high-order 2 bits identify the tag type. The next bit tells
whether the value is primitive (0) or not (1). The tag bits are 00, 01, 10, and 11,
for UNIVERSAL, APPLICATION, context-specific, and PRIVATE, respectively.
The remaining 5 bits can be used to encode the value of the tag if it is in the range
0 through 30. If the tag is 31 or more, the low-order 5 bits contain 11111, with the
true value in the next byte or bytes.

Bits 2 1 5
Tag Number

00 Universal 0 Primitive type

01 Application 1 Constructed type

10 Context specific

11 Private

Fig. 7-33. The first byte of each data item sent in the ASN.1 transfer syntax.

The rule used to encode tags greater than 30 has been designed to handle arbi-
trarily large numbers. Each identifier byte following the first one contains 7 data
bits. The high-order bit is set to 0 in all but the last one. Thus tag values up to
27 — 1 can be handled in 2 bytes, and up to 2'4 — 1 can be handled in 3 bytes.

The encoding of the UNIVERSAL types is straightforward. Each primitive
type has been assigned a code, as given in the third column of Fig. 7-31.
SEQUENCE and SEQUENCE OF share code 16. CHOICE does not have a code,
since any actual value sent always has a specific type. The other codes are for
types not used in SNMP. '

Following the 1-byte identifier field comes a field telling how many bytes the
data occupy. Lengths shorter than 128 bytes are directly encoded in 1 byte whose
leftmost bit is 0. Those that are longer use multiple bytes, with first byte contain-
ing a 1 in the high-order bit and the length field (up to 127 bytes) in the low-order
7 bits. For example, if the data length is 1000 bytes, the first byte contains 130 to
indicate a two byte length field follows. Then come two bytes whose value is
1000, with the high-order byte first.

The encoding of the data field depends on the type of data present. Integers
are encoded in two’s complement. A positive integer below 128 requires 1 byte, a
positive integer below 32,768 requires 2 bytes, and so forth. The most significant
byte is transmitted first. ‘

Bit strings are encoded as themselves. The only problem is how to indicate
the length. The length field tells how many bytes the value has, not how many

DELL Ex.1006.655

638 THE APPLICATION LAYER CHAP. 7

bits. The solution chosen is to transmit 1 byte before the actual bit string telling
how many bits (O through 7) of the final byte are unused. Thus the encoding of
the 9-bit string "010011111” would be 07, 4F, 80 (hexadecimal).

Octet strings are easy. The bytes of the string are just transmitted in standard
big endian style, left to right.

The null value is indicated by setting the length field to 0. No numerical
value is actually transmitted.

An OBJECT IDENTIFIER is encoded as the sequence of integers it
represents. For example, the Internet is {1, 3, 6, 1}. However, since the first
number is always 0, 1, or 2, and the second is less than 40 (by definition—ISO
simply will not recognize the 41st category to show up on its doorstep), the first
two numbers, a and b, are encoded as 1 byte having the value 40a + b. For the
Internet, this number is 43. As usual, numbers exceeding 127 are encoded in mul-
tiple bytes, the first of which contains the high-order bit set to 1 and a byte count
in the other 7 bits.

Both sequence types are transmitted by first sending the type or tag, then the
total length of the encoding for all the fields, followed by the fields themselves.
The fields are sent in order.

The encoding of a CHOICE value is the same as the encoding of the actual
data structure being transferred.

An example showing encoding of some values is given in Fig. 7-34. The
values encoded are the INTEGER 49, the OCTET STRING ’110’, “xy”, the only
possible value for NULL, the OBJECT IDENTIFIER for the Internet {1, 3, 6, 1},
and a Gauge32 value of 14.

Tag Tag
type Number

Length Value

Integer 49 oofojooo10/[00000001] 00110001

Bit String 110" [0 0Jojo00 11/ [00000010] [00000101|[11000000]

|
[
8(‘;??‘3‘”"9 [ooofoo100] [o0000010|[o1111000][01111001]
I
[
I

NULL loojojoo101][00000000]

Internet object g ojoJoo110] [o0000011|[00101011][00000110] 00000001
Gauge 3214 [01Jojooo10] [00000001] [00001110]

Fig. 7-34. ASN.I encoding of some example values.

DELL Ex.1006.656

SEC. 7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 639

7.3.3. SMI—Structure of Management Information

In the preceding section, we have discussed only those parts of ASN.1 that are
used in SNMP. In reality, the SNMP documents are organized differently. RFC
1442 first says that ASN.1 will be used to describe SNMP data structures, then it
goes on for 57 pages scratching out parts of the ASN.1 standard that it does not
want and adding new definitions (in ASN.1) that are needed. In particular, RFC
1442 defines four key macros and eight new data types that are heavily used
throughout SNMP. It is this sub-super-set of ASN.1, which goes by the ungainly
name of SMI (Structure of Management Information), that is really used to
define the SNMP data structures.

Although this approach is somewhat bureaucratic, some rules and regulations
are necessary if products from hundreds of vendors are expected to talk to one
another and actually understand what the others are saying. A few words about
SMI are therefore now in order.

At the lowest level, SNMP variables are defined as individual objects.
Related objects are collected together into groups, and groups are assembled into
modules. For example, groups exist for IP objects and TCP objects. A router
might support the IP group, since its manager cares about how many packets it
has lost. On the other hand, a low-end router might not support the TCP group,
since it need not use TCP to perform its routing functions. It is the intention that
vendors supporting a group support all the objects in that group. However, a ven-
dor supporting a module need not support all of its groups, since not all may be
applicable to the device.

AN MIB modules start with an invocation of the MODULE-IDENTITY macro.
Its parameters provide the name and address of the implementer, the revision his-
tory, and other administrative information. Typically; this call is followed by an
invocation of the OBJECT-IDENTITY macro, which tells where the module fits in
the naming tree of Fig. 7-32.

Later on come one or more invocations of the OBJECT-TYPE macro, which
name the actual variables being managed and specify their properties. Grouping
variables into groups is done by convention; there are no BEGIN-GROUP and
END-GROUP statements in ASN.1 or SML

The OBJECT-TYPE macro has four required parameters and four (sometimes)
optional ones. The first required parameter is SYNTAX and defines the variable’s
data type from among the types listed in Fig. 7-35. For the most part, these types
should be self explanatory, with the following comments. The suffix 32 is used
when the implementer really wants a 32-bit number, even if all the machines in
sight have 64-bit CPUs. Gauges differ from counters in that they do not wrap
around when they hit their limits. They stick there. If a router has lost exactly 2
packets, it is better to report this as 2°* — 1 than as 0. SMI also supports arrays,
but we will not go into those here. For details, see (Rose, 1994).

In addition to requiring a specification of the data type used by the variable

DELL Ex.1006.657

640 THE APPLICATION LAYER CHAP. 7

Name Type Bytes Meaning
INTEGER Numeric | 4 | Integer (32 bits in current implementations)
Counter32 Numeric 4 | Unsigned 32-bit counter that wraps
Gauge32 Numeric 4 | Unsigned value that does not wrap
Integer32 Numeric 4 32 Bits, even on a 64-bit CPU
Ulnteger32 Numeric J_J_LﬁlntegerSZ, but unsigned
Counter64 Numeric 8 | A 64-bit counter
TimeTicks Numeric 4 | In hundredths of a second since some epoch
BIT STRING String 4 | Bitmap of 1 to 32 bits
OCTET STRING String L >0 | Variable length byte string
LOpaque String >0 | Obsolete; for backward compatibility orlyl_
OBJECT IDENTIFIER s String >0 | Alist of integers from Fig. 7-32
IpAddress \ String 4 | A dotted decimal Internet address
NsapAddress l String <22 | An OSI NSAP address

Fig. 7-35. Data types used for SNMP monitored variables.

being declared, the OBJECT TYPE macro also requires three other parameters.
MAX-ACCESS contains information about the variable’s access. The most com-
mon values are read-write and read-only. If a variable is read-write, the manage-
ment station can set it. If it is read-only, the management station can read it but
cannot set it.

The STATUS has three possible values. A current variable is conformant with
the current SNMP specification. An obsolete variable is not conformant but was
conformant with an older version. A deprecated variable is in between. It is
really obsolete, but the committee that wrote the standard did not dare say this in
public for fear of the reaction from vendors whose products use it. Nevertheless,
the handwriting is on the wall.

The last required parameter is DESCRIPTION, which is an ASCII string tell-
ing what the variable does. If a manager buys a nice new shiny device, queries it
from the management station, and discovers that it keeps track of pktCnt, fetching
the DESCRIPTION field is supposed to give a clue as to what kind of packets it is
counting. This field is intended exclusively for human (as opposed to computer)
consumption.

A simple example of an OBJECT TYPE declaration is given in Fig. 7-36. The
variable is called lostPackets and might be useful in a router or other device deal-
ing with packets. The value after the ::= sign places it in the tree.

DELL Ex.1006.658

SEC. 7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 641

lostPackets OBJECT TYPE
SYNTAX Counter32 -- use a 32-bit counter v
MAX-ACCESS read-only -- the management station may not change it
STATUS current -- this variable is not obsolete (yet)
DESCRIPTION

"The number of packets lost since the last boot"
.= {experimental 20}

Fig. 7-36. An example SNMP variable.

7.3.4. The MIB—Management Information Base

The collection of objects managed by SNMP is defined in the MIB. For con-
venience, these objects are (currently) grouped into ten categories, which
correspond to the ten nodes under mib-2 in Fig. 7-32. (Note that mib-2
corresponds to SNMPv2 and that object 9 is no longer present.) The ten
categories are intended to provide a basis of what a management station should
understand. New categories and objects will certainly be added in the future, and
vendors are free to define additional objects for their products. The ten categories
are summarized in Fig. 7-37.

Group # Objects Description
System 7 Name, location, and description of the equipment
Interfaces 23 Network interfaces and their measured traffic
AT 3 Address translation (deprecated)
1P 42 IP packet statistics
ICMP 26] Statistics about ICMP messages received
TCP 19 TCP algorithms, parameters, and statistics
UDP 6 UDP traffic statistics
EGP 20 Exterior gateway protocol traffic statistics
Transmission 0 | Reserved for media-specific MIBs
SNMP 29 SNMP traffic statistics

Fig. 7-37. The object groups of the Internet MIB-II.

Although space limitations prevent us from delving into the details of all 175
objects defined in MIB-II, a few comments may be helpful. The system group
allows the manager to find out what the device is called, who made it, what
hardware and software it contains, where it is located, and what it is supposed to
do. The time of the last boot and the name and address of the contact person are

DELL Ex.1006.659

642 THE APPLICATION LAYER CHAP. 7

also provided. This information means that a company can contract out system
management to another company in a distant city and have the latter be able to
easily figure out what the configuration being managed actually is and who should
be contacted if there are problems with various devices.

The interfaces group deals with the network adapters. It keeps track of the
number of packets and bytes sent and received from the network, the number of
discards, the number of broadcasts, and the current output queue size.

The AT group was present in MIB-I and provided information about address
mapping (e.g., Ethernet to IP addresses). This information was moved to
protocol-specific MIBs in SNMPv2.

The IP group deals with IP traffic into and out of the node. It is especially
rich in counters keeping track of the number of packets discarded for each of a
variety of reasons (e.g., no known route to the destination or lack of resources).
Statistics about datagram fragmentation and reassembly are also available. All
these items are particular important for managing routers.

The ICMP group is about IP error messages. Basically, it has a counter for
each ICMP message that records how many of that type have been seen.

The TCP group monitors the current and cumulative number of connections
opened, segments sent and received, and various error statistics.

The UDP group logs the number of UDP datagrams sent and received, and
how many of the latter were undeliverable due to an unknown port or some other
reason.

The EGP group is used for routers that support the exterior gateway protocol.
It keeps track of how many packets of what kind went out, came in and were for-
warded correctly, and came in and were discarded.

The transmission group is a place holder for media-specific MIBs. For exam-
ple, Ethernet-specific statistics can be kept here. The purpose of including an
empty group in MIB-II is to reserve the identifier {internet 2 1 9} for such pur-
poses.

The last group is for collecting statistics about the operation of SNMP itself.
How many messages are being sent, what kinds of messages are they, and so on.

MIB-II is formally defined in RFC 1213. The bulk of RFC 1213 consists of
175 macro calls similar to those of Fig. 7-36, with comments delineating the ten
groups. For each of the 175 objects defined, the data type is given along with an
English text description of what the variable is used for. For further information
about MIB-II, the reader is referred to this RFC.

7.3.5. The SNMP Protocol

We have now seen that the model underlying SNMP is a management station
that sends requests to agents in managed nodes, inquiring about the 175 variables
just alluded to, and many other vendor-specific variables. Our last topic is the

DELL Ex.1006.660

SEC. 7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 643

actual protocol that the management station and agents speak. The protocol itself
is defined in RFC 1448.

The normal way that SNMP is used is that the management station sends a
request to an agent asking it for information or commanding it to update its state
in a certain way. Ideally, the agent just replies with the requested information or
confirms that it has updated its state as requested. Data are sent using the ASN.1
transfer syntax. However, various errors can also be reported, such as No Such
Variable.

SNMP defines seven messages that can be sent. The six messages from an
initiator are listed in Fig. 7-38 (the seventh message is the response message).
The first three request variable values to be sent back. The first format names the
variables it wants explicitly. The second one asks for the next variable, allowing
a manager to step through the entire MIB alphabetically (the default is the first
variable). The third is for large transfers, such as tables.

f» Message Description

Get-request Requests the value of one or more variables
Get-next-request | Requests the variable foliowing this one
Get-bulk-request | Fetches a large table

Set-request Updates one or more variables

Inform-request Manager-to-manager message describing local MIB
SnmpV2-trap Agent-to-manager trap report

Fig. 7-38. SNMP message types.

Then comes a message that allows the manager to update an agent’s variables,
to the extent that the object specification permits such updates, of course. Next is
an informational request that allows one manager to tell another one which vari-
ables it is managing. Finally, comes the message sent from an agent to a manager
when a trap has sprung.

7.4. ELECTRONIC MAIL

Having finished looking at some of the support protocols used in the applica-
tion layer, we finally come to real applications. When asked: “What are you
going to do now?”’ few people will say: “I am going to look up some names with
DNS.” People do say they are going to read their email or news, surf the Web, or
watch a movie over the net. In the remainder of this chapter, we will explain in a
fair amount of detail how these four applications work.

DELL Ex.1006.661

644 THE APPLICATION LAYER CHAP. 7

Electronic mail, or email, as it is known to its many fans, has been around for
over two decades. The first email systems simply consisted of file transfer proto-
cols, with the convention that the first line of each message (i.e., file) contained
the recipient’s address. As time went on, the limitations of this approach became
more obvious. Some of the complaints were

1. Sending a message to a group of people was inconvenient. Managers
often need this facility to send memos to all their subordinates.

2. Messages had no internal structure, making computer processing dif-
ficult. For example, if a forwarded message was included in the
body of another message, extracting the forwarded part from the
received message was difficult.

3. The originator (sender) never knew if a message arrived or not.

4. If someone was planning to be away on business for several weeks
and wanted all incoming email to be handled by his secretary, this
was not easy to arrange.

5. The user interface was poorly integrated with the transmission sys-
tem requiring users first to edit a file, then leave the editor and
invoke the file transfer program.

6. It was not possible to create and send messages containing a mixture
of text, drawings, facsimile, and voice.

As experience was gained, more elaborate email systems were proposed. In
1982, the ARPANET email proposals were published as RFC 821 (transmission
protocol) and RFC 822 (message format). These have since become the de facto
Internet standards. Two years later, CCITT drafted its X.400 recommendation,
which was later taken over as the basis for OSI’s MOTIS. In 1988, CCITT modi-
fied X.400 to align it with MOTIS. MOTIS was to be the flagship application for
OS], a system that was to be all things to all people.

After a decade of competition, email systems based on RFC 822 are widely
used, whereas those based on X.400 have disappeared under the horizon. How a
system hacked together by a handful of computer science graduate students beat
an official international standard strongly backed by all the PTTs worldwide,
many governments, and a substantial part of the computer industry brings to mind
the Biblical story of David and Goliath. The reason for RFC 822’s success is not
that it is so good, but that X.400 is so poorly designed and so complex that nobody
could implement it well. Given a choice between a simple-minded, but working,
RFC 822-based email system and a supposedly truly wonderful, but nonworking,
X.400 email system, most organizations chose the former. For a long diatribe on
what is wrong with X.400, see Appendix C of (Rose, 1993). Consequently, our
discussion of email will focus on RFC 821 and RFC 822 as used in the Internet.

DELL Ex.1006.662

SEC. 74 ELECTRONIC MAIL 645
7.4.1. Architecture and Services

In this section we will provide an overview of what email systems can do and
how they are organized. They normally consist of two subsystems: the user
agents, which allow people to read and send email, and the message transfer
agents, which move the messages from the source to the destination. The user
agents are local programs that provide a command-based, menu-based, or graphi-
cal method for interacting with the email system. The message transfer agents are
typically system daemons that run in the background and move email through the
system. ‘

Typically, email systems support five basic functions, as described below.
Composition refers to the process of creating messages and answers. Although
any text editor can be used for the body of the message, the system itself can pro-
vide assistance with addressing and the numerous header fields attached to each
message. For example, when answering a message, the email system can extract
the originator’s address from the incoming email and automatically insert it into
the proper place in the reply.

Transfer refers to moving messages from the originator to the recipient. In
large part, this requires €stablishing a connection to the destination or some inter-
mediate machine, outputting the message, and releasing the connection. The
email system should do this automatically, without bothering the user.

Reporting has to do with telling the originator what happened to the message.
Was'it delivered? Was it rejected? Was it lost? Numerous applications exist in
which confirmation of delivery is important and may even have legal significance
(“Well, Your Honor, my email system is not very reliable, so I guess the elec-
tronic subpoena just got lost somewhere’’).

Displaying incoming messages is needed so people can read their email.
Sometimes conversion is required or a special viewer must be invoked, for exam-
ple, if the message is a PostScript file or digitized voice. Simple conversions and
formatting are sometimes attempted as well.

Disposition is the final step and concerns what the recipient does with the
message: after receiving it. Possibilities include throwing it away before reading,
throwing it away after reading, saving it, and so on. It should also be possible to
retrieve ‘and reread saved messages, forward them, or process them in other ways.

In addition to these basic services, most email systems provide a large variety
of advanced features. Let us just briefly mention a few of these. When people
move, or when they are away for some period of time, they may want their email
forwarded, so the system should be able to do this automatically.

Most systems allow users to create mailboxes to store incoming email. Com-
mands are needed to create and destroy mailboxes, inspect the contents of mail-
boxes, insert and delete messages from mailboxes, and so on.

Corporate ‘managers often need to send a message to each of their subordi-
nates, customers, or suppliers. This gives rise to the idea of a mailing list, which

DELL Ex.1006.663

646 THE APPLICATION LAYER CHAP. 7

is a list of email addresses. When a message is sent to the mailing list, identical
copies are delivered to everyone on the list.

Registered email is another important idea, to allow the originator to know
that his message has arrived. Alternatively, automatic notification of undeliver-
able email may be desired. In any case, the originator should have some control
over reporting what happened.

Other advanced features are carbon copies, high-priority email, secret
(encrypted) email, alternative recipients if the primary one is not available, and
the ability for secretaries to handle their bosses’ email.

Email is now widely used within industry for intracompany communication.
It allows far-flung employees to cooperate on complex projects, even over many
time zones. By eliminating most cues associated with rank, age, and gender,
email debates tend to focus on ideas, not on corporate status. With email, a brilli-
ant idea from a summer student can have more impact than a dumb one from an
executive vice president. Some companies have estimated that email has
improved their productivity by as much as 30 percent (Perry and Adam, 1992).

A key idea in all modern email systems is the distinction between the
envelope and its contents. The envelope encapsulates the message. It contains.all
the information needed for transporting the message, such as the destination
address, priority, and security level, all of which are distinct from the message
itself. The message transport agents use the envelope for routing, just as the post
office does.

The message inside the envelope contains two parts: the header and the
body. The header contains control information for the user agents. The body is
entirely for the human recipient. Envelopes and messages are illustrated in
Fig. 7-39.

7.4.2. The User Agent

Email systems have two basic parts, as we have seen: the user agents and the
message transfer agents. In this section we will look at the user agents. A user
agent is normally a program (sometimes called a mail reader) that accepts a
variety of commands for composing, receiving, and replying to messages, as well
as for manipulating mailboxes. Some user agents have a fancy menu- or icon-
driven interface that requires a mouse, while others expect 1-character commands
from the keyboard. Functionally, these are the same.

Sending Email
To send an email message, a user must provide the message, the destination

address, and possibly some other parameters (e.g., the priority or security level).
The message can be produced with a free-standing text editor, a word processing

DELL Ex.1006.664

SEC. 74 ELECTRONIC MAIL 647

T Name: Mr. Daniel Dumkopf
° Street: 18 Willow Lane
; Q State: NY
Mr. D_anlel Dumkopf o Zip code: 10604 L Envelope
18 Willow Lane g Priority Urgent
White Plains, NY 10604 w Encryption: None
R)
T From: United Gizmo]
United Gizmo N Address: 180 Main St.
180 Main St e Location: Boston, MA 02120
Boston, MA 02120 3 Date: Sept. 1, 1996
Sept. 1, 1996 Il Subject: Invoice 1081
Subject: Invoice 1081
Dear Mr. Dumkopf,
Dear Mr. Dumkopf, Our computer records
Our computer records show that you still have L Message
show that you still have not paid the above invoice
not paid the above invoice > of $0.00. Please send us a
of $0.00. Please send us a B check for $0.00 promptly.
check for $0.00 promptly. @
Yours truly Yours truly
United Gizmo United Gizmo
J

(a) (b)
Fig. 7-39. Envelopes and messages. (a) Postal email. (b) Electronic email.

program, or possibly with a text editor built into the user agent. The destination
address must be in a format that the user agent can deal with. Many user agents
expect DNS addresses of the form mailbox@Ilocation. Since we have studied
these earlier in this chapter, we will not repeat that material here.

However, it is worth noting that other forms of addressing exist. In particular,
X.400 addresses look radically different than DNS addresses. They are composed
of attribute = value pairs, for example,

/C=US/SP=MASSACHUSETTS/L.=CAMBRIDGE/PA=360 MEMORIAL DR./CN=KEN SMITH/

This address specifies a country, state, locality, personal address and a common
name (Tom Smith). Many other attributes are possible; so you can send email to
someone whose name you do not know, provided you know enough other attri-
butes (e.g., company and job title). Many people feel that this form of naming is
considerably less convenient than DNS names.

In all fairness, however, the X.400 designers assumed that people would use
aliases (short user-assigned strings) to identify recipients, so that they would
never even see the full addresses. However, the necessary software was never

DELL Ex.1006.665

648 THE APPLICATION LAYER . CHAP. 7

widely available, so people sending mail to users with X.400 addresses often had
to type in strings like the one above. In contrast, most email systems for the Inter-
net have always allowed users to have alias files.

Most email systems support mailing lists, so that a user can send the same
message to a list of people with a single command. If the mailing list is main-
tained locally, the user agent can just send a separate message to each intended
recipient. However, if the list is maintained remotely, then messages will be
expanded there. For example, if a group of bird watchers have a mailing list
called birders installed on meadowlark.arizona.edu, then any message sent to
birders@meadowlark.arizona.edu will be routed to the University of Arizona and
expanded there into individual messages to all the mailing list members, wherever
in the world they may be. Users of this mailing list cannot tell that it is a mailing
list. It could just as well be the personal mailbox of Prof. Gabriel O. Birders.

Reading Email

Typically, when a user agent is started up, it will look at the user’s mailbox
for incoming email before displaying anything on the screen. Then it may
announce the number of messages in the mailbox or display a one-line summary
of each one and wait for a command.

As an example of how a user agent works, let us take a look at a typical mail
scenario. After starting up the user agent, the user asks for a summary of his
email. A display like that of Fig. 7-40 then appears on the screen. Each line
refers to one message. In this example, the mailbox contains eight messages.

[Flags] Bytes] Sender Subject l
1 K 1030 asw Changes to MINIX J
2 KA 6348 radia Comments on material you sent me
3 KF 4519 Amy N. Wong Request for information

4 1236 bal Deadline for grant proposal

5 103610 kaashoek Text of DCS paper

6 1223 emily E. Pointer to WWW page

7 3110 saniya Referee reports for the paper

8 1204 dmr " Re: My student’s visit

Fig. 7-40. An example display of the contents of a mailbox.

Each display line contains several fields extracted from the envelope or
header of the corresponding message. In a simple email system, the choice of
fields displayed is built into the program. In a more sophisticated system, the user
can specify which fields are to be displayed by providing a user profile, a file

DELL Ex.1006.666

SEC. 7.4 ELECTRONIC MAIL 649

describing the display format. In this example, the first field is the message
number. The second field, Flags, can contain a K, meaning that the message is
not new but was read previously and kept in the mailbox; an A, meaning that the
message has already been answered; and/or an F, meaning that the message has
been forwarded to someone else. Other flags are also possible.

The third field tells how long the message is and the fourth one tells who sent
the message. Since this field is simply extracted from the message, this field may
contain first names, full names, initials, login names, or whatever else the sender
chooses to put there. Finally, the Subject field gives a brief summary of what the
message is about. People who fail to include a Subject field often discover that
responses to their email tend not to get the highest priority.

After the headers have been displayed, the user can perform any of the com-
mands available. A typical collection is listed in Fig. 7-41. Some of the com-
mands require a parameter. The # sign means that the number of a message (or
perhaps several messages) is expected. Alternatively, the letter a can be used to
mean all messages.

Command | Parameter Description
h # r[SispIay header(s) on the screen
c Display current header only
t # Type message(s) on the screen
j
s address Send a message
f # Forward message(s)
a # Answer message(s)
d # Delete message(s)
u # Undelete previously deleted message(s)
m # Move message(s) to another mailbox
k # Keep message(s) after exiting
r mailbox Read a new mailbox
n Go to the next message and display it
b Backup to the previous message and display it
g # Go to a specific message but do not display it
L e Exit the mail system and update the mailbox]

Fig. 7-41. Typical mail handling commands.

Innumerable email programs exist. Our example email program is patterned
after the one used by the UNIX Mmdf system, as it is quite straightforward. The h
-command displays one or more headers in the format of Fig. 7-40. The ¢ com-
mand prints the current message’s header. The t command types (i.e., displays on
the screen) the requested message or messages. Possible commands are ¢ 3, to
type message 3, ¢ 4-6, to type messages 4 through 6, and ¢ a to type them all.

DELL Ex.1006.667

650 THE APPLICATION LAYER CHAP. 7

The next group of three commands deals with sending messages rather than
receiving them. The s command sends a message by calling an appropriate editor
(e.g., specified in the user’s profile) to allow the user to compose the message.
Spelling, grammar, and diction checkers can see if the message is syntactically
correct. Unfortunately, the current generation of email programs do not have
checkers to see if the sender knows what he is talking about. When the message
is finished, it is prepared for transmission to the message transfer agent.

The f command forwards a message from the mailbox, prompting for an
address to send it to. The a command extracts the source address from the mes-
sage to be answered and calls the editor to allow the user to compose the reply.

The next group of commands is for manipulating mailboxes. Users typically
have one mailbox for each person with whom they correspond, in addition to the
mailbox for incoming email that we have already seen. The d command deletes a
message from the mailbox, but the u command undoes the delete. (The message
is not actually deleted until the email program is exited.) The m command moves
a message to another mailbox. This is the usual way to save important email after
reading it. The k command keeps the indicated message in the mailbox even after
itis read. If a message is read but not explicitly kept, some default action is taken
when the email program is exited, such as moving it to a special default mailbox.
Finally, the » command is used to finish up with the current mailbox and go read
another one.

The n, b, and g commands are for moving about in the current mailbox. It is
common for a user to read message 1, answer, move, or delete it, and then type n
to get the next one. The value of this command is that the user does not have to
keep track of where he is. It is possible to go backward using b or to a given mes-
sage with g.

Finally, the ¢ command exits the email program and makes whatever changes
are required, such as deleting some messages and marking others as kept. This
command overwrites the mailbox, replacing its contents.

In mail systems designed for beginners, each of these commands is typically
associated with an on-screen icon, so that the user does not have to remember that
a stands for answer. Instead, she has to remember that the little picture of a per-
son with his mouth open means answer and not display message.

It should be clear from this example that email has come a long way from the
days when it was just file transfer. Sophisticated user agents make managing a
large volume of email possible. For people such as the author who (reluctantly)
receive and send thousands of messages a year, such tools are invaluable.

7.4.3. Message Formats
Let us now turn from the user interface to the format of the email messages

themselves. First we will look at basic ASCII email using RFC 822. After that,
we will look at multimedia extensions to RFC 822

DELL Ex.1006.668

SEC. 7.4 ELECTRONIC MAIL 651

RFC 822

Messages consist of a primitive envelope (described in RFC 821), some
number of header fields, a blank line, and then the message body. Each header
field (logically) consists of a single line of ASCII text containing the field name, a
colon, and, for most fields, a value. RFC 822 is an old standard, and does not
clearly distinguish envelope from header fields, as a new standard would do. In
normal usage, the user agent builds a message and passes it to the message
transfer agent, which then uses some of the header fields to construct the actual
envelope, a somewhat old-fashioned mixing of message and envelope.

The principal header fields related to message transport are listed in Fig. 7-42.
The To: field gives the DNS address of the primary recipient. Having multiple
recipients is also aliowed. The Cc: field gives the addresses of any secondary
recipients. In terms of delivery, there is no distinction between the primary and
secondary recipients. It is entirely a psychological difference that may be impor-
tant to the people involved but is not important to the mail system. The term Cc:
(Carbon copy) is a bit dated, since computers do not use carbon paper, but it is
well established. The Bec: (Blind carbon copy) field is like the Ce: field, except
that this line is deleted from all the copies sent to the primary and secondary reci-
pients. This feature allows people to send copies to third parties without the pri-
mary and secondary recipients knowing this.

Header Meaning
To: Email address(es) of primary recipient(s)
Cc: Email address(es) of secondary recipient(s)
Bcc: Email address(es) for blind carbon copies
From: Person or people who created the message
Sender: Email address of the actual sender
Received: Line added by each transfer agent along the route
Return-Path: | Can be used to identify a path back to the sender

Fig. 7-42. RFC 822 header fields related to message transport.

The next two fields, From. and Sender: tell who wrote and sent the message,
respectively. These may not be the same. For example, a business executive may
write a message, but her secretary may be the one who actually transmits it. In
this case, the executive would be listed in the From: field and the secretary in the
Sender: field. The From: field is required, but the Sender: field may be omitted if
it is the same as the From: field. These fields are needed in case the message is
undeliverable and must be returned to the sender.

A line containing Received: is added by each message transfer agent along the

DELL Ex.1006.669

652 THE APPLICATION LAYER CHAP. 7

way. The line contains the agent’s identity, the date and time the message was
received, and other information that can be used for finding bugs in the routing
system.

The Return-Path: field is added by the final message transfer agent and was
intended to tell how to get back to the sender. In theory, this information can be
gathered from all the Received: headers (except for the name of the sender’s mail-
box), but it is rarely filled in as such and typically just contains the sender’s
address.

In addition to the fields of Fig. 7-42, RFC 822 messages may also contain a
variety of header fields used by the user agents or human recipients. The most
common ones are listed in Fig. 7-43. Most of these are self-explanatory, so we
will not go into all of them in detail.

r Header Meaning
Date: The date and time the message was sent
Reply-To: Email address to which replies shouid be sent

Message-Id: | Unique number for referencing this message later

In-Reply-To: | Message-Id of the message to which this is a reply

feferences: Other relevant Message-Ids

Keywords: User chosen keywords

Subject: Short summary of the message for the one-line dispiay

Fig. 7-43. Some fields used in the RFC 822 message header.

The Reply-To: field is sometimes used when neither the person composing the
message nor the person sending the message wants to see the reply. For example,
a marketing manager writes an email message telling customers about a new
product. The message is sent by a secretary, but the Reply-To: field lists the head
of the sales department, who can answer questions and take orders.

The RFC 822 document explicitly says that users are allowed to invent new
headers for their own private use, provided that these headers start with the string
X-. It is guaranteed that no future headers will use names starting with X-, to
avoid conflicts between official and private headers. Sometimes wiseguy under-
graduates include fields like X-Fruit-of-the-Day: or X-Disease-of-the-Week:,
which are legal, although not always illuminating.

After the headers comes the message body. Users can put whatever they want
here. Some people terminate their messages with elaborate signatures, including
simple ASCII cartoons, quotations from greater and lesser authorities, political
statements, and disclaimers of all kinds (e.g., The ABC Corporation is not respon-
sible for my opinions; it cannot even comprehend them).

DELL Ex.1006.670

SEC. 7.4 ELECTRONIC MAIL 653

MIME—Mutltipurpose Internet Mail Extensions

In the early days of the ARPANET, email consisted exclusively of text mes-
sages written in English and expressed in ASCIIL For this environment, RFC 822
did the job completely: it specified the headers but left the content entirely up to
the users. Nowadays, on the worldwide Internet, this approach is no longer ade-
quate. The problems include sending and receiving

1. Messages in languages with accents (e.g., French and German).

2. Messages in nonLatin alphabets (e.g., Hebrew and Russian).

3. Messages in languages without alphabets (e.g., Chinese and J apanese).
4. Messages not containing text at all (e.g., audio and video).

A solution was proposed in RFC 1341 and updated in RFC 1521. This solution,
called MIME (Multipurpose Internet Mail Extensions) is now widely used.
We will now describe it. For additional information about MIME, see RFC 1521
or (Rose, 1993).

The basic idea of MIME is to continue to use the RFC 822 format, but to add
structure to the message body and define encoding rules for non-ASCII messages.
By not deviating from 822, MIME messages can be sent using the existing mail
programs and protocols. All that has to be changed are the sending and receiving
programs, which users can do for themselves.

MIME defines five new message headers, as shown in Fig. 7-44. The first of
these simply tells the user agent receiving the message that it is dealing with a
MIME message, and which version of MIME it uses. Any tessage not contain-
ing a MIME-Version: header is assumed to be an English plaintext message, and
is processed as such.

Header Meaning
MIME-Version: Identifies the MIME version
Content-Description: Human-readable strihg telling what is in the message |
Content-ld: ‘ Unique identifier
Content-Transfer-Encoding: | How the body is wrapped for transmission
Conten{—Type: Nature of the message J

Fig. 7-44. RFC 822 headers added by MIME.

The Content-Description: header is an ASCII string telling what is in the mes-
sage. This header is needed so the recipient will know whether itis worth decod-
ing and reading the message. If the string says: “Photo of Barbara’s gerbil” and
the person getting the message is not a big gerbil fan, the message will probably
be discarded rather than decoded into a high-resolution color photograph.

DELL Ex.1006.671

654 THE APPLICATION LAYER CHAP. 7

The Content-1d: header identifies the content. It uses the same format as the
standard Message-Id: header.

The Content-Transfer-Encoding: tells how the body is wrapped for transmis-
sion through a network that may object to most characters other than letters,
numbers, and punctuation marks. Five schemes (plus an escape o new schemes)
are provided. The simplest scheme is just ASCII text. ASCII characters use 7
bits, and can be carried directly by the email protocol provided that no line
exceeds 1000 characters.

The next simplest scheme is the same thing, but using 8-bit characters, that is,
all values from O up to and including 255. This encoding scheme violates the (ori-
ginal) Internet email protocol but is used by some parts of the Internet that imple-
ment some extensions to the original protocol. While declaring the encoding does
not make it legal, having it explicit may at least explain things when something
goes wrong. Messages using the 8-bit encoding must still adhere to the standard
maximum line length.

Even worse are messages that use binary encoding. These are arbitrary binary
files that not only use all 8§ bits but also do not even respect the 1000 character
line limit. Executable programs fall into this category. No guarantee is given that
messages in binary will arrive correctly, but many people send them anyway.

The correct way to encode binary messages is to use base64 encoding, some-
times called ASCII armor. In this scheme, groups of 24 bits are broken up into
four 6-bit units, with each unit being sent as a legal ASCII character. The coding
1s “A” for 0, “B” for 1, and so on, followed by the 26 lowercase letters, the ten
digits, and finally + and / for 62 and 63, respectively. The == and = sequences are
used to indicate that the last group contained only 8 or 16 bits, respectively. Car-
riage returns and line feeds are ignored, so they can be inserted at will to keep the
lines short enough. Arbitrary binary text can be sent safely using this scheme.

For messages that are almost entirely ASCII, but with a few non-ASCII char-
acters, base64 encoding is somewhat inefficient. Instead, an encoding known as
quoted-printable encoding is used. This is just 7-bit ASCII, with all the charac-
ters above 127 encoded as an equal sign followed by the character’s value as two
hexadecimal digits.

In summary, binary data should be sent encoded in base64 or quoted printable
form. When there are valid reasons not to use one of these schemes, it is possible
to specify a user-defined encoding in the Content-Transfer-Encoding: header.

The last header shown in Fig. 7-44 is really the most interesting one. It speci-
fies the nature of the message body. Seven types are defined in RFC 1521, each
of which has one or more subtypes. The type and subtype are separated by a
slash; as in

Content-Type: video/mpeg

The subtype must be given explicitly in the header; no defaults are provided. The
initial list of types and subtypes specified in RFC 1521 is given in Fig. 7-45.

DELL Ex.1006.672

SEC. 7.4 ELECTRONIC MAIL 655

Many new ones have been added since then, and additional entries are being
added all the time as the need arises.

Type Subtype Description

Plain Unformatted text

Text
Richtext Text including simple formatting commands
Gif Still picture in GIF format

Image)
Jpeg Still picture in JPEG format

Audio Basic Audible sound

Video Mpeg Movie in MPEG format
Octet-stream An uninterpreted byte sequence

Application
Postscript A printable document in PostScript
Rfc822 A MIME RFC 822 message

Message Partial (Message has been split for transmission
External-body | Message itself must be fetched over the net
Mixed Independent parts in the specified order

. Alternative \ Same message in different formats

Multipart ; : :
Parallel ’ Parts must be viewed simultaneously
Digest ‘ Each part is a complete RFC 822 message J

Fig. 7-45. The MIME types and subtypes defined in RFC 1521.

Let us now go through the list of types. The text type is for straight text. The
text/plain combination is for ordinary messages that can be displayed as received,
with no encoding and no further processing. This option allows ordinary mes-
sages to be transported in MIME with only a few extra headers.

The text/richtext subtype allows a simple markup language to be included in
the text. This language provides a system-independent way to express boldface,
italics, smaller and larger point sizes, indentation, justification, sub- and super-
scripting, and simple page layout. The markup language is based on SGML, the
Standard Generalized Markup Language also used as the basis for the World
Wide Web’s HTML. For example, the message

The <bold> time </bold> has come the <italic> walrus </italic> said ...
would be displayed as
The time has come the walrus said ...

It is up to the receiving system to choose the appropriate rendition. If boldface
and italics are available, they can be used; otherwise, colors, blinking,

DELL Ex.1006.673

656 THE APPLICATION LAYER CHAP. 7

underlining, reverse video, etc. can be used for emphasis. Different systems can,
and do, make different choices.

The next MIME type is image, which is used to transmit still pictures. Many
formats are widely used for storing and transmitting images nowadays, both with
and without compression. Two of these, GIF and JPEG, are official subtypes, but
no doubt others will be added later.

The audio and video types are for sound and moving pictures, respectively.
Note that video includes only the visual information, not the soundtrack. If a
movie with sound is to be transmitted, the video and audio portions may have to
be transmitted separately, depending on the encoding system used. The only
video format defined so far is the one devised by the modestly-named Moving
Picture Experts Group (MPEG).

The application type is a catchall for formats that require external processing
not covered by one of the other types. An octet-stream is just a sequence of unin-
terpreted bytes. Upon receiving such 4 stream, a user agent should probably
display it by suggesting to the user that it be copied to a file and prompting for a
file name. Subsequent processing is then up to the user.

The other defined subtype is posiscript, which refers to the PostScript
language produced by Adobe Systems and widely used for describing printed
pages. Many printers have built-in PostScript interpreters. Although a user agent
can just call an external PostScript interpreter to display incoming PostScript files,
doing so is not without danger. PostSeript is a full-blown programming language.
Given enough time, a sufficiently masochistic person could write a C compiler or
a database management system in PostScript. Displaying an incoming PostScript
message is done by executing the PostScript program contained in it. In addition
to displaying some text, this program can read, modify, or delete the user’s files,
and have other nasty side effects.

The message type allows one message to be fully encapsulated inside another.
This scheme is useful for forwarding email, for example. When a complete RFC
822 message is encapsulated inside an outer message, the rfc822 subtype should
be used.

The partial subtype makes it possible to break an encapsulated message up
into pieces and send .them separately (for example, if the encapsulated message is
too long). Parameters make it possible to reassemble all the parts at the destina-
tion in the correct order.

Finally, the external-body subtype can be used for very long messages (e.g.,
video films). Instead of including the MPEG file in the message, an FTP address
is given and the receiver’s user agent can fetch it over the network at the time it is
needed. This facility is especially useful when sending a movie to a mailing list
of people, only a few of whom aré expected to view it (think about electronic junk
mail containing advertising videos).

The final type is multipart, which allows a message to contain more than one
part, with the beginning and end of each part being clearly delimited. The mixed

DELL Ex.1006.674

SEC. 7.4 ELECTRONIC MAIL 657

subtype allows each part to be different, with no additional structure imposed. In
contrast, with the alternative subtype, each part must contain the same message
but expressed in a different medium or encoding. For example, a message could
be sent in plain ASCIIL, in richtext, and in PostScript. A properly-designed user
agent getting such a message would display it in PostScript if possible. Second
choice would be richtext. If neither of these were possible, the flat ASCII text
would be displayed. The parts should be ordered from simplest to most complex
to help recipients with pre-MIME user agents make some sense of the message
(e.g., even a pre-MIME user can read flat ASCII text).

The alternative subtype can also be used for multiple languages. In this con-
text, the Rosetta Stone can be thought of as an early multipart/alternative mes-
sage.

A multimedia example is shown in Fig. 7-46. Here a birthday greeting is
transmitted both as text and as a song. If the receiver has an audio capability, the
user agent there will fetch the sound file, birthday.snd, and play it. If not, the lyr-
ics are displayed on the screen in stony silence. The parts are delimited by two
hyphens followed by the (user-defined) string specified in the boundary parame-
ter.

Note that the Content-Type header occurs in three positions within this exam-
ple. At the top level, it indicates that the message has multiple parts. Within each
part, it gives the type and subtype of that part. Finally, within the body of the
second part, it is required to tell the user agent what kind of an external file it is to
fetch. To indicate this slight difference in usage, we have used lowercase letters
here, although all headers are case insensitive. The content-transfer-encoding is
similarly required for any external body that is not encoded as 7-bit ASCII.

Getting back to the subtypes for multipart messages, two more possibilities
exist. The parallel subtype is used when all parts must be “viewed” simultane-
ously. For example, movies often have an audio channel and a video channel.
Movies are more effective if these two channels are played back in parallel,
instead of consecutively.

Finally, the digest subtype is used when many messages are packed together
into a composite message. For example, some discussion groups on the Internet
collect messages from subscribers and then send them out as a single
multipart/digest message.

7.4.4. Message Transfer

The message transfer system is concerned with relaying messages from origi-
nator to the recipient. The simplest way to do this is to establish a transport con-
nection from the source machine to the destination machine and then just transfer
the message. After examining how this is normally done, we will examine some
situations in which this does not work and what can be done about them.

DELL Ex.1006.675

658 THE APPLICATION LAYER CHAP. 7

From: elinor@abc.com

To: carolyn@xyz.com

MIME-Version: 1.0

Message-ld: <0704760941.AA00747 @abc.com>

Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm
Subject: Earth orbits sun integral number of times

This is the preamble. The user agent ignores it. Have a nice day.

--qwertyuiopasdfghjklzxcvbnm
Content-Type: text/richtext

Happy birthday to you
Happy birthday to you
Happy birthday dear <bold> Carolyn </bold>
Happy birthday to you

--qwertyuiopasdfghjklzxcvbnm

Content-Type: message/external-body;
access-type="anon-ftp";
site="bicycle.abc.com";
directory="pub";
name="birthday.snd"

content-type: audio/basic
content-transfer-encoding: base64
--gqwertyuiopasdfghjklzxcvbnm--

Fig. 7-46. A multipart message containing richtext and audio alternatives.

SMTP—Simple Mail Transfer Protocol

Within the Internet, email is delivered by having the source machine establish
a TCP connection to port 25 of the destination machine. Listening to this port is
an email daemon that speaks SMTP (Simple Mail Transfer Protocol). This
daemon accepts incoming connections and copies messages from them into the
appropriate mailboxes. If a message cannot be delivered, an error report contain-
ing the first part of the undeliverable message is returned to the sender.

SMTP is a simple ASCII protocol. After establishing the TCP connection to
port 25, the sending machine, operating as the client, waits for the receiving ma-
chine, operating as the server, to talk first. The server starts by sending a line of
text giving its identity and telling whether or not it is prepared to receive mail. If
it is not, the client releases the connection and tries again later.

If the server is willing to accept email, the client announces whom the email
is coming from and whom it is going too. If such a recipient exists at the

DELL Ex.1006.676

SEC. 7.4 ELECTRONIC MAIL 659

destination, the server gives the client the go-ahead to send the message. Then the
client sends the message and the server acknowledges it. No checksums are gen-
erally needed because TCP provides a reliable byte stream. If there is more
email, that is now sent. When all the email has been exchanged in both direc-
tions, the connection is released. A sample dialog for sending the message of
Fig. 7-46, including the numerical codes used by SMTP, is shown in Fig. 7-47.
The lines sent by the client are marked C.; those sent by the server are marked S:.

A few comments about Fig. 7-47 may be helpful. The first command from
the client is indeed HELO. Of the two four-character abbreviations for HELLO,
this one has numerous advantages over its competitor. Why all the commands
had to be four characters has been lost in the mists of time.

In Fig. 7-47, the message is sent to only one recipient, so only one RCPT
command-is used. Multiple such commands are allowed to send a single message
to multiple receivers. Each one is individually acknowledged or rejected. Even if
some recipients are rejected (because they do not exist at the destination), the
message can be sent to the remainder.

Finally, although the syntax of the four-character commands from the client is
rigidly specified, the syntax of the replies is less rigid. Only the numerical code
really counts. Each implementation can put whatever string it wants after the
code.

Even though the SMTP protocol is well defined (by REC 821), a few prob-
lems can still arise. One problem relates to message length. Some older imple-
mentations cannot handle messages exceeding 64KB. Another problem relates to
timeouts. If the client and server have different timeouts, one of them may give
up while the other is still busy, unexpectedly terminating the connection. Finally,
in rare situations, infinite mailstorms can be triggered. For example, if host 1
holds mailing list A and host 2 holds mailing list B and each list contains an entry
for the other one, then any message sent to either list will generate a never-ending
amount of email traffic.

To get around some of these problems, extended STMP (ESMTP) has been
defined in RFC 1425. Clients wanting to use it should send an EHLO message
instead of HELO initially. If this is rejected, then the server is a regular SMTP
server, and the client should proceed in the usual way. If the EHLO is accepted,
then new commands and parameters are allowed. The standardization of these
commands and parameters is an ongoing process.

Email Gateways

Email using SMTP works best when both the sender and the receiver are on
the Internet and can support TCP connections between sender and receiver. How-
ever, many machines that are not on the Internet still want to send and receive
email from Internet sites. For example, many companies intentionally do not

DELL Ex.1006.677

660 THE APPLICATION LAYER CHAP. 7

O 0000000000000 000000NNN0RN000 O O O O

S: 220 xyz.com SMTP service ready

: HELO abc.com

S: 250 xyz.com says hello to abc.com

: MAIL FROM: <elinor@abc.com>

S: 250 sender ok

: RCPT TO: <carolyn @xyz.com>

S: 250 recipient ok
DATA
S: 354 Send mail; end with "." on a line by itself

: From; elinor@abc.com
: To: carolyn@xyz.com

MIME-Version: 1.0

: Message-ld: <0704760941.AA00747 @abc.com>
: Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm
: Subject: Earth orbits sun integral number of times

: This is the preamble. The user agent ignores it. Have a nice day.

: ~-qwertyuiopasdfghjklzxcvbnm
: Content-Type: text/richtext

. Happy birthday to you
: Happy birthday to you
. Happy birthday dear <bold> Carolyn </bold>
: Happy birthday to you

: --gqwertyuiopasdfghjklzxcvbnm
: Content-Type: message/external-body;

access-type="anon-ftp";
site="bicycle.abc.com”;
directory="pub";
name="birthday.snd"

: content-type: audio/basic
: content-transfer-encoding: base64
: --qwertyuiopasdfghjklzxcvbnm

S: 250 message accepted

:QUIT

S: 221 xyz.com closing connection

Fig. 7-47. Transferring a message from elinor@abc.com to carolyn@xyz.com.

want to be on the Internet for security reasons. Some of them even remove them-
selves from the Internet by erecting firewalls between themselves and the Internet.

Another problem occurs when the sender speaks only RFC 822 and the

DELL Ex.1006.678

SEC. 74 ELECTRONIC MAIL 661

recéiver speaks only X.400 or some proprietary vendor-specific mail protocol.
Since all these worlds differ in message formats and protocols, direct communica-
tion is impossible. ,

Both of these problems are solved using application layer email gateways. In
Fig. 7-48 host 1 speaks only TCP/IP and RFC 822, whereas host 2 speaks only
OSI TP4 and X.400. Nevertheless, they can exchange email using an email gate-
way. The procedure is for host 1 to establish a TCP connection to the gateway
and then use SMTP to transfer a message (1) there. The daemon on the gateway
then puts the message in a buffer of messages destined for host 2. Later, a TP4
connection (the OSI equivalent to TCP) is established with host 2 and the message
(2) is transferred using the OSI equivalent of SMTP. All the gateway process has
to do is to extract incoming messages from one queue and deposit them in
another.

Message

buffer
Gateway Host 2

=

-E—
LT

l TCP connection l l TP4 connection l

Network

Fig. 7-48. Transferring email using an application layer email gateway.

It looks easy, but it is not. The first problem is that Internet addresses and
X.400 addresses are totally different. An elaborate mapping mechanism is needed
between them. The second problem is that envelope or header fields that are
present in one systern may not be present in the other. For example, if one system
requires priority classes and the other does not have this concept at all, in one
direction valuable information must be dropped and in the other it must be gen-
erated out of thin air.

An even worse concept is what to do if body parts are incompatible. What
should a gateway do with a message from the Internet whose body holds a refer-
ence to an audio file to be obtained by FTP if the destination system does not sup-
port this concept? What should it do when an X.400 system tells it to deliver a
message to a certain address, but if that fails, to send the contents by fax? Using
fax is not part of the RFC 822 model. Clearly, there are no simple solutions here.
For simple unstructured text messages in ASCII, gatewaying is a reasonable solu-
tion, but for anything fancier, the idea tends to break down.

DELL Ex.1006.679

662 THE APPLICATION LAYER CHAP. 7

Final Delivery

Up until now, we have assumed that all users work on machines that are capa-
ble of sending and receiving email. Frequently this situation is false. For exam-
ple, at many companies, users work at desktop PCs that are not on the Internet and
are not capable of sending or receiving email from outside the company. Instead,
the company has one or more email servers that can send and receive email. To
send or receive messages, a PC must talk to an email server using some kind of
delivery protocol.

A simple protocol used for fetching email from a remote mailbox is POP3
(Post Office Protocol), which is defined in RFC 1225. It has commands for the
user to log in, log out, fetch messages, and delete messages. The protocol itself
consists of ASCII text and has something of the flavor of SMTP. The point of
POP3 is to fetch email from the remote mailbox and store it on the user’s local
machine to be read later.

A more sophisticated delivery protocol is IMAP (Interactive Mail Access
Protocol), which is defined in RFC 1064. It was designed to help the user who
uses multiple computers, perhaps a workstation in the office, a PC at home, and a
laptop on the road. The basic idea behind IMAP is for the email server to main-
tain a central repository that can be accessed from any machine. Thus unlike
POP3, IMAP does not copy email to the user’s personal machine because the user
may have several.

IMAP has many features, such as the ability to address mail not by arrival
number as is done in Fig. 7-40, but by using attributes (e.g., Give me the first
message from Sam). In this view, a mailbox is more like a relational database
system than a linear sequence of messages.

Yet a third delivery protocol is DMSP (Distributed Mail System Protocol),
which is part of the PCMAIL system and described in RFC 1056. This one does
not assume that all email is on one server, as do POP3 and IMAP. Instead, it
allows users to download email from the server to a workstation, PC, or laptop
and then disconnect. The email can be read and answered while disconnected.
When reconnection occurs later, email is transferred and the system is resyn-
chronized.

Independent of whether email is delivered directly to the user’s workstation or
to a remote server, many systems provide hooks for additional processing of
incoming email. An especially valuable tool for many email users is the ability to
set up filters. These are rules that are checked when email comes in or when the
user agent is started. Each rule specifies a condition and an action. For example,
a rule could say that any message from Andrew S. Tanenbaum should be
displayed in a 24-point flashing red boldface font (or alternatively, be discarded
automatically without comment).

Another delivery feature often provided is the ability to (temporarily) forward
incoming email to a different address. This address can even be a computer

DELL Ex.1006.680

SEC. 7.4 ELECTRONIC MAIL 663

operated by a commercial paging service, which then pages the user by radio or
satellite, displaying the Subject: line on his beeper.

Still another common fedture of final delivery is the ability to install a vaca-
tion daemon. This is a program that examines each incoming message and sends
the sender an insipid reply such as

Hi. I'm on vacation. I'll be back on the 24th of August. Have a nice day.

Such replies can also specify how to handle urgent matters in the interim, other
people to contact for specific problems, etc. Most vacation daemons keep track of
whom they have sent canned replies to and refrain from sending the same person a
second reply. The good ones also check to see if the incoming message was sent
to a mailing list, and if so, do not send a canned reply at all. (People who send
messages to large mailing lists during the summer probably do not want to get
hundreds of replies detailing everyone’s vacation plans.)

The author recently ran into a most extreme form of delivery processing when
he sent an email message to a person who claims to get 600 messages a day. His
identity will not be disclosed here, lest half the readers of this book also send him
email. Let us call him John.

John has installed an email robot that checks every incoming message to see if
it is from a new correspondent. If so, it sends back a canned reply explaining that
John can no longer personally read all his email. Instead he has produced a per-
sonal FAQ (Frequently Asked Questions) document that answers many questions
he is commonly asked. Normally, newsgroups have FAQs, not people.

John’s FAQ gives his address, fax, and telephone numbers and tells how to
contact his company. It explains how to get him as a speaker and describes where
to get his papers and other documents. It also provides pointers to software he has
written, a conference he is running, a standard he is the editor of, and so on.
Perhaps this approach is necessary, but maybe a personal FAQ is the ultimate
status symbol.

7.4.5. Email Privacy

When an email message is sent between two distant sites, it will generally
transit dozens of machines on the way. Any of these can read and record the mes-
sage for future use. Privacy is nonexistent, despite what many people think
(Weisband and Reinig, 1995). Nevertheless, many people would like to be able to
send email that can be read by the intended recipient and no one else: not their
boss, not hackers, not even the government. This desire has stimulated several
people and groups to apply the cryptographic principles we studied earlier to
email to produce secure email. In the following sections we will study two widely
used secure email systems, PGP and PEM. For additional information, see (Kauf-
man et al., 1995; Schneier, 1995; Stallings, 1995b; and Stallings, 1995¢).

DELL Ex.1006.681

664 THE APPLICATION LAYER CHAP. 7

PGP—Pretty Good Privacy

Our first example, PGP (Pretty Good Privacy) is essentially the brainchild
of one person, Phil Zimmermann (Zimmermann, 1995a, 1995b). It is a complete
email security package that provides privacy, authentication, digital signatures,
and compression, all in easy-to-use form. Furthermore, the complete package,
including all the source code, is distributed free of charge via the Internet, bulletin
boards, and commercial networks. Due to its quality, price (zero), and easy avai-
lability on MS-DOS/Windows, UNIX, and Macintosh platforms, it is widely used
today. A commercial version is also available for those companies requiring sup-
port.

It has also been embroiled in various controversies (Levy, 1993). Because it
is freely available over the Internet, the U.S. government has claimed the ability
of foreigners to obtain it constitutes a violation of the laws concerning the export
of munitions. Later versions were produced outside the United States to get
around this restriction. Another problem has involved an alleged infringement of
the RSA patent, but that problem was settled with releases starting at 2.6.
Nevertheless, not everyone likes the idea of people being able to keep secrets
from them, so PGP’s enemies are always lurking in the shadows, waiting to
pounce. Accordingly, Zimmermann’s motto is: “If privacy is outlawed, only
outlaws will have privacy.”

PGP intentionally uses existing cryptographic algorithms rather than inventing
new ones. It is largely based on RSA, IDEA, and MDS5, all algorithms that have
withstood extensive peer review and were not designed or influenced by any
government agency trying to weaken them. For people who tend to distrust
government, this property is a big plus.

PGP supports text compression, secrecy, and digital signatures and also pro-
vides extensive key management facilities. To see how PGP works, let us con-
sider the example of Fig. 7-49. Here, Alice wants to send a signed plaintext mes-
sage, P, to Bob in a secure way. Both Alice and Bob have private (Dy) and public
(Ex) RSA keys. Let us assume that each one knows the other’s public key; we
will cover key management later.

Alice starts out by invoking the PGP program on her computer. PGP first
hashes her message, P, using MD5 and then encrypts the resulting hash using her
private RSA key, D,. When Bob eventually gets the message, he can decrypt the
hash with Alice’s public key and verify that the hash is correct. Even if someone
else (e.g., Trudy) could acquire the hash at this stage and decrypt it with Alice’s
known public key, the strength of MDS5 guarantees that it would be computation-
ally infeasible to produce another message with the same MD5 hash.

The encrypted hash and the original message are now concatenated into a sin-
gle message, PI, and compressed using the ZIP program, which uses the Ziv-
Lempel algorithm (Ziv and Lempel, 1977). Call the output of this step P1.Z.

Next, PGP prompts Alice for some random input. Both the content and the

DELL Ex.1006.682

SEC. 7.4 ELECTRONIC MAIL 665

Ky : One-time message key for IDEA Bob's public
RSA key, Eg
® . Concatenation \
Alice's private Ku —1 RSA
RSA key, Dp J :
\ 1 ASCII text to

P1 P
P MD5 | RSA —»?—- Zip / IDEA — o4
\ [P1 compressed

Original Concatenation of Concatenation of
plaintext P and the signed P1.Z encrypted

message hash of P with IDEA and Ky,
from Alice encrypted with Eg

Fig. 7-49. PGP in operation for sending a message.

typing speed are used to generate a 128-bit IDEA message key, K, (called a ses-
sion key in the PGP literature, but this is really a misnomer since there is no ses-
sion). K, is now used to encrypt Pi.Z with IDEA in cipher feedback mode. In
addition, K,; is encrypted with Bob’s public key, Ep. These two components are
then concatenated and converted to base64, as we discussed in the section on
MIME. The resulting message then contains only letters, digits, and the symbols
+, / and =, which means it can be put into an RFC 822 body and be expected to
arrive unmodified.

When Bob gets the message, he reverses the base64 encoding and decrypts
the IDEA key using his private RSA key. Using this key, he decrypts the message
to get PI.Z. After decompressing it, Bob separates the plaintext from the
encrypted hash and decrypts the hash using Alice’s public key. If the plaintext
hash agrees with his own MDS5 computation, he knows that P is the correct mes-
sage and that it came from Alice.

It is worth noting that RSA is only used in two places here: to encrypt the
128-bit MDS5 hash and to encrypt the 128-bit IDEA key. Although RSA is slow, it
has to encrypt only 256 bits, not a large volume of data. Furthermore, all 256
plaintext bits are exceedingly random, so a considerable amount of work will be
required on Trudy’s part just to determine if a guessed key is correct. The heavy-
duty encryption is done by IDEA, which is orders of magnitude faster than RSA.
Thus PGP provides security, compression, and a digital signature and does so in a
much more efficient way than the scheme illustrated in Fig. 7-23.

Base | the network
f—— e g

DELL Ex.1006.683

666 THE APPLICATION LAYER CHAP. 7

PGP supports three RSA key lengths. It is up to the user to select the one that
is most appropriate. The lengths are

1. Casual (384 bits): can be broken today by folks with large budgets.
2. Commercial (512 bits): might be breakable by three-letter organizations.
3. Military (1024): Not breakable by anyone on earth.

There has been some discussion about a fourth category: alien (2048 bits), which
could not be broken by anyone or anything in the universe, but this has not yet
been adopted. Since RSA is only used for two small computations, probably
everyone should use military strength keys all the time, except perhaps on aged
PC-XTs.

The format of a PGP message is shown in Fig. 7-50. The message has three
parts, containing the IDEA key, the signature, and the message, respectively. The
key part contains not only the key, but also a key identifier, since users are permit-
ted to have multiple public keys.

Base64
Message Compressed, encrypted by IDEA
key part Signature part Message part
r AL A N N
—f
T T T
'02 | sie 1 'O? Y IMD5 | Msq | File | | Message
M p h
Eq hdr | Exle has hdr | name | |,
e e
s (f
Encrypted | | [R
by Eg DA

Fig. 7-50. A PGP message.

The signature part contains a header, which will not concern us here. The
header is followed by a timestamp, the identifier for the sender’s public key that
can be used to decrypt the signature hash, some type information that identifies
the algorithms used (to allow MD6 and RSA2 to be used when they are invented),
and the encrypted hash itself.

The message part also contains a header, the default name of the file to be
used if the receiver writes the file to the disk, a message creation timestamp, and,
finally, the message itself.

Key management has received a large amount of attention in PGP as it is the
Achilles heel of all security systems. Each user maintains two data structures
locally: a private key ring and a public key ring. The private key ring contains
one or more personal private-public key pairs. The reason for supporting multiple
pairs per user is to permit users to change their public keys periodically or when
one is thought to have been compromised, without invalidating messages

DELL Ex.1006.684

SEC. 7.4 ELECTRONIC MAIL 667

currently in preparation or in transit. Each pair has an identifier associated with it,
so that a message sender can tell the recipient which public key was used to
encrypt it. Message identifiers consist of the low-order 64 bits of the public key.
Users are responsible for avoiding conflicts in their public key identifiers. The
private keys on disk are encrypted using a special (arbitrarily long) password to
protect them against sneak attacks.

The public key ring contains public keys of the user’s correspondents. These
are needed to encrypt the message keys associated with each message. Each entry
on the public key ring contains not only the public key, but also its 64-bit identif-
ier and an indication of how strongly the user trusts the key.

The problem being tackled here is the following. Suppose that public keys
are maintained on bulletin boards. One way for Trudy to read Bob’s secret email
is to attack the bulletin board: and replace Bob’s public key with one of her choice.
When Alice later fetches the key so-called belonging to Bob, Trudy can mount a
bucket brigade attack on Bob.

To prevent such attacks, or at least minimize the consequences of them, Alice
needs to know how much to trust the item called “Bob’s key” on her public key
ring. If she knows that Bob personally handed her a floppy disk containing the
key, she can set the trust value to the highest value.

However, in practice, people often receive public keys by querying a trusted
key server, a number of which are already in operation on the Internet. When a
key server receives a request for someone’s public key, it generates a response
containing the public key, a timestamp, and the expiration date of the key. It then
hashes this response with MD35 and signs the response with its own private key so
the requesting party can. verify who sent it. It is up to the user to assign a trust
level to keys maintained by the local system administrator, the phone company,
ACM, the Bar Association, the government, or whoever else decides to get into
the business of maintaining keys.

PEM—Privacy Enhanced Mail

In contrast to PGP, which was initially a one-man show, our second example,
PEM (Privacy Enhanced Mail), is an official Internet standard and described in
four RFCs: RFC 1421 through RFC 1424. Very roughly, PEM covers the same
territory as PGP: privacy and authentication for RFC 822-based email systems.
Nevertheless, it also has some differences with PGP in approach and technology.
Below we will describe PEM and then compare and contrast it to PGP. For more
information about PEM, see (Kent, 1993).

Messages sent using PEM are first converted to a canonical form so they all
have the same conventions about white space (e.g., tabs, trailing spaces) and the
use of carriage returns and line feeds. This transformation is done to eliminate the
effects of message transfer agents that modify messages not to their liking.

DELL Ex.1006.685

668 THE APPLICATION LAYER CHAP. 7

Without canonicalization, such modifications might affect hashes made from mes-
sages at their destinations.

Next, a message hash is computed using MD2 or MD5. It is not optional, as it
is in PGP. Then the concatenation of the hash and the message is encrypted using
DES. In light of the known weakness of a 56-bit key, this choice is certainly
suspect. The encrypted message can then be encoded with base64 coding and
transmitted to the recipient. Mailing lists are explicitly supported.

As in PGP, each message is encrypted with a one-time key that is enclosed
along with the message. The key can be protected either with RSA or with triple
DES using EDE. In practice, everyone uses RSA, so we will concentrate on that.
In fact, we have to: PEM does not tell how to do key management with DES.

Key management is more structured than in PGP. Keys are certified by cer-
tification authorities in the form of certificates stating a user’s name, public key,
and the key’s expiration date. Each certificate has a unique serial number for
identifying it. Certificates include an MDS5 hash signed by the certification
authority’s private key. These certificates conform to the ITU X.509 recommen-
dation for public key certificates, and as such, use X.400 names like the Tom
Smith example given earlier.

PGP has a similar scheme (without the use of X.509), but has a problem:
Should a user believe a certification authority? PEM solves this problem by certi-
fying the certification authorities using what are called PCAs (Policy Certifica-
tion Authorities). These, in turn, are certified by the IPRA (Internet Policy
Registration Authority), the ultimate arbiter of who’s naughty and who’s nice.

Each PCA must define an official policy on registration and file it with IPRA.
These statements are then signed by IPRA and made public. For example, one
PCA may insist on having users under its jurisdiction show up in person with a
birth certificate, drivers’ license, passport, two major credit cards, a live witness,
and a public key on floppy disk. Another PCA may accept email registrations
from strangers. By making the policy statements public, users have some basis
for deciding which authorities to trust. No provision has been made for seeing if
the policies are actually enforced.

Three different kinds of certification authorities are planned. An organiza-
tional one can issue certificates for its employees. Most companies will run their
own. A residential one will operate on behalf of private citizens, much as current
Internet service providers will provide service to anyone willing to pay for it.
Finally, a scheme is planned for anonymous registration. With all these certifica-
tion authorities running around, the need for the PCAs to ride herd on them should
now be clear.

While rigidly hierarchical and bureaucratic, this scheme has the advantage
over PGP of making certificate revocation potentially practical. Revocation is
needed if a user wants to change his public key, for example, because it has been
compromised or his certification authority has been burglarized (or stolen). Revo-
cation 1s accomplished by a user telling his certification authority that his public

DELL Ex.1006.686

SEC. 7.4 ELECTRONIC MAIL 669

key has been compromised (or possibly vice versa). The certification authority
then adds the serial number of the now-invalid certificate to a list of revoked certi-
ficates, signs it, and spreads the list far and wide.

Anyone wanting to send a PEM message to a user must therefore flrst check
the most recent revocation list to see if the cached public key is still valid. This
process is analogous to a merchant checking the list of stolen credit cards before
accepting one. Critics of PEM argue that checking all the time is too much work
so nobody will bother. Supporters argue that computers do not get bored; if they
are programmed to check all the time, they will check all the time.

Some of the similarities and differences between PGP and PEM are listed in
Fig. 7-51. Most of these points have already been covered, but a few are worth
commenting on. Authentication seems more important in PEM than in PGP since
it is mandatory in PEM and optional in PGP. PEM also carries the authentication
information outside the encryption wrapper, which means that the network can
verify the origin of every message. As a consequence, eavesdroppers can log who
is sending to whom, even if they cannot read the messages.

All these technical differences aside, there is a surprising cultural difference
as well. PGP, which is not an official internet standard, has the Internet culture.
PEM, which is an official Internet standard, does not. PGP was based on what
Dave Clark calls “rough consensus and running code.”” Somebody (Zimmermann)
thought of a solution to a well-known problem, implemented it well, and released
the source code for everyone to use. PEM began as a four-part official standard,
using ASN.1 to define layouts, X.400 to define names, and X.509 to define certifi-
cates. It uses a rigid three-layer organizational hierarchy for multiple kinds of
certification authorities, complete with officially certified policy statements and a
requirement that everyone trust the JPRA. Implementations came later and are far
behind PGP in quality, quantity, and availability on many platforms. In short,
PGP looks like a typical Internet package, whereas PEM exhibits most of the
characteristics of an OSI standard that Internet people hate and PTTs love. You
figure.

7.5. USENET NEWS

One of the more popular applications of computer networking is the world-
wide system of newsgroups called net news. Often net news is referred to as
USENET, which harks back to a separate UNIX-to-UNIX physical network that
once carried the traffic using a program called wucp. Nowadays, much of the
traffic is carried on the Internet, but USENET and the Internet are not the same.
Some Internet sites do not get net news, and other sites get net news without being
on the Internet.

In the follow sections we will describe USENET. First we will look at it from
the users’ viewpoint. Then we will describe how it is implemented.

DELL Ex.1006.687

670

THE APPLICATION LAYER

CHAP. 7

ltem T PGP PEM
Supports encryption? ' Yes Yes
Supports authentication? | Yes Yes
Supports nonrepudiation? Yes] Yes N
Supports compression? - Yes No
Supports canonicalization? No Yes
Supports mailing lists? No Yes
Uses base64 coding? Yes Yes
Current data encryption algorithm IDEA DES
Key length for data encryptlon (bits) 128 56
Current algorithm for key management RSA | RSA or DES
Key length for key management (bits) l 384/512/1024 | Variable
User name space ‘ User defined X.400
X.509 conformant? —{ No Yes
Do you have to trust anyone?] No Yes (IPRA)
Key certification Ad hoc IPRA/PCA/CA hierarchy
Key revocation Haphazard Better
Can eavesdroppers read messages?i_“ No No
Can eavesdroppers read signatures? L No Yes
Internet Standard? No Yes
Designed by Small team | Standards committee

Fig. 7-51. A comparison of PGP and PEM.

7.5.1. The User View of USENET

A newsgroup is a worldwide discussion forum on some specific topic. People
interested in the subject can “subscribe’ to the newsgroup. Subscribers can use a
special kind of user agent, a news reader, to read all the articles (messages) posted

to the newsgroup. People can also post articles to the newsgroup. Each article
posted to a newsgroup is automatically delivered to all the subscribers, wherever

they may be in the world. Delivery typically takes between a few seconds and a
few hours, depending how far off the beaten path the sender and receiver are. In

effect, a newsgroup is somewhat like a mailing list, but internally it is imple-
mented differently. It can also be thought of as a kind of high-level multicast.
The number of newsgroups is so large (probably over 10,000) that they are

DELL Ex.1006.688

SEC. 7.5 USENET NEWS 671

arranged in a hierarchy to make them manageable. Figure 7-52 shows the top lev-
els of the “official”” hierarchies. Other hierarchies also exist, but these are typi-
cally intended for regional consumption or aré in languages other than English.
One of the other hierarchies alt, is special. Alf is to the official groups as a flea
market is to a department store. It is a chaotic, unregulated mishmash of news-
groups on all topics, some of which are very popular, and most of which are
worldwide.

| Name Topics covered
Comp Computers, computer science, and the computer industry
Sci The physical sciences and engineering

Humanities | Literature and the humanities

News Discussion of USENET itself

Rec Recreational activities, including sports and music
Misc Everything that does not fit in somewhere else

Soc Socializing and social issues

Talk Diatribes, polemics, debates and arguments galore
Alt Alternative tree covering virtually everything

Fig. 7-52. USENET hierarchies in order of decreasing signal-to-noise ratio.

The comp groups were the original USENET groups. These groups are popu-
lated by computer scientists, computer professionals, and computer hobbyists.
Each one features technical discussions on a topic related to computer hardware
or software.

The sci and humanities groups are populated by scientists, scholars, and ama-
teurs with an interest in physics, chemistry, biology, Shakespeare, and so on. Not
entirely surprisingly, the sci hierarchy is much larger than the humanities hierar-
chy because the very concept of instant electronic communication with colleagues
all over the world is something most scientists like, and most humanists are at
least skeptical about. C.P. Snow was right.

The news hierarchy is used to discuss and manage the news system itself.
System administrators can get help here, and discussions about whether to create
new newsgroups occurs here.

The hierarchies covered so far have a professional, somewhat academic tone.
That changes with rec which is about recreational activities and hobbies.
Nevertheless, many of the people who post here are fairly knowledgeable about
their respective interests.

As we drift downward, we come to soc, which has many newsgroups concern-
ing, politics, gender, religion, various national cultures, and genealogy. Talk

DELL Ex.1006.689

672 THE APPLICATION LAYER CHAP. 7

covers controversial topics and is populated by people who are strong on opinions,
weak on facts. Alt is a complete alternative tree which operates under its own
rules.

Each of the categories listed in Fig. 7-52 is broken into subcategories, recur-
sively. For example, rec.sport is about sports, rec.sport.basketball is about
basketball, and rec.sport.basketball. women is about women’s basketball. A sam-
ple of some of the newsgroups in each category is given in Fig. 7-53. In many
cases, the existence of additional groups can be inferred by changing the obvious
parameters. For example, comp.lang.c is about the C programming language, but
the .c can be replaced by just about every other programming language to gen-
erate the name of the corresponding newsgroup.

Numerous news readers exist. Like email readers, some are keyboard based;
others are mouse based. In nearly all cases, when the news reader is started, it
checks a file to see which newsgroups the user subscribes to. It then typically
displays a one-line summary of each as-yet-unread article in the first newsgroup
and waits for the user to select one or more for reading. The selected articles are
then displayed one at a time. After being read, they can be discarded, saved,
printed, and so on.

News readers also allow users to subscribe and unsubscribe to newsgroups.
Changing a subscription simply means editing the local file listing which news-
groups the user is subscribed to. To make an analogy, subscribing to a newsgroup
is like watching a television program. If you want to watch some program every
week, you just do it. You do not have to register with some central authority first.

News readers also handle posting. The user composes an article and then
gives a command or clicks on a icon to send the article on its way. Within a day,
it will reach almost everyone in the world subscribing to the newsgroup to which
it was posted. It is possible to crosspost an article, that is, to send it to multiple
newsgroups with a single command. It is also possible to restrict the geographic
distribution of a posting. An announcement of Tuesday’s colloquium at Stanford
will probably not be of much interest in, say, Hong Kong, so the posting can be
restricted to California.

The sociology of USENET is unique, to put it mildly. Never before has it
been possible for thousands of people who do not know each other to have world-
wide discussions on a vast variety of topics. For example, it is now possible for
someone with a problem to post it to the net. The next day, the poster may have
18 solutions, and with a little bit of luck, only 17 of them are wrong.

Unfortunately, some people use their new-found power to communicate to a
large group irresponsibly. When someone posts a message saying: “People like
you should be shot” tempers flare and a torrent of abusive postings, called a
flamewar, typically follows.

This situation can be attacked in two ways, one individual and one collective.
Individual users can install a killfile, which specifies that articles with a certain
subject or from a certain person are to discarded upon arrival, prior to being

DELL Ex.1006.690

SEC. 7.5 USENET NEWS
Name Topics covered
Comp.ai Artificial intelligence
Comp.databases Design and implementation of database systems
Comp.lang.c The C programming language

Comp.os.minix
Comp.os.ms-windows.video

Tanenbaum’s educational MINIX operating system

Video hardware and software for Windows

673

]

Sci.bio.entomology.lepidoptera
Sci.geo.earthquakes

Sci.med.orthopedics

Humanities.lit.authors.shakespeare

News.groups
News.lists

Research on butterflies and moths
Geology, seismology, and earthquakes
Orthopedic surgery

Shakespeare’s plays and poetry

Potential new newsgroups
Lists relating to USENET

Rec.arts.poems
Rec.food.chocolate
Rec.humor.funny
Rec.music.folk

Free poetry
Yum yum

Did you hear the joke about the farmer who ...

Folks discussing folk music

Misc.jobs.offered
Misc.health.diabetes

Announcements of positions available
Day-to-day living with diabetes

Soc.culture.estonia

Life and culture in Estonia

Soc:singles Single people and their interests
Soc.couples Graduates of soc.singles
Talk.abortion No signal, all noise

Talk.rumors This is where rumors come from

Alt.alien.visitors
Alt.bermuda.triangle
Alt.sex.voyeurism
Alt.tv.simpsons

Place to report flying saucer rides

If you read this, you vanish mysteriously
Take a peek and see for yourself

Bart et al.

Fig. 7-53. A small selection of the newsgroups.

displayed. Most news readers also allow an individual discussion thread to be
killed, too. This feature is useful when a discussion looks like it is starting to get

into an infinite loop.

If enough subscribers to a group get annoyed with newsgroup pollution, they
can propose having the newsgroup be moderated. A moderated newsgroup is
one in which only one person, the moderator, can post articles to the newsgroup.
All postings to a moderated newsgroup are automatically sent to the moderator,
who posts the good ones and discards the bad ones. Some topics have both a
moderated newsgroup and an unmoderated one.

DELL Ex.1006.691

674 THE APPLICATION LAYER CHAP. 7

Since thousands of people subscribe to USENET for the first time every day,
the same beginner’s questions tend to be asked over and over. To reduce this
traffic, many newsgroups have constructed a FAQ (Frequently Asked Ques-
tions) document that tries to answer all the questions that beginners have. Some
of these are highly authoritative and run to over 100 pages. The maintainer typi-
cally posts them once or twice a month.

USENET is full of jargon such as BTW (By The Way), ROFL (Rolling On
the Floor Laughing), and IMHO (In My Humble Opinion). Many people also use
little ASCII symbols called smileys or emoticons. A few of the more interesting
ones are reproduced in Fig. 7-54. For most, rotating the book 90 degrees clock-
wise will make them clearer. For a minibook giving over 650 smileys, see
(Sanderson and Dougherty, 1993).

Smiley Meaning Smiley | Meaning Smiley Meaning
=) I'm happy =|:-) | Abe Lincoln) Big nose

- _I;wd/angry i =) —)“ Uncle Sam =) Double chin
- I’m apathetic *<:-) | Santa Claus -0 Mustache
7D _I"I_n‘winking <:=(Dunce L# =) Matted hair
:-(0) | I'myelling s (-: Australian 8-) Wears glasses
- (%) I'm vomiting ‘)X Man with bowtie C:-) Large brain

Fig. 7-54. Some smileys.

Although most people use their real names in postings, some people wish to
remain totally anonymous, especially when posting to controversial newsgroups
or when posting personal ads to newsgroups dealing with finding partners. This
desire has led to the creation of anonymous remailers, which are servers that
accept email messages (including postings) and change the From:, Sender:, and
Reply-To: fields to make them point to the remailer instead of the sender. Some
of the remailers assign a number to each user and forward email addressed to
these numbers, so people can send email replies to anonymous postings like
“SWF 25 seeks SWM/DWM 20-30” Whether these remailers can keep their
secrets when the local police become curious about the identity of some user is
doubtful (Barlow, 1995).

As more and more people subscribe to USENET, there is a constant demand
for new and more specialized newsgroups. Consequently, a procedure has been
established for creating new ones. Suppose that somebody likes cockroaches and
wants to talk to other cockroach fans. He posts a message to news.groups naming
the proposed group, say rec.animals.wildlife.cockroaches, and describing why it is
so important (cockroaches are fascinating; there are 3500 species of them; they
come in red, yellow, green, brown, and black; they appeared on earth long before

DELL Ex.1006.692

SEC. 7.5 USENET NEWS 675

the first dinosaurs; they were probably the first. flying animals, and so on). He
also specifies whether or not it should be moderated.

Discussion then ensues. When it settles down, an email vote is taken. The
votes are posted, identifying who voted which way (to prevent fraud). If the yeas
outnumber the nays by more than 2:1 and there were at least 100 more yeas than
nays, the moderator of news.groups posts a message accepting the new news-
group. This message is the signal to system administrators worldwide that the
new newsgroup has been blessed by the powers that be and is now official.

New group creation is less formal in the alt hierarchy and this is, in fact, the
reason alt exists. Some of the newsgroups there are so close to the legal and
moral edge of what is-tolerable that they would never have been accepted in a
public vote. In effect, the people who supported them, just bypassed the normal
procedure and created their own hierarchy. Nevertheless, much of the alf hierar-
chy is fairly conventional.

7.5.2. How USENET Is Implemented

Some of the smaller news groups are implemented as mailing lists. To post
an article to such a mailing list, one sends it to the mailing list address, which
causes copies to be sent to each address on the mailing list.

However, if half the undergraduates at a large university subscribed to alt.sex,
the servers there would collapse under the weight of the incoming email. Conse-
quently, USENET is not generally implemented using mailing lists. Instead each
site (campus, company, or Internet service provider) stores incoming mail in a sin-
gle directory, say, news, with subdirectories for comp, sci, etc. These, in turn
have subdirectories such as news/comp/os/minix. All incoming news is deposited
in the appropriate directory. News readers just fetch the articles from there as
they need them. This arrangement means that each site needs only one copy of
each news article, no matter how many people subscribe to its newsgroup. After a
few days, articles time out and are removed from the disk.

To get on USENET, a site must have a newsfeed from another site on
USENET. One can think.of the set of all sites that get net news as the nodes of a
directed graph. The transmission lines connecting pairs of nodes form the arcs of
the graph. This graph is USENET. Note that being on the Internet is neither
necessary nor sufficient for being on USENET.

Periodically, each site that wants news can poll its newsfeed(s), asking if any
new news has arrived since the previous contact. If so, that news is collected and
stored in the appropriate subdirectory of news. In this manner, news diffuses
around the network. It is equally possible for the newsfeed, rather than the
receiver, to take the initiative and make contact when there is enough new news.
Initially, most sites polled their newsfeeds, but now it is mostly the other way.

Not every site gets all newsgroups. There are several reasons here. First, the
total newsfeed exceeds 500 MB per day and is growing rapidly. Storing it all

DELL Ex.1006.693

676 THE APPLICATION LAYER CHAP. 7

would require a very large amount of disk space. Second, transmission time and
cost are issues. At 28.8 kbps, it takes 39 hours and a dedicated telephone line to
transmit 24 hours worth of news. Even at 56 kbps, getting everything requires
having a dedicated line for almost 20 hours a day. In fact, the total volume has
now gotten so large that newsfeeds via satellite have been created.

Third, not every site is interested in every topic. For example, it is unlikely
that many people at companies in Finland want to read rec.arts.manga (about
Japanese comic books). Finally, some newsgroups are a bit too funky for the
tastes of many system administrators, who then ban them, despite considerable
local interest. In Dec. 1995, the worldwide CompuServe network (temporarily)
stopped carrying all newsgroups with “sex” in the name because some minor
German official thought this would be a good way to combat pornography. The
ensuing uproar was predictable, instantaneous, worldwide, and very loud.

News articles have the same format as RFC 822 email messages, but with the
addition of a few extra headers. This property makes them easy to transport and
compatible with most of the existing email software. The news headers are
defined in RFC 1036 An example article is shown in Fig. 7-55.

From: Vogel @nyu.edu

Message-id: <54731 @nyu.edu>
Subiject: Bird Sighting

Path: cs.vu.nllsun4nl!EU.net!inews.sprintlink.net!in2.uu.net!pc144.nyu.edutnews
Newsgroups: rec.birds

Followup-To: rec.birds

Distribution: world

Nntp-Posting-host: nuthatch.bio.nyu.edu
References:

Organization: New York University
Lines: 4

Summary: Guess what | saw

| just saw an ostrich on 52nd St. and Fifth Ave. in New York. Is this their migration
season? Did anybody else see it?

Jay Vogel
Fig. 7-55. A sample news article.

A few words about the news headers are perhaps in order. The Path: header
is the list of nodes the message traversed to get from the poster to the recipient.
At each hop, the forwarding machine puts its name at the front of the list. This
list gives a path back to the poster. The use of exclamation marks (pronounced:
bang) go back to USENET addresses, which predate DNS.

The Newsgroups: header tells which newsgroups the message belongs to. It
may contain more than one newsgroup name. Any message crossposted to

DELL Ex.1006.694

SEC. 1.5 USENET NEWS 677

multiple newsgroups will contain all of their names. Because multiple names are
allowed here, the Followup-To: header is needed to tell people where to post com-
ments and reactions to put all of the subsequent discussion in one newsgroup.

The Distribution: header tells how far to spread the posting. It may contain
one or more state or country codes, the name of a specific site or network, or
“world.”

The Nntp-Posting-Host: header is analogous to the RFC 822 Sender: header.
It tells which machine actually posted the article, even if it was composed on a
different machine (NNTP is the news protocol, described below).

The References: header indicates that this article is a response to an earlier
article and gives the ID of that article. It is required on all follow-up articles and
prohibited when starting a new discussion.

The Organization: header can be used to tell what company, university, or
agency the poster is affiliated with. Articles that fill in this header often have a
disclaimer at the end saying that if the article is goofy, it is not the organization’s
fault.

The Lines: header gives the length of the body. The header lines and the
blank line separating the header from the body do not count.

The Subject: lines tie discussion threads together. Many news readers have a
command to allow the user to see the next article on the current subject, rather
than the next article that came in. Also, killfiles and kill commands use this
header to know what to reject.

Finally, the Summary: is normally used to summarize the follow-up article.
On follow-up articles, the Subject: header contains “Re: ” followed by the origi-
nal subject.

NNTP—Network News Transfer Protocol

Now let us look at how articles diffuse around the network. The initial algo-
rithm just flooded articles onto every line within USENET. While this worked for
a while, eventually the volume of traffic made this scheme impractical, so some-
thing better had to be worked out.

Its replacement was a protocol called NNTP (Network News Transfer Pro-
tocol), which is defined in RFC 977. NNTP has something of the same flavor as
SMTP, with a client issuing commands in ASCII and a server issuing responses as
decimal numbers coded in ASCIL. Most USENET machines now use NNTP.

NNTP was designed for two purposes. The first goal was to allow news arti-
cles to propagate from one machine to another over a reliable connection (e.g.,
TCP). The second goal was to allow users whose desktop computers cannot
receive news to read news remotely. Both are widely used, but we will concen-
trate on how news articles spread out over the network using NNTP,

As mentioned above, two general approaches are possible. In the first one,
news pull, the client calls one of its newsfeeds and asks for new news. In the

DELL Ex.1006.695

678 THE APPLICATION LAYER CHAP. 7

second one, news push, the newsfeed calls the client and announces that it has
news. The NNTP commands support both of these approaches, as well as having
people read news remotely.

To acquire recent articles, a client must first establish a TCP connection with
port 119 on one of its newsfeeds. Behind this port is the NNTP daemon, which is
either there all the time waiting for clients or is created on the fly as needed.
After the connection has been established, the client and server communicate
using a sequence of commands and responses. These commands and responses
are used to ensure that the client gets all the articles it needs, but no duplicates, no
matter how many newsfeeds it uses. The main ones used for moving articles
between news daemons are listed in Fig. 7-56.

[Command l Meaning
LIST J Give me a list of all newsgroups and articles you have

NEWGROUPS date time Give me a list of newsgroups created after date/time

GROUP grp Give me a list of all articles in grp

NEWNEWS grps date tiﬁa Give me a“IiSt of new articles in specified groups
ARTICLE id Give me a specific article

POST | have an article for you that was posted here

IHAVE id | have article id. Do you want it?

QuUIT Terminate the session ‘4‘

Fig. 7-56. The principal NNTP commands for news diffusion.

The LIST and NEWGROUPS commands allow the client to find out which
groups the server has. The former gives the complete list. The latter gives only
those groups created after the date and time specified. If the client knows the list
is long, it is more efficient for the client to keep track of what each of its
newsfeeds has and just ask for updates. The responses to each of these commands
is a list, in ASCII, one newsgroup per line, giving the name of the newsgroup, the
number of the last article the server has, the number of the first article the server
has, and a flag telling whether posting to this newsgroup is allowed.

Once the client knows which newsgroups the server has, it can begin asking
about what articles the server has (e.g., for old newsgroups when NEWGROUPS
is used). The GROUP and NEWNEWS commands are used for this purpose.
Again, the former gives the full list and the latter gives only updates subsequent to
the indicated date and time, normally the time of the last connection to this
newsfeed. The first parameter may contain asterisks, meaning all of them. For
example, comp.os. means all the newsgroups that start with the string comp.os.

After the client has assembled a complete list of which articles exist in which
groups (or even before it has the full list), it can begin to ask for the articles it

DELL Ex.1006.696

SEC. 7.5 USENET NEWS 679

needs using the ARTICLE command. Once all the required articles are in, the
client can offer articles it has acquired from other newsfeeds using the JHAVE
command and articles that were posted locally using the POST command. The
server can accept or decline these, as it wishes. When the client is done, it can
terminate the session using QUIT. In this way, each machine has complete con-
trol over which articles it gets from which newsfeeds, eliminating all duplicate
articles.

As an example of how NNTP works, consider an information provider,
wholesome.net that wants to avoid controversy at all costs, so the only news-
groups it offers ar€ soc.couples and misc.kids. Nevertheless, management is open
minded and willing to carry other newsgroups, provided they contain no material
potentially offensive to anyone. Therefore, it warits to be informed of all newly
created groups so it can make an informed decision for its customers. A possible
scenario between wholesome.com acting as the client and its newsfeed,
feeder.com, acting as the server, is shown in Fig. 7-57. This scenario uses the
news pull approach (the client initiates the connection to ask for news). The
remarks in parentheses are comments and not part of the NNTP protocol.

In this session, wholesome.com first asks if there is any news for soc.couples.
When it is told there are two articles, it fetches both of them and stores them in
news/soc/couples as separate files. Each file is named by its article number.
Then wholesome.com asks about misc.kids and is told there is one article. It
fetches that one and puts it in news/misc/kids.

Having gotten all the news about the groups it carries, it now checks for new
groups and is told that two new groups have appeared since the last session. One
of them looks promising, so its articles are fetched. The other looks scary, so it is
not taken. (Wholesome.com has made a big investment in Al software to be able
to figure out what to carry just by looking at the names.)

After having acquired all the articles it wants, wholesome.com offers
Jeeder.com a new article posted by someone at its site. The offer is accepted and
the article is transferred. Now wholesome.com offers another article, one that
came from its other newsfeed. Since feeder.com already has this one, it declines.
Finally, wholesome.com ends the session and releases the TCP connection.

The news push approach is similar. It begins with the newsfeed calling the
machine that is to receive the news. The newsfeed normally keeps track of which
newsgroups its customers subscribe to and begins by announcing its first article in
the first of these newsgroups using the JHAVE command. The potential recipient
then checks its tables to see whether it already has the article, and can accept or
reject it. If the article is accepted, it is transmitted, followed by a line containing
a period. Then the newsfeed advertises the second article, and so forth, until all
the news hds been transferred.

A problem with both news pull and news push is that they use stop and wait.
Typically 100 msec are lost waiting for an answer to a question. With 100,000 or
more news articles per day, this lost time adds up to a substantial overhead.

DELL Ex.1006.697

680 THE APPLICATION LAYER CHAP. 7

S: 200 feeder.com NNTP server at your service (response to new connection)
C: NEWNEWS soc.couples 960901 030000 (any new news in soc.couples?)
S: 230 List of 2 articles follows
S: <13281@psyc.berkeley.edu> (article 1 of 2 in soc.couples is from Berkeley)
S: <162721 @aol.com> (article 2 of 2 in soc.couples is from AOL)
S:. (end of list)
C: ARTICLE <13281@psyc.berkeley.edu> (please give me the Berkeley article)
S: 220 <13281 @psyc.berkeley.edu> follows
S: (entire article <13281@psyc.berkeley.edu> is sent here)
S:. (end of article)
C: ARTICLE <162721@aol.com> (please give me the AOL article)
S: 220 <162721@aol.com> follows
S: (entire article <162721@aol.com> is sent here)
S:. (end of article)
C: NEWNEWS misc.kids 960901 030000 (any new news in misc.kids?)
S: 230 List of 1 article follows
S: <43222 @bio.rice.edu> (1 articie from Rice)
S:. (end of list)
C: ARTICLE <43222 @bio.rice.edu> (please give me the Rice article)
S: 220 <43222@bio.rice.edu> follows
S: (entire article <43222 @bio.rice.edu> is sent here)
S:. (end of article)
C: NEWGROUPS 960901 030000
S: 231 2 new groups follow

S: rec.pets
S: rec.nude
S:.
C: NEWNEWS rec.pets 0 0 (list everything you have)
S: 230 List of 1 article follows
S: <124 @fido.net> (1 article from fido.net)
S:. (end of list)
C: ARTICLE <124 @fido.net> (please give me the fido.net article)

S: 220 <124 @fido.net> follows
S: (entire article is sent here)

S:.
C: POST
S: 340 (please send your posting)
C. (article posted on wholesome.com sent here)
S: 240 (article received)
C: IHAVE <5321 @foo.com>
S:435 (I already have it, please do not send it)
C: QuIT
S: 205 (Have a nice day)

Fig. 7-57. How wholesome.com might acquire news articles from its newsfeed.

DELL Ex.1006.698

SEC. 7.6 THE WORLD WIDE WEB 681

7.6. THE WORLD WIDE WEB

The World Wide Web is an architectural framework for accessing linked
documents spread out over thousands of machines all over the Internet. In 5
years, it went from being a way to distribute high-energy physics data to the appli-
cation that millions of people think of as being “The Internet.” Its enormous
popularity stems from the fact that it has a colorful graphical interface that is easy
for beginners to use, and it provides an enormous wealth of information on almost
every conceivable subject, from aboriginals to zoology.

The Web (also known as WWW) began in 1989 at CERN, the European
center for nuclear research. CERN has several accelerators at which large teams
of scientists from the participating European countries carry out research in parti-
cle physics. These teams often have members from half a dozen or more coun-
tries. Most experiments are highly complex, and require years of advance plan-
ning and equipment construction. The Web grew out of the need to have these
large teams of internationally dispersed researchers collaborate using a constantly
changing collection of reports, blueprints, drawings, photos, and other documents.

The initial proposal for a web of linked documents came from CERN physi-
cist Tim Berners-Lee in March 1989. The first (text-based) prototype was opera-
tional 18 months later. In December 1991, a public demonstration was given at
the Hypertext '91 conference in San Antonio, Texas. Development continued
during the next year, culminating in the release of the first graphical interface,
Mosaic, in February 1993 (Vetter et al., 1994).

Mosaic was so popular that a year later, its author, Marc Andreessen left the
National Center for Supercomputing Applications, where Mosaic was developed,
to form a company, Netscape Communications Corp., whose goal was to develop
clients, servers, and other Web software. When Netscape went public in 1995,
investors, apparently thinking this was the next Microsoft, paid 1.5 billion dollars
for the stock. This record was all the more surprising because the company had
only one product, was operating deeply in the red, and had announced in its pros-
pectus that it did not expect to make a profit for the foreseeable future.

In 1994, CERN and M.LT. signed an agreement setting up the World Wide
Web Consortium, an organization devoted to further developing the Web,
standardizing protocols, and encouraging interoperability between sites. Berners-
Lee became the director. Since then, hundreds of universities and companies
have joined the consortium. M.LT. runs the U.S. part of the consortium and the
French research center, INRIA, runs the European part. Although there are more
books about the Web than you can shake a stick at, the best place to get up-to-date
information about the Web is (naturally) on the Web itself. The consortium’s
home page can be found at http://www.w3.org . Interested readers are referred
there for links to pages covering all of the consortium’s documents and activities.

In the following sections we will describe how the Web appears to the user,
and, especially, how it works inside. Since the Web is basically a client-server

DELL Ex.1006.699

682 THE APPLICATION LAYER CHAP. 7

system, we will discuss both the client (i.e., user) side and the server side. Then
we will examine the language in which Web pages are written (HTML and Java).
Finally, comes an examination of how to find information on the Web,

7.6.1. The Client Side

From the users’ point of view, the Web consists of a vast, worldwide collec-
tion of documents, usually just called pages for short. Each page may contain
links (pointers) to other, related pages, anywhere in the world. Users can follow a
link (e.g., by clicking on it), which then takes them to the page pointed to. This
process can be repeated indefinitely, possibly traversing hundreds of linked pages
while doing so. Pages that point to other pages are said to use hypertext.

Pages are viewed with a program called a browser, of which Mosaic and
Netscape are two popular ones. The browser fetches the page requested, inter-
prets the text and formatting commands that it contains, and displays the page,
properly formatted, on the screen. An example is given in Fig. 7-58(a). Like
many Web pages, this one starts with a title, contains some information, and ends
with the email address of the page’s maintainer. Strings of text that are links to
other pages, called hyperlinks, are highlighted, either by underlining, displaying
them in a special color, or both. To follow a link, the user places the cursor on the
highlighted area (using the mouse or the arrow keys) and selects it (by clicking a
mouse button or hitting ENTER). Although nongraphical browsers, such as Lynx,
exist, they are not as popular as graphical browsers, so we will concentrate on the
latter. Voice-based browsers are also being developed.

Users who are curious about the Department of Animal Psychology can learn
more about it by clicking on its (underlined) name. The browser then fetches the
page to which the name is linked and displays it, as shown in Fig. 7-58(b). The
underlined items here can also be clicked on to fetch other pages, and so on. The
new page can be on the same machine as the first one, or on a machine halfway
around the globe. The user cannot tell. Page fetching is done by the browser,
without any help from the user. If the user ever returns to the main page, the links
that have already been followed may be shown with a dotted underline (and possi-
bly a different color) to distinguish them from links that have not been followed.
Note that clicking on the Campus Information line in the main page does nothing.
It is not underlined, which means that it is just text and is not linked to another
page.

Most browsers have numerous buttons and features to make it easier to navi-
gate the Web. Many have a button for going back to the previous page, a button
for going forward to the next page (only operative after the user has gone back
from it), and a button for going straight to the user’s own home page. Most
browsers have a button or menu item to set a bookmark on a given page and
another one to display the list of bookmarks, making it possible to revisit any of

DELL Ex.1006.700

SEC. 7.6 THE WORLD WIDE WEB 683

WELCOME TO THE UNIVERSITY OF EAST PODUNK’S WWW HOME PAGE

¢ Campus Information
o Admissions information
o Campus map
o Directions to campus
o The UEP student body

* Academic Departments
o Department of Animal Psychology
o Department of Alternative Studies
o Department of Microbiotic Cooking
o Department of Nontraditional Studies
n Department of Traditional Studies

Webmaster @eastpodunk.edu

(a)

THE DEPARTMENT OF ANIMAL PSYCHOLOGY

information for prospective majors
* Personnel

o Faculty members

o Graduate students

o Nonacademic staff
Research Projects
Positions available
* Our most popular courses

o Dealing with herbivores

O Horse management

o Negotiating with your pet

o User-friendly doghouse construction
Full list of courses

Webmaster @ animalpsyc.eastpodunk.edu

(b)

Fig. 7-58. (a) A Web page. (b) The page reached by clicking on
Department of Animal Psychology

DELL Ex.1006.701

684 THE APPLICATION LAYER CHAP. 7

them with a single mouse click. Pages can also be saved to disk or printed.
Numerous options are generally available for controlling the screen layout and
setting various user preferences. A comparison of nine browsers is given in (Ber-
ghel, 1996).

In addition to having ordinary text (not underlined) and hypertext (under-
lined), Web pages can also contain icons, line drawings, maps, and photographs.
Each of these can (optionally) be linked to another page. Clicking on one of these
elements causes the browser to fetch the linked page and display it, the same as
clicking on text. With images such as photos and maps, which page is fetched
next may depend on what part of the image was clicked on.

Not all pages are viewable in the conventional way. For example, some pages
consist of audio tracks, video clips, or both. When hypertext pages are mixed
with other media, the result is called hypermedia. Some browsers can display all
kinds of hypermedia, but others cannot. Instead they check a configuration file to
see how to handle the received data. Normally, the configuration file gives the
name of a program, called an external viewer, or a helper application, to be run
with the incoming page as input. If no viewer is configured, the browser usually
asks the user to choose one. If no viewer exists, the user can tell the browser to
save the incoming page to a disk file, or to discard it. Helper applications for pro-
ducing speech are making it possible for even blind users to access the Web.
Other helper applications contain interpreters for special Web languages, making
it possible to download and run programs from Web pages. This mechanism
makes it possible to extend the functionality of the Web itself.

Many Web pages contain large images, which take a long time to load. For
example, fetching an uncompressed 640 x 480 (VGA) image with 24 bits per
pixel (922 KB) takes about 4 minutes over a 28.8-kbps modem line. Some
browsers deal with the slow loading of images by first fetching and displaying the
text, then getting the images. This strategy gives the user something to read while
the images are coming in and also allows the user to kill the load if the page is not
sufficiently interesting to warrant waiting. An alternative strategy is to provide an
option to disable the automatic fetching and display of images.

Some page writers attempt fo placate potentially bored users by displaying
images in a special way. First the image quickly appears in a coarse resolution.
Then the details are gradually filled in. For the user, seeing the whole image after
a few seconds, albeit at low resolution, is often preferable to seeing it built up
slowly from the top, scan line by scan line.

Some Web pages contain forms that request the user to enter information.
Typical applications of these forms are searching a database for a user-supplied
item, ordering a product, or participating in a public opinion survey. Other Web
pages contain maps that allow users to click on them to zoom in or get informa-
tion about some geographical area. Handling forms and active (clickable) maps
requires more sophisticated processing than just fetching a known page. We will
describe later how these features are implemented.

DELL Ex.1006.702

SEC. 7.6 THE WORLD WIDE WEB : 685

Some browsers use the local disk to cache pages that they have fetched.
Before a page is fetched, a check is made to see if it is in the local cache. If so, it
is only necessary to check if the page if still up to date. If so, the page need not be
loaded again. As a result, clicking on the BACK button to see the previous page is
normally very fast.

To host a Web browser, a machine must be directly on the Internet, or at least
have a SLIP or PPP connection to 4 router or other machine that is directly on the
Internet. This requirement exists because the way a browser fetches a page is to
establish a TCP connection to the machine where the page is, and then send a
message over the connection asking for the page. If it cannot establish a TCP
connection to an arbitrary machine on the Internet, a browser will not work.

Sometimes the lengths that people will go to get Web access are amazing. - At
least one company is offering Web-by-Fax service. A client without Internet
access calls up the Web-by-Fax server and logs in using the telephone keypad.
He then types in a code identifying the Web page desired and it is faxed to the
caller’s fax machine.

7.6.2. The Server Side

Every Web site has a server process listening to TCP port 80 for incoming
connections from clients (normally browsers). After a connection has been esta-
blished, the client sends one request and the server sends one reply. Then the con-
nection is released. The protocol that defines the legal requests and replies is
called HTTP. We will study it in some detail below, but a simple example using
it may provide a reasorable idea of how Web servers work. Figure 7-59 shows
how the various parts of the Web model fit together. }

For this example, we can imagine that the user has just clicked on some piece
of text or perhaps on an icon that points to the page whose name (URL—Uniform
Resource Locator) is http://www.w3.org/hypertext/WWW/TheProject.html. We
will also explain URLs later on in this chapter. For the moment, it is sufficient to
know that a URL has three parts: the name of the protocol (A#tp), the name of the
machine where the page is located (www.w3.0rg), and the name of the file con-
taining the page (hypertext/WWW/TheProject.html). Theé steps that occur between
the user’s click and the page being displayed are as follows:

1. The browser determines the URL (by seeing what was selected).
The browser asks DNS for the IP address of www.w3.0rg.

DNS replies with 18.23.0.23.

The browser makes a TCP connection to port 80 on 18.23.0.23.
It then sends a GET /hypertext/WWW/TheProject.html command.

A T i

The www.w3.0rg server sends the file TheProject.html.

DELL Ex.1006.703

686 THE APPLICATION LAYER CHAP. 7

Server Server
Client abc.com Xyz.com
Current page |
displayed by
browser = s
Hyperlink - -
to abc.com i~ Hyperlink
sl Thilit
gl e ——
Browser EM\ sl to xyz.com e
program
7 0
v <)
LN HTTP HTTP

Server Server
HTTP used over
<" this TCP connection

J
The Internet

Fig. 7-59. The parts of the Web model.

7. The TCP connection is released.
8. The browser displays all the text in TheProject.html.

9. The browser fetches and displays all images in TheProject.html.

Many browsers display which step they are currently executing in a status line
at the bottom of the screen. In this way, when the performance is poor, the user
can see if it is due to DNS not responding, the server not responding, or simply
network congestion during page transmission.

It is worth noting that for each in-line image (icon, drawing, photo, etc.) on a
page, the browser establishes a new TCP connection to the relevant server to fetch
the image. Needless to say, if a page contains many icons, all on the same server,
establishing, using, and releasing a new connection for each one is not wildly effi-
cient, but it keeps the implementation simple. Future revisions of the protocol
will address the efficiency issue. One proposal is given in (Mogul, 1995).

Because HTTP is an ASCII protocol like SMTP, it is quite easy for a person
at a terminal (as opposed to a browser) to directly talk to Web servers. All that is
needed is a TCP connection to port 80 on the server. The simplest way to get
such a connection is to use the Telnet program. Figure 7-60 shows a scenario of
how this can be done. In this example, the lines marked C: are typed in by the
user (client), the lines marked 7: are produced by the Telnet program, and the
lines marked S: are produced by the server at M.1.T.

DELL Ex.1006.704

SEC. 7.6 THE WORLD WIDE WEB 687

C: telnet www.w3.org 80

T: Trying 18.23.0.23 ...

T: Connected to www.w3.0rg.

T: Escape character is 7.

C: GET /hypertext/ WWW/TheProject.html HTTP/1.0
C:

: HTTP/1.0 200 Document follows
: MIME-Version: 1.0

: Server: CERN/3.0

: Content-Type: text/html

: Content-Length: 8247

: <HEAD> <TITLE> The World Wide Web Consortium (W3C) </TITLE> </HEAD>
<BODY>

: <H1>

: The World Wide Web Consortium </H1> <P>

: The World Wide Web is the universe of network-accessible information.
: The World Wide Web Consortium
: exists to realize the full potential of the Web. <P>

: W3C works with the global community to produce

. specifications and

: reference software .

» W3C is funded by industrial

: members
: but its products are freely available to all. <P>

. In this document:

<menu>

: Web Specifications and Development Areas
: Web Software

: The World Wide Web and the Web Community
: Getting involved with the W3C

: </menu> ‘

<P> <HR>

<P W3C is hosted by the

: Laboratory for Computer Science at

: MIT , and

. in Europe by INRIA .

: </BODY>

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL DY

Fig. 7-60. A sample scenario for obtaining a Web page.

DELL Ex.1006.705

688 THE APPLICATION LAYER CHAP. 7

Readers are encouraged to try this scenario personally (preferably from a
UNIX system, because some other systems do not return the connection status).
Be sure to note the spaces and the protocol version on the GET line, and the blank
line following the GET line. As an aside, the actual text that will be received will
differ from what is shown in Fig. 7-60 for three reasons. First, the example output
here has been abridged and edited to make it fit on one page. Second, it has been
cleaned up somewhat to avoid embarrassing the author, who no doubt expected
thousands of people to examine the formatted page, but zero people to scrutinize
the HTML that produced it. Third, the contents of the page are constantly being
revised. Nevertheless, this example should give a reasonable idea of how HTTP
works.

What the example shows is the following. The client, in this case a person,
but normally a browser, first connects to a particular host and then sends a com-
mand asking for a particular page and specifying a particular protocol and version
to use (HTTP/1.0). On line 7, the server responds with a status line telling the
protocol it is using (the same as the client) and the code 200, meaning OK. This
line is followed by an RFC 822 MIME message, of which five of the header lines
are shown in the figure (several others have been omitted to save space). Then
comes a blank line, followed by the message body. For sending a picture, the
Content-Type field might be

Content-Type: Image/GIF

In this way, the MIME types allow arbitrary objects to be sent in a standard way.
As an aside, the MIME Content-Transfer-Encoding header is not needed because
TCP allows arbitrary byte streams, even pictures, to be sent without modification.
The meaning of the commands within angle brackets used in the sample page will
be discussed later in this chapter.

Not all servers speak HTTP. In particular, many older servers use the FTP,
Gopher, or other protocols. Since a great deal of useful information is available
on FTP and Gopher servers, one of the design goals of the Web was to make this
information available to Web users. One solution is to have the browser use these
protocols when speaking to an FTP or Gopher server. Some of them, in fact, use
this solution, but making browsers understand every possible protocol makes them
unnecessarily large.

Instead, a different solution is often used: proxy servers (Luotonen and Altis,
1994). A proxy server is a kind of gateway that speaks HTTP to the browser but
FTP, Gopher, or some other protocol to the server. It accepts HTTP requests and
translates them into, say, FTP requests, so the browser does not have to under-
stand any protocol except HTTP. The proxy server can be a program runring on
the same machine as the browser, but it can also be on a free-standing machine
somewhere in the network serving many browsers. Figure 7-61 shows the differ-
ence between a browser that can speak FTP and one that uses a proxy.

DELL Ex.1006.706

SEC. 7.6 THE WORLD WIDE WEB 689

HTTP FTP Request -
B Server
rowser FTP Reply
HTTP Request FTP Request
HTTP FTP FTP
Proxy Server
Browser HTTP Reply FTP Reply

Fig. 7-61. (a) A browser that speaks FTP. (b) A browser that does not.

Often users can configure their browsers with proxies for protocols that the
browsers do not speak. - In this way, the range of information sources to which the
browser has access is increased.

In addition to acting as a go-between for unknown protocols, proxy servers
have a number of other important functions, such as caching. A caching proxy
server collects and keeps all the pages that pass through it. When a user asks for a
page, the proxy server checks to see if it has the page. If so, it can check to see if
the page is still current. In the event that the page is still current, it is passed to
the user. Otherwise, a new copy is fetched.

Finally, an organization can put a proxy server inside its firewall to allow
users to access the Web, but without giving them full Internet access. In this con-
figuration, users can talk to the proxy server, but it is the proxy server that con-
tacts remote sites and fetches pages on behalf of its clients. This mechanism can
be used, for example, by high schools, to block access to Web sites the principal
feels are inappropriate for tender young minds.

For information about one of the more popular Web servers (NCSA’s HTTP
daemon) and its performance, see (Katz et al., 1994; and Kwan et al., 1995).

HTTP—HyperText Transfer Protocol

The standard Web transfer protocol is HTTP (HyperText Transfer Proto-
col). Each interaction consists of one ASCII request, followed by one RFC 822
MIME-like response. Although the use of TCP for the transport connection is
very common, it is not formally required by the standard. If ATM networks
become reliable enough, the HTTP requests and replies could be carried in AAL 5
messages just as well.

HTTP is constantly evolving. Several versions are in use and others are under
development. The material presented below is relatively basic and is unlikely to
change in concept, but some details may be a little different in future versions.

DELL Ex.1006.707

690 THE APPLICATION LAYER CHAP. 7

The HTTP protocol consists of two fairly distinct items: the set of requests
from browsers to servers and the set of responses going back the other way. We
will now treat each of these in turn.

All the newer versions of HTTP support two kinds of requests: simple
requests and full requests. A simple request is just a single GET line naming the
page desired, without the protocol version. The response is just the raw page,
with no headers, no MIME, and no encoding. To see how this works, try making
a Telnet connection to port 80 of www.w3.0org (as shown in the first line of
Fig. 7-60) and then type

GET /hypertext WWW/TheProject.html

but without the HTTP/1.0 this time. The page will be returned with no indication
of its content type. This mechanism is needed for backward compatibility. Its use
will decline as browsers and servers based on full requests become standard.

Full requests are indicated by the presence of the protocol version on the GET
request line, as in Fig. 7-60. Requests may consist of multiple lines, followed by
a blank line to indicate the end of the request, which is why the blank line was
needed in Fig. 7-60. The first line of a full request contains the command (of
which GET is but one of the possibilities), the page desired, and the
protocol/version. Subsequent lines contain RFC 822 headers.

Although HTTP was designed for use in the Web, it has been intentionally
made more general than necessary with an eye to future object-oriented applica-
tions. For this reason, the first word on the full request line is simply the name of
the method (command) to be executed on the Web page (or general object). The
built-in methods are listed in Fig. 7-62. When accessing general objects, addi-
tional object-specific methods may also be available. The names are case sensi-
tive, so, GET is a legal method but get is not.

Method Description

GET Request to read a Web page

HEAD Request to read a Web page’s header

PUT Request to store a Web page

POST Append to a named resource (e.g., a Web page)
DELETE | Remove the Web page

LINK Connects two existing resources

UNLINK | Breaks an existing connection between two resources

Fig. 7-62. The built-in HTTP request methods.

The GET method requests the server to send the page (by which we mean
object, in the most general case), suitably encoded in MIME. However, if the

DELL Ex.1006.708

SEC. 7.6 THE WORLD WIDE WEB 691

GET request is followed by an If-Modified-Since header, the server only sends the
data if it has been modified since the date supplied. Using this mechanism, a
browser that is asked to display a cached page can conditionally ask for it from
the server, giving the modification time associated with the page. If the cache
page is still valid, the server just sends back a status line announcing that fact,
thus eliminating the overhead of transferring the page again.

The HEAD method just asks for the message header, without the actual page.
This method can be used to get a page’s time of last modification, to collect infor-
mation for indexing purposes, or just to test a URL for validity. Conditional
HEAD requests do not exist.

The PUT method is the reverse of GET: instead of reading the page, it writes
the page. This method makes it possible to build a collection of Web pages on a
remote server. The body of the request contains the page. It may be encoded
using MIME, in which case the lines following the PUT might include Content-
Type and authentication headers, to prove that the caller indeed has permission to
perform the requested operation.

Somewhat similar to PUT is the POST method. It too bears a URL, but
instead of replacing the existing data, the new data is “appended’ to it in some
generalized sense. Posting a message to a news group or adding a file to a bul-
letin board system are examples of appending in this context. It is. clearly the
intention here to have the Web take over the functionality of the USENET news
system.

DELETE does what you might expect: it removes the page. As with PUT,
authentication and permission play a major role here. There is no guarantee that
DELETE succeeds, since even if the remote HTTP server is willing to delete the
page, the underlying file may have a mode that forbids the HTTP server from
modifying or removing it.

The LINK and UNLINK methods allow connections to be established between
existing pages or other resources.

Every request gets a response consisting of a status line, and possibly addi-
tional information (e.g., all or part of a Web page). The status line can bear the
code 200 (OK), or any one of a variety of error codes, for example 304 (not modi-
fied), 400 (bad request), or 403 (forbidden).

The HTTP standards: describe message headers and bodies in considerable
detail. Suffice it to say that these are very close to RFC 822 MIME messages, so
we will not look at them here.

7.6.3. Writing a Web Page in HTML

Web pages are written in a language called HTML (HyperText Markup
Language). HTML allows users to produce Web pages that include text, graph-
ics, and pointers to other Web pages. We will begin our study of HTML with
these pointers, since they are the glue that holds the Web together.

DELL Ex.1006.709

692 THE APPLICATION LAYER CHAP. 7

URLs—Uniform Resource Locators

We have repeatedly said that Web pages may contain pointers to other Web
pages. Now it is time to see how these pointers are implemented. When the Web
was first created, it was immediately apparent that having one page point to
another Web page required mechanisms for naming and locating pages. In partic-
ular, there were three questions that had to be answered before a selected page
could be displayed:

1. What is the page called?
2. Where is the page located?
3. How can the page be accessed?

If every page were somehow assigned a unique name, there would not be any
ambiguity in identifying pages. Nevertheless, the problem would not be solved.
Consider a parallel between people and pages. In the United States, almost every-
one has a social security number, which is a unique identifier, as no two people
have the same one. Nevertheless, armed only with a social security number, there
is no way to find the owner’s address, and certainly no way to tell whether you
should write to the person in English, Spanish, or Chinese. The Web has basically
the same problems.

The solution chosen identifies pages in a way that solves all three problems at
once. Each page is assigned a URL (Uniform Resource Locator) that effec-
tively serves as the page’s worldwide name. URLs have three parts: the protocol
(also called a scheme), the DNS name of the machine on which the page is
located, and a local name uniquely indicating the specific page (usually just a file
name on the machine where it resides). For example, the URL for the author’s
department is

http://www.cs.vu.nl/welcome.htmi

This URL consists of three parts: the protocol (http), the DNS name of the host
(www.cs.vu.nl), and the file name (welcome.html), with certain punctuation
separating the pieces.

Many sites have certain shortcuts for file names built in. For example, ~user/
might be mapped onto user’s WWW directory, with the convention that a refer-
ence to the directory itself implies a certain file, say, index.html. Thus the
author’s home page can be reached at

http://www.cs.vu.nl/~ast/

even though the actual file name is different. At many sites, a null file name
defaults to the organization’s home page.

Now it should be clear how hypertext works. To make a piece of text click-
able, the page writer must provide two items of information: the clickable text to

DELL Ex.1006.710

SEC. 7.6 THE WORLD WIDE WEB 693

be displayed and the URL of the page to go to if the text is selected. When the
text is selected, the browser looks up the host name using DNS. Now armed with
the host’s IP address, the browser then establishes a TCP connection to the host.
Over that connection, it sends the file name using the specified protocol. Bingo.
Back comes the page. This is precisely what we saw in Fig. 7-60.

This URL scheme is open-ended in the sense that it is straightforward to have
protocols other than HTTP. In fact, URLs for various other common protocols
have been defined, and many browsers understand them. Slightly simplified
forms of the more common ones are listed in Fig. 7-63.

Name Used for Example

http Hypertext (HTML) | http://www.cs.vu.nl/~ast/

fip FTP ftp://ftp.cs.vu.nl/pub/minixy README

file Local file /ust/suzanne/prog.c

news News group News:comp.os.minix

news News article news:AA0134223112@cs.utah.edu
gopher | Gopher gopher://gopher.tc.umn.edu/11/Libraries
mailto | Sending email mailto:kim@acm.org

telnet Remote login telnet://www.w3.0rg:80

Fig. 7-63. Some common URLs.

Let us briefly go over the list. The h#tp protocol is the Web’s native language,
the one spoken by HTTP servers. It supports all the methods of Fig. 7-62, as well
as whatever object-specific methods are needed.

The fip protocol is used to access files by FTP, the Internet’s file transfer pro-
tocol. FTP has been around more than two decades and is well entrenched.
Numerous FTP servers all over the world allow people anywhere on the Internet
to log in and download whatever files have been placed on the FTP server. The
Web does not change this; it just makes obtdining files by FTP easier, as FTP has
a somewhat arcane interface. In due course, FTP will probably varish, as there is
no particular advantage for a site to run an FTP server instead of an HTTP server,
which can do everything that the FTP server can do, and more (although there are
some arguments about efficiency).

It is possible to access a local file as a Web page, either by using the file pro-
tocol, or more simply, by just naming it. This approach is similar to using FTP
but does not require having a server. Of course, it only works for local files.

The news protocol allows a Web user to call up a news article as though it
were a Web page. This means that a Web browser is simultaneously a news
reader. In fact, many browsers have buttons or menu items to make reading
USENET news even easier than using standard news readers.

DELL Ex.1006.711

694 THE APPLICATION LAYER CHAP. 7

Two formats are supported for the news protocol. The first format specifies a
newsgroup and can be used to get a list of articles from a preconfigured news site.
The second one requires the identifier of a specific news article to be given, in this
case AA0I134223112@cs.utah.edu. The browser then fetches the given article
from its preconfigured news site using the NNTP protocol.

The gopher protocol is used by the Gopher system, which was designed at the
University of Minnesota and named after the school’s athletic teams, the Golden
Gophers (as well as being a slang expression meaning “go for”, i.e., go fetch).
Gopher predates the Web by several years. It is an information retrieval scheme,
conceptually similar to the Web itself, but supporting only text and no images.
When a user logs into a Gopher server, he is presented with a menu of files and
directories, any of which can be linked to another Gopher menu anywhere in the
world.

Gopher’s big advantage over the Web is that it works very well with 25 X 80
ASCII terminals, of which there are still quite a few around, and because it is text
based, it is very fast. Consequently, there are thousands of Gopher servers all
over the world. Using the gopher protocol, Web users can access Gopher and
have each Gopher menu presented as a clickable Web page. If you are not fami-
liar with Gopher, try the example given in Fig. 7-63 or have your favorite Web
search engine look for “gopher.”

Although the example given does not illustrate it, it is also possible to send a
complete query to a Gopher server using the gopher+ protocol. What is displayed
is the result of querying the remote Gopher server.

The last two protocols do not really have the flavor of fetching Web pages,
and are not supported by all browsers, but are useful anyway. The mailto protocol
allows users to send email from a Web browser. The way to do this is to click on
the OPEN button and specify a URL consisting of mailto: followed by the
recipient’s email address. Most browsers will respond by popping up a form con-
taining slots for the subject and other header lines and space for typing the mes-
sage.

The telnet protocol is used to establish an on-line connection to a remote
machine. It is used the same way as the Telnet program, which is not surprising,
since most browsers just call the Telnet program as a helper application. As an
exercise, try the scenario of Fig. 7-60 again, but now using a Web browser.

In short, the URLs have been designed to not only allow users to navigate the
Web, but to deal with FTP, news, Gopher, email, and telnet as well, making all
the specialized user interface programs for those other services unnecessary, and
thus integrating nearly all Internet access into a single program, the Web browser.
If it were not for the fact that this scheme was designed by a physics researcher, it
could easily pass for the output of some software company’s advertising depart-
ment.

Despite all these nice properties, the growing use of the Web has turned up an
inherent weakness in the URL scheme. A URL points to one specific host. For

DELL Ex.1006.712

SEC. 7.6 THE WORLD WIDE WEB 695

pages that are heavily referenced, it is desirable to have multiple copies far apart,
to reduce the network traffic. The trouble is that URLs do not provide any way to
reference a page without simultaneously telling where it is. There is no way to
say: “I want page xyz, but I do not care where you get it.”” To solve this problem
and make it possible to replicate pages, the IETF is working on a system of URIs
(Universal Resource Identifiers). A URI can be thought of as a generalized
URL. This topic is the subject of much current research.

Although we have discussed only absolute URLs here, relative URLs also
exist. The difference is analogous to the difference between the absolute file
name /usr/ast/foobar and just foobar when the context is unambiguously defined.

HTML—HyperText Markup Language

Now that we have a good idea of how URLs work, it is time to look at HTML
itself. HTML is an application of ISO standard 8879, SGML (Standard Gen-
eralized Markup Language), but specialized to hypertext and adapted to the
Web.

As mentioned earlier, HTML is a markup language, a language for describing
how documents are to be formatted. The term “markup” comes from the old days
when copyeditors actually marked up documents to tell the printer—in those days,
a human being—which fonts to use, and so on. Markup languages thus contain
explicit commands for formatting. For example, in HTML, means start
boldface mode, and means leave boldface mode. The advantage of a
markup language over one with no explicit markup is that writing a browser for it
is straightforward: the browser simply has to understand the markup commands.
TeX and troff are other well-known examples of markup languages.

Documents written in a markup language can be contrasted to documents pro-
duced with a WYSIWYG (What You See Is What You Get) word processor, such
as MS-Word® or WordPerfect®. These systems may store their files with hidden
embedded markup so they can reproduce them later, but not all of them work this
way. Word processors for the Macintosh, for example, keep the formatting infor-
mation in separate data structures, not as commands embedded in the user files.

By embedding the markup commands within each HTML file and standardiz-
ing them, it becomes possible for any Web browser to read and reformat any Web
page. Being able to reformat Web pages after receiving them is crucial because a
page may have been produced full screen on a 1024 x 768 display with 24-bit
color but may have to be displayed in a small window on a 640 X 480 screen with
8-bit color. Proprietary WYSIWYG word processors cannot be used on the Web
because their internal markup languages (if any) are not standardized across ven-
dors, machines and operating systems. Also, they do not handle reformatting for
different-sized windows and different resolution displays. However, word pro-
cessing program can offer the option of saving documents in HTML instead of in
the vendor’s proprietary format, and some of them already do.

DELL Ex.1006.713

696 THE APPLICATION LAYER CHAP. 7

Like HTTP, HTML is in a constant state of flux. When Mosaic was the only
browser, the language it interpreted, HTML 1.0, was the de facto standard. When
new browsers came along, there was a need for a formal Internet standard, so the
HTML 2.0 standard was produced. HTML 3.0 was initially created as a research
effort to add many new features to HTML 2.0, including tables, toolbars,
mathematical formulas, advanced style sheets (for defining page layout and the
meaning of symbols), and more.

The official standardization of HTML is being managed by the WWW Con-
sortium, but various browser vendors have added their own ad hoc extensions.
These vendors hope to get people to write Web pages using their extensions, so
readers of these pages will need the vendor’s browser to properly interpret the
pages. This tendency does not make HTML standardization any easier.

Below we will give a brief introduction to HTML, just to give an idea of what
it is like. While it is certainly possible to write HTML documents with any stand-
ard editor, and many people do, it is also possible to use special HTML editors
that do most of the work (but correspondingly give the user less control over all
the details of the final result).

A proper Web page consists of a head and a body enclosed by <HTML> and
</HTML> tags (formatting commands), although most browsers do not complain
if these tags are missing. As can be seen from Fig. 7-64(a), the head is bracketed
by the <HEAD> and </HEAD> tags and the body is bracketed by the <BODY>
and </BODY> tags. The commands inside the tags are called directives. Most
HTML tags have this format, that is, <SOMETHING> to mark the beginning of
something and </SOMETHING> to mark its end. Numerous other examples of
HTML are casily available. Most browsers have a menu item VIEW SOURCE or
something like that. Selecting this item displays the current page’s HTML source,
instead of its formatted output.

Tags can be in either lowercase or uppercase. Thus <HEAD> and <head>
mean the same thing, but the former stands out better for human readers. Actual
layout of the HTML document is irrelevant. HTML parsers ignore extra spaces
and carriage returns since they have to reformat the text to make it fit the current
display area. Consequently, white space can be added at will to make HTML
documents more readable, something most of them are badly in need of. As
another consequence, blank lines cannot be used to separate paragraphs, as they
are simply ignored. An explicit tag is required.

Some tags have (named) parameters. For example

is a tag, , with parameter SRC set equal to abc and parameter ALT set
equal to foobar. For each tag, the HTML standard gives a list of what the permit-
ted parameters, if any, are, and what they mean. Because each parameter is
named, the order in which the parameters are given is not significant.

DELL Ex.1006.714

SEC. 7.6 THE WORLD WIDE WEB 697

<HTML> <HEAD> <TITLE> AMALGAMATED WIDGET, INC. </TITLE> </HEAD>

<BODY> <H1> Welcome to AWI's Home Page </H1>

We are so happy that you have chosen to visit Amalgamated Widget's
home page. We hope <I> you </I> will find all the information you need here.
<P>Below we have links to information-about our many fine products.
You can order electronically (by WWW), by telephone, or by fax. <HR>
<H2> Product information </H2>
 Big widgets
 Littie widgets

<H2> Telephone numbers </H2>
 By telephone: 1-800-WIDGETS
 By fax: 1-415-765-4321
 </BODY> </HTML>

(a)

Welcome to AWIl's Home Page

We are so happy that you have chosen to visit Amalgamated Widget's home page. We hope
you will find all the information you need here.

Below we have links to information about our many fine products. You can order electronicalty
(by WWW), by telephone, or by FAX.

Product Information
® Big widgets
® Little widgets

Telephone numbers
® 1-800-WIDGETS
® 1-415-765-4321

()

Fig. 7-64. (a) The HTML for a sample Web page. (b) The formatted page.

DELL Ex.1006.715

698 THE APPLICATION LAYER CHAP. 7

Technically, HTML documents are written in the ISO 8859-1 Latin-1 charac-
ter set, but for users whose keyboards only support ASCII, escape sequences are
present for the special characters, such as . The list of special characters is given
in the standard. All of them begin with an ampersand and end with a semicolon.
For example, è produces ¢ and é produces €. Since <, >, and &
have special meanings, they can be expressed only with their escape sequences,
< > and & respectively.

The main item in the head is the title, delimited by <TITLE> and </TITLE>,
but certain kinds of meta-information may also be present. The title itself is not
displayed on the page. Some browsers use it to label the page’s window.

Let us now take a look at some of the other features illustrated in Fig. 7-64.
All of the tags used in Fig. 7-64 and some others are shown in Fig. 7-65. Head-
ings are generated by an <Hr> tag, where rn is a digit in the range 1 to 6. <H1> is
the most important heading; <H6> is the least important one. It is up to the
browser to render these appropriately on the screen. Typically the lower num-
bered headings will be displayed in a larger and heavier font. The browser may
also choose to use different colors for each level of heading. Typically <H1>
headings are large and boldface with at least one blank line above and below. In
contrast, <H2> headings are in a smaller font, and with less space above and
below.

The tags and <I> are used to enter boldface and italics mode, respec-
tively. If the browser is not capable of displaying boldface and italics, it must use
some other method of rendering them, for example, using a different color for
each or perhaps reverse video. Instead of specifying physical styles such as bold-
face and italics, authors can also use logical styles such as <DN> (define),
(weak emphasis), (strong emphasis), and <VAR> (program vari-
ables). The logical styles are defined in a document called a style sheet. The
advantage of the logical styles is that by changing one definition, all the variables
can be changed, for example, from italics to a constant width font.

HTML provides various mechanisms for making lists, including nested lists.
The tag starts an unordered list. The individual items, which are marked
with the tag in the source, appear with bullets (®) in front of them. A vari-
ant of this mechanism is , which is for ordered lists. When this tag is used,
the items are numbered by the browser. A third option is <MENU>, which
typically produces a more compact list on the screen, with no bullets and no
numbers. Other than the use of different starting and ending tags, , ,
and <MENU> have the same syntax and similar results.

In addition to the list mechanisms shown in Fig. 7-65, there are two others
that are worth mentioning briefly. <DIR> can be used for making short tables.
Also, <DL> and </DL> can make definition lists (glossaries) with two-part
entries, whose parts are defined by <DT> and <DD> respectively. The first is for
the name, the second for its meaning. These features are largely superseded by
the (more general and complex) table mechanism, described below.

DELL Ex.1006.716

SEC. 7.6 THE WORLD WIDE WEB 699

Tag Description
<HTML> ... </HTML> Declares the Web page to be written in HTML
<HEAD> ... </HEAD> Delimits the page’s head
<TITLE> ... </TITLE> Defines the title (not displayed on the page)
<BODY> ... </BODY> Delimits the page’s body
<Hn> ... </Hn> Delimits a level n heading
 ... Set ... in boldface
<> .. </l> Set ... in italics
 ... Brackets an unordered (bulletedy list
 ... Brackets a numbered list
<MENU> ... </MENU> Brackets a menu of items
 Start of a list item (there is no)

 Force a break here
<P> Start of paragraph
<HR> Horizontal rule
<PRE> ... </PRE> Preformatted text; do not reformat
 Load an image here
<AHREF=".."> ... | Defines a hyperlink |

Fig. 7-65. A selection of common HTML tags. Some have additional parameters.

The
, <P>, and <HR> tags all indicate a boundary between sections of
text. The precise format can be determined by the style sheet associated with the
page. The
 tag just forces a line break. Typically, browsers do not insert a
blank line after
. In contrast, <P> starts a paragraph, which might, for
example, insert a blank line and possibly some indentation. (Theoretically, </P>
exists to mark the end of a paragraph, but it is rarely used; most HTML authors do
not even know it exists.) Finally, <HR> forces a break and draws a horizontal
line across the screen. :

HTML 1.0 had no ability to display tables or other formatted information.
Worse yet, if the HTML writer carefully formatted a table by judicious use of
spaces and carriage returns, browsers would ignore all the layout and display the
page as if all the formatted material were unformatted. To prevent browsers from
messing up carefully laid out text, the <PRE> and </PRE> tags were provided.
They are instructions to the browser to just display everything in between literally,
character for character, without changing anything. As the table and other fancy
layout features become more widely implemented, the need for <PRE> will

DELL Ex.1006.717

700 THE APPLICATION LAYER CHAP. 7

diminish, except for program listings, for which most programmers will tolerate
no formatting other than their own.

HTML allows images to be included in-line on a Web page. The tag
specifies that an image is to be loaded at the current position in the page. It can
have several parameters. The SRC parameter gives the URL (or URI) of the
image. The HTML standard does not specify which graphic formats are permit-
ted. In practice, all browsers support GIF files and many support JPEG files as
well. Browsers are free to support other formats, but this extension is a two-edged
sword. If a user is accustomed to a browser that supports, say, BMP files, he may
include these in his Web pages and later be surprised when other browsers just
ignore all of his wonderful art.

Other parameters of are ALIGN, which controls the alignment of the
image with respect to the text baseline (TOP, MIDDLE, BOTTOM), ALT, which
provides text to use instead of the image when the user has disabled images, and
ISMAP, a flag indicating that the image is an active map.

Finally, we come to hyperlinks, which use the <A> (anchor) and tags.
Like , <A> has various parameters, including HREF (the URL), NAME
(the hyperlink’s name), and METHODS (access methods), among others. The text
between the <A> and is displayed. If it is selected, the hyperlink is fol-
lowed to a new page. It is also permitted to put an image there, in which
case clicking on the image also activates the hyperlink.

As an example, consider the following HTML fragment:

 NASA’s home page

When a page with this fragment is displayed, what appears on the screen is

NASA’s home page

If the user subsequently clicks on this text, the browser immediately fetches the
page whose URL is Attp://www.nasa.gov and displays it.
As a second example, now consider

When displayed, this page shows a picture (e.g., of the space shuttle). Clicking on
the picture switches to NASA’s home page, just as clicking on the underlined text
did in the previous example. If the user has disabled automatic image display, the
text NASA will be displayed where the picture belongs.

The <A> tag can take a parameter NAME to plant a hyperlink, so it can be
referred to from within the page. For example, some Web pages start out with a
clickable table of contents. By clicking on an item in the table of contents, the
user jumps to the corresponding section of the page.

One feature that HTML 2.0 did not include and which many page authors
missed, was the ability to create tables whose entries could be clicked on to active
hyperlinks. As a consequence, a large amount of work was done to add tables to

DELL Ex.1006.718

SEC. 7.6 THE WORLD WIDE WEB 701

HTML 3.0. Below we give a very brief introduction to tables, just to capture the
essential flavor.

An HTML table consists of one or more rows, each consisting of one or more
cells. Cells can contain a wide range of material, including text, figures, and even
other tables. Cells can be merged, so, for example, a heading can span multiple
columns. Page authors have limited control over the layout, including alignment,
border styles, and cell margins, but the browsers have the final say in rendering
tables.

An HTML table definition is listed in Fig. 7-66(a) and a possible rendition is
shown in Fig. 7-66(b). This example just shows a few of the basic features of
HTML tables. Tables are started by the <TABLE> tag. Additional information
can be provided to describe general properties of the table.

The <CAPTION> tag can be used to provide a figure caption. Each row is
started with a <TR> (Table Row) tag. The individual cells are marked as <TH>
(Table Header) or <TD> (Table Data). The distinction is made to allow browsers
to use different renditions for them, as we have done in the example.

Numerous other tags are also allowed in tables. They include ways to specify
horizontal and vertical cell alignments, justification within a cell, borders, group-
ing of cells, units, and more.

Forms

HTML 1.0 was basically one way. Users could call up pages from informa-
tion providers, but it was difficult to send information back the other way. As
more and more commercial organizations began using the Web, there was a large
demand for two-way traffic. For example, many companies wanted to be able to
take orders for products via their Web pages, software vendors wanted to distri-
bute software via the Web and have customers fill out their registration cards
electronically, and companies offering Web searching wanted to have their custo-
mers be able to type in search keywords.

These demands led to the inclusion of forms starting in HTML 2.0. Forms
contain boxes or buttons that allow users to fill in information or make choices
and then send the information back to the page’s owner. They use the <INPUT>
tag for this purpose. It has a variety of parameters for determining the size,
nature, and usage of the box displayed. The most common forms are blank fields
for accepting user text, boxes that can be checked, active maps, and SUBMIT but-
tons. The example of Fig. 7-67 illustrates some of these choices. \

Let us start our discussion of forms by going over this example. Like all
forms, this one is enclosed between the <KFORM> and </FORM> tags. Text not
enclosed in a tag is just displayed. All the usual tags (e.g.,) are allowed in a
form. Three kinds of input boxes are used in this form.

The first kind of input box follows the text “Name’’. The box is 46 characters
wide and expects the user to type in a string, which is then stored in the variable

DELL Ex.1006.719

702 THE APPLICATION LAYER CHAP. 7

<HTML> <HEAD> <TITLE> A sample page with a table </TITLE> </HEAD>
<BODY>

<TABLE BORDER=ALL RULES=ALL>

<CAPTION> Some Differences between HTML Versions </CAPTION>
<COL ALIGN=LEFT>

<COL ALIGN=CENTER>

<COL ALIGN=CENTER>

<COL ALIGN=CENTER>

<TR> <TH>ltem <TH>HTML 1.0 <TH>HTML 2.0 <TH>HTML 3.0
<TR> <TH> Active Maps and Images <TD> <TD> x <TD> x

<TR> <TH> Equations <TD> <TD> <TD> x

<TR> <TH> Forms <TD> <TD> x <TD> x

<TR> <TH> Hyperlinks x <TD> <TD> x <TD> x

<TR> <TH> Images <TD> x <TD> x <TD> x

<TR> <TH> Lists <TD> x <TD> x <TD> x

<TR> <TH> Toolbars <TD> <TD> <TD> x

<TR> <TH> Tables <TD> <TD> <TD> x

</TABLE> </BODY> </HTML>

(a)

Some Differences between HTML Versions

[Item HTML 1.0 | HTML 2.0 | HTML 3.0 |
Active Maps and Images X X
Equations
Forms
Hyperlinks X
Images X
Lists X
Toolbars

(Tables]

>X|X X | X

XX X XX X |X

Fig. 7-66. (a) An HTML table. (b) A possible rendition of this table.

customer for later processing. The <P> tag instructs the browser to display subse-
quent text and boxes on the next line, even if there is room on the current line. By
using <P> and other layout tags, the author of the page can control the look of the
form on the screen.

The next line of the form asks for the user’s street address, 40 columns wide,
also on a line by itself. Then comes a line asking for the city, state, and country.
No <P> tags are used between the fields here, so the browser displays them all on
one line if they will fit. As far as the browser is concerned, this paragraph just
contains six items: three strings alternating with three boxes. It displays them
linearly from left to right, going over to a new line whenever the current line

DELL Ex.1006.720

SEC. 7.6 THE WORLD WIDE WEB 703

<HTML> <HEAD> <TITLE> AWI CUSTOMER ORDERING FORM </TITLE> </HEAD>

<BODY>
<H1> Widget Order Form </H1>
<FORM ACTION="http://widget.com/cgi-bin/widgetorder' METHOD=POST>
Name <INPUT NAME="customer" SIZE=46> <P>
Street Address <INPUT NAME="address" SIZE=40> <P>
City <INPUT NAME="city" SIZE=20> State <INPUT NAME="state" SIZE =4>
Country <INPUT NAME="country" SIZE=10> <P>
Credit card # <INPUT NAME="cardno" SIZE=10>
Expires <INPUT NAME="expires" SIZE=4>
M/C <INPUT NAME="cc" TYPE=RADIO VALUE="mastercard">
VISA <INPUT NAME="cc" TYPE=RADIO VALUE="visacard"> <P>
Widget size Big <INPUT NAME="product" TYPE=RADIO VALUE="expensive">
Little <INPUT NAME="product" TYPE=RADIO VALUE="cheap">
Ship by express courier <INPUT NAME="express" TYPE=CHECKBOX> <P>
<INPUT TYPE=SUBMIT VALUE="Submit order"> <P>
Thank you for otdering an AWI widget, the best widget money can buy!
</FORM> </BODY> </HTML>
(a)

Credit card #] Expires [:] M/C Q Visa Q

Widget size Big O Little O Ship by express courier

Thank you for ordering an AWI widget, the best widget money can buy!

Widget Order Form

Name | |
Street address |]
City | | state[| Countf |

(b)

Fig. 7-67. (a) The HIML for an order form. (b) The formatted page.

cannot hold the next item. Thus it is conceivable that on a 1024 x 768 screen all
three strings and their corresponding boxes will appear on the same line, but on a
640 x 480 screen they might be split over two lines. In the worst scenario, the
word “Country” is at the end of one line and its box is at the beginning of the

next line. There is no way to tell the browser to force the box adjacent to the text.

DELL Ex.1006.721

704 THE APPLICATION LAYER CHAP. 7

The next line asks for the credit card number and expiration date. Transmit-
ting credit card numbers over the Internet should only be done when adequate
security measures have been taken. For example, some, but not all, browsers
encrypt information sent by users. Even then, secure communication and key
management are complicated matters and are subject to many kinds of attacks, as
we saw earlier.

Following the expiration date we encounter a new feature: radio buttons.
These are used when a choice must be made among two or more alternatives. The
intellectual model here is a car radio with half a dozen buttons for choosing sta-
tions. The browser displays these boxes in a form that allows the user to select
and deselect them by clicking on them (or using the keyboard). Clicking on one
of them turns off all the other ones in the same group. The visual presentation
depends on the graphical interface being used. It is up to the browser to choose a
form that is consistent with Windows, Motif, OS/2 Warp, or whatever windowing
system is being used. The widget size also uses two radio buttons. The two
groups are distinguished by their NAME field, not by static scoping using some-
thing like <RADIOBUTTON> ... </RADIOBUTTON>.

The VALUE parameters are used to indicate which radio button was pushed.
Depending on which of the credit card options the user has chosen, the variable cc
will be set to either the string “mastercard” or the string “visacard”.

After the two sets of radio buttons, we come to the shipping option,
represented by a box of type CHECKBOX. It can be either on or off. Unlike
radio buttons, where exactly one out of the set must be chosen, each box of type
CHECKBOX can be on or off, independently of all the others. For example, when
ordering a pizza via Electropizza’s Web page, the user can choose sardines and
onions and pineapple (if she can stand it), but she cannot choose small and
medium and large for the same pizza. The pizza toppings would be represented
by three separate boxes of type CHECKBOX, whereas the pizza size would be a
set of radio buttons.

As an aside, for very long lists from which a choice must be made, radio but-
tons are somewhat inconvenient. Therefore, the <SELECT> and </SELECT>
tags are provided to bracket a list of alternatives, but with the semantics of radio
buttons (unless the MULTIPLE parameter is given, in which case the semantics
are those of checkable boxes). Some browsers render the items between
<SELECT> and </SELECT> as a pop-up menu.

We have now seen two of the built-in types for the <INPUT> tag: RADIO and
CHECKBOX. In fact, we have already seen a third one as well: TEXT. Because
this type is the default, we did not bother to include the parameter TYPE = TEXT,
but we could have. Two other types are PASSWORD and TEXTARFEA. A PASS-
WORD box is the same as a TEXT box, except that the characters are not
displayed as they are typed. A TEXTAREA box is also the same as a TEXT box,
except that it can contain multiple lines.

Getting back to the example of Fig. 7-67, we now come across an example of

DELL Ex.1006.722

SEC. 7.6 THE WORLD WIDE WEB 705

a SUBMIT button. When this is.clicked, the user information on the form is sent
back to the machine that provided the form. Like all the other types, SUBMIT is a
reserved word that the browser understands. The VALUE string here is the label
on the button and is displayed. All boxes can have values; we only needed that
feature here. For TEXT boxes, the contents of the VALUE field are displayed
along with the form, but the user can edit or erase it. CHECKBOX and RADIO
boxes can also be initialized, but with a field called CHECKED (because VALUE
just gives the text, but does not indicate a preferred choice).

The browser also understands the RESET button. When clicked, it resets the
form to its initial state.

Two more types are worth noting. The first is the HIDDEN type. This is out-
put only; it cannot be clicked or modified. For example, when working through a
series of pages throughout which choices have to be made, previously made
choices might be of HIDDEN type, to prevent them from being changed.

Our last type is IMAGE, which is for active maps (and other clickable
images). When the user clicks on the map, the (x, y) coordinates of the pixel
selected (i.e., the current mouse position) are stored in variables and the form is
automatically returned to the owner for further processing.

Forms can be submitted in three ways: using the submit button, clicking on an
active map, or typing ENTER on a one-item TEXT form. When a form is submit-
ted, some action must be taken. The action is specified by the parameters of the
<FORM> tag. The ACTION parameter specifies the URL (or URI) to tell about
the submission, and the METHOD parameter tells which method to use. The
order of these (and all other) parameters is not significant.

The way the form’s variables are sent back to the page’s owner depends on
the value of the METHOD parameter. For GET, the only way to return values is
to cheat: they are appended to the URL, separated by a question mark. This
approach can result in URLs that are thousands of characters long. Nevertheless,
this method is frequently used because it is simple.

If the POST method (see Fig. 7-62) is used, the body of the message contains
the form’s variables and their values. The & is used to separate fields; the +
represents the space character. For example, the response to the widget form
might be

customer=John+Doe&address=100+Main+St.&city=White+Plains&
state=NY &country=USA&cardno=1234567890&expires=6/98&cc=mastercard&
product=cheap&express=on

The string would be sent back to the server as one line, not three. If a CHECK-
BOX is not selected, it is omitted from the string. It is up to the server to make
sense of this string.

Fortunately, a standard for handling forms’ data is already available. It is
called CGI (Common Gateway Interface). Let us consider a common way of

DELL Ex.1006.723

706 THE APPLICATION LAYER CHAP. 7

using it. Suppose that someone has an interesting database (e.g., an index of Web
pages by keyword and topic) and wants to make it available to Web users. The
CGI way to make the database available is to write a script (or program) that
interfaces (i.e., gateways) between the database and the Web. This script is given
a URL, by convention in the directory cgi-bin. HTTP servers know (or can be
told) that when they have to invoke a method on a page located in cgi-bin, they
are to interpret the file name as being an executable script or program and start it
up.

Eventually, some user opens the form associated with our widget script and
has it displayed. After the form has been filled out, the user clicks on the SUB-
MIT button. This action causes the browser to establish a TCP connection to the
URL listed in the form’s ACTION parameter—the script in the cgi-bin directory.
Then the browser invokes the operation specified by the form’s METHOD, usu-
ally POST. The result of this operation is that the script is started and presented
(via the TCP connection, on standard input) with the long string given above. In
addition, several environment variables are set. For example, the environment
variable CONTENT _LENGTH tells how long the input string is.

At this point, most scripts need to parse their input to put it in a more con-
venient form. This goal can be accomplished by calling one of the many libraries
or script procedures available. The script can then interact with its database in
any way it wishes. For example, active maps normally use CGI scripts to take
different actions depending on where the user pointed.

CGI scripts can also produce output and do many other things as well as
accepting input from forms. If a hyperlink points to a CGI script, when that link
is invoked, the script is started up, with several environment variables set to pro-
vide some information about the user. The script then writes a file (e.g. an HTML
page) on standard output, which is shipped to the browser and interpreted there.
This mechanism makes it possible for the script to generate custom Web pages on
the spot.

For better or worse, some Web sites that answer queries have a database of
advertisements that can be selectively included in the Web page being con-
structed, depending on what the user is looking for. If the user is searching for
“car” a General Motors ad might be displayed, whereas a search for “vacation”
might produce an ad from United Airlines. These ads usually include clickable
text and pictures.

7.6.4. Java

HTML makes it possible to describe how static Web pages should appear,
including tables and pictures. With the cgi-bin hack, it is also possible to have a
limited amount of two-way interaction (forms, etc.). However, rapid interaction
with Web pages written in HTML is not possible. To make it possible to have

DELL Ex.1006.724

SEC. 7.6 THE WORLD WIDE WEB 707

highly interactive Web pages, a different mechanism is needed. In this section we
will describe one such mechanism, the Java' " language and interpreter.

Java originated when some people at Sun Microsystems were trying to
develop a new language that was suitable for programming information-oriented
consumer appliances. Later it was reoriented toward the World Wide Web.
Although Java borrows many ideas and some syntax from C and C++, it is a new
object-oriented language, compatible with neither. It is sometimes said that in the
large, Java is like Smalltalk, but that in the small it is like C or C++.

The main idea of using Java for interactive Web pages is that a Web page can
point to a small Java program, called an applet (SAT I verbal analogy question:
Pig is to piglet as application is to 7). When the browser reaches it, the applet is
downloaded to the client-machine and executed there in a secure way. It must be
structurally impossible for the applet to read or write any files that it is not author-
ized to access. It must also be impossible for the applet to introduce viruses or
cause any other damage. For these reasons, and to achieve portability across
machines, applets are compiled to a bytecode after being written and debugged. It
is these bytecode programs that are pointed to by Web pages, similar to the way
images are pointed to. When an applet arrives, it is executed interpretively in a
secure environment.

Before getting into the details of the Java language, it is worth saying a few
words about what the whole Java system is good for and why people want to
include Java applets in their Web pages. For one thing, applets allow Web pages
to become interactive. -For example, a web page can contain a board for tic tac
toe, othello, or chess, and play a game with the user. The game-playing program
(written in Java) is just downloaded along with its Web page. As a second exam-
ple, complex forms (e.g., spreadsheets) can be displayed, with the user filling in
items and seeing calculations made instantly.

It is entirely possible that in the long run, the model of people buying pro-
grams, installing them, and running them locally will be replaced by a model in
which people click on Web pages, get applets downloaded to do work for them,
possibly in conjunction with a remote server or data base. Instead of filling out
the income tax form by hand or using a special program, people may be able to
click on the IRS home page to get a tax applet downloaded. This applet might ask
some questions, then contact the person’s employer, bank, and stockbroker to col-
lect the required salary, interest, and dividend information, fill the tax form in, and
then display it for verification and submission.

Another reason for running applets on the client machine is they make it pos-
sible to add animation and sound to Web pages without having to spawn external
viewers. The sound can be played when the page is loaded, as background music,
or when some specific event happens (e.g., clicking on the cat makes it meow).
The same is true for animation. Because the applet is running locally, even if it is
being interpreted, it can write all over (its portion) of the screen any way it wants
to, and at very high speed (compared to a remote cgi-bin shell script).

DELL Ex.1006.725

708 THE APPLICATION LAYER CHAP. 7

The Java system has three parts:
1. A Java-to-bytecode compiler.
2. A browser that understands applets.
3. A bytecode interpreter.

The developer writes the applet in Java, then compiles it to bytecode. To include
this compiled applet on a Web page, a new HTML tag, <APPLET>, has been
invented. A typical use is

<APPLET CODE=game.class WIDTH=100 HEIGHT=200> </APPLET>

When the browser sees the <APPLET> tag, it fetches the compiled applet
game.class from the current Web page’s site (or if another parameter, CODE-
BASE, is present, from the URL it specifies). The browser than passes the applet
to the local bytecode interpreter for execution (or interprets the applet itself, if it
has an internal interpreter). The WIDTH and HEIGHT parameters give the size of
the applet’s default window, in pixels.

In a sense, the <APPLET> tag is analogous to the tag. In both cases,
the browser goes and gets a file and then hands it off to a (possibly internal) inter-
preter for display within a bounded area of the screen. Then it continues process-
ing the Web page.

For applications that need very high performance, some Java interpreters have
the ability to compile bytecode programs to actual machine language on-the-fly,
as needed.

As a consequence of this model, Java-based browsers are extensible in a way
that first-generation browsers are not. First generation browsers are basically
HTML interpreters that have built-in modules for speaking the various protocols
needed, such as HTTP 1.0, FTP, etc., as well as decoders for various image for-
mats. An example is shown in Fig. 7-68(a). If someone invents or popularizes a
new format, such as audio or MPEG-2, these old browsers are not able to read
pages containing them. At best, the user has to find, download, and install an
appropriate external viewer.

With a Java-based browser, the situation is different. At startup, the browser
is effectively an empty Java virtaal machine, as shown in Fig. 7-68(b). By load-
ing HTML and HTTP applets, it becomes able to read standard Web pages. How-
ever, as new protocols and decoders are required, their classes are loaded dynami-
cally, possibly over the network from sites specified in Web pages. After a while,
the browser might look like Fig. 7-68(c).

Thus if someone invents a new format, all that person has to do is include the
URL of an applet for handling it in a Web page, and the browser will automati-
cally fetch and load the applet. No first-generation browser is capable of automat-
ically downloading and installing new external viewers on-the-fly. The ability to

DELL Ex.1006.726

SEC. 7.6 THE WORLD WIDE WEB 709

(No protocol or image -
interpreters built in) PR O I e
Sl0 R =S
= AL
= - g § 2 § ~ .
1o o I3 Q_ '
olall|s (G} - 0]
= e Z|Z19|o|o|=|alk [=|3|%
I BIZ|O|+ |G == I|T|oi<|=
HTML interpreter Java interpreter Java interpreter
Operating system Operating system Operating system

(a) () ©

Fig. 7-68. (a) A first generation browser. (b) A Java-based browser at startup.
(c) The browser of (b) after running for a while.

load applets dynamically means that people can easily experiment with new for-
mats without first having to have endless standardization meetings to reach a con-
Sensus.

This extensibility also applies to protocols. For some applications, special
protocols are needed, for example, secure protocols for banking and commerce.
With Java, these protocols can be loaded dynamically as needed, and there is no
need to achieve universal standardization. To communicate with company X, you
just download its protocol applet. To talk to company Y, you get its protocol
applet. There is no need for X and Y to agree on a standard protocol.

Introduction to the Java Language

The objectives listed above have led to a type-safe, object-oriented language
with built-in multithreading and no undefined or system dependent features.
What follows is a highly simplified description of Java, just to give a feel for it.
Many features, details, options, and special cases have been omitted for the sake
of brevity. The complete language specification, and much more about Java, is
available on the Web itself (naturally) at http://java.sun.com. For tutorials on
Java, see (Campione and Walrath, 1996; and Van der Linden, 1996). For the full
story, see (Arnold and Gosling, 1996; and Gosling et al., 1996). For a brief com-
parison between Java and Microsoft’s answer to it (Blackbird), see (Singleton,
1996).

As we mentioned above, in the small, Java is similar to C and C++. The lexi-
cal rules, for example, are pretty much the same (e.g., tokens are delimited by
white space, and new lines can be inserted between any two tokens). Comments
can be inserted using either the C syntax (/* ... */) or the C++ syntax ...

Java has eight primitive data types, as listed in Fig. 7-69. Each type has a
specific size, independent of the local implementation. Thus unlike C, where an
integer may be 16, 32, or 64 bits, depending on the underlying machine

DELL Ex.1006.727

710 THE APPLICATION LAYER CHAP. 7

architecture, a Java int is always 32 bits, no more and no less, no matter what kind
of machine the interpreter is running on. This consistency is essential since the
same applet must run on 16-bit, 32-bit, and 64-bit machines, and give the same
result on all of them.

Type Size Description
Byte 1 Byte A signed integer between —128 and +127
Short 2 Bytes | A signed 2-byte integer
Int 4 Bytes | A signed 4-byte integer
Long 8 Bytes | A signed 8-byte integer
Float 4 Bytes | A 4-byte |EEE floating-point number
Double 8 Bytes | An 8-byte IEEE floating-point number
Boolean | 1Bit The only values are true and false
LEllar 2 Bytes | A character in Unicode

Fig. 7-69. The basic Java data types.

Arithmetic variables (the first 6 types) can be combined using the usual arith-
metic operators (including ++ and ——) and compared using the usuval relational
operators (e.g., <, <=, ==, !=). Conversions between types are permitted where
they make sense.

Java uses the 16-bit Unicode instead of ASCII for characters, so character
variables are 2 bytes long. The first 127 Unicode characters are the same as
ASCII for backward compatibility. Above these are some graphic symbols, and
then the characters needed for Russian, Arabic, Hebrew, Japanese (kanji, kata-
kana, and hiragana), and virtually every other language. Characters not present in
ASCII can be represented with \u followed by four hexadecimal digits. For exam-
ple, \uOae6 is the Gujarati zero.

Java allows one dimensional arrays to be declared. For example,

int[] table;

declares an array, table, but does not allocate any space for it. That can be done
later on, as in C++, for example, by

table = new int [1024];

to allocate an array with 1024 entries. It is not necessary (or even possible) to
return arrays that are no longer needed; the garbage collector reclaims them. Thus
the highly error-prone malloc and free library routines are not needed for storage
management. Arrays can be initialized, and arrays of arrays can be used to get
higher dimensionality, as in C. Strings are available, but they are defined in a
class, rather than being simply character arrays ending with a null byte.

DELL Ex.1006.728

SEC. 7.6 THE WORLD WIDE WEB 711

The Java control statements are shown in Fig. 7-70. The first nine have
essentially the same syntax and semantics as in C, except that where a Boolean
expression is required, the language actually insists upon a Boolean expression.
Also, the break and continue statements now can take labels indicating which of
the labeled loops to exit or repeat.

Statement Description Example
Assignment Assign a value n=i+j;
If Boolean choice if (k< 0) k=0; else k= 2"k;
Switch Select a case switch (b) {case 1: n++; case 2: n—;}
For lteration for (i = 0; i < n;i++) a[i] = bli};
While Repetition while (n < k) n +=;
Do Repetition do {n =n + n} while (n < m);
Break Exit statement break label;
Return Return return n;
Continue Next iteration continue label;
Throw Raise exception throw new lilegalArgumentException();
Try Exception scoping | try { ... } catch (Exception e) {return —1};
Synchronized | Mutual exclusion synchronized void update(ints) { ... }

Fig. 7-70. The Java statements. The notation { ... } indicates a block of code.

The next two statements are in C++ but not in C. The throw and try state-
ments deal with exception handling. Java defines a variety of standard excep-
tions, such as attempting to divide by zero, and allows programmers to define and
raise their own exceptions. Programmers can write handlers to catch exceptions,
making it unnecessary to constantly test if something has gone wrong (e.g., when
reading from a file). The throw statement raises an exception, and the try state-
ment defines a scope to associate exception handlers with a block of code in
which an exception might occur.

The synchronized statement is new to Java and has to do with the fact that
Java programs can have multiple threads of control. To avoid race conditions,
this statement is used to delimit a block of code (or a whole procedure) that must
not have more than one thread active in it at once. Such blocks of code are usu-
ally called critical regions. When the synchronized statement is executed, the
thread executing it must acquire the lock associated with the critical region, exe-
cute the code, and then release the lock. If the lock is not available, the thread
waits until it is free. By guarding entire procedures this way and using condition
variables, programmers have the full power of monitors (Hoare, 1974).

DELL Ex.1006.729

712 THE APPLICATION LAYER CHAP. 7

Java programs can be called with arguments. Command-line processing is
similar to C, except that the argument array is called args instead of argv and
args[0] is the first parameter, not the program name. Figure 7-71 illustrates a
small Java program that computes a table of factorials, just to give an idea of what
a small Java program looks like.

class Factorial { /* This program consists of a single class with two methods. */

public static void main (int argc, String args(]) { / main program

long i, f, lower = 1, upper = 20; // declarations of four longs
for (i = lower; i <= upper; i++) { // 1oop from lower to upper
f = factorial(i); /=1l
System.out.printin(i + " " + f); // print i and f
!
}
static long factorial (long k) { /I recursive factorial function
if (k==0)
return 1; //0ol=1
else
return k * factorial(k-1); K =k* (k-1)!
1
!

Fig. 7-71. A Java program for computing and printing 0! to 201.

Despite both being object-oriented languages based on C, Java and C++ differ
in some ways. Some features were removed from Java to make it typesafe or
easier to read. These include #define, typedef, enums, unions, structs, operator
overloading, explicit pointers, global variables, standalone functions, and friend
functions. It almost goes without saying that the goto statement has been sent to
that special place reserved for obsolete programming language features. Other
features were added to give the language more power. The features added include
garbage collection, multithreading, object interfaces, and packages.

Object Orientation in Java

In traditional procedural languages such as Pascal or C, a program consists of
a collection of variables and procedures, without any general organizing principle.
In contrast in object-oriented languages, (almost) everything is an object. An
object normally contains some internal (i.e., hidden) state variables along with
some public procedures, called methods, for accessing them. Programs that use
the object are expected (and can be forced) to invoke the methods to manipulate
the object’s state. In this way, the object writer can control how programs use the

DELL Ex.1006.730

SEC. 7.6 THE WORLD WIDE WEB 713

information inside the object. This principle is called encapsulation, and is the
basis of all object-oriented programming.

Java tries to capture the best of both worlds. It can be used as a traditional
procedural language or as an object-oriented language. The Java example of
Fig. 7-71, for example, could equally well have been written in C, and in essen-
tially the same way. In this view, a subset of Java can be regarded as a cleaned-
up version of C. However, for writing Web pages, Java is better regarded as an
object-oriented language, so we will study its object orientation in this section.

A Java program consists of one or more packages, each of which contains
some class definitions. Packages can be accessed remotely over a network, so
those: intended for use by a wide audience must have unique names. Normally,
hierarchical names are used, starting with the reverse of their machine’s DNS
name, for example

EDU.univ.cs.catie.games.chess

A class definition is a template for stamping out object instances, each of
which contains the same state variables and same methods as all the other object
instances of its class. The values of the state variables within different objects are
independent, however. Classes are thus like cookie cutters: they are not cookies
themselves, but are used to stamp out structurally identical cookies, with each
cookie cutter producing a different shape of cookie. Once produced, different
cookies (objects) are independent of one another.

Java objects can be produced dynamically during execution, for example by

object = new ClassName()

These objects are stored on the heap and removed by the garbage collector when
no longer needed. In this way, storage management in Java is handled by the sys-
tem, with no need for the dreaded malloc and free procedures, or even for explicit
pointers, for that matter.

Each class is based on another class. A newly defined class is said to be a
subclass of the class on which it is based, the superclass. A (sub)class always
inherits the methods of its superclass. It may or may not have direct access to the
superclass’ internal variables, depending on whether or not the superclass wants
that.: For example, if a superclass, A, has methods M1, M2, and M3, and a sub-
class, B, defines a new method, M4, then objects created from B, will have
methods M1, M2, M3, and M4. The property of a class automatically acquiring all
the methods of its superclass is called inheritance, and is an important property
of Java. Adding new methods to the superclass’ methods is called extending the
superclass. As an aside, some object-oriented languages allow classes to inherit
methods from two or more superclasses (multiple inheritance), but the Java
designers thought this property to be too messy and intentionally left it out.

Since every class has exactly one immediate superclass, the set of all classes
in a Java program form a tree. The class at the top of the tree is called Object.

DELL Ex.1006.731

714 THE APPLICATION LAYER CHAP. 7

All other classes inherit its methods. Any class whose superclass is not explicitly
mentioned in its definition defaults to being a subclass of the Object class. The
Factorial class of Fig. 7-71, for example, is thus a subclass of Object.

Let us now take a look at an example of the object-oriented concepts
presented so far. In Fig. 7-72 we have a package defining two classes, Complex-
Number, for defining and using complex numbers (i.e., numbers with a real part
and an imaginary part), and test, for showing how ComplexNumber can be used.

class ComplexNumber { // Define a subclass of Object called ComplexNumber

// Hidden data.
protected double re, im; // real and imaginary parts

// Five methods that manage the hidden data.

public void Complex(double x, double y) {re = x; im = y;}
public double Real() {return re;}

public double Imaginary() {return im;}

public double Magnitude() {return Math.sqrt(re*re + im*im);}
public double Angle() {return Math.atan{im/re);}

}
class test { /I A second class, for testing ComplexNumber
public static void main (String args[]) {
ComplexNumber c; // declare an object of class ComplexNumber

¢ = new ComplexNumber(); // actually allocate storage for ¢
c.Complex(3.0, 4.0); // invoke the Complex method to initialize ¢
System.out.printin("The magnitude of c is " + c.Magnitude());

}
}

Fig. 7-72. A package defining two classes.

Like Factorial, the class ComplexNumber is based on Object, because no
other superclass is named in its definition. Each object of class ComplexNumber
represents one complex number. Each object of this class contains two hidden
variables, re, and im, both 64-bit floating-point numbers, for representing the real
and imaginary parts, respectively. They cannot be accessed outside the class
definition (and its subclasses), because they have been declared protected. Had
they been declared private, then they would have been visible only to Complex-
Number and not to any subclasses. For the moment, private would have been fine,
but we will soon define a subclass. Had they been declared public, they would
have been visible everywhere the package was visible, thus destroying much of
the value of object-oriented programming. Nevertheless, situations do exist in
which having the internal state of an object be public is sometimes needed.

DELL Ex.1006.732

SEC. 7.6 THE WORLD WIDE WEB 715

Five methods are defined on objects belonging to class ComplexNumber.
Users of the class are thus restricted to the operations provided by these five
methods, and cannot get at the state directly. An example of how objects of class
ComplexNumber are created, initialized, and used is given in fest.

When this package is compiled, the Java compiler produces two binary
(bytecode) files, one containing each of the classes and named after its class.
Typing the command

java test

results in invoking the Java interpreter with class fest as parameter. The inter-
preter then looks for a method called main, and upon finding it, executes it. The
result of execution is that the line

The magnitude of cis 5

is printed out.
Now let us define a subclass of ComplexNumber, just to see how that works.
It starts out by importing the original class, to learn what it does and what its
methods are. Then it defines an extension of ComplexNumber, which we will call
“HairyNumber. The new class automatically inherits the five methods present in
the superclass. To make things interesting, we will define a sixth method, AddTo,
in the subclass, which adds a complex number to the object, increasing its real and
imaginary parts.
The subclass definition is shown in Fig. 7-73, along with another test program
showing how an object belonging to class HairyNumber can be used. When the
new test program is run, it will print out

h = (-0.5,6)

Remember that the six methods are usable on the objects a and k, without regard
to which method was defined where. If we now define yet another subclass based
on HairyNumber and give it, say, three new methods, objects produced from it
will have nine valid methods.

In addition to adding new methods to its superclass, a subclass can override
(replace) existing methods by simply redefining them. Thus it is possible for a
subclass to redefine all the methods inherited from its superclass, so objects
belonging to the two classes have nothing in common. Doing so, however, is in
poor taste, and should be avoided.

Finally, a Java class may define multiple methods with the same name but dif-
ferent parameters and different definitions. When the compiler sees a method
invocation using this name, it has to use the parameter types to determine which
method to use. This property is called overloading or polymorphism. Unlike
C++, where operators can also be overloaded, in Java, only methods, not opera-
tors, can be overloaded, to make programs easier to understand.

DELL Ex.1006.733

716 THE APPLICATION LAYER CHAP. 7

import ComplexNumber; // import the ComplexNumber package

class HairyNumber extends CompiexNumber { // define a new class
public void AddTo(ComplexNumber z) { // with one method
re = re + z.Real();
im = im + z.Imaginary();

}
}
class test2 { // test program for HairyNumber
public static void main(String argsf]) {
HairyNumber a, h; // declare two HairyNumbers
a = new HairyNumber(); // allocate storage for a
h = new HairyNumber(); // allocate storage for h
a.Complex(1.0, 2.0); // assign a value to a
h.Complex(-1.5, 4.0); /Il assign a value to h
h.AddTo(a); // invoke the AddTo method on h

System.out.printin("h = (" + h.Real() + "," + h.Imaginary() + ")");

Fig. 7-73. A subclass of ComplexNumber defining a new method.

The Application Programmers Interface

In addition to the bare language, the Java designers have defined and imple-
mented about 200 classes with the initial release. The methods contained in these
classes form a kind of standard environment for Java program developers. The
classes are written in Java, so they are portable to all platforms and operating sys-
tems.

While a detailed discussion of all these classes and methods is clearly beyond
the scope of this book, a brief description may be of some interest. The 200
classes are grouped into seven packages of uneven size, each of which is focused
on some central theme. Applets that need a particular package can include it
using the Java import statement. The methods contained within can just be used
as needed. This mechanism replaces the need for including header files in C. It
also replaces the need for libraries, since the packages are dynamically loaded
during execution when they are invoked.

The seven packages are summarized in Fig. 7-74. The java.lang package con-
tains classes that can be viewed as part of the language, but are technically not.
These include classes for managing the classes themselves, threads, and exception
handling. The standard mathematical and string libraries are also here.

DELL Ex.1006.734

SEC. 7.6 THE WORLD WIDE WEB 717

Package Example functiconality
Java.lang Classes, threads, exceptions, math, strings
Java.io I/O on streams and random access files, printing
Java.net Sockets, IP addresses, URLs, datagrams
Java.util Stacks, hash tables, vectors, time, date
Java.applet Getting and displaying Web pages, audio, Object class
Java.awt Events, dialog, menus, fonts, graphics, window management
Java.awt.image | Colors, image cropping, filtering, and conversion
Java.awt.peer Access to the underlying window system

Fig. 7-74. The packages included in the standard APIL.

. Like C, the Java language contains no I/O primitives. 1/O is done by loading
and using the java.io package. It is analogous to the standard I/O library in C.
Methods are provided for reading and writing- streams, random access files, and
doing the formatting needed for printing. In Fig. 7-71 we saw one of these
methods, println, which does formatted printing.

Closely related to I/O is network transport. Methods that look up and manage
IP addresses are located here. Access to sockets is also part of this package. So is
datagram preparation. The actual transmission is handled in java.io.

The next class is java.util. It contains classes and methods for common data
structures, such as stacks and hash tables, so programmers do not constantly have
to reinvent the wheel. Time and date management is also here.

The java.applet package contains some of the basic machinery for applets,
including methods for getting Web pages starting from their URLs. It also has
methods for displaying Web pages and playing audio clips (e.g., background
music). The java.applet package also contains the Object class. All objects
inherit its methods, unless they are overridden. These methods include cloning an
object, comparing two objects for equality, converting an object to a string, and
various others.

Finally, we come to java.awt and its two subpackages. AWT stands for
Abstract Window Toolkit, and is designed to make applets portable across win-
dow systems. For example, how should an applet draw a rectangle on the screen
in such a way that the same compiled (bytecode) version of the applet can run on
UNIX, Windows, and the Macintosh, even though each one has its own window
system? Part of the package deals with drawing on the screen, so there are
methods for placing lines, geometric figures, text, menus, buttons, scroll bars, and
many other items on the screen. Java programmers call these methods to write on
the screen. It is up to the java.awt package to make the appropriate calls to the
local operating system to get the job done. This strategy means that java.awt has

DELL Ex.1006.735

718 THE APPLICATION LAYER CHAP. 7

to be rewritten for each new platform, but that applets are then platform indepen-
dent, which is far more important.

Another important task of this class is event management. Most window sys-
tems are fundamentally event driven. What this means is that the operating sys-
tem detects keystrokes, mouse motion, button pushes and rcleases, and other
events, and converts these into calls to user procedures. In the case of Java, a
large library of methods for dealing with these events is provided in java.awt.
Using them makes it easier to write programs that interact with the local window
system and still be 100 percent portable to machines with different operating sys-
tems and different window systems.

Some of the work of this package is done in java.awt.image, such as image
management, and in java.awt.peer, which allows access to the underlying window
system.

Security

One of the most important aspects of Java is its security properties. When a
Web page containing an applet is fetched, the applet is automatically executed on
the client’s machine. Ideally, it should not crash or otherwise bring down the
client’s machine.

Furthermore, it does not take much imagination to envision some enterprising
undergraduate producing a Web page containing some nifty new game, then pub-
licizing its URL widely (e.g., crossposting it to every newsgroup). Not mentioned
in the posting is the small detail that the page also contains an applet that upon
arrival immediately encrypts all the files on the user’s hard disk. When it is fin-
ished, the applet announces what it has done and politely mentions that users
wishing to purchase the decryption key can do so by sending 1000 dollars in small
unmarked bills to a certain post office box in Panama.

In addition to the above get-rich-quick scheme, there are other dangers
inherent in letting foreign code run on your machine. An applet could hunt
around for interesting information (saved email, the password file, the local
environment strings, etc.) and send or email them back over the network. It could
also consume resources (e.g., filling up the disk), display naughty pictures or pol-
itical slogans on the screen, or make an earsplitting racket using the sound card.

The Java designers were well aware of these problems, of course, and erected
a series of barriers against them. The first line of defense is a typesafe language.
Java has strong typing, true arrays with bounds checking and no pointers. These
restrictions make it impossible for a Java program to construct a pointer to read
and write arbitrary memory locations.

However, Trudy, who has given up on trying to break cryptographic protocols
and gotten into the much more interesting business of writing malicious Java
applets, can just write or modify a C compiler to produce Java bytecode, thus
bypassing all the safeguards provided by the Java language and compiler.

DELL Ex.1006.736

SEC. 7.6 THE WORLD WIDE WEB 719

The second line of defense is that before an incoming applet is executed, it is
run through a bytecode verifier. The bytecode verifier looks for attempts to
manufacture pointers, execute instructions or call methods with invalid parame-
ters, use variables before they are initialized, and so on. These checks are sup-
posed to guarantee that only legal applets get executed, but Trudy will certainly
work hard on finding tricks the verifier does not check for.

The third line of defense is the class loader. Since classes can be loaded on
the fly, there is a danger that an applet could load one of its own classes to replace
a critical system class; thus bypassing that class’ security checks. This Trojan
horse attack has been rendered impossible by virtue of giving each class its own
name space (like a kind of abstract directory), and carefully searching:for system
classes before looking for user classes. In other words, if the user loads a mali-
cious version of println, it will never be used because the official println will
always be found first.

The fourth line of defense is that some standard classes have their own secu-
rity measures built in. For example, the file access class maintains a list of files
that may be accessed by applets, and pops up a dialog box any time an-applet tries
to do something that violates the protection rules.

Despite all these measures, security problems are to be expected. First, there
can be bugs in the Java software that clever programmers can exploit to bypass
the security. The infamous Internet worm of 1988 used a bug in the UNIX Finger
daemon to bring thousands of machines all over the Internet to a grinding halt
(Hafner and Markoff, 1991; and Spafford, 1989).

Second, while it may be possible to prevent an applet from doing anything
except writing to the screen, many applets will need more power, so when they
ask for additional privileges, users may grudgingly (or naively) grant them. For
example, applets may need to write temporary files, so users may give them
access to the /tmp directory, thinking that nothing important is there. Unfor-
tunately, most editors keep the temporary versions of documents and email being
edited there, so malicious applets can copy them and try to send them over the
network. Of course, it may be possible to block applets’ access to the network,
but many may not work then, so they will have to be granted this power too.

But even in the unlikely event that applets are allowed no network access at
all, they may be able to transmit information using covert channels (Lampson,
1973). For example, after acquiring some information, an applet can form a bit
stream by using the local system’s real time clock. To send a 1, it computes very
hard for AT; to send a 0, it just waits for AT.

To acquire this information, the applet’s owner can establish a connection to
the client’s machine to read some of its public Web pages or FTP some of its pub-
lic files. By carefully monitoring the incoming data rate, the applet owner’s can
see whether the applet is computing (and thus slowing down the observed output
stream) or resting. Of course, this channel is noisy, but that can be handled by
standard techniques. The stream can be divided into frames delimited by flag

DELL Ex.1006.737

720 THE APPLICATION LAYER CHAP. 7

bytes, individual frames can use a strong error-correcting code, and all frames can
be sent two or three times. Many other covert channels exist, and it is extremely
difficult to discover and block them all. For more information about the security
problems in Java see (Dean and Wallach, 1995).

In short, Java introduces many new possibilities and opportunities into the
World Wide Web. It allows Web pages to be interactive, and to contain anima-
tion and sound. It also permits browsers to be infinitely extensible. However, the
Java model of downloading applets also introduces some serious new security
problems that have not been entirely solved yet.

7.6.5. Locating Information on the Web

Although the Web contains a vast amount of information, finding the right
item is not always easy. To make it easier for people to find pages that are useful
to them, several researchers have written programs to index the Web in various
ways. Some of these have becoime so popular that they have gone commercial.
Programs that search the Web are sometimes called search engines, spiders,
crawlers, worms, or knowbots (knowledge robots). In this section we will give a
brief introduction to this subject. For more information, see (Pinkerton, 1994; and
McBryan, 1994).

Although the Web is huge, reduced to its barest essentials, the Web is a big
graph, with the pages being the nodes and the hyperlinks being the arcs. Algo-
rithms for visiting all the nodes in a graph are well known. What makes Web
indexing difficult is the enormous amount of data that must be managed and the
fact that it is constantly changing.

Let us start our discussion with a simple goal: indexing all the keywords in
Web pages’ titles. For our algorithm, we will need three data structures. First, we
need a large, linear array, url_table, that contains millions of entries, ultimately
one per Web page. It should be kept in virtual memory, so parts not heavily used
will automatically be paged to disk. Each entry contains two pointers, one to the
page’s URL and one to the page’s title. Both of these items are variable length
strings and can be kept on a heap (a latge unstructured chunk of virtual memory to
which strings can be appended). The heap is our second data structure.

The third data structure is a hash table of size n entries. It is used as follows.
Any URL can be run through a hash function to produce a nonnegative integer
less than n. All URLs that hash to the value k are hooked together on a linked list
starting at entry k of the hash table. Whenever a URL is entered into url_table, it
is also entered into the hash table. The main use of the hash table is to start with a
URL and be able to quickly determine whether it is already present in url_table.
These three data structures are illustrated in Fig. 7-75.

Building the index requires two phases: searching and indexing. Let us start
with a simple engine for doing the searching. The heart of the search engine is a
recursive procedure process_url, which takes a URL string as input. It operates as

DELL Ex.1006.738

SEC. 7.6 THE WORLD WIDE WEB 721

Pointers Pointers

to URLS to tities Overflow
——

Hash chains

o [
: 4]
~[s}-{io¢]
-foi{ad)

4 o
T T wl T

Url_table Heap Hash table

__S
s

Fig. 7-75. Data structures used in a simple search engine.

follows. First, it hashes the URL to see if it is already present in url_table. If so,
it is done and returns immediately. Each URL is processed only once.

If the URL is not already known, its page is fetched. The URL and title are
then copied to the heap and pointers to these two strings are entered in url_table.
The URL is also entered into the hash table.

Finally, process_url extracts all the hyperlinks from the page and calls
process_url once per hyperlink, passing the hyperlink’s URL as the input parame-
ter.

To run the search engine, process_url is called with some starting URL.
When it returns, all pages reachable from that URL have been entered into
url_table and the search phase has been completed.

Although this design is simple and theoretically correct, it has a serious prob-
lem in a system- as large as the Web. The problem is that this algorithm does a
depth-first search, and will ultimately go into recursion as many times as the long-
est noncyclic path on the Web. No one knows how long this path is, but it is
probably thousands of hyperlinks long. As a consequence, any search engine that
uses this depth-first search will probably hit stack overflow before finishing the
job.

In practice, actual search engines first collect all the hyperlinks on each page
they read, remove all the ones that have already been processed, and save the rest.
The Web is then searched breadth-first; that is, each link on a page is followed
and all the hyperlinks on all the pages pointed to are collected, but they are not
traced in the order obtained.

The second phase does the keyword indexing. The indexing procedure goes
down url_table linearly, processing each entry in turn. For each entry, it exam-
ines the title and selects out all words not on the stop list. (The stop list prevents
indexing of prepositions, conjunctions, articles, and other words with many hits
and little value.) For each word selected, it writes a line consisting of the word

DELL Ex.1006.739

722 THE APPLICATION LAYER CHAP. 7

followed by the current url table entry number to a file. When the whole table
has been scanned, the file is sorted by word.

The index will have to be stored on disk and can be used as follows. The user
fills in a form listing one or more keywords and clicks on the SUBMIT button.
This action causcs a POST request to be done to a CGI script on the machine
where the index is located. This script (or, more likely, program) then looks up
the keywords in the index to find the set of url_table indices for each one. If the
user wants the BOOLEAN AND of the keywords, the set intersection is com-
puted. If the BOOLEAN OR is desired, the set union is computed.

The script now indexes into url_table to find all the titles and URLs. These
are then combined to form a Web page and are sent back to the user as the
response to the POST. The browser now displays the page, allowing the user to
click on any items that appear interesting.

Sounds easy? It’s not. The following problems have to be solved in any prac-
tical system:

1. Some URLs are obsolete (i.e., point to pages that no longer exist).
Some machines will be temporarily unreachable.

Not all pages may be reachable from the starting URL.

Some pages may be reachable only from active maps.

Some documents cannot be indexed (e.g., audio clips).

Not all documents have (useful) titles.

The search engine could run out of memory or disk space.

® N R W

The entire process might take too long.

Obsolete URLs waste time but are mostly a nuisance because the server on which
they are supposed to be located replies immediately with an error code. In con-
trast, when the server is down, all the search engine observes is a long delay in
establishing the TCP connection. To prevent it from hanging indefinitely, it must
have a timeout. If the timeout is too short, valid URLs will be missed. If it is too
long, searching will be slowed down appreciably.

Choosing the starting URL is clearly a major issue. If the search engine starts
with the home page of some astrophysicist, it may eventually find everything on
astronomy, physics, chemistry and space science, but it may miss pages about
veterinary medicine, Middle English, and rock 'n roll completely. These sets may
simply be disjoint. One solution is to gather as large a set of URLs as possible,
and use each of them as a starting page. Starting URLs can be gathered from
USENET news articles -and last week’s version of the wurl_table, since some of
these pages may have changed recently (e.g., one of the astrophysicists married a
veterinarian and-they solemnly updated their home pages to point to each other).

DELL Ex.1006.740

SEC. 7.6 THE WORLD WIDE WEB 723

Indexing works well on text, but increasingly, many pages contain items other
than text, including pictures, audio, and video. One approach here is to probe
each new-found URL with the HEAD method, just to get back its MIME header.
Anything not of type fext is not searched.

About 20 percent of all Web pages have no title, and many of those that do
have a title have a quasi-useless one (“Joe’s page”). A big improvement to the
basic index is to not only include titles, but also all the hypertext. In this
approach, when a page is scanned, all the hyperlinks are also recorded, along with
the page they came from and the page they point to. After the search phase has
been completed, all the hyperwords can be indexed too.

Even more ambitious is to index all the important words in each page. To
determine the important words, the occurrence frequency of all words not on the
stop list can be computed (per Web page). The top 10 or 20 words are probably
worth indexing. After all; if the word “liver” is the most common word on a
page, there is a chance that the page will be of interest to biliary surgeons (or to
cooks). Some search engines (e.g., Lycos) use this strategy.

Finally, the search engine can run out of memory or time. One attack is to
redesign the algorithms more carefully. A completely different approach is to do
what Harvest does and offload the work (Bowman et al., 1994, 1996). In particu-
lar, Harvest provides a program to run on cooperating servers. This program does
all the searching locally and transmits back the finished local index. At the cen-
tral site, all the local indices are merged into the master index. This approach
reduces by orders of magnitude the amount of memory, CPU time, and network
bandwidth required but has the major disadvantage of requiring all Web servers to
cooperate by running foreign software. Given the potential problems with viruses
and worms, when a system administrator is approached with the request: “Will
you please run this program on your machine for me?” it should not be surprising
if many of them decline.

One small request is in order. Although writing a search engine sounds easy,
a buggy one can wreak havoc with the network by generating vast numbers of
spurious requests, not only wasting bandwidth but bringing many servers to their
knees due to the load. If you cannot resist the temptation to write your own
search engine, proper netiquette requires restricting it to your own local DNS
domain until it is totally debugged.

7.7. MULTIMEDIA

Multimedia is the holy grail of networking. When the word is mentioned,
both the propeller heads and the suits begin salivating as if on cue. The former
see immense technical challenges in providing (interactive) video on demand to
every home. The latter see equally immense profits in it. - No book on networking
would be.complete without at least an introduction to the subject. Given the

DELL Ex.1006.741

724 THE APPLICATION LAYER CHAP. 7

length of this one so far, our introduction will of necessity be brief. For additional
information about this fascinating and potentially profitable subject, see (Buford,
1994; Deloddere et al., 1994; Dixit and Skelly, 1995; Fluckiger, 1995; Minoli,
1995; and Steinmetz and Nahrstedt, 1995).

Literally, multimedia is just two or more media. If the publisher of this book
wanted to join the current hype about multimedia, it could advertise the book as
using multimedia technology. After all, it contains two media: text and graphics
(the figures). Nevertheless, when most people refer to multimedia, they generally
mean the combination of two or more continuous media, that is, media that have
to be played during some well-defined time interval, usually with some user
interaction. In practice, the two media are normally audio and video, that is,
sound plus moving pictures. For this reason, we will begin our study with an
introduction to audio and video technology. Then we will combine them and
move on to true multimedia systems, including video on demand and the
Internet’s multimedia system, MBone.

7.7.1. Audio

An audio (sound) wave is a one-dimensional acoustic (pressure) wave. When
an acoustic wave enters the ear, the eardrum vibrates, causing the tiny bones of
the inner ear to vibrate along with it, sending nerve pulses to the brain. These
pulses are perceived as sound by the listener. In a similar way, when an acoustic
wave strikes a microphone, the microphone generates an electrical signal,
representing the sound amplitude as a function of time. The representation, pro-
cessing, storage, and transmission of such audio signals are a major part of the
study of multimedia systems.

The frequency range of the human ear runs from 20 Hz to 20,000 Hz,
although some animals, notably dogs, can hear higher frequencies. The ear hears
logarithmically, so the ratio of two sounds with amplitudes A and B is convention-
ally expressed in dB (decibels) according to the formula

dB =20]Og]()(A /B)

If we define the lower limit of audibility (a pressure of about 0.0003 dyne/cm?)
for a 1-kHz sine wave as 0 dB, an ordinary conversation is about 50 dB and the
pain threshold is about 120 dB, a dynamic range of a factor of 1 million. To avoid
any confusion, A and B above are amplitudes. 1f we were to use the power level,
which is proportional to the square of the amplitude, the coefficient of the loga-
rithm would be 10, not 20.

The ear is surprisingly sensitive to sound variations lasting only a few mil-
liseconds. The eye, in contrast, does not notice changes in light level that last
only a few milliseconds. The result of this observation is that jitter of only a few
milliseconds during a multimedia transmission affects the perceived sound quality
more than it affects the perceived image quality.

DELL Ex.1006.742

SEC. 7.7 MULTIMEDIA 725

Audio waves can be converted to digital form by an ADC (Analog Digital
Converter). An ADC takes an electrical voltage as input and generates a binary
number as output. In Fig. 7-76(a) we see an example of a sine wave. To
represent this signal digitally, we can sample it every AT seconds, as shown by the
bar heights in Fig. 7-76(b). If a sound wave is not a pure sine wave, but a linear
superposition of sine waves where the highest frequency component present is f,
then the Nyquist theorem (see Chap. 2) states that it is sufficient to make samples
at a frequency 2f. Sampling more often is of no value since the higher frequencies
that such sampling could detect are not present.

1.00 _ _
0.75| L
0.50 L L
0251 L

0

~0.25+ %T

-0.50 -

-0.75[-

—1.00” (@)) (b) ©

Fig. 7-76. (a) A sine wave. (b) Sampling the sine wave. (c) Quantizing the sam-
ples to 3 bits.

Digital samples are never exact. The 3-bit samples of Fig. 7-76(c) allow only
eight values, from —1.00 to +1.00 in steps of 0.25. An 8-bit sample would allow
256 distinct values. A 16-bit sample would allow 65,536 distinct values. The
error introduced by the finite number of bits per sample is called the quantization
noise. If it is too large, the ear detects it.

Two well-known examples of sampled sound are the telephone and audio
compact discs. Pulse code modulation, as used within the telephone system, uses
7-bit (North America and Japan) or 8-bit (Europe) samples 8000 times per second.
This system gives a data rate of 56,000 bps or 64,000 bps. With only 8000
samples/sec, frequencies above 4 kHz are lost.

Audio CDs are digital with a sampling rate of 44,100 samples/sec, enough to
capture frequencies up to 22,050 Hz, which is good for people, bad for dogs. The
samples are 16 bits each, and are linear over the range of amplitudes. Note that
16-bit samples allow only 65,536 distinct values, even though the dynamic range
of the ear is about 1 million when measured in steps of the smallest audible sound.
Thus using only 16 bits per sample introduces some quantization noise (although
the full dynamic range is not covered—CDs are not supposed to hurt). With
44,100 samples/sec of 16 bits each, an audio CD needs a bandwidth of 705.6 kbps

DELL Ex.1006.743

726 THE APPLICATION LAYER CHAP. 7

for monaural and 1.411 Mbps for stereo. While this is lower than what video
needs (see below), it still takes almost a full T1 channel to transmit uncompressed
CD quality stereo sound.

Digitized sound can be easily processed by computers in software. Dozens of
programs exist for personal computers to allow users to record, display, edit, mix,
and store sound waves from multiple sources. Virtually all professional sound
recording and editing are digital nowadays.

Many musical instruments even have a digital interface now. When digital
instruments first came out, each one had its own interface, but after a while, a
standard, MIDI (Music Instrument Digital Interface), was developed and
adopted by virtually the entire music industry. This standard specifies the connec-
tor, the cable, and the message format. Each MIDI message consists of a status
byte followed by zero or more data bytes. A MIDI message conveys one musi-
cally significant event. Typical events are a key being pressed, a slider being
moved, or a foot pedal being released. The st