
Basic Processor Implementation Techniques 219

byte of the instruction is not in main memory-a situation that requires the
saved PC to point 50 bytes earlier. Imagine the difficulties of restarting an in
struction with six operands, each of which could be misaligned and thus be
partially in memory and partially on disk!

The instructions that are hardest to restart are those that modify some of the
machine state before it is known whether interrupts can occur. The VAX
autoincrement and autodecrement addressing modes would naturally modify

· registers during the addressing phase of execution rather than at the writeback
phase, and so would be vulnerable to this difficulty. To avoid this problem,
recent VAXes keep a history queue of the register specifiers and the operations
on the registers, so that the operations can be reversed on an interrupt. Another
approach, used on the earlier VAXes, is to record the specifiers and the original
values of the registers, restoring the original values on interrupt. (The primary
difference is that it only takes a few bits to record how the address was changed
due to autoincrement or autodecrement versus the full 32-bit register value.)

It is not just addressing modes that make the VAX difficult to restart; long
running instructions mean that interrupts must be checked in the middle of
execution to prevent long interrupt latency. MOVC3, for example, copies up to
216 bytes and can take tens of milliseconds to finish-far too long to wait for an
urgent event. On the other hand, even if there were a way to undo copying in the
middle of execution so that MOVC 3 could be restarted, interrupts would occur so
frequently, relative to this long-running instruction (see Figure 5.10 on page
216), that MOVC3 would be restarted repeatedly under those conditions. Such
wasted effort from incomplete copies would render MOVC 3 worse than useless.

DEC divided the problem to conquer it. First, the operands-source address,
length, and destination address-are fetched from memory and placed into
general-purpose registers Rl, R2, and R3. If an interrupt occurs during this first
phase, these registers are restored, and the MOVC 3 is restarted from scratch.
After this first phase, every time a byte is copied, the length (R2) is decremented
and addresses (Rl and R3) are incremented. If an interrupt occurs during this
second phase, MOVC 3 sets the first part done (FPD) bit in the program status
word. When the interrupt is serviced and the instruction is reexecuted, it first
checks the FPD bit to see if the operands have already been placed in registers.
If so, the VAX doesn't fetch the address and length operands, but just continues
with the current values in the registers, since that is all that remains to be copied.
This permits more rapid response to interrupts while allowing long-running
instructions to make progress between interrupts.

IBM had a similar problem. The 360 included the MVC instruction, which
copies up to 256 bytes of data. For the early machines without virtual memory,
the machine simply waited until the instruction was completed before servicing
interrupts. With the inclusion of virtual memory in the 370, the problem could
no longer be ignored. Control first tries to access all possible pages, forcing all
possible virtual memory miss interrupts to occur before moving any data. If any
interrupts occur in this phase, the instruction is restarted. Control then ignores
interrupts until the instruction is complete. To allow longer copies, the 370

Ex.1035.251DELL

220 5.6 Interrupts and Other Entanglements

includes MVCL, which can move up to 224 bytes. The operands are in registers
and are updated as a part of execution-like the VAX, except that there is no
need for FPD since the operands are always in registers. (Or, to speak
historically, the VAX solution is like the IBM 370, which came first.)

5. 7 I Putting It All Together: Control for DLX

The control for DLX is presented here to tie together the ideas from the previous
three sections. We begin with a finite-state diagram to represent hardwired
control and end with microprogrammed control. Both versions of DLX control
are used to demonstrate tradeoffs to reduce cost or to improve performance.
Because the figures are already too large, the checking for data page faults or
arithmetic overflow shown in Figure 5.12 (page 218) is not included in this
section. (Exercise 5.12 adds them.)

Data transfer
(Figure 5.14)

Memory access
not complete

l.

ALU
(Figure 5.15)

access
complete

Set
(Figure 5.16)

Jump
(Figure 5.17)

Branch
(Figure 5.18)

FIGURE 5.13 The top-level view of the DLX finite-state diagram for the non-floating
point instructions. The first two steps of instruction execution-instruction fetch and
instruction decode/register fetch-are shown. The first state repeats until the instruction is
fetched from memory or an interrupt is detected. If an interrupt is detected, the PC is saved
in IAR and PC is set to the address of the interrupt routine. The last three steps of
instruction execution-execution/effective address, memory access, and write back-are
shown in Figures 5.14 to 5.18 on pages 221-224.

Ex.1035.252DELL

220 i 5.6 interrupts and Other Entanglements

includes MVCL, which can move up to 224 bytes. The operands are in registers
and are updated as a part of execution—like the VAX, except that there is no

need for FPD since the operands are always in registers. (Or, to speak
historically, the VAX solution is like the IBM 370, which came first.)

5.7 Putting It All Together: control for an

The control for DLX is presented here to tie together the ideas from the previous

three sections. We begin with a finite—state diagram to represent hardwired

control and end with microprogrammed control. Both versions of DLX control

are used to demonstrate tradeoffs to reduce cost or to improve performance.

Because the figures are already too large, the checking for data page faults or

arithmetic overflow shown in Figure 5.12 (page 218) is not included in this

section. (Exercise 5.12 adds them.)

Memory access
not complete

Memory
access

complete

Data transfer ALU Set Jump Branch
(Figure 5.14) (Figure 5.15) (Figure 5.16) (Figure 5.17) (Figure 5.18)

FIGURE 5.13 The top-level view of the DLX finite-state diagram for the non-floating-
point instructions. The first two steps of instruction execution—instruction fetch and

instruction decode/register fetch—are shown. The first state repeats until the instruction is

fetched from memory or an interrupt is deteéted. if an interrupt is detected, the PC is saved
in lAFi and PC is set to the address of the interrupt routine. The last three steps of

instruction execution—execution/effective address, memory access, and write back—are

shown in Figures 5.14 to 5.18 on pages 221—224.

DELL Ex.1035.252

I
Data transfer

l
MOVS21

MOVl2S

Basic Processor Implementation Techniques 221

Rather than trying to draw. the DLX finite-state machine in a single figure
showing all 52 states, Figure 5.13 (see page 220) shows just the top level,
containing 4 states plus references to the rest of the states detailed in Figures
5.14 (below) through 5.18 (page 224). Unlike Figure 5.2 (page 205), Figure 5.13
takes advantage of the change to the datapath allowing PC to address memory
directly without going through MAR (Figure 5.4 on page 207).

Memory

Figure 5.13

access
complete

FIGURE 5.14 The effective address calculation, memory-access, and write-back states for the memory-access
and data-transfer instructions of DLX. For loads, the second state repeats until the data is fetched from memory. The
final state of stores repeats until the write is complete. While the operation of all five loads is shown in the states of this
figure, the proper operation of writes depends on the memory system writing bytes and halfwords, without disturbing the
rest of the word in memory, and correctly aligning the bytes and halfwords (see Figure 3.10, page 97) over the proper
bytes of memory. On completion of execution control transfers to Figure 5.13, found on page 220.

Ex.1035.253DELL

 Basic Processor Implementation Techniques 221

Rather than trying to draw the DLX finite-state machine in a single figure

/ showing all 52 states, Figure 5.13 (see page 220) shows just the top level,

containing 4 states plus references to the rest of the states detailed in Figures

5.14 (below) through 5.18 (page 224). Unlike Figure 5.2 (page 205), Figure 5.13

takes advantage of the change to the datapath allowing PC to address memory

directly without going through MAR (Figure 5.4 on page 207).

l
Data transfer

l
MOVSZI

MOVIZS Mam”access not

complete

Memory
access

complete

Memory
access not

complete

Memory
access

complete
Figure 5.13

FIGURE 5.14 The effective address calculation, memory-access, and write-back states for the memory-access

and data-transfer instructions 'of DLX. For loads, the second state repeats until the data is fetched from memory. The

final state of stores repeats until the write is complete. While the operation of all five loads is shown in the states of this

figure, the proper operation of writes depends on the memory system writing bytes and halfwords, without disturbing the

rest of the word in memory, and correctly aligning the bytes and halfwords (see Figure 3.10, page 97) over the proper

bytes of memory. On completion of execution control transfers to Figure 5.13, found on page 220.

DELL Ex.1035.253

222 5.7 Putting It All Together: Control for DLX

ALU

ADD! AND! OR !

Figure 5.13

FIGURE 5.15 The execution and write-back states for the ALU instructions of DLX. After putting a register or the
sign-extended 16-bit immediate into Temp, 1 of the 9 instructions is executed, and the result (C) is written back into the
register file. Only SRA and LHI may not be self-explanatory: The SRA instruction shifts right while it sign extends the
operand and LHI loads the upper 16 bits of the register while zeroing the lower 16 bits. (The C operators « and » shift
left and right, respectively; they fill with zeros unless bits are concatenated explicitly using##, e.g., sign extension). As
mentioned above, the check for overflow in ADD and SUB is not included to simplify the figure. On completion of execution
control transfers to Figure 5.13 (page 220).

FIGURE 5.16 (See adjoining page.) The execution and write-back states for the Set instructions of DLX. After
putting a register or the sign-extended 16-bit immediate into Temp, 1 of the 6 instructions compares A to Temp and then
sets C to 1 or 0, depending on whether the condition is true or false. C is then written back into the register file, and then
execution control transfers to Figure 5.13 (page 220). The dashed lines in this figure and Figure 5.18 are used to make it
easier to follow intersecting lines.

FIGURE 5.17 (See adjoining page.) The execution and write-back states for the jump instructions of DLX. With
jump and link instructions, the return address is first placed in C before the new value is loaded into PC. Trap saves it in
IAR. Note that the immediate in these instructions is 1 O bits longer than the 16-bit immediate in all other instructions. Jump
and link instructions conclude by writing the return address back into R31. On completion of execution, control transfers to
Figure 5.13 (page 220).

Ex.1035.254DELL

222 ‘ 5.7 Putting It All Together: Control for DL'X

ALU

Regist/ Immediate

Figure 5.13

FIGURE 5.15 The execution and write-back states for the ALU instructions of DLX. After putting a register or the

sign-extended 16-bit immediate into Temp, 1 of the 9 instructions is executed, and the result (C) is written back into the

register file. Only SRA and LHI may not be self—explanatory: The SRA instruction shifts right while it Sign extends the
operand and LHI loads the upper 16 bits of the register while zeroing the lower 16 bits. (The C operators << and >> shift
left and right, respectively; they fill with zeros unless bits are concatenated explicitly using ##, e.g., sign extension). As

mentioned above, the check for overflow in ADD and SUB is not included to simplify the figure. On completion of execution

control transfers to Figure 5.13 (page 220). '

FIGURE 5.16 (See adjoining page.) The execution and write-back states for the Set instructions of DLX. After

putting a register or the sign-extended 16-bit immediate into Temp, 1 of the 6 instructions compares A to Temp and then

sets C to 1 or 0, depending on whether the condition is true or false. C is then written back into the register file, and then

execution control transfers to Figure 5.13 (page 220). The dashed lines in this figure and Figure 5.18 are used to make it
easier to follow intersecting lines.

FIGURE 5.17 (See adjoining page.) The execution and write-back states for the jump instructions of DLX. With

jump and link instructions, the return address is first placed in C before the new value is loaded into PC. Trap saves it in

IAR; Note that the immediate in these instructions is 10 bits longer than the 16—bit immediate in all other instructions. Jump

and link instructions conclude by writing the return address back into R31. On completion of execution, control transfers to
Figure 5.13 (page 220.).

DELL Ex.1035.254

Basic Processor Implementation Techniques 223

Figure 5.13

FIGURE 5.16

FIGURES.17

Ex.1035.255DELL

Basic Processor Implementation Techniques 223

Register Immediate

FIGURE 5.16

Figure 5.13

FIGURE 5.17

DELL Ex.1035.255

224

Example

Answer

5.7 Putting It All Together: Control for DLX

Branch

I\~
y~

·."
Figure 5.13

FIGURE 5.18 The execution states for the branch instructions of DLX. The PC is
loaded with the sum of the PC and the immediate only if the condition is true. On
completion of execution, control transfers to Figure 5.13, found on page 220.

Performance of Hardwired Control for DLX

As stated in Section 5.4, the goal for control designs is to minimize CPI, clock
cycle time, amount of control hardware, and development time. CPI is just the
average number of states along the execution path of an instruction.

Let's assume thathardwired control directly implements the finite-state diagram
in Figures 5.13 to 5.18. What is the CPI for DLX running GCC?

The number of clock cycles to execute each DLX instruction is determined by
simply counting the states of an instruction. Starting at the top, every instruction
spends at least two clock cycles in the states in Figure 5.13 (ignoring interrupts).
The actual number depends on the average number of times the state accessing·
memory must repeat because· memory is not ready. (These wasted clock cycles
are usually c~lled memory stall cycles or wait states.) In cache-based machines
this value is typically 0 (i.e., no repetitions since cache access is 1 cycle) when
the data is found in the cache, and 10 or higher when it is not ..

The time for the remaining portion of instruction execution comes from the
additional figures. Besides two cycles for fetch and decode, loads take four
more cycles plus clock cycles waiting for the data access, while stores take just
three more clock cycles plus wait states. Three extra clock cycles are also
needed by ALU instructions, and set instructions take four. Figure 5.17 shows
that jumps take just one extra clock cycle with jump and links taking three.
Branches depend on the result: Taken branches use two more clock cycles while

Ex.1035.256DELL

224 ' 5] Putting It All Together: Control for DLX

"« 9

Figure 5.13

FIGURE 5.18 The execution states for the branch instructions of DLX. The PC is

loaded with the sum of the PC and the immediate only if the condition is true. On

completion of execution, control transfers to Figure 5.13, found on page 220.

Performance of Hardwired Control for DLX

As stated in Section 5.4, the goal for control designs is to minimize CPI, clock

cycle time, amount of control hardware, and developmentxtime. CPI is just the
average number of states along the execution path of an instruction.

 Let’s assume that hardwired control directly implements the finite-state diagram
ExamP'e in Figures 5.13 to 5.18. What is the CPI for DLX running GCC?

Answer The number of clock cycles to execute each DLX instruction is determined by '
simply counting the states of an instruction. Starting at the top, every instruction

spends at least two clock cycles in the states in Figure 5.13 (ignOring interrupts).

The actual number depends on the average number of times the state accessing

memory must repeat because'memory is not ready. (These wasted clock cycles

are usually called memory stall cycles or wait states.) In cache-based machines

this value is typically 0 (i.e., no repetitions since cache access is 1 cycle) when

the data is found in the cache, and 10 or higher when it is not.

The time for the remaining portion of instruction execution comes from the

additional figures. Besides two cycles for fetch and decode, loads take four

more ’cycles plus clock cycles waiting for the data access, while stores take just

three more clock cycles plus wait states. Three extra clock cycles are also

needed by ALU instructions, and set instructions take four. Figure 5.17 shows

that jumps take just one extra clock cycle with jump and links taking three.

Branches depend on the result: Taken branches use two more clock cycles while

DELL Ex.1035.256

Basic Processor Implementation Techniques 225

DLX instructions Minimum Memory Total clock
clock cycles accesses cycles

Loads 6 2 8

Stores 5 2 7

ALU 5 1 6

Set 6 1 7

Jumps 3 1 4

Jump and links 5 1 6

Branch (taken) 4 1 5

Branch (not taken) 3 1 4

FIGURE 5.19 Clock cycles per instruction for DLX categories using the state
diagram in Figures 5.13 through 5.18. Determining the total clock cycles per category
requires multiplying the number of memory accesses-including instruction fetches-times
the average number of wait states, and adding this product to the minimum number of clock
cycles. We assume an average of 1 clock cycle per memory access. For example, loads
take eight clock cycles if the average number of wait states is one.

untaken branches need just one. Adding these times to the first portion of
instruction execution yields the clock cycles per DLX instruction class shown in
Figure 5.19.

From Chapter 2, one way to calculate CPI is

n

CPI = ~(CPI· * ~i) ,£..J 1 Instruction count
i=l

Using the DLX instruction mix from Figure C.4 in Appendix C for GCC
(normalized to 100%), the percentage of taken branches from Figure 3.22 (page
107), and one for the average number of wait states per memory access, the
DLX CPI for this datapath and state diagram is calculated:

Loads 8 * 21% = 1.68

Stores 7 * 12% = 0.84

ALU 6 * 37% = 2.22

Set 7 * 6% = 0.42

Jumps 4 * 2% = 0.08

Jump and links 6 * 0% = 0.00

Branch (taken) 5 * 12% = 0.60

Branch (not taken) 4 * 11% = 0.44

Total CPI: 6.28

Thus, the DLX CPI for GCC is about 6.3.

Ex.1035.257DELL

226

Example

Answer

5.7 Putting It All Together: Control for DLX

Improving DLX Performance When Control Is Hardwired

As mentioned above, performance is improved by reducing the number of states
an instruction must pass through during execution. Sometimes, performance can
be improved by removing intermediate calculations that select one of several
options, either by adding hardware that uses information in the opcode to later
select the appropriate option, or by simply increasing the number of states.

Let's look at improving the performance of ALU instructions by removing the
top two states in Figure 5.15 on page 222, which load either a register or an
immediate into Temp. One approach uses a new hardware option. Let's call it
"X" (see Figure 5.20). The X option selects either the B register or the 16-bit
immediate, depending on the opcode in IR. A second approach is simply to
increase the number of execution states so that there are separate states for ALU
instructions usii;ig immediate versus ALU instructions using registers.

For each option, what would be the change in performance, and how should
the state diagram be changed? Also, how many states are needed in each option?

Either change reduces ALU execution time from five to four clock cycles plus
wait states. From Figure C.4, ALU operations are about 37% of the instructions
for GCC, lowering CPI from 6.3 to 5.9, and making the machine about 7%
faster. Figure 5 .20 shows Figure 5 .15 modified to use the X option instead of the
two states that load Temp, while Figure 5.21 simply has many more states to
achieve the same result. The total number of states are 50 and 58, respectively.

ALU

4711\~ AND j
~=~=""'

SRA i

Figure 5.13

FIGURE 5.20 Figure 5.15 modified to remove the two states loading Temp. The
states use the new X option to mean that either B or (IR16) 16##1R16 .. 31 is the operand,
depending on the DLX opcode.

Ex.1035.258DELL

226 V 5.7 Putting It AIITogether: Control for DLX

Improving DLX Performance When Control Is Hardwired

As mentioned above, performance is improved by reducing the number of states

an instruction must pass through during execution. Sometimes, performance can

be improved by removing intermediate calculations that select one of several

options, either by adding hardware that uses information in the opcode to later

select the appropriate option, or by simply increasing the number of states.

Let’s look at improving the performance of ALU instructions by removing the
top two states in Figure 5.15 on page 222, which load either a register or an

immediate into Temp. One approach uses a new hardware option. Let’s call it
“X” (see Figure 5.20). The X option selects either the B register or the 16-bit

immediate, depending on the opcode in IR. A second approach is simply to

increase the number of execution states so that there are separate states for ALU

instructions using immediate versus ALU instructions using registers.

For each option, what would be the change in performance, and how should

the state diagram be changed? Also, how many states are needed in each option?

Either change reduces ALU execution time from five to four clock cycles plus

wait states. From Figure C.4, ALU operations are about 37% of the‘instructions

for GCC, lowering CPI from 6.3 to 5.9, and making the machine about 7%

faster. Figure 5.20 shows Figure 5 .15 modified to use the X option instead of the

two states that load Temp, while Figure 5.21 simply has many more states to

achieve the same result. The total number of states are 50 and 58, respectively.

ALU

» ///li\\\
SUB | AND 1

Figure 5.13

FIGURE 5.20 Figure 5.15 modified to remove the two states loading Temp. The

states use the new X option to mean that either B or (IR16)16##|R16_.31 is the operand,
depending on the DLX opcode.

DELL Ex.1035.258

Basic Processor Implementation Techniques 227

ALU

ADDI /

SUB~ /

ANDI /

XORI /

SLLI /

SRLI /

/

Figure 5.13

FIGURE 5.21 Figure 5.15 modified to remove the two states loading Temp. Unlike
Figure 5.20, this requires no new hardware options in the datapath, but simply more control
states.

Control can affect the clock cycle time, either because control itself takes
longer than the corresponding operations in the datapath, or because the datapath
operations selected by control lengthens the worst-case clock cycle time.

Ex.1035.259DELL

Basic Processor Implementation Techniques 227

Figure 5.13

FIGURE 5.21 Figure 5.15 modified to remove the two states loading Temp. Unlike

Figure 5.20, this requires no new hardware options in the datapath, but simply more control
states.

Control can affect the clock cycle time, either because control itself takes

longer than the corresponding operations in the datapath, or because the datapath

operations selected by control lengthens the worst-case clock cycle time.

DELL Ex.1035.259

228

Example

Answer

5.7 Putting It All Together: Control for DLX

Assume a machine with a 10-ns clock cycle (100-MHz clock rate). Suppose that
on closer inspection the designer discovered that all states could be executed in 9
ns, except states that use the shifter. Would it be wise to split those states, taking
two 9-ns clock cycles for shift states and one 9-ns clock for everything else?

Assuming the improvement in the previous example, the average instruction
execution time for the 100-MHz machine is 5.9*10 ns or 59 ns. The shifter is
only used in the states of four instructions: SLL, SRL, SRA, and LHI (see Figure
5.20). In fact, each of these instructions takes 5 clock cycles (including one wait
state for memory access), and only one of the five original clock cycles need be
split into two new clock cycles. Thus, the average execution time of these in
structions changes from 5* 10 ns, or 50 ns, to 6*9 ns, or 54 ns. From Figure C.4
these 4 instructions are about 11 % of the instructions executed for GCC (after
normalization), making the average instruction execution time 89% * (5.9*9 ns)
+ 11 %*54 ns or 53 ns. Thus, splitting the shift state results in a machine that is
about 10% faster-a wise decision. (See Exercise 5.8 for a more sophisticated
version of this tradeoff.)

Hardwired control is completed by listing the control signals activated in each
state, assigning numbers to the states, and finally generating the PLA. Now let's
implement control using microcode in a ROM.

Microcoded Control for DLX

A custom format such as this is a slave to the architecture of the hardware and
instruction set which it serves. The format must strike a proper compromise
between ROM size, ROM-output decoding circuitry size, and machine execution
rate.

Jim McKevit et al. [1977]

Before microprogramming can commence, the microinstruction set must be
determined. The first step is to list the possible entries for each field of the DLX
microinstruction format from Figure 5.6 on page 209. Figure 5.7 on page 211

. lists them for the Destination, Sourcel, and Source2 fields. Figure 5.22 below
shows the values for the remaining fields.

Sequencing of microinstructions i:equires further explanation. The
microprogrammed control includes a microprogram counter to specify th€
address of the next microinstruction if a branch is not taken, as in Figu_re 5.5 on
page 208. In addition to the branches using the Jump address field, three tables
are used to decode the DLX macroinstructions. These tables are indexed with
the opcodes of the DLX instruction, and supply a microprogram address
depending on the value in the opcode. Their use will become clear as we
examine the DLX micr_oprogram.

Ex.1035.260DELL

Basic Processor Implementation Techniques 229

Value ALU Misc Cond

0 ADD + Instr Read /Rf- - - - Go to next sequential microinstruction
M[PC]

1 SUB - DataRead MDRf- Uncond Always jump
M[MAR]

2 RSUB -r Write M[MAR]f- Int? Pending (between instruction) interrupt?

(reverse sub) MDR

3 AND & ABf-RF LoadA&B Mem? Memory access not complete?
from Reg. File

4 OR I Rdf-C Write Rd Zero? Is the ALU output zero?

5 XOR /\ R31f-C Write R31 Negative? ls the ALU output less than zero?
J',

(for call)

6 SLL << Load? Is the macroinstruction a DI.x load?

7 SRL >> Decodel Address table 1 determines next micro-
(Fig. 5.24) instruction (uses main opcode)

8 SRA >>a Decode2 Address table 2 determines next micro-
(Fig. 5.26) instruction (uses ''func" opcode)

9 Pass Sl SJ Decode3 Address table 3 determines next micro-
(Fig. 5.26) instruction (uses main opcode)

10 Pass S2 S2

FIGURE 5.22 The options for three fields of the DLX microinstruction format in Figure 5.6 on page 209. The
possible names are shown on the left of the field name, with an explanation of each field to the right. The real
microinstruction would contain a bit pattern corresponding to the number in the first column. Combined with Figure 5. 7
(page 211), all the fields are defined except the Constant and Jump address fields, which contain numbers supplied by
the microprogrammer. »a is an abbreviation for shift right arithmetic and -,means reverse subtract (B -,A= A- B).

Following the lead of the state diagram, the DLX microprogram is divided
into Figures 5.23, 5.25, 5.27, 5.28, and 5.29, with each section of microcode cor
responding to one of Figures 5.13 to 5.18 (pages 220-224). The first state in
Figure 5.13 becomes the first two microinstructions in Figure 5.23. The first
microinstruction (address 0) branches to microinstruction 3 if there is an
interrupt pending. Microinstruction 1 fetches an instruction from memory,
branching back to itself as long as the memory access is not complete.
Microinstruction 2 increments the PC by 4, loads A and B, and then does the
first-level decoding. The address of the next microinstruction then depends on
which macroinstruction is in the instruction register. The microinstruction
addresses for this first-level macroinstruction decode are specified in Figure
5.24. (In reality, the table shown in this figure is specified after the
microprogram is written, as both the number of entries and the corresponding
locations aren't known until then.)

Ex.1035.261DELL

230 5.7 Putting It All Together: Control for DLX

Loe Label Dest ALU Sl S2 c Misc Cond Jump Comment
label

0 If etch: Interrupt? Intrpt Check interrupt

1 Hoop: Instr Read Mem? Hoop IR <:-M[PC];
wait for memory

2 PC ADD PC Constant 4 AB<:-RF Decodel

3 Intrpt: IAR Pass Sl PC Interrupt

4 PC Pass S2 Constant 0 Uncond If etch PC<:-0 & go
fetch next
instruction

FIGURE 5.23 The first section of the DLX microprogram, corresponding to the states in Figure 5.13 (page 220).
The first column contains the absolute address of the microinstruction, followed by a label. The rest of the fields contain
values from Figures 5. 7 (page 211) and 5.22 for the microinstruction format in Figure 5.6 (page 209). As an example,
microinstruction 2 corresponds to the second state of Figure 5.13. It sends the output from the ALU into PC, tells the ALU
to add, puts PC onto the Source1 bus, and a constant from the microinstruction (whose value is 4) onto the Source2 bus.
In addition, A and Bare loaded from the register file according to the specifiers in IR. Finally, the address of the next
microinstruction to be executed comes from decode table 1 (Figure 5.24), which depends on the opcode· in the instruction
register (IR).

Opcodes (symbolically Absolute Label Figure
specified) address

Memory 5 Mem: 5.25

Move to special 20 Movl2S: 5.25

Move from special 21 MovS2I: 5.25

S2=B 23 Reg: 5.27

S2 = Immediate 24 Imm: S.27

Branch equal zero 50 Beq: 5.29

Branch not equal zero 52 Bne: 5.29

Jump 54 Jump: 5.29

Jump register 55 JReg: 5.29

Jump and link 56 JAL: 5.29

Jump and link register 58 JALR: 5.29

Trap 60 Trap: 5.29

FIGURE 5.24 Opcodes and corresponding addresses for decode table 1. The
opcodes are shown symbolically on the left, followed by the addresses with the absolute
microinstruction address, a label, and the figure where the microcode can be found. If this
table were implemented with a ROM it would contain 64 entries corresponding to the 6-bit
opcode of DLX. As this would clearly result in many redundant or unspecified entries, a
PLA could be used to minimize hardware.

Figure 5.25 contains the DLX load and store instructions. Microinstruction 5
calculates the effective address, and branches to microinstruction 9 if the

Ex.1035.262DELL

f',

Loe Label Dest

5 Mem: MAR

6 Store: MDR
7 Dloop:

8
9 Load:

IO
11 LB: Temp

I2 c

13 LBU: Temp

14 c
IS LH: Temp

I6 c
17 LHU: Temp

18 c
I9 LW: c
20 Movl2S: IAR
21 MovS21: c
22 Write I:

Basic Processor Implementation Techniques 231

macroinstruction in the IR is a load. If not, microinstruction 6 loads MDR with
the value to be stored, and microinstruction 7 jumps to itself until the memory is
finished writing the data. Microinstruction 8 then jumps back to microinstruction
0 (Figure 5.23) to begin the execution cycle all over again. If the macroinstruc
tion was a load, microinstruction 9 loops until the data has been read. Micro
instruction 10 then uses decode table 2 (specified in Figure 5.26) to specify the
address of the next microinstruction. Unlike the first decode table, this table is
used by other microinstructions. (There is no conflict in multiple uses since the
opcodes for each instance are different.)

Suppose the instruction were load halfword. Figure 5.26 shows that the result
of decode 2 would be to jump to microinstruction 15. This microinstruction
shifts the contents of MDR to the left 16 bits and stores the result in Temp. The
following microinstruction shifts Temp right arithmetically 16 bits and puts the
result in C. C now contains the 16 rightmost bits of MDR, with the upper 16 bits
containing the extended sign. This microinstruction jumps to location 22, which
writes C back into the destination register specifier in IR, and then jumps to
fetch the next macroinstruction starting at location 0 (Figure 5.23).

ALU Sl S2 c Misc Cond Jump Comment
label

ADD A immI6 Load? Load M emorv instruct.

Pass S2 B Store

Data write Mem? Dloop

Uncond If etch Fetch next instr.

Data read Mem? Load LoadMDR

Decode2
SLL MDR Constant 24 Load byte; shift left to

remove uvver 24 bits

SRA Temp Constant 24 Uncond Write I Shift right arithmetic
to sifm extend

SLL MDR Constant 24 LB unsi1med

SRL Temp Constant 24 Uncond Write I Shift rif~ht lof!.ical

SLL MDR Constant I6 Load half

SRA Temp Constant I6 Uncond Write I Shift rif!.ht arithmetic

SLL MDR Constant I6 LH Unsif!.ned

SRL Temp Constant I6 Uncond Write I Shift rif!.ht lof!.ical

Pass Sl MDR Uncond Write I Load word

Pass SI A Uncond If etch Move to special

Pass SI IAR Move from spec.

Rdf--C Uncond If etch Write back & go fetch
next instruction

FIGURE 5.25 The section of the DLX microprogram for loads and stores, corresponding to the states in Figure
5.14 (page 221). The microcode for bytes and halfwords takes an extra microinstruction to align the data (see Figure
3.10, page 97). Note that microinstruction 5 loads A from Rd, just in case the instruction is a store. The label lfetch is for
microinstruction 0 in Figure 5.23 on page 230.

Ex.1035.263DELL

232 5.7 Putting It All Together: Control for DLX

Opcode Absolute Label Figure
address

Load byte 11 LB: 5.25

Load byte unsigned 13 LBU: 5.25

Load half 15 LH: 5.25

Load half unsigned 17 LHU: 5.25

Load word 19 LW: 5.25

ADD 25 ADD/I: 5.27

SUB 26 SUB/I: 5.27

AND 27 AND/I: 5.27

OR 28 OR/I: 5.27

XOR 29 XOR/I: 5.27

SLL 30 SLL/I: 5.27

SRL 31 SRL/I: 5.27

SRA 32 SRA/I: 5.27

LHI 33 LHI: 5.27

Set equal 35 SEQ/I: 5.28

Set not equal 37 SNEil: 5.28

Set less than 39 SLT/I: 5.28

Set greater than or equal 41 SGE/I: 5.28

Set greater than 43 SGT/I: 5.28

Set less than or equal 45 SLE/I: 5.28

FIGURE 5.26 Opcodes and corresponding addresses for decode tables 2 and 3. The
opcodes are shown symbolically on the left, followed by the absolute microinstruction
address, the corresponding label, and the figure where the microcode can be found. Since
the opcodes are shown symbolically, and they go to the same place in both tables, the
same information can be used for specifying decode tables 2 and 3. This similarity is
attributable to the immediate version and register version of the DLX instructions sharing
the same microcode. If a table were implemented with a ROM, it would contain 64 entries
corresponding to the 6-bit opcode of DLX. Again, the many redundant or unspecified
entries suggest the use of a PLA to minimize hardware cost.

The ALU instructions are found in Figure 5.27. The first two microinstruc
tions correspond to the states at the top of Figure 5.15 (page 222). After loading ..
Temp with either the register or the immediate, each uses a decode table to
vector to the microinstruction that executes the ALU instruction. To save
microcode space, the same microinstruction is used whether the operand is a
register or an immediate. One of the microinstructions between 25 and 33 is
executed, storing its result in C. It then jumps to microinstruction 34, which
stores C into the register specified in the IR, and in turn jumps to fetch the next
macroinstruction.

Ex.1035.264DELL

Basic Processor Implementation Techniques 233

Loe Label Dest ALU Sl S2 c Misc Cond Jump Comment
label

23 Reg: Temp Pass S2 B Decode2 -- source2 = ref!.

24 Imm: Temp Pass S2 Imm Decode3 source2 = imm.
25 ADD/I: c ADD A Temp Uncond Write2 ADD
26 SUB/I: c SUB A Temp Uncond Write2 SUB

27 AND/I: c AND A Temp Uncond Write2 AND
28 OR/I: c OR A Temp Uncond Write2 OR

29 XOR/I: c XOR A Temp Uncond Write2 XOR

30 SLL/I: c SLL A Temp Uncond Write2 SLL

31 SRL/I: c SRL A Temp Uncond Write2 SRL

32 SRA/I: c SRA A Temp Uncond Write2 SRA

33 LHI: c SLL Temp Constant 16 ., Uncond Write2 LHI

34 Write2: Rdf-C Uncond If etch Write back & go
fetch next instruction

FIGURE 5.27 .Like the first two states in Figure 5.15 (page 222), microinstructions 23 and 24 load Temp with an
operand and then vector to the appropriate microinstruction, depending on the opcode in IR. One of the nine
following microinstructions is executed, leaving its result in C. C is written back into the register specified in the register
destination field of DLX macroinstruction in IR in microinstruction 34.

Loe Label Dest ALU Sl S2 c Misc Cond Jump' Comment
label

35 SEQ/I: SUB A Temp Zero? Setl Set equal

36 c Pass S2 Constant 0 Uncond Write4 AR (set to false)

37 SNE/I: SUB A Temp Zero? Seto Set not equal

38 c Pass S2 Constant 1 Uncond Write4 AR (set to true)

39 SLT/I: SUB A Temp Negative? Setl Set less than

40 c Pass S2 Constant 0 Uncond Write4 A~T (set to false)

41 SGE/I: SUB A Temp Negative? Seto Set GT or equal

42 c Pass S2 Constant 1 Uncond Write4 A~T (set to true)

43 SGT/I: RSUB A Temp Negative? Setl Set weater than

44 c Pass S2 Constant 0 Uncond Write4 T~ (set to false)

45 SLE/I: RSUB A Temp Negative? Seto Set LT or equal

46 c Pass S2 Constant 1 Uncond Write4 T~ (set to true)

47 Seto: c Pass S2 Constant 0 Uncond Write4 Set to 0 =false

48 Setl: c Pass S2 Constant 1 Set to 1 = true

49 Write4: Rdf-C Uncond If etch Write back &fetch
· next instruction

FIGURE 5.28 Corresponding to Figure 5.16 (pages 222-223), this microcode performs the DLX Set instructions.
As in the previous figure, to save space these same microinstructions execute either the version of set using registers or
the version using immediates. The tricky microcode is found in microinstructions 43 and 45, where the subtraction Temp -
A is unlike the earlier microcode. Remember that A-, Temp= Temp-A (see Figure 5.22 on page 229).

Ex.1035.265DELL

234

Loe Label Dest

50 Beq:
51
52 Bne:
53 Branch: PC
54 Jump: PC
55 JReg: PC
56 JAL: c
57 PC
58 JALR: c
59 PC
60 Trap: IAR
61 PC

5.7 Putting It All Together: Control for DLX

Figure 5.28 corresponds to the states in Figure 5.16 (pages 222-223), except
that the top two states that load Temp are microinstructions 23 and 24 of the pre
vious figure; the decode tables will either jump to locations 25 to 34 in Figure
5.27, or 35 to 45 in Figure 5.28, depending on the opcode. The microinstructions
for Set perform relative tests by having the ALU subtract Temp from A and then
test the ALU output to see if the result is zero or negative. Depending on the test
result, C is set to 1 or 0 and written back in the register file before going to fetch
the next macroinstruction. Tests for A = Temp, A '* Temp, A < Temp, and A;;:::
Temp are straightforward using these conditions on the ALU output A - Temp.
A > Temp and A ~ Temp, on the other hand, are not simple, but can be done
using the negative condition with the subtraction reversed:

(Temp-A< 0) = (Temp< A) = (A> Temp)

If the result is negative, then A > Temp, otherwise A ~ Temp. Voila!
Figure 5.29 contains the last of the DLX microcode and corresponds to the

states found in Figures 5.17 and 5.18 (pages 222-224). Microinstruction 50,
corresponding to the macroinstruction branch on equal zero, tests if A equals
zero. If it does, the macroinstruction branch succeeds, and the microinstruction
jumps to the microinstruction 53. This microinstruction loads the PC with the
PC-relative address and then jumps to the microcode that fetches the new
macroinstruction (location 0). If A does not equal zero, the macroinstruction
branch fails, so that the next sequential microinstruction (51) executes, jumping
to location 0 without changing the PC.

A state usually corresponds to a single microinstruction, although in a few
cases above two microinstructions were needed. The jump and link instructions
have the reverse case, with two ptates collapsing into one microinstruction. The
actions in the last two states of] ump and link in Figure 5 .17 are found in micro
instruction 57, and similarly for the jump and link register with microinstruction
59. These microinstructions load the PC with the PC-relative branch address and
save C into R3 l.

ALU Sl S2 c Misc Cond Jump Comment
label

SUB A Constant 0 O? Branch Instr is branch =0
Uncond If etch :;t(): not taken

SUB A Constant 0 O? If etch Instr is branch ;t: 0
ADD PC imm16 Uncond If etch :;t(): taken
ADD PC imm26 Uncond If etch Jump
Pass Sl A Uncond If etch Jump reRister
Pass Sl PC Jump and link
ADD PC imm26 R31f-C Uncond If etch Jump & save PC
Pass Sl PC Jump & link ref!
Pass Sl A R31f-C Uncond If etch Jump & save PC
Pass Sl PC Trap
Pass S2 imm26 Uncond If etch

FIGURE 5.29 The microcode for branch and jump DLX instructions, corresponding to the states i11 Figures 5.17
and 5.18 on pages 222-224.

Ex.1035.266DELL

Dest

Unencoded 7

Encoded 3

Basic Processor Implementation Techniques . 235

Performance of Microcoded Control for DLX

Before trying to improve performance or reduce costs of control, the existing
performance must be assessed. Again, the process is to count the clock cycles
for each instruction, but this time there is a larger variety in performance.

All instructions execute microinstructions 0, 1, and 2 in Figure 5.23 (page
230), giving a base of 3 clocks plus wait states, depending on the repetition of
microinstruction 1. The clock cycles for the rest of the categories are:

4 for stores, plus wait states

5 for load word, plus wait states

6 for load byte or load half (signed or unsigned), plus wait states

3 for ALU

4 for set

2 for branch equal zero (taken or untaken)

2 for branch not equal zero (taken)

1 for branch not equal zero (untaken)

1 for jumps

2 for jump and links

Using the instruction mix for GCC in Figure C.4, and assuming an average of 1
wait state per memory access, the CPI is 7.68. This is higher than the hardwired
control CPI, because the test for interrupt takes another clock cycle at the begin
ning, loads and stores are slower, and branch equal zero is slower for the
untaken case.

Reducing Cost and Improving Performance of DLX
When Control Is Microcoded

The size of a completely unencoded version of the DLX microinstruction is
calculated from the number of entries in Figures 5. 7 (page 211) and 5 .22 (page
229) phis the size of the Constant and Jump address fields. The largest constant
in the fields is 24, which requires 5 bits, and the largest address is 61, which
requires 6. Figure 5.30 shows the microinstruction fields, the unencoded widths,
and the encoded widths. Encoding almost halves the size of control store.

ALU Sourcel Source2 Constant Misc Cond Jump Total
operation address

11 9 9 5 6 10 6 = 63 bits

4 4 4 5 3 4 6 = 33 bits

FIGURE 5.30 Width of field in bits of unencoded and encoded microinstruction formats. Note that the Constant
and Jump address fields are not encoded in this example, placing fewer restrictions on the microprogram using the
encoded format.

Ex.1035.267DELL

236

Example

Answer

5.7 Putting It All Together: Control for DLX

The microinstruction can be further shrunk by introducing multiple micro
instruction formats and by combining independent fields.

Figure 5.31 shows an encoded version of the original DLX microinstruction
format and the version with two formats: one for ALU operations and one for
miscellaneous and branch operations. A bit is added to distinguish the two
formats. The ALU/Jump (A/J) microinstruction performs the ALU operations
specified in the microinstruction; the address of the next microinstruction is
specified in the Jump address. For the Transfer/Misc/Branch (T/M/B) micro- ~

instruction, the ALU performs Pass S 1, while the Misc and Cond fields specify
the rest of the operations. The primary change in interpretation of the fields in
the new formats is that the ALU condition being tested in the T/M/B format
refers to the ALU output from the prior A/J microinstruction since there is no
ALU operation in T/M/B format. In both formats the Constant and Jump fields
are combined into a single field under the assumption they are not used at the
same time. (For the A/J format, the appearance of a constant in a source field
results in fetching the following microinstruction.) The new formats shrink
width from the original 33 bits to 22 bits, but the actual size savings depends on
the number of extra microinstructions needed because of the reduced options.

What is the increase in number of microinstructions, compared to the single
format, for the microcode in Figure 5.23 (page 230)?

3 4 4 4 5 3 4 6

ALU/Jump

3 4 4 4 6

Transfer/Misc/Branch

3 4 4 4 6

FIGURE 5.31 The original DLX microinstruction format at the top and the dual- '
format version below. Note that the Misc field is expanded from 3 to 4 bits in the T/M/B to
make the two formats the same length.

Figure 5.32 shows the increase in the number of microinstructions over Figure
5.23 (page 230) because of the restrictions of each format. The five micro
instructions in the original format expand to six in the new format. Microinstruc
tion 2 is the only one that expands to two microinstructions for this example.

Ex.1035.268DELL

236 ‘ 5.7 Putting It All Together: Control for DLX

The microinstruction can be further shrunk by introducing multiple micro—

instruction formats and by combining independent fields.

Figure 5.31 shows an encoded version of the original DLX microinstruction

format and the version with two formats: one for ALU operations and one for

miscellaneous and branch operations. A bit is added to distinguish the two

formats. The ALU/Jump (A/J) microinstruction performs the ALU operations

specified in the microinstruction; the address of the next microinstruction is

specified in the Jump address. For the Transfer/Misc/Branch (T/M/B) micro- ;

instruction, the ALU performs Pass 81, while the Misc and Cond fields specify

the rest of the operations. The primary change in interpretation of the fields in

the new formats is that the ALU condition being tested in the T/M/B format

refers to the ALU output from the prior A/J microinstruction since there is no

ALU operation in T/M/B format. In both formats the Constant and Jump fields

are combined into a single field under the assumption they are not used at the

same time. (For the A/J format, the appearance of a constant in a source field

results in fetching the following microinstruction.) The new formats shrink _

width from the original 33 bits to 22 bits, but the actual size savings depends on

the number of extra microinstructions needed because of the reduced options.

What is the increase in number of microinstructions, compared to the single

format, for the microcode in Figure 5.23 (page 230)?

Transfer/Misc/Branch
FIGURE 5.31 The original DLX microinstruction format at the top and the dual- ' .,
format version below. Note that the Misc field is expanded from 3 to 4 bits in the T/M/B to

make the two formats the same length.

Figure 5.32 shows the increase in the number of microinstructions over Figure

5.23 (page 230) because of the restrictions of each format. The five micro—

instructions in the original format expand to six in the new format. Microinstruc-

tion 2 is the only one that expands to two microinstructions for this example.

DELL Ex.1035.268

Basic Processor Implementation Techniques 237

Loe Label Type. Dest ALU Sl S2 Misc Cond Const/ Comment
Jump

0 If etch: M!f /B --- --- Interrupt? Intrpt Check interruJJt
1 !loop: M!f /B --- --- Instr Mem? !loop IR f-M[PC]; wait

Read for memory
2 A/J PC ADD PC Constant --- --- 4 Increment PC
3 M{f /B --- --- ABf- Decodel

RF

4 In trot: A/J IAR Pass Sl PC --- --- 5 Interrupt
5 A/J PC SUB Temp Temp --- --- If etch PC~O (t minus t=O) ..

& go fetch next
instruction

FIGURE 5.32 Version of Figure 5.23 (page 230) using the dual-format microinstruction in Figure 5.31. Note that
ALU/Jump microinstructions check the 81 and 82 fields for a constant specifier to see if the next address is sequential (as
in microinstruction 2); otherwise they go to the Jump address (as in microinstructions 4 and 5). The microprogrammer
changed the last microinstruction to generate a zero by subtracting a register from itself rather than through straight
forward use of constant 0. Using the constant would have required an additional microinstruction since this format goes to
the next sequential instruction if a constant is used. (See Figure 5.31.)

Loe Label Dest

50 Beq:

51 PC

Sometimes performance can be improved by finding faster sequences of
microcode, but normally it requires changes to the hardware. The branch equal
zero instruction takes one extra clock cycle when the branch is not taken with
hardwired control, but two with microcoded control; while branch not equal zero
has the same performance for hardwired and microcoded control. Why would
the former differ in performance? Figure 5.29 shows that microinstruction 52
branches on zero to fetch the next microinstruction, which is correct for the
branch on not equal zero macroinstruction. Microinstruction 50 also tests for
zero for the branch on zero macroinstruction and branches to the
microinstruction that loads the new PC. The not zero case is handled by the
following microinstruction (51), which jumps to fetch the next instruction
hence, one clock cycle for untaken branch on not equal zero and two for untaken
branch on equal zero. One solution is simply to add "not zero" to the microcode
branch conditions in Figure 5.22 (page 229) and change the branch on equal
microcode to the version in Figure 5.33. Since there are only ten branch
conditions, adding the eleventh would not require more than the four bits needed
for an encoded version of that field.

ALU Sl S2 c Misc Cond Jump Comment
label

SUB A Constant 0 notO? !fetch Branch =0
ADD PC imm16 Uncond If etch =0: taken

FIGURE 5.33 Branch not equal microcode from Figure 5.29 (page 234) rewritten by using a not zero condition in
microinstruction 44.

Ex.1035.269DELL

238

Example

Answer

Loe Label Dest

0 !fetch:

1 PC

2 Intrpt: IAR

3 PC

5.7 Putting It All Together: Control for DLX

This change drops the CPI from 7 .68 to 7 .63 for microcoded control, yet this
is still higher than the CPI for hardwired control.

Let's improve microcoded control so that the CPI for GCC is closer to the
original CPI under hardwired control.

The main performance culprit is the separate test for interrupts in Figure 5.23.
By modifying the hardware, decodel can kill two birds with one stone: In
addition to jumping to the appropriate microinstructions corresponding to the
opcode, it also jumps to the interrupt microcode if an interrupt is pending. Figure
5.34 shows the revised microcode. This modification saves one clock cycle from
each instruction, reducing the CPI to 6.63.

ALU Sl S2 c Misc Cond Jump Comment
label

Instr Read Mem? If etch IR <::-M[PC]; wait
for memory

ADD PC Constant 4 AB<::-RF Decode I Also go to interrupt
if vendinR interrupt

SUB PC Constant 4 Interrupt: undo PC
increment

Pass S2 Constant 0 Uncond If etch PC<::-0 & go fetch
next instruction

FIGURE 5.34 Revised microcode that takes advantage of a change of the hardwar-e1o have decode1 go to
microinstruction 2 if there is a pending interrupt. This microinstruction must reverse the increment of PC in the prior
microinstruction so that the correct value is saved.

5.8 I Fallacies and Pitfalls
,

Pitfall: Microcode implementing a complex instruction may not be faster than
macrocode.

At one time, microcode had the advantage of being fetched from a much faster
memory than macrocode. Since caches came into use in 1968, microcode no
longer has such a consistent edge in fetch time. Microcode does, however, still
have the advantage of using internal temporary registers in the computation,
which can be helpful on machines with few general-purpose registers. The
disadvantage of micn:~code is that the algorithms must be selected before the
machine is announced and can't be changed until the next model of the archi-

Ex.1035.270DELL

Basic Processor Implementation Techniques 239

tecture; macrocode, · on the other hand, can utilize improvements in its
algorithms at any time during the life of the machine.

The VAX Index instruction provides an example: The instruction checks to
see if the index is between two bounds, one of which is usually zero. The VAX-
11/780 microcode uses two compares and two branches to do this, while
macrocode can perform the same check in one compare and one branch. The
macrocode checks the· index against the upper limit using unsigned
comparisons, rather than two's complement comparisons. This treats a negative
index (less than zero and so failing the comparison) as if it were a very large

J number, thus exceeding the upper limit. (The algorithm can be used with
nonzero lower bounds by first subtracting the lower bound from the index.)
Replacing the index instruction by this VAX macrocode always improves
performance on the V AX-11/780.

Fallacy: If there is space in control store, new instructions are free of cost.

Since the length of control store is usually a power of two, at times there may be
unused control store available to expand the instruction set. The analogy here is
that of building a house and discovering, near completion, that you have enough
land and materials left to add a room. This room wouldn't be free, however,
since there would be the costs of labor and maintenance for the life of the home.
The temptation to add "free" instructions can only occur when the instruction set
is not fixed, as is likely to be the case in the first model of a computer. Because
instruction set compatibility is a long-term requirement, all future models of this
machine will be forced to include these "free" instructions, even if space is later
at a premium. This expansion also ignores the cost of a longer development time
to test the added instructions, as well as the possibility of costs of repairing bugs
in them after the hardware is shipped.

Fallacy: Usersfindwritable control store helpful.

Bugs in microcode persuaded designers of minicomputers and mainframes that it
would be wiser to use RAM than ROM for control store. Doing so would enable
microcode bugs to be repaired by shipping customers floppy disks rather than by
having the field engineer pull boards and replace chips. Some customers and
some manufacturers also decided that users should be allowed to write
microcode; this opportunity became known as writable control store (WCS).
Yet by the time WCS was offered, the world had changed to make WCS less
attractive than originally envisioned:

• The tools for writing microcode were much poorer tha~ those for writing
macrocode. (The authors and many others stepped into that breach to provide
better microprogramming tools.)

• At a time when main memory was expanding, WCS was limited to 1-4KB
microinstructions. (Few programming tasks are harder than forcing code into
too small a memory.)

Ex.1035.271DELL

240

5.9 I

5.8 Fallacies and Pitfalls

• Microcoded control became increasingly tailored to the native
macroinstruction set, making microprogramming less useful for tasks other
than that for which it was intended.

• With the advent of timesharing, programs might run for only milliseconds
before switching to other tasks. This meant that WCS would have to be
swapped if more than one program needed it, and reloading WCS could
easily take longer than a few milliseconds.

• Timesharing also meant that programs had to be protected from each other.
Because, at such a low level, microprograms can circumvent all protection
barriers, microprograms written by users were notori~usly untrustworthy.

• The increasing demand for virtual memory meant that microprograms had to
be restartable-any memory access could force the computation to be
shelved.

• Finally, companies like DEC that offered WCS provided no customer support
for those who wanted to write microcode.

Many customers ordered WCS, but few benefited from it. The death of WCS has
been by a thousand small cuts, and WCS is not an option on current computers.

Concluding Remarks

In his first paper [1953] Wilkes identified advantages of microprogramming that
still hold true today. One of these advantages is that microprogramming helps
accommodate change. This can happen late in the development cycle, where
simply changing some Os to ls in the control store can sometimes save
redesigning hardware. A related advantage is that by emulating other instruction
sets in microcode, software compatibility is simplified. Microprogramming also
reduces the cost of adding more complex instructions to a standard micro
architecture to just the cost of a few more words of control store (although there
is the pitfall that once an instruction set is created assuming microprogrammed
control, it is difficult to ever build a machine without using it). This flexibility
allows hardware construction to begin before the instruction set and microcode
have been completely written, because specifying control -is just a matter of
programming. Finally, microprogramming now has the further advantage of
having a large set of tools that have been developed to help write, edit, assemble,
and debug microcode.

The drawback of microcode has always been performance. This is because
microprogramming is a slave to memory tecnnology: The clock cycle time is
limited by the time to read microinstructions from control store. In the 1950s,
microprogramming was impractical since virtually the only technology available
for control store was the same one used for main memory. In the late 1960s and

Ex.1035.272DELL

Basic Processor Implementation Techniques 241

early 1970s, semiconductor memory was available for control store, while main
memory was constructed from core. The factor of ten in cycle time that
differentiated the two technologies opened the door for microcode. The
popularity of cache memory in the 1970s once again closed this gap, and
machines were again built with the same technology for control store and
memory.

For these reasons instruction sets invented since 1985 have not relied on
. microcode. Though no one likes to predict the future-least of all in writing-it

is the authors' opinion that microprogramming is bound to memory technology.
If in some future technology ROM becomes much faster than RAM, or if caches
are no longer effective, microcode may regain its popularity.

5.1 0 I Historical Perspective and References

Interrupts go back to computer industry pioneers Eckert and Mauchly. Interrupts
were first used to signal arithmetic overflow on the UNIVAC I and later to alert
a UNIV AC 1103 to start online data collection for a wind tunnel (see Codd
[1962]). After the success of the first commercial computer, the UNIVAC 1101
in 1953, the first commercial computer to have interrupts, the 1103, was brought
out. Interrupts were first used for I/0 by AL. Leiner in the National Bureau of
Standards DYSEAC [Smotherman 1989].

Maurice Wilkes learned computer design in a summer workshop from Eckert
and Mauchly and then went on to build the first full-scale, operational, stored
program computer-the EDSAC. From that experience he realized the difficulty
of control. He thought of a more centralized control using a diode matrix and,
after visiting the Whirlwind computer in the U.S., wrote:

I found that it did indeed have a centralized control based on the use of a
matrix of diodes. It was, however, only capable of producing a fixed sequence
of 8 pulses-a different sequence for each instruction, but nevertheless fixed
as far as a particular instruction was concerned. It was not, I think, until I got
back to Cambridge that I realized that the solution was to turn the control
unit into a computer in miniature by adding a second matrix to determine
the flow of control at the microlevel and by providing for conditional micro
instructions. [Wilkes 1985, 178]

Wilkes [1953] was ahead of his time in recognizing that problem. Unfortu
nately, the solution was also ahead of its time: To provide control, micro
programming relies on fast memory that was not available in the 1950s. Thus,
Wilkes's ideas remained primarily academic conjecture for a decade, although
he did construct the EDSAC 2 using microprogrammed control in 1958 with
ROM made from magnetic cores.

Ex.1035.273DELL

242 5.10 Historical Perspective and References

IBM brought microprogramming into the spotlight in 1964 with the IBM 360
family. Before this event, IBM saw itself as many small businesses selling
different machines with their own price and performance levels, but also with
their own instruction sets. (Recall that little programming was done in high-level
languages, so that programs written for one IBM machine would not run on
another.) Gene Amdahl, one of the chief architects of the IBM 360, said that
managers of each subsidiary agreed to the 360 family of computers only because
they were convinced that microprogramming made it feasible-if you could take
the same hardware and microprogram it with several different instruction sets,
they reasoned, then you must also be able to take different hardware and
microprogram them to run the same instruction set. To be sure of the viability of
microprogramming, the IBM vice president of engineering even visited Wilkes
surreptitiously and had a "theoretical" discussion of the pros and cons of
microcode. IBM believed the idea was so important to their plans that they
pushed the memory technology inside the company to make microprogramming
feasible.

Stewart Tucker of IBM was saddled with the responsibility of porting
software from the IBM 7090 to the new IBM 360. Thinking about the ·
possibilities of microcode, he suggested expanding the control store to include
simulators, or interpreters, for older machines. Tucker [1967] coined the term
emulation for this, meaning full simulation at the microprogrammed level.
Occasionally, emulation on the 360 was actually faster than the original
hardware. Emulation became so popular with customers in the early years of the
360 that it was sometimes hard to tell which instruction set ran more programs.

Once the giant of the industry began using microcode, the rest soon followed.
A difficulty in adopting microcode was that the necessary memory technology
was not widely available, but that was soon solved by semiconductor ROM and
later RAM. The microprocessor industry followed the same history, with limited
resources of the earliest chips forcing hardwired control. But as the resources in
creased, the advantages of simpler design and ease of change persuaded many to
use microprogramming.

With the increasing popularity of microprogramming came more
sophisticated instruction sets, including virtual memory. Microprogramming
may well have aided the spread of virtual memory, since microcode made it
easier to cope with the difficulties that arose from mapping addresses and
restarting instructions. The IBM 370 model 138, for example, implemented
virtual memory entirely in microcode without any hardware support.

Over the years, most microarchitectures became more and more dedicated to
support the intended instruction set, so that reprogramming for a different
instruction set failed to off er satisfactory performance. With the passage of time
came much larger control stores, and it became possible to consider a machine
as elaborate as the VAX. To offer a single chip VAX in 1984 DEC reduced the
instructions interpreted by microcode by trapping some instructions and
performing them in software: 20% of VAX instructions are responsible for 60%
of the microcode, yet are only executed 0.2% of the time. Figure 5.35 shows the

Ex.1035.274DELL

Basic Processor Implementation Techniques 243

reduction in control store by subsetting the instruction set. (The VAX is so tied
to microcode that we venture to predict it will be impossible to build a full
instruction-set VAX without microcode.) The microarchitecture of one of the
simpler subsetted VAXes, the MicroVAX-I, is described in Levy and Eckhouse
[1989].

Full instruction set Subset instruction set
(VLSI VAX) (MicroVAX 32)

% instructions implemented 100% 80%

Size of control store (bits) 480K 64K

Number of chips in processor 9 2

% performance ofVAX-11/780 100% 90%

FIGURE 5.35 By trapping some VAX instructions and addressing modes, control
store was reduced almost eight-fold. The second chip of the subset VAX is for floating
point.

While this book was being written, a landmark legal precedent concerning
microcode was set. The question under litigation in NEC v. Intel was whether
microcode is like writing, and thereby deserves copyright protection (Intel), or
whether it is like hardware, which can be patented but not copyrighted (NEC).
The importance of this matter lies in the fact that while it is triviaL to get a
copyright, getting a patent can take as long as a college education. A program
can be copyrighted, so the question then follows: What is and isn't a program?
Here is the legislated definition:

A 'computer program' is a set of statements or instructions to be used directly or
indirectly in a computer in order to bring about a certain result.

After years of preparation and trial, a judge did declare that a microprogram
was a program. The lawyers for the losing side then asked him to rescind his
decision on grounds of partiality. They had discovered that through an
investment club, the judge owned $80 of stock belonging to the client he ruled
for. (The tempting sum really was only $80, highly frustrating to one of the
authors who acted as an expert witness on the case!) The case was retried, and
the new judge ruled that "microcode ... comes squarely within the definition of a
'computer program' ... " [Gray 1989, 4]. Of course, the fact that two judges in
two different trials made the same decision doesn't mean that the matter is
closed-there are still higher levels of appeal available.

Ex.1035.275DELL

244 5.10 Historical Perspective and References

References

CLARK, D. W., P. J. BANNON, AND J.B. KELLER [1988]. "Measuring VAX 8800 performance with
a histogram hardware monitor," Proc. 15th Annual Symposium on Computer Architecture (May
June), Honolulu, Hawaii, 176-185.

CODD, E. F. [1962]. "Multiprogramming," in F.L. Alt and M. Rubinoff, Advances in Computers,
vol. 3, Academic Press, New York, 82.

EMER, J. S. AND D. W. CLARK [1984]. "A characterization of processor performance in the VAX-
11/780," Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301-310.

GRAY, W. P. [1989]. Memorandum of Decision, No. C-84-20799-WPG, U.S. District Court for the
Northern District of California (February 7, 1989).

LEVY, H. M. AND R.H. ECKHOUSE, JR. [1989]. Computer Programming and Architecture: The
VAX, 2nd ed., Digital Press, Bedford, Mass. 358-372

MCKEVITT, J., ET AL. [1977]. 8086 Design Report, internal memorandum.

PATTERSON, D. A. [1983]. "Microprogramming," Scientific American 248:3 (March), 36-43.

REIGEL, E.W., U. FABER, AND D. A. FISCHER, [1972]. "The Interpreter-a microprogrammable
building block system," Proc. AF1PS 1972 Spring Joint Computer Conj. 40, 705-723.

SMOTHERMAN, M. [1989]. "A sequencing-based taxonomy ofl/0 systems and review of historical
machines," Computer Architecture News 17:5 (September), 5-15.

TUCKER, S. G. [1967]. "Microprogram control for the System/360," IBM Systems Journal 6:4, 222-
241.

WILKES, M. V. [1953]. "The best way to design an automatic calculating machine," in Manchester
University Computer Inaugural Conj., 1951, Ferranti, Ltd., London. (Not published until 1953.)
Reprinted in "The Genesis of Microprogramming" in Annals of the History of Computing 8: 116.

WILKES, M. V. [1985]. Memoirs of a Computer Pioneer, The MIT Press, Cambridge, Mass.

WILKES, M. V. AND J.B. STRINGER [1953]. "Microprogramming and the design of the control
circuits in an electronic digital computer," Proc. Cambridge Philosophical Society 49:230-238.
Also reprinted in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and
Examples (1982), McGraw-Hill, New York, 158-163, and in "The Genesis of Microprogramming"
in Annals of the History of Computing 8:116.

EXERCISES

If finite-state diagrams and microprogramming are review topics, you may want to skip
over questions 5.5 through 5.14.

5.1 [15/10/15/15] <5.5> One technique that tries to get the best of both the worlds of
vertical and horizontal microarchitectures is a two-level control store, as illustrated by
Figure 5.36. It tries to combine small control-store size with wide instructions. To avoid
confusion the bottom level uses the prefix nano-, yielding the terms "nanoinstruction,"
"nanocode," and so forth. This technique was used in the Motorola 68000, 68010, and
68020, but it was originated in the Burroughs D-machine [Reigel, Faber, and Fischer
1972]. The idea is that the first level has many vertical instructions that point to the few
unique horizontal instructions in the second level. The Burroughs D-machine was a
general-purpose computer offering writable control store. Its microinstructions were 16
bits wide, with 12 of those bits specifying a nanoaddress, and the nanoinstructions were
56 bits wide. One instruction set interpreter used 1124 microinstructions and 123
nanoinstructions.

Ex.1035.276DELL

Basic Processor Implementation Techniques 245

FIGURE 5.36 Two-level microprogrammed implementation showing relationship of
microcode and nanocode.

a. [15] <5.5> What is the general formula showing when a two-level control store
scheme like Burroughs D-machine uses fewer bits than a single-level control store?
Assume there are M microinstructions each a bits wide and N nanoinstructions each b
bits wide.

b. [10] Was the two-level control store of the D-machine successful in reducing control
store size versus a single-level control store for the interpreter?

c. [15] After the code was optimized to improve CPI by 10%, the resulting code had
940 microinstructions and 161 nanoinstructions. Was the two-level control store of
the D-machine successful in reducing control-store size versus a single-level control
store for the optimized interpreter?

d. [15] Did optimization increase or decrease the total number of bits needed to specify
control? Why would the number of microinstructions decrease and the number of
nanoinstructions increase?

5.2 [15] <5.5,5.6> One advantage of microcode is that it can handle rare cases without
having the overhead of invoking the operating system before executing the trap routine.
Suppose a machine with a CPI of 1.5 has an operating system that takes 100 clock cycles
on a trap before it can execute the appropriate code. Suppose the trap code takes 10 clock
cycles whether it is microcode or macrocode. For an instruction occurring 5% of the time,
what percentage of the time must it trap before a microcode implementation is 1 % faster
overall than a macrocode implementation?

5.3 [20/20/30] <4.2,5.5,5.6> Let's explore the impact of subsetting an architecture as
described in Figure 5.35. Suppose the MOVC3 instruction were left out of a VAX.

Ex.1035.277DELL

Basic Processor Implementation Techniques 245

\

FIGURE 5.36 Two-level microprogrammed implementation showing relationship of
microcode and nanocode.

a. [15] <5.5> What is the general formula showing when a two-level control store

scheme like Burroughs D-machine uses fewer bits than a single-level control store?
Assume there are M microinstructions each a bits wide and N nanoinstructions each b

bits wide.

b. [10] Was the two-level control store of the D-machine successful in reducing control-

store size versus a single-level control store for the interpreter?

c. [15] After the code was optimized to improve CPI by 10%, the resulting code had

940 microinstructions and 161 nanoinstructions. Was the two—level control store of

the D-machine successful in reducing control-store size versus a single-level control

store for the optimized interpreter?

d. [15] Did optimization increase or decrease the total number of bits needed to specify

control? Why would the number of microinstructions decrease and the number of
nanoinstructions increase?

5.2 [15] <5.5,5.6> One advantage of microcode is that it can handle rare cases without

having the overhead of invoking the operating system before executing the trap routine.

Suppose a machine with a CPI of 1.5 has an operating system that takes 100 clock cycles

on a trap before it can execute the appropriate code. Suppose the trap code takes 10 clock

cycles whether it is microcode or macrocode. For an instruction occurring 5% of the time,
what percentage of the time must it trap before a microcode implementation is 1% faster

overall than a macrocode implementation?

5.3 [20/20/30] <4.2,5.5,5.6> Let’s explore the impact of subsetting an architecture as
described in Figure 5.35. Suppose the MOVC3 instruction were left out of a VAX.

DELL Ex.1035.277

246 Exercises

a. [20] Write the VAX macrocode to replace MOVC3.

b. [20] Assume the operands are placed in registers RO, Rl, and R2 after a trap. Using
the data for COBOLX in Figure C.1 in Appendix Con instruction usage (assuming ~)

all MOVC_ are MOVC3) and assuming the average MOVC3 moves 15 bytes, what
would be the percentage change in instruction count if MOVC3 were not interpreted
by microcode? (Ignore the cost of traps for this instruction.)

c. [30] If you have access to a VAX, time the speed of MOVC 3 versus a macrocode
version of the routine from part a. Assuming that the trap overhead is 20 clock cycles,
what is the impact on performance of trapping to software for MOVC 3?

5.4 [15] <5.6> Assume we have a machine with a clock cycle time of 10 ns and a base
CPI of 5. Because of the possibilities of interrupts we must have extra registers containing
copies of the values of the registers at the beginning of the instruction. These registers are
usually called shadow registers. Assume that the average instruction has two register
operands that must be restored on an interrupt. The interrupt rate is 100 interrupts per
second, and the interrupt cost is 30 cycles plus the time to restore the shadowed registers,
each of which takes 10 cycles. What is the effective CPI after accounting for interrupts?
What is the performance lost from interrupts?

5.5-5. 7 Given the processor design and finite-state diagram for DLX as modified in
the end of the hardwired-control portion of Section 5.7, explore the impact of
performance of the following changes. In each case show the modified portion of the
finite-state machine, describe the changes to the processor (if necessary), the change in
the number of states, and calculate the change in CPI using the DLX instruction mix
statistics in Figure C.4 for GCC. Show the reasons for the change.

5.5 [12] <5.7> Like the change to the ALU instructions in the second example in Section
5.7 and shown in Figures 5.20 and 5.21, remove the states that load Temp for the Set
instructions in Figure 5.16 first by adding the "X" option and then by increasing the
number of states.

5.6 [15] <5.7> Suppose that the memory interface was optimized so that it was not
necessary to load MAR before a memory access, nor did the data have to be transferred in
MDR for a read or write. Instead, any register on the S 1 bus could specify the address,
any register on the S2 bus could supply the data on a write, and any register on the Dest
bus could receive data on a read.

5.7 [22] <5.7> Most computers overlap the fetching of the next instruction with the
execution of the current instruction. Propose a scheme that overlaps all instruction fetches
except jumps, branches, and stores. You must reorganize the finite-state machine so that
the instruction is already fetched, possibly even partially decoded.

5.8 [15] <5.7> The example in Section 5.7 on page 228 assumes everything but the shifter
can scale to 9 ns. Alas, the memory system can rarely scale as easily as the CPU.
Reperform the analysis in this example, but this time assume that average number of
memory wait states is 2 at the 9-ns clock cycle versus 1 at 10 ns in addition to the
slowdown for shifts.

Ex.1035.278DELL

Basic Processor Implementation Techniques 247

5.9-5.14 These questions address use of the microcoded control of DLX as shown in
Figures 5.23, 5.25, and 5.27-5.29. In each case show the modified portion of the
microcode; describe the changes to the processor (if necessary), the microinstruction
fields (if necessary), and the change in the number of microinstructions; and calculate the
change in CPI using the DLX instruction-mix statistics in Appendix C for GCC. Show the
reasons for the change.

5.9 [15] <5.7> Like the change to the ALU instructions in the second example in Section
5.7, remove the microinstructions that load Temp for the Set instructions in Figure 5.28
(page 233) first by adding the "X" option and then by increasing the number of
microinstructions.

5.10 [25] <5.7> Continuing the example in Figure 5.32 (page 237), rewrite the microcode
found in Figure 5.29 (page 234) using the dual-format microinstructions of Figure 5.31
(page 236). What is the relative frequency of each type of microinstruction? What is the
savings in control-store size versus the original DLX format? What is the change in CPI?

5.11 [20] <3.4, 5.7> Load byte and Load half take a clock cycle longer than Load word
because of the alignment of data (see Figure 3.10 on page 97 and Figure 5.25 on page
231). Propose a change that eliminates the extra clock for these instructions. How does
this change affect the CPI of GCC? How does it affect the CPI of TeX?

5.12 [20] <5.6, 5.7> Change the microcode to perform the following interrupt tests: page
fault, arithmetic overflow or underflow, misaligned memory accesses, and using
undefined instructions. Make whatever changes are needed to the microarchitecture and
microinstruction format. What is the change in size and performance to perform these
tests?

5.13 [20] <5.7> The computer designer must be careful not to tailor her design too closely
to a particular, single program. Reevaluate the performance impact of all the example
performance improvements in Exercises 5.9 to 5.12 this time using the average instruc
tion mix data in Figure C.4. How do the programs affect the evaluations?

5.14 [20] <5.6, 5.7> Starting with the microcode in Figures 5.27 (page 233) and 5.34
(page 238), revise the microcode so that the next macroinstruction is fetched as early as
possible during the ALU instructions. Assume a "perfect" memory system, taking one
clock cycle per memory reference. Although technically this improvement speeds up
instructions that follow ALU instructions, the easiest way to account for higher
performance is as faster ALU instructions. How much faster are the ALU instructions?
How does it affect overall performance according to GCC statistics?

5.15 [30] <4,5.6> If you have access to a machine that uses one of the instruction sets in
Chapter 4, determine the worst-case interrupt latency for that implementation of the
architecture. Be sure you are measuring the raw machine latency and not the operating
system overhead.

5.16 [30] <5.6> Computer architects have sometimes been forced to support instructions
that were never published in the original instruction set manual. This situation arises

Ex.1035.279DELL

248 Exercises

because some programs are created that inadvertently set unused instruction fields to
values other than the architect expected, which raises havoc when the architect tries to use
those values to extend the instruction set. IBM solved that problem in the System 370 by
trapping on every possible undefined field. Try executing instructions with undefined
fields on a computer to see what happens. Do your new instructions compute anything
useful? If so, would you use these new instructions in programs?

5.17 [35] <5.4, 5.5, 5.7> Take the datapath in Figure 5.1 and build a simulator that can
perform any of the operations needed to implement the DLX instruction set. Now
implement the DLX instruction set using:

Microprogrammed control, and

Hardwired control.

For hardwired control see if you can find PLA minimization and state-assignment
programs to reduce the cost of control. From these two designs, determine the perfor
mance of each implementation and the cost in terms of gates or in terms of silicon area.

5.18 [35] <2.2, 5.5, 5.7> The similarities between the microinstructions and the macro
instructions of DLX suggest that performance can be gained by writing a program that
translates from DLX macrocode to DLX microcode. (This is the insight that inspired
WCS.) Write such a program and benchmark it. What is the resulting expansion of code
size?

5.19 [50] <2.2, 4.4, 5.10> Recent attempts have been made to run existing software on
hardwired control machines by building hand-tuned simulators for popular machines.
Write such a simulator for the 8086 instruction set. Run some existing IBM PC programs,
and see how fast your simulator is relative to an 8-MHz 8086.

5.20 [Discussion] <4,5.5,5.10> Hypothesis: If the first implementation of an architecture
uses microprogramming, it affects the instruction set architecture. Why might this be
true? Looking at examples in Chapter 4 or elsewhere, give supporting or contradicting
evidence from real machines. Which machines will always use microcode? Why? Which
machines will never use microcode? Why? What control implementation do you think the
architect had in mind when designing the instruction set architecture?

5.21 [Discussion] <5.5,5.10> Wilkes invented microprogramming in large to simplify
construction of control. Since 1980 there has been an explosion of computer-aided design
software whose goal is also to simplify construction of control. Hypothesis: The advances
in computer-aided design software have rendered microprogramming unnecessary. Find
evidence to support and refute the hypothesis.

5.22 [Discussion] <5.10> The DLX instructions and the DLX mi<;:roinstructions have
many similarities. What would make it difficult for a compiler to produce DLX
microcode rather than macrocode? What changes to the microarchitecture would make
the DLX microcode more useful for this application?

Ex.1035.280DELL

Ex.1035.281DELLDELL Ex.1035.281

It is quite a three-pipe problem.

Sir Arthur Conan Doyle, The Adventures of Sherlock Holmes

6.1 What Is Pipelining? 251

6.2 The Basic Pipeline for DLX 252

6.3 Making the Pipeline Work 255

6.4 The Major Hurdle of Pipelining-Pipeline Hazards 257

6.5 What·Makes Pipelining Hard to Implement 278

6.6 Extending the DLX Pipeline to Handle Multicycle
Operations 284

6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines 290

6.8 Advanced Pipelining-Taking Advantage of More
Instruction-Level Parallelism 314

6.9 Putting It All Together: A Pipelined VAX 328

6.10 Fallacies and Pitfalls 334

6.11 Concluding Remarks 337

6.12 Historical Perspective and References 338

Exercises 343

Ex.1035.282DELL

6.1

Pipelining

What Is Pipelining?

Pipelining is an implementation technique whereby multiple instructions are
overlapped in execution. Today, pipelining is the key implementation technique
used to make fast CPUs.

A pipeline is like an assembly line: Each step in the pipeline completes a part
of the instruction. As in a car assembly line, the work to be done in an instruc
tion is broken into smaller pieces, each of which takes a fraction of the time
needed to complete the entire instruction. Each of these steps is called a pipe
stage or a pipe segment. The stages are connected one to the next to form a
pipe-instructions enter at one end, are processed through the stages, and exit at
the other end.

The throughput of the pipeline is determined by how often an instruction
exits the pipeline. Because the pipe stages are hooked together, all the stages
must be ready to proceed at the same time. The time required between moving
an instruction one step down the pipeline is a machine cycle. The length of a
machine cycle is determined by the time required for the slowest pipe stage
(because all stages proceed at the same time). Often the machine cycle is one
clock cycle (sometimes it is two, or rarely more), though the clock may have
multiple phases.

Ex.1035.283DELL

6 Pipelining

r-

6- 1 I What Is Pipelining?
Pipelining is an implementation technique whereby multiple instructions are

overlapped in execution. Today, pipelining is the key implementation technique
used to make fast CPUs.

A pipeline is like an assembly line: Each step in the pipeline completes a part

of the instruction. As in a car assembly line, the work to be done in an instruc-

tion is broken into smaller pieces, each of which takes a fraction of the time

needed to complete the entire instruction. Each of these steps is called a pipe

stage or a pipe segment. The stages are connected one to the next to form a

pipe—instructions enter at one end, are processed through the stages, and exit at
the other end.

The throughput of the pipeline is determined by how often an instruction

exits the pipeline. Because the pipe stages are hooked together, all the stages

must be ready to proceed at the same time. The time required between moving

an instruction one step down the pipeline is a machine cycle. The length of a

machine cycle is determined by the time required for the slowest pipe stage

(because all stages proceed at the same time). Often the machine cycle is one

clock cycle (sometimes it is two, or rarely more), though the clock may have

multiple phases.

DELL Ex.1035.283

252 6.1 What Is Pipelining?

The pipeline designer's goal is to balance the length of the pipeline stages. If
the stages are perfectly balanced, then the time per instruction on the pipelined
machine-assuming ideal conditions (i.e., no stalls)-is equal to

Time per instruction on nonpipelined machine
Number of pipe stages

Under these conditions, the speedup from pipelining equals the number of pipe
stages. Usually, however, the stages will not be perfectly balanced; furthermore,
pipelining does involve some overhead. Thus, the time per instruction on the
pipelined machine will not have its minimum possible value, though it can be
close (say within 10%).

Pipelining yields a reduction in the average execution time per instruction.
This reduction can be obtained by decreasing the clock cycle time of the
pipelined machine or by decreasing the number of clock cycles per instruction,
or by both. Typically, the biggest impact is in the number of clock cycles per
instruction, though the clock cycle is often shorter in a pipelined machine
(especially in pipelined supercomputers). In the advanced pipelining sections of
this chapter we will see how deep pipelines can be used to both decrease the
clock cycle and maintain a low CPI.

Pipelining is an implementation technique that exploits parallelism among the
instructions in a sequential instruction stream. It has the substantial advantage
that, unlike some speedup techniques (see Chapters 7 and 10), it is not visible to
the programmer. In this chapter we will first cover the concept of pipelining
using DLX and a simplified version of its pipeline. We will then look at the
problems pipelining introduces and the performance attainable under typical sit
uations. Later in the chapter we will examine advanced techniques that can be
used to overcome the difficulties that are encountered in pipelined machines and
that may lower the performance attainable from pipelining.

We use DLX largely because its simplicity makes it easy to demonstrate the
principles of pipelining. The same, principles apply to more complex instruction
sets, though the corresponding pipelines are more complex. We will see an
example of such a pipeline in the Putting It All Together section.

6.2 j The Basic Pipeline for DLX

Remember that in Chapter 5 (Section 5.3) we discussed how DLX could be im
plemented with five basic execution steps:

1. IF-instruction fetch

2. ID-instruction decode and register fetch

3. EX--execution and effective address calculation

4. MEM-memory access

5. WB-write back

Ex.1035.284DELL

Pipelining 253

Instruction Clock number
number 1 2 3 4 . s 6 7 8 9

Instruction i IF ID EX MEM WB
Instruction i+ 1 IF ID EX MEM WB
Instruction i+2 IF ID EX MEM WB
Instruction i+ 3 IF ID EX MEM WB
Instruction i+4 IF ID EX MEM WB

FIGURE 6.1 Simple DLX pipeline. On each clock cycle another instruction is fetched and begins its five-step execution.
If an instruction is started every clock cycle, the performance will be five times that of a machine that is not pipelined.

Example

Answer

We can pipeline DLX by simply fetching a new instruction on each clock
cycle. Each of the steps above becomes a pipe stage-a step in the pipeline
resulting in the execution pattern shown in Figure 6.1. While each instruction
still takes five clock cycles, during each clock cycle the hardware is executing
some part of five different instructions.

Pipelining increases the CPU instruction throughput-the number of instruc
tions completed per unit of time-but it does not reduce the execution time of an
individual instruction. In fact, it usually slightly increases the execution time of
each instruction due to overhead in the control of the pipeline. The increase in
instruction throughput means that a program runs faster and has lower total
execution time, even though no single instruction runs faster!

The fact that the execution time of each instruction remains unchanged puts
limits on the practical depth of a pipeline, as we will see in the next section.
Other design considerations limit the clock rate that can be attained by deeper
pipelining. The most important consideration is the combined effect of latch
delay and clock skew. Latches are required between pipe stages, adding setup
time plus the delay through those latches to each clock period. Clock skew also
contributes to the lower limit on the clock cycle. Once the clock cycle is as small
as the sum of the clock skew and latch overhead, no further pipelining is useful.

Consider a nonpipelined machine with five execution steps of lengths 50 ns,
50 ns, 60 ns, 50 ns, and 50 ns. Suppose that due to clock skew and setup,
pipelining the machine adds 5 ns of overhead to each execution stage. Ignoring
any latency impact, how much speedup in the instruction execution rate will we
gain from a pipeline?

Figure 6.2 shows the execution pattern on the nonpipelined machine and on the
pipelined machine. ,

The average instruction execution time on the nonpipelined machine is

Average instruction execution time= 50+50+60+50+50 ns = 260 ns

Ex.1035.285DELL

254 6.2 The Basic Pipeline for DLX

I 260 I 260 .1 260 I

I 50 I 50 I 60 I 50 I 50 I 50 I 50 I 60 I 50 I 50 I 50 I 50 I 60 I 50 I 50 I
Instruction 1 Instruction 2 Instruction 3

Nonpipelined execution

I 65 I 65 I 65 I 65 I 65 I

Instruction 1 60 60 60 60 60 I - I 60 60 60 60 60 Instruction 2

-
Instruction 3 60 60 60 60 60

5 5 5 5 5

Pipelined execution

FIGURE 6.2 The execution pattern for three instructions shown for both the non
pipelined and pipelined versions. In the nonpipelined version, the three instructions are.
executed sequentially. In the pipelined version, the shaded areas represent the overhead of
5 ns per pipestage. The length of the pipestages must all be the same: 60 ns plus the 5-ns
overhead. The latency of an instruction increases from 260 ns in the nonpipelined machine
to 325 ns in the pipelined machine.

In the pipelined implementation, the clock must run at the speed of the slowest
stage plus overhead, which will be 60 + 5 or. 65 ns; this is the average instruction
execution time. Thus, the speedup from pipelining is

_ Average instruction time without pipeline
Speedup - Average instruction time with pipeline

260 4 . =
65

=. times

The 5-ns overhead essentially establishes a limit on the effectiveness of pipelin
ing. If the overhead is not affected by changes in the clock cycle, Amdahl's Law
tells us that the overhead limits the speedup.

Because the latches in a pipelined ·design can have a significant impact on the
clock speed, designers have looked for latches that permit the highest possible
clock rate. The Earle latch (invented by J. G. Earle [1965]) has three properties
that maj<:e it especially useful in pipelined machines. First, it is relatively insen
sitive to clock skew. Second, the delay through the latch is always a constant
two-gate delay, avoiding the introduction of skew in the data passing through the
latch. Finally, two levels of logic can be done in the latch without increasing the
latch delay time. This means that two levels of logic in the pipeline can be
overlapped with the latch, so the majority of the overhead from the latch can be

Ex.1035.286DELL

Pipelining 255

hidden. We will not be analyzing the pipeline designs in this chapter at this level
of detaiL The interested reader should see Kunkel and Smith [1986].

The next two sections will add refinements and address some problems that
can occur in this pipeline. In this discussion (up to the last segment of Section
6.5) we will focus on the pipeline for the integer portion of DLX. The complica
tions that arise in the floating-point pipeline will be treated in Section 6.6.

6.3 I Making the Pipeline Work

Your instinct is right if you find it hard to believe that pipelining is as simple as
this, because it's not. In this and the following three sections, we will make our
DLX pipeline "real" by dealing with problems that pipelining introduces.

To begin with, we have to determine what happens on every clock cycle of
the machine and make sure that overlapping instructions doesn't overcommit
resources. For example, a single ALU cannot be asked to compute an effective
address and perform a subtract operation at the same time. As we will see, the
simplicity of the DLX instruction set makes resource evaluation relatively easy.

The operations that occur during instruction execution, which were discussed
in Section 5.3 of Chapter 5, are modified to execute in a pipeline as shown in
Figure 6.3. The figure lists the major functional units in our DLX implemen
tation, the pipe stages, and what has to happen in each stage of the pipeline. The
vertical axis is labeled with the pipeline stages, while the horizontal axis shows
major resources. Each intersection shows what happens for that resource in that
stage. In Figure 6.4 we will show similar information using the instruction type
as the horizontal axis. The combination of instructions that may be in the
pipeline at any one time is arbitrary. Thus, the combined needs of all instruction
typys at any pipe stage determine what resources are needed at that stage.

Every pipe stage is active on every clock cycle. This requires all operations in
a pipe stage to complete in one clock and any combination of operations to be
able to occur at once. Here are the most important implications for the data path,
as specified in Chapter 5:

1. The PC must be incremented on each clock. This must be done in IF rather
than ID. This will require an additional incrementer, since the ALU is
already busy on every cycle and cannot be used to increment the PC.

2. A new instruction must be fetched on every clock-this is also done in IF.

3. A new data word is needed on every clock cycle-this is done in MEM.

4. There must be a separate MDR for loads (LMDR) and stores (SMDR), since
when they are back-to-back, they overlap in time.

5. Three additional latches are needed to hold values that are needed later in the
pipeline, but· may be modified by a subsequent instruction. The values
latched are the instruction, the ALU output, and the next PC.

Ex.1035.287DELL

256 6.3 Making the Pipeline Work

PC unit Memory Data path
Stage

IF PCf- PC+4; IRf-Mem[PC];

ID PClf- PC IRlf-IR Af- Rsl; Bf- Rs2;

EX 16
DMARf-A + (IRl16) ##IR116 .. 31; SMDRf-B;
or
ALUoutputf- A op (B or

16
(IRl16) ##IRl16 .. 31);

or
ALUoutputf-PCl + 16

(IRl16) ##IRl16 .. 31i

condf- (A op 0) ;

MEM if (cond) LMDRf- Mem [DMAR] ALUoutputlf- ALUoutput
PCf-ALUoutput or

Mem [DMAR l f-SMDR

WB Rdf- ALUoutputl or LMDR

FIGURE 6.3 The table shows the major functional units and what may happen in every pipe stage in each unit. In
several of the stages not all of the actions listed can occur, because they apply under different assumptions about the
instruction. For example, there are three operations within the ALU during the EX stage. The first occurs only on a load or
store; the second on ALU operations (with the input being B or the lower 16 bits of the IR, according to whether the
instruction is register-register or register-immediate); the third operation occurs only on branches. For simplicity, we have
shown the branch case only-jumps will add a 26-bit offset to the PC. The variables ALUouputl, PCl, and IRl save
values for use in later stages of the pipeline. Designing the memory system to support a data load or l?tore on every clock
cycle is challenging; see Chapter 8 for an in-depth discussion. This type of table and that in Figure 6.4 are loosely based
on Davidson's [1971] pipeline reservation tables.

Stage ALU instruction Load or store instruction Branch instruction

IF IRf-Mem [PC l ; IRf-Mem [PC l ; IRf-Mem [PC] ;
PCf-PC+4; PCf-PC+4; PCf-PC+4;

ID Af-Rsl; Bf-Rs2; PClf-PC Af-Rsl; Bf-Rs2; PClf-PC Af-Rsl; Bf-Rs2; PClf-PC
IRlf-IR IRlf-IR IRlf-IR

EX ALUoutputf-A op B; DMARf-A+ ALUoutputf-PCl +
or ((IRl16) 16 ##IR116 .. 31); ((IR116) 16 # #IR116 .. 31) ;
~LUoutputf-A op SMDRf- B; condf- (A op 0) ;

((IRl16) 16 ##IR116 .. 31) ;

MEM ALUoutputlf- ALUoutput LMDRf-Mem [DMAR] ; or if (cond) PCf-ALUoutput;
-

Mem [DMA:R] f-SMDR;

WB Rdf-ALUoutputl; Rdf-LMDR;

FIGURE 6.4 Events on every pipe stage of the DLX pipeline. Because the instruction is not yet decoded, the first two
pipe stages are always identical. Note that it was critical to be able to fetch the registers before decoding the instruction;
otherwise another pipeline stage would be required. Due to the fixed instruction format, both register fields are always
decoded and the registers accessed (though they are sometimes not needed); the PC and immediate fields can be sent to ·
the ALU as well. At the beginning of the ALU operation the correct inputs are multiplexed in, based on the opcode. With
this organization all instruction-dependent operations occur in the EX stage or later. As in Figure 6.3, we include the case
for branches, but not jumps, which will have a 26-bit offset rather than a 16-bit offset. Jumps are essentially like branches.

Ex.1035.288DELL

Pipelining 257

Probably the biggest impact of pipelining on the machine resources is in the
memory system. Although the memory-access time has not changed, the peak
memory bandwidth must be increased by five times over the nonpipelined
machine because two memory accesses are required on every clock in the
pipelined machine versus two accesses every five clock cycles in a nonpipelined
machine with the same number of steps per instru£tion. To provide two memory
accesses every clock, most machines will use separate instruction and data
caches (see Chapter 8, Section 8.3).

During the EX stage, the ALU can be used for three different functions: an
effective data-address calculation, a branch-address calculation, or an ALU
instruction. Fortunately, the DLX instructions are simple; an instruction in EX
does at most one of these, so no conflict arises.

The pipeline we now have for DLX would function just fine if every instruc
tion were independent of every other instruction in the pipeline. In reality,
instructions in the pipeline can be dependent on one another; this is the topic of
the next section.

6.4 I The Major Hurdle of Pipelining
Pipeline Hazards

There are situations, called hazards, that prevent the next instruction in the
instruction stream from executing during its designated clock cycle. Hazards
reduce the performance from the ideal speedup gained by pipelining. There are
three classes of hazards:

1. Structural hazards arise from resource conflicts when the hardware cannot
support all possible combinations of instructions in simultaneous overlapped
execution.

2. Data hazards arise when an instruction depends on the results of a previous
instruction in a way that is exposed by the overlapping of instructions in the
pipeline.

3. Control hazards arise from the pipelining of branches and other instructions
that change the PC.

Hazards in pipelines can make it necessary to stall the pipeline. The major
difference between stalls in a pipelined machine and stalls in a nonpipelined
machine (such as those we saw in DLX in Chapter 5) occurs because there are
multiple instructions under execution at once. A stall in a pipelined machine
often requires that some instructions be allowed to proceed, while others are
delayed. Typically, when an instruction is stalled, all instructions later in the
pipeline than the stalled instruction are also stalled. Instructions earlier than the
stalled instruction can continue, but no new instructions are fetched during the
stall. We will see several examples of how stalls operate in this section-don't
worry, they aren't as complex as they might sound!

Ex.1035.289DELL

258 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

A stall causes the pipeline performance to degrade from the ideal perfor
mance. Let's look at a simple equation for finding the actual speedup from
pipelining, starting with the formula from the previous section.

_ Average instruction time without pipeline
Pipeline speedup

- Average instruction time with pipeline

_ CPI without pipelining * Clock cycle without pipelining
- CPI with pipelining * Clock cycle with pipelining

= Clock cycle without pipelining * CPI without pipelining
Clock cycle with pipelining CPI with pipelining

Remember that pipelining can be thought of a~ decreasing the CPI or the clock
cycle time; let's treat it as decreasing the CPI. The ideal CPI on a pipelined
machine is usually

Ideal CPI = CPI "".ith~ut pipelining
P1pelme depth

Rearranging this and substituting into the speedup equation yields:

S d _ Clock cycle without pipelining * Ideal CPI * Pipeline depth
pee up - Clock cycle with pipelining CPI with pipelining

If we confine ourselves to pipeline stalls,

CPI with pipelining = Ideal CPI + Pipeline stall clock cycles per instruction

We can substitute and obtain:

S d _ Clock cycle without pipelining * Ideal CPI * Pipeline depth
pee up - Clock cycle with pipelining Ideal CPI + Pipeline stall cycles

While this gives a general formula for pipeline speedup (ignoring stalls other
than from the pipeline), in most instances a simpler equation can be used. Often,
we choose to ignore the potential increase in the clock cycle due to pipelining
overhead. This makes the clock rates equal and allows us to drop the first term.
A simpler formula can now be used:

p· r d Ideal CPI * Pipeline depth
ipe me spee up = Ideal CPI + Pipeline stall cycles

While we will use this simpler form for evaluating the DLX pipeline, a designer
must be careful not to discount the potential impact on clock rate in evaluating
pipelining strategies.

Structural Hazards

When a machine is pipelined, the overlapped execution of instructions requires
pipelining of functional units and duplication of resources to allow all possible
combinations of instructions in the pipeline. If some combination of instructions

Ex.1035.290DELL

. <'

Instruction

Load instruction

Instruction i+ 1

Instruction i+2

Instruction i+ 3

Instruction i+4

1

Pipelining 259

cannot be accommodated due to resource conflicts, the machine is said to have a
structural hazard. The most common instances of structural hazards arise when
some functional unit is not fully pipelined. Then a sequence of instructions that
all use that functional unit cannot be sequentially initiated in the pipeline.
Another common way that structural hazards appear is when some resource has
not been duplicated enough to allow all combinations of instructions in the
pipeline to execute. For example, a machine may have only one register-file
write port, but under certain circumstances, the pipeline might want to perform
two writes in a clock cycle. This will generate a structural hazard. When a
sequence of instructions encounters this hazard, the pipeline will stall one of the
instructions until the required unit is available.

Many pipelined machines share a single memory pipeline for data and
instructions. As a result, when an instruction contains a data-memory reference,
the pipeline must stall for one clock cycle; the machine cannot fetch the next
instruction because the data reference is using the memory port. Figure 6.5
shows what a one-memory-port pipeline looks like when it stalls during a load .
We will see another type of stall when we talk about data hazards.

Clock cycle number
2 3 4 5 6 7 8 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

stall IF ID EX MEM WB

IF ID EX MEM

FIGURE 6.5 A pipeline stalled for a structural hazard-a load with one memory port. With only one memory port,
the pipeline cannot initiate a data fetch and instruction fetch in the same cycle. A load instruction effectively steals an
instruction-fetch cycle, causing the pipeline to stall-no instruction is initiated on clock cycle 4 (which normally would be
instruction i+3). Because the instruction being fetched is stalled, all other instructions in the pipeline can proceed normally.
The stall cycle will continue to pass through the pipeline.

Example

Answer

Suppose that data references constitute 30% of the mix and that the ideal CPI of
the pipelined machine, ignoring the structural hazard, is 1.2. Disregarding any
other performance losses, how much faster is the ideal machine without the
memory structural hazard, versus the machine with the hazard?

The ideal machine will be faster by the ratio of the speedup of the ideal machine
over the real machine. Since the clock rates are unaffected, we can use the fol
lowing for speedup:

P
.

1
. d Ideal CPI * Pipeline depth

1pe me spee up = . .
Ideal CPI + P1pelme stall cycles

Ex.1035.291DELL

260

Example

Answer

6.4 The Major Hurdle of Pipelining-Pipeline Hazards

S. h 'd 1 h' h -all · d . . 1 1.2*Pipeline depth mce t e 1 ea mac me as no st s, its spee up 1s s1mp y 1.
2

.

Th d f h al h
. . 1.2*Pipeline depth_ l.2*Pipeline depth

e spee up o t ere mac me 1s 1.2 + 0.3*l - 1.5

(
l.2*Pipeline depth)

SpeedUPideal = 1.2 = 1.5 = 1 25
SpeedUPreal (l.2*Pipeline depth) 1.2 ·

1.5

Thus, the machine without the structural hazard is 25% faster.

If all other factors are equal, a machine without structural hazards will always
have a lower CPI. Why, then, would a designer allow structural hazards? There
are two reasons: to reduce cost and to reduce the latency of the unit. Pipelining
all the functional units may be too costly. Machines that support one-clock-cycle
memory references require twice as much total memory bandwidth and often
have higher bandwidth at the pins. Likewise, fully pipelining a floating-point
multiplier consumes lots of gates. If the structural hazard would not occur often,
it may not be worth the cost to avoid it. It is also usually possible to design a
nonpipelined unit, or one that isn't fully pipelined, with a shorter total delay than
a fully pipelined unit. For example, both the CDC 7600 and the MIPS R2010
floating-point unit choose shorter latency (fewer clocks per operation) versus
full pipelining. As we will see shortly, reducing latency has other performance
benefits and can frequently overcome the disadvantage of the structural hazard.

Many recent machines do not have fully pipelined floating-point units. For
example, suppose we had an implementation of DLX with a 5-clock-cycle
latency for floating-point multiply, but no pipelining. Will this structural hazard
have a large or small performance impact on Spice running on DLX? For sim- _
plicity, assume that the floating-point multiplies are uniformly distributed.

The data in Figure C.4 show that floating-point multiply has a frequency of 6%
in Spice. Our proposed pipeline can handle up to a 20% frequency of floating
point multiplies-one every five clock cycles. This means that the performance
benefit of fully pipelining the floating-point multiply is likely to be low, as long
as the floating-point multiplies are not clustered but are distributed uniformly. If
they were clustered, the impact could be much larger.

Data Hazards

A major effect of pipelining is to change the relative timing of instructions by
~:>Verlapping their execution. This introduces data and control hazards. Data

Ex.1035.292DELL

Instruction

ADD instruction

SUB instruction

Pipelining 261

hazards occur when the order of access to operands is changed by the pipeline
versus the normal order encountered by sequentially executing instructions.
Consider the pipelined execution of these instructions:

ADD Rl,R2,R3
SUB R4,Rl,R5

The SUB instruction has a source, R 1, that is the destination of the ADD instruc
tion. As shown in Figure 6.6, the ADD instruction writes the value of Rl in the
WB pipe stage, but the SUB instruction reads the value during its ID stage. This
problem is called a data hazard. Unless precautions are taken to prevent it, the
SUB instruction will read the wrong value and try to use it. In fact, the value

· used by the SUB instruction is not even deterministic: Though we might think it
logical to assume that SUB would always use the value of Rl that was assigned
by an instruction prior to ADD, this is not always the case. If an interrupt should
occur between the ADD and SUB instructions, the WB stage of the ADD will
complete, and the value of Rl at that point will be the result of the ADD. This
unpredictable behavior is obviously unacceptable.

Clock cycle
1 2 3 4 5 6

IF ID EX MEM WB--data written here

IF ID-data read here EX MEM WB

FIGURE 6.6 The ADD instruction writes a register that is a source operand for the SUB instruction. But the ADD

doesn't finish writing the data into the register file until three clock cycles after SUB begins reading it!

The problem posed in this example can be solved with a simple hardware
technique calledforwarding (also called bypassing and sometimes short-circuit
ing). This technique works as follows: The ALU result is always fed back to the
ALU input latches. If the forwarding hardware detects that the previous ALU
operation has written the register corresponding to a source for the current ALU
operation, control logic selects the forwarded result as the ALU input rather than
the value read from the register file. Notice that with forwarding, if the SUB is
stalled, the ADD will be completed, and the bypass will not be activated, causing
the value from the register to be used. This is also true for the case of an inter
rupt between the two instructions.

In our DLX pipeline, we must pass results to not only the instruction that
immediately follows, but also to the instruction after that. ay the third instruc
tion down the line, the ID and WB stages overlap; however, as the write is not
finished until the end of WB, we must continue to forward the result. Figure·6.7
shows a set of instructions in the pipeline and the forwarding operations that can
occur.

Ex.1035.293DELL

262 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

ADD Rl,R2,R3 IF ID EX MEM WB

,\

SUB R4,Rl,R5 IF ID ~ MEM WB

')..

AND R6,Rl,R7 IF ID ·~ MEM WB

\

OR R8,Rl,R9 IF ID- EX MEM WB

XOR RlO, Rl, Rll

FIGURE 6.7 A set of instructions in the pipeline that need to forward results. The
ADD instruction sets R1, and the next four instructions use it. The value of R1 must be
bypassed to the SUB, AND, and OR instructions. By the time the' XOR instruction goes to read
R1 in the ID phase, the ADD instruction has completed WB, and the value is available.

Rl,R2,R3
IF ID

ADD
EX MEM WB

R w

SUB R4,Rl,R5
IF ID EX MEM WB

R w

AND R6,Rl,R7
IF ID EX MEM WB

R w

OR R8,Rl,R9
IF ID EX MEM WB

R w

RlO,Rl,Rll
IF ID

XOR
EX MEM WB

R w

FIGURE 6.8 The same instruction sequence as shown in Figure 6.7, with register
reads and writes occurring in opposite halves of the ID and WB stages. The SUB and
AND instructions will still require the value of R1 to be bypassed to them, and this will hap
pen as they enter their EX stage. However, by the time of the OR instruction, which also
uses R1, the write of R1 has completed, and no forwarding is required. The XOR depends
on the ADD, but the value of R1 from the ADD is always written back the cycle before XOR

reaches its ID stage and reads it.

Ex.1035.294DELL

262 , ‘ 6.4 The Major Hurdle of Pipelining—Pipeline Hazards

Rl,R2,R3

R8,Rl,R9

R10,R1,R11

FIGURE 6.7 A set of instructions in the pipeline that need to forward results. The
ADD instruction sets R1, and the next four instructions use it. The value of R1 must be

bypassed to the SUB, AND, and OR instructions. By the time theXOR instruction goes to read

R1 in the ID phase, the ADD instruction has completed WB, and the value is available.

R1,R2,R3

~

V IlF EXI I “a.“l-WIWMB-
FIGURE 6.8 The same instruction sequence as shown in Figure 6.7, With register

reads and writes occurring in opposite halves of the ID and WB stages. The SUB and

AND instructions will still require the value of R1 to be bypassed to them, and this will hap-
pen as they enter their EX stage. However, by the time of the OR instruction, which also

uses R1, the write of R1 has completed, and no forwarding is required. The XOR depends
on the ADD, but the value of R1 from the ADD is always written back the cycle before XOR

reaches its lD stage and reads it.

DELL Ex.1035.294

Pipelining 263

It is desirable to cut down the number of instructions that must be bypassed,
since each level requires special hardware. Remembering that the register file is
accessed twice in a clock cycle, it is possible to do the register writes in the first
half of WB and the reads in the second half of ID. This eliminates the need to
bypass to a third instruction, as shown in Figure 6.8.

Each level of bypass requires a latch and a pair of comparators to examine
whether the adjacent instructions share a destination and a source. Figure 6.9
shows the structure of the ALU and its bypass unit as well as what values are in

0 the bypass registers for the instruction sequence in Figure 6. 7. Two ALU result
buffers are needed to hold ALU results to be stored into the destination register
in the next two WB stages. For ALU operations, the result is always forwarded
-when the instruction using the result as a source enters its EX stage. (The
instruction that computed the value to be forwarded may be in its MEM or WB
stages.) The results in the buffers can be inputs into either port on the ALU, via a
pair of multiplexers. Multiplexer control can be done by either the control unit

. ' (which must then track the destinations and sources of all operations in the
pipeline) or locally by logic associated with the bypass (in which case the bypass
buffers will contain tags giving the register numbers the values are destined for).
In either event, the logic must test if either of the two previous instructions wrote
a register that is the input to the current instruction. If so, then the multiplexer
select is set to choose from the appropriate result register rather than from the
bus. Because the ALU operates in a single pipeline stage, there is no need for a
pipeline stall with any combination of ALU instructions once the bypasses have
been implemented.

Result
write bus

Register
file

Bypass
paths

R4 ----m==:...:::i-ALU result
buffers

R1

FIGURE 6.9 The ALU with its bypass unit. The contents of the buffer are shown at the
point where the AND instruction of the code sequence in Figure 6.8 is about to begin the EX
stage. The ADD instruction that computed R1 (in the second buffer) is in its WB stage, and
the left input multiplexer is set to pass the just-computed value of R1 (not the value read
from the register file) as the first operand to the AND instruction. The result of the subtract,
R4, is in the first buffer. These buffers correspond to the variables ALUoutput and
ALUoutputl in Figures 6.3 and 6.4.

Ex.1035.295DELL

Pipelining 263

It is desirable to cut down the number of instructions that must be bypassed,

since each level requires special hardware. Remembering that the register file is

accessed twice in a clock cycle, it is possible to do the register writes in the first
half of WB and the reads in the second half of ID. This eliminates the need to

bypass to a third instruction, as shown in Figure 6.8.

Each level of bypass requires a latch and a pair of comparators to examine

whether the adjacent instructions share a destination and a source. Figure 6.9

shows the structure of the ALU and its bypass unit as well as what values are in

the bypass registers for the instruction sequence in Figure 6.7. Two ALU result

buffers are needed to hold ALU results to be stored into the destination register

in the next two WB stages. For ALU operations, the result is always forwarded

when the instruction using the result as a source enters its EX stage. (The

instruction that computed the value to be forwarded may be in its MEM or WB

stages.) The results in the buffers can be inputs into either port on the ALU, via a

pair of multiplexers. Multiplexer control can be done by either the control unit

‘(which must thentrack the destinations and sources of all operations in the

pipeline) or locally by logic associated with the bypass (in which case the bypass

buffers will contain tags giving the register numbers the values are destined for).

In either event, the logic must test if either of the two previous instructions wrote

a register that is the input to the current instruction. If so, then the multiplexer

select is set to choose from the appropriate result register rather than from the

bus. Because the ALU operates in a single pipeline stage, there is no need for a

pipeline stall with any combination of ALU instructions once the bypasses have

been implemented.

Result
write bus

. ALU result
buffers

FIGURE 6.9 The ALU with its bypass unit. The contents of the buffer are shown at the

point where the AND instruction of the code sequence in Figure 6.8 is about to begin the EX

stage. The ADD instruction that computed R1 (in the second buffer) is in its WB stage, and

the left input multiplexer is set to pass the just-computed value of R1 (not the value read
from the register file) as the first operand to the AND instruction. The result of the subtract,

R4, is in the first buffer. These buffers correspond to the variables ALUoutput and

ALUoutputl in Figures 6.3 and 6.4. .

DELL Ex.1035.295

264 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

A hazard is created whenever there is a dependence between instructions, and
they are close enough that the overlap caused by pipelining would change the
order of access to an operand. Our example hazards have all been with register
operands, but it is also possible for a pair of instructions to create a dependence
by writing and reading the same memory location. In our DLX pipeline, how
ever, memory references are always kept in order, preventing this type of hazard
from arising. Cache misses could cause the memory references to get out of
order if we allowed the processor to continue working on later instructions while
an earlier instruction that missed the cache was accessing memory. For DLX's
pipeline we just stall the entire pipeline, effectively making the instruction that
contained the miss run for multiple clock cycles. In an advanced section of this
chapter, Section 6. 7, we will discuss machines that allow loads and stores to be
executed in an order different from that in the program. All the data hazards dis
cussed in this section, however, involve registers within the CPU.

Forwarding can be generalized to include passing a result directly to the func
tional unit that requires it: A result is forwarded from the output of one unit to
the input of another, rather than just from the result of a unit to the input of the
same unit. Take, for example, the following sequence:

ADD Rl,R2,R3
SW 25(Rl),Rl

To prevent a stall in this sequence, we would need to forward the value of R,1
from the ALU both to the ALU, so ,that it can be used in the effective address
calculation, and to the MDR (memory data register), so that it can be stored
without any stall cycles.

Data hazards may be classified as one of three types, depending on the order
of read and write accesses in the instructicms. By convention, the hazards are
named by the ordering in the program that must be preserved by the pipeline.
Consider two instructions i and j, with i occurring before j. The possible data
hazards are:

• RAW (read after write) - j tries to read a source before i writes it, so j
incorrectly gets the old value. This is the most common type of hazard and
the one that appears in Figures 6.6 and 6.7.

• WAR (write after read) -j tries to write a destination before it is read by i,
so i incorrectly gets the new value. This cannot happen in our example
pipeline because all reads are early (in ID) and all writes are late (in WB).
This hazard occurs when there are some instructions that write results early in
the instruction pipeline, and other instructions that read a source after a write
of an instruction later in the pipeline. For example, autoincrement addressing
can create a WAR hazard.

• WAW (write after write) -j tries to write an operand before it is written by
i. The writes end up being performed in the wrong order, leaving the value
writ~en by i rather than the value written by j in the destination. This hazard is
present only in pipelines that write in more than one pipe stage (or allow an

Ex.1035.296DELL

Pipelining 265

instruction to proceed even when a previous instruction is stalled). The DLX
pipeline writes a register only in WB and avoids this class of hazards.

Note that the RAR (read after read) case is not a hazard.
Not all data hazards can be handled without a performance effect. Consider

the following sequence of instructions:

LW Rl,32(R6)

ADD R4,Rl,R7

SUB R5,Rl,R8

AND R6,Rl,R7

. This case is different from the situation with back-to-back ALU operations. The
LW instruction does not have the data until the end of the MEM cycle, while the
ADD instruction needs to have the data by the beginning of that clock cycle.
Thus, the data hazard from using the result of a load instruction cannot be
completely eliminated with simple hardware. We can forward the result immedi
ately to the ALU from the MDR, and for the SUB instruction- which begins
two clock cycles after the load-the result arrives in time, as shown in Figure
6.10. However, for the ADD instruction, the forwarded result arrives too late-at
the end of a clock cycle, though it is needed at the beginning.

LW Rl, 32 (R6) IF ID EX MEM WB

ADD R4,Rl,R7 IF ID EX MEM

SUB R5,Rl,R8 IF ID EX

AND R6,Rl,R7 IF ID

FIGURE 6.1 O Pipeline hazard occurring when the result of a load instruction is used
by the next instruction as a source operand and is forwarded. The value is available
when it returns from memory at the end of the load instruction's MEM cycle. However, it is
needed at the beginning of that clock cycle for the ADD (the EX stage of the add). The load
value can be forwarded to the SUB instruction and will arrive in time for that instruction (EX).
The AND can simply read the value during ID since it reads the registers in the second half
of the cycle and the value is written in the first half.

The load instruction has a delay or latency that cannot be eliminated by for
warding alone-to do so would require the data-access time to be zero. The most
common solution to this problem is a hardware addition called a pipeline inter
lock. In general, a pipeline interlock detects a hazard and stalls the pipeline until
the hazard is cleared. In this case, the interlock stalls the pipeline beginning with
the instruction that wants to use the data until the sourcing instruction produces
it. This delay cycle, called a pipeline stall or bubble, allows the load data to
arrive from memory; it can now be forwarded by the hardware. The CPI for the .
stalled instruction increases by the length of the stall (one clock cycle in this
case). The stalled pipeline is shown in Figure 6.11.

Ex.1035.297DELL

266 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

Any instruction IF ID EX MEM WB

LW Rl, 32 (R6) IF ID EX MEM WB

ADD R4,Rl,R7 IF ID stall EX MEM WB

SUB R5,Rl,R8 IF stall ID EX MEM WB

AND R6,Rl,R7 stall IF ID EX MEM WB

FIGURE 6.11 The effect of the stall on the pipeline. All instructions starting with the instruction that has the depen
dence are delayed. With the delay, the value of the load that returns in MEM can now be forwarded to the EX cycle of the
ADD instruction. Because of the stall, the SUB instruction will riow read the value from the registers during its ID cycle
rather than having it forwarded from the MOR.

Example

Answer

The process of letting an instruction move from the instruction decode stage
(ID) into the execution stage (EX) of this pipeline is usually called instruction
issue; and an instruction that has made this step is said to have issued. For the
DLX integer pipeline, all the data hazards can be checked during the ID phase of
the pipeline. If ~ data hazard exists, the instruction is. stalled before it is issued.
Later in this chapter, we will look at situations where instruction issue is much
more complex. Detecting interlocks early in the pipeline reduces the hardware
complexity because the hardware never has to suspend an instruction that has
updated the state of the machine, unless the entire machine is stalled.

Suppose that 20% of the instructions are loads, and half the time the instruction
following a load instruction depends on the result of the load. If this hazard
creates a single-cycle delay, how much faster is the ideal pipelined machin6
(with a CPI of 1) that does not delay the pipeline, compared to a more realistic
pipeline? Ignore any stalls other than pipeline stalls.

The ideal machine will be faster by the ratio of the CPls. The CPI for an instruc
tion following a load is 1.5, since they stall half the time. Since loads are 20% of
the mix, the effective CPI is (0.8* 1 + 0.2* 1.5) = 1.1. This yields a performance

ratio of \
1

. Hence, the ideal machine is 10% faster.

vMany types of stalls are quite frequent. The typical code-generation pattern
for a statement such as A=B+C produces a stall for a load of the second data
value. Figure 6.12 shows that the store need not result in another stall, since the
result of the addition can be forwarded to the MDR. Machines where the
operands may come from memory for arithmetic operations will need to stall the
pipeline in the middle of the instruction to wait for memory to complete its
access.

Ex.1035.298DELL

Pipelining 267

LW Rl,B IF ID EX MEM WB

LW R2,C IF ID EX MEM WB

ADD R3,Rl,R2 IF ID stall EX MEM WB

SW A,R3 IF stall ID EX MEM WB

FIGURE 6.12 The DLX code sequence for A=B+C. The ADD instruction must be stalled to allow the load of C to
complete. The sw need not be delayed further because the forwarding hardware passes the result from the ALU directly to
the MOR for storing.

~xample

Answer

Rather than just allow the pipeline to stall, the compiler could try to schedule
the pipeline to avoid these stalls, by rearranging the code sequence to eliminate
the hazard. For example, the compiler would try to avoid generating code with a
load followed by an immediate use of the load destination register. This tech
nique, called pipeline scheduling or instruction scheduling, was first used in the
1960s, and became an area of major interest in the 1980s as pipelined machines
became more widespread.

Generate DLX code that avoids pipeline stalls for the following sequence:

a = b + e;

d = e - f;

Assume loads have a latency of one clock cycle.

Here is the scheduled code:

LW Rb,b

LW Re,e

LW Re,e ; swapped with next instruction to avoid stall

ADD Ra,Rb,Re

LW Rf,f

SW a,Ra ; store/load interchanged to avoid stall in SUB

SUB Rd,Re,Rf

SW d,Rd

Both load interlocks (LW Re, e/ADD Ra, Rb, Re and LW Rf, f/S U B
Rd, Re, Rf) have been eliminated. There is a dependence between the ALU
instruction and the store, but the pipeline structure allows the result to be for
warded. Notice that the use of different registers for the first and second state
ments was critical for this schedule to be legal. In particular, if the variable e
were loaded into the same register as b or e, this schedule would not be legal. In

Ex.1035.299DELL

268 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

general, pipeline scheduling can increase the register count required. In Section
6.8, we will see that this increase can be substantial for machines that can issue
multiple instructions in one clock.

This technique works sufficiently well that some machines rely on software
to avoid this type of hazard. A load requiring that the following instruction not
use its result is called a delayed load. The pipeline slot after a load is often
called the load delay or delay slot. When the compiler cannot schedule the inter
lock, a no-op instruction may be inserted. This does not affect running time, but
only increases the code space versus a machine with the interlock. Whether or
not the hardware detects this interlock and stalls the pipeline, performance will
be enhanced if the compiler schedules instructions. If the stall occurs, the per
formance impact will be the same, whether the machine executes an idle cycle or
executes a no-op. Figure 6.13 shows that scheduling can eliminate the majority
of these delays. It is clear from this figure that load delays in GCC are signifi
cantly harder to schedule than in Spice or TeX.

Scheduled
TeX

Unscheduled 65%

Scheduled
Spice

Unscheduled

Scheduled
GCC

Unscheduled

0% 10% 20% 30% 40% 50% 60% 70%
Percentages of loads that cause pipeline stall

FIGURE 6.13 Percentage of the loads that result in a stall with the DLX pipeline. The
black bars show the amount without compiler scheduling; the gray bars show the effect of a
good, but simple, scheduling algorithm. These data show scheduling effectiveness after
global optimization (see Chapter 3, Section 3.7). Global optimization actually makes
scheduling relatively harder because there are fewer candidates available for scheduling
into delay slots. For example, on GCC and TeX, when the programs are scheduled but not ~

globally optimized, the percentage of load delays that result in a stall drops to 22% and
19%, respectively.

Implementing Data Hazard Detection
in Simple Pipelines

How pipeline interlocks are implemented depends quite heavily on the length
and complexity of the pipeline. For a complex machine with long-running
instructions and multicycle interdependences, a central table that keeps track of
the availability of operands and the outstanding writes may be needed (see Sec-

Ex.1035.300DELL

263 ' 6.4 The Major Hurdle of Pipellning—Pipeline Hazards

general, pipeline scheduling can increase the register count required. In Section

6.8, we will see that this increase can be substantial for machines that can issue

multiple instructions in one clock.

This technique works sufficiently well that some machines rely on software

to avoid this type of hazard. A load requiring that the following instruction not

use its result is called a delayed load. The pipeline slot after a load is often,

called the load delay or delay slot. When the compiler cannot schedule the inter-

lock, a no-op instruction may be inserted. This does not affect running time, but

only increases the code space versus a machine with the interlock. Whether or

not the hardware detects thisinterlock and stalls the pipeline, performance will

be enhanced if the compiler schedules instructions. If the stall occurs, the per-

formance impact will be the same, whether the machine executes an idle cycle or

executes a no-op. Figure 6.13 shows that scheduling can eliminate the majority

of these delays. It is clear from this figure that load delays in GCC are signifi-

cantly harder to schedule than in Spice or TeX.

Scheduled

Unscheduled

 Scheduled

Unscheduled

 Scheduled -

Unscheduled 54%

0% 1 0% 20% 30% 40% 50% 60% 70%

Percentages of loads that cause pipeline stall

FIGURE 6.13 Percentage of the loads that result in a stall with the DLX pipeline. The

black bars show the amount without compiler scheduling; the gray bars show the effect of a

good, but simple, scheduling algorithm. These data show scheduling effectiveness after

global optimization (see Chapter 3, Section 3.7). Global optimization actually makes

scheduling relatively harder because there are fewer candidates available for séheduling

into delay slots. For example, on GCC and TeX, when the programs are scheduled but not -

globally optimized, the percentage of load delays that result in a stall drops to 22% and

19%, respectively.

Implementing Data Hazard Detection

in Simple Pipelines

How pipeline interlocks are implemented depends quite heavily on the length
and complexity of the pipeline. For a complex machine with long-running

instructions and multicycle interdependences, a central table that keeps track of '

the availability of operands and the outstanding writes may be needed (see 860— 9

DELL Ex.1035.300

Pipelining 269

tion 6. 7). For the DLX integer pipeline, the only interlock we need to enforce is
load followed by immediate use. This can be done with a simple comparator that
looks for this pattern of load destination and source. The hardware required to
detect and control the load data hazard and to forward the load result is as fol
lows:

• Additional multiplexers on the inputs to the ALU (just as was required for the
bypass hardware for register-register instructions)

• Extra paths from the MDR to both multiplexer inputs to the ALU

• A buffer to save the destination-register numbers from the prior two instruc
tions (the same as for register-register forwarding)

• Four comparators to compare the two possible source register fields with the
destination fields of the prior instructions and look for a match

The comparators check for a load interlock at the beginning of the EX cycle. The
four possibilities and the required actions are shown in Figure 6.14.

For DLX, the hazard detection and forwarding hardware is reasonably sim
ple; we will see that things become much more complicated when the pipelines
are very deep (Section 6.6). But before we do that, let's see what happens with
branches in our DLX pipeline.

Situation Example code sequence Action

No dependence LW Rl,45(R2) No hazard possible because no
ADD R5,R6,R7 dependence exists on Rl in the
SUB R8,R6,R7 immediately following three
OR R9,R6,R7 instructions.

Dependence LW Rl,45(R2) Comparators detect the use of R 1 in
requiring stall ADD R5,Rl,R7 the ADD and stall the ADD (and SUB

SUB R8,R6,R7 and OR) before the ADD begins EX.
OR R9,R6,R7

Dependence LW Rl,45(R2) Comparators detect use of Rl in SUB
overcome by ADD R5,R6,R7 and forward result of load to ALU in
forwarding SUB R8,Rl,R7 time for s UB to begin EX.

OR R9,R6,R7

Dependence LW Rl,45(R2) No action required because the read
with accesses in ADD R5,R6,R7 of Rl by OR occurs in the second half
order SUB R8,R6,R7 of the ID phase, while the write of the

OR R9,Rl,R7 loaded data occurred in the first half.
See Figure 6.8 (page 262).

FIGURE 6.14 Situations that the pipeline hazard detection hardware can see by
comparing the destination and sources of adjacent instructions. This table indicates
that the only compare needed is between the destination and the sources on the two
instructions following the instruction that wrote the destination. In the case of a stall, the
pipeline dependences will look like the th.ird case, once execution continues.

Ex.1035.301DELL

270

Branch instruction IF

Instruction i+ 1

Instruction i+2

Instruction i+ 3

Instruction i+4

Instruction i+5

Instruction i+6

6.4 The Major Hurdle of Pipelining-Pipeline Hazards

Control Hazards

Control hazards can cause a greater performance loss for our DLX pipeline than
do data hazards. When a branch is executed, it may or may not change the PC to
something other than its current value plus 4 .. (Recall that if a branch changes the
PC to its target address, it is a taken branch; if it falls through, it is not taken, or
untaken.) If instruction i is a taken branch, then the PC is normally not changed
until the end of MEM, after the completion of the address calculation and com
parison, as shown in Figure 6.4 (page 256). This means stalling for three clock
cycles, at the end of which the new PC is known and the proper instruction can
be fetched. This effect is called a control or branch hazard. Figure 6.15 shows a
three-cycle stall for a control hazard.

ID EX MEM WB

stall stall stall IF ID EX MEM WB

stall stall stall IF ID EX MEM WB

stall stall stall IF ID EX MEM
stall stall stall IF ID EX

stall stall stall IF ID

stall stall stall IF

FIGURE 6.15 Ideal DLX pipeline stalling after a control hazard. The instruction' labeled instruction i+k represents the
kth instruction executed after the branch. There is a difficulty in that the branch instruction is not decoded until after in
struction i + 1 has been fetched. This figure shows the conceptual difficulty, while Figure 6.16 shows what really happens.

Branch instruction IF ID EX MEM WB

Instruction i+ 1 IF stall stall IF ID EX MEM WB

Instruction i+2 stall stall stall IF ID EX MEM WB

Instruction i+ 3 stall stall stall IF ID EX MEM
Instruction i+4 stall stall stall IF ID EX.

Instruction i+5 stall stall stall IF ID

Instruction i+6 stall stall stall IF

FIGURE 6.16 What might really happen in the DLX pipeline. Instruction i + 1 is fetched, but the instruction is ignored
and the fetch is restarted once the branch target is known. It is probably obvious that if the branch is not taken; the second
IF for instruction i + 1 is redundant. This will be addressed shortly.

The pipeline in Figure 6.15 is not possible because. we don't know that the
instruction is a branch until after the fetch of the next instruction. Figure 6.16
fixes this by simply redoing the fetch once the target is known.

Three clock cycles wasted for every branch is a significant loss. With a 30%
branch frequency and an ideal CPI of 1, the machine with branch stalls achieves

I·

Ex.1035.302DELL

Pipelining 271

only about half the ideal speedup from pipelining. Thus, reducing the branch
penalty becomes critical. The number of clock cycles in a branch stall can be
reduced in two steps:

1. Find out whether the branch is taken or not earlier in the pipeline.

2. Compute the taken PC (address of the branch target) earlier.

To optimize the branch behavior, both of these must be done-it doesn't help to
know the target of the branch without knowing whether the next instruction to
execute is the target or the instruction at PC+4. Both steps sh01:1ld be taken as
early in the pipeline as possible.

In DLX, the branches (BEQZ and BNEZ) require testing only equality to zero.
Thus, it is possible to complete this decision by the end of the ID cycle using
special logic devoted to this test. To take advantage of an early decision on
whether the branch is taken, both PCs (taken and not taken) must be computed
early. Computing the branch target address requires a separate adder, which can
add during ID. With the separate adder and a branch decision made during ID,
there is only a one-clock-cycle stall on branches. Figure 6.17 shows the branch
portion of the revised resource allocation table from Figure 6.4 (page 256).

In some machines, branch hazards are even more expensive in clock cycles
than in our example, since the time to evaluate the branch condition and com
pute the destination can be even longer. For example, a machine with separate

Pipe stage Branch instruction

IF IRf-Mem[PC];
PCf-PC+4;

ID Af-Rsl; Bf- Rs2; PClf- PC; IRlf- IR;
16

BTAf-PC+ ((IR16) ## IR16 .. 31)
if (Rsl op 0) PCf-BTA

EX

MEM

WB

FIGURE 6.17 Revised pipeline structure (see Figure 6.4, page 256) showing the use
of a separate adder to compute the branch target address. The operations that are new
or have changed are in bold. Because the branch target address (BTA) addition happens
during ID, it will happen for all instructions; the branch condition (Rs1 op 0) will also be
done for all instructions. The last operation in ID is to replace the PC. We must know that
the instruction is a branch before we perform this step. This requires decoding the
instruction before the end of ID, or doing this operation at the very beginning of EX when .
the PC is sent out. Because the branch is done by the end of ID, the EX, MEM, and WB
stages are unused for branches. An additional complication arises for jumps that have a
longer offset than branches. We can resolve this by using an additional adder that sums the
PC and lower 26 bits of the IR. Alternatively, we could attempt a clever scheme that does a
16-bit add in the first half of the cycle and determines whether to add in 10 bits from IR in
the second half of the cycle, by decoding the jump opcodes early.

Ex.1035.303DELL

272 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

decode and register fetch stages will probably have a branch delay-the length
of the control hazard-that is at least one clock cycle longer. The branch delay,
unless it is dealt with, turns into a branch penalty. Many VAXes have branch
delays of four clock cycles or more, and large, deeply pipelined machines often
have branch penalties of six or seven. In general, the deeper the pipeline, the
worse the branch penalty in clock cycles. Of course, the relative performance
effect of a longer branch penalty depends on the overall CPI of the machine. A
high CPI machine can afford to have more expensive branches because the per
centage of the machine's performance that will be lost from branches is less.

Before talking about methods for reducing the pipeline penalties that can
arise from branches, let's take a brief look at the dynamic behavior of branches.

Branch Behavior in Programs

Since branches can dramatically affect pipeline performance, we should look at
their behavior so as to get some ideas about how the penalties of branches and
jumps might be reduced. We already know the branch frequencies for our pro
grams from Chapter 4. Figure 6.18 reviews the overall frequency of control-flow
operations for three of the machines and gives the breakdown between branches
and jumps.

All of the machines show a conditional branch frequency of 11 %-17%, while
the frequency of unconditional branches varies between 2% and 8%. An obvious

DLX

Intel 8086

VAX

Unconditional

Conditional

Unconditional

Conditional

Unconditional

Conditional 17%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Percentage of occurrence

FIGURE 6.18 The frequency of instructions (branches, jumps, calls, and returns)
that may change the PC. These data represent the average over the programs measured
in Chapter 4. Instructions are divided into two classes: branches, which are conditional
(including loop branches), and those that are unconditional uumps, calls, and returns). The

.360 is omitted because the ordinary unconditional branches are not separated from the
conditional branches. Erner and Clark [1984] reported that 38% of the instructions executed
in their measurements of the VAX were instructions that could change the PC. They
measured that 67% of these instructions actually cause a branch in control flow. Their data
were taken on a timesharing workload and reflect many uses; their measurement of branch
frequency is much higher than the one in this chart.

Ex.1035.304DELL

272 I 6.4 The Major Hurdle of Pipelining—Pipeline Hazards

decode and register fetch stages will probably have a branch delay—the length

of the control hazard—that is at least one clock cycle longer. The branch delay,

unless it is dealt with, turns into a branch penalty. Many VAXes have branch

delays of four clock cycles or more, and large, deeply pipelined machines often

have branch penalties of six or seven. In general, the deeper the pipeline, the

worse the branch penalty in clock cycles. Of course, the relative performance

effect of a longer branch penalty depends on the overall CPI of the machine. A

high CPI machine can afford to have more expensive branches because the per-

centage of the machine’s performance that will be lost from branches is less.

Before talking about methods for reducing the pipeline penalties that can

arise from branches, let’s take a brief look at the dynamic behavior of branches.

Branch Behavior in Programs

Since branches can dramatically affect pipeline performance, we should look at

their behavior so as to get some ideas about how the penalties of branches and

jumps might be reduced. We already know the branch frequencies for our pro-

grams from Chapter 4. Figure 6.18 reviews the overall frequency of control—flow

operations for three of the machines and gives the breakdown between branches

and jumps. . _

All of the machines show a conditional branch frequency of 11%—17%, while

the frequency of unconditional branches varies between 2% and 8%. An obvious

Unconditional :
Conditional

Unconditional

Intel 8086 Conditional

Unconditional ‘
Conditional

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Percentage of occurrence

FIGURE 6.18 The frequency of instructions (branches, iumps, calls, and returns)

that may change the PC. These data represent the average over the programs measured

in Chapter 4. Instructions are divided into two classes: branches, which are conditional

(including loop branches), and those that are unconditional (jumps, calls, and returns). The

.360 is omitted because the ordinary unconditional branches are not separated from the
conditional branches. Emer and Clark [1984] reported that 38% of the instructions executed

in their measurements of the VAX were instructions that could change the PC. They
measured that 67% of these instructions actually cause a branch in control flow. Their data

were taken on a timesharing workload and reflect many uses; their measurement of branch

frequency is much higher than the one in this chart.

DELL Ex.1035.304

Untaken branch instruction

Instruction i+ 1

Instruction i+2

Instruction i+ 3

Instruction i+4

Taken branch instruction

Instruction i+ 1

Instruction i+2

Instruction i+3

Instruction i+4

Pipelining 273

question is, how many of the branches are taken? Knowing the breakdown
between taken and untaken branches is important because this will affect
strategies for reducing the branch penalties. For the VAX, Clark and Levy
[1984] measured simple conditional branches to be taken with a frequency of
just about 50%. Other branches, which occur much less often, have different
ratios. Most bit-testing branches are not taken, and loop branches are taken with
about 90% probability.

For DLX, we measured the branch behavior in Chapter 3 and summarized it
in Figure 3.22 (page 107). That data showed 53% of the conditional branches are
taken. Finally, 75% of the branches executed are forward-going branches. With
this data in mind, let's look at ways to reduce branch penalties.

Reducing Pipeline Branch Penalties

There are several methods for dealing with the pipeline stalls due to branch
delay, and four simple compile-time schemes are discussed in this section. In
these schemes the predictions are static-they are fixed for each branch during
the entire execution, and the predictions are compile-time guesses. More ambi
tious schemes using hardware to predict branches dynamically are discussed in
Section 6.7.

The easiest scheme is to freeze the pipeline, holding any instructions after the
branch until the branch destination is known. The attractiveness of this solution
lies primarily in its simplicity. It is the solution used earlier in the pipeline
shown in Figures 6.15 and 6.16.

A better and only slightly more complex scheme is to predict the branch as
not taken, simply allowing the hardware to continue as if the branch were not

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF IF ID EX MEM WB

stall IF ID EX MEM WB

stall IF ID EX MEM WB

stall IF ID EX MEM

FIGURE 6.19 The predict-not-taken scheme and the pipeline sequence when the branch is untaken (on the top)
and taken (on the bottom). When the branch is untaken, determined during ID, we have fetched the fall through and just
continue. If the branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following
the branch to stall one clock cycle.

Ex.1035.305DELL

274 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

executed. Here, care must be taken not to change the machine state until the
branch outcome is definitely known. The complexity that arises from this-that
is, knowing when the state might be changed by an instruction and how to "back
out" a change-might cause us to reconsider the simpler solution of flushing the
pipeline. In the DLX pipeline, this predict-not-taken scheme is implemented by
continuing to fetch instructions as if the branch were a normal instruction. The
pipeline looks as if nothing out of the ordinary is happening. If the branch is
taken, however, we need to stop the pipeline and restart the fetch. Figure 6.19
shows both situations.

(a) From before

ADD R1, R2, R3

if R2 = o then -----.

Becomes

if R2 = o then ----.

(b) From target

SUB R4, RS, RJ

ADD R1, R2, R3

if R1 = O then

Becomes

ADD R1, R2,=---1

if R1 = o then R.:__j

(c) From fall through

ADD R1, R2, R3

if R1 = O then -----.

SUB R4, RS, R6

Becomes

ADD R1, R2, R3

if R1 = O then ----.

FIGURE 6.20 Scheduling the branch-delay slot. The top picture in each pair shows the
code before scheduling, and the bottom picture shows the scheduled code. In (a) the delay
slot is scheduled with an independent instruction from before the branch. This is the best
choice. Strategies (b) and (c) are used when (a) is not possible. In the code sequences for
(b) and (c), the use of Rl in the branch condition prevents the ADD instruction (whose des
tination is Rl) from being moved after the branch. In (b) the branch-delay slot is scheduled
from the target of the branch; usuq.lly the target instruction will need to be copied becaus.e it
can be reached by another path. Strategy (b) is preferred when the branch is taken with
high probability, such as a loop branch. Finally, the branch may be scheduled from the not
taken fall through, as in (c). To make this optimization legal for (b) or (c), it must be "OK" to
execute the SUB instruction when the branch goes in the unexpected direction. By "OK" we
mean that the work is wasted, but the program will still execute correctly. This is the case,
for example, if R4 were a temporary register unused when the branch goes in the
unexpected direction.

Ex.1035.306DELL

274 ' 6.4 The Major Hurdle of Pipelining—Pipeline Hazards

executed. Here, care must be taken not to change the machine state until the

branch outcome is definitely known. The complexity that arises from this—that

is, knowing when the state might be changed by an instruction and how to “back

out” a change—might cause us to reconsider the simpler solution of flushing the

pipeline. In the DLX pipeline, this predict—nor—taken scheme is implemented by

continuing to fetch instructions as if the branch were a normal instruction. The

pipeline looks as if nothing out of the ordinary is happening. If the branch is

taken, however, we need to stop the pipeline and'restart the fetch. Figure 6.19
shows both situations.

(a) From before (D) From target (c) From tall through

ADD R1, R2, R3 ADD R1, R2, R3
SUB R4. R5, R6

if R2 = 0 then if R1 = 0 then

ADD R1, R2, R3

if R1 = 0 then .SUB R4, R5. R6

Becomes Becomes Becomes

ADD R1, R2, R3 ‘»

if R2 = 0 then if R1 = 0 then

ADD R1, R2, R3

if R1 = 0 then
FIGURE 6.20 Scheduling the branch-delay slot. The top picture in each pair shows the

code before scheduling, and the bottom picture shows the scheduled code. In (a) the delay
slot is scheduled with an independent instruction from before the branch. This is the best

choice. Strategies (b) and (c) are used when (a) is not possible. In the code sequences for

(b) and (c), the use of R1 in the branch condition prevents the ADD instruction (whose des—
tination is R1) from being moved after the branch. In (D) the branch-delay slot is scheduled

from the target of the branch; usually the target instruction will need to be copied because it
can be reached by another path. Strategy (b) is preferred when the branch is taken with
high probability, such as ‘a loop branch. Finally, the branch may be scheduled from the not-

taken fall through, as in (c). To make this optimization legal for (b) or (c), it must be “OK” to
execute the SUB instruction when the branch goes in the unexpected direction. By “OK" we

mean that the work is wasted, but the program will still execute correctly. This is the case,

for example, if R4 were a temporary register unused when the branch goes in the
unexpected direction.

DELL Ex.1035.306

Scheduling strategy

(a) From before branch

(b) From target

(c) From fall through

Pipelining 275

An alternative scheme is to predict the branch as taken. As soon as the branch
is decoded and the target address is computed, we assume the branch to be taken
and begin fetching and executing at the target. Since in our DLX pipeline we
don't know the target address any earlier than we know the branch outcome,
there is no advantage in this approach. However, in some machines--especially
those with condition codes or more powerful (and hence slower) branch condi
tions-the branch target is known before the branch outcome, and this scheme
makes sense.

Some machines have used another technique called delayed branch, which
has been used in many microprogrammed control units. In a delayed branch, the
execution cycle with a branch delay of length n is:

branch instruction

sequential successor1

sequential successor2

sequential successorn

branch target if taken

The sequential successors are in the branch-delay slots. As with load-delay slots,
the job of the software is to make the successor instructions valid and useful. A
number of optimizations are used. Figure 6.20 shows the three ways in which
the branch delay can be scheduled. Figure 6.21 shows the different constraints
for each of these branch-scheduling schemes, as well as situations in which they
win.

The primary limitations on delayed-branch scheduling arise from the restric
tions on the instructions that are scheduled into the delay slots and from our .
ability to predict at compile time whether a branch is likely to be taken or not.
Figure 6.22 shows the effectiveness of the branch scheduling in DLX with a sin
gle branch-delay slot using a simple branch-scheduling algorithm. It shows that

Requirements Improves performance when?

Branch must not depend on the rescheduled Always.
instructions.

Must be OK to execute.rescheduled instructions if When branch is taken. May en-
branch is not taken. May need to duplicate instruc- large program if instructions are
tions. duplicated.

Must be OK to execute instructions if branch is When branch is not taken.
taken.

FIGURE 6.21 Delayed-branch-scheduling schemes and their requirements. The origin of the instruction being
scheduled into the delay slot determines the scheduling strategy. The compiler must enforce the requirements when look
ing for instructions to schedule the delay slot. When the slots cannot be scheduled, they are filled with no-op instructions.
In strategy (b), if the branch target is also accessible from another point in the program-as it would be if it were the head
of a loop-the target instructions must be copied and not just moved.

Ex.1035.307DELL

276 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

TeX
Delay slots usefully filled

Delay slots filled

Spice
Delay slots usefully filled

Delay slots filled

GCC
Delay slots usefully filled

Delay slots filled

0% 10% 20% 30% 40% 50% 60%
Percentage of all branch-delay slots

FIGURE 6.22 Frequency with which a single branch-delay slot is filled and how
often the instruction is useful to the computation. The solid bar shows the percentage
of the branch-delay slots occupied by some instruction other than a no-op. The difference
between 100% and the dark column represents those branches that are followed by a no
op. The shaded bar shows how often those instructions do useful work. The difference
between the shaded and solid bars is the percentage of instructions executed in a branch
delay but not contributing to the computation. These instructions occur because optimiza
tion (b) is only useful when the branch is taken. If optimization (c) were used it would also
contribute to this difference, since it is only useful when the branch is not taken.

slightly more than half the branch-delay slots are filled, and most of the filled
slots do useful work. On average about 80% of the filled delay slots contribute
to the computation. This number seems surprising, since branches are only taken
about 53% of the time. The success r~te is high because about one-half of the
branch delays are being filled with an instruction from before the branch
(strategy (a)), which is useful independent of whether the branch is taken.

When the scheduler in Figure 6.22 cannot use strategy (a)-moving an
instruction from before the branch to fill the branch-delay slot-it uses only
strategy (b)-moving it from the target. (For simplicity reasons, the schedule
does not use strategy (c).) In total, nearly half the branch-delay slots are
dynamically useful, eliminating one-half the branch stalls. Looking at Figure ·
6.22 we see that the primary limitation is the number of empty slots-those
filled with no-ops. It is unlikely that the ratio of useful slots to filled slots, about
80%, can be improved, since this would require much better accuracy in
predicting branches. In the Exercises we consider an extension of the delayed:
branch idea that tries to fill more slots.

There is a small additional hardware cost for delayed branches. Because of
the delayed effect of branches, multiple PCs (one plus the length of the delay)
are needed to correctly restore the state when an interrupt occurs. Consider when
the interrupt occurs after a taken-branch instruction is completed, but before all
the instructions in the delay slot; and the branch target are completed. In this
case, the PC's of the delay slots and the PC of the branch target must be saved,
since they are not sequential.

Ex.1035.308DELL

276 ' 6.4 The Major Hurdle of Pipelining—Pipeline Hazards

Delay slots usefully filled

Delay slots filled

Delay slots usefully filled

59'“ Delay slots filled

Delay slots usefully filled

Delay slots filled 58%

G00

0% 1 0% 20% 30% 40% 50% 60%

Percentage of all branch-delay slots

FIGURE 6.22 Frequency with which a single branch-delay slot is filled and how

often the instruction is useful to the computation. The solid bar shows the percentage

of the branch-delay slots occupied by some instruction other than a no-op. The difference

between 100% and the dark column represents those branches that are followed by a no-

op. The shaded bar shows how often those instructions do useful work. The difference

between the shaded and solid bars is the percentage of instructions executed in a branch

delay but not contributing to the computation. These instructions occur because optimiza-

tion (b) is only useful when the branch is taken. If optimization (0) were used it would also

contribute to this difference, since it is only useful when the branch is not taken.

slightly more than half the branch—delay slots are filled, and most of the filled

slots do useful work. On average about 80% of the filled delay slots contribute

to the computation. This number seems surprising, since branches are only taken

about 53% of the time. The success rate is high because about one-half of the d;

branch delays are being filled with an instruction from before the branch

(strategy (a)), which is useful independent of whether the branch is taken.

When the scheduler in Figure 6.22 cannot use strategy (a)—moving an

instruction from before the branch to fill the. branch-delay slot—it uses only

strategy (b)—-moving it from the target. (For simplicity reasons, the schedule

does not use strategy (0).) In total, nearly half the branch-delay slots are

dynamically useful, eliminating one-half the branch stalls. Looking at Figure ,.

6.22 we see that the primary limitation is the number of empty slots—those :

filled with no-ops. It is unlikely that the ratio of useful slots to filled slots, about

80%, can be improved, since this would require much better accuracy in
predicting branches. In the Exercises we consider an extension of the delayed:
branch idea that tries to fill more slots.

There is a small additional hardware cost for delayed branches. Because of

the delayed effect of branches, multiple PCs (one plus the length of the delay)

are needed to correctly restore the state when an interrupt occurs. Consider when

the interrupt occurs after a taken-branch instruction is completed, but before all

the instructions in the delay slots and the branch target are completed. In this '
case, the PC’s of the delay slots and the PC of the branch target must be saved,

since they are not sequential,

DELL Ex.1035.308

Pipelining 277

What is the effective performance of each of these schemes? The effective
pipeline speedup with branch penalties is

P
.

1
. d Ideal CPI * Pipeline depth

1pe me spee up = . .
Ideal CPI + P1pelme stall cycle

If we assume that the ideal CPI is 1, then we can simplify this:

p· r d Pipeline depth
ipe me spee up = 1 + Pipeline stall cycles from branches

Since

Pipeline stall cycles from branches = Branch frequency * Branch penalty

we obtain:

P
. 1. d Pipeline depth
1pe me spee up =

(1 +Branch frequency* Branch penalty)

Using the DLX measurements in this section, Figure 6.23 shows several
hardware options for dealing with branches, along with their performances
(assuming a base CPI of 1).

Scheduling scheme Branch Effective Pipeline Pipeline
penalty CPI speedup over speedup over

nonpipelined stall pipeline
machine on branch

Stall pipeline 3 1.42 3.52 1.00

Predict taken 1 1.14 4.39 1.25

Predict not taken 1 1.09 4.59 1.30

Delayed branch 0.5 1.07 4.67 1.33

FIGURE 6.23 Overall costs of a variety of branch schemes with the DLX pipeline.
1hese data are for our DLX pipeline using the measured control-instruction frequency of
14% and the measurements of delay-slot filling from Figure 6.22. In addition, we know that
65% of the control instructions actually change the PC (taken branches plus unconditional
changes). Shown are both the resultant CPI and the speedup over a nonpipelined machine,
which we assume would have a CPI of 5 without any branch penalties. The last column of
the table gives the speedup over a scheme that always stalls on branches.

Remember that the numbers in this section are dramatically affected by the
length of the pipeline delay and the base CPI. A longer pipeline delay will cause
an increase in the penalty and a larger percentage of wasted time. A delay of
only one clock cycle is small-many machines have minimum delays of five or
more. With a low CPI, the delay must be kept small, while a higher base CPI
would reduce the relative penalty from branches.

Ex.1035.309DELL

278 6.4 The Major Hurdle of Pipelining-Pipeline Hazards

Summary: Performance of the
DLX Integer Pipeline

We close this section on hazard detection and elimination by showing the total
distribution of idle clock cycles for our benchmarks when run on the DLX inte
ger pipeline with software for pipeline scheduling. Figure 6.24 shows the distri
bution of clock cycles lost to load delays ·and branch delays in our three
programs, by combining the separate measurements shown in Figures 6.13 (page
268) and 6.22.

TeX

Spice

GCC

Branch-delay stall cycles

Load~delay stall cycles

Branch-delay stall cycles

Load-delay stall cycles

Branch-delay stall cycles

Load-delay stall cycles

0%

11%

2% 4% 6% 8% 10% 12%
Percentage of all cycles in execution

FIGURE 6.24 Percentage of the clock cycles spent on delays versus executing
instructions. This assumes a perfect memory system; the clock-cycle count and
instruction count would be identical if there were no integer pipeline stalls. This graph says
that from 7% to 15% of the clock cycles are stalls; the remaining 85% to 93% are clock
cycles that issue instructions. The Spice clock cycles do not include stalls in the FP
pipeline, which will be shown at the end of Section 6.6. The pipeline scheduler fills load
delays before branch delays and this affects the distribution of delay cycles.

For the GCC and TeX programs, the effective CPI (ignoring any stalls except
those from pipeline hazards) on this pipelined version of DLX is 1.1. Compare
this to the CPI for the complete nonpipelined, hardwired version of DLX
described in Chapter 5 (Section 5.7), which is 5.8. Ignoring all other sources o'f
stalls and assuming that the clock rates will be the same, the performance
improvement from pipelining is 5.3 times.

6.5 I What Makes Pipelining Hard to Implement

Now that we understand how to detect and resolve hazards, we can deal with
some complications that we have avoided so far. In Chapter 5 we saw that inter~
rupts are among the most difficult aspects of implementing a machine; pipelin
ing increases that difficulty. In the second part of this section, we discuss some
of the challenges raised by different instruction sets.

Ex.1035.310DELL

278 - 6.4 The Major Hurdle of Pipelining—Pipeline Hazards

Summary: Performance of the

DLX Integer Pipeline

We close this section on hazard detection and elimination by showing the total

distribution of idle clock cycles for our benchmarks when run on the DLX inte-

ger pipeline with software for pipeline scheduling. Figure 6.24 shows the distri—

bution of clock cycles 10st to load delays 'and branch delays in our three

programs, by combining the separate measurements shown in Figures 6.13 (page

268) and 6.22.

Branch-delay stall cycles

Load-delay stall cycles

Branch-delay stall cycles

Load-delay stall cycles

Branch—delay stall cycles

Load-delay stall cycles

2% 4% 6% 8% 1 0% 1 2%

Percentage of all cycles in execution

FIGURE 6.24 Percentage of the clock cycles spent on delays versus executing
instructions. This assumes a perfect memory system; the clock-cycle count and
instruction count would be identical if there were no integer pipelinestalls. This graph says

that from 7% to 15% of the clock cycles are stalls; the remaining 85% to 93% are clock

cycles that issue instructions. The Spice clock cycles do not include stalls in the FP

pipeline, which will be shown at the end of Section 6.6. The pipeline scheduler fills load

delays before branch delays and this affects the distribution of delay cycles.

For the GCC and TeX programs, the effective CPI (ignoring any stalls except

those from pipeline hazards) on this pipelined version of DLX is 1.1. Compare

this to the CPI for the complete nonpipelined, hardwired version of DLX

described in Chapter 5 (Section 5.7), which is 5.8. Ignoring all other sources of

stalls and assuming that the clock rates will be the same, the performance

improvement from pipelining is 5.3 times.

6.5 What Makes Pipelining Hard to Implement . ‘

Now that we understand how to detect and resolve hazards, we can deal with

some complications that we have avoided So far. In Chapter 5 we saw that inter-
rupts are among the most difficult aspects of implementing a machine; pipelin-
ing increases that difficulty. In the second part of this section, we discuss some

of the challenges raised by different instruction sets.

DELL Ex.1035.310

Pipelining 279

Dealing with Interrupts

Interrupts are harder to handle in a pipelined machine because the overlapping of
instructions makes it more difficult to know whether an instruction can safely
change the state of the machine. In a pipelined machine, an instruction is exe
cuted piece by piece and is not completed for several clock cycles. Yet in the
process of executing it may need to update the machine state. Meanwhile, an
interrupt can force the machine to abort the instruction's execution before it is
completed.

As in nonpipelined implementations, the most difficult interrupts have two
. properties: (1) they occur within instructions, and.(2) they must be restartable. In

our DLX pipeline, for example, a virtual memory page fault resulting from a
data fetch cannot occur until sometime in the MEM cycle of the instruction. By
the time that fault is seen, several other instructions will be in execution. Since a
page fault must be restartable and requires the intervention of another process,
such as the operating system, the pipeline must be safely shut down and the state
saved so that the instruction can be restarted in the correct state. This is usually
implemented by saving the PC of the instruction (during IF) to restart it. If the
restai:ted instruction is not a branch then we will continue to fetch the sequential
successors and begin their execution in the normal fashion. If the restarted
instruction is a branch, then we will evaluate the branch condition and begin
fetching from either the target or the fall through. When an interrupt occurs, we
can take the following steps to save the pipeline state safely:

1. Force a trap instruction into the pipeline on the next IF.

2. Until the trap is taken, tum off all writes for the faulting instruction and for
all instructions that follow in the pipeline. This prevents any state changes for
instructions that will not be completed before the interrupt is handled.

3. After the interrupt-handling routine in the operating system receives control,
it immediately saves the PC of the faulting instruction. This value will be used to
return from the interrupt later.

When we use delayed branches it is no longer possible to re-create the state
of the machine with the single PC of the interrupted instruction, because the
instructions in the pipeline may not be sequentially related. In particular, when
the instruction that causes the interrupt is a branch-delay slot, and the branch
was taken, then the instructions to restart are those in the slot plus the instruction
at the branch target. The branch itself has completed execution and is not
restarted. The addresses of the instructions in the branch-delay slot and the target
are not sequential. So we need to save and restore a number of PCs that is one
more than the length of the branch delay. This is done in the third step above.

After the interrupt has been handled, special instructions return the machine
from the interrupt by reloading the PCs and restarting the instruction stream
(using RFE in DLX). If the pipeline can be stopped so that the instructions just
before the faulting instruction are completed and those after it can be restarted

Ex.1035.311DELL

280 6.5 What Makes Pipelining Hard to Implement

from scratch, the pipeline is said to have precise interrupts. Ideally, the faulting
instruction would not have changed the state, and correctly handling some inter
rupts requires that the faulting instruction have no effects. For other interrupts,
such as floating-point exceptions, the faulting instruction on some machines
writes its result before the interrupt can be handled. In such cases, the hardware
must be prepared to retrieve the source operands, even if the destination is iden
tical to one of the source operands.

Supporting precise interrupts is a requirement in many systems, while in
others it is valuable because it simplifies the operating system interface. At a
minimum, any machine with demand paging or IEEE arithmetic trap handlers
must make its interrupts precise, either in the hardware or with some software
support.

Precise interrupts are challenging because of the same problems that make
instructions difficult to restart. As we saw in the last chapter, restarting is com
plicated by the fact that instructions can change the state of the machine before
they are guaranteed to complete (sometimes called committed instructions).
Because instructions in the pipeline may have dependences, not updating the
machine state is impractical if the pipeline is to keep going. Thus, as a machine
is more heavily pipelined, it becomes necessary to be able to back out of any
state changes made before the instruction is committed·(as discussed in Chapter
5)~ Fortunately, DLX has no such instructions, given the pipeline we have used.

Figure 6.25 (page 281) shows the DLX pipeline stages and which "problem"
interrupts might occur in each stage. Because in pipelining there are multiple
instructions in execution, multiple interrupts may occur on the same clock cycle.
For example, consider this instruction sequence:

IF ID

IF

EX

ID

MEM

EX

WB

MEM WB

This pair of instructions can cause a data page fault and an arithmetic interrupt at
the same time, since the LW is in MEM while the ADD is in EX. This case can be
handled by dealing with only the data page fault and then restarting the
execution. The second interrupt will reoccur (but not the first, if the software is 1

correct), and when it does it can be handled independently.
In reality, the situation is not all this straightforward. Interrupts may occur out

of order; that is, an instruction may cause an interrupt before an earlier instruc- ,
tion causes one. Consider again the above sequence of instructions LW; ADD.'

The LW can get a data page fault, seen when the instruction is in MEM, and the
ADD can get an instruction page fault, seen when the ADD instruction is in IF.
The instruction page fault will actually occur first, even though it is caused by a
later instruction! This situation can be resolved in two ways. To explain them,·
let's call the instruction in the position of the LW "instruction i" and the instruc
tion in the position of the ADD "instruction i+ l."

/

Ex.1035.312DELL

280 i 6.5 What Makes Pipelining Hard to Implement

from scratch, the pipeline is said‘to have precise interrupts. Ideally, the faulting
instruction would not have changed the state, and correctly handling some inter-

rupts requires that the faulting instruction have no effects. For other interrupts,

such as floating-point exceptions, the faulting instruction on some machines

writes its result before the interrupt can be handled. In such cases, the hardware

must be prepared to retrieve the source operands, even if the destination is iden-
tical to one of the source operands.

Supporting precise interrupts is a requirement in many systems, while in

others it is valuable because it simplifies the operating system interface. At a

minimum, any machine with demand paging or IEEE arithmetic trap handlers

must make its interrupts precise, either in the hardware or with some software

support.

Precise interrupts are challenging because of the same problems that make

instructions difficult to restart. As we saw in the last chapter, restarting is com-

plicated by the fact that instructions can change the state of the machine before

they are guaranteed to complete (sometimes called committed instructions).

Because instructions in the pipeline may have dependences, not updating the

machine state is impractical if the pipeline is to keep going. Thus, as a machine

4 is more heavily pipelined, it becomes necessary to be able to back out of any ,
state changes made before the instruction is committed(as discussed1n Chapter

5). Fortunately, DLX has no such instructions, given the pipeline we have used. ’

Figure 6.25 (page 281) shows the DLX pipeline stages and which‘‘”problem
interrupts might occur in each stage. BecauSe1n pipelining there are multiple

instructions in execution, multiple interrupts may occur on the same clock cycle.

For example, consider this instruction sequence:

This pair of instructions can cause a data page fault and an arithmetic interrupt at

the same time, since the LW is in MEM while the ADD is in EX. This case can be l

handled by dealing with only the data page fault and then restarting the ‘

execution. The second interrupt will reoccur (but not the first, if the software is 1

correct), and when it does it can be handled independently.

In reality, the situation is not all this straightforward. Interrupts may occur out ,

of order; that is, an instruction may cause an interrupt before an earlier instruc- \

tion causes one. Consider again the above sequence of instructions LW; ADD.‘

The LW can get a data page fault, seen when the instruction is in MEM, and the

ADD can get an instruction page fault, seen when the ADD instruction is in IF.

The instruction page fault will actually occur first, even though it is caused by a“

later instruction! This situation can be resolved in two ways. To explain them,

let’s call the instruction in the position of the LW “instruction i” and the instruc-

tion in the position of the ADD “instruction i+1.”

DELL Ex.1035.312

Pipelining 281

Pipeline stage Problem interrupts occurring

IF Page fault on instruction fetch; misaligned memory access;
memory-protection violation

ID Undefined or illegal opcode

EX Arithmetic interrupt

MEM Page fault on data fetch; misaligned memory access;
memory-protection violation

WB None

FIGURE 6.25 Interrupts from Chapter 5 tha' cause stop and restart of the DLX
pipeline in a transparent fashion. The pipelire stage where these interrupts occur is also
shown. Interrupts raised from instruction or data-memory access account for six out of
seven cases. These interrupts and their corresponding names in other processors are in
Figures 5.9 and 5.11.

The first approach is completely precise and is the simplest to understand for
the user of the architecture. The hardware posts each interrupt in a status vector
carried along with each instruction as it goes down the pipeline. When an
instruction enters WB (or is about to leave MEM), the interrupt status vector is
checked. If any interrupts are posted, they are handled in the order in which they
would occur in time-the interrupt corresponding to the earliest instruction is
handled first. This guarantees that all interrupts will be seen on instruction i be
fore any are seen on i+ 1. Of course, any action taken on behalf of instruction i
may be invalid, but because no state is changed until WB, this is not a problem
in the DLX pipeline. Nevertheless, pipeline control may want to disable any
actions on behalf of an instruction i (and its successors) as soon as the interrupt
is recognized. For pipelines that could update state earlier than WB, this dis
abling is required.

The second approach is to handle an interrupt as soon as it appears. This
could be regarded as slightly less precise because interrupts occur in an order
different from the order they would occur in if there were no pipelining. Figure
6.26 shows two interrupts occurring in the DLX pipeline. Because the interrupt
at instruction i+ 1 is handled when it appears, the pipeline must be stopped
immediately without completing any instructions that have yet to change state.
For the DLX pipeline, this will be i-2, i-1, i, and i+ 1, assuming the interrupt is
recognized at the end of the IF stage of the ADD instruction. The pipeline is then
restarted with instruction i-2. Since the instruction causing the interrupt can be
any of i-2, ... , i+ 1, the operating system must determine which instruction
faulted. This is easy to figure out if the type of interrupt and its corresponding
pipe stage are known. For example, only i+ 1 (the ADD instruction) could get an
instruction page fault at this point, and only i-2 could get a data page fault. After
handling the fault for i+ 1 and restarting at i-2, the data page fault will be en
countered on instruction i, which will cause i, ... , i+3 to be interrupted. The data
page fault can then be handled.

Ex.1035.313DELL

282 6.5 What Makes Pipelining Hard to Implement

Instruction i-3 IF ID EX MEM WB

Instruction i-2 IF ID EX MEM WB
Instruction i-1 IF ID EX MEM WB
Instruction i (LW) IF ID EX MEM WB
Instruction i+ 1 (ADD) IF ID EX MEM WB
Instruction i+2 IF ID EX MEM WB

Instruction i-3 IF ID EX MEM WB

Instruction i-2 IF ID EX MEM WB

Instruction i-1 IF ID EX MEM WB

Instruction i (LW) IF ID EX MEM WB
Instruction i+l (ADD) IF . ID EX MEM WB
Instruction i+ 2 IF ID EX MEM WB
Instruction i+ 3 IF ID EX MEM
Instruction i+4 IF ID EX

FIGURE 6.26 The actions taken for interrupts occurring at different points in the pipeline and handled
immediately. This shows the instructions interrupted when an instruction page fault occurs in instruction i+ 1 (in the fop
diagram), and a data page fault in instruction i in the bottom diagram. The pipe stages in bold are the cycles during which
the interrupt is recognized. The pipe stages in italics are the instructions that will not be completed due to the interrupt,
and will need to be restarted. Because the earliest effect of the interrupt is on the pipe stage after it occurs, instructions
that are in the WB stage when the interrupt occurs will complete, while those that have not yet reached WB will be
stopped and restarted.

Instruction Set Complications

Another set of difficulties arises from odd bits of state that may create additional
pipeline hazards or may require extra hardware to save and restore. Condition
codes are a good example of this. Many machines set the condition codes . ,
implicitly as part of the instruction. At first glance, this looks like a good idea,
since condition codes decouple the evaluation of the condition from the actual 1

branch. However, implicitly set condition codes can cause difficulties in making
branches fast. They limit the effectiveness of branch scheduling because most
operations will modify the condition code, making it hard to schedule instruc- .
tions between the setting of the condition code and the branch. Furthermore, in
machines with condition codes, the processor must decide when the branch con
dition is fixed. This involves finding out when the condition code has been set
for the last time prior to the branch. On the VAX, most instructions set the con
dition code, so that an implementation will have to stall if it tries to determine
the branch condition early. Alternatively, the branch condition can be evaluated
by the branch late in the pipeline, but this still leads to a long branch delay. On
the 360/370 many, but not all, instructions set the condition codes. Figure 6.27
shows how the situation differs on the 'bLX, the VAX, and the 360 for the fol-

Ex.1035.314DELL

Pipelining 283

lowing C code sequence, assuming that b and d are initially in registers R2 and
R3 (and should not be destroyed):

DLX

ADD Rl,R2,R3

...
SW a,Rl

...
BEQZ R2,label

a = b + d;

if (b==O)

VAX

ADDL3 a,R2,R3

. ..
CL R2,0

BEQL label

IBM360

LR Rl,R2

AR Rl,R3

ST a,Rl

. ..
LTR R2,R2

BZ label

FIGURE 6.27 Code sequence for the above two statements. Because the ADD com
putes the sum of b and d, and the branch condition depends only on b, an explicit compare
(on R2} is needed on the VAX and 360. On DLX, the branch depends only on R2 and can
be arbitrarily far away from it. (In addition the sw could be moved into the branch-delay
slot.) On the VAX all ALU operations and moves set the condition codes, so that a compare
must be right before the branch. On the 360, for this example the instruction load and test
register (L TR) is used to set the condition code. However, most loads on the 360 do not set
the condition codes; thus, a load (or a store) could be moved between the L TR and the
branch.

Provided there is lots of hardware to spare, all instructions before the branch ·
in the pipeline can be examined to decide when the branch is determined. Of
course, architectures with explicitly set condition codes avoid this difficulty.
However, pipeline control must still track the last instruction that sets the
condition code to know when the branch condition is decided. In effect, the
condition code must be treated as an operand requiring hazard detection for
RAW hazards on branches, just as DLX must do on the registers.

A final thorny area in pipelining is multicycle operations. Imagine trying to
pipeline a sequence of VAX instructions such as this:

MOVL Rl,R2

ADDL3 42(Rl),56(Rl)+,@(Rl)

SUBL2 R2,R3

MOVC3 @ (Rl) [R2], 74 (R2) ,R3

These instructions differ radically in the number of clock cycles they will
require, from as low as one lip to hundreds of clock cycles. They also require
different numbers of data memory accesses, from zero to possibly hundreds.
Data hazards are very complex and occur both between and within instructions.

Ex.1035.315DELL

284 6.5 What Makes Pipelining Hard to Implement

The simple solution of making all instructions execut~ for the same number of
clock cycles is unacceptable because it introduces an enormous number of
hazards and bypass conditions, and makes an immensely long pipeline.
Pipelining the VAX at the instruction level is difficult (as we will see in Section
6.9), but a clever solution was found by the VAX 8800 designers. They pipeline
the microinstruction execution; because the microinstructions are simple (they

. look a lot like DLX), the pipeline control is much easier. While it is not clear
that this approach can achieve quite as low a CPI as an instruction-level pipeline
for the VAX, it is much simpler, possibly leading to a shorter clock cycle time.

Load/store machines that have simple operations with similar amounts of
work pipeline more easily. If architects realize the relationship between instruc
tion set design and pipelining, they can design architectures for more. efficient
pipelining. In the next section we will see how the DLX pipeline deals with
long-running instructions.

6.& j Extending the DLX Pipeline to
Handle Multicycle Operations

We now want to explore how our DLX pipeline can be extended to handle float
ing-point operations. This section concentrates on the basic approach and the
design alternatives, and closes with some performance measurements of a DLX
floating-point pipeline.

It is impractical to require that all DLX floating-point operations complete in ,,
one clock cycle, or even in two. Doing so would mean either accepting a slow
clock or using enormous amounts of logic ih the floating-point units, or both.
Instead, the floating-point pipeline will allow for a longer latency for operations.
This is easier to grasp if we imagine the floating-point instructions as having the
same pipeline as the integer instructions, with two important changes. First, the
EX cycle may be repeated as many times as needed to complete the operation;_
the number of repetitions can vary for different operations. Second, there may be
multiple floating-point functional units. A stall will occur if the instruction to be ,
issued will either cause a structural hazard for the functional unit it uses or cause
a data hazard.

For this section let's assume that there are four separate functional units in
our DLX implementation:

1. The main integer unit

2. FP and integer multiplier

3. FP adder

4. FP and integer divider

The integer unit handles all loads and stores to either register set, all the integer
operations (except multiply and divide), and branches. For now we wili also

Ex.1035.316DELL

Pipelining 285

assume that the execution stages of the other functional units are not pipelined,
so that no other instruction using the functional unit may issue until the previous
instruction leaves EX. Moreover, if an instruction cannot proceed to the EX
stage, the entire pipeline behind that instruction will be stalled. Figure 6.28
shows the resulting pipeline structure. In the next section we will deal with
schemes that allow the pipeline to progress when there are more functional units
or when the functional units are pipelined.

EX

IF ID MEM WB

FIGURE 6.28 The DLX pipeline with three additional nonpipelined, floating-point,
functional units. Because only one instruction issues on every clock cycle, all instructions
go through the standard pipeline for integer operations. The floating-point operations simply
loop when they reach the EX stage. After they have finished the EX stage, they proceed to
MEM and WB to complete execution .

.Since the EX stage may be repeated many times-30 to 50 repetitions for a
floating-point divide would not be unreasonable-we must find a way to track
long potential dependences and resolve hazards that last over tens of clock
cycles, rather than just one or two. There is also the overlap between integer and
floating-point instructions to deal with. However, overlapped integer and FP
instructions do not complicate hazard detection, except on floating-point mem
ory references and moves between the register sets. This is because, except for
these memory references and moves, the FP and integer registers are distinct,
and all integer instructions operate on the integer registers while the floating
point operations operate only on their own registers. This simplification of
pipeline control is a major advantage of having separate register files for integer
and floating-point data.

Ex.1035.317DELL

Pipelining 235‘

assume that the execution stages of the other functional units are not pipelined,

so that no other instruction using the functional unit may issue until the previous

instruction leaves EX. Moreover, if an instructiOn cannot proceed to the EX

stage, the entire pipeline behind that instruction will be stalled. Figure 6.28

shows the resulting pipeline structure. In the next section we will deal with

schemes that allow the pipeline to progress when there are more functional units

or when the functional units are pipelined.

EX I

FP/integer
multiply

L E

IFP adder I

'x

_» EX

FP/integer
. divider

FIGURE 6.28 The DLX pipeline with three additional nonpipelined, floating-point,

functional units. Because only one instruction issues on every clock cycle, all instructions

go through the standard pipeline for integer operations. The floating-point operations simply

loop when they reach the EX stage. After they have finished the EX stage, they proceed to

MEM and WB to complete execution.

Since the EX stage may be repeated many times—30 to 50 repetitions for a

floating-point divide would-not be unreasonable—we must find a way to track

long potential dependences and resolve hazards that last over tens of clock

cycles, rather than just one or two. There is also the overlap between integer and

floating-point instructions to deal with. However, overlapped integer and FF

instructions do not complicate hazard detection, except on floating-point mem-

ory references and moves between the register sets. This is because, except for

these memory references and moves, the FP and integer registers are distinct,

and all integer instructions operate on the integer registers while the floating—

point operations operate only on their own registers. This simplification of

pipeline control is a major advantage of having separate register files for integer

and floating—point data.

DELL Ex.1035.317

286 6.6 Extending the DLX Pipeline to Handle Multicycle Operations

For now, let's assume that all floating-point operations take the same number
of clock cycles-say 20 in the EX stage. What kind of hazard-detection circuitry
will we need? Because all operations take the same amount of time, and register
reads and writes always occur in the same stage, only RAW hazards are pos
sible; no WAR or WA W hazards can occur. Thus, all we need to track is the
destination register of each active functional unit. When we want to issue a new

·floating-point instruction, we take the following steps:

1. Check for structural hazard-Wait until the required functional unit is not
busy.

2. Checkfor a RAW data hazard-Wait until the source registers are not listed
as destinations by any of the EX stages in the functional units.

3. Check for forwarding-Test if the destination register of an instruction in
MEM or WB is one of the source registers of the floating-point instruction; if
so, enable the input multiplexer to use that result, rather than the register
contents.

There is a small complication arising from conflicts between floating-point loads
and floating-point operations when they both reach the WB stage simulta- ,:
neously. We will deal presently with this situation in a more general fashion.

The above discussion assumes that the PP-functional-unit execution times
were all the same. However, this does not hold up under practical scrutiny:
Floating-point adds can typically be done in less than 5 clock cycles, multiplies
in less than 10, and divides in about 20 or more. What we want is to allow the
execution times of the functional units to differ, while still allowing the func
tional units to overlap execution. This would not change the basic structure of
the pipeline in Figure 6.28, though it may cause the number of iterations around
the loops to vary. Overlapping the execution of instructions whose running times
differ, however, creates three complications: contention for register access at the
end of the pipeline, the possibility of WAR and WA W hazards, and greater dif
ficulty in providing precise interrupts.

We have already seen that FP loads and FP operations can contend for the
floating-point register file on writes. When floating-point operations vary in ,
execution time, they can also collide when trying to write results. This problem
can be resolved by establishing a static priority for use of the WB stage. If mul
tiple instructions wish to enter the MEM stage simultaneously, all instructions
except the one with the highest priority are stalled in their EX stage. A simple,
though sometimes suboptimal, heuristic is to give priority to the unit with the
longest latency, since that is the one most likely to be the cause of the bottle
neck. Although this scheme is reasonably simple to implement, this change to
the DLX pipeline is quite significant. In the integer pipeline, all hazards were
checked before the instruction issued to the EX stage. With this scheme for
determining access to the result write port, instructions can stall after they issue.

Overlapping instructions with different execution times could introduce
WAR and WA W hazards into our DLX pipeline, because the time at which

Ex.1035.318DELL

Pipelining 287

instructions write is no longer fixed. If all instructions still read their registers at
the same time, no WAR hazards will be introduced.

WA W hazards are introduced because instructions can write their results in a
different order than they appear. For example, consider the following code
sequence:

DIVF

SUBF

F0,F2,F4

FO,F8,Fl0

A WA W hazard occurs between the divide and the subtract operations: The sub
tract will complete first, writing its result before the divide writes its result. Note
that this hazard only occurs when the result of the divide will be overwritten
without any instruction ever using it! If there were a use of FO between the
DIVF and the SUBF, the pipeline would stall because of a data dependence, and
the SUBF would not issue until the D IVF was completed. We could argue that,
for our pipeline, WA W hazards only occur when a useless instruction is exe
cuted, but we must still detect them and make sure that the result of the s UBF
appears in FO when we are done. (As we will see in Section 6.10, such
sequences sometimes do occur in reasonable code.)

There are two possible ways to handle this WA W hazard. The first approach
is to delay the issue of the subtract instruction until the D IVF enters MEM. The
second approach is to stamp out the result of the divide by detecting the hazard
and telling the divide unit not to write its result. Then, the SUBF can issue right
away. Because this hazard is rare, either scheme will work fine-you can pick
whatever is simpler to implement. As a pipeline gets more complex, however,
we will need to devote increasing resources to determining when an instruction
can issue.

Another problem caused by these long-running instructions can be illustrated
with a very similar sequence of code:

DIVF

ADDF

SUBF

FO,F2,F4

Fl0,Fl0,F8

Fl2,Fl2,Fl4

This code sequence looks straightforward; there are no dependences. The prob
lem with which we are concerned arises because an instruction issued early may
-complete after an instruction issued later. In this example, we can expect ADDF
and SUBF to complete before the DIVF completes. This is called out-of-order
completion and is common in pipelines with long-running operations. Since
hazard detection will prevent any dependence among instructions from being
violated, why is out-of-order completion a problem? Suppose that the SUBF
causes a floating-point-arithmetic interrupt at a point where the ADDF has
completed but the DI VF has not. The result will be an imprecise interrupt,
something we are trying to avoid. It may appear that this could be handled by
letting the floating-point pipeline drain, as we do for the integer pipeline. But the
interrupt may be in a position where this is not possible. For example, if the

Ex.1035.319DELL

288 6.6 Extending the DLX Pipeline to Handle Multicycle Operations

D IVF decided to take a floating-point-arithmetic interrupt after the add
completed, we could not have a precise interrupt at the hardware level. In fact,
since the ADDF destroys one of its operands, we could not restore the state to
what it was before the D IVF, even with software help.

This problem is being created because instructions are completing in a dif
ferent order from the order in which they were issued. There are four possible
approaches to dealing with out-of-order completion. The first is to ignore the
problem and settle for imprecise interrupts. This approach was used in the 1960s
and early 1970s. It is still used in some supercomputers, where certain classes of
interrupts are not allowed or are handled by the hardware without stopping the
pipeline. But it is difficult to use this approach in most machines built today, due
to features such as virtual memory and the IEEE floating-point standard, which
essentially require precise interrupts, through a combination of hardware and
software.

A second approach is to queue the results of an operation until all the opera
tions that were issued earlier are complete. Some machines actually use this
solution, but it becomes expensive when the difference in running times among
operations is long, since the number of results to queue can become large. Fur
thermore, results from the queue must be bypassed so as to continue issuing
instructions while waiting for the longer instruction. This requires a large num
ber of comparators and a very large multiplexer. There are two viable variations
on this basic approach. The first is a history file, used in the CYBER 180/990.
The history file keeps track of the original values of registers. When an interrupt
occurs and the state must be rolled back earlier than some instruction that com
pleted out of order, the original value of the register can be restored from the
history file. A similar technique is used for autoincrement and autodecrement
addressing on machines like VAXes. Another approach, the future file, proposed
by J. Smith and Plezkun [1988], keeps the newer value of a register; when all
earlier instructions have completed, the main register file is updated from the
future file. On an interrupt, the main register file has the precise values for the
interrupted state.

A third technique in use is to allow the interrupts to become somewhat
imprecise, but keep enough information so that the trap-handling routines can
create a precise sequence for the interrupt. This means knowing what operations
were in the pipeline and their PCs. Then, after handling a trap, the software
finishes any instructions that precede the latest instruction completed, and the
sequence can restart. Consider the following worst-case code sequence:

~
Instruction1-a long-running instruction that eventually interrupts execution

Instruction2, ... , instructionn-1-a series of instructions that are not completed

Instructionn-an instruction that is finished

Given the PCs of all the instructions in the pipeline and the interrupt return
PC, the software can find the state of instruction 1 and instructionn. Since instruc
tionn has completed, we will want to restart execution at instructionn+ 1 · After

Ex.1035.320DELL

Pipelining 289

handling the interrupt, the software must simulate the execution of instruction 1,
.. . , instructionn-1 · Then we can return from the interrupt and restart at
instructionn+ l · The complexity of executing these instructions properly by the
handler is the major difficulty of this scheme. There is an important simplifica
tion: If instruction2, ... , instructionn are all integer instructions, then we know
that if instructionn has completed, all of instruction2 , instructionn-l have also
completed. Thus, only floating-point operations need to be handled. To make
this scheme tractable the number of floating-point instructions that can be over
lapped in execution can be limited. For example, if we only overlap two instruc
tions, then only the interrupting instruction need be completed by software. This
restriction may reduce the potential throughput if the FP pipelines are deep or if
there is a significant number of FP functional units. This approach is used in the
SP ARC architecture to allow overlap of floating'-point and integer operations.

The final technique is a hybrid scheme that allows the instruction issue to
continue only if it is certain that all the instructions before the issuing instruction
will complete without causing an interrupt. This guarantees that when an inter
rupt occurs, no instructions after the interrupting one will be completed, and all
of the instructions before the interrupting one can be completed. This sometimes
means stalling the machine to maintain precise interrupts. To make this scheme
work, the floating-point functional units must determine if an interrupt is possi
ble early in the EX stage (in the first three clock cycles in the DLX pipeline), so
as to prevent further instructions from completing. This scheme is used in the
MIPS R2000/3000 architecture and is discussed further in Appendix A, Section
A.7.

FP add &
subtract

FP
multiply

FP divide

0 2 4
Cycle counts

6 8 10 12 14 16 18 20

FIGURE 6.29 Total clock cycle count and permissible overlap among double
precision, floating-point operations on the MIPS R2010/3010 FP unit. The overall
length of the bar shows the total number of EX cycles required to complete the operation.
For example, after five clock cycles a multiply result is available. The shaded regions are
times during which FP operations can be overlapped. As is common in most FP units,
some of the FP logic is shared-the rounding logic, for example, is often shared. This
means that FP operations with different running times cannot overlap arbitrarily. Also note
that multiply and divide are not pipelined in this FP unit, so only one multiply or divide can
be outstanding. The motivation for this pipeline design is discussed further in Appendix A
(page A-31).

Ex.1035.321DELL

Pipelining . 289

handling the interrupt, the software must simulate the execution of instructionl,

. , instructionn_1. Then we can return from the interrupt and restart at

instructionml. The complexity of executing these instructions properly by the

handler is the major difficulty of this scheme. There is an important simplifica—
tion: If instructiong, , instruction” are all integer instructions, then we know

that if instructionn has completed, all of instructionz, , instructionn_1 have also

completed. Thus, only floating-point operations need to be handled. To make

this scheme tractable the number of floating—point instructions that can be over-

lapped in execution can be limited. For example, if we only overlap two instruc-

tions, then only the interrupting instruction need be completed by software. This

restriction may reduce the potential throughput if the FP pipelines are deep or if

there is a significant number of FF functional units. This approach is used in the

SPARC architecture to allow overlap of floating—point and integer operations.

‘ The final technique is a hybrid scheme that allows the instruction issue to
continue only if it is certain that all the instructions before the issuing instruction

will complete without causing an interrupt. This guarantees that when an inter-

rupt occurs, no instructions after the interrupting one will be completed, and all

of the instructions before the interrupting one can be completed. This sometimes

means stalling the machine to maintain precise interrupts. To make this scheme

work, the floating-point functional units must determine if an interrupt is possi-

ble early in the EX stage (in the first three clock cycles in the 'DLX pipeline), so

as to prevent further instructions from completing. This scheme is used in the

MIPS R2000/3000 architecture and is discussed further in Appendix A, Section
A.7.

Cydecounw .
6 8

muMpw

FPdwwe
FIGURE 6.29 Total clock cycle count and permissible overlap among double-

precision, floating-point operations on the MIPS R2010/3010 FP unit. The overall

length of the bar shows the total number of EX cycles required to complete the operation.

For example, after five clock cycles a multiply result is available. The shaded regions are

times during which FP operations can be overlapped. As is common in most FP units,

some of the FP logic is shared—the rounding logic, for example, is often shared. This

means that FP operations with different running times cannot overlap arbitrarily. Also note

that multiply and divide are not pipelined in this FP unit, so only one multiply or divide can

be outstanding. The motivation for this pipeline design is discussed further in Appendix A

(page A—31).

DELL Ex.1035.321

290 6.6 Extending the DLX Pipeline to Handle Multicycle Operations ·

Performance of a DLX FP Pipeline

To look at the FP pipeline performance of DLX, we need to specify the latency
and issue restrictions for the FP operations. We have chosen to use the pipeline
structure of the MIPS R2010/3010 FP unit. While this unit has some structural
hazards, it tends to have low-latency FP operations compared ~o most other FP
units. The latencies and issue restrictions for DP floating-point operations are
depicted in Figure 6.29 (page 289).

Figure 6.30 gives the breakdown of integer and floating-point stalls for Spice.
There are four classes of stalls: load delays, branch delays, floating-point struc
tural delays, and floating-point data hazards. The compiler tries to schedule both
load and FP delays before it schedules branch delays. Interestingly, about 27%
of the time in Spice is spent waiting for a floating-point result. Since the struc
tural hazards are small, further pipelining of the floating-point unit would not
gain much. In fact, the impact might easily be negative if the floating-point
pipeline latency became longer.

Load-delay cycles

Branch-delay cycles

FP structural stalls

FP data-hazard stalls 27%

0% 5% 10% 15% 20% 25% 30%
Percentage of all cycles in execution

FIGURE 6.30 Percentage of clock cycles in Spice that are pipeline stalls. This again
assumes a perfect memory system with no memory-system stalls. In total, 35% of the clock
cycles in Spice are stalls, and without any stalls Spice would run about 50% faster. The
percentage of stalls differs from Figure 6.24 (page 278) because this cycle count includes
all the FP stalls, while the previous graph includes only the integer stalls.

6. 7 I Advanced Pipelining-
Dynamic Scheduling in Pipelines

So far we have assumed that our pipeline fetches an instruction and issues it,
unless there is a data dependence between an instruction already in the pipeline
and the fetched instruction. If there is a data dependence, then we stall the
instruction and cease fetching and issuing until the dependence is cleared. Soft
ware is responsible for scheduling the instructions to minimize these stalls. This

Ex.1035.322DELL

290 - 6.6 Extending the DLX Pipeline to Handle Multicycle Operations ‘

Performance of a DLX FP Pipeline

To look at the FP pipeline performance of DLX, we need to specify the latency

and issue restrictions for the FP operations. We have chosen to use the pipeline

structure of the MIPS R2010/3010 FP unit. While this unit has some structural

hazards, ittends to have low-latency FP operations compared to most other FP

units. The latencies and issue restrictions for DP floating-point operations are

depicted in Figure 6.29 (page 289).

Figure 6.30 gives the breakdown of integer and floating—point stalls for Spice.

There are four classes of stalls: load delays, branch delays, floating-point struc—

tural delays, and floating-point data hazards. The compiler tries to schedule both

load and PP delays before it schedules branch delays. Interestingly, about 27%

of the time in Spice is spent waiting for a floating—point result. Since the struc—

tural hazards are small, further pipelining of the floating—point unit would not

gain much. In fact, the impact might easily be negative if the floating-point

pipeline latency became longer.

Load-delay cycles

Branch-delay cycles

FP structural stalls

FP data—hazard stalls

5% 10% 15% 20% 25%

Percentage of all cycles in execution

FIGURE 6.30 Percentage of clock cycles in Spice that are pipeline stalls. This again

assumes a perfect memory system with no memory-system stalls. In total, 35% of the Clock
cycles in Spice are stalls, and without any stalls Spice would run about 50% faster. The

percentage of stalls differs from Figure 6.24 (page 278) because this cycle count includes .

all the FP stalls, while the previous graph includes only the integer stalls.

6.7 Advanced Pipelining—
Dynamic Scheduling in Pipelines

So far we have assumed that our pipeline fetches an instruction and issues it,
unless there is a data dependence between an inStruction already in the pipeline

. and the fetched instruction. If there is a data dependence, then we‘ stall the
instruction and cease fetching and issuing until the dependence is cleared. Soft-

ware is responsible for scheduling the instructions to minimize these stalls. This

DELL Ex.1035.322

Pipelining 291

approach, which is called static scheduling, while first used in the 1960s, has
become popular more recently. Many of the earlier, heavily pipelined machines
used dynamic scheduling, whereby the hardware rearranges the instruction exe
cution to reduce the stalls.

Dynamic scheduling offers a couple of advantages: It enables handling some
cases when dependences are unknown· at compile time, and it simplifies the
compiler. It also allows code that was compiled with one pipeline in mind to run
efficiently on a different pipeline. As we will see, these advantages are gained at
a significant increase in hardware complexity. The first two parts of this section
deal with reducing the cost of data dependences, especially in deeply pipelined
machines. Corresponding to the dynamic hardware techniques for scheduling
around data dependences are dynamic techniques for handling branches. These
techniques are used for two purposes: to predict whether a branch will be taken,
and to find the target more quickly. Hardware branch prediction, the name for

. these techniques, is the topic of the third part of this advanced section.

Dynamic Scheduling Around Hazards
with a Scoreboard

The major limitation of the pipelining techniques we have used so far is that they
all use in-order instruction issue. If an instruction is stalled in the pipeline, no
later instructions can proceed. If there are multiple functional units, these units
could lie idle. So, if instruction j depends on a long-running instruction i, cur
rently in execution in the pipeline, then all instructions after j must be stalled
until i is finished and j can execute. For example, consider this code:

DIVF F0,F2,F4

ADDF Fl0,FO,F8

SUBF F6,F6,F14

The SUBF instruction cannot execute because the dependence of ADDF on DIVF

causes the pipeline to stall; yet SUBF does not depend on anything in the
pipeline. This is a performance limitation that can be eliminated by not requiring
instructions to execute in order.

In the DLX pipeline, both structural and data hazards were checked at ID:
When an instruction could execute properly, it was issued from ID. To allow us
to begin executing the S UBF in the above example, we must separate the issue
process into two parts: checking the structural hazards, and waiting for the
absence of a data hazard. We can still check for structural hazards when we
issue the instruction; thus, we still use in-order instruction issue. However, we
want the instructions to begin execution as soon as their data operands are avail
able. Thus, the pipeline will do out-of-order execution, which obviously implies
out-of-order completion.

In introducing out-of-order execution, we have essentially split two pipe
stages of DLX into three pipe stages. The two stages in DLX were:

Ex.1035.323DELL

292 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

1. ID-decode instruction, check for all hazards, and fetch operands

2. EX-execute instruction

In the DLX pipeline all instructions passed through issue stage in order, and a
stalled instruction in ID caused a stall for all instructions behind it. The three
stages we will need to allow out-of-order execution are:

1. Issue-decode instructions, check for structural hazards

2. Read operands-wait until no data hazards, then read operands

3. Execute

These three stages replace the ID and EX stages in the simple DLX pipeline.
While all instructions pass through the issue stage in order (in-order issue),

they can be stalled or bypass each other in the second stage (read operands), and
thus enter execution out of order. Scoreboarding is a technique for allowing in
structions to execute out of order when there are sufficient resources and no data

Registers Data buses
•

t===l==============FR·--~
•

Control/
status

Control/
status

FIGURE 6.31 This shows the basic structure of a DLX machine with a scoreboard.
The scoreboard's function is to control instruction execution (vertical control lines). All data
flows between the register file and the functional units over the buses (the horizontal lines,
called trunks in the CDC 6600). There are two FP multipliers, an FP divider, an FP adder,
and an integer unit. One set of buses (two inputs and one output) serves a group of
functional units. The details of the scoreboard are shown in Figures 6.32-6.35.

Ex.1035.324DELL

292 i 6.7 Advanced Pipelining—Dynamic Scheduling in Pipelines

1. ID—decode instruction, check for all hazards, and fetch operands

2. EX—execute instruction

In the DLX pipeline all instructions passed through issue stage in order, and a
stalled instruction in ID caused a stall for all instructions behind it. The three

stages we will need to allow out—of—order execution are:

1. Issue—decode instructions, check for structural hazards

2. Read operands—wait until no data hazards, then read operands

3. Execute

These three stages replace the ID and EX stages in the simple DLX pipeline.

While all instructions pass through the issue stage in order (in-order issue),

they can be stalled or bypass each other in the second stage (read operands), and

thus enter execution out of order. Scoreboarding is a technique for allowing in—
structions to execute out of order when there are sufficient resources and no data

Registers Data buses

Control/
status

FIGURE 6.31 This shows the basic structure of a DLX machine with a scoreboard.

The scoreboard’s function is to control instruction execution (vertical control lines). All data

flows between the register file and the functional units over the buses (the horizontal lines,

called trunks in the CDC 6600). There are two FP multipliers, an FP divider, an FP adder,

and an integer unit. One set of buses (two inputs and one output) serves a group of
functional units. The details of the scoreboard are shown in Figures 6.32—6.35.

DELL Ex.1035.324

Pipelining 293

dependences; it is named after the CDC 6600 scoreboard, which developed this
capability.

Before we see how scoreboarding could be used in the DLX pipeline, it is
important to observe that WAR hazards, which did not exist in the DLX float
ing-point or integer pipelines, may exist when instructions are executed out of
order. Assume our earlier example has changed so that the SUBF destination is
F8. If ADDF and SUBF use two different functional units, then it is possible to
execute the SUBF before the ADDF, but it will yield an incorrect result if ADDF

has not read F8 before SUBF writes its result. The hazard for this case can be
avoided by two rules: (1) read registers only during Read Operands, and (2)
queue both the ADDF operation and copies of its operands. Of course, WAW

' hazards must still be detected, such as would occur if the destination of the
SUBF were FlO. This WAW hazard can be eliminated by stalling the issue of
the SUBF instruction.

The goal of a scoreboard is to maintain an execution rate of one instruction
per clock cycle (when there are no structural hazards) by executing an instruc
tion as early as possible. Thus, when the instruction at the front of the queue is
stalled, other instructions can be issued and executed if they do not depend on
any active or stalled instruction. The scoreboard takes full responsibility for
instruction issue and execution, including all hazard detection. Taking advantage
of out-of-order execution requires multiple instructions to be in their EX stage
simultaneously. This can be achieved with either multiple functional units or
with pipelined functional units. Since these two capabilities-pipelined function
al units and multiple functional units-are essentially equivalent for the pur
poses of pipeline control, we will assume the machine has multiple functional
units.

The CDC 6600 had 16 separate functional units, including 4 floating-point
units, 5 units for memory references, and 7 units for integer operations. On
DLX, scoreboards make sense only on the floating-point unit. Let's assume that
there are two multipliers, one adder, one divide unit, and a single integer unit for
all memory references, branches, and integer operations. Although this example
is much smaller than the CDC 6600, it is sufficiently powerful to dem<;mstrate
the principles. Because both DLX and the CDC 6600 are load/store, the tech
niques are nearly identical for the two machines. Figure 6.31 shows what the
machine looks like.

Every instruction goes through the scoreboard, where a picture of the data
dependences is constructed; this step corresponds to instruction issue and
replaces part of the ID step in the DLX pipeline. This picture then determines
when the instruction can read its operands and begin execution. If the scoreboard
decides the instruction cannot execute immediately, it monitors every change in
the hardware and decides when the instruction can execute. The scoreboard also
controls when an instruction can write its result into the destination register.
Thus, all hazard detection and resolution is centralized in the scoreboard. We
will see a picture of the scoreboard later (Figure 6.32 on page 296), but first we
need to understand the steps in the issue and execution segment of the pipeline.

\

Ex.1035.325DELL

294 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Each instruction undergoes four steps in executing. (Since we are concen
trating on the FP operations, we will not consider a step for memory access.)
Let's first examine the steps informally and then look in detail at how the score
board keeps the necessary information that determines when to progress from
one step to the next. The four steps, which replace the ID, EX, and WB steps in
the standard DLX pipeline, are as follows:

1. Issue-If a functional unit for the instruction is free and no other active
instruction has the same destination register, the scoreboard issues the instruc
tion to the functional unit and updates its internal data structure. By ensuring that
no other active functional unit wants to write its result into the destination regis
ter, we guarantee that WA W hazards cannot be present. If a structural or WA W
hazard exists, then the instruction issue stalls, and no further instructions will
issue until these hazards are cleared. This step replaces a portion of the ID step
in the DLX J?ipeline.

2. Read operands-The scoreboard monitors the availability of the source
operands. A source operand is available if no active instruction is going to write
it, or if the register containing the operand is being written by a currently active·
functional unit. When the source operands are available, the scoreboard tells the
functional unit to proceed to read the operands from the registers and begin exe
cution. The scoreboard resolves RAW hazards dynamically in this step, and
instructions may be sent into execution out of order. This step, together with
Issue, completes the function of the ID step in the simple DLX pipeline.

3. Execution-The functional unit begins execution upon receiving operands.
When the result is ready, it notifies the scoreboard that it has completed execu
tion. This step replaces the EX step in the DLX pipeline and takes multiple
cycles in the DLX FP pipeline.

4. Write result-Once the scoreboard is aware that the functional unit has com
pleted execution, the scoreboard checks for WAR hazards. A WAR hazard exists
if there is a code sequence like the following:

DIVF FO,F2,F4

ADDF Fl0,FO,F8

SUBF F8,F8,Fl4

ADDF has a source operand F8, which is the same register as the destination of
S UBF. But ADDF actually depends on an earlier instruction. The scoreboard will
still stall the SUBF until ADDF reads its operands. In general, then, a completing
instruction cannot be allowed to write its results when

• there is an instruction that has not read its operands,

• one of the operands is the same register as the result of the completing
instruction, and

• the other operand was the result of an earlier instruction.

Ex.1035.326DELL

294 I 6.7 Advanced Pipelining—Dynamic Scheduling in Pipelines

Each instruction undergoes four steps in executing. (Since we are concen-

trating on the FP operations, we will not consider a step for memory access.)

Let’s first examine the steps informally and then look in detail at how the score-

board keeps the necessary information that determines when to progress from

one step to the next. The four steps, which replace the ID, EX, and WB steps in

the standard DLX pipeline, are as follows:

1. Issue—If a functional unit for the instruction is free and no other active

instruction has the same destination register, the scoreboard issues the instruc—

tion to the functional unit and updates its internal data structure. By ensuring that

no other active functional unit wants to write its result into the destination regis-

ter, we guarantee that WAW hazards cannot be present. If a structural or WAW

hazard exists, then the instruction issue stalls, and no further instructions will

issue until these hazards are cleared. This step replaces a portion of the ID step

in the DLX pipeline.

2. Read operands—The scoreboard monitors the availability of the source

operands. A source operand is available if no active instruction is going to write

it, or if the register containing the operand is being written by a currently active

functional unit. When the source operands are available, the scoreboard tells the

functional unit to proceed to read the operands from the registers and begin exe- ‘

cution. The scoreboard resolves RAW hazards dynamically in this step, and

instructions may be sent into execution out of order. This step, together with

Issue, completes the function of the ID step in the simple DLX pipeline. V

3. Execution—~The functional unit begins execution upon receiving operands. '

When the result is ready, it notifies the scoreboard that it has completed execu—
tion. This step replaces the EX step in the DLX pipeline and takes multiple

cycles in the DLX FP pipeline. ‘

4. Write result—Once the scoreboard is aware that the functional unit has com-

pleted execution, the scoreboard checks for WAR hazards. A WAR hazard exists

if there is a code sequence like the following:

DIVF FO,F2,F4

ADDF F10,FO,F8

SUBF F8,F8,Fl4

ADDF has a source operand F8, which is the same register as the destination'of
SUBF. But ADDF actually depends on an earlier instruction. The scoreboard will

still stall the SUBF until ADDF reads its operands. In general, then, a completing
instruction cannot be allowed to write its results when

u there is an instruction that has not read its operands,

- one of the operands is the same register as the result of the completing
instruction, and

n the other operand was the result of an earlier instruction.

DELL Ex.1035.326

Pipelining 295

If this WAR hazard does not exist, or when it clears, the scoreboard tells the
functional unit to store its result to the destination register. This step replaces the
WB step in the simple DLX pipeline.

Based on its own data structure, the scoreboard controls the instruction pro
gression from one step to the next by communicating with the functional units.
But there is a small complication: There is only a limited number of source
operands and result buses to the register file. The scoreboard must guarantee that
the number of functional units allowed to proceed into steps 2 and 4 do not
exceed the number of buses available. We will not go into further detail on this,
other than to mention that the CDC 6600 solved this problem by grouping the 16
functional units together into four groups and supplying a set of buses, called
data trunks, for each group. Only one unit in a group could read its operands or
write its result during a clock.

Now let's look at the detailed data structure maintained by a DLX scoreboard
with five functional units. Figure 6.32 (page 296) shows what the scoreboard's
information looks like for a simple sequence of instructions:

LF F6, 34 (R2)

LF F2,45(R3)

MULTF FO,F2,F4

SUBF F8,F6,F2

DIVF Fl0,FO,F6

ADDF F6,F8,F2

There are three parts to the scoreboard:

1. Instruction status-Indicates which of the four steps the instruction is in.

2. Functional unit status-Indicates the state of the functional unit (FU). There
are nine fields for each functional unit:

Busy-Indicates whether the unit is busy or not

Op-Operation to perform in the unit (e.g., add or subtract)

Fi-Destination register

Fj ,Pk-Source-register numbers

Qi,Qk-Number of the units producing source registers Fj, Fk

Rj,Rk-Flags indicating when Fj, Fk are ready; fields are reset when new
values are read so that the scoreboard knows that the source operand has
been read (this is required to handle WAR hazards)

3. Register result status-Indicates which functional unit will write a register, if
an active instruction has the register as its destination.

/

Ex.1035.327DELL

296 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Instruction status

Instruction Issue Read operands Execution complete Write result

LF F6, 34 (R2) ..J ..J ..J ..J

LF F2,45(R3) ..J ..J ..J

MULTF FO,F2,F4 ..J

SUBF F8,F6,F2 ..J

DIVF F10,FO,F6 ..J

ADDF F6,F8,F2

Functional unit status

FU no. Name Busy Op Fi Fj Fk Qi Qk Rj Rk

1 Integer Yes Load F2 R3 No No

2 Multl Yes Mult FO F2 F4 1 No Yes

3 Mult2 No

4 Add Yes Sub F8 F6 F2 1 Yes No

5 Divide Yes Div FlO FO F6 2 No Yes

Register result status

FO F2 F4 F6 FS FlO F12 ... F30

FU no. 2 1 4 5

FIGURE 6.32 Components of the scoreboard. Each instruction that has issued or is pending issue has an entry in the
instruction-status table. There is one entry in the functional-unit-status table for each functional unit. Once an instruction
issues, the record of its operands is kept in the functional-unit-status table. Finally, the register-result table indicates
which unit will produce each pending result; the number of entries is equal to the number of registers. The instruction
status register says that (1) the first LF has completed and written its result, and (2) the second LF has completed execu
tion but has not yet written its result. The MULTF, SUBF, and D IVF have all issued but are stalled, waiting tor their
operands. The functional-unit status says that the first multiply unit is waiting for the integer unit, the add unit is waiting tor
the integer unit, and the divide unit is waiting tor the first multiply unit. The ADDF instruction is stalled due to a structural
hazard; it will clear when the SUBF completes. If an entry in one of these scoreboard tables is not being used, it is left
blank. For example, the Rk field is not used on a load, and the Mult2 unit is unused, hence its fields have no meaning.
Also, once an operand has been read, the Rj and Rk fields are set to No. These are left blank to minimize the complexity
of the tables.

Now let's look at how the code sequence begun in Figure 6.32 continues
execution. After that, we will be able to examine in detail the conditions that the
scoreboard uses to control execution.

Ex.1035.328DELL

296 I 6.7 Advanced Pipelining—Dynamic Scheduling in Pipelines

Instruction status

Instruction Issue Read operands Execution complete Write result

LF F 6 , 3 4 (R2) «I \l «I \/

LF F2 , 4 5 (R3) x/ \l .1

MULTF FO,F2,F4 \/

SUBF F8 , F 6 , F2 \/

DIVF F10,FO,F6 \1

rADDF F6,F8,F2

Functional unit status

FU no. Name Busy Op Fi Fj Fk Qj Qk Rj Rk

‘— 1 Integer Yes Load F2 R3 No No
2 Multl Yes Mult F0 F2 F4 1 No Yes

3 Mult2 No '

4 Add Yes Sub F8 F6 F2 1 Yes Nol——

1 5 Divide Yes Div F10 F0 F6 2 No Yes

. Register result status _

F0 F2 F4 F6 F8 F10 F12 F30

FU no. 2 1 4 5

FIGURE 6.32 Components of the scoreboard. Each instruction that has issued or is pending issue has an entry in the

instruction-status table. There is one entry in the functional-unit—status table for each functional unit. Once an instruction

issues, the record of its operands is kept in the functional—unit—status table. Finally, the register-result table indicates
which unit will produce each pending result; the number of entries is equal to the number of registers. The instruction-

status register says that (1) the first LF has completed and written its result. and (2) the second LF has completed execu-

tion but has not yet written its result. The MULTF, SUBF, and DIVF have all issued but are stalled, waiting for their

operands. The functional-unit status says that the first multiply unit is waiting for the integer unit, the add unit is waiting for

the integer unit, and the divide unit is waiting for the first multiply unit. The ADDF instruction is stalled due to a structural

hazard; it will clear when the SUBF completes. If an entry in one of these scoreboard tables is not being used, it is left

blank. For example, the Rk field is not used on a load, and the Mult2 unit is unused, hence its fields have no meaning.

Also, once an operand has been read, the Hi and Fik fields are set to No. These are left blank to minimize the complexity
of the tables.

Now let’s look at how the code sequence begun in Figure 6.32 continues

execution. After that, we will be able to examine in detail the conditions that the

scoreboard uses to control execution.

DELL Ex.1035.328

Example

Answer

~

Instruction

LF F6,34(R2)

LF F2,45(R3)
---.,_

MULTF FO,F2,F4

SUBF F8,F6,F2

DIVF F10,FO,F6

ADDF F6,F8,F2

FU no. Name Busy

1 Integer No

2 Multl Yes

3 Mult2 No

4 Add' Yes

5 Divide Yes

FO

FU no. 2

Pipelining 297

Assume the following EX cycle latencies for the floating-point functional units:
Add is 2 clock cycles, multiply is 10 clock cycles, and divide is 40 clock cycles.
Using the code segment in Figure 6.32, and beginning with the point indicated
by the instruction status in Figure 6.32, show what the status tables look like
when MULTF and DIVF are each ready to go to the write-result state.

There are RAW data hazards from the second LF to MULTF and SUBF, from
MULTF to DIVF, and from SUBF to ADDF. There is a WAR data hazard
between DIVF and ADDF. Finally, there is a structural hazard on the add func
tional unit for ADDF. What the tables look like when MULTF and D IVF are
ready to go to write result are shown in Figures 6.33 and 6.34, respectively.

Instruction status

Issue Read operands Execution complete Write result

...j ...j ...j ...j

...j ...j ...j ...j

...j ...j ...j

...j ...j ...j ...j

...j

...j ...j ...j

Functional unit status

Op Fi Fj Fk Qi Qk Rj Rk

Mult FO F2 F4 No No

Add F6 F8 F2 No No

Div FlO FO F6 2 No Yes

Register result status

F2 F4 F6 FS FlO F12 ... F30

4 5

FIGURE 6.33 Scoreboard tables just before the MULTF goes to write result. The DIVF has not yet read its operands,
since it has a dependence on the result of the multiply. The ADDF has read its operands and is in execution, although it
was forced to wait until the SUBF finished to get the functional unit. ADDF cannot proceed to write result because of the
WAR hazard on F6, which is used by the DIVF.

Ex.1035.329DELL

298 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Instruction status

Instruction Issue Read operands Execution complete Write result

LF F6, 34 (R2) --} --} --} --}

LF F2,45(R3) --} --} --} --}

MULTF FO,F2,F4 --} --} --} --}

SUBF F8,F6;F2 --} --} --} --}

DIVF Fl0,FO,F6 --} --} --}

ADDF F6,F8,F2 --} --} --} --}

Functional unit status

FU no. Name Busy Op Fi Fj Fk Qi Qk Rj Rk

1 Integer No

2 Multl No

3 Mult2 No

4 Add No

5 Divide Yes Div FlO FO F6 No No

Register Result status

FO F2 F4 F6 FS FlO F12 ... F30

FU no. 5

FIGURE 6.34 Scoreboard tables just before the DIVF goes to write result. ADDF was able to complete as soon as
DIVF passed through read operands and got a copy of F6. Only the DIVF remains to finish.

Instruction status Wait until Bookkeeping

Issue Not busy (FU) and not Busy (FU) f- yes; Result (D) f-FU; Op (FU) f-op;
result(D) Fi (FU) f-D; Fj (FU)f-Sl; Fk (FU) f-82;

Qjf-Result (Sl) ; Qkf-Result (S2); Rjf- not
Qj; Rkf- not Qk

Read operands Rj and Rk Rjf-No; Rkf-No

Execution complete Functional unit done

Write result 'v'/((Fj(/):;t:Fi(FU) or 'v'f(if Qj(f)=FU then Rj (f) f-Yes);
Rj(f)=No) & (Fk(/) 'v' f (if Qk (f) =FU then Rk (f) f-Yes);
:;t:Fi(FU) or Rk(f)=No)) Result(Fi(FU))f-Clear; Busy (FU) f-No

FIGURE 6.35 Required checks and bookkeeping actions for each step in instruction execution. FU stands for the
functional unit used by the instruction, Dis the destination register, 81 and 82 are the source registers, and op is the
operation to be done. To access the scoreboard entry named Fj for functional unit FU we use the notation Fj(FU).
Result(D) is the value of the result register field for register D. The test on the write-result case prevents the write when
there is a WAR hazard. For simplicity we assume that all of the bookkeeping operations are done in one clock cycle.

Ex.1035.330DELL

Pipelining 299

Now we can see how the scoreboard works in detail by looking at what has to
happen for the scoreboard to allow each instruction to proceed. Figure 6.35
shows what the scoreboard requires for each instruction to advance and the
bookkeeping action necessary when the instruction does advance.

The costs and benefits of scoreboarding are an interesting question. The CDC
6600 designers measured a performance improvement of 1.7 for FORTRAN
programs and 2.5 for hand-coded assembly language. However, this was
measured in the days before software pipeline scheduling, semiconductor main
memory, and caches (which lower memory-access time). The scoreboard on the
CDC 6600 had about as much logic as one of the functional units, which is sur
prisingly low. The main cost was in the large number of buses-about four times
as many as would be required if the machine only executed instructions in order
(or if it only initiated one instruction per Execute cycle).

The scoreboard does not handle a few situations as well as it might. For
example, when an instruction writes its result, a dependent instruction in the
pipeline must wait for access to the register file because all results are written
through the register file and never forwarded. This increases the latency and lim
its the ability of multiple instructions waiting for a result to initiate. WA W haz
ards would be very infrequent, so the stalls they cause are probably not a signif
icant concern in the CDC 6600. However, in the next section we will see that
dynamic ~cheduling offers the possibility of overlapping the execution of multi
ple iterations of a loop. To do this effectively requires a scheme for handling
WA W hazards, which are likely to increase in frequency when multiple itera
tions are overlapped.

Another Dynamic Scheduling Approach
The Tomasulo Algorithm

Another approach to parallel execution around hazards was used by the IBM
360/91 floating-point unit. This scheme was credited to R. Tomasulo and is
named after him. The IBM 360/91 was completed about three years after the
CDC 6600, before caches appeared in commercial machines. IBM's goal was to
achieve high floating-1Joint performance from an instruction set and from com
pilers designed for the entire 360 computer family, rather than for only floating
point-intensive applications. Remember that the 360 architecture has only four
double-precision floating-point registers, which limits the effectiveness of com
piler scheduling; this fact was another motivation for the Tomasulo approach.
Lastly, the IBM 360/91 had long memory accesses and long floating-point
delays, which the Tomasulo algorithm ,was designed to overcome. At the end of
the section, we will see that Tomasulo's algorithm can also support the over
lapped execution of multiple iterations of a loop.

We will explain the algorithm, which focuses on the floating-point unit, in the
context of a pipelined, floating-point unit for DLX. The primary difference
between DLX and the 360 is the presence of register-memory instructions in the
latter machine. Because Tomasulo's algorithm uses a load functional unit, no

Ex.1035.331DELL

300 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines·

significant changes are needed to add register-memory addressing modes; the
primary addition is another bus. The IBM 360/91 also had pipelined functional
units, rather than multiple functional units. The only difference between these is
that a pipelined unit can start at most one operation per clock cycle. Since there
are really no fundamental differences, we describe the algorithm as if there were
multiple functional units. The IBM 360/91 could accommodate three operations
for the floating-point adder and two for the floating-point multiplier. In addition,
up to six floating-point loads, or memory references, and up to three floating
point stores could be outstanding. Load data buffers and store data buffers are
used for this function. Although we will not discuss the load and store units, we
do need to include the buffers for operands.

Tomasulo' s scheme shares many ideas with the CDC 6600 scoreboard, so we
assume the reader has understood the scoreboard thoroughly. There are, how
ever, two significant differences. First, hazard detection and execution control
are distributed-reservation stations at each functional unit control when an
instruction can begin execution at that unit. This function is centralized in the
scoreboard on the CDC 6600. Second, results are passed directly to functional
units rather than going through the registers. The IBM 360/91 has a common re
sult bus (called the common data bus, or CDB) that allows all units waiting for
an operand to be loaded simultaneously. The CDC 6600 writes results into regis
ters, where waiting functional units may have to contend for them. Also, the
CDC 6600 has multiple completion buses (two in the floating-point unit), while
the IBM 360/91 has only one.

Figure 6.36 shows the basic structure of a Tomasulo-based floating-point unit
for DLX; none of the execution control tables are shown. The reservation
stations hold instructions that have been issued and are awaiting execution at a
functional unit, as well as the information needed to control the instruction once
it has begun execution to the unit. The load buffers and store buffers hold data
corning from and going to memory. The floating-point registers are connected
by a pair of buses to the functional units and by a single bus to the store buffers.
All results from the functional units and from memory are sent on the common
data bus, which goes everywhere except to the load buffer. All the buffers and
reservation stations have tag fields, employed by hazard control.

Before we describe the details of the reservation stations and the algorithm,
let's look at the steps an instruction goes through-just as we did for the score
board. Since operands are transmitted differently than in a scoreboard, there are
only three steps:

1. Issue-Get an instruction from the floating-point operation queue. If the
operation is a floating-point operation, issue it if there is an empty reservation
station, and send the operands to the reservation station if they are in the regis
ters. If the operation is a load or store, it can issue if there is an available buffer.
If there is not an empty reservation station or an empty buffer, then there is a
structural hazard and the instruction stalls until a station or buffer is freed.

Ex.1035.332DELL

Pipelining 301

2. Execute-If one or more of the operands is not yet available, monitor the
CDB while waiting for the register to be computed. This step checks for RAW
hazards. When both operands are available, execute the operation.

3. Write result-When the result is available, write it on the CDB and from
there into the registers and any functional units waiting for this result.

Although these steps are fundamentally similar to those in the scoreboard,
there are three important differences. First, there is no checking for WA W and
WAR hazards-these are eliminated as a byproduct of the algorithm, as we will
see shortly. Second, the CDB is used to broadcast results rather than waiting on
the registers. Third, the loads and stores are treated as basic functional units.

The data structures used to detect and eliminate hazards are attached to the
reservation stations, the register file, and the load and store buffers. Although
different information is attached to different objects, everything except the load

\

From
memoty

Load buffers !
6~---
5~---
4~---
3~---
2~---1.._ __ _ ~~o_p-e~ra~ti_o-n~b~us~-o-p-~u-+r~-~~-- ~r~ra

1 I ~
memory

31 I I L I I I L 2
211--+--1--+--•. Reservation 11--1-1--+--1-•• 1

1
1
..,•

1
•

1
·-·•stations

+
lf'~.~Qd!lr§ • .!;-:!? multloliers;I.

! Common data bus (CDB)

FIGURE 6.36 The basic structure of a DLX FP unit using Tomasulo's algorithm.
Floating-point operations are sent from the instruction unit into a queue (called the FLOS,
or floating-point operation stack, in the IBM 360/91) when they are issued. The reservation
stations include the operation and the actual operands, as well as information used for
detecting and resolving hazards. There are load buffers to hold the results of outstanding
loads and store buffers to hold the addresses of outstanding stores waiting for their
operands. All results from either the FP units or the load unit are put on the common data
bus (COB), which goes to the FP register file as well as the reservation stations and store
buffers. The FP adders implement addition and subtraction, while the FP multipliers do
multiplication and division.

Ex.1035.333DELL

Pipelinlng 301

2. Execute—If one or more of the operands is not yet available, monitor the

CDB while waiting for the register to be computed. This step checks for RAW

hazards. When both operands are available, execute the operation.

3. Write result—When the result is available, write it on the CDB and from

there into the registers and any functional units waiting for this result.

Although these steps are fundamentally similar to those in the scoreboard,

there are three important differences. First, there is no checking for WAW and

WAR hazards—these are eliminated as a byproduct of the algorithm, as we will

see shortly. Second, the CDB is used to broadcast results rather than waiting on

the registers. Third, the loads and stores are treated as basic functional units.
The data structures used to detect and eliminate hazards are attached to the

reservation stations, the register file, and the load and store buffers. Although

different information is attached to different objects, everything except the load

From instruction unit

From Floating-
memory point

operations FP registers
' Load buffers

Common data bus (CDB)

FIGURE 6.36 The basic structure of a DLX FP unit using Tomasulo’s algorithm.

Floating-point operations are sent from the instruction unit into a queue (called the FLOS,

or floating-point operation stack, in the IBM 360/91) when they are issued. The reservation

stations include the operation and the actual operands, as well as information used for

detecting and resolving hazards. There are load buffers to hold the results of outstanding
loads and store buffers to hold the addresses of outstanding stores waiting for their

operands. All results from either the FP units or the load unit are put on the common data

bus (CDB), which goes to the FP register file as well as the reservation stations and store,
buffers. The FP adders implement addition and subtraction, while the FP multipliers do

multiplication and division. ‘ ‘

DELL Ex.1035.333

302 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

buffers contains a tag field per entry. The tag field is a four-bit quantity that
denotes one of the five reservation stations or one of the six load buffers. The tag
field is used to describe which functional unit will produce a result needed as a
source operand. Unused values, such as zero, indicate that the operand is already
available. In describing the information, the scoreboard names are used
wherever this will not lead to confusion. The names used by the IBM 360/91 are
also shown. It is important to remember that the tags in the Tomasulo scheme
refer to the buffer or unit that will proquce a result; the register number is dis
carded when an instruction issues to a reservation station.

Each reservation station has six fields:

Op-The operation to perform on source operands S 1 and S2.

Qj,Qk-The reservation stations that will produce the corresponding source
operand; a value of zero indicates that the source operand is already available
in Vi or Vj, or is unnecessary. The IBM 360/91 calls0 these SINKunit and
SOURCEunit.

Vj,Vk-The value of the source operands. These are called SINK and
SOURCE on the IBM 360/91. Note that only one of the V field or the Q field
is valid for each operand.

Busy-Indicates that this reservation station and its accompanying functional
unit are occupied.

The register file and store buffer each have a field, Qi:

Qi-The number of the functional unit that will produce a value to be stored
into this register or into memory. If the value of Qi is zero, no currently active
instruction is computing a result destined for this register or buffer. For a
register, this means the value is given by the register contents.

The load and store buffers each require a busy field, indicating when a buffer
is available due to completion of a load or store assigned there. The store buffer
also has a field V, the value to be stored.

Before we examine the algorithm in detail, let's see what the system of tables
looks like for the following code sequence:

1. LF F6,34(R2)

2. LF F2, 45 (R3)

3. MULTF F0,F2,F4

4 . SUBF F8,F6,F2

5. DIVF F10,FO,F6

6. ADDF F6,F8,F2

We saw what the scoreboard looked like for this program when only the first
load had written its result. Figure 6.37 depicts the reservation stations, load and

Ex.1035.334DELL

Pipelining 303

store buffers, and the register tags. The numbers appended to the names add,
mult, and load stand for the tag for that reservation station-Add! is the tag for
the result from the first add unit. In addition we have included a central table
called "Instruction status." This table is included only to help the reader under
stand the algorithm; it is not actually a part of the hardware. Instead, the state of
each operation that has issued is kept in a reservation station.

There are two important differences from scoreboards that are observable in
these tables. First, the value of an operand is stored in the reservation station in
one of the V fields as soon as it is available; it is not read from the register file
once the instruction has issued. Second, the ADDF instruction has issued. This
was blocked in the scoreboard by a structural hazard.

Instruction status

Instruction Issue Execute Write result

LF F6,34(R2) -.J -.J -.J

LF F2,45(R3) -.J -.J

MULTF FO,F2,F4 -.J

SUBF F8,F6,F2 -.J

DIVF Fl0,FO,F6 -.J
·'

ADDF F6,F8,F2 -.J

Reservation stations

Name Busy Op Vj Vk Qj Qk

Addi Yes SUB (Load I) Load2

Add2 Yes ADD Addi Load2

Add3 No

Multi Yes MULT ' (F4) Load2

Mult2 Yes DIV (Loadl) Multi

Register status

Field FO F2 F4 F6 FS FlO F12 ... F30

Qi Multi Load2 Add2 Addi Mult2

Busy Yes Yes No Yes Yes Yes No ... No

FIGURE 6.37 Reservation stations and register tags. All of the instructions have issued, but only the first load
instruction has completed and written its result to the CDB. The instruction-status table is not actually present, but the
equivalent information is distributed throughout the hardware. The notation (X), where Xis either a register number or a
functional unit, indicates that this field contains the result of the functional unit X or the contents of register X at the time of
issue. The other instructions are all at reservation stations or, as in the case of instruction 2, completing a memory
reference. The load and store buffers are not shown. Load buffer 2 is the only busy load buffer and it is performing on
behalf of instruction 2 in the sequence-loading from memory address R3 + 45. There are no stores, so the store buffer is
not shown. Remember that an operand is specified by either the Q field or the V field at any time.

Ex.1035.335DELL

304

Example

Answer

6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

The big advantages of the Tomasulo scheme are (1) the distribution of the
hazard detection logic, and (2) the elimination of stalls for WA W and WAR
hazards. The first advantage arises from the distributed reservation stations and
the use of the CDB. If multiple instructions are waiting on a single result, and
each instruction already has its other operand, then the instructions can be
released simultaneously by the broadcast on the CDB. In the scoreboard the
waiting instructions must all read their results from the registers when register
buses are available.

WA W and WAR hazards are eliminated by renaming registers using the
reservation stations. For example, in our code sequence in Figure 6.37 we have
issued both the D IVF and the ADDF, even though there is a WAR hazard in
volving F6. The hazard is eliminated in one of two ways. If the instruction pro
viding the value for the DI VF has completed, then Vk will store the result,
allowing DIVF to execute independent of the ADDF (this is the case shown). On
the other hand, if the LF had not completed, then Qk would point to the Loadl
and the DI VF instruction would be independent of the ADD F. Thus, in either
case, the ADD F can issue and begin executing. Any uses of the result of the
MULTF would point to the reservation station, allowing the ADDF to complete
and store its value into the registers without affecting the DI VF. We'll see an
example of the elimination of a WAW hazard shortly. But let's first look at how
our earlier example continues execution.

Assume the same latencies for the floating-point functional units as we did for
Figure 6.34: Add is 2 clock cycles, multiply is 10 clock cycles, and divide is 40
clock cycles. With the same code segment, show what the status tables look like
when the MULTF is ready to go to write result.

The result is shown in the three tables in Figure 6.38. Unlike the example with
the scoreboard, ADDF has completed since the operands of DIVF are copied,
thereby overcoming the WAR hazard.

Ex.1035.336DELL

Pipelining 305

Instruction status

Instruction Issue Execute Write result

LF F6, 34 (R2) ..j ..j ..j

LF F2,45(R3) ..j ..j ..j

MULTF FO,F2,F4 ..j ..j
• ..j ..j ..j SUBF F8,F6,F2

DIVF F10,FO,F6 I ..j

ADDF F6,F8,F2 ..j ..j ..j

Reservation stations

Name Busy Op Vj Vk Qj Qk

Addi No

Add2 No

Add3 No

Multi Yes MULT (Load2) (F4)

Mult2 Yes DIV (Load I) Multi

Register status

Field FO F2 F4 F6 FS FlO F12 ... F30

Qi Multi Mult2

Busy Yes No No No No Yes No ... No

FIGURE 6.38 Multiply and divide are the only instructions not finished. This is different from the scoreboard case,
because the elimination of WAR hazards allowed the ADDF to finish right after the SUBF on which it depended.

Figure 6.39 gives the steps for each instruction to go through. Load and stores
are only slightly special. A load can be e;xecuted as soon as it is available. When
execution is completed and the CDB is available, a load puts its result on the
CDB like any functional unit. Stores receive their values from the CDB or from
the register file and execute autonomously; when they are done they tum the
busy field off to indicate availability, just like a load buffer or reservation
station.

Ex.1035.337DELL

306 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Instruction status Wait until Action or bookkeeping

Issue Station or buffer empty if (Register[Sl] .Qi *O)
{RS[r] .Qjf--Register[Sl] .Qi}

else {RS[r] .Vjf--Sl; RS [r] . Qj f-- 0} ;
if (Register[S2] .Qi*O)
{RS[r] .Qkf--Register[S2] .Qi};
else {RS [r] . Vkf-- S2; RS [r] . Qkf-- 0}
RS [r] . Busyf--yes;
Register[D] .Qi=r;

Execute (RS[r].Qj=O) and None-operands are in Vj and Vk
(RS[r].Qk=O)

Write result Execution completed at r 'efx(if (Register[x] .Qi=r) {Fxf-- result;
and CDB available Register [x] . Qif-- 0}) ;

'efx(if (RS [x] . Qj =r) {RS [x] . Vjf-- result;
RS [x] .Qj f--0});

Vx(if (RS [x] . Qk=r) {RS [x] . Vkf-- result;
RS[x] .Qk f--0});

'efx(if (Store [x] .Qi=r) {Store [x] . Vf-- result;
Store [x] . Qi f-- 0}) ;

RS [r] . Busyf--NO

FIGURE 6.39 Steps in the algorithm and what is required for each step. For the issuing instruction, D is the
destination, S1 and S2 are the sources, and r is the reservation station or buffer that D is assigned to. RS is the
reservation-station data structure. The value returned by a reservation station or by the load unit is called the "result."
Register is the register data structure, while Store is the store-buffer data structure. When an instruction is issued, the
destination register has its Qi field set to the number of the buffer or reservation station to which the instruction is issued. If
the operands are available in the registers, they are stored in the V fields. Otherwise, the Q fields are set to indicate the
reservation station that will produce the values needed as source operands. The instruction waits at the reservation
station until both its operands are available, indicated by zero in the Q fields. The Q fields are set to zero either when this
instruction is issued, or when an instruction on which this instruction depends completes and does its write back. When an
instruction has finished execution and the COB is available, it can do its write back. All the buffers, registers, and
reservation stations whose value of Qj or Qk is the same as the completing reservation station update their values from
the COB and mark the Q fields to indicate that values have been received. Thus, the COB can broadcast its result to
many destinations in a single clock cycle, and if the waiting instructions have their operands, they can all begin execution
on the next clock cycle. For simplicity we assume that all bookkeeping actions are done in a single cycle.

To understand the full power of eliminating WA W and WAR hazards
through dynamic renaming of registers, we must look at a loop. Consider the
following simple sequence for multiplying the elements of a vector by a scalar in
F2:

Loop: LD FO,O(Rl)

MULTD F4,FO,F2

SD O(Rl) ,F4

SUB Rl,Rl,#8

BNEZ Rl,Loop ; branches if Rl*O

With a branch~taken strategy, using reservation stations will allow multiple exe
cutions of this loop to proceed at once. This advantage is gained without un
rolling the loop-in effect, the loop is unrolled dynamically by the hardware. In

Ex.1035.338DELL

Pipelining 307

the 360 architecture, the presence of only 4 FP registers would severely limit the
use of unrolling. (We will see shortly, when we unroll a loop and schedule it to
avoid interlocks, many more registers are required.) Tomasulo's algorithm sup
ports the overlapped execution of multiple copies of the same loop with only a
small number of registers used by the program.

Let's assume we have issued all the instructions in two successive iterations
of the loop, but none of the floating-point loads/stores or operations has com
pleted. The reservation stations, register-status tables, and load and store buffers
at this point are shown in Figure 6.40. (The integer ALU operation is ignored,
and it is assumed the branch was predicted as taken.) Once the system reaches
this state, two copies of the loop could be sustained with a CPI close to one pro
vided the multiplies could complete in four clock cycles. We will see how com
piler techniques can achieve a similar result in Section 6.8.

An additional element that is critical to making Tomasulo's algorithm work is
shown in this example. The load instruction from the second loop iteration could
easily complete before the store from the first iteration, although the normal
sequential order is different. The load and store can safely be done in a different
order, provided the load and store access different addresses. This is checked by
examining the addresses in the store buffer whenever a load is issued. If the load
address matches the store-buffer address, we must stop and wait until the store
buffer gets a value; we can then access it or get the value from memory.

This scheme can yield very high performance, provided the cost of branches
can be kept small-this is a problem we will look at later in this section. There
are also limitations imposed by the complexity of the Tomasulo scheme, which
requires a large amount of hardware. In particular, there are many associative
stores that must run at high speed, as well as complex control logic. Lastly, the
performance gain is limited by the single completion bus (CDB). While addi
tional CDBs can be added, each CDB must interact with all the pipeline hard
ware, including the reservation stations. In particular, the associative tag-match
ing hardware would need to be duplicated at all stations for each CDB.

While Tomasulo's scheme may be appealing if the designer is forced to
pipeline an architecture that is difficult to schedule code for or has a shortage of
registers, the authors believe that the advantages of the Tomasulo approach are
limited for architectures that can be efficiently pipelined and statically scheduled
with software. However, as available gate counts grow and the limits of software
scheduling are reached, we may see dynamic scheduling employed. One pos
sible direction is a hybrid organization that uses dynamic scheduling for loads
and stores, while statically scheduling register-register operations.

Reducing Branch Penalties with Dynamic
Hardware Prediction

The previous section describes techniques for overcoming data hazards. If con
trol hazards are not addressed, Amdahl's Law predicts, they will limit pipelined
execution performance. Earlier, we looked at simple hardware schemes for

Ex.1035.339DELL

308 6. 7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Instruction status

Instruction From iteration Issue Execute Write result

LD FO,O(Rl) 1 -.J -.J

MULTD F4,FO,F2 1 -.J

SD O(Rl),F4 1 -.J

LD FO,O(Rl) 2 -.J -.J

MULTD F4,FO,F2 2 -.J

SD 0(Rl),F4 2 -.J

Reservation stations

Name Busy Fm Vj Vk Qj Qk

Addl No

Add2 No

Add3 No

Multl Yes MULT (F2) Loadl

Mult2 Yes MULT (F2) Load2

Register status

Field FO F2 F4 F6 FS FlO Fl2 ... F30

Qi Load2 Mult2

Busy yes no yes no no no

Store buffers Load buffers

Field Store 1 Store 2 Store 3 Field Load 1 Load2 Load3

Qi Multl Mult2 Address (Rl) (Rl)-8

Busy Yes Yes No Busy Yes Yes No

Address (Rl) (Rl)-8

FIGURE 6.40 Two active iterations of the loop with no instruction having yet completed. Load and store buffers
are included, with addresses to be loaded from and stored to. The loads are in the load buffer; entries in the multiplier
reservation stations indicate that the outstanding loads are the sources. The store buffers indicate that the multiply
destination is their value to store.

dealing with branches (assume taken or not taken) and software-oriented
approaches (delayed branches). This section focuses on using hardware to
dynamically predict the outcome of a branch-the prediction will change if the
branch changes its behavior while the program is running.

The simplest dynamic branch-prediction scheme is a branch-prediction
buffer. A branch-prediction buffer is a small memory indexed by the lower por-

Ex.1035.340DELL

Pipelining 309

tion of the branch instruction address. The memory contains a bit that says
whether the branch was recently taken or not. This is the simplest sort of buffer;
it has no tags and is useful only to reduce the branch delay when it is longer than
the time to compute the possible target PCs. We don't know, in fact, if the pre
diction is correct-it may have been put there by another branch that has the
same low-order address bits. But this doesn't matter. It is assumed to be correct,
and fetching begins in the predicted direction. If the branch prediction turns out
to be wrong, the prediction bit is inverted.

This simple one-bit prediction scheme has a performance shortcoming: If a
branch is almost always taken, then when it is not taken, we will predict incor
rectly twice, rather than once. Consider a loop branch whose behavior is taken
nine times sequentially, then not taken once. If the next time around it is pre
dicted not taken, the prediction will be wrong. Thus, the prediction accuracy will
only be 80%, ·even on branches that are 90% taken. To remedy this, two-bit pre
diction schemes are often used. In a two-bit scheme, a prediction must miss
twice in a row before it is changed. Figure 6.41 shows the finite-state machine
for the two-bit prediction scheme.

Not taken

Taken

Not taken

Taken

FIGURE 6.41 This shows the states in a two-bit prediction scheme. By using two bits
rather than one, a branch that strongly favors taken or not taken-as many branches do
will be mispredicted only once. The two bits are used to encode the four states in the
system.

The branch-prediction buffer can be implemented as a small, special cache
accessed with the instruction address during the IF pipe stage, or as a pair of bits
attached to each block in the instruction cache and fetched with the instruction
(see Section 8.3 in Chapter 8). If the instruction is predicted as a branch and if
the branch is predicted as taken, fetching begins from the target as soon as the

Ex.1035.341DELL

Pipelining 309

tion of the branch instruction address. The memory contains a bit that says

whether the branch was recently taken or not. This is the simplest sort of buffer;

it has no tags and is useful only to reduce the branch delay when it is longer than

the time to compute the possible target PCs. We don’t know, in fact, if the pre-

diction is correct—it may have been put there by another branch that has the

same low-order address bits. But this doesn’t matter. It is assumed to be correct,

and fetching begins in the predicted direction. If the branch prediction turns out

to be wrong, the prediction bit is inverted.

This simple one-bit prediction scheme has a performance shortcoming: If a

branch is almost always taken, then when it is not taken, we will predict incor—

rectly twice, rather than once. Consider a loop branch whose behavior is taken

nine times sequentially, then not taken once. If the next time around it is pre-

dicted not taken, the prediction will be wrong. Thus, the prediction accuracy will

only be 80%, even on branches that are 90% taken. To remedy this, two-bit pre-

diction schemes are often used. In a two—bit scheme, a prediction must miss

twice in a row before it is changed. Figure 6.41 shows the finite-state machine

for the two-bit prediction scheme.

Not taken

Not taken

Not taken
FIGURE 6.41 This shows the states in a two-bit prediction scheme. By using two bits

rather than one, a branch that strongly favors taken or not taken—as many branches do—

will be mispredicted only once. The two bits are used to encode the four states in the

system.

The branch—prediction buffer can be implemented as a small, special cache

accessed 'with the instruction address during the IF pipe stage, or as a pair of bits
attached to each block in the instruction cache and fetched with the instruction

(see Section 8.3 in Chapter 8). If the instruction is predicted as a branch and if

the branch is predicted as taken, fetching begins from the target as soon as the

DELL Ex.1035.341

310 6. 7 Advanced Pipelining-Dynamic Scheduling in Pipelines

PC is known. Otherwise, fetching and sequential executing continue. If the pre
diction turns out to be wrong, the prediction bits are changed as shown in Figure
6.41. While this scheme is useful for most pipelines, the DLX pipeline finds out
both whether the branch is taken and what the target of the branch is at the same
time. Thus, this scheme does not help for the simple DLX pipeline; we will ex
plore a scheme that can work for DLX a little later. First, let's see how well a
prediction buffer works with a longer pipeline.

The accuracy of a two-bit prediction scheme is affected by how often the
prediction for each branch is correct and by how often the entry in the prediction
buff er matches the branch being executed. When the entry does not match, the
prediction bit is used anyway because no better information is available. Even if
the entry was for another branch, the guess could be a lucky one. In fact, there is
about a 50% probability of being correct, even if the prediction is for some other
branch. Studies of branch-prediction schemes have found that two-bit prediction
has an accuracy of about 90% when the entry in the buffer is the branch entry. A
buffer of between 500 and 1000 entries has a hit rate of 90%. The overall predic
tion accuracy is given by

Accuracy=(% predicted correctly* % that prediction is for this instruction)+

(%lucky guess)* (1-% that prediction is for this instruction)

Accuracy= (90% * 90%) + (50% * 10%) = 86%

This number is higher than our success rate for filling delayed branches and
would be useful in a pipeline with a longer branch delay. Now let's look at a
dynamic prediction scheme that is useable for DLX and see how it compares to
our branch-delay scheme.

To reduce the branch penalty on DLX, we need to know from what address to
fetch by the end of IF. This means we must know whether the as yet undecoded
instruction is a branch and, if it is a branch, what the next PC should be. If the
instruction is a branch and we know what the next PC should be, we can have a
branch penalty of zero. A branch-prediction cache that stores the predicted ad
dress for the next instruction after a branch is called a branch-target buffer.
Because we are predicting the next instruction address and will send it out
before decoding the instruction, we must know whether the fetched instruction
is predicted as a taken branch. We also want to know whether the address in the
target buffer is for a taken or not-taken prediction, so that we can reduce the time
to find a mispredicted branch. Figure 6.42 shows what the branch-target buffer
looks like. If the PC of the fetched instruction matches a PC in the buffer, then
the corresponding predicted PC is used as the next PC. In Chapter 8 we will dis
cuss caches in much more detail; we will see that the hardware for this branch
target buffer is similar to the hardware for a cache.

Ex.1035.342DELL

Pipelining

: PC of instruction to fetch I
llook up Predicted PC

. •·· .·. · . .·
. ..

.· .
.· ..

. .

. ;•·

Number of ·.

entries

in
.. . . .

:: .. :· :·

branch- .. ; ·, .
target . ·· .. \ . •. ..·
buffer· .

: •:. ;.• .
.. · : ·.•

. . : . . . ; •: ;. . . :

·.··. ·>.'.··
.. :.•
. .• : .• ... •. : . ·· ..

. :·

not predicted to be ?-.. , '""'"""'" ,,
branch. Proceed normally

Yes: then instruction is branch and predicted
PC should be used as the next PC

. .

.

. .

.

.

Branch
predicted
taken or
untaken

311

FIGURE 6.42 A branch-target buffer. The PC of the instruction being fetched is matched
against a set of instruction addresses stored in the first column; these represent the
addresses of known branches. If the PC matches one of these entries, then the instruction
being fetched is a branch. If it is a branch, then the second field, predicted PC, contains the
prediction for the next PC after the branch. Fetching begins immediately at that address.
The third field just tracks whether the branch was predicted taken or untaken and helps
keep the misprediction penalty small.

If a matching entry is found in the branch-target buffer, fetching begins
immediately at the predicted PC. Note that (unlike a branch-prediction buffer)
the entry must be for this instruction, because the predicted PC will be sent out
before it is known whether this instruction is even a branch. If we did not check
whether the entry matched this PC, then the wrong PC would be sent out for
instructions that were not branches, resulting in a slower machine. Figure 6.43
shows the steps followed when using a branch-target buffer and when these
steps occur in the pipeline. From this we can see that there will be no branch
delay if a branch-prediction entry is found in the buffer and is correct. Other
wise, there will be a penalty of at least one clock cycle. In practice, there could
be a penalty of two clock cycles because the branch-target buffer must be up
dated. We could assume that the instruction following a branch or at the branch
target is not a branch, and do the update during that instruction time. However,
this does complicate the control. Instead, we will take a two-clock-cycle penalty
when the branch is not correctly predicted.

Ex.1035.343DELL

312 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

Send out
predicted

PC

FIGURE 6.43 The steps involved in handling an instruction with a branch-target
buffer. If the PC of an instruction is found in the buffer, then the instruction must be a
branch, and fetching immediately begins from the predicted PC in ID. If the entry is not
found and it subsequently turns out to be a branch, it is entered in the buffer along with the
target, which is known at the end of ID. If the instruction is a branch, is found, and is cor
rectly predicted, then execution proceeds with no delays. If the prediction is incorrect, we
suffer a one-clock-cycle delay fetching the wrong instruction and restart the fetch one clock
cycle later. If the branch is not found in the buffer and the instruction turns out to be a
branch, we will have proceeded as if the instruction were a branch and can turn this into an
assume-not-taken strategy; the penalty will differ depending on whether the branch is
actually taken or not.

Ex.1035.344DELL

312 I 6.7 Advanced Pipelining—DynamicScheduling in Pipelines

Normal
instruction
execution

ls fetched
instruction a

branch?

Send PC to

memory and
branch-target

buffer

Entry found in
branch-target

buffer?

Enter
branch PC

and next PC
into branch-
target buffer

Send out

predicted
PC

Does branch
condition

match

prediction?

Mispredicted
branch—kill

fetched
instruction, ’

restart fetch at

other target,
update target

buffer

FIGURE 6.43 The steps involved in handling an instruction with a branch-target
buffer. If the PC of an instruction is found in the buffer, then the instruction must be a

branch, and fetching immediately begins from the predicted PC in ID. If the entry is not

found and it subsequently turns out to be a branch, it is entered in the buffer along with the

target, which is known at the end of ID. if the instruction is a branch, is found, and is cor-

rectly predicted, then execution proceeds with no delays. If the prediction is incorrect, we

suffer a one-clock-cycle delay fetching the wrong instruction and restart the fetch one clock

cycle later. if the branch is not found in the buffer and the instruction turns out to be a

branch, we will have proceeded as if the instruction were a branch and can turn this into an

assume-not—taken strategy; the penalty will differ depending on whether the branch is

actually taken or not.

DELL Ex.1035.344

Pipelining 313

To evaluate how well a branch-target buffer works, we first must determine
what the penalties are in all possible cases. Figure 6.44 contains this informa
tion.

Instruction in buffer Prediction Actual branch Penalty cycles

Yes Taken Taken 0

Yes Taken Not taken 2

Yes Not taken Not taken 0

Yes Not taken Taken 2

No Taken 2

No Not taken 1

FIGURE 6.44 Penalties for all possible combinations of whether the branch is in the
buffer, how it is predicted, and what it actually does. There is no branch penalty if
everything is correctly predicted and the branch is found in the target buffer. If the branch is
not correctly predicted,_ the penalty is equal to one clock cycle to update the buffer with the
correct information (during which an instruction cannot be fetched) and one clock cycle, if
needed, to restart fetching the next correct instruction for the branch. If the branch is not
found and not taken, the penalty is only one clock cycle because the pipeline assumes not
taken when it is not aware that the instruction is a branch. Other mismatches cost two clock
cycles, since we must restart the fetch and update the buffer.

Using the same probabilities as for a branch-prediction buffer-90% proba
bility of finding the entry and 90% probability of correct prediction-and the
taken/not taken percentage taken from earlier in this chapter, we can find the
total branch penalty:

Branch penalty = % branches found in buffer * % incorrect predictions * 2 +
(1-% branches found in buffer)*% taken branches* 2 +

(1-% branches found in buffer)*% untaken branches* 1

Branch penalty = 90% * 10% * 2 + 10% * 60% * 2 + 10% * 40% * 1

Branch penalty = 0.34 clock cycles

This compares with a branch penalty for delayed branches of about 0.5 clock
cycles per branch. Remember, though, that the improvement from dynamic
branch prediction will grow as the branch delay grows.

Branch-prediction schemes are limited both by prediction accuracy and by the
penalty for misprediction. It is unlikely that we can improve the effective
branch-prediction success much above 80% to 90%. Instead, we can try to
reduce the penalty for misprediction. This is done by fetching from both the pre
dicted and unpredicted direction. This requires that the memory system be dual
ported or have an interleaved cache. While this adds cost to the system, it may
be the only way to reduce branch penalties below a certain point.

Ex.1035.345DELL

314 6.7 Advanced Pipelining-Dynamic Scheduling in Pipelines

We have seen a variety of software-based static schemes and hardware-based
dynamic schemes for trying to boost the performance of our pipelined machine.
Pipelining tries to exploit the potential for parallelism among sequential instruc
tions. In the ideal case all the instructions would be independent, and our DLX
pipeline would exploit parallelism among the five instructions simultaneously in
the pipeline. Both the static scheduling techniques of the last section and the
dynamic techniques of this section focus on maintaining the throughput of the
pipeline at one instruction per clock. In the next section we will look at tech
niques that attempt to exploit overlap more than by the factor of 5, to which we
are restricted with the simple DLX pipeline.

6.8 I Advanced Pipelining-Taking Advantage of
More Instruction-Level Parallelism

To improve performance further we would like to decrease the CPI to less than
one. But the CPI cannot be reduced below one if we issue only one instruction
every clock cycle. The goal of the techniques discussed in this section is to allow
multiple instructions to issue in a clock cycle.

As we know from earlier sections, to keep a pipeline full, parallelism among
instructions must be exploited by finding sequences of unrelated instructions that
can be overlapped in the pipeline. Two related instructions must be separated by
a distance equal to the pipeline latency of the fir.st of the instructions.
Throughout this section we will assume the latencies shown in Figure 6.45.
Branches still have a one-clock-cycle delay. We assume that the functional units
are fully pipelined or replicated, and that an operation can be issued on every
clock cycle.

As we try to execute more instructions on every clock cycle and try to overlap
more instructions, we will need to find and exploit more instruction-level paral
lelism. Thus, before looking at pipeline organizations that require more
parallelism among instructions, let's look at a simple compiler technique that
will help create additional parallelism.

Instruction producing result Destination instruction Latency in clocks

FPALUop Another FP ALU op 3

FPALUop Store double 2

Load double FPALU op 1

Load double Store double 0

FIGURE 6.45 Latencies of operations used in this section. The first column shows the
originating instruction type. The second column is the type of the consuming instruction.
The last column is the separation in clock cycles to avoid a stall. These numbers are similar
to the average latencies we would see on an FP unit, like the one we described for DLX in
Figure 6.29 (page 289).

Ex.1035.346DELL

Example

Answer

Pipelining

Increasing Instruction-Level Parallelism
with Loop Unrolling

315

To compare the approaches discussed in this section, we will use a simple loop
that adds a scalar value to a vector in memory. The DLX code, not accounting
for the pipeline, looks like this:

Loop: LD FO,O(Rl) load the vector element

ADDD F4,FO,F2 ; add the scalar in F2

SD 0 (Rl) ,·F4 store the vector element

SUB Rl,Rl,#8 ; decrement the pointer by
; 8 bytes (per DW)

BNEZ Rl,LOOP branch when it's zero

For simplicity, we assume the array starts at location ·O. If it were located
elsewhere, the loop would require one additional integer instruction.

Let's start by seeing how well this loop will run when it is scheduled on a
simple pipeline for DLX with the latencies discussed above.

Show how the vector add loop would look on DLX, both scheduled and
unscheduled, including any stalls or idle clock cycles.

Without any scheduling the loop will execute as follows:

Clock cycle issued

Loop: LD FO,O(Rl) 1

stall 2

ADDD F4,FO,F2 3

stall 4

stall 5

SD 0(Rl),F4 6

SUB Rl,Rl,#8 7

BNEZ Rl,LOOP 8

stall 9

This requires 9 clock cycles per iteration. We can schedule the loop to obtain

Loop: LD

stall

ADDD

SUB

BNEZ

SD

FO,O(Rl)

F4,FO,F2

Rl,Rl,#8

Rl,LOOP

8(Rl),F4

; delayed branch

; changed because interchanged with SUB

Ex.1035.347DELL

316

Example

Answer

6.8 Advanced Pipelining-;-Taking Advantage of More Instruction-Level Parallelism

Execution time has been reduced from 9 clock cycles to 6.
Notice that to create this schedule, the compiler had to determine that it could

swap the SUB and SD by changing the address the SD stored to: The address was
0 (Rl) and is now 8 (Rl). This is not trivial, since most compilers would see
that the SD instruction depends on the SUB and would refuse to interchange
them. A smarter compiler could figure out the relationship and perform the
interchange. The dependence among the LD, ADDD, and SD determines the clock
cycle count for this loop.

In the above example, we complete one loop iteration and finish one vector
element every 6 clock cycles, but the actual work of operating on the vector
element takes just 3 of those 6 clock cycles. The remaining 3 clock cycles con
sist of loop overhead-the SUB and BNEZ-and a stall. To eliminate these 3
clock cycles we need to get more operations within the loop. A simple scheme
for increasing the number of instructions between executions of the loop branch
is loop unrolling. This is done by simply replicating the loop body multiple
times, adjusting the loop termination code, and then scheduling the unrolled
loop. To allow effective scheduling of the loop, we will want to use different
registers for each iteration, thus increasing the register count.

Show what our loop looks like unrolled three times (yielding four copies of the
loop body), assuming Rl is initially a multiple of 4. Eliminate any obviously
redundant computations, and do not reuse any of the registers.

Here is the result after dropping the unnecessary SUB and BNEZ operations
duplicated during unrolling.

Loop: LD FO,O(Rl)

ADDD F4,FO,F2

SD 0(Rl),F4 ;drop SUB & BNEZ

LD F6,-8(Rl)

ADDD F8,F6,F2

SD -8 (Rl) , F8 ;drop SUB & BNEZ

LD FlO, -16 (Rl)

ADDD Fl2,Fl0,F2

SD -16(Rl),Fl2 ;drop SUB & BNEZ

LD Fl4,-24(Rl)

ADDD Fl6,Fl4,F2

SD -24(Rl),Fl6

SUB. Rl,Rl,#32

BNEZ Rl,LOOP

Ex.1035.348DELL

Example

Answer.

Pipelining 317

We have eliminated three branches and three decrements of R 1. The addresses
on the loads and stores have been compensated for. Without scheduling, every
operation is followed by a dependent operation, and thus will cause a stall. This
loop will run in 27 clock cycles-each LD takes 2 clock cycles, each ADDD 3,
the branch 2, and all other instructions I-or 6.8 clock cycles for each of the
four elements.

Although this unrolled version is currently slower than the scheduled version
of the original loop, this will change when we schedule the unrolled loop. Loop
unrolling is normally done early in the compilation process, so that redundant
computations can be exposed and eliminated by the optimizer.

In real programs we do not normally know the upper bound on the loop. Sup
pose it is n, and we would like to unroll the loop k times. Instead of a single
unrolled loop, we generate a pair of loops. The first executes (n mod k) times
and has a body that is the original loop. The unrolled version of the loop is sur
rounded by an outer loop that iterates (n div k) times. In the above example, un
rolling improves the performance of this loop by eliminating overhead instruc
tions, though it increases code size substantially. What will happen to the
performance increase when the loop is scheduled on DLX?

Show the unrolled loop in the previous example after it has been scheduled on
DLX.

Loop: LD FO,O(Rl)

LD F6,-8(Rl)

LD F10,-16(Rl)

LD Fl4,-24(Rl)

ADDD F4,FO,F2

ADDD F8,F6,F2

ADDD Fl2,Fl0,F2

ADDD F16,F14,F2

SD 0(Rl),F4

SD -8(Rl),F8

SD -16(Rl),F12

SUB Rl,Rl,#32 ;branch dependence

BNEZ Rl,LOOP

SD -24(Rl),F16 ; 8-32 = -24

The execution time of the unrolled loop has dropped to a total of 14 clock
cycles, or 3.5 clock cycles per element, compared to 6.8 per element before
scheduling.

Ex.1035.349DELL

318 6.8 Advanced Pipelining-Taking Advantage of More Instruction-Level Parallelism

The gain from scheduling on the unrolled loop is even larger than on the
original loop. This is because unrolling the loop exposes more computation that
can be scheduled. Scheduling the loop in this fashion necessitates realizing that
the loads and stores are independent and can be interchanged.

Loop unrolling is a simple but useful method for increasing the size of
straightline code fragments that can be scheduled effectively. This compile-time
transformation is similar to what Tomasulo's algorithm does with register
renaming and out-of-order execution. As we will see, this is very important in
attempts to lower the CPI by issuing instructions at a high rate.

A Superscalar Version of DLX

One method of decreasing the CPI of DLX is to issue more than one instruction
per clock cycle. This would allow the instruction-execution rate to exceed the
clock rate. Machines that issue multiple independent instructions per clock cycle
when they are properly scheduled by the compiler have been called superscalar
machines. In a superscalar machine, the hardware can issue a small number (say
2 to 4) of independent instructions in a single clock. However, if the instructions
in the instruction stream are dependent or don't meet certain criteria, only the
first instruction in sequence will be issued. A machine where the compiler has
complete responsibility for creating a package of instructions that can be simul
taneously issued, and the hardware does not dynamically make any decisions
about multiple issue, should probably be regarded as a type of VLIW (very long
instruction word), which we discuss in the next section.

What would the DLX machine look like as a superscalar? Let's assume two
instructions issued per clock cycle. One of the instructions could be a load, store,
branch, or integer ALU operation, and the other could be any floating-point
operation. As we will see, issue of an integer operation in parallel with a
floating-point operation is much simpler and less demanding than arbitrary dual
issue.

Issuing two instructions per cycle will require fetching and decoding 64 bits
of instructions. To keep the decoding simple, we could require that the instruc
tions be paired and aligned on a 64-bit boundary, with the integer portion
appearing first. Figure 6.46 shows how the instructions look as they go into the
pipeline in pairs. This table does not address how the floating-point operations
extend the EX cycle, but it is no different in the superscalar case than it was for
the ordinary DLX pipeline; the concepts of Section 6.6 apply directly. With this
pipeline, we have substantially boosted the rate at which we can issue floating
point instructions. To make this worthwhile, however, we need either pipelined
floating-point units or multiple independent units. Otherwise, floating-point
instructions can only be fetched, and not issued, since all the floating units will
be busy.

Ex.1035.350DELL

