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{57 ABSTRACT

A mnovel double buffering subsystem, wherein a dual
port memory is partitioned in software so that the top
half of the memory is allocated to one processor, and
the bottom half to the other. (This allocation is switched
when both processors set respective flag bits indicating
that they are ready to switch.) On accesses to this mem-
ory, additional bits tag the access as “physical,” “logi-
cal,” or “preview.” A physical access is interpreted as a
literal address within the full memory, and the double
buffering is ignored. A logical access is supplemented
by an additional address bit, determined by the double
buffering switch state. A preview access is used for read
access only, and goes to the opposite bank of memory
from that which would be accessed in a logical access.
This double-buffer architecture is advantageously used,
in a multiprocessor system, at the interface between a
numeric processor and a cache bus. The preview access
can help to avoid data flow inefficiencies at synchroni-
zation points in pipelined algorithms.
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SYSTEM AND METHOD USING
DOUBLE-BUFFER PREVIEW MODE

This is a continuation of application Ser. No. 326,781,
filed Mar. 21, 1989, now abandoned.

PARTIAL WAIVER OF COPYRIGHT

All of the material in this patent application is subject
to copyright protection under the copyright laws of the
United Kingdom, the United States, and of other
countries. As of the first effective filing date of the
present application, this material is protected as unpub-
lished material.

However, permission to copy this material is hereby
granted to the extent that the copyright owner has no
objection to the facsimile reproduction by anyone of the
patent document or patent disclosure, as it appears in
official patent file or records of the United Kingdom or
any other country, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

The present invention relates to computer systems
and subsystems, and to computer-based methods for
data processing.

HIGH-SPEED MULTIPROCESSOR
ARCHITECTURES

It has long been realized that the use of multiple pro-
cessors operating in parallel might in principle be a very
convenient way to achieve very high net throughput.
Many such architectures have been proposed. How-
ever, the actual realization of such architectures is very
difficult. In particular, it is difficult to design an archi-
tecture of this kind which will be versatile enough to
satisfy a range of users and adapt to advances in tech-
nology.

Fully asynchronous multiprocessor architectures
have been proposed, but it is generally recognized in the
art that the problems of programming support in a mul-
tiprocessor architecture have not nearly been solved.

A very recent overview of some of the issues in-
volved in multiprocessor systems may be found in Du-
bois et al., “Synchronization, Coherence, and Event
Ordering in Multiprocessors,” Computer magazine,
February 1988, page 9, which is hereby incorporated by
reference. A recently proposed multiprocessor archi-
tecture for digital signal processing is described in Lang
et al, “An Optimum Parallel Architecture for High-
Speed Real-Time Digital Signal Processing,” Computer
magazine, February 1988, page 47, which is hereby
incorporated by reference.

INTER-PROCESSOR SYNCHRONIZATION

Synchronization between processors is a continuing
critical issue in a very wide variety of multiprocessor
system. Often such inter-processor interfaces make use
of “processor-waiting” or “processor-ready” status
signals which can be set or cleared by either processor.
(Such signals are commonly known as “semaphores.”)

INTER-PROCESSOR DATA ROUTING

Two general concepts of allocating work among
processors are pipelining and parallelism. “Pipelining”
is generally used to refer to data routings where a single
data set is successively operated on by more than one
processor. Parallelism refers to data routings where
different operations are concurrently performed by
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2

separate processors. Of course, some algorithms can
profit by pipelining or parallelism to a much greater
degree than others.

The speed of a pipeline is limited by its slowest stage.
Moreover, the average efficiency of a pipelined system
will be diluted by two overhead requirements: the pipe-
line must be filled at the start of the operation, and must
be emptied at the end of the operation. The impact of
these overheads depends on ratio of the number of
elements which must be passed through the pipeline in
one run to the number of stages in the pipeline (referred
to as the length of the pipeline). Thus, these overheads
may be unimportant when the length of the pipeline is
short, and the number of elements per run is fairly long.
However, for a longer pipeline (or for shorter runs),
these overheads can be an important factor in through-
put.

INTER-PROCESSOR DATA EXCHANGE

The interface between two processors in a multipro-
cessor system often requires that data be passed back
and forth rapidly. Double buffering is a commonly used
technique to permit data transfer, without hangups, loss
of data synchronization, or data access collisions. Nor-
mally the memory space to be shared is divided into two
physical memories, and the accesses are arbitrated in
hardware so that, on any one cycle, each processor can
access only half the memory space (i.e. one of the physi-
cal memories).

FIG. 18 shows one example of a prior arrangement
for double buffering. The port select logic 1810 pro-
vides select signals to data buffers 1860, so that the two
data busses 1850A and 1850B (from the sides of the
double buffer) are connected to either the first or sec-
ond memory 1820. The port select logic 1810 also pro-
vides select signals to address multiplexers 1830, so that
the two address busses 1840A and 1840B are connected
to access either the first or second memory 1820.

FIG. 19 shows another example of a prior arrange-
ment for software-controlled double buffering. The
port select logic 1910 provides select signals directly to
the most significant address bit A6 of a dual port mem-
ory 1920. Thus, each port sees only half of the physical
address space, but the double buffering can be quite
transparent.

CACHE MEMORY ARCHITECTURES

Cache memory is a conventional way to increase the
net throughput of computing systems. If a large fraction
of memory accesses are expected to call on memory
locations already in cache, then every read from cache
can save an amount of time equal to the difference be-
tween the cache access time and the main memory
access time. Therefore, cache memory systems nor-
mally attempt to maximize the bandwidth to the cache.

MICROCODED ARCHITECTURES

An extremely important tool for developing high-
speed and/or flexible computer architectures is micro-
coding. See J. Mack & J. Brick, Bit-Slice Microprocessor
Design (1980), which is hereby incorporated by refer-
ence. Microcoded architectures are not only extremely
flexible, but also have the potential to provide ex-
tremely high speed.

In microcoded architectures the individual instruc-
tions are fairly long (e.g. 100 bits or so). Some fairly
low-level logic decodes the instructions, so that appro-
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priate fields are sent to low-level devices (such as regis-
ter files, adders, etc.).

The total number of bits in the instruction field will
typically be very much larger than the log: of the total
number of instructions. This permits the decode opera-
tion to be made very much simpler. Microcoded archi-
tectures commonly use a sequencer to perform address
calculations and perform a first level of decode. (Alter-
natively, a lower level of logic can be used to perform
the program sequencing function.) The sequencer ac-
cesses microinstructions from a control store (memory),
and various portions of the microinstructions are pro-
vided to additional decode logic, and/or applied di-
rectly to devices. Since a single instruction can contain
many command fields (all of which will be executed
simultaneously), it is possible to write surprisingly short
microcode programs.

Since the individual instructions are quite low-level,
and fairly long, the total program storage required can
be quite significant. The data transfer requirements for
loading a microcode routine can be significant.

SUMMARY OF THE INVENTION

The present application provides a large number of
innovative teachings, which will be described in the
general context of a system like that shown in F IG. 1.

Among the innovative teachings set forth herein is a
multiprocessor numeric processing subsystem wherein
an extremely wide local bus connects the arithmetic
calculation subunit to a large data cache memory. This
cache is multiported, so that newly retrieved data can
be written into the cache at essentially the same time
that data transfer is occurring between the numeric
processing subunit and the cache.

To get a very high memory bandwidth, there are
only three basic strategies:

1. Use very fast memory devices: The problem here is
one of economics and size. Very fast memory de-
vices are very expensive, sometimes as much as ten
times the cost of the slower counterparts, and the
number of storage bits per device is more limited.
The major advantage of this technique is that the
bandwidth improvement is independent of the data
layout in memory (assuming that the address gen-
erator is fast enough).

2. Use interleaved memories: Interleaved memories
have traditionally been used with dynamic RAMs
(DRAMEs), where the cycle times have been longer
than the access times. In this context, a significant
advantage can be gained by interleaving two or
more banks and offsetting the timing between
banks. The problem with this technique occurs
when successive accesses keep hitting the same
bank, or accesses through another port (in a multi-
port memory)) disturbs the sequential accessing of
banks. This technique can be used with static mem-
ories (SRAMs), but the equal access and cycle
times make it less attractive than with DRAMs.

. Use a wide memory structure: Normally the mem-
ory width would be the same as the word width.
For example, a system using 32-bit words would
typically use a 32-bit wide memory architecture.
However, several of the innovative teachings set
forth herein show how a system with a much wider
local bus to cache memory can be very advanta-
geous.

A wide memory structure provides high bandwidth
by accessing many words in parallel. Such a structure
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has much simpler timing requirements than an inter-
leaved memory architecture would. (However, a large
percentage of non-sequential accesses will ultimately
reduce the bandwidth to that of a normal single-width
architecture.)

This memory architecture also has advantages in a
multi-port situation where some or all of the ports have
a much lower bandwidth than the memory itself. In
these cases there will be some intermediate storage
(normally registers) to capture the data for later access-
ing over several cycles by the recipient. While such
time-multiplexed accesses are in progress, there is no
demand on the memory system for bandwidth.

In the preferred embodiment there are also some
significant novelties in the interface logic which con-
trols the data interface to the cache from the numeric
processor. These features will be discussed in greater
detail below. :

A feature which helps to maximize the throughput of
the transfers in the transitional clock domain is a dou-
ble-word interface on only one side of the fast register
file. That is, the register file appears, on the cache mem-
ory side, as if it were 64 bits wide. However, on the
FPU side it only appears to be 32 bits wide. This results
in some odd/even structure in the word addresses, but
possible problem due to this odd/even structure are
avoided by several innovative features. Since these
problem can be avoided, the double-word interface
provides substantial advantages in the bandwidth of the
register file interface.

Some significant advantages are also derived from
the preferred scheme for arbitrating access of the con-
trol processor and data-transfer processor to the cache
memory. In the presently preferred embodiment, the
cache is physically dual-ported, but it is used as if it
were triported.

The data cache memory is triported between the
control processor module, the data-transfer processor
module, and the numeric processor module(s), so some
form of arbitration is necessary to control access. The
control processor generates addresses and controls the
routing of data for itself and the floating-point proces-
sor(s) under program control so the control processor
and floating-point processor access are mutually exclu-
sive. The data-transfer processor, however, is totally
autonomous and can compete for access at any time.

In the presently preferred embodiment, the arbitra-
tion is such that the control processor/floating-point
processor has access whenever it wishes, and the data-
transfer processor makes use of any unused access cy-
cles. To make use of the unused cycles, the data-transfer
processor includes extra hardware which will allow it
to use a single free cycle amongst many busy ones.

The control processor and data-transfer processor are
preferably autonomous but synchronized. This is ac-
complished by letting them share a common microcode
clock. This synchrony simplifies the arbitration. The
control processor and data-transfer process granted
signal is available before the cycle in which the data-
transfer process. This signal therefore has enough time
to propagate into the sequencer, thus allowing the data-
transfer process is not granted, then the data-transfer
process cycles so the data-transfer processor will not
have long to wait. However, if the data-transfer proces-
sor’s program requires an end to waiting, the data-trans-
fer processor can interrupt the control processor. On
receiving this interrupt the control processing the mem-
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ory, and let the data-transfer processor in for at least
one cycle.

The data-transfer process therefore accesses the
memory no more often than once every 8 cycles. Its
bandwidth demands are therefore very low.

The innovative teachings of the present application
also enable a multiprocessor numeric processing sys-
tem, which bas a well-defined modular expansion inter-
face. This system can be used with one or several nu-
meric processing modules. The modular interface per-
mits multiple numeric processing modules (of different
types if desired) to be connected in parallel.

A control processor controls data transfers into and
out of each of the numeric processing modules. Control
of these data transfers is accomplished by an extension
of the control processor’s microcode. Extensions of the
control processor’s writable control storage are located
on each of the numeric processing modules. Each of the
extensions includes its own decode logic, and stores its
own executable microinstructions. Since all of the con-
trol processor extensions are clocked by the control
processor’s microcode clock, coordination among mul-
tiple numeric processors is readily accomplished, while
still allowing each of the numeric processing modules to
run fully asynchronously under its own clock. Prefera-
bly the main part of the control processor also performs
address calculations, so that the routines executed by
the numeric processing modules can be pure calculation
routines, without reference to data sources and destina-
tions. _

Among the innovative teachings set forth herein is a
novel subsystem for double buffering. A dual port mem-
ory is used, and is partitioned in software so that the top
half of the memory is allocated to one processor, and
the bottom half to the other. (This allocation is switched
when both processors set respective flag bits indicating
that they are ready to switch.)

On accesses to this memory, additional bits tag the
access as “physical,” “logical,” or “preview.” A physi-
cal access is interpreted as a literal address within the
full memory, and the double buffering is ignored. A
logical access is supplemented by an additional address
bit, determined by the double buffering switch state.

A preview access is used for read access only, and
goes to the opposite bank of memory from that which
would be accessed in a logical access. The use of pre-
view access can be particularly advantageous in avoid-
ing data flow inefficiencies at synchronization points in
pipelined algorithms.

For example, if the standard double buffering tech-
niques (like those schematically shown in FIGS. 18 or
19) were used in a system like that shown in FIG. 1, it
would be necessary to refill the data pipeline after every
swap (and empty it before every swap). In this sample
embodiment, a simple vector operation requires the
floating-point processor to do 8 calculations for each
buffer’s worth of data. This means that three cycles of
overhead are used, to fill and empty the pipeline, for
every eight words of data. Obviously, this adds a high
percentage onto the overall average processing time.

One of the innovative teachings set forth herein is
that “soft” double buffering can be used to overcome
this problem The preview mode (described above) al-
lows one port to preview the data in the other half
before it is swapped. This later mode provides a means
for the floating-point processor pipeline to be kept full
when the control processor has finished its work and is
waiting to swap buffers before continuing.
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Preferably double buffering is used in a register file at
the interface between a numeric processor and a large
data cache memory in a multiprocessor system. The
partitioning of the register file avoids data collisions in
the cache memory

In this sample embodiment, a 5-ported register file,
configured as two physically separate banks of high-
speed memory, is used. However, a wide variety of
other implementations could be used instead.

This innovation provides much greater flexibility
than conventional systems which perform double buff-
ering in hardware, at no loss in speed.

The “preview” mode permits this double-buffering
implementation to be used as a versatile interface archi-
tecture in many pipelined environments.

BRIEF DESCRIPTION OF THE DRAWING

The present invention will be described with refer-.
ence to the accompanying drawings, which show im-
portant sample embodiments of the invention and
which are incorporated in the specification hereof by
reference, wherein:

FIG. 1 shows a general overview of a numeric accel-
erator subsystem having a novel three-processor archi-
tecture. .

FIG. 2A generally shows the organization of some
key parts of the Control Processor module 110, in the
presently preferred embodiment. FIG. 2B schemati-
cally shows the field allocations in the microinstruction
format used in the Control Processor module 110, in the
presently preferred embodiment.

FIG. 3A generally shows the organization of some
key parts of the Data Transfer Processor module, in the
presently preferred embodiment. FIG. 3B shows
greater detail of the logic used to selectably drive a
constant address onto the sequencer bus 315 in the Data
Transfer Processor module. FIG. 3C schematically
shows the field allocations in the microinstruction for-
mat used in the Data Transfer Processor module 120, in
the presently preferred embodiment.

FIGS. 4A, 4B, 4C, and 4D generally show the orga-
nization of some key parts of the numeric processing
module 130, which in the presently preferred embodi-
ment is a Floating-Point Processor. FIG. 4A shows
some key parts of the interface to the Control Processor
module 110. FIG. 4B shows some key parts of the data
path in the Floating-Point Processor, in the presently
preferred embodiment. FIG. 4C shows some key parts
of the control logic in the Floating-Point Processor, in
the presently preferred embodiment. FIG. 4D schemat-
jcally shows the field allocations in the microinstruction
format used in the Numeric Processor module 130, in
the presently preferred embodiment.

FIG. 5 generally shows the organization of some key
parts of the Data Cache Memory, in the presently pre-
ferred embodiment.

FIG. 6 generally shows the organization of some key
parts of the Host Interface Logic, in the presently pre-
ferred embodiment.

FIG. 7 generally shows the organization of some key
parts of the Data Pipe Interface Logic, in the presently
preferred embodiment.

FIG. 8 generally shows the organization of some key
parts of the GIP Interface Logic, in the presently pre-
ferred embodiment.

FIG. 9A shows a general overview of a numeric
accelerator subsystem including an application-custo-
mized numeric processing module (“‘algorithm acceler-
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ator”) 130’. FIG. 9B schematically shows how the ar-
chitecture of one example of an algorithm accelerator
130’ differs from that of a general-purpose floating-
point module 130.

FIG. 10 shows a subsystem including multiple nu-
meric processing sub-subsystems.

FIG. 11 generally shows the organization of some
key parts of the Integer Processor Unit, which is part of
the control processor (and of the data-transfer proces-
sor) in the presently preferred embodiment.

FIG. 12 generally shows the organization of some
key parts of the Address generator, which is part of the
control processor in the presently preferred embodi-
ment.

FIG. 13 generally shows the organization of some
key parts of the Sequencer, which is part of the control
processor (and also of the data transfer processor) in the
presently, preferred embodiment.

FIG. 14A schematically shows the hardware used, in
the presently preferred embodiment, to permit a 16-bit
address generator (or other low-resolution subproces-
sor) to be used in a 32-bit system. FIG. 14B shows the
inputs used in the different operating modes of the hard-
ware used, in the presently preferred embodiment, to
use low-resolution data sources in a high-speed system.

FIG. 15 schematically shows the interface between
the control processing module and the data transfer
processing module, in the presently preferred embodi-
ment.

FIG. 16 generally shows the organization of some
key parts of the primary data path for numeric opera-
tions, within the floating-point processor in the pres-
ently preferred embodiment.

FIG. 17 shows the logic used within the floating-
point processor in the presently preferred embodiment,
to reduce the setup time for unregistered microcode
bits.

FIG. 18 shows how a conventional double buffer is
organized and controlled in hardware.

FIG. 19 shows another conventional method for
double buffering, where a dual port register file is used
with one of the bits controlled externally.

FIG. 20 schematically shows how the innovative
double buffer of the presently preferred embodiment is
organized and controlled in software, to provide multi-
ple optional access modes.

FIG. 21 schematically shows the logic used, in the
presently preferred embodiment, for data transfer
across a clock boundary between the holding registers,
which interface to the 256-bit wide cache bus, and the
Register File, which is only 64 bits wide.

FIG. 22 shows a state diagram of the handshaking
logic used, in the presently preferred embodiment, to
provide interfacing between the CP module 110 and the
FP module 130.

FIG. 23 schematically shows the control definitions
used, in the presently preferred embodiment, to select
among multiple FPs and/or multiple algorithm acceler-
ators, in a system like that shown in FIGS. 9 or 10.

FIGS. 24, 25, and 26 show the architecture. of the
data interfaces to the cache memory.

FIG. 27 schematically shows the hardware configu-
ration used, in the presently preferred embodiment, to
permit efficient control of microcode transfer and load-
ing in a serial loop which interfaces to the writable
control storage of several devices.

FIG. 28 schematically shows the serial loop configu-
ration used, in the presently preferred embodiment, to
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permit microcode loading to any one of several proces-
sors, or to some groups of processors.

FIG. 29 schematically shows the logic used, in the
presently preferred embodiment, to permit either serial
or parallel write into the control store of a numeric
processor in a multi-processor system.

FIG. 30 schematically shows the microcode opera-
tion used in the presently preferred embodiment to
provide multiway branching without address boundary
constraints.

FIG. 31 schematically shows a method of running a
discrete Fourier transform algorithm.

FIG. 32 shows a method of running a histogram
algorithm, in hardware like that shown in FIG. 16.

FIG. 33 shows a method of running a pipelined algo-
rithm, in hardware which includes a software-con-
trolled double buffer like that shown in FIG. 20.

FIGS. 34, 35, 36, and 37 schematically show configu- -
rations of multiple subsystems like that of FIG. 1, each
of which includes a data pipe interface like that shown
in FIG. 7.

FIG. 38A generally shows the preferred physical
layout of the main board, and FIG. 38B generally shows
the preferred physical layout of a daughter board which
nests onto the board of FIG. 38A. The board of FIG.
38B contains key components of FP module 130. The
two boards together provide a complete system like
that shown in FIG. 1.

FIG. 39 shows the preferred embodiment of the stack
register in the floating-point processor module 130.

FIG. 40A shows some support logic which is used, in
the presently preferred embodiment, with the sequencer
in the control processor module 110 (and in the data
transfer module 120). FIG. 40B schematically shows a
microinstruction sequence wherein an interrupt occurs
during a multiway branch operation.

FIG. 41 schematically shows a computer system in-
cluding a host computer, a picture processor subsystem,
and at least two numeric accelerator subsystem linked
by a main bus and two high bandwidth backplane bus-
ses.

FIG. 42 schematically, shows the flow of steps, in a
system like that shown in FIG. 1, to multiply two arrays
together (on an element by element basis) and deposit
the results in a third array.

FIG. 43 shows a sample system which includes a
high-speed cache expansion memory on the same very
wide data bus as one or more numeric processing mod-
ules.

FIGS. 44A, 44B, and 44C schematically indicate the
programming environment of the CP, DTP, and FP
modules respectively.

FIG. 45 shows logic for substituting the contents of
an instruction register for a field of microcode from
control store.

FIG. 46 shows how word address odd/even struc-
ture results from the double-word transfer operations.

FIG. 47 shows the timing structure used for how
word address odd/even structure results from the dou-
ble-word transfer operations.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The numerous innovative teachings of the present
application will be described with particular reference
to the presently preferred embodiment, wherein these
innovative teachings are advantageously applied to the
particular problems of sybsystems which can work
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under the direction of a host computer to handle high-
speed numeric computing. (Such subsystems are com-
monly referred to as “accelerator boards.”) However, it
should be understood that this embodiment is only one
example of the many advantageous uses of the innova-
tive teachings herein. For example, the various types of
the architectural innovations disclosed herein can op-
tionally be adapted to a wide variety of computer sys-
tem contexts. In general, statements made in the specifi-
cation of the present application do not necessarily
delimit any of the various claimed inventions. More-
over, some statements may apply to some inventive
features but not to others.

OVERVIEW

The present invention will be described with particu-
lar reference to the context of a system embodiment like

-

0

15

that shown in FIG. 1 (or, alternatively, those of FIGS.

9A, 10, 41, or 43.) It should be understood that the
features of these embodiments ‘are not all necessary
parts of the present invention, but they do provide the
context in which the preferred embodiment will be
described.

FIG. 1 generally shows an architecture for a numeric
processing system, which normally is used as a subsys-
temn of a larger computer system. System like that of
FIG. 1 are commonly referred to as ‘“accelerator
boards”. They are normally used as sub-systems. That
is, a supervisor processor will provide a high-level com-
mand to the accelerator subsystem. For example, the
supervisor processor may order the accelerator subsys-
tem to perform a vector add, a matrix inversion, or a
fast Fourier transform (FFT). The accelerator subsys-
tem will then fetch the data from the location specified
by the supervisor processor, perform the number-
crunching operations, and return the result to the super-
visor processor.

FIG. 1 shows an architecture with three different
processor modules, all of which can run different tasks
concurrently. These three modules are the control pro-
cessor (CP) module 110, the data transfer processor
(DTP) module 120, and the numeric processing module
130. (This numeric processing module is preferably a
floating-point processing module, and will therefore
often be referred to as the “FP” module. Various other
types of numeric processing modules can be used, as
will be discussed below.) The numeric processor mod-
ule 130 runs asynchronously to the other two proces-
sors, i.e. with a completely independent clock. In addi-
tion, the external interfaces 150, 160, 170, and 180 also
contain substantial amounts of logic.

The structure of the data cache memory 140, and its
relation to the other blocks in the system, is quite signifi-
cant. The data cache memory 140 is connected to the
floating point processor 130 by a wide cache bus 144. In
the presently preferred embodiment, the cache bus 144
includes 256 physical lines reserved for data.

The three types of processor modules permit easy
task allocation. The primary allocation of tasks is as
follows:

the data transfer processor manages the interface to

the outside world, through the external interfaces,
and also handles data transfer between the cache
memory and the outside world;

the control processor 110 performs address calcula-

tions, and controls all data transfers to and from the
numeric processing module 130; and
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the numeric processing module 130 performs data

calculations.

Designing an efficient high-speed system to support
this allocation of tasks requires that some significant
architectural difficulties be solved. However, the dis-
closed innovations solve these difficulties, and the result
turns out to be surprisingly advantageous.

To facilitate realization of such an architecture, the
embodiment of FIG. 1 contains several notable hard-
ware features. First, the control processor 110 includes
a very large capability for address calculation opera-
tions. In the presently preferred embodiment, as gener-
ally shown in FIG. 2, this processor includes not only a
sequencer, but also address generation logic and an
arithmetic-logic-unit (ALU).

The data transfer processor 120 supervises the opera-
tion of the external interface controllers. In the pres-
ently preferred embodiment, there are actually three
external interface controllers. These include a VME bus
interface 160, and also controllers for two backplane
busses. (One backplane bus is a “data pipe,” which pro-
vides a high-bandwidth link between accelerators, and
the other is a “GIP bus,” which is optimized for trans-
mission of image or graphics data.) Each of these three
bus interfaces includes its own control logic, preferably
including a controller. For example, the VME bus inter-
face includes a direct-memory-access (DMA) control-
ler, for expedited block data transfer. However, the data
transfer processor 120 provides a high-level supervision
for all of these interfaces.

A critical part of this architecture is the cache mem-
ory 140. This cache memory is not only very wide (256
bits), large (preferably at least 2 megabytes), and fast
(100 nanoseconds access time as presently configured,
and preferably much faster), but is also effectively tri-
ported. The memory is preferably only dual ported
physically, and arbitration between the control proces-
sor 110 and the data transfer processor 120 is accom-
plished in their microcoded instruction scheme.

Note also that the three ports of the cache memory
140 are quite different. In general, in most numeric
processing subsystems it has been found that the band-
width between the cache memory and the number-
crunching components is of critical importance. There-
fore, in the presently preferred embodiment, the port to
numeric processor 130 is much wider (and therefore has
a much higher bandwidth) than the ports to the control
processor and data transfer processor. In the presently
preferred embodiment, the latter ports are only 32 bits
wide. Moreover, a set of fully parallel registers is used
at the 32-bit ports, so that all accesses to these ports are
seen by the cache memory 140 as fully parallel, i.e. as
256-bit parallel reads or writes.

The interface to the numeric processing module 130
is so defined that multiple modules 130 can be used in
parallel, all under the control of a single control proces-
sor 110 and all accessing (preferably) a single data cache
module 140. The extremely high bandwidth of the
cache bus 144 is an important factor in achieving this
multi-module capability.

The interface between the control processor 110 and
the data transfer processor module 120 also provides
significant advantages in efficiently exploiting the
cache. In the presently preferred embodiment, some
significant features are used to improve the advantages
of this interaction. First, as is common in the art of
microprogrammed processors, both the control proces-
sor 110 and the data transfer processor 120 preferably
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use variable-duration instructions. That is, some instruc-
tion types require substantially longer cycle times than
others. For example, to give extreme cases, a no-opera-
tion instruction or an unconditional branch would re-
quire far less processor time than a multiply instruction.
Thus, it has been common to use variable-duration
clocks for controlling processors, where the clock gen-
erator looks at the instruction type being executed and
adjusts the duration of the clock interval accordingly,
on the fly.

In the presently preferred embodiment, both the con-
trol processor 110 and the data-transfer processor 120
are clocked by a shared variable-duration clock. Thus,
the control processor 110 and the data transfer proces-
sor 120 are enabled to run synchronously, even though
they are concurrently running separate streams of in-
structions.

The control processor 110 is given priority on access
to the cache memory 140. That is, the data transfer
processor 120 must check before every cache access, to
ensure that cache access has not been preempted by the
control processor 110. However, to prevent lock-out,
the data transfer processor 120 has an interrupt signal
available to it, which will command the control proces-
sor 110 to release control of the cache port for at least
one cycle.

The three types of processor modules will sometimes
be referred to by abbreviations in the following text.
For example, the microcode which runs in the data
transfer processor module 120 may be referred to as the
DTP microcode. Similarly, the microcode which runs
in the control processor 110 may be referred to as the
CP microcode, and the microcode which runs in the
numeric processing module 130 may be referred to as
FP microcode. These abbreviations will be used regard-
ing other features as well.

DESIGN GOALS

The subsystem of the presently preferred embodi-
ment has been designed to give a very high floating
point number crunching performance with small size
and at Jow cost.

Two system contexts have been targets for use of this
subsystem: this subsystem is well suited for use as a
floating point accelerator for a wide range of general-
purpose host computers. (In particular, compatibility
with UNIX engines is desirable.)

It is also contemplated that the accelerator system of
FIG. 1 may be very advantageous in a specialized pic-
ture processing system. An example of such a system
would be a graphics and image processing system, man-
ufactured by benchMark Technologies Ltd., and re-
ferred to as the “GIP” system. (The GIP system include
a number of features to give very high throughput in a
wide range of graphics and image applications.) Such a
system, including an accelerator subsystem like those
shown in FIGS. 1, 9A, 10, 43, etc., may be particularly
advantageous for running three-dimensional graphics
algorithms.

DIVISION OF ALGORITHMS

The architecture of FIG. 1 will be discussed in much
greater detail below, but first it will be informative to
Jook at how this multiprocessor structure can be used.

As noted above, most algorithms can be broken down
into four separate parts: Control, Data input and output,
Address calculations, and Data calculations.

—
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The preferred architecture treats these as separate
tasks, and maps them onto the three processors. The
control and address calculations are handled by the
Control Processor (CP) Module 110, the data I/0 tasks
are handled by the Data Transfer Processor (DTP)
Module 120, and the data calculations are handled by
the Floating-point Processor (FP) Module 130.

The division of an algorithm between the control
processor module 110 and the FP is illustrated by the
detailed descriptions below, regarding some specific
algorithm implementations. One good example is pro-
vided by the Fast Fourier Transform (FFT) implemen-
tation discussed below, with reference to FIG. 31. The
FFT algorithm is notoriously difficult to program effi-
ciently.

In this example, the FFT algorithm is divided be-
tween the control processor module 110 and floating-
point processor module 130, by assigning the address’
calculations for the data samples and phase coefficients
to the control processor module 110 and the butterfly
calculations to the floating-point processor module 130.

The portion of the FFT software which runs in the
CP module 110 calculates the address of the complex
data, as a function of the stage and butterfly numbers.
The complex phase coefficients are held in a table, and
thus part of the software will also calculate the position
of the needed coefficients in the table, as a function of
the stage and butterfly numbers. Once the addresses
have been calculated, the data and coefficients can be
fetched and transferred over to the floating-point pro-
cessor module 130. When the floating-point processor
module 130 has completed the butterfly calculations,
the control processor module 110 will read the results
and save them before repeating the address calculations
for the next butterfly. Note that the control processor
module 110 does not have to track the actual butterfly
calculation; it merely interchanges data with the float-
ing-point processor module 130 at synchronization
points. Note also that this software does not merely
calculate addresses, but also controls the actual data
transfers between the cache memory and the numeric
Pprocessor.

The portion of the FFT software which runs in the
floating-point processor module 130, calculates the but-
terfly by a simple linear sequence of instructions to
implement the butterfly calculations for the data set at
each successive stage. It knows nothing of the compli-
cated address calculations needed to provide the cor-
rect data and coefficients for each stage. The code for
the data calculations can therefore be written without
reference to the code for the data transfer operations. In
fact, if it is desired to use a different design for floating-
point processor module 130 (e.g. to use a different float-
ing point chip set, or a low-level data path architecture
which is more optimized for FFTs), then only this (rela-

. tively simple) portion of the software will require

65

changing.

The execution of the CP and FP software occurs in
parallel, and is pipelined so that the speed at which an
algorithm runs is determined by the slowest part.

ARCHITECTURE DESCRIPTION

Some of the key parts of the subsystem of FIG. 1 will
now be described in greater detail. However, it should
be understood that this is still only a summary descrip-
tion. Far greater detail will be provided below.
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Brief Review of CP Module 110 (FIG. 2A)

The Control Processor (CP) module 110 includes a 32
bit integer processor unit (IPU) 240, a microcode se-
quencer 210, an address generator (AG) 230, and mis-
cellaneous items such as microprogram memory, clock
generator, bus control, etc.

In the presently preferred embodiment, the integer
processor unit 240 is a Weitek XL8137, the sequencer
210 is an Analog Devices ADSP-1401, and the address
generator 230 is an Analog Devices ADSP-1410. As
will be readily understood by those skilled in the art, a
wide variety of other components could be used in-
stead, or equivalent functionality could be embodied in
other blocks instead.

The control processor module 110 has two main tasks
to undertake:

It controls the operation of the board (at a higher
level), by interpreting commands from the host,
requesting transfers by the DTP module 120, and
initializing the floating-point processor module 130
before it starts data calculations.

It generates addresses for the data cache memory,
and controls the transfer and routing of data be-
tween the data cache memory and the FP module
130. This activity normally occurs repeatedly dur-
ing the actual number crunching process, after the
high level control operations have been completed.
Loop control is handled by the sequencer, so that
the address generator and IPU can be used exclu-
sively for generating addresses.

Communication with other blocks is via a 32 bit wide
data bus (CD bus 112), which allows the control proces-
sor module 110 to read and write to the data cache
memory 140, command memory 190, and the control
registers of FP module 130. The control processor mod-
ule 110 can be interrupted by the host (via the VME
interface 160), by the floating-point processor module
130, or by the data transfer processor module 120. In
normal operation (i.e. apart from program development
and debugging) the only interrupt source will be the
data transfer processor module 120.

Brief Review of DTP Module 120 (FIG. 3A)

The Data Transfer Processor (DTP) Module 120 is
very similar to the control processor module 110, from
the programmer’s viewpoint, in that it uses the same 32
bit processor and sequencer. The bus control and inter-
face control are obviously different. One other distin-
guishing feature from the control processor module 110
is that the data transfer processor module 120 has a
microcode expansion port, which permits it to control
add-on boards (such as a bulk memory card or a net-
work card).

The data transfer processor module 120 has three
main tasks to undertake:

It controls the transfer of data between the data cache
memory and the external interfaces. (It does this in
response to high-level commands from the control
processor module 110 (or from the host).)

1t transfers commands from the external interfaces to
the command queues maintained in the command
memory 190, for subsequent processing by the
control processor module 110. Any of the external
interfaces can provide commands, but initially it is
expected that the VME interface will be the main
source. Suitable software will allow command lists
to be held in the data cache memory (or command
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14 .
memory), and be called as macros. (This method is
sometimes called “vector chaining.”))

In the debug environment, the data transfer processor
module 120 is the main interface between the
debug monitor (running on the host) and the micro-
code being debugged in the data transfer processor
module 120, control processor module 110 or float-
ing-point processor module 130. It also gives the
debug monitor access to the various memories that
are not mapped into the VME address space.

The transfer of data and commands between the ex-
ternal interfaces, the data cache memory, commend
memory, VME interface memory, and the data transfer
processor module 120 occurs over the 32 bit wide TD
bus 122. The external interfaces 150, 160, and 170 are
FIFO buffered, and interrupt the data transfer proces-
sor module 120 when they require attention, i.e. when
they receive some data or are getting empty. Additional .
interrupt sources are the host (via the VME interface),
and the control processor module 110.

Access by the data transfer processor module 120 to
the data cache memory is limited to cycles that are not
used by the control processor module 110. (The CP
module 110 may be using the memory either for trans-
fers to the floating-point processor module 130 or for
itself.) If the data transfer processor module 120 is
forced to wait too long for access, it can steal a cycle by
interrupting the control processor module 110.

Brief Review of FP Module 130 (FIGS. 4A-4C)

The Floating-point Processor Module 180 is located
on a separate board, which plugs into the main base
board. The operations of the floating-point processor
module 130 may be considered as having two distin-
guishable parts:

(2) The microcoded floating point unit. This section
undertakes the floating point calculations. The unit
was designed to achieve one goal—to run as fast as
possible, in order to obtain maximum performance
from the floating point hardware devices. To meet
these design aims, a very simple architecture is
utilized. It includes a floating point multiplier, a
floating point ALU (arithmetic and logic unit), fast
multiport refer files, and a very fast, but simple,
sequencer. In addition, a scratchpad memory is
closely coupled to the inner data paths, to hold
lookup tables and provide histogram storage. The
floating point arithmetic units interface with the
register files via two read ports and one write port.
Another write port is connected to one of the read
ports, to provide a data shuffle and replication
capability. The final port is bidirectional, and is
used to pass data into and out of the register files.

(b) The data cache memory interface. This part of the
FP module interfaces data cache memory to the
bidirectional port of the register files. There is a set
of bidirectional registers between the register file
and the data cache memory which pipelines the
data transfers and also handles the data multiplex-
ing and routing. The control for the transfer is
generated in the transfer logic. Note that many
parts of this interface, although physically located
together with the FP module 130, are clocked with
the CP module 110, and will generally be referred
to as an extension CP module 110 rather than as
part of the FP module 130.

A highly multi-ported fast register file is a key ele-

ment in providing a clean interface between the control
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processor module 110 and floating-point processor
module 130. One side of this register file runs synchro-
nously to the control processor module 110, and the
other side runs synchronously to the floating point pro-
cessor module 130. Thus, this clock boundary place-
ment permits changes to be made on one side of the
boundary without affecting the other side. This pro-
vides a migration path to faster, or more, integrated
floating point chip sets, and hence floating point device
independence.

Up to 4 floating-point processor modules 130 (or
algorithm-customized modules 130°) can be included in
one such subsystem. Some examples of interest are
shown in FIGS. 9A and 10.

Brief Review of DCM 140 (FIG. 5)

The Data Cache Memory 140 is a very high band-
width, multi-ported memory. The architecture of this
memory and its interfaces provides tremendous advan-
tages in the overall performance of .the system of the
preferred embodiment. The high bandwidth is neces-
sary to keep the floating-point processor module 130
supplied with data (and to remove its results), when the
floating-point processor module 130 is undertaking sim-
ple vector calculations. For example, a vector ‘add’
operation requires 3 number transfers per calculation,; if
the floating-point processor module 130 is able to sus-
tain a calculation rate of 20 Mflops, the memory band-
width required to keep up will be 240 Mbytes per sec-
ond.

The data cache memory has a memory bank made up
of 64K by 32 bit memory modules, providing 2 Mbytes
of on-board storage. This may be expanded by the use
of a remote memory expansion board 4310 which hangs
onto the cache bus 144. (Physically, this memory expan-
sion module plugs into the same connectors as the float-
ing-point processor module 130 modules.) This memory
expansion board, which will have the same bandwidth
as the on-board data cache memory, can be configured
to store an extra 12 Mbytes of memory in increments of
2 Mbytes. By using double capacity memory modules,
the on-board storage may be increased to 4 Mbytes and
the off-board to 24 Mbytes.

There are three ports to the data cache memory, one
to each of the processors. However, in many respects it
has been possible to treat the memory as only dual
ported, because the data transfers to the control proces-
sor module 110 and floating-point processor module(s)
130 are all controlled by the CP microcode. Data trans-
fers for the floating-point processor module 130 and
control processor module 110 have priority over 1/0
transfers, so the data transfer processor module 120 may
be forced to wait until there is a free memory cycle. If
the data transfer processor module 120 is kept waiting
too long, it can interrupt the control processor module
110 and gain access to the memory. This is not likely to
be a problem, unless the control processor module 110
is undertaking random accesses. Even then, for block
I/0 transfers, the data transfer processor module 120
will requires 8 cycles to transfer the data per memory
access, before it needs to request another block of data.

In order to obtain the high memory bandwidth with
reasonable cycle time memory devices, a wide memory
architecture has been chosen. The memory is 256 bits
wide, so that in a single access cycle, 32 bytes (8 F—.
words) are transferred. With the memory cycling in
periods of 100 ns, the memory bandwidth is 320 Mbytes
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per second for block transfers and 40 Mbytes per second
for random F_word accesses.

The data cache memory may also be used to hold
microcode overlays for the FP module 180. These can
be transferred into and out of the FP module’s writable
control store (WCS) when the floating-point processor
module 180 microcode exceeds the WCS size. The re-
loading of the WCS via this parallel load facility occurs
very much faster than the normal serial load under host
control. In fact, this capability is fast enough to allow
dynamic paging of the microcode.

Brief Review of CM 190

The Command Memory (CM) 190 is a small amount
(2K) of 32 bit wide memory, dual ported between the
control processor module 110 and data transfer proces-
sor module 120. Command, control and status data are
passed between the control processor module 110 and .
DTP via software queues or FIFOs maintained in this
memory.

Half of this memory is reserved for use by the micro-
code debug monitor, to hold the control processor mod-
ule 110 and floating-point processor module 130 state
information (as well as some command structures).

Brief Review of External Interfaces

The preferred embodiment includes several smart
interfaces. The most important of these is the host inter-
face 160 (also referred to as the VME interface). The
VME interface interfaces the subsystem of the pre-
ferred embodiment to the VME bus and complies with
the full electrical and protocol specifications as defined
in the VME bus specification, revision C1.

The VME interface operates in slave mode when the
VME host is loading up microcode, accessing control
or status registers, accessing the VME Interface Mem-
ory (VIM) or accessing the data FIFO. The slave inter-
face does not support byte or word accesses; it supports
only 32 bit parallel accesses. However, the control and
status registers are 16 bits wide, and therefore a 16 bit
host can still control the subsystem of the preferred
embodiment.

The VME interface operates in master mode when it
is transferring data between the data FIFO and VME
memory under local DMA control. The DMA activity
is controlled and monitored by the data transfer proces-
sor module 120 which can also initiate interrupt cycles
onto the VME bus.

The Data Pipe interface is designed to connect to a
high-bandwidth backplane bus. (Physically, this can be
configured simply using ribbon cable.) This bus pro-
vides a convenient mechanism for private inter-subsys-
tem communication. That is, the interface logic includes
two receiving ports and one sending port, so that sev-
eral busses of this type can be used as short local busses,
to provide a wide variety of system dataflow architec-
tures. The data transfers on this bus are buffered with
FIFOs (at the receiving end), and this architecture al-
lows high speed, low overhead transfers. Multiple sub-
systems can be connected in parallel or in series (e.g. in
a pipeline), which allows very high performance sys-
tems to be implemented easily.

As an example, a high performance, real time 3 D
graphics system can be constructed with two accelera-
tor subsystems and a picture processor, configured in a
pipeline. The first accelerator subsystem transforms and
clips the polygons for frame n, the second accelerator
sorts the polygons into drawing order (for hidden sur-
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face removal) for frame n—1, and the picture processor
draws the polygons for frame n—2.

The DTP microcode expansion interface is virtually
an extension of the DTP module 120 micro address and
data busses. It is 100% compatible (physically and elec-
trically) with the GIP microcode expansion bus, and
can use any of the expansion cards, designed for GIP,
that use this type of interface. The external bulk mem-
ory systems and network cards will connect to the sub-
system of the preferred embodiment via this interface

rt.

A Picture Data Bus Interface 170 (or “GIP Inter-
face”) connects to another bus which is particularly
optimized for graphics and image data. This interface
also permits connection to the GIP microcode expan-
sion bus, which allows a small mount of interface logic
on the subsystem of the preferred embodiment to be
controlled by the GIP microcode. This provides a bidi-
rectional, 16 bit wide FIFO between the GIP and sub-
system of the preferred embodiment along which com-
mands and data can travel Each side of the interface can
interrupt the other.

CONTROL PROCESSOR (CP) MODULE 110

The control processor is a 32 bit microcoded proces-
sor based around a 32 bit Integer Processor Unit (IPU)
240, which in the presently preferred embodiment is a
Weitek X1.8137. The IPU 240 is supported by a 16 bit
address generator (AG) 230 (which in the presently
preferred embodiment is an Analog Devices ADSP
1410), and a 16 bit sequencer 210 (which in the presently
preferred embodiment is an Analog Devices ADSP
1401). The main data path within the control processor
is the CD bus 112.

FIG. 2A provides a general overview of the organi-
zation of a control processor 110, in the presently pre-
ferred embodiment. A writable control store (WCS)
220 is a memory which contains a sequence of microin-
structions. A sequencer 210 provides microinstruction
address commands 211 to fetch microinstructions from
control store 220. The stream of instructions thus
fetched from control store 220 is shown as 221. Note
that both an unregistered output and an output regis-
tered through register 222 are preferably provided. The
registered output from 222 is provided to decoder 260.
Registers 222 and 223 are both configured as serial
shadow registers, and interface to a serial loop 225.
Note also that a portion of the microaddress stream is
also preferably provided on a line 211A, which will be
communicated to the floating point module 130. This
has advantages which will be discussed below.

Note also that the flow on line 221 is preferably bidi-
rectional That is, this line can not only be used to read
out microinstructions from the writable control store,
but can also be used, under some circumstances, to
write instructions back into the control store 220. This
is an important capability, which has advantages which
will be discussed below.

The microcode output 221 is provided as an input to
decoder 260. In conventional fashion, this decoder sepa-
rates the fields of a microinstruction and decodes them
as needed, with minimal low level decode logic. The
presently preferred microinstruction format is shown in
FIG. 2B, and will be discussed in greater detail below.
The outputs 261 of the decoder 260 are routed to all of
the major functional blocks, including the address gen-
erator 230, the integer processing unit 240 and the se-
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quencer 210. Because these lines are so pervasive, they
are not separately shown.

Note that the sequencer 210 receives inputs not only
from the IPU 240 through link register (transceiver)
214, and from address generator 280 via sequencer local
bus 215, but also receives several other inputs:

A variety of interrupt lines are multiplexed through a
multiplexer 213, and these interrupts will generate
the various alterations in the program counter op-
eration of a sequencer 210. Sequencer hardware for

. handling interrupts appropriately is very well
known.

Another multiplexer (shown as 212) is used to select
among a variety of condition code signals, for input
into sequencer 210. These condition code signals
are used in the logic of the sequencer 210 in various
ways, as will be further discussed below.

A buffer 217 is used to route constants which may.
have been specified by a field of the microinstruc-
tions 221.

In addition, some further inputs and outputs are
shown to the writable control store 220 and microin-
struction bus 221. A write enable line 224 is externally
controlled, e.g. from a host. In addition, a two-way
interface 211B permits the host to write or read to the
microaddress bus 211. This capability is useful for diag-
nostics, and also for writing microinstructions into the
control store 220, as will be discussed below.

A clock generator 250 receives cycle-duration inputs
from both the control processor 110 and the data trans-
fer processor 120. The duration of the current clock
cycle is selected on the fly, in accordance with the
longest duration specifier received from the CP and
DTP modules. This is preferably implemented using a
programmed logic array (PAL). As with decoder 260,
the outputs of the clock generator 250 are so perva-
sively routed that they are generally not separately
shown.

FIG. 2B shows the microinstruction field allocation,
in the presently preferred embodiment. Note that the
allocation of fields in the CP extension logic is also
shown. The operation of this extension logic will be
discussed in great detail below. However, at this point it
should be noted that the additional bits of microinstruc-
tion format 1n this extension field, and the WCS exten-
sion which stores these additional fields for each in-
struction in the primary WCS 220, and the logic which
decodes and executes these additional microinstruction
fields, are all replicated for each numeric processing
module 130 or algorithm accelerator in the subsystem.
Thus, the embodiment of FIG. 10 would include three
WCS extensions, and the total CP microcode field
would be 192 bits.

Note that separate instruction fields in the primary
instruction are allocated for the integer processing unit
2490 (32 bits), for the address generator 230 (10 bits), and
also for the sequencer 210 (7 bits). In the extension fields
(which would be stored in each WCS extension), fields
are allocated for register select, condition select, and
transfer control. The use of these bits will be discussed
in greater detail below.

Other instruction fields are allocated in ways which
are fairly conventional in the art of microcoded archi-
tectures. For example, a bit is used to indicate that a
breakpoint has been reached, several bits are used to
briefly describe the instruction type, two bits are used to
encode the clock control (to permit the variable-dura-
tion clocks, as discussed above), etc.
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The address generator 230 is an off-the-shelf address
generator unit. The calculations which can be per-
formed by this unit enhance the rapid address computa-
tion abilities of the control processor 110.

In addition, the integer processing unit (IPU) 240
provides still greater arithmetic capability. The IPU can
read and write from the CD bus 112, and can also out-
put addresses onto the CA bus 111 (through the register
241). These addresses, as may be seen in the high level
diagram of FIG. 1, provide address information to the
cache memory 140, and also to the command memory
120.

The actual component used for the integer processing
unit 240, in the presently preferred embodiment, has
significant arithmetic capability, including the capabil-
ity to do multiplies in hardware. Thus, units 230 and 240
together provide a large amount of arithmetic hardware
available for the purpose of address generation. In addi-
tion, of course, the sequencer 210 includes some logic
which also performs the function of microinstruction
address generation.

Note that the address generator 230 has an output
231, which is buffered and connected back onto the CD

20

bus 112. The sequencer 210 can read the outputs of 75

integer processing unit 240 (through link register 214),
but the IPU 240 can also be commanded to drive the
CD bus 112. The cache memory 140, the FP module
130, or the command memory 190 can also access these
results, once they are put out on this bus.

Register 203 (shown at the top left of FIG. 2A) stores
several little-used control signals. These include signals
for diagnostics, LED control signals, etc.

INTEGER PROCESSOR UNIT (IPU) 240

The IPU 240 contains a 4 port register file 1110, an
ALU 1120, a field merge unit 1130, and a multiply/di-
vide unit 1140. A simplified diagram showing these
components is shown in FIG. 11. The two external data
paths are shown in this figure as the D and AD buses
1101 and 1102. In the control processor module 110, the
AD bus 1102 is connected through register 241 to serve
as the address bus to the various memories, and the D
bus 1101 connects directly to the CD bus 112.

The IPU 240's four port register file 1110 allows, in a
single cycle, such operations as r1=r2+13, in addition
to a write into the register file via the fourth port. The
ALU 1120 provides all the usual arithmetic and logical
operations, as well as priority encoding and bit or byte
reversal instructions. The field merge unit 1130 pro-
vides multi-bit shifts and rotates, variable bit field ex-
tract, deposit and merge functions. The multiply/divide
unit 1140 runs separate from the rest of the IPU 240:
once it has started doing a multiply or divide operation,
any other non-multiply/divide instructions can be exe-
cuted by the ALU 1120 or field merge unit 1130. The
multiply operation is 32 by 32 signed (8 cycles), and the
divide operation is 64 over 32 bits unsigned (20 cycles).

Register 241, external to the IPU 240, is used at the
interface to the CA bus 111. This introduces a pipeline
delay when accessing memory. (This register is neces-
sary because, with the specific part used here, the AD
bus is not valid until 75-90 ns after the start of a cycle.)

The microcode instruction input to the IPU 240 (on 2
“C” bus 1103) is registered internally (in a register
1151), so the microcode instruction is taken directly
from the writable control store (WCS).
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ADDRESS GENERATOR (AG) 230

The configuration of the address generator 230 used
in the preferred embodiment is generally shown in FIG.
12. Key elements include a 16 bit wide ALU 1210, 30
internal registers (functionally grouped as 16 address
registers 1222, 4 offset registers 1224, 4 compare regis-
ters 1226, and 4 initialization registers 1228. Also in-
cluded are an address comparator 1230 and bit reverser
1240. An internal bus 1250 provides data routing, and a
“Y” bus 1270 provides address outputs 231 which are
fed back onto CD bus 112 (when output buffer 232 is
enabled). The “D” bus 1260 is connected to provide
inputs or outputs to the sequencer data bus 215, which
is separated from the CD bus 112 by link register/tran-
sceiver 214. The actual device also includes an instruc-
tion decoder and miscellaneous timing and glue logic,
not shown. .

These features allow the address generator 230, in a
single cycle, to:

output a 16 bit address,

modify this memory address by adding (or subtract-

ing) an offset to it,

detect when the address value has moved to or be-

yond a pre-set boundary, and conditionally re-ini-
tialize the address value.

This latter step is particularly useful for implementing
circular buffers or module addressing.

The address generator 230 augments the address gen-
erating capabilities of the IPU 240. However, the partic-
ular chip used for the address generator 230 can only
generate 16 bit addresses, if operating directly. (Double
precision addresses would take two cycles, or two chips
can be cascaded.) In the presently preferred embodi-
ment, the 16-bit address outputs of the address genera-
tor 230 are passed through the IPU 240, where they can
be added to a base address and extended up to 32 bits.

The address generator’s registers are accessed via its
16 bit wide D port, which is connected to the same local
portion 215 and link register 214 as the sequencer.

The addresses come out of the Y port 1270 (shown as
line 231 in FIG. 2A). The addresses are passed through
a three-state buffer 232 before connecting to the CD bus
112. When either the address generator’s D or Y port is
read (i.e. is called on to drive the CD bus) the 16 bit
values can be zero extended or sign extended to the bus
width (32 bits). The logic which performs this is located
in sign/zero extend PAL 216, which is discussed in
greater detail below. Zero extension or sign extension is
controlled directly from the CP microcode. (This fea-
ture is available when any of the 16 bit wide ports are
selected to drive the CD bus.)

The instruction set of the address generator 230 is
divided into the following groups:

Looping,

Register transfers,

Logical and shift operations,

Control operations, and

Miscellaneous operations.

The microcode instruction input to the address gener-
ator is registered internally, so the microcode instruc-
tion is taken directly from the WCS 220.

SEQUENCER 210 AND ASSOCIATED SUPPORT
LOGIC

In the presently preferred embodiment, sequencer
210 employs an ADSP 1401. Key elements of this par-
ticular implementation are shown in FIG. 13. These
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include a 16 bit adder 1310, a 64X 16 bit RAM 1320,
interrupt logic 1330, interrupt vector storage 1340, and
four loop counters.

The internal RAM 1320 can be used in three ways:

As a register stack: This allows up to four addresses
to be saved on the stack when entering a subrou-
tine. These can then be accessed by a 2 bit field in
the relevant instructions.

As a subroutine stack: This provides the normal re-
turn address storage for subroutine linkage and
interrupts. It can also be used to save other parame-
ters such as the status register or counters.

For indirect address storage: This allows an area to
be set aside to hold often used addresses. These are
accessed using the least significant 6 bits of the D
port.

Stack limit registers 1321 protect against one stack

area corrupting another, or stack overflow and under- -

flow situations. If one of these occurs then an internal
interrupt is generated, so an error condition can be
flagged or the stack extended off-chip (stack paging).

Ten prioritized interrupts are catered for—two inter-
nal to the device, for stack errors and counter under-
flow, .and eight external. All the interrupt detection,
registering and masking is handled on-chip by logic
1330, and the corresponding vector is fetched from the
interrupt vector file 1340.

The instruction set is very comprehensive with a
wide variety of jumps, subroutine calls, and returns.
Most of these instructions can use absolute addresses,
relative addresses, or indirect addresses to specify the
target address. They can also be qualified by one of the
selected conditions:

Unconditional. Execute the instruction always.

Not flag. If the condition code input (called FLAG)

is false then execute the instruction, otherwise con-

. tinue (the usual fail*instruction).

Flag. If the condition code input is true then execute
the instruction, otherwise continue (the usual fail
instruction).

Sign. Execution of the instruction depends on the
sign bit in the status register.

There are also instructions to do stack management,
status register operations, counter operations and inter-
rupt control.

The microcode instruction input is registered inter-
nally, so the microcode instruction is taken directly
from the WCS (unregistered).

The sequencer support logic falls into four categories:
interrupts, conditional code selection, micro address
bus, and constant/next address field.

Interrupts

The chip used for sequencer 210, in the presently
preferred embodiment, only has four interrupt input
pins. Therefore an external multiplexer 213 is used to
extend the number of available interrupts to eight. The
interrupts are mainly used for communication and to
support debugging tools.

The interrupt sources are (in order of highest priority
first):

Claw Logic

Within the debug environment there are, nominally,
two tasks running: the monitor task and the user task.
The claw logic allows the user task to be single stepped
without single stepping the monitor task as well. The
claw logic “claws back control” to the monitor task
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after one instruction in the user task has been run. The
instruction that returns control back to the user task
requests a claw interrupt. Since this is delayed by one
cycle, the interrupt occurs on the first instruction exe-
cuted in the user’s task. Thus control is returned back to
the monitor task before the next (i.e. the second) in-
struction in the user task is executed.

Breakpoint

This interrupt level is connected directly to a micro-
code bit, so that whenever this bit is set an interrupt will
occur. This provides a convenient mechanism for im-
plementing breakpoints. The instruction with the break-
point bit set will be executed, and then control passed to
the breakpoint handler. Any number of breakpoints can
be set.

VME Bus

The VME bus interrupt is normally used only for
supporting the debug monitor and should not be used
during normal operation.

Floating Point Processor (breakpoint)

When the floating-point processor module 130 hits
one of the breakpoints set in its WCS, the FP clocks are
stopped. The FP module notifies the control processor
module 110 of its situation via this interrupt.*

DTP Memory access

This interrupt is used to force the control processor
module 110 to temporarily suspend accesses to the data
cache memory. This permits the data transfer processor
module 120 to gain access to cache 140.

DTP (command)

This interrupt is the normal method for the data
transfer processor to inform the control processor mod-
ule 110 that there is a command in the cp_command
FIFO (in command memory 190).**

DTP (data transfer done)

This interrupt is used by the data transfer processor
module 120 to inform the control processor module 110
that a data transfer request has been finished.**

Floating Point Processor (general)

This interrupt can be generated as a result of the
CPWAIT, FPWAIT changing state, or the occurrence
of an error (whose type can be defined in software), or
a breakpoint in the floating-point processor module 130.
The active events are selected by a mask register, on the
FP module 130, which the control processor module
110 can load. This interrupt is not used at present, and is
reserved for future use. In systems using multiple FP
modules 130, the four FPs will share this interrupt. The
interrupt service routine will therefore need to identify
which FP(s) mused the interrupt, in order to service
them accordingly.*

Note: The interrupts marked with * can also be tested
by the normal condition code logic, so that if it is
more convenient for them to be polled then they
can be.

For the interrupts marked **, the situation that gener-
ates the interrupt condition can be detected by
examining the control information in the software
FIFO data structures. This can be polled if inter-
rupts are not used.
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The use of multiplexer 213 to expand the number of
interrupts forces different timing requirements between
the four high priority interrupt levels and the four low
priority interrupts. For the four highest priority inter-
rupts to be recognized, they must occur 25 ns before the
rising edge of the microcode clock. For the lower prior-
ity interrupts, the time limit is 15 ns before the falling
edge.

To generate an interrupt, the corresponding interrupt
input is held high for one clock period. No hardware
interrupt acknowledge cycle is necessary, so the inter-
rupt generating hardware is very simple.

Condition Code Logic

The sequencer has a single condition code input
called FLAG, and all of the testable status signals are
multiplexed into this pin. This is registered internally,
and has a normal set up time of 10 ns when IR0 is
masked (counter underflow interrupt), or 26 ns when
enabled. The polarity of the FLAG input can be
changed inside the sequencer.

As seen in FIG. 40A, some additional logic is prefera-
bly used to preserve the state of the FLAG inputs out-
side the sequencer 210. This permits the internal state of
the sequencer 210 to be fully restored after an interrupt.

A PAL 4021 is used to emulate the internal flip-flop
4020, inside the sequencer 210 (or 310). This PAL is
thus operated simply as a “mimic register.” The need
for this can arise under conditions as shown in FIG.
40B. .

When an interrupt occurs, the sequencer will divert
to an interrupt handling routine. During this routine the
mimic register PAL simply holds a copy of the status
flag condition which existed before the interrupt. At the
end of the interrupt handling routine, the multiplexer
212 is commanded to provide the output of the PAL
4021 as the FLAG input to sequencer 210. This restores
the internal state of flip-flop 4020. This permits instruc-
tion flow to continue in the same sequence it would
have if the interrupt had not occurred. This is particu-
larly important if the instruction following the interrupt
is a conditional branch. Correct restoration of the inter-
nal state assures that the conditional branch will be
correctly executed.

Of course, this logic would not be necessary with
some sequencers. However, it is advantageous with the
particular sequencer used in the presently preferred
embodiment.

The testable status signals are:

IPU 240 condition code output: this relays the status
of the current instruction. Which condition is indi-
cated by the IPU output on this pin is defined by
the microcode instruction.

Microcode loop: This is a status bit in the VME inter-
face control register and is useful for diagnostic
software.

Write flags 0 and 1: These two signals allow better
access to the internal state of the data cache mem-
ory write logic and are only used by the state save
and restore microcode in the debug monitor.

Held status: This is tested when returning from an
interrupt, so that any conditional jump, etc., is
executed correctly even if it was displaced by a
jump to the interrupt service routine.

FP status signal CPWAIT: This is cleared when the
FP has finished its calculations and is waiting for
more data.
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FP status signal FPWAIT: This is cleared when the
control processor module 110 has finished its calcu-
lations and is waiting for more data.

FP status signal bank_select: This indicates which
half of the FP register file is allocated to the con-
trol processor module 110, when the register files
are used in the double buffered (logical) mode.

FP status signal: Serial loop. This is extracted from
the end of the serial loop that runs through the
floating point chips on the FP. The interfaces to
this serial loop allow the control processor module
110 to extract (and insert) the internal status of
these devices.

FP status signals: cp_wait—interrupt and fp_wai-
t_interrupt. These two status bits are set (if mask-
ing permits) whenever their respective signals have
gone from high to low. The signals FPWAIT and
CPWAIT are directly tested, since they might.
return high again before the CP can identify the
interrupt source.

FP status signal fp_breakpoint. This is only used for
debugging, and is set whenever the FP hits a break-
point.

FP status signal: fp—error. This is set whenever an
error occurs in the floating-point processor module
130. It has been included for future use.

The FP status signals share a common line into the
sequencer, and the actual one to be tested is selected by
the portion of CP extension microcode.

The condition output from the IPU 240 is valid too
late to meet the sequencer’s set up time (especially as it
will be delayed by a multiplexer), when cycling in 100
ns. When testing this condition the clock will need to be
stretched to 125 ns.

Implementing “for loops” is best done by using one of
the counters internal to the sequencer, thus freeing the
IPU 240 for address calculations. For-loops could be
done using the IPU 240, but this would impose extra
overhead due to a longer cycle time.

The condition codes are multiplexed via an 8 to 1
multiplexer 212 into the “FLAG” input in the se-
quencer. The sequencer internally registers and selects
the polarity of the selected condition code signal.

Micro-address Bus

The micro-address bus 211 and 211A can be driven
from two sources: from the sequencer 210 during nor-
mal program execution, and from the VME bus when
loading microcode. The VME bus can also read the
contents of the micro-address bus to see what address
the sequencer is at. This is done asynchronousty to the
sequencer operation, and is mainly used for diagnostics.

The micro-address bus 211 is also routed onto the FP
module (shown as extension 211A) because 32 bits of
the control processor module 110 WCS is located on
each FP module. The micro address bus extension 211A
can also be used to drive the FP WCS. This capability
can be useful for two reasons:

1) As a means for the host to provide an address when

the FP microcode is down loaded.

2) As a mechanism which could be used for running
the FP microcode synchronously with the control
processor module 110, so that the address of the
sequencer 210 in the control processor module 110
is used rather than the internally generated one.
(This capability is not present in the principal pre-
ferred embodiment, but is noted as a readily avail-
able alternative.)
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Constant Field

The 16 bit wide constant field of the microinstruction
is mainly used to provide addresses to the sequencer,
but can also hold constants for the address generator.

The sequencer 210 has a bidirectional connection to a
private local bus (the sequencer data bus 215). This
permits jumps, etc., to be done in parallel with actions
using the CD bus 112. The sequencer data bus is linked
to the CD bus 112 via a bidirectional link register/tran-
sceiver 214. The timing of the clocks and the “feed
through” control to the link register 214 are varied,
depending on the transfer path and direction, because
the source and destinations all have different require-
ments. Note that the address generator data input 1260
is connected to the sequencer side of this interface,
because the address generator 230 has the same timing
requirements as the sequencer for transfers on this bus.

This configuration allows the following routings:

Constant field — > Sequencer (Jumps)
Constant field — > CD bus (Register loading)
Sequencer — > CD bus (Diagnostics)

CD bus — > Sequencer

Constant field — > Address generator
Address Generator — > CD bus

CD bus — > Address Generator

(Computed Jumps)

(Diagnostics)
(Computed addresses)

WRITABLE CONTROL STORE (WCS) 220

In the presently preferred embodiment, the WCS
memory bank uses microcode SIL modules. These pro-
vide 8K by 32 bits of memory, together with serial
shadow registers 222 and 223 for loading microcode
and for diagnostics. The operation of these shadow
registers will be discussed in much greater detail be-
low.) Two versions of the module are used: registered
or non-registered outputs. The IPU 240, and address
generator 230, and sequencer 210 have their own inter-
nal pipeline registers, and so use the non-registered
outputs from WCS 220.

It should be noted that the control processor mod-
ule’s WCS is actually distributed. In addition to the
primary WCS portion 220 shown (which is physically
located on the base board), there are also one or more
other extensions of WCS 220. These extensions 490
receive the microaddress stream 211A, and physically
reside on each FP module. The instruction set stored in
the primary WCS 220 contains 96 bits of instruction at
each address. The WCS extensions 490 each span the
same range of addresses as the primary WCS 220, but
each of the WCS extensions (in each of the numeric
processor modules 130) contains an additional 32 bits of
instruction at each address.

WCS Interface Registers 222 and 223

The operation of the serial loop by which the host
(working through the VME Interface 160) can read
from and write to all of the control stores will be dis-
cussed in detail below. At this point, hardware structure
and connections will be described.

As noted, register 222 provides a registered microin-
struction output, to the decoder 260 and to many other
logic and memory components. An unregistered micro-
instruction output 221 is also provided, for components
which have internal instruction registering. (For exam-
ple, the IPU 240 has internal instruction pipeline regis-
ters. It also has sophisticated internal decode logic.
Note that the IPU 240 also receives some registered
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control bits from the decoder 260, e.g. output enable
signals.)

The register 222 is actually a serial shadow register. It
not only provides a registered parallel throughput, but
also has a serial access mode. The serial access mode is
used for interface to the serial loop described below.

The other serial shadow register 223 shadows the
unregistered outputs 221. To provide a serial output
(when demanded) which corresponds to the complete
instruction 221 (or, conversely, to write the full width
of an instruction 221 back into the control store 220), all
bit fields must be accessed.

Of course, the connections just described provide
only a data interface to the WCS 220. That is, the regis-
ters 222 and 228 see the content of locations in WCS
220, but do not see addresses explicitly associated with
the data. The address interface is a separate two-way
interface, which is shown as a bidirectional connection
211B. This is the CP microaddress bus, which is con-
nected to the microcode load control logic 610 in the
VME Interface. This same bus provides the microad-
dress interface to all of the control stores in the system,
except for the DTP control store. The microaddress
line in the DTP control store is connected to another
register/buffer pair in the VME Interface.

FP CONTROL LOGIC

An important feature of the architecture is that the
control processor module 110 is not merely a supervi-
sory processor, but directly controls all data transfers to
and from the floating-point processor module 130. Most
of this logic is physically on the FP module, but is con-
trolled by the microcode of the control processor mod-
ule 110, and interfaces to the CD bus. This logic is
discussed in much greater detail below, where the data
operations of the FP module are reviewed.

MISCELLANEOUS LOGIC
Mode Registers 203

The mode registers 203 hold the value of little used
control signals which can not justify dedicated micro-
code bits. The mode bits are:

Flow through or rear control of the read holding

registers 561.

Flow through or register control of the write holding
registers 561 (the registers shown as 561 in FIG. 5
are actually doubled, and include one read register
and one write register).

Loopback mode for the holding registers S60.

Two LED control signals.

Module select (3 bits): this address selects among the
multiple possible FP modules 130 and/or algorithm
accelerators 130'.

CD Bus Decode Logic

One of the functions of decoder 260 is to decode the
microcode CD source field to control the output ena-
bles of devices that can drive the CD bus. It also de-
codes the CD destination field to generate clock strobe
and write enable signals (which are qualified by write
gate signal from the clock generator). Most of the ports
on the CD bus can be read and written, so mimic regis-
ters in the IPU 240 are not required. (Note that some of
the CD sources and destinations will be controlled by
decode logic in the CP Extension Logic 410, rather than
by that in the decoder 260.)
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Possible CD bus sources and destinations include:
IPU 240; Command memory; Data cache memory
holding registers 560A; Mode register (8 bits); Transfer
control register * **; FP control register * **; Start
address register * **; Instruction register (8 bits) *;
Status register (source only) *; Address generator ad-
dress port **; Address generator data port **. Se-
quencer data port **; Constant/next address field
(source only) **. Registers marked * are part of the CP
Extension Logic 410, which is located on the FP mod-
ule. These registers are selected by fields in the ex-
tended CP microcode, which is stored in the WCS
extension 490. Only the selected module(s) respond to
the data transfer, and source or sink the data. Sources
marked ** only drive the lower 16 bits. When one of
them is selected, the sign/zero extend PAL 216 is also
activated, so that the data is either sign or zero extended
up to the bus width of 32 bits.

Note that only one source and one destination can be
selected, and that they must be different. The transfer of
data into the IPU 240 is under control of the IPU 240’s
instruction field, so that it can take data from the CD
bus at the same time it is being loaded into another
destination.

CLOCK GENERATOR 250

The clock generator 250 produces the basic clock
signals used throughout the control processor module
110 (and the data transfer processor module 120). It
receives cycle-duration inputs from both the control
processor 110 and the data transfer processor 120. The
duration of the current clock cycle is selected on the fly,
in accordance with the longer duration of the two re-
ceived from the CP and DTP modules.

This generator is preferably implemented using a
programmed logic array (PAL). This PAL generates
one of four predefined waveform sequences. These four
sequences have different periods, namely 4, 5, 6, and 7
times the input clock period. This translates to 100, 125,
150 and 175 ns, when a 40 MHz oscillator is used, as
presently preferred.

Four clock outputs are produced. All of these clocks,
except the time-two clock, will have the same duration,
depending on the cycle-duration inputs. These include a
microcode clock, a pipeline clock, a write-enable gate
signal, and a times-two clock.

The microcode clock is always high for 2 cycles (of
the oscillator), and then is low for 2, 3, 4 or 5 cy-
cles, as selected by the cycle length inputs. The
microcode clock keeps the sequencer, integer pro-
cessor unit address generator, registers, etc. run-
ning synchronously.

The pipeline clock has the same waveform as the
microcode clock, but the microcode clock can be
disabled, leaving the pipeline clock running, for
microcode loading.

The write-enable gate signal goes low one cycle after
the microcode clock goes high, but returns high 1
cycle before the microcode clock does.

This signal provides the timing for write enables for
all of the memories and some of the registers.

The times-two clock runs at twice the frequency the
microcode clock does, and its rising edge occurs at the
same time as a the microcode clock edge. This is a
special clock, which is used only by the Integer Proces-
sor Units 240 and 340. The IPUs use this clock to clock
their (internal) multiply/divide logic, in order to reduce
the time taken for these multi-cycle functions.
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The cycle length of the clocks are adjusted for each
instruction, so that the time allocated to that instruction
is the minimum required by the data path routing speci-
fied in the instruction. The cycle duration for each
instruction is preferably calculated by the microcode
assembler, and is included as part of the instruction.
This gives an increase in performance over the case
where a fixed cycle length is used, in which case all
instructions would have to take as long the slowest
instruction. In the presently preferred embodiment four
cycle lengths are supported, of 100, 125, 150 and 175 ns.
However, most instructions will use the shortest cycle
length.

The clock cycle can also be extended by a “wait
signal.” This wait signal is used when memories cannot
meet the normal access time, e.g. because they are busy,
or because they are off-board and their access times
must be extended due to the additional buffering. For -
example, the VME interface memory, which is dual
ported, may suffer a clash on addresses and require one
port to wait. The data cache memory 140 can be ex-
panded (as shown in FIG. 43) with a cache memory
expansion module, mounted on a memory board which
uses the same connectors as the FP module. However,
depending on the memory type used, accesses to the
cache expansion module may be slower than accesses to
the primary cache 140. In such cases the wait-state input
to the clock generator will permit the cycle length will
be automatically extended. This facility will allow
much slower, and hence cheaper, memory to be used on
the expansion module 4310, with only modest degrada-
tion in performance.

The host can control the clock generator via the
VME bus interface. The host can thereby select
whether the clock generator 250 free runs or is stopped.
In the stopped condition, the host can single step the
clocks. Note that both the control processor module
110 and data transfer processor module 120 will be
single stepped together.

The final control into the clock generator is one that
inhibits all the clocks except the pipeline clock (which
behaves normally). This is used when loading (or read-
ing) WCS, as it allows these actions to occur without
disturbing the internal state of the control processor
module 110 or data transfer processor module 120. For
example, this would be used when a breakpoint is set in
WCS during a microcode debugging session.

DEBUG HARDWARE

Most of the debug hardware included in the control
processor module 110 has already been mentioned in
various places above. Key features are summarized here
for convenience:

The host can take control of the microaddress bus

211, both for read and for write.

The host can load and read back the WCS 220.

The control processor module 110 recognizes a VME
generated interrupt (i.e. an interrupt from the host)
as a high priority interrupt.

Hardware breakpoint support is provided, with no
restriction on the number of breakpoints that are
set at any one time.

Claw logic is provided, so a user task can be single
stepped without single stepping the monitor task.

All registers are read/write, permitting many normal
data flows to be reversed for diagnostics.

A clock control input permits single stepping micro-
code.
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All interrupts can be selectively enabled or disabled.
The internal state of the critical logic groups can be
accessed. This allows a complete state save and
restore of the control processor module 110 hard-
ware.

MICROCODE WORD FORMAT

FIG. 2B shows schematically the organization of the
microinstructions stored in WCS 220 and in the WCS
extension(s) located on the FP module(s). The items
marked with a * come directly from the WCS, and are
pipelined internally in the devices they are controlling.
The other items are registered at the output of the WCS
220.

The fields marked ** are physically stored in the
WCS extension on the FP module, but are part of the
CP microcode word. Most of these microcode actions
are qualified by the module selection logic, and will
have no effect if the FP module hasn’t been selected.

The total number of microcode bits available are 96
plus an extra 32 per FP module installed. Most of the
bits are used, but there are also a few spare bits avail-
able.

IPU opcode (32) * This field controls the data routing
and arithmetic or logical operation of the IPU 240
integer processor. The allocation of bits within the
field is encoded. All instructions are encoded in the
bottom 24 bits. The top 8 bits are only used during
the transfer of data into the IPU 240’s register file.
(Further details of this field may be found in the
manufacturer’s data sheets for the IPU.)

Sequencer opcode (7) * This field controls the gener-
ation of the next address by the ADSP 1401. (Fur-
ther details of this field may be found in the manu-
facturer’s data sheets for that part.)

Constant/next address field (16) * This field is mainly
used for providing address information to the se-
quencer, but can also be used to place a 16 bit con-
stant value onto the data bus. This can then be
loaded into any of the registers on this bus.

Address generator opcode (10) * This field controls
the ADSP 1410 address generator. (Further details
of this field may be found in the manufacturer’s
data sheets for that part.)

Cycle length (2) This field selects the cycle length
appropriate to the instruction and data routing
selected.

Data cache access (1) * This bit is active whenever an
access to the data cache memory is required by the
control processor module 110 for its own use or to
transfer data to or from the FP. The access flag is
not pipelined so that the arbitration with the data
transfer processor module 120 data cache requests
can be sorted out before the start of the cycle the
request happens on.

Data cache write enable (1) This bit generates a write
cycle in the data cache memory.

Data cache write all (1) This bit overrides the normal
write enable gating that allows selective updating
of words in' the data cache memory and forces
them all to be written. This is useful when setting
blocks of memory to a constant value.

Data cache port select (1). This bit selects either the
FP module holding registers or the control proces-
sor module 110 holding registers to be the source
or destination for a data cache transfer.

Data cache memory length (3) These bits specify the
number of words from the FP holding register to
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write into the data cache memory. The first word
in the holding register is specified by the least sig-
nificant three bits of the data cache memory ad-
dress. i

Condition code select (3) This field selects one of the
following condition codes to be tested by the se-
quencer during a conditional instruction: IPU 240
condition code output; fp—status (actual status
selected by a separate field); fp_breakpoint; micro-
code loop; write flags (2 entries); hold status.

CD bus source (3) This field selects one of the follow-
ing registers, buffers or devices to drive the CD
bus: IPU 240; Command memory 190; One of the
Data cache memory holding registers 561*; Mode
register; FP module*; Address generator address
port; Address generator data port; Sequencer data
port; Constant/next address field; (* Note that the
particular register or buffer to use as the source is.
specified in another; field.)

CD bus destination (3) This field selects one of the
following registers, buffers or devices as the desti-
nation of the data on the CD bus: Command mem-
ory; Data cache memory holding register; Mode
register; FP module (the particular module to use
as the source is specified in another field); Address
generator address port; Address generator data
port; Sequencer data port.

The 1PU 240 is not included because it can “grab” the
data on the CD bus at any time. (This function is con-
trolled by the IPU instruction field.)

Address register control (2) One of these control bits
enables the loading of the address register and the
other bit enables readback of the register for use by
the diagnostics and debug monitor.

Module select (3) The most significant bit (broadcast
select) controls how the other two bits (module
ID) are interpreted. When broadcast select is 0 the
module (ID) selects the single module which is to
respond to a data transfer, either with the data
cache memory or the CD bus. When broadcast
select is 1 the module ID selects which group of
FPs (or algorithm accelerators) responds to a data
transfer. This allows the same data to be trans-
ferred to multiple destinations at the same time and
hence is faster than individual writes. Note that this
is only valid for transfers to the modules, since
multiple transfers from the modules could cause
contention on the data bus.

Module select mode (1) Specifies whether the module
to select is defined by the microcode module select
field or by the mode register. This allows the mod-
ule to be selected on a cycle by cycle basis or more
globally. The global method is used when the work
can be done on any of the FP modules present and
the control processor module 110 picks the FP to
use before it starts the transfer/calculate cycle. If
the global facility wasn’t available then there
would be a different control processor module 110
routine to correspond to every FP module.

Breakpoint (1) (** Debug use only **) Set by the
debug monitor to place a breakpoint on an instruc-
tion. This causes an interrupt to occur during the
instruction so that control is passed to the debug
monitor microcode after this instruction has fin-
ished.

Claw (1) (** Debug use only **) Set to prime the
claw logic when single stepping a user task. This
causes an interrupt to occur during the next in-
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struction so that control is passed back to the debug

monitor microcode after one user task instruction

has been executed. This allows a user task to be
single stepped without physically switching the
clocks on and off.

Interrupt DTP (1) This generates an interrupt in the
data transfer processor module 120 to gets its atten-
tion. The net result of this is to force the data trans-
fer processor module 120 to examine a command
queue to find its next item of work.

Zero or Sign extend (1) This only has any effect when
a 16 bit wide register or device is read. This signal
selects whether the data is zero extended (bits
16-31 set to zero) or sign extended (bits 16-31 set to
the same as bit 15).

Held Status (1) This bit prevents the updating of the
mimic status register that normally follows the
state of the FLAG register inside the sequencer
210. Normally this mimic bit follows the internal
register’s state, but during an interrupt service the
mimic bit is prevented from being updated. This
permits the FLAG register to be correctly restored
when the interrupt routine is exited.

FP condition code select (3) ** These bits select
which one of the internal FP module signals drive
the common condition code line to the control
processor module 110 sequencer. The following
can be selected: CPWAIT; FPWAIT; ban-
k_select; serial loop; cp—wait_interrupt; fp—wai-
t_interrupt; fp—breakpoint; and fp—error.

Register select (3) ** These bits select which one of
the internal registers 444 on the FP module are to
be read or written via the CD bus (bottom 16 bits
only). The registers and buffers are: Transfer con-
trol register; FP control register; Start address
register; Instruction register (8 bits); Status register
(source only).

Register direction (1) ** This bit selects whether a
register is to be read or written.

Clear FP breakpoint (1) ** This bit clears the FP
breakpoint, which in turn allows the FP clocks to
run.

Jump start address (1) ** This bit causes the FP se-
quencer to use the start address register 479 (loaded
by the control processor module 110) as the ad-
dress to the next instruction to execute. This is a
“one shot” action, so after the FP has executed the
instruction at the start address the FP sequencer
reverts back to its normal mode of operation.

Transfer Control (20) ** This field controls the trans-
fer of data between the holding registers 420 (on
the FP module) and the FP module’s fast register
files 430. Only a brief description of each sub-field
is included here, because their use will only be-
come apparent once the overall transfer mecha-
nisms have been explored.

Direction (1) This bit determines the transfer direc-
tion between the holding registers 420 and the
register fie 430. The direction is either holding
register to register file or register file to holding
register.

Transfer enable (1) This bit starts a transfer cycle,
as defined by the other microcode bits and the
registered control bits (in the transfer contro}
register).

Register file address (6) The address specified here
is the address of the first word in the register file
that data is read from or written to.
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Register file address modifiers (2) These specify
how the register file address is to be modified to
implement physical, logical or preview mode of
addressing which are all concerned with how
the register file is shared between the control
processor module 110 and FP.

Holding register start address (3) This specifies the
first holding register to use in a transfer.

Holding register start address mode (2) The hold-
ing register start address can be specified to
come from one of three sources:

1. From the CP microcode field mentioned in the previ-
ous paragraph;

2. From a field held in the FP module’s transfer register;
or

3. From the least significant 3 bits of the address used in
the last CP access to cache.

Handshake mode (3) The handshake mode controls -
the handshaking between the control processor
module 110 and FP via the FPWAIT and
CPWAIT mechanism, and the bank selection.
Several of the modes override the normal hand-
shaking procedures, so the main signals can be
initialized or set for debugging purposes. The
modes are: set CPDONE; request register file
swap; set CPDONE and request swap; clear
CPDONE; test mode (used only for diagnostics);
and no operation.

Double write enable (1) The double write enable
forces two words to be transferred into the register
file instead of the one that the length or start pa-
rameters are requesting. This ensures that the valid
data is tagged with its data valid flag asserted and
that the invalid data is tagged with its valid data
flag disasserted. These flags are tested by the FP to
identify which data items are valid.

Clock All holding registers This bit overrides the
normal holding register clock sequencing when
transferring data from the register files into the
holding registers. When active this bit causes all
registers to be clocked together rather than sequen-
tially which quadruplicates the register file data
into all holding registers.

DATA TRANSFER PROCESSOR MODULE 120

A block diagram of the data transfer processor mod-
ule 120 is shown in FIG. 3. Note that it is very similar
to the control processor module 110, except that the
DTP module 120 does not include a separate address
generator like address generator 230. If the specialized
features in each processor were not used, the same mi-
crocode (at source level) could in principle be run in
both processors.

The data transfer processor module 120 is a 32 bit
microcoded processor, based around a 32 bit Integer
Processor Unit (IPU) 340 controlled by a 16 bit se-
quencer 310. The main data path within the data trans-
fer processor module 120 is the Transfer Data bus (TD
bus) 122.

Many of the portions of DTP module 120, in this
embodiment, are closely analogous to portions of the
control processor module 110. In general, correspond-
ing reference numerals have been used to indicate such
similarity. Thus, a sequencer 310 provides a sequence of
microinstruction addresses 311 to a writable control
store 320. The sequencer 310 not only interfaces with
the TD bus 122 through register 314, but also receives
condition codes through a multiplexer 312, and receives
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interrupts through multiplexer 313. The microinstruc-
tions accessed from control store 320 are provided as
outputs 321, and a registered output is also provided
through register 322. Lines 311B and 225 provide ad-
dress and data interface from the host to this writable
control store 320, as will be described below. (Line 324
is a write enable line, used in serial access.) Serial/paral-
lel shift register 328 shadows the internal state of de-
vices which receive unregistered inputs. A 16-bit se-
quencer bus 315 also provides 16-bit inputs to the se-
quencer 310. This input is a buffered input, which can
be used, e.g., to input literal values.

The microinstructions 321 are provided as registered
input to decode logic 360 (via shadow register 322). The
outputs 361 of this decode logic are provided as control
inputs to the integer processing unit 340, the sequencer
310, and also to various of the interfaces 150, 160, and

10

170. In particular the outputs of decode logic 360 con- -

trol access to the TD bus 122. Note that the TD bus 122
provides a data interface to the external interfaces, and
also to the cache memory 140. As with decoder 260, the
outputs of decoder 360 are not separately shown, be-
cause they are so pervasive.

The integer processing unit 340 is preferably a Weitek
X1.8137, as in the control processor. (However, note
that no separate address generator is needed in the data
transfer processor, since address generation is not so
critical in this module.) The integer processing unit 340
has a two way interface to the TD bus 122, and can also
provide address outputs, through register 341, onto the
TA bus 121.

CONTROL OF DATA TRANSFERS

In order to achieve one transfer per cycle between a
source port and a destination port, several factors are
catered for:

1. Either the source or.destination of the transfer may
be FIFO buffered, and the transfer control must
respond to the full and empty flags on the FIFO.
The timing of these signals, in combination with
the pipelining of the condition code input to the
sequencer, will sometimes cause the transfer to
overrun by one. For the transfers into a FIFO this
is not a problem, because the half full flag is used.
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spare capacity in the FIFO to accept one or two
words of overrun. When reading from the FIFO,
other strategies must be used. The options of using
FIFOs with “empty+1” flags, or delaying the
FIFO data in a pipeline stage, are not used in the
presently preferred embodiment, due to their cost
and space demands.

Two methods are provided to solve this possible
problem. Which of these methods is used depends on
whether the destination is a memory or a FIFO. The
difference is that a write operation can be undone on a
memory, but not on a FIFO. That is, if a data transfer
from FIFO to memory is continued for a word or two
after the FIFO goes empty, some erroneous data will be
written into the memory. However, this data can simply
be overwritten as soon as good data becomes available.

a. When reading a FIFO, the read signals are logi-

cally modified by the FIFO empty signals. The
result of this is that, if an attempt is made to read an
empty FIFO, no read action is actually performed.
This allows FIFO reads to overrun without any
consequences. The FIFOs protect themselves from
reads when they are empty, but this extra control is
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necessary because the other side of the FIFO might
be written to during the overrun read, and this
would lose data. Thus, when the data transfer pro-
cessor module 120 is transferring data into a mem-
ory, it will stop when the FIFO has gone empty. At
this point an overrun will have occurred. The DTP
modaule 120 can then backtrack the address, so that,
when data becomes available in the FIFO, the
transfer restarts as if nothing had happened.

b. When writing into a FIFO, the write operation
cannot be undone. Therefore, a different method is
used. The microcode tests the status from the
source FIFO (and obviously the destination FIFO)
before every transfer. In this mode, the transfer
rate is much slower. However, if the source FIFO
ever gets more than half full, the microcode
switches to a fast transfer mode. The occurrence of
this condition guarantees that up to half the source .
FIFO depth can be read out without going past the
empty mark. Therefore, in this mode, the DTP
module 120 can transfer a block of this size without
stopping to check the status. The status in the re-
ceiving FIFO will still need checking, unless it is
less than half full. This same technique of switching
between slow and fast transfer modes can obvi-
ously be used with memories as well.

2. A three way branch instruction in the sequencer
310 (called BRANCH) provides a convenient way
of keeping track of the number of words trans-
ferred and testing the FIFO status signals. This has
the advance of not using the IPU 340 in the condi-
tional path, and thereby minimizes the cycle
length.

3. For optimum data transfers to or from the data
cache memory, the data interface to the TD bus
122 is buffered h a register bank 560B (seen in FIG.
5), which contains eight 32 bit registers. This al-
lows fully parallel reads and writes, as seen by the
DCM. This gives a natural break in any long trans-
fer (> 8 floating-point words), because there is no
double buffering in this path. The data transfer
processor module 120 will therefore be forced to
suspend transfers until the memory cycle has oc-
curred. This break will happen more frequently
when contiguous transfers are not used and more
memory access cycles are needed.

4, The arbitration of the data cache memory is de-
cided at the beginning of the CP module’s cycle. If
the data transfer processor module 120 were run-
ning asynchronous to the control processor module
110 (to allow instruction dependent cycle time), the
data transfer processor module 120 might have to
wait up to 100 ns of synchronization time, and then
another 100 ns of access time. (The access time
could be much longer, because the control proces-
sor module 110 has priority, and the DTP module
120 must wait for a free memory cycle.) Moreover,
the pipelining of the microcode instructions and
FLAG input to the sequencer could introduce yet
another delay, while the DTP module was looping
to see if the transfer has been done.

To minimize these delays, the control processor mod-
ule 110 and data transfer processor module 120 share
the same microcode clock generator. Both processors
ask for their optimum cycle time, and the clock genera-
tor chooses the longest one. This should not greatly
degrade the average speed of either processor, because
the majority of instructions execute in the shortest cycle
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time. To overcome the delay when looping, the arbitra-
tion is done using non-registered microcode request
bits.

One very minor drawback of this approach is that
when the hardware single step is used it will affect both
PrOCessOrs.

5. Thus, when a FIFO is either the source or the
destination, the FIFO status signals (and, in some
cases, the data cache memory arbitration signals)
will need to be monitored during a transfer. So that
these four status signals (FIFO full, FIFO half-full,
FIFO empty, cache access granted) can be moni-
tored within a single cycle, the data transfer pro-
cessor module 120 has multiway branch capability.
This inserts the status to be tested into the jump
address, so that the address that is jumped to de-
pends on the status during that cycle. The three
FIFO status conditions are encoded into two bits,
and the arbitration signal makes up the third bit.
This provides an 8 way branch. When only the
FIFO status is of interest, the arbitration signal can
be disabled, so the multiway branch is reduced to 4
ways.

6. To avoid the data transfer processor module 120
being locked out of the data cache memory 140
when the control processor module 110 (or FP
module 130) is using it on every cycle, an interrupt
has been provided. When the data transfer proces-
sor module 120 is denied access, it starts looping on
the transfer acknowledge signal. A timeout under
this condition can easily be tested for. If a timeout
occurs, then the data transfer processor module 120
can interrupt the control processor module 110.
This will take the data transfer processor module
120 out of the memory access mode, and thus let
the data transfer processor module 120 in.

INTEGER PROCESSOR UNIT 340

The IPU 340, in the presently preferred embodiment,
is essentially the same as the IPU 240 of the control
processing module 110, which is extensively described
above.

SEQUENCER 310 AND ASSOCIATED SUPPORT
LOGIC

The sequencer 310, in the presently preferred em-
bodiment, is essentially the same as the sequencer 210 of
the control processing module 110, which is extensively
described above.

The sequencer support logic falls into 4 categories:
interrupts, conditional code selection, micro address
bus and constant/next address field.

Interrupts

The sequencer only has 4 interrupt input pins. There-
fore an external multiplexer 313 is used to extend the
number to 8. The interrupts are mainly used for commu-
nication and to support debugging tools.

The interrupt sources are (in order of highest priority
first):

Claw Logic and Breakpoint: This interrupt level is
shared between the claw logic and the breakpoint
logic. The functions of these two interrupt types
are described above, in connection with the func-
tion of the sequencer 210 in the control processor
module 110.
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VME bus (debug): The VME bus interrupt is nor-
mally used only for supporting the debug monitor
and should not be used during normal operation.

VME bus (command): This interrupt level is set
whenever a command is stored in the command
register.

Control processor (command): This provides the
normal method whereby the control processor
module 110 can inform the data transfer processor
module 120 that there is a command in the dtp—
command FIFO.**

VME data FIFO: This interrupt level is used to no-
tify the data transfer processor module 120 that the
data FIFO in the VME interface needs attention
because they have received some data (the input
FIFO) or have run out of data (the output FIFO).*

GIP interface: The GIP interrupt is generated by the
GIP FIFO status signals.* :

Data pipe interface: This interrupt level is used to
notify the data transfer processor module 120
whenever one of the FIFOs in the data pipe inter-
face needs attention because they have received
some data.*

Microcode expansion interface: This interrupt is re-
served for use by any of the expansion cards (e.g.
bulk memory card or network).*

Note: The interrupts marked with * can also be tested
by the normal condition code logic, so that they
can be polled if that is preferred.

For the interrupts marked **, the situation that gener-
ates the interrupt condition can be detected by
examining the control information in the software
FIFO data structures. This can be polled if inter-
rupts are not to be used.

The use of multiplexer 313 to expand the number of
interrupts forces different timing requirements between
the four higher priority interrupt levels and the four
low priority interrupts. For the higher priority inter-
rupts to be recognized, they must occur 25 ns before the
rising edge of the microcode clock. For the lower prior-
ity interrupts, the deadline is 15 ns before the falling
edge.

To generate an interrupt the corresponding interrupt
input is held high for one clock period. No hardware
interrupt acknowledge cycle is necessary, so the inter-
rupting hardware is very simple.

Condition Code Logic

The sequencer has a single condition code input
called FLAG so all the testable status signals are multi-
plexed into this pin. This is registered internally and has
the normal set up time of 10 ns when IR0 is masked
(counter underflow interrupt) or 26 ns when enabled.
The polarity of the FLAG input can be changed inside
the sequencer.

The DTP module, like the CP module, contains
mimic register logic like that shown in FIG. 40A. (This
avoids problems with returning from interrupt han-
dling.)

The testable status signals are:

IPU 340 condition code output (COND): this signal
relays the status of the current instruction. The
specific condition that the IPU 340 outputs on this
pin is coded in the microcode instruction.

Microcode loop. This is a status bit in the VME inter-
face control register, and is useful for diagnostic
software.
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FIFO status signals for the following FIFOs: Data
pipe input #1 (half full and empty); Data pipe input
#2 (half full and empty); Data pipe output #1 (full)
*: Data pipe output #2 (full) *; VME data input
(half full and empty); VME data output (half full
and empty); GIP interface (input) (half full and
empty); GIP interface (output) (full, half full and
empty). Signals marked * come from the receiving
FIFOs on another subsystem.

Data cache memory cycle acknowledge. This indi-
cates when the access to the data cache memory
has been granted.

Microcode expansion interface condition code signal.
This is used by any microcode extension interface
180 to pass back status to the data transfer proces-
sor module’s sequencer 310.

DMA bus error. This status bit goes active when the
DMA transfer on the VME bus gets aborted as a
result of a bus error occurring. The most likely
reason for this error is that non-existent memory
was addressed.

Write flags 0 and 1. These two signals allow better
access to the internal state of the data cache mem-
ory write logic. They are only used by the state
save and restore microcode in the debug monitor.

Held status: This is tested when returning from an
interrupt, so that any conditional jump, etc., is
executed correctly even if it was displaced by a
jump to the interrupt service routine.

The COND output from the IPU 340 is valid too late
to meet the sequencer’s set up time (especially as it will
be delayed by a multiplexer) when cycling in 100 ns.
When testing this condition, the clock will need to be
stretched to 125 ns.

Implementing “for loops” is best done by using one of
the counters internal to the sequencer, thus freeing the
IPU 340 for address calculations. Obviously they can be
done using the IPU 340, but with the extra overhead of
a longer cycle time.

The condition codes are multiplexed, via an 24 to |
multiplexer 312, into the “FLAG” input in the se-
quencer 310. The sequencer internally registers and
selects the polarity of the selected condition code sig-
nal.

Microaddress Bus 311

The micro address bus 311 can be driven from two
sources: from sequencer 310 during normal program
execution, and from the VME bus when loading micro-
code. The VME bus can also read the contents of the
microaddress bus 311, to see what address the sequencer
310 is at. This is done asynchronously to the sequencer
operation, and is mainly used for diagnostics. The exten-
sion of this bus, shown as line 311B, is connected to the
Host Interface Logic 160.

anstant/Next Address Field

This is used in a fashion quite different from that
described above in connection with sequencer 210. In
the DTP module 120, some innovative logic is used to
provide an enhanced multiway branching capability.
This logic (and its use in multiway branching) will now
be described.

MULTIWAY BRANCHING

The embodiment shown in FIGS. 3A and 3B includes
some significant new capabilities for multiway branch-
ing in microcoded system. FIG. 30 schematically shows
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the microcode operation used in the presently preferred
embodiment to provide multiway branching without
address boundary constraints.

In FIG. 3A, note that the constant/next address field
(from a microinstruction field) is not only provided to
buffer 317, but is also provided as an input to multiway
branch logic 318. The multiway branch logic can ma-
nipulate this signal in ways which provide a novel capa-
bility in microcoded architectures. Other inputs to this
multiway branch logic include FIF status signals and
also a shift command (which will be used to vary the
increment between alternative destinations, in the multi-
way branch step performed by sequencer 310).

FIG. 3B shows somewhat greater detail. The con-
stant field (16 bits) from the microinstruction bus 311 is
split, to provide inputs both to PAL 318 and buffer 317.
A common enable signal is used to activate both of
these, when multiway branch operation is desired. (Of .
course, the sequencer bus 315 has many other uses as
well, and multiway branch operation will often not be
desired.) Moreover, the constant/next address field is
also used very often for simple jump operations, and in
such cases the multiway branch logic 318 is disabled.

FIG. 30 shows still greater detail regarding the inter-
nal operation of the multiway branch logic 318. A vari-
ety of condition and status signals are provided to con-
dition select/encode logic 3010. This selects and en-
codes these conditions to give a three bit signal which
can be used for branching.

The multiway branch logic is controlled by several
microinstruction bits, as described in detail below.

It is particularly advantageous to use such multiway
branching logic in a data transfer processor like module
120. In this case, device condition signals can be used as
the conditions input to select/encode logic 3010. This
permits a data transfer processor to exercise high-level
control over a quite complex interface. When a status
signal of interest occurs, the multiway branch logic can
very rapidly transfer to the appropriate routine for
handling the condition. The multiway branch capability
permits the sequencer to test the conditions of several
devices in a single cycle. This means that the DTP
module 120 can perform a data transfer on every cycle.
This also permits sequencers having only a single condi-
tion code (FLAG) input to exercise complex control

In the presently preferred embodiment, the inputs to
select/encode logic 3010 include status bits from four
FIFOs, as detailed below. However, of course, a wide
variety of other input arrangements could be used.

Note that a shift input is provided to the shift and
merge logic. This permits the increment between the
destinations of the multiway branch to be varied.

The right side of FIG. 30 shows schematically that
the sequencer 310 has relative addressing capability.
This capability, in combination with the multiway
branch logic, means that address boundary constraints
can be ignored. This is particularly advantageous in a
data transfer processor. Since such a processor must be
able to perform a high fraction of data transfers, it may
be desired to include a large fraction of multiway
branch instructions. The lack of address boundary con-
straints means that a high proportion of such instruc-
tions can be used.

The presently preferred embodiment uses the pro-
gram counter as an input to the jump destination. This is
different from many previous implementations of multi-
way branching, where the base destination address was
supplied from a different source.
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WRITABLE CONTROL STORE (WCS) 320

The WCS is made up using the microcode SIL mod-
ules. These provide 8K by 32 bits of memory with a
serial scan pipeline register for loading microcode and
diagnostics. Two versions of the module are used: regis-
tered or non-registered outputs. The IPU 340 and se-
quencer 310 have their own internal pipeline registers
and so use the non-registered versions.

WCS interface registers 322 and 323 function analo-
gously to the WCS interface registers 223 and 222 de-
scribed above with regard to the control processor
module.

DMA CONTROLLER

An important function of the DTP module 120 is
controlling one or more DMA controllers, in the VME
interface 160 and possibly in one or more other inter-
faces as well. This function will be described in greater
detail below, where those interfaces are discussed.

MISCELLANEOUS LOGIC
Mode Registers

The mode registers 303 hold the value of little used
control signals which can not justify dedicated micro-
code bits. The mode bits are: Flow through or register
control of the read holding registers; Flow through or
register control of the write holding registers; External
interrupt acknowledge signal that drives the interrupt
acknowledge signal in the microcode expansion inter-
face; GIP interrupt request; Loopback mode for the
holding registers; Two LED control signals.

TD Bus Decode

This logic (which is one of the most important func-
tions of the decoder 360) decodes the microcode TD
source field, and accordingly controls the output ena-
bles of devices that can drive the TD bus 122. It also
decodes the TD destination field (as qualified by a write
gate signal from the clock generator 250) to generate
strobe and write enable signals. Most of the ports on the
TD bus 122 can be read and written, so mimic registers
on the IPU are not required.

Possible TD bus sources and destinations include:
IPU 340; VME Interface Memory, Command memory;
Data cache memory holding registers 560B; Mode reg-
ister (8 bits); Sequencer data port **; Constant/next
address field (source only) **; VME data FIFO; Data
pipe 1; Data pipe 2; GIP FIFO **; Interrupt vector
register (8 bits); DMA control register; DMA controll-
er-address counter *; DMA controller-word counter *.
Sources marked * are decoded by the DMA controller
instruction and not as part of the normal TD bus control
field. Sources marked ** only drive the lower 16 bits.
When one of them is selected, the signal/zero extend
PAL 216 is also activated, so that the data is either sign
or zero extended up to the bus width of 32 bits.

Note that only one source and one destination can be
selected, and they must be different. The transfer of
data into the IPU 340 is under control of the IPU 340’s
instruction field so it can take data from the TD bus 122
at the same time it is being loaded into another destina-
tion.
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Clock Generator

As noted above, the clock generator 250 produces the
basic clock signals used throughout the data transfer
processor module 120.

DEBUG HARDWARE

Most of the debug hardware included in the data
transfer processor module 120 has already been men-
tioned in various places in the preceding description.
These are summarized here for convenience: Host con-
trol of microaddress bus 311—both read and write; Host
loading and readback of the WCS; VME generated
interrupt to get the DTP’s attention; Hardware break-
point support with no restriction on the number of
breakpoints that are set at any one time; Claw logic,
which permits the user task to be single stepped without
single stepping the monitor task; All registers are read/-:
write; Hardware control of clocks for single stepping
microcode; All interrupts can be selectively enabled or
disabled; Access to the internal state of the critical logic
groups to allow the complete state save and restore of
the DTP module’s hardware states.

MICROCODE WORD FORMAT

The microcode word format is generally shown in
FIG. 3C, and is defined below. Items marked with a *
come directly from the WCS, and are pipelined inter-
nally in the devices they are controlling.

The total number of microcode bits available are 96.
Most of the bits are used, but there are a few spares that
have not been included in the following fields.

IPU opcode (32) * This field controls the data routing
and arithmetic or logical operation of the IPU 340
integer processor. The allocation of bits within the
field is encoded and details will be found in the
Weitek data sheets. All instructions are encoded in
the bottom 24 bits and the top 8 bits are only used
during the transfer of data into the IPU 340’s regis-
ter file.

Sequencer opcode (7) * This field controls the gener-
ation of the next address by the ADSP 1401. See
data sheet for the instruction set.

Constant/next address field (16) * This field is mainly
used for providing address information to the se-
quencer but can also be used to place a 16 bit con-
stant value onto the data bus. This can then be
loaded into any of the registers on this bus.

Multiway branch select (2) * This field selects which
set of FIFO status signals are to be used during a
multiway branch operation. The choices are: VME
input FIFO; GIP input FIFO; Data Pipe 1 input
FIFO; and Data Pipe 2 input FIFO.

Multiway shift control (2) This selects that the multi-
way branch status information is inserted from bit
position 0, bit position 1, but position 2 or not at all.
The various shift factors allow for each entry point
within a multiway branch to be 1, 2 or 4 instruc-
tions long respectively.

Multiway branch transfer enable (1) This bit enables
or disables the data cache memory access granted
signal from being combined with the FIFO status.
When it is not used the multiway branch is 4-way
and when it is used it is 8-way.

Cycle length (2) This field selects the cycle length
appropriate to the instruction and data routing
selected.
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Data cache access (1) * This bit is active whenever an
access to the data cache memory is required by the
data transfer processor module 120.

Data cache write enable (1) This bit generates a wire
cycle in the data cache memory is access to the
data cache memory has been granted.

Data cache write all (1) This bit overrides the normal
write enable gating that allows selective updating
of words in the data cache memory and forces
them all to be written. This only results in a data
cache memory write cycle when access has been
granted. This is useful when setting blocks of mem-
ory to a constant value.

Condition code select (5) This field selects one of the
following condition codes to be tested by the se-
quencer during a conditional instruction: IPU 340
condition code output; microcode loop; write flags
(2 entries); Data pipe input FIFO #1 (half full and
empty); Data pipe input FIFO #2 (half full and
empty); Data pipe output FIFO #1 (full); Data
pipe output FIFO #2 (full); VME data input FIFO
(half full and empty); VME data output FIFO (half
full and empty); GIP interface (input) (half full and
empty); GIP interface (output) (full, half full,
empty); Data cache memory cycle acknowledge;
Microcode expansion interface condition code sig-
nal; DMA bus error; Hold status.

Hold Status (1) This bit prevents the updating of the
mimic status register that normally follows the
state of the FLAG register inside the sequencer
210. Normally this mimic bit follows the internal
register’s state, but during an interrupt service the
mimic bit is prevented from being updated. This
permits the FLAG register to be correctly restored
when the interrupt routine is exited.

TD bus source (4) This field selects one of the follow-
ing registers, buffers or devices to drive the TD
bus: IPU 340; Command memory; VME interface
memory; Data cache memory holding register;
Mode register; Sequencer data port; Constant/next
address field; Sequencer data port; Constant/next
address field; VME data FIFO Data pipe 1; Data
pipe 2; GIP FIFO; Interrupt vector register (8
bits); DMA control register; DMA controller -
address counter; or DMA controller - word
counter.

TD bus destination (4) This field selects one of the
following registers, buffers or devices as the desti-
nation of the data on the TD bus: Command mem-
ory; VME interface memory; Data cache memory
holding register; Mode register; Sequencer data
port; Constant/next address field; Sequencer data
port; VME data FIFO Data pipe 1; Data pipe 2;
GIP FIFO; Interrupt vector register (8 bits); DMA
control register; DMA controller - address
counter; DMA controller - word counter.

The IPU 340 is not included in this list, because it can
“grab” the data on the TD bus at any time. This func-
tion is controlled by the IPU instruction field.

Address register control (2) One of these control bits
enables the loading of the address register and the
other bit enables readback of the register for use by
the diagnostics and debug monitor.

Breakpoint (1) (** Debug use only **) Set by the
debug monitor to place a breakpoint on an instruc-
tion. This causes an interrupt to occur during the
instruction so that control is passed to the debug
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monitor microcode after this instruction has fin-
ished.

Claw (1) (** Debug use only **) Set to prime the
claw logic when single stepping a user task. This
causes an interrupt to occur during the next in-
struction so that control is passed back to the debug
monitor microcode after one user task instruction
has been executed. This allows a user task to be
single stepped without physically switching the
clocks on and off.

Interrupt CP (2) This generates an interrupt in the
control processor module 110 at one of three lev-
els. The levels are allocated as follows: New com-
mand from host received; Data transfer finished;
Relinquish access to data cache memory.

Zero or Sign extend (1) This bit only has any effect
when a 16 bit wide register or device is read. In this
case it selects whether the data is to be zero ex-.
tended (bits 16-31 set to zero) or sign extended (bits
16-31 set to the same as bit 15).

DMA Controller instruction (3) This field controls
the instructions to the DMA controller. The in-
structions available are concerned with reading
and writing the internal registers, re-initializing the
refers, and also the normal DMA operation of
incrementing (or decrementing the address and
decrementing the word counter.

MICROCODE EXPANSION BUS

The microexpansion bus extends the basic microcode
services off-board. This can be used to control some
interface logic on the expansion peripheral board, or to
control an entire peripheral board. Typical uses of this
might be to interface to a bulk memory card or network
interface card.

The expansion bus interface is electrically and me-
chanically identical to the expansion interface on the
GIP so they can share any common expansion cards.

The expansion connector is a 96 way DIN connector,
and the signals on it are: Three bit slice clocks [Note 1};
Pipeline register clock [1]; Microaddress bus 311B (15
bits) [2]; TD bus 122 (32 bits) [3]; Reset; WCS output
enable; Pipeline register output enable; WCS write en-
able 324; Pipeline register mode control; Serial clock,
Serial data in, and Serial data out (used for microcode
loading); External interrupt [4]; Interrupt acknowledge;
and Condition code [4]. All signals are single levels
except where noted: [1] These signals are differential
ECL levels. [2] These signals are single ended ECL
levels. [3] This bus is 32 bits wide, but can be considered
for some purposes as two 16 bit buses—called the pri-
mary data bus and the secondary data bus. [4] These
signals are driven by open collector buffers.

The use of some ECL signals in this interface is useful
in minimizing the effects of clock skew between board.

NUMERIC PROCESSOR MODULE 130

The presently preferred embodiment of the numeric
processor module 130 is a floating-point processor.
Therefore, the module 130 will sometimes be referred
to as a floating-point processor module (or “FP mod-
ule”). However, this module could optionally be config-
ured for other data types, e.g. as a complex arithmetic
module or as a module for wide-integer arithmetic.
Therefore, this module will also sometimes be referred
to more generically, as a numeric processor module 130.

In the presently preferred embodiment, the floating-
point processor module 130 is very closely coupled to
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the control/interface logic which governs data transfers
between the floating point processor and the cache
memory. This control/interface logic is clocked by the
microcode clock of the control processor, and is prefer-
ably controlled by an extension of the control processor
microinstructions. In the presently preferred embodi-
ment, the Floating-point Processor Module 130 and the
control/interface logic (CP Extension logic) are located
together on a separate subboard, which plugs into the
main base board (where the cache memory 140 and the
main part of the control processor module 110 are lo-
cated). If additional modules 130 are used, each of them
would contain a portion of the control/interface logic.

In the present application, this control/interface logic
is regarded as an extension of the control processor
module 110. However, whether or not this control/int-
erface logic is regarded as part of module 110, the pres-
ent application contains some significant teachings re-
garding the timing and control characteristics of this
logic.

The presently preferred embodiment uses a 32 bit
data structure. Each floating-point number is repre-
sented by 32 bits, and therefore 32-bit units are referred
to as floating-point words (or “F_words”). In the pres-
ently preferred embodiment, the number format is 24
bits mantissa and 8 bits exponent. This can be, select-
ably, either IEEE format or DEC format.

The internal operation of the floating point processor
module 130 will first be discussed. The features of the
interface to the control processor module 110 and to the
cache memory 140 will then be discussed in greater
detail.

FIGS. 4A through 4D show key portion of the nu-
meric processing module 130, in the presently preferred
embodiment. FIG. 4A schematically shows the inter-
face logic 410 which is used to interface to the control
processor module 110. FIG. 4B shows some key por-
tions of the data path in the module 130. FIG. 4C shows
the logic used in the presently preferred embodiment,
for microcode access and decoding. FIG. 4D shows the
microinstruction format used in the floating-point mod-
ule 130 in the presently preferred embodiment.

The floating-point arithmetic unit, where the actual
numeric calculations are preformed at high speed, will
be described first. The double-buffering operations, by
which data is transferred across the clock boundary
between the FP module 130 and the slower modules,
will then be described. Next, the further stages of data
transfer (largely controlled by extensions of the CP
module 110) will be described. Finally, the program
control which governs the arithmetic unit will be de-
scribed.

FLOATING-POINT ARITHMETIC UNIT (FPU)

The floating-point arithmetic path of the presently
preferred embodiment is quite simple, and runs at high
speed. This path includes a floating point multiplier, a
floating point ALU (arithmetic and logic unit), and fast
multiport register files, all controlled by a very fast, but
simple, sequencer. In addition, a scratchpad memory is
closely coupled to the inner data paths, to hold lookup
tables and provide histogram storage or data stack oper-
ations.

The topology of the low-level data path is seen most
clearly in FIG. 16. this low-level data path, and its
components, will be referred to as the Floating-Point
Arithmetic Unit (FPU). The FPU includes fast register
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file 430, multiplier 440, ALU 450, scratchpad memory
1610, and local busses 431, 432, 433, and 434.

Arithmetic Calculation Units 440 and 450

The floating-point calculation units used in the float-
ing-point processor module 130 are the floating-point
multiplier (FMPY) 440 and floating-point arithmetic
and logic unit (FALU) 450. Both parts have very simi-
lar internal architectures. The only difference in their
data handling (apart from the different arithmetic oper-
ations) is the extra feedback path in the FALU 450 for
accumulate operations.

The presently preferred embodiment uses integrated
circuits (floating: point chip set and register files) from
Bipolar Integrated Technologies (BIT), as follows. The
BIT part numbers, and the equivalent Analog Devices
numbers, are: Multiplier 440: B2110 or ADSP7110;
ALU 450: B2120 or ADSP7120; Register File 430:
B2210 or ADSP7210. The multiplier 440 and ALU 450,
and the fast register files 430, actually use ECL gates
internally. However, their interfaces and power
supplies are TTL. These arithmetic chips have a full
64-bit data path internals, with 32-bit external interfaces.
Accordingly, these chips have the capability to do rapid
64-bit operations, using multiplexed data transfers as
necessary.

The FMPY 440 and FALU 450 each have two 32 bit
wide input ports X and Y for operands (connected to
local operand busses 431 and 432 respectively), and a 32
bit wide bidirectional port T for results (connected to
the local results bus 433). Each of the input ports of the
calculation units contains a latch and multiplexer, and
the output port contains a multiplexer, so 64 bit wide
numbers can be transferred in or out.

The result ports of the two calculation units are con-
nected in parallel (to results bus 433, and thereby to
write port 430D of the register file). This permits the
calculation units to swap data without using external
multiplexers or routing data through the register file.
This is useful, for example, when sum of products calcu-
lations are done. This capability is also useful in permit-
ting rapid data transfer to and from the scratchpad
memory 1610. However, a restriction of this configura-
tion is that both the FMPY 440 and FALU 450 can not
be active at the same time (except for a sum of products
operation), because the output ports are tied together.
Even if the ports were separate, then the problem could
exist on the input side, since both devices share the same
data path from the register files 430.

The actual arithmetic devices used offer a degree of
flexibility in configuring the input and output ports to
be registered or transparent. However, in the presently
preferred embodiment this capability is not used, and all
the ports are registered. The internal data paths and the
function unit of both calculation units are all 64 bits
wide, and can perform both single precision (SP) and
double precision (DP) calculations.

The function unit in the FMPY 440 supports 4 arith-
metic instructions. The minimum cycle times (in nano-
seconds) for both precisions are:

Single Double
Multiply 40 59
Divide 200 300
Square root 300 600
Pass 40 50
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-continued

Single Double

Integer multiply 45

The function unit in the FALU 450 supports a very
wide range of floating point instructions, integer in-
structions and conversion instructions. For further de-
tails, the manufacturer’s data sheet can be consulted. All
floating point instructions (single and double precision)
execute in a minimum cycle time of 25 ns; the integer
operations all take 12 ns and all the conversions take 25
ns.

The more common instructions include:

Floating point: add and subtract (signed or absolute),

absolute, negate, scale, merge, normalize, and com-
pare.

46

Fast Register Files 430

The register files 430 form the main interface with the
data cache memory 140. One bank of the register files
runs in partial synchrony with the CP module 110, and
interfaces with the FP holding registers 420 through
local transfer bus 422 (connected to bidirectional port
430A (FIG. 16)). The other bank runs synchronously
with the FP module, and interfaces with operand busses

0 431, 432 (read ports 430B and 430C), results bus 433

Conversions: SP—>32 bit integer, signed or un- A

signed; SP— >64 bit integer, signed or unsigned;

SP< —32 bit integer, signed or unsigned;
SP<—64 bit integer, signed or unsigned;
DP—>32 bit integer, signed or unsigned;
DP—>64 bit integer, signed or unsigned;
DP<—32 bit integer, signed or unsigned;
DP< —64 bit integer, signed or unsigned;

SP—>DP; DP—>SP;

Integer: add (with 0, 1, carry); subtract (with 0, —1,
—carry); max(signed or unsigned); main (signed or
unsigned); logical; shift (logical or arithmetic); rotates;
and bit reverse.

Scratchpad Memory 1610

As seen in FIG. 16, the scratchpad memory 1610,
with its address counter 1611, hangs on the results bus
438. Since the calculation units 440 and 450 have bidi-
rectional ports onto this bus, data can be read directly
from this memory by multiplier 440, ALU 450, or Reg-
ister file 430.

20
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The address counter 1611 permits several modes of 4

access to this memory. Depending on two mode bits,
the address counter may (at each read or write access)
increment the address, decrement the address, hold the
address, or permit the address to be specked. (For exam-
ple, combinations of address incrementing and decre-
menting can readily be used for operation as a stack.)
The address generation capability of the counter 1611
permits the memory 1610 to function at one write per
cycle, under some conditions.

The operation of this memory as a stack is particu-
larly advantageous for scalar programming with com-
pilers, as discussed above.

When running histogram algorithms, the previous
subtotal (of the parameter being tracked) can be read
out onto results bus 433. In one simple example of such
an operation, the memory 1610 is designated as data
source for results bus 433, and the ALU 450 is com-
manded to read an operand value from the results bus,
while the multiplier 440 is working. When the multi-
plier 440 finishes, it drives its result onto the results bus
433, and the ALU reads in that value as a second oper-
and. The ALU then drives the sum onto the results bus
433, while the memory 1610 is commanded to write that
result. (Meanwhile, additional operands can be loaded
into multiplier 440.)

This table also provides a very convenient storage for
data-dependent parameters. This is particularly conve-
nient when calculating transcendental functions.
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(read port 430D), and loopback connection 434 (write
port 430E).

FIG. 4B shows some key portions of the data path in
the module 130. The main cache bus 144 (which is 256
bits wide) is interfaced to a series of four FP holding
registers 420. (These holding registers are actually
paired, so that a read register is paralleled by a write
register. Thus, there are eight holding registers 420,
each 64 bits wide, to provide a bidirectional 256-bit
interface.) The eight holding registers 420 receive sepa-
rate enable signals 421. Thus, this bank of registers per-
mits the 256 bit wide cache bus 144 to be multiplexed
into the 64 bit wide fast register file 430.

This multiplexing is performed primarily for cost
reasons. The fast register files 430 are very expensive
chips. Using four times as many of them would very
significantly increase the cost of the system. Moreover,
as may be seen from FIG. 38B, the footprint of these
devices is very significant (due to their very high pin
count), so that using sixteen of these packages rather
than four would add significant demands on board area.

There are actually four registers 430, and not merely
two. Each of the physically separate chips is 18 bits
wide, so four of them in parallel are used to provide a 64
bit interface to the local transfer bus 422. (Note that this
interface is two F_words wide.)

In the presently preferred embodiment, the register
files 430 are constructed from 5 port devices which are
18 bits wide by 64 locations deep. Thus, the 64-bit side
interface to local transfer bus 422 requires four devices
to be used in parallel. (For clarity, FIG. 4B shows the
register file as if it were two 32-bit wide files. This helps
to show the word address odd/even status structure
discussed below. FIG. 16 simply shows the register file
430 as a single file.) In the presently preferred best
mode, these devices have been actually constructed
using part number B2210 from BIT.

Ideally the register files would be 256 bits wide, to
permit a more direct interface to the cache bus 144, but
this would require significant added hardware expense.
The alternative used in the presently preferred embodi-
ment is to use FP holding registers 420 (with associated
control logic), to multiplex the 256-bit interface to
cache bus 144 down onto a 64 bit wide port 430A. The
multiplexing and data routing is controlled by transfer
logic, shown generally in FIGS. 4A and 4B, which will
be discussed in greater detail below.

The interconnections of these files are preferably as
follows. (The ports are individually labelled in FIG.
16.)

Each of the files 430 has a bidirectional interface
430A, which connects to the registers 420, through
lines 422.

Each of the register files 430 has two transparent data
outputs. These outputs can be separately enabled,
so that they can represent different words from
within the register file 430. These outputs 430B and
430C drive local operand buses 431 and 432.
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Each of the register files 430 has an input port 430D
which is connected to a third local data bus 433,
which will be referred to as the results bus. This
results bus is connected to the outputs of the calcu-
lation units 440 and 450.

Each of the register files 430 has another input port
430E, which is tied to read port 430B by loopback
connection 434 to first operand bus 431. This write
port takes its address from the “results” write port
430D. This allows data to be copied from one regis-
ter file address to another without having to go
through the ALU 450 or multiplier 440, thus saving
two cycles of delay. This means that data can be
rapidly reordered and shuffled as desired, without
using the calculation units 440 and 450 and incur-
ring the delays associated with these parts. This
capability can be particularly advantageous in han-
dling subroutines.

Thus, the five-port register files 430 each have two
read ports D and E, two write ports B and C, and one
bidirectional port A. The read ports feed operands to
the FMPY 440 and FALU 450, and the results are writ-
ten back using write port 430D (or, if desired, write port
430E). The register files can store 128 F_words.

The data, address and write enables for write ports
430D and 430E (and the write part of the bidirectional
port 430A) are registered internally to the register file
430. An internal write pulse is automatically generated.

The two read ports can have their data paths regis-
tered or latched (both must be the same), and their
addresses registered or latched. The configuration used
on the floating-point processor module 130 is to register
the addresses as these are driven directly from the mi-
crocode and to hold the data latches transparent. The
data is registered internally to the FMPY 440 and
FALU 450.

The register files can operate in a “write through”
mode, when the read and write addresses are the same.
In this mode the written data appears on the read port in
the same cycle, but about 10 ns later than a normal read
operation. This is useful for recursive or scalar calcula-
tions where it is advantageous to reduce the number of
pipeline stages.

Separate addresses for the read port 430B, read port
430C, and write port 430D, are supplied by fields of the
FP microcode. This allows r1=r20Pr3 type of calcula-
tions to be performed within the constraints of the pipe-
lining.

DOUBLE BUFFERING

The highly multi-ported fast register file 430 is a key
element in providing a clean interface between the con-
trol processor module 110 and floating-point processor
module 130. The address space of this register file is
partitioned, to act as a double buffer. At any given time,
one bank of this register file runs quasi-synchronously
to the control processor module 110, and the other bank
runs synchronously to the floating point processor mod-
ule 130. (The operations which are quasi-synchronous
to the CP module are dimmed in detail below. These
quasi-synchronous operations may be regarded as pro-
viding a transitional clock domain, which helps in pro-
viding a high-bandwidth interface.)

The assignments of the two banks are interchanged,
under the control of handshaking logic, at synchroniza-
tion points. Thus, this clock boundary placement per-
mits changes to be made on one side of the boundary
without affecting the other side.
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This clean interface provides a migration path to
faster, or more, integrated floating point chip sets, and
hence provides floating point device independence.
(The function and use of the handshaking logic will be
described in greater detail below, with reference to
FIG. 22, where the interaction between the CP module
and the FP module is described.)

Thus, the register file 430 is double buffered for the
normal exchange of data and results. However, unlike
prior system such as that of FIG. 18 and 19, this double
buffering is not inflexible. Thus, both the control pro-
cessor module 110 and floating-point processor module
130 can access any of the addresses in either bank of the
register files 430. The fact that the accesses are not
locked out of the opposite bank is used to great advan-
tage, as will be seen below.

Since hardware access is not cut off, each access to
the register files must (at some level) specify the full 7,
bits of address (A0:A6). Where the double buffering
operation is being used, only six bits of address are
actually needed (to address a location within the cur-
rently available bank). The double buffering operation
is actually achieved by modifying the top address bit on
the fly. A mode signal indicates how the top address bit
is to be modified.

Thus, the register file addresses specified in the mi-
crocode are modified automatically by hardware. The
double buffering is controlled by a “bank select” signal
which determines which half of the register file the
floating-point processor module 130 has access to, and
which half the control processor module 110 has access
to. This bank select signal is not controlled directly by
the microcode fields, but is toggled (by separate logic)
only when both the control processor module 110 and
floating-point processor module 130 have requested a
swap.

The double buffering uses partitioning on the top
address bit (A6). (By contrast, FIG. 4B shows two files
side by side, to indicate double-word structure of the
file. This corresponds to partitioning on the bottom
address bit (A0).)

Each register file address (7 bits) is accompanied by a
two bit modifier, which selects one of the following
address modes:

Physical address: This uses the address specified

without any modification.

Logical address: This is selected when the automatic
soft double buffering is used, and it causes the most
significant bit of the address to be replaced by the
bank select bit. The control processor module 110
register file address would use the inverse of this
bit.

Preview: This allows the floating-point processor
module 130 to preview the data on the other side of
the bank, without having to swap the banks or use
physical addressing. To keep the calculation pipe-
line full when crossing a synchronization point,
access to the new data is needed (if it has been
imported yet). However, there will normally be a
delay due to pipelining: the banks can mot be
swapped over until all the results for the current
bank have been written. This access mode circum-
vents that delay, since a read access can be taken
from the opposite bank of the register files 430,
before the bank swap is actually performed. This is
accomplished by replacing the most significant bit
of the address with the inverse of the bank select
bit.

DELL Ex.1052.085



5,329,630

49

FIG. 20 shows generally the logic used to accomplish
the address modification for double buffering. The right
side of this Figure shows the interface of register files
430 to the CP module 110, and the left side shows the
interface to the remainder of FP module 130. Thus, the
data connections on the right side would correspond to
port 430A (shown in FIG. 16), and thence to FP hold-
ing registers 420 and cache bus 144. The data connec-
tions on the left side would correspond to ports 430B,
C, D, and E (as shown in FIG. 16), and thence to multi-
plier 440, FALU 450, etc. The address inputs on the
right side would correspond to data fields extracted
from the microinstructions called up from WCS exten-
sion 490 by the CP microaddress bus 211A. The address
fields on the left would correspond to data fields ex-
tracted from the microinstructions called up from FP
WCS 470 by the FP microaddress bus 473. (The register
file 430 has internal pipeline registers for the address
inputs, and therefore receives the microinstruction bits
unregistered.)

Two address modification logic units 2010 are shown.
They essentially identical, except that their connections
to SEL and SEL-bar are reversed. Thus, if both the CP
and FP attempt to access the same address in logical
mode, the address modification operations of their re-
spective logic units 2010 would result in opposite A6 bit
output addresses, which neatly implements the double-
buffer function. The address logic unit also receives the
top bit (A6) of a seven-bit address taken from one of the
CP or FP microcode fields. It also receives a 2-bit mode
signal.

In the actual implementation of the presently pre-
ferred embodiment, three address modification logic
units 2010 are used on the FP side (one each for ports
430B, 430C, and 430D).

The complementary bank select signals SEL and
SEL-bar are provided from port select logic 2020.
These two signals are reversed whenever both the FP
module and CP module have requested a bank swap.
(The logic which accomplishes this is described in
much greater detail below.)

Reduced Setup Time for Unregistered Bits

In implementing the address modification logic 2010,
some additional logic, as shown in FIG. 17, has been
added. This additional logic solves a general problem,
and may usefully be adapted for use in many contexts.

Many manufactures of “bit slice” components are
including pipeline registers in their ICs. However, any
processing which is done on the microcode bits before
they reach the chip must be added to the chip’s setup
time. This is the situation which occurred in implement-
ing the soft double-buffering system just described. The
problem is that the address modification logic 2010, in
processing the most significant bit of the register file
address (the “A6” bit) to implement the logical, physi-
cal and preview; modes of addressing, adds an extra 10
ns onto the cycle time. When (as in the presently pre-
ferred embodiment) the cycle time can be less than 30
ns, this is a very significant overhead.

Therefore, some additional logic, as shown in FIG.
17, was introduced to remove the extra 10 ns from the
cycle time (on many cycles). The potential for doing
this occurs when the addressing mode remains the same
from one cycle to the next. In this situation, the setup
time has already been paid for in the earlier cycle. How-
ever, as the microcode address changes and new data is
accessed in the writable control store (WCS), the un-
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registered microcode bits will not be stable. Therefore,
the setup time would have to be incurred again, unnec-
essarily.

The logic shown in FIG. 17 holds the modified ad-
dress bits constant in a separate register 1740. A special
microcode bit (called “useold _A6”) is used to select
(using flip-flop 1720 to control multiplexer 1730) that
the old A6 value (fed back from register 1740) be used,
rather than the microcode derived one. (When using a
microcode assembler, the “useold_A6” microcode bit
can be automatically set by the microcode assembler, so
the programmer doesn’t need to worry about this opti-
mization.)

The multiplexer 1730 is contained in the same PAL as
the address modification logic, so this multiplexer does
not introduce any additional delay.

CACHE BUS INTERFACE AND CONTROL

As discussed above, many aspects of the operation of
the numeric processor module are controlled by an
extension of the control processor module 110. Most of
this logic is physically on the FP module, but is con-
trolled by the microcode of the control processor mod-
ule 110, and interfaces to the CD bus. There are several
distinguishable parts of the cache bus interface, to man-
age the transfers of data among the data cache memory
140, the FP holding registers 420, and the register files
430. The principal parts of this interface are: holding
registers 420; data cache transfer logic; and local trans-
fer bus logic 2110.

Holding Registers 420

