
SEC. 7.2 DNS-Domain Name System 625

about multiple domains. This field is thus the primary search key used to satisfy
queries. The order of the records in the database is not significant. When a query
is made about a domain, all the matching records of the class requested are
returned.

The Time_to_live field gives an indication of how stable the record is. Infor
mation that is highly stable is assigned a large value, such as 86400 (the number
of seconds in 1 day). Information that is highly volatile is assigned a small value,
such as 60 (1 minute). We will come back to this point later when we have dis
cussed caching.

The Type field tells what kind of record this is. The most important types are
listed in Fig. 7-26.

Type Meaning Value

SOA Start of Authority Parameters for this zone

A IP address of a host 32-Bit integer

MX Mail exchange Priority, domain willing to accept email

NS Name Server Name of a server for this domain

CNAME Canonical name Domain name

PTR Pointer Alias for an IP address

HINFO Host description CPU and OS in ASCII

TXT Text Uninterpreted ASCII text

Fig. 7-26. The principal DNS resource record types.

An SOA record provides the name of the primary source of information about
the name server's zone (described below), the email address of its administrator, a
unique serial number, and various flags and timeouts.

The most important record type is the A (Address) record. It holds a 32-bit IP
address for some host. Every Internet host must have at least one IP address, so
other machines can communicate with it. Some hosts have two or more network
connections, in which case they will have one type A resource record per network
connection (and thus per IP address).

The next most important record type is the MX record. It specifies the name
of the domain prepared to accept email for the specified domain. A common use
of this record is to allow a machine that is not on the Internet to receive email
from Internet sites. Delivery is accomplished by having the non-Internet site
make an arrangement with some Internet site to accept email for it and forward it
using whatever protocol the two of them agree on.

For example, suppose that Cathy is a computer science graduate student at
UCLA. After she gets her degree in AI, she sets up a company, Electrobrain

Ex.1006.643DELL

626 THE APPLICATION LAYER CHAP. 7

Corporation, to commercialize her ideas. She cannot afford an Internet connec
tion yet, so she makes an arrangement with UCLA to allow her to have her email
sent there. A few times a day she will call up and collect it.

Next, she registers her company with the com domain and is assigned the
domain electrobrain.com. She might then ask the administrator of the com
domain to add an MX record to the com database as follows:

electrobrain.com 86400 IN MX mailserver.cs.ucla.edu

In this way, mail will be forwarded to UCLA where she can pick it up by logging
in. Alternatively, UCLA could call her and transfer the email by any protocol
they mutually agree on.

The NS records specify name servers. For example, every DNS database nor
mally has an NS record for each of the top-level domains, so email can be sent to
distant parts of the naming tree. We will come back to this point later.

CNAME records allow aliases to be created. For example, a person familiar
with Internet naming in general wanting to send a message to someone whose
login name is paul in the computer science department at M.I.T. might guess that
paul@cs.mit.edu will work. Actually this address will not work, because the
domain for M.I.T.'s computer science department is lcs.mit.edu. However, as a
service to people who do not know this, M.I.T. could create a CNAME entry to
point people and programs in the right direction. An entry like this one might do
the job:

cs.mit.edu 86400 IN CNAME lcs.mit.edu

Like CNAME, PTR points to another name. However, unlike CNAME, which
is really just a macro definition, PTR is a regular DNS datatype whose interpreta
tion depends on the context in which it is found. In practice, it is nearly always
used to associate a name with an IP address to allow lookups of the IP address and
return the name of the corresponding machine.

HINFO records allow people to find out what kind of machine and operating
system a domain corresponds to. Finally, TXT records allow domains to identify
themselves in arbitrary ways. Both of these record types are for user convenience.
Neither is required, so programs cannot count on getting them (and probably can
not deal with them if they do get them).

Getting back to the general structure of resource records, the fourth field of
every resource record is the Class. For Internet information, it is always IN. For
non-Internet information, other codes can be used.

Finally, we come to the Value field. This field can be a number, a domain
name, or an ASCII string. The semantics depend on the record type. A short
description of the Value fields for each of the principal records types is given in
Fig. 7-26.

As an example of the kind of information one might find in the DNS database
of a domain, see Fig. 7-27. This figure depicts part of a (semihypothetical)

Ex.1006.644DELL

SEC. 7.2 DNS--Domain Name System 627

database for the cs.vu.nl domain shown in Fig. 7-25. The database contains seven
types of resource records.

; Authoritative data for cs.vu.nl
cs.vu.nl. 86400 IN SOA
cs.vu.nl. 86400 IN TXT
cs.vu.nl. 86400 IN TXT
cs.vu.nl. 86400 IN MX
cs.vu.nl. 86400 IN MX

flits.cs.vu.nl.
flits.cs.vu.nl.
flits.cs.vu.nl.
flits.cs.vu.nl.
flits.cs.vu.nl.
flits.cs.vu.nl.
www.cs.vu.nl.
ftp.cs.vu.nl.

rowboat

little-sister

laserjet

86400
86400
86400
86400
86400
86400
86400
86400

IN HINFO
IN A
IN A
IN MX
IN MX
IN MX
IN CNAME
IN CNAME

IN A
IN MX
IN MX
IN HINFO

IN A
IN HINFO

IN A
IN HINFO

star boss (952771,7200,7200,2419200,86400)
"Faculteit Wiskunde en Informatica."
"Vrije Universiteit Amsterdam."
1 zephyr.cs.vu.nl.
2 top.cs.vu.nl.

Sun Unix
130.37.16.112
192.31.231.165
1 flits.cs.vu.nl.
2 zephyr.cs.vu.nl.
3 top.cs.vu.nl.
star.cs.vu.nl
zephyr.cs.vu.nl

130.37.56.201
1 rowboat
2 zephyr
Sun Unix

130.37.62.23
Mac MacOS

192.31.231.216
"HP Laserjet lllSi" Proprietary

Fig. 7-27. A portion of a possible DNS database for cs. vu.nl

The first noncomment line of Fig. 7-27 gives some basic information about
the domain, which will not concern us further. The next two lines give textual
information about where the domain is located. Then come two entries giving the
first and second places to try to deliver email sent to person@cs.vu.nl. The
zephyr (a specific machine) should be tried first. If that fails, the top should be
tried next.

After the blank line, added for readability, come lines telling that the flits is a
Sun workstation running UNIX and giving both of its IP addresses. Then three
choices are given for handling email sent to flits.cs. vu.nl. First choice is naturally
the flits itself, but if it is down, the zephyr and top are the second and third
choices. Next comes an alias, www.cs.vu.nl, so that this address can be used
without designating a specific machine. Creating this alias allows cs. vu.nl to
change its World Wide Web server without invalidating the address people use to
get to it. A similar argument holds for ftp.cs. vu.nl.

Ex.1006.645DELL

628 THE APPLICATION LA YER CHAP. 7

The next four lines contain a typical entry for a workstation, in this case,
rowboat.cs. vu.nl. The information provided contains the IP address, the primary
and secondary mail drops, and information about the machine. Then comes an
entry for a non-UNIX system that is not capable of receiving mail itself, followed
by an entry for a laser printer.

What is not shown (and is not in this file), are the IP addresses to use to look
up the top level domains. These are needed to look up distant hosts, but since
they are not part of the cs. vu.nl domain, they are not in this file. They are sup
plied by the root servers, whose IP addresses are present in a system configuration
file and loaded into the DNS cache when the DNS server is booted. They have
very long timeouts, so once loaded, they are never purged from the cache.

7.2.3. Name Servers

In theory at least, a single name server could contain the entire DNS database
and respond to all queries about it. In practice, this server would be so overloaded
as to be useless. Furthermore, if it ever went down, the entire Internet would be
crippled.

To avoid the problems associated with having only a single source of informa-·
tion, the DNS name space is divided up into nonoverlapping zones. One possible
way to divide up the name space of Fig. 7-25 is shown in Fig. 7-28. Each zone
contains some part of the tree and also contains name servers holding the authori
tative information about that zone. Normally, a zone will have one primary name
server, which gets its information from a file on its disk, and one or more secon
dary name servers, which get their information from the primary name server. To
improve reliability, some servers for a zone can be located outside the zone.

I-·--- Generic ----~--1 1--· Countries -

pc24

Fig. 7-28. Part of the DNS name space showing the division into zones.

Where the zone boundaries are placed within a zone is up to that zone's
administrator. This decision is made in large part based on how many name

Ex.1006.646DELL

SEC. 7.2 DNS-Domain Name System 629

servers are desired, and where. For example, in Fig. 7-28, Yale has a server for
yale.edu that handles eng.yale.edu but not cs.yale.edu, which is a separate zone
with its own name servers. Such a decision might be made when a department
such as English does not wish to run its own name server, but a department such
as computer science does. Consequently, cs.yale.edu is a separate zone but
eng. yale. edu is not.

When a resolver has a query about a domain name, it passes the query to one
of the local name servers. If the domain being sought falls under the jurisdiction
of the name server, such as ai.cs.yale.edu falling under cs.yale.edu, it returns the
authoritative resource records. An authoritative record is one that comes from
the authority that manages the record, and is thus always correct. Authoritative
records are in contrast to cached records, which may be out of date.

If, however, the domain is remote and no informatibn about the requested
domain is available locally, the name server sends a query message to the top
level name server for the domain requested. To make this process clearer, con
sider the example of Fig. 7-29. Here, a resolver on flits.cs. vu.nl wants to know the
IP address of the host linda.cs.yale.edu. In step 1, it sends a query to the local
name server, cs.vu.nl. This que:ry contains the domain name sought, the type (A)
and the class (JN).

vu cs Edu Yale Yale CS
Originator

1
name server

2
name server

3
name server

4
name server

flits.cs.vu.nl ~;jedu-server.netl, 'I yale.edu 1. 'I cs.yale.edu I
8 7 6 5

Fig. 7-29. How a resolver looks up a remote name in eight steps.

Let us suppose the local name server has never had a query for this domain
before and knows nothing about it. It may ask a few other nearby name servers,
but if none of them know, it sends a UDP packet to the server for edu given in its
database (see Fig. 7-29), edu-server.net. It is unlikely that this server knows the
address of linda.cs.yale.edu, and probably does not know cs.yale.edu either, but it
must know all of its own children, so it forwards the request to the name server
for yale.edu (step 3). In turn, this one forwards the request to cs.yale.edu (step 4),
which must have the authoritative resource records. Since each request is from a
client to a server, the resource record requested works its way back in steps 5
through 8.

Once these records get back to the cs. vu.nl name server, they will be entered
into a cache there, in case they are needed later. However, this information is not
authoritative, since changes made at cs.yale.edu will not be propagated to all the
caches in the world that may know about it. For this reason, cache entries should
not live too long. This is the reason that the Time_to_live field is included in each
resource record. It tells remote name servers how long to cache records. If a

Ex.1006.647DELL

630 THE APPLICATION LA YER CHAP. 7

certain machine has had the same IP address for years, it may be safe to cache that
information for 1 day. For more volatile information, it might be safer to purge
the records after a few seconds or a minute.

It is worth mentioning that the query method described here is known as a
recursive query, since each server that does not have the requested information
goes and finds it somewhere, then reports back. An alternative form is also possi
ble. In this form, when a query cannot be satisfied locally, the query fails, but the
name of the next server along the line to try is returned. This procedure gives the
client more control over the search process. Some servers do not implement
recursive queries and always return the name of the next server to try.

It is also worth pointing out that when a DNS client fails to get a response
before its timer goes off, it normally will try another server next time. The
assumption here is that the server is probably down, rather than the request or
reply got lost.

7.3. SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL

In the early days of the ARPANET, if the delay to some host became unex
pectedly large, the person detecting the problem would just run the Ping program
to bounce a packet off the destination. By looking at the timestamps in the header
of the packet returned, the location of the problem could usually be pinpointed
and some appropriate action taken. In addition, the number of routers was so
small, that it was feasible to ping each one to see if it was sick.

When the ARPANET turned into the worldwide Internet, with multiple back
bones and multiple operators, this solution ceased to be adequate, so better tools
for network management were needed. Two early attempts were defined in RFC
1028 and RFC 1067, but these were short lived. In May 1990, RFC 1157 was
published, defining version 1 of SNMP (Simple Network Management Proto
col). Along with a companion document (RFC 1155) on management informa
tion, SNMP provided a systematic way of monitoring and managing a computer
network. This framework and protocol were widely implemented in commercial
products and became the de facto standards for network management.

As experience was gained, shortcomings in SNMP came to light, so an
enhanced version of SNMP (SNMPv2) was defined (in RFCs 1441 to 1452) and
started along the road to become an Internet standard. In the sections to follow,
we will give a brief discussion of the SNMP (meaning SNMPv2) model and pro
tocol.

Although SNMP was designed with the idea of its being simple, at least one
author has managed to produce a 600-page book on it (Stallings, 1993a). For
more compact descriptions (450-550 pages), see the books by Rose (1994) and
Rose and McCloghrie (1995), both of whom were among the designers of SNMP.
Other references are (Feit, 1995; and Hein and Griffiths, 1995).

Ex.1006.648DELL

SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 631

7.3.1. The SNMP Model

The SNMP model of a managed network cohsists of four components:

1. Managed nodes.

2. Management stations.

3. Management information.

4. A management protocol.

These pieces are illustrated in Fig. 7-30 and discussed below.

Management
Management process

Station Host Router

D "'/ Managed

Printer

nTe

SNMP protocol Agent

LAN

Bridge

Fig. 7-30. Components of the SNMP management model.

The managed nodes can be hosts, routers, bridges, printers, or any other dev
ices capable of communicating status information to the outside world. To be
managed directly by SNMP, a node must be capable of running an SNMP
management process, called an SNMP agent. All computers meet this require
ment, as do increasingly many bridges, routers, and peripheral devices designed
for network use. Each agent maintains a local database of variables that describe
its state and history and affect its operation.

Network management is done from management stations, which are, in fact,
general-purpose computers running special management software. The manage
ment stations contain one or more processes that communicate with the agents
over the network, issuing commands and getting responses. In this design, all the
intelligence is in the management stations, in order to keep the agents as simple as
possible and minimize their impact on the devices they are running on. Many
management stations have a graphical user interface to allow the network
manager to inspect the status of the network and take action when required.

Most real networks are multivendor, with hosts from one or more manufactur
ers, bridges and routers from other companies, and printers from still other ones.

Ex.1006.649DELL

SEC. 73. SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 631

7.3.1. The SNMP Model

The SNMP model of a managed network consists of four components:

1. Managed nodes.

2. Managementstations.

3. Management information.

4 A managementprotocol.

These piecesare illustrated in Fig. 7-30 and discussed below.

Management
Management_——process

Station Router

N\Lo Printer
Managed C =node A —_

 [8]

SNMPprotocol | Agent

Bridge

LAN

Fig. 7-30. Components of the SNMP management model.

The managed nodes can be hosts, routers, bridges, printers, or any other dev-
ices capable of communicating status information to the outsidé world. To be
managed directly by SNMP, a node must be capable of running an SNMP
managementprocess, called an SNMP agent. All computers meet this require-
ment, as do increasingly many bridges, routers, and peripheral devices designed
for network use. Each agent maintains a local database of variables that describe
its state and history and affectits operation.

Network management is done from management stations, which are, in fact,
general-purpose computers running special management software. The manage-
ment stations contain one or more processes that communicate with the agents
over the network, issuing commands and getting responses. In this design, all the
intelligence is in the managementstations, in order to keep the agents as simple as
possible and minimize their impact on the devices they are running on. Many
management stations have a graphical user interface to allow the network
manager to inspect the status of the network and take action when required.

Most real networks are multivendor, with hosts from one or more manufactur-

ers, bridges and routers from other companies, and printers from still other ones.

DELL Ex.1006.649

632 THE APPLICATION LA YER CHAP. 7

In order to allow a management station (potentially from yet another supplier) to
talk to all these diverse components, the nature of the information maintained by
all the devices must be rigidly specified. Having the management station ask a
router what its packet loss rate is of no use if the router does not keep track of its
loss rate. Therefore, SNMP describes (in excruciating detail) the exact informa
tion each kind of agent has to maintain and the format it has to supply it in. The
largest portion of the SNMP model is the definition of who has to keep track of
what and how this information is communicated.

Very briefly, each device maintains one or more variables that describe its
state. In the SNMP literature, these variables are called objects, but the term is
misleading because they are not objects in the sense of an object-oriented system
because they just have state and no methods (other than reading and writing their
values). Nevertheless, the term is so ingrained (e.g., used in various reserved
words in the specification language used) that we will use it here. The collection
of all possible objects in a network is given in a data structure called the MIB
(Management InformatioJ;J. Base).

The management station interacts with the agents using the SNMP protocol.
This protocol allows the management station to query the state of an agent's local
objects, and change them if necessary. Most of SNMP consists of this query
response type communication.

However, sometimes events happen that are not planned. Managed nodes can
crash and reboot, lines can go down and come back up, congestion can occur, and
so on. Each significant event is defined in a MIB module. When an agent notices
that a significant event has occurred, it immediately reports the event to all
management stations in its configuration list. This report is called an SNMP trap
(for historical reasons). The report usually just states that some event has
occurred. It is up to the management station to then issue queries to find out all
the gory details. Because communication from managed nodes to the manage
ment station is not reliable (i.e., is not acknowledged), it is wise for the manage
ment station to poll each managed node occasionally anyway, checking for
unusual events, just in case. The model of polling at long intervals with accelera
tion on receipt of a trap is called trap directed polling.

This model assumes that each managed node is capable of running an SNMP
agent internally. Older devices or devices not originally intended for use on a net
work may not have this capability. To handle them, SNMP defines what is called
a proxy agent, namely an agent that watches over one or more nonSNMP devices
and communicates with the management station on their behalf, possibly com
municating with the devices themselves using some nonstandard protocol.

Finally, security and authentication play a major role in SNMP. A manage
ment station has the capability of learning a great deal about every node under its
control and also has the capability of shutting them all down. Hence it is of great
importance that agents be convinced that queries allegedly coming from the
management station, in fact, come from the management station. In SNMPvl, the

Ex.1006.650DELL

SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 633

management station proved who it was by putting a (plaintext) password in each
message. In SNMPv2, security was improved considerably using modern crypto
graphic techniques of the type we have already studied. However, this addition
made an already bulky protocol every bulkier, and it was later thrown out.

7.3.2. ASN.1-Abstract Syntax Notation 1

The heart of the SNMP model is the set of objects managed by the agents and
read and written by the management station. To make multivendor communica
tion possible, it is essential that these objects be defined in a standard and
vendor-neutral way. Furthermore, a standard way is needed to encode them for
transfer over a network. While definitions in C would satisfy the first require
ment, such definitions do not define a bit encoding on the wire in such a way that
a 32-bit two's complement little endian management station can exchange infor
mation unambiguously with am agent on a 16-bit one's complement big endian
CPU.

For this reason, a standard object definition language, along with encoding
rules, is needed. The one used by SNMP is taken from OSI and called ASN.1
(Abstract Syntax Notation One). Like much of OSI, it is large, complex, and
not especially efficient. (The author is tempted to say that by calling it ASN .1
instead of just ASN, the designers implicitly admitted that it would soon be
replaced by ASN.2, but he will politely refrain from saying this.) The one alleged
strength of ASN.1 (the existence of unambiguous bit encoding rules) is now really
a weakness, because the encoding rules are optimized to minimize the number of
bits on the wire, at the cost of wasting CPU time at both ends encoding and
decoding them. A simpler scheme, using 32-bit integers aligned on 4-byte boun
daries would probably have been better. Nevertheless, for better or worse, SNMP
is drenched in ASN. l, (albeit a simplified subset of it), so anyone wishing to truly
understand SNMP must become fluent in ASN. l. Hence the following explana
tion.

Let us start with the data description language, described in International
Standard 8824. After that we will discuss the encoding rules, described in Inter
national Standard 8825. The ASN .1 abstract syntax is essentially a primitive data
declaration language. It allows the user to define primitive objects and then com
bine them into more complex ones. A series of declarations in ASN.1 is function
ally similar to the declarations found in the header files associated with many C
programs.

SNMP has some lexical conventions that we will follow. These are not
entirely the same as pure ASN.l uses, however. Built-in data types are written in
uppercase (e.g., INTEGER). User-defined types begin with an uppercase letter
but must contain at least one character other than an uppercase letter. Identifiers
may contain upper and lowercase letters, digits, and hyphens, but must begin with
a lowercase letter (e.g., counter). White space (tabs, carriage returns, etc.) is not

Ex.1006.651DELL

634 THE APPLICATION LA YER CHAP. 7

significant. Finally, comments start with -- and continue until the end of the line
or the next occurrence of --.

The ASN.l basic data types allowed in SNMP are shown in Fig. 7-31. (We
will generally ignore features of ASN. l, such as BOOLEAN and REAL types, not
permitted in SNMP.) The use of the codes will be described later.

Primitive type Meaning Code

INTEGER Arbitrary length integer 2

BIT STRING A string of O or more bits 3

OCTET STRING A string of O of more unsigned bytes 4

NULL A place holder 5

OBJECT IDENTIFIER An officially defined data type 6

Fig. 7-31. The ASN. l primitive data types permitted in SNMP.

A variable of type INTEGER may, in theory, take on any integral value, but
other SNMP rules limit the range. As an example of how types are used, consider
how a variable, count, of type INTEGER would be declared and (optionally) ini
tialized to 100 in ASN.1:

count INTEGER::= 100

Often a subtype whose variables are restricted to specific values or to a specific
range is required. These can be declared as follows:

Status::= INTEGER { up(1), down(2), unknown(3)}

PacketSize ::=INTEGER (0 .. 1023)

Variables of type BIT STRING and OCTET STRING contain zero or more bits
and bytes, respectively. A bit is either 0 or 1. A byte falls in the range 0 to 255,
inclusive. For both types, a string length and an initial value may be given.

OBJECT IDENTIFIERs provide a way of identifying objects. In principle,
every object defined in every official standard can be uniquely identified. The
mechanism that is used is to define a standards tree, and place every object in
every standard at a unique location in the tree. The portion of the tree that
includes the SNMP MIB is shown in Fig. 7-32.

The top level of the tree lists all the important standards organizations in the
world (in ISO's view), namely ISO and CCITT (now ITU), plus the combination
of the two. From the iso node, four arcs are defined, one of which is for
identified-organization, which is ISO's concession that maybe some other folks
are vaguely involved with standards, too. The U.S. Dept. of Defense has been
assigned a place in this subtree, and DoD has assigned the Internet number 1 in its
hierarchy. Under the Internet hierarchy, the SNMP MIB has code 1.

Ex.1006.652DELL

SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 635

standard (0)

-----~ ccitt (0) iso (1) joint-iso-ccitt (2)

registration
authority (1)

internet (1)

member
body (2)

identified
organization (3)

I
dod (6)

directory (1) mgmt (2) experimental (3) private (4) security (5) snmpv2 (6)

I
mib-2 (1)

~~:::::::::::::::::::::---
system (1) interface (2) ip (4) icmp (5) tcp (6) udp (7) egp (8) transmission (10) sample (11)

Fig. 7-32. Part of the ASN.1 object naming tree.

Every arc in Fig. 7-32 has both a label and a number, so nodes can be identi
fied by a list of arcs, using label(number) or numbers. Thus all SNMP MIB
objects are identified by a label of the form

{iso identified-organization(3) dod(6) internet(1) mgmt(2) mib-2(1) ... }

or alternatively { 1 3 6 1 2 1 ... } . Mixed forms are also permitted. For example,
the above identification can also be written as

{internet(1) 2 1 ... }

In this way, every object in every standard can be represented as an OBJECT
IDENTIFIER.

ASN .1 defines five ways to construct new types from the basic ones.
SEQUENCE is an ordered list of types, similar to a structure in C and a record in
Pascal. SEQUENCE OF is a one-dimensional array of a single type. SET and
SET OF are analogous, but unordered. CHOICE creates a union from a given list
of types. The two set constructors are not used in any of the SNMP documents.

Another way to create new types is to tag old ones. Tagging a type is some
what similar to the practice in C of defining new types, say time_t and size_t, both
of which are longs, but which are used in different contexts. Tags come in four

Ex.1006.653DELL

636 THE APPLICATION LA YER CHAP. 7

categories: universal, application-wide, context-specific and private. Each tag
consists of a label and an integer identifying the tag. For example,

Counter32 ::=[APPLICATION 1] INTEGER (0 . .4294967295)

Gauge32 ::=[APPLICATION 2] INTEGER (0 . .4294967295)

define two different application-wide types, both of which are implemented by
32-bit unsigned integers, but which are conceptually different. The former might,
for example, wrap around when it gets to the maximum value, whereas the latter
might just continue to return the maximum value until its is decreased or reset.

A tagged type can have the keyword IMPLICIT after the closing square
bracket when the type of what follows is obvious from the context (not true in a
CHOICE, for example). Doing so allows a more efficient bit encoding since the
tag does not have to be transmitted. In a type involving a CHOICE between two
different types, a tag must be transmitted to tell the receiver which type is present.

ASN.1 defines a complex macro mechanism, which is heavily used in SNMP.
A macro can be used as a kind of prototype to generate a set of new types and
values, each with its own syntax. Each macro defines some (possibly optional)
keywords, that are used in the call to identify which parameter is which (i.e., the
macro parameters are identified by keyword, not by position). The details of how
ASN. l macros work is beyond the scope of this book. Suffice it to say that a
macro is invoked by giving its name and then listing (some of) its keywords and
their values for this invocation. Macros are expanded at compile time, not at run
time. Some examples of macros will be cited below.

ASN.1 Transfer Syntax

An ASN.l transfer syntax defines how values of ASN.l types are unambigu
ously converted to a sequence of bytes for transmission (and unambiguously
decoded at the other end). The transfer syntax used by ASN. l is called BER
(Basic Encoding Rules). ASN.l has other transfer syntaxes that SNMP does not
use. The rules are recursive, so the encoding of a structured object is just the con
catenation of the encodings of the component objects. In this way, all object
encodings can be reduced to a well-defined sequence of encoded primitive
objects. The encoding of these objects, in turn, is defined by the BER.

The guiding principle behind the basic encoding rules is that every value
transmitted, both primitive and constructed ones, consists of up to four fields:

1. The identifier (type or tag).

2. The length of the data field, in bytes.

3. The data field.

4. The end-of-contents flag, if the data length is unknown.

Ex.1006.654DELL

SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 637

The last one is permitted by ASN.l, but specifically forbidden by SNMP, so we
will assume the data length is always known.

The first field identifies the item that follows. It, itself, has three subfields, as
shown in Fig. 7-33. The high-order 2 bits identify the tag type. The next bit tells
whether the value is primitive (0) or not (1). The tag bits are 00, 01, 10, and 11,
for UNIVERSAL, APPLICATION, context-specific, and PRIVATE, respectively.
The remaining 5 bits can be used to encode the value of the tag if it is in the range
0 through 30. If the tag is 31 or more, the low-order 5 bits contain 11111, with the
true value in the next byte or bytes.

Bits 2

Tag

I
00 Universal

01 Application

1 o Context specific

11 Private

5

Number

0 Primitive type

1 Constructed type

Fig. 7-33. The first byte of each data item sent in the ASN.1 transfer syntax.

The rule used to encode tags greater than 30 has been designed to handle arbi
trarily large numbers. Each identifier byte following the first one contains 7 data
bits. The high-order bit is set to 0 in all but the last one. Thus tag values up to
27

- 1 can be handled in 2 bytes, and up to 214 - 1 can be handled in 3 bytes.
The encoding of the UNIVERSAL types is straightforward. Each primitive

type has been assigned a code, as given in the third column of Fig. 7-31.
SEQUENCE and SEQUENCE OF share code 16. CHOICE does not have a code,
since any actual value sent always has a specific type. The other codes are for
types not used in SNMP.

Following the I-byte identifier field comes a field telling how many bytes the
data occupy. Lengths shorter than 128 bytes are directly encoded in 1 byte whose
leftmost bit is 0. Those that are longer use multiple bytes, with first byte contain
ing a 1 in the high-order bit and the length field (up to 127 bytes) in the low-order
7 bits. For example, if the data length is 1000 bytes, the first byte contains 130 to
indicate a two byte length field follows. Then come two bytes whose value is
1000, with the high-order byte first.

The encoding of the data field depends on the type of data present. Integers
are encoded in two's complement. A positive integer below 128 requires 1 byte, a
positive integer below 32,768 requires 2 bytes, and so forth. The most significant
byte is transmitted first.

Bit strings are encoded as themselves. The only problem is how to indicate
the length. The length field tells how many bytes the value has, not how many

Ex.1006.655DELL

SEC. 7.3. SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 637

The last one is permitted by ASN.1, but specifically forbidden by SNMP, so we
will assume the data length is always known.

Thefirst field identifies the item that follows. It, itself, has three subfields, as

shown in Fig. 7-33. The high-order 2 bits identify the tag type. The nextbit tells
whether the value is primitive (0) or not (1). The tag bits are 00, 01, 10, and 11,
for UNIVERSAL, APPLICATION, context-specific, and PRIVATE, respectively.
The remaining 5 bits can be used to encode the value of the tag if it is in the range
0 through 30. If the tag is 31 or more, the low-order 5 bits contain 11111, with the
true value in the next byte or bytes.

Bits 2 1 5

| Tag [| Number

00 Universal QO Primitive type

01 Application 1 Constructed type

10 Context specific
11 Private

Fig. 7-33. The first byte of each data item sent in the ASN.1 transfer syntax.

The rule used to encode tags greater than 30 has been designed to handle arbi-
trarily large numbers. Each identifier byte following the first one contains 7 data
bits. The high-order bit is set to 0 in all but the last one. Thus tag values up to
2’ — 1 can be handledin 2 bytes, and up to 2! — 1 can be handledin 3 bytes.

The encoding of the UNIVERSAL types is straightforward. Each primitive
type has been assigned a code, as given in the third column of Fig. 7-31.
SEQUENCE and SEQUENCEOFshare code 16. CHOICE does not have a code,
since any actual value sent always has a specific type. The other codes are for
types not used in SNMP.

Following the 1-byte identifier field comesa field telling how many bytes the
data occupy. Lengths shorter than 128 bytes are directly encoded in 1 byte whose
leftmost bit is 0. Those that are longer use multiple bytes, with first byte contain-
ing a 1 in the high-order bit and the length field (up to 127 bytes) in the low-order
7 bits. For example, if the data length is 1000 bytes, the first byte contains 130 to
indicate a two byte length field follows. Then come two bytes whose value is
1000, with the high-order byte first.

The encoding of the data field depends on the type of data present. Integers
are encoded in two’s complement. A positive integer below 128 requires 1 byte, a
positive integer below 32,768 requires 2 bytes, and so forth. The most significant
byte is transmitted first. .

Bit strings are encoded as themselves. The only problem is how to indicate
the length. The length fieldtells how many bytes the value has, not how many

DELL Ex.1006.655

638 THE APPLICATION LA YER CHAP. 7

bits. The solution chosen is to transmit I byte before the actual bit string telling
how many bits (0 through 7) of the final byte are unused. Thus the encoding of
the 9-bit string '010011111' would be 07, 4F, 80 (hexadecimal).

Octet strings are easy. The bytes of the string are just transmitted in standard
big endian style, left to right.

The null value is indicated by setting the length field to 0. No numerical
value is actually transmitted.

An OBJECT IDENTIFIER is encoded as the sequence of integers it
represents. For example; the Internet is {I, 3, 6, 1}. However, since the first
number is always 0, 1, or 2, and the second is less than 40 (by definition-ISO
simply will not recognize the 41 st category to show up on its doorstep), the first
two numbers, a and b, are encoded as I byte having the value 40a + b. For the
Internet, this number is 43. As usual, numbers exceeding 127 are encoded in mul
tiple bytes, the first of which contains the high-order bit set to I and a byte count
in the other 7 bits.

Both sequence types are transmitted by first sending the type or tag, then the
total length of the encoding for all the fields, followed by the fields themselves.
The fields are sent in order.

The encoding of a CHOICE value is the same as the encoding of the actual
data structure being transferred.

An example showing encoding of some values is given in Fig. 7-34. The
values encoded are the INTEGER 49, the OCTET STRING '110', "xy", the only
possible value for NULL, the OBJECT IDENTIFIER for the Internet { 1, 3, 6, 1},
and a Gauge32 value of 14.

Tag Tag
type Number

\ l Length Value

Integer 49 I o oioio o o 1 oi I o o o o o o o 1] Io o 1 1 o o o 1 i

Bit String ·11 O' I o oioio o o 1 111 o o o o o o 1 o] Io o o o o 1 o 1 i i 1 1 o o o o o ~

Octet String

NULL

Internet object

Gauge 32 14

I o oiolo o 1 o oi Io o o o o o 1 o] Io 1 1 1 1 o o o 11 o 1 1 1 1 o o 1 I

Io oioio o 1 o 1 i i o o o o o o o oi

I o oioio o 1 1 oi i o o o o o o 1 1] i o o 1 o 1 o 1 111 o o o o o 1 1 o 11 o o o o o o o 1 i

Io 1 ioio o o 1 ol Io o o o o o o 1 J Io o o o 1 1 1 o I

Fig. 7-34. ASN. l encoding of some example values.

Ex.1006.656DELL

SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 639

7.3.3. SMI-Structure of Management Information

In the preceding section, we have discussed only those parts of ASN.l that are
used in SNMP. In reality, the SNMP documents are organized differently. RFC
1442 first says that ASN.1 will be used to describe SNMP data structures, then it
goes on for 57 pages scratching out parts of the ASN.1 standard that it does not
want and adding new definitions (in ASN.1) that are needed. In particular, RFC
1442 defines four key macros and eight new data types that are heavily used
throughout SNMP. It is this sub-super-set of ASN.1, which goes by the ungainly
name of SMI (Structure of Management Information), that is really used to
define the SNMP data structures.

Although this approach is somewhat bureaucratic, some rules and regulations
are necessary if products from hundreds of vendors are expected to talk to one
another and actually understand what the others are saying. A few words about
SMI are therefore now in order.

At the lowest level, SNMP variabks are defined as individual objects.
Related objects are collected together into groups, and groups are assembled into
modules. For example, groups exist for IP objects and TCP objects. A router
might support the IP group, since its manager cares about how many packets it
has lost. On the other hand, a low-end router might not support the TCP group,
since it need not use TCP to perform its routing functions. It is the intention that
vendors supporting a group support all the objects in that group. However, a ven
dor supporting a module need not support all of its groups, since not all may be
applicable to the device.

All MIB modules start with an invocation of the MODULE-IDENTITY macro.
Its parameters provide the name and address of the implementer, the revision his
tory, and other administrative information. Typically; this call is followed by an
invocation of the OBJECT-IDENTITY macro, which tells where the module fits in
the naming tree of Fig. 7-32.

Later on come one or more invocations of the OBJECT-TYPE macro, which
name the actual variables being managed and specify their properties. Grouping
variables into groups is done by convention; there are no BEGIN-GROUP and
END-GROUP statements in ASN. l or SMI.

The OBJECT-TYPE macro has four required parameters and four (sometimes)
optional ohes. The first required parameter is SYNTAX and defines the variable's
data type from among the types listed in Fig. 7-35. For the most part, these types
should be self explanatory, with the following comments. The suffix 32 is used
when the implementer really wants a 32-bit number, even if all the machines in
sight have 64-bit CPUs. Gauges differ from counters in that they do not wrap
around when they hit their limits. They stick there. If a router has lost exactly 232

packets, it is better to report this as 232
- 1 than as 0. SMI also supports arrays,

but we will not go into those here. For details, see (Rose, 1994).
In addition to requiring a specification of the data type used by the variable

Ex.1006.657DELL

640 THE APPLICATION LA YER CHAP. 7

Name Type Bytes Meaning

INTEGER Numeric 4 Integer (32 bits in current implementations)

Counter32 Numeric 4 Unsigned 32-bit counter that wraps

Gauge32 Numeric 4 Unsigned value that does not wrap

lnteger32 Numeric 4 32 Bits, even on a 64-bit CPU

Ulnteger32 Numeric 4 Like lnteger32, but unsigned

Counter64 Numeric 8 A 64-bit counter

Time Ticks Numeric 4 In hundredths of a second since some epoch

BIT STRING String 4 Bit map of 1 to 32 bits

OCTET STRING String ;:o: 0 Variable length byte string

Opaque String ;:o: 0 Obsolete; for backward compatibility only

OBJECT IDENTIFIER String >0 A list of integers from Fig. 7-32

lpAddress String 4 A dotted decimal Internet address

NsapAddress String <22 An OSI NSAP address

Fig. 7-35. Data types used for SNMP monitored variables.

being declared, the OBJECT TYPE macro also requires three other parameters.
MAX-ACCESS contains information about the variable's access. The most com
mon values are read-write and read-only. If a variable is read-write, the manage
ment station can set it. If it is read-only, the management station can read it but
cannot set it.

The STATUS has three possible values. A current variable is conformant with
the current SNMP specification. An obsolete variable is not conformant but was
conformant with an older version. A deprecated variable is in between. It is
really obsolete, but the committee that wrote the standard did not dare say this in
public for fear of the reaction from vendors whose products use it. Nevertheless,
the handwriting is on the wall.

The last required parameter is DESCRIPTION, which is an ASCII string tell
ing what the variable does. If a manager buys a nice new shiny device, queries it
from the management station, and discovers that it keeps track of pktCnt, fetching
the DESCRIPTION field is supposed to give a clue as to what kind of packets it is
counting. This field is intended exclusively for human (as opposed to computer)
consumption.

A simple example of an OBJECT TYPE declaration is given in Fig. 7-36. The
variable is called lostPackets and might be useful in a router or other device deal
ing with packets. The value after the ::= sign places it in the tree.

Ex.1006.658DELL

SEC. 7 .3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 641

lostPackets OBJECT TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

-- use a 32-bit counter
-- the management station may not change if
-- this variable is not obsolete (yet)

"The number of packets lost since the last boot"
::={experimental 20}

Fig. 7-36. An example SNMP variable.

7 .3.4. The MIB-Management Information Base

The collection of objects managed by SNMP is defined in the MIB. For con
venience, these objects are (currently) grouped into ten categories, which
correspond to the ten nodes under mib-2 in Fig. 7-32. (Note that mib-2
corresponds to SNMPv2 and that object 9 is no longer present.) The ten
categories are intended to provide a basis of what a management station should
understand. New categories and objects will certainly be added in the future, and
vendors are free to define additional objects for their products. The ten categories
are summarized in Fig. 7-37.

Group #Objects Description

System 7 Name, location, and description of the equipment

Interfaces 23 Network interfaces and their measured traffic

AT 3 Address translation (deprecated)

IP 42 IP packet statistics

ICMP 26 Statistics about ICMP messages received

TCP 19 TCP algorithms, parameters, and statistics

UDP 6 UDP traffic statistics

EGP 20 Exterior gateway protocol traffic statistics

Transmission 0 Reserved for media-specific MIBs

SNMP 29 SNMP traffic statistics

Fig. 7-37. The object groups of the Internet MIB-II.

Although space limitations prevent us from delving into the details of all 175
objects defined in MIB-II, a few comments may be helpful. The system group
allows the manager to find out what the device is called, who made it, what
hardware and software it contains, where it is located, and what it is supposed to
do. The time of the last boot and the name and address of the contact person are

Ex.1006.659DELL

642 THE APPLICATION LAYER CHAP. 7

also provided. This information means that a company can contract out system
management to another company in a distant city and have the latter be able to
easily figure out what the configuration being managed actually is and who should
be contacted if there are problems with various devices.

The interfaces group deals with the network adapters. It keeps track of the
number of packets and bytes sent and received from the network, the number of
discards, the number of broadcasts, and the current output queue size.

The AT group was present in MIR-I and provided information about address
mapping (e.g., Ethernet to IP addresses). This information was moved to
protocol-specific MIBs in SNMPv2.

The IP group deals with IP traffic into and out of the node. It is especially
rich in counters keeping track of the number of packets discarded for each of a
variety of reasons (e.g., no known route to the destination or lack of resources).
Statistics about datagram fragmentation and reassembly are also available. All
these items are particular important for managing routers.

The ICMP group is about IP error messages. Basically, it has a counter for
each ICMP message that records how many of that type have been seen.

The TCP group monitors the current and cumulative number of connections
opened, segments sent and received, and various error statistics.

The UDP group logs the number of UDP datagrams sent and received, and
how many of the latter were undeliverable due to an unknown port or some other
reason.

The EGP group is used for routers that support the exterior gateway protocol.
It keeps track of how many packets of what kind went out, came in and were for
warded correctly, and came in and were discarded.

The transmission group is a place holder for media-specific MIBs. For exam
ple, Ethernet-specific statistics can be kept here. The purpose of including an
empty group in MIB-II is to reserve the identifier {internet 2 1 9} for such pur
poses.

The last group is for collecting statistics about the operation of SNMP itself.
How many messages are being sent, what kinds of messages are they, and so on.

MIB-II is formally defined in RFC 1213. The bulk of RFC 1213 consists of
17 5 macro calls similar to those of Fig. 7-36, with comments delineating the ten
groups. For each of the 175 objects defined, the data type is given along with an
English text description of what the variable is used for. For further information
about MIB-II, the reader is referred to this RFC.

7.3.5. The SNMP Protocol

We have now seen that the model underlying SNMP is a management station
that sends requests to agents in managed nodes, inquiring about the 175 variables
just alluded to, and many other vendor-specific variables. Our last topic is the

Ex.1006.660DELL

SEC. 7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 643

actual protocol that the management station and agents speak. The protocol itself
is defined in RFC 1448.

The normal way that SNMP is used is that the management station sends a
request to an agent asking it for information or commanding it to update its state
in a certain way. Ideally, the agent just replies with the requested information or
confirms that it has updated its state as requested. Data are sent using the ASN.1
transfer syntax. However, various errors can also be reported, such as No Such
Variable.

SNMP defines seven messages that can be sent. The six messages from an
initiator are listed in Fig. 7-38 (the seventh message is the response message).
The first three request variable values to be sent back. The first format names the
variables it wants explicitly. The second one asks for the next variable, allowing
a manager to step through the entire MIB alphabetically (the default is the first
variable). The third is for large transfers, such as tables.

Message Description

Get-request Requests the value of one or more variables

Get-next-request Requests the variable following this one

Get-bulk-request Fetches a large table

Set-request Updates one or more variables

Inform-request Manager-to-manager message describing local MIB

SnmpV2-trap Agent-to-manager trap report

Fig. 7-38. SNMP message types.

Then comes a message that allows the manager to update an agent's variables,
to the extent that the object specification permits such updates, of course. Next is
an informational request that allows one manager to tell another one which vari
ables it is managing. Finally, comes the message sent from an agent to a manager
when a trap has sprung.

7.4. ELECTRONIC MAIL

Having finished looking at some of the support protocols used in the applica
tion layer, we finally come to real applications. When asked: "What are you
going to do now?" few people will say: "I am going to look up some names with
DNS." People do say they are going to read their email or news, surf the Web, or
watch a movie over the net. In the remainder of this chapter, we will explain in a
fair amount of detail how these four applications work.

Ex.1006.661DELL

644 THE APPLICATION LA YER CHAP. 7

Electronic mail, or email, as it is known to its many fans, has been around for
over two decades. The first email systems simply consisted of file transfer proto
cols, with the convention that the first line of each message (i.e., file) contained
the recipient's address. As time went on, the limitations of this approach became
more obvious. Some of the complaints were

1. Sending a message to a group of people was inconvenient. Managers
often need this facility to send memos to all their subordinates.

2. Messages had no internal structure, making computer processing dif
ficult. For example, if a forwarded message was included in the
body of another message, extracting the forwarded part from the
received message was difficult.

3. The originator (sender) never knew if a message aITived or not.

4. If someone was planning to be away on business for several weeks
and wanted all incoming email to be handled by his secretary, this
was not easy to aITange.

5. The user interface was poorly integrated with the transmission sys
tem requiring users first to edit a file, then leave the editor and
invoke the file transfer program.

6. It was not possible to create and send messages containing a mixture
of text, drawings, facsimile, and voice.

As experience was gained, more elaborate email systems were proposed. In
1982, the ARPANET email proposals were published as RFC 821 (transmission
protocol) and RFC 822 (message format). These have since become the de facto
Internet standards. Two years later, CCITT drafted its X.400 recommendation,
which was later taken over as the basis for OSI's MOTIS. In 1988, CCITT modi
fied X.400 to align it with MOTIS. MOTIS was to be the flagship application for
OSI, a system that was to be all things to all people.

After a decade of competition, email systems based on RFC 822 are widely
used, whereas those based on X.400 have disappeared under the horizon. How a
system hacked together by a handful of computer science graduate students beat
an official international standard strongly backed by all the PTTs worldwide,
many governments, and a substantial part of the computer industry brings to mind
the Biblical story of David and Goliath. The reason for RFC 822' s success is not
that it is so good, but that X.400 is so poorly designed and so complex that nobody
could implement it well. Given a choice between a simple-minded, but working,
RFC 822-based email system and a supposedly truly wonderful, but nonworking,
X.400 email system, most organizations chose the former. For a long diatribe on
what is wrong with X.400, see Appendix C of (Rose, 1993). Consequently, our
discussion of email will focus on RFC 82 l and RFC 822 as used in the Internet.

Ex.1006.662DELL

SEC. 7.4 ELECTRONIC MAIL 645

7.4.1. Architecture and Services

In this section we will provide an overview of what email systems can do and
how they are organized. They normally consist of two subsystems: the user
agents, which allow people to read and send email, and the message transfer
agents, which move the messages from the source to the destination. The user
agents are local programs that provide a command-based, menu-based, or graphi
cal method for interacting with the email system. The message transfer agents are
typically system daemons that run in the background and move email through the
system.

Typically, email systems support five basic functions, as described below.
Composition refers to the process of creating messages and answers. Although
any text editor can be used for the body of the message, the system itself can pro
vide assistance with addressing and the numerous header fields attached to each
message. For example, when answering a message, the email system can extract
the originator's address from the incoming email and automatically insert it into
the proper place in the reply.

Transfer refers to moving messages from the originator to the recipient. In
large part, this requires establishing a connection to the destination or some inter
mediate machine, outputting the message, and releasing the connection. The
email system should do this automatically, without bothering the user.

Reporting has to do with telling the originator what happened to the message.
Was it delivered? Was it rejected? Was it lost? Numerous applications exist in
which confirmation of delivery is important and may even have legal significance
("Well, Your Honor, my emai.1 system is not very reliable, so I guess the elec
tronic subpoena just got lost somewhere").

Displaying incoming messages is needed so people can read their email.
Sometimes conversion is required or a special viewer must be invoked, for exam
ple, if the message is a Postscript file or digitized voice. Simple conversions and
formatting are sometimes attempted as well.

Disposition is the final step and concerns what the recipient does with the
message after receiving it. Possibilities include throwing it away before reading,
throwing it away after reading, saving it, and so on. It should also be possible to
retrieve and reread saved messages, forward them, or process them in other ways.

In addition to these basic services, most email systems provide a large variety
of advanced features. Let us just briefly mention a few of these. When people
move, or when they are away for some period of time, they may want their email
forwarded, so the system should be able to do this automatically.

Most systems allow users to create mailboxes to store incoming email. Com
mands are needed to create and destroy mailboxes, inspect the contents of mail
boxes, insert and delete messages from mailboxes, and so on.

Corporate managers often need to send a message to each of their subordi
nates, customers, or suppliers. This gives rise to the idea of a mailing list, which

Ex.1006.663DELL

646 THE APPLICATION LA YER CHAP. 7

is a list of email addresses. When a message is sent to the mailing list, identical
copies are delivered to everyone on the list.

Registered email is another important idea, to allow the originator to know
that his message has arrived. Alternatively, automatic notification of undeliver
able email may be desired. In any case, the originator should have some control
over reporting what happened.

Other advanced features are carbon copies, high-priority email, secret
(encrypted) email, alternative recipients if the primary one is not available, and
the ability for secretaries to handle their bosses' email.

Email is now widely used within industry for intracompany communication.
It allows far-flung employees to cooperate on complex projects, even over many
time zones. By eliminating most cues associated with rank, age, and gender,
email debates tend to focus on ideas, not on corporate status. With email, a brilli
ant idea from a summer student can have more impact than a dumb one from an
executive vice president. Some companies have estimated that email has
improved their productivity by as much as 30 percent (Perry and Adam, 1992).

A key idea in all modern email systems is the distinction between the
envelope and its contents. The envelope encapsulates tqe message. It contains all
the information needed for transporting the message, such as the destination
address, priority, and security level, all of which are distinct from the message
itself. The message transport agents use the envelope for routing, just as the post
office does.

The message inside the envelope contains two parts: the beader and the
body. The header contains control information for the user agents. The body is
entirely for the human recipient. Envelopes and messages are illustrated in
Fig. 7-39.

7.4.2. The User Agent

Email systems have two basic parts, as we have seen: the user agents and the
message transfer agents. In this section we will look at the user agents. A user
agent is normally a program (sometimes called a mail reader) that accepts a
variety of commands for composing, receiving, and replying to messages, as well
as for manipulating mailboxes. Some user agents have a fancy menu- or icon
driven interface that requires a mouse, while others expect I-character commands
from the keyboard. Functionally, these are the same.

Sending Email

To send an email message, a user must provide the message, the destination
address, and possibly some other parameters (e.g., the priority or security level).
The message can be produced with a free-standing text editor, a word processing

Ex.1006.664DELL

SEC. 7.4 ELECTRONIC MAIL 6417

Envelope

Message

(a) (b)

Fig. 7-39. Envelopes and messages. (a) Postal email. (b) Electronic email.

program, or possibly with a text editor built into the user agent. The destination
address must be in a format that the user agent can deal with. Many user agents
expect DNS addresses of the form mailbox@location. Since we have studied
these earlier in this chapter, we will not repeat that material here.

However, it is worth noting that other forms of addressing exist. In partic;ular,
X.400 addresses look radically different than DNS addresses. They are composed
of attribute = value pairs, for example,

/C=US/SP=MASSACHUSETTS/L=CAMBRIDGE/PA=360 MEMORIAL DR./CN=KEN SMITH/

This address specifies a country, state, locality, personal address and a common
name (Tom Smith). Many other attributes are possible, so you can send email to
someone whose name you do not know, provided you know enough other attri
butes (e.g., company and job title). Many people feel that this form of naming is
considerably less convenient than DNS names.

In all fairness, however, the X.400 designers assumed that people would use
aliases (short user-assigned strings) to identify recipients, so that they would
never even see the full addresses. However, the necessary software was never

Ex.1006.665DELL

648 THE APPLICATION LA YER CHAP. 7

widely available, so people sending mail to users with X.400 addresses often had
to type in strings like the one above. In contrast, most email systems for the Inter
net have always allowed users to have alias files.

Most email systems support mailing lists, so that a user can send the same
message to a list of people with a single command. If the mailing list is main
tained locally, the user agent can just send a separate message to each intended
recipient. However, if the list is maintained remotely, then messages will be
expanded there. For example, if a group of bird watchers have a mailing list
called birders installed on meadowlark.arizona.edu, then any message sent to
birders@meadowlark.arizona.edu will be routed to the University of Arizona and
expanded there into individual messages to all the mailing list members, wherever
in the world they may be. Users of this mailing list cannot tell that it is a mailing
list. It could just as well be the personal mailbox of Prof. Gabriel 0. Birders.

Reading Email

Typically, when a user agent is started up, it will look at the user's mailbox
for incoming email before displaying anything on the screen. Then it may
announce the number of messages in the mailbox or display a one-line summary
of each one and wait for a command.

As an example of how a user agent works, let us take a look at a typical mail
scenario. After starting up the user agent, the user asks for a summary of his
email. A display like that of Fig. 7-40 then appears on the screen. Each line
refers to one message. In this example, the mailbox contains eight messages.

#I Flags) Bytes) Sender I Subject

1 K 1030 asw Changes to MINIX

2 KA 6348 radia Comments on material you sent me

3 K F 4519 Amy N. Wong Request for information

4 1236 bal Deadline for grant proposal

5 103610 kaashoek Text of DCS paper

6 1223 emily E. Pointer to WWW page

7 3110 saniya Referee reports for the paper

8 1204 dmr Re: My student's visit

Fig. 7-40. An example display of the contents of a mailbox.

Each display line contains several fields extracted from the envelope or
header of the corresponding message. In a simple email system, the choice of
fields displayed is built into the program. In a more sophisticated system, the user
can specify which fields are to be displayed by providing a user profile, a file

Ex.1006.666DELL

SEC. 7.4 ELECTRONIC MAIL 649

describing the display format. In this example, the first field is the message
number. The second field, Flags, can contain a K, meaning that the message is
not new but was read previously and kept in the mailbox; an A, meaning that the
message has already been answered; and/or an F, meaning that the message has
been forwarded to someone else. Other flags are also possible.

The third field tells how long the message is and the fourth one tells who sent
the message. Since this field is simply extracted from the message, this field may
contain first names, full names, initials, login names, or whatever else the sender
chooses to put there. Finally, the Subject field gives a brief summary of what the
message is about. People who fail to include a Subject field often discover that
responses to their email tend not to get the highest priority.

After the headers have been displayed, the user can perform any of the com
mands available. A typical collection is listed in Fig. 7-41. Some of the com
mands require a parameter. The # sign means that the number of a message (or
perhaps several messages) is expected. Alternatively, the letter a can be used to
mean all messages.

Command Parameter Description

h # Display header(s) on the screen

c Display current header only

t # Type message(s) on the screen

s address Send a message

f # Forward message(s)

a # Answer message(s)
-·

d # Delete message(s)

u # Undelete previously deleted message(s)
m # Move message(s) to another mailbox
k # Keep message(s) after exiting
r mailbox Read a new mailbox

n Go to the next message and display it

b Backup to the previous message and display it

g # Go to a specific message but do not display it

e Exit the mail system and update the mailbox

Fig. 7-41. Typical mail handling commands.

Innumerable email programs exist. Our example email program is patterned
after the one used by the UNIX Mmdf system, as it is quite straightforward. The h
command displays one or more headers in the format of Fig. 7-40. The c com
mand prints the current message's header. The t command types (i.e., displays on
the screen) the requested message or messages. Possible commands are t 3, to
type message 3, t 4-6, to type messages 4 through 6, and ta to type them all.

Ex.1006.667DELL

650 THE APPLICATION LA YER CHAP. 7

The next group of three commands deals with sending messages rather than
receiving them. The s command sends a message by calling an appropriate editor
(e.g., specified in the user's profile) to allow the user to compose the message.
Spelling, grammar, and diction checkers can see if the message is syntactically
correct. Unfortunately, the current generation of email programs do not have
checkers to see if the sender knows what he is talking about. When the message
is finished, it is prepared for transmission to the message transfer agent.

The f command forwards a message from the mailbox, prompting for an
address to send it to. The a command extracts the source address from the mes
sage to be answered and calls the editor to allow the user to compose the reply.

The next group of commands is for manipulating mailboxes. Users typically
have one mailbox for each person with whom they correspond, in addition to the
mailbox for incoming email that we have already seen. The d command deletes a
message from the mailbox, but the u command undoes the delete. (The message
is not actually deleted until the email program is exited.) Them command moves
a message to another mailbox. This is the usual way to save important email after
reading it. The k command keeps the indicated message in the mailbox even after
it is read. If a message is read but not explicitly kept, some default action is taken
when the email program is exited, such as moving it to a special default mailbox.
Finally, the r command is used to finish up with the current mailbox and go read
another one.

The n, b, and g commands are for moving about in the current mailbox. It is
common for a user to read message 1, answer, move, or delete it, and then type n
to get the next one. The value of this command is that the user does not have to
keep track of where he is. It is possible to go backward using b or to a given mes
sage with g.

Finally, the e command exits the email program and makes whatever changes
are required, such as deleting some messages and marking others as kept. This
command overwrites the mailbox, replacing its contents.

In mail systems designed for beginners, each of these commands is typically
associated with an on-screen icon, so that the user does not have to remember that
a stands for answer. Instead, she has to remember that the little picture of a per
son with his mouth open means answer and not display message.

It should be clear from this example that email has come a long way from the
days when it was just file transfer. Sophisticated user agents make managing a
large volume of email possible. For people such as the author who (reluctantly)
receive and send thousands of messages a year, such tools are invaluable.

7.4.3. Message Formats

Let us now turn from the user interface to the format of the email messages
themselves. First we will look at basic ASCII email using RFC 822. After that,
we will look at multimedia extensions to RFC 822

Ex.1006.668DELL

SEC. 7.4 ELECTRONIC MAIL 651

RFC 822

Messages consist of a pnm1t1ve envelope (described in RFC 821), some
number of header fields, a blank line, and then the message body. Each header
field (logically) consists of a single line of ASCII text containing the field name, a
colon, and, for most fields, a value. RFC 822 is an old standard, and does not
clearly distinguish envelope from header fields, as a new standard would do. In
normal usage, the user agent builds a message and passes it to the message
transfer agent, which then uses some of the header fields to construct the actual
envelope, a somewhat old-fashioned mixing of message and envelope.

The principal header fields related to message transport are listed in Fig. 7-42.
The To: field gives the DNS address of the primary recipient. Having multiple
recipients is also allowed. The Cc: field gives the addresses of any secondary
recipients.. In terms of delivery, there is no distinction between the primary and
secondary recipients. It is entirely a psychological difference that may be impor
tant to the people involved but is not important to the mail system. The term Cc:
(Carbon copy) is a bit dated, since computers do not use carbon paper, but it is
well established. The Bee: (Blind carbon copy) field is like the Cc: field, except
that this lime is deleted from all the copies sent to the primary and secondary reci
pients. This feature allows people to send copies to third parties without the pri
mary and secondary recipients knowing this.

Header Meaning

To: Email address(es) of primary recipient(s)

Cc: Email address(es) of secondary recipient(s)

Bee: Email address(es) for blind carbon copies

From: Person or people who created the message

Sender: Email address of the actual sender

Received: Line added by each transfer agent along the route

Return-Path: Can be used to identify a path back to the sender

Fig. 7-42. RFC 822 header fields related to message transport.

The next two fields, From: and Sender: tell who wrote and sent the message,
respectively. These may not be the same. For example, a business executive may
write a message, but her secretary may be the one who actually transmits it. In
this case, the executive would be listed in the From: field and the secretary in the
Sender: field. The From: field is required, but the Sender: field may be omitted if
it is the same as the From: field. These fields are needed in case the message is
undeliverable and must be returned to the sender.

A line containing Received: is added by each message transfer agent along the

Ex.1006.669DELL

652 THE APPLICATION LA YER CHAP. 7

way. The line contains the agent's identity, the date and time the message was
received, and other information that can be used for finding bugs in the routing
system.

The Return-Path: field is added by the final message transfer agent and was
intended to tell how to get back to the sender. In theory, this information can be
gathered from all the Received: headers (except for the name of the sender's mail
box), but it is rarely filled in as such and typically just contains the sender's
address.

In addition to the fields of Fig. 7-42, RFC 822 messages may also contain a
variety of header fields used by the user agents or human recipients. The most
common ones are listed in Fig. 7-43. Most of these are self-explanatory, so we
will not go into all of them in detail.

--

Header Meaning

Date: The date and time the message was sent

Reply-To: Email address to which replies should be sent

Message-Id: Unique number for referencing this message later

In-Reply-To: Message-Id of the message to which this is a reply

References: Other relevant Message-Ids

Keywords: User chosen keywords

Subject: Short summary of the message for the one-line display

Fig. 7-43. Some fields used in the RFC 822 message header.

The Reply-To: field is sometimes used when neither the person composing the
message nor the person sending the message wants to see the reply. For example,
a marketing manager writes an email message telling customers about a new
product. The message is sent by a secretary, but the Reply-To: field lists the head
of the sales department, who can answer questions and take orders.

The RFC 822 document explicitly says that users are allowed to invent new
headers for their own private use, provided that these headers start with the string
X-. It is guaranteed that no future headers will use names starting with X-, to
avoid conflicts between official and private headers. Sometimes wiseguy under
graduates include fields like X-Fruit-of-the-Day: or X-Disease-of-the-Week:,
which are legal, although not always illuminating.

After the headers comes the message body. Users can put whatever they want
here. Some people terminate their messages with elaborate signatures, including
simple ASCII cartoons, quotations from greater and lesser authorities, political
statements, and disclaimers of all kinds (e.g., The ABC Corporation is not respon
sible for my opinions; it cannot even comprehend them).

Ex.1006.670DELL

SEC. 7.4 ELECTRONIC MAIL 653

MIME-Multipurpose Interrnet Mail Extensions

In the early days of the ARPANET, email consisted exclusively of text mes
sages written in English and expressed in ASCII. For this environment, RFC 822
did the job completely: it specified the headers but left the content entirely up to
the users. Nowadays, on the worldwide Internet, this approach is no longer ade
quate. The problems include sending and receiving

1. Messages in languages with accents (e.g., French and German).

2. Messages in nonLatin alphabets (e.g., Hebrew and Russian).

3. Messages in languages without alphabets (e.g., Chinese and Japanese).

4. Messages not containing text at all (e.g., audio and video).

A solution was proposed in RFC 1341 and updated in RFC 1521. This solution,
called MIME (Multipurpose Internet Mail Extensions) is now widely used.
We will now describe it. For additional information about MIME, see RFC 1521
or (Rose, 1993).

The basic idea of MIME is to continue to use the RFC 822 format, but to add
structure to the message body and define encoding rules for non-ASCII messages.
By not deviating from 822, MIME messages can be sent using the existing mail
programs and protocols. All that has to be changed are the sending and receiving
programs, which users can do for themselves.

MIME defines five new message headers, as shown in Fig. 7-44. The first of
these simply tells the user agent receiving the message that it is dealing with a
MIME message, and which version of MIME it uses. Any message not contain
ing a MIME-Version: header is assumed to be an English plaintext message, and
is processed as such.

Header Meaning

MIME-Version: Identifies the MIME version

Content-Description: Human-readable string telling what is in the message

Content-Id: Unique identifier

Content-Transfer-Encoding: How the body is wrapped for transmission

Content-Type: Nature of the message

Fig. 7-44 .. RFC 822 headers added by MIME.

The Content-Description: header is an ASCII string telling what is in the mes
sage. This header is needed so the recipient will know whether it -is worth decod
ing and reading the message. If the string says: "Photo of Barbara's gerbil" and
the person getting the message is not a big gerbil fan, the message will probably
be discarded rather than decoded into a high-resolution color photograph.

Ex.1006.671DELL

654 THE APPLICATION LA YER CHAP. 7

The Content-Id: header identifies the content. It uses the same format as the
standard Message-Id: header.

The Content-Transfer-Encoding: tells how the body is wrapped for transmis
sion through a network that may object to most characters other than letters,
numbers, and punctuation marks. Five schemes (plus an escape to new schemes)
are provided. The simplest scheme is just ASCII text. ASCII characters use 7
bits, and can be carried directly by the email protocol provided that no line
exceeds 1000 characters.

The next simplest scheme is the same thing, but using 8-bit characters, that is,
all values from 0 up to and including 255. This encoding scheme violates the (ori
ginal) Internet email protocol but is used by some parts of the Internet that imple
ment some extensions to the original protocol. While declaring the encoding does
not make it legal, having it explicit may at least explain things when something
goes wrong. Messages using the 8-bit encoding must still adhere to the standard
maximum line length.

Even worse are messages that use binary encoding. These are arbitrary binary
files that not only use all 8 bits but also do not even respect the 1000 character
line limit. Executable programs fall into this category. No guarantee is given that
messages in binary will arrive correctly, but many people send them anyway.

The correct way to encode binary messages is to use base64 encoding, some
times called ASCII armor. In this scheme, groups of 24 bits are broken up into
four 6-bit units, with each unit being sent as a legal ASCII character. The coding
is "A" for 0, "B" for 1, and so on, followed by the 26 lowercase letters, the ten
digits, and finally+ and I for 62 and 63, respectively. The== and= sequences are
used to indicate that the last group contained only 8 or 16 bits, respectively. Car
riage returns and line feeds are ignored, so they can be inserted at will to keep the
lines short enough. Arbitrary binary text can be sent safely using this scheme.

For messages that are almost entirely ASCII, but with a few non-ASCII char
acters, base64 encoding is somewhat inefficient. Instead, an encoding known as
quoted-printable encoding is used. This is just 7-bit ASCII, with all the charac
ters above 127 encoded as an equal sign followed by the character's value as two
hexadecimal digits.

In summary, binary data should be sent encoded in base64 or quoted printable
form. When there are valid reasons not to use one of these schemes, it is possible
to specify a user-defined encoding in the Content-Transfer-Encoding: header.

The last header shown in Fig. 7-44 is really the most interesting one. It speci
fies the nature of the message body. Seven types are defined in RFC 1521, each
of which has one or more subtypes. The type and subtype are separated by a
slash, as in

Content-Type: video/mpeg

The subtype must be given explicitly in the header; no defaults are provided. The
initial list of types and subtypes specified in RFC 1521 is given in Fig. 7-45.

Ex.1006.672DELL

SEC. 7.4 ELECTRONIC MAIL 655

Many new ones have been added since then, and additional entries are being
added all the time as the need arises.

Type Subtype Description

Plain Unformatted text
Text

Richtext Text including simple formatting commands

Gif Still picture in GIF format
Image

Jpeg Still picture in JPEG format

Audio Basic Audible sound

Video Mpeg Movie in MPEG format

Octet-stream An uninterpreted byte sequence
Application

Postscript A printable document in Postscript

Rfc822 A MIME RFC 822 message

Message Partial Message has been split for transmission

External-body Message itself must be fetched over the net

Mixed Independent parts in the specified order

Alternative Same message in different formats
Multipart

Parallel Parts must be viewed simultaneously

Digest Each part is a complete RFC 822 message

Fig. 7-45. The MIME types and subtypes defined in RFC 1521.

Let us now go through the list of types. The text type is for straight text. The
text/plain combination is for ordinary messages that can be displayed as received,
with no encoding and no further processing. This option allows ordinary mes
sages to be transported in MIME with only a few extra headers.

The text/richtext subtype allows a simple markup language to be included in
the text. This language provides a system-independent way to express boldface,
italics, smaller and larger point sizes, indentation, justification, sub- and super
scripting, and simple page layout.· The markup language is based on SGML, the
Standard Generalized Markup Language also used as the basis for the World
Wide Web's HTML. For exampl~, the message

The <bold> time </bold> has come the <italic> walrus </italic> said ...

would be displayed as

The time has come the walrus said ...

It is up to the receiving system to choose the appropriate rendition. If boldface
and italics are available, they can be used; otherwise, colors, blinking,

Ex.1006.673DELL

656 THE APPLICATION LA YER CHAP. 7

underlining, reverse video, etc. can be used for emphasis. Different systems can,
and do, make different choices.

The next MIME type is image, which is used to transmit still pictures. Many
formats are widely used for storing and transmitting images nowadays, both with
and without compression. Two of these, GIF and JPEG, are official subtypes, but
no doubt others will be added later.

The audio and video types are for sound and moving pictures, respectively.
Note that video includes only the visual information, not the soundtrack. If a
movie with sound is to be transmitted, the video and audio portions may have to
be transmitted separately, depending on the encoding system used. The only
video format defined so far is the one devised by the modestly-named Moving
Picture Experts Group (MPEG).

The application type is a catchall for formats that require external processing
not covered by one of the other types. An octet-stream is just a sequence of unin
terpreted bytes. Upon receiving such a stream, a user agent should probably
display it by suggesting to the user that it be copied to a file and prompting for a
file name. Subsequent processing is then up to the user.

The other defined subtype is postscript, which refers to the PostScript
language produced by Adobe Systems and widely used for describing printed
pages. Many printers have built-in Postscript interpreters. Although a user agent
can just call an external PostScript interpreter to display incoming PostScript files,
doing so is not without danger. PostScript is a full-blown programming language.
Given enough time, a sufficiently masochistic person could write a C compiler or
a database management system in PostScript. Displaying an incoming PostScript
message is done by executing the PostScript program contained in it. In addition
to displaying some text, this program can read, modify, or delete the user's files,
and have other nasty side effects.

The message type allows one message to be fully encapsulated inside another.
This scheme is useful for forwarding email, for example. When a complete RFC
822 message is encapsulated inside an outer message, the rfc822 subtype should
be used.

The partial subtype makes it possible to break an encapsulated message up
into pieces and send them separately (for example, if the encapsulated message is
too long). Parameters make it possible to reassemble all the parts at the destina
tion in the correct order.

Finally, the external-body subtype can be used for very long messages (e.g.,
video films). Instead of including the MPEG file in the message, an FTP address
is given and the receiver's user agent can fetch it over the network at the time it is
needed. This facility is especially useful when sending a movie to a mailing list
of people, only a few of whom are expected to view it (think about electronic junk
mail containing advertising videos).

The final type is multipart, which allows a message to contain more than one
part, with the beginning and end of each part being clearly delimited. The mixed

Ex.1006.674DELL

SEC. 7.4 ELECTRONIC MAIL 657

subtype aHows each part to be different, with no additional structure imposed. In
contrast, with the alternative subtype, each part must contain the same message
but expressed in a different medium or encoding. For example, a message could
be sent in plain ASCII, in richtext, and in PostScript. A properly-designed user
agent getting such a message would display it in PostScript if possible. Second
choice would be richtext. If neither of these were possible, the flat ASCII text
would be displayed. The parts should be ordered from simplest to most complex
to help recipients with pre--MIME user agents make some sense of the message
(e.g., even a pre-MIME user can read flat ASCII text).

The alternative subtype can also be used for multiple languages. In this con
text, the Rosetta Stone can be thought of as an early multipart/alternative mes
sage.

A multimedia example is shown in Fig. 7-46. Here a birthday greeting is
transmitted both as text and as a song. If the receiver has an audio capability, the
user agent there will fetch the sound file, birthday.snd, and play it. If not, the lyr
ics are displayed on the screen in stony silence. The parts are delimited by two
hyphens followed by the (user-defined) string specified in the boundary parame
ter.

Note that the Content-Type header occurs in three positions within this exam
ple. At the top level, it indicates that the message has multiple parts. Within each
part, it gives the type and subtype of that part. Finally, within the body of the
second part, it is required to tell the user agent what kind of an external file it is to
fetch. To indicate this slight difference in usage, we have used lowercase letters
here, although all headers are case insensitive. The content-transfer-encoding is
similarly required for any external body that is not encoded as 7-bit ASCII.

Getting back to the subtypes for multipart messages, two more possibilities
exist. The parallel subtype is used when all parts must be "viewed" simultane
ously. For example, movies often have an audio channel and a video channel.
Movies are more effective if these two channels are played back in parallel,
instead of consecutively.

Finally, the digest subtype is used when many messages are packed together
into a composite message. For example, some discussion groups on the Internet
collect messages from subscribers and then send them out as a single
multipart/digest message.

7 .4.4. Message Transfer

The message transfer system is concerned with relaying messages from origi
nator to the recipient. The simplest way to do this is to establish a transport con
nection from the source machine to the destination machine and then just transfer
the message. After examining how this is normally done, we will examine some
situations in which this does not work and what can be done about them.

Ex.1006.675DELL

658

From: elinor@abc.com
To: carolyn@xyz.com
MIME-Version: 1.0

THE APPLICATION LAYER

Message-Id: <0704760941.AA00747@abc.com>

CHAP. 7

Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm
Subject: Earth orbits sun integral number of times

This is the preamble. The user agent ignores it. Have a nice day.

--qwertyuiopasdfghjklzxcvbnm
Content-Type: text/richtext

Happy birthday to you
Happy birthday to you
Happy birthday dear <bold> Carolyn </bold>
Happy birthday to you

--qwertyuiopasdfghjklzxcvbnm
Content-Type: message/external-body;

access-type=" anon-ftp";
site="bicycle.abc.com";
di rectory=" pub";
name="birthday.snd"

content-type: audio/basic
content-transfer-encoding: base64
--qwertyuiopasdfghjklzxcvbnm--

Fig. 7-46. A multipart message containing richtext and audio alternatives.

SMTP-Simple Mail Transfer Protocol

Within the Internet, email is delivered by having the source machine establish
a TCP connection to port 25 of the destination machine. Listening to this port is
an email daemon that speaks SMTP (Simple Mail Transfer Protocol). This
daemon accepts incoming connections and copies messages from them into the
appropriate mailboxes. If a message cannot be delivered, an error report contain
ing the first part of the undeliverable message is returned to the sender.

SMTP is a simple ASCII protocol. After establishing the TCP connection to
port 25, the sending machine, operating as the client, waits for the receiving ma
chine, operating as the server, to talk first. The server starts by sending a line of
text giving its identity and telling whether or not it is prepared to receive mail. If
it is not, the client releases the connection and tries again later.

If the server is willing to accept email, the client announces whom the email
is corning from and whom it is going too. If such a recipient exists at the

Ex.1006.676DELL

SEC. 7.4 ELECTRONIC MAIL 659

destination, the server gives the client the go-ahead to send the message. Then the
client sends the message and the server acknowledges it. No checksums are gen
erally needed because TCP provides a reliable byte stream. If there is more
email, that is now sent. When all the email has been exchanged in both direc
tions, the connection is released. A sample dialog for sending the message of
Fig. 7-46, including the numerical codes used by SMTP, is shown in Fig. 7-47.
The lines sent by the client are marked C:; those sent by the server are marked S:.

A few comments about Fig. 7-47 may be helpful. The first command from
the client is indeed HELO. Of the two four-character abbreviations for HELLO,
this one has numerous advantages over its competitor. Why all the commands
had to be four characters has been lost in the mists of time.

In Fig. 7-47, the message is sent to only one recipient, so only one RCPT
command is used. Multiple such commands are allowed to send a single message
to multiple receivers. Each one is individually acknowledged or rejected. Even if
some recipients are rejected (because they do not exist at the destination), the
message can be sent to the remainder.

Finally, although the syntax of the four-character commands from the client is
rigidly specified, the syntax of the replies is less rigid. Only the numerical code
really counts. Each implementation can put whatever string it wants after the
code.

Even though the SMTP protocol is well defined (by RFC 821), a few prob
lems can still arise. One problem relates to message length. Some older imple
mentations cannot handle messages exceeding 64KB. Another problem relates to
timeouts. If the client and server have different timeouts, one of them may give
up while the other is still busy, unexpectedly terminating the connection. Finally,
in rare situations, infinite mailstorms can be triggered. For example, if host l
holds mailing list A and host 2 holds mailing list B and each list contains an entry
for the other one, then any message sent to either list will generate a never-ending
amount of email traffic.

To get around some of these problems, extended STMP (ESMTP) has been
defined in RFC 1425. Clients wanting to use it should send an EHLO message
instead of HELO initially. If this is rejected, then the server is a regular SMTP
server, and the client should proceed in the usual way. If the EHLO is accepted,
then new commands and parameters are allowed. The standardization of these
commands and parameters is an ongoing process.

Email Gateways

Email using SMTP works best when both the sender and the receiver are on
the Internet and can support TCP connections between sender and receiver. How
ever, many machines that are not on the Internet still want to send and receive
email from Internet sites. For example, many companies intentionally do not

Ex.1006.677DELL

660 THE APPLICATION LA YER CHAP. 7

S: 220 xyz.com SMTP service ready
C: HELO abc.com

S: 250 xyz.com says hello to abc.com
C: MAIL FROM: <elinor@abc.com>

S: 250 sender ok
C: RCPT TO: <Carolyn@xyz.com>

S: 250 recipient ok
C:DATA

S: 354 Send mail; end with "."on a line by itself
C: From: elinor@abc.com
C: To: carolyn@xyz.com
C: MIME-Version: 1.0
C: Message-Id: <0704760941.AA00747@abc.com>
C: Content-Type: multipart/alternative; boundary=qwertyuiopasdfghjklzxcvbnm
C: Subject: Earth orbits sun integral number of times
C:
C: This is the preamble. The user agent ignores it. Have a nice day.
C:
C: --qwertyuiopasdfghjklzxcvbnm
C: Content-Type: text/richtext
C:
C: Happy birthday to you
C: Happy birthday to you
C: Happy birthday dear <bold> Carolyn </bold>
C: Happy birthday to you
C:
C: --qwertyuiopasdfghjklzxcvbnm
C: Content-Type: message/external-body;
C: access-type=" anon-ftp";
C: site="bicycle.abc.com";
C: directory=" pub";
C: name="birthday.snd"
C:
C: content-type: audio/basic
C: content-transfer-encoding: base64
C: --qwertyuiopasdfghjklzxcvbnm
C:.

S: 250 message accepted
C: QUIT

S: 221 xyz.com closing connection

Fig. 7-47. Transferring a message from elinor@abc.com to carolyn@xyz.com.

want to be on the Internet for security reasons. Some of them even remove them
selves from the Internet by erecting firewalls between themselves and the Internet.

Another problem occurs when the sender speaks only RFC 822 and the

Ex.1006.678DELL

SEC. 7.4 ELECTRONIC MAIL 661

receiver speaks only X.400 or some proprietary vendor-specific mail protocol.
Since all these worlds differ in message formats and protocols, direct communica
tion is impossible.

Both of these problems are solved using application layer email gateways. In
Fig. 7-48 ho~t 1 speaks only TCP/IP and RFC 822, whereas host 2 speaks only
OSI TP4 and X.400. Nevertheless, they can exchange email using an email gate
way. The procedure is for host 1 to establish a TCP connection to the gateway
and then use SMTP to transfer a message (1) there. The daemon on the gateway
then puts the message in a buffer of messages destined for host 2. Later, a TP4
connection (the OSI equivalent to TCP) is established with host 2 and the message
(2) is transferred using the OSI equivalent of SMTP. All the gateway process has
to do is to extract incoming messages from one queue and deposit them in
another.

Host 1 Gateway

TCP connection

Message
buffer

Host 2

TP4 connection

Network

Fig. 7-48. Transferring email using an application layer email gateway.

It looks easy, but it is not. The first problem is that Internet addresses and
X.400 addresses are totally different. An elaborate mapping mechanism is needed
between them. The second problem is that envelope or header fields that are
present in one system may not be present in the other. For example, if one system
requires priority classes and the other does not have this concept at all, in one
direction valuable information must be dropped and in the other it must be gen
erated out of thin air.

An even worse concept is what to do if body parts are incompatible. What
should a gateway do with a message from the Internet whose body holds a refer
ence to a:n audio file to be obtained by FTP if the destination system does not sup
port this concept? What should it do when an X.400 system tells it to deliver a
message to a certain address, but if that fails, to send the contents by fax? Using
fax is not part of the RFC 822 model. Clearly, there are no simple solutions here.
For simple unstructured text messages in ASCII, gatewaying is a reasonable solu
tion, but for anything fancier, the idea tends to break down.

Ex.1006.679DELL

SEC. 7.4 ELECTRONIC MAIL 661

recéiver speaks only X.400 or some proprietary vendor-specific mail protocol.
Since all these worlds differ in message formats and protocols, direct communica-
tion is impossible.

Both of these problems are solved using application layer email gateways. In
Fig. 7-48 host 1 speaks only TCP/IP and RFC 822, whereas host 2 speaks only
OSI TP4 and X.400. Nevertheless, they can exchange email using an email gate-
way. The procedure is for host 1 to establish a TCP connection to the gateway
and then use SMTP to transfer a message (1) there. The daemon on the gateway
then puts the message in a buffer of messages destined for host 2. Later, a TP4
connection (the OSI equivalent to TCP) is established with host 2 and the message
(2) is transferred using the OSI equivalent of SMTP. All the gateway process has
to do is to extract incoming messages from one queue and deposit them in
another.

Message
buffer

Host 1 Gateway Host 2
SS

1 2

 TCP connection TP4 connection

Network

Fig. 7-48. Transferring email using an application layer email gateway.

It looks easy, but it is not. The first problem is that Internet addresses and
X.400 addressesare totally different. An elaborate mapping mechanism is needed
between them. The second problem is that envelope or header fields that are
present in one system may notbe present in the other. For example, if one system
requires priority classes and the other does not have this concept at all, in one
direction valuable information must be dropped and in the other it must be gen-
erated out of thin air.

An even worse concept is what to do if body parts are incompatible. What
should a gateway do with a message from the Internet whose body holds a refer-
ence to an audio file to be obtained by FTPif the destination system does not sup-
port this concept? What should it do when an X.400 system tells it to deliver a
message to a certain address, but if that fails, to send the contents by fax? Using
fax is not part of the RFC 822 model. Clearly, there are no simple solutions here.
For.simple unstructured text messages in ASCII, gatewaying is a reasonable solu-
tion, but for anything fancier, the idea tends to break down.

DELL Ex.1006.679

662 THE APPLJCA TION LA YER CHAP. 7

Final Delivery

Up until now, we have assumed that all users work on machines that are capa
ble of sending and receiving email. Frequently this situation is false. For exam
ple, at many companies, users work at desktop PCs that are not on the Internet and
are not capable of sending or receiving email from outside the company. Instead,
the company has one or more email servers that can send and receive email. To
send or receive messages, a PC must talk to an email server using some kind of
delivery protocol.

A simple protocol used for fetching email from a remote mailbox is POP3
(Post Office Protocol), which is defined in RFC 1225. It has commands for the
user to log in, log out, fetch messages, and delete messages. The protocol itself
consists of ASCII text and has something of the flavor of SMTP. The point of
POP3 is to fetch email from the remote mailbox and store it on the user's local
machine to be read later.

A more sophisticated delivery protocol is IMAP (Interactive Mail Access
Protocol), which is defined in RFC 1064. It was designed to help the user who
uses multiple computers, perhaps a workstation in the office, a PC at home, and a
laptop on the road. The basic idea behind IMAP is for the email server to main
tain a central repository that can be accessed from any machine. Thus unlike
POP3, IMAP does not copy email to the user's personal machine because the user
may have several.

IMAP has many features, such as the ability to address mail not by arrival
number as is done in Fig. 7-40, but by using attributes (e.g., Give me the first
message from Sam). In this view, a mailbox is more like a relational database
system than a linear sequence of messages.

Yet a third delivery protocol is DMSP (Distributed Mail System Protocol),
which is part of the PCMAIL system and described in RFC 1056. This one does
not assume that all email is on one server, as do POP3 and IMAP. Instead, it
allows users to download email from the server to a workstation, PC, or laptop
and then disconnect. The email can be read and answered while disconnected.
When reconnection occurs later, email is transferred and the system is resyn
chronized.

Independent of whether email is delivered directly to the user's workstation or
to a remote server, many systems provide hooks for additional processing of
incoming email. An especially valuable tool for many email users is the ability to
set up filters. These are rules that are checked when email comes in or when the
user agent is started. Each rule specifies a condition and an action. For example,
a rule could say that any message from Andrew S. Tanenbaum should be
displayed in a 24-point flashing reel boldface font (or alternatively, be discarded
automatically without comment).

Another delivery feature often provided is the ability to (temporarily) forward
incoming email to a different address. This address can even be a computer

Ex.1006.680DELL

SEC. 7.4 ELECTRONIC MAIL 663

operated by a commercial paging service, which then pages the user by radio or
satellite, displaying the Subject: line on his beeper.

Still another common feature of final delivery is the ability to install a vaca
tion daemon. This is a program that examines each incoming message and sends
the sender an insipid reply such as

Hi. I'm on vacation. I'll be back on the 24th of August. Have a nice day.

Such replies can also specify how to handle urgent matters in the interim, other
people to contact for specific problems, etc. Most vacation daemons keep track of
whom they have sent canned replies to and refrain from sending the same person a
second reply. The good ones also check to see if the incoming message was sent
to a mailing list, and if so, do not send a canned reply at all. (People who send
messages to large mailing lists during the summer probably do not want to get
hundreds of replies detailing everyone's vacation plans.)

The author recently ran into a most extreme form of delivery processing when
he sent an email message to a person who claims to get 600 messages a day. His
identity will not be disclosed here, lest half the readers of this book also send him
email. Let us call him John.

John has installed an email robot that checks every incoming message to see if
it is from a new correspondent. If so, it sends back a canned reply explaining that
John can no longer personally read all his email. Instead he has produced a per
sonal FAQ (Frequently Asked Questions) document that answers many questions
he is commonly asked. Normally, newsgroups have FAQs, not people.

John's FAQ gives his address, fax, and telephone numbers and tells how to
contact his company. It explains how to get him as a speaker and describes where
to get his papers and other documents. It also provides pointers to software he has
written, a conference he is running, a standard he is the editor of, and so on.
Perhaps this approach is necessary, but maybe a personal FAQ is the ultimate
status symbol.

7.4.5. Email Privacy

When an email message is sent between two distant sites, it will generally
transit dozens of machines on the way. Any of these can read and record the mes
sage for future use. Privacy is nonexistent, despite what many people think
(Weisband and Reinig, 1995). Nevertheless, many people would like to be able to
send email that can be read by the intended recipient and no one else: not their
boss, not hackers, not even the government. This desire has stimulated several
people and groups to apply the cryptographic principles we studied earlier to
email to produce secure email. In the following sections we will study two widely
used secure email systems, POP and PEM. For additional information, see (Kauf
man et al., 1995; Schneier, 1995; Stallings, 1995b; and Stallings, 1995c).

Ex.1006.681DELL

664 THE APPLICATION LA YER CHAP. 7

PGP-Pretty Good Privacy

Our first example, PGP (Pretty Good Privacy) is essentially the brainchild
of one person, Phil Zimmermann (Zimmermann, l 995a, l 995b). It is a complete
email security package that provides privacy, authentication, digital signatures,
and compression, all in easy-to-use form. Furthermore, the complete package,
including all the source code, is distributed free of charge via the Internet, bulletin
boards, and commercial networks. Due to its quality, price (zero), and easy avai
lability on MS-DOS/Windows, UNIX, and Macintosh platforms, it is widely used
today. A commercial version is also available for those companies requiring sup
port.

It has also been embroiled in various controversies (Levy, 1993). Because it
is freely available over the Internet, the U.S. government has claimed the ability
of foreigners to obtain it constitutes a violation of the laws concerning the export
of munitions. Later versions were produced outside the United States to get
around this restriction. Another problem has involved an alleged infringement of
the RSA patent, but that problem was settled with releases starting at 2.6.
Nevertheless, not everyone likes the idea of people being able to keep secrets
from them, so PGP' s enemies are always lurking in the shadows, waiting to
pounce. Accordingly, Zimmermann's motto is: "If privacy is outlawed, only
outlaws will have privacy."

PGP intentionally uses existing cryptographic algorithms rather than inventing
new ones. It is largely based on RSA, IDEA, and MD5, all algorithms that have
withstood extensive peer review and were not designed or influenced by any
government agency trying to weaken them. For people who tend to distrust
government, this property is a big plus.

PGP supports text compression, secrecy, and digital signatures and also pro
vides extensive key management facilities. To see how PGP works, let us con
sider the example of Fig. 7-49. Here, Alice wants to send a signed plaintext mes
sage, P, to Bob in a secure way. Both Alice and Bob have private (Dx) and public
(Ex) RSA keys. Let us assume that each one knows the other's public key; we
will cover key management later.

Alice starts out by invoking the PGP program on her computer. PGP first
hashes her message, P, using MD5 and then encrypts the resulting hash using her
private RSA key, DA- When Bob eventually gets the message, he can decrypt the
hash with Alice's public key and verify that the hash is com::ct. Even if someone
else (e.g., Trudy) could acquire the hash at this stage and decrypt it with Alice's
known public key, the strength of MD5 guarantees that it would be computation
ally infeasible to produce another message with the same MD5 hash.

The encrypted hash and the original message are now concatenated into a sin
gle message, P 1, and compressed using the ZIP program, which uses the Ziv
Lempel algorithm (Ziv and Lempel, 1977). Call the output of this step Pl.Z.

Next, PGP prompts Alice for some random input. Both the content and the

Ex.1006.682DELL

SEC. 7.4 ELECTRONIC MAIL

KM : One-time message key for IDEA

: Concatenation

Bob's public
RSA key, Es

\
Alice's private KM -I RSA I

665

RSA key, DA l !
\ ASCII text to

1.::1 _ C::l vi::l Pt Z ~ ~ the""""''
P_ ft'.~''._~-~-_r~- I ~~-7-~
\\-- / P1 compressed

Original
plaintext
message
from Alice

Concatenation of
P and the signed
hash of P

Concatenation of
P1 .Z encrypted
with IDEA and KM
encrypted with Es

Fig. 7-49. PGP in operation for sending a message.

typing speed are used to generate a 128-bit IDEA message key, KM (called a ses
sion key in the PGP literature, but this is really a misnomer since there is no ses
sion). KM is now used to encrypt Pl.Z with IDEA in cipher feedback mode. In
addition, KM is encrypted with Bob's public key, Es. These two components are
then concatenated and converted to base64, as we discussed in the section on
MIME. The resulting message then contains only letters, digits, and the symbols
+, I and=, which means it can be put into an RFC 822 body and be expected to
an-ive unmodified.

When Bob gets the message, he reverses the base64 encoding and decrypts
the IDEA key using his private RSA key. Using this key, he decrypts the message
to get Pl .Z. After decompressing it, Bob separates the plaintext from the
encrypted hash and decrypts the hash using Alice's public key. If the plaintext
hash agrees with his own MD5 computation, he knows that P is the con-ect mes
sage and that it came from Alice.

It is worth noting that RSA is only used in two places here: to encrypt the
128-bit MD5 hash and to encrypt the 128-bit IDEA key. Although RSA is slow, it
has to encrypt only 256 bits, not a large volume of data. Furthermore, all 256
plaintext bits are exceedingly random, so a considerable amount of work will be
required on Trudy's part just to determine if a guessed key is correct. The heavy
duty encryption is done by IDEA, which is orders of magnitude faster than RSA.
Thus PGP provides security, compression, and a digital signature and does so in a
much more efficient way than the scheme illustrated in Fig. 7-23.

Ex.1006.683DELL

666 THE APPLICATION LA YER CHAP. 7

PGP supports three RSA key lengths. It is up to the user to select the one that
is most appropriate. The lengths are

1. Casual (384 bits): can be broken today by folks with large budgets.

2. Commercial (512 bits): might be breakable by three-letter organizations.

3. Military (1024): Not breakable by anyone on earth.

There has been some discussion about a fourth category: alien (2048 bits), which
could not be broken by anyone or anything in the universe, but this has not yet
been adopted. Since RSA is only used for two small computations, probably
everyone should use military strength keys all the time, except perhaps on aged
PC-XTs.

The format of a PGP message is shown in Fig. 7-50. The message has three
parts, containing the IDEA key, the signature, and the message, respectively. The
key part contains not only the key, but also a key identifier, since users are permit
ted to have multiple public keys.

Encrypted
by

,____________ Base64 I
Message 1------ Compressed, encrypted by IDEA •
key part Signature part Message part
~~--~-----,~------~------~

ID T
Sig.

of KM i
hdr

Es m
e

T
ID y
of p
EA e

s

MOS
hash

1----1
DA

Msg File
hdr name

Fig. 7-50. A PGP message.

:J
(

)

T
i Me
m
e

(

)

The signature part contains a header, which will not concern us here. The
header is followed by a timestamp, the identifier for the sender's public key that
can be used to decrypt the signature hash, some type information that identifies
the algorithms used (to allow MD6 and RSA2 to be used when they are invented),
and the encrypted hash itself.

The message part also contains a header, the default name of the file to be
used if the receiver writes the file to the disk, a message creation timestamp, and,
finally, the message itself.

Key management has received a large amount of attention in PGP as it is the
Achilles heel of all security systems. Each user maintains two data structures
locally: a private key ring and a public key ring. The private key ring contains
one or more personal private-public key pairs. The reason for supporting multiple
pairs per user is to permit users to change their public keys periodically or when
one is thought to have been compromised, without invalidating messages

Ex.1006.684DELL

SEC. 7.4 ELECTRONIC MAIL 667

currently in preparation or in transit. Each pair has an identifier associated with it,
so that a message sender can tell the recipient which public key was used to
encrypt it. Message identifiers consist of the low-order 64 bits of the public key.
Users are responsible for avoiding conflicts in their public key identifiers. The
private keys on disk are encrypted using a special (arbitrarily long) password to
protect them against sneak attacks.

The public key ring contains public keys of the user's correspondents. These
are needed to encrypt the message keys associated with each message. Each entry
on the public key ring contains not only the public key, but also its 64-bit identif
ier and an indication of how strongly the user trusts the key.

The problem being tackled here is the following. Suppose that public keys
are maintained on bulletin boards. One way for Trudy to read Bob's secret email
is to attack the bulletin board and replace Bob's public key with one of her choice.
When Alice later fetches the key so-called belonging to Bob, Trudy can mount a
bucket brigade attack on Bob.

To prevent such attacks, or at least minimize the consequences of them, Alice
needs to know how much to trust the item called "Bob's key" on her public key
ring. If she knows that Bob personally handed her a floppy disk containing the
key, she can set the trust value to the highest value.

However, in practice, people often receive public keys by querying a trusted
key server, a number of which are already in operation on the Internet. When a
key server receives a request for someone's public key, it generates a response
containing the public key, a timestamp, and the expiration date of the key. It then
hashes this response with MD5 and signs the response with its own private key so
the requesting party can verify who sent it. It is up to the user to assign a trust
level to keys maintained by the local system administrator, the phone company,
ACM, the Bar Association, the government, or whoever else decides to get into
the business of maintaining keys.

PEM-Privacy Enhanced Mail

In contrast to PGP, which was initially a one-man show, our second example,
PEM (Privacy Enhanced Mail), is an official Internet standard and described in
four RFCs: RFC 1421 through RFC 1424. Very roughly, PEM covers the same
territory as PGP: privacy and authentication for RFC 822-based email systems.
Nevertheless, it also has some differences with PGP in approach and technology.
Below we will describe PEM and then compare and contrast it to PGP. For more
information about PEM, see (Kent, 1993).

Messages sent using PEM are first converted to a canonical form so they all
have the same conventions about white space (e.g., tabs, trailing spaces) and the
use of carriage returns and line feeds. This transformation is done to eliminate the
effects of message transfer agents that modify messages not to their liking.

Ex.1006.685DELL

668 THE APPLICATION LA YER CHAP. 7

Without canonicalization, such modifications might affect hashes made from mes
sages at their destinations.

Next, a message hash is computed using MD2 or MD5. It is not optional, as it
is in PGP. Then the concatenation of the hash and the message is encrypted using
DES. In light of the known weakness of a 56-bit key, this choice is certainly
suspect. The encrypted message can then be encoded with base64 coding and
transmitted to the recipient. Mailing lists are explicitly supported.

As in PGP, each message is encrypted with a one-time key that is enclosed
along with the message. The key can be protected either with RSA or with triple
DES using EDE. In practice, everyone uses RSA, so we will concentrate on that.
In fact, we have to: PEM does not tell how to do key management with DES.

Key management is more structured than in PGP. Keys are certified by cer
tification authorities in the form of certificates stating a user's name, public key,
and the key's expiration date. Each certificate has a unique serial number for
identifying it. Certificates include an MD5 hash signed by the certification
authority's private key. These certificates conform to the ITU X.509 recommen
dation for public key certificates, and as such, use X.400 names like the Tom
Smith example given earlier.

PGP has a similar scheme (without the use of X.509), but has a problem:
Should a user believe a certification authority? PEM solves this problem by certi
fying the certification authorities using what are called PCAs (Policy Certifica
tion Authorities). These, in turn, are certified by the IPRA (Internet Policy
Registration Authority), the ultimate arbiter of who's naughty and who's nice.

Each PCA must define an official policy on registration and file it with IPRA.
These statements are then signed by IPRA and made public. For exmnple, one
PCA may insist on having users under its jurisdiction show up in person with a
birth certificate, drivers' license, passport, two major credit cards, a live witness,
and a public key on floppy disk. Another PCA may accept email registrations
from strangers. By making the policy statements public, users have some basis
for deciding which authorities to trust. No provision has been made for seeing if
the policies are actually enforced.

Three different kinds of certification authorities are planned. An organiza
tional one can issue certificates for its employees. Most companies will run their
own. A residential one will operate on behalf of private citizens, much as current
Internet service providers will provide service to anyone willing to pay for it.
Finally, a scheme is planned for anonymous registration. With all these certifica
tion authorities running around, the need for the PCAs to ride herd on them should
now be clear.

While rigidly hierarchical and bureaucratic, this scheme has the advantage
over PGP of making certificate revocation potentially practical. Revocation is
needed if a user wants to change his public key, for example, because it has been
compromised or his certification authority has been burglarized (or stolen). Revo
cation is accomplished by a user telling his certification authority that his public

Ex.1006.686DELL

SEC. 7.4 ELECTRONIC MAIL 669

key has been compromised (or possibly vice versa). The certification authority
then adds the serial number of the now-invalid certificate to a list of revoked certi
ficates, signs it, and spreads the list far and wide.

Anyone wanting to send a PEM message to a user must therefore first check
the most recent revocation list to see if the cached public key is still valid. This
process is analogous to a merchant checking the list of stolen credit cards before
accepting one. Critics of PEM argue that checking all the time is too much work
so nobody will bother. Supporters argue that computers do not get bored; if they
are programmed to check all the time, th,ey will check all the time.

Some of the similarities and differences between PGP and PEM are listed in
Fig. 7-51. Most of these points have already been covered, but a few are worth
commenting on. Authentication seems more important in PEM than in PGP since
it is mandatory in PEM and optional in PGP. PEM also carries the authentication
information outside the encryption wrapper, which means that the network can
verify the origin of every message. As a consequence, eavesdroppers can log who
is sending to whom, even if they cannot read the messages.

All these technical differences aside, there is a surprising cultural difference
as well. PGP, which is not an official internet standard, has the Internet culture.
PEM, which is an official Internet standard, does not. PGP was based on what
Dave Clark calls "rough consensus and running code." Somebody (Zimmermann)
thought of a solution to a well-known problem, implemented it well, and released
the source code for everyone to use. PEM began as a four-part official standard,
using ASN.1 to define layouts, X.400 to define names, and X.509 to define certifi
cates. It uses a rigid three-layer organizational hierarchy for multiple kinds of
certification authorities, complete with officially certified policy statements and a
requirement that everyone trust the IPRA. Implementations came later and are far
behind PGP in quality, quantity, and availability on many platforms. In short,
PGP looks like a typical Internet package, whereas PEM exhibits most of the
characteristics of an OSI standard that Internet people hate and PTTs love. You
figure.

7.5. USENET NEWS

One of the more popular applications of computer networking is the world
wide system of newsgroups called net news. Often net news is referred to as
USENET, which harks back to a separate UNIX-to-UNIX physical network that
once carried the traffic using a program called uucp. Nowadays, much of the
traffic is carried on the Internet, but USENET and the Internet are not the same.
Some Internet sites do not get net news, and other sites get net news without being
on the Internet.

In the follow sections we will describe USENET. First we will look at it from
the users' viewpoint. Then we will describe how it is implemented.

Ex.1006.687DELL

670 THE APPLICATION LA YER CHAP. 7

Item PGP PEM

Supports encryption? Yes Yes

Supports authentication? Yes Yes

Supports nonrepudiation? Yes Yes

Supports compression? Yes No

Supports canonicalization? No Yes

Supports mailing lists? No Yes

Uses base64 coding? Yes Yes

Current data encryption algorithm IDEA DES

Key length for data encryption (bits) 128 56

Current algorithm for key management RSA RSA or DES

Key length for key management {bits) 384/512/1024 Variable

User name space User defined X.400

X.509 conformant? No Yes

Do you have to trust anyone? No Yes (IPRA)

Key certification Ad hoc IPRA/PCA/CA hierarchy

Key revocation Haphazard Better

Can eavesdroppers read messages? No No

Can eavesdroppers read signatures? No Yes

Internet Standard? No Yes

Designed by Small team Standards committee

Fig. 7-51. A comparison of PGP and PEM.

7.5.1. The User View of USENET

A newsgroup is a worldwide discussion forum on some specific topic. People
interested in the subject can "subscribe" to the newsgroup. Subscribers can use a
special kind of user agent, a news reader, to read all the articles (messages) posted
to the newsgroup. People can also post articles to the newsgroup. Each article
posted to a newsgroup is automatically delivered to all the subscribers, wherever
they may be in the world. Delivery typically takes between a few seconds and a
few hours, depending how far off the beaten path the sender and receiver are. In
effect, a newsgroup is somewhat like a mailing list, but internally it is imple
mented differently. It can also be thought of as a kind of high-level multicast.

The number of newsgroups is so large (probably over 10,QOO) that they are

Ex.1006.688DELL

SEC. 7.5 USENET NEWS 671

arranged in a hierarchy to make them manageable. Figure 7-52 shows the top lev
els of the "official" hierarchies. Other hierarchies also exist, but these are typi
cally intended for regional consumption or are in languages other than English.
One of the other hierarchies alt, is special. Alt is to the official groups as a flea
market is to a department store. It is a chaotic, unregulated mishmash of news
groups on all topics, some of which are very popular, and most of which are
worldwide.

Name Topics covered

Comp Computers, computer science, and the computer industry

Sci The physical sciences and engineering

Humanities Literature and the humanities

News Discussion of USENET itself

Rec Recreational activities, including sports and music

Misc Everything that does not fit in somewhere else

Soc Socializin!~ and social issues

Talk Diatribes, polemics, debates and arguments galore

Alt Alternative tree covering virtually everything

Fig. 7-52. USENET hierarchies in order of decreasing signal-to-noise ratio.

The comp groups were the original USENET groups. These groups are popu
lated by computer scientists, computer professionals, and computer hobbyists.
Each one features technical discussions on a topic related to computer hardware
or software.

The sci and humanities groups are populated by scientists, scholars, and ama
teurs with an interest in physics, chemistry, biology, Shakespeare, and so on. Not
entirely surprisingly, the sci hierarchy is much larger than the humanities hierar
chy because the very concept of instant electronic communication with colleagues
all over the world is something most scientists like, and most humanists are at
least skeptical about. C.P. Snow was right.

The news hierarchy is used to discuss and manage the news system itself.
System administrators can get help here, and discussions about whether to create
new newsgroups occurs here.

The hierarchies covered so far have a professional, somewhat academic tone.
That changes with rec which is about recreational activities and hobbies.
Nevertheless, many of the people who post here are fairly knowledgeable about
their respective interests.

As we drift downward, we come to soc, which has many newsgroups concern
ing, politics, gender, religion, various national cultures, and genealogy. Talk

Ex.1006.689DELL

672 THE APPLICATION LA YER CHAP. 7

covers controversial topics and is populated by people who are strong on opinions,
weak on facts. Alt is a complete alternative tree which operates under its own
rules.

Each of the categories listed in Fig. 7-52 is broken into subcategories, recur
sively. For example, rec.sport is about sports, rec.sport.basketball is about
basketball, cind rec.sport.basketball.women is about women's basketball. Asam
ple of some of the newsgroups in each category is given in Fig. 7-53. In many
cases, the existence of additional groups can be inferred by changing the obvious
parameters. For example, comp.lang.c is about the C programming language, but
the .c can be replaced by just about every other programming language to gen
erate the name of the corresponding newsgroup.

Numerous news readers exist. Like email readers, some are keyboard based;
others are mouse based. In nearly all cases, when the news reader is started, it
checks a file to see which newsgroups the user subscribes to. It then typically
displays a one-line summary of each as-yet-unread article in the first newsgroup
and waits for the user to select one or more for reading. The selected articles are
then displayed one at a time. After being read, they can be discarded, saved,
printed, and so on.

News readers also allow users to subscribe and unsubscribe to newsgroups.
Changing a subscription simply means editing the local file listing which news
groups the user is subscribed to. To make an analogy, subscribing to a newsgroup
is like watching a television program. If you want to watch some program every
week, you just do it. You do not have to register with some central authority first.

News readers also handle posting. The user composes an article and then
gives a command or clicks on a icon to send the article on its way. Within a day,
it will reach almost everyone in the world subscribing to the newsgroup to which
it was posted. It is possible to crosspost an article, that is, to send it to multiple
newsgroups with a single command. It is also possible to restrict the geographic
distribution of a posting. An announcement of Tuesday's colloquium at Stanford
will probably not be of much interest in, say, Hong Kong, so the posting can be
restricted to California.

The sociology of USENET is unique, to put it mildly. Never before has it
been possible for thousands of people who do not know each other to have world
wide discussions on a vast variety of topics. For example, it is now possibk for
someone with a problem to post it to the net. The next day, the poster may have
18 solutions, and with a little bit of luck, only 17 of them are wrong.

Unfortunately, some people use their new-found power to communicate to a
large group irresponsibly. When someone posts a message saying: "People like
you should be shot" tempers flare and a torrent of abusive postings, called a
flamewar, typically follows.

This situation can be attacked in two ways, one individual and one collective.
Individual users can install a killfile, which specifies that articles with a certain
subject or from a certain person are to discarded upon arrival, prior to being

Ex.1006.690DELL

SEC. 7.5 USENET NEWS 673

Name Topics covered

Comp.ai Artificial intelligence

Comp.databases Design and implementation of database systems

Comp.lang.c The C programming language

Comp.os.minix Tanenbaum's educational MINIX operating system

Comp.os.ms-windows.video Video hardware and software for Windows

Sci. bio. entomology. I epidoptera Research on butterflies and moths

Sci.geo.earthquakes Geology, seismology, and earthquakes

Sci.med.orthopedics Orthopedic surgery

Humanities. lit. authors.shakespeare Shakespeare's plays and poetry

News.groups Potential new newsgroups

News.lists Lists relating to USENET

Rec.arts.poems Free poetry

Rec.food.chocolate Yum yum

Rec.humor.funny Did you hear the joke about the farmer who ...

Rec. music. folk Folks discussing folk music

Misc. jobs. offered Announcements of positions available

Misc.health.diabetes Day-to-day living with diabetes

Soc.culture.estonia Life and culture in Estonia

Soc.singles Single people and their interests

Soc.couples Graduates of soc.singles

Talk.abortion No signal, all noise
Talk.rumors This is where rumors come from

Alt.alien. visitors Place to report flying saucer rides

Alt.bermuda.triangle If you read this, you vanish mysteriously

Alt. sex.voyeurism Take a peek and see for yourself

Alt.tv.simpsons Bart et al.

Fig. 7-53. A small selection .of the newsgroups.

displayed. Most news readers also allow an individual discussion thread to be
killed, too. This feature is useful when a discussion looks like it is starting to get
into an infinite loop.

If enough subscribers to a group get annoyed with newsgroup pollution, they
can propose having the newsgroup be moderated. A moderated newsgroup is
one in which only one person, the moderator, can post articles to the newsgroup.
All postings to a moderated newsgroup are automatically sent to the moderator,
who posts the good ones and discards the bad ones. Some topics have both a
moderated newsgroup and an unmoderated one.

Ex.1006.691DELL

674 THE APPLICATION LA YER CHAP. 7

Since thousands of people subscribe to USENET for the first time every day,
the same beginner's questions tend to be asked over and over. To reduce this
traffic, many newsgroups have constructed a FAQ (Frequently Asked Ques
tions) document that tries to answer all the questions that beginners have. Some
of these are highly authoritative and run to over 100 pages. The maintainer typi
cally posts them once or twice a month.

USENET is full of jargon such as BTW (By The Way), ROFL (Rolling On
the Floor Laughing), and IMHO (In My Humble Opinion). Many people also use
little ASCII symbols called smileys or emoticons. A few of the more interesting
ones are reproduced in Fig. 7-54. For most, rotating the book 90 degrees clock
wise will make them clearer. For a minibook giving over 650 smileys, see
(Sanderson and Dougherty, 1993).

- --~~-

Smiley Meaning Smiley Meaning Smiley Meaning
----·--

:-) I'm happy =I:-) Ab e Lincoln :+) Big nose

: -(I'm sad/angry =):-) Un c le Sam :-)) Double chin

: - I I'm apathetic ;'<: -) San ta Claus : -{) Mustache
--~-

;-) I'm winking <:-(Du n cc #: -) Matted hair
-- --

:-(0) I'm yelling (-: Au: tralian 8-) Wears glasses

: -('~) I'm vomiting :-)X Mai 1 with bowtie C:-) Large brain
-- ~---

Fig. 7-54. Some smileys.

Although most people use their real names in postings, some people wish to
remain totally anonymous, especially when posting to controversial newsgroups
or when posting personal ads to newsgroups dealing with finding partners. This
desire has led to the creation of anonymous remailers, which are servers that
accept email messages (including postings) and change the From:, Sender:, and
Reply-To: fields to make them point to the remailer instead of the sender. Some
of the remailers assign a number to each user and forward email addressed to
these numbers, so people can send email replies to anonymous postings like
"SWF 25 seeks SWM/DWM 20-30 " Whether these remailers can keep their
secrets when the local police become curious about the identity of some user is
doubtful (Barlow, 1995).

As more and more people subscribe to USENET, there is a constant demand
for new and more specialized newsgroups. Consequently, a procedure has been
established for creating new ones. Suppose that somebody likes cockroaches and
wants to talk to other cockroach fans. He posts a message to news.groups naming
the proposed group, say rec.animals. wildlife.cockroaches, and describing why it is
so important (cockroaches are fascinating; there are 3500 species of them; they
come in red, yellow, green, brown, and black; they appeared on earth long before

Ex.1006.692DELL

SEC. 7.5 USENET NEWS 675

the first dinosaurs; they were probably the first flying animals, and so on). He
also specifies whether or not it should be moderated.

Discussion then ensues. When it settles down, an email vote is taken. The
votes are posted, identifying who voted which way (to prevent fraud). If the yeas
outnumber the nays by more than 2: 1 and there were at least 100 more yeas than
nays, the moderator of news.groups posts a message accepting the new news
group. This message is the signal to system administrators worldwide that the
new newsgroup has been blessed by the powers that be and is now official.

New group creation is less formal in the alt hierarchy and this is, in fact, the
reason alt exists. Some of the newsgroups there are so close to the legal and
moral edge of what is tolerable that they would never have been accepted in a
public vote. In effect, the people who supported them, just bypassed the normal
procedure and created their own hierarchy. Nevertheless, much of the alt hierar
chy is fairly conventional.

7.5.2. How USENET Is Implemented

Some of the smaller news groups are implemented as mailing lists. To post
an article to such a mailing list, one sends it to the mailing list address, which
causes copies to be sent to each address on the mailing list.

However, if half the undergraduates at a large university subscribed to alt.sex,
the servers there would collapse under the weight of the incoming email. Conse
quently, USENET is not generally implemented using mailing lists. Instead each
site (campus, company, or Internet service provider) stores incoming mail in a sin
gle directory, say, news, with subdirectories for comp, sci, etc. These, in turn
have subdirectories such as news/comp/os/minix. All incoming news is deposited
in the appropriate directory. News readers just fetch the articles from there as
they need them. This arrangement means that each site needs only one copy of
each news article, no matter how many people subscribe to its newsgroup. After a
few days, articles time out and are removed from the disk.

To get on USENET, a site must have a newsfeed from another site on
USENET. One can think of the set of all sites that get net news as the nodes of a
directed graph. The transmission lines connecting pairs of nodes form the arcs of
the graph. This graph is USENET. Note that being on the Internet is neither
necessary nor sufficient for being on USENET.

Periodically, each site that wants news can poll its newsfeed(s), asking if any
new news has arrived since the previous contact. If so, that news is collected and
stored in the appropriate subdirectory of news. In this manner, news diffuses
around the network. It is equally possible for the newsfeed, rather than the
receiver, to take the initiative and make contact when there is enough new news.
Initially, most sites polled their newsfeeds, but now it is mostly the other way.

Not every site gets all newsgroups. There are several reasons here. First, the
total newsfeed exceeds 500 MB per day and is growing rapidly. Storing it all

Ex.1006.693DELL

676 THE APPLICATION LA YER CHAP. 7

would require a very large amount of disk space. Second, transmission time and
cost are issues. At 28.8 kbps, it takes 39 hours and a dedicated telephone line to
transmit 24 hours worth of news. Even at 56 kbps, getting everything requires
having a dedicated line for almost 20 hours a day. In fact, the total volume has
now gotten so large that newsfeeds via satellite have been created.

Third, not every site is interested in every topic. For example, it is unlikely
that many people at companies in Finland want to read rec.arts.manga (about
Japanese comic books). Finally, some newsgroups are a bit too funky for the
tastes of many system administrators, who then ban them, despite considerable
local interest. In Dec. 1995, the worldwide CompuServe network (temporarily)
stopped carrying all newsgroups with "sex" in the name because some minor
German official thought this would be a good way to combat pornography. The
ensuing uproar was predictable, instantaneous, worldwide, and very loud.

News articles have the same format as RFC 822 email messages, but with the
addition of a few extra headers. This property makes them easy to transport and
compatible with most of the existing email software. The news headers are
defined in RFC 1036 An example article is shown in Fig. 7-55.

From: Vogel@nyu.edu
Message-Id: <54731@nyu.edu>
Subject: Bird Sighting
Path: cs. vu.nl!sun4nl ! EU .net!news.sprintlink.net!in2 .uu .net!pc144.nyu .edu!news
Newsgroups: rec.birds
Followup-To: rec.birds
Distribution: world
Nntp-Posting-host: nuthatch.bio.nyu.edu
References:
Organization: New York University
Lines: 4
Summary: Guess what I saw

I just saw an ostrich on 52nd St. and Fifth Ave. in New York. Is this their migration
season? Did anybody else see it?

Jay Vogel

Fig. 7-55. A sample news article.

A few words about the news headers are perhaps in order. The Path: header
is the list of nodes the message traversed to get from the poster to the recipient.
At each hop, the forwarding machine puts its name at the front of the list. This
list gives a path back to the poster. The use of exclamation marks (pronounced:
bang) go back to USENET addresses, which predate DNS.

The Newsgroups: header tells which newsgroups the message belongs to. It
may contain more than one newsgroup name. Any message crossposted to

Ex.1006.694DELL

SEC. 7.5 USENET NEWS 677

multiple newsgroups will contain all of their names. Because multiple names are
allowed here, the Followup-To: header is needed to tell people where to post com
ments and reactions to put all of the subsequent discussion in one newsgroup.

The Distribution: header tellls how far to spread the posting. It may contain
one or more state or country codes, the name of a specific site or network, or
"world."

The Nntp-Posting-Host: header is analogous to the RFC 822 Sender: header.
It tells which machine actually posted the article, even if it was composed on a
different machine (NNTP is the news protocol, described below).

The References: header indicates that this article is a response to an earlier
article and gives the ID of that article. It is required on all follow-up articles and
prohibited when starting a new discussion.

The Organization: header can be used to tell what company, university, or
agency the poster is affiliated with. Articles that fill in this header often have a
disclaimer at the end saying that if the article is goofy, it is not the organization's
fault.

The Lines: header gives the length of the body. The header lines and the
blank line separating the header from the body do not count.

The Subject: lines tie discussion threads together. Many news readers have a
command to allow the user to see the next article on the current subject, rather
than the next article that came in. Also, killfiles and kill commands use this
header to know what to reject.

Finally, the Summary: is normally used to summarize the follow-up article.
On follow-up articles, the Subject: header contains "Re: " followed by the origi
nal subject.

NNTP-Network News Transfer Protocol

Now let us look at how articles diffuse around the network. The initial algo
rithm just flooded articles onto every line within USENET. While this worked for
a while, eventually the volume of traffic made this scheme impractical, so some
thing better had to be worked out.

Its replacement was a protocol called NNTP (Network News Transfer Pro
tocol), which is defined in RFC 977. NNTP has something of the same flavor as
SMTP, with a client issuing commands in ASCII and a server issuing responses as
decimal numbers coded in ASCII. Most USENET machines now use NNTP.

NNTP was designed for two purposes. The first goal was to allow news arti
cles to propagate from one machine to another over a reliable connection (e.g.,
TCP). The second goal was to allow users whose desktop computers cannot
receive news to read news remotely. Both are widely used, but we will concen
trate on how news articles spread out over the networ~ using NNTP.

As mentioned above, two general approaches are possible. In the first one,
news pull, the client calls one of its newsfeeds and asks for new news. In the

Ex.1006.695DELL

678 THE APPLICATION LA YER CHAP. 7

second one, news push, the newsfeed calls the client and announces that it has
news. The NNTP commands support both of these approaches, as well as having
people read news remotely.

To acquire recent articles, a client must first establish a TCP connection with
port 119 on one of its newsfeeds. Behind this port is the NNTP daemon, which is
either there all the time waiting for clients or is created on the fly as needed.
After the connection has been established, the client and server communicate
using a sequence of commands and responses. These commands and responses
are used to ensure that the client gets all the articles it needs, but no duplicates, no
matter how many newsfeeds it uses. The main ones used for moving articles
between news daemons are listed in Fig. 7-56.

Command Meaning

LIST Give me a list of all newsgroups and articles you have

NEWGROUPS date time Give me a list of newsgroups created after date/time

GROUP grp Give me a list of all articles in grp

NEWNEWS grps date time Give me a list of new articles in specified groups

ARTICLE id Give me a specific article

POST I have an article for you that was posted here

IHAVE id I have article id. Do you want it?

QUIT Terminate the session

Fig. 7-56. The principal NNTP commands for news diffusion.

The LIST and NEWGROUPS commands allow the client to find out which
groups the server has. The former gives the complete list. The latter gives only
those groups created after the date and time specified. If the client knows the list
is long, it is more efficient for the client to keep track of what each of its
newsfeeds has and just ask for updates. The responses to each of these commands
is a list, in ASCII, one newsgroup per line, giving the name of the newsgroup, the
number of the last article the server has, the number of the first article the server
has, and a flag telling whether posting to this newsgroup is allowed.

Once the client knows which newsgroups the server has, it can begin asking
about what articles the server has (e.g., for old newsgroups when NEWGROUPS
is used). The GROUP and NEWNEWS commands are used for this purpose.
Again, the former gives the full list and the latter gives only updates subsequent to
the indicated date and time, normally the time of the last connection to this
newsfeed. The first parameter may contain asterisks, meaning all of them. For
example, comp.as.* means all the newsgroups that start with the string comp.as.

After the client has assembled a complete list of which articles exist in which
groups (or even before it has the full list), it can begin to ask for the articles it

Ex.1006.696DELL

SEC. 7.5 USENET NEWS 679

needs using the ARTICLE command. Once all the required articles are in, the
client can off er articles it has acquired from other newsfeeds using the IHA VE
command and articles that were posted locally using the POST command. The
server can accept or decline these, as it wishes. When the client is done, it can
terminate the session using QUIT. In this way, each machine has complete con
trol over which articles it gets from which newsfeeds, eliminating all duplicate
articles.

As an example of how NNTP works, consider an information provider,
wholesome.net that wants to avoid controversy at all costs, so the only news
groups it offers are soc.couples and misc.kids. Nevertheless, management is open
minded and willing to carry other newsgroups, provided they contain no material
potentially offensive to anyone. Therefore, it wants to be informed of all newly
created groups so it can make an informed decision for its customers. A possible
scenario between wholesome.com acting as the client and its newsfeed,
feeder.com, acting as the server, is shown in Fig. 7-57. This scenario uses the
news pull approach (the client initiates the connection to ask for news). The
remarks in parentheses are comments and not part of the NNTP protocol.

In this session, wholesome.com first asks if there is any news for soc.couples.
When it is told there are two articles, it fetches both of them and stores them in
news/soc/couples as separate files. Each file is named by its article number.
Then wholesome.com asks about misc.kids and is told there is one article. It
fetches that one and puts it in news/misc/kids.

Having gotten all the news about the groups it carries, it now checks for new
groups and is told that two new groups have appeared since the last session. One
of them looks promising, so its articles are fetched. The other looks scary, so it is
not taken. (Wholesome.com has made a big investment in AI software to be able
to figure out what to carry just by looking at the names.)

After having acquired all the articles it wants, wholesome.com offers
feeder.com a new article posted by someone at its site. The offer is accepted and
the articl~ is transferred. Now wholesome.com offers another article, one that
came from its other newsfeed. Since feeder.com already has this one, it declines.
Finally, wholesome.com ends the session and releases the TCP connection.

The news push approach is similar. It begins with the newsfeed calling the
machine that is to receive the news. The newsfeed normally keeps track of which
newsgroups its customers subscribe to and begins by announcing its first article in
the first of these newsgroups using the IHA VE command. The potential recipient
then checks its tables to see whether it already has the article, and can accept or
reject it. If the article is accepted, it is transmitted, followed by a line containing
a period. Then the newsfeed advertises the second article, and so forth, until all
the news has been transferred.

A problem with both news pull and news push is that they use stop and wait.
Typically 100 msec are lost waiting for an answer to a question. With 100,000 or
more news articles per day, this lost time adds up to a substantial overhead.

Ex.1006.697DELL

680 THE APPLICATION LA YER CHAP. 7

S: 200 feeder.com NNTP server at your service(response to new connection)
C: NEWNEWS soc.couples 960901 030000 (any new news in soc.couples?)

S: 230 List of 2 articles follows
S: <13281@psyc.berkeley.edu> (article 1 of 2 in soc.couples is from Berkeley)
S: <162721@aol.com> (article 2 of 2 in soc.couples is from AOL)
S: . (end of list)

C: ARTICLE <13281@psyc.berkeley.edu> (please give me the Berkeley article)
S: 220 <13281@psyc.berkeley.edu> follows
S: (entire article <13281@psyc.berkeley.edu> is sent here)
S:. (end of article)

C: ARTICLE <162721@aol.com> (please give me the AOL article)
S: 220 <162721@aol.com> follows
S: (entire article <162721@aol.com> is sent here)
S: . (end of article)

C: NEWNEWS misc.kids 960901 030000 (any new news in misc.kids?)
S: 230 List of 1 article follows
S: <43222@bio.rice.edu> (1 article from Rice)
S: . (end of list)

C: ARTICLE <43222@bio.rice.edu>(please give me the Rice article)
S: 220 <43222@bio.rice.edu> follows
S: (entire article <43222@bio.rice.edu> is sent here)
S: . (end of article)

C: NEWGROUPS 960901 030000
S: 231 2 new groups follow
S: rec.pets
S: rec.nude
S:.

C: NEWNEWS rec.pets 0 0 (list everything you have)
S: 230 List of 1 article follows
S: <124@fido.net> (1 article from fido.net)
S:. (end of list)

C: ARTICLE <124@fido.net> (please give me the fido.net article)
S: 220 <124@fido.net> follows
S: (entire article is sent here)
S:.

C:POST
S: 340 (please send your posting)

C: (article posted on wholesome.com sent here)
S: 240 (article received)

C: IHAVE <5321 @foo.com>
S: 435 (I already have it, please do not send it)

C: QUIT
S: 205 (Have a nice day)

Fig. 7-57. How wholesome.com might acquire news articles from its newsfeed.

Ex.1006.698DELL

SEC. 7.6 THE WORLD WIDE WEB 681

7.6. THE WORLD WIDE WEB

The World Wide Web is an architectural framework for accessing linked
documents spread out over thousands of machines all over the Internet. In 5
years, it went from being a way to distribute high-energy physics data to the appli
cation that millions of people think of as being "The Internet." Its enormous
popularity stems from the fact that it has a colorful graphical interface that is easy
for beginners to use, and it provides an enormous wealth of information on almost
every conceivable subject, from aboriginals to zoology.

The Web (also known as WWW) began in 1989 at CERN, the European
center for nuclear research. CERN has several accelerators at which large teams
of scientists from the participating European countries carry out research in parti
cle physics. These teams often have members from half a dozen or more coun
tries. Most experiments are highly complex, and require years of advance plan
ning and equipment construction. The Web grew out of the need to have these
large teams of internationally dispersed researchers collaborate using a constantly
changing collection of reports, blueprints, drawings, photos, and other documents.

The initial proposal for a web of linked documents came from CERN physi
cist Tim Berners-Lee in March 1989. The first (text-based) prototype was opera
tional 18 months later. In December 1991, a public demonstration was given at
the Hypertext '91 conference in San Antonio, Texas. Development continued
during the next year, culminating in the release of the first graphical interface,
Mosaic, in February 1993 (Vetter et al., 1994).

Mosaic was so popular that a year later, its author, Marc Andreessen left the
National Center for Supercomputing Applications, where Mosaic was developed,
to form a company, Netscape Communications Corp., whose goal was to develop
clients, servers, and other Web software. When Netscape went public in 1995,
investors, apparently thinking this was the next Microsoft, paid 1.5 billion dollars
for the stock. This record was all the more surprising because the company had
only one product, was operating deeply in the red, and had announced in its pros
pectus that it did not expect to make a profit for the foreseeable future.

In 1994, CERN and M.I.T. signed an agreement setting up the World Wide
Web Consortium, an organization devoted to further developing the Web,
standardizing protocols, and encouraging interoperability between sites. Berners
Lee became the director. Since then, hundreds of universities and companies
have joined the consortium. M.I.T. runs the U.S. part of the consortium and the
French research center, INRIA, runs the European part. Although there are more
books about the Web than you can shake a stick at, the best place to get up-to-date
information about the Web is (naturally) on the Web itself. The consortium's
home page can be found at http://www.w3.org . Interested readers are referred
there for links to pages covering all of the consortium's documents and activities.

In the following sections we will describe how the Web appears to the user,
and, especially, how it works inside. Since the Web is basically a client-server

Ex.1006.699DELL

682 THE APPLICATION LA YER CHAP. 7

system, we will discuss both the client (i.e., user) side and the server side. Then
we will examine the language in which Web pages are written (HTML and Java).
Finally, comes an examination of how to find information on the Web.

7.6.1. The Client Side

From the users' point of view, the Web consists of a vast, worldwide collec
tion of documents, usually just called pages for short. Each page may contain
links (pointers) to other, related pages, anywhere in the world. Users can follow a
link (e.g., by clicking on it), which then takes them to the page pointed to. This
process can be repeated indefinitely, possibly traversing hundreds of linked pages
while doing so. Pages that point to other pages are said to use hypertext.

Pages are viewed with a program called a browser, of which Mosaic and
Netscape are two popular ones. The browser fetches the page requested, inter
prets the text and formatting commands that it contains, and displays the page,
properly formatted, on the screen. An example is given in Fig. 7-58(a). Like
many Web pages, this one starts with a title, contains some information, and ends
with the email address of the page's maintainer. Strings of text that are links to
other pages, called hyperlinks, are highlighted, either by underlining, displaying
them in a special color, or both. To follow a link, the user places the cursor on the
highlighted area (using the mouse or the arrow keys) and selects it (by clicking a
mouse button or hitting ENTER). Although nongraphical browsers, such as Lynx,
exist, they are not as popular as graphical browsers, so we will concentrate on the
latter. Voice-based browsers are also being developed.

Users who are curious about the Department of Animal Psychology can learn
more about it by clicking on its (underlined) name. The browser then fetches the
page to which the name is linked and displays it, as shown in Fig. 7-58(b). The
underlined items here can also be clicked on to fetch other pages, and so on. The
new page can be on the same machine as the first one, or on a machine halfway
around the globe. The user cannot tell. Page fetching is done by the browser,
without any help from the user. If the user ever returns to the main page, the links
that have already been followed may be shown with a dotted underline (and possi
bly a different color) to distinguish them from links that have not been followed.
Note that clicking on the Campus Information line in the main page does nothing.
It is not underlined, which means that it is just text and is not linked to another
page.

Most browsers have numerous buttons and features to make it easier to navi
gate the Web. Many have a button for going back to the previous page, a button
for going forward to the next page (only operative after the user has gone back
from it), and a button for going straight to the user's own home page. Most
browsers have a button or menu item to set a bookmark on a given page and
another one to display the list of bookmarks, making it possible to revisit any of

Ex.1006.700DELL

SEC. 7.6 THE WORLD WIDE WEB

WELCOME TO THE UNIVERSITY OF EAST PODUNK'S WWW HOME PAGE

• Campus Information

o Admissions information

o Campus map

o Directions to campus

o The UEP student body

• Academic Departments

o Q_fillartment of Animal Psychology

o Department of Alternative Studies

o Department of Microbiotic Cooking

o Department of Nontraditional Studies

o Department of Traditional Studies

Webmaster@ eastpod u n k. edu

(a)

THE DEPARTMENT OF ANIMAL PSYCHOLOGY

• Information for prospective majors

• Personnel

o Faculty members

o Graduate students

o Nonacademic staff

• Research Projects

• Positions available

• Our most popular courses

o Dealing with herbivores

o Horse management

o l'-lfillotiating with your pet

o User-friendly doghouse construction

• Full list of courses

Webmaster@animalpsyc.eastpodunk.edu

(b)

Fig. 7-58. (a) A Web page. (b) The page reached by clicking on
Department of Animal Psychology

683

Ex.1006.701DELL

684 THE APPLICATION LA YER CHAP. 7

them with a single mouse click. Pages can also be saved to disk or printed.
Numerous options are generally available for controlling the screen layout and
setting various user preferences. A comparison of nine browsers is given in (Ber
ghel, 1996).

In addition to having ordinary text (not underlined) and hypertext (under
lined), Web pages can also contain icons, line drawings, maps, and photographs.
Each of these can (optionally) be linked to another page. Clicking on one of these
elements causes the browser to fetch the linked page and display it, the same as
clicking on text. With images such as photos and maps, which page is fetched
next may depend on what part of the image was clicked on.

Not all pages are viewable in the conventional way. For example, some pages
consist of audio tracks, video clips, or both. When hypertext pages are mixed
with other media, the result is called hypermedia. Some browsers can display all
kinds of hypermedia, but others cannot. Instead they check a configuration file to
see how to handle the received data. Normally, the configuration file gives the
name of a program, called an external viewer, or a helper application, to be run
with the incoming page as input. If no viewer is configured, the browser usually
asks the user to choose one. If no viewer exists, the user can tell the browser to
save the incoming page to a disk file, or to discard it. Helper applications for pro
ducing speech are making it possible for even blind users to access the Web.
Other helper applications contain interpreters for special Web languages, making
it possible to download and run programs from Web pages. This mechanism
makes it possible to extend the functionality of the Web itself.

Many Web pages contain large images, which take a long time to load. For
example, fetching an uncompressed 640 x 480 (VGA) image with 24 bits per
pixel (922 KB) takes about 4 minutes over a 28.8-kbps modem line. Some
browsers deal with the slow loading of images by first fetching and displaying the
text, then getting the images. This strategy gives the user something to read while
the images are coming in and also allows the user to kill the load if the page is not
sufficiently interesting to warrant waiting. An alternative strategy is to provide an
option to disable the automatic fetching and display of images.

Some page writers attempt to placate potentially bored users by displaying
images in a special way. First the image quickly appears in a coarse resolution.
Then the details are gradually filled in. For the user, seeing the whole image after
a few seconds, albeit at low resolution, is often preferable to seeing it built up
slowly from the top, scan line by scan line.

Some Web pages contain forms that request the user to enter information.
Typical applications of these forms are searching a database for a user-supplied
item, ordering a product, or participating in a public opinion survey. Other Web
pages contain maps that allow users to click on them to zoom in or get informa
tion about some geographical area. Handling forms and active (clickable) maps
requires more sophisticated processing than just fetching a known page. We will
describe later how these features are implemented.

Ex.1006.702DELL

SEC. 7.6 THE WORLD WIDE WEB 685

Some browsers use the local disk to cache pages that they have fetched.
Before a page is fetched, a check is made to see if it is in the local cache. If so, it
is only necessary to check if the page if still up to date. If so, the page need not be
loaded again. As a result, clicking on the BACK button to see the previous page is
normally very fast.

To host a Web browser, a machine must be directly on the Internet, or at least
have a SLIP or PPP connection to a router or other machine that is directly on the
Internet. This requirement exists because the way a browser fetches a page is to
establish a TCP connection to the machine where the page is, and then send a
message over the connection asking for the page. If it cannot establish a TCP
connection to an arbitrary machine on the Internet, a browser will not work.

Sometimes the lengths that people will go to get Web access are amazing. At
least one company is offering Web-by-Fax service. A client without Internet
access calls up the Web-by-Fax server and logs in using the telephone keypad.
He then types in a code identifying the Web page desired and it is faxed to the
caller's fax machine.

7 .6.2. The Server Side

Every Web site has a server process listening to TCP pbrt 80 for incoming
connections from clients (normally browsers). After a connection has been esta
blished, the client sends one request and the server sends one reply. Then the con
nection is released. The protocol that defines the legal requests and replies is
called HTTP. We will study it in some detail below, but a simple example using
it may provide a reasonable idea of how Web servers work. Figure 7-59 shows
how the various parts of the Web model fit together.

For this example, we can imagine that the user has just clicked on some piece
of text or perhaps on an icon that points to the page whose name (URL-Uniform
Resource Locator) is http://www.w3.org/hypertext!WWW!I'heProject.html. We
will also explain URLs later on in this chapter. For the moment, it is sufficient to
know that a URL has three parts: the name of the protocol (http), the name of the
machine where the page is located (www.w3.org), and the name of the file con
taining the page (hypertext/WWW!I'heProject.html). The steps that occur between
the user's click and the page beilng displayed are as follows:

1. The browser determines the URL (by seeing what was selected).

2. The browser asks DNS: for the IP address of www.w3.org.

3. DNS replies with 18.23.0.23.

4. The browser makes a TCP connection to port 80 on 18.23.0.23.

5. It then sends a GET lhypertext/WWW!I'heProject.html command.

6. The www.w3.org server sends the file TheProject.html.

Ex.1006.703DELL

686

Client

THE APPLICATION LA YER

Current page
displayed by
browser

Browser
program

HTTP used over
~ this TCP connection

Server
abc.com

Hyperlink

to xyz.com

HTTP
Server

Server
xyz.com

=

Iii!.!'..!!.
JI/ii/}

The lnterne"-'-t _______ _

Fig. 7-59. The parts of the Web model.

7. The TCP connection is released.

8. The browser displays all the text in TheProject.html.

9. The browser fetches and displays all images in TheProject.html.

CHAP. 7

HTTP
Server

Many browsers display which step they are currently executing in a status line
at the bottom of the screen. In this way, when the performance is poor, the user
can see if it is due to DNS not responding, the server not responding, or simply
network congestion during page transmission.

It is worth noting that for each in-line image (icon, drawing, photo, etc.) on a
page, the browser establishes a new TCP connection to the relevant server to fetch
the image. Needless to say, if a page contains many icons, all on the same server,
establishing, using, and releasing a new connection for each one is not wildly effi
cient, but it keeps the implementation simple. Future revisions of the protocol
will address the efficiency issue. One proposal is given in (Mogul, 1995).

Because HTTP is an ASCII protocol like SMTP, it is quite easy for a person
at a terminal (as opposed to a browser) to directly talk to Web servers. All that is
needed is a TCP connection to port 80 on the server. The simplest way to get
such a connection is to use the Telnet program. Figure 7-60 shows a scenario of
how this can be done. In this example, the lines marked C: are typed in by the
user (client), the lines marked T: are produced by the Telnet program, and the
lines marked S: are produced by the server at M.I.T.

Ex.1006.704DELL

686 THE APPLICATION LAYER CHAP. 7

Server Server

Client abc.com xyzZ.com
Current page
displayed by
browser

 Hyperlink

to abc.com Hyperlink

Browser

program

to xyz.com
 HTTP

Server

HTTP used over
——~ this TCP connectionee

>
The Internetoe

Fig. 7-59. The parts of the Web model.

7. The TCP connectionis released.

8. The browser displaysall the text in TheProject.html.

9. The browser fetches and displays all images in TheProject.htmil.

Many browsers display which step they are currently executing in a status line
at the bottom of the screen. In this way, when the performance is poor, the user
can see if it is due to DNS not responding, the server not responding, or simply
network congestion during page transmission.

It is worth noting that for each in-line image (icon, drawing, photo, etc.) on a
page, the browser establishes a new TCP connection to the relevant server to fetch
the image. Needless to say, if a page contains many icons, all on the sameserver,
establishing, using, and releasing a new connection for each oneis not wildly effi-
cient, but it keeps the implementation simple. Future revisions of the protocol
will address the efficiency issue. One proposal is given in (Mogul, 1995).

Because HTTP is an ASCHprotocol like SMTP,it is quite easy for a person
at a terminal (as opposed to a browser) to directly talk to Web servers. All that is
needed is a TCP connection to port 80 on the server. The simplest way to get
such a connection is to use the Telnet program. Figure 7-60 shows a scenario of
how this can be done. In this example, the lines marked C: are typed in by the
user (client), the lines marked 7: are produced by the Telnet program, and the
lines marked S: are produced by the server at M.1.T.

DELL Ex.1006.704

SEC. 7.6

C: telnet www.w3.org 80
T: Trying 18.23.0.23 ...

THE WORLD WIDE WEB

T: Connected to www.w3.org.
T: Escape character is '"]'.
C: GET /hypertext/WWW/TheProject.html HTTP/1.0
C:

S: HTTP/1.0 200 Document follows
S: MIME-Version: 1.0
S: Server: CERN/3.0
S: Content-Type: text/html
S: Content-Length: 8247
S:

687

S: .<HEAD> <TITLE> The World Wide Web Consortium (W3C) <!TITLE> </HEAD>
S: <BODY>
S: <H1 >
S: The World Wide Web Consortium </H1 > <P>
S:
S: The World Wide Web is the universe of network-accessible information.
S: The World Wide Web Consortium <IA>
S: exists to realize the full potential of the Web. <P>
S:
S: W3C works with the global community to produce
S: specifications and
S: reference software <IA> .
S: W3C is funded by industrial
S: members <IA>
S: but its products are freely available to all. <P>
S:
S: In this document:
S: <menu>
S: Web Specifications and Development Areas <IA>
S: Web Software <IA>
S: The World Wide Web and the Web Community <IA>
S: Getting involved with the W3C <IA>
S: </menu>
S: <P> <HR>
S: <P> W3C is hosted by the
S: Laboratory for Computer Science at
S: MIT <IA> , and
S: in Europe by INRIA <IA> .
S: </BODY>

Fig. 7-60. A sample scenario for obtaining a Web page.

Ex.1006.705DELL

688 THE APPLICATION LAYER CHAP. 7

Readers are encouraged to try this scenario personally (preferably from a
UNIX system, because some other systems do not return the connection status).
Be sure to note the spaces and the protocol version on the GET line, and the blank
line following the GET line. As an aside, the actual text that will be received will
differ from what is shown in Fig. 7-60 for three reasons. First, the example output
here has been abridged and edited to make it fit on one page. Second, it has been
cleaned up somewhat to avoid embarrassing the author, who no doubt expected
thousands of people to examine the formatted page, but zero people to scrutinize
the HTML that produced it. Third, the contents of the page are constantly being
revised. Nevertheless, this example should give a reasonable idea of how HTTP
works.

What the example shows is the following. The client, in this case a person,
but normally a browser, first connects to a particular host and then sends a com
mand asking for a particular page and specifying a particular protocol and version
to use (HTTP/LO). On line 7, the server responds with a status line telling the
protocol it is using (the same as the client) and the code 200, meaning OK. This
line is followed by an RFC 822 MIME message, of which five of the header lines
are shown in the figure (several others have been omitted to save space). Then
comes a blank line, followed by the message body. For sending a picture, the
Content-Type field might be

Content-Type: lmage/GIF

In this way, the MIME types allow arbitrary objects to be sent in a standard way.
As an aside, the MIME Content-Transfer-Encoding header is not needed because
TCP allows arbitrary byte streams, even pictures, to be sent without modification.
The meaning of the commands within angle brackets used in the sample page will
be discussed later in this chapter.

Not all servers speak HTTP. In particular, many older servers use the FTP,
Gopher, or other protocols. Since a great deal of useful information is available
on FTP and Gopher servers, one of the design goals of the Web was to make this
information available to Web users. One solution is to have the browser use these
protocols when speaking to an FTP or Gopher server. Some of them, in fact, use
this solution, but making browsers understand every possible protocol makes them
unnecessarily large.

Instead, a different solution is often used: proxy servers (Luotonen and Altis,
1994). A proxy server is a kind of gateway that speaks HTTP to the browser but
FTP, Gopher, or some other protocol to the server. It accepts HTTP requests and
translates them into, say, FTP requests, so the browser does not have to under
stand any protocol except HTTP. The proxy server can be a program running on
the same machine as the browser, but it can also be on a free-standing machine
somewhere in the network serving many browsers. Figure 7-61 shows the differ
ence between a browser that can speak FTP and one that uses a proxy.

Ex.1006.706DELL

SEC. 7.6 THE WORLD WIDE WEB

HTTP

Browser FTP Reply

FTP Request B
1--~~~-~~~---- s:;:er

~--~

FTP Request
FTP

HTTP HTTP Request

Browser
HTTP Reply

Proxy
FTP Reply

Fig. 7-61. (a) A browser that speaks FTP. (b) A browser that does not.

689

FTP
Server

Often users can configure their browsers with proxies for protocols that the
browsers do not speak. In this way, the range of information sources to which the
browser has access is increased.

In addition to acting as a go-between for unknown protocols, proxy servers
have a number of other important functions, such as caching. A caching proxy
server coHects and keeps all the pages that pass through it. When a user asks for a
page, the proxy server checks to see if it has the page. If so, it can check to see if
the page is still current. In the event that the page is still current, it is passed to
the user. Otherwise, a new copy is fetched.

Finally, an organization can put a proxy server inside its firewall to allow
users to access the Web, but without giving them full Internet access. In this con
figuration,, users can talk to the proxy server, but it is the proxy server that con
tacts remote sites and fetches pages on behalf of its clients. This mechanism can
be used, for example, by high schools, to block access to Web sites the principal
feels are inappropriate for tender young minds.

For information about one of the more popular Web servers (NCSA's HTTP
daemon) and its performance, see (Katz et al., 1994; and Kwan et al., 1995).

HTTP-HyperText Transfer Protocol

The standard Web transfer protocol is HTTP (HyperText Transfer Proto
col). Each interaction consists of one ASCII request, followed by one RFC 822
MIME-like response. Although the use of TCP for the transport connection is
very common, it is not formally required by the standard. If ATM networks
become reliable enough, the HTTP requests and replies could be carried in AAL 5
messages just as well.

HTTP is constantly evolving. Several versions are in use and others are under
development. The material presented below is relatively basic and is unlikely to
change in concept, but some details may be a little different in future versions.

Ex.1006.707DELL

690 THE APPLICATION LA YER CHAP. 7

The HTTP protocol consists of two fairly distinct items: the set of requests
from browsers to servers and the set of responses going back the other way. We
will now treat each of these in turn.

All the newer versions of HTTP support two kinds of requests: simple
requests and full requests. A simple request is just a single GET line naming the
page desired, without the protocol version. The response is just the raw page,
with no headers, no MIME, and no encoding. To see how this works, try making
a Telnet connection to port 80 of www.w3.org (as shown in the first line of
Fig. 7-60) and then type

GET /hypertext/WWW/TheProject.html

but without the HTTP/1.0 this time. The page will be returned with no indication
of its content type. This mechanism is needed for backward compatibility. Its use
will decline as browsers and servers based on full requests become standard.

Full requests are indicated by the presence of the protocol version on the GET
request line, as in Fig. 7-60. Requests may consist of multiple lines, followed by
a blank line to indicate the end of the request, which is why the blank line was
needed in Fig. 7-60. The first line of a full request contains the command (of
which GET is but one of the possibilities), the page desired, and the
protocol/version. Subsequent lines contain RFC 822 headers.

Although HTTP was designed for use in the Web, it has been intentionally
made more general than necessary with an eye to future object-oriented applica
tions. For this reason, the first word on the full request line is simply the name of
the method (command) to be executed on the Web page (or general object). The
built-in methods are listed in Fig. 7-62. When accessing general objects, addi
tional object-specific methods may also be available. The names are case sensi
tive, so, GET is a legal method but get is not.

Method Description

GET Request to read a \ Neb page

HEAD Request to read a \ Neb page's header
~---

PUT Request to store a Web page

POST Append to a namec l resource (e.g., a Web page)

DELETE Remove the Web p 1age

LINK Connects two exist ing resources

UNLINK Breaks an existing connection between two resources

Fig. 7-62. The built-in HTTP request methods.

The GET method requests the server to send the page (by which we mean
object, in the most general case), suitably encoded in MIME. However, if the

Ex.1006.708DELL

SEC. 7.6 THE WORLD WIDE WEB 691

GET request is followed by an If-Modified-Since header, the server only sends the
data if it has been modified since the date supplied. Using this mechanism, a
browser that is asked to display a cached page can conditionally ask for it from
the server, giving the modification time associated with the page. If the cache
page is still valid, the server just sends back a status line announcing that fact,
thus eliminating the overhead of transferring the page again.

The HEAD method just asks for the message header, without the actual page.
This method can be used to get a page's time of last modification, to collect infor
mation for indexing purposes, or just to test a URL for validity. Conditional
HEAD requests do not exist.

The PUT method is the reverse of GET: instead of reading the page, it writes
the page. This method makes it possible to build a collection of Web pages on a
remote server. The body of the request contains the page. It may be encoded
using MIME, in which case the lines following the PUT might include Content
Type and authentication headers, to prove that the caller indeed has permission to
perform the requested operation.

Somewhat similar to PUT is the POST method. It too bears a URL, but
instead of replacing the existing data, the new data is "appended" to it in some
generalized sense. Posting a message to a news group or adding a file to a bul
letin board system are examples of appending in this context. It is clearly the
intention here to have the Web take over the functionality of the USENET news
system.

DELETE does what you might expect: it removes the page. As with PUT,
authentication and permission play a major role here. There is no guarantee that
DELETE succeeds, since even if the remote HTTP server is willing to delete the
page, the underlying file may have a mode that forbids the HTTP server from
modifying or removing it.

The LINK and UNLINK methods allow connections to be established between
existing pages or other resources.

Every request gets a response consisting of a status line, and possibly addi
tional information (e.g., all or part of a Web page). The status line can bear the
code 200 (OK), or any one of a variety of error codes, for example 304 (not modi
fied), 400 (bad request), or 403 (forbidden).

The HTTP standards describe message headers and bodies in considerable
detail. Suffice it to say that these are very close to RFC 822 MIME messages, so
we will not look at them here.

7.6.3. Writing a Web Page in HTML

Web pages are written in a language called HTML (HyperText Markup
Language). HTML allows users to produce Web pages that include text, graph
ics, and pointers to other Web pages. We will begin our study of HTML with
these pointers, since they are the glue that holds the Web together.

Ex.1006.709DELL

692 THE APPLICATION LA YER CHAP. 7

URLs-Uniform Resource Locators

We have repeatedly said that Web pages may contain pointers to other Web
pages. Now it is time to see how these pointers are implemented. When the Web
was first created, it was immediately apparent that having one page point to
another Web page required mechanisms for naming and locating pages. In partic
ular, there were three questions that had to be answered before a selected page
could be displayed:

1. What is the page called?

2. Where is the page located?

3. How can the page be accessed?

If every page were somehow assigned a unique name, there would not be any
ambiguity in identifying pages. Nevertheless, the problem would not be solved.
Consider a parallel between people and pages. In the United States, almost every
one has a social security number, which is a unique identifier, as no two people
have the same one. Nevertheless, armed only with a social security number, there
is no way to find the owner's address, and certainly no way to tell whether you
should write to the person in English, Spanish, or Chinese. The Web has basically
the same problems.

The solution chosen identifies pages in a way that solves all three problems at
once. Each page is assigned a URL (Uniform Resource Locator) that effec
tively serves as the page's worldwide name. URLs have three parts: the protocol
(also called a scheme), the DNS name of the machine on which the page is
located, and a local name uniquely indicating the specific page (usually just a file
name on the machine where it resides). For example, the URL for the author's
department is

http://www.cs.vu.nl/welcome.html

This URL consists of three parts: the protocol (http), the DNS name of the host
(www.cs.vu.nl), and the file name (welcome.html), with certain punctuation
separating the pieces.

Many sites have certain shortcuts for file names built in. For example, -user/
might be mapped onto user's WWW directory, with the convention that a refer
ence to the directory itself implies a certain file, say, index.html. Thus the
author's home page can be reached at

http://www.cs.vu.nl/-ast/

even though the actual file name is different. At many sites, a null file name
defaults to the organization's home page.

Now it should be clear how hypertext works. To make a piece of text click
able, the page writer must provide two items of information: the clickable text to

Ex.1006.710DELL

SEC. 7.6 THE WORLD WIDE WEB 693

be displayed and the URL of the page to go to if the text is selected. When the
text is selected, the browser looks up the host name using DNS. Now armed with
the host's IP address, the browser then establishes a TCP connection to the host.
Over that connection, it sends the file name using the specified protocol. Bingo.
Back comes the page. This is precisely what we saw in Fig. 7-60.

This URL scheme is open-ended in the sense that it is straightforward to have
protocols other than HTTP. In fact, URLs for various other common protocols
have been defined, and many browsers understand them. Slightly simplified
forms of the more common ones are listed in Fig. 7-63.

Name Used for Example

http Hypertext (HTML) http://www.cs.vu.nl/-ast/

ftp FTP ftp://ftp.cs.vu.nl/pub/minix/README

file Local file /usr/suzanne/prog.c

news News group news:comp.os.rriinix

news News article news:AA0134223112@cs.utah.edu

gopher Gopher gopher://gopher.tc.umn.edu/11 /libraries

mailto Sending email mailto:kim@acm.org

telnet Remote login telnet://www.w3.org:80

Fig. 7-63. Some commori URLs.

Let us briefly go over the list. The http protocol is the Web's native language,
the one spoken by HTTP servers. It supports all the methods of Fig. 7-62, as well
as whatever object-specific methods are needed.

The ftp protocol is used to access files by FTP, the Internet's file transfer pro
tocol. FTP has been around more than two decades and is well entrenched.
Numerous FTP servers all over the world allow people anywhere on the Internet
to log in and download whatever files have been placed on the FTP server. The
Web does not change this; it just makes obtaining files by FTP easier, as FTP has
a somewhat arcane interface. In due course, FTP will probably vanish, as there is
no particular advantage for a site to run an FTP server instead of an HTTP server,
which can do everything that the FTP server can do, and more (although there are
some arguments about efficiency).

It is possible to access a local file as a Web page, either by using the jlle pro
tocol, or more simply, by just naming it. This approach is similar to using FTP
but does not require having a server. Of course, it only works for local files.

The news protocol allows a Web user to call up a news article as though it
were a Web page. This means that a Web browser is simultaneously a news
reader. In fact, many browsers have buttons or menu items to make reading
USENET news even easier than using standard news readers.

Ex.1006.711DELL

694 THE APPLICATION LA YER CHAP. 7

Two formats are supported for the news protocol. The first format specifies a
newsgroup and can be used to get a list of articles from a preconfigured news site.
The second one requires the identifier of a specific news article to be given, in this
case AAOl34223112@cs.utah.edu. The browser then fetches the given article
from its preconfigured news site using the NNTP protocol.

The gopher protocol is used by the Gopher system, which was designed at the
University of Minnesota and named after the school's athletic teams, the Golden
Gophers (as well as being a slang expression meaning "go for", i.e., go fetch).
Gopher predates the Web by several years. It is an information retrieval scheme,
conceptually similar to the Web itself, but supporting only text and no images.
When a user logs into a Gopher server., he is presented with a menu of files and
directories, any of which can be linked to another Gopher menu anywhere in the
world.

Gopher's big advantage over the Web is that it works very well with 25 x 80
ASCII terminals, of which there are still quite a few around, and because it is text
based, it is very fast. Consequently, there are thousands of Gopher servers all
over the world. Using the gopher protocol, Web users can access Gopher and
have each Gopher menu presented as a clickable Web page. If you are not fami
liar with Gopher, try the example given in Fig. 7-63 or have your favorite Web
search engine look for "gopher."

Although the example given does not illustrate it, it is also possible to send a
complete query to a Gopher server using the gopher+ protocol. What is displayed
is the result of querying the remote Gopher server.

The last two protocols do not really have the flavor of fetching Web pages,
and are not supported by all browsers, but are useful anyway. The mailto protocol
allows users to send email from a Web browser. The way to do this is to click on
the OPEN button and specify a URL consisting of mailto: followed by the
recipient's email address. Most browsers will respond by popping up a form con
taining slots for the subject and other header lines and space for typing the mes
sage.

The telnet protocol is used to establish an on-line connection to a remote
machine. It is used the same way as the Telnet program, which is not surprising,
since most browsers just call the Telnet program as a helper application. As an
exercise, try the scenario of Fig. 7-60 again, but now using a Web browser.

In short, the URLs have been designed to not only allow users to navigate the
Web, but to deal with FTP, news, Gopher, email, and telnet as well, making all
the specialized user interface programs for those other services unnecessary, and
thus integrating nearly all Internet access into a single program, the Web browser.
If it were not for the fact that this scheme was designed by a physics researcher, it
could easily pass for the output of some software company's advertising depart
ment.

Despite all these nice properties, the growing use of the Web has turned up an
inherent weakness in the URL scheme. A URL points to one specific host. For

Ex.1006.712DELL

SEC. 7.6 THE WORLD WIDE WEB 695

pages that are heavily referenced, it is desirable to have multiple copies far apart,
to reduce the network traffic. The trouble is that URLs do not provide any way to
reference a page without simultaneously telling where it is. There is no way to
say: "I want page xyz, but I do not care where you get it." To solve this problem
and make it possible to replicate pages, the IETF is working on a system of URis
(Universal Resource Identifiers). A URI can be thought of as a generalized
URL. This topic is the subject of much current research.

Although we have discussed only absolute URLs here, relative URLs also
exist. The difference is analogous to the difference between the absolute file
name !usr/ast/foobar and just foobar when the context is unambiguously defined.

HTML-HyperText Markup Language

Now that we have a good idea of how URLs work, it is time to look at HTML
itself. HTML is an application of ISO standard 8879, SGML (Standard Gen
eralized Markup Language), but specialized to hypertext and adapted to the
Web.

As mentioned earlier, HTML is a markup language, a language for describing
how documents are to be formatted. The term "markup" comes from the old days
when copyeditors actually marked up documents to tell the printer-in those days,
a human being-which fonts to use, and so on. Markup languages thus contain
explicit commands for formatting. For example, in HTML, means start
boldface mode, and <IB> means leave boldface mode. The advantage of a
markup language over one with no explicit markup is that writing a browser for it
is straightforward: the browser simply has to understand the markup commands.
TeX and troff are other well-known examples of markup languages.

Documents written in a markup language can be contrasted to documents pro
duced with a WYSIWYG (What You See Is What You Get) word processor, such
as MS-Word® or WordPerfect®. These systems may store their files with hidden
embedded markup so they can reproduce them later, but not all of them work this
way. Word processors for the Macintosh, for example, keep the formatting infor
mation in separate data structures, not as commands embedded in the user files.

By embedding the markup commands within each HTML file and standardiz
ing them, it becomes possible for any Web browser to read and reformat any Web
page. Being able to reformat Web pages after receiving them is crucial because a
page may have been produced full screen on a 1024 x 768 display with 24-bit
color but may have to be displayed in a small window on a 640 x 480 screen with
8-bit color. Proprietary WYSIWYG word processors cannot be used on the Web
because their internal markup languages (if any) are not standardized across ven
dors, machines and operating systems. Also, they do not handle reformatting for
different-sized windows and different resolution displays. However, word pro
cessing program can offer the option of saving documents in HTML instead of in
the vendor's proprietary format, and some of them already do.

Ex.1006.713DELL

696 THE APPLICATION LA YER CHAP. 7

Like HTTP, HTML is in a constant state of flux. When Mosaic was the only
browser, the language it interpreted, HTML 1.0, was the de facto standard. When
new browsers came along, there was a need for a formal Internet standard, so the
HTML 2.0 standard was produced. HTML 3.0 was initially created as a research
effort to add many new features to HTML 2.0, including tables, toolbars,
mathematical formulas, advanced style sheets (for defining page layout and the
meaning of symbols), and more.

The official standardization of HTML is being managed by the WWW Con
sortium, but various browser vendors have added their own ad hoc extensions.
These vendors hope to get people to write Web pages using their extensions, so
readers of these pages will need the vendor's browser to properly interpret the
pages. This tendency does not make HTML standardization any easier.

Below we will give a brief introduction to HTML, just to give an idea of what
it is like. While it is certainly possible to write HTML documents with any stand
ard editor, and many people do, it is also possible to use special HTML editors
that do most of the work (but correspondingly give the user less control over all
the details of the final result).

A proper Web page consists of a head and a body enclosed by <HTML> and
</HTML> tags (formatting commands), although most browsers do not complain
if these tags are missing. As can be seen from Fig. 7-64(a), the head is bracketed
by the <HEAD> and </HEAD> tags and the body is bracketed by the <BODY>
and </BODY> tags. The commands inside the tags are called directives. Most
HTML tags have this format, that is, <SOMETHING> to mark the beginning of
something and </SOMETHING> to mark its end. Numerous other examples of
HTML are easily available. Most browsers have a menu item VIEW SOURCE or
something like that. Selecting this item displays the current page's HTML source,
instead of its formatted output.

Tags can be in either lowercase or uppercase. Thus <HEAD> and <head>
mean the same thing, but the former stands out better for human readers. Actual
layout of the HTML document is irrelevant. HTML parsers ignore extra spaces
and carriage returns since they have to reformat the text to make it fit the current
display area. Consequently, white space can be added at will to make HTML
documents more readable, something most of them are badly in need of. As
another consequence, blank lines cannot be used to separate paragraphs, as they
are simply ignored. An explicit tag is required.

Some tags have (named) parameters. For example

is a tag, , with parameter SRC set equal to abc and parameter ALT set
equal to foobar. For each tag, the HTML standard gives a list of what the permit
ted parameters, if any, are, and what they mean. Because each parameter 1s
named, the order in which the parameters are given is not significant.

Ex.1006.714DELL

SEC. 7.6 THE WORLD WIDE WEB 697

<HTML> <HEAD> <TITLE> AMALGAMATED WIDGET, INC. <!TITLE> </HEAD>
<BODY> <H1> Welcome to AWi's Home Page </H1>

We are so happy that you have chosen to visit Amalgamated Widget's
home page. We hope <I> you <II> will find all the information you need here.
<P>Below we have links to information about our many fine products.
You can order electronically (by WWW), by telephone, or by fax. <HR>
<H2> Product information </H2>
 Big widgets <IA>

 Little widgets <IA>

<H2> Telephone numbers </H~~>
 By telephone: 1-800-WIDGETS

 By fax: 1-415-765-4321
 </BODY> </HTML>

(a)

Welcome to A Wl's Home Page

We are so happy that you have chosen to visit Amalgamated Widget's home page. We hope
you will find all the information you need here.

Below we have links to information about our many fine products. You can order electronically
(by WWW), by telephone, or by FAX.

Product Information

• Big widgets

• Little widgets

Telephone numbers

• 1-800-WIDGETS

• 1-415-765-4321

(b)

Fig. 7-64. (a) The HTML for a sample Web page. (b) The formatted page.

Ex.1006.715DELL

SEC. 7.6 THE WORLD WIDE WEB 697

<HTML> <HEAD> <TITLE> AMALGAMATED WIDGET,INC. </TITLE> </HEAD>
<BODY> <H1> Welcome to AWI’s Home Page </H1>

Weare so happy that you have chosento visit Amalgamated Widget's
home page. We hope<I> you </I> will find all the information you need here.
<P>Below wehavelinks to information about our manyfine products.
You can orderelectronically (by WWW), by telephone,or by fax. <HR>
<H2> Product information </H2>

 Big widgets
<Ll> Little widgets

<H2> Telephone numbers </H2>
 By telephone: 1-800-WIDGETS

<Ll> By fax: 1-415-765-4321
 </BODY> </HTML>

(a)

Welcome to AWI's Home Page

We are so happy that you have chosento visit Amalgamated Widget's home page. We hope
you will find all the information you need here.

Below wehavelinks to information about our many fine products. You can orderelectronically
(by WWW), by telephone, or by FAX.

ProductInformation

© Big widgets
® Little widgets

Telephone numbers
® 1-800-WIDGETS

@ 1-415-765-4321

(b)

Fig. 7-64. (a) The HTMLfor a sample Web page. (b) The formatted page.

DELL Ex.1006.715

698 THE APPLICATION LAYER CHAP. 7

Technically, HTML documents are written in the ISO 8859-1 Latin- I charac
ter set, but for users whose keyboards only support ASCII, escape sequences are
present for the special characters, such as e. The list of special characters is given
in the standard. All of them begin with an ampersand and end with a semicolon.
For example, è produces e and é produces e. Since <, >, and &
have special meanings, they can be expressed only with their escape sequences,
< > and & respectively.

The main item in the head is the title, delimited by <TITLE> and </TITLE>,
but certain kinds of meta-information may also be present. The title itself is not
displayed on the page. Some browsers use it to label the page's window.

Let us now take a look at some of the other features illustrated in Fig. 7-64.
All of the tags used in Fig. 7-64 and some others are shown in Fig. 7-65. Head
ings are generated by an <Hn> tag, where n is a digit in the range 1 to 6. <Hl> is
the most important heading; <H6> is the least important one. It is up to the
browser to render these appropriately on the screen. Typically the lower num
bered headings will be displayed in a larger and heavier font. The browser may
also choose to use different colors for each level of heading. Typically <Hl>
headings are large and boldface with at least one blank line above and below. In
contrast, <H2> headings are in a smaller font, and with less space above and
below.

The tags and <I> are used to enter boldface and italics mode, respec
tively. If the browser is not capable of displaying boldface and italics, it must use
some other method of rendering them, for example, using a different color for
each or perhaps reverse video. Instead of specifying physical styles such as bold
face and italics, authors can also use logical styles such as <DN> (define),
(weak emphasis), (strong emphasis), and <VAR> (program vari
ables). The logical styles are defined in a document called a style sheet. The
advantage of the logical styles is that by changing one definition, all the variables
can be changed, for example, from italics to a constant width font.

HTML provides various mechanisms for making lists, including nested lists.
The tag starts an unordered list. The individual items, which are marked
with the tag in the source, appear with bullets (•) in front of them. A vari
ant of this mechanism is , which is for ordered lists. When this tag is used,
the items are numbered by the browser. A third option is <MENU>, which
typically produces a more compact list on the screen, with no bullets and no
numbers. Other than the use of different starting and ending tags, , ,
and <MENU> have the same syntax and similar results.

In addition to the list mechanisms shown in Fig. 7-65, there are two others
that are worth mentioning briefly. <DIR> can be used for making short tables.
Also, <DL> and </DL> can make definition lists (glossaries) with two-part
entries, whose parts are defined by <DT> and <DD> respectively. The first is for
the name, the second for its meaning. These features are largely superseded by
the (more general and complex) table mechanism, described below.

Ex.1006.716DELL

SEC. 7.6 THE WORLD WIDE WEB 699

Tag Description

<HTML> ... </HTML> Declares the Web page to be written in HTML

<HEAD> ... </HEAD> Delimits the page's head

<TITLE> ... <!TITLE> Defines the title (not displayed on the page)

<BODY> ... </BODY> Delimits the page's body

<Hn> ... <IHn> Delimits a level n heading

 ... Set ... in boldface

<I> ... </I> Set ... in italics

 ... Brackets an unordered (bulleted) list

 ... Brackets a numbered list

<MENU> ... </MENU> Brackets a menu of items

 Start of a list item (there is no)

 Force a break here

<P> Start of paragraph

<HR> Horizontal rule

<PRE> ... </PRE> Preformatted text; do not reformat

 Load an image here

 ... <IA> Defines a hyperlink

Fig. 7-65. A selection of common HTML tags. Some have additional parameters.

The
, <P>, and <HR> tags all indicate a boundary between sections of
text. The precise format can be determined by the style sheet associated with the
page. The
 tag just forces a line break. Typically, browsers do not insert a
blank line after
. In contrast, <P> starts a paragraph, which might, for
example, insert a blank line and possibly some indentation. (Theoretically, <IP>
exists to mark the end of a paragraph, but it is rarely used; most HTML authors do
not even know it exists.) Finally, <HR> forces a break and draws a horizontal
line across the screen.

HTML 1.0 had no ability to display tables or other formatted information.
Worse yet, if the HTML writer carefully formatted a table by judicious use of
spaces and carriage returns, browsers would ignore all the layout and display the
page as if all the formatted material were unformatted. To prevent browsers from
messing up carefully laid out text, the <PRE> and </PRE> tags were provided.
They are instructions to the browser to just display everything in between literally,
character for character, without changing anything. As the table and other fancy
layout features become more widely implemented, the need for <PRE> will

Ex.1006.717DELL

700 THE APPLICATION LA YER CHAP. 7

diminish, except for program listings, for which most programmers will tolerate
no formatting other than their own.

HTML allows images to be included in-line on a Web page. The tag
specifies that an image is to be loaded at the current position in the page. It can
have several parameters. The SRC parameter gives the URL (or URI) of the
image. The HTML standard does not specify which graphic formats are permit
ted. In practice, all browsers support GIF files and many support JPEG files as
well. Browsers are free to support other formats, but this extension is a two-edged
sword. If a user is accustomed to a browser that supports, say, BMP files, he may
include these in his Web pages and later be surprised when other browsers just
ignore all of his wonderful art.

Other parameters of are ALIGN, which controls the alignment of the
image with respect to the text baseline (TOP, MIDDLE, BOTTOM), ALT, which
provides text to use instead of the image when the user has disabled images, and
ISMAP, a flag indicating that the image is an active map.

Finally, we come to hyperlinks, which use the <A> (anchor) and <IA> tags.
Like , <A> has various parameters, including HREF (the URL), NAME
(the hyperlink's name), and METHODS (access methods), among others. The text
between the <A> and <IA> is displayed. If it is selected, the hyperlink is fol
lowed to a new page. It is also permitted to put an image there, in which
case clicking on the image also activates the hyperlink.

As an example, consider the following HTML fragment:

 NASA's home page <IA>

When a page with this fragment is displayed, what appears on the screen is

NASA's home page

If the user subsequently clicks on this text, the browser immediately fetches the
page whose URL is http://www.nasa.gov and displays it.

As a second example, now consider

 <IA>

When displayed, this page shows a picture (e.g., of the space shuttle). Clicking on
the picture switches to NASA's home page, just as clicking on the underlined text
did in the previous example. If the user has disabled automatic image display, the
text NASA will be displayed where the picture belongs.

The <A> tag can take a parameter NAME to plant a hyperlink, so it can be
ref erred to from within the page. For example, some Web pages start out with a
clickable table of contents. By clicking on an item in the table of contents, the
user jumps to the corresponding section of the page.

One feature that HTML 2.0 did not include and which many page authors
missed, was the ability to create tables whose entries could be clicked on to active
hyperlinks. As a consequence, a large amount of work was done to add tables to

Ex.1006.718DELL

SEC. 7.6 THE WORLD WIDE WEB 701

HTML 3.0. Below we give a very brief introduction to tables, just to capture the
essential flavor.

An HTML table consists of one or more rows, each consisting of one or more
cells. Cells can contain a wide range of material, including text, figures, and even
other tables. Cells can be merged, so, for example, a heading can span multiple
columns. Page authors have limited control over the layout, including alignment,
border styles, and cell margins, but the browsers have the final say in rendering
tables.

An HTML table definition is listed in Fig. 7-66(a) and a possible rendition is
shown in Fig. 7-66(b). This example just shows a few of the basic features of
HTML tables. Tables are started by the <TABLE> tag. Additional information
can be provided to describe general properties of the table.

The <CAPTION> tag can be used to provide a figure caption. Each row is
started with a <TR> (Table Row) tag. The individual cells are marked as <TH>
(Table Header) or <TD> (Table Data). The distinction is made to allow browsers
to use different renditions for them, as we have done in the example.

Numerous other tags are also allowed in tables. They include ways to specify
horizontal and vertical cell alignments, justification within a cell, borders, group
ing of cells, units, and more.

Forms

HTML 1.0 was basically one way. Users could call up pages from informa
tion providers, but it was difficult to send information back the other way. As
more and more commercial organizations began using the Web, there was a large
demand for two-way traffic. For example, many companies wanted to be able to
take orders for products via their Web pages, software vendors wanted to distri
bute software via the Web and have customers fill out their registration cards
electronically, and companies offering Web searching wanted to have their custo
mers be able to type in search keywords.

These demands led to the inclusion of forms starting in HTML 2.0. Forms
contain boxes or buttons that allow users to fill in information or make choices
and then send the information back to the page's owner. They use the <INPUT>
tag for this purpose. It has a variety of parameters for determining th\;:: size,
nature, and usage of the box displayed. The most common forms are blank fields
for accepting user text, boxes that can be checked, active maps, and SUBMIT but
tons. The example of Fig. 7-67 illustrates some of these choices.

Let us start our discussion of forms by going over this example. Like all
forms, this one is enclosed between the <FORM> and </FORM> tags. Text not
enclosed in a tag is just displayed. All the usual tags (e.g.,) are allowed in a
form. Three kinds of input boxes are used in this form.

The first kind of input box follows the text "Name". The box is 46 characters
wide and expects the user to type in a string, which is then stored in the variable

Ex.1006.719DELL

702 THE APPLICATION LA YER CHAP. 7

<HTML> <HEAD> <TITLE> A sample page with a table <!TITLE> </HEAD>
<BODY>
<TABLE BORDER=ALL RULES=ALL>
<CAPTION> Some Differences between HTML Versions </CAPTION>
<COL ALIGN=LEFT>
<COL ALIGN=CENTER>
<COL ALIGN=CENTER>
<COL ALIGN=CENTER>
<TR> <TH>ltem <TH>HTML 1.0 <TH>HTML 2.0 <TH>HTML 3.0
<TR> <TH> Active Maps and Images <TD> <TD> x <TD> x
<TR> <TH> Equations <TD> <TD> <TD> x
<TR> <TH> Forms <TD> <TD> x <TD> x
<TR> <TH> Hyperlinks x <TD> <TD> x <TD> x
<TR> <TH> Images <TD> x <TD> x <TD> x
<TR> <TH> Lists <TD> x <TD> x <TD> x
<TR> <TH> Toolbars <TD> <TD> <TD> x
<TR> <TH> Tables <TD> <TD> <TD> x
<!TABLE> </BODY> </HTML>

(a)

Some Differences between HTML Versions
-~·

Item HTML 1.0 HTML 2.0 HTML 3.0
Active Maps and Images x x
Equations x

t------·-

Forms x x
Hyperlinks x x x
Images x x x
Lists x x x
Toolbars x
Tables x

Fig. 7-66. (a) An HTML table. (b) A possible rendition of this table.

customer for later processing. The <P> tag instructs the browser to display subse
quent text and boxes on the next line, even if there is room on the current line. By
using <P> and other layout tags, the author of the page can control the look of the
form on the screen.

The next line of the form asks for the user's street address, 40 columns wide,
also on a line by itself. Then comes a line asking for the city, state, and country.
No <P> tags are used between the fields here, so the browser displays them all on
one line if they will fit. As far as the browser is concerned, this paragraph just
contains six items: three strings alternating with three boxes. It displays them
linearly from left to right, going over to a new line whenever the current line

Ex.1006.720DELL

SEC. 7.6 THE WORLD WIDE WEB 703

<HTML> <HEAD> <TITLE> AWi CUSTOMER ORDERING FbRM <fflTLE> </HEAD>
<BODY>
<H1 >Widget Order Form </H1 >
<FORM ACTION="http://widget.com/cgi-bin/widgetorder" M ETHOD=POST >
Name <INPUT NAME="customer" SIZE=46> <P>
Street Address <INPUT NAME="address" SIZE=40> <P>
City <INPUT NAME="city" SIZE=20> State <INPUT NAME="state" SIZE =4>
Country <INPUT NAME="country" SIZE=10> <P>
Credit card# <INPUT NAME="cardno" SIZE=10>
Expires <INPUT NAME="expires" SIZE=4>
M/C <INPUT NAME="cc" TYPE=RADIO VALUE="mastercard">
VISA <INPUT NAME="cc" TYPE=RADIO VALUE="visacard"> <P>
Widget size Big <INPUT NAME="product" TYPE=RADIO VALUE="expensive">
Little <INPUT NAME="product" TYPE=RADIO VALUE="cheap">
Ship by express courier <INPUT NAME="express" TYPE=CHECKBOX> <P>
<INPUT TYPE=SUBMIT VALUE="Submit order"> <P>
Thank you for ordering an AWi widget, the best widget money can buy!
</FORM> </BODY> </HTML>

(a)

Widget Order Form
Name I I

~------------------------~

Street address I I '-----------------------------'

City [____________ ~! State~ Countr~'-------------'I

Credit card # I J Expires ~ M/C 0 Visa 0
Widget size Big 0 Little 0 Ship by express courier

[Sllb""mit orderlj

Thank you tor ordering an AWi widget, the best widget money can buy!

(b)

Fig. 7-67. (a) The HTML for an order form. (b) The formatted page.

cannot hold the next item. Thus it is conceivable that on a 1024 x 768 screen all
three strings and their corresponding boxes will appear on the same line, but on a
640 x 480 screen they might be split over two lines. In the worst scenario, the
word "Country" is at the end of one line and its box is at the beginning of the
next line. There is no way to tell the browser to force the box adjacent to the text.

Ex.1006.721DELL

704 THE APPLICATION LA YER CHAP. 7

The next line asks for the credit card number and expiration date. Transmit
ting credit card numbers over the Internet should only be done when adequate
security measures have been taken. For example, some, but not all, browsers
encrypt information sent by users. Even then, secure communication and key
management are complicated matters and are subject to many kinds of attacks, as
we saw earlier.

Following the expiration date we encounter a new feature: radio buttons.
These are used when a choice must be made among two or more alternatives. The
intellectual model here is a car radio with half a dozen buttons for choosing sta
tions. The browser displays these boxes in a form that allows the user to select
and deselect them by clicking on them (or using the keyboard). Clicking on one
of them turns off all the other ones in the same group. The visual presentation
depends on the graphical interface being used. It is up to the browser to choose a
form that is consistent with Windows, Motif, OS/2 Warp, or whatever windowing
system is being used. The widget size also uses two radio buttons. The two
groups are distingqished by their NAME field, not by static scoping using some
thing like <RADIQBUTTON> ... </RADIOBUTTON>.

The VALUE parameters are used to indicate which radio button was pushed.
Depending on which of the credit card options the user has chosen, the variable cc
will be set to either the string "mastercard" or the string "visacard".

After the two sets of radio buttons, we come to the shipping option,
represented by a box of type CHECKBOX. It can be either on or off. Unlike
radio buttons, where exactly one out of the set must be chosen, each box of type
CHECKBOX can be on or off, independently of all the others. For example, when
ordering a pizza via Electropizza's Web page, the user can choose sardines and
onions and pineapple (if she can stand it), but she cannot choose small and
medium and large for the same pizza. The pizza toppings would be represented
by three separate boxes of type CHECKBOX, whereas the pizza size would be a
set of radio buttons.

As an aside, for very long lists from which a choice must be made, radio but
tons are somewhat inconvenient. Therefore, the <SELECT> and </SELECT>
tags are provided to bracket a list of alternatives, but with the semantics of radio
buttons (unless the MULTIPLE parameter is given, in which case the semantics
are those of checkable boxes). Some browsers render the items between
<SELECT> and </SELECT> as a pop-up menu.

We have now seen two of the built-in types for the <INPUT> tag: RADIO and
CHECKBOX. In fact, we have already seen a third one as well: TEXT. Because
this type is the default, we did not bother to include the parameter TYPE= TEXT,
but we could have. Two other types are PASSWORD and TEXTAREA. A PASS
WORD box is the same as a TEXT box, except that the characters are not
displayed as they are typed. A TEXTAREA box is also the same as a TEXT box,
except that it can contain multiple lines.

Getting back to the example of Fig. 7-67, we now come across an example of

Ex.1006.722DELL

SEC. 7.6 THE WORLD WIDE WEB 705

a SUBMIT button. When this is clicked, the user information on the form is sent
back to the machine that provided the form. Like all the other types, SUBMIT is a
reserved word that the browser understands. The VALUE string here is the label
on the button and is displayed. All boxes can have values; we only needed that
feature here. For TEXT boxes, the contents of the VALUE field are displayed
along with the form, but the user can edit or erase it. CHECKBOX and RADIO
boxes can also be initialized, but with a field called CHECKED (because VALUE
just gives the text, but does not indicate a preferred choice).

The browser also understands the RESET button. When clicked, it resets the
form to it~ initial state.

Two more types are worth noting. The first is the HIDDEN type. This is out
put only; it cannot be clicked or modified. For example, when working through a
series of pages throughout which choices have to be made, previously made
choices might be of HIDDEN type, to prevent them from being changed.

Our last type is IMAGE, which is for active maps (and other clickable
images). When the user clicks on the map, the (x, y) coordinates of the pixel
selected (i.e., the current mouse position) are stored in variables and the form is
automatically returned to the owner for further processing.

Forms can be submitted in three ways: using the submit button, clicking on an
active map, or typing ENTER on a one-item TEXT form. When a form is submit
ted, some action must be taken. The action is specified by the parameters of the
<FORM> tag. The ACTION parameter specifies the URL (or URI) to tell about
the submilssion, and the METHOD parameter tells which method to use. The
order of these (and all other) parameters is not significant.

The way the form's variables are sent back to the page's owner depends on
the value of the METHOD parameter. For GET, the only way to return values is
to cheat: they are appended to the URL, separated by a question mark. This
approach can result in URLs that are thousands of characters long. Nevertheless,
this method is frequently used because it is simple.

If the POST method (see Fig. 7-62) is used, the body of the message contains
the form's variables and their values. The & is used to separate fields; the +
represents the space character.. For example, the response to the widget form
might be

customer=John+Doe&address==1 OO+Main+St.&city=White+Plains&
state=NY &country=USA&cardno= 1234567890&expires=6/98&cc=mastercard&
product=cheap&express=on

The string would be sent back to the server as one line, not three. If a CHECK
BOX is not selected, it is omitted from the string. It is up to the server to make
sense of this string.

Fortunately, a standard for handling forms' data is already available. It is
called CGI (Common Gateway Interface). Let us consider a common way of

Ex.1006.723DELL

706 THE APPLICATION LAYER CHAP. 7

using it. Suppose that someone has an interesting database (e.g., an index of Web
pages by keyword and topic) and wants to make it available to Web users. The
CGI way to make the database available is to write a script (or program) that
interfaces (i.e., gateways) between the database and the Web. This script is given
a URL, by convention in the directory cgi-bin. HTTP servers know (or can be
told) that when they have to invoke a method on a page located in cgi-bin, they
are to interpret the file name as being an executable script or program and start it
up.

Eventually, some user opens the form associated with our widget script and
has it displayed. After the form has been filled out, the user clicks on the SUB
MIT button. This action causes the browser to establish a TCP connection to the
URL listed in the form's ACTION parameter-the script in the cgi-bin directory.
Then the browser invokes the operation specified by the form's METHOD, usu
ally POST. The result of this operation is that the script is started and presented
(via the TCP connection, on standard input) with the long string given above. In
addition, several environment variables are set. For example, the environment
variable CONTENLLENGTH tells how long the input string is.

At this point, most scripts need to parse their input to put it in a more con
venient form. This goal can be accomplished by calling one of the many libraries
or script procedures available. The script can then interact with its database in
any way it wishes. For example, active maps normally use CGI scripts to take
different actions depending on where the user pointed.

CGI scripts can also produce output and do many other things as well as
accepting input from forms. If a hyperlink points to a CGI script, when that link
is invoked, the script is started up, with several environment variables set to pro
vide some information about the user. The script then writes a file (e.g. an HTML
page) on standard output, which is shipped to the browser and interpreted there.
This mechanism makes it possible for the script to generate custom Web pages on
the spot.

For better or worse, some Web sites that answer queries have a database of
advertisements that can be selectively included in the Web page being con
structed, depending on what the user is looking for. If the user is searching for
"car" a General Motors ad might be displayed, whereas a search for "vacation"
might produce an ad from United Airlines. These ads usually include clickable
text and pictures.

7.6.4. Java

HTML makes it possible to describe how static Web pages should appear,
including tables and pictures. With the cgi-bin hack, it is also possible to have a
limited amount of two-way interaction (forms, etc.). However, rapid interaction
with Web pages written in HTML is not possible. To make it possible to have

Ex.1006.724DELL

SEC. 7.6 THE WORLD WIDE WEB 707

highly interactive Web pages, a different mechanism is needed. In this section we
will describe one such mechanism, the Java TM language and interpreter.

Java originated when some people at Sun Microsystems were trying to
develop a new language that was suitable for programming information-oriented
consumer appliances. Later it was reoriented toward the World Wide Web.
Although Java borrows many ideas and some syntax from C and C++, it is a new
object-oriented language, compatible with neither. It is sometimes said that in the
large, Java is like Smalltalk, but that in the small it is like C or C++.

The main idea of using Java for interactive Web pages is that a Web page can
point to a small Java program, called an applet (SAT I verbal analogy question:
Pig is to piglet as application is to ?). When the browser reaches it, the applet is
downloaded to the client machine and executed there in a secure way. It must be
structurally impossible for the applet to read or write any files that it is not author
ized to access. It must also be impossible for the applet to introduce viruses or
cause any other damage. For these reasons, and to achieve portability across
machines, applets are compiled to a bytecode after being written and debugged. It
is these bytecode programs that are pointed to by Web pages, similar to the way
images are pointed to. When an applet arrives, it is executed interpretively in a
secure environment.

Before getting into the details of the Java language, it is worth saying a few
words about what the whole Java system is good for and why people want to
include Java applets in their Web pages. For one thing, applets allow Web pages
to become interactive. For example, a web page can contain a board for tic tac
toe, othello, or chess, and play a game with the user. The game-playing program
(written in Java) is just downloaded along with its Web page. As a second exam
ple, complex forms (e.g., spreadsheets) can be displayed, with the user filling in
items and seeing calculations made instantly.

It is entirely possible that in the long run, the model of people buying pro
grams, installing them, and running them locally will be replaced by a model in
which people click on Web pages, get applets downloaded to do work for them,
possibly in conjunction with a remote server or data base. Instead of filling out
the income tax form by hand or using a special program, people may be able to
click on the IRS home page to get a tax applet downloaded. This applet might ask
some questions, then contact the person's employer, bank, and stockbroker to col
lect the required salary, interest, and dividend information, fill the tax form in, and
then display it for verification and submission.

Another reason for running applets on the client machine is they make it pos
sible to add animation and sound to Web pages without having to spawn external
viewers. The sound can be played when the page is loaded, as background music,
or when some specific event happens (e.g., clicking on the cat makes it meow).
The same is true for animation. Because the applet is running locally, even if it is
being interpreted, it can write all over (its portion) of the screen any way it wants
to, and at very high speed (compared to a remote cgi-bin shell script).

Ex.1006.725DELL

708 THE APPLICATION LA YER CHAP. 7

The Java system has three parts:

1. A Java-to-bytecode compiler.

2. A browser that understands applets.

3. A bytecode interpreter.

The developer writes the applet in Java, then compiles it to bytecode. To include
this compiled applet on a Web page, a new HTML tag, <APPLET>, has been
invented. A typical use is

<APPLET CODE=game.class WIDTH=100 HEIGHT=200> </APPLET>

When the browser sees the <APPLET> tag, it fetches the compiled applet
game.class from the current Web page's site (or if another parameter, CODE
BASE, is present, from the URL it specifies). The browser than passes the applet
to the local bytecode interpreter for execution (or interprets the applet itself, if it
has an internal interpreter). The WIDTH and HEIGHT parameters give the size of
the applet's default window, in pixels.

In a sense, the <APPLET> tag is analogous to the tag. In both cases,
the browser goes and gets a file and then hands it off to a (possibly internal) inter
preter for display within a bounded area of the screen. Then it continues process
ing the Web page.

For applications that need very high performance, some Java interpreters have
the ability to compile bytecode programs to actual machine language on··the-fly,
as needed.

As a consequence of this model, Java-based browsers are extensible in a way
that first-generation browsers are not. First generation browsers are basically
HTML interpreters that have built-in modules for speaking the various protocols
needed, such as HTTP 1.0, FTP, etc., as well as decoders for various image for
mats. An example is shown in Fig. 7-68(a). If someone invents or popularizes a
new format, such as audio or MPEG-2, these old browsers are not able to read
pages containing them. At best, the user has to find, download, and install an
appropriate external viewer.

With a Java-based browser, the situation is different. At startup, the browser
is effectively an empty Java virtual machine, as shown in Fig. 7-68(b). By load
ing HTML and HTTP applets, it becomes able to read standard Web pages. How
ever, as new protocols and decoders are required, their classes are loaded dynami
cally, possibly over the network from sites specified in Web pages. After a while,
the browser might look like Fig. 7-68(c).

Thus if someone invents a new format, all that person has to do is include the
URL of an applet for handling it in a Web page, and the browser will automati
cally fetch and load the applet. No first-generation browser is capable of automat
ically downloading and installing new external viewers on-the-fly. The ability to

Ex.1006.726DELL

SEC. 7.6 THE WORLD WIDE WEB

0...
f- 0...
f- f-
I LL

"5.
(jj ·5

0... 0... ..c 'ID Cf)
f- f- 0. c t5 LL 2 z 0 Qi 0 i3 (/) z ('.) f- 0...

HTML interpreter

Operating system

(a)

~

('.) 6
UJ UJ
0... 0...
-; 2

(No protocol or image
interpreters built in)

Java interpreter

Operating system

(b)

Java interpreter

Operating system

(c)

Fig. 7-68. (a) A first generation browser. (b) A Java-based browser at startup.
(c) The browser of (b) after running for a while.

709

load applets dynamically means that people can easily experiment with new for
mats without first having to have endless standardization meetings to reach a con
sensus.

This extensibility also applies to protocols. For some applications, special
protocols are needed, for example, secure protocols for banking and commerce.
With Java, these protocols can be loaded dynamically as needed, and there is no
need to achieve universal standardization. To communicate with company X, you
just download its protocol applet. To talk to company Y, you get its protocol
applet. There is no need for X and Y to agree on a standard protocol.

Introduction to the Java Language

The objectives listed above have led to a type-safe, object-oriented language
with built-in multithreading and no undefined or system dependent features.
What follows is a highly simplified description of Java, just to give a feel for it.
Many features, details, options, and special cases have been omitted for the sake
of brevity. The complete language specification, and much more about Java, is
available on the Web itself (naturally) at http://java.sun.com. For tutorials on
Java, see (Campione and Walrath, 1996; and Van der Linden, 1996). For the full
story, see (Arnold and Gosling, 1996; and Gosling et al., 1996). For a brief com
parison between Java and Microsoft's answer to it (Blackbird), see (Singleton,
1996).

As we mentioned above, in the small, Javil is similar to C and C++. The lexi
cal rules, for example, are pretty much the same (e.g., tokens are delimited by
white space, and new lines can be inserted between any two tokens). Comments
can be inserted using either the C syntax (/* ... */) or the C++ syntax (// ...).

Java has eight primitive data types, as listed in Fig. 7-69. Each type has a
specific size, independent of the local implementation. Thus unlike C, where an
integer may be 16, 32, or 64 bits, depending on the underlying machine

Ex.1006.727DELL

SEC. 7.6 THE WORLD WIDE WEB 709

(No protocol or image _
interpreters built in) wo la JI

2 |e o| 6- aicix|2

||ds E/E B/e/9| °°— oO Lt Qo r
alal2@lsin 5 alo 5 |O

Flo fe le |S) 2) 3/u jo) 2 SIF je |S izEIF [2/Z)/O!]dloj=/o/& Ee =/35/2Lj |GH1Z Olja) Ol als LjtjOj/t j=

HTMLinterpreter | Java interpreter | Java interpreter

 Operating system Operating system Operating system

(a) {b) (c)

Fig. 7-68. (a) A first generation browser. (b) A Java-based browser at startup.
(c) The browserof (b) after running for a while.

load applets dynamically means that people can easily experiment with new for-
mats withoutfirst having to have endless standardization meetings to reach a con-
sensus.

This extensibility also applies to protocols. For some applications, special
protocols are needed, for example, secure protocols for banking and commerce.
With Java, these protocols can be loaded dynamically as needed, and there is no
need to achieve universal standardization. To communicate with company X, you
just download its protocol applet. To talk to company Y, you get its protocol
applet. There is no need for X and Y to agree on a standard protocol.

Introduction to the Java Language

The objectives listed above have led to a type-safe, object-oriented language
with built-in multithreading and no undefined or system dependent features.
What follows is a highly simplified description of Java, just to give a feel for it.
Many features, details, options, and special cases have been omitted for the sake
of brevity. The complete language specification, and much more about Java, is
available on the Web itself (naturally) at Attp:/java.sun.com. For tutorials on
Java, see (Campione and Walrath, 1996; and Van der Linden, 1996). For the full
story, see (Arnold and Gosling, 1996; and Gosling et al., 1996). For a brief com-
parison between Java and Microsoft's answer to it (Blackbird), see (Singleton,
1996).

As we mentioned above,in the small, Java is similar to C and C++. Thelexi-
cal rules, for example, are pretty much the same (e.g., tokens are delimited by
white space, and new lines can be inserted between any two tokens). Comments
can be inserted using either the C syntax (/* ... */) or the C++ syntax (...).

Java has eight primitive data types, as listed in Fig. 7-69. Each type has a
specific size, independent of the local implementation. Thus unlike C, where an
integer may be 16, 32, or 64 bits, depending on the underlying machine

DELL Ex.1006.727

710 THE APPLICATION LA YER CHAP. 7

architecture, a Java int is always 32 bits, no more and no less, no matter what kind
of machine the interpreter is running on. This consistency is essential since the
same applet must run on 16-bit, 32-bit, and 64-bit machines, and give the same
result on all of them.

Type Size Description

Byte 1 Byte A signed integer between -128 and + 127

Short 2 Bytes A signed 2-byte integer

Int 4 Bytes A signed 4-byte integer

Long 8 Bytes A signed 8-byte integer

Float 4 Bytes A 4-byte IEEE floating-point number

Double 8 Bytes An 8-byte IEEE floating-point number

Boolean 1 Bit The only values are true and false

Char 2 Sytes A character in Unicode

Fig. 7-69. The basic Java data types.

Arithmetic variables (the first 6 types) can be combined using the usual arith
metic operators (including ++ and - -) and compared using the usual relational
operators (e.g., <, <=, ==, !=). Conversions between types are permitted where
they make sense.

Java uses the 16-bit Unicode instead of ASCII for characters, so character
variables are 2 bytes long. The first 127 Unicode characters are the same as
ASCII for backward compatibility. Above these are some graphic symbols, and
then the characters needed for Russian, Arabic, Hebrew, Japanese (kanji, kata
kana, and hiragana), and virtually every other language. Characters not present in
ASCII can be represented with \u followed by four hexadecimal digits. For exam
ple, \u0ae6 is the Gujarati zero.

Java allows one dimensional arrays to be declared. For example,

int[] table;

declares an array, table, but does not allocate any space for it. That can be done
later on, as in C++, for example, by

table= new int [1024];

to allocate an array with 1024 entries. It is not necessary (or even possible) to
return arrays that are no longer needed; the garbage collector reclaims them. Thus
the highly error-prone malloc and free library routines are not needed for storage
management. Arrays can be initialized, and arrays of arrays can be used to get
higher dimensionality, as in C. Strings are available, but they are defined in a
class, rather than being simply character arrays ending with a null byte.

Ex.1006.728DELL

SEC. 7.6 THE WORLD WIDE WEB 711

The Java control statements are shown in Fig. 7-70. The first nine have
essentially the same syntax and semantics as in C, except that where a Boolean
expression is required, the language actually insists upon a Boolean expression.
Also, the break and continue statements now can take labels indicating which of
the labeled loops to exit or repeat.

Statement Description Example

Assignm~nt Assign a value n = i + j;

If Boolean choice if (k < 0) k = O; else k = 2*k;

Switch Select a case switch (b) {case 1: n++; case 2: n-;}

For Iteration for (i = O; i < n; i++) a[i] = b[i];

While Repetition while (n < k) n += i;

Do Repetition do {n = n + n} while (n < m);

Break Exit statement break label;

Return Return return n;

Continue Next iteration continue label;

Throw Raise exception throw new lllegalArgumentException();

Try Exception scoping try { ... } catch (Exception e) {return -1 };

Synchronized Mutual exclusion synchronized void update(int s) { ... }

Fig. 7-70. The Java statements. The notation { ... } indicates a block of code.

The next two statements are in C++ but not in C. The throw and try state
ments deal with exception handling. Java defines a variety of standard excep
tions, such as attempting to divide by zero, and allows programmers to define and
raise their own exceptions. Programmers can write handlers to catch exceptions,
making it unnecessary to constantly test if something has gone wrong (e.g., when
reading from a file). The throw statement raises an exception, and the try state
ment defines a scope to associate exception handlers with a block of code in
which an exception might occur.

The synchronized statement is new to Java and has to do with the fact that
Java programs can have multiple threads of control. To avoid race conditions,
this statement is used to delimit a block of code (or a whole procedure) that must
not have more than one thread active in it at once. Such blocks of code are usu
ally called critical regions. When the synchronized statement is executed, the
thread executing it must acquire the lock associated with the critical region, exe
cute the code, and then release the lock. If the lock is not available, the thread
waits until it is free. By guarding entire procedures this way and using condition
variables, programmers have the full power of monitors (Hoare, 1974).

Ex.1006.729DELL

712 THE APPLICATION LA YER CHAP. 7

Java programs can be called with arguments. Command-line processing is
similar to C, except that the argument array is called args instead of argv and
args[O] is the first parameter, not the program name. Figure 7-71 illustrates a
small Java program that computes a table of factorials, just to give an idea of what
a small Java program looks like.

class Factorial {/*This program consists of a single class with two methods. *I

public static void main (int argc, String args[]) {II main program
long i, f, lower= 1, upper= 20; II declarations of four longs

for (i = lower; i <= upper; i++) {

}
}

f = factorial(i);
System.out.println(i + 11 11 + f);

static long factorial (long k) {
if (k == 0)

}
}

return 1;
else

return k * factorial(k-1);

II loop from lower to upper
II f = i!
II print i and f

II recursive factorial function

II O! = 1

II kl= k * (k-1)!

Fig. 7-71. A Java program for computing and printing O! to 20!.

Despite both being object-oriented languages based on C, Java and C++ differ
in some ways. Some features were removed from Java to make it typesafe or
easier to read. These include #define, typedef, enums, unions, structs, operator
overloading, explicit pointers, global variables, standalone functions, and friend
functions. It almost goes without saying that the goto statement has been sent to
that special place reserved for obsolete programming language features. Other
features were added to give the language more power. The features added include
garbage collection, multithreading, object interfaces, and packages.

Object Orientation in Java

In traditional procedural languages such as Pascal or C, a program consists of
a collection of variables and procedures, without any general organizing principle.
In contrast in object-oriented languages, (almost) everything is an object. An
object normally contains some internal (i.e., hidden) state variables along with
some public procedures, called methods, for accessing them. Programs that use
the object are expected (and can be forced) to invoke the methods to manipulate
the object's state. In this way, the object writer can control how programs use the

Ex.1006.730DELL

SEC. 7.6 THE WORLD WIDE WEB 713

information inside the object. This principle is called encapsulation, and is the
basis of all object-oriented programming.

Java tries to capture the best of both worlds. It can be used as a traditional
procedural language or as an object-oriented language. The Java example of
Fig. 7-71, for example, could equally well have been written in C, and in essen
tially the same way. In this view, a subset of Java can be regarded as a cleaned
up version of C. However, for writing Web pages, Java is better regarded as an
object-oriented language, so we will study its object orientation in this section.

A Java program consists of one or more packages, each of which contains
some class definitions. Packages can be accessed remotely over a network, so
those intended for use by a wide audience must have unique names. Normally,
hierarchical names are used, starting with the reverse of their machine's DNS
name, for example

EDU.univ.cs.catie.games.chess

A class definition is a template for stamping out object instances, each of
which contains the same state variables and same methods as all the other object
instances of its class. The values of the state variables within different objects are
independent, however. Classes are thus like cookie cutters: they are not cookies
themselves, but are used to stamp out structurally identical cookies, with each
cookie cutter producing a different shape of cookie. Once produced, different
cookies (objects) are independent of one another.

Java objects can be produced dynamically during execution, for example by

object = new ClassName()

These objects are stored on the heap and removed by the garbage collector when
no longer needed. In this way, storage management in Java is handled by the sys
tem, with no need for the dreaded malloc and free procedures, or even for explicit
pointers, for that matter.

Each class is based on another class. A newly defined class is said to be a
subclass of the class on which it is based, the superclass. A (sub)class always
inherits the methods of its superclass. It may or may not have direct access to the
superclass' internal variables, depending on whether or not the superclass wants
that. For example, if a superclass, A, has methods Ml, M2, and M3, and a sub
class, B, defines a new method, M4, then objects created from B, will have
methods Ml, M2, M3, and M4. The property of a class automatically acquiring all
the methods of its superclass is called inheritance, and is an important property
of Java. Adding new methods to the superclass' methods is called extending the
superclass. As an aside, some object-oriented languages allow classes to inherit
methods from two or more superclasses (multiple inheritance), but the Java
designers thought this property to be too messy and intentionally left it out.

Since every class has exactly one immediate superclass, the set of all classes
in a Java program form a tree. The class at the top of the tree is called Object.

Ex.1006.731DELL

714 THE APPLICATION LA YER CHAP. 7

All other classes inherit its methods. Any class whose superclass is not explicitly
mentioned in its definition defaults to being a subclass of the Object class. The
Factorial class of Fig. 7-71, for example, is thus a subclass of Object.

Let us now take a look at an example of the object-oriented concepts
presented so far. In Fig. 7-72 we have a package defining two classes, Complex
Number, for defining and using complex numbers (i.e., numbers with a real part
and an imaginary part), and test, for showing how ComplexNumber can be used.

class ComplexNumber {
II Hidden data.
protected double re, im;

II Define a subclass of Object called ComplexNumber

II real and imaginary parts

}

II Five methods that manage the hidden data.
public void Complex(double x, double y) {re= x; im = y;}
public double Real() {return re;}
public double Imaginary() {return im;}
public double Magnitude() {return Math.sqrt(re*re + im*im);}
public double Angle() {return Math.atan(imlre);}

class test { II A second class, for testing ComplexNumber
public static void main (String args[]) {

}
}

ComplexNumber c; II declare an object of class ComplexNumber

c =new ComplexNumber(); II actually allocate storage for c
c.Complex(3.0, 4.0); II invoke the Complex method to initialize c
System.out.println("The magnitude of c is " + c.Magnitude());

Fig. 7-72. A package defining two classes.

Like Factorial, the class ComplexNumber is based on Object, because no
other superclass is named in its definition. Each object of class ComplexNumber
represents one complex number. Each object of this class contains two hidden
variables, re, and im, both 64-bit floating-point numbers, for representing the real
and imaginary parts, respectively. They cannot be accessed outside the class
definition (and its subclasses), because they have been declared protected. Had
they been declared private, then they would have been visible only to Complex
Number and not to any subclasses. For the moment, private would have been fine,
but we will soon define a subclass. Had they been declared public, they would
have been visible everywhere the package was visible, thus destroying much of
the value of object-oriented programming. Nevertheless, situations do exist in
which having the internal state of an object be public is sometimes needed.

Ex.1006.732DELL

SEC. 7.6 THE WORLD WIDE WEB 715

Five methods are defined on objects belonging to class ComplexNumber.
Users of the class are thus restricted to the operations provided by these five
methods, and cannot get at the state directly. An example of how objects of class
ComplexNumber are created, initialized, and used is given in test.

When this package is compiled, the Java compiler produces two binary
(bytecode) files, one containing each of the classes and named after its class.
Typing the command

java test

results in invoking the Java interpreter with class test as parameter. The inter
preter then looks for a method called main, and upon finding it, executes it. The
result of execution is that the line

The magnitude of c is 5

is printed out.
Now let us define a subclass of ComplexNumber, just to see how that works.

It starts out by importing the original class, to learn what it does and what its
methods are. Then it defines an extension of ComplexNumber, which we will call
HairyNumber. The new class automatically inherits the five methods present in
the superclass. To make things interesting, we will define a sixth method, AddTo,
in the subclass, which adds a complex number to the object, increasing its real and
imaginary parts.

The subclass definition is shown in Fig. 7-73, along with another test program
showing how an object belonging to class HairyNumber can be used. When the
new test program is run, it will print out

h = (-0.5,6)

Remember that the six methods are usable on the objects a and h, without regard
to which method was defined where. If we now define yet another subclass based
on HairyNumber and give it, say, three new methods, objects produced from it
will have nine valid methods.

In addition to adding new methods to its superclass, a subclass can override
(replace) existing methods by simply redefining them. Thus it is possible for a
subclass to redefine all the methods inherited from its superclass, so objects
belonging to the two classes have nothing in common. Doing so, however, is in
poor taste, and should be avoided.

Finally, a Java class may define multiple methods with the same name but dif
ferent parameters and different definitions. When the compiler sees a method
invocation using this name, it has to use the parameter types to determine which
method to use. This property is called overloading or polymorphism. Unlike
C++, where operators can also be overloaded, in Java, only methods, not opera
tors, can be overloaded, to make programs easier to understand.

Ex.1006.733DELL

716 THE APPLICATION LA YER

import ComplexNumber; II import the ComplexNumber package

class HairyNumber extends ComplexNumber {
public void AddTo(ComplexNumber z) {

II define a new class
II with one method

}
}

re= re+ z.Real();
im = im + z.lmaginary();

class test2 { II test program for HairyNumber
public static void main(String args[]) {

}
}

HairyNumber a, h; II declare two HairyNumbers

a= new HairyNumber(); II allocate storage for a
h = new HairyNumber(); II allocate storage for h
a.Complex(1.0, 2.0); II assign a value to a
h.Complex(-1.5, 4.0); II assign a value to h
h.AddTo(a); II invoke the AddTo method on h
System.out.println("h = (" + h.Real() + "," + h.lmaginary() + ")");

Fig. 7-73. A subclass of ComplexNumber defining a new method.

The Application Programmers Interface

CHAP. 7

In addition to the bare language, the Java designers have defined and imple
mented about 200 classes with the initial release. The methods contained in these
classes form a kind of standard environment for Java program developers. The
classes are written in Java, so they are portable to all platforms and operating sys
tems.

While a detailed discussion of all these classes and methods is clearly beyond
the scope of this book, a brief description may be of some interest. The 200
classes are grouped into seven packages of uneven size, each of which is focused
on some central theme. Applets that need a particular package can include it
using the Java import statement. The methods contained within can just be used
as needed. This mechanism replaces the need for including header files in C. It
also replaces the need for libraries, since the packages are dynamically loaded
during execution when they are invoked.

The seven packages are summarized in Fig. 7-74. Thejava.lang package con
tains classes that can be viewed as part of the language, but are technically not.
These include classes for managing the classes themselves, threads, and exception
handling. The standard mathematical and string libraries are also here.

Ex.1006.734DELL

SEC. 7.6 THE WORLD WIDE WEB 717

Package Example functionality

Java.lang Classes, threads, exceptions, math, strings

Java.io 1/0 on streams and random access files, printing

Java.net Sockets, IP addresses, URLs, datagrams

Java.util Stacks, hash tables, vectors, time, date

Java.applet Getting and displaying Web pages, audio, Object class

Java.awt Events, dialog, menus, fonts, graphics, window management

Java.awt.image Colors, image cropping, filtering, and conversion

Java.awt.peer Access to the underlying window system

Fig. 7-74. The packages included in the standard APL

Like C, the Java language contains no I/O primitives. I/O is done by loading
and using the java. io package. It is analogous to the standard I/O library in C.
Methods are provided for reading and writing streams, random access files, and
doing the formatting needed for printing. In Fig. 7-71 we saw one of these
methods, println, which does formatted printing.

Closely related to I/O is network transport. Methods that look up and manage
IP addresses are located here. Access to sockets is also part of this package. So is
datagram preparation. The actual transmission is handled injava.io.

The next class is java.util. It contains classes and methods for common data
structures, such as stacks and hash tables, so programmers do not constantly have
to reinvent the wheel. Time and date management is also here.

The java.applet package contains some of the basic machinery for applets,
including methods for getting Web pages starting from their URLs. It also has
methods for displaying Web pages and playing audio clips (e.g., background
music). The java.applet package also contains the Object class. All objects
inherit its methods, unless they are overridden. These methods include cloning an
object, comparing two objects for equality, converting an object to a string, and
various others.

Finally, we come to java.awt and its two subpackages. AWT stands for
Abstract Window Toolkit, and is designed to make applets portable across win
dow systems. For example, how should an applet draw a rectangle on the screen
in such a way that the same compiled (bytecode) version of the applet can run on
UNIX, Windows, and the Macintosh, even though each one has its own window
system? Part of the package deals with drawing on the screen, so there are
methods for placing lines, geometric figures, text, menus, buttons, scroll bars, and
many other items on the screen. Java programmers call these methods to write on
the screen. It is up to the java.awt package to make the appropriate calls to the
local operating system to get the job done. This strategy means that java.awt has

Ex.1006.735DELL

718 THE APPLICATION LA YER CHAP. 7

to be rewritten for each new platform, but that applets are then platform indepen
dent, which is far more important

Another important task of this class is event management. Most window sys
tems are fundamentally event driven. What this means is that the operating sys
tem detects keystrokes, mouse motion, button pushes and releases, and other
events, and converts these into calls to user procedures. In the case of Java, a
large library of methods for dealing with these events is provided in java.awt.
Using them makes it easier to write programs that interact with the local window
system and still be l 00 percent portable to machines with different operating sys
tems and different window systems.

Some of the work of this package is done in java.awt.image, such as image
management, and injava.awt.peer, which allows access to the underlying window
system.

Security

One of the most important aspects of Java is its security properties. When a
Web page containing an applet is fetched, the applet is automatically executed on
the client's machine. Ideally, it should not crash or otherwise bring down the
client's machine.

Furthermore, it does not take much imagination to envision some enterprising
undergraduate producing a Web page containing some nifty new game, then pub
licizing its URL widely (e.g., crossposting it to every newsgroup). Not mentioned
in the posting is the small detail that the page also contains an applet that upon
arrival immediately encrypts all the files on the user's hard disk. When it is fin
ished, the applet announces what it has done and politely mentions that us~rs
wishing to purchase the decryption key can do so by sending 1000 dollars in small
unmarked bills to a certain post office box in Panama.

In addition to the above get-rich-quick scheme, there are other dangers
inherent in letting foreign code run on your machine. An applet could hunt
around for interesting information (saved email, the password file, the local
environment strings, etc.) and send or email them back over the network. It could
also consume resources (e.g., filling up the disk), display naughty pictures or pol
itical slogans on the screen, or make an earsplitting racket using the sound card.

The Java designers were well aware of these problems, of course, and erected
a series of barriers against them. The first line of defense is a typesafe language.
Java has strong typing, true arrays with bounds checking and no pointers. These
restrictions make it impossible for a Java program to construct a pointer to read
and write arbitrary memory locations.

However, Trudy, who has given up on trying to break cryptographic protocols
and gotten into the much more interesting business of writing malicious Java
applets, can just write or modify a C compiler to produce Java bytecode, thus
bypassing all the safeguards provided by the Java language and compiler.

Ex.1006.736DELL

SEC. 7.6 THE WORLD WIDE WEB 719

The second line of defense is that before an incoming applet is executed, it \s
run through a bytecode verifier. The bytecode verifier looks for attempts to
manufacture pointers, execute instructions or call methods with invalid parame
ters, use variables before they are initialized, and so on. These checks are sup
posed to guarantee that only legal applets get executed, but Trudy will certainly
work hard on finding tricks the verifier does not check for.

The third line of defense is the class loader. Since classes can be loaded on
the fly, there is a danger that an applet could load one of its own classes to replace
a critical system class, thus bypassing that class' security checks. This Trojan
horse attack has been rendered impossible by virtue of giving each class its own
name space (like a kind of abstract directory), and carefully searching for system
classes before looking for user classes. In other words, if the user loads a mali
cious version of println, it will never be used because the official println will
always be found first.

The fourth line of defense is that some standard classes have their own secu
rity measures built in. For example, the file access class maintains a list of files
that may be accessed by applets, and pops up a dialog box any time an applet tries
to do something that violates the protection rules.

Despite all these measures, security problems are to be expected. First, there
can be bugs in the Java software that clever programmers can exploit to bypass
the security. The infamous Internet worm of 1988 used a bug in the UNIX Finger
daemon to bring thousands of machines all over the Internet to a grinding halt
(Hafner and Markoff, 1991; and Spafford, 1989).

Second, while it may]Je possible to prevent an applet from doing anything
except writing to the screen, many applets will need more power, so when they
ask for additional privileges, users may grudgingly (or naively) grant them. For
example, applets may need to write temporary files, so users may give them
access to the /tmp directory, thinking that nothing important is there. Unfor
tunately, most editors keep the temporary versions of documents and email being
edited there, so malicious applets can copy them and try to send them over the
network. Of course, it may be possible to block applets' access to the network,
but many may not work then, so they will have to be granted this power too.

But even in the unlikely event that applets are allowed no network access at
all, they may be able to transmit information using covert channels (Lampson,
1973). For example, after acquiring some information, an applet can form a bit
stream by using the local system's real time clock. To send a I, it computes very
hard for tiT; to send a 0, it just waits for tiT.

To acquire this information, the applet's owner can establish a connection to
the client's machine to read some of its public Web pages or FTP some of its pub
lic files. By carefully monitoring the incoming data rate, the applet owner's can
see whether the applet is computing (and thus slowing down the observed output
stream) or resting. Of course, this channel is noisy, but that can be handled by
standard techniques. The stream can be divided into frames delimited by flag

Ex.1006.737DELL

720 THE APPLICATION LA YER CHAP. 7

bytes, individual frames can use a strong error-correcting code, and all frames can
be sent two or three times. Many other covert channels exist, and it is extremely
difficult to discover and block them all. For more information about the security
problems in Java see (Dean and Wallach, 1995).

In short, Java introduces many new possibilities and opportunities into the
World Wide Web. It allows Web pages to be interactive, and to contain anima
tion and sound. It also permits browsers to be infinitely extensible. However, the
Java model of downloading applets also introduces some serious new security
problems that have not been entirely solved yet.

7.6.5. Locating Information on the Web

Although the Web contains a vast amount of information, finding the right
item is hot always easy. To make it easier for people to find pages that are useful
to them, several researchers have written programs to index the Web in various
ways. Some of these have become so popular that they have gone commercial.
Programs that search the Web are sometimes called search engines, spiders,
crawlers, worms, or knowbots (knowledge robots). In this section we will give a
brief introduction to this subject. For more information, see (Pinkerton, 1994; and
McBryan, 1994).

Although the Web is huge, reduced to its barest essentials, the Web is a big
graph, with the pages being the nodes and the hyperlinks being the arcs. Algo
rithms for visiting all the nodes in a graph are well known. What makes Web
indexing difficult is the enormous amount of data that must be managed and the
fact that it is constantly changing.

Let us start our discussion with a simple goal: indexing all the keywords in
Web pages' titles. For our algorithm, we will need three data structures. First, we
need a large, linear array, urLtahle, that contains millions of entries, ultimately
one per Web page. It should be kept in virtual memory, so parts not heavily used
will automatically be paged to disk. Each entry contains two pointers, one to the
page's URL and one to the page's title. Both of these items are variable length
strings and can be kept on a heap (a large unstructured chunk of virtual memory to
which strings can be appended). The heap is our second data structure.

The third data structure is a hash table of size n entries. It is used as follows.
Any URL can be run through a hash function to produce a nonnegative integer
less than n. All URLs that hash to the value k are hooked together on a linked list
starting at entry k of the hash table. Whenever a URL is entered into urLtable, it
is also entered into the hash table. The main use of the hash table is to start with a
URL and be able to quickly determine whether it is already present in url__table.
These three data structures are illustrated in Fig. 7-75.

Building the index requires two phases: searching and indexing. Let us start
with a simple engine for doing the searching. The heart of the search engine is a
recursive procedure process_url, which takes a URL string as input. It operates as

Ex.1006.738DELL

SEC. 7.6

Pointers Pointers
to URLS to titles

,-----A-., ,-----A-.,

Url_table

THE WORLD WIDE WEB

Hash
code

0
1
2
3

~""'

f-1 IT]

Overflow
chains

721

-
-
0
[D--@]-[IJ

-@TI-~
~""'

nT~---~T
Heap Hash table

Fig. 7-75. Data structures used in a simple search engine.

follows. First, it hashes the URL to see if it is already present in urLtable. If so,
it is done and returns immediately. Each URL is processed only once.

If the URL is not already known, its page is fetched. The URL and title are
then copied to the heap and pointers to these two strings are entered in urLtable.
The URL is also entered into the hash table.

Finally, process_url extracts all the hyperlinks from the page and calls
process_url once per hyperlink, passing the hyperlink' s URL as the input parame
ter.

To run the search engine, process_url is called with some starting URL.
When it returns, all pages reachable from that URL have been entered into
url_table and the search phase has been completed.

Although this design is simple and theoretically correct, it has a serious prob
lem in a system as large as the Web. The problem is that this algorithm does a
depth-first search, and will ultimately go into recursion as many times as the long
est noncyclic path on the Web. No one knows how long this path is, but it is
probably thousands of hyperlinks long. As a consequence, any search engine that
uses this depth-first search will probably hit stack overflow before finishing the
job.

In practice, actual search engines first collect all the hyperlinks on each page
they read, remove all the ones that have already been processed, and save the rest.
The Web is then searched breadth-first; that is, each link on a page is followed
and all the hyperlinks on all the pages pointed to are collected, but they are not
traced in the order obtained.

The second phase does the keyword indexing. The indexing procedure goes
down urLtable linearly, processing each entry in turn. For each entry, it exam
ines the title and selects out all words not on the stop list. (The stop list prevents
indexing of prepositions, conjunctions, articles, and other words with many hits
and little value.) For each word selected, it writes a line consisting of the word

Ex.1006.739DELL

SEC. 7.6 THE WORLD WIDE WEB 721

Pointers Pointers

1 Overflow

to URLS_to tities . Hash chainstring storage code
tf = a

2Po 43 es

| ++[5++[i9}-[6|

++ 21 | 44
+

To opt
Url_table Heap Hashtabie

Fig. 7-75. Data structures used in a simple search engine.

follows. First, it hashes the URL to see if it is already present in url_table. If so,
it is done and returns immediately. Each URL is processed only once.

If the URL is not already known, its page is fetched. The URL andtitle are
then copied to the heap and pointers to these two strings are entered in url_table.
The URLis also entered into the hash table.

Finally, process_url extracts all the hyperlinks from the page and calls
process_url once per hyperlink, passing the hyperlink’s URL as the input parame-
ler,

To run the search engine, process_url is called with some starting URL.
When it returns, all pages reachable from that URL have been entered into
url_table and the search phase has been completed.

Although this design is simple and theoretically correct, it has a serious prob-
lem in a system: as large as the Web. The problem is that this algorithm does a
depth-first search, and will ultimately go into recursion as manytimesas the long-
est noncyclic path on the Web. No one knows how long this path is, but it is
probably thousands of hyperlinks long. As a consequence, any search engine that
uses this depth-first scarch will probably hit stack overflow before finishing the
job.

In practice, actual search engines first collect all the hyperlinks on each page
they read, removeall the ones that have already been processed, and savetherest.
The Web is then searched breadth-first; that is, each link on a page is followed
and all the hyperlinks on all the pages pointed to are collected, but they are not
traced in the order obtained.

The second phase does the keyword indexing. The indexing procedure goes
down url_table linearly, processing each entry in turn. For each entry, it exam-
ines the title and selects out all words not on the stop list. (The stop list prevents
indexing of prepositions, conjunctions, articles, and other words with many hits
and little value.) For each word selected, it writes a line consisting of the word

DELL Ex.1006.739

722 THE APPLICATION LA YER CHAP. 7

followed by the current urLtable entry number to a file. When the whole table
has been scanned, the file is sorted by word.

The index will have to be stored on disk and can be used as follows. The user
fills in a form listing one or more keywords and clicks on the SUBMIT button.
This action causes a POST request to be done to a CGI script on Lhe machine
where the index is located. This script (or, more likely, program) then looks up
the keywords in the index to find the set of urLtable indices for each one. If the
user wants the BOOLEAN AND of the keywords, the set intersection is com
puted. If the BOOLEAN OR is desired., the set union is computed.

The script now indexes into urLtable to find all the titles and URLs. These
are then combined to form a Web page and are sent back to the user as the
response to the POST. The browser now displays the page, allowing the user to
click on any items that appear interesting.

Sounds easy? It's not. The following problems have to be solved in any prac-
tical system:

1. Some URLs are obsolete (i.e., point to pages that no longer exist).

2. Some machines will be temporarily unreachable.

3. Not all pages may be reachable from the starting URL.

4. Some pages may be reachable only from active maps.

5. Some documents cannot be indexed (e.g., audio clips).

6. Not all documents have (useful) titles.

7. The search engine could run out of memory or disk space.

8. The entire process might take too long.

Obsolete URLs waste time but are mostly a nuisance because the server on which
they are supposed to be located replies immediately with an error code. In con
trast, when the server is down, all the search engine observes is a long delay in
establishing the TCP connection. To prevent it from hanging indefinitely, it must
have a timeout. If the timeout is too short, valid URLs will be missed. If it is too
long, searching will be slowed down appreciably.

Choosing the starting URL is clearly a major issue. If the search engine starts
with the home page of some astrophysicist, it may eventually find everything on
astronomy, physics, chemistry and space science, but it may miss pages about
veterinary medicine, Middle English, and rock 'n roll completely. These sets may
simply be disjoint. One solution is to gather as large a set of URLs as possible,
and use each of them as a starting page. Starting URLs can be gathered from
USENET news articles and last week's version of the urLtable, since some of
these pages may have changed recently (e.g., one of the astrophysicists married a
veterinarian and they solemnly updated their home pages to point to each other).

Ex.1006.740DELL

SEC. 7.6 THE WORLD WIDE WEB 723

Indexing works well on text, but increasingly, many pages contain items other
than text, including pictures, audio, and video. One approach here is to probe
each new-found URL with the HEAD method, just to get back its MIME header.
Anything not of type text is not searched.

About 20 percent of all Web pages have no title, and many of those that do
have a title have a quasi-useless one ("Joe's page"). A big improvement to the
basic index is to not only include titles, but also all the hypertext. In this
approach, when a page is scanned, all the hyperlinks are also recorded, along with
the page they came from and the page they point to. After the search phase has
been completed, all the hyperwords can be indexed too.

Even more ambitious is to index all the important words in each page. To
determine the important words, the occurrence frequency of all words not on the
stop list can be computed (per Web page). The top 10 or 20 words are probably
worth indexing. After all, if the word "liver" is the most common word on a
page, there is a chance that the page will be of interest to biliary surgeons (or to
cooks). Some search engines (e.g., Lycos) use this strategy.

Finally, the search engine can run out of memory or time. One attack is to
redesign the algorithms more carefully. A completely different approach is to do
what Harvest does and offload the work (Bowman et al., 1994, 1996). In particu
lar, Harvest provides a program to run on cooperating servers. This program does
all the searching locally and transmits back the finished local index. At the cen
tral site, all the local indices are merged into the master index. This approach
reduces by orders of magnitude the amount of memory, CPU time, and network
bandwidth required but has the major disadvantage of requiring all Web servers to
cooperate by running foreign software. Given the potential problems with viruses
and worms, when a system administrator is approached with the request: "Will
you please run this program on your machine for me?" it should not be surprising
if many of them decline.

One small request is in order. Although writing a search engine sounds easy,
a buggy one can wreak havoc with the network by generating vast numbers of
spurious requests, not only wasiting bandwidth but bringing many servers to their
knees due to the load. If you cannot resist the temptation to write your own
search engine, proper netiquette requires restricting it to your own local DNS
domain until it is totally debugged.

7.7. MULTIMEDIA

Multimedia is the holy grail of networking. When the word is mentioned,
both the propeller heads and the suits begin salivating as if on cue. The former
see immense technical challenges in providing (interactive) video on demand to
every home. The latter see equally immense profits in it. No book on networking
would be complete without at least an introduction to the subject. Given the

Ex.1006.741DELL

724 THE APPLICATION LA YER CHAP. 7

length of this one so far, our introduction will of necessity be brief. For additional
information about this fascinating and potentially profitable subject, see (Buford,
1994; Deloddere et al., 1994; Dixit and Skelly, 1995; Fluckiger, 1995; Minoli,
1995; and Steinmetz and Nahrstedt, 1995).

Literally, multimedia is just two or more media. If the publisher of this book
wanted to join the current hype about multimedia, it could advertise the book as
using multimedia technology. After all, it contains two media: text and graphics
(the figures). Nevertheless, when most people refer to multimedia, they generally
mean the combination of two or more continuous media, that is, media that have
to be played during some well-defined time interval, usually with some user
interaction. In practice, the two media are normally audio and video, that is,
sound plus moving pictures. For this reason, we will begin our study with an
introduction to audio and video technology. Then we will combine them and
move on to true multimedia systems, including video on demand and the
Internet's multimedia system, MBone.

7.7.1. Audio

An audio (sound) wave is a one-dimensional acoustic (pressure) wave. When
an acoustic wave enters the ear, the eardrum vibrates, causing the tiny bones of
the inner ear to vibrate along with it, sending nerve pulses to the brain. These
pulses are perceived as sound by the listener. In a similar way, when an acoustic
wave strikes a microphone, the microphone generates an electrical signal,
representing the sound amplitude as a function of time. The representation, pro
cessing, storage, and transmission of such audio signals are a major part of the
study of multimedia systems.

The frequency range of the human ear runs from 20 Hz to 20,000 Hz,
although some animals, notably dogs, can hear higher frequencies. The ear hears
logarithmically, so the ratio of two sounds with amplitudes A and Bis convention
ally expressed in dB (decibels) according to the formula

dB= 20 log 10 (A /B)

If we define the lower limit of audibility (a pressure of about 0.0003 dyne/cm2
)

for a I-kHz sine wave as 0 dB, an ordinary conversation is about 50 dB and the
pain threshold is about 120 dB, a dynamic range of a factor of 1 million. To avoid
any confusion, A and B above are amplitudes. If we were to use the power level,
which is proportional to the square of the amplitude, the coefficient of the loga
rithm would be 10, not 20.

The ear is surprisingly sensitive to sound variations lasting only a few mil
liseconds. The eye, in contrast, does not notice changes in light level that last
only a few milliseconds. The result of this observation is that jitter of only a few
milliseconds during a multimedia transmission affects the perceived sound quality
more than it affects the perceived image quality.

Ex.1006.742DELL

SEC. 7.7 MULTIMEDIA 725

Audio waves can be converted to digital form by an ADC (Analog Digital
Converter). An ADC takes an electrical voltage as input and generates a binary
number as output. In Fig. 7-76(a) we see an example of a sine wave. To
represent this signal digitally, we can sample it every !1T seconds, as shown by the
bar heights in Fig. 7-76(b). If a sound wave is not a pure sine wave, but a linear
superposition of sine waves where the highest frequency component present is f,
then the Nyquist theorem (see Chap. 2) states that it is sufficient to make samples
at a frequency 2f Sampling more often is of no value since the higher frequencies
that such sampling could detect are not present.

1.00

0.75

0.50

0.25

0

-0.25

-0.50

-0.75

-1.00

T T

(a) (b) (c)

Fig. 7-76. (a) A sine wave. (b) Sampling the sine wave. (c) Quantizing the sam
ples to 3 bits.

T

Digital samples are never exact. The 3-bit samples of Fig. 7-76(c) allow only
eight values, from -1.00 to + 1.00 in steps of 0.25. An 8-bit sample would allow
256 distinct values. A 16-bit sample would allow 65,536 distinct values. The
error introduced by the finite number of bits per sample is called the quantizatiOn
noise. If it is too large, the ear detects it.

Two well-known examples of sampled sound are the telephone and audio
compact discs. Pulse code modulation, as used within the telephone system, uses
7-bit (North America and Japan) or 8-bit (Europe) samples 8000 times per second.
This system gives a data rate of 56,000 bps or 64,000 bps. With only 8000
samples/sec, frequencies above 4 kHz are lost.

Audio CDs are digital with a sampling rate of 44, 100 samples/sec, enough to
capture frequencies up to 22,050 Hz, which is good for people, bad for dogs. The
samples are 16 bits each, and are linear over the range of amplitudes. Note that
16-bit samples allow only 65,536 distinct values, even though the dynamic range
of the ear is about 1 million when measured in steps of the smallest audible sound.
Thus l!Sing only 16 bits per sample introduces some quantization noise (although
the full dynamic range is not covered-CDs are not supposed to hurt). With
44,100 samples/sec of 16 bits each, an audio CD needs a bandwidth of 705.6 kbps

Ex.1006.743DELL

SEC. 7.7 MULTIMEDIA 725

Audio waves can be converted to digital form by an ADC (Analog Digital
Converter). An ADC takes an electrical voltage as input and generates a binary
number as output. In Fig. 7-76(a) we see an example of a sine wave. To
represent this signal digitally, we can sample it every AT seconds, as shownby the
bar heights in Fig. 7-76(b). If a sound wave is not a pure sine wave, but a linear
superposition of sine waves where the highest frequency component presentis f,
then the Nyquist theorem (see Chap. 2) states that it is sufficient to make samples
at a frequency 2f, Sampling more often is of no value since the higher frequencies
that such sampling could detect are not present.

1.00

0.75

0.50

0.25

0

~0.25 3T aT
-0.50

-0.75

1.00 (a) (b) (c)

Fig. 7-76. (a) A sine wave. (b) Sampling the sine wave. (c) Quantizing the sam-
ples to 3 bits.

Digital samples are never exact. The 3-bit samples of Fig. 7-76(c) allow only
eight values, from —1.00 to +1.00 in steps of 0.25. An 8-bit sample would allow
256 distinct values. A 16-bit sample would allow 65,536 distinct values. The
error introduced by the finite number of bits per sample is called the quantization
noise. If it is too large, the ear detects it.

Two well-known examples of sampled sound are the telephone and audio
compact discs. Pulse code modulation, as used within the telephone system, uses
7-bit (North America and Japan)or 8-bit (Europe) samples 8000 times per second.
This system gives a data rate of 56,000 bps or 64,000 bps. With only 8000
samples/sec, frequencies above 4 kHz arelost.

Audio CDsare digital with a sampling rate of 44,100 samples/sec, enough to
capture frequencies up to 22,050 Hz, which is good for people, bad for dogs. The
samples are 16 bits each, and are linear over the range of amplitudes. Note that
16-bit samples allow only 65,536 distinct values, even though the dynamic range
of the ear is about 1 million when measured in steps of the smallest audible sound.
Thus using only 16 bits per sample introduces some quantization noise (although
the full dynamic range is not covered—CDs are not supposed to hurt). With
44,100 samples/sec of 16 bits each, an audio CD needs a bandwidth of 705.6 kbps

DELL Ex.1006.743

726 THE APPLICATION LA YER CHAP. 7

for monaural and l.411 Mbps for stereo. While this is lower than what video
needs (see below), it still takes almost a full Tl channel to transmit uncompressed
CD quality stereo sound.

Digitized sound can be easily processed by computers in software. Dozens of
programs exist for personal computers to allow users to record, display, edit, mix,
and store sound waves from multiple sources. Virtually all professional sound
recording and editing are digital nowadays.

Many musical instruments even have a digital interface now. When digital
instruments first came out, each one had its own interface, but after a while, a
standard, MIDI (Music Instrument Digital Interface), was developed and
adopted by virtually the entire music industry. This standard specifies the connec
tor, the cable, and the message format. Each MIDI message consists of a status
byte followed by zero or more data bytes. A MIDI message conveys one musi
cally significant event. Typical events are a key being pressed, a slider being
moved, or a foot pedal being released. The status byte indicates the event, and the
data bytes give parameters, such as which key was depressed and with what velo
city it was moved.

Every instrument has a MIDI code assigned to it. For example, a grand piano
is 0, a marimba is 12, and a violin is 40. This is needed to avoid having a flute
concerto be played back as a tuba concerto. The number of "instruments"
defined is 127. However, some of these are not instruments, but special effects
such as chirping birds, helicopters, and the canned applause that accompanies
many television programs.

The heart of every MIDI system is a synthesizer (often a computer) that
accepts messages and generates music from them. The synthesizer understands
all 127 instruments, so it generates a different power spectrum for middle C on a
trumpet than for a xylophone. The advantage of transmitting music using MIDI
compared to sending a digitized waveform is the enormous reduction in
bandwidth, often by a factor of 1000. The disadvantage of MIDI is that the
receiver needs a MIDI synthesizer to reconstruct the music again, and different
ones may give slightly different renditions.

Music, of course, is just a special case of general audio, but an important one.
Another important special case is speech. Human speech tends to be in the 600-
Hz to 6000-Hz range. Speech is made up of vowels and consonants, which have
different properties. Vowels are produced when the vocal tract is unobstructed,
producing resonances whose fundamental frequency depends on the size and
shape of the vocal system and the position of the speaker's tongue and jaw. These
sounds are almost periodic for intervals of about 30 msec. Consonants are pro
duced when the vocal tract is partially blocked. These sounds are Jess regular
than vowels.

Some speech generation and transmission systems make use of models of the
vocal system to reduce speech to a few parameters (e.g., the sizes and shapes of
various cavities), rather than just sampling the speech waveform.

Ex.1006.744DELL

SEC. 7.7
MULTIMEDIA

727

7 .7 .2. Video

The human eye has the property that when an image is flashed on the retina, it
is retained for some number of milliseconds before decaying. If a sequence of
images is flashed at 50 or more images/sec, the eye does not notice that it is look
ing at discrete images. All video (i.e., television) systems exploit this principle to

produce moving pictures.

Analog Systems

To understand video systems, it is best to start with simple, old-fashioned
black-and-white television. To represent the two-dimensional image in front of it
as a one-dimensional voltage as a function of time, the camera scans an electron
beam rapidly across the image and slowly down it, recording the light intensity as
it goes. At the end of the scan, called a frame, the beam retraces. This intensity
as a function of time is broadcast, and receivers repeat the scanning process to
reconstruct the image. The scanning pattern used by both the camera and the
receiver is shown in Fig. 7-77. (As an aside, CCD cameras integrate rather than

scan, but some cameras and all monitors do scan.)

Fig. 7-77. The scanning pattern used for NTSC video and television.

Q)

E
i=

~

The exact scanning parameters vary from country to country. The system
used in North and South America and Japan has 525 scan lines, a horizontal to

Ex.1006.745DELL

SEC. 7.7 MULTIMEDIA 727
7.7.2. Video

The human eye hasthe property that when an imageis flashed on the retina,itis retained for some number of milliseconds before decaying. If a sequence ofimages is flashed at 50 or more images/sec, the eye does not notice thatit is look-ing at discrete images. All video (e., television) systems exploit this principle to
produce moving pictures.

Analog Systems

To understand video systems, it is best to start with simple, old-fashionedblack-and-white television. To represent the two-dimensional image in front of itas a one-dimensional voltage as a function of time, the camera scans an electronbeam rapidly across the image and slowly downit, recording the light intensity asit goes. “At the end of the scan, called a frame, the beam retraces. This intensityas a function of time is broadcast, and receivers repeat the scanning process toreconstruct the image. The scanning pattern used by both the camera and thereceiver is shown in Fig. 7-77. (As an aside, CCD cameras integrate rather than
scan, but some cameras and all monitors do scan.)

. The next field Scanline painted
Seanline start here on the screen

1 uO3 ~eee
5 eassaasotnee
O|nceensneen=
9eneee

41 eneSSenne==|D— E
13|\-—— eeenenn,ne= = |
15 See

KL oSHorizontal Vertical 7 ~~.
retrace . retrace Se433|—_————_ _

Fig. 7-77. The scanning pattern used for NTSC video and television.

The exact scanning parameters vary from country to country. The systemused in North and South America and Japan has 525 scan lines, a horizontal to

DELL Ex.1006.745

728 THE APPLICATION LA YER CHAP. 7

vertical aspect ratio of 4:3, and 30 frames/sec. The European system has 625 scan
lines, the same aspect ratio of 4:3, and 25 frames/sec. In both systems, the top
few and bottom few lines are not displayed (to approximate a rectangular image
on the original round CRTs). Only 483 of the 525 NTSC scan lines (and 576 of
the 625 PAL/SECAM scan lines) are displayed. The beam is turned off during
the vertical retrace, so many stations (especially in Europe) use this interval to
broadcast TeleText (text pages containing news, weather, sports, stock prices,
etc.).

While 25 frames/sec is enough to capture smooth motion, at that frame rate
many people, especially older ones, will perceive the image to flicker (because
the old image has faded off the retina before the new one appears). Rather than
increase the frame rate, which would require using more scarce bandwidth, a dif
ferent approach is taken. Instead of displaying the scan lines in order, first all the
odd scan lines are displayed, then the even ones are displayed. Each of these half
frames is called a field. Experiments have shown that although people notice
flicker at 25 frames/sec, they do not notice it at 50 fields/sec. This technique is
called interlacing. Noninterlaced television or video is said to be progressive.

Color video uses the same scanning pattern as monochrome (black and white),
except that instead of displaying the image with one moving beam, three beams
moving in unison are used. One beam is used for each of the three additive pri
mary colors: red, green, and blue (RGB). This technique works because any color
can be constructed from a linear superposition of red, green, and blue with the
appropriate intensities. However, for transmission on a single channel, the three
color signals must be combined into a single composite signal.

When color television was invented, various methods for displaying color
were technically possible, and different countries made different choices, leading
to systems that are still incompatible. (Note that these choices have nothing to do
with VHS versus Betamax versus P2000, which are recording methods.) In all
countries, a political requirement was that programs transmitted in color had to be
receivable on existing black-and-white television sets. Consequently, the simplest
scheme, just encoding the RGB signals separately, was not acceptable. RGB is
also not the most efficient scheme.

The first color system was standardized in the United States by the National
Television Standards Committee, which lent its acronym to the standard: NTSC.
Color television was introduced in Europe several years later, by which time the
technology had improved substantially, leading to systems with greater noise
immunity and better colors. These are called SECAM (SEquentiel Couleur
Avec Memoire), which is used in France and Eastern Europe, and PAL (Phase
Alternating Line) used in the rest of Europe. The difference in color quality
between the NTSC and P AL/SECAM has led to an industry joke that NTSC really
stands for Never Twice the Same Color.

To allow color transmissions to be viewed on black-and-white receivers, all
three systems linearly combine the RGB signals into a luminance (brightness)

Ex.1006.746DELL

SEC. 7.7 MULTIMEDIA 729

signal, and two chrominance (color) signals, although they all use different coef
ficients for constructing these signals from the RGB signals. Interestingly
enough, the eye is much more sensitive to the luminance signal than to the chrom
inance signals, so the latter need not be transmitted as accurately. Consequently,
the luminance signal can be broadcast at the same frequency as the old hlack
and-white signal, so it can be received on black-and-white television sets. The
two chrominance signals are broadcast in narrow bands at higher frequencies.
Some television sets have controls labeled brightness, hue, and saturation (or
brightness, tint and color) for controlling these three signals separately. Under
standing luminance and chrominance is necessary for understanding how video
compression works.

In the past few years, there has been considerable interest in HDTV (High
Definition TeleVision), which produces sharper images by roughly doubling the
number of scan lines. The United States, Europe, and Japan have all developed
HDTV systems, all different and all mutually incompatible. The basic principles
of HDTV in terms of scanning, luminance, chrominance, and so on, are similar to
the existing systems. However, all three formats have a common aspect ratio of
16:9 instead of 4:3 to match them better to the format used for movies (which are
recorded on 35 mm film).

For an introduction to television technology, see (Buford, 1994).

Digital Systems

The simplest representation of digital video is a sequence of frames, each con
sisting of a rectangular grid of picture elements, or pixels. Each pixel can be a
single bit, to represent either black or white. The quality of such a system is simi
lar to what you get by sending a color photograph by fax-awful. (Try it if you
can; otherwise photocopy a color photograph on a copying machine that does not
rasterize.)

The next step up is to use 8 bits per pixel to represent 256 gray levels. This
scheme gives high-quality black-and-white video. For color video, good systems
use 8 bits for each of the RGB colors, although nearly all systems mix these into
composite video for transmission. While using 24 bits per pixel limits the number
of colors to about 16 million, the human eye cannot even distinguish this many
colors, let alone more. Digital color images are produced using three scanning
beams, one per color. The geometry is the same as for the analog system of
Fig. 7-77 except that the continuous scan lines are now replaced by neat rows of
discrete pixels.

To produce smooth motion, digital video, like analog video, must display at
least 25 frames/sec. However, since good quality computer monitors often rescan
the screen from images stored in memory at 75 times per second or more, interlac
ing is not needed and consequently is not normally used. Just repainting (i.e.,
redrawing) the same frame three times in a row is enough to eliminate flicker.

---r

Ex.1006.747DELL

730 THE APPLICATION LA YER CHAP. 7

In other words, smoothness of motion is determined by the number of dif
ferent images per second, whereas flicker is determined by the number of times
the screen is painted per second. These two parameters are different. A still
image painted at 20 frames/sec will not show jerky motion but it will flicker
because one frame will decay from the retina before the next one appears. A
movie with 20 different frames per second, each of which is painted four times in
a row, will not flicker, but the motion will appear jerky.

The significance of these two parameters becomes clear when we consider the
bandwidth required for transmitting digital video over a network. Current com
puter monitors all use the 4:3 aspect ratio so they can use inexpensive, mass
produced picture tubes designed for the consumer television market. Common
configurations are 640 x 480 (VGA), 800 x 600 (SVGA), and I 024 x 768 (XGA).
An XGA display with 24 bits per pixel and 25 frames/sec needs to be fed at 472
Mbps. Even OC-9 is not quite good enough, and running an OC-9 SONET carrier
into everyone's house is not exactly on the agenda. Doubling this rate to avoid
flicker is even less attractive. A better solution is to transmit 25 frames/sec and
have the computer store each one and paint it twice. Broadcast television does
not use this strategy because television sets do not have memory, and in any
event, analog signals cannot be stored in RAM without first converting them to
digital form, which requires extra hardware. As a consequence, interlacing is
needed for broadcast television but not for digital video.

7.7.3. Data Compression

It should be obvious by now that transm1ttmg multimedia material in
uncompressed form is completely out of the question. The only hope is that mas
sive compression is possible. Fortunately, a large body of research over the past
few decades has led to many compression techniques and algorithms that make
multimedia transmission feasible. In this section we will study some methods for
compressing multimedia data, especially images. For more detail, see (Fluckiger,
1995; and Steinmetz and Nahrstedt, 1995).

All compression systems require two algorithms: one for compressing the data
at the source, and another for decompressing it at the destination. In the literature,
these algorithms are referred to as the encoding and decoding algorithms, respec
tively. We will use this terminology here, too.

These algorithms have certain asymmetries that are important to understand.
First, for many applications, a multimedia document, say, a movie will only be
encoded once (when it is stored on the multimedia server) but will be decoded
thousands of times (when it is viewed by customers). This asymmetry means that
it is acceptable for the encoding algorithm to be slow and require expensive
hardware provided that the decoding algorithm is fast and does not require expen
sive hardware. After all, the operator of a multimedia server might be quite will
ing to rent a parallel supercomputer for a few weeks to encode its entire video

Ex.1006.748DELL

SEC. 7.7 MULTIMEDIA 731

library, but requiring consumers to rent a supercomputer for 2 hours to view a
video is not likely to be a big success. Many practical compression systems go to
great lengths to make decoding fast and simple, even at the price of making
encoding slow and complicated.

On the other hand, for real-time multimedia, such as video conferencing, slow
encoding is unacceptable. Encoding must happen on-the-fly, in real time. Conse
quently, real-time multimedia uses different algorithms or parameters than storing
videos on disk, often with appreciably less compression.

A second asymmetry is that the encode/decode process need not be invertible.
That is, when compressing a file, transmitting it, and then decompressing it, the
user expects to get the original back, accurate down to the last bit. With mul
timedia, this requirement does not exist. It is usually acceptable to have the video
signal after encoding and then decoding be slightly different than the original.
When the decoded output is not exactly equal to the original input, the system is
said to be lossy. If the input and output are identical, the system is lossless.
Lossy systems are important because accepting a small amount of information
loss can give a huge payoff in terms of the compression ratio possible.

Entropy Encoding

Compression schemes can be divided into two general categories: entropy
encoding and source encoding. We will now discuss each in turn.

Entropy encoding just manipulates bit streams without regard to what the
bits mean. It is a general, lossless, fully reversible technique, applicable to all
data. We will illustrate it by means of three examples.

Our first example of entropy encoding is run-length encoding. In many
kinds of data, strings of repeated symbols (bits, numbers, etc.) are common.
These can be replaced by a special marker not otherwise allowed in the data, fol
lowed by the symbol comprising the run, followed by how many times it
occurred. If the special marker itself occurs in the data, it is duplicated (as in
character stuffing). For example, consider the following string of decimal digits:

3150000000000008458711111111111116354674000000000000000000000065

If we now introduce A as the marker and use two-digit numbers for the repetition
count, we can encode the above digit string as

315A01284587Al1316354674A02265

Here run-length encoding has cut the data string in half.
Runs are common in multimedia. In audio, silence is often represented by

runs of zeros. In video, runs of the same color occur in shots of the sky, walls,
and many flat surfaces. All of these runs can be greatly compressed.

Our second example of entropy encoding is statistical encoding. By this we
mean using a short code to represent common symbols and long ones to represent

Ex.1006.749DELL

732 THE APPLJCA TION LA YER CHAP. 7

infrequent ones. Morse code uses this principle, with E being • and Q being - - • -
and so on. Huffman coding and the Ziv-Lempel algorithm used by the UNIX

Compress program also use statistical encoding.
Our third example of entropy encoding is CLUT (Color Look Up Table)

encoding. Consider an image using RGB encoding with 3 bytes/pixel. In theory,
the image might contain as many as 224 different color values. In practice, it will
normally contain many fewer values, especially if the image is a cartoon or
computer-generated drawing, rather than a photograph. Suppose that only 256
color values are actually used. A factor of almost three compression can be
achieved by building a 768-byte table listing the RGB values of the 256 colors
actually used, and then representing each pixel by the index of its RGB value in
the table. Here we see a clear example where encoding is slower than decoding
because encoding requires searching the table whereas decoding can be done with
a single indexing operation.

Source Encoding

Now we come to source encoding, which takes advantage of properties of the
data to produce more (usually lossy) compression. Here, too, we will illustrate
the idea with three examples. Our first example is differential encoding, in
which a sequence of values (e.g., audio samples) are encoded by representing
each one as the difference from the previous value. Differential pulse code modu
lation, which we saw in Chap. 2, is an example of this technique. It is lossy
because the signal might jump so much between two consecutive values that the
difference does not fit in the field provided for expressing differences, so at least
one incolTect value will be recorded and some information lost.

Differential encoding is a kind of source encoding because it takes advantage
of the property that large jumps between consecutive data points are unlikely.
Not all sequences of numbers have this property. An example lacking this pro
perty is a computer-generated list of random telephone numbers to be used by
telemarketers for bothering people during dinner. The differences between con
secutive telephone numbers in the list will take as many bits to represent as the
numbers themselves.

Our second example of source encoding consists of transformations. By
transforming signals from one domain to another, compression may become much
easier. Consider, for example, the Fourier transformation of Fig. 2-] (e). Here a
function of time is represented as a list of amplitudes. Given the exact values of
all the amplitudes, the original function can be reconstructed perfectly. However,
given only the values of the first, say, eight amplitudes rounded off to two decimal
places, it may still be possible to reconstruct the signal so well that the listener
cannot tell that some information has been lost. The gain is that transmitting eight
amplitudes requires many fewer bits than transmitting the sampled waveform.

Ex.1006.750DELL

SEC. 7.7 MULTIMEDIA 733

Transformations are also applicable to two-dimensional image data. Suppose
that the 4 x 4 matrix of Fig. 7-78(a) represents the gray-scale values of a mono
chrome image. We can transform these data by subtracting the value in the upper
left-hand corner from all elements except itself, as shown in Fig. 7-78(b). This
transformation might be useful if variable-length encoding is used. For example,
values between - 7 and + 7 could be encoded with 4-bit numbers and values
between 0 and 255 could be encoded as a special 4-bit code (-8) followed by an
8-bit number.

Pixel value 4 pixels

/ ,
160 160 161 160 160 0 1 0

161 165 166 158 1 5 6 -2

160 167 165 161 0 7 5 1

159 160 160 160 -1 0 1 0

(a) (b)

Fig. 7-78. (a) Pixel values for part of an image. (b) A transformation in wqich
the upper left-hand element is subtracted from all elements except itself.

Although this simple transformation is lossless, other, more useful ones are
not. An especially important two-dimensional spatial transformation is the DCT
(Discrete Cosine Transformation) (Feig and Winograd, 1992). This transforma
tion has the property that for images without sharp discontinuities, most of the
spectral power is in the first f~w terms, allowing the later ones to be ignored
without much information loss .. We will come back to DCT shortly.

Our third example of source encoding is vector quantization, which is also
directly applicable to image data. Here, the image is divided up into fixed-size
rectangles. In addition to the image itself, we also need a table of rectangles of
the same size as the image rectangles (possibly constn:icted from the image). This
table is called the code book. Each rectangle is transmitted by looking it up in the
code book and just sending the index instead of the rectangle. If the code book is
created dynamically (i.e., per image), it must be transmitted, too. Clearly, if a
small number of rectangles dominate the image, large savings in bandwidth are
possible here.

An example of vector quantization is shown in Fig. 7-79. In Fig. 7-79(a) we
have a grid of rectangles of unspecified size. In Fig. 7-79(b) we have the code
book. The output stream is just the list of integers 001022032200400 shown in
Fig. 7-79(c). Each one represents an entry from the code book.

Ex.1006.751DELL

734 THE APPLTCA TION LA YER CHAP. 7

Square with many pixels Code
~book /

0 0

2 2

3 2

0 4

1 0 0 0 0 1 0 2 2 0 3 2 2 0 0 4 0 0

2 0

2 0 2

0 0 3

4

(a) (b) (c)

Fig. 7-79. An example of vector quantization. (a) An image divided into
squares. (b) A code book for the image. (c) The encoded image.

In a sense, vector quantization is just a two-dimensional generalization of
CLUT. The real difference, however, is what happens if no match can be found.
Three strategies are possible. The first one is just to use the best match. The
second one is to use the best match, and append some information about how to
improve the match (e.g., append the true mean value). The third one is use the
best match and append whatever is necessary to allow the decoder to reconstruct
the data exactly. The first two strategies are lossy but exhibit high compression.
The third is lossless but less effective as a compression algorithm. Again, we see
that encoding (pattern matching) is far more time consuming than decoding
(indexing into a table).

The JPEG Standard

The JPEG (Joint Photographic Experts Group) standard for compressing
continuous-tone still pictures (e.g., photographs) was developed by photographic
experts working under the joint auspices of ITU, ISO, and IEC, another standards
body. It is important for multimedia because, to a first approximation, the mul
timedia standard for moving pictures, MPEG, is just the JPEG encoding of each
frame separately, plus some extra features for interframe compression and motion
detection. JPEG is defined in International Standard 10918.

JPEG has four modes and many options. It is more like a shopping list than a
single algorithm. For our purposes, though, only the lossy sequential mode is
relevant, and that one is illustrated in Fig. 7-80. Furthermore, we will concentrate
on the way JPEG is normally used to encode 24-bit RGB video images and will
leave out some of the minor details for the sake of simplicity.

Step 1 of encoding an image with JPEG is block preparation. For the sake of
specificity, let us assume that the JPEG input is a 640 x 480 RGB image with 24
bits/pixel, as shown in Fig. 7-8 J (a). Since using luminance and chrominance

Ex.1006.752DELL

SEC. 7.7 MULTIMEDIA 735

Block
Discrete

preparation -- cosine --
transform

Input - Differential
Run- Statistical Output

uantization -- c- length output -quantization
encoding encoding

Fig. 7-80. The operation of JPEG in lossy sequential mode.

gives better compression, we first cbmpute the luminance, Y, and the two chromi
nances, I and Q (for NTSC), according to the following formulas:

Y = 0.30R + 0.59G + 0.1 lB
I = 0.60R - 0.28G - 0.32B
Q = 0.21R - 0.52G + 0.31B

For PAL, the chrominances are called U and V and the coefficients are different,
but the idea is the same. SECAM is different from both NTSC and PAL.

0
00
'<!"

RGB y

---- 640 ---- ---- 640 ---- -- 320 -

1
t--!!_!i~m,.....! _!!~_J!_,,!~.,...! _ .. _. ______ N~+ l''''1"rn,1 ··· I
:::::::: :::::·:: 'I

: 8-Bit pixel
o 1 Block

~ =~§if; ~t l''''l'''I ··· I j ::::::::
~,.....__......_

(a) 24-Bit pixel Block 4799 (b} Q

Fig. 7-81. (a) RGB input data. (b) After block preparation.

Separate matrices are constructed for Y, I, and Q, each with elements in the
range 0 to 255. Next, square blocks of four pixels are averaged in the I and Q
matrices to reduce them to 320 x 240. This reduction is lossy, but the eye barely
notices it since the eye responds to luminance more than to chrominance.
Nevertheless, it compresses the data by a factor of two. Now 128 is subtracted
from each element of all three matrices to put 0 in the middle of the range.
Finally, each matrix is divided up into 8 x 8 blocks. The Y matrix has 4800
blocks; the other two have 1200 blocks each, as shown in Fig. 7-8l(b).

Step 2 of JPEG is to apply a discrete cosine transformation to each of the
7200 blocks separately. The output of each DCT is an 8 x 8 matrix of DCT coef
ficients. DCT element (0, 0) is the average value of the block. The other ele
ments tell how much spectral power is present at each spatial frequency. In
theory, a DCT is lossless, but in practice using floating-point numbers and

Ex.1006.753DELL

SEC. 7.7 MULTIMEDIA 735

Input) Block Discrete Differential Run- Statistical] Output
—~ preparation cosine [| Quantization quantization length output

transform encoding encoding

Fig. 7-80. The operation of JPEG in lossy sequential mode.

gives better compression, we first compute the luminance, Y, and the two chromi-
nances, J and Q (for NTSC), according to the following formulas:

Y =0.30R + 0.59G + 0.11B

T =0.60R — 0.28G — 0.32B

Q = 0.21R — 0.52G + 0.31B

For PAL, the chrominances are called U and V and the coefficients are different,
but the idea is the same. SECAMis different from both NTSC and PAL.

RGB Y |

+~—_—_—_——_. 640 —__-—__+ 640 > 320 -

ol:t
n

° 8-Bit pixel \
° ° 1 Block© %

t v f
ol:$nN

(a) 24-Bit pixel Block 4798 (py Q

Fig. 7-81. (a) RGB input data. (b) After block preparation.

Separate matrices are constructed for Y, J; and Q, each with elements in the
range 0 to 255. Next, square blocks of four pixels are averaged in the / and Q
matrices to reduce them to 320 x 240. This reduction is lossy, but the eye barely
notices it since the eye responds to luminance more than to chrominance.
Nevertheless, it compresses the data by a factor of two. Now 128 is subtracted
from each element of all three matrices to put 0 in the middle of the range.
Finally, each matrix is divided up into 8x8 blocks. The Y matrix has 4800
blocks; the other two have 1200 blocks each, as shown in Fig. 7-81(b).

Step 2 of JPEG is to apply a discrete cosine transformation to each of the
7200 blocks separately. The output of each DCTis an 8 x 8 matrix of DCT coef-
ficients. DCT element (0, 0) is the average value of the block. The other ele-
ments tell how much spectral power is present at each spatial frequency. In
theory, a DCT is lossless, but in practice using floating-point numbers and

DELL Ex.1006.753

736 THE APPLIC'A TION LA YER CHAP. 7

transcendental functions always introduces some roundoff error that results in a
little information loss. Normally, these elements decay rapidly with distance from
the origin, (0, 0), as suggested by Fig. 7-82.

x

f
()
0

Fx

Fig. 7-82. (a) One block of the Y matrix. (b) The DCT coefficients.

Once the DCT is complete, JPEG moves on to step 3, called quantization, in
which the less important DCT coefficients are wiped out. This (lossy) transfor
mation is done by dividing each of the coefficients in the 8 x 8 DCT matrix by a
weight taken from a table. If all the weights are 1, the transformation does noth
ing. However, if the weights increase sharply from the origin, higher spatial fre
quencies are dropped quickly.

An example of this step is given in Fig. 7-83. Here we see the initial DCT
matrix, the quantization table, and the result obtained by dividing each DCT ele
ment by the corresponding quantization table element. The values in the quanti
zation table are not part of the JPEG standard. Each application must supply its
own, allowing it to control the loss-compression trade-off.

Step 4 reduces the (0, O) value of each block (the one in the upper left-hand
corner) by replacing it with the amount it differs from the corresponding element
in the previous block. Since these elements are the averages of their respective
blocks, they should change slowly, so taking the differential values should reduce
most of them to small values. No differentials are computed from the other
values. The (0, 0) values are referred to as the DC components; the other values
are the AC components.

Step 5 linearizes the 64 elements and applies run-length encoding to the list.
Scanning the block from left to right and then top to bottom will not concentrate
the zeros together, so a zig zag scanning pattern is used, as shown in Fig. 7-84. In
this example, the zig zag pattern ultimate produces 38 consecutive Os at the end of
the matrix. This string can be reduced to a single count saying there are 38 zeros.

Now we have a list of numbers that represent the image (in transform space).
Step 6 Huffman encodes the numbers for storage or transmission.

Ex.1006.754DELL

SEC. 7.7 MULTIMEDIA 737

DCT Coefficiemts Quantized coefficients

150 BO 40 14 4 2 1 0 150 80 20 4 1 0 0 0

92 75 36 10 6 1 0 0 92 75 18 3 1 0 0 0

52 38 26 8 7 4 0 0 26 19 13 2 1 0 0 0

12 8 6 4 2 1 0 0 3 2 2 1 0 0 0 0

4 3 2 0 0 0 0 0 1 0 0 0 0 0 0 0

2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Quantization table

·1 1 2 4 8 16 32 64
·1 1 2 4 8 16 32 64

~~ 2 2 4 8 16 32 64

4 4 4 4 8 16 32 64

13 8 8 8 8 16 32 64

16 16 16 16 16 16 32 64

3:~ 32 32 32 32 32 32 64

64 64 64 64 64 64 64 64

Fig. 7-83. Computation of the quantized DCT coefficients.

Fig. 7-84. The order in which the quantized values are transmitted.

Ex.1006.755DELL

SEC. 7.7 MULTIMEDIA 737

DCT Coefficients Quantized coefficients

T T150{ a0] 40/14] 4] 2] 1] 0] fisofsolzo[4 [1]olo 0 |
[92/75 [36 [10/6|1{ 0] 0 7lie}3t1101010

s2|38[26| 8] 7] 4] 0 0 i9 [13] 2 [1 [o[o]o |
12) 8|6) 4[allo 0 3] 2| 2f7}olololo
| 4] af 2] ofofo|[o|o if of ofo[ofolo[o|

af 2[4 1[o[olfol|o ol of olo}fololofo
i] 1/ of ofo}ololo of of of[o{ofolofo— “|
of of o| of ofofo]o of of of of ofofofoante —)

©

Quantization table

32| 64

@ 5

|CBasbnD

1

I

1

IS
__t

ae, if Oo.

Le

Fig. 7-84. The order in which the quantized values are transmitted.

DELL Ex.1006.755

738 THE APPLICATION LA YER CHAP. 7

JPEG may seem complicated, but that is because it is complicated. Still,
since it often produces a 20: l compression or better, it is widely used. Decoding a
JPEG image requires running the algorithm backward. Unlike some of the other
compression algorithms we have seen, JPEG is roughly symmetric: decoding
takes as long as encoding.

Interestingly enough, due to the mathematical properties of the DCT, it is pos
sible to perform certain geometric transformations (e.g. image rotation) directly
on the transformed matrix, without regenerating the original image. These
transformations are discussed in (Shen and Sethi, 1995). Similar properties also
apply to MPEG compressed audio (Broadhead and Owen, 1995).

The MPEG Standard

Finally, we come to the heart of the matter: the MPEG (Motion Picture
Experts Group) standards. These are the main algorithms used to compress
videos and have been international standards since 1993. Because movies contain
both images and sound, MPEG can compress both audio and video, but since
video takes up more bandwidth and also contains more redundancy than audio, we
will primarily focus on MPEG video compression below.

The first standard to be finalized was MPEG-1 (International Standard
11172). Its goal was to produce video recorder-quality output (352 x 240 for
NTSC) using a bit rate of 1.2 Mbps. Since we saw earlier that uncompressed
video alone can run to 472 Mbps, getting it down to 1.2 Mbps is not entirely
trivial, even at this lower resolution. MPEG-1 can be transmitted over twisted
pair transmission lines for modest distances. MPEG-1 is also used for storing
movies on CD-ROM in CD-I and CD-Video format.

The next standard in the MPEG family was MPEG-2 (International Standard
13818), which was originally designed for compressing broadcast quality video
into 4 to 6 Mbps, so it could fit in a NTSC or PAL broadcast channel. Later,
MPEG-2 was expanded to support higher resolutions, including HDTV. MPEG-4
is for medium-resolution videoconferencing with low frame rates (10 frames/sec)
and at low bandwidths (64 kbps). This will permit videoconferences to be held
over a single N-ISDN B channel. Given this numbering, one might think that the
next standard will be MPEG-8. Actuallly, ISO is numbering them linearly, not
exponentially. Originally MPEG-3 existed. It was intended for HDTV, but that
project was later canceled, and HDTV was added to MPEG-2.

The basic principles of MPEG-1 and MPEG-2 are similar, but the details are
different. To a first approximation, MPEG-2 is a superset of MPEG-1, with addi
tional features, frame formats and encoding options. It is likely that in the long
run MPEG-1 will dominate for CD-ROM movies and MPEG-2 will dominate for
long-haul video transmission. We will discuss MPEG-1 first and then MPEG-2.

MPEG-1 has three parts: audio, video, and system, which integrates the other
two, as shown in Fig. 7-85. The audio and video encoders work independently,

Ex.1006.756DELL

SEC. 7.7 MULTIMEDIA 739

which raises the issue of how the two streams get synchronized at the receiver.
This problem is solved by having a 90-kHz system clock that outputs the current
time value to both encoders. These values are 33 bits, to allow films to run for 24
hours without wrapping around. These timestamps are included in the encoded
output and propagated all the way to the receiver, which can use them to syn
chronize the audio and video streams.

Audio signal Audio

encoder

~ System
~ 1 multiplexer

v;deo ,;goal ~ /
~;J

MPEG -1 output

Fig. 7-85. Synchronization of the audio and video streams in MPEG-1.

MPEG audio compression is done by sampling the waveform at 32 kHz 44.1
kHz, or 48 kHz. It can handle monaural, disjoint stereo (each channel compressed
separately), or joint stereo (interchannel redundancy exploited). It is organized as
three layers, each one applying additional optimizations to get more compression
(and at greater cost). Layer 1 is the basic scheme. This layer is used, for exam
ple, in the DCC digital tape system. Layer 2 adds advanced bit allocation to the
basic scheme. It is used for CD-ROM audio and movie soundtracks. Layer 3
adds hybrid filters, nonuniform quantization, Huffman coding, and other advanced
techniques.

MPEG audio can compress a rock 'n roll CD down to 96 kbps with no percep
tible loss in quality, even for rock 'n roll fans with no hearing loss. For a piano
concert, at least 128 kbps are needed. These differ because the signal-to-noise
ratio for rock 'n roll is much higher than for a piano concert (in an engineering
sense, anyway).

Audio compression is carried out by performing a fast Fourier transformation
on the audio signal to transform it from the time domain to the frequency domain.
The resulting spectrum is then divided up into 32 frequency bands, each of which
is processed separately. When two stereo channels are present, the redundancy
inherent in having two highly overlapping audio sources is also exploited. The
resulting MPEG-1 audio stream is adjustable from 32 kbps to 448 kbps. An intro
duction to the process is given in (Pan, 1995).

Now let us consider MPEG-1 video compression. Two kinds of redundancies
exist in movies: spatial and temporal. MPEG-1 uses both. Spatial redundancy
can be utilized by simply coding each frame separately with JPEG. This approach
is sometimes used, especially when random access to each frame is needed, as in

Ex.1006.757DELL

SEC. 7.7 MULTIMEDIA 739

which raises the issue of how the two streams get synchronized at the receiver.
This problem is solved by having a 90-kHz system clock that outputs the current
time value to both encoders. These values are 33 bits, to allow films to run for 24

hours without wrapping around. These timestamps are included in the encoded
output and propagated all the way to the receiver, which can use them to syn-
chronize the audio and video streams.

Audio signal Audio
— encoder

v4 multiplexerVideo signal Video
— encoder

Fig. 7-85. Synchronization ofthe audio and video streams in MPEG-1.

MPEGaudio compression is done by sampling the waveform at 32 kHz 44.1
kHz, or 48 kHz. It can handle monaural, disjoint stereo (each channel compressed
separately), or joint sterea (interchannel redundancy exploited). It is organized as
three layers, each one applying additional optimizations to get more compression
(and at greater cost). Layer | is the basic scheme. This layer is used, for exam-
ple, in the DCC digital tape system. Layer 2 adds advanced bit allocation to the
basic scheme. It is-used for CD-ROM audio and movie soundtracks. Layer 3
adds hybrid filters, nonuniform quantization, Huffman coding, and other advanced
techniques.

MPEGaudio can compress a rock ’n roll CD down to 96 kbps with no percep-
tible loss in quality, even for rock ’n roll fans with no hearing loss. For a piano
concert, at least 128 kbps are needed. These differ because the signal-to-noise
ratio for rock ’n roll is much higher than for a piano concert (in an engineering
sense, anyway).

Audio compression is carried out by performing a fast Fourier transformation
on the audio signal to transform it from the time domain to the frequency domain.
The resulting spectrum is then divided up into 32 frequency bands, each of which
is processed separately. When two stereo channels are present, the redundancy
inherent in having two highly overlapping audio sources is also exploited. The
resulting MPEG-1 audio stream is adjustable from 32 kbps to 448 kbps. An intro-
duction to the process is given in (Pan, 1995),

Nowlet us consider MPEG-1 video compression. Two kinds of redundancies
exist in movies: spatial and temporal. MPEG-1 uses both. Spatial redundancy
can be utilized by simply coding each frame separately with JPEG. This approach
is sometimes used, especially when random access to each frame is needed, as in

DELL Ex.1006.757

740 THE APPLICATION LA YER CHAP. 7

editing video productions. In this mode, a compressed bandwidth in the 8- to 10-
Mbps range is achievable.

Additional compression can be achieved by taking advantage of the fact that
consecutive frames are often almost identical. This effect is smaller than it might
first appear since many movie makers cut between scenes every 3 or 4 seconds
(time a movie and count the scenes). Nevertheless, even a run of 75 highly simi
lar frames offers the potential of a major reduction over simply encoding each
frame separately with JPEG.

For scenes where the camera and background are stationary and one or two
actors are moving around slowly, nearly all the pixels will be identical from frame
to frame. Here, just subtracting each frame from the previous one and running
JPEG on the difference would do fine. However, for scenes where the camera is
panning or zooming, this technique fails badly. What is needed is some way to
compensate for this motion. This is precisely what MPEG does; it is the main
difference between MPEG and JPEG.

MPEG-1 output consists of four kinds of frames:

1. I (Intracoded) frames: Self-contained JPEG-encoded still pictures.

2. P (Predictive) frames: Block-by-block difference with the last frame.

3. B (Bidirectional) frames: Differences with the last and next frame.

4. D (DC-coded) frames: Block averages used for fast forward.

I-frames are just still pictures coded using JPEG, also using full-resolution
luminance and half-resolution chrominance along each axis. It is necessary to
have I-frames appear in the output stream periodically for three reasons. First,
MPEG-1 can be used for a multicast transmission, with viewers tuning it at will.
If all frames depended on their predecessors going back to the first frame, any
body who missed the first frame could never decode any subsequent frames.
Second, if any frame were received in error, no further decoding would be possi
ble. Third, without I-frames, while doing a fast forward or rewind, the decoder
would have to calculate every frame passed over so it would know the full value
of the one it stopped on. For these reasons, I-frames are inserted into the output
once or twice per second.

P-frames, in contrast, code interframe differences. They are based on the idea
of macroblocks, which cover 16 x 16 pixels in luminance space and 8 x 8 pixels
in chrominance space. A macroblock is encoded by searching the previous frame
for it or something only slightly different from it.

An example of where P-frames would be useful is given in Fig. 7-86. Here
we see three consecutive frames that have the same background, but differ in the
position of one person. The macroblocks containing the background scene will
match exactly, but the macroblocks containing the person will be offset in posi
tion by some unknown amount and will have to be tracked down.

Ex.1006.758DELL

SEC. 7.7 MULTIMEDIA 741

Fig. 7··86. Three consecutive frames.

The MPEG-1 standard does not specify how to search, how far to search, or
how good a match has to be to count. This is up to each implementation. For
example, an implementation might search for a macroblock at the current position
in the previous frame, and all other positions offset ±Ax in the x direction and ±L1 y
in the y direction. For each position, the number of matches in the luminance
matrix could be computed. The position with the highest score would be declared
the winner, provided it was above some predefined threshold. Otherwise, the
macroblock would be said to be missing. Much more sophisticated algorithms are
also possible, of course.

If a macroblock is found, it is encoded by taking the difference with its value
in the previous frame (for luminance and both chrominances). These difference
matrices are then subject to the discrete cosine transformation, quantization, run
length encoding, and Huffman encoding, just as with JPEG. The value for the
macroblock in the output stream is then the motion vector (how far the macro
block moved from its previous position in each direction), followed by the Huff
man encoded list of numbers. If the macroblock is not located in the previous
frame, the current value is encoded with JPEG, just as in an I-frame.

Clearly, this algorithm is highly asymmetric. An implementation is free to try
every plausible position in the previous frame if it wants to, in a desperate attempt
to locate every last macroblock. This approach will minimize the encoded
MPEG-1 stream at the expense of very slow encoding. This approach might be
fine for a one-time encoding of a film library put would be terrible for real-time
videoconferencing.

Similarly, each implementation is free to decide what constitutes a "found"
macroblock. This freedom allows implementers to compete on the quality and
speed of their algorithms, but always produce compliant MPEG-1. No matter
what search algorithm is used, the final oµtput is either the JPEG encoding of the
current macroblock, or the JPEG encoding of the difference between the current
macroblock and one in the previous frarne at a specified offset from the current
one.

So far, decoding MPEG-1 is straightforward. Decoding I-frames is the same
as decoding JPEG images. Decoding P-frames requires the decoder to buffer the
previous frarne and then build up the new one in a second buffer based on fully

Ex.1006.759DELL

742 THE APPLICATION LA YER CHAP. 7

encoded macroblocks and macroblocks containing differences with the previous
frame. The new frame is assembled macroblock by macroblock.

B-frames are similar to P-frames, except that they allow the reference
macroblock to be in either a previous frame or in a succeeding frame. This addi
tional freedom allows improved motion compensation, and is also useful when
objects pass in front of, or behind, other objects. To do B-frame encoding, the
encoder needs to hold three decoded frames in memory at once: the past one, the
current one, and the future one. Although B-frames give the best compression,
not all implementations support them.

D-frames are only used to make it possible to display a low-resolution image
when doing a rewind or fast forward. Doing the normal MPEG-1 decoding in real
time is difficult enough. Expecting the decoder to do it when slewing through the
video at ten times normal speed is asking a bit much. Instead, the D-frames are
used to produce low-resolution images. Each D-frame entry is just the average
value of one block, with no further encoding, making it easy to display in real
time. This facility is important to allow people to scan through a video at high
speed in search of a particular scene.

Having finished our treatment of MPEG-1, let us move on to MPEG-2.
MPEG-2 encoding is fundamentally similar to MPEG-1 encoding, with I-frames,
P-frames, and B-frames. D-frames are not supported, however. Also, the discrete
cosine transformation is 10 x 10 instead of 8 x 8, to give 50 percent more coeffi
cients, hence better quality. Since MPEG-2 is targeted at broadcast television as
well as CD-ROM applications, it supports both progressive and interlaced images,
whereas MPEG-1 supports only progressive images. Other minor details also
differ between the two standards.

Instead of supporting only one resolution level, MPEG-2 supports four: low
(352 x 240), main (720 x 480), high-1440 (1440 x 1152), and high (1920 x 1080).
Low resolution is for VCRs and backward compatibility with MPEG-1. Main is
the normal one for NTSC broadcasting. The other two are for HDTV.

In addition to having four resolution levels, MPEG-2 also supports five pro
files. Each profile targets some application area. The main profile is for general
purpose use, and probably most chips will be optimized for the main profile and
the main resolution level. The simple profile is similar to the main one, except
that it excludes the use of B-frames, to make software encoding and decoding
easier. The other profiles deal with scalability and HDTV. The profiles differ in
terms of the presence or absence of B-frames, chrominance resolution, and scala
bility of the encoded bit stream to other formats.

The compressed data rate for each combination of resolution and profile is
different. These range from about 3 Mbps up to 100 Mbps for HDTV. The nor
mal case is about 3 to 4 Mbps. Some performance data for MPEG are given in
(Pancha and El Zarki, 1994).

MPEG-2 has a more general way of multiplexing audio and video than the
MPEG-1 model of Fig. 7-85. It defines an unlimited number of elementary

Ex.1006.760DELL

SEC. 7.7 MULTIMEDIA 743

streams, including video and audio, but also including data streams that must be
synchronized with the audio and video, for example, subtitles in multiple
languages. Each of the streams is first packetized with timestamps. A simple
two-stream example is shown in Fig. 7-87.

Video [Video
- encoder

Clock

Audio [Video
- encoder

Packetized
elementary
stream

E TS TS
- Packetizer i----,-----~-M-ul-ti-~---- (Fixed-length packets,

_plexor no common time base)

Packetized
elementary
stream

Fig. 7-87. Multiplexing of two streams in MPEG-2.

The output of each pack~tizer is a PES (Packetized Elementary Stream).
Each PBS packet has about 30 header fields and flags, including lengths, stream
identifiers, encryption control, copyright status, timestamps, and a CRC.

The PBS streams for audio, video, and possibly data are then multiplexed
together on a single output stream for transmission. Two types of streams are
defined. The MPEG-2 program stream is similar to the MPEG-1 systems stream
of Fig. 7-85. It is used for multiplexing together elementary streams that have a
common time base and have to be displayed in a synchronized way. The program
stream uses long variable-length packets.

The other MPEG-2 stream is the transport stream. It is used for multiplex
ing together streams (including program streams) that do not use a common time
base. The transport stream packets are fixed length (188 bytes), to make it easier
to limit the effect of packets damaged or lost during transmission.

It is worth noting that all the encoding schemes we have discussed are based
on the model of lossy encoding followed by lossless transmission. Neither JPEG
nor MPEG, for example, can recover from lost or damaged packets in a graceful
way. A different approach to image transmission is to transform the images in a
way that separates the important information from the less important information
(as the DCT does, for example). Then add a considerable amount of redundancy
(even duplicate packets) to the important information and none to the less

Ex.1006.761DELL

SEC. 7.7 MULTIMEDIA 743

streams,. including video and audio, but also including data streams that must be
synchronized with the audio and video, for example, subtitles in multiple
languages. Each of the streams is first packetized with timestamps. A simple
two-stream example is shown in Fig. 7-87.

Packetized

elementary
stream

PS

j————> (Variable-length packets,
commontime base)

Video Video
encoder =| Packetizer

Clock

TS

i» (Fixed-length packets,
no commontime base)

Audio Video tiz
——| encoder |—_—-—»| Packetizer

Packetized

elementary
stream

Fig. 7-87. Multiplexing of two streams in MPEG-2.

The output of each packetizer is a PES (Packetized Elementary Stream).
Each PES packet has about 30 header fields and flags, including lengths, stream
identifiers, encryption control, copyright status, timestamps, and a CRC.

The PES streams for audio, video, and possibly data are then multiplexed
together on a single output stream for transmission. Two types of streams are
defined. The MPEG-2 program stream is similar to the MPEG-1 systems stream
of Fig. 7-85. It is used for multiplexing together elementary streams that have a
common time base and haveto be displayed in a synchronized way. The program
stream uses long variable-length packets.

The other MPEG-2 stream is the transport stream. {t is used for multiplex-
ing together streams (including program streams) that do not use a common time
base. The transport stream packets are fixed length (188 bytes), to make it easier
to limit the effect of packets damagedorlost during transmission.

It is worth noting that all the encoding schemes we have discussed are based
on the model of lossy encoding followed by lossless transmission. Neither JPEG
nor MPEG,for example, can recover from lost or damaged packets in a graceful
way. A different approach to image transmission is to transform the images in a
way that separates the important information from the less important information
(as the DCT does, for example). Then add a considerable amount of redundancy
(even duplicate packets) to the important information and none to the less

DELL Ex.1006.761

744 THE APPLICATION LA YER CHAP. 7

important information. If some packets are lost or garbled, it may still be possible
to display reasonable images without retransmission. These ideas are described
further in (Danskin et al., 1995). They are especially applicable to multicast
transmissions, where feedback from each receiver is impossible anyway.

7. 7.4. Video on Demand

Video on demand is sometimes compared to an electronic video rental store.
The user (customer) selects any one of a large number of available videos and
takes it home to view. Only with video on demand, the selection is made at home
using the television set's remote control, and the video starts immediately. No
trip to the store is needed. Needless to say, implementing video on demand is a
wee bit more complicated than describing it. In this section, we will give an over
view of the basic ideas and their implementation. A description of one real imple
mentation can be found in (Nelson and Linton, 1995). A more general treatment
of interactive television is in (Hodge, 1995). Other relevant references are (Chang
et al., 1994; Hodge et al., 1993; and Little and Venkatesh, 1994).

Is video on demand really like renting a video, or is it more like picking a
movie to watch from a 500- or 5000·-channel cable system? The answer has
important technical implications. In particular, video rental users are used to the
idea of being able to stop a video, make a quick trip to the kitchen or bathroom,
and then resume from where the video stopped. Television viewers do not expect
to put programs on pause.

If video on demand is going to compete successfully with video rental stores,
it may be necessary to allow users to stop, start, and rewind videos at will. Giving
users this ability virtually forces the video provider to transmit a separate copy to
each one.

On the other hand, if video on demand is seen more as advanced television,
then it may be sufficient to have the video provider start each popular video, say,
every 10 minutes, and run these nonstop. A user wanting to see a popular video
may have to wait up to 10 minutes for it to start. Although pause/resume is not
possible here, a viewer returning to the living room after a short break can switch
to another channel showing the same video but 10 minutes behind. Some material
will be repeated, but nothing will be missed. This scheme is called near video on
demand. It offers the potential for much lower cost, because the same feed from
the video server can go to many users at once. The difference between video on
demand and near video on demand is similar to the difference between driving
your own car and taking the bus.

Watching movies on (near) demand is but one of a vast array of potential new
services possible once wideband networking is available. The general model that
many people use is illustrated in Fig. 7-88. Here we see a high-bandwidth,
(national or international) wide area backbone network at the center of the system.
Connected to it are thousands of local distribution networks, such as cable TV or

Ex.1006.762DELL

SEC. 7.7 MULTIMEDIA 745

telephone company distribution systems. The local distribution systems reach into
people's houses, where they terminate in set-top boxes, which are, in fact, power
ful, specialized personal computers.

Video
server

Audio
server

ATM orSONET
backbone network

Switch

spooling

Local distribution
network

Fig. 7-88. Overview of a video-on-demand system.

Customer's

Attached to the backbone by high-bandwidth optical fibers are thousands of
information providers. Some of these will offer pay-per-view video or pay-per
hear audio CDs. Others will offer specialized services, such as home shopping
(with the ability to rotate a can of soup and zoom in on the list of ingredients or
view a video clip on how to drive a gasoline-powered lawn mower). Sports,
news, reruns of "I Love Lucy," WWW access, and innumerable other possibili
ties will no doubt quickly become available.

Also included in the system are local spooling servers that allow videos to be
prepositioned closer to the users, to save bandwidth during peak hours. How
these pieces will fit together and who will own what are matters of vigorous
debate within the industry. Below we will examine the design of the main pieces
of the system: the video servers, the distribution network, and the set-top boxes.

Video Servers

To have (near) video on demand, we need video servers capable of storing
and outputting a large number of movies simultaneously. The total number of
movies ever made is estimated at 65,000 (Minoli, 1995). When compressed in

Ex.1006.763DELL

SEC. 7.7 MULTIMEDIA 745

telephone companydistribution systems. The local distribution systems reach into
people’s houses, where they terminate in set-top boxes, which are, in fact, power-
ful, specialized personal computers.

(in eer

Video Switch Customer's
house

iFiber ——. |

Local

AZ spooling
ATM or SONET =~ server

backbone network ~

Local distribution
network

Fig. 7-88. Overview of a video-on-demand system.

Attached to the backbone by high-bandwidth optical fibers are thousands of
information providers. Some of these will offer pay-per-view video or pay-per-
hear audio CDs. Others will offer specialized services, such as home shopping
(with the ability to rotate a can of soup and zoom in on thelist of ingredients or
view a video clip on how to drive a gasoline-powered lawn mower). Sports,
news, reruns of “I Love Lucy,” WWWaccess, and innumerable other possibili-
ties will no doubt quickly becomeavailable.

Also included in the system are local spooling servers that allow videos to be
prepositioned closer to the users, to save bandwidth during peak hours. How
these pieces will fit together and who will own what are matters of vigorous
debate within the industry. Below we will examine the design of the main pieces
of the system: the video servers, the distribution network, and the set-top boxes.

Video Servers

To have (near) video on demand, we need video servers capable of storing
and outputting a large number of movies simultaneously. The total number of
movies ever made is estimated at 65,000 (Minoli, 1995). When compressed in

DELL Ex.1006.763

746 THE APPLICATION LA YER CHAP. 7

MPEG-2, a normal movie occupies roughly 4 GB of storage, so 65,000 of them
would require something like 260 terabytes. Add to this all the old television pro
grams ever made, sports films, newsreels, talking shopping catalogs, etc., and it is
clear that we have an industrial-strength storage problem on our hands.

The cheapest way to store large volumes of information is on magnetic tape.
This has always been the case and probably always will be. A DAT tape can
store 8 GB (two movies) at a cost of about 5 dollars/gigabyte. Large mechanical
tape servers that hold thousands of tapes and have a robot arm for fetching any
tape and inserting it into a tape drive are commercially available now. The prob
lem with these systems is the access time (especially for the second movie on a
tape), the transfer rate, and the limited number of tape drives (to serve n movies at
once, the unit would need n drives).

Fortunately, experience with video rental stores, public libraries, and other
such organizations shows that not all items are equally popular. Experimentally,
when there are N movies available, the fraction of all requests being for the kth
most popular one is approximately C/k (Chervenak, 1994). Here C is computed
to normalize the sum to 1, namely

C = 11(1+112 + 1/3 + 1/4 + 115 + · · · + l/N)

Thus the most popular movie is seven times as popular as the number seven
movie. This result is known as Zipf's law (Zipf, 1949).

The fact that some movies are much more popular than others suggests a pos
sible solution in the form of a storage hierarchy, as shown in Fig. 7-89. Here, the
performance increases as one moves up the hierarchy.

RAM

RAID

Optical disk

Tape archive

Fig. 7-89. A video server storage hierarchy.

An alternative to tape is optical storage. Current CD-ROMs hold only 650
MB, but the next generation will hold about 4 GB, to make them suitable for dis
tributing MPEG-2 movies. Although seek times are slow compared to magnetic
disks (100 msec versus 10 msec), their low cost and high reliability make optical
juke boxes containing thousands of CD-ROMs a good alternative to tape for the
more heavily used movies.

Next come magnetic disks. These have short access times (10 msec), high
transfer rates (10 MB/sec), and substantial capacities (10 GB), which makes them
well suited to holding movies that are actually being transmitted (as opposed to

Ex.1006.764DELL

SEC. 7.7 MULTIMEDIA 747

just being stored in case somebody ever wants them). Their main drawback is the
high cost for storing movies that are rarely accessed.

At the top of the pyramid of Fig. 7-89 is RAM. RAM is the fastest storage
medium, but also the most expensive. It is best suited to movies for which dif
ferent parts are being sent to different destinations at the same time (e.g., true
video on demand to 100 users who all started at different times). When RAM
prices drop to 10 dollars/megabyte, a 4-GB movie will occupy 40,000 dollars
worth of RAM, so having 100 movies in RAM will cost 4 million dollars for the
400 GB of memory. Still, for a 10 million dollar video server, this expense might
well be worthwhile if each movie has enough simultaneous paying customers.

Since a video server is really just a massive real-time I/O device, it needs a
different hardware and software architecture than a PC or a UNIX workstation.
The hardware architecture of a typical video server is illustrated in Fig. 7-90. The
server has one or more high-performance RISC CPUs, each with some local
memory, a shared main memory, a massive RAM cache for popular movies, a
variety of storage devices for holding the movies, and some networking hardware,
normally an optical interface to an ATM (or SONET) network at OC-3 or higher.
These subsystems are connected by an extremely high-speed bus (at least 1
GB/sec).

Lo~ ••• L~ Main
Movie

CPU CPU Cache
RAM RAM RAM (RAM)

I High-speed bus

-~

Tape
Optical Magnetic

Network
disk disk controller

controller controller
interface

/ /

~~
/ / To ATM ,/ 88 8 8 Switch
88 8 8
88 8 8
88 8 8 v

Tape archive Optical juke box RAID

Fig. 7-90. The hardware architecture of a typical video server.

Now let us take a brief look at video server software. The CPUs are used for
accepting user requests, locating movies, moving data between devices, customer
billing, and many other functions. Some of these are not time critical, but many
others are, so some, if not all, the CPUs will have to run a real-time operating sys
tem, such as a real-time microkernel. These systems normally break work up into

Ex.1006.765DELL

748 THE APPLICATION LA YER CHAP. 7

small tasks, each with a known deadline. The scheduler can then run an algorithm
such as nearest deadline next or the rate monotonic algorithm (Liu and Layland,
1973).

The CPU software also defines the nature of the interface that the server
presents to the clients (spooling servers and set-top boxes). Two designs are
popular. The first one is a traditional file system, in which the clients can open,
read, write, and close files. Other than the complications introduced by the
storage hierarchy and real-time considerations, such a server can have a file sys
tem modeled after that of UNIX.

The second kind of interface is based on the video recorder model. The com
mands to the server request it to open, play, pause, fast forward, and rewind files.
The difference with the UNIX model is that once a PLAY command is given, the
server just keeps pumping out data at a constant rate, with no new commands
required.

The heart of the video server software is the disk management software. It
has two main jobs: placing movies on the magnetic disk when they have to be
pulled up from optical or tape storage, and handling disk requests for the many
output streams. Movie placement is important because it can greatly affect per
formance.

Two possible ways of organizing disk storage are the disk farm and the disk
array. With the disk farm, each drive holds a few entire movies. For perfor
mance and reliability reasons, each movie should be present on at least two drives,
maybe more. The other storage organization is the disk array or RAID (Redun
dant Array of Inexpensive Disks), in which each movie is spread out over multi
ple drives, for example, block 0 on drive 0, block 1 on drive 1, and so on, with
block n - 1 on drive n - l. After that, the cycle repeats, with block n on drive 0,
and so forth. This organizing is called striping.

A striped disk array has several advantages O'/er a disk farm. First, all n
drives can be running in parallel, increasing the performance by a factor of n.
Second, it can be made redundant by adding an extra drive to each group of n,
where the redundant drive contains the block-by-block EXCLUSIVE OR of the
other drives, to allow full data recover in the event one drive fails. Finally, the
problem of load balancing is solved (manual placement is not needed to avoid
having all the popular movies on the same drive). On the other hand, the disk
array organization is more complicated than the disk farm and highly sensitive to
multiple failures. It is also ill-suited to video recorder operations such as rewind
ing or fast forwarding a movie. A simulation study comparing the two organiza
tions is given in (Chervenak et al., 1995).

Closely related to block placement is finding disk blocks. The UNIX scheme
of having an unbalanced tree of disk blocks pointed to by the i-node is usually
unacceptable because video files are huge, so most blocks can only be located by
going through a triple indirect block, which means many extra disk accesses
(Tanenbaum, 1992). Instead, it is common to link the blocks together on a singly-

Ex.1006.766DELL

SEC. 7.7 MULTIMEDIA 749

or doubly-linked list. Sometimes a UNIX-style index (i-node) is also used to allow
random access.

The other job of the disk software is to service all the real-time output streams
and meet their timing constraints. An MPEG-2 video stream at 25 frames/sec
needs to fetch and transmit about 14 KB every 40 msec, but the actual amount
varies considerably because I-·, P-, and B-frames have different compression
ratios. Consequently, to maintain a uniform output rate, buffering is needed at
both ends of the stream.

In Fig. 7-91 we see a staircase showing the total amount of data fetched from
the disk for a given video stream (assuming that the movie is on disk). It moves
up in discrete jumps, one jump for each block read. Nevertheless, transmission
must occur at a more uniform rate, so the disk reading process must keep ahead of
the transmission process. The shaded area in the figure shows data that have been
fetched from disk but not yet transmitted.

(/)
Q)

>. .c
t1l
Cl
Q)

::2:

Amouht of data

rnad"o~

Transmission

Time-
Buffered
data

Fig. 7-91. Disk buffering at the server.

Normally, disks are scheduled using the elevator algorithm, which starts the
arm moving inward and keeps going until it hits the innermost cylinder, process
ing all requests it hits in cylinder order. When it gets as far in as it can, the arm
reverses and starts moving outward, again processing all pending requests along
the way in order. While this algorithm minimizes seek time, it makes no guaran
tees about real-time performance, so is not useful for a video server.

A better algorithm is to keep track of all video streams and make a list of the
next block needed by each one. These block numbers are then sorted and the
blocks read in cylinder order. When the last block is read, the next round begins
by collecting the number of the block now at the head of each stream. These are
also sorted and read in cylinder order, and so on. This algorithm maintains real
time performance for all streams but also minimizes seek time compared to a pure
first-come, first-served algorithm.

Another software issue is admission control. If a request for a new stream
comes in, can it be accepted without ruining the real-time performance of the

Ex.1006.767DELL

SEC. 7.7 MULTIMEDIA 749

or doubly-linked list. Sometimes. a UNIX-style index (i-node) is also used to allow
random access.

Theotherjob of the disk software is to service all the real-time output streams
and. meet their timing constraints. An MPEG-2 video stream at 25 frames/sec
needs to fetch and transmit about 14 KB every 40 msec, but the actual amount
varies considerably because I-, P-, and B-frames have different compression
ratios. Consequently, to maintain a uniform output rate, buffering is needed at
both ends of the stream.

In Fig. 7-91 we see a staircase showing the total amountof data fetched from
the disk for a given video stream (assuming that the movie is on disk). It moves
up in discrete jumps, one jump for each block read. Nevertheless, transmission
must occur at a more uniform rate, so the disk reading process must keep ahead of
the transmission process. The shaded area in the figure shows data that have been
fetched from disk but not yet transmitted.

Amountof data
read from disk

N,

TransmissionMegabytes

Buffered
data

Fig. 7-91. Disk buffering at the server.

Normally, disks are scheduled using the elevator algorithm, which starts the
arm moving inward and keeps going until it hits the innermost cylinder, process-
ing all requests it hits in cylinder order. When it gets as far in-as it can, the arm
reverses and starts moving outward, again processing all pending requests along
the way in order. While this algorithm minimizes scek time, it makes no guaran-
tees about real-time performance, so is not useful for a video server.

A better algorithm is to keep track of all video streams and makea list of the
next block needed by each one. These block numbers are then sorted and the
blocks read in cylinder order. When the last block is read, the next round begins
by collecting the number of the block now at the head of each stream. These are
also sorted and read in cylinder order, and so on. This algorithm maintains real-
time performanceforall streams but also minimizes seek time compared to a pure
first-come, first-served algorithm.

Another software issue is admission control. If a request for a new stream
comes in, can it be accepted without ruining the real-time performance of the

DELL Ex.1006.767

750 THE APPLICATION LA YER CHAP. 7

existing streams? One algorithm that can be used for making a decision examines
the worst case to see if going from k streams to k + l streams is guaranteed to be
possible, based on the known properties of the CPU, RAM, and disk. Another
algorithm just looks at the statistical properties.

Another server software issue is how to manage the display during a fast for
ward or fast backward (so people can search visually). The D-frames provide the
necessary information for MPEG-1, but unless they are marked and stored in
some special way, the server will not be able to find them without decoding the
entire stream, and normally servers do not perform MPEG decoding during
transmission. For MPEG-2, some other mechanism will be needed, at the very
least to make it easy to find and decode I-frames.

Finally, encryption is an issue. When movies are multicast (e.g., if the local
distribution network is a cable TV system), encryption is needed to ensure that
only paying customers can watch movies. Two approaches are possible: pre
encryption and encryption on the fly. If movies are stored encrypted, then anyone
learning a movie's key may be able to watch it for free because the same key is
used every time. Separate encryption for each stream is more secure, but also
more costly of computing resources.

Key management is also an issue. The usual approach is to encrypt on the fly
with a simple algorithm, but change the key often, so even if an intruder can break
the key in 10 minutes, it will be obsolete by then.

The Distribution Network

The distribution network is the set of switches and lines between the source
and destination. As we saw in Fig. 7-88, it consists of a SONET or ATM (or
ATM over SONET) backbone, connected to a local distribution network. Usu
ally, the backbone is switched and the local distribution network is not.

The main requirements imposed on the backbone are high bandwidth and low
jitter. For a pure SONET backbone, these are trivial to achieve-the bandwidth is
guaranteed and the jitter is zero because the network is synchronous. For an A TM
backbone, or ATM over SONET, the quality of service is very important. It is
managed by the leaky bucket algorithm and all the other techniques we studied in
great detail in Chap. 5, so we will not repeat that discussion here. For additional
information about real-time MPEG over ATM backbones, see (Dixit and Skelly,
1995; and Morales et al., 1995). Below we will focus on the local distribution
network, a topic we have barely touched upon so far.

Local distribution is highly chaotic, with different companies trying out dif
ferent networks in different regions. Telephone companies, cable TV companies,
and new entrants are all convinced that whoever gets there first will be the big
winner, so we are now seeing a proliferation of technologies being installed. The
four main local distribution schemes for video on demand go by the acronyms
ADSL, FTTC, FTTH, and HFC. We will now explain each of these in turn.

Ex.1006.768DELL

SEC. 7.7 MULTIMEDIA 751

ADSL (Asymmetric Digital Subscriber Line) was the telephone industry's
first entrant in the local distribution sweepstakes (Chen and Waring, 1994). The
idea is that virtually every house in the United States, Europe, and Japan already
has a copper twisted pair going into it (for analog telephone service). If these
wires could be used for video on demand, the telephone companies could clean
up.

The problem, of course, is that these wires cannot support even MPEG-1 over
their typical 10-km length, let alone MPEG-2. The ADSL solution takes advan
tage of advances in digital signal processing to eliminate echoes and other line
noise electronically. As shown in Fig. 7-92, each ADSL subscriber is given an
in-house ADSL subscriber unit containing a digital signal processing chip. The
telephone and set-top box plug into the ADSL unit. At the other end of the local
loop, another ADSL unit is attached. This one may either be in the telephone
company end office, or, if the local loop is too long, at the end of an optical fiber
in the neighborhood of the house.

\
Fiber

connection
to the

end office

ASDL 1-----1.536 Mbps--- ASPL
network 16 Kbps ----1 subscription

unit ___,.._ 4 KHz analog unit

This connection uses the
existing twisted pair

-----~-1isa

Fig. 7.92. ADSL as the local distribution network.

ADSL-1 offers a 1.536-Mbps downlink channel (Tl minus the 193rd bit), but
only a 16-kbps uplink channel. In addition, the old 4-kHz analog telephone chan
nel (or in some cases, two N-ISDN digital channels) is also on there. The idea is
that the uplink has enough bandwidth for the user to order movies, and the down
link has enough bandwidth to send them encoded in MPEG-1. ADSL should be
regarded more as a quick-and-dirty hack than a long-term solution, but it is being
installeq in various cities. Improved versions, called ADSL-2 and ADSL-3 are
also being worked on. The latter allows MPEG-2 over local loops of up to about
2km.

The second telephone company design is FTTC (Fiber To The Curb). We
saw this design in Fig. 2-23(a). In FTTC, the telephone company runs optical
fiber from the end office into each residential neighborhood, terminating in a de
vice called an ONU (Optical Network Unit). The ONU is labeled "junction

Ex.1006.769DELL

SEC. 7.7 MULTIMEDIA 751

ADSL (Asymmetric. Digital Subscriber Line) was the telephone industry’s
first entrant in the local distribution sweepstakes (Chen and Waring, 1994). The
idea is that virtually every house in the United States, Europe, and Japan already
has a copper twisted pair going into it (for analog telephone service). If these
wires could be used for video on demand, the telephone companies could clean
up.

The problem, of course, is that these wires cannot support even MPEG-1 over
their typical 10-km length, let alone MPEG-2. The ADSL solution takes advan-
tage of advances in digital signal processing to eliminate echoes and other line
noise electronically. As shown in Fig. 7-92, each ADSL subscriber is given an
in-house ADSL subscriber unit containing a digital signal processing chip. The
telephone and set-top box plug into the ADSL unit. At the other end of the local
loop, another ADSL unit is attached. This one may either be in the ‘telephone
companyendoffice, or, if the local loop is too long, at the end of an optical fiber
in the neighborhoodofthe house.

—<—
ASDL 1.536 Mbps ————+ ASDL

——————| network }~+——- 16 Kbps ——-— subscription

\ UNit fee 4 KHZ analog ————» unit IN. . Ye
Fiber This connection uses the

existing twisted pair

connection —
to the [#\end office Ee}

Fig. 7-92. ADSL asthe local distribution network.

ADSL-1 offers a 1.536-Mbps downlink channel (T1 minus the 193rd bit), but
only a 16-kbps uplink channel. In addition, the old 4-kHz analog-telephone chan-
nel (or in some cases, two N-ISDN digital channels) is also on there. The idea is
that the uplink has enough bandwidth for the user to order movies, and the down-
link has enough bandwidth to send them encoded in MPEG-1. ADSL should: be
regarded more as a quick-and-dirty hack than a long-term solution, but it is being
installed in various cities. Improved versions, called ADSL-2 and ADSL-3 are
also being worked on: The latter allows MPEG-2 over local loops of up to about
2 km.

The second telephone company design is FTTC (Fiber To The Curb). We
saw this design in Fig. 2-23(a). In FITC, the telephone company runs optical
fiber from the end office into each residential neighborhood, terminating in a de-
vice called an ONU (Optical Network Unit). The ONU is labeled “junction

DELL Ex.1006.769

752 THE APPLICATION LA YER CHAP. 7

box" in Fig. 2-23(a). On the order of 16 copper local loops can terminate in an
ONU. These loops are now so short that it is possible to run full-duplex Tl or T2
over them, allowing MPEG-1 and MPEG-2 movies, respectively. In addition,
videoconferencing for home workers and small businesses is now possible
because FTTC is symmetric.

The third telephone company solution is to run fiber into everyone's house. It
is called FTTH (Fiber To The Home). In this scheme, everyone can have an
OC-1, OC-3, or even higher carrier if that is required. FTTH is very expensive
and will not happen for years but clearly will open a vast range of new possibili
ties when it finally happens.

ADSL, FTTC, and FTTH are all point-to-point local distribution networks,
which is not surprising given how the current telephone system is organized. A
completely different approach is HFC (Hybrid Fiber Coax), which is the pre
ferred solution currently being irtstalled by cable TV providers. It is illustrated in
Fig. 2-23(b). The story goes something like this. The current 300- to 450-MHz
coax cables will be replaced by 750-MHz coax cables, upgrading the capacity
from 50 to 75 6-MHz channels to 125 6-MHz channels. Seventy-five of the 125
channels will be used for transmitting analog television.

The 50 new channels will each be modulated using QAM-256, which pro
vides about 40 Mbps per channel, giving a total of 2 Gbps of new bandwidth. The
head-ends will be moved deeper into the neighborhoods, so each cable runs past
only 500 houses. Simple division show that each house can then be allocated a
dedicated 4 Mbps channel, which can be used for some combination of MPEG-1
programs, MPEG-2 programs, upstream data, analog and digital telephony, and so
on.

While this sounds wonderful, it does require the cable providers to replace all
the existing cables with 750 MHz coax,. install new head-ends, and remove all the
one-way amplifiers-in short, replace the entire cable TV system. Consequently,
the amount of new infrastructure here is comparable to what the telephone com
panies need for FTTC. In both cases the local network provider has to run fiber
into residential neighborhoods. Again, in both cases, the fiber terminates at an
optoelectrica] converter. In FTTC, the final segment is a point-to-point local loop
using twisted pairs. In HFC, the final segment is a shared coaxial cable. Techni
cally, these two systems are hot really as different as their respective proponents
often make out.

Nevertheless, there is one real difference that is worth pointing out. HFC uses
a shared medium without switching and routing. Any information put onto the
cable can be removed by any subscriber without further ado. FTTC, which is
fully switched, does not have this property. As a result, HFC operators want
video servers to send out encrypted streams, so customers who have not paid for a
movie cannot see it. FTTC operators do not especially want encryption because it
adds complexity, lowers performance, and provides no additional security in their
system. From the point of view of the company running a video server, is it a

Ex.1006.770DELL

SEC. 7.7 MULTIMEDIA 753

good idea to encrypt or not? A server operated by a telephone company or one of
its subsidiaries or partners might intentionally decide not to encrypt its videos,
claiming efficiency as the reason but really to cause economic losses to its HFC
competitors.

For all these local distributilon networks, it is likely that each neighborhood
will be outfitted with one or more spooling servers. These are, in fact, just
smaller versions of the video servers we discussed above. The big advantage of
these local servers is that since the local distribution networks are short and gen
erally not switched, they do not introduce jitter as an A TM backbone network
would.

They can be preloaded with movies either dynamically or by reservation. For
example, when a user selects a movie, the first minute could be transmitted to the
local server in under 2 seconds at OC-3. After 55 seconds, the next minute could
be shipped to the local server in 2 seconds, and so on. In this way, the traffic over
the ATM backbone no longer has to be jitter free, making it possible to use ABR
service instead of the more expensive CBR service.

If people tell the provider which movies they want well in advance, they can
be downloaded to the local server during off-peak hours, giving even bigger sav
ings. This observation is likely to lead the network operators to lure away airline
executives to do their pricing. One can envision tariffs in which movies ordered
24 to 72 hours in advance for viewing on a Tuesday or Thursday evening before 6
P.M, or after 11 P.M. get a 27 percent discount. Movies ordered on the first Sun
day of the month before 8 A.M. for viewing on a Wednesday afternoon on a day
whose date is a prime number get a 43 percent discount, and so on.

The choice of the protocol stack to use for video on demand is still up in the
air. ATM is clearly the technology of choice, but which adaptation protocol
should be used? AAL 1 was designed for video, so it is a strong candidate, but it
corresponds to the CBR service category. Dedicating the maximum possible
bandwidth needed is expensive, especially since MPEG is inherently VBR traffic
so the virtual circuit will have to be overdimensioned.

AAL 2 is not finished (and probably never will be) and AAL 3/4 is too
clumsy, so AAL 5 is the only remaining contender. It is not tied to CBR service,
and sending a large block of MPEG in each message would be extremely effi
cient, getting nearly 100 percent of the user bandwidth for the video stream. On
the downside, AAL 5 does error detection. Having an entire block discarded due
to a 1-bit error is highly unattractive, especially since most errors are single bit
errors in the middle of the data. As a consequence, there is some movement
toward changing AAL 5 to allow applications to ask for all blocks, along with a
bit telling whether or not the checksum was correct.

The video on demand protocol stack we have sketched above is illustrated in
Fig. 7-93. Above the AAL layer, we see the MPEG program and transport stream
layer. Then come the encoding and decoding of MPEG audio and video, respec
tively. Finally, we have the application on top.

Ex.1006.771DELL

754 THE APPLICATION LA YER CHAP. 7

Applications

I MPEG audio] I MPEG video I

@] @]

I AAL 1 I I AAL5 I

ATM ATM layer

ATM physical layer

Fig. 7-93. A video-on-demand protocol stack.

Set-Top Boxes

All of the above local distribution methods ultimately bring one or more
MPEG streams into the home. To decode and view them, a network interface,
MPEG decoder, and other electronic components are needed. Two approaches
are possible here.

In approach one, people use their personal computers for decoding and view
ing movies. Doing this requires buying a special plug-in board containing a few
special chips and a connector for interfacing to the local distribution network.
The movies then appear on the computer's monitor, possibly even in a window.
One might call this the set-bottom box since with computers, the box is usually
under the monitor instead of on top of it. This approach is cheaper (all that is
needed is one plug-in board and the software), uses a high--resolution noninter
laced monitor, has a sophisticated mouse-oriented user interface, and can easily
be integrated with the WWW and other computer-oriented information and enter
tainment sources. On the other hand, PCs usually have small screens, are located
in studies or dens rather than in living rooms, and are traditionally used by one
person at a time. They also emit significantly less light than television sets.

In approach two, the local network operator rents or sells the user a set-top
box to which the network and television set are connected. This approach has the
advantage that everyone has a television but not everyone has a PC, and many of
the PCs that people do have are old, peculiar, or otherwise unsuited to MPEG
decoding. Furthermore, the television is often located in a room intended for
group viewing.

On the down side, the monitor has a low-resolution interlaced display (making
it unsuited for text-oriented material, such as the WWW). In addition, it has a
dreadful user interface (the remote control), making it virtually impossible for the
user to do anything except select items from simple menus. Even typing in the
name of a movie is painful, let alone engaging in a dialog asking the server to

Ex.1006.772DELL

754 THE APPLICATION LAYER CHAP. 7

Applications

MPEG audio MPEGvideo

MPEG +

[Ps|[ts||
AAL1 AAL 5

ATM ATM layer

ATM physicallayer

Fig. 7-93. A video-on-demand protocolstack.

Set-Top Boxes

All of the above local distribution methods ultimately bring one or more
MPEG streams into the home. To decode and view them, a network interface,

MPEG decoder, and other electronic components are needed. Two approaches
are possible here.

In approach one, people use their personal computers for decoding and view-
ing movies. Doing this requires buying a special plug-in board containing a few
special chips and a connector for interfacing to the local distribution network.
The movies then appear on the computer’s monitor, possibly even in a window.
One might call this the set-bottom box since with computers, the box is usually
under the monitor instead of on top of it. This approach is cheaper (all that is
needed is one plug-in board and the software), uses a high-resolution noninter-
laced monitor, has a sophisticated mousc-oriented user interface, and can easily
be integrated with the WWW and other computer-oriented information and enter-
tainment sources. On the other hand, PCs usually have small screens, are located
in studies or dens rather than in living rooms, and are traditionally used by one
person at atime. They also emit significantly less light than television sets.

In approach two, the local network operator rents or sells the user a set-top
box to which the network and television set are connected. This approach has the
advantage that everyone hasa television but not everyone has a PC, and many of
the PCs that people do have are old, peculiar, or otherwise unsuited to MPEG
decoding. Furthermore, the television is often located in a room intended for
group viewing.

On the downside, the monitor has a low-resolution interlaced display (making
it unsuited for text-oriented material, such as the WWW). In addition, it has a
dreadful user interface (the remote control), making it virtually impossible for the
user to do anything except select items from simple menus. Even typing in the
name of a movie is painful, let alone engaging in a dialog asking the server to

DELL Ex.1006.772

SEC. 7.7 MULTIMEDIA 755

search for all the films made by a certain actor, director, or production company
during a certain time period. Finally, set-top boxes with the required performance
are not easy to produce for an acceptable price (thought to be a few hundred dol
lars).

All these factors considered, most video-on-demand systems have opted for
the set-top box model, primarily because mass marketeers hate to exclude any
potential customers (people without a PC). Also, there may be money to be made
renting or selling set-top boxes. Nevertheless, the PC plug-in board market is
large enough so no doubt these boards will be produced, too.

The primary functions of the set-top box are interfacing with the local distri
bution network, decoding the MPEG signal, synchronizing the audio and video
streams, producing a composite NTSC, PAL, or SECAM signal for the television
set, listening to the remote control, and handling the user interface. Additional
functions might include interfacing with stereos, telephones, and other devices. A
major battle is raging within the industry about how much functionality should be
put in the set-top box and how much should be in the network. How that turns out
remains to be seen.

A possible architecture for a simple set-top box is shown in Fig. 7-94. The
device consists of a CPU, ROM, RAM, I/O controller, MPEG decoder, and net
work interface. Optionally, a security chip can also be added for decryption of
incoming movies and encryption of outgoing messages (credit card numbers for
home shopping, etc.).

CPU

Television set

ROM RAM

MPEG Network

Remote
control

To network

Fig. 7-94. The hardware architecture of a simple set-top box.

An important issue for video on demand is audio/video synchronization and
jitter management. Adding an additional 500 KB of RAM allows for 1 second of
MPEG-2 buffering, but at additional expense in a device that the manufacturers
are hoping to sell for a few hundred dollars, at most.

Ex.1006.773DELL

SEC. 7.7 MULTIMEDIA 755

search for all the films made by a certain actor, director, or production company
during a certain time period. Finally, set-top boxes with the required performance
are not easy to produce for an acceptable price (thought to be a few hundred dol-
lars).

All these factors considered, most video-on-demand systems have opted for
the set-top box model, primarily because mass marketeers hate to exclude any
potential customers (people without a PC). Also, there may be money to be made
renting or selling set-top boxes. Nevertheless, the PC plug-in board market is
large enough so no doubt these boards will be produced,too.

The primary functions of the set-top box are interfacing with the local distri-
bution network, decoding the MPEGsignal, synchronizing the audio and video
streams, producing a composite NTSC, PAL, or SECAM signal for the television
set, listening to the remote control, and handling the user interface. Additional
functions might include interfacing with stereos, telephones, and other devices. A
major battle is raging within the industry about how much functionality should be
put in the set-top box and how much should be in the network. How that turns out
remains to be seen.

A possible architecture for a simple set-top box is shown in Fig. 7-94. The
device consists of a CPU, ROM, RAM,I/O controller, MPEG decoder, and net-
work interface. Optionally, a security chip can also be added for decryption of
incoming movies and encryption of outgoing messages (credit card numbers for
home shopping,etc.).

[cpu | | ROM | | RAM |

v0 | MPEG Network

To network

9

iN
Television set

Remote
control[ay lé

Fig. 7-94. The hardware architecture of a simple set-top box.

An important issue for video on demand is audio/video synchronization and
jitter management. Adding an additional 500 KB of RAM allowsfor 1 second of
MPEG-2 buffering, but at additional expense in a device that the manufacturers
are hoping to sell for a few hundred dollars, at most.

DELL Ex.1006.773

756 THE APPLICATION LA YER CHAP. 7

Since the set-top box is just a computer, it will need software, probably a
microkernel-based real-time operating system kept in the ROM. To provide flexi
bility and adaptability, it is probably a good idea to make it possible to download
other software from the network. This possibility then raises the problem of what
happens when the owner of a MIPS-based set-top box wants to play a game writ
ten for a SPARC-based set-top box? Using an interpreted language such as Java
solves the compatibility problem but severely lowers performance in a real-time
environment in which high performance is crucial.

Standards

The economics of video on demand cannot be ignored. A large video server
can easily cost more than a mainframe, certainly 10 million dollars. Suppose that
it serves 100,000 homes, each of which has rented a 300-dollar set-top box. Now
throw in 10 million dollars worth of networking equipment and a 4-year deprecia
tion period, and the system has to generate 10 dollars per home per month. At 5
dollars/movie, everyone has to buy two movies a month for the operator to break
even (excluding salaries, marketing, and all other costs). Whether this will actu
ally happen is far from obvious.

The numbers given above can be rearranged in many ways (e.g., charging 6
dollars per month rental for the set-top box and 2 dollars per movie), and the costs
are changing all the time, but it should be clear that without a mass market, there
is no way that video on demand makes economic sense. For a mass market to
develop, it is essential that all parts of the system be standardized. If each video
provider, network operator, and set-top box manufacturer designs its own inter
face, nothing will interwork with the rest of the system. So far, the only standard
that everyone agrees on is the use of MPEG-2 for video encoding. Everything
else is up for grabs. A few of the many questions that have to be answered before
a national system can be built are listed in Fig. 7-95.

If all these areas can be standardized, we can easily imagine many vendors
producing products consisting of a box with a telephone jack, monitor, keyboard,
and mouse that can be used for watching videos, computing, or maybe doing both
at once. The much-discussed convergence of the computing, communication, and
entertainment industries will then be a reality.

7.7.5. MBone-Multicast Backbone

While all these industries are making great-and highly publicized-plans for
future (inter)national digital video on demand, the Internet community has been
quietly implementing its own digital multimedia system, MBone (Multicast
Backbone). In this section we will give a brief overview of what it is and how it
works. For an entire book on MBone, see (Kumar, 1996). For articles on MBone,
see (Eriksson, 1994; and Macedonia and Brutzman, 1994).

Ex.1006.774DELL

SEC. 7.7 MULTIMEDIA 757

What technology will the backbone use (SONET, ATM, SONET +ATM)?

What speed will the backbone run at (OC-3, OC-12)?

How will local distribution be done (HFC, FTTC)?

How much upstream banclwidth will there be (16 kbps, 1.5 Mbps)?

Will movies be encrypted, and if so, how?

Will error correction be present (mandatory, optional, absent)?

Who will own the set-top box (user, network operator)?

Will telephony be part of tile system (analog, N-ISDN)?

Will high-resolution hypertext applications be supported (e.g., WWW)?

Fig. 7-95. A few areas in which standards are needed.

MBone can be thought of as Intetnet radio and television. Unlike video on
demand, where the emphasis is on calling up and viewing precompressed movies
stored on a server, MBone is used for broadcasting live audio and video in digital
form all over the world via the Internet. It has been operational since early 1992.
Many scientific conferences, especially IETF meetings, have been broadcast, as
well as newsworthy scientific events, such as space shuttle launches. A Rolling
Stones concert was once broadcast over MBone. Whether this qualifies as a
newsworthy scientific event is arguable. For people who want to digitally record
an MBone broadcast, software for accomplishing that is also available (Holfelder,
1995).

Most of the research concerning MBone has been about how to do multicast
ing efficiently over the (datagram-oriented) Internet. Little has been done on
audio or video encoding. MBone sources are free to experiment with MPEG or
any other encoding technology they wish. There are no Internet standards on con
tent or encoding.

Technically, MBone is a virtual overlay network on top of the Internet. It
consists of multicast-capable islands connected by tunnels, as shown in Fig. 7-96.
In this figure, MBone consists of six islands, A through F, connected by seven
tunnels. Each island (typically a LAN or group of interconnected LANs) supports
hardware multicast to its hosts. The tunnels propagate MBone packets between
the islands. Some day in the future, when all the routers are capable of handling
multicast traffic directly, this superstructure will no longer be needed, but for the
moment, it does the job.

Each island contains one or more special routers called mrouters (multicast
routers). Some of these are actually normal routers, but most are just UNIX

workstations running special user-level software (but as the root). The mrouters
are logically connected by tunnels. In the past, MBone packets were tunneled
from mrouter to mrouter (usually through one or more routers that did not know

Ex.1006.775DELL

758 THE APPLICATION LA YER CHAP. 7

M router

F

Fig. 7-96. MBone consists of multicast islands connected by tunnels.

about MBone) using loose source routing. Nowadays, MBone packets are encap
sulated within IP packets and sent as regular unicast packets to the destination
mrouter's IP address. If all the intervening routers support multicast, however,
tunneling is not needed.

Tunnels are configured manually. Usually, a tunnel runs above a path for
which a physical connection exists, but this is not a requirement. If, by accident,
the physical path underlying a tunnel goes down, the mrouters using the tunnel
will not even notice it, since the Internet will automatically reroute all the IP
traffic between them via other lines.

When a new island appears and wishes to join MBone, such as Gin Fig. 7-96,
its administrator sends a message announcing its existence to the MBone mailing
list. The administrators of nearby sites then contact him to arrange to set up tun
nels. Sometimes existing tunnels are reshuffled to take advantage of the new
island to optimize the topology. After all, tunnels have no physical existence.
They are defined by tables in the mrouters and can be added, deleted, or moved
simply by changing these tables. Typically, each country on MBone has a back
bone, with regional islands attached to it. Normally, MBone is configured with
one or two tunnels crossing the Atlantic and Pacific oceans, making MBone glo
bal in scale.

Thus at any instant, MBone consists of a specific topology consisting of
islands and tunnels, independent of the number of multicast addresses currently in
use and who is listening to them or watching them. This situation is very similar
to a normal (physical) subnet, so the normal routing algorithms apply to it. Con
sequently, MBone initially used a routing algorithm, DVMRP (Distance Vector
Multicast Routing Protocol) based on the Bellman-Ford distance vector

Ex.1006.776DELL

SEC. 7.7 MULTIMEDIA 759

algorithm. For example, in Fig. 7-96, island C can route to A either via B or via E
(or conceivably via D). It makes its choice by taking the values those nodes give
it about their respective distances to A and then adding its distance to them. lii
this way, every island determines the best route to every other island. The routes
are not actually used in this way, however, as we will see shortly.

Now let us consider how multicasting actually happens. To multicast an
audio or video program, a source must first acquire a class D multicast address,
which acts like a station frequency or channel number. Class D addresses are
reserved by using a program that looks in a database for free multicast addresses.
Many multicasts may be going on at once, and a host can "tune" to the one it is
interested in by listening to the appropriate multicast address.

Periodically, each mrouter sends out an IGMP broadcast packet limited to its
island asking who is interested in which channel. Hosts wishing to (continue to)
receive one or more channels send another IGMP packet back in response. These
responses are staggered in time, to avoid overloading the local LAN. Each
mrouter keeps a table of which channels it must put out onto its LAN, to avoid
wasting bandwidth by multicasting channels that nobody wants.

Multicasts propagate through MBone as follows. When an audio or video
source generates a new packet, it multicasts it to its local island using the
hardware multicast facility. This packet is picked up by the local mrouter, which
then copies it into all the tunnels to which it is connected.

Each mrouter getting such a packet via a tunnel then checks to see if the
packet came along the best route, that is, the route that its table says to use to
reach the source (as if it were a destination). If the packet came along the best
route, the mrouter copies the packet to all its other tunnels. If the packet arrived
via a suboptimal route, it is discarded. Thus, for example, in Fig. 7-96, if C's
tables tell it to use B to get to A, then when a µrnlticast packet from A reaches C
via B, the packet is copied to D and E. Howev~r, when a multicast packet from A
reaches C via E (not the best path), it is simply discarded. This algorithm is just
the reverse path forwarding algorithm that we saw in Chap. 5. While not perfect,
it is fairly good and very simple to implement.

In addition to using reverse path forwarding to prevent flooding the Internet,
the IP Time to live field is also used to limit the scope of multicasting. Each
packet starts out with some value (determined by the source). Each tunnel is
assigned a weight. A packet is only passed through a tunnel if it has enough
weight. Otherwise it is discarded. For example, transoceanic tunnels are nor
mally configured with a weight of 128, so packets can be limited to the continent
of origin by giving them an initial Time to live of 127 or less. After passing
through a tunnel, the Time to live field is decremented by the tunnel's weight.

While the MBone routing algorithm works, much research has been devoted
to improving it. One proposal keeps the idea of distance vector routing, but
makes the algorithm hierarchical by grouping MBone sites into regions and first
routing to them (Thyagarajan and Deering, 1995).

Ex.1006.777DELL

760 THE APPLICATION LA YER CHAP. 7

Another proposal is to use a modified form of link state routing instead of dis
tance vector routing. In particular, an IETF working group is busy modifying
OSPF to make it suitable for multicasting within a single autonomous system.
The resulting multicast OSPF is called MOSPF (Moy, 1994). What the modifica
tions do is have the full map built by MOSPF keep track of multicast islands and
tunnels, in addition to the usual routing information. Armed with the complete
topology, it is straightforward to compute the best path from every island to every
other island using the tunnels. Dijkstra's algorithm can be used, for example.

A second area of research is inter-AS routing. Here an algorithm called PIM
(Protocol Independent Multicast) is being developed by another IETF working
group (Huitema, 1995). PIM comes in two versions, depending one whether the
islands are dense (almost everyone wants to watch) or sparse (almost nobody
wants to watch). Both versions use the standard unicast routing tables, instead of
creating an overlay topology as DVMRP and MOSPF do.

In PIM-dense, the idea is to prune useless paths. Pruning works as follows.
When a multicast packet arrives via the "wrong" tunnel, a prune packet is sent
back through the tunnel telling the sender to stop sending it packets from the
source in question. When a packet arrives via the "right" tunnel, it is copied to
all the other tunnels that have not previously pruned themselves. If all the other
tunnels have pruned themselves and there is no interest in the channel within the
local island, the mrouter sends a prune message back through the "right" channel.
In this way, the multicast adapts automatically and only goes where it is wanted.

PIM-sparse works differently. The idea here is to prevent saturating the Inter
net because three people in Berkeley want to hold a conference call over a class D
address. PIM-sparse works by setting up rendezvous points. Each of the sources
in a PIM-sparse multicast group send their packets to the rendezvous points. Any
site interested in joining up asks one of the rendezvous points to set up a tunnel to
it. In this way, all PIM-sparse traffic is transported by unicast instead of by multi
cast.

All in all, multimedia is an exciting and rapidly moving field. New technolo
gies and applications are announced daily, but the area as a whole is likely to
remain important for decades to come.

7.8. SUMMARY

Computer networks are inherently insecure. To keep information secret, it
must be encrypted. Encryption protocols fall into two general classes: secret key
(e.g., DES, IDEA), and public key (e.g., RSA). Using these protocols is straight
forward; the hard part is key management.

In addition to providing secrecy, cryptographic protocols can also provide
authentication, so that when Alice thinks she is communicating with Bob, she
really is communicating with Bob, and not with Trudy. Finally, cryptography can

Ex.1006.778DELL

SEC. 7.8 SUMMARY 761

also be used to allow messages to be signed in such a way that the sender cannot
repudiate them after they have been sent.

Naming in the Internet uses a distributed database system, DNS. DNS holds
records with IP addresses, mail exchanges, and other information. By querying a
DNS server, a process can map an Internet domain name onto the IP address used
to communicate with that domain.

As networks grow larger, they become harder to manage. For this reason,
special network management systems and protocols have been devised, the most
popular of which is SNMP. This protocol allows managers to communicate with
agents inside devices to read out their status and issue commands to them.

Four major network applications are electronic mail, USENET news, the
World Wide Web, and multimedia (video on demand and MBone). Most email
systems use the mail system defined in RFCs 821 and 822. Messages sent in this
system use system ASCII headers to define message properties. These messages
are sent using SMTP. Two systems for securing email exist, PGP and PEM.

USENET news consists of thousands of newsgroups on all manner of topics.
People can join newsgroups locally, and can then post messages all over the world
using the NNTP protocol, which has some resemblence to SMTP.

The World Wide Web is a system for linking up hypertext documents. Each
document is a page written in HTML, possible with hyperlinks to other docu
ments. A browser can display a document by establishing a TCP connection to its
server, asking for the document, and then closing the connection. When a hyper
link is selected by the user, that document can also be fetched in the same way. In
this manner, documents all over the world are linked together in a giant web.

Multimedia is the rising star in the networking firmament. It allows audio and
video to be digitized and transported electronically for display. Most multimedia
projects use the MPEG standards and transmit the data over ATM connections.
The MBone is an experimental worldwide digital radio and television service on
the Internet.

PROBLEMS

1. Break the following monoalphabetic cipher. The plaintext, consisting of letters only,
is a well-known excerpt from a poem by Lewis Carroll.

kfd ktbd fzm eubd kfd pzyiom mztx ku kzyg ur bzha kfthcm
ur mfudm zhx mftnm zhx mdzythc pzq ur ezsszcdm zhx gthcm
zhx pfa kfd mdz tm sutythc fuk zhx pfdkfdi ntcm fzld pthcm
sok pztk z stk kfd uamkdim eitdx sdruid pd fzld uoi efzk
rui mu bd ur om zid uok ur sidzkf zhx zyy ur om zid rzk
hu foiia mztx kfd ezindhkdi kfda kfzhgdx ftb boef rui kfzk

Ex.1006.779DELL

762 THE APPLICATION LAYER CHAP. 7

2. Break the following columnar transposition cipher. The plaintext is taken from a
popular computer textbook, so "computer" is a probable word. The plaintext consists
entirely of letters (no spaces). The ciphertext is broken up into blocks of five charac
ters for readability.

aauan cvlre rurnn dltme aeepb ytust iceat npmey iicgo gorch srsoc
nntii imiha oofpa gsivt tpsit lbolr otoex

3. In Fig. 7-4, the P-boxes and S-boxes alternate. Although this arrangement is estheti
cally pleasing, is it any more secure than first having all the P-boxes and then all the
S-boxes?

4. Suppose that a message has been encrypted using DES in ciphertext block chaining
mode. One bit of ciphertext in block C; is accidentally transformed from a 0 to a 1
during transmission. How much plaintext will be garbled as a result?

S. Now consider ciphertext block chaining again. Instead of a single 0 bit being
transformed into a l bit, an extra 0 bit is inserted into the ciphertext stream after block
C;. How much plaintext will be garbled as a result?

6. Design an attack on DES based on the knowledge that the plaintext consists
exclusively of uppercase ASCII letters, plus space, comma, period, semicolon, car
riage return, and line feed. Nothing is known about the plaintext parity bits.

7. Compare cipher block chaining with cipher feedback mode in terms of the number of
encryption operations needed to transmit a large file. Which one is more efficient and
by how much?

8. Using the RSA public key cryptosystern, with a = 1, b = 2, etc.,
(a) If p = 7 and q = 11, list five legal values ford.
(b) If p = 13, q = 31 and d = 7, find e.
(c) Using p = 5, q = 11, and d = 27, find e and encrypt "abcdefghij"

9. The Diffie-Hellman key exchange is being used to establish a secret key between
Alice and Bob. Alice sends Bob (719, 3, 191). Bob responds with (543). Alice's
secret number, x, is 16. What is the secret key?

10. Change one message in protocol of Fig. 7-14 in a minor way to make it resistant to the
reflection attack. Explain why your change works.

11. In the protocol of Fig. 7-17, why is A sent in plaintext along with the encrypted ses
sion key?

12. In the protocol of Fig. 7-17, we pointed out that starting each plaintext message with
32 zero bits is a security risk. Suppose that each message begins with a per-user ran
dom number, effectively a second secret key known only to its user and the KDC.
Does this eliminate the known plaintext attack?

13. In the Needham-Schroeder protocol, Alice generates two challenges, RA and RA 2 •

This seems like overkill. Would one not have done the job?

14. In the public-key authentication protocol of Fig. 7-21, in message 3, R8 is encrypted
with K5 . Is this encryption necessary, or would it have been adequate to send it back
in plaintext?

Ex.1006.780DELL

CHAP. 7 PROBLEMS 763

15. The signature protocol of Fig. 7-22 has the following weakness. If Bob crashes, he
may lose the contents of his RAM. What problems does this cause and what can he do
to prevent them?

16. After Ellen confessed to Marilyn about tricking her in the matter of Tom's tenure,
Marilyn resolved to avoid this problem by dictating the contents of future messages
into a dictating machine and having her new secretary just type them in. Marilyn then
planned to examine the messages on her terminal after they have been typed in to
make sure they contain her exact words. Can the new secretary still use the birthday
attack to falsify a message, and if so, how? Hint: She can.

17. Point-of-sale terminals that use magnetic-stripe cards and PIN codes have a fatal flaw:
a malicious merchant can modify his card reader to capture and store all the informa
tion on the card as well as the PIN code in order to post additional (fake) transactions
in the future. The next generation of point-of-sale terminals will use cards with a
complete CPU, keyboard, and tiny display on the card. Devise a protocol for this sys
tem that malicious merchants cannot break.

18. According to the information given in Fig. 7-27, is little-sister.cs.vu.nl on a class A, B,
or C network?

19. In Fig. 7-27, there is no period after rowboat? Why not?

20. What is the OBJECT IDENTIFIER for the tcp object?

21. An SNMP integer whose value is 200 has to be transmitted. Show the binary
representation of the bits sent in the ASN .1 transfer syntax.

22. What is the representation of lthe 11-bit binary bit string '11100001111' in the ASN.l
transfer syntax?

23. Suppose that you are hired by a bridge vendor to write SNMP-conformant code for
one of their bridges. You read all the RFCs and still have questions. You suggest to
IAB that a complete, formal grammar of the language used to describe SNMP vari
ables be given in one place. IAB's reaction is to agree and appoint you to do the job.
Should the grammar be added to RFC 1442 or RFC 1213? Why? Hint: You do not
need to fetch the RFCs; enough information is given in the text.

24. Some email systems support a header field Content Return:. It specifies whether the
body of a message is to be returned in the event of nondelivery. Does this field belong
to the envelope or to the header?

25. Electronic mail systems need directories so people's email addresses can be looked
up. To build such directories, names should be broken up into standard components
(e.g., first name, last name) to make searching possible. Discuss some problems that
must be solved for a worldwide standard to be acceptable.

26. A binary file is 3072 bytes long. How long will it be if encoded using base64 encod
ing, with a CR+LF pair inserted after every 80 bytes sent and at the end?

27. Consider the quoted-printable MIME encoding scheme. Mention a problem not dis
cussed in the text and propose a solution.

28. Give two reasons why PGP compresses messages.

Ex.1006.781DELL

764 THE APPLICATION LA YER CHAP. 7

29. Suppose that someone sets up a vacation daemon and then sends a message just before
logging out. Unfortunately, the recipient has been on vacation for a week and also has
a vacation daemon in place. What happens next? Will canned replies go back and
forth until somebody returns?

30. Assuming that everyone on the Internet used POP, could a POP message be sent to an
arbitrary Internet address and be decoded correctly by all concerned? Discuss your
answer.

31. POP does not support canonicalization as does PEM. Why not?

32. Make a guess about what the smiley : -X (sometimes written as : -#)might mean.

33. How long does it take to distribute a days' worth of news over a 50-Mbps satellite
channel?

34. Which of the commands listed in Fig. 7-56 are theoretically redundant?

35. A large network consists of an /1 x n grid of machines. All the interior nodes have
four neighbors; the ones on the edges (corners) have three (two) neighbors. If an m
byte article is posted on some machine using NNTP, how many bytes of bandwidth
are consumed getting it to all other machines (ignoring the NNTP overhead and just
counting the message bytes)?

36. Repeat the previous problem, but now compute the approximate bandwidth that would
be needed to distribute the message using a mailing list. How much more is it than in
the previous problem?

37. When Web pages are sent out, they are prefixed by MIME headers. Why?

38. When are external viewers needed? How does a browser know which one to use?

39. Imagine that someone in the CS Department at Stanford has just written a new pro
gram that he wants to distribute by FTP. He puts the program in the FTP directory
ftplpub!freebies!newprog.c. What is the URL for this program likely to be?

40. In Fig. 7-60, the ALT parameter is set in the <IMO> tag. Under what conditions does
the browser use it, and how?

41. How do you make an image clickable in HTML? Given an example.

42. Show the <A> tag that is needed to make the string "ACM" be a hyperlink to
http://www.acm.org.

43. Design a form for a new company, Jnterburger, that allows hamburgers to be ordered
via the Internet. The form should include the customer's name, address, and city, as
well as a choice of size (either gigantic or immense) and a cheese option. The burgers
are to be paid for in cash upon delivery, so no credit card information is needed.

44. Java does not have structures as in C or records as in Pascal. Is there some other way
to achieve the same effect of bundling a group of dissimilar variables together to form
a single data type? If so, what is it?

45. Using the data structures of Fig. 7-75, list the exact steps needed to check a new URL
to see if it is already in url_table.

Ex.1006.782DELL

CHAP. 7 PROBLEMS 765

46. Suppose that in its effort to become more market oriented, the KGB goes commercial
and hires an advertising agency that designs a Web page for it. Your company has
been hired as an outside consultant to implement it. Write the HTML to produce the
Web page below.

WELCOME TO THE KGB'S WWW HOME PAGE

As a consequence of its n3cent privatization, the KGB is pleased to announce
the commercial availability of many fine products and services previously
available only to major governments.

Competitive prices! Discreet service ensured!

• Products
o Nuclear weapons (small, medium, large, jumbo)
o Spy satellites (keep tabs on your neighbors)
o Low-radar-profile supersonic aircraft (buzz your friends' houses unseen)

•Services
o Mole placement in the organization of your choice
o Coups (corporate as well as governmental)
o Assistance in setting up your very own germ-warfare laboratory

• Bargain basement specials
o The collected works of Felix Dzerzhinsky (limited edition)
o Aerial photographs of Afghanistan (ca. 1984)
o Quality Bulgarian-made tanks (95 percent discount)

Webmaster@kgb.ru

47. In C and C++, the size of an integer is not specified by the language. In Java it is.
Give an argument for the C way and one for the Java way.

48. Suppose that the Web contains 10 million pages, each with an average of 10 hyper -
links. Fetching a page averages 100 msec. What is the minimum time to index the
entire Web?

49. A compact disc holds 650 MB of data. Is compression used for audio CDs? Explain
your reasoning.

50. What is the bit rate for transmitting uncompressed VGA color with 8 bits/pixel at 40
frames/sec?

51. In Fig. 7-76(c) quantization noise occurs due to the use of 3-bit samples. The first
sample, at 0, is exact, but the next few are not. What is the percent error for the sam
ples at 1132, 2/32, and 3/32 of the period?

52. Can a 1-bit error in an MPEG frame affect more than the frame in which the error
occurs? Explain your answer.

53. Consider the 100,000 customer video server example given in the text. Suppose that
half of all movies are served from 8 P.M to 10 P.M. How many movies does the server
have to transmit at once during this time period? If each movie requires 4 Mbps, how
many OC-12 connections does the server need to the network?

Ex.1006.783DELL

766 THE APPLICATION LAYER CHAP. 7

S4. Suppose that Zipf's Jaw holds for accesses to a 10,000-movie video server. If the
server holds the most popular I 000 movies on magnetic disk and the remaining 9000
on optical disk, give an expression for the fraction of all references that will be to
magnetic disk. Write a little program to evaluate this expression numerically.

SS. MPEG PES packets contain a field giving the copyright status of the current transmis
sion. Of what conceivable use is this field?

Ex.1006.784DELL

8
READING LIST AND BIBLIOGRAPHY

We have now finished our study of computer networks, but this is only the
beginning. Many interesting topics have not been treated in as much detail as
they deserve, and others have been omitted altogether for lack of space. In this
chapter we provide some suggestions for further reading and a bibliography, for
the benefit of readers who wish to continue their study of computer networks.

8.1. SUGGESTIONS FOR FURTHER READING

There is an extensive literature on all aspects of computer networks and distri
buted systems. Four journals that frequently publish papers in this area are IEEE
Transactions on Communications, IEEE Journal on Selected Areas in Communi
cations, Computer Communication Review, and Computer Networks and ISDN
Systems. Many other journals also publish occasional papers on the subject.

IEEE also publishes two magazines, IEEE Network Magazine and IEEE Com
munications Magazine, that contain surveys, tutorials, and case studies on net
working. The former emphasizes architecture, standards, and software, and the
latter tends toward communications technology (fiber optics, satellites, and so on).

In addition, there are several annual or biannual conferences that often attract
many papers on networks and distributed systems, in particular, SIGCOMM '9x,
The International Conference on Distributed Computer Systems, The Symposium
on Operating Systems Principles and The N-th Data Communications Symposium.

767

Ex.1006.785DELL

768 READING LIST AND BIBLIOGRAPHY CHAP. 8

Furthermore, IEEE has published several volumes of network paper reprints in
convenient paperback form.

Below we list some suggestions for supplementary reading, keyed to the
chapters of this book.

8.1.1. Introduction and General Works

Bell, "Communications''
For an excellent overview of trends in communication, including telephone,

ATM, ISDN, wireless LANs, the Internet, and pagers, this article is a must.

Comer, The Internet Book
Anyone looking for an easy-going introduction to the Internet should look

here. Comer describes the history, growth, technology, protocols, and services of
the Internet in terms that novices can understand, but so much material is covered
that the book is also of interest to more technical readers as well.

Jabbari et al., "Network Issues for Wireless Communication"
This introduction to cellular radio systems covers call control, routing, signal

ing, and other aspects of modern mobile communication systems.

Kwok, "A Vision for Residential Broadband Service"
If you want to know how Microsoft thinks video on demand should be organ

ized, this article is for you. In it, Microsoft's chief ATM architect explains his
company's vision. Briefly summarized, Microsoft's idea is: ATM to the home is
the way to go. Forget all the "realistic" (i.e., ad hoc) solutions, like ADSL and do
it right.

Le Boudec, "The Asynchronous Transfer Mode: A tutorial"
ATM is an up-and-coming technology, and this paper gives a thorough intro

duction to it. The physical layer, ATM layer, and AAL layer are all covered. In
addition, the final section discusses the debate about ATM.

Pahlavan et al., "Trends in Local Wireless Networks"
Wireless LANs will no doubt become increasingly important in the future. In

this paper, the authors discuss the state of the art and trends in spectrum use and
technologies for wireless LANs.

Siu and Jain, "A Brief Overview of A TM"
Many features of ATM systems are covered in this introductory paper, but the

focus is on LAN emulation and traffic management. It also serves as the intro
duction to a special issue of Computer Communication Review devoted to ATM
technology.

Ex.1006.786DELL

SEC. 8.1 SUGGESTIONS FOR FURTHER READING 769

8.1.2. The Physical Layer

Awdeh and Mouftah, "Survey of ATM Switch Architectures"
Anyone interested in learning more about A TM switch design should look

here. After introducing switches in general and buffering strategies, the authors
discuss many kinds of crossbar, disjoint-path, and banyan switches. The paper
also provides over 200 references to other papers.

Bellamy, Digital Telephony
Everything you ever wanted to know about the telephone system and more is

contained in this authoritative book. Particularly interesting are the chapters on
transmission and multiplexing, digital switching, fiber optics, and ISDN.

De Prycker, Asynchronous Transfer Mode, 2nd ed.
Chapter 4 contains a wealth of information on ATM switches. The principles

are illustrated by numerous example switches, including the knockout, Roxanne,
Coprin, and Athena switches.

Held, The Complete Modem Reference, 2nd ed.
Everything you might conceivably want to know about modems is here, from

the U.S. and Canadian governments' compliance rules, through modulation tech
niques and standards, to how to troubleshoot a sick modem.

IEEE Communications Mag., Jan. 1995, "Wireless Personal Communications"
This special issue contains seven papers on different aspects of wireless per

sonal communication. Collectively they cover propagation, access methods,
receiver principles, system aspects, and network issues.

Metcalfe, "Computer/Network Interface Design: Lessons from Arpanet & Ethernet"
Although engineers have been building network interfaces for decades now,

one often wonders if they have learned anything from all this experience. In this
paper, the designer of the Ethernet tells how to build a network interface, and
what to do with it once you have built it. He pulls no punches, telling what he did
wrong as well as what he did right.

Padgett et al., "Overview of Wireless Personal Communications"
An introduction to cellular and cordless communication systems and a com

parison of the two. Both the American and European standards are covered.

Palais, Fiber Optic Communication, 3rd ed.
Books on fiber optic technology tend to be aimed at the specialist, but this one

is more accessible than most. It covers waveguides, light sources, light detectors,
couplers, modulation, noise, and many other topics.

Ex.1006.787DELL

770 READING LIST AND BIBLIOGRAPHY CHAP. 8

Pandya, "Emerging Mobile and Personal Communications Systems"
For a short and sweet introduction to hand-held personal communication sys

tems, this article is worth looking at. One of the nine pages contains a list of 70
acronyms used on the other eight pages.

Partridge, Gigabit Networking
In addition to describing several kinds of A TM switches, Chap. 5 also com

pares input buffering and output buffering and derives formulas for the perfor
mance of each.

Spragins et al., Telecommunications Protocols and Design
Chapter 2 contains a good introduction to transmission technology, including

copper wires, fiber optics, cellular radio, and satellites. It also has extended dis
cussions of the Nyquist and Shannon limits and their implications.

8.1.3. The Data Link Layer

Black, Data Link Protocols
Here is an entire book on the data link layer. It has a practical emphasis, with

a large amount of material on HDLC, LLC, PPP, and other commercially impor
tant protocols.

Holzmann, Design and Validation of Computer Protocols
Readers interested in the more formal aspects of data link (and similar) proto

cols should look here. The specification, modeling, correctness, and testing of
such protocols are all covered in this book.

Spragins et al., Telecommunications Protocols and Design
Readers interested in learning more about error-detecting and error-correcting

codes should look at Chap. 6 of this book. It also covers the principles of elemen
tary data link protocols at about the same level as this book does. Chapter 7 con
tinues the discussion and discusses various data link protocols in detail.

Walrand, Communication Networks: A First Course
Chapter 4 covers data link protocols, with an emphasis on performance

analysis. The finite state machine and Petri net approaches to protocol correct
ness are also treated.

8.1.4. The Medium Access Control Sublayer

Abeysundara and Kamal, "High-Speed Local Area Networks and Their Perfor
mance"

Since high-speed LANs are of interest due to their high speed, a paper

Ex.1006.788DELL

SEC. 8.1 SUGGESTIONS FOR FURTHER READING 771

discussing and analyzing the performance is welcome. In this one, the focus is on
different kinds of bus, ring, tree, and star LANs, and their delay and utilization
characteristics.

Jain, FDDI Handbook-High-Speed Networking Using Fiber and other Media
For a thorough treatment of FDDI (including nice tutorials on fiber optics and

SONET), this book is a good choice. In addition to long sections on FDDI
hardware and software, it has a section on performance and even advice on shop
ping for fiber optic cables.

Perlman, Interconnections: Bridges and Routers
For an authoritative, but entertaining, treatment of bridges (and routers),

Perlman's book is the place to look. The author designed the algorithms used in
the IEEE 802 spanning tree bridge as well as the DECnet routing algorithms and
is clearly an expert on the subject.

Stallings, Local and Metropolitan Area Networks, 4th ed.
The three IEEE 802 LAN s form the core of this book, but material on other

LANs and MANs is also present.

Walrand, Communication Networks: A First Course
Like Stallings book above, Chap. 5 of this one covers the basic 802 material,

plus FDDI and DQDB. The emphasis is on analyzing protocol performance.

8.1.5. The Network Layer

Comer, Internetworking with TCP/IP, Vol. 1, 3rd ed.
Comer has written the definitive work on the TCP/IP protocol suite. Chapters

4 through 11 deal with IP and related protocols in the network layer. The other
chapters deal primarily with the higher layers, and are also worth reading.

Huitema, Routing in the Internet
If you want to know everything there is to know about routing in the Internet,

this is the book for you. Both pronounceable algorithms (e.g., RIP, CIDR, and
MBONE) and unpronounceable algorithms (e.g., OSPF, IGRP, EGP, and BGP)
are treated in great detail. New features, such as multicast, mobile IP, and
resource reservation, are also here.

Perlman, Interconnections: Bridges and Routers
In Chap. 9, Perlman describes many of the issues involved in unicast and mul

ticast routing algorithm design, both for WAN s and networks of LAN s, and their
implementation in various devices. The author clearly cares about the subject,
having entitled Sec. 9.13.10 "My Opinion on IP-Style Network Layer Multicast."

Ex.1006.789DELL

772 READING LIST AND BIBLIOGRAPHY CHAP. 8

Sterbenz et al., "Report on the IEEE ComSoc Gigabit Networking Workshop"
Before gigabit networking is usable, a number of basic questions have to be

resolved. A key one is whether these networks will use ATM, TCP/IP, or both.
To better understand these issues, IEEE organized a workshop in April 1995, a
summary of which is presented here. The critique of ATM by Schulzrinne is
worth reading by anyone who believes that ATM is the solution to the world's
telecommunication problems.

Stevens, TCP/IP Illustrated, Vol. 1
Chapters 3-10 provide a comprehensive treatment of IP and related protocols

(ARP, RARP, and ICMP) illustrated by examples.

Yang and Reddy, "A Taxonomy for Congestion Control Algorithms in Packet
Switching Networks"

The authors have devised a taxonomy for congestion control algorithms. The
main categories are open loop with source control, open loop with destination
control, closed loop with explicit feedback, and closed loop with implicit feed
back. They use this taxonomy to describe and classify 23 existing algorithms.

8.1.6. The Transport Layer

Comer, Internetworking with TCP/IP, Vol. l, 3rd ed.
As mentioned above, Comer has written the definitive work on the TCP/IP

protocol suite. Chap. 12 is about UDP; Chap. 13 is about TCP.

Mogul, "IP Network Performance"
Despite the title of this article, it is at least, if not more, about TCP and net

work performance in general, than about IP performance in particular. It is full of
useful guidelines and rules of thumb.

Stallings, Data and Computer Communications, 4th ed.
Chapter 12 is about transport protocols and covers services and mechanisms

in the abstract, as well as the OSI and TCP transport protocols in detail.

Stevens, TCP/IP Illustrated, Vol. 1
Chapters 17-24 provide a comprehensive treatment of TCP illustrated by

examples.

8.1.7. The Application Layer

Anderson, R., "Why Cryptosystems Fail"
According to Anderson, security in banking systems is poor, but not due to

clever intruders breaking DES on their PCs. The real problems range from

Ex.1006.790DELL

SEC. 8.1 SUGGESTIONS FOR FURTHER READING 773

dishonest employees (a bank clerk's changing a customer's mailing address to his
own to intercept the bank card and PIN number) to programming errors (giving all
customers the same PIN code). What is especially interesting is the response
banks give when confronted with an error: our systems are perfect and therefore
all errors must be due to customer errors or fraud.

Berghel, "'The Client Side of the Web"
An easygoing introduction to Web browsers and the features they (can) sup

port. The main topics are HTML/HTTP compliance, performance, reconfigura
bility, integration with the desktop, and navigational aids. Nine popular browsers
are compared on these issues.

Berners-Lee et al., "The World Wide Web"
A perspective on the Web and where it is going by the person who invented it.

The article focuses on the Web architecture, HTTP, and HTML, as well as future
directions.

Carl-Mitchell and Quarterman, Practical Internetworking with TCP/IP and UNIX
Chapter 5 presents a nice introduction to naming and DNS, including naming

authorities, the operational architecture, and the DNS database.

Choudhury et al., "Copyright Protection for Electronic Publishing on Computer
Networks"

Although numerous books and articles describe cryptographic algorithms, few
describe how they could be used to prevent users from further distributing docu
ments which they are allowed to decrypt. This paper describes a variety of
mechanisms that might help protect authors' copyrights in the electronic era.

Furht et al., "Design Issues for Interactive Television Systems"
Video on demand raises many complex technical issues related to the system

architecture, network topology, server design, and set-top box design. In this
paper, the authors present a tutorial on some of the key problems and some solu
tions that are being investigated.

Handley and Crowcroft, The World Wide Web-Beneath the Surf
While 99 percent of WWW books just tell you how to use some browser or

list interesting URLs, this one explains how the Web works inside. The client
side, the server side, and HTML are all explained in nice bite-sized chunks.

Kaufman et al., Network Security
This authoritative and frequently witty book is the first place to look for more

information on network security. Secret and public key algorithms and protocols,
message hashes, authentication, Kerberos, and email are all explained at length.

Ex.1006.791DELL

774 READING LIST AND BIBLIOGRAPHY CHAP. 8

The best parts are the interauthor (and even intra-author) discussions, labeled by
subscripts, as in: "I

2
could not get me

1
to be very specific ... "

Kumar, MBone: Interactive Multimedia on the Internet
The cover of this book says: "Discover how you can broadcast, advertise, and

display your products on the Internet." Fortunately, this subject is not mentioned
anywhere else in the book. What is covered is the architecture and implementa
tion of the MBone, including a lot of material about how it works and how to use
it.

Nemeth et al., UNIX System Administration Handbook
Chapter 16 is a long introduction to DNS. It gets into all the nitty-gritty

details, illustrating the various files and resource records with numerous exam
ples. Programs and other tools used for managing a DNS server are also covered
in some detail.

Rose, The Internet Message
If you like your email served with a dash of iconoclasm, this book is a good

bet. The author is not above getting up on a soapbox from time to time to
announce what is wrong with the world. When you come right down to it, his
taste is hot bad.

Schneier, Applied Cryptography, 2nd ed ..
This monumental compendium is NSA's worst nightmare: a single book that

describes every known cryptographic algorithm. To make it worse (or better,
depending on your point of view), the book contains most of the algorithms as
runnable programs (in C). Furthermore, over 1600 references to the crypto
graphic literature are provided. If you really want to keep your files secret, read
this book.

Steinmetz and Nahrstedt, Multimedia: Computing, Communications and Applica
tions

Although somewhat chaotic, this book does cover a lot of ground in mul
timedia. Topics treated at length include audio, still pictures, moving pictures,
compression, optical storage, multimedia operating systems, networking, hyper
text, synchronization of streams, and multimedia applications.

Van der Linden, Just Java
When Chap. 1 of a book is entitled ''Come into my parlor, said the spider to

the fly," it is a safe bet that it is either a children's fairy tale or about the World
Wide Web. This one is about the Web, specifically about the Java language and
its environment. For people who want to play with Java, the book comes com
plete with the full Java system on CD-ROM.

Ex.1006.792DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 775

8.2. ALPHABETICAL BIBLIOGRAPHY

ABEYSUNDARA, B.W., and KAMAL, A.E.: "High-Speed Local Area Networks and Their Per
formance" Computing Surveys, vol. 23, pp. 221-264, June 1991.

ABRAMSON, N.: "Development of the ALOHANET," IEEE Trans. on Inform(ltion Theory,
vol. IT-31, pp. 119-123, March 1985.

ADAM,J.A.: "Privacy and Computers," IEEE Spectrum, vol. 32, pp. 46-52, Dec. 1995.

ADAMS, N., GOLD, R., SCHILIT, B.N., TSO, M.M., and WANT, R.: "An Infrared Network for
Mobile Computers," Proc. USENIX Mobile and Location-Independent Computing
Symposium, USENIX, pp. 41-51, 1993.

ANDERSON, R.J.: "Why Cryptosystems Fail," Commun. of the ACM, vol. 37, pp. 32-40,
Nov. 1994.

ARMBRUSTER, H.: "The Flexibility of ATM: Supporting Future Multimedia and Mobile
Communications," IEEE Commun. Magazine, vol. 33, pp. 76-84, Feb. 1995.

ARMITAGE, G.J., and ADAMS, K.M.: "How Efficient is IP over ATM Anyway?" IEEE Net
work Magazine, vol. 9, pp. 18--26, Jan./Feb. 1995.

ARNOLD, K., and GOSLING, J.: The Java Programming Language, Reading, MA: Addison
Wesley, 1996.

AT&T and BELLCOJIB: "Observations of Error Characteristics of Fiber Optic Transmission
Systems," CCITT SG XVIII, San Diego, Jan. 1989.

AWDEH, R.Y., and MOUFTAH, H.T.: "Survey of ATM Switch Architectures," Computer Net
works and ISDN Systems, vol. 27, pp. 1567-1613, Nov. 1995.

BAKNE, A., and BADRINATH, B.R.: "I-TCP: Indirect TCP for Mobile Hosts," Proc. Fifteenth
Int'!. Conj on Distr. Computer Systems, IEEE, pp. 136-143, 1995.

BALAKRISHNAN, H., SESHAN, S, and KATZ, R.H.: "Improving Reliable Transport and Hand
off Performance in Cellular Wireless Networks," Proc. ACM Mobile Computing and
Networking Conj, ACM, pp. 2-11, 1995.

BALLARDIE, T., FRANCIS, P., and CROWCROFT, J.: "Core Based Trees (CBT)," Proc.
SIGCOMM '93 Conj, ACM, pp. 85-95, 1993.

BANTZ, D .. F., and BAUCHOT, F.J.: "Wireless LAN Design Alternatives," IEEE Network
Magazine, vol. 8, pp. 43-53, March/April, 1994.

BARANSEL, C., DOBOSIEWICZ, W., and GBURZYNSKI, P.: "Routing in Multihop Packet
Switching Networks: Gb/s Challenge," IEEE Network Magazine, vol. 9, pp. 38-61,
May/June, 1995.

BARLOW, J.P.: "Property and Speech: Who Owns What You Say in Cyberspace," Com
mun. of the ACM, vol. 38, pp. 19-22, Dec. 1995.

BATCHER, K.E.: "Sorting Networks and Their Applications," Proc. AF/PS Spring Joint
Computer Conj, vol. 32, pp. 307-315, 1968.

Ex.1006.793DELL

776 READING LIST AND BIBLIOGRAPHY CHAP. 8

BATES, R.J.: Wireless Networked Communications, New York: McGraw-Hill, 1994.

BERGHEL, H.L.: "The Client Side of the Web," Commun. of the ACM, vol. 39, pp. 33-40,
Jan. 1996.

BELL, T.E. "Communications," IEEE Spectrum, vol. 33, pp. 30-41, Jan 1996.

BELLAMY, J.: Digital Telephony, New York: John Wiley, 1991.

BELLMAN, R.E.: Dynamic Programming, Princeton, NJ: Princeton University Press, 1957.

BELSNES, D.: "Flow Control in the Packet Switching Networks," Communications Net
works, Uxbridge, England: Online, pp. 349-361, 1975.

BERNERS-LEE, T., CAILLAU, A., LOUTONEN, A., NIELSEN, H.F., and SECRET, A.: "The World
Wide Web," Commun. of the ACM, vol 37, pp. 76-82, Aug. 1994.

BERTSEKAS, D., and GALLAGER, R.: Data Networks, 2nd ed., Englewood Cliffs, NJ: Pren
tice Hall, 1992.

BHARGHAVAN, V., DEMERS, A., SHENKER, S., and ZHANG, L.: "MACAW: A Media Access
Protocol for Wireless LANs," Proc. SIGCOMM '94 Conf, ACM, pp. 212-225, 1994.

BIHAM, E., and SHAMIR, A.: Differential Cryptanalysis of the Data Encryption Standard,
New York: Springer-Verlag, 1993.

BINDER, R.: "A Dynamic Packet Switching System for Satellite Broadcast Channels,"
Proc. Int'l. Conf on Commun., pp. 41-1to41-5a, 1975.

BLACK, U.D.: TCP/JP and Related Protocols, New York: McGraw-Hill, 1995.

BLACK, U.D.: Emerging Commun. Technol., Englewood Cliffs, NJ: Prentice Hall, 1994.

BLACK, U.D.: Data Link Protocols, Englewood Cliffs, NJ: Prentice Hall, 1993.

BLAZE, M.: "Protocol Failure in the Escrowed Encryption Standard," Proc. Second ACM
Conf on Computer and Commun. Security, ACM, pp. 59-67, 1994.

BOGINENI, K., SIVALINGAM, K.M., and DOWD, P.W.: "Low-Complexity Multiple Access Pro
tocols for Wavelength-Division Multiplexed Photonic Networks," IEEE Journal on
Selected Areas in Commun., vol. 11, pp. 590-604, May 1993.

BONOMI, F., and FENDICK, K.W.: "The Rate-Based Flow Control Framework for the Avail
able Bit-rate ATM Service," IEEE Network Magazine, vol. 9, pp. 25-39, March/April
1995.

BOWMAN, C.M., DANZIG, P.B., HARDY, D.R., MANBER, U., and SCHWARTZ, M.F.: "The Harvest
Information Discovery and Access System," Computer Networks and ISDN Systems,
vol. 28, pp. 119-125, Dec. 1995.

BOWMAN, C.M., DANZIG, P.B., MANBER, u., and SCHWARTZ, M.F.: "Scalable Internet
Resource Discovery: Research Problems and Approaches," Commun. of the ACM,
vol. 37, pp. 98-107, Aug. 1994.

BRAKMO, L.S., O'MALLEY, S.W., and PETERSON, L.L.: "TCP Vegas: New Techn. for Conges
tion Detection and Avoidance," Proc. SJGCOMM '94 Conf, ACM, pp. 24-35, 1994.

Ex.1006.794DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 777

BROADHEAD, M.A. and OWEN, C.B.: "Direct Manipulation of MPEG Compressed Digital
Audio," Proc. of ACM Multimedia '95, ACM, pp. 499-507, 1995.

BROWN, L., KWAN, M., PIEPRZYK, JI., and SEBERRY, J.: "Improving Resistance to Differen
tial Cryptanalysis and the Redesign of LOKI," ASIACRYPT '91 Abstracts, pp. 25-30,
1991.

BUFORD, J.F.K. (Ed.): Multimedia Systems, Reading, MA: Addison-Wesley, 1994. DEC
System Research Center Report, Feb. 1989.

CAMPBELL, A., COULSON, G., and HUTCHISON, D.: "A Quality of Service Architecture,"
Computer Commun. Rev., vol. 24, pp. 6-27, April 1994.

CAMPIONE, M., and WALRATH, K.: The Java Language Tutorial: Object-Oriented Program
ming for the Internet, Reading, MA: Addison-Wesley, 1996.

CAPETANAKIS, J.I.: "Tree Algorithms for Packet Broadcast Channels," IEEE Trans. on
Information Theory, vol. IT-25, pp. 505-515, Sept. 1979.

CARL-MITCHELL, S., and QUARTERMAN, J.S.: Practical Internetworking with TCP/IP and
UNIX, Reading, MA: Addison-Wesley, 1993.

CATLETT, C.E.: "In Search of Gigabit Applications," IEEE Commun. Magazine, vol. 30,
pp. 42-51, April 1992.

CERF, v., and KAHN, R.: "A Protocol for Packet Network Interconnection," IEEE Trans. on
Commun., vol. COM-22, pp. 637-648, May 1974.

CHANDRANMENON, G.P., and VARGHESE, G.: "Trading Packet Headers for Packet Process
ing," Proc. SIGCOMM '95 Conf, ACM, pp. 162-173, 1995.

CHANG, Y.-H., COGGINS, D., PITT, D., SKELLERN, D., THAPAR, M., and VENKATRAMAN, C.:

"An Open-System Approach to Video on Demand," IEEE Commun. Magazine, vol.
32, pp. 68-80, May 1994.

CHAO, J.J., GHOSAL, D., SAHA, D., and TRIPATHI, S.K.: "IP on ATM Local Area Networks,"
IEEE Commun. Magazine, vol. 32, pp. 52-59, Aug. 1994.

CHAPMAN, D.E., and ZWICKY, E.D.: Building Internet Firewalls, Sebastopol, CA: O'Reilly,
1995.

CHEN, K.-IC.: "Medium Access Control of Wireless LANs for Mobile Computing," IEEE
Network Magazine, vol. 8, pp. 50-63, Sept./Oct. 1994.

CHEN, M., and YUM, T.-S.: "A Conflict-Free Protocol for Optical WDMA Networks," Proc.
Globecom '91, pp. 1276-1281, 1991.

CHEN, W.Y., and WARING, D.L.: "Applicability of ADSL to Support Video Dial Tone in the
Copper Loop," IEEE Commun. Magazine, vol. 32, pp. 102-106, May 1994.

CHERITON, D., and WILLIAMSON, C.: "VMTP as the Transport Layer for High-Performance
Distributed Systems," IEEE Commun. Magazine, vol. 27, pp. 37-44, June 1989.

Ex.1006.795DELL

778 READING LIST AND BIBLIOGRAPHY CHAP. 8

CHERVENAK, A.L.: Tertiary Storage: An Evaluation of New Applications, Ph.D. thesis,
CSD, Univ. of California at Berkeley, 1994.

CHERVENAK, A.L., PATTERSON, D.A., and KATZ, R.H.: "Choosing the Best Storage System
for Video Service," Proc. of ACM Multimedia '95, ACM, pp. 109-119, 1995.

CHESSON, G.L.: "XTP/PE Design Considerations," IFIP Workshop on Protocols for
High-Speed Networks, IFIP, pp. 27-33, 1989.

CHESWICK, W.R. and BELLOVIN, S.M.: Firewalls and Interwalls-Repelling the Wily
Hacker, Reading, MA: Addison-Wesley, 1994.

CHOUDBURY, A.K., MAXEMCHUK, N.F., PAUL, S., and SCHULZRINNE, H.G.: "Copyright Pro
tection for Electronic Publishing on Computer Networks," IEEE Network Magazine,
vol. 9, pp. 12-20, May/June, 1995.

CLARK, D.D.: "The Design Philosophy of the DARPA Internet Protocols," Proc.
SIGCOMM '88 Conj, ACM, pp. 106-114, 1988.

CLARK, D.D.: "NETBLT: A Bulk Data Transfer Protocol," RFC 998, 1987.

CLARK, D.D.: "Window and Acknowledgement Strategy in TCP," RFC 813, July 1982.

CLARK, D.D., DAVIE, B.S., FARBER, D . .J., GOPAL, I.S., KADABA, B.K., SINCOSKIE, W.D., SMITH,

J.M., and TENNENHOUSE, D.L.: "The Aurora Gigabit Testbed," Computer Networks
and ISDN Systems, vol. 25, pp. 599-621, Jan. 1993.

CLARK, D.D., JACOBSON, V., ROMKEY, J., and SAL WEN, H.: "An Analysis of TCP Processing
Overhead," IEEE Commun. Magazine, vol. 27, pp. 23-29, June 1989.

CLARK, D.D., LAMBERT, M., and ZHANG, L.: "NETBLT: A High Throughput Transport Pro
tocol," Proc. SIGCOMM '87 Conj, ACM, pp. 353-359, 1987.

CLOS, C.: "A Study of Non-Blocking Switching Networks," Bell System Tech. J., vol. 32,
pp. 406-424, March 1953.

COMER, D.E.: The Internet Book, Englewood Cliffs, NJ: Prentice Hall, 1995.

COMER, D.E.: Internetworking with TCP/IP, vol. 1, 3rd ed., Englewood Cliffs, NJ: Prentice
Hall, 1995.

COOK, A., and STERN, J.: "Optical Fiber Access-Perspectives Toward the 21st Century,"
IEEE Commun. Magazine, vol. 32, pp. 78-86, Feb. 1994.

COOPER, E.: Broadband Network Technology, Englewood Cliffs, NJ: Prentice Hall, 1986.

COULOURIS, G.F., DOLLIMORE, J., and KINDBERG, T.: Distributed Systems Concepts and
Design, 2nd ed. Reading, MA: Addison-Wesley, 1994.

CRESPO, P.M., HONIG, M.L., and SALEHI, J.A.: "Spread-Time Code-Division Multiple
Access," IEEE Trans. on Commun., vol. 43, pp. 2139-2148, June 1995.

CRONIN, W.J., HUTCHINSON, J.D., RAMAKRISHNAN, K.K., and YANG, H.: "A Comparison of
High Speed LANs," Proc. Nineteenth Conf on Local Computer Networks, IEEE, pp.
40-49, 1994.

Ex.1006.796DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 779

CROWCROFT, J., WANG, Z., SMITH, A., and ADAMS, J.: "A Rough Comparison of the IETF
and ATM Service Models," IEEE Network Magazine, vol. 9, pp. 12-16, Nov./Dec.
1995.

CROWTHER, W., RETTBERG, R., WALDEN, D., ORNSTEIN, S., and HEART, F.: "A System for
Broadcast Communication: Reservation-Aloha," Proc. Sixth Hawaii Int. Conf System
Sci., pp. 371-374, 1973.

CUSICK, T.W., and WOOD, M.C.: "The REDOC-11 Cryptosystem," Advances in
Cryptology-CRYPTO '90 Proceedings, NY: Springer-Verlag, pp. 545-563, 1991.

DAGDEVIREN, N., NEWELL, J.A., SPINDEL, L.A., and STEFANICK, M.J.: "Global Networking
with ISDN," IEEE Commun. Magazine, vol. 32, pp. 26-32, June 1994.

DANSKIN, J.M., DA VIS, G.M., and SONG, X.: "Fast Lossy Internet Image Transmission," Proc.
of ACM Multimedia '95, ACM, pp. 321-332, 1995.

DANTHINE, A.A.S.: "Protocol Representation with Finite-State Models," IEEE Trans. on
Commun., vol. COM-28, pp. 632-643, April 1980.

DAVIS, P.T., and McGUFFIN, C.R.: Wireless Local Area Networks, New York: McGraw-Hill,
1995.

DAY, J.D.: "The (Un)Revised OSI Reference Model," Computer Commun. Rev., vol. 25,
pp. 39-55, Oct. 1995.

DAY, J.D., and ZIMMERMANN, H.: "The OSI Reference Model," Proc. of the IEEE, vol. 71,
pp. 1334-1340, Dec. 1983.

DEJONGE, W., and CHAUM, D.: "Some Variations on RSA Signatures and Their Security,"
in Advances in Cryptology-CRYPTO '86 Proceedings, Odlyzko, A.M. (Ed.), New
York: Springer Verlag, 1987.

DE PRYCKER, M.: Asynchronous Transfer Mode, 2nd. ed., New York: Ellis Horwood,
1993.

DEAN, D., and WALLACH, D.S.: "Security Flaws in the HotJava Web Browser," Technical
Report 502, Dept. of Computer Science, Princeton Univ., 1995.

DEERING, S.E.: "SIP: Simple Internet Protocol," IEEE Network Magazine, vol. 7, pp. 16-
28, May/June 1993.

DEERING, S.E., and CHERITON, D.R.: "Multicast Routing in Datagram lntemetworks and
Extended LANs," ACM Trans. on Computer Systems, vol. 8, pp. 85-110, May 1990.

DEERING, S.E., ESTRIN, D., FARINACCI, D., JACOBSON, V., LIU, C.-G., and WEI, L.: "An Archi
tecture for Wide-Area Multicast Routing," Proc. SIGCOMM '94 Conf, ACM, pp.
126-135, 1994.

DELODDERE, D., VERBIEST, W., and VERHILLE, H.: "Interactive Video on Demand," IEEE
Commun. Magazine, vol. 32, pp. 82-88, May 1994.

DEMERS, A., KESHAV, S., and SHENKER, S.: "Analysis and Simulation of a Fair Queueing
Algorithm," Internetwork: Research and Experience, vol. 1, pp. 3-26, Sept. 1990.

Ex.1006.797DELL

780 READING LIST AND BIBLIOGRAPHY CHAP. 8

DENNING, D.E., and SACCO, G.M.: "Timestamps in Key Distribution Protocols," Commun.
of the ACM, vol. 24, pp. 533-536, Aug. 1981.

DIFFIE, W., and HELLMAN, M.E.: "Exhaustive Cryptanalysis of the NBS Data Encryption
Standard," IEEE Computer Magazine, vol. 10, pp. 74-84, June 1977.

DIFFIE, W., and HELLMAN, M.E.: "New Directions in Cryptography," IEEE Trans. on Infor
mation Theory, vol. IT-22, pp. 644-654, Nov. 1976.

DUKSTRA, E.W.: "A Note on Two Problems in Connexion with Graphs," Numer. Math.,
vol. 1, pp. 269-271, Oct. 1959.

DIRVIN, R.A., and MILLER, A.R.: "The MC68824 Token Bus Controller: VLSI for the Fac
tory LAN," IEEE Micro Magazine, vol. 6, pp. 15-25, June 1986.

DIXIT, S., and SKELLY, P.: "MPEG-2 over ATM for Video Dial Tone Network," IEEE Net
work Magazine, vol. 9, pp. 30-40, Sept/Oct. 1995.

DIXON, R.C.: "Lore of the Token Ring," IEEE Network Magazine, vol. 1, pp. 11-18,
Jan./Feb. 1987.

DOERINGER, W.A., DYKEMAN, D., KAISERSW~RTH, M., MEISTER, B.W., RUDIN, H., and WILLI

AMSON, R.: "A Survey of Light-Weight Transport Protocols for High-Speed Net
works," IEEE Trans. on Commun., vol. 38, pp. 2025-2039, Nov. 1990.

DORFMAN, R.: "Detection of Defective Members of a Large Population," Annals Math.
Statistics, vol. 14, pp. 436-440, 1943.

ECKBERG, A.E.: "B-ISDN/ATM Traffic and Congestion Control," IEEE Network Maga
zine, vol. 6, pp. 28-37, Sept/Oct. 1992.

ECKBERG, A.E., DOSHI, B.T., and ZOCCOLILLO, R.: "Controlling Congestion in B
ISDN/ ATM: Issues and Strategies," IEEE Commun. Magazine, vol. 29, pp. 64-70,
Sept. 1991.

EDWARDS, A., and MUIR, S.: "Experience Implementing a High-Performance TCP in User
Space," Proc. SIGCOMM '95 ConJ, ACM, pp. 197-205, 1995.

EL GAMAL, T.: "A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms," IEEE Trans. on Information Theory, vol. IT-31, pp. 469-472, July 1985.

ERIKSSON, H.: "MBone: The Multicast Backbone," Commun. of the ACM, vol. 37, pp. 54-
60, Aug. 1994.

ESTRIN, D., REKHTER, Y., and HOTZ, S.: "Scalable Inter-Domain Routing Architecture,"
Proc. SIGCOMM '92 Conj, ACM, pp. 40-52, 1992.

FEIG, E., and WINOGRAD, S.: "Fast Algorithms for Discrete Cosine Transformations," IEEE
Trans. on Signal Processing, vol. 40, Sept. 1992.

FEIT, S.: SNMP-A Guide to Network Management, New York: McGraw-Hill, 1995.

FIORINI, D., CHIANI, M., TRALLI, V., and SALATI., C.: "Problems with HDLC," Computer
Commun. Rev., vol. 25, pp. 61-80, Oct. 1995.

Ex.1006.798DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 781

FISCHER, W., WALLMEIER, E., WOJRSTER, T., DAVIS, S.P., HAYTER, A.: "Data Communica
tions Using ATM: Architectures, Protocols, and Resource Management," IEEE Com
mun. Magazine, vol. 32, pp. 24-33, Aug. 1994.

FLOYD, s., and JACOBSON, v.: "Random Early Detection for Congestion Avoidance,"
IEEE/ACM Trans. on Networking, vol. 1, pp. 397-413, Aug. 1993.

FLUCKIGER, F.: Understanding Networked Multimedia, Englewood Cliffs, NJ: Prentice
Hall, 1995.

FORD, L.R., Jr., and FULKERSON, D.JR.: Flows in Networks, Princeton, NJ: Princeton Univer
sity Press, 1962.

FORD, P.S., REKHTER, Y., and BRAUN, H.-W.: "Improving the Routing and Addressing of
IP," IEEE Network Magazine., vol. 7, pp. 10-15, May/June 1993.

FORMAN, G.H., and ZAHORJAN, J.: "The Challenges of Mobile Computing," IEEE Com
puter Magazine, vol. 27, pp. 38-47, April 1994.

FRANCIS, P.: "A Near-Term Architecture for Deploying Pip," IEEE Network Magazine,
vol. 7, pp. 30-37, May/June 1993.

FRASER, A.G.: "Early Experiments with Asynchronous Time Division Networks," IEEE
Network Magazine, vol. 7, pp. 12-27, Jan./Feb. 1993.

FRASER, A.G.: "Towards a Universal Data Transport System," in Advances in Local Area
Networks, Kummerle, K., Tobagi, F., and Limb, J.O. (Eds.), New York: IEEE Press,
1987.

FURHT, B., KALRA, D., KITSON, F.L., RODRIGUEZ, and WALL, W.E.: "Design Issues for
Interactive Televisions Systems," IEEE Computer Magazine, vol. 28, pp. 25-39, May
1995.

GARCIA-HARO, J., and JAJSZCZYK, A.: "ATM Shared-Memory Switching Architectures,"
IEEE Network Magazine, voL 8., pp. 18-26, July/Aug. 1994.

GARG, V., and WILKES, J.E.: Wireless and Personal Communication Systems, Englewood
Cliffs, NJ: Prentice Hall, 1996.

GASMAN, L.: Broadband Networking, New York: Van Nostrand Reinhold, 1994.

GIACOPELLI, J.N.; HICKEY, J.J., MARCUS, W.S., SINCOSKIE, W.D., and LITTLEWOOD, M.:

"Sunshine: A High-Performance Self-Routing Broadband Packet Switch Architec
ture," IEEE Journal on Selected Areas in Commun., vol. 9, pp. 1289-1298, Oct. 1991.

GOODMAN, D.J.: "Trends in Cellular and Cordless Communications," IEEE Commun.
Magazine, vol. 29, pp. 31-40, June 1991.

GORALSKI, W.J.: Introduction to ATM Networking, New York: McGraw-Hill, 1995.

GOSLING, J., JOY, B., and STEELE, G.: The Java Language Specification, Reading, MA:
Addison-Wesley, 1996.

GREEN, P.E., Jr.: Fiber Optic Networks, Englewood Cliffs, NJ: Prentice Hall, 1993.

Ex.1006.799DELL

782 READING LIST AND BIBLIOGRAPHY CHAP. 8

HAC, ANNA: "Wireless and Cellular Architecture and Services," IEEE Commun. Maga
zine, vol. 33, pp. 98-104, Nov. 1995.

HAFNER, K., and MARKOFF, J.: Cyberpunk, New York: Simon and Schuster, 1991.

HAMMING, R.W.: "Error Detecting and Error Correcting Codes," Bell System Tech. J., vol.
29, pp. 147-160, April 1950.

HANDEL, R., HUBER, M.N., and SCHRODER, S.: ATM Concepts, Protocols, and Applications,
2nd ed., Reading, MA: Addison-Wesley, 1994.

HANDLEY, M., and CROWCROFT, J.: The World Wide Web~Beneath the Surf, London: UCL
Press, 1994.

HAWLEY, G.T.: "Historical Perspectives on the U.S. Telephone System," IEEE Commun.
Magazine, vol. 29, pp. 24-28, March 1991.

HEIN, M., and GRIFFITHS, D.: SNMP, London: Thompson, 1995.

HELD, G.: The Complete Modem Reference, 2nd ed., New York: John Wiley, 1994.

HELLMAN, M.E.: "A Cryptanalytic Time-Memory Tradeoff," IEEE Trans. on Information
Theory, vol. IT-26, pp. 401-406, July 1980.

HENDERSON, T.R.: "Design Principles and Performance Analysis of SSCOP: A New ATM
Adaptation Layer Protocol," Computer Commun. Review, vol. 25, pp. 47-59, April
1995.

HOARE, C.A.R.: "Monitors, An Operating System Structuring Concept," Commun. of the
ACM, vol. 17, pp. 549-557, Oct. 1974; Erratum in Commun. of the ACM, vol. 18, p.
95, Feb. 1975.

HODGE, W.W.: Interactive Television, New York: McGraw-Hill, 1995.

HODGE, W.W., Martin, S., POWERS, J.T., Jr.: "Video on Demand: Architectures, Systems, and
Applications," Society of Motion Picture and Television Engineers Journal, vol. 102,
pp. 791-803, Sept. 1993.

HOFFMAN, L.J. (ed.): Building in Big Brother: The Cryptographic Policy Debate, New
York: Springer-Verlag, 1995.

HOLFELDER, W.: "MBone VCR-Video Conference Recording on the MBone," Proc. of
ACM Multimedia '95, ACM, pp. 237-238, 1995.

HOLZ.MANN, G.J.: Design and Validation of Computer Protocols, Englewood Cliffs, NJ:
Prentice Hall, l 991.

HONG, D., and SUDA, T.: "Congestion Control and Prevention in ATM Networks," IEEE
Network Magazine, vol. 5, pp. 10-16, July/Aug. 1991.

HUANG, A., and KNAUER, S.: "Starlite: A Wideband Digital Switch," Proc. Globecom '84,
pp. 121-125, 1984.

HUGHES, J.P., and FRANTA, W.R.: "Geographic Extension of HIPPI Channels," IEEE Net
work Magazine, vol. 8, pp. 42-53, May/June 1994.

Ex.1006.800DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 783

HUI, J.: "A Broadband Packet Switch for Multi-rate Services," Proc. Int'l. Conj on Com-
munications, IEEE, pp. 782-788, 1987.

HUITEMA, C.: IPv6: The New Internet Protocol, Englewood Cliffs, NJ: Prentice Hall, 1996.

HUITEMA, C.: Routing in the Internet, Englewood Cliffs, NJ: Prentice Hall, 1995.

HUMBLET, P.A., RAMASWAMI, R., arnd SIVARAJAN, K.N.: "An Efficient Communication Pro-
tocol for High-Speed Packet-Switched Multichannel Networks," Proc. SIGCOMM
'92 Conj, ACM, pp. 2-13, 1992.

IEEE: Communications Magazine, vol. 33, Jan. 1995.

IEEE: 802.3: Carrier Sense Multiple Access with Collision Detection, New York: IEEE,
1985a.

IEEE: 802.4: Token-Passing Bus Access Method, New York: IEEE, 1985b.

IEEE: 802.5: Token Ring Access Method, New York: IEEE, 1985c.

IOANNIDIS, J., and MAQUIRE, G.Q., Jr.: "The Design and Implementation of a Mobile Inter
networking Architecture," Proc. Winter USENIX Conj, USENIX, pp. 491-502, Jan.
1993.

IRMER, T.: "Shaping Future Telecommunications: The Challenge of Global Standard
ization," IEEE Commun. Magazine, vol. 32, pp. 20-28, Jan. 1994.

IVANCIC, W.D., SHALKHAUSER, M.J., and QUINTANA, J.A.: "A Network Architecture for a
Geostationary Communication Satellite," IEEE Commun. Magazine, vol. 32, pp. 72-
84, July 1994.

JABBARI, B., COLOMBO, G., NAKAJIMA, A., and KULKARNI, J. "Network Issues for Wireless
Communications," IEEE Commun. Magazine, vol. 33, pp. 88-98, Jan. 1995.

JACOBSON, V.: "Congestion Avoidance and Control," Proc. SIGCOMM '88 Conj, ACM,
pp. 314-329, 1988.

JAIN, R.: "Congestion Control and Traffic Management in ATM Networks: Recent
Advances and a Survey," Computer Networks and ISDN Systems, vol. 27, Nov. 1995.

JAIN, R.: FDDI Handbook-High-Speed Networking Using Fiber and other Media, Read
ing, MA: Addison-Wesley, 1994.

JAIN, R.: The Art of Computer Systems Peiformance Analysis, New York: John Wiley,
1991.

JAIN, R.: "Congestion Control in Computer Networks: Issues and Trends," IEEE Network
Magazine, vol. 4, pp. 24-30, May/June 1990.

JIA, F., and MUKHERJEE, B.: "The Receiver Collision Avoidance (RCA) Protocol for a
Single-Hop WDM Lightwave Network," Journal of Lightwave Technology, vol. 11,
pp. 1053-1065, May/June 1993.

JOHNSON, D.B.: "Scalable Support for Transparent Mobile Host Intemetworking," Wire
less Networks, vol. 1, pp. 311-321, Oct. 1995.

Ex.1006.801DELL

784 READING LIST AND BIBLIOGRAPHY CHAP. 8

JOHNSON, H.W.: Fast Ethernet-Dawn of a New Network, Englewood Cliffs, NJ: Prentice
Hall, 1996.

KAHN, D.: "Cryptology Goes Public," IEEE Commun. Magazine, vol. 18, pp. 19-28,
March 1980.

KAHN, D.: The Codebreakers, New York: Macmillan, 1967.

KALISKI, B.S., and ROBSHAW, M.J.B.: "Fast Block Cipher Proposal," Proc. Cambridge
Security Workshop, Springer-Verlag, pp. 26-39, 1994.

KAMOUN, F., and KLEINROCK, L.: "Stochastic Performance Evaluation of Hierarchical
Routing for Large Networks," Computer Networks, vol. 3, pp. 337-353, Nov. 1979.

KARN, P.: "MACA-A New Channel Access Protocol for Packet Radio," ARRVCRRL
Amateur Radio Ninth Computer Networking Conf, pp. 134-140, 1990.

KAROL, M.J., HLUCHYJ, M.G., and MORGAN, S.P.: "Input Versus Output Queueing on a
Space-Division Packet Switch," IEEE Trans. on Commun., vol. 35, pp. 1347-1356,
Dec. 1987.

KARSHMER, A.I., and THOMAS, J.N.: "Computer Networking on Cable TV Plants," IEEE
Commun. Magazine, vol. 30, pp. 32-40, Nov. 1992.

KATZ, D., and FORD, P.S.: "TUBA: Replacing IP with CLNP," IEEE Network Magazine,
vol. 7, pp. 38-47, May/June 1993.

KATZ, E.D., BUTLER, M., and McGRATH, R.: "A Scalable HTTP Server: The NCSA Proto
type," Computer Networks and ISDN Systems, vol. 27, pp. 155-164, Nov. 1994.

KAUFMAN, C., PERLMAN, R., and SPECINER, M.: Network Security, Englewood Cliffs, NJ:
Prentice Hall, 1995.

KAYAK, N.: "Data Communication in ATM Networks," IEEE Network Magazine, vol. 9,
pp. 28-37, May/June 1995.

KENT, C.A., and MOGUL, J.C.: "Fragmentation Considered Harmful," Proc. SIGCOMM '87
Conf, ACM, pp. 390-401, 1987.

KENT, S.T.: "Internet Privacy Enhanced Mail," Commun. of the ACM, vol. 36, pp. 48-60,
Aug. 1993.

KESSLER, G.C.: ISDN, 2nd ed., New York: McGraw-Hill, 1993.

KESSLER, G.C., and TRAIN, D.: Metropolitan Area Networks: Concepts, Standards, and Ser
vices, New York: McGraw-Hill, 1992.

KIM, J.B., SUDA, T., and YOSHIMURA, M.: "International Standardization of B-ISDN," Com
puter Networks and JSDN Systems, vol. 27, pp. 5-27, Oct. 1994.

KLEINROCK, L., and TOBAGI, F.: "Random Access Techniques for Data Transmission over
Packet-Switched Radio Channels," Proc. Nat. Computer Conf, pp. 187-201, 1975.

KOHNO, R., MEIDAN, R., and MILSTEIN, L.B.: "Spread Spectrum Access Methods for Wire
less Communication," IEEE Commun. Magazine, vol. 33, pp. 58-67, Jan. 1995.

Ex.1006.802DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 785

KUMAR, V.: MBone: Interactive Multimedia on the Internet, Indianapolis, IN: New Riders,
1996.

KUNG, H.T., and MORRIS, R.: "Credit-Based Flow Control for ATM Networks," IEEE Net
work Magazine, vol. 9, pp. 40-48, March/April 1995.

KWAN, T.T., McGRATH, R.E., and REED, D.A.: "NCSA's WWW Server: Design and Perfor
mance," IEEE Computer Magazine, vol. 28, pp. 68-74, Nov. 1995.

KWOK, T.: ''A Vision for Residential Broadband Service: ATM to the Home," IEEE Net
work Magazine, vol. 9, pp. 14-28, Sept./Oct. 1995.

KYAS, o.: ATM Networks, London: International Thomson Publishing, 1995.

LAI, X.: On the Design and Security of Block Ciphers, Konstanz, Germany: Hartung-Gorre,
1992.

LAI, X., and MASSEY, J.: "A Proposal for a New Block Encryption Standard," Advances in
Cryptology-Eurocrypt '90 Proceedings, New York: Springer-Verlag, pp. 389-404,
1990.

LAMPSON, B.W.: "A Note on the Confinement Problem," Commun. of the ACM, vol. 10,
pp. 613-615, Oct. 1973.

LANDAU, S.: "Zero-Knowledge and the Department of Defense," Notices of the American
Mathematical Society, vol. 35, pp. 5-12, Jan. 1988.

LANGSFORD, A.: "The Open System User's Programming Interfaces," Computer Net
works, vol. 8, pp. 3-12, 1984.

LA PORTA, T.F., VEERARAGHAVAN, M., AYANOGLU, E., KAROL, M., and GITLIN, R.D.: "B
ISDN: A Technological Discontinuity," IEEE Commun. Magazine, vol. 32, pp. 84-97,
Oct. 1994.

LATIF, A., ROWLANCE, E.J., and ADAMS, R.H.: "The IBM 8209 LAN Bridge," IEEE Net
work Magazine, vol. 6, pp. 28-37, May/June 1992.

LAUDON, K.C.: "Ethical Concepts and Information Technology," Commun. of the ACM,
vol. 38, pp. 33-39, Dec. 1995.

LE BOUDEC, J.-Y.: "The Asynchronous Transfer Mode: A Tutorial," Computer Networks
and ISDN Systems, vol. 24, pp .. 279-309, May 1992.

LEINER, B.M., COLE, R., POSTEL, J., and MILLS, D.: "The DARPA Internet Protocol Suite,"
IEEE Commun. Magazine, vol. 23, pp. 29-34, March 1985.

LEVINE, D.A., and AKYILDIZ, I.A.: "PROTON: A Media Access Control Protocol for Optical
Networks with Star Topology," IEEE/ACM Trans. on Networking, vol. 3, pp. 158-
168, April 1995.

LEVY, S.: "Crypto Rebels," Wired, pp. 54-61, May/June 1993.

LIN, F., CHU, P., and LIU, M.: "Protocol Verification Using Reachability Analysis: The State
Space Explosion Problem and Relief Strategies," Proc. SIGCOMM '87 Conj, ACM,
pp. 126-135, 1987.

Ex.1006.803DELL

786 READING LIST AND BIBLIOGRAPHY CHAP. 8

LIPPER, E.H., and RUMSEWICZ, M.P.: "Teletraffic Considerations for Widespread Deploy
ment of PCS," IEEE Network Magazine, vol. 8, pp. 40-49, Sept./Oct. 1994.

LITTLE, T.D.C., and VENKATESH, D.: "Prospects for Interactive Video on Demand," IEEE
Multimedia Magazine, vol. 1, pp. 14-24, Fall 1994.

LIU, C.L., and LAYLAND, J.W.: "Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment," Journal of the ACM, vol. 20, pp. 46-61, Jan. 1973.

LUOTONEN, A., and ALTIS, K.: "World Wide Web Proxies," Computer Networks and ISDN
Systems, vol. 27, pp. 147-154, Nov. 1994.

MACARIO, R.C.V.: Cellular Radio-Principles and Design, New York: McGraw-Hill, 1993.

MACEDONIA, M.R., and BRUTZMAN, D.P.: "MBone Provides Audio and Video Across the
Internet," IEEE Computer Magazine, vol. 27, pp. 30-36, April 1994.

MASSEY, J.L.: "SAFER K-64: A Byte-Oriented Block Ciphering Algorithm," Proc. Cam
bridge Security Workshop, Springer-Verlag, pp. 1-17, 1994.

MATSUI, M.: "Linear Cryptanalysis Method for DES Cipher," Advances in Cryptology
Eurocrypt '93 Proceedings, New York: Springer-Verlag, pp. 386-397, 1994.

McBRYAN, 0.: "GENVL and WWWW: Tools for Taming the Web," Proc. First Int'l.
WWW Conference, pp. 79-90, 1994.

McDYSAN, D.E., and SPOHN, D.L.: ATM-Theory and Application, NY: McGraw-Hill, 1995.

McKENNEY, P.E., and DOVE, K.F.: "Efficient Demultiplexing of Incoming TCP Packets,"
Proc. SIGCOMM '92 Conj, ACM, pp. 269-279, 1992.

MENEZES, A.J., and VANSTONE, S.A.: "Elliptic Curve Cryptosystems and Their Implementa
tion," Journal of Cryptology, vol. 6, pp. 209-224, 1993.

MERKLE, R.C.: "Fast Software Encryption Functions," Advances in Cryptology-CRYPTO
'90 Proceedings, New York: Springer-Verlag, pp. 476-501, 1991.

MERKLE, R.C., and HELLMAN, M.: "On the Security of Multiple Encryption," Commun. of
the ACM, vol. 24, pp. 465-467, July 1981.

MERKLE, R.C., and HELLMAN, M.: "Hiding and Signatures in Trapdoor Knapsacks," IEEE
Trans. on Information Theory, vol. IT-24, pp. 525-530, Sept. 1978.

METCALFE, R.M.: "On Mobile Computing," Byte, vol. 20, p. 110, Sept. 1995.

METCALFE, R.M.: "Computer/Network Interface Design: Lessons from Arpanet and Ether
net," IEEE Journal on Selected Areas in Commun., vol. 11, pp. 173-179, Feb. 1993.

METCALFE, R.M., and BOGGS, D.R.: "Ethernet: Distributed Packet Switching for Local
Computer Networks," Commun. of the ACM, vol. 19, pp. 395-404, July 1976.

MIKI, T.: "The Potential of Photonic Networks," IEEE Commun. Magazine, vol. 32, pp.
23-27, Dec. 1994a.

MIKI, T.: "Toward the Service-Rich Era," IEEE Commun. Magazine, vol. 32, pp. 34-39,
Feb. 1994b.

Ex.1006.804DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 787

MINOLI, D.: Video Dialtone Technology, New York: McGraw-Hill, 1995

MINOLI, D., and VITELLA, M.: ATM & Cell Relay for Corporate Environments, New York:
McGraw-Hill, 1994.

MIRCHANDANI, S., and KHANNA, R. (eds): FDDI Technologies and Applications, New York:
John Wiley, 1993.

MISHRA, P.P. and KANAKIA, H.: "A Hop by Hop Rate-Based Congestion Control Scheme,"
Proc. SIGCOMM '92 Conj, ACM, pp. 112-123, 1992.

MOCHIDA, Y.: "Technologies for Local-Access Fibering," IEEE Commun. Magazine, vol.
32,pp.64-73,Feb. 1994.

MOGUL, J.C.: "The Case for Persistent-Connection HTTP," Proc. SIGCOMM '95 Conj,
ACM, pp. 299-314, 1995.

MOGUL, J.C.: "IP Network Performance," in Internet System Handbook, Lynch, D.C. and
Rose, M.T. (eds.), Reading, MA: Addison-Wesley, pp. 575-675, 1993.

MOK, A.K., and WARD, S.A.: "Distributed Broadcast Channel Access," Computer Networks,
vol. 3, pp. 327-335, Nov. 1979 ..

MORALES, J., PATKA, A., CHOA, P., and KUI, J.: "Video Dial Tone Sessions," IEEE Network
Magazine, vol. 9, pp. 42-47, Sept./Oct. 1995.

MOY, J.: "Multicast Routing Extensions," Commun. of the ACM, vol. 37, pp. 61-66, Aug.
1994.

MULLENDER, S.J. (ed.): Distributed Systems, 2nd ed., New York: ACM Press, 1993.

MYLES, A., and SKELLERN, D.: "Comparison of Mobile Host Protocols for IP," Computer
Networks and ISDN Systems, vol. 26, pp. 349-355, Dec. 1993.

NAGLE, J.: "On Packet Switches with Infinite Storage," IEEE Trans. on Commun., vol.
COM-35, pp. 435-438, April 1987.

NAGLE, J.: "Congestion Control in TCP/IP Internetworks," Computer Commun. Rev., vol.
14, pp. 11-17, Oct. 1984.

NEEDHAM, R.M., and SCHROEDER, M.D.: "Authentication Revisited," Operating Systems
Rev., vol. 21, p. 7, Jan. 1987.

NEEDHAM, R.M., and SCHROEDER, M.D.: "Using Encryption for Authentication in Large
Networks of Computers," Commun. of the ACM, vol. 21, pp. 993-999, Dec. 1978.

NELSON, M.N., and LINTON, M.: "A Highly Available, Scalable ITV System," Proc.
Fifteenth Symp. on Operating Systems Prin., ACM, pp. 54-67, 1995.

NEMETH, E., SNYDER, G., SEEBASS, S., and HEIN, T.R.: UNIX System Administration Hand
book, Englewood Cliffs, NJ: Prentice Hall, 1995.

NEMZOW, M.: Implementing Wireless Networks, New York: McGraw-Hill, 1995.

NEUMAN, B.C., and TS'O, T.: "Kerberos: An Authentication Service for Computer Net
works," IEEE Commun. Magazine, vol. 32, pp. 33-38, Sept. 1994.

Ex.1006.805DELL

788 READING LIST AND BIBLIOGRAPHY CHAP. 8

NEWMAN, P.: "Traffic Management for ATM Local Area Networks," IEEE Commun.
Magazine, vol. 32, pp. 44-50, Aug. 1994.

NEWMAN, P.: "ATM Local Area Networks," IEEE Commun. Magazine, vol. 32, pp. 86-98,
March 1994.

NIST: "Secure Hash Algorithm," U.S. Government Federal Information Processing Stan
dard 180, 1993.

OMIDYAR, C.G., and ALDRIDGE, A.: "Introduction to SDH/SONET," IEEE Commun. Maga
zine, vol. 31, pp. 30-33, Sept. 1993.

OTWAY, D., and REES, 0.: "Efficient and Timely Mutual Authentication," Operating Sys
tems Rev., pp. 8-10, Jan. 1987.

PADGETT, J.E., GUNTHER, C.G., and HATTORI, T.: "Overview of Wireless Personal Com
munications," IEEE Commun. Magazine, vol. 33, pp. 28-41, Jan. 1995.

PAFF, A.: "Hybrid Fiber/Coax in the Public Telecommunications Infrastructure," IEEE
Commun. Magazine, vol. 33, pp. 40-45, April 1995.

PAHLAVAN, K., PROBERT, T.H., and CHASE, M.E.: "Trends in Local Wireless Networks,"
IEEE Commun. Magazine, vol. 33, pp. 88-95, March 1995.

PALAIS, J.C.: Fiber Optic Commun., 3rd ed., Englewood Cliffs, NJ: Prentice Hall, 1992.

PALMER, L.C., and WHITE, L.W.: "Demand Assignment in the ACTS LBR System," IEEE
Trans. on Commun., vol. 38, pp. 684-692, May 1990.

PAN, D.: "A Tutorial on MPEG/Audio Compression," IEEE Multimedia Magazine, vol. 2,
pp.60-74, Summer J 995.

PANCHA, P., and EL ZARKI, M.: "MPEG Coding for Variable Bit Rate Video Transmis
sion," IEEE Commun. Magazine, vol. 32, pp. 54-66, May 1994.

PANDYA, R.: "Emerging Mobile and Personal Communication Systems," IEEE Commun.
Magazine, vol. 33, pp. 44-52, June 1995.

PARTRIDGE, C.: Gigabit Networking, Reading, MA: Addison-Wesley, 1994.

PARTRIDGE, C.: "A Proposed Flow Specification," Internet RFC 1363, Sept. 1992.

PARTRIDGE, c., HUGHES, J., and STONE, J.: "Performance of Checksums and CRCs over
Real Data," Proc. SIGCOMM '95 Conf, ACM, pp. 68-76, 1995.

PARULKAR, G., SCHMIDT, D.C., and TURNER, J.S.: "AITPM: A Strategy for Integrating IP
with ATM," Proc. SIGCOMM '95 Conf:, ACM, pp. 49-58, 1995.

PAXSON, V.: "Growth Trends in Wide-Area TCP Connections," IEEE Network Magazine,
vol. 8, pp. 8-17, July/ Aug. l 994.

PAXSON, V., and FLOYD, S.: "Wide-Area Traffic: The Failure of Poisson Modeling," Proc.
SIGCOMM '94 Conj, ACM, pp. 257-268, 1995.

PERKINS, c.: "Providing Continuous Network Access to Mobile Hosts Using TCP/IP,"
Computer Networks and ISDN Systems, vol. 26, pp. 357-370, Nov. 1993.

Ex.1006.806DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 789

PERLMAN, R.: Interconnections: Bridges and Routers, Reading, MA: Addison-Wesley,
1992.

PERLMAN, R.: Network Layer Protocols with Byzantine Robustness, Ph.D. thesis, M.l.T.,
1988.

PERRY, T.S., and ADAM, J.A.: "E-Mail: Pervasive and Persuasive," IEEE Spectrum, vol. 29,
pp. 22-28, Oct. 1992.

PETERSON, W.W., and BROWN, D.T.: "Cyclic Codes for Error Detection," Proc. IRE, vol.
49,pp.228-235,Jan. 1961.

PICKHOL TZ, R.L., SCHILLING, D.L., and MILSTEIN, L.B.: "Theory of Spread Spectrum
Communication-A Tutorial," IEEE Trans. on Commun., vol. COM-30, pp. 855-884,
May 1982.

PIERCE, J.: "How Far Can Data Loops Go?" IEEE Trans. on Commun., vol. COM-20, pp.
527-530, June 1972.

PINKERTON, B.: "Finding What People Want: Experiences with the WebCrawler," Proc.
First Int'l. WorldWide Web Conference, 1994.

PISCITELLO, D.M., and CHAPIN, A.L.: Open Systems Networking: TCP/IP and OSI, Reading,
MA: Addison-Wesley, 1993.

PITT, D.A.: "Bridging-The Double Standard," IEEE Network Magazine, vol. 2, pp. 94-95,
Jan. 1988.

QUICK, R. F., Jr., and BALACHANDRAN, K.: "An Overview of the Cellular Digital Packet
Data (CDPD) System," Fourth Int'l. Symp. on Personal, Indoor, and Mobile Radio
Commun., pp. 338-343, 1993.

QUISQUATER, J.-J., and GIRAULT., M.: "Chinese Lotto as an Exhaustive Code-Breaking
Machine," IEEE Computer Magazine, vol. 24, pp. 14-22, Nov. 1991.

RABIN, M.O.: "Digital Signatures and Public-Key Functions as Intractable as Factoriza
tion," Technical Report LCS-TR-212, M.l.T., Jan 1979.

RAHNEMA, M.: "Overview of the GSM System and Protocol Architecture," IEEE Com
mun. Magazine, vol. 31, pp. 92-100, April 1993.

RAJAGOPALAN, B.: "Reliability and Scaling Issues in Multicast Communication," Proc.
SIGCOMM '92 Conj, ACM, pp. 188-198, 1992.

RANSOM, M.N.: "The VISTAnet Gigabit Network Testbed," Journal of High Speed Net
works, vol. 1, pp. 49-60, 1992.

RAO, S.K., and HATAMIAN, M.: "The ATM Physical Layer," Computer Commun. Rev., vol.
25, pp. 73-81, April 1995.

RIVEST, R.L.: "The MD5 Message-Digest Algorithm," RFC 1320, April 1992.

RIVEST, R.L., and SHAMIR, A.: "How to Expose an Eavesdropper," Commun. of the ACM,
vol. 27, pp. 393-395, April 1984.

Ex.1006.807DELL

790 READING LIST AND BIBLIOGRAPHY CHAP. 8

RIVEST, R.L., SHAMIR, A., and ADLEMAN, L.: "On a Method for Obtaining Digital Signatures
and Public Key Cryptosystems,"' Commun. of the ACM, vol. 21, pp. 120-126, Feb.
1978.

ROBERTS, L.: "Dynamic Allocation of Satellite Capacity through Packet Reservation,"
Proc. NCC, AFIPS, pp. 711-716, 1973.

ROBERTS, L.: "Extensions of Packet Communication Technology to a Hand Held Personal
Terminal," Proc. Spring Joint Computer Conference, AFIPS, pp. 295-298, 1972.

ROMANOW, A., and FLOYD, S.: "Dynamics of TCP Traffic over ATM Networks," Proc.
SIGCOMM '84 Conf, ACM, pp. 79-88., 1994.

ROSE, M.T.: The Simple Book, Englewood Cliffs, NJ: Prentice Hall, 1994.

ROSE, M.T.: The Internet Message, Englewood Cliffs, NJ: Prentice Hall, 1993.

ROSE, M.T., and McCLOGHRIE, K.: How to Manage Your Network Using SNMP, Englewood
Cliffs, NJ: Prentice Hall, 1995.

ROSS, F.E., and HAMSTRA, J.R.: "Forging FDDI," IEEE Journal on Selected Areas in Com
mun., vol. 11, pp. 181-190, Feb. 1993.

SADIKU, M.N.O., and ARVIND, A.S.: "Annotated Bibliography on Distributed Queue Dual
Bus (DQDB)," Computer Commun. Rev., vol. 24, pp. 21-36, Jan. 1994.

SALTZER, J.H., POGRAN, K.T., and CLARK, D.D.: "Why a Ring?" Computer Networks, vol. 7,
pp. 223-230, Aug. 1983.

SALTZER, J.H., REED, D.P., and CLARK, D.D.: "End-to-End Arguments in System Design,"
ACM Trans. on Computer Systems, vol. 2, pp. 277-288, Nov. 1984.

SANDERSON, D.W., and DOUGHERTY, D.: Smileys, Sebastopol, CA: O'Reilly, 1993.

SANTIFALLER, M.: "TCP/IP and ONC/NFS," Reading, MA: Addison-Wesley, 1994.

SCHNEIER, B.: Applied Cryptography, 2nd ed., New York: John Wiley, 1996.

SCHNEIER, B.: E-Mail Security, New York: John Wiley, 1995.

SCHNEIER, B.: "Description of a New Variable-Length Key, 64-Bit Block Cipher [Blow
fish]," Proc. of the Cambridge Security Workshop, Springer-Verlag, pp. 191-204,
1994.

SCHNORR, C.P.: "Efficient Signature Generation for Smart Cards," Journal of Cryptology,
vol.4,pp.161-174, 1991.

SCHOLTZ, R.A.: "The Origins of Spread-Spectrum Communications," IEEE Trans. on
Commun., vol. COM-30, pp. 822-854, May 1982.

SCOTT, R.: "Wide Open Encryption Design Offers Flexible Implementations," Cryptolo
gia, vol. 9, pp. 75-90, Jan. 1985.

SELFRIDGE, O.G., and SCHWARTZ, R.T.: "Telephone Technology and Privacy," Technology
Rev., vol. 82, pp. 56-65, May 1980.

Ex.1006.808DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 791

SEYBOLD, A.M.: Using Wireless Communications in Business, New York: Van Nostrand
Reinhold, 1994.

SHACHAM, N., and McKENNEY, P.: "Packet Recovery in High-Speed Networks Using Cod
ing and Buffer Management," Proc. INFOCOM '90, IEEE, pp. 124-130, 1990.

SHAH, A., and RAMAKRISHNAN, G.: FDDI-A High Speed Network, Englewood Cliffs, NJ:
Prentice Hall, 1994.

SHANNON, C.: "A Mathematical Theory of Communication," Bell System Tech. J., vol. 27,
pp. 379-423, Juiy 1948; and pp. 623-656, Oct. 1948.

SHEN, B., and SETHI, I.K.: "Inner-Block Operations on Compressed Images," Proc. of ACM
Multimedi4 '95, ACM, pp. 489-498, 1995.

SHIMIZU, A., and MIYAGUCHI, S.: "Fast Data Encipherment Algorithm FEAL," Advances in
Cryptology-Eurocrypt '87 Proceedings, NY: Springer-Verlag, pp. 267-278, 1988.

SHREEDHAR, M., and VARGHESE, G.: "Efficient Fair Queueing Using Deficit Round
Robin," Proc. SIGCOMM '95 Conj, ACM, pp. 231-243, 1995.

SINGLETON, A.: "Wired on the Web," Byte, vol. 21, pp. 77-80, Jan. 1996.

SIPIOR, J.C., and WARD, B.T.: "The Ethical and Legal Quandary of Email Privacy," Com
mun. of the ACM, vol. 38, pp. 48-54, Dec. 1995.

SIU, K.-Y., and JAIN, R.: "A Brief Overview of ATM: Protocol Layers, LAN Emulation, and
Traffic Management," Computer Commun. Rev., vol. 25, pp. 6-20. April 1995.

SMITH, P.: Frame Relay, Reading, MA: Addison-Wesley, 1993.

SOHA, M., and PERLMAN, R.: "Comparison of Two LAN Bridge Approaches," IEEE Net
work Magazine, vol. 2, pp. 37-43, Jan./Feb. 1988.

SPAFFORD, E.H.: "The Internet Worm: Crisis and Aftermath," Commun. of the ACM, vol.
32, pp. 678-687, Jµne 1989.

SPRAGINS, J.D., with HAMMOND, J.L., and PAWLIKOWSKI, K.: Telecommunications Protocols
and Design, Reading, MA: Addison-Wesley, 1991.

STALLINGS, W.: ISDN and Broadband ISDN with Frame Relay and ATM, Englewood
Cliffs, N1: Prentice Hall, 1995a.

STALLINGS, W.: Network and Internetwork Security, Englewood Cliffs, NJ: Prentice Hall,
1995b.

STALLINGS, W.: Protect Your Privacy: The PGP User's Guide, Englewood Cliffs, NJ:
Prentice Hall, 1995c.

STALLINGS, w.: Data and Computer Communications, 4th ed., New York: Macmillan,
1994.

STALLINGS, W.: SNMP, SNMPv2, and CMIP, Reading, MA: Addison-Wesley, 1993a

STALLINGS, W.: Local and Metropolitan Area Networks, 4th ed., New York: Macmillan,
1993b.

Ex.1006.809DELL

792 READING LIST AND BIBLIOGRAPHY CHAP. 8

STEELE, R., WHITEHEAD, J., and WONG, W.C.: "System Aspects of Cellular Radio," IEEE
Commun. Magazine, vol. 33, pp. 80-86, Jan. 1995a.

STEELE, R., WILLIAMS, J., CHANDLER, D., DEHGHAN, s., and COLLARD, A.: "Teletraffic Per
formance of GSM900/DCS 1800 in Street Microcells," IEEE Commun. Magazine, vol.
33, pp. 102-108, March l 995b.

STEINER, J.G., NEUMAN, B.C., and SCHILLER, J.I.: "Kerberos: An Authentication Service for
Open Network Systems," Proc. Winter USJ;,""'NIX Conj, USENIX, pp. 191-201, 1988.

STEINMETZ, R., and NAHRSTEDT, K.: Multimedia: Computing, Communications and Appli
cations, Englewood Cliffs, NJ: Prentice Hall, 1995.

STEPHENS, W.E., and BANWELL, T.C.: "155.52 Mb/s Data Transmission on Category 5
Cable Plant," IEEE Commun. Magazine, vol. 33, pp. 62-69, April 1995.

STERBENZ, J.P.G., SCHULZRINNE, H.G., and TOUCH, J.D.: "Report and Discussion of the
IEEE ComSoc TCGN Gigabit Networking Workshop 1995," IEEE Network Maga
zine, vol. 9, pp. 9-29, July/Aug. 1995.

STEVENS, W.R.: TCP/IP Illustrated, Vol. 1, Reading, MA: Addison-Wesley, 1994.

STILLER, B.: "A Survey of UNI Signaling Systems and Protocols," Computer Commun.
Rev., vol. 25, pp. 21-33, April 1995.

STINSON, D.R.: Cryptography Theory and Practice, Boca Raton, FL: CRC Press, 1995.

SUNSHINE, C.A., and DALAL, Y.K.: "Connection Management in Transport Protocols," Com
puter Networks, vol. 2, pp. 454-473, 1978.

SUZUKI, T.: "ATM Adaptation Layer Protocol," IEEE Commun. Magazine, vol. 32., pp.
80-83, April 1994.

TANENBAUM, A.S.: Distributed Operating Systems, Englewood Cliffs, NJ: Prentice Hall,
1995.

TANENBAUM, A.S.: Modern Operating Systems, Englewood Cliffs, NJ: Prentice Hall, 1992.

TERAOKA, F., YOKTE, Y., and TOKORO, M.: "Host Migration Transparency in IP Networks,"
Computer Commun. Rev., vol. 23, pp. 45-65, Jan. 1993.

THYAGARAJAN, A.S., and DEERING, S.E.: "Hierarchical Distance-Vector Multicast Routing
for the MBone," Proc. SIGCOMM '95 Conf, ACM, pp. 60-66, 1995.

TQJWRO, M., and TAMARU, K.: "Acknowledging Ethernet," Compean, IEEE, pp. 320-325,
Fall 1977.

TOLMIE, D.E.: "Gigabit LAN lssues-HIPPI, Fibre Channel, and ATM," in Proc. High
Performance Computing and Networking, Hertzberger, B., and Serazzi, G. (Eds.),
Berlin: Springer Verlag, pp. 45-53, 1995.

TOLMIE, D.E.: "Gigabit Networking," IEEE LTS, vol. 3, pp. 28-36, May 1992.

TOLMIE, D.E., and RENWICK, J.: "HIPPI: Simplicity Yields Success," IEEE Network Maga
zine, vol. 7, pp. 28-32, Jan./Feb. 1993.

Ex.1006.810DELL

SEC. 8.2 ALPHABETICAL BIBLIOGRAPHY 793

TOMLINSON, R.S.: "Selecting Sequence Numbers," Proc. SIGCOMM/SIGOPS Interpro
cess Commun. Workshop, ACM, pp. 11-23, 1975.

TOUCH, J.D.: "Performance Analysis of MD5," Proc. SIGCOMM '95 Conj, ACM, pp.
77-86, 1995.

TRUONG, H.L., ELLINGTON, W.W. Jr., LE BOUDEC, J.-Y., MEIER, A.X., and PACE, J.W.: "LAN
Emulation on an ATM Network," IEEE Commun. Magazine, vol. 33, pp. 70-85, May
1995.

TUCHMAN, w.: "Hellman Presents No Shortcut Solutions to DES," IEEE Spectrum, vol.
16, pp. 40-41, July 1979.

TURNER, J.S.: "New Directions in Communications (or Which Way to the Information
Age),"' IEEE Commun. Magazine, vol. 24, pp. 8-15, Oct. 1986.

VAN DER LINDEN, P.: Just Java, Englewood Cliffs, NJ: Prentice Hall, 1996.

VAN OORSCHOT, P.C., and WIENER, M.J.: "A Known-Plaintext Attack on Two-Key Triple
Encryption," Advances in Cryptology-CRYPTO '88 Proceedings, New York:
Springer-Verlag, pp. 119-131, 1988.

VAN RENESSE, R., VAN STAVEREN, H., and TANENBAUM, A.S.: "Performance of the World's
Fastest Distributed Operating System," Operating Systems Rev., vol. 22, pp. 25-34,
Oct. 1988.

VARGHESE, G., and LAUCK, T.: "Hashed and Hierarchical Timing Wheels: Data Structures
for the Efficient Implementation of a Timer Facility," Proc. Eleventh Symp. on
Operating Systems Prin., ACM, pp. 25-38, 1987.

VENKATRAMANI, c., and CHIUEH, T.: "Design, Implementation, and Evaluation of a
Software-Based Real-Time Ethernet Protocol," Proc. SIGCOMM '95 Conf, ACM,
pp. 27-37, 1995.

VETTER, RJ., SPELL, C., and WARD, C.: "Mosaic and the World-Wide Web," IEEE Com
puter Magazine, vol. 27, pp. 49-57, Oct. 1994.

VILLAMIZAN, C., and SONG, C.: "High Performance TCP in ANSNET," Computer Com
mun. Rev., vol. 25, pp. 45-60, Oct. 1995.

VITERBI, A.J.: CDMA Principles of Spread Spectrum Communication, Reading, MA:
Addison-Wesley, 1995.

WADA, H., YOZA WA, T., OHNISHI, T., and TANAKA, Y.: "Mobile Computing Environment
Based on Internet Packet Forwarding," Proc. Winter USENIX Conj, USENIX, pp.
503-517, Jan. 1993.

WALRAND,J.: Communication Networks: A First Course, Homewood, IL: Irwin, 1991.

WATSON, R.W.: "Timer-Based Mechanisms in Reliable Transport Protocol Connection
Management," Computer Networks, vol. 5, pp. 47-56, Feb. 1981.

WAYNER,P.: "Picking the Crypto Lock," Byte, pp. 77,80, Oct. 1995.

Ex.1006.811DELL

794 READING LIST AND BIBLIOGRAPHY CHAP. 8

WEISBAND, S.P., and REINIG, B.A.: "Managing User Perceptions of Email Privacy," Com
mun. of the ACM, vol. 38, pp. 40-47, Dec. 1995.

WIENER, M.J.: "Efficient DES Key Search," Technical Report TR-244, School of Com
puter Science, Carleton Univ., Ottawa, 1994.

WILLIAMS, K.A., DAM, T.Q., and DU, D.H.-C.: "A Media Access Protocol for Time and
Wavelength-Division Multiplexed Passive Star Networks," IEEE Journal on Selected
Areas in Commun., vol. 11, pp. 560-567, May 1993.

WILLINGER, W., TAQQU, M.S., SHERMAN, R., and WILSON, D.V.: "Self-Similarity through
High Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level,"
Proc. SIGCOMM '95 Conj, ACM, pp. 100-113, 1995.

WOLTER, M.S.: "Fiber Distributed Data Interface-A Tutorial," ConneXions, pp. 16-26,
Oct. 1990.

YANG, C.-Q., and REDDY, A.V.S.: "A Taxonomy for Congestion Control Algorithms in
Packet Switching Networks," IEEE Network Magazine, vol. 9, pp. 34-45, July/Aug.
1995.

YEH, Y.-S., HLUCHYJ, M.G., and ACAMPORA, A.S.: "The Knockout Switch: A Simple, Modu
lar Architecture for High-Performance Packet Switching," IEEE Journal on Selected
Areas in Commun., vol. 5, pp. 1274-1283, Oct. 1987.

YOUSSEF, A.M., KALMAN, E., BENZONI, L.: "Technico-Economic Methods of Radio Spec
trum Assignment," IEEE Commun. Magazine, vol. 33, pp. 88-94, June 1995.

YUVAL,G.: "How to Swindle Rabin," Cryptologia, vol. 3, pp. 187-190, July 1979.

ZHANG, L.: "Comparison of Two Bridge Routing Approaches," IEEE Network Magazine,
vol. 2, pp. 44-48, Jan./Feb. 1988.

ZHANG, L.: "RSVP A New Resource ReSerVation Protocol," IEEE Network Magazine,
vol. 7, pp. 8-18, Sept./Oct. 1993.

ZIMMERMANN, P.R.: The Official PGP User's Guide, Cambridge, MA: M.I.T. Press,
1995a.

ZIMMERMANN, P.R.: PGP: Source Code and Internals, Cambridge, MA: M.l.T. Press,
1995b.

ZIPF, G.K.: Human Behavior and the Principle of Least Effort: An Introduction to Human
Ecology, Cambridge, MA: Addison-Wesley, 1949.

ZIV, J., and LEMPEL, z.: "A Universal Algorithm for Sequential Data Compression," IEEE
Trans. on Information Theory, vol. IT-23, pp. 337-343, May 1977.

Ex.1006.812DELL

INDEX

A

A-side carrier, 160
AAL (see ATM Adaptation Layer)
AAL 1, 547-549, 753
AAL 2, 549-550, 753
AAL 3/4, 550-552, 753
AAL 5, 552-554, 753
AAL Layer, 64, 545-555
AAL protocols, comparison, 554-555
ABR (see Available Bit Rate service)
Abstract Syntax Notation-I, 633-636
Abstract window toolkit, 717-718
Acknowledgement frame, 30
ACR (see Actual Cell Rate)
Active map, 684
Active repeater, 91
ACTS (see Advanced Communication

Technology Satellite)
Actual cell rate, 471
Adaptive routing, 347
ADC (see Analog Digital Converter)

795

ADCCP (see Advanced Data
Communications Control Procedure)

Addenda, 42, 322
Address resolution protocol, 420-423

gratuitous ARP, 433
Address, 492

transport, 489-492
Admission control, 386, 468
ADSL (see Asymmetric Digital

Subscriber Line)
Advanced Communication Technology

Satellite, 331
Advanced Data Communications Control

Procedure, 226
Advanced mobile phone system, 158-161
Advertisements, mobile IP, 433
Agent, SNMP, 631
Alias, email, 647-648
ALOHA, 246-250

pure, 247-249,
satellite, 329
slotted, 249-250

Ex.1006.813DELL

796 INDEX

American National Standards Institute, 70
Amplitude modulation, 110
AMPS (see Advanced Mobile Phone System)
Analog cellular telephone, 157-161
Analog digital converter, 725
Anonymous remailer, 674
ANSI (see American National Standards

Institute)
ANSNET, 51
Anycasting, 442
Apocalypse of the two elephants, 40-41
Applet, 707-709
Application gateway, 398, 411
Application layer, 33-34, 37, 577--766

domain name system, 622-630
email, 643-669
multimedia, 723-760
net news, 669-680
network management, 630-643
network security, 577-622
World Wide Web, 681-723

Architecture, network, 18
Area, OSPF, 425
ARP (see Address Resolution Protocol)
ARPANET, 35, 47-50, 71, 355, 569, 622
ARQ (see Automatic Repeat reQuest)
ASCII armor, 654
ASN. l (see Abstract Syntax Notation-])
ASN.1 transfer syntax, 637-638
Asymmetric digital subscriber line, 751
Asynchronous transfer mode, 61-65

congestion control, 467-471
control plane, 64
CS sublayer, 65
cell format, 450-452
connection setup, 452-455
data link layer, 235-239
leaky bucket, 466
NNI, 450-451
perspective, 65
PMD sublayer, 64
quality of service, 460-463
routing and switching, 455-458
SAR sublayer, 65
service categories, 458-460
TC sublayer, 64-65
traffic shaping, 463-468
UNI, 450-451

Asynchronous transfer mode (cont.)
user plane, 64
virtual channel, 450
virtual path, 450

ATM (see Asynchronous Transfer Mode)
ATM adaptation layer, 545-555
ATM Forum, 65
ATM LAN, 471-473
ATM layer, 449-473, 63
ATM network, 144-155
ATM switch, 147-155
A TMARP server, 4 73
Attenuation, 109

in fiber, 89
Audio CD, 724-725
Audio, digital, 724-726
Aurora, 55
Authentication protocol, 601-613

Kerberos, 610-612
using KDC, 607-620
public-key, 612-613

Authoritative record, 629
Automatic repeat request, 200-202
Autonomous system, 406, 412
Available bit rate service, 459-460

B

B-frame, MPEG, 742
B-side carrier, 160
Backbone, OSPF, 425
Backward learning algorithm, 311-312
Balanced transmission, 115
Bandwidth-delay product, 557
Base64, 654
Baseband cable, 85,86, 276, 277, 280
Basic rate, ISDN, 142-143
Batcher-banyan switch, 151-155
Baud, 79
Bell Operating Company, 106
Bell System, 103
Bellman-Ford routing, 355
BGP (see Border Gateway Protocol)
Big endian computer, 413
Binary countdown, 255-256
Binary exponential backoff, 282-283
Birthday attack, 618-620

Ex.1006.814DELL

Bit pipe, 140
Bit stuffing, 181
Bit-map protocol, 254-255
BITNET, 53
Blanca, 56
Block cipher, 585, 590, 595-596
BOC (see Bell Operating Company)
Body, email, 646
BOOTP,424
Border gateway protocol, 429-431
Bridge, 304-318, 398

between IEEE 802 LANs, 307-310
remote, 317-318
source routing, 314-316
spanning tree, 310-313
transparent, 310-313

Broadband cable, 85-86
Broadband ISDN, 61-65, 144-155
Broadcast address, 280
Broadcast network, 7-8
Broadcast routing, 370-372
Broadcast storm, 557
Broadcast/unknown server, 472
Broadcasting, 8
Browser, World Wide Web, 682
Bucket brigade attack, 606
BUS (see Broadcast/Unknown Server)

c

Cable TV, 85-86, 107, 144, 172
Care-of address, 433
Carnegie-Mellon University, 7
Carrier

common, 67, 119
modem, 110-111, 114

Carrier sense multiple access protocols,
250-254

CASA, 56
Caesar cipher, 582-583

INDEX

CBR (see Constant Bit Rate service)
CCITT,68, 119, 121, 122, 124, 142,644
CDMA (see Code Division Multiple Access)
CDPD (see Cellular Digital Packet Data)
CDV (see Cell Delay V~iation)

Cell
ATM, 62
cellular radio, 158
HTML, 701

Cell delay variation, 462
Cell error rate, 463
Cell loss ratio, 462
Cell misinsertion rate, 463
Cell relay, 62
Cell transfer delay, 462

797

Cell variation delay tolerance, 462
Cellular digital packet data, 15, 269-271
Cellular radio, 155-163

digital, 266-275
Cellular telephone

AMPS, 158-161
analog, 157-161
call management, 160-161
digital, 162
security, 161

Censorship
byCMU, 7
by CompuServe, 676

Central office, 104
CER (see Cell Error Rate)
Certification authority, 668
CGI (see Common Gateway Interface)
Challenge-response protocol, 602-604
Channel, 11
Channel allocation in LANs, 244-246
Channel associated signaling, 122
Character stuffing, 180-181
Checksum, 179, 182, 187-191, 235
Chinese lottery, 593
Chip, 272
Chip sequence, 272
Choke packet, 387-391
Chosen plaintext attack, 582
Chrominance, 728-729
CIDR (see Classless InterDomain Routing)
Cipher

block, 588-597
Caesar, 582-583
substitution, 582-583
transposition, 583c585

Cipher block chaining, 590-591
Cipher feedback mode, 591-592
Ciphertext, 580

Ex.1006.815DELL

798

Ciphertext only attack, 582
Circuit, 11
Circuit switching, 130-134
Classless interdomain routing, 434-437
Client-server model, 3-4
CLR (see Cell Loss Ratio)
CLUT (see Color Look Up Table)
CMR (see Cell Misinsertion rate)
Coaxial cable, 84-86

baseband, 84-85
broadband, 85-86

INDEX

Code division multiple access, 271-275, 333
Codec, 121
Collision-free protocol, 254-256
Color look up table, 732
Common carrier, 67
Common gateway interface, 705-706
Common-channel signaling, 122
Communication satellite, 163-170
Communication subnet, 1 1
Composite video, 728
CompuServe, 676
Computer network, 2

use, 3-7
Concatenated virtual circuits, 401-402
Confirm, 25-27
Confirmed service, 26-27
Congestion control algorithm, 374-395

choke packets, 387-391
general principles, 376-378
in virtual circuit networks, 386-387
leaky bucket, 380-381
multicasting, 393-395
token bucket, 381-384
weighted fair queueing, 388-389
ATM, 467-471
rate-based, 469-471
TCP, 536-539

Congestion prevention, 378-379
Congestion threshold, 538
Congestion window, 537-538
Connection establishment, 493-498

TCP, 529-530
Connection release, 498-502, 530-533
Connection-oriented service, 23-25
Connectionless service, 23-25
Constant bit rate service, 458-459
Constellation pattern, 111-112

Contention system, 246-247, 252-258
Continuous media, 724
Control plane, ATM, 64
Convergence sublayer, AAL, 546
Copper wire, compared to fiber, 92-94
Cordless telephone, 157
Core-based tree, 374
Count-to-infinity problem, 357-358
Covert channel, 719-720
Crash recovery, 508-510
Crawler, 720
Credit message, 519
Crossbar switch, 135-138
Crosspoint, 136
Crosspoint switch, 135-138
Crossposting news, 672
Cryptanalysis, 581
Cryptography, 577-622

public-key, 597-601
secret-key, 587-597
traditional, 580-585

Cryptology, 581
CS sublayer, ATM, 65
CSMA (see Carrier Sense Multiple Access

protocols)
CSMA/CD, 252-254
CSNET, 50
CTD (see Cell Transfer Delay)
CVDT (see Cell Variation Delay Tolerance)
Cyclic redundancy code, 187

D

Data circuit-terminating equipment, 114
Data compression, 730-744

CLUT, 732
differential encoding, 732
discrete cosine transformation, 733
entropy encoding, 731-732
lossless, 731-732
lossy, 732-734
run-length encoding, 731
source encoding, 732-734
statistical encoding, 731-732
transformation encoding, 732
vector quantization, 733

Ex.1006.816DELL

Data encryption standard, 588-595
attacking, 592-595
chaining, 589-592
controversy, 593

Data flow machine, 8
Data link layer, 175-242

ATM, 235-239
bit stuffing, 181
character stuffing, 180-181
design issues, 17 6-183
elementary protocols, 190-202
example protocols, 225-239
error control, 182-183
flow control, 183
framing, 179-182
HDLC protocol, 225-228
LLC, 275, 302-304
OSI, 30
services provided, 17 6-179
sliding window protocols, 202--219

Data switching exchange, 12
Data terminating equipment, 114
Datagram, 342

compared to virtual circuit, 344-345
Datagram service, 24-25
DCE (see Data Circuit-Terminating

Equipment)
Dt:S 1800, 266
De facto standard, 67
De jure standard, 67
Deadlock, protocol, 222
Decibel, 81, 724
Decoding, 730
Delay distortion, 109
Delta modulation, 123-124
DES (see Data Encryption Standard)
Designated router, 428
Differential cryptanalysis, 595
Differential encoding, 732

INDEX

Differential Manchester encoding, 279-280
Differential PCM, 123
Diffie-Hellman key exchange, 605-606
Digital cellular radio, 266-275
Digital cellular telephone, 162
Digital sense multiple access, 270-271
Digital signature, 613-620

public-key, 615-616
secret-key, 614-615

Digital signature standard, 616
Digram, 583
Directive, HTML, 696-699
Directory server, 491
Discrete cosine transformation, 733
Disk farm, 7 48
Disk striping, 748
Dispersion, in fiber, 89
Distance vector multicast routing

protocol, 758-759

799

Distance vector routing, 355-359
Distributed mail system protocol, 662
Distributed queue dual bus, 11, 301-303
Distributed system, 2
Distribution network, 750-754
DMSP (see Distributed Mail System Protocol)
DNS (see Domain Name System)
Domain, 623
Domain name system, 421, 622-630
Dotted decimal notation, 417
DQDB (see Distributed Queue Dual Bus)
DSl, 121,
DSMA (see Digital Sense Multiple Access)
DSS (see Digital Signature standard)
DTE (see Data Terminating Equipment)
DVMRP (see Distance Vector Multicast

Routing Protocol)

E

EARN, 53
Establishing a connection, TCP, 529-530
Echo canceller, 113
Echo suppressor, 112-113
Electromagnetic spectrum, 94-97
Electronic code book mode, 590
Electronic mail (see Email)
Elephants, apocalypse, 40
Email, 5, 53, 643-670

architecture and services, 645-646
body,646
early systems, 644
envelope, 646
filter, 662
final delivery, 662-663
functions, 645
gateway, 659-661

Ex.1006.817DELL

800

Email (cont.)
header, 646
message format, 650-658
message transfer agent, 645
message transfer, 657-663
MIME format, 653-657
privacy, 663-669
reading, 648-650
RFC 822 format, 651-653
sending, 646-648
user agent, 645, 646-648
user commands, 648-650

Emoticon, 674
Encapsulation, Java, 713
Encoding, 730

entropy, 731-732
source, 732-734

Encryption (see cryptography)
End office, 104
End system, 11
Entity, 22
Entropy encoding, 731-732
Envelope, email, 646
ER (see Explicit Rate)
Error control, 182-190
Error correction, 184-190
Error detection, 183-184
Error-correcting code, 184
Error-detecting code, 184, 186-190
Establishing a connection, 493-498

TCP, 529-531
Ethernet, 10, 276 (see also IEEE 802.3)
Explicit rate, 4 71
Exposed station problem, 264
Extended SMTP, 659
Exterior gateway protocol, 405-406, 424,

429-431
External viewer, 684

F

Fabry-Perot interferometer, 91, 261
FAQ (see Frequently Asked Questions)
Fast Ethernet, 322-324
Fast TPDU processing, 565-568
FCC (see Federal Communications

Commission)

INDEX

FDDI (see Fiber Distributed Data Interface)
FDM (see Frequency Division Multiplexing)
Federal Communications Commission, 96,

100, 167
Fiber cable, 90-91
Fiber channel (see Fibre channel)
Fiber distributed data interface, 319-322
Fiber optic network, 91-94
Fiber optics, 87-94

attenuation, 88-89
basic principles, 87-88
compared to copper, 92-94
compared to satellite, 168-170
dispersion, 89
FDDI, 319-322
multimode, 88
single-mode, 88
SONET, 125-130
system components, 86
WDM, 119-121

Fiber to the curb, 116-118, 120, 751-752
Fiber to the home, 116-118, 752-753
Fibre channel, 326-327
Field, video, 728
File server, 3
File transfer, 53
File transfer protocol, 693
Finite state machine, 219-223, 519-521
Firewall, 410-412
Flamewar, 672
Flat address, 492
Flooding, 351
Flow control, 183, 502-506
Flow specification, 384-386
Flow-based routing, 353-355
Flying LAN, 15
Ford-Fulkerson routing, 355
Foreign agent, 368
Form, HTML, 701-706
Fourier analysis, 78
Fragmentation, internetwork, 406-409
Frame

acknowledgement, 30
data, 30
video, 727

Frame header, 192
Frame relay, 60-61
Framing, 179-182

Ex.1006.818DELL

Frequency, 94
Frequency band, 95

INDEX

Frequency division multiplexing, 118-121, 330
Frequency modulation, 110
Frequently asked questions, 674
FTP (see File Transfer Protocol)
FTTC (see Fiber To The Curb)
FTTH (see Fiber To The Home)
Full-duplex communication, 21, 113
Fuzzball, 50

G

Gateway, 16
GCRA (see Generic Cell Rate Algorithm)
Generator polynomial, 187
Generic cell rate algorithm, 463-466
Geosynchronous satellite, 164-167
Gigabit network, 54-56, 568-572
Global system for mobile

communications, 266-275
Go back n protocol, 207-213
Gopher, 693
Gratuitous ARP, 433
Group, 119
GSM (see Global System for Mobile

Communications)

H

Half-duplex communication, 21, 113
Half-gateway, 398
Hamming distance, 184
Handoff, cellular, 169
HDLC (see High-Level Data Link Control)
HDTV (see High Definition Tele Vision)
Head-end, cable, 85-86
Head-of-liine blocking, 149
Header, 19

email, 646
frame, 192

Header error control, ATM, 235-238
Header prediction, 567
HEC (see Header Error Control, ATM)
Helper application, 684
HEPNET, 53

801

HFC (see Hybrid Fiber Coax)
Hidden station problem, 264
Hierarchical address, 492
Hierarchical routing, 365-367
High definition television, 729
High-level data link control, 225-228
High-performance parallel interface, 325-326
High-speed LAN, 318-327
HIPPI (see Hlgh-Performance Parallel

Interface)
Home agent, 368
Host, 11
Host-to-network layer, 38
HTML (see HyperText Markup Language)
HTTP (see HyperText Transfer Protocol)
Hub, satellite, 165
Hybrid fiber coax, 752
Hyperlink, 682
Hypermedia, 684
Hypertext, 682
Hypertext markup language, 691-706

forms, 701-706
versions, 699-701

Hypertext transfer protocol, 689-691

I

I Love Lucy, 745
I-frame, MPEG, 740
IAB (see Internet Architecture Board)
IBM,41,226,307,588,593-594
ICMP (see Internet Control Message Protocol)
IDEA (see International Data Encryption

Algorithm)
IDU (see Interface Data Unit)
IEEE, 70
IEEE 802, 275-301

comparison of LANs, 299-301
IEEE 802.2, 302-304
IEEE 802.3, 276-287

cabling, 276-279
fast Ethernet, 322-324
frame format, 281
performance, 283-285
protocol, 280-283
signal encoding
switched, 285-287

Ex.1006.819DELL

802

IEEE 802.3u, 322-324
IEEE 802.4, 287-292

protocol, 288-290
ring maintenance, 290-292

IEEE 802.5, 292-299
protocol, 296-298
ring maintenance, 298-299

IEEE 802.6, 301-303

INDEX

IETF (see Internet Engineering Task Force)
IGMP (see Internet Group Management

Protocol)
IMAP (see Interactive Mail Access Protocol)
IMP (see Interface Message Processor)
Improved Mobile Telephone Service, 157
IMTS (see Improved Mobile Telephone

Service)
In-band signaling, 113
Indication, 25-27
Indirect TCP, 543-544
Industrial/Scientific/Medical band, 99
Information frame, 226-227
Infrared transmission, 100
Inheritance, Java, 713
Initial connection protocol, 490
Initialization vector, 590
Integrated Services Digital Network, 61,

139-155
Interactive mail access protocol, 662
Interexchange carrier, 106-107
Interface, between layers, 18
Interface data unit, 22
Interface message processor, 47
Interferometer

Fabry-Perot, 91, 261
Mach-Zehnder, 91, 261

Interior gateway protocol, 405-406, 424-429
Interlaced video, 728
Intermediate system, 12
International data encryption algorithm,

596-597
International standard, 70
International Standards Organization, 69
International Telecommunication Union, 68

453,471,545,634,668, 734
Internet, 16

CIDR, 434-437
connection management, 529-533
data link layer, 229-235

Internet (cont.)
history, 52-54
internet layer, 35-36, 412-449
IP, 36, 412-419
1Pv6,437-449
mobile IP, 432-434
multicasting, 431-432
routing protocols, 424-431
TCP, 36-37, 521-542

Internet applications
email, 643-670
MBone, 756-760
net news, 669-680
World Wide Web, 681-723

Internet Architecture Board, 71
Internet control message protocol, 419-420
Internet Engineering Task Force, 71
Internet group management protocol,

431-432, 759
Internet layer, 35-36
Internet policy registration authority, 668
Internet protocols

ARP, 420-423, 433
BGP, 429-431
DVMRP, 758-759
HTTP, 689-691
ICMP, 419-420
IGMP, 431-432, 759
IP, 36, 412-419
NNTP 677-680
OSPF, 424-429
PIM, 760
PPP, 231-235, 685
RARP, 423-424
RSVP, 394-395
SLIP, 229-230,685
SMTP 658-660
TCP 36-37, 521-542, 658, 678, 685
UDP 37, 542-544

Internet service provider, 229
Internet Society, 53, 71
Internet transport protocol, 521-545
Internetwork routing, 405-406
Internetwork, 16
Internetworking, 396-412

connection-oriented, 401-402
connectionless, 401-402
why needed, 399-400

Ex.1006.820DELL

Interoffice trunk, 104
Intertoll trunk, 104
Intruder, 580
IP (see Internet Protocol)
IP address., 416-419
IPRA (see Internet Policy Registration

Authority)
IPv4, 413-419
IPv5, 438
IPv6, 437-449

addresses, 441
controversies, 447-449
extension header, 443-446
jumbogram, 445
main header, 439-443

IPX, 46
IS-IS routing, 365
ISDN (see Integrated Services Digital

Network)

INDEX

ISM band (see Industrial/Scientific/Medical
band)

ISO (see International Standards Organization)
ISO standards

ISO 3166, 623
ISO 8802, 70, 275
ISO 8859-1, 696

ITU (see International Telecommunication
Union)

ITU-R, 68
ITU-T, 68
IXC (see IntereXchange Carrier)

J
Jacobson's slow start algorithm, 538-539
Java, 706-720

abstract window toolkit, 717-718
API, 716-718
class, 713-716
language description, 709-718
object orientation, 712-716
polymorphism, 715
security, 718-720

Jitter, 385, 724
Jitter control, 392-393
JPEG standard, 734-738
Jumbogram, 445

K

Karn's algorithm, 541
KDC (see Key Distribution Center)
Keepalive timer, TCP, 542
Kerberos, 610-612
Key, cryptographic, 580
Key distribution center, 607-610
Killfile, 672
Knockout switch, 150-151
Knowbot, 720
Known plaintext attack, 582

L

LAN (see Local Area Network)
LAN Emulation Server, 472
LANs, comparison, 299-301
LAP (see Link Access Procedure)

803

LATA (see Local Access and Transport Area)
Layer, 17

application, 33-34, 37, 577-766
data link, 175-242
network, 31, 35-36, 339-478
physical, 29-30, 77-174
presentation, 33
session, 32-33
transport, 31-32, 36-37, 479-576

LCP (see Link Control Protocol)
Leaky bucket algorithm, 380-381
LEC (see Local Exchange Carrier)
LES (see LAN Emulation Server)
Lightwave transmission, 100-102
Limited contention protocol, 256-259
Line, SONET, 126
Line sublayer, SONET, 129-130
Linear cryptanalysis, 595
Link access procedure, 226
Link control protocol, 231
Link encryption, 579
Link state routing, 359-365
LIS (see Logical IP Subnet)
Little endian computer, 413
LLC (see Logical Link Control)
Load shedding, 390-392
Local Access and Transport Area, 106

Ex.1006.821DELL

804

Local area network, 9-10
ATM, 471-473
channel allocation, 244-246
Ethernet, 10, 276-287
fast Ethernet, 322-324
IEEE 802, 275-304
high-speed, 318-327
token bus, 287-292
token ring, 292-299

Local central office, 104
Local exchange carrier, 106-107
Local loop, 104, 108-118

fiber, 115-118
Logical IP subnet, 473
Logical Link Control, 275, 302-304
Low-orbit satellite, 167-170
Luminance, 728-729
Lurniniferous ether, 276

M

INDEX

MAC sublayer (see Medium Access Control
sublayer)

MACA (see Multiple Access with Collision
Avoidance)

MACAW, 265
Mach-Zehnder interferometer, 91, 261
Macroblock, 740-741
Mailbox, 645
Mailing list, 645-646
Mailto, 693
MAN (see Metropolitan Area Network)
Man-in-the-middle attack, 606
Management information base, 632, 641-642
Management station, 631
Manchester encoding, 279-280
Markuplanguage,695
Mastergroup, 119
Maxirnurn transfer unit, 525
MBone (see Multicast Backbone)
MCR (see Minirnurn Cell Rate)
MD5, 618, 665
Medium access sublayer, 243-335
Meet-in-the-middle attack, 594
Message digest, 617-618
Message switching, 131-133
Message transfer agent, 645

Method, HTTP, 690
Metropolitan area network, 10-11
MIB (see Management Information Base)
Microwave transmission, 98-99
MIDI (see Music Instrument Digital Interface)
Midsplit cable, 86
Milk policy, 390
Millimeter wave, l 00
MILNET, 50
MIME (see Multipurpose Internet Mail

Extensions)
Minirnurn cell rate, 461
MNP 5, 112
Mobile host, routing algorithm, 367-370
Mobile IP, 432-434
Mobile switching center, 159
Mobile telephone switching office, 159
Modern, 109-113
Moderated newsgroup, 673
Modified final judgment, 104
Modulation, 110-112

amplitude, 110
frequency, 110
phase, 110

Monoalphabetic substitution cipher, 582-583
Mosaic, 696
MOSPF (see Multicast OSPF)
MOTIS, 644
MPEG standard, 738-744, 753-754

B-frarne, 742
I-frame, 740
rnacroblock, 740-741
MPEG-1, 738-742
MPEG-2, 742-744
P-frarne, 740-741
profiles, 742
streams, 743

Mrouter (see Multicast router)
MSC (see Mobile Switching Center)
MTSO (see Mobile Telephone Switching

Office)
MTU (see Maximum Transfer Unit)
Multiaccess channel, 243
Multiaccess network, 425
Multicast addresses, 280
Multicast backbone, 756-760
Multicast OSPF, 760
Multicast router, 757-758

Ex.1006.822DELL

Multicast routing, 372-374
Multicasting, 8, 372, 393-395

Internet, 431-432
Multicomputer, 8
Multidestination routing, 370
Multimedia, 723-760

audio, 724-726
data compression, 730-744
MBone, 756-760
video, 727-730
video on demand, 744-756

Multimode fiber, 88
Multipath fading, 99
Multiple access protocols, 246-275
Multiple access with collision avoidance,

264-265
Multiplexing, 118-130, 506-508

downward, 507
upward, 506

Multiprotocol router, 398
Multipurpose internet mail extensions,

653-657
Music instrument digital interface, 726

N

N-ISDN (see Narrowband ISDN)
Nagle's algorithm, 534-535
NAK (see Negative AcKnowledgement)
Name server, 491, 628-630
NAP (see Network Access Point)
Narrowband ISDN, 139-144
National Institute of Standards and

Technology, 70
National Security Agency, 593
National Television Standards

Committee, 728-729
NCP (see Network Control Protocol)
NCP (see Network Core Protocol)
Near video on demand, 744
Nectar, 56
Needham-Schroeder protocol, 608-609
Negative acknowledgement, 215
Negotiation, 26
NETBLT, 572
NetWare, Novell, 45-47
Network access point, 52

INDEX

Network architecture, 18
Network control protocol, 231
Network core protocol, 46
Network information center, 417
Network layer, 339-478

ATM networks, 449-473
congestion control, 374-395
design issues, 339-345
internal organization, 342-345
Internet, 412-449
internetworking, 396-412
OSI, 31
routing algorithms, 345-374
services provided, 340-342

Network news (see USENET)

805

Network news transfer protocol, 677-680
Network performance, 555-572

IEEE 802.3, 283-285
Network security, 577-622
Network service access point, 489
Network standardization; 66-72
Network virtual terminal, 33
Network, fiber optic, 91-94
News, 53, 669-680, 693, 694
News article, example, 676
News headers, 676-677
Newsfeed, 675
Newsgroup

creation, 674-675
example, 673

NIC (see Network Information Center)
NIST (see National Institute of Standards

and Technology)
NNTP (see Network News Transfer Protocol)
Noise, 109
Nonadaptive routiµg, 347
Nonce, 608
Novell NetWare, 45-47
NREN, 51-52
NSA (see National Security Agency)
NSAP (see Network Service Access Point)
NSFNET, 50-52
NTl, 140-142
NT2 141,142
NTSC (see National Television Standards

Committee)
Null modem, 114
Nyquist limit, 81

Ex.1006.823DELL

806

0

INDEX

OAM cell (see Operation And Maintenance
cell)

Object
Java, 713
SNMP, 632, 641-642

OC-n (see Optical Carrier)
One-bit sliding window protocol, 205-207
One-time pad, 585
ONU (see Optical Network Unit)
Open shortest path first, 424-429
Operation and maintenance cell, 236
Optical carrier, 128-129
Optical fiber (see also Fiber optics)

multimode, 88
single-mode, 88

Optical network urtit, 751-752
Optimality principle, 347-348
Option negotiation, 483
Oryctolagus cuniculus, 18
OSI reference mode, 28-35

compared to TCP/IP, 38-39
critique, 40-43

OSPF (see Open Shortest Path First)
Otway-Rees protocol, 609-610
Output feedback mode, 593
Overloading, Java, 715

p

P-box, 587-588
P-frame, MPEG, 740-741
Package, Java, 713
Packet, 7
Packet assembler disassembler, 60
Packet filter, 411
Packet switching, 133-134
Packet switching node, 12
Packet-switched subnet, 12
Packetized elementary stream, 743
PAD (see Packet Assembler Disassembler)
Paging system, 155-156
PAL (see Phase Alternating Line)
Parity bit, 185
Passive star, 92
Path, SONET, 126

Path sublayer, SONET, 129-130
PBX (see Private Branch eXchange)
PCA (see Policy Certification Authority)
PCM (see Pulse Code Modulation)
PCN (see Personal Communications Network)
PCR (see Peak Cell Rate)
PCS (see Personal Communications Services)
PDU (see Protocol Data Unit)
Peak cell rate, 461
Peer, 17
Peer entity, 22
PEM (see Privacy Enhanced Mail)
Performance issues, 555-572
Permanent virtual circuit, 60, 145-146
Persistence timer, TCP, 542
Personal communications network, 162-163
Personal communications services, 162-163
PES (see Packetized Elementary Stream)
Petri net model, 223-224
PGP (see Pretty Good Privacy)
Phase altemating line, 728-729
Phase modulation, 110
Photonic sublayer, SONET, 129
Physical layer, 77-174

cellular radio, 155-163
communication satellites, 163-170
OSI, 29-30
telephone system, 102-163
transmission media, 82-94
wireless transmission, 94-102

Physical medium, 18
Piggybacking, 202-203
PIM (see Protocol Independent Multicast)
Pipelining, 209
Pixel, 729
Plain old telephone service, 142
Plaintext, 580
PMD sublayer, ATM, 64, 147, 235-239
Point of presence, 107
Point-to-point network, 8
Point-to-point protocol, 231-235, 685
Point-to-point subnet, 12
Policy certification authority, 668
Politics, 43
Polling, 328
Polymorphism, Java, 715
Polynomial code, 187
POP (see Point of Presence)

Ex.1006.824DELL

POP3 (see Post Office Protocol-3)
Port, TCP, 523

well-known, 523
Portapotty, 15
Post office protocol-3, 662
Post Telegraph and Telephone

Administration, 67
POTS (see Plain Old Telephone Service)
PPP (see Point-to-Point Protocol)
Predictive encoding, 124
Presentation layer, 33
Pretty good privacy, 664-667

compared to PEM, 669-670
Primary rate, ISDN, 142-143,
Primitives, service, 25-27
Principal, 601
Privacy enhanced mail, 667-669

compar~d to PGP, 669-670
Private branch exchange, 142
Private key ring, PGP, 666
Process server, 491
Program stream, MPEG, 743
Promiscuous mode, 306
Protocol, 17

1-bit, 205-207
802.5, 296-298
AAL, 545-555
ADCCP, 226
ARP, 420-423
ARQ, 200-202
ATM AAL, 547-554
authentication, 601-613
BGP, 429-431
binary countdown, 255-256
bit-map, 254-255
BOOTP, 424
challenge-response, 602-604
collision-free, 254-256
CSMA, 250-254
DMSP, 662
DSMA, 270-271
DVMRP, 758-759
elementary data link, 190-202
exterior gateway, 405-406
gigabit network, 568-572
go back n, 207-213
HDLC, 225-228
HTTP, 689-691

INDEX

Protocol (cont.)
ICMP, 419-420
IEEE 802.3, 280-283
IEEE 802.4, 288-290
IEEE 802.S, 296-298
IGMP, 431-432
IMAP, 662
interior gateway, 405-406
IP, 36, 412-419
IPX, 46
LAP, 226
LCP, 231
limited contention, 256-259
MACA, 264-265
MACAW, 265
multiple access, 246-275

807

NCP (Network Contrdl Protocol), 231
NCP (Network Core Protocol), 46
Needham-Schroeder, 608-609
NNTP, 677-680
noisy channel, 197-200
Otway-Rees, 609-610
PAR, 200-202
PIM, 760
POP3, 662
PPP, 231-235
Q.2931, 453
RARP, 423-424
RSVP, 394-396
SSCOP, 555
SDLC, 226-227
selective repeat, 213-219
sliding window, 202-219
SLIP, 229-230
SMTP, 658-660
SNMP, 642-643
TCP, 36-37, 521-542
tree walk, 258-259
UDP, 37, 542-544
unrestricted simplex, 195-197
WDMA, 260-262
wireless LAN, 262-265

Protocol data unit, 22-23
Protocol hierarchy, 17-20
Protocol independent multicast, 760
Protocol stack, 18
Protocol verification, 219-224
Proxy ARP, 423

Ex.1006.825DELL

808

Proxy server, 688
Pruning, 760
PSTN (see Public Switched Telephone

Network)

INDEX

PTT (see Post, Telegraph, and Telephone)
Public key ring, 667
Public switched telephone network, 102
Public-key cryptography, 597-601
Pulse code modulation, 121
Push-to-talk system, 157
PVC (see Permanent Virtual Circuit)

Q

Q.2931, 453
QAM (see Quadrature Amplitude Modulation)
QoS (see Quality of Service)
Quadrature amplitude modulation, 111
Quality of service, 23, 460-463, 481-483

A TM, 460-463
Quantization noise, 725
Quoted printable encoding, 654

R

Radio transmission, 97-98
RAID (see Redundant Array of Inexpensive

Disks)
Random access channel, 243
RARP (see Reverse Address Resolution

Protocol)
Rate-based congestion control, 469-471
Reachability analysis, 20
Realm, Kerberos, 611
Receiving window, 203
Recursive query, 630
Redundant array of inexpensive disks, 748
Reference model, 28-44

B-ISDN, 63-65
comparison of OSI and TCP/IP, 38-39
OSI 28-35
TCP/IP, 35-38

Reference point, ISDN, 142
Reference station, 329
Reflection attack, 603

Releasing a connection, 498-502
TCP, 530-533

Remote login, 53
Repeater, 91-94, 279, 398
Replay attack, 608
Request, 25-27
Request for comment, 71
Request-reply service, 24-25
Resolver, DNS, 622
Resource management cell, 470
Resource record, 624-628
Resource reservation, 468-469
Resource reservation protocol, 394-395
Response, 25-27
Retransmission timer, TCP, 539-540
Reverse address resolution protocol, 423-424
Reverse path forwarding, 371-372
RFC (see also Request For Comment)

RFC 768, 542
RFC 792, 420
RFC 793, 522
RFC 821, 651, 659, 761, 644
RFC 822 644, 650, 651-653, 655, 660,

661,665,667,676,677,688,689
690,691, 761

RFC 826, 422
RFC 903, 423
RFC 951, 424
RFC 977, 677
RFC 1028, 630
RFC 1034, 622
RFC 1035, 622
RFC 1036, 676
RFC 1048, 424
RFC 1055, 229
RFC 1056, 662
RFC 1064, 662
RFC 1067, 630
RFC 1084, 424
RFC 1106, 528, 529
RFC 1112, 432
RFC 1122, 522
RFC 1144, 230
RFC 1155, 630
RFC 1157, 630
RFC 1213, 642
RFC 1225, 662
RFC 1247, 424

Ex.1006.826DELL

RFC (cont.)
RFC 1268, 431
RFC 1323, 522, 528
RFC 1421, 667
RFC 1422, 667
RFC 1423, 667
RFC 1424, 667
RFC 1425, 659
RFC 1441, 630
RFC 1442, 630, 639
RFC 1443, 630
RFC 1444, 630
RFC 1445, 630
RFC 1446, 630
RFC 1447, 630
RFC 1448, 630, 643
RFC 1449, 630
RFC 1450, 630
RFC 1451, 630
RFC 1452, 630
RFC 1483, 473, 554
RFC 1519, 435
RFC 1521, 653, 654, 655
RFC 1550, 437
RFC 1577, 342, 473, 554
RFC 1654, 431
RFC 1661, 231, 234
RFC 1662, 231
RFC 1663, 231
RFC 1700, 415, 523
RFC 1715, 443
RFC 1883, 438
RFC 1884, 438
RFC 1885, 438
RFC 1886, 438
RFC 1887, 438

Ring, star-shaped, 295
RM cell (see Resource Management cell)
Rock 'n roll, signal-to-noise ratio, 739
Routing algorithm, 345-374

adaptive, 347
broadcast, 370-372
distance vector, 355-359
flooding, 351
flow-based, 353-355
hierarchical, 365-367
internetwork, 405-406
link state, 359-365

INDEX

Routing algorithm (cont.)
Mobile host, 367-370
multicast, 372-374
nonadaptive, 347

809

reverse path forwarding, 371-372
shortest path

RS-232, 114-116
RS-422-A, 115
RS-423-A, 115
RS-449, 115-116
RSA algorithm, 598-600, 665-666
RSVP (see Resource reSerVation Protocol)
Run-length encoding, 731

s

S-box, 587-588
SABME (see Set Asynchronous Balanced

Mode Extended)
SAP (see Service Access Point)
SAR sublayer, ATM, 65, 546
Satellite network, 327-333

communication, 163-179
compared to fiber, 168-170
geosynchronous, 164-167
low-orbit, 167-70

SCR (see Sustained Cell Rate)
SDH (see Synchronous Digital Hierarchy)
SDLC (see Synchronous Data Link Control)
SDU (see Service Data Unit)
SEAL (see Simple Efficient Adaptation

Layer)
Search engine, World Wide Web, 720-723
SECAM (see SEquentiel Couleur A vec

Memoire)
SECBR (see Severely-Errored Cell Block

Ratio)
Secret-key cryptography, 587-597
Section, SONET, 126
Section sublayer, SONET, 129-130
Secure hash algorithm, 618
Security

cellular telephone, 161
Java, 718-720

Segment, TCP, 525
Selective flooding, 351

Ex.1006.827DELL

810

Selective repeat, 209
Selective repeat protocol, 213-219
Sending window, 203

INDEX

Sequentiel couleur avec memoire, 728-729
Serial line IP, 229-230, 685
Service

connection-oriented, 23-25
connectionless, 23-25
datagram, 24-25
request-reply, 24-25

Service access point, 22
Service data unit, 22
Service primitive, 25-27

example, 510-512
Service provider, 22
Service user, 22
Service-specific connection-oriented

protocol, 555
Session key, 602
Session layer, OSI, 32-33
Session routing, 346
Set-top box, 754-756
Set asynchronous balanced mode extended,

228
Set normal response mode extended, 228
Severely-errored cell block ratio, 463
SGML (see Standard Generalized Markup

Language)
SHA (see Secure Hash Algorithm)
Shannon limit, 81-82
Shell account, 229
Shortest path routing, 348-352
Signal-to-noise ratio, 81
Signature, digital, 613-620
Silly window syndrome, 534-535
Simple Efficient Adaptation Layer,

552-554
Simple internet protocol plus, 438
Simple mail transfer protocol, 658-660
Simple network management protocol,

632-643
Simplex communication, 21
Single-mode fiber, 88
SIPP (see Simple Internet Protocol Plus)
Sliding window protocol, 202-219

1-bit, 205-207
SLIP (see Serial Line IP)
Slow start algorithm, 538-539

SMDS (see Switched Multimegabit Data
Service)

SMI (see Structure of Management
Information)

Smiley, 674
SMTP (see Simple Mail Transfer Protocol)
SNA (see Systems Network Architecture)
SNMP (see Simple Network Management

Protocol)
SNMP agent, 631
SNMP protocol, 642-643
SNRME (see Set Normal Response

Mode Extended)
Social issues, 6-7

related to cryptography, 620-622
Socket, 486-487
Software, network, 16-28
Soliton, 89
SONET (see Synchronous Optical Network)
Source encoding, 732-734
Source routing, 415-416
Source routing bridge, 314-316
Space division switch, 136-138
SPADE, 330
SPAN, 53
Spanning tree, 371
SPE (see Synchronous Payload Envelope)
Speed of light, 94
Spider, 720
Split horizon, 358-359
Spot beam, 165
Spread spectrum, 96

direct sequence, 96
SPX, 46
SSCOP (see Service-Specific

Connection-Oriented
Protocol)

Standard generalized markup language, 695
Standardization

Internet, 70-72
ISO, 69-70
network, 66-72
telecommunications, 67-69
video on demand, 756-757

Star-shaped ring, 295
Statistical encoding, 731-732
Storage hierarchy, 746-747
Store-and-forward subnet, 12

Ex.1006.828DELL

Store-and-forward switching, 133
Striping, 748

INDEX

Structure of management information, 639-641
STS-1 (see Synchronous Transport Signal-1)
Stub network, 430
Style sheet, 698
Subclass, Java, 713
Subnet, 11

Internet, 417 -419
Subnet mask, 419
Subsplit cable, 85
Substitution cipher, 582-583
Superclass, Java, 713
Supergroup, 119
Supervisory frame, 226-228
Sustained cell rate, 461
Switch

crossbar, 135-138
space division, 136-138
time division, 138-139

Switch hierarchy, telephone, 134-135
Switched Ethernet, 285-287
Switched Multimegabit Data Service, 57-59
Switched virtual circuit, 60, 145-146
Switching

circuit, 130-134
message, 131-133
packet, 133-134
store-and-forward, 133
telephone, 130-139

Switching fabric, ATM, 148
Symmetric key cryptography, 598
Synchronization, 33
Synchronous data link control, 226-227
Synchronous digital hierarchy, 125-130
Synchronous optical network, 125--130
Synchronous payload envelope, 126-127
Synchronous transport signal-I, 126
Systems Network Architecture, 41

T

Tl carrier, 121-122
T2 carrier, 124
T3 carrier, 124
T4 carrier, 124

Tag, HTML, 696-699
Tandem office, 104
Tariff, 67
TC sublayer, ATM, 64-65, 235-239

811

TCP (see Transmission Control Protocol)
TCP/IP reference model, 35-38, 43-44

compared to OSI, 38-39
TDM (see Time Division Multiplexing)
Telecommunications standardization, 67-69
Telephone, cellular, 157-163
Telephone system, 102-163

local loop, 108-118
politics, 106-108
SONET, 125-130
switching, 130-139
Tl carrier, 121-122
trunks and multiplexing, 118-130

Television
analog, 727-729
digital, 729-730

Telnet, 686-687, 693, 694
Terminal interface processor, 48
Thin Ethernet, 277
Three-way handshake, 496-498
Time division multiplexing, 118, 121-124,

330-333
Time division switch, 138-139
Time domain reflectometry, 277
Timer, token, 321
Timing wheel, 567-568
TIP (see Terminal Interface Processor)
Toaster-on-a-pole, 168
Token,287-288,293
Token bucket algorithm, 381-384
Token bus LAN (see IEEE 802.4)
Token management, 32
Token ring LAN, 292-299
Token-holding time, 296
Toll connecting trunk, 104
Toll office, 104
Tom tape office, 133
TPDU (see Transport Protocol Data Unit)
Traffic descriptor, 461
Traffic policing, 379-380
Traffic shaping, 379-380, 463-468
Transceiver, 277
Transformation encoding, 732-733
Transit network, 430

Ex.1006.829DELL

812

Transmission control protocol, 36-37,
521-542,658,678,685

congestion control, 536-539
connection management, 529-533
Karn's algorithm, 541
Nagle's algorithm, 534-535
segment header, 526-529
service model, 523-524
silly window syndrome, 534-535
timer management, 539-542
transmission policy, 533-536
wireless networks, 543-545

Transmission
infrared, 100
lightwave, 100-102

Transmission media, 82-94
Transponder, satellite, 164
Transport entity, 480
Transport gateway, 398
Transport layer, 479-576

ATM AAL, 545-555
example, 510-521
Internet, 521-545
network performance, 555-572
OSI, 31
protocol elements, 488-510
service provided, 479-487

Transport protocol, 488
addressing, 489-492
elements, 488-510
flow control, 502-506
Internet, 521-545
multiplexing, 506-508

Transport protocol data unit, 484
Transport service access point, 489
Transport service primitives, 483-486
Transport service provider, 481
Transport service user, 481
Transport stream, 743
Transposition cipher, 583-585
Trap, SNMP, 632
Trap directed polling, 632
Tree walk protocol, 258-259
Trellis coding, 112
Tributary, SONET, 127
Trigram, 583
Triple X, 60
Trunk, 11, 118-130

INDEX

TSAP (see Transport Service Access Point)
Tunneling, 404-405
Twisted pair, 83-84

category 3, 83
category 5, 84

Two-army problem, 499-500

u
UBR (see Unspecified Bit Rate service)
UDP (see User Datagram Protocol)
Unbalanced transmission, 115
Unconfirmed service, 26-27
Uniform resource locator, 692-695

schemes, 692-693
Universal resource identifier, 695
Unnumbered frame, 226-228
Unshielded twisted pair, 84
Unspecified bit rate service, 460
Urgent data, 524
URI (see Universal Resource Identifier)
URL (see Uniform Resource Locator)
USENET, 669-680, 693

implementation, 675-680
relationship to the Internet, 669
user view, 670-675

USENET hierarchies, 671
User agent, 645, 646-648
User datagram protocol, 37, 542-544
User plane, ATM, 64
User profile, 648
UTP (see Unshielded Twisted Pair)
UUCP, 669

v

V.24, 114
V.32 111
V.32 bis, 111
V.34 111
V.42 bis, 112
Vacation daemon, 663
Variable bit rate service, 459
VBR (see Variable Bit Rate service)
Vector quantization, 733

Ex.1006.830DELL

Very high frequency band, 95, 97-98
Very low frequency band, 95, 97
Very small aperture terminal, 165

INDEX

VHF band (see Very High Frequency band)
Video, 727-730

analog, 727-729
digital, 729-730
interlaced, 728
progressive, 728

Video on demand, 744-756
distribution network, 750-754
server, 745-750
set-top box, 754-756

Video server, 745-750
software, 747-749

Videoconference, 5
Virtual channel, ATM, 450
Virtual circuit, 342-345

compared to datagram, 344-345
Virtual path, ATM, 450
Virtual scheduling algorithm, 466
VIST Anet, 56
VLF band (see Very low frequency band)
Voice-grade line, 79
VSAT (see Very Small Aperture Terminal)
VTMP, 572

w

WAN (see Wide Area Network)
W ARC (see World Administrative Radio

Conference)
Wavelength, 94
Wavelength division multiple access, 260-262
Wavelength division multiplexing, 119-121
WDM (see Wavelength Division

Multiplexing)
WDMA (see Wavelength Division Multiple

Access)
Web (see World Wide Web)
Web page, 682, 683, 697
Weighted fair queueing, 388-389
Well-known port, 523
Wide area network, 11-13
Wine policy, 390

Wireless networking, 13-15
analog radio, i55-163
digital radio, 266-275
electromagnetic waves, 94-101
mobile hosts, 367-370, 432-434
wireless LANs, 262-265
wireless TCP, 543-545

Wireline carrier, 160
Wiring closet, 83
Work factor, 581

813

World administrative radio conference, 95
World Wide Web, 54, 681-723

browser, 682
CGI, 705-706
external viewer
fetching a page, 685-687
HTML language, 691-706
HTTP protocol, 689-691
hyperlink, 682
hypermedia, 684
hypertext, 682
Java, 706-720
search engine, 720-723
server, 685-689
URL, 692-695

Worm, 720
WWV,494
WWW (see World Wide Web)
WYSIWYG, 695

x
X.3, 60
X.21, 59
X.25, 59-60
X.28, 60
X.29, 60
X.400, 644, 661
X.509, 668-669
XTP, 572

z
Zipf's law, 746
Zone, DNS, 628

Ex.1006.831DELL

About the Author

Andrew S. Tanenbaum has an S.B. degree from M.I.T. and a Ph.D. from the
University of California at Berkeley. He is currently a Professor of Computer
Science at the Vrije Universiteit in Amsterdam, The Netherlands, where he heads
the Computer Systems Group. He is also Dean of the Advanced School for Com
puting and Imaging, an interuniversity graduate school doing research on ad
vanced parallel systems, distributed systems, and imaging systems. Nevertheless,
he is trying very hard to avoid turning into a bureaucrat.

In the past, he has done research on compilers, operating systems, networking,
and local-area distributed systems. His current research focuses primarily on the
design of wide-area distributed systems that scale to millions of users. These
research projects have led to over 70 refereed papers in journals and conference
proceedings. He is also the author of five books (see page ii).

Prof. Tanenbaum has also produced a considerable volume of software. He
was the principal architect of the Amsterdam Compiler Kit, a widely-used toolkit
for writing portable compilers, and MINIX, a small UNIX-like operating system
for operating systems courses. Together with his Ph.D. students and program
mers, he helped design the Amoeba distributed operating system, a high
performance microkernel-based distributed operating system. MINIX and
Amoeba are now available for free for education and research via the Internet.

His Ph.D. students have gone on to greater glory after getting their degrees.
He is very proud of them. In this respect he resembles a mother hen.

Prof. Tanenbaum is a Fellow of the ACM, a Senior Member of the IEEE, a
member of the Royal Netherlands Academy of Arts and Sciences, and winner of
the 1994 ACM Karl V. Karlstrom Outstanding Educator Award. He is also listed
in Who's Who in the World. His home page on the World Wide Web is located at
http://www.cs.vu.nl/-ast/ .

Ex.1006.832DELL

H

I COMPUTER NETWORKING I

THIRD EDITION

OMPUTER NETWORKS
ANDREW S. TANENBAUM

ISBN 0-13-349945-b I 90000

9 780133 499452

~!ii iili¥!'M !Vi J~~,

,~~

Ex.1006.833DELL

 COMPUTERDee
ANDREW S. TANENBAUM

OTTLZMAGeTAALeesae (aCeVNeT axoretorsose CO KeleeyATHCC RoeCOCOAENNetMd BIRGIT
best-seller has been totally rewritten to reflect che networks ofthe Jate 1990s and beyond.

Author,.educator, and researcher Andrew-S. Tanenbaum, winner of the ACMKarl’V.

Karlstrom Outstanding Educator Award,carefully explains how networks work inside, from
the hardware technology up through the most popular network applications. he book takes
a structured approach to netw:renee starting at the bottom (the physical layer) and gradually
working up to the top (the application layer). Thetopics covered include:

© Physical layer (e.g., copper, fiber, radio, and satellite communication)

~ Datalink layer (e.g. protocol principles, HDLC, SLIP, and PPP)
MAC Sublayer (e.g, IEEE 802 LANs, bridges, new Ere LANs)
: Waareleg layer (¢.g., routing, congestion control, Telcourtanycendetarea IPvG)
4 Transportlayer (e.g., transport protocol principles, TCP, network performance)

% Application‘layer (eg, cryptography, email; news, the Web, Java, multimedia)

In each.chapter. the necessary principles are described in detail, followed oakecSs
taken from the Internet,ATMnetworks, and wireless netwelu
Otherbestselling titles by Andrew S. Tanenbaum:

Operating Systems: Design and Implementation, 2nd edition

BUOYaneaRLaOLS
ISBN O-13-349945-6b

90000

Structured Computer Organization, 3rd edition |
Pea 9""780135"499452
Upper Saddle River, Nu 07458

Distributed Operating Systems
DELL Ex.1006.833

REB120/107/ I

THIRD EDITION W

Computer Nettorks
Andrew S.Tanenbaum

Ex.1006.834DELL

Computer Networks
Third Edition

Andrew S. Tanenbaum
Vrije Universiteit

Amsterdam, The Netherlands

For book and bookstore information

http://www.prenhall.com

Prentice Hail PTR
Upper Saddle River, New Jersey 07458

Ex.1006.835DELL

http://www.prenhall.com

hT)D'L-
eA)Ci

Library of Congress Cataloging in Publication Data

Tanenbaum, Andrew S. 1944-.
Computer networks / Andrew S. Tanenbaum. - 3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-13-349945-6
I .Computer networks. I. Title.

TK5105.5.T36 1996 96-4121
004.6-dc20

Editorial/production manager: Camille Trentacoste
Interior design and composition: Andrew S. Tanenbaum
Cover design director: Jerry Votta
Cover designer: Don Martinetti, DM Graphics, Inc.
Cover concept: Andrew S. Tanenbaum, from an idea by Marilyn Tremaine
Interior graphics: Hadel Studio
Manufacturing manager: Alexis R. Heydt
Acquisitions editor: Mary Franz
Editorial Assistant: Noreen Regina

© 1996 by Prentice Hall PTR
Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, New Jersey 07458

The publisher offers discounts on this book when ordered in bulk quantities. For more information,

aJl^Sate Sales Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458.
Phone: (800) 382-3419; Fax: (201) 236-7141. E-mail: corpsales@prenhall.com

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

All product names mentioned herein are the trademarks of their respective owners.

Printed in the United States of America
10 987654321

ISBN 0-13-349945-6

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Ex.1006.836DELL

mailto:corpsales@prenhall.com

CONTENTS

PREFACE

1 INTRODUCTION 1

1.1 USES OF COMPUTER NETWORKS 3
1.1.1 Networks for Companies 3
1.1.2 Networks for People 4
1.1.3 Social Issues 6

\J 1.2 NETWORK HARDWARE 7 ,
1.2.1 Local Area Networks 9
1.2.2 Metropolitan Area Networks 10
1.2.3 Wide Area Networks 11
1.2.4 Wireless Networks 13
1.2.5 Internetworks 16

V 1.3 NETWORK SOFTWARE 16
1.3.1 Protocol Hierarchies 17
1.3.2 Design Issues for the Layers 21
1.3.3 Interfaces and Services 22
1.3.4 Connection-Oriented and Connectionless Services 23
1.3.5 Service Primitives 25
1.3.6 The Relationship of Services to Protocols 27

\j 1.4 REFERENCE MODELS 28
1.4.1 The OSI Reference Model 28
1.4.2 The TCP/IP Reference Model 35
1.4.3 A Comparison of the OSI and TCP Reference Models 38
1.4.4 A Critique of the OSI Model and Protocols 40
1.4.5 A Critique of the TCP/IP Reference Model 43

1.5 EXAMPLE NETWORKS 44
1.5.1 Novell Netware 45
1.5.2 The ARPANET 47
1.5.3 NSFNET 50
1.5.4 The Internet 52
1.5.5 Gigabit Testbeds 54

vi

Ex.1006.837DELL

CONTENTS vii

1.6 EXAMPLE DATA COMMUNICATION SERVICES 56
1.6.1 SMDS—Switched Multimegabit Data Service 57
1.6.2 X.25 Networks 59
1.6.3 Frame Relay 60
1.6.4 Broadband ISDN and ATM 61
1.6.5 Comparison of Services 66

1.7 NETWORK STANDARDIZATION 66
1.7.1 Who’s Who in the Telecommunications World 67
1.7.2 Who’s Who in the International Standards World 69
1.7.3 Who’s Who in the Internet Standards World 70

1.8 OUTLINE OF THE REST OF THE BOOK 72

1.9. SUMMARY 73

THE PHYSICAL LAYER 77

2.1 THE THEORETICAL BASIS FOR DATA COMMUNICATION 77 '
2.1.1 Fourier Analysis 78
2.1.2 Bandwidth-Limited Signals 78
2.1.3 The Maximum Data Rate of a Channel 81

2.2 TRANSMISSION MEDIA 82
2.2.1 Magnetic Media 82
2.2.2 Twisted Pair 83
2.2.3 Baseband Coaxial Cable 84
2.2.4 Broadband Coaxial Cable 85
2.2.5 Fiber Optics 87

2.3 WIRELESS TRANSMISSION 94
2.3.1 The Electromagnetic Spectrum 94
2.3.2 Radio Transmission 97
2.3.3 Microwave Transmission 98
2.3.4 Infrared and Millimeter Waves 100
2.3.5 Lightwave Transmission 100

2.4 THE TELEPHONE SYSTEM 102
2.4.1 Structure of the Telephone System 103
2.4.2 The Politics of Telephones 106
2.4.3 The Local Loop 108
2.4.4 Trunks and Multiplexing 118
2.4.5 Switching 130

Ex.1006.838DELL

viii CONTENTS

2.5 NARROWBAND ISDN 139
2.5.1 ISDN Services 140
2.5.2 ISDN System Architecture 140
2.5.3 The ISDN Interface 142
2.5.4 Perspective on N-ISDN 143

2.6 BROADBAND ISDN AND ATM 144
2.6.1 Virtual Circuits versus Circuit Switching 145
2.6.2 Transmission in ATM Networks 146
2.6.3 ATM Switches 147

2.7 CELLULAR RADIO 155
2.7.1 Paging Systems 155
2.7.2 Cordless Telephones 157
2.7.3 Analog Cellular Telephones 157
2.7.4 Digital Cellular Telephones 162
2.7.5 Personal Communications Services 162

2.8 COMMUNICATION SATELLITES 163
2.8.1 Geosynchronous Satellites 164
2.8.2 Low-Orbit Satellites 167
2.8.3 Satellites versus Fiber 168

2.9 SUMMARY 170

3 THE DATA LINK LAYER

3.1 DATA LINK LAYER DESIGN ISSUES 176
3.1.1 Services Provided to the Network Layer 176
3.1.2 Framing 179
3.1.3 Error Control 182
3.1.4 Flow Control 183

3.2 ERROR DETECTION AND CORRECTION 183
3.2.1 Error-Correcting Codes 184
3.2.2 Error-Detecting Codes 186

3.3 ELEMENTARY DATA LINK PROTOCOLS 190
3.3.1 An Unrestricted Simplex Protocol 195
3.3.2 A Simplex Stop-and-Wait Protocol 195
3.3.3 A Simplex Protocol for a Noisy Channel 197

175

Ex.1006.839DELL

CONTENTS ix

3.4 SLIDING WINDOW PROTOCOLS 202
3.4.1 A One Bit Sliding Window Protocol 206
3.4.2 A Protocol Using Go Back n 207
3.4.3 A Protocol Using Selective Repeat 213

3.5 PROTOCOL SPECIFICATION AND VERIFICATION 219
3.5.1 Finite State Machine Models 219
3.5.2 Petri Net Models 223

3.6 EXAMPLE DATA LINK PROTOCOLS 225
3.6.1 HDLC—High-level Data Link Control 225
3.6.2 The Data Link Layer in the Internet 229
3.6.3 The Data Link Layer in ATM 235

3.7. SUMMARY 239

4 THE MEDIUM ACCESS SUBLAYER

4.1 THE CHANNEL ALLOCATION PROBLEM 244
4.1.1 Static Channel Allocation in LANs and MANs 244
4.1.2 Dynamic Channel Allocation in LANs and MANs 245

4.2 MULTIPLE ACCESS PROTOCOLS 246
4.2.1 ALOHA 246
4.2.2 Carrier Sense Multiple Access Protocols 250
4.2.3 Collision-Free Protocols 254
4.2.4 Limited-Contention Protocols 256
4.2.5 Wavelength Division Multiple Access Protocols 260
4.2.6 Wireless LAN Protocols 262
4.2.7 Digital Cellular Radio 266

4.3 IEEE STANDARD 802 FOR LANS AND MANS 275
4.3.1 IEEE Standard 802.3 and Ethernet 276
4.3.2 IEEE Standard 802.4: Token Bus 287
4.3.3 IEEE Standard 802.5: Token Ring 292
4.3.4 Comparison of 802.3, 802.4, and 802.5 299
4.3.5 IEEE Standard 802.6: Distributed Queue Dual Bus 301
4.3.6 IEEE Standard 802.2: Logical Link Control 302

243

Ex.1006.840DELL

X CONTENTS

4.4 BRIDGES 304
4.4.1 Bridges from 802.x to 802.y 307
4.4.2 Transparent Bridges 310
4.4.3 Source Routing Bridges 314
4.4.4 Comparison of 802 Bridges 316
4.4.5 Remote Bridges 317

4.5 HIGH-SPEED LANS 318
4.5.1 FDDI 319
4.5.2 Fast Ethernet 322
4.5.3 HIPPI—High-Performance Parallel Interface 325
4.5.4 Fibre Channel 326

4.6 SATELLITE NETWORKS 327
4.6.1 Polling 328
4.6.2 ALOHA 329
4.6.3 EDM 330
4.6.4 TDM 330
4.6.5 CDMA 333

4.7 SUMMARY 333

5 THE NETWORK LAYER

5.1 NETWORK LAYER DESIGN ISSUES 339
5.1.1 Services Provided to the Transport Layer 340
5.1.2 Internal Organization of the Network Layer 342
5.1.3 Comparison of Virtual Circuit and Datagram Subnets 344

5.2 ROUTING ALGORITHMS 345
5.2.1 The Optimality Principle 347
5.2.2 Shortest Path Routing 349
5.2.3 Flooding 351
5.2.4 Flow-Based Routing 353
5.2.5 Distance Vector Routing 355
5.2.6 Link State Routing 359
5.2.7 Hierarchical Routing 365
5.2.8 Routing for Mobile Hosts 367 >■
5.2.9 Broadcast Routing 370
5.2.10 Multicast Routing 372

339

Ex.1006.841DELL

CONTENTS xi

5.3 CONGESTION CONTROL ALGORITHMS 374
5.3.1 General Principles of Congestion Control 376
5.3.2 Congestion Prevention Policies 378
5.3.3 Traffic Shaping 379
5.3.4 Flow Specifications 384
5.3.5 Congestion Control in Virtual Circuit Subnets 386
5.3.6 Choke Packets 387
5.3.7 Loadshedding 390
5.3.8 Jitter Control 392
5.3.9 Congestion Control for Multicasting 393

5.4 INTERNETWORKING 396
5.4.1 How Networks Differ 399 2- :x ^^'2
5.4.2 Concatenated Virtual Circuits 401 o -t>
5.4.3 Connectionless Internetworking 402
5.4.4 Tunneling 404
5.4.5 Internetwork Routing 405
5.4.6 Fragmentation 406
5.4.7 Firewalls 410

5.5 THE NETWORK LAYER IN THE INTERNET 412
5.5.1 The IP Protocol 413
5.5.2 IP Addresses 416
5.5.3 Subnets 417
5.5.4 Internet Control Protocols 419
5.5.5 The Interior Gateway Routing Protocol: OSPF 424
5.5.6 The Exterior Gateway Routing Protocol: BGP 429
5.5.7 Internet Multicasting 431
5.5.8 Mobile IP 432
5.5.9 CIDR—Classless InterDomain Routing 434
5.5.10 IPv6 437

5.6 THE NETWORK LAYER IN ATM NETWORKS 449
5.6.1 Cell Formats 450
5.6.2 Connection Setup 452
5.6.3 Routing and Switching 455
5.6.4 Service Categories 458
5.6.5 Quality of Service 460
5.6.6 Traffic Shaping and Policing 463
5.6.7 Congestion Control 467
5.6.8 ATM LANs 471

5.7 SUMMARY 473

Ex.1006.842DELL

XU CONTENTS

6 THE TRANSPORT LAYER 479

6.1 THE TRANSPORT SERVICE 479
6.1.1 Services Provided to the Upper Layers 479
6.1.2 Quality of Service 481
6.1.3 Transport Service Primitives 483

6.2 ELEMENTS OF TRANSPORT PROTOCOLS 488
6.2.1 Addressing 489
6.2.2 Establishing a Connection 493
6.2.3 Releasing a Connection 498
6.2.4 Flow Control and Buffering 502
6.2.5 Multiplexing 506
6.2.6 Crash Recovery 508

6.3 A SIMPLE TRANSPORT PROTOCOL 510
6.3.1 The Example Service Primitives 510
6.3.2 The Example Transport Entity 512
6.3.3 The Example as a Finite State Machine 519

6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 521
6.4.1 The TCP Service Model 523
6.4.2 The TCP Protocol 524
6.4.3 The TCP Segment Header 526
6.4.4 TCP Connection Management 529
6.4.5 TCP Transmission Policy 533
6.4.6 TCP Congestion Control 536
6.4.7 TCP Timer Management 539
6.4.8 UDP 542
6.4.9 Wireless TCP and UDP 543

6.5 THE ATM AAL LAYER PROTOCOLS 545
6.5.1 Structure of the ATM Adaptation Layer 546
6.5.2 AALl 547
6.5.3 AAL 2 549
6.5.4 AAL 3/4 550
6.5.5 AAL 5 552
6.5.6 Comparison of AAL Protocols 554
6.5.7 SSCOP—Service Specific Connection-Oriented Protocol 555

6.6 PERFORMANCE ISSUES 555
6.6.1 Performance Problems in Computer Networks 556
6.6.2 Measuring Network Performance 559

Ex.1006.843DELL

CONTENTS Xlll

6.6.3 System Design for Better Performance 561
6.6.4 Fast TPDU Processing 565
6.6.5 Protocols for Gigabit Networks 568

6.7 SUMMARY 572

7 THE APPLICATION LAYER 577

7.1 NETWORK SECURITY 577
7.1.1 Traditional Cryptography 580
7.1.2 Two Fundamental Cryptographic Principles 585
7.1.3 Secret-Key Algorithms 587
7.1.4 Public-Key Algorithms 597
7.1.5 Authentication Protocols 601
7.1.6 Digital Signatures 613
7.1.7 Social Issues 620

7.2 DNS—DOMAIN NAME SYSTEM 622
7.2.1 The DNS Name Space 622
7.2.2 Resource Records 624
7.2.3 Name Servers 628

7.3 SNMP—SIMPLE NETWORK MANAGEMENT PROTOCOL 630
7.3.1 The SNMP Model 631
7.3.2 ASN.l—Abstract Syntax Notation 1 633
7.3.3 SMI—Structure of Management Information 639
7.3.4 The MIB—Management Information Base 641
7.3.5 The SNMP Protocol 642

7.4 ELECTRONIC MAIL 643
7.4.1 Architecture and Services 645
7.4.2 The User Agent 646
7.4.3 Message Formats 650
7.4.4 Message Transfer 657
7.4.5 Email Privacy 663

7.5 USENET NEWS 669
7.5.1 The User View of USENET 670
7.5.2 How USENET is Implemented 675

Ex.1006.844DELL

7.6 THE WORLD WIDE WEB 681
7.6.1 The Client Side 682
7.6.2 The Server Side 685
7.6.3 Writing a Web Page in HTML 691
7.6.4 Java 706
7.6.5 Locating Information on the Web 720

7.7 MULTIMEDIA 723
7.7.1 Audio 724
7.7.2 Video 727
7.7.3 Data Compression 730
7.7.4 Video on Demand 744
7.7.5 MBone—Multicast Backbone 756

7.8 SUMMARY 760

Xiv CONTENTS

8 READING LIST AND BIBLIOGRAPHY

8.1 SUGGESTIONS FOR FURTHER READING 767
8.1.1 Introduction and General Works 768
8.1.2 The Physical Layer 769
8.1.3 The Data Link Layer 770
8.1.4 The Medium Access Control Sublayer 770
8.1.5 The Network Layer 771
8.1.6 The Transport Layer 772
8.1.7 The Application Layer 772

8.2 ALPHABETICAL BIBLIOGRAPHY 775

767

INDEX 795

Ex.1006.845DELL

